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Abstract. Research on the automatic verification of heap-manipgatingrams
(HMPs) — programs that manipulate unbounded linked dat&ires via point-
ers — has blossomed recently, with many different appraaelehowing leaps
in performance and expressiveness. A year ago, we proposethlalogic for
specifying predicates about HMPs and demonstrated thatarence-rule-based
decision procedure could be performance-competitive,immaany cases supe-
rior to other methods known at the time. That work, howevexrs & proof-of-
concept, with a logic fragment too small to verify most reedgrams. In this
work, we generalize our previous results to be practicadigful: we allow the
data in heap nodes to be mutable, we allow more than a singiéepdield, and
we add new primitives needed to verify cyclic structuresctEaf these exten-
sions necessitates new or changed inference rules, wittotieomitant changes
to the proofs and decision procedure. Yet, our new decisioogalure, with the
more general logic, actually runs as fast as our previoudteedVith these gen-
eralizations, we can automatically verify many more HMPregkes, including
three small container functions from the Linux kernel.

1 Introduction

Heap-manipulating program@MPs) are programs that access and modify linked data
structures consisting of an unbounded number of unifoeap nodesThey are a some-
what idealized model of programs with dynamic memory alfioca and given that
most real software applications use dynamic memory aliocathey are an important
frontier for software verification.

Research on verification of HMPs has blossomed recentlig,avier a dozen papers
published in the past year alone, and many different appemshowing incredible
progress. For example, automatically verifying the saréesd of applying bubble sort
to a singly-linked list required well over 4 minutes of run# for a state-of-the-art
approach a year and a half ago [25], whereas by a year ago,we\eify sortedness
(and no memory leaks or cycles) in less than 2 minutes [2]f\kg no leaks or cycles
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(but not sortedness) took us only 11.4 seconds, but thificegtion could be done in
a mere 0.08 seconds a half year later! [29] While one may dgiidbout details when
comparing performance results in this research area (eaghine speeds vary slightly,
many papers do not report exact run times or the precise gydpsing verified, amount
of human effort is hard to quantify, etc.), the overall trefidapid advancementis clear.
Numerous approaches are now efficient enough to be potgmiaktically relevant.

Given the large amount of related work, we provide here onlgrg crude sketch
of the research milieu surrounding our work. We can roughityug most work on
HMP verification into three broad categories: shape amalyased on abstract inter-
pretation [13], deductive verification using classicalyeléHoare-style pre- and post-
conditions [36] augmented with a specialized logic for hetapctures, or model check-
ing [37] using predicate abstraction [15] to deal with thinite state space.

Perhaps most widely known is the shape analysis work, epigmrby the TVLA
system [31]. As the name implies, a major strength of thepecgehes is in the analysis
of the shape of heap structures, and they are able to haraffesHike trees, that most
other approaches cannot. Data, on the other hand, is congrabsiracted away, e.qg.,
the impressively fast 0.08 second verification cited abgweiies data in heap nodes.
Earlier shape analysis work also required user assistanspetcify “instrumentation
predicates” and how they are affected by updates. More tegank has improved pre-
cision (e.g., [33]) and automation (e.g., [29]).

The deductive approach to verifying HMPs is the most verieratating back to
Nelson’s pioneering work [10]. Nelson was working with fistder logic, imposing
a penalty in both performance and manual effort. Much mocently, PALE [18] is
based on the weak, monadic, second-order logic of graplstypeich is a decidable
logic for which the MONA decision procedure [30] exists. drifinately, the complex-
ity is non-elementary, so the decision procedure must bd wsth care. Separation
logic [27] is apparently the key to much greater efficiencithwecent results report-
ing fast verification times (e.g., [6]) and interprocedwealability [4]. A decidable
fragment of separation logic is also known [5]. Deductivera@aches typically require
manual effort, particularly to specify loop invariantst beicent work is addressing that
problem as well (e.g., [26, 28]).

Model checking, on the other hand, has always emphasizieglfidmation, includ-
ing automatic computation of invariants via fixpoints, anea precision. Model check-
ing has revolutionized hardware verification, and with tke of predicate abstraction,
has started to impact software verification as well (e.c, 16, 32,17]). Predicate ab-
straction conservatively abstracts a program into a Boofgagram whose state space
is the truth valuations of a finite set of predicates over threceete program state. Once
the predicates are specified, the method runs fully auteadbti (In this paper, we do
not consider heuristics for discovering predicates.) Tifw&IMPs, we therefore need
a logic for specifying predicates about the heap statehEuriore, to compute abstract
pre- or post-images, the decision procedure for the logistrha extremely fast, since
most predicate abstraction approaches make numerougsuerihe decision proce-
dure. Dams and Namjoshi were the first to explore this approaat not having a
decision procedure for their logic, they had to rely on mauguédance to assure ter-
mination [14]. Balaban et al. proposed a simple logic andllsmadel-theorem-based



decision procedure, and demonstrated the feasibility amohise of this approach [7].

Alternatively, Lahiri and Qadeer proposed first-order axéofor their heap properties
and used a first-order prover [23]. In both works, the denigitocedure was a ma-
jor bottleneck, and performance was substantially woraa the more established ap-
proaches. We were inspired by these pioneering works aradett@ simple logic and

novel decision procedure that demonstrated that an apptmesed on model check-
ing and predicate abstraction could be performance cotiyegtand often superior,

to other methods available at the time [132[Other recent promising logics for the
predicate-abstraction-based approach include [21] a4l j&it no decision procedures
are available yet.)

In addition to the fast run times and low memory usage, amdéature of our ap-
proach was the architecture of the decision procedure.eRdllan being based on a
small model theorem, it fires inference rules until satorgtbacktracking as needed.
Such a decision procedure promises several potential b&rieimplifies integration
into a combined satisfiability-modulo-theories solversitggests the ability to gen-
erate proofs automatically, which could be checked for &ighssurance; and proof-
generation suggests the possibility of computing intexptd, which have demonstrated
enormous potential for improving model-checking efficigfi®5]. Accordingly, there
is value in pursuing an inference-rule-based decisiongaore for HMP verification,
as long as the performance is adequate, which it is.

Unfortunately, our previous work was only a proof-of-copc& he logic we pro-
posed is too simplistic: data in heap nodes was not allowathéamge, we could not
specify important properties about cyclic lists, and heagas had only a single pointer
field. These restrictions eliminated the vast majority @fl grograms from considera-
tion.

Contributions: This paper expands and generalizes our previous, prelignnea
sults to be practically useful:

— The new logic and decision procedure allow data stored ip hedes to be muta-
ble. With this extension, our method can in principle modgl aperations on data
to full bit-accuracy. (In practice, of course, data fieldd Wwé downsized as much
as possible, as is typical in model checking.) Changingabelto allow data up-
dates necessitated discovering and adding four new infereres to the decision
procedure.

— We now allow a finite number of pointer fields per heap nodes ©iheeded by all
but the most simplistic data structures. This change redull inference rules to
be parameterized over the pointer fields, and the proofs camstider interacting
constraints arising from the different points-to relation

— To support cyclic data structures (e.g., cyclic singly- aodibly-linked lists), we
added a generalized, ternary transitive closure betweeratpbtwn (X, y,z), sim-
ilar to Nelson’s [10]. While the idea of such an operator is m&w, how to support
such an operator in an inference-rule-based decision guvedés completely new.

3 The published paper has some minor errors, which are cettéstthe technical report [2].
The technical report gives run times for the corrected dlgar, which are also much faster
than in the paper, due to an improved implementation.



This was the most difficult change to our decision procedegiring the addition
of 14 new inference rules, most of which are quite complitate

— Despite the vastly increased complexity of the inferenteset, the essential struc-
ture of the decision procedure remained unchanged — the baproach is still
empirically very efficient. In fact, with continuing imprements to the implemen-
tation, performance actually improved slightly.

— The additional inference rules did greatly complicate ttemtetical underpinnings
of our approach. We report some theoretical results for eurlogic and decision
procedure: our decision procedure is sound and alwaysrates, and the decision
procedure is complete for the fragment of the logic withoudlates. (In practice,
completeness was not an issue, as we could verify all exartipdé we could spec-
ify.) The statements of the theorems are completely analwtmour previous work
(e.g., “The decision procedure is sound.”), but the proafs to be completely re-
worked to account for the greater complexity of the exparidgit.

Overall, the contributions in this paper enable us to vefigiehtly verify a much larger
variety of HMPs, including three small container functidren the Linux kernel.

2 Review of Our Previous Logic and Decision Procedure

To make this paper self-contained, we briefly review ouriogaf simple logic and the
proof-of-concept decision procedure. Details are in thieliphied paper and technical
report[1, 2].

One of the most fundamental concepts for verifying HMPs isaumdedeachabil-
ity (a.k.a.transitive closurg between nodes, i.e., can one follow pointers from node
to nodey. Several papers have previously identified the importahtraositive closure
for HMPs, e.g., [9-12, 7, 23, 38]. Unfortunately, addingsomp for transitive closure to
even simple logics often yields undecidability [12], hercg decision to start with a
minimal logic and add features as needed to verify real exasnp

In particular, the logic we originally proposed in [1] is asnimal as imaginable
while usable to verify some non-trivial HMPs using prediabstraction. Fig. 1 shows

term = v | f(term)
atom = f*(termterm) | term=term | d(term) | b
literal ::= atom| —atom

Fig. 1. Our original, simple transitive closure logic [}.is any of a finite set of node variables
that point to heap nodek.is any of a finite set of Boolean variables that model data ootained

in heap nodes. Each heap node has a finite set of dataflieksch able to hold a Boolean value,
andd € D. These model data contained in a heap node, with whateveisjre is desired. There
is a single pointer field in each heap node, which points to another heap node. Theftegm
denotes the heap node reached by followingftiminter from nodex. Similarly, the atord(x)
denotes the content of data fieldn nodex. Transitive closure is specified with (x,y), which
denotes whether nodareaches nodgby following 0 or moref pointers. The decision procedure
decides satisfiability of conjunctions of literals.
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Fig. 2.Inference rule example. This is a typical inference ruleftbe decision procedure. Above
the line are antecedents; below the line are consequernitsrdla says that if we get to node
by following one f pointer from nodex, and if we can get fronx to z by following O or more

f pointers, then we conclude that= z or that we can get frorg to z by following O or moref
pointers.

the logic. While there can be an arbitrary amount of datayaiig modeling with bit-
accurate precision, there is only a single pointer fieldhwitsingle transitive closure
operator, which greatly restricts the heap propertiesabald be specified.

To specify the effect of program assignments that modifygs in the heap, i.e.,
modify f, we need to be able to specify a transition relation betwkerotd and new
values off. Accordingly, for each assignment of the forfitr;) := 1o, we allow the
user to specify a pointer function symbbl that represents the value éfafter the
assignment. The semantic relationship betwkand ' is

f = update(le,Tz) Q)

Our decision procedure implicitly constraifisand f/ appropriately, which is previous
work. However, our original logic did not have the analogoasstructs to allow heap
data to be modified.

Conjunction and disjunction are conspicuous by their atsefhe decision proce-
dure decides satisfiability of a conjunction of literalse™atisfiability of a conjunction
of predicates is the fundamental operation in computingtigtract pre- or post-image
operators in predicate abstraction, potentially beindedahn exponential number of
times per image, so we designed the decision proceduredbptibblem. We would
handle a general formula with disjunctions by going to DNH ahecking satisfiability
of each disjunct separately.

The decision procedure is based on applying inference (lR=3. Viewed from a
high level, the decision procedure repeatedly searcheasrf@pplicable IR, applies it
(i.e. adds one of its consequents to the set of literals),raodrses. The recursion is
necessary for those IRs that branch, i.e. have multipleemprents. If the procedure
ever infers a contradiction, it backtracks to the last bhamg IR with an unexplored
consequent, or returnmsatisfiabldf there is no such IR. If the procedure reaches a
point where there are no applicable IRs and no contradigtibneturns that the set of
literals issatisfiable Fig. 2 shows one sample inference rule. The decision proeed
for our original logic has 17 inference rules, some of which @arameterized.

3 New Extensions to Logic and Decision Procedure

Our previous work was proof-of-concept: HMP verificatiorséd on model-checking
and predicate abstraction could be performance competitith other approaches,
thanks to our efficient, inference-rule-based decisioeg@dare. But our simplistic logic
was too inexpressive for all but a few examples.



This paper addresses that problem. In the following sulmses;twe describe three
extensions to our original logic and decision proceduresgerextensions are absolutely
indispensable for verifying a wide range of real progranes.dach extension, we give
a short example illustrating typical program construct tmotivated the extension,
and then present how we changed the logic and decision proeethe BNF for the
extended logic is provided in Fig. 3.

3.1 Mutable Data Fields

Fig. 4 presents a simple example of a procedure that mutatadidlds. The procedure
sets the values of the data field of all nodes in the non-engytglia singly-linked input
list headto true. Necessary assumptions are formalized byabsumestatement on
line 2 of the program. The body of the procedure is simplaaidrses the list, and on
line 5 assignsrue to the data fieldl at each iteration. The specification is expressed by
theassertstatement on line 8, and indicates that whenever line 8 chexhheadmust
point to an acyclic singly-linked list with data fietflof all nodes set torue.
Assignments that modify a data fiedds D have the general forh(t) := b, where
T is aterm, and is a data variable. Line 5 of the HMP of Fig. 4 is an example ahsu
assignment. In order to be able to handle data mutationsdoh data assignment
we allow the user to introduce a data function symtfothat representd after the
assignment. The semantic relationship betwetandd’ is

d' = update(d,T,b) )

Our decision procedure implicitly enforces the constrg)twhen it encounters the
symbolsd andd’. We accomplished this through the additional set of infeeerules
that capture the effects of a data field update. Fig. 5 preskeese rules, and for example
PRESERVEVALUE ensures the data values of nodes that are not equar®preserved.

3.2 Cyclicity

We illustrate the extension for supporting cyclic lists twdan example calledniiT-
CvclLic in Fig. 6. The procedure takes a ndugadthat points to a cyclic list and sets
the data fields of all nodes in the list taue. Necessary assumptions are again formal-
ized by theassumestatement on line 2 of the program. In the predicates redimethe
verification of this example, the subformulas of the fdstwn+ (X, y,z) express that by
following a sequence of links from nodex, we’ll reach nodey before we reach nodg

i.e. nodey comes between nodeandz. The fact thaheadis reachable fronf (head
enforces the cyclicality assumption. The bodywifi-CycLic is straightforward. First,

term = v | f(term)
atom = f*(termterm) | term=term | d(term) | b | btwng(termterm term)
literal := atom| —atom

Fig. 3. The syntax of our new logic. Aside from the addition of the ortant newbtwn atom, the
pointer function symbof now ranges over setof names-.



the data field oheadis set totrue on line 4. Then, the loop sets the data fields of all
other nodes in the list true. The specification is expressed by Hesertstatement on
line 9, and indicates that whenever line 9 is reached, ddtisfed all nodes in the list
have to be set torue.

Cyclic lists are commonly used data structures, and thezefiopporting cyclicity
is very important. In our experience and others’ [10, 24jressing “betweenness” is
often necessary to construct invariants to verify cycBt HMPs. For example, in order
to prove the assertion on line 9 afiir-CyCLE, the predicate abstraction engine must
be able to construct an appropriate loop invariant (i.e@nat%). This invariant must be
strong enough to imply that all nod&dying betweerheadandcurr on the cyclic list
haved(x) = true. It is not hard to show that our base logic of Sect. 2 is not blpaf
expressing this.

To solve this deficiency, we have added a generalized, tetnansitive closure
between predicatetwn¢(x,y,z) to our logic, similar to Nelson’s [10]. Formally, the
interpretation of a between atom is defined as follows: a eetvatonbtwn (11, To, T3)
is interpreted asrue iff there existng,my > 0 such thatr, = f™(11), 13 = ™ (1),
ng < my, and for alln,m such thatr, = f"(1;), 13 = f™(11), we haveny < n and
my < m.

While the idea of such a construct is not new, how to suppartdh inference-rule-
based decision procedure is completely new. This was aésmtist difficult extension
of our decision procedure, requiring the addition of 14 nefgrience rules presented in
Fig. 7, most of which are quite involved. For instancew® asserts that if x, y, z, and
w are on the same chain, y is between x and w, and f (z)=w, thealgd between x and
z, unless y=w. Furthermore, the introduction of the betwegem broke our soundness
and completeness results from the previous paper, and wi lcadhpletely redo all of
our proofs. We give the intuition behind our new theoretresllts in Sect. 4, while the
complete proofs are presented in the technical report [3].

3.3 Multiple Pointer Fields

Fig. 8 shows a list container procedureNux-LIST-DEL from the Linux kernel. It
illustrates the need for both multiple pointer fields andicylists. The procedure takes
a nodeentryand removes it from a cyclic doubly-linked list. Each nodetia list has

1: procedure INIT-LIST(head
2 assume f*(headt) A f*(headnil) A f(nil) =nil
3 curr := head

4 while —curr=nil do
5: d(curr) :=true;
6: curr := f(curr);
7 end while
8 assert d(t)
9: end procedure

Fig. 4. INIT-LIST initializes the data fields of an acyclic singly-linked list the assumeand
assertstatements, variablerepresents an arbitrary node (see Sect. 5).



two pointer fields: gprevand anext pointer. The body of the procedure is simple; it
connects thgrevandnextpointers ofentrys neighbors, thus removinentryfrom the
list. The assumptions and specifications for this exampdeqaiite involved and are
given in our technical report [3].

Cyclic doubly-linked lists are widely used data structufésr instance, they are
commonly used in kernels, such as the Linux kernel from witleiee example was
taken. Handling multiple pointer fields is theoreticallyrdhait is a well-known result
that unrestricted use of reachability in the presence of twab pointer fields is unde-
cidable [12]. We therefore had to take special care in defiinr extension. It turns
out that if each individual reachability operator only m&sféo a single pointer field and
there are no quantifiers, the decidability results stilldhdlhis restriction prevents us
from, e.g., expressing transitive closure in a tree, sihaewould require formulas like
(leftv right)* (root, leaf). However, we can still handle doubly-linked lists and samil
structures.

On the logic side, this extension is reflected in symbbeing an element of a set of
pointer function symbol§, rather than a single pointer function symbol (see Sect. 2).
Our extended decision procedure supports for multiple tpoifields by instantiating
the inference rules for each pointer field. In a sense, thsidacprocedure processes
each field as a separate theory, and interaction betweentthessries is limited to com-
munication of deduced term equalities and disequalities.

4 Correctness of the Decision Procedure

In this section, we will give the soundness and completetiessrems that show the
correctness of our decision procedure. The detailed profoédl theorems and more
formal presentation of the decision procedure can be foutitk technical report [3].

We'll start with noting that the problem our decision proaegisolves is NP-hard,
hence a polytime algorithm is unlikely to exist.

Theorem 1. Given a set of literalsP, the problem of deciding ifp is satisfiable is
NP-hard.

Theorem 1 still holds whe® contains no pointer function updates,btan predicates,
no data fields, and only mentions a single pointer funcfiphence it even applies to
our simplistic original logic [1].

—T=X
d'(1) -d'(T) EQDATA d(x) —-d(x) PRESERVEVALUE
b -b d’(x) —d’(x)
/ /
d(x) ~d'(x) EQNODESL ~d() 4 EQNODES2
T=X T=X

Fig. 5. Data update inference rules. The rules are used to extentbgierto support a data
function symbold’ with the implicit constraintd’ = update(d, 7,b), wheret € V andb is a
boolean variable.



The following theorem tells us that if iterative applicatiof the IRs in the decision
procedure yields a contradiction, then we can concludeligatriginal set of literals is
unsatisfiable.

Theorem 2. The inference rules of Fig. 5, Fig. 7, Fig. 9, and Fig. 10 (s@péndix A)
are sound.

The proof proceeds by arguing in turn that each of the IRsgiw¢he figures is sound.
To prove completeness we first reduce the problem to set$eoéll in a certain
normal form, then prove completeness for only normal sets:
Let Vars(®) denote the subset of the node variaMesppearing ind.

Definition 1 (normal) A set of literals® is said to benormalif all terms appearing in
® are variables, except that for eachefF and ve Vars(®) there may exist at most
one equality literal of the form () = u, where ue Vars(®).

Theorem 3. There exists a polynomial-time algorithm that transformyg aet® into
a normal set®’ such that®’ is satisfiable if and only ifp is satisfiable.

Thanks to Theorem 3, our decision procedure can withoutdbggenerality assume
that @ is normal. Let us call a set of literat® consistenif it does not contain a con-
tradiction, and caltp closedif none of the IRs of Fig. 7 and Fig. 9 are applicable. Our
completeness theorem may then be stated as follows.

Theorem 4. If @ is consistent, closed, and normal, th@ris satisfiable.

The proof of Theorem 4 is quite technical, and involves reaaspabout the dependen-
cies between digraphs of partial functions and the digraphseir transitive closures.

If the procedure reaches a point where there are no appi¢Risland no contra-
dictions, then the inferred set of literals is consistetdsed, and normal. Hence, by
Theorem 4, it may correctly retusatisfiable We still don’t have a proof that the pro-
cedure is complete when its input includes a data or poirgét fipdate. Fortunately,
not having such a theoredoes notompromise the soundness of verification by predi-
cate abstraction. In practice, in our experiments of Seetesever found any property
violations caused by the extended decision procedure@oresty concluding that a set
of literals was satisfiable.

1: procedureINIT-CycLic(head

assumef*(headt) A f*(f(head,head A —head=nil
3 curr := f(head;

4 d(head := true;

5: while —curr=headdo
6: d(curr) := true;
7:

8

9

curr := f(curr);
end while
assert d(t)
10: end procedure

Fig.6. INIT-CycLIC sets data fields of all nodes in a cyclic list teue. Additional predi-
cates required for the verificationurr =head curr = f (head), btwns (curr,t,head, t =head
btwn (headt,curr), f*(t,curr).
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btwn (v U,x) btwnt(vu,y) btwni(Uxy) o .o Ly )btwn (X, T1,Z) UPDBTWN
btwn (V,X,Y) btwn¢ (x,y,2) o

1=z

Fig. 7. Between inference rules. Hexey, z, etc. range over variablds and f € F ranges over
pointer fields. WbBTwN enforces the implicit constrairt =update(f, 11, 72), wherer; andt,
are variables (see Sect. 2).

Theorem 5. The decision procedure always terminates.

The theorem follows from the fact that none of the IRs create terms, and there is
only a finite number of possible literals that one could adegia fixed set of terms.

Our soundness, completeness, and termination results igivhis section also en-
sure that the logic without pointer and data field updategddable. Furthermore, we
believe that our logic with updates is subsumed by the slighbre general decidable
logic presented in [7], and therefore also decidable.

5 Experimental Results

We ran our experiments using the new decision procédorie same verification set-
up as before [2]: a straightforward implementation of maztedcking with predicate
abstraction. Once the predicates are specified, everyihiiad)y automatic, including
computation of most-precise abstract images and loopiamvzs:

Table 1 gives a baseline performance comparison on the seanepées from our
previously published work [2]. Table 2 gives results for there than twice as many
examples that we could not verify previously. We ran all ekpents on a 2.6 Ghz
Pentium 4 machine.

4 The decision procedure is publicly availablehat p: / / www. cs. ubc. cal ~zr akamar



| program | property |CFG edgefpredsDP callgold time (s]new time (s)

LIST-REVERSE NL 6 8 184 0.1 0.2
LisT-ADD NLAACAIN 7 8 66 0.1 0.1
ND-INSERT NLAACAIN 5 13 259 0.5 0.5

ND-REMOVE NLAACARE 5 12 386 0.9 0.9

ZIP NL AAC 200 22| 9153 17.8 17.3
SORTED-ZIP [NLAACASOAIN 28| 22| 14251 23.4 22.9

SORTED—INSERT1NL AAC ASOAIN 10, 20, 599(Q 14.2 13.8

BUBBLE-SORT NL AAC 21| 18| 3444 11.4 11.1

BuUBBLE-SORT| NLAACASO 21| 24 31444 119.5 114.9

Table 1. Performance comparison against our previous work [2]. &lth our extensions re-
quired adding several complex inference rules to the datjgiocedure, the running times stayed
roughly the same: there was no practical performance pefiptoperty” specifies the verified
property; “CFG edges” is the number of edges in the contom-firaph of the program; “preds”
is the number of predicates required for verification; “DRstas the number of decision proce-
dure queries; “old time” is the total execution time from [ister than [1]); “new time” is the
total execution time using our new decision procedure.

The examples from Table 1 perform operations on acycliclgitigked lists —
reverse, add elements, remove elements, sort, merge heteefére, we have been able
to verify them without using the extensions described is fhéper. The comparison
supports our claim that although we greatly improved theesgiveness of the logic
and therefore extended the decision procedure with a nuotbatricate inference
rules, the practical running times haven’t changed.

Table 2 presents results of the experiments using exantaeistolve data field up-
dates, cyclic lists, and doubly-linked lists. We could nabtlle them using the old logic
and decision procedure. However, we have been successfetlifging them using the
described new features added to our logic and decision guveeThese example pro-
grams are the following:

REMOVE-ELEMENTS — removes from a cyclic list elements whose data fieldli=.

REMOVE-SEGMENT — removes the first contiguous segment of elements whose data
field istrue from a cyclic singly-linked list. This example is taken frapaper by
Manevich et al. [24].

1: procedure LINUX-LIST-DEL(entry)
2: p := prev(entry);

3: n := nextentry);

4: prev(n) ;= p;

5: next(p) :=n;

6: next(entry) := nil;

7: prev(entry) := nil;

8: end procedure

Fig. 8. LINuUx-LIST-DEL is a standard function that removes a node from a cyclic gelitited
list taken from a Linux kernel.



| program | property |CFG edgefpredsDP callgtime(s)

REMOVE-ELEMENTS NLACYARE 15 17 3062 8.8
REMOVE-SEGMENT CY 17] 15 902 2.2
SEARCH-AND-SET NLACYADT 9| 16| 4892 5.3
SET-UNION NLACYADTAIN 9 21 374 1.4
CREATE-INSERT NLAACAIN 9 24 3020 14.8
CREATE-INSERT-DATA NL AACAIN 11) 27 8710 39.7
CREATE-FREE NLAACAINARE 19 31 5207q 457 4
INIT-LIST NLAACADT 4 9 81 0.1
INIT-LIST-VAR NLAACADT 5 11 244 0.2
INIT-CYCLIC NLACYADT 5 11 200 0.2
SORTED-INSERTFDNODES|NL AAC ASOAIN 10, 25 7918 77.9
REMOVE-DOUBLY NLADLARE 10, 34 3238 24.3
REMOVE-CYCLIC-DOUBLY| NL ACDARE 4 27| 1695 15.6
LINUX-LIST-ADD NLACDAIN 6| 25 124Q 6.4
LINUX-LIST-ADD-TAIL NLACDAIN 6| 27| 1598 7.3
LINUX-LIST-DEL NLACDARE 6| 29 2057 24.7

Table 2. Results for HMPs that could not be handled in our previouskwroperty” specifies
the verified property; “CFG edges” denotes the number of dgthe control-flow graph of the
program; “preds” is the number of predicates required foification; “DP calls” is the number
of decision procedure queries; “time” is the total exequtione.

SEARCH-AND-SET — searches for an element with specified integer value in kccyc
singly-linked list, and initializes integer data fields @gépious elements. Although
this example uses merely 2-bit integers, it shows that ayicland decision proce-
dure support any finite enumerated data type.

SET-UNION —joins two cyclic lists. This example is taken from a papeN&yson [10].

CREATE-INSERT, CREATE-INSERFDATA, CREATE-FREE — create new nodesn@al-
loc), initialize their data fields, and insert them nondeteistically into a linked
list. Also, remove nodes from a linked list afrdethem?

INIT-LIST, INIT-LIST-VAR, INIT-CYCLIC - initialize data fields of acyclic and cyclic
singly-linked lists, and set values of data variables.

SORTED-INSERFDNODES — inserts an element into a sorted linked list so that sorted-
ness is preserved. Every node in the linked list has an additpointer to a node
that contains a data field which is used for sorting.

REMOVE-DOUBLY —removes an element from an acyclic doubly-linked list.

REMOVE-CycLIC-DouBLY — removes an element from a cyclic doubly-linked list.
This example is taken from a paper by Lahiri and Qadeer [23].

LINUX-LIST-ADD, LINUX-LIST-ADD-TAIL, LINUX-LIST-DEL —examples from Li-
nux kernel list container that add and remove nodes from &ccgtoubly-linked
list.

Our technical report [3] provides pseudocode and lists ¢ygiired predicates for all
examples.
The safety properties we checked (when applicable) of thésllte roughly:

5 mallocandfreeare modelled as removing and adding nodes to an infiniteccljsti[20].



— no leakgNL) — all nodes reachable from the head of the list at therrégg of the
program are also reachable at the end of the program.

— insertion (IN) — a distinguished node that is to be inserted into a sadtually
reachable from the head of the list, i.e. the insertion “veolk

— acyclic(AC) — the final list is acyclic, i.enil is reachable from the head of the list.

— cyclic (CY) —list is a cyclic singly-linked list, i.e. the head ofgHist is reachable
from its successor.

— doubly-linked(DL) — the final list is a doubly-linked list.

— cyclic doubly-linkedCD) — the final list is a cyclic doubly-linked list.

sorted(SO) — list is a sorted linked list, i.e. each node’s data fisltéss than or

equal to its successor’s.

data(DT) — data fields of selected (possibly all) nodes in a listsat to a value.

remove elementéRE) — for examples that remove node(s), this states that the

node(s) was (were) actually removed. For the prograam®vE-ELEMENTS, RE

also asserts that the data field of all removed elemeifidssis

Often, the properties one is interested in verifying for HMRvolve universal quantifi-
cation over the heap nodes. For example, to assert the pydyler we must express
that for all nodeg, if t is reachable fronmeadinitially, thent is also reachable from
head(or some other node) at the end of the program. Since our tmgsn’t support
quantification, we introduce a Skolem constatd represent a universally quantified
variable [8, 7]. Heret is a new node variable that is initially assumed to satiséyah-
tecedent of our property, and is otherwise unmodified by thgnam. For the program
of Fig. 4, we express NL by conjoininfj(headt) to theassumestatement on line 2,
and conjoiningf*(headt) to the assertion on line 8. Since (after tesumé t can be
any node reachable frohead if the assertion is never violated, we have proven NL.

6 Future Work and Conclusions

We have introduced a logic for verifying HMPs that is expiessnough, and an
inference-rule-based decision procedure for the logit ithafficient enough, to ver-
ify a wide range of small, but realistic programs. There aemyndirections for future
research, some of which are outlined here.

We have found that even minimal support for universally didied variables (as in
the logic of Balaban et al. [7]) would allow expression of maommon heap structure
attributes. For example, the current logic cannot assatttito termsx andy point to
disjoint linked lists; a single universally quantified \avle would allow for this prop-
erty (see Nelson [9, page 22]). We also found that capturisjgidtedness is necessary
for verifying that LsT-REVERSE always produces an acyclic list; hence we were un-
able to verify this property. We believe that our decisioagadure can be enhanced to
handle this case, either by introducing limited supportdfoantifiers, or by adding a
new “disjoint predicate” with appropriate inference rules

A broader expressiveness deficiency is the expression af meolved heap struc-
ture properties, such as for trees. Though our logic canaqatiice  points to a tree”,
we believe that it is possible that an extension could be tse@rify simple proper-
ties of programs that manipulate trees, for example thaethsge no memory leaks. It



may also be possible to use techniques like structure stionlg22] or field constraint

analysis [19], which use decidable logics to verify datacres originally beyond
the scope of such logics (e.g., skip lists). We have run odisé procedure on some
queries for MONA generated by the field constraint analymisBohne [19], where we

appear to be faster than MONA, but the queries have run sdlgwa both tools that

the comparison is meaningless.

We also plan on investigating how existing techniques fedprate discovery and
more advanced predicate abstraction algorithms mesh witdecision procedure.

We have initial results showing the possibility of incorating our decision proce-
dure into a combined satisfiability-modulo-theories deciprocedure and have started
exploring such integration. We believe that by doing soatild be possible to improve
the precision of heap abstraction used by the existing soéwerification tools that
employ theorem provers. We also plan to look into extendingdecision procedure to
generate proofs and interpolafts.
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A Inference Rules from Previous Work [1, 2]

fx)=y
ElDENT WREFLEX WTRANS].
Py 02 e f=y  Fx2
f*(x,2) X=2 *(y,2)
fx)=x2 f)=x3 - flx)=x1 f*(xy) CveLe,
y:xl y:)(2 y:xk
f*(xy) f*(v,x) f*(x2) f*(xy) f*(x2)
Scc TOTAL
X=y f*(z,x) f*(y,2) f*(zy)
0=z fy=z Fxy) FExg o 40 ~dY) o reoNoEs
X=y —X=Y

Fig. 9. Basic inference rules. Herey, z, etc. range over variabldsandd € D ranges over data
fields. Note that @cLEy actually defines a separate rule for e&ch 1.

f/(11) =1, UPDATE

=y fr)=w F(x)=y
X=T1 f’(x)=y UPDFuUNC1 X=T1 f(x)=y UPDFUNC2
y=w y=T12
f*(x,y) % (x,y)
(%, 11) f™(x,y) UPDTRANSL f*(x,11) f*(x,y) UPDTRANS2
7 (wy) *(12,y)
frx 1) Ay f*(x 1)  f*(xy)
UPDTRANS3 UPDTRANS4
f*(xy) 7 (11,y) f(x,y) f*(11,y)

Fig. 10.Pointer update inference rules. The rules are used to egtaridgic to support a pointer
function symbolf’ with the implicit constraintf’ = update( f, 14, 72), wheret; andt, are vari-
ables, andv is a fresh variable used to captufréry ).



