
163

Fractional Resources in Unbounded Separation Logic

THIBAULT DARDINIER, ETH Zurich, Switzerland

PETER MÜLLER, ETH Zurich, Switzerland

ALEXANDER J. SUMMERS, University of British Columbia, Canada

Many separation logics support fractional permissions to distinguish between read and write access to a heap
location, for instance, to allow concurrent reads while enforcing exclusive writes. Fractional permissions
extend to composite assertions such as (co)inductive predicates and magic wands by allowing those to be
multiplied by a fraction. Typical separation logic proofs require that this multiplication has three key properties:
it needs to distribute over assertions, it should permit fractions to be factored out from assertions, and two
fractions of the same assertion should be combinable into one larger fraction.

Existing formal semantics incorporating fractional assertions into a separation logic define multiplication
semantically (via models), resulting in a semantics in which distributivity and combinability do not hold for key
resource assertions such as magic wands, and fractions cannot be factored out from a separating conjunction.
By contrast, existing automatic separation logic verifiers define multiplication syntactically, resulting in a
different semantics for which it is unknown whether distributivity and combinability hold for all assertions.

In this paper, we present a novel semantics for separation logic assertions that allows states to hold more
than a full permission to a heap location during the evaluation of an assertion. By reimposing upper bounds
on the permissions held per location at statement boundaries, we retain key properties of separation logic, in
particular, the frame rule. Our assertion semantics unifies semantic and syntactic multiplication and thereby
reconciles the discrepancy between separation logic theory and tools and enjoys distributivity, factorisability,
and combinability. We have formalised our semantics and proved its properties in Isabelle/HOL.

CCS Concepts: • Theory of computation → Separation logic; Program verification; Automated rea-

soning; Concurrency.

Additional Key Words and Phrases: Fractional permissions, combinability, (co)inductive predicates, magic
wands, automatic deductive verifiers

ACM Reference Format:

Thibault Dardinier, Peter Müller, and Alexander J. Summers. 2022. Fractional Resources in Unbounded
Separation Logic. Proc. ACM Program. Lang. 6, OOPSLA2, Article 163 (October 2022), 27 pages. https://doi.org/
10.1145/3563326

1 INTRODUCTION

Separation logic [Reynolds 2002] (SL thereafter) is an extension of Hoare logic that enables reason-
ing about (concurrent) heap-manipulating programs. SL permits reasoning about non-duplicable
resources, for example the exclusive ownership of a part of the heap, with resource assertions. One
simple and important resource assertion is the points-to assertion: The resource assertion 𝑙 ↦→ 𝑣

(łlocation 𝑙 points to 𝑣ž) holds in a state 𝜎 iff 𝜎 owns the heap location 𝑙 and 𝑙 contains the value 𝑣 .

Authors’ addresses: Thibault Dardinier, thibault.dardinier@inf.ethz.ch, Department of Computer Science, ETH Zurich,
Switzerland; Peter Müller, peter.mueller@inf.ethz.ch, Department of Computer Science, ETH Zurich, Switzerland; Alexander
J. Summers, alex.summers@ubc.ca, Department of Computer Science, University of British Columbia, Canada.

© 2022 Copyright held by the owner/author(s).
2475-1421/2022/10-ART163
https://doi.org/10.1145/3563326

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0003-2719-4856
HTTPS://ORCID.ORG/0000-0001-7001-2566
HTTPS://ORCID.ORG/0000-0001-5554-9381
https://doi.org/10.1145/3563326
https://doi.org/10.1145/3563326
https://orcid.org/0000-0003-2719-4856
https://orcid.org/0000-0001-7001-2566
https://orcid.org/0000-0001-5554-9381
https://orcid.org/0000-0001-5554-9381
https://doi.org/10.1145/3563326

163:2 Thibault Dardinier, Peter Müller, and Alexander J. Summers

SL permits splitting the resources held by a state, with the separating conjunction connective
∗ (also called the star): If 𝐴 and 𝐵 are SL assertions, the assertion 𝐴 ∗ 𝐵 holds in a state 𝜎 iff the
resources held in 𝜎 can be split into two states 𝜎𝐴 and 𝜎𝐵 , written 𝜎 = 𝜎𝐴 ⊕ 𝜎𝐵 , such that 𝐴 holds
in 𝜎𝐴 and 𝐵 holds in 𝜎𝐵 . Intuitively, 𝜎𝐴 ⊕ 𝜎𝐵 represents the disjoint union of the resources of both
states. As an example, the assertion 𝑙1 ↦→ 𝑣1 ∗ 𝑙2 ↦→ 𝑣2 describes a state that (separately) owns the
two heap locations 𝑙1 (with value 𝑣1) and 𝑙2 (with value 𝑣2).
In all existing variants of SL, states are bounded: They cannot own a location 𝑙 more than once.

Consequently, a state 𝜎 can be split into 𝜎𝐴 ⊕ 𝜎𝐵 only if 𝜎𝐴 and 𝜎𝐵 own disjoint parts of the heap.
Thus, the assertion 𝑙1 ↦→ 𝑣1 ∗ 𝑙2 ↦→ 𝑣2 implies that 𝑙1 and 𝑙2 are not aliases. More generally, the
assertion 𝐴 ∗ 𝐵 implies that 𝐴 and 𝐵 describe disjoint parts of the heap. Thanks to the boundedness
of states, SL supports the two following famous and important rules:

{𝑃} 𝐶 {𝑄} mod (𝐶) ∩ fv(𝑅) = ∅
(Frame)

{𝑃 ∗ 𝑅} 𝐶 {𝑄 ∗ 𝑅}

{𝑃1} 𝐶1 {𝑄1} {𝑃2} 𝐶2 {𝑄2}
(Parallel)

{𝑃1 ∗ 𝑃2} 𝐶1 ∥ 𝐶2 {𝑄1 ∗𝑄2}

The Frame rule enables reasoning locally about a program statement 𝐶 . If 𝐶 executes safely in a
state that satisfies 𝑃 and results in a state that satisfies 𝑄 , then it will also execute safely in a state
that satisfies 𝑃 ∗ 𝑅, and it will result in a state that satisfies𝑄 ∗ 𝑅 (provided that 𝑅 does not mention
variables modified by 𝐶). This rule is crucial to prove that properties of the uninvolved parts of the
heap (described by 𝑅) are not affected by executing 𝐶 ; they can be framed around 𝐶 . Similarly, the
Parallel rule enables reasoning locally about each parallel thread of a parallel composition, given
that the two threads operate on disjoint parts of the heap.
To reason about concurrent sharing and the absence of race conditions, SL has been extended

with fractional permissions [Bornat et al. 2005; Boyland 2003]. In this setting, a state can own a

fraction 𝑝 of a heap location 𝑙 , written 𝑙
𝑝

↦→ 𝑣 , where 𝑝 is a positive rational number. Fractional
ownership (𝑝 < 1) grants read access to the location 𝑙 , while exclusive ownership (𝑝 = 1) grants
read and write access. States are also bounded in this setting, in the sense that they cannot own
more than a fraction 1 of a heap location 𝑙 . Two states 𝜎𝐴 and 𝜎𝐵 can be combined iff their fractional
ownerships of each heap location 𝑙 sum to at most 1 and they agree on the values of the heap
locations owned by both. Combined with the Parallel rule, fractional permissions are particularly
suitable for reasoning about concurrent threads that read the same heap locations. Consider an
example with two concurrent threads. Exclusive ownership of 𝑙 can be split into half ownership for
each thread, which enables both threads to read 𝑙 , and exclusive ownership of 𝑙 (and thus write
access) can be regained after the two threads have finished executing.

1.1 Fractional Resources

SL supports resource assertions more general than the points-to assertion, to enable reasoning about
arbitrarily large data structures and at a higher level of abstraction. Ownership of arbitrarily large
data structures, such as binary trees or linked lists, can for example be described with inductively-
defined predicates [Parkinson and Bierman 2005]. Moreover, partial data structures can be expressed
with the separating implication connective −∗ (also calledmagic wand or wand): The assertion𝐴−∗𝐵

describes resources which, combined with any state in which 𝐴 holds, results in a state in which
𝐵 holds. It can intuitively typically be seen as expressing the difference in resources between 𝐵

and 𝐴: If 𝐵 specifies an entire data structure, and 𝐴 specifies a part of this data structure, then
the wand 𝐴 −∗ 𝐵 can express ownership of 𝐵 where 𝐴 has been removed. Specifying partial data
structures with wands has proved useful, for example to track the ongoing iteration over a data
structure [Maeda et al. 2011; Tuerk 2010] (where the left-hand side of the wand represents the

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

Fractional Resources in Unbounded Separation Logic 163:3

part of the data structure that remains to be traversed), or to formally reason about borrowing
references in the Rust programming language [Astrauskas et al. 2019]. Magic wands have also been
used to abstractly specify protocols on client calls to an API [Haack and Hurlin 2009; Jensen et al.
2011; Krishnaswami 2006], such as the protocol that governs Java iterators.

Given the importance of these general resource assertions (resources hereafter), it is not surprising
that the concept of fractional ownership has been generalised to resources (and, in turn, to general
assertions): If 𝐴 is an arbitrary SL assertion and 𝜋 is a fraction, then 𝐴𝜋 is a fractional assertion that
represents a fraction 𝜋 of 𝐴. Fractional assertions have both been studied in theory and applied in
automatic SL verifiers. In theory [Brotherston et al. 2020; Le and Hobor 2018], 𝐴𝜋 holds in a state 𝜎
iff there exists a state 𝜎𝐴 such that 𝐴 holds in 𝜎𝐴 and 𝜎 corresponds to 𝜎𝐴 where all permission
amounts have been multiplied by 𝜋 , which we write 𝜎 = 𝜋 ⊙ 𝜎𝐴. We refer to this definition as the
semantic multiplication. As an example, if tree(𝑥) represents exclusive ownership of all nodes of a
binary tree rooted in x, then tree(𝑥)0.5 represents half ownership of all nodes of this binary tree.

Fractional resources are also supported by several automatic SL verifiers, including Chalice [Leino
et al. 2009], VerCors [Blom and Huisman 2014], VeriFast [Jacobs et al. 2011], and Viper [Müller
et al. 2016]. This support relies on the concept of syntactic multiplication: A fraction 𝜋 of 𝐴 ∗ 𝐵

is interpreted as a fraction 𝜋 of 𝐴 combined with a fraction 𝜋 of 𝐵, i.e. (𝐴 ∗ 𝐵)𝜋 is interpreted
as 𝐴𝜋 ∗ 𝐵𝜋 . Using this distributivity property, the multiplying fraction can be pushed inside the

assertion until it applies to points-to assertions, where (𝑙
𝛼

↦→ 𝑣)𝜋 is interpreted as 𝑙
𝜋 ·𝛼

↦→ 𝑣 .
While the semantic and syntactic multiplications look similar, it turns out that they give two

distinct meanings to fractional resources! Indeed, while the semantic entailment (𝐴∗𝐵)𝜋 |= 𝐴𝜋 ∗𝐵𝜋

holds with both types of multiplication, the dual entailment 𝐴𝜋 ∗ 𝐵𝜋 |= (𝐴 ∗ 𝐵)𝜋 , which is direct
for the syntactic multiplication, does not hold with the semantic multiplication. The reason is that
(𝐴 ∗ 𝐵)𝜋 , interpreted with semantic multiplication, might require stronger non-aliasing guarantees
than the ones provided by 𝐴𝜋 ∗ 𝐵𝜋 , as shown by the following example:

Example 1. (x.f ↦→ 𝑣)
1
2 ∗ (y.f ↦→ 𝑣)

1
2 does not entail (x.f ↦→ 𝑣 ∗ y.f ↦→ 𝑣)

1
2 if interpreted with

the semantic multiplication. Indeed, (x.f ↦→ 𝑣)
1
2 ∗ (y.f ↦→ 𝑣)

1
2 holds in a state 𝜎 with exclusive

ownership of x.f (with value 𝑣) and in which x and y are aliases. However, (x.f ↦→ 𝑣 ∗ y.f ↦→ 𝑣)
1
2

does not hold in 𝜎 , otherwise it would imply (by definition of the semantic multiplication) the existence

of a state that exclusively owns x.f twice, which is not possible since states are bounded.

Current support for fractional resources in automatic verifiers, based on syntactic multiplication,
has never been fully formalised. Worse still, as we show in this paper, the support in these tools is
not aligned with the formal models considered in theoretical papers on the same topic. Therefore,
it is unclear whether the rules they apply, e.g. to recombine two fractions of a recursively-defined
predicate (as we explain next), are sound. In this paper we show how to give a fully formal model
subsuming the cases supported in practical tools, and going beyond such support to formalise what
it can mean to split and recombine more-general resources, such as magic wands.

1.2 Distributivity, Factorisability, and Combinability

As prior work highlights [Brotherston et al. 2020; Le and Hobor 2018], three key properties are
needed when reasoning with fractional assertions, which we term distributivity, factorisability, and
combinability1. We will illustrate shortly on an example why these three properties are necessary.
The distributivity property holds for a SL connective iff multiplication by any fraction can be

1Prior work used a different terminology and referred to both the distributivity and factorisability properties as "distributivity"
or the "distribution principle".

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

163:4 Thibault Dardinier, Peter Müller, and Alexander J. Summers

method processTree(x: Ref) {

{ t ree (𝑥) 𝜋 }

if (x != null) {

{ t ree (𝑥) 𝜋 ∗ 𝑥 ≠ nul l }

{ (t ree (𝑥)
𝜋
2 ∗ 𝑥 ≠ nul l) ∗ (t ree (𝑥)

𝜋
2 ∗ 𝑥 ≠ nul l) }

{tree(𝑥)
𝜋
2 ∗ 𝑥 ≠ null} {tree(𝑥)

𝜋
2 ∗ 𝑥 ≠ null}

{∃𝑥𝑙 , 𝑥𝑟 . 𝑥 .𝑑
𝜋
2
↦→ _ ∗ 𝑥 .𝑙

𝜋
2
↦→ 𝑥𝑙 ∗ 𝑥 .𝑟

𝜋
2
↦→ 𝑥𝑟 ∗ tree(𝑥𝑙)

𝜋
2 ∗ tree(𝑥𝑟)

𝜋
2 } {∃𝑥𝑙 , 𝑥𝑟 . 𝑥 .𝑑

𝜋
2
↦→ _ ∗ . . .}

print(x.d)

processTree(x.l)

processTree(x.r)

print(x.d)

processTree(x.l)

processTree(x.r)

{∃𝑥𝑙 , 𝑥𝑟 . 𝑥 .𝑑
𝜋
2
↦→ _ ∗ 𝑥 .𝑙

𝜋
2
↦→ 𝑥𝑙 ∗ 𝑥 .𝑟

𝜋
2
↦→ 𝑥𝑟 ∗ tree(𝑥𝑙)

𝜋
2 ∗ tree(𝑥𝑟)

𝜋
2 } {∃𝑥𝑙 , 𝑥𝑟 . 𝑥 .𝑑

𝜋
2
↦→ _ ∗ . . .}

{tree(𝑥)
𝜋
2 } {tree(𝑥)

𝜋
2 }

{ t ree (𝑥)
𝜋
2 ∗ t ree (𝑥)

𝜋
2 }

}

{ t ree (𝑥) 𝜋 }

}

Fig. 1. A simple concurrent program that shows why distributivity, factorisability, and combinability are
needed when reasoning with fractional resources. The SL predicate tree(𝑥) is recursively-defined as 𝑥 ≠

null ⇒ ∃𝑥𝑙 , 𝑥𝑟 . 𝑥 .𝑑 ↦→ _ ∗𝑥 .𝑙 ↦→ 𝑥𝑙 ∗𝑥 .𝑟 ↦→ 𝑥𝑟 ∗ tree(𝑥𝑙) ∗ tree(𝑥𝑟). A proof outline is shown in blue. In SL with
semantic multiplication, factorisability does not hold for separating conjunctions and, thus, the entailments
at the end of each parallel branch are not valid! With syntactic multiplication, distributivity holds for the
separating conjunction by definition, but it has not been shown that combinability holds: it is unclear whether
the proof outline is correct. It is correct in the semantics we present in this paper.

distributed over it.2 Distributivity holds e.g. for the separating conjunction both with semantic
multiplication ((𝐴 ∗ 𝐵)𝛼 entails 𝐴𝛼 ∗ 𝐵𝛼) and syntactic multiplication (by definition). However, as
we show in Sect. 2, distributivity does not hold for the magic wand with semantic multiplication.
Factorisability is the dual property: it holds for a SL connective iff it is always possible to factor a
common fraction out over it. As explained above, factorisability does not hold for the separating
conjunction with semantic multiplication, i.e. 𝐴𝛼 ∗ 𝐵𝛼 does not always entail (𝐴 ∗ 𝐵)𝛼 . However,
factorisability holds for the separating conjunction with syntactic multiplication by definition.
Finally, the combinability property holds for an assertion 𝐴 iff two fractions of this assertion can
always be combined, i.e. 𝐴𝛼 ∗𝐴𝛽 entails 𝐴𝛼+𝛽 . In this case, we say that the resource assertion 𝐴 is
combinable. As we show in Sect. 3, not all assertions are combinable. In particular, even if 𝐴 and 𝐵
are combinable, the magic wand 𝐴 −∗ 𝐵 is in general not combinable using semantic multiplication.

To illustrate why these three properties matter when reasoningwith fractional resources, consider
the simple concurrent program in Fig. 1, taken from Le and Hobor [2018]. This programmanipulates
the inductively-defined predicate tree(𝑥) = (𝑥 ≠ null ⇒ ∃𝑥𝑙 , 𝑥𝑟 . 𝑥 .𝑑 ↦→ _ ∗ 𝑥 .𝑙 ↦→ 𝑥𝑙 ∗ 𝑥 .𝑟 ↦→

𝑥𝑟 ∗ tree(𝑥𝑙) ∗ tree(𝑥𝑟)), which expresses ownership of a binary tree stored on the heap: Either
𝑥 is null (which corresponds to an empty tree), or we have ownership of its fields x.d (data of
the node), x.l (pointer to x’s left subtree), and x.r (pointer to x’s right subtree), and we own the
trees rooted in x.l and x.r. The precondition and postcondition of the method processTree is
tree(x)𝜋 (where 𝜋 is a ghost parameter omitted from processTree’s signature for brevity), which
expresses that processTree only needs a read access to the tree rooted in x, and guarantees the

2Note that, in this paper, distributivity refers to this entailment only, and not to the equivalence, while we refer to the dual
entailment as factorisability.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

Fractional Resources in Unbounded Separation Logic 163:5

absence of data races. If 𝑥 is not null, processTree forks two threads, and both threads print the
data of the node (x.d), before recursively calling processTree on the left and right subtrees of x.

We show in blue a proof outline for this program, which relies on the aforementioned three key
properties: distributivity, factorisability, and combinability. This proof outline, explained next, is
valid with syntactic multiplication, but invalid with semantic multiplication. If x is not null, we
split tree(𝑥)𝜋 into tree(𝑥)

𝜋
2 ∗ tree(𝑥)

𝜋
2 to give reading permission to each thread, using the Parallel

rule. Inside each thread we unfold the definition of tree(𝑥) and use the distributivity property to
distribute the fraction 𝜋 over the separating conjunction, which, conjoined with the knowledge

that 𝑥 ≠ null, yields ∃𝑥𝑙 , 𝑥𝑟 . 𝑥 .𝑑
𝜋
2
↦→ _ ∗ 𝑥 .𝑙

𝜋
2
↦→ 𝑥𝑙 ∗ 𝑥 .𝑟

𝜋
2
↦→ 𝑥𝑟 ∗ tree(𝑥𝑙)

𝜋
2 ∗ tree(𝑥𝑟)

𝜋
2 . This is enough

to justify read access to x.d and to recursively call processTree on both subtrees (with the ghost
parameter 𝜋

2
). After the two recursive calls, we use the factorisability property to recompose the

𝜋
2
ownership of tree(𝑥) from the 𝜋

2
ownership of its fields and subtrees. Note that as explained

above, this step is invalid with the semantic multiplication! Finally, after the two threads have
finished executing, we use the combinability property to recombine the two 𝜋

2
fractions of tree(𝑥)

into tree(𝑥)𝜋 . Note that to justify this final step, we need to know that tree(𝑥) is combinable. This
proof outline illustrates a typical pattern: Distributivity is necessary when we unfold a fractional
resource, while factorisability is necessary to fold back the fractional resource, and combinability is
necessary to recombine fractions of a resource that was shared between threads.
This example demonstrates the importance of distributivity, factorisability, and combinability,

yet traditional separation logics do not fully support them. In SL semantics based on semantic

multiplication, distributivity does not hold for magic wands, factorisability does not hold for
separating conjunctions, and combinability does not hold for magic wands in general (as we show
later). Hence, the entailments at the end of the parallel branches in our example are actually not

valid, as was already pointed out by Le and Hobor [2018]. By contrast, tools that implement syntactic
multiplication happily verify the program, but it has never been shown whether combinability
actually holds in this setting and, hence, whether the last entailment is valid.

1.3 State of the Art

Several approaches have been proposed to deal with the limitations of the semantic multiplication.

Factorisability for the separating conjunction. According to Le and Hobor [2018], the issue is that

assertions such as x.f
𝑝

↦→ _ ∗ y.f
𝑝

↦→ _, where 𝑝 is a fractional permission, do not necessarily imply
that x and y are not aliased (for example when 𝑝 = 0.5). They thus use a more complex permission
model, the binary tree share model [Dockins et al. 2009], which satisfies this disjointness property,
and define a multiplication over binary tree shares. Going back to Ex. 1, if we replace 1

2
by any binary

tree share 𝜏 , then we can prove that (x.f ↦→ 𝑣)𝜏 ∗ (y.f ↦→ 𝑣)𝜏 entails (x.f ↦→ 𝑣 ∗ y.f ↦→ 𝑣)𝜏 . More
generally, using the disjointness property, they prove that if 𝐴 and 𝐵 are 𝜏-uniform for some binary
tree share 𝜏 (meaning that any state that satisfies𝐴 or 𝐵 must have either no permission or exactly 𝜏
permission to each and every heap location), then the factorisability entailment𝐴𝜋 ∗𝐵𝜋 |= (𝐴 ∗𝐵)𝜋

holds. For example, x.f
𝜏

↦→ 𝑣 ∗ y.f
𝜏′

↦→ 𝑣 is 𝜏-uniform if 𝜏 ′ = 𝜏 and not otherwise. As well as
restricting to 𝜏-uniform assertions, their approach is limited by the complex permission model
needed: the notion of multiplication is neither commutative nor left-distributive, and it does not
have inverses, which for example prevents factorisability from holding for implication assertions.

Brotherston et al. [2020] retain fractional permissions, but add new variants of the two main SL
connectives. Their assertions include the usual (weak) star ∗, the usual (weak) wand −∗ (adjunct of
the weak star), a strong star ⃝∗ , and (its adjunct) a strong wand −⃝∗ 3. While the weak star ∗ behaves

3Note: the notation here is opposite to theirs: They denote the strong star ∗ and the weak star ⃝∗ , and analogously for wands.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

163:6 Thibault Dardinier, Peter Müller, and Alexander J. Summers

as usual, the strong star ⃝∗ requires strict non-aliasing, e.g. x.f
0.5

↦→ 𝑣 ⃝∗ x.f
0.5

↦→ 𝑣 is unsatisfiable.
They then prove valid the factorisability entailment 𝐴𝜋 ⃝∗ 𝐵𝜋 |= (𝐴 ⃝∗ 𝐵)𝜋 . To solve the issue in
Fig. 1, they thus redefine the tree(𝑥) predicate with the strong star. They also prove a strong frame

rule for the strong star, which is quite limited, since it can be applied only with a program statement
𝐶 that does not receive resources. Moreover, while their strong star satisfies factorisability, their
strong wand does not satisfy distributivity.

Combinability. Le andHobor [2018] prove that combinability holds for precise assertions [O’Hearn
et al. 2004]. An assertion 𝐴 is precise iff, for any state 𝜎 , 𝐴 holds in at most one state 𝜎 ′ smaller
than 𝜎 . They provide formal rules for proving assertions precise, as well as an induction principle
to prove that an inductively-defined predicate is precise, based on a well-founded order of heaps
decreasing by at least a constant positive permission amount. As an example, to prove that tree(𝑥)
is precise (and, thus, combinable), they can assume that tree(𝑥𝑙) and tree(𝑥𝑟) are precise, as long as
they can prove that tree(𝑥𝑙) and tree(𝑥𝑟) represent heaps smaller than tree(𝑥) by at least a constant
positive permission amount, e.g. 1. However, their approach does not capture assertions that are
combinable, but not precise, which are common in practice.

Brotherston et al. [2020] add nominal labels to their assertion language, to track that two fractional
assertions have the same origin, and thus can be recombined. At any time in a proof, one can
conjoin the current assertion 𝐴 with a fresh label 𝑙 . Using this label, one can later in the program
use the following entailment to recombine two fractions of 𝐴: (𝑙 ∧ 𝐴)𝛼 ∗ (𝑙 ∧ 𝐴)𝛽 |= (𝑙 ∧ 𝐴)𝛼+𝛽 .
They prove the specification {𝑙 ∧ tree(𝑥)𝜋 } processTree(x) {𝑙 ∧ tree(𝑥)𝜋 } for some label 𝑙 for the
example in Fig. 1. To prove such preconditions, they also introduce a jump modality @ in their
assertion language: intuitively, @𝑙𝐴 means that 𝐴 holds in the heap labelled by 𝑙 . While this solves
the combinability problem for fractions of an assertion that provably have the same origin, it incurs
a significant cost in terms of annotation: their proof outline for the simple method processTree

(Fig. 1) requires managing 10 different labels.

1.4 Approach and Contributions

In this paper, we present a novel assertion semantics for a separation logic that unifies the two kinds
of multiplications: syntactic and semantic multiplication are equivalent in our logic, reconciling
the discrepancy between SL theory and automatic SL tools. Our logic solves the technical problems
explained above: Distributivity holds for the magic wand, factorisability holds for the separating
conjunction, and the wand 𝐴 −∗ 𝐵 preserves combinability (is combinable if 𝐵 is combinable).
The key idea of our logic is to allow unbounded states (states that can have more than a full

permission to a heap location) in the underlying assertion semantics. Bounds on the held permissions
are re-introduced in Hoare triples at statement boundaries, which is sufficient to retain SL’s powerful
reasoning principles, such as the frame rule. In the following, we will refer to our logic as unbounded
separation logic (unbounded logic for short) and to standard SL as the bounded logic.

We make the following contributions:
• We present and formalise a novel separation logic unifying semantic and syntactic multipli-
cation. We prove that it guarantees distributivity and factorisability for all commonly-used
SL assertions including the star and the magic wand. We show that reimposing boundedness
in Hoare triples is sufficient to justify the frame rule (Sect. 2). Our logic provides the first
formal justification for fractional assertions as implemented in automatic SL verifiers.

• We show that the existing approach of characterising combinability indirectly via preciseness
is imprecise in general, and prove that commonly-used SL connectives are combinable by

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

Fractional Resources in Unbounded Separation Logic 163:7

defining and reasoning about the property directly. In particular, we prove that, unlike in the
bounded logic, the magic wand is combinable4 in the unbounded logic (Sect. 3).

• We provide a powerful and novel induction principle for reasoning about (co-)inductively-
defined predicates in our logic. In particular, this induction principle allows simple justifica-
tions that a particular (co-)inductively-defined predicate is combinable (Sect. 4).

• We show how our unbounded logic can serve as a formal foundation to (1) justify and
(2) extend the support of fractional resources in automatic SL verifiers (such as Chalice,
VerCors, VeriFast, and Viper). Using the equivalence of syntactic and semantic multiplication,
we show how to support fractional magic wands, whose support does not exist in any tool,
to our knowledge. Moreover, we identify a syntactic criterion on a (potentially recursive)
predicate’s definition sufficient to ensure that this predicate is combinable (Sect. 5).

After presenting these technical contributions, we illustrate the advantages of the unbounded
logic on two examples of heap-manipulating concurrent programs, one of them from the literature
(Sect. 6). We discuss related work in Sect. 7, and conclude in Sect. 8.

All technical results presented in this paper have been formalised and proven in Isabelle/HOL [Nip-
kow et al. 2002], and our formalisation is publicly available [Dardinier 2022; Dardinier et al. 2022a].

2 UNBOUNDED SEPARATION LOGIC

In this section, we present and formally define an unbounded version of SL. The key idea, which
we explain in Sect. 2.1 and formalise in Sect. 2.2 and Sect. 2.3, is to allow unbounded states (states
that can own a heap location more than once) in the assertion semantics. We show in Sect. 2.4 the
distributivity and factorisability rules for our unbounded logic. In particular, distributivity holds for
the magic wand and factorisability holds for the separating conjunction, which is not the case for
traditional, bounded separation logic. Finally, we show in Sect. 2.5 that reimposing boundedness in
Hoare triples is sufficient to preserve key technical results of SL, such as the frame rule.

2.1 Key Idea: 1+1 = 2

As explained in Sect. 1, one key limitation of reasoning with fractional resources in (bounded) SL is
that factorising over the star is in general unsound, i.e. the entailment𝐴𝜋 ∗𝐵𝜋 |= (𝐴 ∗𝐵)𝜋 generally

does not hold. As shown with Ex. 1 ((x.f
1

↦→ 𝑣)
1
2 ∗ (y.f

1

↦→ 𝑣)
1
2 ̸ |= (x.f

1

↦→ 𝑣 ∗ y.f
1

↦→ 𝑣)
1
2), this

entailment fails because of potential aliasing between x and y. The key reason is that states are
bounded, and thus the addition of two fractional permissions is a partial operation: If a state 𝜎1
(resp. 𝜎2) has 𝑝1 (resp. 𝑝2) ownership of the location 𝑙 , then 𝜎1 and 𝜎2 can be combined only if
𝑝1 + 𝑝2 ≤ 1. In this sense, 1 + 1 (for example) is undefined. On the left-hand side of this simple
example, we add half of a full (1) permission of x.f to half of a full permission of y.f. If x and
y are aliases, this corresponds to a permission amount of 1

2
· 1 + 1

2
· 1 = 1. Since 1

2
+ 1

2
≤ 1, the

addition is defined, and thus the left-hand side is satisfiable. On the other hand, the right-hand side
is unsatisfiable when x and y are aliases, because the addition is performed before the multiplication.
In other words, to satisfy the right-hand side when x and y are the same, a state needs 1

2
· (1 + 1)

permission to x.f. But 1
2
· (1 + 1) is undefined, as 1 + 1 is undefined as a permission amount.

As explained in Sect. 1.3, Brotherston et al. [2020] solve this issue by strengthening the left-

hand side with the strong star ⃝∗ . In other words, they replace (x.f
1

↦→ 𝑣)
1
2 ∗ (y.f

1

↦→ 𝑣)
1
2 with

(x.f
1

↦→ 𝑣)
1
2 ⃝∗ (y.f

1

↦→ 𝑣)
1
2 . This new left-hand side is stronger because, by definition of ⃝∗ , it

enforces that x and y are non-aliases, and thus implies the right-hand side (x.f
1

↦→ 𝑣 ⃝∗ y.f
1

↦→ 𝑣)
1
2 .

4If its right-hand side is also combinable.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

163:8 Thibault Dardinier, Peter Müller, and Alexander J. Summers

x

ltree rtree

ctree

x.right

1
2

x.
le
ft

1
2

ltree.right

1
2

rt
re
e.
le
ft

1
2

lt
re
e.
le
ft

1
2 rtree.right

1
2

Fig. 2. In any assertion semantics that enjoys factorisability, tree(𝑥)
1
2 may represent a directed acyclic graph

instead of a tree because the upper bound on the permissions held does not prevent sharing (here, of ctree
via x.left.right) and x.right.left). In unbounded states, this loss of non-aliasing information occurs
even for the full tree(𝑥).

In our new unbounded logic, we go the other way, and make the entailment valid by weakening

the right-hand side. Concretely, we allow 1 + 1 to equal 2, which makes the right-hand side of Ex. 1
satisfiable, and the entailment valid. We achieve this by considering unbounded states, i.e. states
that can have more than a full permission to a heap location. Going back to the example and proof

outline from Fig. 1, the entailment ∃𝑥𝑙 , 𝑥𝑟 . 𝑥 .𝑑
𝜋
2
↦→ _ ∗ 𝑥 .𝑙

𝜋
2
↦→ 𝑥𝑙 ∗ 𝑥 .𝑟

𝜋
2
↦→ 𝑥𝑟 ∗ tree(𝑥𝑙)

𝜋
2 ∗ tree(𝑥𝑟)

𝜋
2 |=

(∃𝑥𝑙 , 𝑥𝑟 . 𝑥 .𝑑 ↦→ _ ∗ 𝑥 .𝑙 ↦→ 𝑥𝑙 ∗ 𝑥 .𝑟 ↦→ 𝑥𝑟 ∗ tree(𝑥𝑙) ∗ tree(𝑥𝑟))
𝜋
2 used in the proof is now valid!

Loss of non-aliasing information. Considering unbounded states in the assertion semantics solves
the issue of factorisability for the star, but this comes at a cost: As observed by Bornat et al.
[2005], any assertion semantics that enjoys factorisability weakens the meaning of tree(𝑥)𝜋 because

tree(𝑥)
1
2 no longer describes only binary trees, but also admits DAGs (directed acyclic graphs).

Fig. 2 shows an illustration of a state 𝜎𝑑 in which tree(𝑥)
1
2 holds, even though the node ctree can

be reached from x via two distinct paths, x.left.right and x.right.left.
This loss of non-aliasing information caused by factorisability occurs in traditional bounded

states (like the one depicted in Fig. 2) if the sum of the fractional permissions for each heap location
does not exceed a full permission. Since unbounded states do not impose an upper bound on
permissions, non-aliasing information is lost even for larger fractions: Even the full tree(𝑥) admits
DAGs; e.g. consider a variation of Fig. 2, where each fractional permission is multiplied by 2.

However, a crucial insight of our work is that this loss of non-aliasing information is not an issue
in practice. As we will discuss shortly, we re-impose boundedness in a Hoare logic at statement

boundaries. That is, even in the unbounded logic, tree(𝑥) denotes a tree before and after each
statement. This is sufficient to retain the frame rule (as we show in Sect. 2.5), which is by far the
most important proof step that relies on non-aliasing information. As an example, if we split the
tree into its left and right subtrees and call a method on the right subtree, we still know that the left
subtree will remain unchanged. When the call returns and the subtrees are re-combined, execution
is at a statement boundary, and we regain all non-aliasing properties of a tree.
In the rare case that non-aliasing information is needed explicitly (e.g. to prove ltree.right

!= rtree.left), it can be obtained via suitable functional specifications. For instance, the tree

predicate could be extended to take the set of nodes as an argument and to express that the nodes
in the left and in the right subtree are disjoint. We note that many concurrent programs with
shared data structures have been formalised and proven correct in the automatic SL verifiers
Chalice, VerCors, VeriFast, and Viper, even though these verifiers also łsufferž from this loss of
non-aliasing information because they use syntactic multiplication and, thus, have factorisability.
This empirically supports the claim that explicit non-aliasing information is not crucial for proofs
of operations that manipulate data structures to which fractional resources are held.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

Fractional Resources in Unbounded Separation Logic 163:9

2.2 State Model and Multiplication

In order to capture different state models and different flavours of SL, our unbounded logic is
parameterised by a separation algebra (Σ, ⊕) [Calcagno et al. 2007; Dockins et al. 2009]:

Definition 1. A separation algebra is a pair (Σ, ⊕) where Σ is a set of states and ⊕ is a partial

addition that is commutative and associative. In other words, (Σ, ⊕) is a partial commutative monoid.
For two states 𝜎, 𝜎 ′ ∈ Σ, we write 𝜎#𝜎 ′ to express that 𝜎 ⊕ 𝜎 ′ is defined, and 𝜎 ′ ⪰ 𝜎 to express that

𝜎 ′ is greater than 𝜎 in the ⊕-induced order (i.e. iff ∃𝑟 ∈ Σ. 𝜎 ′
= 𝜎 ⊕ 𝑟).

As an example, we can represent heaps with fractional permissions as partial functions from a set
of heap locations 𝐿 to a set of pairs of a value (from the set 𝑉) and a permission amount (from Q+),
i.e. Σ can be the set of functions of type 𝐿 ⇀ 𝑉 × Q+. Crucially, note that the permission amounts
are not upper-bounded. Two states 𝜎 and 𝜎 ′ are compatible, i.e. 𝜎#𝜎 ′, iff they agree on the values
they both define, and their combination 𝜎 ⊕ 𝜎 ′ is the union of their values and the additions of the
permission amounts for each heap location. Thus, a state 𝜎 ′ is greater than a state 𝜎 iff 𝜎 ′ contains
the same value and has at least as much permission as 𝜎 for each heap location where 𝜎 is defined.
To express multiplications, our unbounded logic is also parameterised by a semifield of scalars:

Definition 2. A semifield of scalars is a tuple (𝑆, +, ·, 1), which is a semifield with a multiplica-

tive inverse and without a neutral element for the addition. More precisely, for all 𝛼, 𝛽, 𝜋 ∈ 𝑆 , we

require (𝑆, +, ·, 1) to satisfy the following axioms:

𝛼 · 1 = 𝛼 𝛼 · 𝛼−1
= 1 𝛼 + 𝛽 = 𝛽 + 𝛼

𝛼 · 𝛽 = 𝛽 · 𝛼 (𝛼 · 𝛽) · 𝜋 = 𝛼 · (𝛽 · 𝜋) 𝜋 · (𝛼+𝛽) = (𝜋 ·𝛼)+(𝜋 ·𝛽)

Every scalar is required to have a multiplicative inverse, which is crucial to get some properties,
e.g. to factorise a fraction out of an implication. As an example, the set of positive rational numbers
Q+ and set of positive reals R+ are semifields of scalars. We also require that we can multiply states
by scalars with a multiplication operation ⊙:

Definition 3. A left 𝑆-module Σ is a tuple (Σ, ⊕, 𝑆, +, ·, 1, ⊙) where (Σ, ⊕) is a separation algebra,

(𝑆, +, ·, 1) is a semifield of scalars, and ⊙ is a total multiplication from 𝑆 × Σ to Σ. More precisely, for

all 𝛼, 𝛽 ∈ 𝑆 and 𝜎, 𝜎 ′ ∈ Σ, we require (Σ, ⊕, 𝑆, +, ·, 1, ⊙) to satisfy the the following axioms:
1 ⊙ 𝜎 = 𝜎 𝛼 ⊙ (𝛽 ⊙ 𝜎) = (𝛼 · 𝛽) ⊙ 𝜎

𝛼 ⊙ (𝜎 ⊕ 𝜎 ′) = (𝛼 ⊙ 𝜎) ⊕ (𝛼 ⊙ 𝜎 ′) (𝛼 + 𝛽) ⊙ 𝜎 = (𝛼 ⊙ 𝜎) ⊕ (𝛽 ⊙ 𝜎)

In our example, if 𝜎 is a partial function from 𝐿 to𝑉 ×Q+, and 𝜋 is an element of Q+, then 𝜋 ⊙ 𝜎

can be defined as multiplying location-wise the permission amounts of 𝜎 by 𝜋 , and leaving the
values unchanged.

Finally, we consider a predicate valid on Σ, where valid (𝜎) means that 𝜎 is a valid state in the
bounded sense. valid must be (downward) monotonic, i.e. all states smaller than a valid states must
also be valid. In our example, a state is valid iff it has at most 1 permission to each heap location.

2.3 Assertions

To capture different resource models with our unbounded logic, we consider, in our assertion
language, semantic assertions (i.e. functions from Σ to Booleans) to abstract over SL assertions

that do not contain connectives, such as the usual points-to assertion x.f
𝑝

↦→ 𝑣 . We consider the
following assertion language, where 𝐴 ranges over assertions, 𝑥 ranges over variable names, and B

ranges over semantic assertions:

𝐴 := B | 𝐴 ∗𝐴 | 𝐴 −∗𝐴 | 𝐴𝜋 | 𝐴∗ | 𝐴 ⇒ 𝐴 | 𝐴 ∧𝐴 | 𝐴 ∨𝐴 | ∃𝑥 . 𝐴 | ∀𝑥 . 𝐴 | P | ⌈𝐴⌉

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

163:10 Thibault Dardinier, Peter Müller, and Alexander J. Summers

𝜎, 𝑠,Δ |= B ⇐⇒ B(𝜎)

𝜎, 𝑠,Δ |= 𝐴 ∗ 𝐵 ⇐⇒ (∃𝑎, 𝑏. 𝜎 = 𝑎 ⊕ 𝑏 and 𝑎, 𝑠,Δ |= 𝐴 and 𝑏, 𝑠,Δ |= 𝐵)

𝜎, 𝑠,Δ |= 𝐴𝜋 ⇐⇒ (∃𝑎. 𝑎, 𝑠,Δ |= 𝐴 and 𝜎 = 𝜋 ⊙ 𝑎)

𝜎, 𝑠,Δ |= 𝐴∗ ⇐⇒ (∃𝑎, 𝜋 . 𝑎, 𝑠,Δ |= 𝐴 and 𝜎 = 𝜋 ⊙ 𝑎)

𝜎, 𝑠,Δ |= 𝐴 −∗ 𝐵 ⇐⇒ (∀𝑎. (𝑎, 𝑠,Δ |= 𝐴 and 𝜎#𝑎) =⇒ 𝜎 ⊕ 𝑎, 𝑠,Δ |= 𝐵)

𝜎, 𝑠,Δ |= 𝐴 ⇒ 𝐵 ⇐⇒ (𝜎, 𝑠,Δ |= 𝐴 =⇒ 𝜎, 𝑠,Δ |= 𝐵)

𝜎, 𝑠,Δ |= 𝐴 ∧ 𝐵 ⇐⇒ (𝜎, 𝑠,Δ |= 𝐴 and 𝜎, 𝑠,Δ |= 𝐵)

𝜎, 𝑠,Δ |= 𝐴 ∨ 𝐵 ⇐⇒ (𝜎, 𝑠,Δ |= 𝐴 or 𝜎, 𝑠,Δ |= 𝐵)

𝜎, 𝑠,Δ |= ∃𝑥 . 𝐴 ⇐⇒ (∃𝑣 . 𝜎, 𝑠 (𝑥 := 𝑣),Δ |= 𝐴)

𝜎, 𝑠,Δ |= ∀𝑥 . 𝐴 ⇐⇒ (∀𝑣 . 𝜎, 𝑠 (𝑥 := 𝑣),Δ |= 𝐴)

𝜎, 𝑠,Δ |= P ⇐⇒ 𝜎 ∈ Δ(𝑠)

𝜎, 𝑠,Δ |= ⌈𝐴⌉ ⇐⇒ (valid (𝜎) =⇒ 𝜎, 𝑠,Δ |= 𝐴)

Fig. 3. Meaning of unbounded SL assertions. 𝜎 ∈ Σ is an unbounded state, 𝑠 is a store of local variables
(mapping variable names to values), and Δ is an interpretation (mapping a store to a set of states from Σ).

Given an unbounded state 𝜎 ∈ Σ, a store 𝑠 of local variables (a total function from a set of variable
names to a set of values) and an interpretation context (which we explain below). The meaning of SL
assertions is defined in Fig. 3. Most connectives are defined in the usual SL5 (∗, −∗) or logical (∧, ∨,
∃, ∀, ⇒) way. The wildcard assertion 𝐴∗ represents an unknown (existentially-quantified) fraction
of 𝐴 (recall that scalars are required to have a multiplicative inverse and thus they cannot be zero).
Wildcard assertions are ideal to represent read-only duplicable permissions [Leino et al. 2009]; as
an example, (x.f ↦→ 𝑣)∗ represents some non-zero permission of x.f (which should contain the
value 𝑣). Note that, to avoid orthogonal issues such as capture-avoidance and clashes between free
and bound names, we use a total store, and thus allow the existential and universal quantifiers to
"overwrite" values in the store. For example, the assertion 𝑥 = 5 ∧ (∃𝑥 . 𝑥 = 7) is satisfiable, because
the existential quantifier "overwrites" the value of the variable 𝑥 in the store.
For simplicity of our formalisation, we incorporate recursively-defined predicates (discussed

in Sect. 4) via a single syntactic predicate symbol P. This is not a mathematical limitation (we
can encode multiple predicates in a single one with a dedicated argument to łselectž the right
predicate definition). The symbol P represents instances of our (only) predicate; the interpretation
context Δ provides the meaning of this predicate: it defines the set of states which correspond to
the predicate instance being held. Again for simplicity of our formalisation (avoiding a definition
for capture-avoiding substitution), parameterisation of our predicate symbol is implicit: we treat
the argument names in a predicate’s definition as (reserved) variables in our usual store 𝑠 , and
parameterise Δ with such a store from which it can łread offž the values of (only) these parameters.
We then encode an instance of a predicate such as P(𝑒) via the assertion ∃𝑥 . 𝑥 = 𝑒 ∧ P.

As an example (revisited in Sect. 4) assume that Δ𝑡 represents the predicate tree, and the name
of the argument of 𝑃 is x. Then Δ𝑡 (𝑠) depends only on the value of 𝑠 (𝑥): Δ𝑡 (𝑠) represents the set of
states that own a tree rooted in 𝑠 (x). An instance e.g. tree(𝑥𝑙) is represented as ∃𝑥 . 𝑥 = 𝑥𝑙 ∗ P. We
explain how the interpretation context Δ is constructed in Sect. 4.

5Note that the difference in the semantics of the bounded and unbounded logics comes from the state model and not from
the assertion semantics itself.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

Fractional Resources in Unbounded Separation Logic 163:11

(DotDot)
(𝐴𝛼)𝛽 ≡Δ 𝐴𝛼∗𝛽

pure (𝐴)
(DotPure)

𝐴𝜋 ≡Δ 𝐴

(DotFull)
𝐴1 ≡Δ 𝐴

(DotStar)
(𝐴 ∗ 𝐵)𝜋 ≡Δ 𝐴𝜋 ∗ 𝐵𝜋

(DotWand)
(𝐴 −∗ 𝐵)𝜋 ≡Δ 𝐴𝜋 −∗ 𝐵𝜋

(DotImp)
(𝐴 ⇒ 𝐵)𝜋 ≡Δ 𝐴𝜋 ⇒ 𝐵𝜋

(DotPos)
𝐴 |=Δ 𝐵 ⇐⇒ 𝐴𝜋 |=Δ 𝐵𝜋

(DotExists)
(∃𝑥.𝐴)𝜋 ≡Δ ∃𝑥.𝐴𝜋

(DotForall)
(∀𝑥.𝐴)𝜋 ≡Δ ∀𝑥.𝐴𝜋

(Split)
𝐴𝛼+𝛽 |=Δ 𝐴𝛼 ∗𝐴𝛽

(DotAnd)
(𝐴 ∧ 𝐵)𝜋 ≡Δ 𝐴𝜋 ∧ 𝐵𝜋

(DotOr)
(𝐴 ∨ 𝐵)𝜋 ≡Δ 𝐴𝜋 ∨ 𝐵𝜋

(DotWild)
(𝐴∗)𝜋 ≡Δ 𝐴∗ ≡Δ (𝐴𝜋)∗

Fig. 4. Distributivity and factorisation rules in the unbounded logic. An assertion𝐴 is pure, written pure(𝐴), iff
it does not depend on the heap and the interpretation context, i.e.∀𝜎, 𝜎 ′, 𝑠,Δ,Δ′. (𝜎, 𝑠,Δ |= 𝐴 ↔ 𝜎 ′, 𝑠,Δ′ |= 𝐴).

Finally, we include a bounding operator (⌈_⌉) in our language: The bounded assertion ⌈𝐴⌉ trivially
holds in invalid states, and in all valid states that satisfy 𝐴. This is used to reimpose boundedness
in Hoare triples (cf. Sect. 2.5), as well as to express the usual magic wand in our unbounded logic.

2.4 Distributivity and Factorisability

We can now prove that all SL connectives satisfy both distributivity and factorisability in our
unbounded logic, in contrast to traditional bounded SL. We write 𝐴 |=Δ 𝐵 to express that 𝐴
semantically entails 𝐵 for all possible stores and for the interpretation context Δ, i.e. 𝐴, |=Δ 𝐵 ⇐⇒

(∀𝜎, 𝑠. 𝜎, 𝑠,Δ |= 𝐴 ⇒ 𝜎, 𝑠,Δ |= 𝐵). We write 𝐴 ≡Δ 𝐵 iff 𝐴 |=Δ 𝐵 and 𝐵 |=Δ 𝐴.
We formalise the distributivity and factorisability properties for our assertion language via a set

of rules (Fig. 4). All rules describe equivalences in our logic, except the Split rule. As explained in
Sect. 1, the dual entailment, 𝐴𝛼 ∗𝐴𝛽 |=Δ 𝐴𝛼+𝛽 , holds for combinable assertions only, as we discuss
in Sect. 3. We proved the following theorem in Isabelle/HOL:

Theorem 1. Distributivity and factorisability in the unbounded logic.

All rules shown in Fig. 4 hold in the unbounded logic.

The rules DotImp, and DotPos are notable, since they rely on the key property that the scalars we
consider have a multiplicative inverse. In contrast, Le and Hobor [2018]’s tree-permissions cannot
be inverted, and thus they obtain only one direction for these rules.

Comparison to bounded SL. The DotStar and DotWand rules do not hold in general in the bounded
version of SL. As discussed in Sect. 1, DotStar does not hold because 𝐴𝜋 ∗ 𝐵𝜋 |=Δ (𝐴 ∗ 𝐵)𝜋 is not
true in general. Similarly, DotWand does not hold, because (𝐴 −∗ 𝐵)𝜋 |=Δ 𝐴𝜋 −∗ 𝐵𝜋 is invalid in
general. Next, we discuss magic wands in the bounded and unbounded logics in more detail.
A magic wand 𝐴 −∗ 𝐵 holds in a state 𝜎 iff 𝐵 holds in all states of the form 𝜎 ⊕ 𝜎𝐴, where 𝜎𝐴 is

a state compatible with 𝜎 and in which 𝐴 holds. Therefore, one can satisfy a wand in two ways:
(1) by including enough resources in 𝜎 such that combining these resources with the ones specified
by 𝐴 results in the resources required by 𝐵, or (2) by ensuring that any state 𝜎𝐴 in which 𝐴 holds is
incompatible with 𝜎 . The latter can be achieved in the bounded logic by including enough resources
in 𝜎 such that they cannot be combined (in a bounded state) with those already specified by 𝐴.

Example 2. The magic wand𝑊1 := x.f
0.5

↦→ _ −∗ (x.f
0.5

↦→ _ ∗ y.g ↦→ _) holds in a state 𝜎 in the

bounded logic if (1) 𝜎 holds full permission to y.g, or (2) 𝜎 holds more than half (e.g. full) permission

to x.f. In the latter case, 𝜎 combined with any state satisfying the left-hand side of the wand results in

a state that holds more than full permission to x.f , which is inconsistent in the bounded logic.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

163:12 Thibault Dardinier, Peter Müller, and Alexander J. Summers

To see why distributivity does not hold for the magic wand in the bounded logic, consider the
fractional wand𝑊1

0.5. According to the semantics of fractional assertions (line 3 in Fig. 3) and
strategy (2) above,𝑊1

0.5 holds in a state 𝜎 that holds half permission to x.f (and no permission to

y.g). However, this state does not satisfy (x.f
0.5

↦→ _)0.5 −∗ (x.f
0.5

↦→ _ ∗ y.g ↦→ _)0.5 because it is not

necessarily inconsistent with states 𝜎𝐴 that satisfy the right-hand side (x.f
0.5

↦→ _)0.5 and because it
does not hold the permission to y.g required by the right-hand side: distributivity does not hold.
In contrast, the unbounded logic offers only strategy (1) to satisfy a wand because states that

have more than full permission are no longer necessarily inconsistent. This has three important
consequences: First, distributivity (DotWand) holds for𝑊1 and for wands in general. Second, it
makes wands combinable, as we show in Sect. 3. Third, unbounded states lead to a stronger meaning
for wands compared to the bounded logic as they must be satisfied by following strategy (1).
The stronger meaning of wands in our unbounded logic is not restrictive for many practical

purposes. For example the wands used to specify partial data structures during an ongoing traversal
or to model borrowing in Rust need to hold according to strategy (1) since proofs use them to
obtain the resources on their right-hand sides. Nonetheless, if the bounded version of a wand is
really needed it can be expressed in our unbounded logic using our bounding operator: 𝐴 −∗ 𝐵 in
the bounded logic corresponds to 𝐴 −∗ ⌈𝐵⌉ in our logic, since ⌈𝐵⌉ trivially holds in invalid states.
Thus, proofs that require the bounded version of magic wands can still be expressed in our logic.

2.5 Frame Rule and Boundedness in Hoare Triples

Considering unbounded states in the assertion semantics might at first glance look surprising
or even dangerous. After all, non-aliasing is a key component of separation logic, but lost with
unbounded states: The SL entailment x.f ↦→ _ ∗ y.f ↦→ _ |= x ≠ y does not hold in the unbounded
logic. To retain non-aliasing reasoning and key technical results such as the frame rule, we reimpose
boundedness on statement boundaries in Hoare triples, as we explain next.

Explicit non-aliasing and Hoare triples. To define the meaning of Hoare triples in our unbounded
logic, we assume a big-step semantics given by the relation ⟨., .⟩ → ., where ⟨(𝜎, 𝑠),𝐶⟩ → (𝜎 ′, 𝑠 ′)

expresses that executing the program statement 𝐶 in the state described by the heap 𝜎 and the
store 𝑠 might lead to the state described by the heap 𝜎 ′ and store 𝑠 ′, and we assume a special
value ⊥ to express an error. We assume that this semantics operates only on valid states, i.e.
⟨(𝜎, 𝑠),𝐶⟩ → (𝜎 ′, 𝑠 ′) is false if 𝜎 or 𝜎 ′ is invalid. Using this semantics, we define the meaning of
Hoare triples to consider valid states only. Intuitively, this means that the unbounded logic permits
unbounded states during the evaluation of an assertion, but the pre- and postconditions of Hoare
triples always describe valid, that is, bounded states. More precisely, the Hoare triple {𝑃}𝐶{𝑄}

(where 𝑃 and 𝑄 are assertions from our unbounded logic) holds iff6

∀𝜎, 𝑠. valid (𝜎) ∧ 𝜎, 𝑠 |= 𝑃 =⇒ ¬(⟨(𝜎, 𝑠),𝐶⟩ → ⊥) ∧ (∀𝜎 ′, 𝑠 ′. ⟨(𝜎, 𝑠),𝐶⟩ → (𝜎 ′, 𝑠 ′) ⇒ 𝜎 ′, 𝑠 ′ |= 𝑄)

Thus, the unbounded states that satisfy 𝑃 and 𝑄 do not matter for the validity of the Hoare triple
{𝑃}𝐶{𝑄}. Formally, we have proved that {𝑃}𝑠{𝑄} ≡Δ {⌈𝑃⌉}𝑠{𝑄} and {𝑃}𝑠{𝑄} ≡Δ {𝑃}𝑠{⌈𝑄⌉}.
These two rules allow us to recover explicit non-aliasing information at statement boundaries. Recall
that ⌈𝑃⌉ trivially holds in invalid states; thus ⌈𝑃⌉ can be "strengthened" to ⌈𝑃 ′⌉, if 𝑃 entails 𝑃 ′ in valid
states. For instance, in a state with exclusive ownership of both x.f and y.fwe can prove that x and
y are not aliases with the valid entailment ⌈x.f ↦→ _ ∗ y.f ↦→ _⌉ |=Δ ⌈x.f ↦→ _ ∗ y.f ↦→ _ ∗ x ≠ y⌉.

The frame rule holds in the unbounded logic. We now show that, if the frame rule holds for the
semantics described by ⟨., .⟩ → . in bounded SL, then it also holds in our unbounded logic. To

6To ease reading, we omit the fixed interpretation Δ from this definition.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

Fractional Resources in Unbounded Separation Logic 163:13

prove this, we use two properties that have been shown to be equivalent to the frame rule: safety
monotonicity and the frame property [Calcagno et al. 2007]. Safety monotonicity states that if
executing 𝐶 in a (valid) state 𝜎 is safe, i.e. does not lead to an error, then it is also safe in larger
(valid) states. More formally, 𝐶 is safety monotonic iff for all valid states 𝜎 and 𝜎 ′ and local stores
𝑠 , 𝜎 ′ ⪰ 𝜎 and ¬(⟨(𝜎, 𝑠),𝐶⟩ → ⊥) implies ¬(⟨(𝜎 ′, 𝑠),𝐶⟩ → ⊥). The frame property states that if
executing𝐶 in a valid state 𝜎0 is safe, and executing𝐶 in a larger valid state 𝜎0 ⊕ 𝜎1 leads to a state
𝜎 ′, then there must exist a valid state 𝜎 ′

0 such that 𝜎 ′
= 𝜎 ′

0 ⊕ 𝜎1 and executing 𝐶 in 𝜎0 leads to 𝜎 ′
0.

We have proven in Isabelle/HOL that the soundness of the frame rule in the bounded logic
implies the soundness of the frame rule in the unbounded logic (with the usual definitions).

Theorem 2. Frame rule in the unbounded logic.

Assume that the program statement𝐶 is safety monotonic and satisfies the frame property. If {𝑃}𝐶{𝑄}

holds and modified (𝐶) ∩ freeVars(𝑅) = ∅, then {𝑃 ∗ 𝑅}𝐶{𝑄 ∗ 𝑅} also holds.

In contrast, this general frame rule does not hold with the strong star ⃝∗ from Brotherston et al.
[2020], where the frame rule is restricted to program statements𝐶 that do not receive any resources
(e.g. by acquiring a lock or receiving a message in a concurrent program).

Parallel rule. The soundness of the Parallel rule in the unbounded logic could be proven by
adapting the proof from Vafeiadis [2011]. We have not attempted this proof in Isabelle/HOL, since
reconstructing the full details in a new formalisation in Isabelle would require lengthy orthogonal
work without leading to new insights beyond those from Vafeiadis. However, we are confident
that his proof of the CSL soundness can be transferred to the unbounded logic, with almost no
change required. Indeed, in this proof (ignoring the invariant and store for simplicity), Hoare triples
are defined via a predicate safe𝑛 (𝐶,ℎ,𝑄), which informally says that it is safe to execute 𝑛 steps
of the command 𝐶 starting in a normal heap (i.e. without fractional permissions, only zero and
full permissions) larger than ℎ, and this execution will lead only to final states that satisfy 𝑄 . The
key point is that if ℎ is an invalid state, then safe𝑛 (𝐶,ℎ,𝑄) trivially holds: ℎ has more than full
permission to one heap location, and thus there is no normal heap larger than ℎ. This matches
our interpretation of Hoare triples for invalid states. Moreover, since the CSL rules do not use the
magic wand (which has a slightly different meaning in the unbounded logic), they would also have
the same meaning in the unbounded logic.

3 COMBINABLE ASSERTIONS

It is often useful to split some resource (with the Split rule from Fig. 4) into two (or more) fractions,
and to recombine these fractions later. As illustrated by the example in Fig. 1, splitting is typically
used to enable threads to concurrently read the same heap data structure. Recombining the fractions
is then crucial to get back exclusive ownership, and thus to be able to modify the data structure.
However, combining fractions of the same resource is not always sound, i.e. the entailment

𝐴𝛼 ∗𝐴𝛽 |=Δ 𝐴𝛼+𝛽 is in general not valid. As a simple example, consider the disjunction 𝐴 ≔ x.f ↦→

_ ∨ x.g ↦→ _. 𝐴 holds in a state 𝜎𝑓 (resp. 𝜎𝑔) with full ownership of x.f (resp. x.g) and no other
ownership. Thus, by definition, 𝐴0.5 holds in 0.5 ⊙ 𝜎𝑓 and 0.5 ⊙ 𝜎𝑔 . However, 𝐴 does not hold in the
state (0.5 ⊙ 𝜎𝑓) ⊕ (0.5 ⊙ 𝜎𝑔), because this state has only half ownership of both x.f and x.g, and
thus it satisfies neither disjunct of 𝐴. 𝐴 is thus not combinable, in the following sense:

Definition 4. An assertion 𝐴 is combinable with respect to an interpretation context Δ, written

combinableΔ (𝐴), iff for all scalars 𝛼 and 𝛽 , 𝐴𝛼 ∗𝐴𝛽 |=Δ 𝐴𝛼+𝛽 .

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

163:14 Thibault Dardinier, Peter Müller, and Alexander J. Summers

combinableΔ (𝐵)

combinableΔ (𝐴 −∗ 𝐵)

combinableΔ (𝐴) combinableΔ (𝐵)

combinableΔ (𝐴 ∗ 𝐵)

combinableΔ (𝐴) combinableΔ (𝐵)

combinableΔ (𝐴 ∧ 𝐵)

combinableΔ (𝐴) ⇐⇒ combinableΔ (𝐴
𝜋)

pure(𝐴)

combinableΔ (𝐴)

pure(𝐴) combinableΔ (𝐵)

combinableΔ (𝐴 ⇒ 𝐵)

combinableΔ (𝐴)

combinableΔ (∀𝑥 . 𝐴)

combinableΔ (𝐴)

combinableΔ (𝐴
∗)

combinableΔ (𝐴) unambiguous
Δ
(𝐴, 𝑣)

combinableΔ (∃𝑣 . 𝐴)

Fig. 5. Rules for reasoning about combinable (non-recursive) assertions in the unbounded logic.

Informally, if we restrict7 𝛼 and 𝛽 such that 𝛼 + 𝛽 = 1, an assertion 𝐴 is combinable iff the set of
states that satisfy 𝐴 is convex, in the sense that for any two states 𝜎 and 𝜎 ′ satisfying 𝐴, the set of
all combinations 𝛼 ⊙ 𝜎 ⊕ (1−𝛼) ⊙ 𝜎 ′ (for 0 < 𝛼 < 1) all also satisfy𝐴. Intuitively, one can think of
the two states 𝜎 and 𝜎 ′ as the states satisfying the conjuncts on the left-hand side of combinability,
and their combinations as the states satisfying the right-hand side. The set of combinations can be
thought of as a line segment between 𝜎 and 𝜎 ′.
As explained in Sect. 1.3, Le and Hobor [2018] have proven that precise assertions [O’Hearn

et al. 2004] are combinable. Informally, an assertion 𝐴 is precise iff, for any heap 𝜎 , 𝐴 holds in at

most one heap smaller than 𝜎 . In practice, many useful assertions are combinable but not precise,
which shows that checking combinability indirectly via preciseness is too approximate. As a simple
example, consider wildcard assertions 𝐴∗, introduced in Sect. 2. Because wildcard assertions are
ideal to represent read-only duplicable permissions, they are pervasive in automatic SL verifiers
such as VeriFast [Jacobs et al. 2011] (see for example Jacobs and Piessens [2011]) and Viper [Müller
et al. 2016] (see for example Summers and Müller [2018]). Using our definition of combinability, we
can simply prove that a wildcard assertion 𝐴∗ is combinable if 𝐴 is combinable, and this property is
effectively assumed by both verifiers. However, wildcard assertions are not precise. Therefore, we
focus, in this work, on the combinability property itself instead of using preciseness as a (strictly
less useful) proxy. The rules in Fig. 5 formalise the combinability of non-recursive assertions. We
have proved the following lemma in Isabelle/HOL:

Theorem 3. All rules presented in Fig. 5 hold in the unbounded logic.

These rules can be used to prove that an assertion is combinable. As an example, to prove that
𝐴 ∗𝐵 is combinable, it suffices to prove that𝐴 and 𝐵 are combinable. Notice that the assertion ∃𝑣 . 𝐴

is combinable if 𝐴 is combinable and if 𝐴 is unambiguous in 𝑣 . Intuitively, this means that, for a
given state 𝜎 , there is at most one value of 𝑣 such that 𝐴 holds in 𝜎 , otherwise the existential could
act like a (potentially unbounded) disjunction. This rule is crucial to prove that assertions such as
∃𝑣 . x.f ↦→ 𝑣 ∗𝐴 are combinable, provided that 𝐴 is combinable. Formally, given an interpretation
Δ, an assertion 𝐴 is unambiguous in 𝑣 , written unambiguous

Δ
(𝐴, 𝑣), iff the following holds:

∀𝜎1, 𝜎2, 𝑠, 𝑣1, 𝑣2. 𝜎1#𝜎2 ∧ 𝜎1, 𝑠 (𝑣 := 𝑣1),Δ |= 𝐴 ∧ 𝜎2, 𝑠 (𝑣 := 𝑣2),Δ |= 𝐴 ⇒ 𝑣1 = 𝑣2

∃𝑣 . x.f ↦→ 𝑣 is trivially unambiguous in 𝑣 . Moreover, if 𝐴 is unambiguous in 𝑣 , then 𝐴 ∗ 𝐵 is also
unambiguous in 𝑣 . We can thus derive the following useful rule:

combinableΔ (𝐴)

combinableΔ (∃𝑣 . 𝑙
𝑝

↦→ 𝑣 ∗𝐴)

7We have proven in Isabelle/HOL that the two definitions are equivalent.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

Fractional Resources in Unbounded Separation Logic 163:15

The first rule of Fig. 5 shows a key result: the magic wand is combinable in the unbounded logic,

whereas it is not in bounded SL. Consider again the wand𝑊1 = x.f
0.5

↦→ _ −∗ (x.f
0.5

↦→ _ ∗ y.g ↦→ _).
𝑊1 can be satisfied in bounded SL by providing (1) full permission to y.g (such that the right-hand
side of the wand holds), or (2) more than half permission to x.f (such that we obtain an inconsistent
state when combined with the left-hand side of the wand). A combination of half a state that
satisfies (1) and half a state that satisfies (2), i.e. a state with half permission to both x.f and y.g,
does not satisfy𝑊1, which shows that𝑊1 is not combinable in the bounded logic. However, in the
unbounded logic,𝑊1 can be satisfied only by satisfying (1), which ensures that𝑊1 is combinable.

4 COMBINABLE (CO)INDUCTIVE PREDICATES

Sect. 3 provides rules to prove that non-recursive assertions are combinable. For example, using
the rules from Fig. 5, it is easy to prove that the assertion 𝑥 ≠ null ⇒ ∃𝑥𝑙 , 𝑥𝑟 . 𝑥 .𝑑 ↦→ _ ∗ 𝑥 .𝑙 ↦→
𝑥𝑙 ∗ 𝑥 .𝑟 ↦→ 𝑥𝑟 is combinable. However, these rules are not sufficient on their own to prove that
(co)inductively-defined predicates are combinable, but this property is required to prove practical
examples. For instance, the proof outline in Fig. 1 is valid (in the unbounded logic) only if tree(𝑥) is
combinable. Recall that tree(𝑥) is defined inductively via the following equation: tree(𝑥) = (𝑥 ≠

null ⇒ ∃𝑥𝑙 , 𝑥𝑟 . 𝑥 .𝑑 ↦→ _∗𝑥 .𝑙 ↦→ 𝑥𝑙 ∗𝑥 .𝑟 ↦→ 𝑥𝑟 ∗tree(𝑥𝑙) ∗tree(𝑥𝑟)). Our goal is to provide the formal
foundations to justify a proof that tree(𝑥) is combinable by induction: Assuming that tree(𝑥𝑙) and
tree(𝑥𝑟) are combinable, it would then be straightforward to prove that tree(𝑥) is also combinable,
using the recursive definition of tree(𝑥) and the rules from Fig. 5.
In this section, we formalise the mathematics necessary to enable such intuitive proofs, which

turns out to be non-trivial for general SL assertions. In Sect. 4.1, we formalise the meaning of
(co)inductive predicates in our assertion language via the concepts of least and greatest fixed points
of a recursive equation, and use Knaster-Tarski’s theorem to prove that (under some conditions)
these fixed points exist. We also explain why the standard induction principle derived from this
theorem is not sufficient to prove that these fixed points are combinable. We then define, in Sect. 4.2,
a class of set-closure properties, which captures properties such as combinability and (an assertion)
being intuitionistic. Moreover, we formalise and prove a novel, simple, and powerful induction
principle for set-closure properties and fixed points: If a non-decreasing (defined in Sect. 4.1)
function 𝑓 preserves a set-closure property 𝑃 , then the least and the greatest fixed point of 𝑓 satisfy
𝑃 . This novel induction principle captures the intuition described above. Proving this induction
principle requires transfinite induction: We show in Sect. 4.3 why Kleene’s fixed point theorem
(which does not require transfinite induction) is not sufficient to prove this induction principle for
some recursive predicate definitions that can be expressed in our assertion language.

4.1 Preliminaries: Monotonic Functions and Existence of Fixed Points

A recursive equation might have zero, some, or infinitely many fixed points. For example, any
interpretation for P is a fixed point of the recursive equation P = P, and thus, fixed points of this
simple recursive equation are in general not combinable. Two types of fixed points are typically
used in SL: The least fixed point, and the greatest fixed point. Predicates interpreted as a least (resp.
greatest) fixed point are referred to as inductive (resp. coinductive) predicates. Inductive predicates
are particularly suitable to describe finite data structures. As an example, the least fixed point of
the recursive equation for tree(𝑥) describes all finite binary trees. On the other hand, coinductive
predicates can describe infinite data structures, and are useful to describe infinite sets of permissions,
for instance, to specify the input/output behaviour of reactive programs [Penninckx et al. 2015].

The fixed points we are interested in are interpretation contexts, i.e. functions mapping a store of
local variables to the set of states satisfying the predicate instance P (see Sect. 2.3). As an example,

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

163:16 Thibault Dardinier, Peter Müller, and Alexander J. Summers

tree can be seen as an interpretation context Δ𝑡 , which takes as input a store of local variables
(containing in particular a value for the variable x), and outputs the set of states that satisfy tree(𝑥).
Moreover, a recursive definition can be described with an assertion, using the symbol P for recursive
calls. More precisely, given an assertion 𝐴 (which might contain the symbol P) that represents the
potentially recursive definition of our predicate, we define the interpretation of our predicate as
the least or greatest fixed point of the function 𝑓𝐴, which we define as follows:

𝑓𝐴 := 𝜆Δ. 𝜆𝑠. {𝜎 | 𝜎, 𝑠,Δ |= 𝐴}

The function 𝑓𝐴 takes an interpretation context Δ and constructs a new interpretation context, by
constructing, for any local store 𝑠 (defining values for the variables corresponding to predicate
parameters), the set of states that satisfy 𝐴 (recall that an interpretation context maps a local store
to a set of states), where the meaning of P is given by the interpretation context Δ. As an example,
we can define the interpretation context Δ𝑡 for our tree predicate as the least fixed point of 𝑓𝐴, for
𝐴 := (𝑥 ≠ null ⇒ ∃𝑥𝑙 , 𝑥𝑟 . 𝑥 .𝑑 ↦→ _ ∗ 𝑥 .𝑙 ↦→ 𝑥𝑙 ∗ 𝑥 .𝑟 ↦→ 𝑥𝑟 ∗ P(𝑥𝑙) ∗ P(𝑥𝑟))).8

To formally define the meaning of the least and greatest fixed point of such a function, we need
to define an order on interpretation contexts. Informally, an interpretation context Δ is smaller
than another interpretation context Δ′ iff Δ łsemantically entailsž Δ′. More precisely:

Definition 5. An interpretation context is a function mapping a local store of variables to a

set of states from Σ. An interpretation context Δ is smaller than another interpretation context Δ′,

written Δ ⊑ Δ
′, iff ∀𝑠 . Δ(𝑠) ⊆ Δ

′(𝑠).

Lemma 1. The set of interpretation contexts equipped with the partial order relation ⊑ is a complete
lattice. In particular, for a family of interpretation contexts 𝑆 :

• The supremum (or join) of 𝑆 , written ⊔𝑆 , can be obtained as ⊔𝑆 := 𝜆𝑠. {𝜎 | ∃Δ ∈ 𝑆. 𝜎 ∈ Δ(𝑠)}.

• The infimum (or meet) of 𝑆 , written ⊓𝑆 , can be obtained as ⊓𝑆 := 𝜆𝑠. {𝜎 | ∀Δ ∈ 𝑆. 𝜎 ∈ Δ(𝑠)}.

A fixed point of a function 𝑓 is an interpretation Δ such that 𝑓 (Δ) = Δ. The least (resp. greatest)
fixed point of a function 𝑓 is a fixed point that is smaller (resp. larger) than all other fixed points
of 𝑓 , with respect to the partial order ⊑. Knaster-Tarski’s theorem states that any non-decreasing

function 𝑓 has a least and a greatest fixed point [Tarski 1955].

Definition 6. A function 𝑓 is non-decreasing, written mono+ (𝑓), iff ∀Δ,Δ′. Δ ⊑ Δ
′ ⇒ 𝑓 (Δ) ⊑

𝑓 (Δ′).

We have proven in Isabelle/HOL that the function 𝑓𝐴 is non-decreasing if P occurs only in positive
positions.

Theorem 4. Knaster-Tarski fixed point construction

Let LFP (𝑓) := ⊓{Δ | 𝑓 (Δ) ⊑ Δ} and GFP (𝑓) := ⊔{Δ | Δ ⊑ 𝑓 (Δ)}. If mono+ (𝑓), then LFP (𝑓) is the

least fixed point of 𝑓 and GFP (𝑓) is the greatest fixed point of 𝑓 .

In addition to the existence of a least (and a greatest) fixed point of a function 𝑓 , this theorem
gives us an induction principle for this fixed point: If an interpretation Δ satisfies 𝑓 (Δ) ⊑ Δ, then
it is greater or equal to LFP (𝑓), because LFP (𝑓) is the infimum of the set of such interpretations
(a similar induction principle can be derived for GFP (𝑓)). This induction principle allows one to
prove properties about each individual state of LFP (𝑓), by choosing a relevant Δ. For example,
let Δ𝑃 (𝑠) (for all 𝑠) be the set of all states that satisfy a property 𝑃 (e.g. owning x.f with value
5). If 𝑓 preserves the property 𝑃 , i.e. 𝑓 (Δ𝑃) ⊆ Δ𝑃 , then LFP (𝑓) ⊆ Δ𝑃 ; in other words, all states in
LFP (𝑓) (𝑠) (for all 𝑠) satisfy 𝑃 .
8Recall that P does not take explicit arguments in our syntax; P(𝑥𝑙) (resp. P(𝑥𝑟)) is syntactic sugar for ∃𝑥. 𝑥 = 𝑥𝑙 ∗ P (resp.
∃𝑥. 𝑥 = 𝑥𝑟 ∗ P).

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

Fractional Resources in Unbounded Separation Logic 163:17

However, it does not appear possible to apply this induction principle to the combinability
property, since combinability is not a property of individual states in a set of states (such as 𝑃
above), but rather of unboundedly large subsets of such a set. Combinability concerns the (infinite)
space of all combinations of two states (similar to a convexity property, as explained in Sect. 3).

4.2 An Induction Principle for (Co)Inductive Predicates and Set-Closure Properties

Given a non-decreasing function 𝑓 , Theorem 4 expresses that 𝑓 has a least fixed point (LFP (𝑓))
and a greatest fixed point (GFP (𝑓)), and provides induction principles to reason about these fixed
points. However, as explained above, these induction principles do not appear sufficient to prove
that these fixed points are combinable. On the other hand, Cousot and Cousot [1979] have proven
that, if mono+ (𝑓), then LFP (𝑓) (resp. GFP (𝑓)) can be expressed as the stationary limit of 𝑓 𝛼 (Δ⊥)

(resp. 𝑓 𝛼 (Δ⊤)), where 𝛼 ranges over ordinals, 𝑓 𝛼 is defined by transfinite recursion, and Δ⊥ (resp.
Δ⊤) is defined as the empty (resp. full) interpretation, as given by the following definition.

Definition 7. The empty interpretation, written Δ⊥, maps all stores to the empty set ∅ (repre-

senting the assertion false), i.e. ∀𝑠 . Δ⊥ (𝑠) ≔ ∅. The full interpretation, written Δ⊤, maps all stores

to the universal set Σ (representing the assertion true), i.e. ∀𝑠 . Δ⊤ (𝑠) ≔ Σ.

Given a function 𝑓 , 𝑓 𝛼 (where 𝛼 is an ordinal) is defined by transfinite recursion as follows:

• For an ordinal 𝛼 , 𝑓 𝛼+1 ≔ 𝜆Δ. 𝑓 (𝑓 𝛼 (Δ)).

• For a limit ordinal 𝛾 , 𝑓 𝛾 ≔ 𝜆Δ.⊔{𝑓 𝛽 (Δ) | 𝛽 < 𝛾}.

We show in Sect. 4.3 why Kleene’s fixed point theorem cannot be applied to prove that a fixed
point of some recursive predicate definitions in our assertion language is combinable, which justifies
our use of ordinals and transfinite induction. Using these constructive definitions of LFP (𝑓) and
GFP (𝑓), we can express our induction principle for set-closure properties, after we define the latter.

Definition 8. A predicate 𝑃 on interpretation contexts (i.e. a function from interpretation contexts

to Booleans) is a set-closure property iff 𝑃 satisfies the following:

∃𝑀.∀Δ. (𝑃 (Δ) ⇐⇒ ∀𝑠 . (∀𝑎, 𝑏 ∈ Δ(𝑠). 𝑀 (𝑎, 𝑏) ⊆ Δ(𝑠)))

Intuitively, a set-closure property corresponds to being closed under some operation𝑀 , which
constructs (from two states) a set of states. As an example, an assertion 𝐴 is combinable iff it is
closed under the operation 𝑀 that informally constructs the line segment between two states,
or, more formally, under the operation 𝑀 (𝑎, 𝑏) ≔ {𝜎 | ∃𝑝, 𝑞. 𝑝 + 𝑞 = 1 ∧ 𝜎 = 𝑝 ⊙ 𝑎 ⊕ 𝑞 ⊙ 𝑏};
combinability is thus a set-closure property. As another example, an assertion 𝐴 is intuitionistic iff
it is upward closed (formally corresponding to the operation𝑀 (𝑎, 𝑏) ≔ {𝜎 | 𝜎 ⪰ 𝑎}), which shows
that the property of (an assertion) being intuitionistic is also a set-closure property.
We have proven the following induction principle in Isabelle/HOL.

Theorem 5. Induction principle for set-closure properties.

Let 𝑓 be a non-increasing function (i.e. mono+ (𝑓)) and 𝑃 a set-closure property. If 𝑓 preserves 𝑃 , i.e.

∀Δ. 𝑃 (Δ) ⇒ 𝑃 (𝑓 (Δ)), then 𝑃 (LFP (𝑓)) and 𝑃 (GFP (𝑓)) hold.

This theorem justifies the intuitive induction described at the beginning of this section when 𝑃

is the combinability property: To prove that tree(𝑥) is combinable, we simply have to prove that
the assertion 𝑥 ≠ null ⇒ ∃𝑥𝑙 , 𝑥𝑟 . 𝑥 .𝑑 ↦→ _ ∗ 𝑥 .𝑙 ↦→ 𝑥𝑙 ∗ 𝑥 .𝑟 ↦→ 𝑥𝑟 ∗ tree(𝑥𝑙) ∗ tree(𝑥𝑟) is combinable
(corresponding to 𝑃 (𝑓 (Δ))), while assuming that tree(𝑦) is combinable for all 𝑦 (corresponding to
𝑃 (Δ)), which we can do using the rules from Fig. 5. Moreover, this theorem can be easily leveraged
in the context of automatic SL verifiers, as we show in Sect. 5: If the assertion language for defining
predicates recursively is restricted in ways that are standard in such tools, we directly get that all
(co)inductive predicates are combinable.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

163:18 Thibault Dardinier, Peter Müller, and Alexander J. Summers

4.3 Kleene’s Fixed Point Theorem is too Restrictive for SL

Some readers might wonder why we used ordinals and transfinite induction to prove Theorem 5,
instead of (the simpler) Kleene’s fixed point theorem. The reason is that Kleene’s theorem forces a
stronger assumption on 𝑓 , namely Scott-continuity. The theorem states that, if a function 𝑓 is Scott-
continuous, then its least fixed point can be computed as the supremum of 𝑓 𝑛 (Δ⊥), where 𝑛 ranges
over natural numbers, and Δ⊥ is the empty interpretation. Unfortunately, the rich connectives
commonly-employed in separation logics easily violate this requirement. Using the universal
quantifier or themagic wand in our recursive definition𝐴 is enough tomake 𝑓𝐴 not Scott-continuous.
Worse, using the existential quantifier or the separating conjunction in 𝐴 is enough for 𝑓𝐴 to not
satisfy the dual property of Scott-continuity, which is required to prove that GFP (𝑓𝐴) is the infimum
of 𝑓𝐴

𝑛 (Δ⊤) (where Δ⊤ is the full interpretation). The following example illustrates the problem.

Example 3. Consider the recursive definition 𝐴 := (x.g ↦→ _)∗ −∗ (x.g ↦→ _ ∨ 𝐴0.5), interpreted

in an intuitionistic manner.9 Recall that (x.g ↦→ _)∗ represents an unspecified positive permission

amount. Let 𝑓𝐴 denote the function associated with this recursive definition, and Δ𝑝 an interpretation

context such that, for all stores 𝑠 , a state 𝜎 is in Δ𝑝 (𝑠) iff 𝜎 has at least 𝑝 permission to x.g.

𝑓𝐴 is not Scott-continuous, and thus Kleene’s theorem does not apply. To see why, let us nonetheless

compute 𝑓 𝑛 (Δ⊥). Starting from the empty interpretationΔ⊥, we get 𝑓𝐴 (Δ⊥) = Δ1: We need 1 permission

of x.g to prove the right-hand side of the wand x.g ↦→ _ ∨ 𝐴0.5 ≡ x.g ↦→ _. Then, 𝑓𝐴
2 (Δ⊥) =

𝑓𝐴 (Δ1) = Δ0.5, since, in this case, we can prove the disjunct 𝐴0.5 to prove the right-hand side. Similarly,

𝑓𝐴
3 (Δ⊥) = 𝑓𝐴 (Δ0.5) = Δ0.25. By induction, we get 𝑓𝐴

𝑛+1 (Δ⊥) = Δ 1
2𝑛
.

We can now apply Kleene’s formula to obtain a potential least fixed point: The supremum of 𝑓 𝑛 (Δ⊥)

is Δ>0, where a state is in Δ>0 (𝑠) (for all 𝑠) iff it has non-zero permission to x.g. However, Δ>0 is not a
fixed point of 𝑓𝐴, since 𝑓𝐴 (Δ>0) = Δ⊤ (the full interpretation). Indeed, in this case, the wand is always

trivially satisfied, since the left-hand side implies the right-hand side.

This example shows that Kleene’s theorem is too restrictive to justify the existence of a least
fixed point for some recursive SL predicate definitions. The situation is similar for Kleene’s dual
theorem (existence of a greatest fixed point), because of the existential quantifier and the separating

conjunction. As an example, the greatest fixed point of the recursive equation 𝐴 := x.g
0.5

↦→

_ ∗ (x.g ↦→ _)∗ ∗ 𝐴0.5 is Δ⊥. However, Kleene’s dual formula for the greatest fixed point (i.e. the
infimum of 𝑓 𝑛 (Δ⊤)) yields Δ1, which is not a fixed point of this equation, because 𝑓𝐴 (Δ1) = Δ⊥.
The richer mathematical foundations we provide in this section are needed to enable direct proofs
of combinability over general recursively-defined SL predicates.

5 FORMAL FOUNDATIONS FOR FRACTIONAL PREDICATES AND MAGICWANDS
IN AUTOMATIC SL VERIFIERS

Fractional resources, in the form of fractional predicates, are supported by several automatic SL
verifiers, such as VerCors [Blom and Huisman 2014], VeriFast [Jacobs et al. 2011], and Viper [Müller
et al. 2016]. As explained in Sect. 1, this support relies on the concept of a syntactic multiplication. For
example, the semantics of fractional resources in VeriFast is explicitly defined as follows: łapplying
a coefficient 𝑓 to a user-defined predicate is equivalent to multiplying the coefficient of each chunk
mentioned in the predicate’s body by 𝑓 ž [Jacobs et al. 2011]. VerCors and Viper perform a similar

9By łinterpreted in an intuitionistic mannerž, we mean that the assertion𝐴 holds in any state that satisfies at least the magic
wand, i.e. 𝐴 holds in any state that owns the magic wand and possibly other resources. In classical SL, this interpretation
can be obtained by considering 𝐴 ∗ true instead of 𝐴, where the left conjunct captures the wand, and the right conjunct
captures the other resources.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

Fractional Resources in Unbounded Separation Logic 163:19

𝜋 · (𝐴 ∗ 𝐵) := (𝜋 · 𝐴) ∗ (𝜋 · 𝐵)

𝜋 · (𝐴 −∗ 𝐵) := (𝜋 · 𝐴) −∗ (𝜋 · 𝐵)

𝜋 · (𝐴 ⇒ 𝐵) := (𝜋 · 𝐴) ⇒ (𝜋 · 𝐵)

𝜋 · 𝐴𝛼 := (𝜋 ∗ 𝛼) · 𝐴

𝜋 · (𝐴∗) := 𝐴∗

𝜋 · (𝐴 ∧ 𝐵) := (𝜋 · 𝐴) ∧ (𝜋 · 𝐵)

𝜋 · (𝐴 ∨ 𝐵) := (𝜋 · 𝐴) ∨ (𝜋 · 𝐵)

𝜋 · (∃𝑥 . 𝐴) := ∃𝑥 . (𝜋 · 𝐴)

𝜋 · (∀𝑥 . 𝐴) := ∀𝑥 . (𝜋 · 𝐴)

𝜋 · 𝐴 := 𝐴𝜋 (otherwise)

Fig. 6. Definition of the syntactic multiplication over assertions.

syntactic multiplication when unfolding (exchanging a predicate instance with its definition, also
called opening) or folding (the reverse operation, also called closing) a fractional predicate.
However, as shown by Ex. 1, there is a mismatch between the syntactic and the semantic

multiplication in the bounded logic. Consider 𝑃 (𝑥,𝑦) ≔ x.g ↦→ _ ∗ y.g ↦→ _. While 𝑃 (𝑥, 𝑥)0.5 is
equivalent to false in bounded SL if interpreted with the semantic multiplication, the three verifiers
allow the user to obtain this fractional predicate instance in exchange for full permission of x.g;
this behaviour is compatible with the semantic multiplication in our novel unbounded logic.
In this section, we show that our unbounded logic can serve as a formal foundation for frac-

tional predicates in automatic SL verifiers, since it gives a meaning to the syntactic multiplication
performed by these verifiers, and justifies that fractions of the same predicate can be soundly
recombined (under some restrictions). Moreover, using the unbounded logic as a formal foundation
enables sound extensions of these verifiers, for example to handle fractional magic wands (which,
to our knowledge, no verifier supports yet).

In Sect. 5.1, we define a syntactic multiplication over assertions, and show that it is equivalent to
the semantic one in the unbounded logic. From this, we derive rules for fractional magic wands,
which could easily be automated in VerCors and Viper. We then define, in Sect. 5.2, a simple
syntactic restriction on recursive predicate definitions, which ensures the existence of a least and a
greatest fixed point. This allows us to derive fold and unfold rules for fractional predicates, based
on the syntactic multiplication, which formally justifies what VerCors, VeriFast, and Viper actually
do. Finally, we define, in Sect. 5.3, a syntactic restriction on the definition of a predicate, which
ensures that this predicate is combinable, using the results from Sect. 3 and Sect. 4.

5.1 Syntactic Multiplication and Fractional Magic Wands

Fig. 6 shows the definition of the syntactic multiplication over assertions, which we write 𝜋 · 𝐴

for a scalar 𝜋 and an assertion 𝐴. The idea of this syntactic multiplication, which corresponds to
what the three verifiers do, is straightforward: We push the multiplication inside, until we reach
semantic assertions B or predicate P. The following theorem follows from the distributivity and
factorisation rules shown in Fig. 4.

Theorem 6. Syntactic and semantic multiplication are equivalent in unbounded logic: 𝐴𝜋 ≡Δ 𝜋 ·𝐴

This result justifies the syntactic multiplication performed by the verifiers. Moreover, it can also
be leveraged to improve the support for magic wands in automatic SL verifiers. Both VerCors and
Viper support magic wands [Blom and Huisman 2015; Schwerhoff and Summers 2015], via two
operations package and apply. Packaging a wand 𝐴 −∗ 𝐵 amounts to exchanging resources that
satisfy the wand with an instance of the wand. Applying a wand 𝐴 −∗ 𝐵 boils down to giving up an
instance of the wand 𝐴 −∗ 𝐵 and resources that satisfy 𝐴, in exchange for resources that satisfy 𝐵.
However, neither VerCors nor Viper support packaging and applying fractions of wands.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

163:20 Thibault Dardinier, Peter Müller, and Alexander J. Summers

These rules, describing how to package and apply fractional wands, hold in the unbounded logic:

𝐹 ∗ (𝜋 · 𝐴) |=Δ 𝜋 · 𝐵
(PackageWand)

𝐹 |=Δ (𝐴 −∗ 𝐵)𝜋
(ApplyWand)

(𝜋 · 𝐴) ∗ (𝐴 −∗ 𝐵)𝜋 |=Δ 𝜋 · 𝐵

The rule PackageWand states that it is sound to give up the resources specified by 𝐹 , which
satisfy 𝜋 · 𝐵 when combined with 𝜋 · 𝐴, in exchange for a fraction 𝜋 of the wand 𝐴 −∗ 𝐵. On the
other hand, the rule ApplyWand states that it is sound to give up a fraction 𝜋 of a wand 𝐴 −∗ 𝐵

and resources that satisfy 𝜋 · 𝐴, in exchange for resources that satisfy 𝜋 · 𝐵. Since these two rules
rely on the syntactic multiplication, they could be easily added to VerCors and Viper, which have
algorithms to compute 𝐹 .

5.2 Folding and Unfolding Fractions of Recursively-Defined Predicates

To formally justify the way VeriFast, VerCors, and Viper handle recursively-defined predicates, we
need to ensure the existence of a fixed point for all predicate definitions accepted by these tools.
Indeed, the three verifiers assume that an instance of a recursively-defined predicate is a fixed-point
of its recursive definition. All three verifiers enforce recursive calls to appear in positive positions
when 𝐴 is a recursive predicate definition, since (1) none supports implications whose left-hand
side are not pure (i.e. specify resources, including predicate instances), and (2) VerCors and Viper
do not allow magic wands inside predicate definitions; again, our work presents foundations for
extending this support.
We write correctRec(𝐴) iff recursive calls to P in 𝐴 happen in positive positions only. To avoid

duplicating rules, we write FP to refer indiscriminately to either LFP or GFP . We have proved in
Isabelle/HOL the following theorem:

Theorem 7. If correctRec(𝐴) holds, then ∀𝜎, 𝑠. 𝜎, 𝑠, FP (𝑓𝐴) |= 𝐴 ⇐⇒ 𝜎 ∈ FP (𝑓𝐴) (𝑠).

Combining this result with Theorem 6, we can now prove that the two following rules, used by
the three verifiers to fold and unfold fractions of predicates, are valid in the unbounded logic:

correctRec(𝐴)
(Fold)

𝜋 · 𝐴 |=FP (𝐴) P
𝜋

correctRec(𝐴)
(Unfold)

P
𝜋 |=FP (𝐴) 𝜋 · 𝐴

Fold allows one to give up resources that satisfy 𝜋 · 𝐴 in exchange for a fraction 𝜋 of the predicate
instance P, which is defined (co)inductively by the equation P = 𝐴. Unfold permits the reverse
operation: to exchange a fraction 𝜋 of the predicate instance P with resources that satisfy 𝜋 · 𝐴.

5.3 Combinability

Finally, we want to leverage results from Sect. 3 and Sect. 4 to prove that the rules used by
VerCors, VeriFast, and Viper to combine fractions of predicates are valid in the unbounded logic.
Both VerCors and Viper automatically combine fractions of the same predicate instance, which is
currently sound (1) because of their restricted assertion languages and (2) because they forbid magic
wands inside predicate definitions. Indeed, VerCors and Viper allow disjunctions, existentially-
quantified assertions, and negations only of pure assertions. As explained in Sect. 3, the magic
wand interpreted in the bounded logic is not combinable in general, and thus allowing wands inside
predicate definitions and combining fractions of such a predicate instance would be unsound. Note
that restriction (2) could be removed by interpreting wands in the unbounded logic.

In contrast, it is possible to write VeriFast predicates that are not combinable, e.g. using existential
quantifiers. VeriFast thus performs a static analysis on a predicate definition to detect whether this
predicate is combinable, and, if it is, VeriFast emits a lemma that permits combining two fractions
of this predicate, which is formally justified by our unbounded logic.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

Fractional Resources in Unbounded Separation Logic 163:21

comb(P) ⇐⇒ ⊤

comb(B) ⇐⇒ B is combinable

comb(𝐴𝜋) ⇐⇒ comb(𝐴)

comb(𝐴∗) ⇐⇒ comb(𝐴)

comb(𝐴 ∗ 𝐵) ⇐⇒ comb(𝐴) ∧ comb(𝐵)

comb(𝐴 −∗ 𝐵) ⇐⇒ comb(𝐵)

comb(𝐴 ⇒ 𝐵) ⇐⇒ pure (𝐴) ∧ comb(𝐵)

comb(𝐴 ∧ 𝐵) ⇐⇒ comb(𝐴) ∧ comb(𝐵)

comb(∃𝑥.𝐴) ⇐⇒ comb(𝐴) ∧ unambiguous (𝐴,𝑥)

comb(∀𝑥.𝐴) ⇐⇒ comb(𝐴)

comb(𝐴) ⇐⇒ ⊥ (otherwise)

Fig. 7. Syntactic condition to ensure that an assertion is combinable.

To formally justify the behaviours of the three verifiers, we define in Fig. 7 a syntactic condition for
an assertion 𝐴, comb(𝐴), which ensures that the assertion 𝐴 is combinable. comb forbids semantic
assertions that are not combinable, as well as disjunctions and implications with an impure left-
hand side. Moreover, unambiguous(𝐴, 𝑥) can be conservatively checked syntactically, using the
fact that ∃𝑣 . x.f ↦→ 𝑣 is trivially unambiguous in 𝑣 , and the entailment unambiguous(𝐴, 𝑥) =⇒

unambiguous(𝐴 ∗ 𝐵, 𝑥) for all 𝐴, 𝐵, and 𝑥 . This is, in essence, what VeriFast does.
Finally, note that comb(P) always holds. This way, we can leverage the induction principle from

Sect. 4 (Theorem 5) to prove that predicates (co)inductively-defined with the recursive equation
P = 𝐴 such that comb(𝐴) holds are combinable. In particular, we have proven in Isabelle/HOL that
the following rule, used by all three verifiers in some form, is valid in the unbounded logic:

comb(𝐴) correctRec(𝐴)
(Combinability)

P
𝛼 ∗ P𝛽 |=FP (𝐴) P

𝛼+𝛽

6 EXAMPLES

The example from Fig. 1 is one illustration of the power and the simplicity of the unbounded
logic; with our logic such direct concurrent-separation-logic proofs just work, without additional
connectives and with essentially no restriction on the assertions involved in the specifications. The
entailments inside the two parallel branches are justified by the rules Unfold and Fold, and the last
entailment (tree(𝑥)

𝜋
2 ∗ tree(𝑥)

𝜋
2 entails tree(𝑥)𝜋) is justified by the rule Combinability (since the

recursive definition of tree(𝑥) satisfies the syntactic condition comb defined in Fig. 7).
In this section, we further illustrate the flexibility and the simplicity of the unbounded logic on

two additional examples. The first example motivates the need for factorisability for the magic
wand, while the second example, taken from Brotherston et al. [2020], shows that the unbounded
logic provides an easy and intuitive way to reason about cross-thread data transfer.

6.1 Concurrently Reading a Subtree and a Tree

Consider the concurrent method readBoth in Fig. 8, which takes as input a reference x and an
integer key. In this simple example, we start with a fraction 𝜋 of a tree rooted in x. We then
sequentially look for a subtree of x that matches key, using the method find, where find is
specified as follows [Brotherston et al. 2020; Cao et al. 2019]

{tree(𝑥)𝛼 } find(x, key) {𝜆𝑦. (tree(𝑦) ∗ (tree(𝑦) −∗ tree(𝑥)))𝛼 }

where 𝑦 is bound to the return variable. tree(𝑦) −∗ tree(𝑥) expresses the ownership of all nodes of
tree(𝑥), except the nodes from its subtree tree(𝑦). Combined with the subtree tree(𝑦), this magic
wand gives us a simple way to get back the ownership of the entire tree, tree(𝑥).

Method readBoth then forks two threads, and each thread performs some action that first
requires read access to the subtree sub, and then read access to the whole tree x. Thus, the

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

163:22 Thibault Dardinier, Peter Müller, and Alexander J. Summers

method readBoth(x: Ref, key: Int) {

{ t ree (𝑥) 𝜋 }

sub := find(x, key)

{ (t ree (sub) ∗ (t ree (sub) −∗ t ree (𝑥))) 𝜋 }

{ (t ree (sub) ∗ (t ree (sub) −∗ t ree (𝑥)))
𝜋
2 ∗ (t ree (𝑠𝑢𝑏) ∗ (t ree (sub) −∗ t ree (𝑥)))

𝜋
2 }

{(tree(sub) ∗ (tree(sub) −∗ tree(𝑥)))
𝜋
2 } {(tree(sub) ∗ (tree(sub) −∗ tree(𝑥)))

𝜋
2 }

{tree(sub)
𝜋
2 ∗ (tree(sub) −∗ tree(𝑥))

𝜋
2 } {tree(sub)

𝜋
2 ∗ (tree(sub) −∗ tree(𝑥))

𝜋
2 }

readTree(sub) readTree(sub)

{tree(sub)
𝜋
2 ∗ (tree(sub) −∗ tree(𝑥))

𝜋
2 } {tree(sub)

𝜋
2 ∗ (tree(sub) −∗ tree(𝑥))

𝜋
2 }

{tree(𝑥)
𝜋
2 } {tree(𝑥)

𝜋
2 }

readTree(x) readTree(x)

{tree(𝑥)
𝜋
2 } {tree(𝑥)

𝜋
2 }

{ t ree (𝑥)
𝜋
2 ∗ t ree (𝑥)

𝜋
2 }

{ t ree (𝑥) 𝜋 }

}

Fig. 8. A simple concurrent program that looks for a subtree of x that matches key, and then concurrently
reads from both the tree rooted in x and in the subtree.

method readTree requires some fractional ownership of the tree it reads, i.e. it is specified as
{tree(𝑦)𝛼 } readTree(y) {tree(𝑦)𝛼 }. In this specification, 𝛼 can be thought of as a ghost parameter;
the method can be called for any (non-zero) fractional amount 𝛼 . Finally, method readBoth joins
the two threads, and returns the fractional ownership of tree(𝑥) it started with.
Proving that method readBoth satisfies its specification is straightforward in our unbounded

logic. After the call to find, we split the fraction 𝜋 of tree(sub) ∗ (tree(sub) −∗ tree(𝑥)) into two
fractions 𝜋

2
, and we give one fraction to each thread, using the rule Parallel. In each thread, we

then distribute the fraction 𝜋
2
over the star, to justify the call readTree(sub).

After this call, we need to justify that we can read the tree rooted in x, which we achieve by
first distributing the fraction 𝜋

2
over the wand tree(sub) −∗ tree(𝑥), and then by applying the wand.

Crucially, note that this step is invalid in the bounded logic, since the distributivity property does
not hold for the wand! Moreover, this step would also be invalid with the weak or the strong wand
from Brotherston et al. [2020], and even if we used the binary tree share model from Le and Hobor
[2018]. Finally, since we (syntactically) know that tree(𝑥) is combinable, we recombine the two
fractions 𝜋

2
of tree(𝑥) after the threads have finished executing, which concludes the proof.

6.2 Cross-thread Data Transfer

We also illustrate our unbounded logic on an example from Brotherston et al. [2020], which involves
message-passing concurrency, with simplified Hoare rules [Bell et al. 2010; Hobor and Gherghina
2012; Leino et al. 2010; Villard et al. 2009]: Given a channel 𝑐 , a message number 𝑖 , and an associated
message invariant 𝑅𝑐𝑖 , the rule to send message 𝑖 via channel 𝑐 is {𝑅𝑐𝑖 (𝑥)} send(c, x) {emp},
whereas the rule to receive this message is {emp} y := receive(c) {𝑅𝑐𝑖 (𝑦)}.

The method transfer first creates a binary tree by calling the method makeTree(), and then
forks two threads. The first thread calls the same method find as in the previous example, to find a
subtree rooted in s that matches the key, and sends the reference s to the second thread via the
channel ch. The second thread receives reference s, and then modifies the tree rooted in s by calling
modify, which thus requires exclusive ownership of the tree rooted in s. After the modification,
the second thread notifies the first one, and both terminate. Finally, the tree rooted in x is deleted
(alternatively, full access could be returned, but this code is from Brotherston et al. [2020]).

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

Fractional Resources in Unbounded Separation Logic 163:23

method transfer(key: Int) {

{ emp }

x := makeTree()

{ t ree (𝑥 , 𝜏𝑥) }

{ t ree (𝑥 , 𝜏𝑥)
1
2 ∗ t ree (𝑥 , 𝜏𝑥)

1
2 }

{tree(𝑥, 𝜏𝑥)
1
2 } {tree(𝑥, 𝜏𝑥)

1
2 }

s := find(x, key)

{(tree(𝑠, 𝜏𝑠) ∗ (tree(𝑠, 𝜏𝑠) −∗ tree(𝑥, 𝜏𝑥)))
1
2 ∗ sub(𝑠, 𝜏𝑥)}

{(tree(𝑠, 𝜏𝑠)
1
2 ∗ sub(𝑠, 𝜏𝑥)) ∗ (tree(𝑠, 𝜏𝑠) −∗ tree(𝑥, 𝜏𝑥))

1
2 } {tree(𝑥, 𝜏𝑥)

1
2 }

send(ch, s) s := receive(ch)

{(tree(𝑠, 𝜏𝑠) −∗ tree(𝑥, 𝜏𝑥))
1
2 } {(tree(𝑠, 𝜏𝑠)

1
2 ∗ sub(𝑠, 𝜏𝑥)) ∗ tree(𝑥, 𝜏𝑥)

1
2 }

{tree(𝑠, 𝜏𝑠) ∗ (tree(𝑠, 𝜏𝑠)
1
2 −∗ tree(𝑥, 𝜏𝑥)

1
2)}

modify(s)

{tree(𝑠, 𝜏𝑠) ∗ (tree(𝑠, 𝜏𝑠)
1
2 −∗ tree(𝑥, 𝜏𝑥)

1
2)}

{(tree(𝑠, 𝜏𝑠) −∗ tree(𝑥, 𝜏𝑥))
1
2 } {tree(𝑠, 𝜏𝑠)

1
2 ∗ tree(𝑥, 𝜏𝑥)

1
2 }

receive(ch) send(ch, ())

{tree(𝑠, 𝜏𝑠)
1
2 ∗ (tree(𝑠, 𝜏𝑠) −∗ tree(𝑥, 𝜏𝑥))

1
2 } {tree(𝑥, 𝜏𝑥)

1
2 }

{tree(𝑥, 𝜏𝑥)
1
2 } {tree(𝑥, 𝜏𝑥)

1
2 }

{ t ree (𝑥 , 𝜏𝑥)
1
2 ∗ t ree (𝑥 , 𝜏𝑥)

1
2 }

{ t ree (𝑥 , 𝜏𝑥) }

deleteTree(x)

{ emp }

}

Fig. 9. Cross-thread data transfer from Brotherston et al. [2020]. find is specified as in the previous example.
modify(s) requires exclusive ownership of the tree rooted in s. The first message invariant is tree(𝑠, 𝜏𝑠)

0.5 ∗

sub(𝑠, 𝜏𝑥), and the second message invariant is tree(𝑠, 𝜏𝑠)
0.5.

To verify method transfer, we need to transmit from the first to the second thread the knowledge
that s is a node that belongs to the tree rooted in x. It is standard to express such information
about heap values by adding a second parameter to the predicate tree, representing a mathematical
abstraction of the tree structure; for a tree rooted at x we will write 𝜏𝑥 for the corresponding
mathematical tree. We require our tree abstraction to include the reference identities of each node.
The pure function sub(𝑠, 𝜏𝑥), which is then easy to write inductively over these mathematical trees,
expresses that the reference s belongs to the tree 𝜏𝑥 .

The second thread needs this piece of knowledge to prove that tree(𝑥, 𝜏𝑥)
1
2 can be decomposed

into tree(𝑠, 𝜏𝑠)
1
2 ∗ (tree(𝑠, 𝜏𝑠)

1
2 −∗ tree(𝑥, 𝜏𝑥)

1
2) (using a simple inductive lemma), in order to prove it

has exclusive ownership of tree(𝑠, 𝜏𝑠). Therefore, our first message invariant is tree(𝑠, 𝜏𝑠)
1
2 ∗sub(𝑠, 𝜏𝑥).

After the second thread has received the first message, it can use the aforementioned entailment to
justify exclusive ownership of tree(𝑥, 𝜏𝑥), and thus call modify. After this call, the second thread
applies the magic wand to get back half ownership of both tree(𝑥, 𝜏𝑥) and tree(𝑠, 𝜏𝑠), and it sends

tree(𝑠, 𝜏𝑠)
1
2 via the channel; hence our second message invariant is tree(𝑠, 𝜏𝑠)

1
2 . The first thread then

receives tree(𝑠, 𝜏𝑠)
1
2 , and uses the distributivity of the magic wand to get back half ownership of

tree(𝑥, 𝜏𝑥). Finally, the two threads terminate, and method transfer deletes the tree.

Comparison. In contrast to the approach from Brotherston et al. [2020], our unbounded logic
requires us to add a mathematical tree abstraction to the predicate tree, transfer the knowledge
that s points to a node in 𝜏𝑥 , and prove a simple inductive lemma about tree decomposition. These
kinds of reasoning steps are standard in separation logic proofs and required anyway to prove

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

163:24 Thibault Dardinier, Peter Müller, and Alexander J. Summers

richer functional specifications such as sortedness. Instead, Brotherston et al. use custom assertion

labels and a jump modality in their logic. The first thread transmits the information that the tree
rooted in x has not been modified since the beginning of the method using the label 𝑙0 introduced
in the precondition of transfer, via the following invariant for the first message:

(𝑙1 ∧ tree(𝑠))0.5 ∧
(

@0.5
𝑙0

((𝑙1 ∧ tree(𝑠)) ⃝∗ (𝑙2 ∧ (tree(𝑠) −⃝∗ tree(𝑥))))0.5
)

.

The left conjunct specifies half of the ownership of the tree rooted in s, while the right conjunct
contains some knowledge about the initial heap (labelled with 𝑙0).
Our unbounded logic has the advantage that the message invariants are more concise and do

not require non-standard connectives in specifications; our first message invariant is tree(𝑠, 𝜏𝑠)
1
2 ∗

sub(𝑠, 𝜏𝑥). This advantage is even better illustrated with the second message invariant, which they
specify as (𝑙0 ∧ tree(𝑠))0.5 ∧ 𝑙2 ⊥ 𝑙3 ∧

(

@0.5
2

((𝑙3 ∧ tree(𝑠)) −⃝∗ (𝑙4 ∧ tree(𝑥)))0.5
)

, where 𝑙2 ⊥ 𝑙3 is
another clever but non-standard construct which expresses that the heaps represented by 𝑙2 and 𝑙3
are disjoint. By contrast, our second message invariant is simply tree(𝑠, 𝜏𝑠)

1
2 .

7 RELATED WORK

Multiplication with permissions. SL has been extended with different permissionmodels, including
fractional permissions [Bornat et al. 2005; Boyland 2003], counting permissions [Bornat et al. 2005],
named permissions [Parkinson 2005], and binary tree shares [Dockins et al. 2009]. Although these
interoperate well with simple points-to predicates, when considering general fractional resources,
none of them provides the key properties of distributivity, factorisability and combinability. Some
of the weaknesses have been previously identified [Brotherston et al. 2020; Le and Hobor 2018],
but as we discuss in detail in Sect. 1.3 and Sect. 6.2, the alternatives presented there introduce new
complexities to specifications without providing these three properties for their logics in general.
More-general fractional ownership was (to our knowledge) first explored by Boyland [2010],

who defines the concept of nesting. Nesting enables a heap location 𝑙 to own some fraction 𝜋 of
a resource 𝐴; owning a fraction 𝛼 of the location 𝑙 then results in owning a fraction 𝛼 · 𝜋 of 𝐴.
Moreover, Boyland permits fractions above 1 in intermediate fractional heaps to get the useful
equality 𝜎 = 𝜋 ⊙ (1

𝜋
⊙𝜎). However, his work is fundamentally incompatible with SL, because nesting

is a static notion in the type system, and because logical and SL connectives such as negations,
disjunctions, unrestricted existentials, and magic wands interpreted in the usual way would lead to
unsoundness in his framework.

Combinability. As explained in Sect. 1.3, Le and Hobor [2018] handle combinability indirectly
via preciseness. However, as explained in Sect. 3, preciseness is too restrictive and, for example,
does not capture wildcard assertions. Brotherston et al. [2020] add labels and jump modalities to
the assertion language, which solves the issue of combinability when it can be proven that the
two fractions of a resource have the same origin. However, these additional features substantially
complicate proofs in the logic. By contrast, our approach provides simple syntactic rules to prove
that an assertion is combinable.

Restricted definitions of magic wands. In previous work [Dardinier et al. 2022b], we explore a
restricted definition of the magic wand (in the bounded logic) that satisfies combinability, but not
distributivity. Boyland [2010] defines a connective −+, which is a syntactic connective similar to the
magic wand, and which satisfies the analogous combinable property. However, the connective −+ is
much more restricted than a magic wand: e.g. (𝑎 = 𝑏) −+ (𝑏 = 𝑎) cannot be proven. Chang and Rival
[2008] also define a restricted version 𝐴 =∗ 𝐵 of the magic wand, which is defined inductively and
where 𝐴 and 𝐵 must be inductive predicates. Intuitively, 𝐴 =∗ 𝐵 holds in a state 𝜎 if one can obtain
𝐴 via a finite unfolding of predicate instances in 𝐵 such that resources other than 𝐴 obtained via

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

Fractional Resources in Unbounded Separation Logic 163:25

the unfolding hold in 𝜎 . This restricted wand may satisfy combinability in general (although we
have not proved this), but is not as expressive as the general magic wand supported by our work,
in particular for expressing arbitrary method contracts.

Fixed points. Le and Hobor [2018] provide an induction principle for heaps with fractional
permissions, based on the well-founded order of heaps that decrease by at least a fixed positive
permission amount. This induction principle is strictly weaker than the one we present in Sect. 4,
since the latter can deal, for example, with recursive predicate instances on the right-hand side
of magic wands. Moreover, Sect. 5 shows how to leverage our induction principle to ensure
combinability from a simple syntactic condition.

To give a semantics to abstract predicates, Parkinson and Bierman [2005] indirectly construct a
semantic predicate environment from an abstract one, by generating a fixed point for a function
step. As in Sect. 4, it turns out that this step function is monotonic but not Scott-continuous, and
thus Kleene’s fixed-point theorem cannot be applied.

Step-indexing [Appel and McAllester 2001] ensures the monotonicity of recursive definitions by
guarding recursive calls with a later modality, which is useful for example to deal with recursive
types [Ahmed 2006]. Step-indexing has been integrated into SL to reason about impredicative
protocols [Svendsen and Birkedal 2014], and is at the core of Iris [Jung et al. 2018], a framework for
higher-order concurrent SL. It would be interesting to explore how multiplication and the paradigm
of unbounded logic presented here can be integrated into a framework such as Iris.

8 CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel semantics for separation logic, where states are temporarily
unbounded. This logic reconciles the two existing views on multiplication: The syntactic one, used
by automatic SL verifiers, and the semantic one, studied in theory. Our logic eliminates important
shortcomings of the semantic multiplication: Distributivity holds for the magic wand, factorisability
holds for the separating conjunction, and the wand𝐴−∗𝐵 is combinable if 𝐵 is combinable. Moreover,
our logic justifies the reasoning steps performed by existing automatic SL verifiers and paves the
way to improve them further, for example by adding support for fractional wands.

As future work, we plan to extend Viper with support for fractional magic wands. We also plan
to explore further existing discrepancies between the theory of SL and the way SL is automated
in existing verifiers, in order to provide strong formal foundations for all features used in these
verifiers. Formal foundations for automatic SL verifiers are crucial to increase trust in these verifiers,
for example by generating certificates of correctness for successful runs.

DATA AVAILABILITY STATEMENT

All technical results presented in this paper have been formalised and proven in Isabelle/HOL, and
our formalisation is publicly available [Dardinier 2022; Dardinier et al. 2022a].

ACKNOWLEDGMENTS

We thank Jérôme Dohrau for noticing an interesting connection with the problem of inferring
annotations, and Gaurav Parthasarathy for numerous helpful discussions about this work. This
work was partially funded by the Swiss National Science Foundation (SNSF) under Grant No.
197065.

REFERENCES

Amal Ahmed. 2006. Step-Indexed Syntactic Logical Relations for Recursive and Quantified Types. In Proceedings of the

15th European Conference on Programming Languages and Systems (Vienna, Austria) (ESOP’06). Springer-Verlag, Berlin,
Heidelberg, 69ś83. https://doi.org/10.1007/11693024_6

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

https://doi.org/10.1007/11693024_6

163:26 Thibault Dardinier, Peter Müller, and Alexander J. Summers

Andrew W. Appel and David McAllester. 2001. An Indexed Model of Recursive Types for Foundational Proof-Carrying
Code. ACM Trans. Program. Lang. Syst. 23, 5 (sep 2001), 657ś683. https://doi.org/10.1145/504709.504712

Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J. Summers. 2019. Leveraging Rust Types for Modular
Specification and Verification, In Object-Oriented Programming Systems, Languages, and Applications (OOPSLA). Proc.
ACM Program. Lang. 3, OOPSLA, 147:1ś147:30. https://doi.org/10.1145/3360573

Christian J. Bell, Andrew W. Appel, and David Walker. 2010. Concurrent Separation Logic for Pipelined Parallelization. In
Static Analysis, Radhia Cousot and Matthieu Martel (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 151ś166.

Stefan Blom and Marieke Huisman. 2014. The VerCors Tool for Verification of Concurrent Programs. In FM 2014: Formal

Methods, Cliff Jones, Pekka Pihlajasaari, and Jun Sun (Eds.). Springer International Publishing, Cham, 127ś131.
Stefan Blom and Marieke Huisman. 2015. Witnessing the elimination of magic wands. International Journal on Software

Tools for Technology Transfer (STTT) 17, 6 (2015), 757ś781. https://doi.org/10.1007/s10009-015-0372-3
Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Matthew J. Parkinson. 2005. Permission accounting in separation

logic. In Principle of Programming Languages (POPL), Jens Palsberg and Martín Abadi (Eds.). ACM, 259ś270.
John Boyland. 2003. Checking Interference with Fractional Permissions. In Static Analysis (SAS), Radhia Cousot (Ed.). 55ś72.
John Tang Boyland. 2010. Semantics of fractional permissions with nesting. Transactions on Programming Languages and

Systems (TOPLAS) 32, 6 (2010), 22:1ś22:33. https://doi.org/10.1145/1749608.1749611
James Brotherston, Diana Costa, Aquinas Hobor, and John Wickerson. 2020. Reasoning over Permissions Regions in

Concurrent Separation Logic. In Computer Aided Verification (CAV), Shuvendu K. Lahiri and Chao Wang (Eds.).
Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. 2007. Local action and abstract separation logic. In Logic in

Computer Science (LICS). 366ś375.
Qinxiang Cao, Shengyi Wang, Aquinas Hobor, and Andrew W. Appel. 2019. Proof Pearl: Magic Wand as Frame.

arXiv:cs.PL/1909.08789
Bor-Yuh Evan Chang and Xavier Rival. 2008. Relational inductive shape analysis. ACM SIGPLAN Notices 43, 1 (2008),

247ś260.
Patrick Cousot and Radhia Cousot. 1979. Constructive Versions of Tarski’s Fixed Point Theorems. Pacific J. Math. 81, 1

(1979), 43ś57.
Thibault Dardinier. 2022. Unbounded Separation Logic. Archive of Formal Proofs (September 2022). https://isa-afp.org/

entries/Separation_Logic_Unbounded.html, Formal proof development.
Thibault Dardinier, Peter Müller, and Alexander J. Summers. 2022a. Fractional Resources in Unbounded Separation Logic

(artifact). https://doi.org/10.5281/zenodo.7072457
Thibault Dardinier, Gaurav Parthasarathy, Noé Weeks, Peter Müller, and Alexander J. Summers. 2022b. Sound Automation

of Magic Wands. In Computer Aided Verification, Sharon Shoham and Yakir Vizel (Eds.). Springer International Publishing,
Cham, 130ś151.

Robert Dockins, Aquinas Hobor, and Andrew W. Appel. 2009. A Fresh Look at Separation Algebras and Share Accounting.
In Programming Languages and Systems, Zhenjiang Hu (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 161ś177.

C. Haack and C. Hurlin. 2009. Resource Usage Protocols for Iterators. Journal of Object Technology (JOT) 8, 4 (June 2009),
55ś83.

Aquinas Hobor and Cristian Gherghina. 2012. Barriers in Concurrent Separation Logic: Now With Tool Support! Logical
Methods in Computer Science Volume 8, Issue 2 (April 2012). https://doi.org/10.2168/LMCS-8(2:2)2012

Bart Jacobs and Frank Piessens. 2011. Expressivemodular fine-grained concurrency specification. In Principles of Programming

Languages (POPL). 271ś282. https://doi.org/10.1145/1926385.1926417
Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens. 2011. VeriFast: A

Powerful, Sound, Predictable, Fast Verifier for C and Java. In NASA Formal Methods (NFM) (Lecture Notes in Computer

Science), Mihaela Gheorghiu Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi (Eds.), Vol. 6617. Springer,
41ś55.

Jonas Jensen, Lars Birkedal, and Peter Sestoft. 2011. Modular Verification of Linked Lists with Views via Separation Logic.
Journal of Object Technology (JOT) 10 (January 2011), 2: 1ś20. https://doi.org/10.1145/1924520.1924524

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the
ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.
https://doi.org/10.1017/S0956796818000151

Neelakantan R. Krishnaswami. 2006. Reasoning about Iterators with Separation Logic. In Specification and Verification of

Component-Based Systems (SAVCBS). https://doi.org/10.1145/1181195.1181213
Xuan-Bach Le and Aquinas Hobor. 2018. Logical Reasoning for Disjoint Permissions. In European Symposium on Programming

(ESOP), Amal Ahmed (Ed.).
K. Rustan M. Leino, Peter Müller, and Jan Smans. 2009. Verification of Concurrent Programs with Chalice. In Foundations of

Security Analysis and Design V (Lecture Notes in Computer Science), Vol. 5705. Springer, 195ś222. http://www.springerlink.
com

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/3360573
https://doi.org/10.1007/s10009-015-0372-3
https://doi.org/10.1145/1749608.1749611
https://arxiv.org/abs/cs.PL/1909.08789
https://isa-afp.org/entries/Separation_Logic_Unbounded.html
https://isa-afp.org/entries/Separation_Logic_Unbounded.html
https://doi.org/10.5281/zenodo.7072457
https://doi.org/10.2168/LMCS-8(2:2)2012
https://doi.org/10.1145/1926385.1926417
https://doi.org/10.1145/1924520.1924524
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/1181195.1181213
http://www.springerlink.com
http://www.springerlink.com

Fractional Resources in Unbounded Separation Logic 163:27

K. Rustan M. Leino, Peter Müller, and Jan Smans. 2010. Deadlock-free Channels and Locks. In European Symposium

on Programming (ESOP) (Lecture Notes in Computer Science), A. D. Gordon (Ed.), Vol. 6012. Springer, 407ś426. http:
//www.springerlink.com

Toshiyuki Maeda, Haruki Sato, and Akinori Yonezawa. 2011. Extended Alias Type System Using Separating Implication
(Workshop on Types in Language Design and Implementation (TLDI)). https://doi.org/10.1145/1929553.1929559

Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2016. Viper: A Verification Infrastructure for Permission-Based
Reasoning. In Verification, Model Checking, and Abstract Interpretation (VMCAI) (Lecture Notes in Computer Science),
B. Jobstmann and K. R. M. Leino (Eds.), Vol. 9583. Springer, 41ś62.

Tobias Nipkow, Lawrence C Paulson, and MarkusWenzel. 2002. Isabelle/HOL: a proof assistant for higher-order logic. Vol. 2283.
Springer Science & Business Media.

Peter W. O’Hearn, Hongseok Yang, and John C. Reynolds. 2004. Separation and Information Hiding. SIGPLAN Not. 39, 1
(jan 2004), 268ś280. https://doi.org/10.1145/982962.964024

Matthew Parkinson. 2005. Local Reasoning for Java. Ph.D. Dissertation. https://www.microsoft.com/en-us/research/
publication/local-reasoning-for-java/ http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-654.html.

Matthew Parkinson and Gavin Bierman. 2005. Separation logic and abstraction. In Principle of Programming Languages

(POPL), J. Palsberg and M. Abadi (Eds.). ACM, 247ś258.
Willem Penninckx, Bart Jacobs, and Frank Piessens. 2015. Sound, Modular and Compositional Verification of the Input/Output

Behavior of Programs, Vol. 9032. 158ś182. https://doi.org/10.1007/978-3-662-46669-8_7
John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In Logic in Computer Science (LICS).

IEEE, 55ś74.
Malte Schwerhoff and Alexander J. Summers. 2015. Lightweight Support for Magic Wands in an Automatic Verifier. In

European Conference on Object-Oriented Programming (ECOOP) (LIPIcs), J. T. Boyland (Ed.), Vol. 37. Schloss Dagstuhl,
614ś638.

Alexander J. Summers and Peter Müller. 2018. Automating Deductive Verification for Weak-Memory Programs. In Tools and

Algorithms for the Construction and Analysis of Systems (TACAS) (Lecture Notes in Computer Science). Springer, 190ś209.
Kasper Svendsen and Lars Birkedal. 2014. Impredicative Concurrent Abstract Predicates. In Programming Languages and

Systems, Zhong Shao (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 149ś168.
Alfred Tarski. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5, 2 (1955), 285 ś 309.

https://doi.org/pjm/1103044538
Thomas Tuerk. 2010. Local reasoning about while-loops. In Verified Software: Theories, Tools and Experiments - Theory

Workshop (VS-Theory).
Viktor Vafeiadis. 2011. Concurrent Separation Logic and Operational Semantics. Electronic Notes in Theoretical Computer

Science 276 (2011), 335ś351. https://doi.org/10.1016/j.entcs.2011.09.029 Twenty-seventh Conference on the Mathematical
Foundations of Programming Semantics (MFPS XXVII).

Jules Villard, Étienne Lozes, and Cristiano Calcagno. 2009. Proving Copyless Message Passing. In Proceedings of the 7th Asian

Symposium on Programming Languages and Systems (Seoul, Korea) (APLAS ’09). Springer-Verlag, Berlin, Heidelberg,
194ś209. https://doi.org/10.1007/978-3-642-10672-9_15

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 163. Publication date: October 2022.

http://www.springerlink.com
http://www.springerlink.com
https://doi.org/10.1145/1929553.1929559
https://doi.org/10.1145/982962.964024
https://www.microsoft.com/en-us/research/publication/local-reasoning-for-java/
https://www.microsoft.com/en-us/research/publication/local-reasoning-for-java/
https://doi.org/10.1007/978-3-662-46669-8_7
https://doi.org/pjm/1103044538
https://doi.org/10.1016/j.entcs.2011.09.029
https://doi.org/10.1007/978-3-642-10672-9_15

	Abstract
	1 Introduction
	1.1 Fractional Resources
	1.2 Distributivity, Factorisability, and Combinability
	1.3 State of the Art
	1.4 Approach and Contributions

	2 Unbounded Separation Logic
	2.1 Key Idea: 1+1 = 2
	2.2 State Model and Multiplication
	2.3 Assertions
	2.4 Distributivity and Factorisability
	2.5 Frame Rule and Boundedness in Hoare Triples

	3 Combinable Assertions
	4 Combinable (Co)Inductive Predicates
	4.1 Preliminaries: Monotonic Functions and Existence of Fixed Points
	4.2 An Induction Principle for (Co)Inductive Predicates and Set-Closure Properties
	4.3 Kleene's Fixed Point Theorem is too Restrictive for SL

	5 Formal Foundations for Fractional Predicates and Magic Wands in Automatic SL Verifiers
	5.1 Syntactic Multiplication and Fractional Magic Wands
	5.2 Folding and Unfolding Fractions of Recursively-Defined Predicates
	5.3 Combinability

	6 Examples
	6.1 Concurrently Reading a Subtree and a Tree
	6.2 Cross-thread Data Transfer

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

