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Abstract— With increasing use of higher-than-RTL specifi- Current State and Inputs

cations as the starting point of designs, a pressing need has ||

emerged for equivalence verification between a high-levele(g.,

non-synthesizable software) model and RTL. Other papers ithis

invited session discuss techniques for dealing with the segntial

aspects of this problem. This paper presents an introductio "Combinational” Combinational
to the main ideas for the combinational aspect: assuming we Software Circuit
are given two combinational descriptions, one high-levelrad one Model Model
RTL, how do we automatically and efficiently verify equivalence?

Next State

and
I. INTRODUCTION Outputs

Inc.reasmg cpmplexny IS forcmg quIQI’l to move above RTé:Tg. 1. High-Level-vs-RTL Combinational Equivalence. Wesame that
Growing adoptlon of ESL, transaction-level models, MATLA iming mismatches and equivalent-latch mappings betwéden high-level
models, and C-based HDLs are all examples of this trerwhd RTL model have already been computed, reducing the gurolib

The higher-level model is typically in software or a softear combinational equivalence. The software model might haraptex control
nd data flow (e.g., branches, function calls), but is asdutoebehave

like language, so equivalence verifigation between the'hig?aombinationally", i.e., compute a result given the inpul® the two models
level software model and the RTL is needed, analogous dampute the same result?

the current use of RTL-to-gate combinational equivalence
verification.

The general problem of comparing a high-level model to
RTL is arbitrarily complex and ill-defined. For example, eon
sider the difficulty of comparing an instruction set arctitee Often, the assumption is made that the two models are similar
(ISA) specification to an out-of-order, superscalar preoes enough that it is possible to find a mapping between latches
implementation, or as an extreme example, comparing gnthe RTL and variables in the high-level model. With such
ideal, mathematical signal processing algorithm to a lossy mapping, the remaining problem reduces to checking, on
imprecise implementation that is judged “good enough” Haseach clock cycle, the combinational equivalence of the two
on user studies. models. Koelbl et al. provide a broad tutorial overview of

To clarify the general problem, and to have a realistihese issues and the general high-level-vs.-RTL equigalen
hope of creating automatic tools, it is helpful to break ighecking problem [12].
down into specific sub-problems and make some simplifying
assumptions. At the most abstract level, the questions ar@he other papers in this invited session discuss techniques
what it means for the two models to be equivalent, and whéor dealing with the sequential aspects of the problem. This
that equivalence is checked. For example, when comparipgper presents an introduction to the main ideas for the
an ISA specification to a superscalar processor implemawmbinational aspect: assuming we are given two combi-
tation, “equivalence” usually means that the programmearational descriptions, one high-level and one RTL, how do
visible state (e.g., architectural registers) is idemtiGmd we automatically and efficiently verify equivalence? (Flg)
the timing correspondence is complicated by the fact th@his problem is the simplest and most fundamental, yet it
instructions can execute out-of-order and might not coteplds still practically relevant, as many leading companiegeha
due to misspeculation or exceptions. Other examples ohgjimiadopted a methodology that includes a cycle- and pin-ateura
mismatches between a high-level and RTL model are untimbigjh-level model to facilitate verification. The combiraatal
transaction-level models, pipelining, and retiming. Onlce problem is also the foundation for more general equivalence
timing issues have been resolved, the next challenge isctoecking approaches, since they all aim to reduce the denera
find the correspondence between the states of the two modpteblem to combinational equivalence.



Il. RTL-vS-GATE COMBINATIONAL EQUIVALENCE a
We start by reviewing the problem of checking combinalc)—

tional equivalence between RTL and gate-level models (gr
equivalently, between two gate-level models, since RTL is

easily converted to gate-level). The problems and solstiofyd: 2. Simple Cutpoint Example. To introduce cutpaintwe first verify
that (b A ¢) A d is equivalent tob A (c A d). Then, we can verify thaf is

valent tog because both are equal 4o x.

are analogous to high-level-vs.-RTL, and they can be mqgg;
simply understood using gate-level examples.

Consider the simple example in Fig. 2. We are given two
combinational circuits, with equivalent inputs, and waat ty
compute whether the outputs are always equivalent. The basi
approach to this problem is to usgmbolic simulation [5] to  d
a.umr.natlca”y compute the mpUtIOUt.pUt rEIatlonShlp fade Fig. 3. False Inequivalence. Cutpoint verification failcdugsef # g when
circuit, and then compare these relations. Symbolic sititra ;, = o andz = 1. However, this is a false inequivalence, because i 1,
works like normal simulation — it applies inputs to the ciitgu thenb must bel.
and then simulates the behavior of each gate to compute

its output. However, the inputs are given as variables, so o S ]
the computed output is a symbolic expression in terms gructurally similar, so the two circuits likely containksu

the inputs. Returning to Fig. 2, for the left-hand circuitewCirCUitS that are also functionally equivalent. Accordinghe
might computeb A ¢ as the “value” of the output of the idea is to look for points in the two circuits that can be
first AND gate, and then(b A ¢) A d as the value of the POVen to be equivalent. The equivalent logic is cut out ef th
wire labeledx, and finallya @ ((b A ¢) A d) for the output circuits and is re_placed by a new primary inpufc. (Fig. 2.) If
wire f (where® denotes exclusive-OR). Similarly, we wouldV€ ¢an repeat this process all the way to the primary outputs,
computea @ (b A (¢ A d)) as the output of the right-hande hayg proven .the_two circuits gquwalent, thereby re.ctucm
circuit. Verification then consists of proving (e.g., viadean the original verification problem into a sequence of simpler
algebra) that these two expressions are equivalent. verification problems. Note that the method is conservative
Note that we can use any representation we choose for #g fail to prove the circuits equivalent, we cannot conclude
symbolic expressions, as long as we can construct the syenb&iat they are inequivalent without further computationg(B.)
expression for the output of any gate based on the symbd}fthimizing the cases where the method is unable to prove
expressions for its inputs. For example, BDDs [4] showedf€ equivalence of equivalent circuits (called “false rizgs
considerable promise for this purpose and are still one ef tAf ‘false inequivalence”) has been an active research area.
most common representations for Boolean functions: they 4P 9eneral, the solutions to this problem are ways to re-
empirically compact and efficient for common functions, anfitroduce constraints on the cutpoints, either in advagje [
they are a canonical representation, so testing for logigaiv- ©Of @S needed [11], [14]. o . _
alence is trivial. Unfortunately, for real, industrial imation ~ AN important problem is heuristics to find good candidate
problems, the BDDs grow too big to be computed. As afHtpoints, since a brute-force search of all possible ¢ntpo
alternative that avoids any space blow-up, we could intcedulS 100 €xpensive. A common approach starts with a quick
a fresh variable name for each wire and have Symboﬁ@t:ructural comparison to isolate differences between wee t
simulation build up a set of constraints on the values ofahe§ircuits being compared (akin to the Unix utilitgli f ).
variables. Returning once again to Fig. 2, if we create neMext, for each wire, a signature is computed that is its value

variable names; for all the internal wires, then we can deriveduring (normal, non-symbolic) simulation of a few hundred o
the set of constraint§bAc = v1)A(v1 Ad = v2) A(aBvs = f thousand random inputs. Wires that have the same signature

for the left-hand circuit; andc A d = vs) A (b A vy = &re good candidate to attempt to prove equivalent and use as
vs) A(a vy = g) for the right-hand circuit. We can conjoin all CUtpoInts. o . o
these constraints together, along with the constraing g), Overall, combinational equivalence checking is one of the

and throw the whole formula at a SAT solethe formula is Piggest success stories for formal verification, having com

unsatisfiable iff the two circuits are equivalent. This aygmh Pletely supplanted the formerly time-consuming task of RTL

has no space blow-up, but blows up in run time on industri4p--9ate-level simulation. To read further on this topiome

verification problems instead. good surveys include [11] and [10]. Here, we consider how
The major practical breakthrough for combinational equiWve can use these ideas for high-level-vs.-RTL combinationa

alence checking was the idea of cutpoints [1], [3]. Givefduivalence checking.

two combinational circuits whose functional equivaleneeds

to be verified, the cutpoint approach assumes that they are
When moving from RTL-vs.-gate to high-level-vs.-RTL, the

The state-of-the-art for SAT solvers changes rapidly. Thebsite jmmediate question is what is different about the problemd, a
http://ww. sat conpetition.org has results from periodic com- h bvi is. “the high-I | del” | iqul
petitions, as well as links to the major SAT reference sitéke the obvious answer Is, “the high-level model.” In particula

http://ww. satlib.organdhttp://ww.satlive.org. the key question is how to analyze a software model and derive

I1l. ANALYZING A HIGH-LEVEL MODEL



the input/output relationship, just as we did for a gatesler Int count_matches(int key, int datal7])

RTL model. {
Symbolic simulation is again the solution. For straight-
line code, symbolic simulation is easy, since an assignment
statement can be thought of as a gate, with the left-hand
side being the output. At each point in the program, we keep} )
track of the current symbolic expression for the value othea return count;
variable, and we use these to compute symbolic expressigns

for any computation that is done. For example, given thFe 4 High-Level Software Model £ le. The model is “dnational”
Sequence Of statements: 1g. 4. Igh-Level Software Model Example. e moael IS national™:

given inputs, it computes a result. It can have local vaeispbut cannot retain

int i, count = O;
for (i=0; i<7; i++) {
if (key==data[i]) count ++;

a=bhb+ c any state.
d =d + a; key
we could simulate the first statement and compyte ¢y as 0

the new value for variabla, whereby and ¢y are the initial

values ofb andc. Then, for the second assignment statement,

we compute the new value df to be the sum of the current data[O]ﬁ/L
values ofd anda, namelydy+ (by+co). This simple approach

can be easily extended to handle arrays, structs, logiahl aHata[l]ﬁ/n—
arithmetic operators, and even pointers (e.g., [6]).

Control flow is what distinguishes symbolic simulation Ofdata[Z]ﬁ/n— —— count2
software from hardware. The fundamental difference is ithat L countl
hardware, for any input, every gate output is driven to SOM&ata[3] n .

—— coun

value, whereas in software, a given statement might execute
B . n
once, many times, or not at all, depending on branch and Io%ta[4] /
conditions that affect the control flow. Seen another waghea
. . n
pos_S|bIe execuuon_ pa_th thrc_>ugh the software model prcsjucaata[5] /
a different symbolic simulation. Accordingly, we modifyeth
symbolic simulation algorithm to track the conditions undedata[G]
which the current execution path will execute. This can be
done by replacing the symbolic expressions with pairs 6fg. 5. Hardware Model for Same Example. The comparatoreartn-bits
symbolic expressions: the first is the same symbolic eXhHRSSW'de' The full adders have sum and carry outputs labeled € amdpectively.
. . Does this circuit compute the same function as Fig. 4?
as we have described already, the second is a Boolean-
valued expression that indicates under what conditions the

first expression is valid. Whenever the symbolic simulatiof, simple loops as in this example, the symbolic simulator
reaches a branch, it must continue to explore along bOﬂBPa%n compute the exact value of the loop variable, so it knows
recording for each path the branch condition that was assumghether to continue the loop or not.) In general, the number
For example, consider the simple software model and cejt paths grows too large, so symbolically simulating onéhpat
responding gate-level model in Figs. 4 and 5. Let us considgra time is not feasible on real verification problems.
symbolically simulating the path where thef condition  |nstead, we can try to merge execution paths, using con-
always evaluates to true. At first, the variablesndcount  ditional expressions to keep track of the different valuas o
are both 0. After one pass through the loop bodgunt gifferent paths. For example, after one iteration of theploo

n

gets incremented, but only under the assumptionkieat = e can merge both paths from the firgt condition, yielding
0+1 if key =dataf0]. ite(key = dat a[0], 1, 0)
After another iteration, it would have the symbolic value: \nere ite is the if-then-else operator. After another tiera
0+1+1 if (key =data[0]) A (key = dat a[l]), count would have the symbolic expression:
and so forth. If we symbolically simulate all possible paths ite(key = dat a[1],
through the software model, and prove equivalence to the ite(key = dat a[0],2,1),
hardware model for each path, then we have proven equiv- ite(key = dat a[0], 1,0)

alence. Unfortunately, even this tiny example has 128 paths )
analyze, ignoring the loop tests. With a more complicateglo ’

structure, we would also have to consider at each iteratidim b and so forth. Unfortunately, now our symbolic expressiames a
the path when the loop continues and the path when it exiggowing exponentially. By merging paths, we have shiftesl th



data arraﬂ

value of count

before first iteration

value of i before
first iteration

array
select
value of count L ! MUX
after first iteration Y
+1)
,,,,,,,,,,,,,,,,,,,,,,,,,, value of i before
second iteration
array =
select| /Y—
value of count L ! MuX

after second iteration

Fig. 6. Symbolic Simulation Using Circuit Graph Represt@ata The value of a variable at any point during the symbesliaulation is a pointer into the
circuit graph. New values are computed by adding gates cbeah¢o the existing gates that denote the current valuearadbles. For example, to increment
count, we would add a 41" gate to the circuit, route the output of the current value dount to the new gate, and update the pointer daunt to
point to the output of the new gate. (To improve readabilitg graph drawn hasn't had all structurally equivalent ga&moved.)

computational blow-up from the number of paths to the sizgow-up in memory or run time. Similarly, it can be expensive
of the symbolic expressions. to compute the logical conditions that determine what \alue
Many techniques have been proposed to avoid this blow-@¢ possible at which points in the program, e.g., to shotv tha
For example, as we saw in gate-level equivalence checkigg/tain paths are infeasible. Finally, since the circuarwill
we can introduce fresh variable names for the result of ea@fpw with the size of the software modeith |oops unrolled,
assignment along an execution path, reducing expressien df can still blow up in size before we can apply gate-level
blow-up (e.g., [2]) at the expense of much greater timeutpoints. Accordingly, the next step is to try to apply tHea
verifying equivalence (e.g., [8]). Heuristic, local sirifigiation  of cutpoints directly to the software model, before consting
of sub-expressions can be highly effective in some applican entire circuit graph from the software.
tions [7], [8]. Perhaps the most elegant solution, thoughoi
use a maximally shared circuit graph to represent the syimbol
expressions [13]. In this approach, the “symbolic expmssi  In recent work, we have proposed a way to introduce
is simply a pointer into a circuit that is built gradually éhy cutpoints during the analysis of the software, rather than
symbolic simulation. To symbolically simulate a compuati afterwards [9]. A cutpoint in the software is defined as some
a new “gate” is added to the circuit, and wires are added part of the program state at some point during the symbolic
supply the arguments from the current value of the variablesmulation that is provably equal to some point in the hamwa
Fig. 6 illustrates this process for a few iterations of ourrming  model (definition adapted from [8]). If we find a cutpoint,
example (Fig. 4). To keep the graph compact, before any new can cut out the corresponding parts of the software and
gate is added, a hash table is consulted to see if a strugturlardware models and insert a new input in its place, exactly
equivalent (same inputs and same operator) gate existglglre as in RTL or gate-level cutpoints. Successful verificatidthw
if so, the existing gate is reused. the cutpoints proves the two models equivalent.
Symbolic simulation with maximally shared circuit graphs For example, returning to the models in Figs. 4 and 5,
essentially reduces the high-level-vs.-RTL equivalertoeck- when the symbolic simulation reaches thé condition on
ing problem to a gate-level problem. At that point, we can trihe first iterationkey = dat a[0], this condition is provably
to use our existing RTL- and gate-level techniques, meetionequivalent to the output of the topmost comparator in Fig. 5.
earlier. For high-level models that are rtob high-level, this Accordingly, we could replace the comparison with a fresh
approach works very well. As the software model becom&wolean variable/inpux0, as shown in Figs. 7 and 8. Con-
more complex or more high-level, however, several problertisuing this process will replace all of the comparatorshie t
emerge. The first problem is that the circuit graph is ndiardware model with new cutpoints . The software model
conducive for quickly proving outputs to be valid (stuckiat is processed into a circuit graph representation, as in 6ig.
or unsatisfiable (stuck-at-0). This means that if the saktwaCombined with the cutpoint insertion, the result is the wirc
model has loops that are more complex than in our simgle Fig. 9. Clearly, cutpoints can potentially greatly siffyl
example, it is very hard to compute when the symbolitie equivalence-checking problem.
simulation can stop. On the other hand, if we try to convert As a more realistic test, we tried the cutpoint technique on
the logic for loop tests into BDDs or SAT, we will have aan industrial challenge problem: verifying the equivakent a

IV. CUTPOINTS FORSOFTWARE



int count_matches(..., int x0, ...)

{

int i, count = O; value of count

1T (x0) count++; before first iteration
for (i=1; i<7; i++) {
if (key==data[i]) count++;
}
return count; value of count

} after first iteration

Fig. 7. Software Model After First Cutpoint. An actual implentation
wouldn't rewrite the software as shown here, but simply iihgige cutpoint

x0 in the circuit graph model being constructed. value of count
after second iteration
key
n
data[0]
data[l]ﬁ/n—

n I value of count
data[2] ——— count2 after last iteration

n — countl
data[s]ﬁ/— —— count0 Fig. 9. Circuit Graph Generated From Software Model Withp@irits. All

the comparator logic has been cut away and replaced by newtsirp.
data[4]ﬁ’L
data[S]ﬁ/n—

n w/o Cutpoints with Cutpoints
datal6] Example Time | Mem | Time| Mem
Fig. 8. Hardware Model After First Cutpoint. The equivalatmparator TOY-8 0.02s 56MB 0.01s| 56MB
has been removed and replaced by a new imfytas in Fig. 7. TOY-16 5.35s 56MB 0.02s| 56MB

TOY-32 mem out|| 0.06s| 56MB
EX20-8 0.28s 61MB 0.11s| 58MB
high-level specification versus a gate-level implemeoatatf EX20-16 89.01s| 1746MB | 0.24s| 60MB
an Intel 1A-32 instruction-lengt.h decoder. The softwaredelo EX20-32 mem outll 0.53s| 64MB
has co.mple_x control flow, ywth many branchgs and _Ioop‘ EX20-64 mem outl 1.35s| 72MB
e e e ot .| [EXars | —La6e|oawe [ 0ol 6w
' . . EX97-16 || 1187.72s| 1800MB | 1.10s| 73MB
another. The hardware model has very different architectur EX97-32 mem outll 2355 95MEB
simultaneously attempting to decode an instruction at each -
possible alignment in the input buffer, and then using arftyio EX97-64 mem out|] 5.41s| 136MB
network to determine which decodings are valid. Fig. 10 show|| EX251-12)) 309.18s| 1843MB || 0.64s| 66MB
results comparing verification with and without cutpoints.| EX251-16 mem out| 1.09s| 71MB
(Details of this experiment are available in [9].) EX251-32 mem out|| 7.45s| 170MB
While the promise of software cutpoints is clear, there argl EX251-64 mem out|| 16.81s| 327MB

many remaining challenges. The biggest problem is how to 10 Samble Results Showing Effect of Cutoints. & _
) . : ; ) g. 10. Sample Results Showing Effect of Cutpoints. Eacingle is a
find g_OOd Candld_at(_:" cutpoints. AS_ Wlth RTL and g_ate Ievglﬁerently scaled version of an IA-32 instruction-lengtecoder. The number
cutpoints, a heuristic search for similar structure stiirls after the dash is the size of the input buffer. The TOY exampiave only 6
and was the technique used in the preceding experimé’ﬁﬂhly-simplified instructions for a fictitious machine wi-bit “bytes”. The
; ; _ her examples are for subsets of actual IA-32 instructigvith the number
Unfort[unately’ the maln, techplque for RTL a”?’ gate I(:"V‘%‘r)fdicating how many instructions are implemented. The datgexamples
cutpoints — random simulation to generate signatures swpport instruction lengths from 1-11 bytes with a wide &g prefixes and
doesn't work for software cutpoints. The problem is that addressing modes. The benefits of cutpoints are clear. iRese from [9].)
given random input causes only a single path in the software

to be executed. Since there is an exponential number of paths



(or more, if we consider looping), computing good signaturall the techniques for RTL-vs.-gate-level false inequavee
requires a prohibitively large number of runs. Good heurigandling are still applicable, but there might be software-
tics for finding candidate software cutpoints is an impdrtaspecific techniques as well.
direction for future research.
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