
The Axiom Profiler: Understanding and
Debugging SMT Quantifier Instantiations

Nils Becker, Peter Müller, and Alexander J. Summers

Department of Computer Science, ETH Zurich, Switzerland
nbecker@student.ethz.ch {peter.mueller, alexander.summers}@inf.ethz.ch

Abstract. SMT solvers typically reason about universal quantifiers via E-
matching: syntactic matching patterns for each quantifier prescribe shapes
of ground terms whose presence in the SMT run will trigger quantifier
instantiations. The effectiveness and performance of the SMT solver
depend crucially on well-chosen patterns. Overly restrictive patterns cause
relevant quantifier instantiations to be missed, while overly permissive
patterns can cause performance degradation including non-termination if
the solver gets stuck in a matching loop. Understanding and debugging
such instantiation problems is an overwhelming task, due to the typically
large number of quantifier instantiations and their non-trivial interactions
with each other and other solver aspects. In this paper, we present the
Axiom Profiler, a tool that enables users to analyse instantiation problems
effectively, by filtering and visualising rich logging information from SMT
runs. Our tool implements novel techniques for automatically detecting
matching loops and explaining why they repeat indefinitely. We evaluated
the tool on the full test suites of five existing program verifiers, where it
discovered and explained multiple previously-unknown matching loops.

1 Introduction

SMT solvers are in prevalent use for a wide variety of applications, including
constraint solving, program synthesis, software model checking, test generation
and program verification. They combine highly-efficient propositional reasoning
with natively supported theories and first-order quantifiers. Quantifiers are used
frequently, for instance, to model additional mathematical theories and other
domain-specific aspects of an encoded problem. In a program verification setting,
for example, one might model a factorial function using an uninterpreted function
fact from integers to integers and (partially) defining its meaning by means of
quantified formulas such as ∀i:Int :: i > 1 ⇒ fact(i) = i * fact(i-1).

The support for quantifiers in SMT is not without a price; satisfiability of
SMT assertions with quantifiers is undecidable in general. SMT solvers employ a
range of heuristics for quantifier instantiation, the most widely-used (and the
one focused on in this paper) being E-matching [8]. The E-matching approach
attaches syntactic patterns to each universal quantifier, prescribing shapes of
ground terms which, when encountered during the SMT solver’s run, will trigger1

1 In some tools, patterns are themselves alternatively called triggers.



a quantifier instantiation. For example, the pattern {fact(i)} on the quantifier
above would indicate that a quantifier instantiation should be made whenever a
function application fact(t) (for some term t) is encountered; the term t then
prescribes the corresponding instantiation for the quantified variable.

The success of E-matching as a quantifier instantiation strategy depends
crucially on well-chosen patterns: poorly chosen patterns can result in too few
quantifier instantiations and failure to prove unsatisfiability of a formula, or too
many quantifier instantiations, leading to poor and unpredictable performance,
and even non-termination. For the factorial example above, a ground term fact(n)

will match the pattern{fact(i)} , yielding an instantiation of the quantifier body,
which includes the ground term fact(n-1); this term again matches the pattern,
and, if it is never provable that n - x > 1 is definitely false, this process continues
generating terms and quantifier instantiations indefinitely, in a matching loop.

Choosing suitable matching patterns is one of the main difficulties in using
E-matching effectively [15, 17]. It is extremely difficult to analyse how and why
quantifier instantiations misbehave, especially for SMT problems with a large
number of quantifiers2. Some solvers report high-level statistics (e.g. total number
of quantifier instantiations); these are insufficient to determine whether quan-
tifiers were instantiated as intended, and what the root causes of unintended
instantiations are. SMT problems with poor performance are typically highly
brittle with respect to changes in the input (due to internal pseudo-random heu-
ristics), making performance problems difficult to reproduce or minimise; altering
the example often unpredictably changes its behaviour. Conversely, problems
with poor quantifier instantiation behaviour are not always slow; slowdowns
typically manifest only when sufficiently many interactions with other aspects
of the solver (e.g. theory reasoning) arise: extending problematic examples can
cause sudden performance degradation, while the underlying cause existed in the
original problem. There is therefore a clear need for tool support for uncovering,
understanding and debugging quantifier instantiations made during SMT queries.

In this paper, we present the Axiom Profiler, a tool that addresses these
challenges, providing comprehensive support for the manual and automated
analysis of the quantifier instantiations performed by an SMT solver run, enabling
a user to uncover and explain the underlying causes for quantifier-related problems.
Our tool takes a log file generated by an SMT solver (in our case, Z3 [7]), interprets
it, and provides a wide array of features and algorithms for displaying, navigating
and analysing the data. Specifically, we present the following key contributions:

1. We propose a debugging recipe, identifying the essential information needed
and typical steps performed to analyse quantifier-related problems (Sec. 3).

2. We devise and present detailed justifications for each quantifier instantiation,
including equality reasoning steps that enable the pattern match (Sec. 4).

2 Such problems are common in e.g. program verification: for example, queries generated
from Dafny’s [14] test suite include an average of 2,500 quantifiers; it is not uncommon
for hundreds to be instantiated hundreds of times for a single query: cf. Sec. 7.

2



3. We define an instantiation graph which reflects the causal relationships
between quantifier instantiations, that is, which instantiations generate terms
or equalities used to trigger which other instantiations (Sec. 5).

4. We present a novel automatic analysis over the causal graph which detects
matching loops and explains why they occur (Sec. 6).

5. We provide an implementation. Our evaluation on test suites from five exis-
ting program verifiers reveals and explains (confirmed) previously-unknown
matching loops (Sec. 7).

Our implementation extends the VCC Axiom Profiler [17], developed during the
VCC [3] project at Microsoft Research. While this older tool (as well as the prior
logging mechanism implemented for Z3) has been invaluable as a basis for our
implementation, the features and contributions presented in this paper did not
exist in the prior tool (aside from a basic explanation of single instantiations,
omitting, e.g., equality reasoning steps used to justify a match). Our tool is open
source and is available at https://bitbucket.org/viperproject/axiom-profiler/

2 Background and Running Example

SMT Solving. SMT solvers handle input problems expressed as first-order logic
assertions, including both uninterpreted function symbols and combinations of
natively-supported interpreted theories (e.g., integers or reals). SMT problems
can contain free uninterpreted symbols (e.g., unknown constants); the problem of
SMT solving is to decide whether some interpretation for these symbols results in
a model of the assertion (the assertion is satisfiable), or not (it is unsatisfiable).

The core of an SMT solver is a boolean SAT solving engine, which searches
for a model by case-splitting on boolean literals, building up a candidate model.
This core engine natively represents only quantifier-free propositional logic (in-
cluding uninterpreted function symbols and equality). Transitive reasoning about
equalities, as well as congruence closure properties (i.e., a = b ⇒ f(a) = f(b) for
functions f), is handled using an E-graph data structure [8], which efficiently
represents the equivalence classes induced by currently-assumed equality facts
(and represents disequality facts) over terms in the candidate model.

Running Example. Fig. 1 shows our running example, an SMT query including
a simplified modelling of program heaps and arrays, along with assertions (facts)
encoding several properties: injectivity of the slot mapping (from integers to
array locations), meaning of a next function (C-style pointer increment), and
sortedness of an array a. The last two assertions represent an index i being
somewhere early in array a, and an attempt to prove that the next array entry
cannot be smaller than that at i; this proof goal is negated: any model found by
the SMT solver is a counterexample to the proof goal. The check-sat command
tells the solver to try to find a model for the conjunction of the assertions.

3



1 ; ... uninterpreted sorts: Heap, Loc, Arr
2 (declare-fun slot (Arr Int) Loc) ; heap location for array slot
3 (declare-fun lookup (Heap Loc) Int) ; dereference on the heap
4 (declare-fun next (Loc) Loc) ; next slot: pointer increment
5 (assert ∀ar:Arr, i: Int, k:Int :: {slot(ar,i),slot(ar,k)}
6 i = k ∨ slot(ar,i) != slot(ar,k)) ; injectivity of slot (Qinj)
7 (assert ∀ar:Arr, i: Int :: {slot(ar,i)}
8 next(slot(ar,i)) = slot(ar,i+1)) ; definition of next (Qnxt)
9 ; ... declare uninterpreted constants h : Heap, a : Arr, len,j : Int

10 (assert ∀i: Int. {lookup(h, slot(a,i))} ; sortedness property (Qsrt)
11 i < 0 ∨ i >= len ∨ lookup(h, slot(a,i)) >= lookup(h, next(slot(a,i))))
12 (assert 0 <= j ∧ j+100 < len) ; avoids trivial models (e.g., len = 0)
13 (assert (not (lookup(h, slot(a,j)) > (lookup(h, next(slot(a,j)))))))
14 (check-sat)

Fig. 1. Running example: a simple SMT encoding of a problem with heaps and arrays.
We use pseudocode roughly based on the smtlib format, with presentational liberties.

Quantifier Instantiation via E-matching. The most commonly-employed
method for supporting first-order quantifiers in an SMT solver is E-matching [8].
Each ∀-quantified subformula (after conversion to negation normal form) must
be equipped with at least one pattern: a set of terms to pattern-match against in
order to trigger a quantifier instantiation. We write patterns in braces preceding a
quantifier body, such as {slot(ar,i)} in line 7 of Fig. 1. This pattern prescribes
instantiating the quantifier when a ground term of the form slot(ar′,i′) is
present (for some terms ar′, i′) in the E-graph. In this instantiation, ar is bound
to (replaced by) ar′ and i to i′. Patterns may contain multiple terms (e.g.
{slot(ar,i),slot(ar,k)} in line 5), meaning that the quantifier is instantiated
only if the E-graph contains a matching term for each of these pattern terms. It
is also possible to specify multiple (alternative) patterns for the same quantifier.

The choice of patterns is critical to the behaviour of the SMT solver. Since
quantifier instantiations will only be considered when matching terms are encoun-
tered, overly restrictive patterns cause relevant quantifier instantiations to be
missed (in the extreme case, if no ground term matching the pattern is encounte-
red, the solver will behave as if the quantified formula were not present). But
overly permissive patterns can cause too many quantifier instantiations, resulting
in bad performance and even non-termination. The example in Fig. 1 performs
around 5000 quantifier instantiations before unknown is reported, indicating
that the solver can neither deduce unsatisfiability, nor confirm that its candidate
model is correct (the solver cannot be certain whether the candidate model could
be ruled out by extra quantifier instantiations not allowed by the patterns).

Why are so many quantifier instantiations made, for such a simple problem?
One issue is the quantifier labelled Qnxt, with a matching term slot(ar′,i′). The
resulting instantiation yields the assertion next(slot(ar′,i′)) = slot(ar′,i′+1),
in which the (new) ground term slot(ar′,i′+1) occurs; when added to the E-

4



graph, this will trigger a new match, in a sequence which can continue indefinitely
(the solver terminates only because we bound the depth to 100). Such a repeating
instantiation pattern is called a matching loop, and is a key cause of poorly per-
forming solver runs. We will show in the next sections how we can systematically
discover this matching loop and other quantifier-related problems in our example.

As illustrated by the quantifier Qsrt, terms in patterns may include nested
function applications. Matching of ground terms against such patterns is not
purely syntactic, but is performed modulo the equalities in the candidate model.
For example, adding x = slot(a,3) ∧ lookup(h, x) = 42 to the example will
trigger a match against the pattern {lookup(h, slot(a,j))} .The application of
lookup can be rewritten via the assumed equality to lookup(h, slot(a,3)), which
matches the pattern. Thus, understanding an instantiation requires knowledge
not only of the available terms, but also of the equalities derived by the solver.

3 A Debugging Recipe for SMT Quantifiers

Even with input problems as simple as that of Fig. 1, undesirable quantifier
instantiations easily occur; realistic problems generated by, for instance, program
verification tools typically include many hundreds of quantifiers, thousands of
terms, and a complex mixture of propositional and theory-specific constraints. Di-
agnosing and understanding performance problems is further complicated by the
fact that the observed slow-downs may not be due to the quantifier instantiations
alone; quantifier instantiations may generate many additional theory-specific
terms which slow theory reasoning in the SMT solver, and disjunctive formulas
which slow the case-splitting boolean search.

In order to systematically understand a quantifier-related SMT problem, we
identify (based on our experience) the following sequence of debugging questions:

1. Are there suspicious numbers of quantifier instantiations? If not, poor per-
formance is due to other causes, such as non-linear arithmetic reasoning.

2. Which quantifiers exist in the given SMT problem, and what are their pat-
terns? The answer to this question is crucial for the subsequent steps and
is by no means trivial: in many SMT applications, some quantifiers may be
generated by client tools, the SMT solver itself may preprocess input formulas
heavily (and heuristically select missing patterns), and nested quantifiers
may be added only when outer quantifiers are instantiated.

3. Which quantifiers are instantiated many times? Our experience shows that
most quantifier instantiation problems are caused by relatively few quantifiers.
The quantifiers identified here will be further examined in the next steps.

4. To identify problematic quantifiers, it is often useful to explore the interactions
between several quantifiers by asking:
(a) Does the causal relationship between quantifier instantiations exhibit high

branching: that is, a single quantifier instantiation leads directly to many
subsequent instantiations? A typical example is when an instantiation
produces new terms that lead to a combinatorial explosion of matches for

5



another quantifier. Once we have identified such a situation, we analyse
the involved quantifiers according to step 5.

(b) Are there long sequences of instantiations causing one another? Long
sequences often indicate matching loops. To determine whether that’s
the case, we ask: Is there a repeating sequence which indicates a matching
loop? If so, we analyse the involved quantifiers (as described in step 5) to
determine whether and how this sequence can repeat indefinitely.

5. Once we have identified potentially problematic quantifiers, we analyse their
individual instantiations by asking:
(a) Which pattern of the instantiated quantifier is matched, and to which

terms? The answer is needed to understand the cause of the instantiation,
and particularly for identifying overly-permissive matching patterns.

(b) What do these terms mean with respect to the input problem? SMT terms
can often get very large and, thus, difficult to understand; tracing them
back to the original problems facilitates the analysis.

(c) Is the match triggered via equality reasoning? Where do the necessary
terms and equalities originate from? Such matches are difficult to detect
by manually inspecting the input problem because the patterns and the
matching terms look syntactically different; instantiation problems that
involve equality reasoning are especially difficult to debug by hand.

Except for the very first step in this recipe, efficiently answering these questions is
impractical without tool support; our Axiom Profiler now provides this support.

4 Visualising Quantifier Instantiations

The Axiom Profiler takes as input a log file produced by Z3 and provides a wide
range of features for analysing the performed quantifier instantiations. In this
section, we show the key features for visualising and navigating the data from
the log file. In the subsequent sections, we demonstrate how to analyse quantifier
instantiation problems, both manually and automatically.

Fig. 2 shows a screenshot for the example from Fig. 1. The tool shows in the
middle panel raw data on quantifier instantiations from the log file plus some
summary statistics, in the right-hand panel an instantiation graph with causal
relationships between instantiations, and in the left-hand panel details of selected
instantiations. We describe the three panels in the following.

Raw Data. The middle panel displays the raw data on quantifier instantiations,
organised per quantifier as an (XML-like) hierarchy of fields; we inherited this
view from the VCC Axiom Profiler [17]. The top-level statistics are useful as an
overview for steps 1–3 of our debugging recipe (Sec. 3). Each line corresponds to an
individual quantifier and shows its total number of instantiations (“#instances”).
Manually navigating the underlying raw data is possible, but typically impractical.

In our example 11 quantifiers are listed: the first 3 are from our input problem;
the remaining 8 are generated internally by Z3 (they are never instantiated, and

6



Fig. 2. A visualisation of the quantifier instantiations for the example in Fig. 1.

we ignore them for our discussion). We can see there are more than 5000 quantifier
instantiations in total; all three quantifiers are instantiated many times.

Instantiation Graph. The right-hand panel is one of the most important
features of our tool. The instantiation graph visualises causal relationships between
quantifier instantiations, which allows us to identify the high-branching and long-
sequence scenarios described in step 4 of our debugging recipe. The nodes in
the graph represent quantifier instantiations; a (directed) edge indicates that
the source node provides either a term which was matched in order to trigger
the successor node, or an equality used to trigger the match. Information about
equalities is important for step 5c of our recipe, as we will discuss in Sec. 5.

Graph nodes are coloured, where each colour indicates a different quantifier;
all instantiations of the same quantifier are coloured identically. The colours
make it easy to spot prevalent quantifiers, and to visually identify patterns such
as repeating sequences down a long path, which often indicate a matching loop.

Since instantiation graphs can get very large, we provide various filters, for
instance, to control the maximum depth to which the graph is displayed, or to
expand and collapse the children of a node. It is also possible to display the
nodes with the highest number of children (to detect high branching, see step 4a)
or the nodes starting the longest paths, as well as longest path starting from a
node, which are features especially useful for detecting matching loops.

Our running example contains several instantiation problems. For instance,
the instantiation graph in Fig. 2 shows a very large number of purple nodes (the
quantifier labelled Qinj in Fig. 1) and two sequences of yellow (the Qnxt quantifier)
and green (Qsrt) nodes, which indicate potential matching loops. Whereas the

7



number of instantiations is also visible from the raw data, identifying such
groupings and patterns is made possible by the instantiation graph.

Instantiation Details. The raw data and instantiation graph allow one to
identify potentially-problematic quantifiers according to the first four steps of our
debugging recipe. To support the analysis described in step 5, the left-hand panel
provides details of all relevant information about specific quantifier instantiations.
The instantiation of interest can be selected in either of the other two panels.

Selecting the top node in the graph from our example yields an explanation
of the first instantiation of the (Qnxt) quantifier. The panel lists blamed terms:
that is, terms in the E-graph whose subterms were matched against the patterns;
here, the blamed term is slot(a,j) (the numbers in square brackets are explained
below). The subterm of a blamed term matched against the pattern (here, the
whole term) is highlighted in gold, while the nested subterms bound to quantified
variables (here, a and j) are shown in blue. The panel then shows the bindings
per quantified variable (named by a unique number prefixed with “qvar_”), the
quantifier itself (highlighting the pattern matched against), and any new resulting
terms added to the E-graph. In particular, the bound terms and pattern matched
against provide the information needed for step 5a of the debugging recipe.

In realistic examples, presenting the relevant terms readably can be a challenge,
for which we provide a variety of features. Since the E-graph often contains
only partial information about interpreted literals, it can be useful to annotate
function applications and constants with a numeric term identifier (shown in
square brackets); these identifiers are generated by Z3. For example, all integer-
typed terms are simply represented by Int() here; the term identifiers allow us to
identify identical terms, even though their precise meanings are unknown. Since
identifiers can also make large terms harder to read, enabling them is optional.

For some problems, the relevant terms can get extremely large. To present
terms in a meaningful form (see step 5b of our recipe), our tool provides facilities
for defining custom printing rules. Typical use cases include simplifying names,
and rendering those representing operators (such as a list append function) with
infix syntax. In addition, our tool allows one to choose the depth to which terms
are printed; we use ... to replace subterms below this depth.

5 Manual Analysis of Instantiation Problems

In this section, we demonstrate on the example from Fig. 1 how to use the features
of the Axiom Profiler to manually analyse and debug quantifier instantiation
problems. The automatic analyses provided by our tool will be discussed in Sec. 6.

Simple Matching Loops. Since all three quantifiers in our example lead
to many instantiations, we start narrowing down the problem by looking for
matching loops (step 4b in the recipe). Filtering for nodes starting the longest
paths displays the sub-graph on the left of Fig. 3. One can see two parallel

8



Fig. 3. Sub-graphs of the instantiation graph for the example in Fig. 1 showing the
simple matching loop, high branching, and the matching loop with equality reasoning.
Instantiations of Qnxt are yellow, Qsrt is green, and Qinj is purple.

sequences of instantiations; an initial one of yellow (Qnxt) instantiations, and a
second of green (Qsrt) instantiations. Since the (Qnxt) sequence is self-contained
(there are no incoming edges from outside of these nodes), we investigate this
one first. By selecting and inspecting the details of these instantiations (in the
left-hand panel) in turn, we see that all after the first look very similar: each
blames a term of the shape slot(a, Int() + j) (Int() abstracts all constants
from the integer theory) and produces (among others) a new term of this same
shape. The term identifiers show that the new term from each instantiation is
the one blamed by the next, indicating a matching loop. In Sec. 6, we will show
how the Axiom Profiler can perform this entire analysis automatically.

The detected matching loop for Qnxt is the one we discussed in Sec. 2. It can
be fixed by selecting a more restrictive pattern for the Qnxt quantifier, namely
{next(slot(a,i))} , only allowing instantiations when the next function is applied
to an array slot. In particular, instantiating the quantifier does not produce a
new term of this shape, which breaks the matching loop. Re-running Z3 on the
fixed example reduces the number of quantifier instantiations to around 1400.

High Branching. Besides long paths, high branching may point to potentially
problematic quantifiers (see step 4a of our debugging recipe). Once we have
fixed the matching loop described above, we use the “Most Children” filter
(available from “Redraw Graph”) to identify the nodes with highest branching
factor; subsequently using “Show Children” on one of these nodes results in the
sub-graph in the middle of Fig. 3. This node has 42 child nodes, of which 41

9



are instantiations of the injectivity property (Qinj). The pattern for this quan-
tifier is {slot(a,i),slot(a,k)} , so each instantiation requires two applications
of the slot function. Examining the instantiation details reveals that the 41
instantiations all share one of the two slot terms, while the other varies. The
common term is produced by the parent node, and then combined with many
previously-existing terms to trigger the instantiation 41 times.

The underlying problem is that the pattern yields a number of instantiations
that is quadratic in the number of slot terms. This is a known “anti-pattern”
for expressing injectivity properties; an alternative is to add an inverse function
and axioms expressing this fact [6], which can then match linearly in the number
of slot terms. For simple injectivity axioms such as that from our example, Z3
will even perform this rewriting for us; we disabled this option for the sake of
illustration. Enabling this reduces the number of quantifier instantiations to 152.

Equality Explanations. The remaining instantiations in our example form a
long path, which may indicate another matching loop. As shown on the right
of Fig. 3, the path alternates the quantifiers Qnxt and Qsrt. Unlike for the
simple matching loop we uncovered earlier in this section, neither of the two
quantifiers now produces a term that directly matches the pattern for Qsrt.
Instead, subsequent instantiations are triggered by rewriting terms via equalities.

The Axiom Profiler explains the required rewriting steps to support step 5c
of the recipe. In particular, the instantiation details shown include, besides the
blamed terms, the equalities used and how they can yield a term that matches
the necessary pattern. In our example, the very first instantiation blames a term
lookup(h, next(slot(a, j))) and shows the following relevant equality:

(2) next(slot(a, j))
= (next_def[#56])
slot(a, +(Int(), j))

where (2) is a number for this equality, and the (next_def[#56]) annotation after
the equality symbol is the justification for the equality; in this case, it names a
quantifier (the Qnxt quantifier in Fig. 1). In general, equality justifications can be
more complex; we contributed code for Z3 to log relevant information, letting us
reconstruct transitive equality steps, theory-generated equalities, and congruence
closure steps (for which a recursive equality explanation can also be generated).

By inspecting each node’s blamed terms and relevant equality information, it
is possible to indeed uncover a matching loop still present in this version of our
example. In brief: instantiating the Qsrt quantifier produces a term that triggers
an instantiation of the Qnxt quantifier, which produces equality (2). This equality
is then used to rewrite the same term, resulting in another match for the Qsrt
quantifier, and so on. Matching up all relevant terms and assembling the details
of this explanation manually remains somewhat laborious; in the next section,
we show a more detailed explanation which our tool produces automatically.

10



6 Automated Explanation of Matching Loops

The previous section illustrated how the Axiom Profiler supports the manual
analysis of quantifier instantiation problems. For the common and severe problem
of matching loops, our tool is also able to produce such explanations automatically,
reducing the necessary debugging effort significantly.

Consider the example from Fig. 1, after fixing the first of the two matching
loops as explained in the previous section. Recall that ourmanual analysis revealed
that the second matching loop consists of repeated instantiations of quantifier Qsrt,
which are sustained via equalities obtained from the quantifier Qnxt. Applying
our automated analysis produces the following explanation: (1) It identifies a
potential matching loop involving the quantifiers Qnxt and Qsrt. (2) It synthesises
a template term lookup(h, next(slot(a,T1)) whose presence, for any term T1,
sets off the matching loop. (3) It explains step by step: (a) how such a term triggers
the quantifier Qnxt (recall that we fixed the pattern to {next(slot(ar,i))} ) to
produce the equality next(slot(a,T1))=slot(a,T1+Int()), (b) how this equality
is used to rewrite the template term to lookup(h, slot(a,T1+Int()), (c) that
the resulting term causes an instantiation of quantifier Qsrt to produce the
term lookup(h, next(slot(a,T1+Int())), and (d) how this term sets off the next
iteration by using T1+Int() for T1. Our algorithm to produce such explanations
consists of four main steps, which we explain in the remainder of this section.

Step 1: Selecting Paths. Our algorithm starts by selecting a path through the
instantiation graph that represents a likely matching loop. The user can influence
this choice by selecting a node that must be on the path and by selecting a sub-
graph that must contain the path. The algorithm then chooses a path heuristically,
favouring long paths and paths with many instantiations per quantifier (more
precisely, per matched pattern). Since it is common that paths contain several
instantiations before actually entering a matching loop, our algorithm prunes
path prefixes if their quantifiers do not occur frequently in the rest of the path.

Step 2: Identifying Repeating Sequences. Matching loops cause repeated
sequences of quantifier instantiations. We abstract the instantiations on a path to
a string (instantiations of the same quantifier and pattern get the same character),
and efficiently find the substring (subsequence of instantiations) repeating most
often using suffix trees [25]; in our example, this subsequence is Qnxt, Qsrt.

Step 3: Generalising Repetitions. Each repetition of the subsequence iden-
tified in the previous step potentially represents an iteration of a matching
loop. To produce a generalised explanation for the entire loop, we first produce
explanations of each individual repetition and then generalise those explanations.

The automatic explanation of the individual repetitions works as summarised
in steps 5a and 5c of our debugging recipe, and uses the same functionality that
we used for the manual analysis in the previous section. In our example, the
analysis reveals that the first repetition of the sequence is triggered by the term
lookup(h,slot(a,i)), which comes from the assertion in line 13. This term triggers

11



an instantiation of the quantifier Qsrt, which in turn triggers the quantifier Qnxt

to produce the equality next(slot(a,i))=next(slot(a,i+1)). Rewriting the term
lookup(h,next(slot(a,i))) from the quantifier Qsrt with this equality produces
lookup(h,slot(a,i+1)). Performing this analysis on the second repetition shows
that it is triggered by exactly this term and, after the analogous sequence of
steps, produces lookup(h,slot(a,i+2)), and so on.

The explanations for the individual repetitions of the sequence will differ
in the exact terms they blame and equalities they use. However, since each re-
petition triggers the same patterns of the same quantifiers, these terms and
equalities have term structure in common. We extract this common struc-
ture by performing anti-unification [21], that is, by replacing each position
in which subterms disagree with fresh symbolic variables. In our example, anti-
unification of the blamed terms for the first instantiation of each repetition
produces lookup(h,slot(a,T1)), that is, the disagreeing terms i, i+1, etc. have
been replaced by the fresh symbolic variable T1. Similarly, the used equalities
are anti-unified to next(slot(a,T2))=next(slot(a,T3+Int())).

Introducing a fresh symbolic variable in each such position loses information
for terms originally occurring multiple times. For instance, in our example, anti-
unifying the blamed terms and the used equalities introduces three symbolic
variables T1, T2, T3 even though the disagreeing terms are equal in each repetition
of the sequence. This equality is vital for the explanation of the matching loop.

In simple examples such as this one, we need only keep the first introduced
symbolic variable T ; in general there may be different choices which can mutually
express each other via function applications (e.g. T = f(T ′) and T ′ = g(T ),
for which either symbolic variable would be sufficient). We handle the general
problem of selecting which symbolic variables to keep by building a directed
graph to represent this expressibility relation between symbolic variables. We
have developed an algorithm to efficiently select some subset of the symbolic
variables with no redundant elements based on this graph; we then rewrite all
generalised terms and equalities using only these variables. In our example, the
graph reflects T1 � T2 � T3 and, thus, we are able to rewrite the generalised
equality to use only T1 resulting in next(slot(a,T1))=next(slot(a,T1+Int())).

Step 4: Characterising Matching Loops. Once we have generalised tem-
plates of the blamed terms and equalities, we use these to express the terms
used to begin the next iteration of the repeating pattern; if this is a term with
additional structure, we classify the overall path explained as a matching loop.
In our example, we see that where T1 was used, T1+Int() is used in the next
iteration, from which we conclude that this is indeed a matching loop. We add
the information about these terms used to start the next iteration of the loop to
our finalised explanations (cf. (d) in the explanation starting this section).

7 Implementation and Evaluation

Our work is implemented as a stand-alone application. We also submitted (accep-
ted) patches to Z3 to obtain the full logging information that our tool requires; we

12



Example Tool #quants #instantiations #loops longest = used
compiler Why3 1,473 195,961 1 12
kmp Why3 35 1,376 1 18
blocking_semantics5 Why3 86 210,291 2 10
fibonacci Why3 234 32,647 2 19
induction Why3 2 197 1 20
sf Why3 5 2,020 2 16
sumrange Why3 10 1,837 2 19
vstte10_queens Why3 16 194 1 18
unionfind Viper 98 285,311 1 100 X
linked_list_qp_append Viper 196 17,470 1 96
testHistoryLemmasPVL Viper 4 271 2 100 X
testHistoryThreadsLemmasPVL Viper 4 270 2 100 X
tree_delete_min Viper 19 6,709 1 96 X
list_insert Viper 24 287,559 1 94 X
list_insert_heuristics Viper 23 181,392 1 94 X
tree_delete_min_heuristics Viper 19 29,747 1 96 X
tree_delete_min_no_assert Viper 19 120,776 1 98 X
ComputationsLoop Dafny 16 518 1 33
ComputationsLoop2 Dafny 20 519 1 33
NoTypeArgs Dafny 59 40,110 1 98 X
Lucas-down Dafny 86 3,412 1 99
Lucas-up Dafny 129 46,877 1 91

Fig. 4. An overview of the matching loops found in examples flagged by the automa-
ted analysis. #quants" indicated the no. of quantifiers present (we only count those
instantiated at least once). "longest" indicates the length of the longest path; "= used"
indicates whether equality explanations occur in the generalised path explanation for
this matching loop. Examples exhibiting similar matching loops are grouped together.

now record equalities used for matching patterns, and justifications for how these
equalities were derived from the solver’s E-graph. These logging mechanisms are
enabled via the additional trace=true proof=true logging options. Other SMT
solvers could produce the same information (information on terms, equalities and
matches), and reuse our work.

In order to demonstrate that the Axiom Profiler can be used to identify and
help explain matching loops in real world problems, we ran experiments on a
total of 34,159 SMT files, corresponding to the full test suites of a selection of
verification tools which use Z3 as a backend: F* [24] (6,281 files), Why3 [11]
(26,258 files), Viper (887 files) [19], Nagini [10] (266 files) and Dafny [14] (467
files)). Using a command-line interface for our tool, we analysed each of these files
in an attempt to find matching loops. We note that since these are expert-written,
polished (and, presumably performant) test suite examples, one might expect
most, if not all such issues to have been eliminated.

For each file, the tool analysed the 40 longest paths in the instantiation graph,
searching for matching loops using the analysis of Sec. 6. In order to eliminate
most false positives (since paths were found with no user introspection, and
repeating patterns do not always indicate matching loops), we searched for paths
with at least 10 repetitions of some quantifier instantiation sequence. We found
51 such files, and inspected each by hand for matching loops, using the techniques
of Sec. 4 and Sec. 6 to identify whether matching loops are present (false positives

13



also occurred: for example, in tools which model lookups in program heaps using
axioms, there are often long chains of instantiations of the same axiom but for
different versions of the heap). For all investigated examples, our tool analyses
these paths in a second or two: this manual classification is very efficient.

Fig. 4 summarises the matching loops we discovered. We found 28 previously-
unknown matching loops: 13 from Why3, 10 from Viper and 5 from Dafny; we
didn’t find any matching loops in the F* or Nagini suites (which could be due to
highly-tuned or restrictive triggers). The matching loops we detected were of many
varieties. In Why3, 10 stemmed from modelling recursively-defined concepts (e.g.
∀x: Int even(x). even(x) =⇒ even(x + 2)). We also found more complex mat-
ching loops in Why3’s axiomatization of lists and arrays. For example, an array ax-
iom ∀x, y. {mk_ref(x,y)}. sort(ref(x),mk_ref(x,y)) yields a term matching a
second axiom, yielding contents(ref(T1), mk_ref(ref(T1),mk_ref(T1,T2))). The
outer mk_ref term is new; we can instantiate the first axiom again. Why3 leaves
the selection of most patterns to the SMT-solver, and uses a timeout (along with
alternative solvers); this explains the potential for matching loops.

Viper provides two verifiers; we extracted and ran SMT queries for both. We
found 4 causes of matching loops; some manifested in multiple files. These include
direct matching loops and more complex cases: e.g. in the testHistoryLemmasPVL

example, an associativity axiom allows repeatedly generating new term structure,
which feeds a parallel matching loop concerning a recursive function definition.

For Dafny, we also found some simple and some complex cases. One axiom
∀a, b, c {app(a, app(b, c))}. app(a, app(b, c)) = app(app(a, b), c) expres-
sing associativity of a concatenation operator3, in combination with a case-split
assumption made by Z3 that one term a’ instantiated for a is equal to Nil, and
the known property Nil=app(Nil,Nil), allows rewriting the right-hand-side term
learned from each instantiation with a new app application on which the same
axiom can be matched. A similar problem is described by Moskal [17].

In all cases (including those which, when inspected manually turned out
to be false positives), following our debugging recipe and applying the Axiom
Profiler’s features allowed us to quickly isolate and explain the matching loops
present. We have communicated our findings to the respective tool authors, who
all confirmed that these matching loops were previously-unknown and that they
plan to investigate them further (potentially using the Axiom Profiler itself).

8 Related Work

Since its origin in the Simplify prover [8], E-matching has been adapted and
improved in implementations for a variety of SMT solvers [5, 12, 18, 2, 1]). Since
E-matching-based instantiation gives weak guarantees for satisfiable problems
(typically returning unknown as an outcome), for problem domains where satisfi-
ability (and a corresponding model) is the desired outcome, alternative instantia-
tion techniques have been proposed [13, 23, 22]. For specific domains, these are
3 The actual function name is concat; we abbreviate for readability.

14



often preferable, but for problems in which many external concepts need to be
modelled with quantifiers, such as deductive program verification, E-matching
remains the only general solution. While our work focuses on E-matching support,
it would be interesting future work to investigate to what extent we could also
provide useful information about other quantifier instantiation strategies.

As discussed in the Introduction, we build upon the VCC Axiom Profiler [17]
tool, which defined first versions of the logging in Z3 (without equality informa-
tion), the raw data display (retained in our middle panel) and a basic display
of information per quantifier, without explanations of equalities used to justify
matches. The contributions of this paper make it practical to quickly navigate and
understand even complicated SMT runs, in ways impossible with the previous
tool. Nonetheless, this prior tool was a very helpful basis for our implementation.

The serious challenges of pattern selection have warranted papers both on
expert strategies [17, 15], and for formalising the logical meaning of quantifiers
equipped with patterns [9]. Various SMT solvers select patterns for quantifiers
automatically (if omitted by the user). To reduce the uncertainty introduced in
this way, many program verification tools select their own patterns when encoding
to SMT (e.g., VCC [4], Viper [20], Dafny [14]). Leino and Pit-Claudel [16] present
a technique for selecting patterns in Dafny while avoiding direct matching loops;
the matching loops we found in Dafny tests arose in spite of this functionality.

9 Conclusions

In this paper, we presented a comprehensive solution for the analysis of quantifier
instantiations in SMT solvers. Our newly-developed Axiom Profiler enables a user
to effectively explore and understand the quantifier instantiations performed by
an SMT run, their connections and potentially-problematic patterns which arise
(e.g. due to matching loops). Our instantiation graph, customisable visualisation
of information and automatic explanations for matching loops make investigating
even complex SMT queries practical in reasonable time. Furthermore, we were
able to script these analyses to uncover matching loops in a variety of test suites
for existing tools; it would be interesting to analyse further tools in this way.

As future work, we plan to investigate tighter integration with tools that
build on SMT solvers, e.g. to represent terms at a higher level of abstraction. We
also plan to investigate whether theory-reasoning steps in the SMT solver can
be made less opaque to our tool, especially with respect to justifying equalities.
Automating explanations for matching loops with repeating structures more
complex than single paths would be a challenging extension of our techniques.

Acknowledgements. We thank Frederik Rothenberger for his substantial work
on visualisation features. We are grateful to Marco Eilers, Jean-Christophe
Filliâtre, Rustan Leino, Nikhil Swamy for providing their test suites and advice
on their verification tools. We thank Nikolaj Bjørner for his assistance with Z3,
and Michał Moskal for generous advice and feedback on earlier versions of the
tool. Finally, we are very grateful to Marco Eilers, Malte Schwerhoff and Arshavir
Ter-Gabrielyan, for providing extensive feedback on our tool and paper drafts.

15



References

1. K. Bansal, A. Reynolds, T. King, C. W. Barrett, and T. Wies. Deciding local theory
extensions via e-matching. In Computer Aided Verification - 27th International
Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings,
Part II, pages 87–105, 2015.

2. C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Rey-
nolds, and C. Tinelli. Cvc4. In Proceedings of the 23rd International Conference
on Computer Aided Verification, CAV’11, pages 171–177, Berlin, Heidelberg, 2011.
Springer-Verlag.

3. E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. Vcc: A practical system for verifying concurrent c. In
S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, editors, Theorem Proving
in Higher Order Logics: 22nd International Conference, TPHOLs 2009, Munich,
Germany, August 17-20, 2009. Proceedings, pages 23–42, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

4. E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. Vcc: A practical system for verifying concurrent C.
In S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, editors, Theorem Proving
in Higher Order Logics: 22nd International Conference, TPHOLs 2009, Munich,
Germany, August 17-20, 2009. Proceedings, pages 23–42, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

5. L. de Moura and N. Bjørner. Efficient E-matching for SMT solvers. In F. Pfenning,
editor, Automated Deduction – CADE-21, pages 183–198, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

6. L. de Moura and N. Bjørner. Z3 – a tutorial. Technical report, Microsoft Research,
2010.

7. L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In C. R. Ramakrishnan
and J. Rehof, editors, TACAS, volume 4963 of LNCS, pages 337–340. Springer,
2008.

8. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program
checking. J. ACM, 52(3):365–473, May 2005.

9. C. Dross, S. Conchon, J. Kanig, and A. Paskevich. Reasoning with triggers. In
P. Fontaine and A. Goel, editors, Satisfiability Modulo Theories (SMT), volume 20
of EPiC Series in Computing, pages 22–31. EasyChair, 2012.

10. M. Eilers and P. Müller. Nagini: A static verifier for python. In H. Chockler and
G. Weissenbacher, editors, Computer Aided Verification (CAV), volume 10982 of
LNCS, pages 596–603. Springer International Publishing, 2018.

11. J.-C. Filliâtre and A. Paskevich. Why3—where programs meet provers. In European
Symposium on Programming, pages 125–128. Springer, 2013.

12. Y. Ge, C. Barrett, and C. Tinelli. Solving quantified verification conditions using
satisfiability modulo theories. In F. Pfenning, editor, Automated Deduction – CADE-
21, pages 167–182, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

13. Y. Ge and L. Moura. Complete instantiation for quantified formulas in satisfiabiliby
modulo theories. In Proceedings of the 21st International Conference on Computer
Aided Verification, CAV ’09, pages 306–320, Berlin, Heidelberg, 2009. Springer-
Verlag.

14. K. R. M. Leino. Dafny: An automatic program verifier for functional correctness.
In International Conference on Logic for Programming Artificial Intelligence and
Reasoning, pages 348–370. Springer, 2010.

16



15. K. R. M. Leino and R. Monahan. Reasoning about comprehensions with first-order
SMT solvers. In Proceedings of the 2009 ACM Symposium on Applied Computing,
SAC ’09, pages 615–622, New York, NY, USA, 2009. ACM.

16. K. R. M. Leino and C. Pit-Claudel. Trigger selection strategies to stabilize program
verifiers. In Computer Aided Verification - 28th International Conference, CAV
2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I, pages 361–381,
2016.

17. M. Moskal. Programming with triggers. In SMT, volume 375 of ACM International
Conference Proceeding Series, pages 20–29. ACM, 2009.

18. M. Moskal, J. Lopuszański, and J. R. Kiniry. E-matching for fun and profit. Electron.
Notes Theor. Comput. Sci., 198(2):19–35, May 2008.

19. P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification infrastructure
for permission-based reasoning. In B. Jobstmann and K. R. M. Leino, editors,
VMCAI, volume 9583 of LNCS, pages 41–62. Springer-Verlag, 2016.

20. P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification infrastructure
for permission-based reasoning. In International Conference on Verification, Model
Checking, and Abstract Interpretation, pages 41–62. Springer, 2016.

21. G. D. Plotkin. A note on inductive generalization. In B. Meltzer and D. Michie,
editors, Machine Intelligence, pages 153—163. Edinburgh University Press, 1970.

22. A. Reynolds, C. Tinelli, and L. de Moura. Finding conflicting instances of quantified
formulas in SMT. In Proceedings of the 14th Conference on Formal Methods in
Computer-Aided Design, FMCAD ’14, pages 31:195–31:202, Austin, TX, 2014.
FMCAD Inc.

23. A. Reynolds, C. Tinelli, A. Goel, S. Krstić, M. Deters, and C. Barrett. Quantifier
instantiation techniques for finite model finding in SMT. In Proceedings of the
24th International Conference on Automated Deduction, CADE’13, pages 377–391,
Berlin, Heidelberg, 2013. Springer-Verlag.

24. N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang. Secure
distributed programming with value-dependent types. In Proceedings of the 16th
ACM SIGPLAN International Conference on Functional Programming, ICFP ’11,
pages 266–278, New York, NY, USA, 2011. ACM.

25. P. Weiner. Linear pattern matching algorithms. In Switching and Automata Theory
(SWAT), pages 1–11. IEEE, 1973.

17


