
An automatic encoding from VeriFast Predicates
into Implicit Dynamic Frames

Daniel Jost and Alexander J. Summers

ETH Zurich, Switzerland
dajost@ethz.ch, alexander.summers@inf.ethz.ch

Abstract. VeriFast is a symbolic-execution-based verifier, based on sep-
aration logic specifications. Chalice is a verifier based on verification
condition generation, which employs specifications in implicit dynamic
frames. Recently, theoretical work has shown how the cores of these two
verification logics can be formally related. However, the mechanisms for
abstraction in the two tools are not obviously comparable; VeriFast em-
ploys parameterised recursive predicates in specifications, while Chal-
ice employs recursive predicates without parameters, along with heap-
dependent abstraction functions.
In this paper, we show how to relate a subset of VeriFast, including many
common uses of separation logic recursive predicates, to the implicit
dynamic frames approach. In particular, we present a prototype tool
which can translate a class of VeriFast examples into Chalice examples.
Our tool performs several semantic analyses of predicate definitions, and
determines which of a selection of novel techniques can be applied to infer
appropriate predicate and function definitions, as well as corresponding
code instrumentation in a generated program. The tool is automatic,
and produces programs which can themselves be directly handled by the
automatic Boogie/Z3-based Chalice verifier.

1 Introduction

Separation logic [3, 8] is a well-established approach for the verification of heap-
based imperative programs; many verifiers have been built using separation logic
as their specification language. VeriFast [5, 4] is a mature verification tool for C
and Java programs, which handles separation logic specifications by internally
maintaining a representation of the current program state (symbolic execution),
while passing queries off to an SMT solver about arithmetical problems and
other theories. The key primitive features of separation logic are the points-to
assertions x.f↦v, which provide the only means of dereferencing heap locations
in assertions, and the separating conjunction ∗, whose semantics can be used
to divide ownership of heap locations between assertions. The ability to specify
unbounded heap structures is provided by recursive abstract predicates [9].

Implicit dynamic frames [12] is a more-recently-introduced specification logic,
which is designed to facilitate implementations based not only on symbolic ex-
ecution but also on verification condition generation (i.e., encoding the entire



verification problem, including heap information, to an SMT solver). It separates
the notion of having permission to access a heap location from the means of ac-
tually referring to the location’s value. The key primitives here are accessibility
predicates acc(x.f), which represent permission to access a heap location, and a
conjunction (also written ∗ in this paper) which acts multiplicatively on acces-
sibility predicates (i.e., sums the permissions from the two conjuncts), while not
enforcing a strict separation between the heap locations actually dereferenced
in expressions. Instead, a concept of self-framing assertions is imposed on those
assertions used in pre/post-conditions etc., which essentially requires that the
assertion only reads from heap locations for which it also requires permission
via accessibility predicates. For example, x.f = 5 is an implicit dynamic frames
assertion, but is not self-framing, while acc(x.f) ∗ x.f = 5 is.

Chalice [6, 7] is a verifier which handles a small object-oriented language (with
many concurrency-related primitives) annotated with implicit dynamic frames
specifications. It works by verification condition generation; as such, certain de-
sign decisions in the language have been made in order to facilitate the encoding
to SMT. In particular, although recursively-defined predicates are available in
the specification logic, in contrast to VeriFast (and most similar tools), such
predicates cannot take parameters (other than the implicit this receiver). Com-
pared with VeriFast predicates, Chalice predicates by themselves are therefore
significantly less expressive. However, Chalice specifications can include (pa-
rameterised) recursive functions, whose evaluations can depend on the heap, in
contrast to separation logic based tools. Thus, the mechanisms in the two tools
for handling recursion in specifications are not directly comparable.

It has been recently shown that separation logic and implicit dynamic frames
can be formally related, and that it is possible to encode from separation logic
specifications into equivalent specifications in implicit dynamic frames [10, 11].
Using the relationship defined, the IDF assertion acc(x.f) ∗ x.f = 5 is shown
to be equivalent to the separation logic assertion x.f↦5; indeed, is it shown
that a large fragment of separation logic can be encoded into IDF. This hints at
the possibility of encoding programs annotated for, say, VeriFast, into programs
annotated instead for Chalice. However, the cited work only applied to the “core”
fragments of the two logics; in particular, recursive predicates/functions were not
treated in those papers. Since almost all interesting separation logic examples
employ predicates in some form or other, this limitation is a serious obstacle to
relating the two approaches in practice.

In this paper, we tackle the problem of making this relationship practical.
In particular, we present a novel technique for translating VeriFast programs
which include parameterised predicate definitions, into Chalice programs (which
cannot). Our work helps with understanding the two approaches and their rela-
tionships/differences, and potentially provides a platform for future comparative
studies on issues such as performance and annotation overhead.

Our approach involves the introduction of heap-dependent functions and
ghost state/annotations, and relies crucially on a custom-made assertion anal-
yser, which is used to extract simple semantic information about predicate def-
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initions, without the need to invoke a background prover. While our techniques
cannot handle all possible predicate definitions, they are fully automatic, and
produce code which can be handled by the Chalice tool without modifications.
Our preliminary experiments indicate that non-trivial examples can be handled
by our techniques, and we have many ideas for extending their applicability. To
our knowledge, this also presents the first method for verifying separation-logic-
annotated code solely via verification condition generation to a first-order SMT
solver (Z3 [2]). Our approach is implemented, and available to download [1].

2 Background

In this section, we give a swift introduction to the important aspects of VeriFast
and Chalice. For more details, we refer the reader to the papers [5, 4, 6, 7]

2.1 VeriFast Predicates, In and Out Parameters

VeriFast source files can declare predicate definitions; a predicate has a name,
a sequence of formal parameters, and a body, which is a VeriFast assertion.
Predicate definitions may occur outside of class definitions (static predicates),
or inside a class definition (instance predicates), in which case they also have
an implicit this parameter. For example, an instance predicate describing (non-
empty) linked lists, can be defined as follows:

1 predicate linkedlist(list<int> elems) =

2 this.value |-> ?v &*& this.next |-> ?n &*&

3 (n == null ? elems = cons(v,nil) :

4 n.linkedlist(?rest) &*& elems = cons(v,rest))

The &*& syntax denotes the separating conjunction (∗) of separation logic. The
?v syntax indicates a binding of a (logical) variable to a value (which must be
uniquely determined by the context); occurrences of the same variable name
afterwards refer to this value. The same syntax can be used with predicate
instances in, e.g., method specifications:

1 void add(int x)

2 //@ requires this.linkedList(?xs);

3 //@ ensures this.linkedList(cons(x,xs));

4 { ... }

When handling a call to such a method, the verifier matches the variable xs with
the actual parameter to the currently-held predicate instance. Such a matching
is only guaranteed to be deterministic because the elems parameter is uniquely
determined by the predicate body, in any given state. Such a parameter is called
an out parameter of the predicate, in VeriFast. Conversely, some predicate pa-
rameters are used to determine the meaning of the predicate body; for example,
the parameter end in the famous list segment predicate (a static predicate, here):
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1 predicate lseg(LinkedList start, LinkedList end ;) =

2 ((start == null || start == end) ? true :

3 (start.value |-> _ &*& start.next |-> ?n &*& lseg(n,end)));

4 }

The syntax here, represents a wildcard value - essentially, the particular value
is anonymously existentially quantified. In this predicate, both start and end
parameters must be known before the meaning of the predicate body can be
determined. VeriFast calls these in parameters. For in parameters, it is not pos-
sible to use the ? binding (as in the add declaration above); the values of the
parameters are not determined by holding a predicate instance.

In both Verifast and Chalice, ghost unfold and fold statements are used to
direct the verifier to replace a predicate instance with its defined body, and
vice versa. For example, an instance of the above predicate could be obtained
via a VeriFast source statement fold lseg(null,null). When a predicate instance
is held, the permissions (points-to assertions) and other constraints given by its
definition are not directly available to the verifier; an unfold statement makes
them available. This guidance tames the problem of reasoning statically about
unbounded recursive definitions; and isorecursive semantics is used [13].

2.2 Chalice Predicates and Functions

Chalice allows a restricted form of predicate definitions, compared with VeriFast.
Predicates can only be instance predicates, and cannot take parameters (other
than the implicit this receiver). Predicate definitions can still be recursive: for
example, the following predicate definition includes the same permissions as the
analogous VeriFast example in the previous subsection (the analogous connective
to separating conjunction is written &&, in the Chalice tool):

1 predicate linkedlist {

2 acc(this.value) && acc(this.next) &&

3 (this.next != null ==> this.next.linkedlist)

4 }

The reason for the above restrictions is to simplify the bookkeeping of per-
missions held by the current thread, for the verification condition generation.
Nonetheless, Chalice includes an additional mechanism for abstraction/recur-
sion: the ability to define heap-dependent functions. These play a role analogous
with pure methods, as often used in contract languages; they can be used to ab-
stract over values represented by the underlying heap data structure. A Chalice
function definition includes a pre-condition, which must require permissions to
(at least) the heap locations on which the function’s evaluation depends. Func-
tion invocations in assertions do not themselves represent these permissions, but
must occur within an assertion in which the permissions are required. For ex-
ample, the following declaration defines a function which extracts the elements
from a linked list structure:
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1 function elems() : list<int>

2 requires this.linkedlist

3 {

4 unfolding this.linkedlist in

5 (next == null ? [value] : [value] ++ next.elems())

6 }

The unfolding expression in Chalice permits the definition of expressions which
access heap locations whose permissions are currently folded inside a predicate
instance; they do not affect the expression’s value, but help the verifier to check
that appropriate permissions are held. The notion of self-framing assertions is
extended to check function pre-conditions. For example, this.elems() == [4] is
not a self-framing assertion (it does not contain sufficient permissions to satisfy
the function’s pre-condition), but this.linkedlist && this.elems() == [4] is.

2.3 Running Example

In this paper, we will use as a running example an adapted list segment predi-
cate, in which the list elements are also exposed as a predicate parameter. Our
predicate is not quite analogous to the typical lseg; we only model non-empty
list segments, with this definition. Our tool can actually handle a more general
definition (in which non-empty list segments can also be represented), but we
explain the relevant limitations (and how we plan to lift them) in Section 6. The
VeriFast definition for our running example is:

1 predicate listSeg(List start, List end, list<int> elems) =

2 start != null &*& start.value |-> ?x &*& start.next |-> ?n &*&

3 (n != end ? listSeg(n, end, ?nextElems) &*&

4 elems == cons(x, nextElems)

5 : elems == cons(x, nil));

3 Approach

We base our approach around two main ideas: replacing out parameters with
abstraction functions, and replacing in parameters with ghost fields; these are
detailed in the next two subsections. Note that we do not stick to the VeriFast
notions of in/out parameters, but instead try to infer that as many parameters as
possible can be treated as out parameters. In the following, we will first outline
those two main ideas in detail. Second, we will show how those abstract ideas
are used when translating VeriFast predicates (and programs) to Chalice; for
concreteness, we show how they apply to our running example (from Section
2.3). Finally, we will motivate the analysis presented in Section 4.

3.1 From Out Parameters to Abstraction Functions

The observation that out parameters can be determined by the underlying heap
(along with the in parameters of a predicate definition) led us to an encoding
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in which such out parameters can be replaced by abstraction functions. The
constraints determining the value of the predicate parameter can be re-encoded
as a function which computes the value itself. Uses of the predicate parameter
can, in general, then be replaced by invocations of the function. For example,
the elems parameter of our linkedlist predicate can be replaced by an elems()
function, providing the same abstraction of the underlying data structure.

Abstraction functions introduced in this way take the (translated version
of the) original predicate as a pre-condition; this provides the appropriate per-
missions to the heap locations on which the function’s evaluation depends. An
instance of the original predicate can then be replaced by an occurrence of the
new predicate, conjoined with a fact relating the abstraction function’s value
to the original parameter value. For example an instance this.linkedlist(l) of the
parameterised list predicate, is replaced by this.linkedlist * this.elems()=l.

Where the original predicate is recursive, the body of the predicate will usu-
ally relate the parameters of the original and recursive predicate instance via
some constraint; this results in a recursive definition of the extracted abstrac-
tion function. For example, in the body of the parameterised predicate linkedlist,
we find that, if this.next = null holds, then elems=nil is required, while if this.next
!= null then we have that elems = v:rest is required, where rest is the correspond-
ing parameter of the recursive linkedlist predicate instance. This gives rise to a
natural function definition, as shown at the end of Section 3.4, in which rest
corresponds to a recursive call to the function.

3.2 From In Parameters to Ghost State

While out parameters can be naturally handled as abstraction functions, it is
clear that the same trick cannot be applied to all predicate parameters. In par-
ticular, if the value of a parameter cannot be uniquely determined from the
predicate body, but is instead used to decide the meaning of the predicate body
(for example, the end parameter of the lseg predicate), then it must necessarily
be provided for each predicate instance. We handle this situation by introducing
additional ghost fields to represent the values of the in parameters of a currently-
held predicate instance. In particular, a fold of the original parameterised pred-
icate definition is handled by instead first writing to the ghost field(s) (with the
values that were originally provided for the in parameters), and then folding
the translated predicate definition. When the resulting predicate instance is un-
folded, the ghost fields can be used in place of any occurrences of the original
parameters. For instance, when folding a linked list segment predicate taking
the start as receiver and the end as parameter, fold(start.lseg(end)) gets replaced
by start.end = end; fold(start.lseg).

This handling of in parameters using ghost state comes with a clear limita-
tion: since a (ghost) field can only have a single value at any one time, it is only
possible for us to encode uses of predicates for which it is never required to hold
multiple instances of the same predicate, for the same receiver but for different
values of the other parameters. This problematic situation could arise in two
(related) ways. Firstly, it could really be that the in parameter is used to select
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between two different views of the same data structure. For example, while it is
not possible to hold lseg(this,x) * lseg(this,y) in a scenario where this, x and y are
all distinct references (since this would require too much permission to e.g., the
field this.next), it is possible to hold these two predicate instances if, e.g., x=this
holds. In this case, the first instance of the predicate holds no permissions at all,
but is still a valid instance. In this particular case, it is possible for our tool to
often provide a further workaround, as described in Section 6. In the presence
of list segments involving fractional permissions (denoted for the fraction p in
VeriFast by [p]e.x↦y or [p]pred for predicates, and in Chalice by acc(e.x, p)),
this problematic case can even arise in the former scenario. If it is possible to
express list segments which require partial permissions, such as [1/2]lseg(this,x)
* [1/2]lseg(this,y) for different x and y; essentially, this allows for two overlapping
(and read-only) “views” on different portions of the same list. Our ghost-state-
based approach is not able to handle this case, which nonetheless has not yet
arisen in the examples we have looked at so far.

Since our ghost field approach involves writing to the ghost fields before
a fold statement, we need write permission to the ghost-fields at these points.
In addition, we need to put at least some permission to this field inside the
predicate body, so that we can refer to its value. However, how to distribute
the permission throughout arbitrary code, is less obvious. Our solution is to
attempt to determine a field to which a predicate definition always requires full
permission; we then mirror the permissions to that field throughout the entire
program; whereever some permission to the mirrored field occurs, we conjoin the
same amount of permission to the ghost field. In particular, this guarantees that
whenever the predicate is foldable we also have full permission to the ghost-field
(and so, may write to it).

3.3 Initial Translation

In the following subsections we will describe the steps performed by our tool
to translate VeriFast programs to Chalice. Note that this translation consists of
multiple steps, each of which can potentially fail, aborting the translation; our
tool cannot handle every VeriFast program.

We begin with the body (assertion) of a predicate definition, and firstly ap-
ply the following translation recursively throughout: every points-to assertion
[p]x.f↦v (in which v is neither bound using ?y, nor the wildcard expression),
is replaced by the assertion x ≠ null ∗ acc(x.f, p) ∗ x.f == v. The first conjunct
reflects the implicit non-nullity guarantee that VeriFast bakes into points-to as-
sertions, while the latter two reflect the basic encoding from separation logic
into implicit dynamic frames [11]. In the case of a bound variable or a wildcard,
we translate [p]x.f↦ as x ≠ null ∗ acc(x.f, p); for a bound variable ?v, subse-
quent occurrences of v get replaced by x.f . The non-nullity conjunct x ≠ null is
also omitted for the special this reference (since this ≠ null is implicit in Chalice
predicate definitions, as in VeriFast).

Turning our attention to our running example from Section 2.3, we note that
this VeriFast predicate is static; Chalice, in contrast, only supports instance
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predicates. In order to turn this static predicate into an instance predicate we
need to pick one of the reference parameters and make it the new receiver1. This
only works if the parameter is guaranteed to be non-null: in our running example
the predicate body includes the assertion start ≠ null, indicating that start would
be a valid choice. Our tool must be able to make this selection automatically; this
is the first of several use-cases for an analysis of predicate definitions, capable of
extracting (dis)equalities of interest. The technical details of this analysis will
be provided in Section 4. In fact, our tool makes further use of our analysis to
deal with a wider range of static predicates, for which the new receiver cannot
necessarily proven to be non-null; we will outline this idea in Section 6.

By the end of a successful translation of a VeriFast program, each recursive
predicate instance will correspond to an instance of the corresponding Chal-
ice predicate in our translated program. Furthermore, as we will detail in the
next two subsections, both of our techniques for replacing predicate parameters
(described informally in the previous two subsections) result in the introduc-
tion of a Chalice function, which retrieves the corresponding value. Therefore,
for a predicate p with formal parameters y1, y2, . . ., we replace each predicate
instance x.p(t1, t2, . . .) with an assertion p ∗ x.y1() == t1 ∗ x.y2() == t2 . . . in
which y1(), y2() etc. are now function applications2. The following two subsec-
tions describe how we find the definitions for the functions.Having applied the
steps detailed in this subsection, the predicate definition of our running example
looks as follows:

1 predicate listseg(LinkedList end, list<int> elems) =

2 this != null

3 &*& acc(this.value)

4 &*& acc(this.next)

5 &*& (this.next != end

6 ? this.next.listseg &*& this.next.end() == end &*&

elems == cons(this.value, this.next.elems())

7 : elems == cons(this.value, nil));

3.4 Inferring Abstraction Functions

After the initial translation steps described in the previous subsection, we at-
tempt to identify predicate arguments to be replaced by abstraction functions
(cf. Section 3.1). In order to come up with abstraction functions, we extract
equality facts about the predicate body; this is another motivation for the un-
derlying analysis we designed, presented in the next section). Applied to our
running example, our analysis is able to extract just a single equality fact:

1 We considered an encoding with a “dummy” receiver object. However, representing
that this receiver is the same for all occurring instances of the predicate is difficult.

2 In fact, we only conjoin equalities for those predicate parameters which we concretely
specified in the original predicate instance; those which were bound with ?y or
syntax are omitted in the resulting assertion.
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elems = (next≠end?cons(value,next.elems())∶cons(value,nil)). This fact is deduced
by combining information from the branches of the conditional expression. Note
that no such fact is generated concerning end; this is because information about
the value of end is not present in both branches.

Having extracted those equality facts, the approach is quite simple: for each
predicate parameter v, we search for an equality fact v = e for some arbitrary
expression e (or the symmetric case). In order to make this strategy more ro-
bust, we have also implemented a very simple equation solver which is able to
solve (some) equalities for v rather than relying on v being already one side of
the equation. Furthermore, solving an equation for v can also introduce a side-
condition, such as preventing zero division. In case a suitable expression e was
found, we can now generate a new function definition for the parameter in ques-
tion; in case we have extracted more than one equality for v, we pick an arbitrary
one. The function takes the original predicate, as well as the side-condition a,
as pre-condition, and the body of the function is unfolding this.p in e where p
is the predicate under analysis.

In our running example, we cannot extract any equality for the parameter
end, but we have one for elems. Thus, we generate the following new function
definition:

1 function elems(): list<int>

2 requires acc(this.listseg) {

3 unfolding acc(this.listseg) in

4 this.next != end ? cons(this.value, this.next.elems())

5 : cons(this.value, nil)

6 }

We then substitute the function’s body for occurrences of the original param-
eter in the predicate body3. This can typically introduce trivial equalities, and
so we simplify the resulting assertion yielding an updated predicate definition:

1 predicate listseg(LinkedList end) =

2 acc(this.value);

3 &*& acc(this.next);

4 &*& (this.next != end

5 ? this.next.listseg

6 &*& this.next.end() == end()

7 : true;

8 };

Note that, in general, we have to take some extra steps to avoid introducing
cyclic function definitions, here. For example, given the (non-sensical) example

of a predicate defined by: p(x, y)
def
= (x == y), a näıve approach might be to

define a function for each parameter, each calling the other function directly in

3 Note that we cannot substitute a call to the function itself, since the function requires
the predicate under analysis as a pre-condition, and these occurrences are inside the
predicate body.
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its body. Our tool detects and breaks such cycles; this means that at most one
parameter will be replaced with a function, in this example.

3.5 Introducing Ghost Fields

Any remaining predicate parameters are handled by introducing extra ghost
fields (one per parameter). As described in Section 3.2, this requires us to iden-
tify a suitable field in the original program to which full permission is guaranteed
to be held whenever the predicate itself is held. Therefore, we require another
analysis of the predicate body, able to extract information about the permissions
held by the predicate. Applied to our running example this results in the knowl-
edge that the predicate body holds full permission on this.value and this.next. In
our running example, the predicate parameter end remains to be dealt with and
from our learnt knowledge about the permissions it is clear that either field value
or field next will suffice. Therefore, picking the first, we will have the permissions
to the newly-introduced ghost field end mirror those to value in our output code.
In particular, these permissions are included in the assertion under analysis.

We also provide a Chalice function to access the ghost field’s value when the
predicate is folded. This means that all predicate parameters, whether backed
by abstraction functions (as described in the previous subsection) or by ghost
fields, can be accessed uniformly (cf. Section 3.3). For our running example, this
results in a final set of definitions as follows:

1 ghost LinkedList end;

2

3 predicate listseg =

4 acc(this.value) &*& acc(this.end) &*& acc(this.next)

5 &*& (this.next != this.end ? this.next.listseg

6 &*& this.next.end() == this.end

7 : true; };

8

9 function end(): LinkedList

10 requires acc(listseg) {

11 unfolding acc(listseg) in this.end;

12 }

13

14 function elems(): list<int>

15 requires acc(this.listseg) {

16 unfolding acc(this.listseg) in

17 this.next != end ? cons(this.value, this.next.elems())

18 : cons(this.value, nil)

19 }

3.6 Translating Programs

While the above sections explain the details of our analysis of predicates, we
explain here how we adapt our approach to translating entire programs. The
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initial translation described in Section 3.3 above is applied also to the rest of
the program specifications; this results in the elimination of points-to assertions,
and every predicate instance being replaced by the unparameterised predicate,
plus appropriate equalities with function invocations.

The translation from Section 3.4 and 3.5 is then applied to each predicate
definition in the program; if both of them fail for any definition, then the over-
all translation fails. For each additional ghost field introduced, the field which
was found for “mirroring” is also recorded. The mirroring of permissions is
then applied throughout the program text; in our running example, any ac-
cessibility predicate of the form acc(e.value, p) is replaced by a conjunction
acc(e.value, p) && acc(e.end, p).

Furthermore, when encoding method signatures, if a predicate parameter
value is bound inside the pre-condition of a method (e.g. ?xs as shown in Section
2.1), then, in the original code, that variable may be referred in both the method
body and the post-condition. Occurrences in the post-condition are replaced
by the appropriate function call wrapped inside an old expression (referring to
the state of the pre-condition). If the variable is used in the method body, an
additional ghost-variable capturing the value is introduced in the beginning of
the method body, and used in place of the original occurrences.

Every fold statement of the original program which concerns a predicate for
which ghost fields have been introduced, is translated into a sequence of field
updates to the ghost fields, followed by a fold of the new predicate. For example,
fold this.listseg(x, xs) could be translated to this.end := x; fold this.listseg. How-
ever, we should also reflect explicitly-provided values for parameters which have
been replaced by abstraction functions in our translation. Where values are not
concretely provided (i.e. with ?xs or syntax) in the input program, we do noth-
ing extra. However, if a concrete expression is provided in the original program,
we can reflect the correct semantics by adding an assert statement to check that
the supplied parameter matches the value of the corresponding abstraction func-
tion. Thus, our translation of fold this.listseg(x, xs) actually produces this.end :=
x; fold this.listseg; assert this.elems() == xs.

Many small syntactic differences between VeriFast and Chalice syntax are
trivially handled by the Chalice pretty-printer of our internal AST; we do not
detail these syntactic differences here.

3.7 Usage of Predicate Analysis

We have now presented the main ideas behind our translation from VeriFast
predicates to Chalice predicates and functions. As remarked throughout, in order
to automate the translation, we require an analysis of predicate bodies, able
to infer equalities and disequalities (as in Section 3.4 and for handling static
predicates) and permissions guaranteed by the predicate body (cf. Section 3.5).
Finally, the ability to simplify assertions/expressions during translation helps
to keep our output code readable (and also permits our analysis to work more
simply). In the next section, we present the semantic analysis of predicate bodies
that we developed to tackle all of these problems.
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4 Core Analysis

4.1 Our Core Analysis

The semantic analysis of predicates is the main component of our tool and is used
in various places as outlined in Section 3. It is designed to follow the reasoning
we performed by hand when extracting information from an assertion. In this
section we will present the technical details of the so-far informal concepts of
extracting (dis)equality facts, subsequently called value facts, and extracting
permission facts, which approximate the permissions making up the footprint of
an assertion; both of the two kinds collectively referred to as analysis facts.

Our analysis aims to attack questions of the form: what do we know about an
assertion/expression under a certain set of assumed facts? Our approach reasons
in terms of limited semantic information about assertions, but does not involve
external interactions with any kind of theorem prover/SMT solver; we employ
a somewhat limited but simple and efficient set of procedures in our tool for
accumulating and making use of information extracted from the input program.
The use of simplifications/rewriting throughout our analysis is partly to aid code
readability, but also limits the impact of our simple representation of facts. We
present our algorithms for a representative subsyntax of the assertions which our
implementation handles, as follows:

Definition 1 (Assertions and Boolean Expressions for Analysis). We
assume a set of (unspecified, here) unanalysed expressions, ranged over by e. We
assume the syntax of e to (at least) include Chalice function applications. Our
analysis handles the following syntax of boolean expressions, ranged over by b,
and assertions, ranged over by a (in which p represents a permission amount):

b ∶∶= true ∣ false ∣ e1 = e2 ∣ e1 ≠ e2 ∣ ¬b ∣ b1∧b2 ∣ b1 ∨ b2 ∣ (b?b1∶b2)
a ∶∶= b ∣ acc(e.f, p) ∣ a1 ∗ a2 ∣ (b?a1∶a2) ∣ e1.P

Note that this syntax does not include VeriFast-specific assertions; in particu-
lar, no points-to assertions or parameterised predicate instances. These will be
handled in our tool before invoking our main analysis, as explained in Section
3.3.

4.2 Value facts

To represent heap information described by assertions, our analysis works with
equalities and disequalities of expressions, which we call value facts. We extract
sets of value facts by syntactically traversing an input assertion/expression. The
extracted set is constructed to satisfy the property that if the input assertion/-
boolean expression is true in a state, then the conjunction of the set of value
facts is also guaranteed to be true. In some cases, it can be useful to know if the
reverse implication also holds; this depends on whether the set of value facts is
sufficiently rich to precisely characterise when the input assertion holds. When
the reverse implication is also guaranteed, we call the set of value facts invertible,
and track this status with a boolean flag on each set.
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Definition 2 (Value Facts and Contexts). Value facts, ranged over by v,
are the subset of boolean expressions generated by the following grammar: v ∶∶=
(e1=e2) ∣ (e1≠e2). Value facts are always treated modulo symmetry; i.e., we im-
plicitly identify (e1=e2) with (e2=e1) when considering them as value facts.
Value fact sets, ranged over by V , are sets of value facts, i.e., V ∶∶= {

Ð⇀vi} for
some value facts Ð⇀vi . We write ∅ for the empty value fact set.
Value fact contexts, ranged over by Γ , consist of a value fact set along with a
boolean constant, i.e., Γ ∶∶= V B for B ∶∶= true ∣ false. When B = true, Γ is called
invertible.

The use of implicit symmetries for value facts simplifies several of the following
definitions. For example, when we write (e1=e2) ∈ V , this criterion is insensitive
to the order of the two expressions. Similarly, {(e1=e2)}∩{(e2=e1)} ≠ ∅, with
this interpretation; this can avoid discarding such equalities unnecessarily.

Note that value fact contexts are always interpreted via conjunction; we
have no way to directly represent disjunctions of sets of value facts. This makes
our analysis much simpler, and partly reflects its use cases; as we have seen in
Section 3.4, we are typically interested in extracting a single equality fact from
our value sets, which can be used as the basis for a new definition. Generalisations
are certainly possible, but so far we have not found this to be a serious limitation
in our examples. Note that, while we do not directly represent disjunctions, we
can still employ conditional expressions as operands to value facts; this can in
some cases replace a disjunction between facts, and is useful when analysing
conditionals from within a predicate body.

We next define a number of operations on our value fact contexts, that are
used in our analysis. The conditional merge is used in the analysis of conditionals,
to combine facts about the branches; the other operations are more familiar.

Definition 3 (Value Fact Context Operators). The union of two value
fact contexts is defined (where & denotes the boolean conjunction function on
two boolean constants) by: V B1

1 ∪ V B2

2 = (V1∪V2)
B1&B2 The intersection of two

value fact contexts is defined as follows:

Γ ∩ Γ = Γ

V B1

1 ∩ V B2

2 = (V1∩V2)
false (otherwise)

The negation of a value fact context is defined as follows:

(neg {(e1=e2)}
true

) = {e1≠e2}
true

(neg {(e1≠e2)}
true

) = {e1=e2}
true

(neg Γ ) = ∅
false (otherwise)

The conditional merge of two value fact contexts (over a boolean expression b)
is defined by:

V B1

1

b

! V B2

2 = {(e0=(b?e1∶e2)) ∣ (e0=e1) ∈ V1 and (e0=e2) ∈ V2}
false

These operations treat “invertibility” status of contexts very conservatively.
Intersection of value fact contexts never results in an invertible value fact context,
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unless the original contexts are identical, while merging two contexts never re-
turns an invertible context. Furthermore, even when we have an invertible value
fact context, we only actually define the negation of the context in a meaningful
way for singleton sets of value facts; this results from our choice not to represent
disjunctions explicitly in our value facts. It is clear that these operations could
be made much more general with a richer treatment of value facts; nonetheless,
the above definitions have been sufficiently expressive for our experiments so far.

4.3 Analysis of Boolean Expressions

Having presented our notions of value facts, we can define the analysis we perform
on boolean expressions. We define a function analyseE which takes as parameters
a boolean expression, and a value fact context (representing information that is
currently assumed in our analysis), and returns a similar pair; the resulting
expression is equivalent to the input expression, and the resulting value context
contains information about the facts learned in the analysis.

Definition 4 (Analysis of Boolean Expressions).

analyseE v Γ = ((tryEval v Γ ),{v}true)

analyseE ¬b Γ = (¬b′, (neg Γ ′ ))
where (b′, Γ ′) = analyseE b Γ

analyseE b1∧b2 Γ = (b′1∧b
′

2, Γ1∪Γ2)

where (b′1, Γ1) = analyseE b1 Γ
(b′2, Γ2) = analyseE b2 Γ∪Γ1

analyseE b1 ∨ b2 Γ = (b′1 ∨ b
′

2, Γ1∩Γ2)

where (b′1, Γ
′

1) = analyseE b1 Γ
(b′2, Γ

′

2) = analyseE b2 Γ

analyseE (b0?b1∶b2) Γ =

if b′0 = true ∶ (b′1, Γ0∪Γ1)

else if b′0 = false ∶ (b′2, (neg Γ0 )∪Γ2)

else if b′1 = false ∶ ((b′0?b′1∶b
′

2), ({b0 == false}true∪(neg Γ0 )∪Γ2))

else if b′2 = false ∶ ((b′0?b′1∶b
′

2), ({b0 == true}true∪(neg Γ0 )∪Γ1))

else ∶ ((b′0?b′1∶b
′

2), (Γ1

b′0
!Γ2))

where (b′0, Γ0) = analyseE b0 Γ
(b′1, Γ1) = analyseE b1 Γ∪Γ0

(b′2, Γ2) = analyseE b2 Γ∪(neg Γ0 )

The definition above is designed such that if analyseE b Γ = (b′, Γ ′), then, in
any state in which the conjunction of the value facts in Γ holds, the following
properties are also guaranteed. Firstly, b′⇔ b. Secondly, in any state in which b
is true, the conjunction of the value facts in Γ ′ is true. Thirdly, if Γ ′ is invertible,
then in any state in which b is false, the conjunction of the value facts in Γ ′ is
also false. The function tryEval v Γ implements a simple (conservative) attempt
to determine whether the inequality v is guaranteed to be either true or false,
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assuming the value facts in Γ . If either can be shown, then true or false are
returned, otherwise v is returned unchanged.

The ability to simplify conditional expressions in four cases above gives more
precise information about the assertion; only in the case that neither can the con-
dition b0 be simplified, nor can either of the two assertions a1 and a2 be rewritten
to false, does the ! operator have to be applied (typically losing information).
Note that the if-conditionals in the analysis of conditional expressions compare
for syntactic equality of boolean expressions. These conditionals also propagate
simplifications throughout the structure of expressions, where possible.

4.4 Permission Facts

In the case of analysing assertions (rather than just boolean expressions), we also
require information about the permissions required by a particular assertion. We
do not require very precise permission accounting (which would be difficult in
the presence of aliasing questions), since ultimately we are only concerned with
two particular outcomes - whether or not an assertion is known to guarantee no
permissions (e.g., a simple boolean expression), and whether or not it guarantees
full permission to some field location. As we have seen, knowing that a predicate
body holds full permission to at least one field is crucial when trying to replace
in-parameters; knowing that a predicate body holds no permissions at all is
beneficial when applying some tricks to deal with static predicates. Guided by
these goals, we choose a simple representation of permission facts for our analysis.

Definition 5 (Permission Facts and Operations). Permission facts, ranged
over by Π, are defined by Π ∶∶= ψ ∣ π, where the symbol ψ is called the unknown
permission fact (written ψ), and where π is a known permission fact set: a
(possibly empty) set of tuples of the form (e, f, p), satisfying the constraint that
no pair of e, f occurs in more than one tuple.
Addition of permission facts is defined as follows:

ψ + ψ = ψ ψ + ∅ = ∅ + ψ = ψ
π1 + π2 = π1 ⊎ π2 ψ + π = π + ψ = π otherwise

where ⊎ takes the union of the two sets, except that when the same e, f occur in a
tuple of each set, the resulting set has a tuple with the sum of the two permission
amounts: e.g., {(x, f, p1), (y, f, p2)} ⊎ {x, f, p3} = {(x, f, p1 + p3), (y, f, p2)}
Intersection of permission facts is defined by:

ψ∩Π =Π∩ψ = ψ π1∩π2 = {(e, f,min(p1, p2)) ∣ (e, f, p1) ∈ π1 and (e, f, p2) ∈ π2}

The unknown permission fact is employed in our analysis whenever we are forced
to be approximate conservatively, either because an exact fractional permission
is not know, or because an assertion contained a further predicate instance (we
do not unfold predicate definitions recursively, and this would in general not
terminate).

We are now ready to define our analysis of assertions: we define a function
analyse , which takes an assertion and value fact context (assumed knowledge) as
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input, and produces a triple of (possibly simplified) assertion, value fact context,
and permission fact, as output.

Definition 6 (Analysis of Assertions).

analyse e Γ = (e′, Γ ′,∅)

where (e′, Γ ′) = analyseE e Γ

analyse a1 ∗ a2 Γ = (a′1 ∗ a
′

2, Γ1∪Γ2,Π1 +Π2)

where (a′1, Γ1,Π1) = analyse a1 Γ
(a′2, Γ2,Π2) = analyse b2 Γ∪Γ1

analyse acc(e.f , p) Γ = (acc(e.f , p),∅false,{(e, f, p)})

analyse (b0?a1∶a2) Γ =

if b′0 = true ∶ (b′1, Γ0∪Γ1,Π1)

else if b′0 = false ∶ (b′2, ((neg Γ0 )∪Γ2),Π2)

else if b′1 = false ∶ ((b′0?b′1∶b
′

2), ({b0 == false}true∪(neg Γ0 )∪Γ2),Π2)

else if b′2 = false ∶ ((b′0?b′1∶b
′

2), ({b0 == true}true∪(neg Γ0 )∪Γ1),Π1)

else ∶ ((b′0?b′1∶b
′

2), (Γ1

b′0
!Γ2),Π1 ∩Π2)

where (b′0, Γ0) = analyseE b0 Γ
(a′1, Γ1,Π1) = analyse a1 Γ∪Γ0

(a′2, Γ2,Π2) = analyse a2 Γ∪(neg Γ0 )

Note that, as in Definition 4, the cases for conditional expressions allow us
to retain more-precise information and simpler assertions, where possible. In
particular, the ∩ and ! operators are not applied if an earlier case applies.

The analysis rules above are defined to guarantee similar properties to those
for Definition 4. Specifically, if analyse a Γ = (a′, Γ ′,Π), then, in any state in
which the conjunction of Γ holds:

1. a and a′ are equivalent assertions (typically, a′ is syntactically simpler).
2. Whenever a is true, the conjunction of the value facts in Γ ′ is true.
3. If Γ ′ is invertible and a is false, the conjunction of Γ ′ is false.
4. If Π = π for some known permission fact set π, then a logically entails the

iterated conjunction of all recorded permissions: ∗{acc(e.f , p) ∣ (e, f, p) ∈ π}

We make use of the above analysis at every stage of our translation: in par-
ticular, to discover equalities suitable for generating function definitions (as de-
tailed further in the next subsection), and identify suitable fields and parameters
for the handling of ghost field permissions and static predicates, as discussed in
Section 3. We also constantly simplify the assertions we are working with, as a
side-effect of our algorithm above.

4.5 Equation Solver

In addition to the main analysis described above, we have defined a simple
equation solver, with the aim of rewriting equalities into the form x = e for some
chosen variable x. This is needed, for example, when we wish to extract new
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function definitions (to replace predicate parameters), or when dealing elimi-
nating bound variables from VeriFast expressions. Our solver takes the left-hand
and the right-hand sides of an equation, and a variable to solve for. It either fails
(indicated by a special � return value), or returns a result expression and an ad-
ditional side-condition (assertion), expressing for instance that no zero-division
occurs when solving an equation containing multiplications.

Definition 7 (Equation Solver). We write occs(x, e) for the number of oc-
currences of the variable x in expression e. We define an operation solve e e′ x ,
which is only defined when occs(x, e) = 1 ∧ occs(x, e′) = 0 , by the rules below.
Rules using the meta-variable e1 have a side-condition: that occs(x, e1) = 1 (i.e.,
the rule only applies if x occurs in this sub-expression).

solve x e3 x = (e3, true) solve e2∗e1 e3 x = (e′, e2≠0 ∧ c′)
solve e1+e2 e3 x = solve e1 e3−e2 x where (e′, c′) = solve e1 e3/e2 x
solve e2+e1 e3 x = solve e1 e3−e2 x solve e1/e2 e3 x = solve e1 e3∗e2 x
solve e1−e2 e3 x = solve e1 e3+e2 x solve e2/e1 e3 x = (e′, e3≠0 ∧ c′)
solve e2−e1 e3 x = solve e1 e2−e3 x where (e′, c′) = solve e1 e2/e3 x
solve e1∗e2 e3 x = (e′, e2 ≠ 0 ∧ c′) solve e1 e3 x = (⊥, false)
where (e′, c′) = solve e1 e3/e2 x otherwise

Note that the last case can match arbitrary expression syntax; for example, if
x occurs as the parameter to a function application. The aim of our solver is
not to apply deep reasoning to resolve such scenarios, but just to apply simple
rewrites where possible.

Based on the solve function, we can then define findExpressionFor , which
takes a value fact context and a variable name, and returns a set of expressions
e′ known to be equivalent to x, paired with corresponding side-conditions c.
Furthermore, the function takes a set of “forbidden” variables vs that are not
allowed to occur in the identified expressions. This expression e′ along with the
potential side-condition c can then directly be used to build the new abstraction
function as outlined in Section 3.4.

findExpressionFor V x vs = {(e′, c) ∣ (e′, c) ∈ s ∧ e′ ≠⊥ ∧vars(e′) ∩ vs = ∅}

where
s = {(solve e1 e2 x ) ∣ (e1 == e2) ∈ V and occs(x, e1) = 1 and occs(x, e2) = 0}

5 Results and Evaluation

We have performed some preliminary experiments to gain some insight about
the feasibility of our approach. Rather than as a full evaluation, it should be
understood more as a starting point for further investigation and work. Fur-
thermore, we were also interested in how well Chalice does on the translated
examples and whether some general observations can be made when comparing
Chalice to VeriFast.

Our experiments indicate so far that practical predicates can be handled by
our analysis. From the (Java) examples provided with VeriFast, not a single one
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failed due to an untranslatable predicate; however only a handful of the test cases
can actually be translated by our tool and the others failed due to a number
of features not supported by Chalice at the time the tool was written, such
as subtyping, general abstract data types, and unsupported language features.
Nonetheless, the following examples from VeriFast could be translated: Spouse,
Spouse2, SpouseFinal, AmortizedQueue, and Stack ; they can be found together
with the translated Chalice code in our examples [1]. We also included two of
our own hand-written examples: LinkedList, LinkedListSeg simple, and the full
running-example (LinkedListSeg). While those are only few examples, several
contain non-trivial recursive predicates, with both in and out parameters.

All the examples above translated without any modification, except for Stack
which needed a single modification (as commented) in the original file4. Further-
more, they all verify in Chalice except for AmortizedQueue which needed an ad-
ditional tweak (due a somewhat prototypical current support for static functions
in Chalice) unrelated to the handling of the predicates. Notice that some of the
examples will produce warnings from Chalice regarding termination checks for
recursive functions which operate purely on abstract data types; this is due to
a lack of support for general termination measures.

The only predicate that our approach could not handle is in LinkedListSeg,
due to the predicate not being unique for a given receiver as the empty segment
can be fold arbitrary often on any receiver. However, we will outline in section
6 some ideas of how we could extend our analysis to handle such cases.

In addition, our experiments indicate that Chalice can sometimes manage
with fewer ghost annotations than VeriFast needs. In particular, several VeriFast
examples contained consecutive unfold / fold pairs on exactly the same predicate
instance; often they serve only for the purpose of binding the arguments to a
variable, and in this case we can just call the corresponding getter function
without having to unfold the predicate in Chalice. Interestingly, removing those
superfluous unfold / fold pairs seems to speed up the verification in Chalice
significantly for harder examples; we intend further investigation to disclose the
underlying reason for this. Furthermore, many of the built in lemma methods
of VeriFast (especially for lists) are not required in Chalice; while adding an
equivalent assertion helps in terms of verification speed (probably by pointing
the verifier into the right direction), the verification still succeeds without them.

6 Conclusions and Future Work

In this paper, we have presented the first implemented encoding from a sub-
set of separation logic to a verifier based on first-order-verification-condition-
generation (Chalice). To achieve this for interesting examples, we have presented
a number of novel ideas for eliminating predicate parameters, and employing al-
ternative verification features available. In particular, we have presented a sim-

4 VeriFast permits the wildcard to be used even for in parameters; in this case, the
symbolic heap is searched for any appropriate predicate instance. We provided the
(obviously unique, in this example) value explicitly.
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ple but flexible automatic analysis of predicate definitions, which enables us to
rewrite such definitions without user intervention.

Our analysis is currently limited in several ways, largely as an engineering
trade-off between simplicity and expressiveness. However, our approach is easily
extensible in many ways which do not affect the overall approach. Firstly, our
value facts could be easily extended to capture more precise information about
the entailment between the assertion and our knowledge; the same holds also for
our permission facts. One can construct predicates in which reasoning in terms
of inequalities is desirable. In addition, disjunctions could be added to value-
fact contexts, making the negation of a context more often expressible. Both
extensions would enable more examples in general, but also make the analysis
itself, and particularly the entailment checking (built into tryEval of Section
4.3) much more complex; indeed, it is likely that a prover would be required
for serious reasoning about inequalities. The tryEval function, as well as our
equality solver (Section 4.5) could be made arbitrarily more sophisticated; at
present, not even transitivity of equalities is taken into account, but in principle
complex theories could be incorporated, with the aid of suitable prover support.

The main limitation of our current approach is that whenever a predicate
has an in parameter, predicate instances must be unique per receiver; many
separation logic predicates (such as the classical lseg definition) do not satisfy
that restriction. On the other hand, the cases for which a predicate describing
a recursive data structure can be held for the same receiver in many different
ways, often coincide with the predicate instance not holding any permissions. In
such cases, the predicate “degenerates” to a boolean expression referring only
to the parameter values; for example, the base case of the lseg predicate in
Section 2. Our tool currently has the ability to deal with a specific kind of these
predicates: if the designated receiver r of a static predicate is potentially null, we
check whether the predicate does not hold any permissions when r = null. If, in
addition, all other predicate parameters can be uniquely determined in this case,
we can drop the problematic predicate instances (in these cases) in our output
code, by replacing all the occurrences of the predicate with e.g., r ≠ null⇒ r.p)
and replacing all calls to getter functions (which would not make sense on a null
receiver) with constant expressions: e.g., r ≠ null ? r.f() ∶ const val. This limited
trick is already implemented, but in future work, we would like to generalise the
technique to deal with cases where the condition for not needing to hold the
predicate might be arbitrary (but still determinable from the in parameters).
The classical list segment predicate would need start ≠ end as the condition; we
wish to deduce this automatically and then apply a similar approach.

In trying our tool out on several VeriFast examples, we have established the
feasibility of an encoding, in which separation logic examples are handled entirely
by an SMT solver. This has also provided us with several new and interesting
test cases for the Chalice verifier, and the ability to experiment with comparisons
between the two approaches. While Chalice is generally able to handle the output
code efficiently, one example (the translation of the AmortizedQueue.java VeriFast
example) takes many minutes to verify (while VeriFast handles all examples in
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a few seconds). Interestingly, we found that we can delete many of the resulting
fold/unfold statements in this example by hand: the verification still succeeds,
and faster (presumably because the SMT encoding involves representing fewer
states). We also found that we can delete several assertions which correspond to
calls to lemma methods in the original code: these are also not required for the
Chalice verifier to succeed, although do seem to speed up the verification. We
would like to investigate these issues further, and believe that our tool opens up
new and interesting possibilities for comparing the two approaches.
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