
The Prusti Project: Formal Verification for Rust

Vytautas Astrauskas1, Aurel Bílý1, Jonáš Fiala1, Zachary Grannan2, Christoph
Matheja3, Peter Müller1, Federico Poli1, and Alexander J. Summers2

1 Department of Computer Science, ETH Zurich, Switzerland
2 University of British Columbia, Canada

3 Technical University of Denmark

Abstract. Rust is a modern systems programming language designed
to offer both performance and static safety. A key distinguishing feature
is a strong type system, which enforces by default that memory is either
shared or mutable, but never both. This guarantee is used to prevent
common pitfalls such as memory errors and data races. It can also be used
to greatly simplify formal verification, as we demonstrated by developing
the Prusti verifier, which can verify rich correctness properties of Rust
programs with a very modest annotation overhead. In this paper, we
provide an overview of the Prusti project. We outline its main design
goals, illustrate examples of its use, and discuss important outcomes from
the perspectives of a user, a verification expert, and a tool developer.

Keywords: Rust · deductive verification · separation logic

1 Introduction

Systems programming languages have traditionally had one dominating design
goal: performance. To achieve this goal, they give programmers maximum free-
dom in organising their code and data structures. They allow bypassing the
(often limited) safety checks of the language, for instance through unchecked
type casts. This freedom enables the development of highly efficient programs,
but also makes it all too easy to introduce errors and vulnerabilities, such as
buffer overflows, memory errors, data races, and subtle functionality bugs.

Rust is a modern systems programming language that is built on a different
premise: it is designed to maximise both performance and static safety. Rust em-
ploys a strong type system that prevents many common errors at compile time.
In particular, it eradicates memory errors (e.g. accessing uninitialised or freed
memory), various sources of program crashes (e.g. null-dereferencing), and data
races. In cases where the type system is too restrictive, programmers can escape
into unsafe Rust, which permits direct pointer manipulation like in traditional
systems programming languages. However, according to Rust’s design philoso-
phy [32,25], unsafe operations are typically confined to libraries and encapsulated
behind safe abstractions, while client code is written in safe Rust [30,5].

This design makes Rust a promising target for program verification. Not
only does Rust’s type system prevent certain errors, such that verification need

2 V. Astrauskas et al.

not deal with them, but it also provides strong compiler-enforced restrictions
on aliasing and mutable state, which can be leveraged to simplify verification.
There is also an important social motivation: Rust is often chosen for projects
with high safety and security requirements, whose members are likely open to
program verification as an additional means of achieving these requirements.

To explore this opportunity, we started the Prusti project in 2017. Prusti [6]
is a general-purpose deductive verifier for Rust. We had three key design goals:

1. Enable the verification of expressive program properties. These go beyond
the absence of exceptions (called panics in Rust, e.g. due to overflows or
out-of-bounds accesses) to include invariants of data types, and more-general
functional correctness properties. We initially focused on safe Rust code, but
a designated goal of the Prusti project has been to generate self-contained
proofs that are valid independently of the guarantees of safe Rust. For the
properties guaranteed by safe Rust, this so-called core proof is redundant (as-
suming Rust’s type system is sound), but it forms a reusable basis for layering
correctness arguments for more complex properties on top, and (eventually)
extending verification to common usages of unsafe code.

2. Reduce the annotation burden for programmers by leveraging Rust’s design.
Prusti addresses this goal along two dimensions. First, it reduces the com-
plexity of annotations. Safe Rust’s restrictions on aliasing and mutations
allow Prusti to use annotations based on Rust expressions, without the need
to expose programmers to non-trivial logics such as separation logic [39,43].
The resulting annotations are similar to classical contracts [35], but enable
sound, modular verification of heap-manipulating programs.
Second, Prusti reduces the amount of necessary annotations. Mainstream
verification techniques such as separation logic or dynamic frames [29] require
a large upfront investment to declare and manipulate predicates and ghost
state that describe the shape of data structures, and to prove memory safety
as the basis for more advanced properties. In contrast, Prusti extracts this
information automatically from Rust’s type system, allowing programmers
to focus immediately on the functional properties they care about.

3. Integrate smoothly into the workflow of Rust programmers. Integrating ver-
ification tools into development workflows is widely regarded as a major
obstacle for their adoption [18]. Prusti simplifies integration in two ways:
First, since Prusti requires no upfront investment, it enables a workflow
where programmers can incrementally write more annotations to obtain
stronger guarantees. It offers a mode that does not check panic freedom,
such that it can be run on un-annotated Rust programs. Panic freedom can
generally be proved by adding a small number of simple annotations (mostly
function preconditions), and richer properties can be proved by adding post-
conditions and invariants.
Second, Prusti integrates smoothly into the compiler infrastructure. It oper-
ates on the same representations of programs that the Rust compiler uses.
This avoids discrepancies with the compiler (which, in the absence of a for-
mal language specification serves as a working definition) and makes sure

The Prusti Project: Formal Verification for Rust 3

the verifier does not drift out of sync as the Rust language and compiler
evolve. It also gives a unified view on potential errors: verification issues are
reported in the same way as compilation errors.

In this paper, we give an overview of the Prusti verifier and discuss the central
design decisions and relevant outcomes so far from the perspective of a user
(Sec. 2), a verification expert (Sec. 3), and a tool developer (Sec. 4). We discuss
related work (Sec. 5) and conclude with some directions for future work (Sec. 6).

2 Prusti from a User’s Perspective

We first consider the Prusti verifier from a Rust progammer’s perspective. Prusti
builds upon the standard Rust compiler rustc. The command prusti-rustc
can be used as a drop-in replacement for rustc to verify individual files; the
command cargo prusti uses Rust’s package manager cargo to run Prusti on
Rust projects. Alternatively, Prusti can be used through an extension for Visual
Studio Code (VSCode), which is a popular editor for Rust programming [49].

A key feature of Prusti is that it supports incremental verification with an
initial annotation effort of (almost) zero: developers get guarantees beyond those
of safe Rust and useful feedback by just running Prusti on their code; they can
then choose to invest more effort to obtain more powerful guarantees. We will
illustrate Prusti’s capabilities by proving increasingly complex properties for safe
Rust programs. Further details and examples are available online [47].

2.1 (Almost) Zero-Cost Verification

By default, Prusti checks that a Rust program will not panic (terminate with
an error after reaching an unrecoverable state) at runtime, whether due to an
explicit panic!(...) call4 or e.g. due to bounds-checks and integer overflows.
Prusti can perform these checks directly on the input program, with no modi-
fication and no user-supplied annotations; in particular, it does not require the
specifications of data structures and side-effects required as upfront investment
by verification techniques for other imperative languages. For many examples,
the checks for panic freedom succeed immediately; others require a small amount
of simple annotations. In the following, we present examples for both cases.

As a first example, consider the Rust function in Figure 1, which performs a
binary search for a value key on a slice of integers a, i.e. a contiguous subsequence
of the elements in a collection. Compiling this function with rustc produces no
errors. However, running prusti-rustc reveals a potential bug: the statement
let mid = (low+high) / 2 on line 7 might overflow for a very large slice a.
This automatically detected bug is non-trivial: it remained undetected for years
in a similar implementation provided by the Java standard library [9].

Whenever Prusti fails to verify the absence of panics, it reports potential
issues like compiler errors, as in Figure 2 (upper half); these naturally benefit
4 or its siblings unreachable!(), unimplemented!(), assert!(false), etc.

4 V. Astrauskas et al.

1 fn search(a: &[i32], key: i32)
2 -> Option<usize> {
3 let mut low = 0;
4 let mut high = a.len();
5 while low < high {
6 // Addition may overflow
7 let mid = (low+high) / 2;
8 // Bound check at runtime
9 let mid_val = a[mid];

10 if mid_val < key {
11 low = mid + 1;
12 } else if mid_val > key {
13 high = mid;
14 } else {
15 return Some(mid);
16 }
17 }
18 return None;
19 }

Fig. 1. Buggy binary search.

1 > prusti-rustc search.rs
error: [Prusti: verification error]
assertion might fail with attempt to
add with overflow

--> search.rs:7:5
|

7 | let mid = (low+high) / 2;
| ^^^^^^^^^^^^^^^^^^^^^^^^

5 while low < high {
6 body_invariant!(high <= a.len());
7 let mid = low + ((high-low) / 2);
8 assert!(mid < high);
9 let mid_val = a[mid];

// ...
17 }

Fig. 2. Reported error and fixed loop.

from any IDE highlighting of errors. Programmers can understand and handle
such warnings as if Prusti were a stricter compiler for Rust.

We can fix the bug by rewriting line 7 to let mid = low + ((high-low) / 2).
Now Prusti is able to infer both that high-low cannot underflow (from the loop
guard: low < high) and that low + ((high-low) / 2) cannot overflow.

While this property can be proved without any help from the programmer,
other properties require annotations. In particular, Prusti verifies loops according
to the guarantees of the Rust type system and any user-provided loop invariants.
After fixing the overflow error in our example, Prusti cannot show that, in every
loop iteration, the slice access a[mid] (line 9) is within bounds. To establish this
property, it suffices to add a simple loop invariant5 stating that, during every
loop iteration, high <= a.len() holds just inside the loop body. The annotated
code accepted by Prusti accepts is shown in Figure 2 (lower half). Prusti proves
that the loop invariant holds (inductively); the invariant, along with the loop
guard mid < high and the (implicit) unsigned types of these index variables,
allows Prusti to prove that a[mid] is safe).

This simplest way of using Prusti requires almost no user annotation: Prusti’s
underlying reasoning accounts for path conditions, value ranges and (not shown
here) non-aliasing guarantees implied by rustc’s type-checking. Additional lo-
cal properties of interest can be added with standard Rust assert macros (as
illustrated on line 8 in Figure 2), and checked statically with Prusti rather than

5 In slight contrast to classical loop invariants, a body_invariant!(...) need only
hold for every loop iteration reaching this location inside the loop body.

The Prusti Project: Formal Verification for Rust 5

(only) at runtime. Consequently, the initial friction in using Prusti this way is
as low as in using a code linter.

2.2 Modular Verification of User-Specified Contracts

After using Prusti for proving panic freedom, developers may decide to invest an-
notation effort step-by-step to obtain stronger correctness guarantees about their
Rust code. To this end, every function can be annotated with a contract: a spec-
ification consisting of pre- and postconditions. Functions are verified modularly
against these contracts: when verifying calls to the function, only its contract
and type signature are used, not its concrete implementation. Besides facilitat-
ing scalability and supporting recursion, a modular approach enables decoupling
verification of client code from e.g. specific library implementations.

Continuing our example from Figure 1, consider the following contract:

1 #[requires(a.len() < usize::MAX / 2)]
2 #[ensures(if let Some(idx) = result { idx < a.len() && a[idx] == key }
3 else { true })]
4 fn search(a: &[i32], key: i32) -> Option<usize> { /* ... */ }

Specifications in Prusti consist of (a large subset of) side-effect free Rust ex-
pressions with a few carefully chosen extensions, as we discuss below. The above
postcondition ensures(...) uses the special Prusti variable result to refer to the
function’s return value6. It specifies that whenever search returns some position
idx, then the value a[idx] equals the search key. Prusti checks this property and
also that the slice access a[idx] in the postcondition is in bounds.

The precondition requires(...) states that search can be called only on slices
whose length is at most half of the largest number of type usize—Prusti will
report an error if a caller attempts to pass a longer slice. Under this precondition,
the original overflow bug could never be triggered, and Prusti can also verify the
unmodified code from Figure 1 (for calls allowed by the precondition).

2.3 The Prusti Specification Language

We will now explain and illustrate numerous features of Prusti’s specification
language via its usage on a binary search tree (BST), given by:

1 // A binary search tree data structure (elements should be sorted)
2 pub enum Tree<T: Ord> {
3 Node(T, Box<Tree<T>>, Box<Tree<T>>),
4 Empty,
5 }

Every element of a Tree is either an Empty leaf or a Node storing pointers to its
left and right subtree, and a value of (generic) type T; the bound on T requires
6 The if let construct is standard Rust, branching on whether the value can be
pattern-matched against Some(idx) (taking the second branch if not, i.e. for None).

6 V. Astrauskas et al.

that this type must implement the Ord trait so that values can be compared. We
assume that this BST represents a set, i.e. duplicate entries will never be stored.

Prusti’s specifications syntax (e.g. for pre- and postconditions) reuses Rust
expressions as far as possible. However, not all Rust expressions are accepted: the
evaluation of expressions used in specifications must not have side-effects (spec-
ifications should not affect program execution), be deterministic, and terminate,
to ensure that specifications have an intuitive meaning for programmers (a clear
mathematical interpretation for the verifier). Prusti identifies a pure subset of
Rust with the above properties allowed in specifications, including dereferencing,
branching, pattern-matching etc., as used in our search postconditions above.

Importantly, Prusti allows calls to functions within specifications, if they
have the Prusti-specific attribute #[pure]. The body of a function labelled as
pure must fall into Prusti’s pure Rust fragment described above. As of now,
Prusti checks that pure functions have no side-effects and are deterministic (ter-
mination checking is not yet performed, but will be added in the future).

A common case of pure functions are queries (or getters) of a data structure,
such as the contains function below, which often appear in specifications.

impl<T: Ord> Tree<T> {
#[pure]
pub fn contains(&self, find_value: &T) -> bool {

// ... with the natural (recursive) definition in Rust ...

This function is implemented as a straightforward recursive traversal over the
BST [48], naturally satisfying the requirements for a pure function7. Since contains
is declared pure, Prusti will treat it analogously to a mathematical function and
unroll its definition (in a bounded way, to avoid non-termination) instead of
relying solely on the function’s contract (as for ordinary methods). Annotating
the function as pure suffices for proving simple code such as the following:

let v = 0;
let t = Tree::Node(v, Box::new(Tree::Empty), Box::new(Tree::Empty));
assert!(t.contains(&v));

While it is reassuring that such unit-test-like programs can be statically verified
automatically, the real power of pure functions is that they provide API-specific
building blocks for defining richer functional specifications, as we show next.

Type invariants. Our next goal is to specify that Tree objects maintain a funda-
mental invariant, namely that they model binary search trees. Assume, for the
moment, that we already have a specification of the search tree property given by
a pure method bst_invariant(&self) -> bool. Prusti’s #[invariant(...)] anno-
tation then allows us to directly attach the invariant to the Tree type:

2 #[invariant(self.bst_invariant())]
3 pub enum Tree<T: Ord> {

7 Values of generic type T are compared with the library function cmp from trait Ord,
which is specified to satisfy the standard properties of total orders using an external
specification; this Prusti feature is explained in Section 2.4.

The Prusti Project: Formal Verification for Rust 7

19 predicate! {
20 pub fn bst_invariant(&self) -> bool {
21 if let Tree::Node(value, left, right) = self {
22 forall(|i: &T| left.contains(i) ==
23 (matches!(i.cmp(value), Less) && self.contains(i)))
24 && forall(|i: &T| right.contains(i) ==
25 (matches!(i.cmp(value), Greater) && self.contains(i)))
26 } else { true }
27 }
28 }

Fig. 3. Predicate expressing the invariant of a binary search tree.

Now, Prusti will ensure that whenever a Tree instance is passed as a function
argument, the invariant is also guaranteed; it can correspondingly be assumed
for function parameters and return values.

Quantifiers and predicates. Our invariant bst_invariant needs to capture the fol-
lowing informal search tree property: any value v of type T in the left (resp. right)
subtree of a BST instance t with root value v’ is smaller (resp. greater) than v’
according to T’s ordering. Rather than implementing this property as a pure func-
tion in Rust, the above description suggests quantifying over all values. Prusti
specifications may contain both universal (syntax: forall(|vars| expr)) and
existential (syntax: exists(|vars| expr)) quantifiers, where the declaration of
quantified variables vars is analogous to declaring Rust closure parameters.

We can now precisely define our intended invariant with this powerful mix of
logical quantifiers and pure functions denoting data-structure-specific abstrac-
tions. However, since quantifiers are not Rust expressions, the invariant itself
cannot be defined in a Rust function. Instead, Prusti provides the feature of
predicates, which are similar to (pure) Rust functions whose bodies can be any
expression allowed in Prusti’s specification language. Our formal Prusti specifi-
cation of the invariant is shown in Figure 3. Prusti checks that predicates are
only ever invoked in specifications; they cannot be called from executable code
(general quantifiers need not have an executable semantics).

Old expressions. Now that we have established the search tree property as an
invariant of Tree, we may decide to add further contracts to functions working
with trees. For instance, Figure 4 shows a method insert that inserts a new
value into a binary search tree; it is equipped with a simple postcondition (line
32) stating that, once the function terminates, the tree contains the new value.
Since insert mutates the given tree, we may also want to make sure that, apart
from adding the new value, no other values have been added or removed. Prusti
specifications can include old(...) expressions in postconditions to refer to the
memory before execution of the function’s body. As shown in lines 33–34, we can

8 V. Astrauskas et al.

32 #[ensures(self.contains(&new_value))]
33 #[ensures(forall(|i: &T| !matches!(new_value.cmp(i), Equal)
34 ==> self.contains(i) == old(self).contains(i)))]
35 pub fn insert(&mut self, new_value: T) {
36 if let Tree::Node(value, left, right) = self {
37 match new_value.cmp(value) {
38 Equal => (),
39 Less => left.insert(new_value),
40 Greater => right.insert(new_value),
41 }
42 } else {
43 *self = Tree::Node(new_value,
44 Box::new(Tree::Empty), Box::new(Tree::Empty))
45 }
46 }

Fig. 4. Insertion into a binary search tree.

then specify that, for all values except the new one, the function contains returns
the same result when executed on the tree before and after running insert.

Pledges. One of the most advanced specification features Prusti adds to its
base language of Rust expressions tackles specification of reborrowing: func-
tions that both take and return mutable references. An example is the function
get_root_value below, which hands out a reference to the root value of the tree.

pub fn get_root_value(&mut self) -> &mut T {
if let Tree::Node(value, _, _) = self { value } else { panic!() }

}

Rust’s type system (generally forbidding the combination of usable aliases and
mutability) makes the reference self blocked after calling this function, until
the returned reference’s lifetime expires (it is no longer used). This creates an
interesting challenge if (as we did for Prusti) one wants a specification language
which is in-keeping with both Rust expression syntax and its typing rules, to aid
programmer understanding. The key challenges [6] are: (1) one wants to specify
guarantees that will be true for self once it becomes accessible again, but in the
post-state of the call one cannot (according to the type system) talk about the
blocked reference to self, and (2) some facts that one cares about cannot even
be determined in the post-state of this call, since the value that the root will
have when the reborrow expires is not yet known: it depends on what the caller
does with the returned reference to this root value.

Prusti solves both problems with pledges [6], a novel specification feature
which allows one to express specifications about points in the future of this
call, when the returned reborrow expires. Pledges use two specification con-
structs: after_expiry(e) (which describes what e’s value will be once the re-
turned reference expires), and before_expiry(e) (which describes e’s value just

The Prusti Project: Formal Verification for Rust 9

32 #[requires(matches!(self, Tree::Node(..)))]
33 #[assert_on_expiry(
34 // Must hold before result can expire
35 if let Tree::Node(_, left, right) = old(self) {
36 forall(|i: &T| left.contains(i)
37 ==> matches!(i.cmp(result), Less)) &&
38 forall(|i: &T| right.contains(i)
39 ==> matches!(i.cmp(result), Greater))
40 } else { false },
41 // A postcondition of ‘get_root_value‘ after result expires
42 if let Tree::Node(ref value, _, _) = old(self) {
43 matches!(value.cmp(before_expiry(result)), Equal)
44 } else { false }
45)]
46 pub fn get_root_value(&mut self) -> &mut T {
47 if let Tree::Node(value, _, _) = self { value } else { panic!() }
48 }

Fig. 5. A rich specification combining many Prusti and Rust features.

before the returned reference expires). Using these constructs, one can write e.g. a
postcondition after_expiry(self.contains(before_expiry(result))), to express
that once the returned reference result expires, the BST self is guaranteed to
contain whatever value result stores by the time it expires. More examples are
discussed in our earlier paper [6].

Given our desired BST invariant, client code should modify the root’s value
only in a way that guarantees to preserve the BST invariant. This can be enforced
with the more-advanced pledge construct assert_on_expiry(e’,e). This con-
struct expresses after_expiry(e) and, in addition, asserts e’ at the point where
the reborrowed reference expires. To demonstrate the expressiveness of these
features combined, we show a very general specification for get_root_value in
Figure 5, which exploits the power of Prusti’s specifications to combine pledges,
old expressions, pure functions, quantifiers along with standard Rust features.

2.4 Incremental Verification in Practice

As illustrated above, Prusti’s design enables developers to verify a codebase by
incrementally trading annotation effort for stronger guarantees. In this subsec-
tion, we report on preliminary experiences from an ongoing project in which
Prusti is used this way to analyse the ibc [21] crate, an implementation of the
Interblockchain Communication Protocol [19] containing >20,000 lines of code.

At the time of our first experiments, Prusti could run on roughly 70% of
the functions in the two crates (495/716 and 545/738) analysed; the remainder
used features unsupported by the verifier. Without specifications the vast ma-
jority of these functions were proved panic-free automatically. Prusti identified

10 V. Astrauskas et al.

a small number of potential panics, due to manual assert! calls (conceptu-
ally expressing preconditions) or potential overflows due to expressions such as
self.revision_height + delta where delta was a u64 function parameter. Mak-
ing manual assert!s into preconditions (which are then checked at call sites!) is
easy since Prusti’s specifications can be Rust expressions; adding preconditions
to rule out overflows was also simple, e.g. this precondition for the case above:

#[requires(u64::MAX - self.revision_height >= delta)]
pub fn add(&self, delta: u64) -> Height { /* ... */ }

This ruled out language-level panics for all supported functions, but (as is com-
mon) the code also uses standard library functions such as Option.unwrap(),
which panic at runtime if called incorrectly. To extend Prusti’s reach to uncov-
ering such panics, we need to add a precondition for Option.unwrap(), but since
this is standard library code, we also can’t (and don’t want to) edit it.

For this purpose, Prusti offers the external specifications (extern_spec) fea-
ture, which allows attaching contracts to functions (including library functions)
separately from their implementation8. Such specifications look like a regular im-
plementation block for a Rust type except that functions have no bodies (mim-
icking Rust’s trait declaration syntax).

For instance, the following external specification makes sure that calls to
Option.unwrap() won’t cause panics, which is naturally expressed as a Prusti
specification by identifying is_some as a pure method:

#[extern_spec]
impl<T> std::option::Option<T> {

#[pure]
fn is_some(&self) -> bool;

#[requires(self.is_some())]
fn unwrap(self) -> T;

}

As a user, one can take an incremen-
tal approach to adding such speci-
fications to called functions, adding
those which are most worthwhile for
the user’s goals. For our panic-freedom
pass, we pragmatically focused on the
most widely used functions known to

panic (from Option<T> and Result<T>), which already gave us stronger guarantees
than our initial run with no such specifications.

After ruling out (most) panics in this way, we added specifications to check
important domain-specific requirements, for example, that the height and time
of each block in the blockchain increases monotonically. We used Prusti to verify
that various functions in the ibc crate maintain these monotonicity invariants.

Inevitably for such a large codebase, we found functions that use currently
unsupported language features. We can still attach contracts to such functions,
which will subsequently be used by Prusti to deal with calls. We can tell Prusti
not to check these specifications with a #[trusted] annotation. For example, in
ibc, some time-related functions, such as from_nanos below, relied on unsup-
ported types exposed by the chrono [28] crate and were marked as #[trusted].
The specification below expresses that from_nanos returns a valid result (rather
8 External specifications can also be used for functions inside the same crate, allowing
developers to apply Prusti without modifying source files, if desired.

The Prusti Project: Formal Verification for Rust 11

than the error case of Result) if the u64 parameter nanos fits within an i64, but
Prusti does not check the functions’ body to verify that the specification holds.

#[trusted]
#[ensures(nanos <= i64::MAX as u64 ==> result.is_ok())]
pub fn from_nanos(nanos: u64) -> Result<Timestamp, TryFromIntError> {

let nanos = nanos.try_into()?;
Ok(Timestamp {time: Some(Utc.timestamp_nanos(nanos))})

}

While trusted specifications must be written carefully, they enable developers
to pragmatically focus on specifying and proving those properties they consider
most relevant without imposing an excessive verification burden.

These features provide a further degree of freedom in the verification work-
flow: developers may initially use many #[trusted] annotations in a first itera-
tion, and later attempt to reduce the number of trusted functions in subsequent
iterations. As such, both trusted functions and external specifications further
facilitate the incremental verification of realistic Rust code using Prusti.

3 Prusti from a Verification Expert’s Perspective

At the heart of Prusti lies the core proof, ie a memory safety proof written in sep-
aration logic [23,43,39], the de-facto standard for verifying resource-manipulating
programs. Conceptually, the Prusti project explores three main questions, upon
which we will reflect in this section:

1. To what extent can intuitive reasoning about most Rust programs be cap-
tured by an off-the-shelf separation logic?

2. To what extent can the generation of core proofs be automated?
3. To what extent can core proofs be leveraged for verifying interesting func-

tional correctness properties?

3.1 Core Proofs in an Off-the-shelf Separation Logic

Separation logic nowadays comes in numerous flavours, ranging from simple log-
ics for verifying sequential heap-manipulating code to highly specialised variants
targeting intricate concurrency or weak-memory models (cf. [39]). It is thus not
surprising (but still very challenging!) that one can construct some separation
logic which allows precise reasoning about all aspects of Rust’s memory model;
RustBelt [27] is the most impressive attempt in that direction so far.

By contrast, the Prusti project aims to enable intuitive formal reasoning
about most Rust code. We believe that this approach matches Rust’s design
philosophy of enabling “fearless programming”: safe Rust code, ie code without
any direct usages of unsafe language features should be understandable, without
low-level concerns. Recent studies [16,5] confirm that Rust code in the wild
largely adheres to this philosophy: the vast majority of function implementations

12 V. Astrauskas et al.

are written in safe Rust; they may call functions that are implemented using
unsafe features, but shield clients from these details through encapsulation.

More concretely, Prusti embeds an annotated Rust program (cf. Section 2)
in the Viper intermediate verification language [38], which is based on Implicit
Dynamic Frames (IDF)—a variant of traditional separation logics with a clear
formal connection to standard separation logic [40]. Building upon an off-the-
shelf logic has the advantage that the overall soundness of the embedding is
analogous to soundness arguments that are well-understood for separation logic
reasoning; it also allows us to draw on substantial prior work and expertise,
particularly when it comes to proof automation.

The original Prusti paper [6] describes the embedding in detail. Overall, we
found that the read and write capabilities governed by Rust’s flow sensitive
type system have almost identical properties to the assertions governing heap
accesses in IDF. In particular, Rust structs can be modelled as (possibly nested
and recursive) predicates representing unique access to a type instance. More-
over, moves and simple usages of Rust’s shared and mutable borrows resemble
ownership transfers in the permission reading of separation logic assertions [10];
reborrowing is modelled directly by magic wands: when a reborrowed reference is
passed back to a caller, it comes with a magic wand representing the ownership
of all borrowed-from locations not currently in the proof.

Prusti’s underlying logic champions simplicity and fits well into Rust’s overall
design philosophy: at every point in Prusti’s core proof , there is direct represen-
tation of ownership in separation logic terms. This is different from RustBelt [27],
where ownership and the connection between reborrowed and borrowed-from lo-
cations is handled via an indirection through a custom lifetime logic designed
to express general semantic requirements on how lifetimes are manipulated, in-
cluding via ad hoc manual policies implemented by unsafe code.

However, the simplicity of Prusti’s underlying logic has also made some (safe)
Rust features harder to incorporate. One key example are struct types with ex-
plicit lifetime parameters (used to accomodate reference-typed fields), for which
it is sometimes convenient to treat the struct as a single resource, and sometimes
convenient to consider it as multiple individual resources borrowed for a certain
lifetime. RustBelt achieves this via the more fine-grained resources of its lifetime
logic; it is unclear whether this complexity is inevitable.

3.2 Full Automation of Core Proofs for Type-Checked Rust

As explained above, Prusti’s underlying model introduces nested and potentially
recursive predicates to model instances of Rust types. However, general reason-
ing about such separation logic predicates is known to be undecidable [3,22].
Verifiers such as Viper require additional annotations to guide reasoning about
predicates, e.g. by inserting explicit statements to unfold and fold predicate defi-
nitions into a Viper program. For example, when a field of a struct is accessed in
the Rust program, this requires unfolding the predicate modeling the capabilities
for accessing the struct; the obtained capabilities cannot always be immediately
re-folded into a predicate since the field might be borrowed or moved-out.

The Prusti Project: Formal Verification for Rust 13

While fold and unfold statements cannot be inferred automatically for ar-
bitary code with recursive predicates, Prusti infers them automatically for type-
correct Rust code. The essential point is that the Rust compiler, when enforcing
the flow-sensitive typing rules for the language, requires book-keeping similar to
that of unfolding and folding our predicates. For example, enforcing the check
that fields moved out from a struct are (all) moved back in before the struct can
be returned is conceptually analogous to refolding its corresponding predicate
definition in Prusti’s model.

Prusti instead performs a pass over the encoded Rust program to add the
necessary fold and unfold operations: essentially it performs a symbolic exe-
cution, tracking the accessible places at each program point and their current
depth of unfolding (differentiating, say, between a struct being accessible and
its fields being accessible). In addition to fold/unfold annotations, Prusti also
infers all of the necessary Viper annotations for reasoning about magic wands
[45] modelling reborrows. In all, the annotations required make up a large chunk
of the generated Viper code, but they are generated fully automatically for all
Rust programs supported by Prusti. This degree of automation is challenging to
achieve but (we believe) an important objective for a tool that tries to raise the
conceptual level at which a user interacts with a verifier. It ensures that Prusti
users do not have to understand the sometimes intricate logical encoding of their
programs. To our knowledge, Prusti was the first tool to be able to automati-
cally produce formal proofs about a substantial fragment of Rust that could be
automatically checked by program verifier.

3.3 Incorporating Rich Functional Specifications

Prusti’s underlying logic is Viper’s dialect of Implicit Dynamic Frames. Although
closely related to separation logic, a key feature of this logic is that one can con-
join functional specifications concerning heap values directly onto the resources,
such as permissions and predicate instances. In this sense, once the core proof
is in place, layering functional specifications on top comes essentially for free.

Our first versions of Prusti exploited this technical feature to embed all as-
pects of user-written specifications (ie Rust annotations) into corresponding ex-
pressions in the generated Viper code, ie the core proof. A more-recent extension
of Prusti’s core model equips each predicate instance with a snapshot: a value
used as a mathematical identity for the current state of the (possibly compos-
ite) portion of the program memory accessible via this predicate. This technique
originates (we believe) from the implementation of the VeriFast program veri-
fier [24], and is also used extensively in Viper’s symbolic execution engine [46].
RustHornBelt [33] uses a similar technique to layer functional specification on
top of RustBelt [27] predicates. Snapshots simplify encoding properties guaran-
teed by reasoning methodologies other than the basic separation logic framing
built into Prusti’s core proofs. For example, (in work with Fabian Wolff) we
use the flexibility provided by snapshots to layer guarantees about the heap on
top of the core proof to extend Prusti’s support for a rich class of specifications
about Rust closures [52].

14 V. Astrauskas et al.

Local crate, untyped Local crate, typed
(Sec. 4.3)

External crates,
Standard library

Prusti Viper program

ru
st

c
ru

st
c

+
ca

rg
o

Verification server

AST

Desugared AST

Dependencies

Types

HIR

Unopt. MIR

Polonius facts

Types

Opt. MIR

R
eb

or
ro
w
in
g
D
A
G

..
.

Domains

Functions

Predicates

Methods

Encoding
(Sec. 4.4)

Pure

Impure

Embedding (Sec. 4.2)

Fig. 6. Overview of Prusti’s encoding process.

4 Prusti from a Tool Engineer’s Perspective

Prusti targets real-world code in Rust, itself a mature and complex language.
Accordingly, Prusti is designed to re-use existing functionality from the Rust
compiler whenever possible, in order to reduce the implementation burden and
faithfully maintain compatibility with the constantly-evolving Rust ecosystem.

4.1 Architecture and Design Overview

Prusti is implemented as a compiler driver, reusing the standard rustc compiler
extensively; its overall workflow is presented in Figure 6. Prusti launches and
interacts with a full instance of rustc, used both for its program representa-
tions and analysis results (second column; cf. Sec. 4.3). To have Prusti-specific
specification features (Sec. 2.3) type-checked analogously to regular Rust ex-
pressions (including error-reporting), Prusti performs a specification embedding,
reusing existing Rust features whose type-checking rules are analogous (top-left;
cf.Sec. 4.2). Prusti has rustc map the sources for both the program and (em-
bedded) specifications down to rustc’s mid-level representations as for standard
compilation. Prusti performs its own analyses (third column), and assimilates all
necessary information to generate a Viper program (last column) that it sends to
a further Prusti component which performs verification through a Viper wrap-
per. If verification fails, Prusti maps the Viper errors to user-readable Rust errors
reported via the compiler API.

The compiler driver architecture is used by popular tools such as Clippy [11]
and Miri [36]; it has two main advantages. First, it raises confidence that the

The Prusti Project: Formal Verification for Rust 15

semantics used by Prusti is faithful. Prusti directly obtains a control-flow graph
(CFG) representation of any parsed Rust function from the compiler, instead of
inventing its own representation, which could lead to errors or semantic differ-
ences over time. The CFG-based representation used by Prusti, called unopti-
mised MIR, has a simple order-of-execution semantics and a limited number of
statements; at this stage, many of the more-subtle aspects of Rust’s evaluation
semantics have been already handled by the compiler. For example, Prusti does
not need to be aware that Rust uses short-circuiting semantics for Boolean oper-
ators, because Boolean expressions are already transformed by the compiler into
multiple statements evaluating individual operators. Unoptimised MIR main-
tains all type-checker information, along with back-links that allow the compiler
(and thus also Prusti) to translate error messages back to the source code.

Second, the above architecture enables Prusti to reuse compiler components.
Besides building upon unoptimised MIR, Prusti reuses the compiler’s type and
borrow checker to ensure that user-written Prusti annotations follow typing rules
analogous to regular Rust expressions, as explained in Sec. 4.2. Similarly, Prusti
reuses the Rust compiler’s error reporting component to display verification er-
rors. This way, the default syntax of the reports is familiar to Rust programmers
and the compiler can be configured to report machine-readable errors. The latter
simplifies integrating Prusti with other tools. For example, IDE extensions like
the official Prusti Assistant extension for Visual Studio Code, but even Prusti-
unaware tools such as Rust-analyzer [44], can be configured to report Prusti
verification errors generated by running cargo-prusti instead of cargo check.

4.2 Specification Embedding

Prusti-specific annotations (e.g. method contracts) are implemented with proce-
dural macros [1]. These macros are defined to generate nothing when compiled
using the regular rust compiler. However, when compiled with Prusti, a specifica-
tion embedding is performed: to make the compiler both type-check and translate
(to MIR) these specifications, corresponding methods are added to the program.
For Prusti-specific constructs the specification embedding is more involved, re-
placing them with usages of Rust features which have the right type-checking
requirements. For example, quantifiers (Sec. 2.3) are embedded as Rust closures.

Prusti uses a Pratt parser [41] to perform the embedding of Prusti-specific
constructs, before invoking the syn [13] Rust parser on the result, yielding an
AST representation. The resulting specification expressions are embedded into
the bodies of methods with unique names. Prusti constructs a mapping between
these generated methods (called specification items) and the relevant construct
in the original source code (e.g. for a precondition, the method it is a precon-
dition of). By feeding the program augmented with specification items through
the compiler, we both check that the specifications type-check and can obtain
corresponding MIR representations of the specifications. The type-checking and
evaluation semantics reflected by this translation to MIR are those of standard
rustc; this approach reuses the standard semantics of the Rust language for
specification checking and compilation.

16 V. Astrauskas et al.

4.3 Compiler interface

Prusti obtains various information from rustc’s data structures, as illustrated in
the second column of Figure 6. Given how Rust compilation works, different in-
formation is available (and used by Prusti) for the local crate (i.e. the crate being
compiled/verified) and external crates (the dependencies of the local crate).

Local crate For the local crate, Prusti obtains a high-level AST representation
(HIR), the type definitions, the unoptimised CFGs of the functions (MIR), and
borrow-checker information (Polonius facts), defining the compiler-determined
lifetimes of references. Prusti uses HIR, in which function names have already
been associated to their definition, to retrieve specifications embedded in speci-
fication items, as described in Sec. 4.2. Prusti uses type definitions to generate
Viper predicate definitions for the core proof (cf. Sec. 3), while unoptimised MIR
is used to generate the corresponding Viper code itself (cf. Sec. 4.4).

The compiler offers various versions of MIR at different stages during the
compilation process. Prusti uses the unoptimised version because it is the only
one on which the borrow-checker runs. This has a semantic advantage, since
we do not need to worry whether compiler optimisations preserve the strong
type properties that Prusti exploits.9 Prusti uses the results from the Polonius
borrow-checker, also called facts, to automate the generation of annotations such
as folding and unfolding of Viper predicates (cf. Sec. 3.2).

Previously, the compiler API did not expose Polonius facts, but the com-
piler developers were very supportive in accepting our proposed additions to the
API [4]. Our changes have since been used by at least one other static analysis
tool, Flowistry [12], to access precise aliasing information.

External crates For external crates, the compiler offers strictly less informa-
tion than for the local one, primarily for performance reasons. Type definitions
and optimised MIR are available (Prusti uses the former to encode calls), but
the HIR, the unoptimised MIR, and the Polonius facts are not present. Since
Prusti’s overall methodology is modular, the only real limitation this imposes is
that any Prusti specifications written in an external crate will not be seen. As ex-
plained in Sec. 2.4, Prusti supports external specifications to be applied to these
functions from the local crate. Nonetheless, following the example of the MIRAI
static analyzer [17], we believe that, in the future, previously-compiled Prusti
specifications could be recovered for external crates from a combination of the
optimised MIR and persisting some information to disk between compilations.

4.4 Encoding to Viper

Finally, Prusti uses the information assembled from the Rust compiler to encode
an annotated Rust program to a Viper program for verification. As shown in
9 See for example https://github.com/rust-lang/rust/issues/46420 for an optimisation
that used to copy non-duplicable mutable references.

https://github.com/rust-lang/rust/issues/46420

The Prusti Project: Formal Verification for Rust 17

the right half of Figure 6, there are two different encodings: a pure encoding to
Viper expressions and an impure encoding to Viper statements.

Pure Encoding Prusti’s pure encoding is used for specifications and pure
functions (which may be invoked from within specifications), and is necessary as
Viper specifications must be Viper expressions (which are side-effect-free, unlike
statements, which are a distinct notion in Viper).

Pure Rust expressions (cf. Sec. 2.3) are encoded to Viper expressions using
a backwards symbolic execution through their CFG, starting from the variable
which stores the final result (easily determined in MIR); the steps are reminiscent
of a standard weakest-precondition calculation.

To represent Rust values in pure code, Prusti uses the snapshot technique
presented in Sec. 3.3. Snapshots are encoded to Viper domains; that is, abstract
type definitions with uninterpreted functions and axioms that describe the rela-
tion between the snapshot of a type and the snapshot of its inner instances (e.g.
variants of an enumeration or fields of a structure). This is computed from the
compiler’s type definitions.

Impure encoding Like the pure encoding, the impure encoding processes the
unoptimised MIR and analyses the CFG of a method. However, in the impure
case, the output is a Viper method containing heap-mutating statements. Viper
methods can also contain goto statements, which allows us to encode the MIR
CFG without having to reconstruct loops or standard control flow structures.

To encode mutable references, Prusti needs to know the program point at
which references expire and which places receive the no-longer-borrowed owner-
ship, such that magic wands that encode the ownership flow can be applied in
the right order to form the core proof. To do so, Prusti elaborates the borrow-
checker facts to automatically compute a directed acyclic graph (DAG) of the
borrowing relations for each program point: each node with exit edges represents
a reference and each edge points to the places that it blocks. When a set of ref-
erences expire, a topological sort of the DAG determines the order in which the
magic wands associated to the edges should be applied. This Reborrowing DAG
is further generalised to appropriately account for conditional paths through the
CFG.

5 Related Work

RustBelt [27] is a long-standing verification project for Rust. RustBelt focuses
on proving that abstractions provided by internally unsafe libraries are safe;
verification is performed in Coq [8] over a simplified language based on Rust. By
contrast, Prusti is designed for general-purpose verification (with an emphasis
on safe Rust), and directly uses the representations in the Rust compiler.

Several verification approaches have been developed which avoid explicitly
modelling Rust’s memory (and aliasing) for safe Rust (only). Electrolysis [50]

18 V. Astrauskas et al.

applied purification of such programs to convert them to functional programs
to be verified in Lean [37]. More recently, RustHorn [34] and Creusot[14] lever-
age Rust’s ownership semantics to model mutable references using a technique
similar to prophecy variables [2] rather than explicitly modelling the heap. The
soundness of the approach was shown in RustHornBelt [33], a unification of
RustBelt and RustHorn. To our knowledge, automatic generation of core proofs
in these underlying models remains an open problem. Although not for Rust,
the Move Prover [15] employs a reborrowing DAG similar to Prusti’s, although
it then employs techniques similar to purification to eliminate heap reasoning.

Several automated static analysers have been developed for Rust, including
the abstract interpreter MIRAI [17]. The Kani Rust Verifier [51] applies bounded
model-checking. Other tools analyse the generated LLVM: e.g. Klee Rust per-
forms symbolic testing [31], Smack applies bounded verification [7], Project Oak
[42] provides an evolving portfolio of complementary tools. None of these tools
use the ownership guarantees of the type system, to our knowledge.

Stacked Borrows [26] is another formal model for Rust aiming to precisely
define notions of undefined behaviour for the Rust language; it is accompanied
by the interpreter Miri [36], which can be used to dynamically check for rule
violations. We are not aware of corresponding static tools based on this model.

6 Conclusions and Future Work

We have presented the Prusti project, and reflected on its key features and most-
notable design decisions from three different perspectives: for users, verification
experts, and authors of other Rust analysis tools. From a user’s perspective,
notable features include the close-relationship between specifications and Rust
expressions, and the flexible trade-offs between annotation effort and richness of
guarantees, which supports incremental usage of the tool on large-scale projects.
For verification experts, a notable goal is the reuse of long-standing program
reasoning techniques for reasoning about (primarily) safe Rust code. For tool
builders, the extensive reuse of compiler data structures, analyses and error
reporting mechanisms has proven powerful.

A key goal for future work to benefit users is to enable richer specifications
(when desired), via built-in types (such as mathematical sets) and add dedicated
features for ghost code, as well as improving verification performance. Of more
interest to verification experts, we are exploring the adaptation of Prusti’s core
model and proofs to both structs with lifetime parameters and some usages of un-
safe code. On the tooling front, we aim to support persistence of compiled Prusti
specifications, and offering built-in specifications for common Rust libraries.

Acknowledgements We warmly thank Nicholas D. Matsakis, Nick Cameron,
Derek Dreyer and Ralf Jung for extensive discussions and feedback in the early
stages of this project, and are very grateful to Florian Hahn for his work on
a precursor to Prusti [20], as well as numerous Master’s and undergraduate
students who have since contributed via projects.

The Prusti Project: Formal Verification for Rust 19

This work was partially funded by the Swiss National Science Foundation
(SNSF) (Grant No. 200021_169503), the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) (ref. RGPIN-2020-06072), Amazon Research
Awards and the Interchain Foundation.

References
1. Procedural macros (2022), https://doc.rust-lang.org/reference/

procedural-macros.html
2. Abadi, M., Lamport, L.: The existence of refinement mappings. In: Pro-

ceedings of the 3rd Annual Symposium on Logic in Computer Science.
pp. 165–175 (July 1988), https://www.microsoft.com/en-us/research/publication/
the-existence-of-refinement-mappings/, lICS 1988 Test of Time Award

3. Antonopoulos, T., Gorogiannis, N., Haase, C., Kanovich, M.I., Ouaknine, J.: Foun-
dations for decision problems in separation logic with general inductive predicates.
In: FoSSaCS. Lecture Notes in Computer Science, vol. 8412, pp. 411–425. Springer
(2014)

4. Astrauskas, V.: Enable compiler consumers to obtain mir::Body with Polonius
facts, https://github.com/rust-lang/rust/pull/86977

5. Astrauskas, V., Matheja, C., Poli, F., Müller, P., Summers, A.J.: How do pro-
grammers use unsafe Rust? Proceedings of the ACM on Programming Languages
4(OOPSLA), 1–27 (2020)

6. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging Rust types for mod-
ular specification and verification. Proc. ACM Program. Lang. 3(OOPSLA), 147:1–
147:30 (2019). https://doi.org/10.1145/3360573, https://doi.org/10.1145/3360573

7. Baranowski, M., He, S., Rakamarić, Z.: Verifying Rust programs with SMACK. In:
International Symposium on Automated Technology for Verification and Analysis.
pp. 528–535. Springer (2018)

8. Bertot, Y., Castéran, P.: Interactive theorem proving and program development:
Coq’Art: the calculus of inductive constructions. Springer Science & Business Me-
dia (2013)

9. Bloch, J.: Extra, extra - read all about it: Nearly all binary searches
and mergesorts are broken (Jun 2006), https://ai.googleblog.com/2006/06/
extra-extra-read-all-about-it-nearly.html

10. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. pp. 259–270 (2005)

11. Clippy developers: Clippy: A collection of lints to catch common mistakes and
improve your Rust code, https://github.com/rust-lang/rust-clippy

12. Crichton, W.: Flowistry: Information flow for Rust, https://github.com/
willcrichton/flowistry

13. David Tolnay: Parser for Rust source code (2021), https://crates.io/crates/syn
14. Denis, X., Jourdan, J.H., Marché, C.: The Creusot environment for the deductive

verification of Rust programs (2021)
15. Dill, D., Grieskamp, W., Park, J., Qadeer, S., Xu, M., Zhong, E.: Fast and reli-

able formal verification of smart contracts with the Move prover. arXiv preprint
arXiv:2110.08362 (2021)

16. Evans, A.N., Campbell, B., Soffa, M.L.: Is Rust used safely by software develop-
ers? In: 2020 IEEE/ACM 42nd International Conference on Software Engineering
(ICSE). pp. 246–257. IEEE (2020)

https://doc.rust-lang.org/reference/procedural-macros.html
https://doc.rust-lang.org/reference/procedural-macros.html
https://www.microsoft.com/en-us/research/publication/the-existence-of-refinement-mappings/
https://www.microsoft.com/en-us/research/publication/the-existence-of-refinement-mappings/
https://github.com/rust-lang/rust/pull/86977
https://doi.org/10.1145/3360573
https://doi.org/10.1145/3360573
https://doi.org/10.1145/3360573
https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://github.com/rust-lang/rust-clippy
https://github.com/willcrichton/flowistry
https://github.com/willcrichton/flowistry
https://crates.io/crates/syn

20 V. Astrauskas et al.

17. Facebook: MIRAI: an abstract interpreter for the Rust compiler’s mid-level inter-
mediate representation, https://github.com/facebookexperimental/MIRAI

18. Garavel, H., ter Beek, M.H., van de Pol, J.: The 2020 expert survey on formal
methods. In: FMICS. Lecture Notes in Computer Science, vol. 12327, pp. 3–69.
Springer (2020)

19. Goes, C.: The interblockchain communication protocol: An overview. arXiv
preprint arXiv:2006.15918 (2020)

20. Hahn, F.: Rust2Viper: Building a static verifier for Rust. Master’s thesis, ETH
Zurich (2015)

21. Informal Systems Inc. and ibc-rs authors: Rust implementation of the Inter-
Blockchain Communication (IBC) protocol. (2021), https://docs.rs/ibc

22. Iosif, R., Rogalewicz, A., Vojnar, T.: Deciding entailments in inductive separation
logic with tree automata. In: ATVA. Lecture Notes in Computer Science, vol. 8837,
pp. 201–218. Springer (2014)

23. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data struc-
tures. In: POPL. pp. 14–26. ACM (2001)

24. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: A powerful, sound, predictable, fast verifier for C and Java. In: NASA
formal methods symposium. pp. 41–55. Springer (2011)

25. Jung, R.: The scope of unsafe (Jan 2016), https://www.ralfj.de/blog/2016/01/09/
the-scope-of-unsafe.html

26. Jung, R., Dang, H.H., Kang, J., Dreyer, D.: Stacked borrows: an aliasing model for
Rust. Proceedings of the ACM on Programming Languages 4(POPL), 1–32 (2019)

27. Jung, R., Jourdan, J.H., Krebbers, R., Dreyer, D.: RustBelt: Securing the founda-
tions of the Rust programming language. Proceedings of the ACM on Programming
Languages 2(POPL), 1–34 (2017)

28. Kang Seonghoon and others: Chrono: Date and Time for Rust (2021), https://
docs.rs/chrono

29. Kassios, I.T.: The dynamic frames theory. Formal Aspects of Computing 23(3),
267–289 (2011)

30. Klabnik, S., Nichols, C.: Unsafe Rust (2022), https://doc.rust-lang.org/book/
ch19-01-unsafe-rust.html

31. Lindner, M., Aparicius, J., Lindgren, P.: No panic! verification of Rust programs
by symbolic execution. In: 2018 IEEE 16th International Conference on Industrial
Informatics (INDIN). pp. 108–114. IEEE (2018)

32. Matsakis, N.D.: Unsafe abstractions (2016), http://smallcultfollowing.com/
babysteps/blog/2016/05/23/unsafe-abstractions

33. Matsushita, Y.: Extensible Functional-Correctness Verification of Rust Programs
by the Technique of Prophecy. Master’s thesis, University of Tokyo (2021)

34. Matsushita, Y., Tsukada, T., Kobayashi, N.: RustHorn: CHC-based verification for
Rust programs. In: ESOP. pp. 484–514 (2020)

35. Meyer, B.: Design by contract. In: Mandrioli, D., Meyer, B. (eds.) Advances in
Object-Oriented Software Engineering, pp. 1–50. Prentice Hall (1991)

36. Miri developers: Miri: An interpreter for Rust’s mid-level intermediate representa-
tion, https://github.com/rust-lang/miri

37. de Moura, L., Kong, S., Avigad, J., Van Doorn, F., von Raumer, J.: The lean
theorem prover (system description). In: International Conference on Automated
Deduction. pp. 378–388. Springer (2015)

38. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: A verification infrastructure
for permission-based reasoning. In: International conference on verification, model
checking, and abstract interpretation. pp. 41–62. Springer (2016)

https://github.com/facebookexperimental/MIRAI
https://docs.rs/ibc
https://www.ralfj.de/blog/2016/01/09/the-scope-of-unsafe.html
https://www.ralfj.de/blog/2016/01/09/the-scope-of-unsafe.html
https://docs.rs/chrono
https://docs.rs/chrono
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
http://smallcultfollowing.com/babysteps/blog/2016/05/23/unsafe-abstractions
http://smallcultfollowing.com/babysteps/blog/2016/05/23/unsafe-abstractions
https://github.com/rust-lang/miri

The Prusti Project: Formal Verification for Rust 21

39. O’Hearn, P.: Separation logic. Communications of the ACM 62(2), 86–95 (2019)
40. Parkinson, M.J., Summers, A.J.: The relationship between separation logic and im-

plicit dynamic frames. Logical Methods in Computer Science 8(3:01), 1–54 (2012)
41. Pratt, V.R.: Top down operator precedence. In: Proceedings of the 1st annual

ACM SIGACT-SIGPLAN symposium on Principles of programming languages.
pp. 41–51 (1973)

42. Reid, A., Church, L., Flur, S., de Haas, S., Johnson, M., Laurie, B.: Towards
making formal methods normal: meeting developers where they are. arXiv preprint
arXiv:2010.16345 (2020)

43. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proceedings 17th Annual IEEE Symposium on Logic in Computer Science. pp.
55–74. IEEE (2002)

44. Rust-analyzer developers: Rust-analyzer: A Rust compiler front-end for ides, https:
//github.com/rust-analyzer/rust-analyzer

45. Schwerhoff, M., Summers, A.J.: Lightweight support for magic wands in an au-
tomatic verifier. In: 29th European Conference on Object-Oriented Programming
(ECOOP 2015). vol. 37, pp. 614–638. Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik (2015)

46. Schwerhoff, M.H.: Advancing Automated, Permission-Based Program Verification
Using Symbolic Execution. Ph.D. thesis, ETH Zurich (2016)

47. The Prusti Team: Prusti User Guide (2020), https://viperproject.github.io/
prusti-dev/user-guide/

48. The Prusti Team: Prusti NFM 2022 Online Appendix (2022), https:
//github.com/viperproject/prusti-dev/tree/master/prusti-tests/tests/verify_
overflow/pass/nfm22

49. The Rust Survey Team: Rust survey 2019 results: Rust blog (Apr 2020), https:
//blog.rust-lang.org/2020/04/17/Rust-survey-2019.html

50. Ullrich, S.: Simple verification of Rust programs via functional purification. Mas-
ter’s thesis, Karlsruher Institut für Technologie (KIT) (2016)

51. VanHattum, A., Schwartz-Narbonne, D., Chong, N., Sampson, A.: Verifying dy-
namic trait objects in Rust (2022)

52. Wolff, F., Bílý, A., Matheja, C., Müller, P., Summers, A.J.: Modular specification
and verification of closures in Rust. Proceedings of the ACM on Programming
Languages 5(OOPSLA), 1–29 (2021)

https://github.com/rust-analyzer/rust-analyzer
https://github.com/rust-analyzer/rust-analyzer
https://viperproject.github.io/prusti-dev/user-guide/
https://viperproject.github.io/prusti-dev/user-guide/
https://github.com/viperproject/prusti-dev/tree/master/prusti-tests/tests/verify_overflow/pass/nfm22
https://github.com/viperproject/prusti-dev/tree/master/prusti-tests/tests/verify_overflow/pass/nfm22
https://github.com/viperproject/prusti-dev/tree/master/prusti-tests/tests/verify_overflow/pass/nfm22
https://blog.rust-lang.org/2020/04/17/Rust-survey-2019.html
https://blog.rust-lang.org/2020/04/17/Rust-survey-2019.html

	The Prusti Project: Formal Verification for Rust

