
Reframing the Liskov Substitution Principle through
the Lens of Testing

Elisa Baniassad
University of British Columbia

Vancouver, Canada
ebani@cs.ubc.ca

Alexander J. Summers
University of British Columbia

Vancouver, Canada
alex.summers@ubc.ca

Abstract
In this essay, we explore a new pedagogical framing of the
Liskov Substitution Principle (LSP). In addition to, or perhaps
even in place of, teaching the specifics of the rule itself, we
advocate an operationalised version of the rule: that a sub-
type must pass its supertype’s black box tests for each of its
overriding methods. We leverage the fact that black box tests
should be written to capture conformance to a specification
without overfitting or checking implementation internals
(as would be checked by glass box tests). A type that vio-
lates the rules of substitutability will also fail a potential
corresponding black box test for the supertype. Addition-
ally, we argue that the over-strict nature of the classical LSP
Postcondition Rule (which has been improved in subsequent
work) can be a source of confusion for both instructors and
for students learning this crucial concept for the first time.
Pleasingly, many of the technical subtleties of this nuanced
but important concept drop out naturally when thinking
of substitutability via black box tests. We propose that this
test-oriented means of teaching substitutability is a valuable
alternative to the classical sense of checking the LSP, with
the benefit of being intuitively accessible to students.

CCS Concepts: • Software and its engineering → Soft-
ware design engineering.

Keywords: Testing, Substitutability, CS-Education

ACM Reference Format:
Elisa Baniassad and Alexander J. Summers. 2021. Reframing the
Liskov Substitution Principle through the Lens of Testing. In Pro-
ceedings of the 2021 ACM SIGPLAN International SPLASH-E Sympo-
sium (SPLASH-E ’21), October 20, 2021, Chicago, IL, USA. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3484272.3484965

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SPLASH-E ’21, October 20, 2021, Chicago, IL, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9089-7/21/10. . . $15.00
https://doi.org/10.1145/3484272.3484965

1 Introduction
The Liskov Substitution Principle [6] (hereafter, LSP) tells
software developers that to be substitutable, a subtype must
satisfy three rules (the following is a paraphrased quote
from Liskov and Guttag’s book Program Development in Java:
Abstraction, Specification and Object-Oriented Design [5]):

• The Signature Rule: Subtype methods must be compat-
ible with the signatures of corresponding supertype
methods.

• TheMethods Rule: Calls to the subtype’s methods must
behave like calls to the supertype’s methods.

• The Properties Rule: The subtype’s methods must pre-
serve all properties provable about supertype objects.

The Methods Rule is the best known in education. It is often
taught as originally presented [6] by breaking it down into
two parts. The Precondition Rule states that subtype methods
mustn’t strengthen preconditions, while the Postcondition
Rule states that subtype methods mustn’t weaken postcondi-
tions. The Signatures rule is checked by the compiler so we
will not address that through the rest of this essay.

It’s hard for students to connect to the LSP. The Precon-
dition and Postcondition Rules are tough to remember and
difficult to operationalise, and at least in our anecdotal expe-
rience not often considered when students move on to make
their own subtypes. For students new to software engineer-
ing, the implications and power of a specification are still
not felt.

Furthermore, despite the importance of these original defi-
nitions [6], subsequentwork identifies subtly different logical
formulations of the Methods Rule which are more flexible
and closer to the intuition of the original principle [2, 5],
while the application of the Properties Rule to general object
invariants and subtypes has led to an extremely diverse vari-
ety of different technical challenges and competing method-
ologies for tackling them [3]. We believe that the subtle
clashes between the classical LSP rules (which are still often
taught in practice, and are ubiquitous in verbal explanations
of the principle) and programming scenarios arising in prac-
tice can cause an additional source of confusion for students.
Further along in Liskov and Guttag’s same book is a sec-

tion on Testing a Type Hierarchy which states: “When there
is a type hierarchy, the black box tests for a subtype must in-
clude those for the supertype.” [5] It then sets out a way for

49

https://doi.org/10.1145/3484272.3484965
https://doi.org/10.1145/3484272.3484965

SPLASH-E ’21, October 20, 2021, Chicago, IL, USA Elisa Baniassad, Alexander J. Summers

that to work — that all the black box tests of the supertype
should be reusable for a subtype by simply rewriting initial-
isation code to call subtype constructors, instantiating the
subtype instead of the supertype. Inspired by this idea, we
have explored an alternative formulation of the notion of
substitutability motivating the LSP itself. Our alternative
formulation can be boiled down to the following condition:
“A subtype has to pass all the supertype’s (black box)
tests. If it doesn’t, it’s not substitutable!”
We see potential pedagogical benefits of framing substi-

tutability in terms of tests, rather than constraints on subtype
specifications. Tests are, after all, taught early in most pro-
gramming curricula. In many courses, students are taught
to write tests against a specification, and to write the tests
prior to implementation. Passing tests can even translate
into grades for students in some automatic-grading settings.
Thus, software construction/software engineering students
are familiar with the concept of tests, and their importance
to software processes. That’s not to say that students neces-
sarily appreciate the concepts of test driven development, or
adhere to them in their own practice, but testing (including
specific pass and fail outcomes) is at least a concrete notion
they can easily latch onto. So simplifying the complex for-
malism of the LSP into an easy to digest rule about tests
would be a win.

In this essay we present a way of presenting the LSP
through this lens of testing, exploring whether such an ap-
proach effectively captures all parts of the LSP, and has the
potential to avoid the common pitfalls students experience
when trying to learn it.

2 LSP Primer
The Liskov Substitution Principle (LSP) has various defini-
tions in different sources. The principle was originally de-
scribed in the seminal paper by Barbara Liskov and Jeanette
Wing [6]. Liskov and Guttag then reworded it, and refined
the Postcondition Rule (in a style which had been identified
by Krishna and Leavens [2]) for a pedagogical audience in
a text book called Program Development in Java: Abstrac-
tion, Specification and Object-Oriented Design [5]. It was
their verbal formulation that we used in the introduction. In
this section we walk through the original formulation via
the language of the textbook; we will discuss variations of
the definitions (in particular, for handling postconditions) in
later sections.

As a basis for discussion, let’s set up a type called Super -
it has one method behave(int i). Its implementation main-
tains a count of all the times behave(int i) has been called
(e.g. in a simple int-typed field). We’ll be using Super to look
at the three LSP components (Signatures, Methods, Proper-
ties). In that exploration, we will introduce some convenient
subtypes to illustrate each rule.

2.1 The Methods Rule
The Methods Rule is taught most in classrooms. It looks
at methods in terms of a method’s preconditions and post-
conditions. It states that for a given overriding method, the
precondition should not be more strict (meaning that the sub-
type’s method should be callable in at least all the situations
where the supertype’s method is callable), and the post con-
dition should not be weaker (meaning it should not produce
effects that the client doesn’t expect). Should either of those
be violated, the substitutability principle is not preserved.
This is of course because clients of the type will not be able to
use the subtype as they would the supertype: they will meet
with unexpected restrictions and/or unwanted consequences
of using the subtype. That means, of course, that the subtype
isn’t actually substitutable - it’s not a usable substitute for
the original.

In our experience, most educators concentrate on call sit-
uations in which supertype preconditions are satisfied (as
should be required of a call against the supertype’s inter-
face). However, this focus naturally misses two important
subtleties. Firstly, the classical Postcondition Rule is not qual-
ified by the restriction to calls satisfying the precondition.
As we elaborate on in Sec. 4.1, this makes the simple sym-
metrical formulation of this rule logically more restrictive
than necessary in general; from a teaching perspective the
requirement becomes overly-abstract as a consequence. This
deficiency has been observed and resolved in later formal
rules (both by Krishna and Leavens [2] and appearing in
Liskov and Guttag’s book [5]), which restrict the attention of
the Postcondition Rule to calls satisfying the supertype pre-
condition. This has the effect of allowing a subtype which
chooses to weaken its precondition to have no restriction
from the Postcondition Rule on how the function behaves in
these newly-allowed call situations (c.f. Sec. 4.2).
In Table 1, there is a root type (Super) that has a single

method. Its specification is shown in the row for Super. It
accepts a certain range of inputs, and produces a certain
range of outputs. We are using ranges for most examples
here because this is a popular way to teach the LSP. The
notions of weaker and stronger pre- and postconditions are,
anecdotally, more involved and difficult to understand, being
grounded in formalism. We believe that many instructors
present examples that are similarly range-oriented, because
on such simple examples the notions of weaker and stronger
constraints align with wider or narrower ranges.

In Table 1 there are four subtypes specified: three are sub-
stitutable (WiderPre, NarrowerPost and SubtractsFive)
and two are not (NarrowerPre and WiderPost). The rea-
sons for the passing and failing in terms of the Methods Rule
are provided. Most notably, while SubtractsFive.behave(int i)

doesn’t pass the classical formulation of the Postcondition
Rule; simply checking the two postconditions alone yields
the not-valid implication: result = i−5 ⇒ 0 ≤ result ≤ 5.

50

Reframing the Liskov Substitution Principle through the Lens of Testing SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

Table 1. Examples of Substitutable and Non-Substitutable Subtypes for the method behave(int i)

Classname Precondition Postcondition Pass or fail LSP?
Super 5 ≤ i ≤ 10 0 ≤ result ≤ 5 This is the supertype

WiderPre 2 ≤ i ≤ 20 0 ≤ result ≤ 5 Passes LSP! The precondition is allowed to be wider.
NarrowerPost 5 ≤ i ≤ 10 result = 3 Passes LSP! The postcondition is allowed to be narrower
NarrowerPre 6 ≤ i ≤ 8 0 ≤ result ≤ 5 Fails LSP! The precondition must not be more restrictive.
WiderPost 5 ≤ i ≤ 10 0 ≤ result ≤ 8 Fails LSP! The postcondition must not allow more outcomes.

SubtractsFive 5 ≤ i ≤ 10 result = i − 5 Fails the classical Postcondition Rule, but passes the LSP!

However, the subtype implementation is in fact substitutable
and passes the LSP. Understanding this relies on careful
teaching of how to properly consider relational postcondi-
tions, as we explain in Sec. 3.5.

2.2 The Properties Rule
For illustration of this rule, we will introduce three subtypes:

• WrappedCount stores in a wrapper object the count of
times its method behave is called, updating it via getters
and setters.

• FlakyCount increments the count by one except if called
with parameter values that are at least 10, in which
case it increments its count twice.

• ResettableCount adds an additional method resetCount

which resets the counter.

Recall that Super has the property that it maintains a count
of each time its method behave(int) is called. For the LSP
to hold for a subtype, the subtype also has to maintain that
property. WrappedCount in principlemaintains the property, but
the notion of “preserve” is subtle; since calling the wrapped
object will necessarily happen in a state while the property is
temporarily violated, whether the Properties Rule is satisfied
or not depends on exactly when object invariants can be
temporarily broken, and when they must be reestablished.
There is a large design space here (see e.g. [3] for a sum-
mary), and exactly which invariant discipline fits well may
differ for different software engineering styles. By contrast,
FlakyCount definitely doesn’t maintain the property, since
some sequences of calls to the subtype will produce different
(out of sync) counts. ResettableCount also doesn’t maintain
the property: calls to the additional method will violate the
original meaning of the count.

3 Common Learning Pitfalls
In our experience, students tend to be tripped up in multiple
ways by the LSP, ranging from simple issues to subtle ones;
some are fundamentally connected to the actual forms of
the definitions taught to the students, which can potentially
introduce false impressions or intuitions which do not carry
over to practical examples.

3.1 Must Subtypes Be Clones of the Supertype?
One of the features of the LSP is that subtypes can be differ-
ent from their supertypes, but only in ways that won’t be
problematic for a client of the supertype. Before students be-
gin to deconstruct the LSP, their first instinct is to think that
the LSP dictates that a subtype must be a tight reworking
of the supertype, adding nothing, removing nothing. We be-
lieve (though don’t have substantiation) that this contributes
to students’ dismissal of the LSP as a useful principle – we
get the sense, from the questions they ask in class, that they
see it as too restrictive and hampering, and that “in real life,
subtyping can’t possibly conform to such constraints”.
Students have difficulty grasping the idea that a subtype

satisfying the LSP can in fact both add behaviour and spe-
cialise existing behaviour. The way the principle is written
makes this complex to reason about. Students see the rule as
telling them what subtypes cannot do, but not making clear
what they can do.

3.2 Looser vs. Tighter What?
Students very frequently confuse which condition can be
broadened and loosened, because they don’t seem to anchor
the underlying notion of it - that the client will be unhappy
for some reason - to these abstract rules about preconditions
and postconditions.
There has even been work on making little tricks to re-

member which is which - which condition can be broadened
and which can be narrowed [1]. In that work, the overriding
method is to be represented as either a happy face or a sad
face, with the mouth representing the subtype’s overriding
preconditions and postconditions. If a mouth is wider at
the top, and narrower at the bottom, it forms a smile (hence,
happy – and the LSP is satisfied), but if the mouth is narrower
at the top, and wider at the bottom then the mouth forms a
frown, which means the LSP is sad, and not satisfied. This is
a trick that has been shown to be effective in recall of that
one aspect of the LSP, but it hasn’t been shown to improve
students’ understanding of the semantics or spirit of of the
rule. Students likely still wouldn’t be able to answer why the
preconditions and postconditions should form a smile versus
a frown. So while it is possible to ease recall about the rule
itself, there’s little evidence that it improves the intuition
around substitutability, besides just freeing up students from

51

SPLASH-E ’21, October 20, 2021, Chicago, IL, USA Elisa Baniassad, Alexander J. Summers

having to constantly look up which precondition could be
strengthened versus loosened.

3.3 What about Offset Ranges?
The example we’ve provided presents the specification for
the pre-condition and post-condition for our Super class as
a pair of ranges – so you know what’s inside or outside the
range.

This is straightforward for students if the ranges are very
clear – for instance if the precondition allows values from
5–9, and the subtype precondition allows values from 4-10,
then students can identify that this is a widened range. If
the subtype precondition allows only values from 6-8, then
they can identify that this is a narrowed range and hence
stronger precondition.

However, we have observed that students are less good at
knowing what it means if ranges are offset — for instance, if
the postcondition specifies that numbers 5–9 are produced
by the method, and the subtype postcondition specifies val-
ues from −10–4, the student may think this is a widened
postcondition because the postcondition allows, technically,
more numbers. Pedagogically, this requires careful explana-
tion, possibly requiring an appeal to mathematical sets to
invite students to consider whether the set of allowed states
for the supertype’s precondition is completely included in
the set of allowed states for the subtype’s precondition. As
educators we might try to invoke the student’s intuition
about how a client might be surprised when being faced with
constraints they were not expecting. But because the student
is trying to map this back to narrowing and widening pre-
and postconditions, their focus is not on the ideal learning
outcome about client-side usage, but instead is fixated on
the semantics of range changes.

3.4 What about Specific Outputs?
What if instead of the method producing a strict range of
numbers, the method produces a specific string value? Stu-
dents have been seen to be very confused about what hap-
pens if there is still a specific string, but the string is slightly
changed – especially if it is a subset of the supertype’s string.
For example, if the supertype method produces abbbba, and
the subtype method only produces bbb. Since the subtype’s
string is within the supertype’s string, is that narrowing?
Broadening? The fixation on ranges, and broadening and
narrowing, will not help them understand that if the spec-
ification says to produce this one specific string, then the
subtype is forced to produce precisely that also.

3.5 What about Relational Postconditions?
The original formulation of the LSP has a pleasingly-symmetrical
sound to it: when we override a method, preconditions may
only get weaker and postconditions only stronger. The for-
mer condition naturally translates to an analogous property

of sets of states which can be simply visualised: the set of al-
lowed input states may only grow. By symmetry, one is led to
an intuition that what the LSP tells us about postconditions
is that the possible output states can only shrink. Unfortu-
nately, this neat symmetric intuition is misleading in general.
As programming languages, specification languages such
as JML and analysis and verification techniques have been
better studied for object-oriented languages, is has become
clear that many postconditions important in practice cannot
be simply understood as a constraint on output ranges. For
example, consider the following example function for a class
with an int field x:
public class Grower {

public int x = 0;

public void grow() {

this.x = this.x + 1;

}

}

One meaningful property of this function is that1 the result-
ing value of this.x is definitely larger than its original value
on calling the function. A more-specific guarantee is that
the value gets exactly incremented by one. Neither of these
can be meaningfully expressed as a constraint purely on the
ranges of possible output values; the allowed values depend
on inputs (in this case, field values, but these could also be
parameters) to the function, for example expressing that a
setter function sets a field to the value of an input.

In general then, postconditions are not simple single con-
straints on sets of allowed output states, but rather describe
a pointwise relation between each input state and the output
states it is allowed to be mapped to. Specification languages
such as JML [4] describe such relational postconditions using
two-state assertions: a postcondition such as x.f > old(x.f)

for grow captures the increasing guarantee, while a stricter
postcondition could be x.f == old(x.f) + 1. Such postcondi-
tions express the required relation between the value of x.f
in the function’s post-state (when it returns), and the value
it had when the function was called (using JML’s old con-
struct to wrap expressions to be considered/evaluated in the
pre-state). If such a function has no precondition, the set
of possible final values of x.f is unconstrained, but this is
not the same as writing a postcondition true: the function
(and all its overrides) must actually satisfy a fairly strict
condition. In particular, thinking of the Postcondition Rule
as symmetrical to the Precondition Rule (i.e. not growing
output sets instead of not shrinking input sets) leads to the
wrong understanding of relational postconditions. To see this
concretely, imagine an override of grow in a subclass which
simply does nothing (has an empty function body). This pro-
duces exactly the same set of possible output values, and so
with a “range of outputs” intuition for the LSP might appear

1Note that we ignore overflows for the sake of simplicity, here.

52

Reframing the Liskov Substitution Principle through the Lens of Testing SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

to be a valid override. But, since postconditions are really
relations and not sets, this is the wrong conclusion; the func-
tion’s behaviour doesn’t belong to the relation described by
x.f > old(x.f) and so must be rejected.

This is as much a teaching pitfall as a learning pitfall.
As educators, we tend towards simple examples based on
e.g. ranges of values (without relational postconditions) as a
way to teach the LSP because they simply convey the sym-
metrical intuition embodied in the classical Precondition
and Postcondition Rules. However, in doing so we compro-
mise on conveying an important but subtle point which the
classical Postcondition Rule does not make explicit: when a
postcondition expresses a relation (as is typical for mutator
functions of a class such as our grow function above), the
correct underlying notion is that an override’s postcondi-
tion must describe an equal or stricter relation, not a subset
of output values. The range-based examples from Table 1
(which we believe to be conceptually analogous to those
used in many undergrad courses) can unfortunately serve
to further reinforce the impression that the Postcondition
Rule is symmetrical and analogously expressible in terms of
output sets, since for postconditions that do not depend on
input values, the issue cannot be seen. But this understand-
ing breaks down when moving to slightly more-complex
specifications and functions, such as our grow function, or
more generally any specification which reasonably-precisely
pins down the effect of a mutator function whose effect is
not constant (depends on inputs).

4 Subtle LSP Concepts That Are Often Not
Conveyed to Students

Because of the educator’s instinct to make the LSP digestible
by explaining it as ranges, some aspects of substitutability
are not easy to convey. This could be our own weakness as
instructors, but in our courses we limit examples to those we
can straightforwardly convey using input and output sets.
We know as instructors that the LSP covers all substitutable
methods including those that don’t conform to that format,
and we’ve presented here some of the misunderstandings
that can arise due to that adherence. However, there are also
some more interesting and subtle points about the relation-
ship between supertype and subtype methods that get lost
in translation to range-level messaging.

4.1 Postcondition Meanings Should Be Relative to
Preconditions

A further asymmetry between necessary requirements for
preconditions vs. postconditions arises naturally from the ob-
servation that what a function’s postcondition states should
only actually matter for situations in which the correspond-
ing function can be called. In particular, there is no need

to impose any requirements on what a function’s postcon-
dition states for hypothetical call situations for which the
function’s precondition did not hold.

For example, consider the following weakly specified foo

function and a possible override (we show only the function
declarations without bodies, since we are only interested in
the specifications):
public class C {

// requires: x > 0.0 // pre

// ensures: result > 0.0 // post

double foo(double x) { ... }

}

public class D extends C {

// requires: x > 0.0 // pre'

// ensures: result == Math.sqrt(x) // post'

double foo(double x) { ... }

}

The Precondition Rule (expressed logically as pre ⇒ pre′)
enforces exactly what one needs for calls via a supertype
interface to avoid precondition violations in a subtype; it
holds trivially for this example, since the two preconditions
are the same. However, the corresponding (symmetrical)
Postcondition Rule’s condition post′ ⇒ post fails for this
example: while the library function Math.sqrt only returns
non-negative square roots, it is not true in general that the
square root of a floating point number need be strictly posi-
tive (and in fact, there isn’t even a well-defined floating point
result for negative values of x). This failure is artificially in-
duced by the fact that the rule considers postconditions in
isolation, whereas in practice we only need a relationship be-
tween the two postconditions in states corresponding to valid
calls (i.e., states in which x is known to have a strictly pos-
itive value, due to the precondition enforced when actually
calling foo).

A simple way to weaken the Postcondition Rule to restrict
its attention to only valid calls to the overridden function
is (using JML-like syntax) to instead require pre′ ∧ post′ ⇒
post, which allows the override described. Despite breaking
the symmetry of the classical formulation of this rule as
it is typically taught, this weakening is arguably a more-
direct transcription of the original Methods Rule (emphasis
changed): “Calls to the subtype’s methods must behave like
calls to the supertype’s methods”.

4.2 Weakening Preconditions Should Yield
Implementation Freedom!

The Precondition Rule allows for an override of a function in
a subclass to have a strictly weaker precondition, allowing
for the new function to be called in new ways the supertype
function cannot. Despite the fact that a client of the super-
type’s interface will never call the function in these new
ways, the classical Postcondition Rule (even in its weaker
form we argued for in the previous subsection) imposes

53

SPLASH-E ’21, October 20, 2021, Chicago, IL, USA Elisa Baniassad, Alexander J. Summers

strong constraints on what the override can do in these new
cases. As has been observed by Krishna and Leavens [2],
the intuitive description of the LSP as “avoiding surprising
behaviour” actually leads naturally to a weaker-still Postcon-
dition Rule, reflecting that if an override chooses to weaken a
function’s precondition, the supertype need not impose any
restrictions on how the function behaves for newly-permitted
calls. In other words, the override’s postcondition need only
be restricted in call situations for which the supertype’s pre-
condition holds, leading to a weaker-still alternative to the
Postcondition Rule [2]: pre ∧ post′ ⇒ post.
Extending the same foo example from the previous sub-

section, we illustrate this improved Postcondition Rule on a
further potential subclass and override:

public class E extends D {

// requires: x != 0.0

// ensures: (x > 0.0 ==> result == Math.sqrt(x))

// && (x < 0.0 ==> result == Math.sqrt(-x))

double foo(double x) { ... }

}

The precondition of foo in E is weaker than that in D, now al-
lowing for strictly negative input values that D’s specification
did not permit. For these values, the specification chooses
a postcondition guarantee which is different from that of
D, which is conceptually fine since clients of D will have no
expectations about these newly-supported use-cases of foo.

This weaker Postcondition Rule more-accurately captures
the notion of what it means to avoid surprises: at least when-
ever one can call via the supertype’s specification, an over-
ride will produce results allowed by the supertype’s postcon-
dition; for other calls only possible via the subtype’s specifica-
tion there is no danger of surprise, and this more-permissive
rule gives complete freedom to the implementation of a sub-
type for these new cases.

5 Thinking in Terms of Tests
In the introduction we gave our student-friendly reframing
of the LSP. To restate with a few more words, our principle
is:

For a class to be substitutable for its supertype, it
must pass all the supertype’s black box tests.

Tests, are, after all, a programmatic way to capture a specifi-
cation. The rule plays on what Liskov and Guttag stated in
their Testing a Type Hierarchy preamble: that a subtype’s tests
must include all the black box tests from the supertype (with
some pruning). They never explicitly wrote that “if it doesn’t
pass those supertype tests, then it’s not substitutable”, but
we make that connection here.

For our test-centric rule to work technically, we will need
that substitutable subtypes pass all the supertype’s black box
tests, and that unsubstitutable subtypes fail at least some
supertype tests.

Applying this rule in practice relies on a type having a
somewhat comprehensive test suite. The sense that we want
to espouse to students is that a test suite should capture the
important behavioural properties of a type, and check for
conformance to its specification. In the rest of this section,
we look at minimal tests that can catch LSP violations, to
demonstrate that the tests passing and failing can indeed
correspond to the LSP passing and failing; a full set of black
box tests should naturally be substantially larger.
In the rest of this section, we will look at whether tests

catch LSP rule violations, and also what it means to say that
a subtype should pass all a supertype’s black box tests. We
will skip the Signature rule, because the compiler typically
checks that for all programs.

5.1 Can Tests Catch Methods Rule Violations?
Let’s look at whether tests that thoroughly exercise a speci-
fication also result in the right passing/failure outcomes for
subtype substitutability. We continue with the Super example
from above. Super has a single test for its method, consist-
ing of two assertions, one checking the bottom of the input
range, the other the top, and both checking that the output
is within range:

public void twoRangeTest () {

Super s = new Super (); // or subtypes here!

int i = s.behave (5);

int j = s.behave (10);

assertTrue(i>=0 && i<=5);

assertTrue(j>=0 && i<=5);

}

Note that we’re not checking what happens at input values
4 or 11. The precondition for Supertype.behave(int) tells
us that the requirement for running the method is that the
numbers be from 5-10 inclusive, so we are only testing values
satisfying it.
We then instantiate s as all four of the subtype classes

listed in the table, and run the test using each of these in-
stances. Three of our give example subtype instances pass
the test (as expected, these are WiderPre, NarrowerPost and
SubtractsFive), and the other two (the ones violating the
LSP) do not. But they fail in different ways, so let’s consider
catching each violation of the methods rule: narrowing the
preconditions, and widening the post condition.

5.1.1 Catching a Strengthened Precondition. Precon-
ditions bring up an important caveat in the pedagogical
approach for the test-mindset for the LSP. We want specifica-
tion conformance tests to fail if the subtype does not conform
to the supertype’s specification, and we do not want to over
test, because in doing so, we would be limiting the range
of expansion for substitutable types. Restated: We want to
run tests only that themselves honour the preconditions of
a method, because if we wrote a test to check for specific

54

Reframing the Liskov Substitution Principle through the Lens of Testing SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

public class NarrowerPre extends Super{

// requires: i to be between 6 and 8

// effects: will return a number between 0 and 5 (inclusive)

public int behave(int i){

assertTrue(i >= 6 && i <= 8); //Force a test failure for precondition violation

return i-6;

}

}

Figure 1. NarrowerPre code listing

behaviour given a precondition violation, there is no specifi-
cation for what the result of the test should be. In fact this is
the point: setting up the precondition means the developer
is saying “buyer beware” with the method: if called outside
these situations there’s no telling what might happen. Things
might work, but also might not.

Not testing outside the bounds of the precondition is actu-
ally a subtle point educationally. Students often instinctively
err on the side of checking that correct behaviour doesn’t
happen, if the precondition isn’t met. But actually no such
test should exist, since if it were specified what happened
when the precondition wasn’t met, then that would effec-
tively write additional constraints into the specification: con-
straints that would then need to be maintained by subtypes.
In turn, this would mean that the subtypes could not broaden
the precondition!
But this poses us a problem in terms of teaching the LSP

through tests, because we want the supertype tests to fail
if the subtype narrows the precondition. The trouble is, we
don’t know how they will fail, and they might even look like
they pass. So for pedagogical reasons, the code actually does
have to do something failure-inducing if the precondition
isn’t met such that the test fails. It’s not specified what it
has to do (that’s the point!) - it just can’t look like “good”
behaviour and result in an erroneously passing test. This en-
tails a kind of pedagogical scaffolding, necessary to illustrate
the point. In a real situation, if the precondition isn’t met,
there may be no test that can capture what’s supposed to
happen: in reality such code may e.g. fail silently (this is a
risk with all programmatic behaviour, but is especially true
for preconditions, and potentially for postconditions if their
impacts are not immediately felt).
Appropriate scaffolding might look like the code in Fig-

ure 1, in which a test assertion is used to force failure; this is
an approach becoming more prevalent in software develop-
ment.

5.1.2 Catching aWeakened Postcondition. Catching a
weakened postcondition is more straightforward than catch-
ing a strengthened precondition. The test has to check within
the expected range for the result, and fail if the result is out-
side that range. The tests written for the supertype perform

that check with no modifications. And it’s for this reason
that WiderPost fails the supertype tests.

5.1.3 Verdict on the Methods Rule. Running the tests
that checked conformance to the supertype’s pre- and post-
conditions results in subtype instances passing the tests
when substitutable (including when the precondition was
widened, and the post conditition was narrowed) and failing
tests when not substitutable (when the precondition was
strengthened and an exception thrown to assert the precon-
dition, and when the postcondition was strengthened).

5.2 Can Tests Catch Properties Rule Violations?
The test for the Properties rule for Super.behave needs to
check that the number of calls to behave matches the count.
We can assume that there is a getter for the count indicator
(getCount) such that the count is observable, and hence an
externally provable property about the class. The test can be
as simple as:

public void countTest () {

Super s = new Super (); // or subtypes here!

s.behave (6);

s.behave (10);

assertEquals (2,s.getCount ());

}

Of course, this isn’t an exhaustive test, but works for our
purposes; the usage of the boundary value 10 turns out to
be significant2. We would run the test for the subtypes by
changing the initialisation code. The test would naturally
pass for WrappedCount; by employing testing we side-step ques-
tions about exactly when the property should be enforced as
these expectations become implicit in the way the test itself
was written for the supertype. For FlakyCount the test would
naturally fail as expected.
For ResettableCount the situation is more subtle: the test

itself will pass because the newly-added subtype function is
never called. This is a subtlety that our direct testing method-
ology cannot immediately uncover; the need to produce an
appropriate new sequence of calls to exhibit the bug goes
beyond behaviours that a simple supertype test can capture.

2Such important values could also be uncovered by random/fuzz testing, of
course.

55

SPLASH-E ’21, October 20, 2021, Chicago, IL, USA Elisa Baniassad, Alexander J. Summers

Instead, additional testing in the subtype introducing the
new functionality is necessary.

A natural approach would be to write tests in the subtype
that (after calls to a number of its functions) check the super-
type’s invariant for preservation. That way, if the subtype
inadvertently violates the properties rule for the supertype,
these new tests will uncover the violation. By exploiting fea-
tures such as @Afterall in JUnit, one can generate families of
tests which perform additional checks for simple single-state
object invariants.

For complex properties governing the evolution of objects,
this is a limitation of the test-oriented approach – in partic-
ular, for the combination of such properties with scenarios
in which an object may be aliased via both supertype and
subtype, it may ultimately be difficult to write tests that
expose the violations. Nonetheless, we believe that even
understanding this limitation may be an important pedagog-
ical message for students, motivating the need to carefully
write new black box tests specifically for subtypes that add
additional functionality.

5.3 Testing vs. Proving Substitutability
Our test-oriented approach to capturing the LSP straightfor-
wardly tells students that if a subtype is failing a supertype’s
black box test, that it is also failing the LSP. This is a nat-
ural consequence of running the supertype’s tests on the
subtype. No specific LSP-check tests like those we wrote for
illustrative purposes, need to be written, beyond expanding
one’s testing practice to ensure that precondition violations
are caught somehow. This is analogous to finding bugs with
tests: if a test fails, you know you have encountered a bug.
But what if the subtype passes all the supertype tests?

Does this mean, unequivocally, that the subtype is really
passing the LSP? Just as it is true that a type passing all its
own tests is not necessarily bug free, a subtype passing all its
supertype tests need not necessarily pass the LSP Method’s
Rule; we could be missing its point of failure with the current
set of supertype tests. The more tests that a type has (and the
more comprehensive they are), the more confidence can be
built with respect to both bugs and substitutability (which,
if failed, is itself a cause of bugs). So in this way, testing is
a convenient and intuitive approximation for ensuring the
LSP holds in a subtype, although not a complete proof that
the subtype maintains substitutability.

6 Can Tests Help Students Avoid the
Common Pitfalls?

In this section we revisit the learning pitfalls we outlined
earlier, considering how using the testing approach might
change the landscape for students or educators.

6.1 Subtypes Are Not Clones
Our first pitfall was that students erroneously believed that
subtypemethods had to effectively be clones of the supertype
method to be able to be substitutable. When presented with
the rule that a subtype must pass all the supertype’s black
box tests students may, initially, still have that impression:
superficially, passing all the tests of another type does sound
as those those two types should more or less be the same.
But using the testing approach, we can leverage the precise
definition of a black box test: we can point out that that
students shouldn’t be writing black box tests that overfit to
implementation details.

Students may also initially trip up by thinking that that the
rule is symmetrical, but of course it is not: New tests written
for the subtype do not have to be passed by the supertype.
This provides an operational, and very practical, way for
students to concretise a subtype specificationwithout getting
bogged down in formalism.

6.2 Questioning the Need for Learning the
Precondition/Postcondition Rules

Given our new alternative formulation of the LSP via test-
ing, it is natural to question whether our condition (passing
supertype black box tests) could simply subsume the need to
teach the classical formulation of the LSP via precondition
and postcondition constraints. Yes, if students go on to a
career of reasoning about formal subtyping rules, they will
need to have a grasp of what the constraints are on precondi-
tions and postconditions in subtypes. But certainly starting
out, we want students to have an operational understanding
of whether a subtype is substitutable or not.

Focusing on passing/failing supertype tests can give them
this operational grasp. It gives an automatic way to check
whether they have developed a subtype that is substitutable:
run the supertype black box tests on an instance of the sub-
type. If any fail, then substitutability did not hold. If no tests
fail, then there are no identified situations in which substi-
tutability fails. The strength of confidence in substitutability
depends on the strength of the test suite.

Note that we are certainly not advocating that understand-
ing a function’s specification becomes unimportant. Indeed,
the correct definition of a valid black box test for a function
is intrinsically reliant on a function’s specification, using
the precondition to define suitable test inputs, and the post-
condition to define the right conditions to test (and how to
avoid over-fitting and producing a glass box test accidentally).
However, it seems appealing to investigate the effectiveness
of our testing-oriented approach as an introduction to how
to get substutability correct in its own right.

6.3 Capturing Offset Ranges
The narrowing/widening/strengthening/weakening language
leads to student confusion around what range-changes are

56

Reframing the Liskov Substitution Principle through the Lens of Testing SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

permitted for subtype pre and post conditions. In addition to
not being able to remember which should be strengthened
and which can be loosened (as discussed above), they also
become confused about whether it is the size of the range, or
the span of the range that matters for the rule. As we detailed,
a student may feel like a subtype range that is smaller in
size, but doesn’t fall within the supertype range, has, in fact,
narrowed the range. This is an irritating confusion that is
an artifact of trying to remember a formal rule without nec-
essarily really grasping the formalism. Assuming the range
was specified for the postcondition, we could write a test to
capture the supertype’s constraint like this:

public void rangeTest () {

Super s = new Super (); // or subtypes here!

int i = s.behave (5);

assertTrue(i>=0 && i<=5);

}

If the result of the call to behave fell outside the super-
type’s postcondition-allowed range, the test would fail. This
test-oriented formulation releases students from wondering
about range size vs. range span, focusing their thinking on
whether subtypes conform to the expectations on behaviour
laid out by the supertype.

6.4 Checking Specific Outputs
Our testing-oriented approach also quickly helps illustrate
why a supertype with postcondition guaranteeing output
abbba cannot be substituted by a subtype guaranteeing bbb,
even though it looks narrower. We could rewrite the post-
condition using this test:

assertEquals(foo.call(),"abbba");

If the result of foo.call() is bbb then clearly this test will
not pass. Since this is a check of the specification, and not
an over-specific glass box test, it must pass for the subtype
to be substitutable.

6.5 Capturing Relational Postconditions and
Implementation Freedom

As we explained in Sec. 3.5, general postconditions capture
properties not just of output states but relations between
input states and outputs. This view on a function’s require-
ments clashed with the traditionally-stated Postcondition
Rule, but is very natural when thinking in terms of black box
testing. Indeed, all a black box test does is check a relation
between an input state (perhaps fixed, perhaps generated ran-
domly to be any value satisfying precondition constraints)
and the corresponding output state; a test harness can (and
often does) provide facility to write test assertions relating
to inputs (and this can be easily manually achieved with
additional local variables).

For example, testing the grow function’s relational postcon-
dition x.f > old(x.f) is very simple:

public void growTest () {

Grower g = new Grower ();

int r = (new Random ()). nextInt ();

g.x = r; // or use fixed initial value

g.grow ();

assertTrue(g.x > r); // r == old(g.x)

}

Testing that a subtype also passes this test is now as simple
as changing the initialisation code to create an instance of
the appropriate class; the view of postconditions as relations
between input and output states becomes very natural when
viewed through the lens of testing.

Similarly, in Sec. 4.1 we argued that properties of postcon-
ditions should (contrary to the classical Postcondition Rule)
only be enforced for states in which the corresponding pre-
condition held; this is again completely natural in the testing
domain, since initialisation code will be written to ensure
that a test only exercises valid initial states, Indeed, even
the more-permissive rule of Sec. 4.2 comes for free: since
our requirement is that supertype black box tests must pass
for a new subtype, the initialisation code of these tests will
naturally only explore behaviours that the supertype’s pre-
condition allows. As explained previously, this more-flexible
rule allows for subtypes to exhibit completely new behaviour
for situations in which the supertype function could not be
called, as for our foo function in class E, which works on
negative inputs although its supertype’s function did not.
Naturally, such new functionality should be exercised by
additional black box tests for the subtype, but these need
have nothing to do with the supertype tests.

7 Potential Drawbacks and Trade-offs
We’ve illustrated a variety of delicate facets of the notion
of substitutability which are naturally well-handled by our
test-oriented approach to teaching the LSP. What are the
potential disadvantages to this approach? We identify two
main potential weaknesses and discuss their implications
here.

7.1 Black Box Testing for Preconditions
As we discussed earlier, postconditions are naturally checked
by tests. However, as outlined in Sec. 5.1.1, developer prac-
tices for testing preconditions may vary: in particular, for
unit testing a function, preconditions may simply be implicit
in the initialisation code (generating values to conform to
these preconditions without an explicit check), or may be
included as additional debug asserts to check for mistakes in
the test initialisation code itself. If preconditions are (only)
treated as implicit aspects of test initialisation code, checking
the Precondition Rule is not something which arises natu-
rally; in particular, when checking a supertype’s black box
tests pass for a subtype, the subtype’s precondition wouldn’t
even enter into the picture.

57

SPLASH-E ’21, October 20, 2021, Chicago, IL, USA Elisa Baniassad, Alexander J. Summers

On the other hand, developers may or may not include
explicit precondition checks in the implementations of func-
tions themselves: as either debug asserts (removed in pro-
duction builds but enabled for testing), or as runtime checks
which remain in the final code. In such development styles,
our testing-based approach will naturally detect precondi-
tion strengthening during testing.

Instructors adopting our approach need to consider which
treatment of preconditions their students have been taught to
employ when writing unit tests. As a catch-all approach one
can advocate adding explicit subtype precondition checks as
assert statements whenmigrating unit tests from a supertype
to a subtype.

7.2 The Need for a High-Quality Test Suite
Students will notice, and it should be highlighted, that testing
for substitutability relies on a comprehensive test suite that
exercises relevant qualities of the overall specification. This
may not be fully attainable in practice, just like a complete
test suite to check for correctness is impossible in general.
However, we believe it can be very informative for stu-

dents to see specific examples of subtypes which pass a test
suite but exhibit some new bug exactly because the test suite
was missing a useful black box test. Indeed, complementary
course content on the evaluation and generation of test suites
might flag up such issues: if e.g. the branch coverage of a su-
pertype’s test suite on a subtype’s function implementation
turns out to be low, a student can consider carefully whether
this indicates a weakness in the supertype’s test suite to start
with, a corner case which was not obviously significant for
the supertype’s implementation, or simply a new scenario
which the supertype could not have encountered.

Additionally, motivating that tests should be divided into
those that will be inherited by a subtype, and those that are
specific to the specific class (glass box tests), can help stu-
dents to think more systematically and in a more organised
way about their test suites.

8 Personal Experience
We have taught the LSP through this lens of testing the past
3 years, and have garnered the benefits we outlined above.
We observed that students were able to better understand the
responsibilities of the subtype in a general sense, as opposed
to being limited to rote recall of the details of the Precondi-
tion/Postcondition Rules. We still explain these rules, since
they are so commonly-associated with the LSP. However,
our primary teaching method is via this lens of testing, pro-
viding examples of tests that would pass and fail if the rule
were violated. We do still examine students’ proficiency in
understanding the rules, and the results are stable: the same
proportion of students (roughly 85%) were able to correctly
indicate that “A subtype shouldn’t set a narrower range of
postconditions of its methods than its super type” should

be true in both the cohorts prior to the introduction of this
technique, and currently. Our anecdotal experience gives us
confidence that students are able to learn the spirit of the
LSP using this teaching method, which (as we have outlined)
generalises well to more-complex examples and avoids many
of the learning pitfalls we have illustrated in this essay.

9 Conclusions
In this essay, we have proposed reframing the Liskov Sub-
stitution Principle via tests: a subtype must pass all its su-
pertype’s black box tests. We rely on the definition of black
box tests as checking conformance to a type’s specification
(only). We have illustrated a number of teaching and learning
pitfalls related to subtleties of the LSP and its presentation,
and demonstrated that testing can uncover a variety of vio-
lations of the LSP that are often subtle for students to fully
appreciate through traditional methods. For instance, if a
subtype’s method produces outputs that were not expected
by the specification of the supertype, then the test for those
outputs would fail. We have shown that using this testing
approach, we can capture the entirety of the methods rule
of the LSP, as well as simple, non-aliasing scenarios for the
Properties rule. In so doing, we can avoid the pedagogical pit-
falls associated with memorising and internalising a formal,
and heavily nuanced set of rules. We posit that this approach
frees educators from simplistic examples that are typically
employed for the sake of clarity about teaching the principle
itself. We suggest to educators that this approach could be
employed either on its own or in addition to teaching the
more formal rule in the traditional way.

Acknowledgments
We would like to thank Paul Carter, Meghan Allen, Noa Heyl
and Gregor Kiczales for their in-depth feedback, insights and
perspectives on this work and its presentation.

References
[1] Elisa Baniassad. 2018. Making the Liskov Substitution Principle happy

and sad. In Proceedings of the 40th International Conference on Software
Engineering: Software Engineering Education and Training. 17–20.

[2] Krishna Kishore Dhara and Gary T. Leavens. 1996. Forcing Behavioral
Subtyping through Specification Inheritance. In Proceedings of the 18th
International Conference on Software Engineering (Berlin, Germany)
(ICSE ’96). IEEE Computer Society, USA, 258–267.

[3] S. Drossopoulou, A. Francalanza, P. Müller, and A. J. Summers. 2008. A
Unified Framework for Verification Techniques for Object Invariants.
In ECOOP. Springer.

[4] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby,
David Cok, Peter Müller, Joseph Kiniry, Patrice Chalin, and Daniel M.
Zimmerman. 2008. JML reference manual.

[5] Barbara Liskov and John Guttag. 2000. Program Development in Java:
Abstraction, Specification, and Object-Oriented Design (1st ed.). Addison-
Wesley Longman Publishing Co., Inc., USA.

[6] Barbara H. Liskov and Jeannette M. Wing. 1994. A Behavioral Notion of
Subtyping. ACM Trans. Program. Lang. Syst. 16, 6 (Nov. 1994), 1811–1841.
https://doi.org/10.1145/197320.197383

58

https://doi.org/10.1145/197320.197383

	Abstract
	1 Introduction
	2 LSP Primer
	2.1 The Methods Rule
	2.2 The Properties Rule

	3 Common Learning Pitfalls
	3.1 Must Subtypes Be Clones of the Supertype?
	3.2 Looser vs. Tighter What?
	3.3 What about Offset Ranges?
	3.4 What about Specific Outputs?
	3.5 What about Relational Postconditions?

	4 Subtle LSP Concepts That Are Often Not Conveyed to Students
	4.1 Postcondition Meanings Should Be Relative to Preconditions
	4.2 Weakening Preconditions Should Yield Implementation Freedom!

	5 Thinking in Terms of Tests
	5.1 Can Tests Catch Methods Rule Violations?
	5.2 Can Tests Catch Properties Rule Violations?
	5.3 Testing vs. Proving Substitutability

	6 Can Tests Help Students Avoid the Common Pitfalls?
	6.1 Subtypes Are Not Clones
	6.2 Questioning the Need for Learning the Precondition/Postcondition Rules
	6.3 Capturing Offset Ranges
	6.4 Checking Specific Outputs
	6.5 Capturing Relational Postconditions and Implementation Freedom

	7 Potential Drawbacks and Trade-offs
	7.1 Black Box Testing for Preconditions
	7.2 The Need for a High-Quality Test Suite

	8 Personal Experience
	9 Conclusions
	Acknowledgments
	References

