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ABSTRACT

We describe an algorithm to disprove entailment between separa-
tion logic formulas. We abstract models of formulas by their size
and check whether two formulas have models whose sizes are com-
patible. Given two formulas A and B that do not have compatible
models, we can conclude that A 0 B. We provide two different
abstractions (of different precision) of models. Our algorithm is
of interest wherever entailment checking is performed (such as in
program verifiers).

1. INTRODUCTION
Separation logic [19] has recently made a dent in the verifica-

tion of pointer manipulating programs. Its successes include sim-
ple pointer programs with parallelism [3], C programs [16], and
object-oriented programs [9, 11]. Formulas in separation logic typ-
ically describe parts of the heap: in the context of program verifiers,
method preconditions describe the heap space required by methods
to execute correctly, and method postconditions describe the heap
space passed back to the caller when the method returns. Separa-
tion logic comes in two flavours: intuitionistic separation logic is
used to verify garbage-collected programs [18, 11] while classical

separation logic is used to verify programs in which memory deal-
location is performed manually [3, 16]. Contrary to intuitionistic
separation logic, classical separation logic does not admit weaken-
ing, allowing one to reason about memory leaks.

We propose a novel algorithm to disprove entailment between
formulas. We abstract formulas by the sizes of their possible mod-
els and use comparisons of these sizes to disprove entailment be-
tween formulas. Intuitively, to disprove an entailment A ⊢ B, it
suffices to show that there exists a model (i.e., a heap) of A whose
size is smaller than the size of all models of B. We give two dif-
ferent ways of calculating sizes of models, which have differing
complexities and precisions.

Our algorithm is of interest whenever entailment checking is per-
formed, for example in program verifiers. In this particular context,
since our algorithm’s complexity is low, it can be used to quickly
show that a method is not provable, perhaps because programmer-
supplied specifications are incorrect.
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2. BACKGROUND
We work with permission accounting separation logic based on

that of Bornat et al. [5]. In particular, we reuse their structure
of models to abstract over the permission models. A permission
model M consists of:

1. A commutative semigroup with total binary operator +M .

2. A minimal permission, m0, that satisfies the following prop-
erty: (∀m)(m0 +M m = m).

3. A maximal permission, mW .

4. A total order on permissions, ≤M .

5. A subset of permissions which are defined to be splittable.

6. A pair of functions on permissions, split1 and split2, which
define the two parts into which a splittable permission may
be split. These functions must satisfy the following property:
(∀m)(split1(m)+M split2(m) = m).

The maximal permission mW represents full (and exclusive) access
to a location, whereas the minimal permission represents no access.
Permissions in between these two extremes will allow read access
but not write access to a location. Some (in some models, all) per-
missions are splittable: they can be divided into two smaller (in the
sense of permission ordering) permissions. In particular, the maxi-
mal permission (which denotes exclusive access) may be split into
smaller permissions, none of which allow full access to the loca-
tion. However, permissions may also be combined (by addition):
in this way it is possible for a full permission to be regained, if all
partial permissions are combined together.

Later, we define heaps that only contain valid permissions. Valid
permissions are permissions that can be obtained by splitting the
maximal permission. As a corollary, any valid permission m sat-
isfies the following inequality: m0 <M m ≤M mW . Our model,
however, includes permissions that are bigger than mW , because
we need to sum permissions above mW . That is why +M is a total
operator.

Our paper’s results have been established for two concrete per-
missions models: Boyland’s fractional permissions [6, 5] and the
counting model of Bornat et al. [5].

In the fractional permission model, permissions are rational num-
bers. The binary operator and the ordering are the usual + and ≤
on rationals, the minimal permission is 0 and the maximal permis-
sion is 1. All permissions are splittable, and splitting simply divides
permissions in half: split1(m) = split2(m) = m

2 .
In the counting model, permissions were originally represented

by integers, but we re-encode them in a different manner to al-
low the use of a standard order. We encode permissions as a pair



(n, i), where n is a natural number (in fact, only 0 or 1), and i is an
integer. Intuitively, the first of the pair indicates whether this per-
mission can be split, to give out further (read) permissions, while
the second indicates a number of read permissions (positive to rep-
resent read permissions which have been obtained, and negative
to represent those given out). The minimal permission is (0,0),
and the maximal permission is (1,0). Permissions are added by
pairwise addition of their components, and ordered by the lexico-
graphic ordering. A permission is splittable if its first component is
1. The split functions are defined by: split1((1, i)) = (1, i−1) and
split2((1, i)) = (0,1).

We map Bornat’s counting permissions onto our pairs model, by
the following rules (in which n represents a positive integer):

0 7→ (1,0) n 7→ (1,−n) −n 7→ (0,n)

We study both intuitionistic and classical separation logic [15].
Both flavours contains pure (heap independent) and spatial (heap
dependent) formulas:

n ∈ N

a,v ∈ n | n+n | n−n | . . . addresses and values
m abstract permissions
Π ::= a = a | a 6= a | true | . . . pure formulas

Σ
I ::= a

m
→֒v intuitionistic spatial formulas

Σ
C ::= emp | a

m
7→v classical spatial formulas

In intuitionistic separation logic, the atomic spatial formula is

the harpoon a
m
→֒ v while in classical separation logic, the atomic

spatial formula is the points-to predicate a
m
7→v. The harpoon a

m
→֒v

has a dual meaning. Firstly, a
m
→֒v asserts that the heap contains a

cell at address a with content v. Secondly, a
m
→֒v asserts permission

m to the cell at address a. If m = mW , a
m
→֒v asserts write and read

authorization to the cell at address a, otherwise it asserts readonly

authorization. The points-to predicate a
m
7→v has the same meaning

as the harpoon but it enforces that the heap contains only the cell at
address a. Intuitionistic (respectively classical) separation logic is
obtained by taking Σ to be Σ

I (respectively Σ
C) below:

A,B ::= Π | Σ | A⋆A | A∧A | A∨A formulas

In A ⋆ B, ⋆ is the separating conjunction. A ⋆ B represents a
heap consisting of two separate subheaps A and B. A∧B is the
usual logical conjunction, which represents two different views of
a heap. We do not include the standard implication ⇒ because this
simplifies the situation by avoiding bunched contexts in the proof
system [17]. The fact that most separation-logic-based program
verifiers do not include a standard implication [3, 16, 11] supports
our choice. In addition, we use a language without variables, but
describe how variables interfere with our algorithm in Sec. 7.

Because our algorithms are defined in Coq [10], we represent
heaps as lists (which are well supported by Coq’s standard library).
A list entry is a triplet of an address, a valid permission, and a value:

c ::= (a,m,v) heap cells
h ::= [] | c :: h heaps

We define a projection operator to extract a value from a cell:
val(a,m,v) = v and we write h[a] to denote h’s set of heap cells
whose address are a:

[][a] = /0

((a,m,v) :: h)[a′] =

{

{(a,m,v)} ∪ h[a] if a = a′

h[a] otherwise

We write h(a) to denote the sum of permissions to a occurring in
h:

[](a) = m0

((a,m,v) :: h)(a′) =

{

m+M h(a) if a = a′

h(a) otherwise

Conjunction of two heaps is simply list concatenation (written
h@h′) and compatibility of heaps is standard:

h # h′
∆

= (∀a)

(

h(a)+M h′(a) ≤ mW and
(∀c ∈ h[a],∀c′ ∈ h′[a])(val(c) = val(c′))

)

The semantics of formulas is standard. In particular, the seman-
tics of pure formulas is left unaxiomatized:

h |= iff Π oracle(Π)
h |= iff emp h = []

h |= iff a
m
→֒v (∃h′)(h = (a,m,v)@h′)

h |= iff a
m
7→v h = (a,m,v)

h |= iff A⋆B (∃h1,h2)(h1 # h2,h = h1@h2,
h1 |= iffA, and h2 |= B)

h |= iff A∧B h |= A and h |= B

h |= iff A∨B h |= A or h |= B

We write A ⊢ B to denote that A entails B. Appendix A shows ⊢’s
definition, i.e., our proof system. It is driven by natural deduction
rules that are common to the logic of bunched implications [17]
and linear logic [20]. The only non-standard rules are (Splitting)
and (Merging) [13] that lift permission splitting to formulas. The
proof system is sound w.r.t. to the semantics above:

THEOREM 1 (SOUNDNESS OF THE PROOF SYSTEM). If A ⊢
B, then for all h, h |= A implies h |= B.

Because we use it later, we spell out Thm. 1’s contraposition:

THEOREM 2 (CONTRAPOSITION OF THM. 1). If there exists

h such that h |= A and h 6|= B, then A 0 B.

3. PRELIMINARIES
We abstract models of separation logic formulas (i.e., heaps) by

their size. We use two abstractions of different precisions: the first
abstraction is a whole heap abstraction while the second abstraction
is a per cell abstraction. For the whole heap abstraction, the size of
a heap is simply the sum of all permissions occurring in this heap:

sizeM ([]) = m0 sizeM ((a,m,v) :: h) = m+M sizeM (h)

For the per cell abstraction, the size of a heap is a permission

table i.e., the corresponding heap without values:

ptc ::= (a,m) permission table cells
pt ::= [] | ptc :: pt permission tables

sizeP ([]) = [] sizeP((a,m,v) :: h) = (a,m) :: sizeP(h)

As for heaps, we write pt(a) to denote the sum of permissions to
a occurring in pt. Sizes are equipped with an order. For the whole
heap abstraction, we use the order on permissions ≤M while for
the per cell abstraction, we use an order on permission tables ≤P :

pt ≤P pt′
∆

= (∀a)(pt(a) ≤ pt′(a))

Sizes are equipped with minimum and maximum functions. For
the whole heap abstraction, we use standard definitions according
to the corresponding order on permissions ≤M :

sminM (m,m′) =

{

m iff m ≤M m′

m′ otherwise



smaxM (m,m′) =

{

m′ iff m ≤M m′

m otherwise

For the per cell abstraction, we use definitions that merge per-
mission tables point-wise:

sminP (pt,pt′)
∆

= {pt′′ |(∀a)(pt′′(a) = sminM (pt(a),pt′(a)))}

smaxP (pt,pt′)
∆

= {pt′′ |(∀a)(pt′′(a) = smaxM (pt(a),pt′(a)))}

>From now on, we subscript functions when we speak about
a concrete abstraction while we use functions without subscripts
when we describe properties of both abstractions.

4. THE DISPROVING ALGORITHM FOR

INTUITIONISTIC SEPARATION LOGIC
To disprove entailment between formulas in intuitionistic sepa-

ration logic, we search for models with bounded sizes. Formally,
we use min and max functions that satisfy the following property:

THEOREM 3 (PROPERTY OF min AND max). If h |= A, then

there exist hs,hr such that h = hs@hr and hs |= A and min(A) ≤
size(hs) ≤ max(A).

Intuitively, Thm. 3 states that, given a satisfiable formula A (i.e.,
there exists h such that h |= A), there exists a “small” model hs of A

whose size is in between min(A) and max(A) (the possibility of a
superfluous heap portion hr reflects the semantics of intuitionistic
separation logic). Then, we use min and max to disprove entail-
ment as follows:

THEOREM 4 (min/max IS A DISPROVING ALGORITHM). If

A is satisfiable and min(B) ≤ max(A) does not hold, then A 0 B.

PROOF. Because A is satisfiable, there exists h such that h |= A.
Then, by Thm. 3, it follows that there exists hs such that hs |= A

and size(hs) ≤ max(A).
Now, suppose hs |= B. Then, by Thm. 3, it follows that min(B)≤

size(hs). From size(hs) ≤ max(A), by transitivity, it follows that
min(B) ≤ max(A). This contradicts, however, the hypothesis that
min(B) ≤ max(A) does not hold. Hence, hs 6|= B.

From hs |= A and hs 6|= B, by Thm. 2, it follows that A 0 B.

The reader might wonder why we formulate Thm. 4 with a nega-
tion on the ≤ operator instead of using a < operator. The reason
is that, for permission tables, ¬(pt ≤P pt′) is not equivalent to
pt′ <P pt (where <P would be defined in a way similar to ≤P ).

In the remainder of this section, we show definitions of min and
max for the whole heap abstraction and the per cell abstraction.

4.1 Whole Heap Abstraction
min and max are defined as follows:

min(Π) = m0

min(a
m
→֒v) = m

min(A⋆B) = min(A)+M min(B)
min(A∧B) = smaxM (min(A),min(B))
min(A∨B) = sminM (min(A),min(B))

max(Π) = m0

max(a
m
→֒v) = m

max(A⋆B) = max(A)+M max(B)
max(A∧B) = max(A)+M max(B)
max(A∨B) = smaxM (max(A),max(B))

4.2 Per Cell Abstraction
min and max are defined as follows:

min(Π) = []

min(a
m
→֒v) = (a,m) :: []

min(A⋆B) = min(A)@min(B)
min(A∧B) = smaxP (min(A),min(B))
min(A∨B) = sminP(min(A),min(B))

max(Π) = []

max(a
m
→֒v) = (a,m) :: []

max(A⋆B) = max(A)@max(B)
max(A∧B) = smaxP(max(A),max(B))
max(A∨B) = smaxP(max(A),max(B))

Although max’s definitions are very similar for the two abstrac-
tions, there is one case where they differ: in case ∧ of max. In anal-
ogy with the per cell abstraction, one could expect max(A∧B) to
be smaxM (max(A),max(B)) in the whole heap abstraction. To see
why this is unsound, however, one can consider a formula where
the right and left hand sides of a ∧ represent separate parts of the

heap such as 42
1
→֒_∧47

1
→֒_ (where _ denotes irrelevant values).

5. THE DISPROVING ALGORITHM FOR

CLASSICAL SEPARATION LOGIC
To disprove entailment between formulas in classical separa-

tion logic, we pursue a slightly different goal than for intuition-
istic separation logic: instead of exhibiting one model whose size
is bounded, we search for bounds on the size of all models.

Because we allow pure formulas, which do not constrain the size
of heaps modelling them, we cannot always find an upper-bound
on the size of heaps. Hence we add a distinguished “maximal”
size that we write ∞ (both for the whole heap and for the per cell
abstraction). The meaning of ∞ is axiomatized as follows:

(∀m)(m ≤M ∞) (∀pt)(pt ≤P ∞)

THEOREM 5 (PROPERTY OF min AND max). If h |= A, then

min(A) ≤ size(h) ≤ max(A).

Then, we use min and max to disprove entailment as follows:

THEOREM 6 (min/max IS A DISPROVING ALGORITHM). If

A is satisfiable and min(B) ≤ max(A) does not hold, then A 0 B.

PROOF. Similar to the proof of Thm. 4.

In the remainder of this section, we give definitions of min and
max for the whole heap abstraction and the per cell abstraction.
For min, we only show its definition in case of a formula emp; for
other cases min’s definition is similar to the intuitionistic case (see
Sec. 4.1 and 4.2).

5.1 Whole Heap Abstraction
min and max are defined as follows:

min(emp) = m0

max(Π) = ∞

max(emp) = m0

max(a
m
7→v) = m

max(A⋆B) = max(A)+M max(B)
max(A∧B) = sminM (max(A),max(B))
max(A∨B) = smaxM (max(A),max(B))



As an example, consider the following computations of the max-
imum and minimum of two formulas (for the fractional permissions
model):

max((42
1
7→_⋆47

1/2

7→_)∨

((42
1
7→_⋆47

3/4

7→_)∧ (47
1/2

7→_⋆47
1/4

7→_⋆42
1
7→_)))

= maxM (1+M
1/2,min(max(42

1
7→_⋆47

3/4

7→_),

max(47
1/2

7→_⋆47
1/4

7→_⋆42
1
7→_)))

= smaxM ( 3
2 ,sminM ( 7

4 , 7
4 )) = 7

4

min(42
1
7→_⋆47

1/2

7→_⋆47
1/2

7→_) = 1+M
1
2 +M

1
2 = 2

Now, because 2 ≤M
7/4 does not hold, our algorithm deduces:

(42
1
7→_⋆47

1/2

7→_)∨ ((42
1
7→_⋆47

3/4

7→_)∧ (47
1/2

7→_⋆47
1/4

7→_⋆42
1
7→_))

0

42
1
7→_⋆47

1/2

7→_⋆47
1/2

7→_

We now compare max’s definition for ⋆ and ∧ in both semantics
(similar remarks will apply for the per cell abstraction).

• In the classical semantics, we have max(A ⋆ B) = max(A)
+M max(B), while we have max(A ∧ B) =
sminM (max(A),max(B)). This reflects the intuition that,
(1) in A ⋆ B, A and B represents separate heaps while (2) in
A∧B, A and B represents different views of the same heap.

• In the intuitionistic semantics, however, we have max(A ⋆
B) = max(A∧B) = max(A)+M max(B). This reflects that,
both in A ⋆B and in A∧B, A and B must (for ⋆) or may (for
∧) represent separate parts of the heap.

5.2 Per Cell Abstraction
min and max are defined as follows:

min(emp) = []

max(Π) = ∞

max(emp) = []

max(a
m
7→v) = (a,m) :: []

max(A⋆B) =











max(A)@max(B) if max(A) 6= ∞ and
max(B) 6= ∞

∞ otherwise
max(A∧B) = sminP (max(A),max(B))
max(A∨B) = smaxP (max(A),max(B))

In this case, the definitions of max are similar in both abstrac-
tions.

5.3 On ∞

We elaborate here on the consequence of our use of ∞ above for
the whole heap abstraction (similar comments apply to the per cell
abstraction).

The ⋆ and ∨ connectives have a different behavior w.r.t. ∞ than
∧. To see why, consider the following properties of +M ,sminM ,
and smaxM w.r.t. ∞:

(∀m)(m+M ∞ = ∞+M m = ∞)

(∀m)(sminM (m,∞) = sminM (∞,m) = m)

(∀m)(smaxM (m,∞) = smaxM (∞,m) = ∞)

Because of the properties above, both the ⋆ and ∨ operators
“spread” ∞: for op ∈ {⋆,∨}, max(A op B) = ∞ if max(A) = ∞

or max(B) = ∞. The ∧ operator, however, stops ∞ from spreading:
max(A∧B) 6= ∞ if max(A) 6= ∞ or max(B) 6= ∞.

Because the variants of separation logic used in program veri-
fiers [3, 11] impose pure formulas and spatial formulas to be ∧-
conjoined at the top level, max would never return ∞ in these vari-
ants.

6. PRECISION
Ideally, min and max’s definitions need to be as tight as possible,

while retaining soundness (Thms. 3 and 5). We exemplify this for
both flavours of the logic. Our explanations focus solely on the
whole heap abstraction but our remarks apply to both abstractions.

• In the intuitionistic semantics, we have max(A ∧ B) =
max(A)+max(B). At first sight, this might appear too loose,
but the semantics of the harpoon requires this definition for
soundness. To see why, one can consider a formula in which
the right and left hand sides of a ∧ represent separate parts of

the heap, such as 42
1
→֒_∧47

1
→֒_.

• In the classical semantics, we have max(A ∧ B) =
sminM (max(A),max(B)). This definition is tight: if max(A)
< max(B), by ∧’s semantics, it follows that any model of
B whose size is greater than max(A) cannot be a model of
A∧B (and conversely). In the classical semantics, we have
max(A∨B) = smaxM (max(A),max(B)). This definition is
also tight because, if max(A) < max(B), by ∨’s semantics,
it follows that a model of B can be a model of A∨B (and
conversely).

7. EXTENSION TO OTHER OPERATORS

OF SEPARATION LOGIC
In this section, we review extensions of our algorithm for which

our results are partial. Our algorithm has been extended to deal
with the magic wand solely for the classical semantics (Sec. 7.1),
soundness of min and max for quantifiers has been checked only on
pen and paper (Sec. 7.2), and variables have been integrated only
with the whole heap abstraction (Sec. 7.3).

7.1 The magic wand −−⋆

The magic wand −−⋆ matches the resource conjunction ⋆, in the
sense that the modus ponens law is satisfied: A⋆(A−−⋆ B) implies B.
The magic wand’s semantics quantifies over models of the wand’s
left-hand side:

h |= A−−⋆ B iff (∀h′)((h′ |= A and h′ # h) implies h′@h |= B)

In the classical semantics, we have mechanically verified that our
algorithm can be extended to deal with the magic wand. Because
min and max are now mutually recursive, min, like max, can return
∞. For the whole heap abstraction, definitions of min and max from
Sec. 5.1 are completed as follows (see Appendix B for the per cell
approximation):

min(A−−⋆ B) =











min(B)−M max(A) if min(B) 6= ∞ and
max(A) 6= ∞

m0 otherwise

max(A−−⋆ B) =











max(B)−M min(A) if max(B) 6= ∞ and
min(A) 6= ∞

∞ otherwise



For these definitions to be sound, we need to assume that for-
mulas appearing on the left-hand side of the magic wand are satis-
fiable. While this is harmful from a theoretical point of view, the
literature so far on program verification that uses the magic wand
in examples [13, 14] suggests this is a plausible assumption for
program verifiers.

We believe this definition could be adapted for the intuitionistic
semantics, but it is a non-trivial task. In a nutshell, the universal
quantification in the magic wand’s semantics and the way Thm. 3
is formulated (i.e., with an existential quantifier) prevent a simple
proof by induction, and we leave this for future work.

7.2 Quantification
We distinguish between quantification on values and permissions.

We add the following formulas to Sec. 2’s language:

A,B ::= . . . | ∃v.A | ∃m.A | ∀v.A | ∀m.A

The semantics is standard and we omit the corresponding proof
rules which are also standard. To define min and max, we introduce
a “very small permission” ε ∈M . The meaning of ε is axiomatized
by: (∀m)(m <M m+M ε)

For both abstractions min and max are defined as follows:

min(∃v.A) = min(A)
max(∃v.A) = max(A)

min(∃m.A) = min(A[ε/m])
max(∃m.A) = max(A[mW /m])

min(∀v.A) = min(A)
max(∀v.A) = max(A)

min(∀m.A) = min(A[mW /m])
max(∀m.A) = max(A[mW /m])

7.3 Variables
In real-world flavours of separation logic, variables are used. For

the whole heap abstraction, variables (including quantification over
variables) do not create any extra difficulties for our work. For the
per cell abstraction, it is unclear at this stage how variables can be
handled elegantly, and we leave this for future work.

8. COMPLEXITY
The complexity of our techniques is linear for the whole heap

abstraction, and O(n(logn)) for the per cell abstraction (where n is
the input formula’s size). To our knowledge, there is no complexity
result for entailment checking in separation logic. We believe the
complexity of our disproving algorithm is low enough to be useful
when entailment must be checked quickly.

This is supported by the fact that integrating both the magic wand
and quantifiers do not increase our algorithm’s complexity, while
they typically increase by orders of magnitude the complexity of
model-checking or validity-checking [8, 7].

9. SOUNDNESS
All theorems from Sec. 2, 4, and 5 have been mechanically

checked with Coq [10]. Addition of the magic wand (Sec. 7.1) for
the classical semantics has also been mechanically checked. Proofs
about the proof system (Thms. 1 and 2); properties of permissions,
heaps, permissions tables etc. are 3090 lines long. The proofs of
Thms 3, 4, 5 and 6 are 620 lines long. The proofs have been
engineered so that certified implementations of the two abstractions
could be extracted. Proof scripts are available online [1].

Proofs for quantifiers (Sec. 7.2) have been checked only on pen
and paper.

10. RELATED WORK AND CONCLUSION

Related Work.
In the context of program verifiers, checking entailment between

separation logic formulas has been studied for while languages [4]
and object-oriented languages [11, 9]. In these fragments, the magic
wand −−⋆ is omitted and special predicates for describing data struc-
tures are present.

Properties (decidability, undecidability, and complexity) both for
model checking and for validity have been studied [8, 2, 7]. To our
knowledge, disproving entailment has only been studied in a fully-
fledged tableaux procedure [12]. The cited work’s algorithm for
checking entailment can generate either proofs or counter-models,
whereas our algorithm focuses on disproving entailment and does
not generate counter-models.

Conclusion.
We have presented new techniques for disproving entailment be-

tween separation logic formulas, which we believe to be particu-
larly relevant in the context of automated provers for separation
logic. Because our algorithm’s complexity is low, it is of inter-
est wherever entailment checking needs to be checked quickly. We
have provided two different techniques (of different precision), each
of which can be applied to both the intuitionistic and classical
flavours of separation logic. We provide mechanical proofs of the
soundness of our techniques [1].
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APPENDIX

A. PROOF SYSTEM
Fig. 1 shows our proof system (where weakening is only in-

cluded for the intuitionistic flavour).
In the proof rules (Splitting) and (Merging), we use split1 and

split2 (defined below) to lift permission splitting to formula split-
ting. The conditions on the proof rules for splitting and merging,
ensure that no disjunctions occur within the formulas concerned.
This is because splitting and merging is unsound for disjunctions
(and formulas with the magic wand). As we only split formulas
without these connectives, we need not define those cases for the
definition of splitting formulas:

split1(Π) = Π

split1(emp) = emp

split1(a
m
→֒v) = a

split1(m)
→֒ v

split1(a
m
7→v) = a

split1(m)
7→ v

split1(A⋆B) = split1(A)⋆ split1(B)
split1(A∧B) = split1(A)∧ split1(B)

split2(Π) = Π

split2(emp) = emp

split2(a
m
→֒v) = a

split2(m)
→֒ v

split2(a
m
7→v) = a

split2(m)
7→ v

split2(A⋆B) = split2(A)⋆ split2(B)
split2(A∧B) = split2(A)∧ split2(B)

B. OMITTED CASES
The definitions of min and max from Sec. 5.2 are completed as

follows (where −P is defined by applying the unary −M operator
point-wisely to permission tables):

min(A−−⋆ B) =







min(B)@−P (max(A)) if min(B) 6= ∞ and
max(A) 6= ∞

[] otherwise

max(A−−⋆ B) =







max(B)@−P (min(A)) if max(B) 6= ∞ and
min(A) 6= ∞

∞ otherwise

http://coq.inria.fr/doc/main.html
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