
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

1

REST: Integrating Term Rewriting with Program Verification

ANONYMOUS AUTHOR(S)

We introduce REST, a novel term rewriting technique for theorem proving that uses online termination checking
and can be integrated with existing program verifiers. REST enables flexible but terminating term rewriting for
theorem proving by: (1) exploiting newly-introduced term orderings that are more permissive than standard
rewrite simplification orderings. (2) dynamically and iteratively selecting orderings based on the path of
rewrites taken so far. (3) integrating external oracles that allow steps that cannot be expressed as rewrite rules.
We implemented REST as a Haskell library and incorporated it into Liquid Haskell’s evaluation strategy, thus
extending Liquid Haskell with rewriting rules. We evaluated our REST implementation by comparing it against
both existing rewriting techniques and E-matching and by showing that it can be used to supplant manual
lemma application in many existing Liquid Haskell proofs.

Additional Key Words and Phrases: term rewriting, program verification, theorem proving

1 INTRODUCTION
For all disjoint sets 𝑠0 and 𝑠1, the identity (𝑠0 ∪ 𝑠1) ∩ 𝑠0 = 𝑠0 can be proven in many ways. Informally
accepting this property is easy, but a machine-checked formal proof may require the instantiation of
multiple set theoretic axioms. Analogously, further proofs relying on this identity may themselves
need to apply it as a previously-proven lemma. For example, proving functional correctness of
any program that relies on a set data structure typically requires the instantiation of set-related
lemmas. Manual instantiation of such universally quantified equalities is tedious: a proof author
needs to identify exactly which equalities to instantiate and with which arguments; in the context
of program verification, a wide variety of such lemmas are typically available. Given this need,
most program verifiers provide some technique for instantiating universally quantified equalities.

For the wide range of practical program verifiers that are built upon SMT solvers (e.g., [Filliâtre
and Paskevich 2013; Leino 2010; Müller et al. 2016; Signoles et al. 2012; Swamy et al. 2016; Vazou et al.
2014]), quantified equalities can naturally be expressed in the SMT solver’s logic. However, relying
solely on such solvers’ E-matching techniques [Detlefs et al. 2005a] for quantifier instantiation (as
the majority of these verifiers do) can lead to both non-termination and incompletenesses that may
be unpredictable [Leino and Pit-Claudel 2016] and challenging to diagnose [Becker et al. 2019].

A classical alternative approach to automating equality reasoning is term rewriting systems [Huet
1977], which can be used to encode lemma properties as (directed) rewrite rules, matching terms
against the existing set of rules to identify potential rewrites; the termination of these systems is
a well-studied problem [Dershowitz 1987]. Although SMT solvers often perform rewriting as an
internal simplification step, verifiers built on top typically cannot access or customize these rules,
e.g., to add previously-proved lemmas as rewrite rules. By contrast, all mainstream proof assistants
(e.g., Coq [Coq Development Team 2020], Isabelle/HOL [Nipkow et al. 2020], Lean [Avigad et al.
2018]) provide automated, customizable term rewriting tactics.

In this paper, we present REST (REwriting and Selecting Termination orderings): a novel technique
that equips program verifiers with automatic lemma application facilities via term rewriting. For
verifiers built around SMT, this provides equational reasoning with complementary strengths to E-
matching-based techniques. While term rewriting in general does not guarantee termination, REST
weaves together three key technical ingredients to automatically generate and explore guaranteed-
terminating restrictions of a given rewriting system while typically retaining the rewrites needed
in practice: (1) We define a generalization of the well-established recursive path ordering (hereafter,

2020. 2475-1421/2020/1-ART1 $15.00
https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

https://doi.org/

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

1:2 Anon.

Name Formula
idem-union 𝑥 ∪ 𝑥 = 𝑥

idem-inter 𝑥 ∩ 𝑥 = 𝑥

empty-union 𝑥 ∪ ∅ = 𝑥

empty-inter 𝑥 ∩ ∅ = ∅
commut-union 𝑥 ∪ 𝑦 = 𝑦 ∪ 𝑥
symm-inter 𝑥 ∩ 𝑦 = 𝑦 ∩ 𝑥
distrib-union (𝑥 ∪ 𝑦) ∩ 𝑧 = (𝑥 ∩ 𝑧) ∪ (𝑦 ∩ 𝑧)
distrib-inter (𝑥 ∩ 𝑦) ∪ 𝑧 = (𝑥 ∪ 𝑧) ∩ (𝑦 ∪ 𝑧)

Fig. 1. Set identities used for examples in this section. By convention, variables 𝑥,𝑦, 𝑧 are implicitly quantified.
We write the binary functions ∪,∩ infix; along with (nullary) ∅ these are fixed function symbols.

RPO) technique [Dershowitz 1982] for termination of term rewriting systems, whichwe call recursive
path quasi-orderings (hereafter, RPQOs), designed to accommodate common and important rules
such as commutativity and associativity properties. (2) We dynamically and iteratively select custom
RPQOs based on the terms encountered during term rewriting itself. (3) We allow integration of an
external oracle that generates additional steps outside of the term rewriting system. This allows the
incorporation of reasoning steps awkward or impossible to justify via rewriting rules, all without
compromising the termination and relative completeness guarantees of our overall technique.

Contributions and Overview. We make the following contributions:
(1) We design and present a new approach (REST) for applying term rewriting rules and simul-

taneously selecting appropriate termination orderings to permit as many rewriting steps as
possible while guaranteeing termination (Sec. 3).

(2) We formalize and prove key results for our technique: soundness, relative completeness,
and termination (Sec. 4).

(3) We introduce and formalize well-quasi orderings (WQOs), that are more permissive than
classical RPOs, and so let us prove more properties (Sec. 5).

(4) We provide an implementation of REST as an extension of Liquid Haskell, including efficient
means of exploring candidate orderings (Sec. 6).

(5) We evaluate REST in three ways: comparing to other term rewriting tactics, to E-matching-
based axiomatization, and substantially simplifying equational reasoning proofs (Sec. 7).

We discuss related work in Sec. 8; we begin (Sec. 2) by identifying four key problems that all need
solving for a reliable and automatic integration of term rewriting into a program verification tool.

2 FOUR CHALLENGES FOR AUTOMATING EQUATIONAL REASONING
In this section, we consider the application of term rewriting to program verification and illustrate
four key challenges that naturally arise. We illustrate each with simple verification goals involving
mathematical set operators (∅,∪, ∩) as well as uninterpreted functions. The standard properties
we will assume for the set operators in these examples are listed in Figure 1. The variables 𝑥,𝑦, 𝑧
are implicitly quantified1 in these rules. In formalizations of set theory, such properties may be
assumed as (quantified) axioms, or may be proven as lemmas and then used in future proofs.
Term rewriting systems (defined formally in Sec. 4.1) are a standard approach for formally

expressing and applying equational reasoning (rewriting terms via known identities). A term

1over sets; we omit explicit types in such formulas, whose type-checking is standard.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

REST 1:3

rewriting system consists of a finite set of rewrite rules, each consisting of a pair of a source term and
a target term, representing that terms matching a rule’s source can be replaced by corresponding
terms matching its target. For example, the pair (𝑥 ∪ ∅, 𝑥) denotes a rewrite rule 𝑥 ∪ ∅ → 𝑥 that
can replace set unions of some set 𝑥 and the empty set with the corresponding set 𝑥 . Rewrite rules
are applied to a term 𝑡 by identifying some subterm of 𝑡 which is equal to a rule’s source under
some substitution of the source’s free variables (here, 𝑥 , but not constants such as ∅); the subterm is
then replaced with the corresponding target term. This rewriting step induces an equality between
the original and new terms. For instance, the example rewrite rule above can be used to rewrite a
term 𝑓 (𝑠0 ∪ ∅) into 𝑓 (𝑠0), inducing an equality between the two.
Rewrite rules classically come with two restrictions: the free variables of the target must all

occur in the source, and the source must not be a single variable. This precludes rewrite rules which
invent terms, such as ∅ → 𝑥 ∩ ∅, and those that trivially lead to infinite derivations. With these
exceptions, the first four identities induce rewrite rules from left-to-right (which we denote by e.g.,
idem-inter→, v.s. idem-inter←), while the remaining induce rewrite rules in both directions.

Next, we present a simple proof obligation taken from Leino and Polikarpova [2013] in the style
of equational reasoning (calculational proofs) supported in the Dafny program verifier [Leino 2010].

Example 1. We aim to prove, for two sets 𝑠0 and 𝑠1 and some unary function 𝑓 on sets, that, if the
sets are disjoint (that is, 𝑠1 ∩ 𝑠0 = ∅), then 𝑓 ((𝑠0 ∪ 𝑠1) ∩ 𝑠0) = 𝑓 (𝑠0).

Equational Proof: 𝑓 ((𝑠0 ∪ 𝑠1) ∩ 𝑠0) = 𝑓 ((𝑠0 ∩ 𝑠0) ∪ (𝑠1 ∩ 𝑠0)) (distrib-union→)
= 𝑓 (𝑠0 ∪ (𝑠1 ∩ 𝑠0)) (idem-inter→)
= 𝑓 (𝑠0 ∪ ∅) (disjointness ass.→)
= 𝑓 (𝑠0) (empty-union→)

This manual proof closely follows the user annotations employed in the corresponding Dafny
proof [Leino and Polikarpova 2013]; the application of the function 𝑓 serves only to illustrate
equational reasoning on subterms. Every step of the proof could be explained by term rewriting,
hinting at the possibility of an automated proof in which term rewriting is used to solve such proof
obligations. In particular, taking the term rewriting system naturally induced by the set identities
of Figure 1 along with the assumed equality expressing disjointness of 𝑠0 and 𝑠1 results in a term
rewriting system in which the four proof steps are all valid rewriting steps.

In the remainder of the section, we consider what it would take to make term rewriting effective
for such verification tasks. Perhaps unsurprisingly, there are multiple problems with the simplistic
approach outlined so far. The first and most serious is that term rewriting systems in general
do not guarantee termination; a proof search may continue indefinitely by repeatedly applying
rewrite rules. For example, the rules distrib-union and distrib-inter can lead to an infinite derivation
(𝑠0 ∪ 𝑠1) ∩ 𝑠2 → (𝑠0 ∩ 𝑠2) ∪ (𝑠1 ∩ 𝑠2) → (𝑠0 ∪ (𝑠1 ∩ 𝑠2)) ∩ (𝑠2 ∪ (𝑠1 ∩ 𝑠2)) → . . .

Challenge 1: Unrestricted term rewriting systems do not guarantee termination.

A classical approach to ensure the termination of a term rewriting system is to require that rewrite
applications decrease the size of the term with respect to a well-founded order. A rather-flexible
approach is that of recursive path ordering [Dershowitz 1982], which induces such a well-founded
order >T on terms T based on an underlying well-founded strict partial order > on function symbols.
Intuitively, this ordering uses > to order terms with different top-level function symbols, combined
with the properties of a simplification order [Dershowitz 1979] (e.g., compatibility with the subterm
relation). Notably, an RPO does not necessarily restrict terms from sometimes rewriting into larger
ones (more function symbols). For example, if one fixes ∩ > ∪ in the underlying ordering, the
left-to-right application of distrib-union would be permitted by the corresponding RPO. In fact, this

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

1:4 Anon.

yields a terminating rewrite system which allows all four steps of the proof in Example 1. However,
while this particular RPO restriction of our term rewriting rules works well for Example 1, it is
easy to find very similar examples for which it does not suffice.

Example 2. We aim to prove, for two sets 𝑠0 and 𝑠1 and some unary function 𝑓 on sets, that, if 𝑠1 is
a subset of 𝑠0 (that is, 𝑠0 ∪ 𝑠1 = 𝑠0), then 𝑓 ((𝑠0 ∩ 𝑠1) ∪ 𝑠0) = 𝑓 (𝑠0).

Equational Proof: 𝑓 ((𝑠0 ∩ 𝑠1) ∪ 𝑠0) = 𝑓 ((𝑠0 ∪ 𝑠0) ∩ (𝑠1 ∪ 𝑠0)) (distrib-inter→)
= 𝑓 (𝑠0 ∩ (𝑠1 ∪ 𝑠0)) (idem-union→)
= 𝑓 (𝑠0 ∩ (𝑠0 ∪ 𝑠1)) (commut-union→)
= 𝑓 (𝑠0 ∩ 𝑠0) (subset ass.→)
= 𝑓 (𝑠0) (idem-inter→)

Unfortunately, given the prior choice to order the function ∩ before ∪ in the underlying >,
the corresponding RPO relation does not allow the first step of this proof (essentially, since ∩ is
considered the larger function symbol, the increased complexity of the arguments to ∩ outweighs,
in the RPO ordering, the decrease in complexity of the arguments to ∪). In fact, this particular
RPO allows identity distrib-union to be applied only left-to-right, and distrib-inter only right-to-left,
which is useless for Example 2; picking the alternative RPO relation generated by the opposite
choice of ∪ > ∩ instead allows this proof step but correspondingly fails to handle Example 1.

Challenge 2: Different term orderings are needed to solve different proof goals.

Furthermore, since RPOs are well-founded relations on terms, there are in fact no RPOs which
permit the application of general commutativity/associativity properties such as commut-union
in the proof above. Such reasoning steps are, however, ubiquitous when reasoning about either
datatypes built into a programming language or mathematical types used to abstract them.

Challenge 3: Well-founded orderings rule out commutativity and associativity steps.

Finally, although equational reasoning is powerful enough for these examples, general verification
problems necessarily involve logical entailments and theory reasoning beyond the scope of simple
rewriting. For example, simply altering Example 1 to express the disjointness hypothesis instead
via cardinality as |𝑠0 ∩ 𝑠1 | = 0 means that, to achieve a similar proof, reasoning within the theory
of sets is necessary to deduce that this hypothesis implies the equality needed for the proof.

Challenge 4: Program verification needs proof steps not expressible with term rewriting.

3 THE REST APPROACH
We develop REST to tackle the above four challenges, providing a flexible means of integrating
expressive and guaranteed-terminating term rewriting into a verification tool. Based on Challenge 1,
we borrow the core idea of the classical RPO technique for ensuring termination; we search for
sequences of rewrite steps (hereafter, rewrite paths) such that some term ordering (e.g., an RPO)
orients each consecutive pair of terms (hereafter, orients the path). By employing term orderings
which preclude infinite paths, we can guarantee termination. However, as observed in Challenge 2,
fixing such a term ordering up front can prevent necessary proof steps. Instead, our algorithm
tracks an existential condition: it requires that an ordering that orients the path exists; the set of
orderings that witness this existential may shrink dynamically as terms are added to a path.
Checking exhaustively for the existence of an ordering that orients a path can be an expensive

or intractable problem. REST allows this to be avoided via an indirection. We define an abstraction
that we call the Ordering Constraint Algebra (OCA) (formally defined in Sec. 4.2) which allows a

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

REST 1:5

REST : (R × T × (T → P(T))) → P(T)
REST(𝑅, 𝑡0, E) =
𝑜 := ∅;
𝑝 := [([𝑡0],⊤)];
while{𝑝 is not empty}{
pop(𝑡𝑠, 𝑐) from 𝑝;
𝑡 := last ts;
𝑜 := 𝑜 ∪ {𝑡};
foreach {𝑡 ′such that 𝑡 ′ ∉ ts ∧ (𝑡 →𝑅 𝑡 ′ ∨ 𝑡 ′ ∈ E(𝑡)){
if {𝑡 ′ ∈ E(𝑡) ∨ (𝑡 →𝑅 𝑡 ′ ∧ SAT(refine(𝑐, 𝑡, 𝑡 ′)))}{
push (ts ++ [𝑡 ′], refine(𝑐, 𝑡, 𝑡 ′)) to 𝑝

}
}
}
return 𝑜 ;

Fig. 2. The REST algorithm.

custom language of constraints to be used to symbolically represent conditions on the orderings
that orient a path. For instance, the RPO orderings directing the path in Example 1 are those
whose function ordering satisfies ∩ > ∪. We call 𝑐1 = ∩ > ∪ the ordering constraint of the path
in Example 1 (and in general use the name 𝑐 to range over ordering constraints). Similarly, the
ordering required for the first step of Example 2 is 𝑐2 = ∪ > ∩, which is also satisfiable. But, if
the path of Example 1 were extended with a term requiring the ordering constraint 𝑐2, then the
derived ordering constraints would be the conjunction: 𝑐12 = 𝑐1 ∧ 𝑐2. Since 𝑐12 cannot be satisfied
there exists no ordering that can orient this path. REST uses three functions on constraints that an
OCA must define: (1) SAT(𝑐) checks satisfiability of the constraint 𝑐 , (2) refine(𝑐, 𝑡𝑙 , 𝑡𝑟) extends the
constraint 𝑐 to further capture the ordering requirements for 𝑡𝑙 to be greater than 𝑡𝑟 , and finally, (3)
⊤ is the empty ordering constraint. In this way, our algorithm remains completely generic over
both the initial set of candidate orderings and the choice of OCA employed.
Figure 2 presents our core REST algorithm. The algorithm takes three explicit parameters; it

is also implicitly parameterized by the set of candidate term orderings and an OCA over them,
as discussed above. The algorithm’s first parameter, 𝑅, is a finite set of term rewriting rules (not
required to be terminating); for example, we could pass the oriented rewrite rules corresponding to
Figure 1. The second parameter 𝑡0 is the term from which term rewrites are sought. E acts as an
external oracle, generating additional rewrite steps that need not follow from the term rewriting
rules 𝑅. To simplify the explanation, we will initially assume that E = _𝑡 .∅, i.e., this parameter has
no effect. Our algorithm produces a set of terms, each of which are reachable by some rewrite path
beginning from 𝑡0, and for which some candidate ordering allows the rewrite path; this condition,
along with the flexibility to dynamically change term orderings on the fly, addresses Challenge 1
and Challenge 2 above (each candidate ordering is required not to admit infinite paths).
Our algorithm operates in worklist fashion, storing in 𝑝 a list of pairs (ts, 𝑐) where ts is a non-

empty list of terms representing a rewrite path already explored (the head of which is always 𝑡0),
and 𝑐 tracks the ordering constraints of the path so far. The set 𝑜 records the output terms (initially
empty): all terms discovered (down any rewrite path) equal to 𝑡0 via the rewriting paths explored.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

1:6 Anon.

f(s0) f(s0) f(s0)

f(s0 ⋃ ∅) f(s0 ⋂ s0)f(s0 ⋃ ∅)

f(s0 ⋃ (s1 ⋂ s0)) f((s0 ⋂ s0) ⋃ ∅)

f((s0 ⋂ s0) ⋃ (s1 ⋂ s0))

f((s0 ⋃ s1) ⋂ s0)
(x ⋃ y) ⋂ z → (x ⋂ z) ⋃ (y ⋂ z)

x ⋂ x → x s1 ⋂ s0 → ∅

s1 ⋂ s0 → ∅ x ⋂ x → x x ⋃ ∅ → x

x ⋂ x → xx ⋃ ∅ → xx ⋃ ∅ → x

f((s0 ⋃ ∅) ⋂ (s0 ⋃ ∅)

f((s0 ⋃ (s1 ⋂ s0)) ⋂ (s0 ⋃ (s1 ⋂ s0)))

f((s0 ⋃ s1) ⋂ (s0 ⋃ s0))

Fig. 3. A visualization of REST running on the term from Example 1. Each path through the tree shown
represents a rewrite path uncovered by our algorithm; the edge labels show the rewrite rule applied. The red
dotted lines indicate rewrite steps rejected by REST.

While there are still rewrite paths to be extended, i.e., 𝑝 is not empty, a tuple (𝑡𝑠, 𝑐) is popped
from 𝑝 . REST puts 𝑡 , i.e., the last term of the path, into the set of output terms 𝑜 and considers all
terms 𝑡 ′ that are: (a) not already in the path and (b) reachable by a single rewrite step of 𝑅 (or
returned by the function E explained later). The crucial decision of whether or not to extend a
rewrite path with the additional step 𝑡 → 𝑡 ′ is handled in the if check of REST. This check is to
guarantee termination, by enforcing that we only add rewrite steps which would leave the extended
path still justifiable by some term ordering, as enforced by the SAT check.
Figure 3 visualizes the rewrite paths explored by our algorithm for a run corresponding to the

problem from Example 12. The manual proof in Example 1 corresponds to the right-most path in
this tree; the other paths apply the same reasoning steps in different orders. In our implementation,
we optimize the algorithm to avoid re-exploring the same term multiple times unless this could
lead to further rewrites being discovered (cf. Sec. 6).

Challenge 3 motivates that even the full set of candidate RPOs (which are each well-founded term
orderings) may not always be a flexible enough choice for examples that require commutativity or
associativity properties (such as Example 2 above). To this end, in Sec. 5 we develop a generalization
of the RPO concept, lifting both the (well-founded) input ordering on function symbols, and the
generated (well-founded) ordering on terms to the more permissive notion of WQOs, which admit
commutativity and associativity steps. In practice, this turns out to be a very powerful tool since
our generalized RPOs are rather permissive; as we show in Sec. 7, this means that we easily solve
example problems in practice. In Sec. 5 we prove that all key classical properties of RPOs indeed
lift to our generalized version, which we also employ in our implementation.
Finally, to tackle Challenge 4, we turn to the (so far ignored) third parameter of the algorithm,

the external oracle E. In the example variant presented at the end of Sec. 2, such a function might
supply the rewrite step 𝑠0 ∩ 𝑠1 → ∅ by analysis of the logical assumption |𝑠0 ∩ 𝑠1 | = 0, which goes
beyond term-rewriting. More generally, any external solver capable of producing rewrite steps
(equal terms) can be connected to our algorithm via E. In our implementation in Liquid Haskell,
we use the pre-existing Proof by Logical Evaluation (PLE) technique [Vazou et al. 2017], which
complements rewriting with the expansion of program function definitions, under certain checks
made via SMT solving. Our only requirements on the oracle E are that the binary relation on terms
generated by calls to it is bounded (finitely-branching) and strongly normalizing (cf. Sec. 4). Our

2We omit the commutativity rules from this run, just to keep the diagram easy to visualize, but our implementation handles
the example easily with or without them.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

REST 1:7

algorithm therefore flexibly allows the interleaving of term rewriting steps and those justified
by the external oracle; we avoid the potential for this interaction to cause non-termination by
conditioning any further rewriting steps on the fact that the entire path (including the steps inserted
by the oracle) can be explained by at least one of our candidate orderings.
The combination of our search that selects candidate orderings on the fly, our generalized

RPO notion as a powerful default set of orderings to use in practice, and the flexible possibility
of combination with external solvers via the oracle parameter makes REST very adaptable and
powerful in practice. We turn next to the formal results underpinning these practical claims.

4 REST METAPROPERTIES: SOUNDNESS, COMPLETENESS, AND TERMINATION
We now present the metaproperties of the REST algorithm defined in Figure 2. We show correctness
(Theorem 4.2), completeness (Theorem 4.4) relative to the ordering relations checked, and termina-
tion (Theorem 4.7) which requires that the checked ordering relations be decidable and well-founded
on duplicate-free paths (no term occurs more than once, e.g., those that REST generates).

4.1 Formal Definitions
Our formalism of rewriting is standard; based on the terminology of Klop [1993]. Our language
consists of the following:

(1) An infinite set of meta-variables (the variables for rewrite rules)V with elements 𝑋 , 𝑌 ,
(2) A finite set of operators F with elements 𝑓 , 𝑔, . . . , 𝑥 , 𝑦, . . .

Each operator is associated with a fixed numeric arity and types for its arguments and result
(elided here, for simplicity). As common we use the variables 𝑥 , 𝑦 to for zero-arity operators.

(3) A set of terms T with elements 𝑡,𝑢, . . . inductively defined as follows: (a) 𝑋 ∈ V ⇒ 𝑋 ∈ T
and (b) 𝑓 ∈ F , 𝑓 has arity 𝑛, 𝑡1, . . . , 𝑡𝑛 ∈ T ⇒ 𝑓 (𝑡1, . . . , 𝑡𝑛) ∈ T .

We use 𝐹𝑉 (𝑡) to refer to the set of meta-variables in 𝑡 . A term 𝑡 is ground if 𝐹𝑉 (𝑡) = ∅.
A substitution 𝜎 ⊆ V × T is a mapping from meta-variables to terms. We write 𝜎 · 𝑡 to denote

the simultaneous application of the substitution: namely, 𝜎 · 𝑡 replaces each occurrence of each
meta-variable 𝑋 in 𝑡 with 𝜎 (𝑋). A substitution 𝜎 grounds 𝑡 if, for all 𝑋 ∈ 𝐹𝑉 (𝑡), 𝜎 (𝑋) is a ground
term. A substitution 𝜎 unifies two terms 𝑡 and 𝑢 if 𝜎 · 𝑡 = 𝜎 · 𝑢.

A context 𝐸 is a term-like object that contains exactly one term placeholder •. If 𝑡 is a term, then
𝐸 [𝑡] is the term generated by replacing the • in 𝐸 with 𝑡 .
A rewrite rule 𝑟 is a pair of terms 𝑟 � (𝑡,𝑢) such that 𝐹𝑉 (𝑢) ⊆ 𝐹𝑉 (𝑡) and 𝑡 ∉ V . Each rewrite

rule 𝑟 � (𝑡,𝑢) defines a binary relation→𝑟 which is the smallest relation such that, for all contexts
𝐸 and substitutions 𝜎 grounding 𝑡 (and therefore 𝑢), 𝐸 [𝜎 · 𝑡] →𝑟 𝐸 [𝜎 · 𝑢].

We use 𝑅 to range over sets of rewrite rules. We write 𝑣 →𝑅 𝑤 iff 𝑣 →𝑟 𝑤 for some 𝑟 ∈ 𝑅.
For oracle functions (terms to sets of terms) E , we write 𝑡 →E 𝑡 ′ iff 𝑡 ′ ∈ E(𝑡). We write

𝑡 →𝑅+E 𝑡 ′ if 𝑡 →𝑅 𝑡 ′ or 𝑡 →E 𝑡 ′. For a relation→ we write→∗ for its reflexive, transitive closure.
A path is a list of terms. A binary relation ≽ orients a path 𝑡1, . . . , 𝑡𝑛 if ∀1 ≤ 𝑖 < 𝑛, 𝑡𝑖 ≽ 𝑡𝑖+1.

4.2 Ordering Constraint Algebras
The REST algorithm explores only finite rewrite paths; this is achieved via the input candidate term
orderings, each of which is required to admit only finite paths. Our algorithm explores only paths
which are admitted by at least one of these input orderings, conceptually by tracking the set of
orderings that still accept a path as it is being constructed, and checking for non-emptiness.

To avoid insisting on this set being computed and iterated through at each and every rewriting
step, our algorithm is defined to be parametric with any chosen representation of these sets of

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

1:8 Anon.

orderings along with some basic operations on this representation that REST requires; together,
these form what we call an ordering constraint algebra.

Definition 4.1 (Ordering Constraint Algebra). An Ordering Constraint Algebra A (𝑇,Γ) over a set of
terms 𝑇 and set of candidate term orderings Γ, is a five-tuple A (𝑇,Γ) � ⟨𝐶,𝛾,⊤, refine, SAT⟩, where:

(1) 𝐶 , the constraint language, can be any non-empty set. Elements of 𝐶 are called constraints,
and are ranged over by 𝑐 .

(2) 𝛾 , the concretization function of A (𝑇,Γ) , is a function from elements of 𝐶 to subsets of Γ.
(3) ⊤, the top constraint, is a distinguished constant from 𝐶 , satisfying 𝛾 (⊤) = Γ.
(4) refine, the refinement function, is a function 𝐶 → 𝑇 → 𝑇 → 𝐶 , satisfying (for all 𝑐, 𝑡𝑙 , 𝑡𝑟)

𝛾 (refine(𝑐, 𝑡𝑙 , 𝑡𝑟)) = {≽ | ≽ ∈ 𝛾 (𝑐) ∧ 𝑡𝑙 ≽ 𝑡𝑟 }.
(5) SAT, the satisfiability function, is a function𝐶 → Bool, satisfying (for all 𝑐) SAT(𝑐) = true ⇔

𝛾 (𝑐) ≠ ∅.

The functions ⊤, refine and SAT are all called from our REST algorithm (Figure 2), and must be
implemented as (terminating) functions when implementing REST. Specifically, REST instantiates
the initial path with constraints 𝑐 = ⊤. When a path can be extended via a rewrite application
𝑡𝑙 →𝑅 𝑡𝑟 , REST refines the prior path constraints 𝑐 to 𝑐 ′ � refine(𝑐, 𝑡𝑙 , 𝑡𝑟). Then, the new term is
added to the path only if the new constraints are satisfiable (SAT(𝑐 ′) holds); that is, if 𝑐 ′ admits an
ordering that orients the generated path. The function 𝛾 need not be implemented in practice; it is
purely a mathematical concept used to give semantics to the algebra.

Given terms 𝑇 and a finite set of candidate orderings Γ, a trivial Ordering Constraint Algebra is
obtained by letting 𝐶 = P(Γ), and making 𝛾 the identity function; straightforward corresponding
elements ⊤, refine and SAT can be directly read off from the constraints in the definition above.
However, for efficiency reasons (or in order to support potentially infinite sets of candidate

orderings, which our theory allows), tracking these sets symbolically via some suitably chosen
constraint language can be preferable. For example, consider lexicographic orderings on pairs
of constants, represented by a set 𝑇 of terms of the form 𝑝 (𝑞1, 𝑞2) for a fixed function symbol 𝑝
and 𝑞1, 𝑞2 chosen from some finite set of constant symbols 𝑄 . We choose the candidate orderings
Γ = {≽lex(≽) | ≽ is a total order on 𝑄} writing ≽lex(≽) to mean the corresponding lexicographic
ordering on 𝑝 (𝑞1, 𝑞2) terms generated from an ordering ≽ on 𝑄 .

A possible Ordering Constraint Algebra over these 𝑇 and Γ can be defined by choosing the con-
straint language 𝐶 to be formulas: conjunctions and disjunctions of atomic constraints of the forms
𝑞1 > 𝑞2 and 𝑞1 = 𝑞2 prescribing conditions on the underlying orderings on 𝑄 . The concretization
𝛾 is given by 𝛾 (𝑐) = {≽lex(≽) | ≽ satisfies 𝑐}, i.e., a constraint maps to all lexicographic orders
generated from orderings of 𝑄 that satisfy the constraints described by 𝑐 , defined in the natural
way. We define ⊤ to be e.g., 𝑞 = 𝑞 for some 𝑞 ∈ 𝑄 . A satisfiability function SAT can be implemented
by checking the satisfiability of 𝑐 as a formula. Finally, by inverting the standard definition of
lexicographic ordering, we define:

refine(𝑐, 𝑝 (𝑞1, 𝑞2), 𝑝 (𝑟1, 𝑟2)) = 𝑐 ∧ (𝑞1 > 𝑟1 ∨ (𝑞1 = 𝑟1 ∧ 𝑞2 > 𝑟2))

Using this example algebra, suppose that REST explores two potential rewrite steps 𝑝 (𝑎1, 𝑎2) →
𝑝 (𝑏1, 𝑎2) → 𝑝 (𝑎1, 𝑎1). Starting from the initial constraint 𝑐0 = ⊤, the constraint for the first step
𝑐1 � refine(𝑐0, 𝑝 (𝑎1, 𝑎2), 𝑝 (𝑏1, 𝑎2)) = 𝑎1 > 𝑏1 ∨ (𝑎1 = 𝑏1 ∧ 𝑎2 > 𝑎2) is satisfiable, e.g., for any
total order for which 𝑎1 > 𝑏1. However, considering the subsequent step, the refined constraint
𝑐2 � refine(𝑐1, 𝑝 (𝑏1, 𝑎2), 𝑝 (𝑎1, 𝑎1)), computed as 𝑐2 = 𝑐1 ∧ (𝑎2 > 𝑎2 ∨ (𝑎2 = 𝑎2 ∧ 𝑏1 > 𝑎1)) is no
longer satisfiable. Note that this allows us to conclude that there is no lexicographic ordering
allowing this sequence of two steps, without explicitly constructing any orderings.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

REST 1:9

Next, we prove the metaproperties of REST independently of the specific choice of Ordering
Constraint Algebra, while in Sec. 5.3 we introduce a particularly flexible example of such an algebra,
designed to be efficient to implement.

4.3 Soundness
Soundness of REST means that any term of the output (𝑢 ∈ REST(𝑅, 𝑡0, E)) can be derived from the
original input term by combination of term rewriting steps from 𝑅 and steps via the oracle function
E (𝑡0 →∗𝑅+E 𝑢).
Our proof relies on the following simple invariant of REST: any path stored in the stack during

the execution of the algorithm can be derived by the rewrite rules in 𝑅 or the external oracle E.

REST Invariant 1 (Path Invariant). For any execution of REST(𝑅, 𝑡0, E), at the start of any
iteration of the main loop, for each (𝑡𝑠, 𝑐) ∈ 𝑝 , the list 𝑡𝑠 is a path of 𝑅 + E starting from 𝑡0.

Proof. By induction on the loop iterations of the algorithm. 𝑝 is initialized with the single
element ([𝑡0], 𝑐). [𝑡0] is a valid path of 𝑅 + E, because it only contains a single term; clearly this
path also starts with 𝑡0.

At each loop iteration, new elements are potentially pushed to 𝑝 . Suppose the path 𝑡𝑠 is popped
from 𝑝 at the beginning of the loop. The element to be pushed is a pair (𝑡𝑠 ++ [𝑡 ′], 𝑐) where
𝑙𝑎𝑠𝑡 (𝑡𝑠) →𝑅+E 𝑡 ′. This exactly satisfies the inductive hypothesis: if 𝑡𝑠 is a path of 𝑅 + E, then
𝑡𝑠 ++ [𝑡 ′] is also a path of 𝑅 + E. Furthermore, this operation preserves the head of the list: 𝑡0 is still
the first element. □

Theorem 4.2 (Soundness of REST). For all 𝑅, 𝑢, and 𝑡0, if 𝑢 ∈ REST(𝑅, 𝑡0, E), then 𝑡0 →∗𝑅+E 𝑢.

Proof. In each iteration of REST, the term 𝑡 added to the output 𝑜 is the last element of the list
𝑡𝑠 for the tuple (𝑡𝑠, 𝑐) ∈ 𝑝 . By Invariant 1, 𝑡 must be on the path of 𝑅 + E starting from 𝑡0. □

4.4 Completeness
A naïve completeness statement for REST might be that, for any terms 𝑡0 and 𝑢, if 𝑡0 →∗𝑅+E 𝑢 then
𝑢 is in our output (𝑢 ∈ REST(𝑅, 𝑡0, E)). This result doesn’t hold in general by design, since REST

explores only paths permitted by at least one of its input candidate orderings. We prove this relative
completeness result in two stages. First (Theorem 4.3), we show that completeness always holds if
all steps only involve the external oracle. Then (Theorem 4.4), we prove relative completeness of
REST with respect to the ordering relation. We begin by stating another simple invariant of our
algorithm: that any term appearing in a path in the stack 𝑝 , will belong to the final output:

REST Invariant 2. For any execution of REST(𝑅, 𝑡0, E), at the start of any iteration of the main
loop, if 𝑡 ∈ 𝑡𝑠 and (𝑡𝑠, 𝑐) ∈ 𝑝 , then, when the algorithm terminates, we will have 𝑡 ∈ REST(𝑅, 𝑡0, E).

Proof. (Sketch:) We can prove inductively that terms contained in any list in 𝑝 either remain in
𝑝 or end up in 𝑜 ; since 𝑝 is empty on termination, the result follows. □

Theorem 4.3 (Completeness w.r.t. E). For all 𝑅, 𝑢, and 𝑡0, if 𝑡0 →∗E 𝑢, then 𝑢 ∈ REST(𝑅, 𝑡0, E).

Proof. The proof goes by induction on the number of steps of the path.
Assume the path has 𝑛 steps: 𝑡0 →E 𝑡1 →E . . .→E 𝑡𝑛−1 →E 𝑡𝑛 ≡ 𝑢.
For the base case, 𝑛 = 0 and 𝑢 ≡ 𝑡0. Since 𝑝 is initialized with ([𝑡0],⊤), by the Invariant 2,

𝑡 ∈ REST(𝑅, 𝑡0, E).
For the inductive case, assume that 𝑡0 →∗E 𝑡𝑛−1 →E 𝑡𝑛 . By inductive hypothesis, 𝑡𝑛−1 ∈

REST(𝑅, 𝑡0, E). When 𝑡𝑛−1 was added in the result, it was the last element of a path 𝑡𝑠 that was
popped from the stack 𝑝 . Since 𝑡𝑛−1 →E 𝑡𝑛 , we split cases on whether or not 𝑡𝑛 ∈ 𝑡𝑠 . If 𝑡𝑛 ∈ 𝑡𝑠 , then

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

1:10 Anon.

by Invariant 2 𝑡𝑛 ∈ REST(𝑅, 𝑡0, E). Otherwise, (𝑡𝑠 ++ [𝑡𝑛], 𝑐) will be pushed into 𝑝 and, again, by
Invariant 2 it will appear in the output. □

Before stating our main completeness result, we observe the (somewhat standard) property that
if any path justifies 𝑡0 →∗𝑅+E 𝑢, there is a duplicate-free variant of such path (intuitively, obtained
by cutting out all subpaths leading from a term to itself).
Below, we prove that if 𝑡0 →∗𝑅+E 𝑢 and the ordering ≽ orients the path, then a duplicate-free

variant path 𝑡𝑠 belongs in the stack 𝑝 with some constraints 𝑐 and ≽ ∈ 𝛾 (𝑐).

REST Invariant 3. For any execution of REST(𝑅, 𝑡0, E), if 𝑡0 →∗𝑅+E 𝑡𝑛 and ≽ ∈ 𝛾 (⊤) is an ordering
that orients 𝑡0 →∗𝑅+E 𝑢, then at some iteration of the main loop, a duplicate-free variant path 𝑡𝑠 of this
path is stored in 𝑝 , with some ordering constraints 𝑐 and ≽ ∈ 𝛾 (𝑐).

Proof. The proof goes by strong induction on the length 𝑛 + 1 of the path justifying 𝑡0 →∗𝑅+E 𝑡𝑛 .
First, consider the case 𝑛 = 0, where the path is [𝑡0] and the constraints ⊤. ([𝑡0],⊤) ∈ 𝑝 by

initialization and trivially ≽ ∈ 𝛾 (⊤).
Otherwise, when 𝑛 > 0, assume that 𝑡0 →∗𝑅+E 𝑡𝑛−1 →𝑅+E 𝑡𝑛 . If there are any duplicate terms in

this path, a duplicate-free variant exists of shorter length, and we can conclude by our induction
hypothesis. Otherwise, consider this path with the last element 𝑡𝑛 removed. Being already duplicate-
free, by our induction hypothesis we must have that, at some iteration of our main loop, this path is
contained in 𝑝 along with a constraint 𝑐𝑛−1 such that ≽ ∈ 𝛾 (𝑐𝑛−1). By the assumption that ≽ orients
the original path, in particular we must have 𝑡𝑛−1 ≽ 𝑡𝑛 , and so, by Def. 4.1, ≽ ∈ 𝛾 (refine(𝑐𝑛−1, 𝑡, 𝑡 ′))
and therefore refine(𝑐𝑛−1, 𝑡, 𝑡 ′) is satisfiable. Therefore, the original path will be pushed to 𝑝 with
this constraint in this loop iteration. □

Theorem 4.4 (Relative Completeness). For all 𝑅, 𝑢, and 𝑡0, if 𝑡0 →∗𝑅+E 𝑢 and there exists an
ordering ≽ ∈ 𝛾 (⊤) that orients the path justifying 𝑡0 →∗𝑅+E 𝑢, then 𝑢 ∈ REST(𝑅, 𝑡0, E).

Proof. The proof is similar to Theorem 4.3, but now we need to also show that the relation that
orients the path satisfies all the ordering constraints generated by the respective REST path. By
Invariant 3, at some iteration of the main loop, there must be some path ending in 𝑢 contained in 𝑝 .
Then, by Invariant 2 it follows that all the elements of the path, thus also 𝑢, belong in the result.

□

4.5 Termination
Termination of REST requires appropriate conditions on the candidate orderings employed, the
external oracle E and the ordering constraints algebra A employed. We formally define these
requirements and then prove termination of REST.

Definition 4.5 (Well-Founded ordering constraint algebras). For ordering constraint algebras A =

⟨𝐶,⊤, refine, SAT, 𝛾⟩, for 𝑐, 𝑐 ′ ∈ 𝐶 , we say 𝑐 ′ strictly refines 𝑐 (denoted 𝑐 ′ ⊏A 𝑐) if 𝑐 ′ = refine(𝑐, 𝑡,𝑢)
for some terms 𝑡 and 𝑢, and 𝛾 (𝑐 ′) ⊂ 𝛾 (𝑐). Then, we say A is well-founded if ⊏A is.

Down every path explored by REST, the tracked constraint is only ever refined; well-foundedness
of A guarantees that finitely many such refinements can be strict.

Definition 4.6. A relation 𝑡𝑙 → 𝑡𝑟 is normalizing if it does not admit an infinite path and bounded if
for each 𝑡𝑙 it only admits finite 𝑡𝑟 . A relation ≽ is thin well-founded if it cannot orient a duplicate-free
infinite path.

Theorem 4.7 (Termination of REST). For any finite set of rewriting rules 𝑅, if:
(1) →E is normalizing and bounded,

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REST 1:11

(2) every candidate ordering (element of Γ) is a thin well-founded relation,
(3) The refine and SAT functions fromA are decidable (always-terminating, in an implementation),
(4) A is well-founded,

then, for all terms 𝑡0, REST(𝑅, 𝑡0, E) terminates.

Proof. At every iteration of REST, a path with length 𝑛 is popped off the stack and due to
Requirement 1, and the fact that only a finite number of new terms can be generated by single
applications of the rules 𝑅 to an arbitrary term, a finite number of paths with length 𝑛 + 1 is pushed
on. Therefore, REST implicitly builds (via its set of paths 𝑝) a finitely-branching tree starting from 𝑡0.
For REST to not terminate, there must be an infinite path down the tree (note that Requirement
3 eliminates the possibility that the operations called from the ordering constraint algebra cause
non-termination).
Consider an arbitrary path down the tree explored by REST, represented by the (ts, 𝑐) pairs

iteratively generated. Firstly, due to the first condition in the foreach of REST (cf. Figure 2), this
path will remain duplicate-free. By Requirement 4, at only finitely many steps is the constraint
tracked strictly refined. Consider then, the postfix of the path after the last time that this happens;
at every step, the constraint 𝑐 remains identical. The normalization assumption (Requirement 1)
of E entails that this path contains no infinite sequence of steps all justified by 𝑅. However, for
each step justified instead by a rewriting step from 𝑅, the additional condition SAT(𝑐) must hold; by
Def. 4.1 this means that there is some ≽ ∈ 𝛾 (𝑐) which orients all of these steps. Then the number
of steps must be finite, otherwise we would obtain an infinite number of distinct terms which are
all oriented by ≽, contradicting Requirement 2.

Since every path in the finitely-branching tree explored is finite, the algorithm (always) terminates.
□

Note that any deterministic, terminating external oracle function satisfies the first requirement.
Next, we define a family of ordering functions along with an accompanying ordering constraint
algebra that satisfy the second, third and fourth requirements, while being flexible enough to accept
most of the interesting paths (as required for completeness).

5 TERM ORDERING
In this section, we define a particular family of orderings designed to be typically useful for term-
rewriting via REST. Our family of orderings is a novel extension of the classical notion of RPO,
designed to also be compatible with symmetrical rules such as commutativity and associativity
(cf. Challenge 3, Sec. 2). In (Sec. 5.1) we formally define the term orderings and illustrate how they
are used both to generate terms and derive the ordering constraints; next (Sec. 5.2) we prove that
the orderings satisfy the termination requirements making them compatible with REST. Finally
(Sec. 5.3) we define an efficient ordering constraints algebra based on a compact representation of
sets of these orderings, and show that it is well-founded.

5.1 Recursive PathQuasi-Orderings
We introduce a term ordering closely following the classic strict ordering definitions for term-
rewriting systems [Dershowitz 1982], but with the additional flexibility of enabling rewriting to
terms in the same equivalence class with respect to some quasi-ordering (cf. Sec. 5.2). For example,
the classic termination criteria of [Dershowitz 1982] would reject the rewrite rule 𝑥 + 𝑦 → 𝑦 + 𝑥
which is of high importance when reasoning about commutative operators (cf. Challenge 3 in Sec. 3).
Since REST already ensures that the generated paths are duplicate free, it gives us the flexibility to
allow rewrites on equivalent terms without sacrificing termination of the overall system.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

1:12 Anon.

Like the classical RPO notions, our recursive path quasi-ordering (RPQO) is defined in three layers,
derived from an underlying ordering on function symbols:
• The input ordering ≽F can be any quasi-ordering over F
• The correspondingmultiset quasi-ordering ≽𝑀 (𝑋) lifts an ordering ≽𝑋 over 𝑋 to an ordering
≽𝑀 (𝑋) over multisets of 𝑋 . Intuitively 𝑇 ≽𝑀 (𝑋) 𝑈 when 𝑈 can be obtained from 𝑇 by
replacing zero or more elements in 𝑇 with the same number of equal (with respect to ≽𝑋)
elements, and replacing zero or more elements in 𝑇 with a finite number of smaller ones.
(Def. 5.1).
• Finally, the corresponding recursive path quasi-ordering ≽T is an ordering over terms.
Intuitively 𝑓 (𝑡𝑠) ≽T 𝑔(𝑢𝑠) uses ≽F to compare the function symbols 𝑓 and 𝑔 and the
corresponding ≽𝑀 (T) to compare the argument sets 𝑡𝑠 and 𝑢𝑠 . (Definition 5.2).

Below we provide the formal definitions of the multiset quasi-ordering and recursive path quasi-
ordering respectively generalized from the multiset ordering of [Dershowitz and Manna 1979]
and the recursive path ordering [Dershowitz 1982] to operate on quasi-orderings. For all the three
orderings, we write 𝑥𝑙 < 𝑥𝑟 � 𝑥𝑙 ̸≽ 𝑥𝑟 and 𝑥𝑙 > 𝑥𝑟 � 𝑥𝑙 ≽ 𝑥𝑟 ∧ 𝑥𝑟 ̸≽ 𝑥𝑙 .

Definition 5.1 (Multiset Ordering). Given a ordering ≽𝑋 over a set 𝑋 , the derived multiset ordering
≽𝑀 (𝑋) over finite multisets of 𝑋 is defined as 𝑇 ≽𝑀 (𝑋) 𝑈 iff:

(1) 𝑈 = ∅, or
(2) 𝑡 ∈ 𝑇 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 ≈ 𝑢 ∧ (𝑇 − 𝑡) ≽𝑀 (𝑋) (𝑈 − 𝑢), or
(3) 𝑡 ∈ 𝑇 ∧ (𝑇 − 𝑡) ≽𝑀 (𝑋) (𝑈 \ {𝑢 ∈ 𝑈 | 𝑢 <𝑋 𝑡}).
Definition 5.2 (Recursive Path Quasi-Ordering). Given a basic ordering ≽F , the recursive path

quasi-ordering (RPQO) is the ordering ≽T over T defined as follows: 𝑓 (𝑡1, . . . , 𝑡𝑚) ≽T 𝑔(𝑢1, . . . , 𝑢𝑛)
iff

(1) 𝑓 >F 𝑔 and {𝑓 (𝑡1, . . . , 𝑡𝑚)} >𝑀 (T) {𝑢1, . . . , 𝑢𝑛}, or
(2) 𝑔 >F 𝑓 and {𝑡1, . . . , 𝑡𝑚} ≽𝑀 (T) {𝑔(𝑢1, . . . , 𝑢𝑛)}, or
(3) 𝑓 ≈ 𝑔 and {𝑡1, . . . , 𝑡𝑚} ≽𝑀 (T) {𝑢1, . . . , 𝑢𝑛}.
Example 3. As a first example, any RPQO ≽T used to restrict term rewriting will accept the rule

𝑥 + 𝑦 → 𝑦 + 𝑥 , since 𝑥 + 𝑦 ≽T 𝑦 + 𝑥 always holds. Since the top level function symbol is the same
+ ≈ +, by Def. 5.2(1) we need to show {𝑥,𝑦} ≽𝑀 (T) {𝑦, 𝑥}. By Def. 5.1(2) (choosing both 𝑡 and 𝑢 to be
𝑥), we can reduce this to {𝑦} ≽𝑀 (T) {𝑦}; the same step applied to 𝑦 reduces this to showing ∅ ≽𝑀 (T) ∅
which follows directly from Def. 5.1(3).

From this example, we can see that both 𝑥 + 𝑦 ≽T 𝑦 + 𝑥 and 𝑦 + 𝑥 ≽T 𝑥 + 𝑦 hold, in this case
independently of the choice of input ordering ≽F on function symbols. In our next example, the
choice of input ordering makes a difference.

Example 4. As a next example, we compare the terms 𝑠 (𝑥) + 𝑦 and 𝑠 (𝑥 + 𝑦). Now that the
outer function symbols are not equal, the order relies on the ordering between + and 𝑠 . Let’s assume
that + >F 𝑠 . Now to get 𝑠 (𝑥) + 𝑦 ≽T 𝑠 (𝑥 + 𝑦), the 1st case of Definition 5.2 further requires
{𝑠 (𝑥) +𝑦} >𝑀 (T) {𝑥 +𝑦}, which holds if 𝑠 (𝑥) +𝑦 >T 𝑥 +𝑦. The outermost symbol for both expressions
is +, so we must check the multiset ordering: {𝑠 (𝑥), 𝑦} >𝑀 (T) {𝑥,𝑦}, which holds because by case
splitting on the relation between 𝑠 and 𝑥 , we can show that 𝑠 (𝑥) is always smaller than 𝑥 . In short, if
+ >F 𝑠 , then 𝑠 (𝑥) + 𝑦 ≽T 𝑠 (𝑥 + 𝑦).

5.2 Properties of the Orderings
A relation ⩾ is a quasi-order if it is reflexive and transitive. Given elements 𝑡 and 𝑢 in 𝑆 , we say
𝑡 ≈ 𝑢 if 𝑡 ⩾ 𝑢 and 𝑢 ⩾ 𝑡 . A quasi-order ⩾ is also characterized as:

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

REST 1:13

(1) WQO, when for all infinite chains 𝑥1, 𝑥2, . . . there exists an 𝑖, 𝑗, 𝑖 < 𝑗 such that 𝑥 𝑗 ⩾ 𝑥𝑖 .
(2) thin, when forall 𝑡 ∈ 𝑆 , the set {𝑢 ∈ 𝑆 | 𝑡 ≈ 𝑢} is finite.
(3) total, when for all 𝑡,𝑢 ∈ 𝑆 either 𝑡 ⩾ 𝑠 or 𝑠 ⩾ 𝑡 .
Developing on our 𝑅𝑃𝑄𝑂 notion (Def. 5.2), we consider the set of all such orderings that are

generated by any total, well-quasi-ordering over the operators. We prove that such term orderings
satisfy the termination requirements of Theorem 4.7. Concretely:

Theorem 5.3. If ≽F is a total, well-quasi-ordering, then

(1) ≽T is a well-quasi-ordering,
(2) ≽T is thin, and
(3) ≽T is thin well-founded.

Proof. The detailed proofs can be found on the appendix (§ A). (1) uses the well-foundedness
theorem of Dershowitz [Dershowitz 1982] and the fact that ≽T is a quasi-simplification ordering.
(2) relies on the fact that a finite number of function symbols can only generate a finite number of
equal terms. (3) is a corollary of (1) and (2) combined.

□

5.3 An Ordering Constraints Algebra for ≽T
Having defined the necessary metaproperties for the recursive path quasi-orderings, we now show
an effective way to integrate them into REST. Namely, we provide an ordering constraints algebra
enable REST to accept a rewrite path so long as it can be oriented by some RPQO. However, REST
does not depend on a specific term ordering; for example, it could use a lexicographic ordering
instead. We present the implementation for RPQOs here to highlight the approach we use in our
implementation and prove its correctness.
One simple but computationally intractable approach would be to enumerate the entire set

of RPQOs that orient a path; continuing the path so long as the set is not empty. This has two
drawbacks. First, the number of RPQOs grows at an extremely fast rate with respect to the number of
function symbols; for example there are 6, 942 RPQOs describing five function symbols, and 209, 527
over six. Second, most of these orderings differ in ways that are not relevant to the comparisons
made by REST.

Instead, we define a language to succinctly describe the set of candidate RPQOs, by calculating
the minimal constraints that would ensure orientation of the path of terms; REST continues so
long as there is some RPQO that satisfies the constraints. Crucially the satisfiability check can be
performed effectively using an SMT solver, as described in Sec. 6.4, without actually instantiating
any orderings.
Before formally describing the language, we begin with some examples, showing how the

ordering constraints could be constructed to guide the termination check of REST.

Example: satisfiability of ordering constraints. Consider the following rewrite path given by the
rules 𝑟1 � 𝑓 (𝑔(𝑥), 𝑦) → 𝑔(𝑓 (𝑦,𝑦)) and 𝑟2 � 𝑓 (𝑥, 𝑥) → 𝑓 (𝑘, 𝑥):

𝑓 (𝑔(ℎ), 𝑘) →𝑟1 𝑔(𝑓 (ℎ,ℎ)) →𝑟2 𝑔(𝑓 (𝑘, ℎ))

To perform the first rewrite REST has to ensure that there exists an RPQO ≽T such that
𝑓 (𝑔(ℎ), 𝑘) ≽T 𝑔(𝑓 (ℎ,ℎ)). Following the Definition 5.2, we obtain three possibilities:

(1) 𝑓 >F 𝑔 and {𝑓 (𝑔(ℎ), 𝑘)} >𝑀 (T) {𝑓 (ℎ,ℎ)}, or
(2) 𝑔 >F 𝑓 and {𝑔(ℎ), 𝑘} ≽𝑀 (T) {𝑔(𝑓 (ℎ,ℎ))}, or
(3) 𝑓 ≈ 𝑔 and {𝑔(ℎ), 𝑘} ≽𝑀 (T) {𝑓 (ℎ,ℎ)}.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

1:14 Anon.

We can further simplify these using the definition of the multiset quasi-ordering (Def. 5.1). Con-
cretely, the multiset comparison of (1) always holds, while the multiset comparisons of (2) and (3)
reduce to 𝑘 >F 𝑓 ∧ 𝑘 >F 𝑔 ∧ 𝑘 >F ℎ. Thus, we can define the exact constraints 𝑐0 on ≽T to satisfy
𝑓 (𝑔(ℎ), 𝑘) ≽T 𝑔(𝑓 (ℎ,ℎ)) as

𝑐0 � 𝑓 >F 𝑔 ∨ (𝑘 >F 𝑓 ∧ 𝑘 >F 𝑔 ∧ 𝑘 >F ℎ)
Since there exist many quasi-orderings satisfying this formula (trivially, the one containing the
single relation 𝑓 >F 𝑔), the first rewrite is satisfiable.

Similarly, for the second rewrite, the comparison 𝑔(𝑓 (𝑧, 𝑧)) ≽T 𝑔(𝑓 (𝑘, 𝑧)) entails the constraints
𝑐1 � 𝑧 ≽F 𝑘 . To perform this second rewrite the conjunction of 𝑐0 and 𝑐1 must be satisfiable. Since
the second disjunct of 𝑐0 contradicts 𝑐1, the resulting constraints 𝑓 >F 𝑔 ∧ 𝑧 ≽F 𝑘 is satisfiable by
an RPQO, thus the path is satisfiable.

Example: unsatisfiable ordering constraints. As a second example, consider the rewrite rules
𝑟1 � 𝑓 (𝑥) → 𝑔(𝑠 (𝑥)) and 𝑟2 � 𝑔(𝑠 (𝑥)) → 𝑓 (ℎ(𝑥)). These rewrite rules can clearly cause divergence,
as applying rule 𝑟1 followed by 𝑟2 will enable a subsequent application of 𝑟1 to a larger term. Now
let’s examine how our ordering constraints algebra can show the unsatisfiability of the diverging
path:

𝑓 (𝑧) →𝑟1 𝑔(𝑠 (𝑧)) ↛𝑟2 𝑓 (ℎ(𝑧))
𝑓 (𝑧) ≽T 𝑔(𝑠 (𝑧)) requires 𝑐0 � 𝑓 > 𝑔 ∧ 𝑓 > 𝑠 which is satisfiable, but 𝑔(𝑠 (𝑧)) ≽T 𝑓 (ℎ(𝑧)) requires
𝑐1 � (𝑔 ⩾ 𝑓 ∧ 𝑔 ⩾ ℎ) ∨ (𝑔 ⩾ 𝑓 ∧ 𝑠 ⩾ ℎ) ∨ (𝑠 > 𝑓 ∧ 𝑠 > ℎ), which, although satisfiable on it’s own,
conflicts with 𝑐0. Since no 𝑅𝑃𝑄𝑂 can satisfy both 𝑐0 and 𝑐1, the rewrite path is not satisfiable.
Having primed intuition through the examples, we now present a way to compute such con-

straints. First, it is clear that we can define an RPQO based on the precedence over symbols F .
Therefore, we define our language of constraints to include the standard logical operators as well
as atoms representing the relations between elements of F , as:

𝐶F � 𝑓 >F 𝑔 | 𝑓 ≈ 𝑔 | 𝐶F ∧𝐶F | 𝐶F ∨𝐶F | ⊤ | ⊥
Next, we lift our definition of 𝑅𝑃𝑄𝑂 and the multiset quasi-ordering derive functions: rpqo :
T → T → 𝐶F , and mul : (T → T → 𝐶F) → 𝑀 (T) → 𝑀 (T) → 𝐶F . rpqo is derived by a
straightforward translation of Def. 5.2:

rpqo(𝑓 (𝑡1, . . . , 𝑡𝑚), 𝑔(𝑢1, . . . , 𝑢𝑛)) = 𝑓 >F 𝑔 ∧ mul′(rpqo, {𝑓 (𝑡1, . . . , 𝑡𝑚)}, {𝑢1, . . . , 𝑢𝑛}) ∨
𝑔 >F 𝑓 ∧ mul(rpqo, {𝑡1, . . . , 𝑡𝑚}, {𝑔(𝑢1, . . . , 𝑢𝑛)}) ∨
𝑓 ≈ 𝑔 ∧ mul(rpqo, {𝑡1, . . . , 𝑡𝑚}, {𝑢1, . . . , 𝑢𝑛})

wheremul′ is the strict multiset comparison given bymul′(𝑓 ,𝑇 ,𝑈) = mul(𝑓 ,𝑇 ,𝑈) ∧ ¬mul(𝑓 ,𝑈 ,𝑇).
¬ : 𝐶F → 𝐶F inverts the constraints, with ¬(𝑓 >F 𝑔) = 𝑓 ≈ 𝑔 ∨ 𝑔 >F 𝑓 and ¬(𝑓 ≈ 𝑔) = 𝑓 >F
𝑔 ∨ 𝑔 >F 𝑓 ; the other cases are defined in the typical way.

The definition for mul is somewhat more complex. Recall that 𝑇 ≽𝑀 (𝑋) 𝑈 when 𝑈 can be
obtained from 𝑇 by replacing zero or more elements in 𝑇 with the same number of equal (with
respect to ≽𝑋) elements, and by replacing zero or more elements in 𝑇 with a finite number of
smaller ones. Therefore, each justification for {𝑡1, . . . , 𝑡𝑚} ≽𝑀 (𝑋) {𝑢1, . . . , 𝑢𝑛} can be represented
by a bipartite graph with nodes labeled 𝑡1, . . . , 𝑡𝑚 and 𝑢1, . . . , 𝑢𝑛 , such that:

(1) each node 𝑢𝑖 has exactly one incoming edge from some node 𝑡 𝑗 .
(2) if a node 𝑡𝑖 has exactly one outgoing edge, it is labeled, either GT or EQ.
(3) if a node 𝑡𝑖 has more than one outgoing edge, it is labeled. GT
mul(𝑓 , {𝑡1, . . . , 𝑡𝑚}, {𝑢1, . . . , 𝑢𝑛}) generates all such graphs, and for each graph converts each

labeled edge (𝑡,𝑢, EQ) to the formula 𝑓 (𝑡,𝑢) ∧ 𝑓 (𝑢, 𝑡) and each edge (𝑡,𝑢, GT) to the formula 𝑓 (𝑡,𝑢) ∧

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

REST 1:15

{-@ example1 :: s0 : Set → { s1 : Set | IsDisjoint s0 s1 } → f : (Set → a) → { f ((s0

\/ s1) ∧ s0) = f s0 } @-}

example1 :: Set → Set → (Set → a) → Unit

example1 s0 s1 f =

f ((s0 \/ s1) ∧ s0) ? distribUnion s0 s1 s0

=== f ((s0 ∧ s0) \/ (s1 ∧ s0)) ? idemInter s0

=== f (s0 \/ (s1 ∧ s0)) ? symmInter s1 s0

=== f (s0 \/ (s0 ∧ s1)) -- Disjoint

=== f (s0 \/ emptySet) ? emptyUnion s0

=== f s0

*** QED

Fig. 4. Liquid Haskell version of the proof from Example 1.

¬𝑓 (𝑢, 𝑡), and finally joins the formulas for the graph via a conjunction. The resulting constraint is
defined to be the disjunction of the formulas generated from all such graphs.

Having defined the lifting of the recursive path quasi-ordering to the language of constraints, we
can now define our ordering constraints algebra A (T,Γ) by the tuple ⟨𝐶F,⊤, refine, 𝛾, SAT⟩ where:
• refine(𝑐, 𝑡,𝑢) = 𝑐 ∧ rpqo(𝑡,𝑢)
• Γ is the set of all RPQOs.
• 𝛾 (𝑐) is the set of RPQOs derived from the underlying quasi-orders ≽F that satisfy 𝑐 .
• SAT(𝑐) = true if there exists a quasi-order ≽F satisfying 𝑐 , false otherwise.

In Sec. 6.4 we discuss how the satisfiability check is mechanized and implemented using an SMT
solver. Note that the following properties or ordering constraint algebras:
• SAT(𝑐) iff 𝛾 (𝑐) ≠ ∅
• ≽ ∈ 𝛾 (refine(𝑐, 𝑡,𝑢)) iff ≽ ∈ 𝛾 (𝑐) and 𝑡 ≽ 𝑢

hold by definition.
Finally, we must also show that A (T,Γ) is well-founded (definition 4.5).

Theorem 5.4. If F is finite, then A (T,Γ) is well-founded.

Proof. Recall that A (T,Γ) represents a set of RPQOs derived from quasi-orders over F . If F
is finite, then the range of 𝛾 is also finite. If A (T,Γ) were not well-founded, then there must exist
an infinite sequence 𝑐1 ⊐ 𝑐2 ⊐ Then, there is also some corresponding infinite sequence
𝛾 (𝑐1) ⊃ 𝛾 (𝑐2) ⊃ But since the range of 𝛾 is finite, this would yield a contradiction, as ⊂ is
well-founded on finite sets. Therefore, A (T,Γ) is well-founded. □

Having shown that using 𝑅𝑃𝑄𝑂𝑠 as a term ordering is useful for theorem proving, satisfies the
necessary properties for REST, and admits an efficient ordering constraints algebra, we now show
how to implement REST and the ordering constraints algebra for 𝑅𝑃𝑄𝑂𝑠 into a real theorem prover.

6 IMPLEMENTATION OF REST

We implemented REST along with the ordering constraint algebra of § 5) as a standalone library,
comprising 2006 lines of Haskell code. We integrated this library into a version of the Liquid Haskell
program verifier [Vazou et al. 2014], where we chose the task of applying lemmas in Liquid Haskell
proofs as a suitable target problem for automation via REST.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

1:16 Anon.

6.1 Liquid Haskell and Program Lemmas
Liquid Haskell performs program verification via refinement types for Haskell; function types can be
annotated with refinements that capture logical/value constraints about the function’s parameters,
return value and their relation. For example, Figure 4 shows a Liquid Haskell adaptation of the set
example of Example 1 (without any integration of REST). The function example1 is to prove the
proof obligation from the example; user-defined lemmas amount to nothing more than additional
program functions, whose refinement types express the logical requirements of the lemma. The
first line of the figure is special comment syntax used in Liquid Haskell to introduce refinement
types; it expresses that the first parameter s0 is unconstrained, while the second s1 is refined in
terms of s0: it must be some value such that IsDisjoint s0 s1 holds. The refinement type on the
(unit) return value expresses the proof goal; the body of the function provides the proof of this
lemma. The proof is written in equational style; the ? annotations specify lemmas used to justify
proof steps [Vazou et al. 2018]. The penultimate step requires no lemma; the verifier can discharge
it based on the refinement on the s1 parameter.

Lemmas already proven can be used in the proof of further lemmas; as is standard for program
verification, care needs to be taken to avoid circular reasoning. Liquid Haskell ensures this via
well-founded recursion: lemmas can only be instantiated recursively with smaller arguments.

6.2 REST for Automatic Lemma Application in Liquid Haskell
We apply REST to automate the application of equality lemmas in the context of Liquid Haskell.
The basic idea is to extract a set of rewrite rules from a set of refinement-typed functions, each of
which must have a refinement type signature of the following shape:
{-@ rrule :: x1:t1 → . . . → x𝑛:t𝑛 → {v:() | 𝑒𝑙 = 𝑒𝑟 } @-}

In particular, the equality 𝑒𝑙 = 𝑒𝑟 refinement of the (unit) return value generates potential rewrite
rules to feed to REST, in both directions. Let 𝐹𝑉 (𝑒) be the free variables of 𝑒 , if 𝐹𝑉 (𝑒𝑟) ⊆ 𝐹𝑉 (𝑒𝑙)
and 𝑒𝑙 ∉ {𝑥1, . . . , 𝑥𝑛} then 𝑒𝑙 → 𝑒𝑟 is generated as a rewrite rule. Symmetrically, if 𝐹𝑉 (𝑒𝑙) ⊆ 𝐹𝑉 (𝑒𝑟)
and 𝑒𝑟 ∉ {𝑥1, . . . , 𝑥𝑛} then 𝑒𝑟 → 𝑒𝑙 is generated as a rewrite rule. These rewrite rules are fed to REST
along with the current terms we are trying to equate in the proof goal; any rewrites performed by
REST are fed back to the context of the verifier as assumed equalities.
Since the extracted rewrite rules are defined as refinement-typed expressions, our implemen-

tation technically goes beyond simple term rewriting, since instantiations of these rules in our
implementation are also refinement-type-checked; i.e., it instantiates only the rules with expressions
of the proper refined type, achieving a simple form of conditional rewriting [Kaplan 1984].

Selective Activation of Lemmas: Local and Global Rewrite Rules. In our Liquid Haskell extension,
the user can activate a rewrite rule globally or locally, using the rewrite and rewriteWith pragmas,
resp.. For example, with the below annotations

{-@ rewrite global @-}

{-@ rewriteWith theorem [local] @-}

the rule global will be active when verifying every function in the current Haskell module, while
the rule local is used only when verifying theorem.

Preventing Circular Reasoning. Our implementation finally ensures that rewrites cannot be used
to justify circular reasoning, by checking that there are no cycles induced by our rewrite and
rewriteWith pragmas. For example, the below, unsound, circular dependency will be rejected with
a rewrite error by our implementation.

{-@ rewriteWith p1 [p2] @-}

{-@ rewriteWith p2 [p1] @-}

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

REST 1:17

Fig. 5. Interaction between PLE and REST.

{-@ p1, p2 :: x:Int → { x = x + 1 } @-}

p1 _ = () ; p2 = p1

To prevent circular dependencies, we check that the dependency graph of the rewrite rules (which
are made available for proving which) has no cycles. This simple restriction is stronger than strictly
necessary; a more-complex termination check could allow rewrites to be mutually justified by
ensuring that recursive rewrites are applied with smaller arguments. In practice, our coarse check
isn’t too restrictive: because Haskell’s module system enforces acyclicity of imports, rewrite rules
placed in their own module can befreely referenced by importing the library.

Lemma Automation. Using our implementation, the same Example 1 proven manually in Figure 4
can be alternatively proven (with all relevant extracted rewrite rules in scope) as follows:
{-@ example1 :: s0 : Set → { s1 : Set | IsDisjoint s0 s1 } → f : (Set → a) → { f ((s0

\/ s1) ∧ s0) = f s0 } @-}

example1 s0 s1 _ = ()

The proof is fully automatic: no manual lemma calls are needed as these are all handled by REST.
Integrating REST into Liquid Haskell required around 500 lines of code, mainly for surface syntax.

6.3 Mutual PLE and REST interaction
Liquid Haskell includes a general technique called Proof by Logical Evaluation (PLE) [Vazou et al.
2017] for automating the expansion of terminating program function definitions. PLE expands
function calls into single cases of their (possibly conditional) bodies exactly when the verifier can
prove that a unique case definitely applies. This check is performed via SMT and so can condition
on arbitrary logical information; in our implementation, this forms a natural complement to the
term rewriting of REST, and plays the role of its external oracle (cf. Sec. 3). Since PLE is proven
terminating [Vazou et al. 2017], the termination of this collaboration is also guaranteed (cf. Sec. 4).
Figure 5 summarizes the mutual interaction between PLE and REST on a verification condition

Φ ⊢ 𝑝 , where Φ is an environment of assumptions. PLE also takes as input a set F of (provably)
terminating, user-defined function definitions that it iteratively evaluates. Meanwhile, REST is
provided with the rewrite rules extracted from in-scope lemmas in the program (cf. Sec. 6.2); these
two techniques can then generate paths of equal terms including steps justified by each technique.
For example, consider the following simple lemma countPosExtra, stating that the number of
strictly positive values in xs ++ [y] is the number in xs, provided that y <= 0, and a lemma stating
that countPos of two lists appended gives the same result if their orders are swapped.
{-@ lm :: xs : [Int] → ys : [Int] → { countPos (xs ++ ys) = countPos (ys ++ xs) } @-}

{-@ rewriteWith countPosExtra [lm] @-}

{-@ countPosExtra :: xs : [Int] → {y : Int | y <= 0 } →

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

1:18 Anon.

-- Interface of OC Algebra

data OC C T = OC

{ top :: C

, refine :: C → T → T → C

, sat :: C → IO Bool

}

-- Language of Logical Formulas

data LF = LTrue | LFalse

| F :>: F | F :=: F
| LF :∧: LF | LF :∨: LF

-- Implementation of OC Algebra

rpoOC :: OC LF T
rpoOC = OC LTrue refine sat where

refine :: LF → T → T → LF

refine c t u =

c :∧: rpo t u -- As in Def 5.2

sat :: LF → IO Bool

sat = smtSat . toSMT -- SMT Interface

Fig. 6. The implementation of our RPQO Ordering Constraint Algebra

{ countPos (xs ++ [y]) = countPos xs } @-}

countPosExtra :: [Int] → Int → ()

countPosExtra _ _ = () -- proof is fully automatic!

The proof requires rewriting countPos(xs ++ [y]) first via lemma lm (by REST), expanding the
definition of ++ twice (via PLE) to give countPos(y:xs), and finally one more PLE step evaluating
countPos, using the logical fact that y is not positive. Note in particular that the first step requires
applying an external lemma (out of scope for PLE), and the last requires SMT reasoning not
expressible by term rewriting. The two techniques together allow for a fully automatic proof.

6.4 An Efficient Implementation of the RPQO Ordering Constraint Algebra
Figure 6 presents REST’s library interface for ordering constraint algebras, and the implementation
Liquid Haskell uses. The interface OC is parametric in the language of constraints C, and the type of
terms t. Liquid Haskell’s implementation uses logical formulas LF for the language of constraints𝐶
(cf. Def. 4.1) to represent the constraints. The logical formulas LF are tailored to our RPQO orderings,
tracking properties of the underlying function ordering F . Concretely, they contain true, false,
comparisons (:>:) and equality (:=:) between functions in F , and logical conjunction (:∧:) and
disjunction (:∨:).

Our implementation rpoOC defines the initial constraints top to be LTrue, (intuitively, permitting
any RPQO). The function refine c t u, conjoins the current constraints c with the constraints
rpo t u, ensuring 𝑡 ≽ 𝑢. Finally the sat function converts the constraints into an equisatisfiable
SMT formula, by encoding each distinct function symbol as an SMT integer variable, encoding the
logical operators as their SMT equivalent, and checking for satisfiability of the resulting formula.

REST’s interface supports arbitrary implementations for ordering constraints and is not dependent
on any particular ordering, constraint language, or solver. For example, one could implement a
trivial ordering constraint algebra enforcing maximum rewrite paths of length n, by defining top

= n, refine c _ _ = c -1, and sat c = return (c > 0). The ordering constraint algebra interface is
straightforward to implement, yet powerful enough to support arbitrary complex functionality.

6.5 Further Optimizing the REST algorithm
When a rewrite system is branching, REST may encounter different rewrite paths from an initial
term 𝑡 to an arbitrary term 𝑢. For example, in Figure 7 (a), the term (𝑏 + 𝑎) + 𝑎 is explored in 5
different paths. In general, REST cannot always ignore the repeat encounters of 𝑢, as a new path
from 𝑡 to 𝑢 may impose ordering constraints enabling more rewrites in the future. Nonetheless,

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

REST 1:19

a + (b + a)

(b + a) + a

(a + b) + a

a + (a + b)

(a + a) + b

(a + a) + b

b + (a + a)

b + (a + a)

(b + a) + a

(a + b) + a

a + (a + b)

(a + b) + a

(b + a) + a

(a + b) + a

(b + a) + a a + (a + b)

(a + a) + b

b + (a + a)

(b + a) + a

with optimization

without optimization

Fig. 7. Associative-commutative rewrites of 𝑎 + (𝑏 + 𝑎) generated by REST. Paths explored by REST with the
explored terms optimization are within the dashed line. Using the explored terms optimization, REST only
considers each term once.

reducing the number of explored paths naturally improves performance. Therefore, we optimize
REST based on the following observations:

(1) A term 𝑡 does not need to be revisited if all of it’s rewrites have already been visited.
(2) If a term 𝑡 was previously visited at constraints 𝑐 , revisiting 𝑡 at constraints 𝑐 ′ is not necessary

if 𝑐 permits all orderings permitted by 𝑐 ′, i.e., 𝛾 (𝑐 ′) ⊆ 𝛾 (𝑐).
To implement this optimization, RESTmaintains amapping𝑀 from terms to the logical constraints

𝑐 each term was explored with (initially mapping all terms to top). To explore a term 𝑡 under logical
constraints 𝑐 , the algorithm checks that this term is explorable, formally defined by:

explorable(𝑡, 𝑐) � 𝑡 ∉ 𝑀 ∨ (¬(𝑐 ⇒ 𝑀 [𝑡]) ∧ ∃𝑢.(𝑡 →𝑅 𝑢 ∧ explorable(𝑢, 𝑐)))

This predicate ensures that either this term was not explored before or it comes with weaker
constraints that can derive at least one new term in the path.

After exploring a new term, REST weakens the mapping𝑀 for this term to the disjunction of the
constraints under which it was newly explored and those previously mapped to in𝑀 . With this
optimization, a term will appear in more than one paths in the REST graph only when it can lead to
different terms in the path. This optimization critically reduces the number of explored terms, as
shown in Figure 7 where 19 vertices of the REST graph on the left reduced to only 6 on the right.

7 EVALUATION
Our evaluation seeks to answer three research questions:
§ 7.1: How does REST compare to existing rewriting tactics?
§ 7.2: How does REST compare to E-matching based axiomatization?
§ 7.3: Does REST simplify equational proofs?
We evaluate REST using the Liquid Haskell implementation described in Sec. 6. In Sec. 7.1, we

compare our implementation’s rewriting functionality with that of other theorem provers, with
respect to the challenges mentioned in Sec. 2. In Sec. 7.2, we compare against Dafny [Leino 2010] by
porting Dafny’s calculational proofs to Liquid Haskell, using rewriting to handle axiom instantiation.
Finally, in Sec. 7.3, we port proofs from various sources into Liquid Haskell both with and without
rewriting, and compare the performance and complexity of the resulting proofs.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

1:20 Anon.

Property LH+ Coq Agda Lean Isabelle Zeno Isa+

Diverge OK loop loop fail loop OK OK
Plus AC OK loop loop fail fail OK OK
Congruence OK OK OK OK OK fail OK

Table 1. Comparison of RESTwith existing theorem provers. LH+ is Liquid Haskell with rewriting. The potential
outcomes are OK when the property is proved; loop when no answer is returned after 300 sec; and fail when
the property cannot be proven. Isa+ is Isabelle/HOL with the Sledgehammer tactic.

7.1 Comparison with Other Theorem Provers
To compare REST with the rewriting functionality of other theorem provers, we developed three
examples to test the four challenges described in Sec. 2, and compare our implementation to that of
other solvers. We chose to evaluate against Agda [Norell 2008], Coq [Coq Development Team 2020],
Lean [Avigad et al. 2018], Isabelle/HOL [Nipkow et al. 2020], and Zeno [Sonnex et al. 2012], as they
are widely known theorem provers that either support a rewrite tactic, or use rewriting internally.
Agda, Lean, and Isabelle/HOL allow user-defined rewrites. In Lean and Isabelle/HOL, the tactic for
applying rewrite rulesmultiple times is called simp; for simplification. Agda, Coq, and Isabelle/HOL’s
implementation of rewriting can diverge for nonterminating rewrite systems [AgdaDevelopers 2020;
Coq Development Team 2020; Nipkow et al. 2020]. On the other hand, Lean enforces termination, at
least to some degree, by ensuring that associative and commutative operators can only be applied
according to a well-founded ordering [Avigad et al. 2020]. Zeno [Sonnex et al. 2012] does not allow
for user-defined rewrite rules, rather it generates rewrites internally based on user-provided axioms.
Sledgehammer [Meng and Paulson 2008; Paulson and Susanto 2007; Paulsson and Blanchette 2012] is
a powerful tactic supported by Isabelle/HOL that (on top of the built-in rewriting) dispatches proof
obligations to various external provers and succeeds when any of the external provers succeed;
this tactic operates under a built-in (customizable) timeout.

1. Diverge tests how the prover handles the first challenge and fourth challenges: restricting the
rewrite system to ensure termination, and integrating external oracle steps. This example encodes
a single (terminating) rewrite rule 𝑓 (𝑥) → 𝑔(𝑠 (𝑠 (𝑥))) and terminating, mutually recursive function
definitions for 𝑓 and 𝑔. However, the combination of the rules and function expansions can cause
divergence. This test also requires a simple proof that follows directly from the function definitions.
2. Plus AC tests the second and third challenges, by encoding a task that requires a permissive

term ordering. This example encodes p, q, and r, user-defined natural numbers, and requires that
expressions such as (p + q) + r can be rewritten into different groupings such as (r + q) + p, via
associativity and commutativity rules.
3. Congruence is an additional test to ensure that the implementation of the rewrite system is

permissive enough to generate the expected result. This test evaluates a basic expected property,
that the expressions 𝑓 (𝑔(𝑥)) and 𝑓 (𝑔′(𝑥)) can be proved equal if there exists a rewrite rule of the
form 𝑔(𝑥) → 𝑔′(𝑥).
We present our results in Table 1. As expected, Coq, Agda, and Isabelle/HOL diverge on the

first example, as they do not ensure termination of rewriting. Lean does not diverge, but it also
fails to prove the theorem. Unsurprisingly, the commutativity axiom of Plus AC causes theorem
provers that don’t ensure termination of rewriting to loop. Although Lean ensures termination, it
does not generate the necessary rewrite application in every case, because it orients associative-
commutative rewriting applications according to a fixed order. With the exception of Zeno, all of
the theorem provers tested were able to prove the necessary theorem for the final example. Our
implementation succeeds on these three examples by implementing a permissive termination check

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

REST 1:21

based on non-strict orderings. For this selection of simple but illustrative examples, the only tools
to succeed on all cases are our implementation, and Isabelle’s Sledgehammer. The latter combines
a great many techniques which go beyond term rewriting. Nonetheless, we note that our novel
approach provides a clear and general formal basis for incorporation with a wide variety of verifiers
and reasoning techniques (due to its generic definition and formal requirements), and provides
strong formal guarantees for such combinations. In particular, REST provides general termination
and relative completeness guarantees, which Sledgehammer (via its timeout mechanism) does not.

7.2 Comparison with E-matching
To evaluate REST against the E-matching based approach to axiom instantiation, we compared
with Dafny [Leino 2010], a state-of-the-art program verifier. Dafny supports equational reasoning
via calculational proofs [Leino and Polikarpova 2013] and calculation with user-defined functions
[Amin et al. 2014]. We ported the calculational proofs of Leino and Polikarpova [2013] to Liquid
Haskell, using rewriting to automatically instantiate the necessary axioms.

7.2.1 List Involution. Figure 8 shows that the reverse operation on lists is an involution, i.e.,
∀xs.reverse(reverse(xs)) = xs. In this example, both Liquid Haskell and Dafny operate on inductively
defined lists with user-defined functions ++ and reverse. The proof goes through via the lemma
𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (𝑥𝑠 ++ 𝑦𝑠) = 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (𝑦𝑠) ++ 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (𝑥𝑠) and induction on the size of the list.

Using rewriting, Liquid Haskell is able to simplify the proof, with PLE expanding the function
definitions for reverse and append, and REST generating the equality reverse (reverse xs ++

[x]) = reverse [x] ++ reverse (reverse xs).
In Dafny, a similar simplification of the calculational proof is not possible. We experimented

and found that the lemma ReverseAppendDistrib can be alternatively encoded as an axiom which,
by itself, does not appear to cause trouble for E-matching, and with this change alone the proof
succeeds without the need for this single lemma call. On the other hand, the equalities must still be
mentioned for the calculational proof to succeed. Perhaps surprisingly, removing these intermediate
equality steps caused Dafny to stall; analysis with the Axiom Profiler [Becker et al. 2019] indicated
the presence of a (rather complex) matching loop involving the axiom ReverseAppendDistrib in
combination with axioms internally generated by the verifier itself. This illustrates that achieving
further automation of such E-matching-based proofs is not straightforward, and can easily lead to
performance difficulties due to matching loops which can be hard to predict and understand.

7.2.2 Set Properties. Figure 9 shows the Dafny and Liquid Haskell proofs for the implication
𝑠0 ∩ 𝑠1 = ∅ =⇒ 𝑓 ((𝑠0 ∪ 𝑠1) ∩ 𝑠0) = 𝑓 (𝑠0).

Dafny uses a calculational proof to show the equality (𝑠0 ∪ 𝑠1) ∩ 𝑠0 = 𝑠0, seemingly by applying
distributivity. In fact, the distributivity aspect is not relevant to the proof; rather, the set equality in
the proof syntax causes Dafny to instantiate the set extensionality axiom discharging the proof. It is
for this reason that Dafny requires an extra proof step to prove 𝑓 ((𝑠0∪𝑠1) ∩𝑠0) = 𝑓 (𝑠0), as this term
does not include an equality on sets, but rather on applications of 𝑓 . Dafny’s set axiomatization
does not include the distributivity axiom, as such an axiom could easily lead to matching loops.

Using REST, it is safe to encode arbitrary lemmas as rewrite rules, as the termination is guaranteed;
in this case the distributivity lemma can be used to complete the proof (and is permitted as a rewrite
rule with the precedence ∩ > ∪).

In conclusion, we have shown that using REST to apply rewrites could be used as an alternative
to E-matching based axiomatization. Furthermore, the termination guarantee of REST enables
axioms that may give rise to matching loops to, instead, be encoded as rewrite rules.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

1:22 Anon.

lemma LemmaReverseTwice(xs: List)

ensures reverse(reverse(xs)) == xs;

{

match xs {

case Nil =>

case Cons(x, xrest) =>

calc {

reverse(reverse(xs));

reverse(append(reverse(xrest), Cons(x, Nil)));

{ ReverseAppendDistrib(reverse(xrest), Cons(x, Nil)); }

append(reverse(Cons(x, Nil)), reverse(reverse(xrest)));

{ LemmaReverseTwice(xrest); }

append(reverse(Cons(x, Nil)), xrest);

append(Cons(x, Nil), xrest);

xs;

}

}

}
(a) Calculation-style proof in Dafny, from [Leino and Polikarpova 2013].

{-@ involutionP :: xs:[a] → {reverse (reverse xs) == xs } @-}

{-@ rewriteWith involutionP [distributivityP] @-}

involutionP [] = (); involutionP (x:xs) = involutionP xs

(b) An equivalent proof implemented in Liquid Haskell extended with REST

Fig. 8. List Involution proofs in Liquid Haskell and Dafny

7.3 Simplification of Equational Proofs
Finally, we evaluate how REST can simplify equational proofs. We chose to include the set example
from [Leino and Polikarpova 2013] (described in Sec. 7.2.2), data structure proofs from [Vazou
et al. 2018], examples from the Liquid Haskell test suite, as well as our own case studies. We
developed each example in Liquid Haskell both with and without rewriting, and compared the
timing and proof complexity. The proofs in [Vazou et al. 2018] were selected because the proofs
require induction, expansion of user-defined functions, and equational reasoning steps to prove
properties about trees and lists. The examples from the Liquid Haskell test suite were taken to
evaluate the rewriting across a range of representative proofs. For our case studies, we included an
additional proofs on set properties, arithmetic properties, and program equivalences.
Our case study evaluates the performance of our implementation using a large set of rewrite

rules, by verifying optimizations for a simple programming language, containing statements (i.e.,
print, sequence, branches, repeats and no-ops) and expressions (i.e., constants, variables, arithmetic
and boolean expressions) using 23 rewrite rules. Our rewriting technique to prove such kind of
equivalences used in techniques such as supercompilation [Bolingbroke and Peyton Jones 2010;
Tate et al. 2009; Wadler 1990], by encoded the basic equality axioms as rewrite rules and using them
to prove more complicated theorems. A full list of the axioms and proved theorems are available in
the appendix (§ B). We note that we encoded arithmetic operations as uninterpreted SMT functions,
so that the built-in arithmetic theory of the SMT does not aid proof automation.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

REST 1:23

lemma Proof<a>(s0: set<int>, s1: set<int>, f: set<int> → a)

requires s0 * s1 == {}

ensures f((s0 + s1) * s0) == f(s0) {

calc {(s0 + s1) * s0; (s0 * s0) + (s1 * s0); s0;}

} (a) Proof in Dafny using built-in set axiomatization

{-@ assume unionEmpty :: ma : Set → {v : () | ma \/ emptySet = ma } @-}

{-@ assume intersectComm :: ma : Set → mb : Set → {v : () | ma ∧ mb = mb ∧ ma } @-}

{-@ assume intersectSelf :: s0 : Set → { s0 ∧ s0 = s0 } @-}

{-@ assume unionIntersect :: s0 : Set → s1 : Set → s2 : Set → { (s0 \/ s1) ∧ s2 = (s0 ∧
s2) \/ (s1 ∧ s2) } @-}

{-@ rwDisjoint :: s0 : Set → { s1 : Set | IsDisjoint s0 s1} → { s0 ∧ s1 = emptySet } @-}

{-@ example1 :: s0 : Set → { s1 : Set | IsDisjoint s0 s1 } → f : (Set → a) → { f ((s0

\/ s1) ∧ s0) = f s0 } @-}

example1 s0 s1 _ = ()

(b) An equivalent proof implemented in Liquid Haskell, with a user-defined axiomatization of sets.

Fig. 9. Set Proofs in Liquid Haskell and Dafny

No. Name Orig. Removed Rules Ind. Other Time (Orig.) Time (RW)
1 Set-Dafny 4 4 5 0 0 4.0s 4.2s
2 Set-Mono 7 7 4 0 1 4.3s 14.8s
3 List 7 3 3 4 0 7.0s 6.0s
4 Tree 7 3 3 4 0 5.0s 5.8s
5 DSL 43 43 23 0 0 9.6s 16.7s
6 LH-FingerTree 3 1 1 1 1 15.6s 16.9s
7 LH-T1013 2 1 1 0 0 4.0s 3.5s
8 LH-T1025 2 2 2 0 0 3.8s 3.9s
9 LH-T1548 1 1 2 0 0 5.0s 4.3s
10 LH-T1660 1 1 1 0 0 3.9s 4.3s
11 LH-MapReduce 5 3 2 1 1 19.6s 40.1s

Total 82 69 47 10 3 76.8s 120.5s
Table 2. Results from simplification of proofs with rewriting. Set-Dafny is the set example from[Leino and
Polikarpova 2013], Set-Mono describes a similar property. List and Tree are equational proofs from [Vazou
et al. 2018]. DSL is the program equivalence case study. The remaining proofs are from the Liquid Haskell
test suite folder tests/pos, excluding those using only inductive or mutually inductive lemmas. Orig. is the
number of lemma applications in the original proof. Removed is the number of lemma applications that
were removed by rewriting. Rules is the number of axioms encoded as rewrite rules. Ind. is the number of
inductive lemmas (not handled by our technique). Other are lemma applications or equalities that could not
be handled via rewriting. Time (Orig.) is verification time in seconds for the original proof. Time (RW) is
verification time in seconds for the ported proof using rewriting.

We present our results in table 2. By using rewriting, we were able to eliminate all but three of
the non-inductive axiom instantiations, while maintaining a reasonable verification time.
The test cases LH-FingerTree and LH-MapReduce required manual axiom instantiations because

the structure of the term did not match the rewrite rule for the axiom. LH-MapReduce, requires

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

1:24 Anon.

proving the identity op (f (take n is)) (mapReduce n f op (drop n is)) = f is. An induc-
tive lemma application generates the background equality mapReduce n f op (drop n is) = f

(drop n is), and a rewrite matching the term op (f (take n is)) (f (drop n is)) must be
instantiated to complete the proof. However, since the background equality is neither a rewrite rule
nor an evaluation step, the necessary term op (f (take n is)) (f (drop n is)) never appears.
Therefore, it is necessary to either manually instantiate the lemma. As future work, a limited form
of E-matching [de Moura and Bjørner 2007] could be used to address this issue in the general case.
The remaining test case Set-Mono cannot be entirely automated via rewriting for a more fun-

damental reason: the necessary rewrite steps cannot be oriented. This example proves that set
union is monotonic for the subset operation, i.e (𝑠1 ⊂ 𝑠2 =⇒ (𝑠 ∪ 𝑠1) ⊂ (𝑠 ∪ 𝑠2)). Perhaps surpris-
ingly, assuming the standard set axioms as rewrite rules, no RPQO can orient the necessary step:
(𝑠∪𝑠1)∪ (𝑠∪𝑠2) → 𝑠∪(𝑠1∪(𝑠∪𝑠2)). Therefore, after Liquid Haskell generates all permitted rewrites
(in this case terminating in less than five seconds), it indicates to the user that the termination
check prevented some rewrite applications. The proof was completed by mentioning the equality to
this intermediate term; as initializing REST from the term 𝑠 ∪ (𝑠1 ∪ (𝑠 ∪ 𝑠2)) enables the appropriate
rewrites to successfully complete the proof.
We note that other term orderings could support this proof without the need for intermediate

steps. For example, a naïve quasi-ordering based on the size of the term would suffice, as the proof
does not require expansion into larger terms.
In conclusion, we’ve shown that extending Liquid Haskell to use REST enables rewriting func-

tionality not subsumed by existing theorem provers, that REST is effective for axiom instantiation,
and that REST can simplify equational proofs.

8 RELATEDWORK
Theorem Provers & Rewriting. Term rewriting is an effective technique to automate theorem

proving [Hsiang et al. 1992] supported by most standard theorem provers. § 7.1 compares, by
examples, our technique with Coq, Agda, Lean, and Isabelle/HOL. In short, our approach is different
because it uses user-specified rewrite rules to derive, in a terminating way, equalities that strengthen
the SMT-decidable verification conditions generated during program verification.

SMT Verification & Rewriting. Our rewrite rules could be encoded in SMT solvers as universally
quantified equations and instantiated using E-matching [de Moura and Bjørner 2007], i.e., a common
algorithm for quantifier instantiation. E-matching might generate matching loops leading to
unpredictable divergence. Leino and Pit-Claudel [2016] refer to this unpredictable behavior of
E-matching as the “the butterfly effect” and partially address it by detecting formulas that could
give rise to matching loops. Our approach circumvents unpredictability by using the terminating
REST algorithm to instantiate the rewrite rules outside of the SMT solver.

Z3 [De Moura and Bjørner 2008] and CVC4 [Barrett et al. 2011] are state-of-the-art SMT solvers;
both support theory-specific rewrite rules internally. Recent work [Nötzli et al. 2019] enables
user-provided rewrite rules to be added to CVC4. However, using the SMT solver as a rewrite engine
offers little control over rewrite rule instantiation, which is necessary for ensuring termination.

Rewriting in Haskell. Haskell itself has used various notions of rewriting for program verification.
GHC supports the RULES pragma with which the user can specify unchecked, quantified expression
equalities that are used at compile time for program optimization. Breitner [2018] proposes Inspec-
tion Testing as a way to check such rewrite rules using runtime execution and metaprogramming,
while Farmer et al. [2015] prove rewrite rules via metaprogramming and user-provided hints. In a
work closely related to ours, Zeno [Sonnex et al. 2012] is using rewriting, induction, and further
heuristics to provide lemma discovery and fully automatic proof generation of inductive properties.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

REST 1:25

Unlike our approach, the Zeno’s syntax is restricted (e.g., it does not allow for existentials) and
it does not allow for user-provided hints when automation fails. HALO [Vytiniotis et al. 2013]
enables Haskell verification by converting Haskell into logic and using an SMT solver to verify
user-defined formulas. However, this approach relies on SMT quantifiers to encode user functions,
thus the solver can diverge and verification becomes unpredictable.

Termination of Rewriting and Runtime Termination Checking. Early work on proving termination
of rewriting using simplification orderings is described in [Dershowitz 1982]. More recent work
involves dependency pairs [Arts and Giesl 2000] and applying the size-change termination principle
[Lee et al. 2001] in the context of rewriting [Thiemann and Giesl 2007]. Tools like AProVE [Giesl
et al. 2017] can statically prove the termination of rewriting.
In contrast, REST is not focused on statically proving termination of rewriting; rather it uses

a well-founded ordering to ensure termination at runtime. This approach enables integration of
arbitrary external oracles to produce rewrite applications, as a static analysis is not possible in
principle. Furthermore, our approach enables nonterminating rewriting systems to be useful: REST
will still apply certain rewrite rules to satisfy a proof obligation, even if the rewrite rules themselves
cannot be statically shown to terminate.
We choose to use a well-quasi-ordering [Kruskal 1972] because it enables rewriting to terms

that are not strictly decreasing in a simplification ordering. WQOs are commonly used in online
termination checking [Leuschel 2002], especially for program optimization techniques such as
supercompilation [Bolingbroke et al. 2011].

Equality Saturation. In our implementation, REST passes equalities to the SMT environment,
ultimately used for equality saturation via an E-graph data structure [Detlefs et al. 2005b]. Equality
saturation has also been used for supercompilation[Tate et al. 2009]. REST does not currently exploit
equality saturation (unless indirectly via its oracle). However, as future work we might explore local
usage of efficient E-graph implementations (e.g., [Willsey et al. 2021]) for caching the equivalence
classes generated via rewrite applications.

Associative-Commutative Rewriting. Associative-Commutative (AC) rewriting [Dershowitz et al.
1983] considers rewrite systems containing associative-commutative operators. It is well known
that the inclusion of AC axioms can lead to an explosion in the search space. One solution is to
convert terms with AC operators into canonical representations [Conchon et al. 2012]. Another is
to handle some AC operations via theory-specific solvers, for example as in SMT solvers.

REST currently does not make any attempt directly address the search state explosion due to
the introduction of AC axioms. However, this issue is not significant in practice; as it can be used
alongside other solvers supporting theory-specific AC reasoning, or by using an external oracle to
generate canonical forms for AC expressions.

9 CONCLUSION
We’ve presented REST, a novel approach to rewriting that can be integrated into program verifiers.
We proved correctness, relative completeness, and (online) termination of REST in a very general
way, using the abstraction of an ordering constraints algebra. Next, we defined RPQO, an ordering
that both satisfies the (abstract) termination requirements of REST and allows for an efficient,
algorithmic implementation of ordering constraints algebra. We implemented REST with RPQOs
in Liquid Haskell and showed that the resulting system compares well with existing rewriting
techniques, it can be used as an alternative to E-matching based axiomatizations approaches,
and can substantially simplify equational proofs. In the future, we plan to integrate REST with
E-matching to make rewriting facilities available to other program verifiers or SMT solvers.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

1:26 Anon.

REFERENCES
Agda Developers. 2020. The Agda Language Reference, version 2.6.1. Available electronically at https://agda.readthedocs.io/

en/v2.6.1/language/index.html.
Nada Amin, K Rustan M Leino, and Tiark Rompf. 2014. Computing with an SMT solver. In International Conference on Tests

and Proofs. Springer, 20–35.
Thomas Arts and Jürgen Giesl. 2000. Termination of term rewriting using dependency pairs. Theoretical Computer Science

236, 1 (April 2000), 133–178. https://doi.org/10.1016/S0304-3975(99)00207-8
Jeremy Avigad, Leonardo de Moura, and Soonho Kong. 2020. Theorem Proving in Lean, Release 3.20.0. https://leanprover.

github.io/theorem_proving_in_lean/theorem_proving_in_lean.pdf p 73.
Jeremy Avigad, Gabriel Ebner, and Sebastian Ullrich. 2018. The Lean Reference Manual, Release 3.3.0. https://leanprover.

github.io/reference/lean_reference.pdf
Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovi’c, Tim King, Andrew Reynolds,

and Cesare Tinelli. 2011. CVC4. In Proceedings of the 23rd International Conference on Computer Aided Verification (CAV
’11) (Lecture Notes in Computer Science, Vol. 6806), Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer, 171–177.
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf Snowbird, Utah.

N. Becker, P. Müller, and A. J. Summers. 2019. The Axiom Profiler: Understanding and Debugging SMT Quantifier
Instantiations. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS) 2019 (LNCS). Springer-Verlag,
99–116.

Maximilian Bolingbroke and Simon Peyton Jones. 2010. Supercompilation by Evaluation. SIGPLAN Not. 45, 11 (Sept. 2010),
135–146. https://doi.org/10.1145/2088456.1863540

Maximilian Bolingbroke, Simon Peyton Jones, and Dimitrios Vytiniotis. 2011. Termination combinators forever. In Proceedings
of the 4th ACM symposium on Haskell. 23–34.

Joachim Breitner. 2018. A promise checked is a promise kept: inspection testing. In Proceedings of the 11th ACM SIGPLAN
International Symposium on Haskell, Haskell@ICFP 2018, St. Louis, MO, USA, September 27-17, 2018, Nicolas Wu (Ed.).
ACM, 14–25. https://doi.org/10.1145/3242744.3242748

Sylvain Conchon, Evelyne Contejean, and Mohamed Iguernelala. 2012. Canonized rewriting and ground AC completion
modulo Shostak theories: design and implementation. arXiv preprint arXiv:1207.3262 (2012).

The Coq Development Team. 2020. The Coq Reference Manual, version 8.11.2. Available electronically at http://coq.inria.fr/
refman.

Leonardo de Moura and Nikolaj Bjørner. 2007. Efficient E-Matching for SMT Solvers. In Automated Deduction – CADE-21,
Frank Pfenning (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 183–198.

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In International conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer, 337–340.

Nachum Dershowitz. 1979. A note on simplification orderings. Inform. Process. Lett. 9, 5 (1979), 212–215. https://doi.org/10.
1016/0020-0190(79)90071-1

Nachum Dershowitz. 1982. Orderings for term-rewriting systems. Theoretical computer science 17, 3 (1982), 279–301.
Nachum Dershowitz. 1987. Termination of rewriting. Journal of symbolic computation 3, 1-2 (1987), 69–115.
Nachum Dershowitz, Jieh Hsiang, N Alan Josephson, and David A Plaisted. 1983. Associative-Commutative Rewriting.. In

IJCAI. 940–944.
Nachum Dershowitz and Zohar Manna. 1979. Proving termination with multiset orderings. In Automata, Languages and

Programming (Lecture Notes in Computer Science), Hermann A. Maurer (Ed.). Springer, Berlin, Heidelberg, 188–202.
https://doi.org/10.1007/3-540-09510-1_15

David Detlefs, Greg Nelson, and James B. Saxe. 2005a. Simplify: A Theorem Prover for Program Checking. J. ACM 52, 3
(May 2005), 365–473. https://doi.org/10.1145/1066100.1066102

David Detlefs, Greg Nelson, and James B Saxe. 2005b. Simplify: a theorem prover for program checking. Journal of the ACM
(JACM) 52, 3 (2005), 365–473.

Andrew Farmer, Neil Sculthorpe, and Andy Gill. 2015. Reasoning with the HERMIT: Tool Support for Equational Reasoning
on GHC Core Programs. In Proceedings of the 2015 ACM SIGPLAN Symposium on Haskell (Vancouver, BC, Canada) (Haskell
’15). Association for Computing Machinery, New York, NY, USA, 23–34. https://doi.org/10.1145/2804302.2804303

Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3—Where Programs Meet Provers. In Programming Languages
and Systems (ESOP) (Lecture Notes in Computer Science, Vol. 7792), Matthias Felleisen and Philippa Gardner (Eds.). Springer,
125–128.

Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten Fuhs, Jera Hensel, Carsten
Otto, Martin Plücker, Peter Schneider-Kamp, et al. 2017. Analyzing program termination and complexity automatically
with AProVE. Journal of Automated Reasoning 58, 1 (2017), 3–31.

Jieh Hsiang, Hélène Kirchner, Pierre Lescanne, and Michaël Rusinowitch. 1992. The term rewriting approach to automated
theorem proving. The Journal of Logic Programming 14, 1 (Oct. 1992), 71–99. https://doi.org/10.1016/0743-1066(92)90047-7

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

https://agda.readthedocs.io/en/v2.6.1/language/index.html
https://agda.readthedocs.io/en/v2.6.1/language/index.html
https://doi.org/10.1016/S0304-3975(99)00207-8
https://leanprover.github.io/theorem_proving_in_lean/theorem_proving_in_lean.pdf
https://leanprover.github.io/theorem_proving_in_lean/theorem_proving_in_lean.pdf
https://leanprover.github.io/reference/lean_reference.pdf
https://leanprover.github.io/reference/lean_reference.pdf
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
https://doi.org/10.1145/2088456.1863540
https://doi.org/10.1145/3242744.3242748
http://coq.inria.fr/refman
http://coq.inria.fr/refman
https://doi.org/10.1016/0020-0190(79)90071-1
https://doi.org/10.1016/0020-0190(79)90071-1
https://doi.org/10.1007/3-540-09510-1_15
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1145/2804302.2804303
https://doi.org/10.1016/0743-1066(92)90047-7

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323

REST 1:27

Gerard Huet. 1977. Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems. In Proceedings
of the 18th Annual Symposium on Foundations of Computer Science (SFCS ’77). IEEE Computer Society, USA, 30–45.
https://doi.org/10.1109/SFCS.1977.9

Stéphane Kaplan. 1984. Conditional rewrite rules. Theoretical Computer Science 33, 2 (1984), 175–193. https://doi.org/10.
1016/0304-3975(84)90087-2

J. W. Klop. 1993. Term Rewriting Systems. Oxford University Press, Inc., USA, 1–116.
Joseph B Kruskal. 1972. The theory of well-quasi-ordering: A frequently discovered concept. Journal of Combinatorial

Theory, Series A 13, 3 (Nov. 1972), 297–305. https://doi.org/10.1016/0097-3165(72)90063-5
Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. 2001. The Size-Change Principle for Program Termination. In

Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (London, United
Kingdom) (POPL ’01). Association for Computing Machinery, New York, NY, USA, 81–92. https://doi.org/10.1145/360204.
360210

K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional Correctness. In Proceedings of the 16th
International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (Dakar, Senegal) (LPAR’10).
Springer-Verlag, Berlin, Heidelberg, 348–370.

K. R. M. Leino and Clément Pit-Claudel. 2016. Trigger Selection Strategies to Stabilize Program Verifiers. In Computer Aided
Verification (Lecture Notes in Computer Science), Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer International
Publishing, Cham, 361–381. https://doi.org/10.1007/978-3-319-41528-4_20

K Rustan M Leino and Nadia Polikarpova. 2013. Verified calculations. In Working Conference on Verified Software: Theories,
Tools, and Experiments. Springer, 170–190.

Michael Leuschel. 2002. Homeomorphic Embedding for Online Termination of Symbolic Methods. In The Essence of
Computation, Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, Torben Æ. Mogensen, David A. Schmidt, and I. Hal
Sudborough (Eds.). Vol. 2566. Springer Berlin Heidelberg, Berlin, Heidelberg, 379–403. https://doi.org/10.1007/3-540-
36377-7_17 Series Title: Lecture Notes in Computer Science.

Jia Meng and Lawrence C Paulson. 2008. Translating higher-order clauses to first-order clauses. Journal of Automated
Reasoning 40, 1 (2008), 35–60.

P. Müller, M. Schwerhoff, and A. J. Summers. 2016. Viper: A Verification Infrastructure for Permission-Based Reasoning. In
VMCAI.

Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. 2020. Isabelle/HOL: A Proof Assistant for Higher-Order Logic.
Springer-Verlag.

Ulf Norell. 2008. Dependently Typed Programming in Agda. In Proceedings of the 6th International Conference on Advanced
Functional Programming (Heijen, The Netherlands) (AFP’08). Springer-Verlag, Berlin, Heidelberg, 230–266.

Andres Nötzli, Andrew Reynolds, Haniel Barbosa, Aina Niemetz, Mathias Preiner, Clark Barrett, and Cesare Tinelli. 2019.
Syntax-Guided Rewrite Rule Enumeration for SMT Solvers. In Theory and Applications of Satisfiability Testing – SAT
2019, Mikoláš Janota and Inês Lynce (Eds.). Springer International Publishing, Cham, 279–297.

Lawrence C Paulson and Kong Woei Susanto. 2007. Source-level proof reconstruction for interactive theorem proving. In
International Conference on Theorem Proving in Higher Order Logics. Springer, 232–245.

Lawrence C Paulsson and Jasmin C Blanchette. 2012. Three years of experience with Sledgehammer, a practical link between
automatic and interactive theorem provers. In Proceedings of the 8th International Workshop on the Implementation of
Logics (IWIL-2010), Yogyakarta, Indonesia. EPiC, Vol. 2.

Julien Signoles, Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, and Boris Yakobowski. 2012. Frama-c: a
Software Analysis Perspective. Formal Aspects of Computing 27. https://doi.org/10.1007/s00165-014-0326-7

William Sonnex, Sophia Drossopoulou, and Susan Eisenbach. 2012. Zeno: An Automated Prover for Properties of Recursive
Data Structures. In Tools and Algorithms for the Construction and Analysis of Systems, Cormac Flanagan and Barbara
König (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 407–421.

Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bharga-
van, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoué, and Santiago Zanella-Béguelin.
2016. Dependent Types and Multi-Monadic Effects in F*. In 43rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL). ACM, 256–270. https://www.fstar-lang.org/papers/mumon/

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality Saturation: a New Approach to Optimization.
In POPL ’09: Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages
(Savannah, GA, USA). ACM, New York, NY, USA, 264–276. https://doi.org/10.1145/1480881.1480915

René Thiemann and Jürgen Giesl. 2007. Size-Change Termination for Term Rewriting, Vol. 2706. 264–278. https://doi.org/
10.1007/3-540-44881-0_19

Niki Vazou, Joachim Breitner, Rose Kunkel, David Van Horn, and Graham Hutton. 2018. Theorem proving for all: equational
reasoning in liquid Haskell (functional pearl). In Proceedings of the 11th ACM SIGPLAN International Symposium on
Haskell (Haskell 2018). Association for Computing Machinery, St. Louis, MO, USA, 132–144. https://doi.org/10.1145/

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

https://doi.org/10.1109/SFCS.1977.9
https://doi.org/10.1016/0304-3975(84)90087-2
https://doi.org/10.1016/0304-3975(84)90087-2
https://doi.org/10.1016/0097-3165(72)90063-5
https://doi.org/10.1145/360204.360210
https://doi.org/10.1145/360204.360210
https://doi.org/10.1007/978-3-319-41528-4_20
https://doi.org/10.1007/3-540-36377-7_17
https://doi.org/10.1007/3-540-36377-7_17
https://doi.org/10.1007/s00165-014-0326-7
https://www.fstar-lang.org/papers/mumon/
https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1007/3-540-44881-0_19
https://doi.org/10.1007/3-540-44881-0_19
https://doi.org/10.1145/3242744.3242756
https://doi.org/10.1145/3242744.3242756

1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

1:28 Anon.

3242744.3242756
Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones. 2014. Refinement Types for Haskell. In

Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming (Gothenburg, Sweden) (ICFP
’14). Association for Computing Machinery, New York, NY, USA, 269–282. https://doi.org/10.1145/2628136.2628161

Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton, Philip Wadler, and Ranjit Jhala.
2017. Refinement Reflection: Complete Verification with SMT. Proc. ACM Program. Lang. 2, POPL, Article 53 (Dec. 2017),
31 pages. https://doi.org/10.1145/3158141

Dimitrios Vytiniotis, Simon Peyton Jones, Koen Claessen, and Dan Rosén. 2013. HALO: Haskell to logic through denotational
semantics. In Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages.
431–442.

Philip Wadler. 1990. Deforestation: transforming programs to eliminate trees. Theoretical Computer Science 73, 2 (1990), 231
– 248. https://doi.org/10.1016/0304-3975(90)90147-A

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha. 2021. Egg: Fast
and extensible equality saturation. Proceedings of the ACM on Programming Languages 5, POPL (2021), 1–29.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3242744.3242756
https://doi.org/10.1145/3242744.3242756
https://doi.org/10.1145/3242744.3242756
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3158141
https://doi.org/10.1016/0304-3975(90)90147-A

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421

REST 1:29

A PROOFS ON ORDERINGS
Lemma A.1. If 𝑇 ≽𝑀 (𝑋) 𝑈 , then 𝑇 ≽𝑀 (𝑋) 𝑈 ′ for all𝑈 ′ ⊂ 𝑈 .

Proof. It is sufficient to show that 𝑇 ≽𝑀 (𝑋) 𝑈 implies 𝑇 ≽𝑀 (𝑋) (𝑈 − 𝑢 ′), for any 𝑢 ′ ∈ 𝑈 ,
since the subset can be obtained by removing a finite number of elements. That is, if 𝑈 ′ was
obtained by removing elements 𝑢1, . . . , 𝑢𝑛 from 𝑈 , we can show that 𝑇 ≽𝑀 (𝑋) (𝑈 \ {𝑢1}) implies
𝑇 ≽𝑀 (𝑋) (𝑈 \ {𝑢1, 𝑢2}) and so on.

The proof goes by induction on the size of 𝑇 and case analysis on 𝑇 ≽𝑀 (𝑋) 𝑈 .
For case one there are no 𝑢 ′ in𝑈 , so the proof holds vacuously.
For case two, we have either 𝑢 = 𝑢 ′ or 𝑢 ≠ 𝑢 ′. If 𝑢 = 𝑢 ′, a proof of 𝑇 ≽𝑀 (𝑋) (𝑈 −𝑢) can be made

by modifying the proof of (𝑇 − 𝑡) ≽𝑀 (𝑋) (𝑈 − 𝑢). The base case of that proof must be of the form
𝑇 ′ ≽𝑀 (𝑋) ∅. We modify the base case to be (𝑇 ′ + 𝑡) ≽𝑀 (𝑋) ∅. Each recursive case is also modified to
replace𝑇 ′ with (𝑇 ′ + 𝑡), yielding (𝑇 ′ + 𝑡) ≽𝑀 (𝑋) (𝑈 −𝑢) =𝑇 ≽𝑀 (𝑋) (𝑈 −𝑢), as required. The proof
that 𝑇 ≽𝑀 (𝑋) (𝑈 − 𝑢 ′) for all other 𝑢 ′ ∈ 𝑈 is obtained by induction. By the inductive hypothesis,
we have (𝑇 − 𝑡) ≽𝑀 (𝑋) (𝑈 − 𝑢 − 𝑢 ′), since 𝑢 ≠ 𝑢 ′, we also have 𝑢 ∈ (𝑈 − 𝑢 ′). Therefore applying
case two we get 𝑇 ≽𝑀 (𝑋) (𝑈 − 𝑢 ′).
For case three, we have either 𝑢 ′ < 𝑡 or 𝑢 ′ ≮ 𝑡 . If 𝑢 ′ < 𝑡 , then the proof (𝑇 − 𝑡) ≽𝑀 (𝑋)
(𝑈 \ {𝑢 ∈ 𝑈 | 𝑢 < 𝑡}) is also a proof of (𝑇 − 𝑡) ≽𝑀 (𝑋) ((𝑈 − 𝑢 ′) \ {𝑢 ∈ 𝑈 | 𝑢 < 𝑡}), thus we
obtain obtain the proof directly. The proof for all other 𝑢 ′ ∈ 𝑈 is obtained by induction. By the
inductive hypothesis we have (𝑇 − 𝑡) ≽𝑀 (𝑋) ((𝑈 \ {𝑢 ∈ 𝑈 | 𝑢 < 𝑡}) − 𝑢 ′). Then, applying the
same top-level proof yields 𝑇 ≽𝑀 (𝑋) (𝑈 − 𝑢 ′), since 𝑢 ′ is not in the set {𝑢 ∈ 𝑈 | 𝑢 < 𝑡}.

□

Lemma A.2. If ≽𝑋 is a quasi-order, then the multiset extension ≽𝑀 (𝑋) is also a quasi-order.

Proof. To show that ≽𝑀 (𝑋) is a quasi-order, we define a single-step version ⩾𝑚𝑢𝑙 , and show
that 𝑇 ≽𝑀 (𝑋) 𝑈 if and only if 𝑇 ⩾𝑚𝑢𝑙∗ 𝑈 , where ⩾𝑚𝑢𝑙∗ is the reflexive transitive closure of𝑈 .

We define ⩾𝑚𝑢𝑙 as:
(1) For all elements 𝑡,𝑢 if 𝑡 ∈ 𝑇 and 𝑢 ≈ 𝑡 , then 𝑇 ⩾𝑚𝑢𝑙 (𝑇 − 𝑡 + 𝑢)
(2) For all elements 𝑡 ∈ 𝑇 and finite multisets𝑈 , if 𝑡 > 𝑢 for all𝑢 ∈ 𝑈 , then𝑇 ⩾𝑚𝑢𝑙 ((𝑇 −𝑡) ∪𝑈)
First, observe that ⩾𝑚𝑢𝑙∗ is monotonic with respect to multiset union: for all multisets 𝑇 , 𝑈 , and

𝑉 , 𝑇 ⩾𝑚𝑢𝑙∗ 𝑈 implies (𝑇 ∪𝑉) ⩾𝑚𝑢𝑙∗ (𝑈 ∪𝑉).
The reflexive case is given by 𝑇 ∪𝑉 = 𝑇 ∪𝑉 ; we show the transitive case by showing there is a

correspondence for each single-step. The proof for each case assumes an arbitrary multiset 𝑉 .
In case one wemust show for all 𝑡,𝑢 ∈ 𝑇 ,𝑇 ⩾𝑚𝑢𝑙∗ (𝑇 −𝑡+𝑢) implies (𝑇 ∪𝑉) ⩾𝑚𝑢𝑙∗ ((𝑇 −𝑡+𝑢)∪𝑉).

𝑡 and𝑢 are also in𝑇 ∪𝑉 , therefore we have (𝑇 ∪𝑉) ⩾𝑚𝑢𝑙∗ ((𝑇 ∪𝑉) −𝑡 +𝑢). We have (𝑇 ∪𝑉) −𝑡 +𝑢 =

(𝑇 − 𝑡 + 𝑢) ∪𝑉 , giving us the desired result. Case two is similar: 𝑡 ∈ 𝑇 implies 𝑡 ∈ (𝑇 ∪𝑉), and
((𝑇 ∪𝑉) − 𝑡) ∪𝑈 = ((𝑇 − 𝑡) ∪𝑈) ∪𝑉 for all𝑈 , 𝑉 .
Now we show the if direction by case analysis.

Case 1:𝑈 = ∅.
If 𝑇 = ∅, then we have 𝑇 ⩾𝑚𝑢𝑙∗ 𝑈 via reflexivity. Otherwise we can select an arbitrary 𝑡 to
remove from𝑇 , and by definition of ⩾𝑚𝑢𝑙 we have𝑇 ⩾𝑚𝑢𝑙 ((𝑇 − 𝑡) ∪ ∅). Then by induction
on the size of𝑇 we have ((𝑇 −𝑡)∪∅) ⩾𝑚𝑢𝑙∗ ∅. Then𝑇 ⩾𝑚𝑢𝑙 ((𝑇 −𝑡)∪∅) ⩾𝑚𝑢𝑙∗ ∅, as required.

Case 2: 𝑡 ∈ 𝑇 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 ≈ 𝑢 ∧ (𝑇 − 𝑡) ⩾𝑚𝑢𝑙 (𝑈 − 𝑢).
Let 𝑇 ′ = 𝑇 − 𝑡 and 𝑈 ′ = 𝑈 − 𝑢. Then we have (𝑇 ′ + 𝑡) ⩾𝑚𝑢𝑙 (𝑇 ′ + 𝑢) by definition and
𝑇 ′ ≽𝑀 (𝑋) 𝑈

′ implies 𝑇 ′ + 𝑢 ⩾𝑚𝑢𝑙∗ 𝑈
′ + 𝑢 via the inductive hypothesis and monotonicity.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470

1:30 Anon.

Thus 𝑇 = (𝑇 ′ + 𝑡) ⩾𝑚𝑢𝑙 (𝑇 ′ + 𝑢) ⩾𝑚𝑢𝑙∗ (𝑈 ′ + 𝑢) = 𝑈 as required.

Case 3: 𝑡 ∈ 𝑇 ∧ (𝑇 − 𝑡) ⩾𝑚𝑢𝑙 (𝑈 \ {𝑢 ∈ 𝑈 | 𝑢 < 𝑡})
Partition𝑈 into two sets𝑈1 and𝑈2 where𝑈1 = {𝑢 ∈ 𝑈 | 𝑢 ≮ 𝑡} and𝑈2 = {𝑢 ∈ 𝑈 | 𝑢 < 𝑡}. By
definition we have𝑈 = 𝑈1 ∪𝑈2. As before𝑇 ′ = 𝑇 − 𝑡 . Then we have (𝑇 ′ + 𝑡) ⩾𝑚𝑢𝑙 (𝑇 ′∪𝑈2).
𝑇 ′ ≽𝑀 (𝑋) 𝑈1 implies (𝑇 ′ ∪ 𝑈2) ⩾𝑚𝑢𝑙∗ (𝑈1 ∪ 𝑈2) via monotonicity and induction. Thus
𝑇 = (𝑇 ′ + 𝑡) ⩾𝑚𝑢𝑙 (𝑇 ′ ∪𝑈2) ⩾𝑚𝑢𝑙∗ (𝑈1 ∪𝑈2) = 𝑈 as required.

Now the only-if direction. First we have that ≽𝑀 (𝑋) is reflexive via induction on size with base
case 𝑇 = 𝑈 = ∅ handled by case 1, and recursive case by case 2, similar to above, we remove an
arbitrary 𝑡 from 𝑇 . Now we show how to handle one or more steps from ⩾𝑚𝑢𝑙 in a single step of
≽𝑀 (𝑋) .
The key observation is that all elements 𝑢 of𝑈 , have exactly one “responsible” element 𝑡 in 𝑇

that justifies𝑇 ⩾𝑚𝑢𝑙∗ 𝑈 : we must have either 𝑡 > 𝑢 or 𝑡 ≈ 𝑢 (in which case 𝑡 is uniquely responsible
for 𝑢 and no other elements of 𝑢). To prove 𝑇 ≽𝑀 (𝑋) 𝑈 , for each 𝑡 in 𝑇 , we recursively build a
tuple (𝑇 ′,𝑈 ′, 𝑝) where 𝑇 ′, and 𝑈 ′ are multisets and 𝑝 is the proof that 𝑇 ′ ≽𝑀 (𝑋) 𝑈 ′. The tuple is
initialized to (∅, ∅,𝑈 = ∅).
For each 𝑡 uniquely responsible for one 𝑢, we update the tuple to (𝑇 ′ + 𝑡,𝑈 ′ + 𝑢, 𝑡 ∈ 𝑇 ∧ 𝑢 ∈

𝑈 ∧ 𝑡 ≈ 𝑢 ∧ 𝑝). The new proof state is valid because by induction we have 𝑝 being a proof of
𝑇 ′ ≽𝑀 (𝑋) 𝑈

′, as required.
Now consider each 𝑡 ∈ 𝑇 where 𝑡 justified some multiset 𝑈 ′′. By induction, we have a proof of

𝑇 ′ ≽𝑀 (𝑋) 𝑈
′; we need a proof that 𝑇 ′ ≽𝑀 (𝑋) ((𝑈 ′ ∪𝑈 ′′) \ {𝑢 ∈ (𝑈 ′ ∪𝑈 ′′) | 𝑢 < 𝑡}). Since we

have 𝑡 > 𝑢 for all 𝑢 ∈ 𝑈 ′′, this simplifies to: 𝑇 ′ ≽𝑀 (𝑋) (𝑈 ′ \ {𝑢 ∈ 𝑈 ′ | 𝑢 < 𝑡}), which we can
obtain via the hypothesis 𝑇 ′ ≽𝑀 (𝑋) 𝑈 ′ and lemma A.1.

□

Lemma A.3. If ≽𝑋 is a well-quasi-order, the strict part of it’s multiset extension defined as 𝑡 >𝑀 (𝑋) 𝑢
if 𝑡 ≽𝑀 (𝑋) 𝑢 and 𝑢 ̸≽𝑀 (𝑋) 𝑡 is a well-founded order.
Proof. This proof operates on the single-step relation defined in A.2. Proving the well-founded

property is done by showing that an infinite descent in >𝑀 (𝑋) would correspond to an infinite
descent in the underlying ordering.

Now, consider a tree built from an infinite path 𝑇1,𝑇2, . . . of multisets related by ≽𝑀 (𝑋) . With the
exception of special nodes ⊤ and ⊥, each node in the tree represents an element in a multiset, and
the vertices connect the elements to the smaller ones they were replaced with via an application of
⩾𝑚𝑢𝑙 . Crucially, every edge represents an descent in a well-founded order.
The tree is constructed as follows: let ⊤ be the root of the tree, and let the elements of 𝑇1 be the

children of ⊤. Then, for each𝑇𝑖 in the infinite list, it was either obtained by replacing some element
in 𝑇𝑖−1 with a same-sized element, or by removing some element 𝑡 and replacing it with a finite
number of smaller elements ts.
In the former case, the tree is not modified.
In the latter case, if ts = ∅, add a single child ⊥ to the 𝑡 in the tree. Otherwise, let ts be the

children of 𝑡 .
Now, we note that the case one of ⩾𝑚𝑢𝑙 is symmetric. Therefore, each pair of terms related by

>𝑀 (𝑋) must correspond to at least one step in case two of ⩾𝑚𝑢𝑙 , Therefore in an infinite path of
terms related by >𝑀 (𝑋) contains an infinite number of applications of case two in ⩾𝑚𝑢𝑙 .
Therefore, an infinite number of vertices will be added to the tree. Since the tree is finitely

branching, it must have an infinitely descending path. However, this infinitely descending path
would correspond to an infinite descent in the underlying ordering, contradicting that hypothesis
that ≽𝑋 is a WQO. □

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519

REST 1:31

Lemma A.4. If ≽F is a total quasi-ordering, then ≽T is a quasi-simplification ordering.

Proof. We must show that ≽T is a quasi-ordering, i.e it is reflexive and transitive; and also that
it satisfies the replacement, subterm, and deletion properties.
Reflexivity occurs via case 3 and A.2.Replacement and deletion follow from case 3 of RPO and

the definition of the multiset ordering.
To prove the subterm property, we show a slightly stronger property: for all terms 𝑡 = 𝑓 (𝑡1, . . . , 𝑡𝑚)

and (not necessarily immediate) subterms𝑢 = 𝑔(𝑢1, . . . , 𝑢𝑛), 𝑡 >T 𝑢. The proof goes by induction on
the term size, where terms are bigger than their subterms, and by case analysis on the relationship
between 𝑓 and 𝑔. Because ≽F is total, we have either 𝑓 >F 𝑔, 𝑓 ≈ 𝑔, or 𝑔 >F 𝑓 .
If 𝑓 >F 𝑔, then to get 𝑡 ≽T 𝑢 we must show {𝑡} >𝑀 (T) {𝑢1, . . . , 𝑢𝑛}. Via induction, we have

𝑡 >T 𝑢𝑖 for all 1 ⩽ 𝑖 ⩽ 𝑛, as each 𝑢𝑖 is a subterm of 𝑢. To show 𝑢 ̸≽T 𝑡 , observe that we need
{𝑢1, . . . , 𝑢𝑛} ≽𝑀 (T) {𝑡}. This is impossible via the inductive hypothesis and the definition of ≽𝑀 (T) :
we already have 𝑡 >T 𝑢𝑖 for all 𝑢𝑖 .

If 𝑓 ≈ 𝑔, then we must show {𝑡1, . . . , 𝑡𝑚} >𝑀 (T) {𝑢1, . . . , 𝑢𝑛}. If 𝑢 is a direct subterm of 𝑡 , then
𝑢 = 𝑡𝑖 for some 𝑖 . By the inductive hypothesis we have 𝑡𝑖 ≈ 𝑢 >T 𝑢 𝑗 for all 𝑢 𝑗 , which implies
{𝑡1, . . . , 𝑡𝑚} >𝑀 (T) {𝑢1, . . . , 𝑢𝑛}. If 𝑢 is a nested subterm, then we have some 𝑡𝑖 >T 𝑢 𝑗 for all 𝑢 𝑗 via
the induction hypothesis: all 𝑢 𝑗 are subterms of 𝑡𝑖 .
If 𝑔 >F 𝑓 , to get 𝑡 ≽T 𝑢 then we must show {𝑡1, . . . , 𝑡𝑚} ≽𝑀 (T) {𝑢}. If 𝑢 was a direct subterm,

then 𝑡𝑖 = 𝑢 gives us the desired result; otherwise we have 𝑡𝑖 >T 𝑢 via the inductive hypothesis. To
show 𝑢 ̸≽T 𝑡 , observe that showing 𝑢 ≽T 𝑡 would require {𝑢} >𝑀 (T) {𝑡1, . . . , 𝑡𝑚}. However we
already have some 𝑡𝑖 ≈ 𝑢, which prevents this possibility.
Transitivity is also proven via induction on size. Assume we have 𝑠 = 𝑓 (𝑠1, . . . , 𝑠𝑚) ≽T 𝑡 =

𝑔(𝑡1, . . . , 𝑡𝑛) and 𝑡 ≽T 𝑢 = ℎ(𝑢1, . . . , 𝑢𝑝). We proceed to show 𝑠 ≽T 𝑢 by for each relationship
between 𝑓 , 𝑔, and ℎ.

(1) 𝑓 >F 𝑔 >F ℎ, or 𝑓 >F 𝑔 > ℎ: Via transitivity of >F we have 𝑓 >F ℎ, therefore we
must show {𝑠} >𝑀 (T) {𝑢1, . . . , 𝑢𝑝 }. {𝑠} ≽𝑀 (T) {𝑡} follows from our assumption 𝑠 ≽T 𝑡 ,
and {𝑡} >𝑀 (T) {𝑢1, . . . , 𝑢𝑝 } follows from 𝑡 ≽T 𝑢. By the inductive hypothesis, we have
𝑠 ≽T 𝑡 ≽T 𝑢𝑖 for all 𝑢𝑖 , and therefore {𝑠} ≽𝑀 (T) {𝑡} >𝑀 (T) {𝑢1, . . . , 𝑢𝑝 }.

(2) ℎ >F 𝑔: There must exist some subterm 𝑡𝑖 such that 𝑡𝑖 ≽T 𝑢. Therefore we have 𝑠 ≽T 𝑡𝑖 and
𝑡𝑖 ≽T 𝑢, the inductive hypothesis gives us 𝑠 ≽T 𝑡𝑖 ≽T 𝑢.

(3) 𝑔 >F 𝑓 : There must exist some subterm 𝑠𝑖 such that 𝑠𝑖 ≽T 𝑡 . As above, using the induction
hypothesis allows us to show 𝑠𝑖 ≽T 𝑢, by the subterm property we have 𝑠 ≽T 𝑠𝑖 . We show
𝑠 ≽T 𝑢 by the definition of ≽T .

(4) 𝑓 ≈ 𝑔 ≈ ℎ. We clearly have 𝑓 ≈ ℎ, we need to show {𝑠1, . . . , 𝑠𝑚} ≽𝑀 (T) {𝑢1, . . . , 𝑢𝑝 }, which
we have via A.2.

□

Theorem A.5. If ≽F is a total WQO, then ≽T is a WQO.

Proof. To show that ≽T is WQO, via the well-foundedness theorem of Dershowitz [Dershowitz
1982], which states that a quasi-simplification ordering ⩾′ is WQO if there exists a well-quasi
ordering ⩾ such that 𝑓 ⩾ 𝑔 implies 𝑓 (𝑡1, . . . , 𝑡𝑛) ⩾′ 𝑔(𝑡1, . . . , 𝑡𝑛).
By A.4 we have that ≽T is a quasi-simplification ordering, and there exists an ordering over

function symbols to satisfy the condition of the well-foundedness theorem: namely the underlying
order ≽F from which ≽T is constructed.

□

Theorem A.6. If ≽F is a total WQO, then ≽T is thin

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568

1:32 Anon.

Proof. We show that for any term 𝑡 = 𝑓 (𝑡1, . . . , 𝑡𝑚), the set of terms {𝑢 | 𝑡 ≈ 𝑢 = 𝑔(𝑢1, . . . , 𝑢𝑚)}
is finite.

If 𝑡 ≈ 𝑢, then we must have 𝑡 ≽T 𝑢 and 𝑢 ≽T 𝑡 . Assume we have 𝑡 ≽T 𝑢.
First, we show that if 𝑓 > 𝑔 then 𝑢 ̸≽T 𝑡 . Assume 𝑢 ≽T 𝑡 , then there must have some 𝑢𝑖 such

that 𝑢𝑖 ≽T 𝑡 . But via the subterm property, we have 𝑢 >T 𝑢𝑖 ≽T 𝑡 , contradicting 𝑡 ≽T 𝑢.
Likewise, if 𝑔 > 𝑓 , then there is some 𝑡𝑖 ≽T 𝑢. Then 𝑡 >T 𝑡𝑖 ≽T 𝑢. Therefore we also have

𝑢 ̸≽T 𝑡 .
Therefore, 𝑡 ≈ 𝑢 only if 𝑓 ≈ 𝑔. Since there are only a finite number of function symbols,

then to show thinness we must show that only a finite number of multisets {𝑢1, . . . , 𝑢𝑛} such
that {𝑡1, . . . , 𝑡𝑚} ≽𝑀 (T) {𝑢1, . . . , 𝑢𝑛} and {𝑢1, . . . , 𝑢𝑛} ≽𝑀 (T) {𝑡1, . . . , 𝑡𝑚}. If {𝑡1, . . . , 𝑡𝑚} = ∅, then
the only such set is ∅. Otherwise, only such multisets are those where {𝑢1, . . . , 𝑢𝑛} is obtained
from {𝑡1, . . . , 𝑡𝑚} by removing zero or more terms 𝑡𝑖 and replacing them the same number of
terms 𝑢 𝑗 where 𝑡𝑖 ≈ 𝑢 𝑗 . If {𝑡1, . . . , 𝑡𝑚} ≽𝑀 (T) {𝑢1, . . . , 𝑢𝑛} was justified by removing 𝑡𝑖 from
{𝑡1, . . . , 𝑡𝑚} and removing smaller terms {𝑢 ′ | 𝑢 ′ < 𝑡𝑖 } from {𝑢1, . . . , 𝑢𝑛}, then we would have
{𝑡1, . . . , 𝑡𝑚} >𝑀 (T) {𝑢1, . . . , 𝑢𝑛}: this corresponds to the irreflexive single-step operation shown to
form a well-founded order in lemma A.3.

Since the multisets contain a finite number of elements, and each term only has a finite number
of equivalent terms (by induction on term size), there are only a finite number of such multisets. □

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617

REST 1:33

B BASIC EQUALITIES AND PROVED THEOREMS IN THE PROGRAM EQUIVALENCE
CASE STUDY

Name Formula
1. addDist (𝑥 ∗ 𝑦) + (𝑧 ∗ 𝑦) = (𝑥 + 𝑧) ∗ 𝑦
2. subDist (𝑥 ∗ 𝑦) − (𝑧 ∗ 𝑦) = (𝑥 − 𝑧) ∗ 𝑦
3. times2Plus 𝑥 ∗ 2 = 𝑥 + 𝑥
4. plus0 𝑥 + 0 = 𝑥

5. mul0 𝑥 ∗ 0 = 0
6. mul1 𝑥 ∗ 1 = 𝑥

7. subSelf 𝑥 − 𝑥 = 0
8. divSelf 𝑥/𝑥 = 1
9. subAdd 𝑥 − 𝑦 = 𝑥 + (−𝑦)
10. mulSym 𝑒 ∗ 𝑒 ′ = 𝑒 ′ ∗ 𝑒
11. addSym 𝑒 + 𝑒 ′ = 𝑒 ′ + 𝑒
12. mulAssoc (𝑥 ∗ 𝑦) ∗ 𝑧 = 𝑥 ∗ (𝑦 ∗ 𝑧)
13. addAssoc (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧)
14. ifT if True then lhs else rhs = lhs

15. ifF if False then lhs else rhs = rhs

16. seqNop seq lhs nop = lhs

17. seqNop' seq nop rhs = rhs

18. repeatNop repeat 0 body = nop

19. repeatN1 repeat (S n) body = seq body (repeat n body)

20. ifJoin if c1 then (if c2 then op else nop) else nop

= if (c1 and c2) then op else nop

21. mapFusion map g (map f xs) = map (g . f) xs

22. foldMap (foldr f e) . (map g) = foldr (f . g) e

23. foldFusion ∀ x y . h (f x y) = f' x (h y)

=⇒ h . (foldr f e) xs = foldr f' (h e) xs

Table 3. Basic Equality Axioms used in our Program Equivalence Case Study

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666

1:34 Anon.

Formula Rewrites
(−(𝑥 + 𝑥)) + (𝑥 + 𝑥) = 0 7, 11, 9
(𝑥 ∗ 2) ∗ 2 = (𝑥 + 𝑥 + 𝑥 + 𝑥) 3, 13
(𝑥 ∗ 𝑦) + (𝑦 ∗ 𝑥) = (𝑥 ∗ 2 ∗ 𝑦) 3, 10, 12
(𝑥 ∗ 𝑦) + (𝑦 ∗ 𝑧) − ((𝑥 + 𝑧) ∗ 𝑦) = 0 1, 7, 10
(𝑥 ∗ 𝑦) − (0 ∗ 𝑦) = 𝑥 ∗ 𝑦 2, 9, 7, 4
𝑥 ∗ (1 − (𝑥/𝑥)) = 0 5, 7, 8
𝑥 ∗ 1 = 𝑥 + 0 4, 6
if true then (seq nop hw) else nop = hw 17, 14
repeat (S (S Z)) hw = seq hw hw 16, 18, 19
if True then (if False then hw else nop) else nop

= if (True and False) then hw else nop 20
map p1 (map p2 list) = map p3 list 21
((foldr add 0) . (map p1)) list = foldr addP1 0 list 22
double . (foldr add 0) list = foldr twicePlus 0 list 23

Table 4. Theorems Proved via Rewriting using the Basic Equality axioms in 3

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

	Abstract
	1 Introduction
	2 Four Challenges for Automating Equational Reasoning
	3 The REST Approach
	4 REST Metaproperties: Soundness, Completeness, and Termination
	4.1 Formal Definitions
	4.2 Ordering Constraint Algebras
	4.3 Soundness
	4.4 Completeness
	4.5 Termination

	5 Term Ordering
	5.1 Recursive Path Quasi-Orderings
	5.2 Properties of the Orderings
	5.3 An Ordering Constraints Algebra for T

	6 Implementation of REST
	6.1 Liquid Haskell and Program Lemmas
	6.2 REST for Automatic Lemma Application in Liquid Haskell
	6.3 Mutual PLE and REST interaction
	6.4 An Efficient Implementation of the RPQO Ordering Constraint Algebra
	6.5 Further Optimizing the REST algorithm

	7 Evaluation
	7.1 Comparison with Other Theorem Provers
	7.2 Comparison with E-matching
	7.3 Simplification of Equational Proofs

	8 Related Work
	9 Conclusion
	References
	A Proofs on Orderings
	B Basic Equalities and Proved Theorems in the Program Equivalence Case Study

