Appears in the proceedings of the
11th Annual International Symposium on High Performance Computer Architecture (HPCA-11), 2005
This web version adds Appendix A

Improving Multiple-CMP Systems Using Token Coherence

Michael R. Marty, Jesse D. BinghamMark D. Hill,

1Computer Sciences Department
University of Wisconsin-Madison
{mikem, markhill, david}@cs.wisc.edu

Abstract
Improvements in semiconductor technology now
enable Chip Multiprocessors (CMPs). As many future

computer systems will use one or more CMPs and sup-

Alan J. H&, Milo M.K. Martin3, David A. Wood

2Department of Computer Science 3Dept. of Comp. & Information Science
University of British Columbia
{ibingham, ajh}@cs.ubc.ca

University of Pennsylvania
milom@cis.upenn.edu

CMPs to further increase performance. Because all of
these systems use shared memory (to preserve operat-
ing system and application investment), a key challenge
for M-CMP systems is implementing correct and high-

port shared memory, such systems will have caches thatperformance cache coherence protocols. These proto-

must be kept coherent.

Coherence is a particular challenge for Multiple-
CMP (M-CMP) systems. One approach is to use a hier-
archical protocol that explicitly separates the intra-
CMP coherence protocol from the inter-CMP protocol,
but couples them hierarchically to maintain coherence.
However, hierarchical protocols are complex, leading
to subtle, difficult-to-verify race conditions. Further-
more, most previous hierarchical protocols use directo-
ries at one or both levels, incurring indirections—and
thus extra latency—for sharing misses, which are com-
mon in commercial workloads.

In contrast, this paper exploits the separation of
correctness substrate and performance policy in the

cols keep caches transparent to software, usually by
maintaining thecoherence invarianthat each block
may haveeither one writer or multiple reader§&-CMP
systems are conceptually straightforward, in part
because designers can leverage the large body of litera-
ture on Symmetric Multiprocessors (SMPs) [11] and
maintain coherence with traditional non-hierarchical
snooping protocolgwhich rely on a logical bus) or
directory protocolgwhich track cached copies at mem-
ory).

M-CMPs present a greater challenge, because they
must maintain bothntra-CMP coherence andnter-
CMP coherence. Ideally, an M-CMP protocol would
exploit locality by separately optimizing for the low-

recently-proposed token coherence protocol to develop latency, high-bandwidth intra-CMP communication as

the first M-CMP coherence protocol that is flat for cor-
rectness, but hierarchical for performance. Via model

well as the higher-latency, lower-bandwidth inter-CMP
communication. One approach usésierarchical pro-

checking studies, we show that flat correctness easestocol to separate the intra-CMP coherence protocol

verification. Via simulation with micro-benchmarks, we
make new protocol variants more robust under conten-
tion. Finally, via simulation with commercial work-

from the inter-CMP protocol, but couples them hierar-
chically to maintain the coherence invariant. This
approach can apply experience with non-CMP hierar-

loads on a commercial operating system, we show that chical protocols [7, 13, 14, 19, 21, 38] to CMPs [5, 36].

new protocol variants can be 10-50% faster than a
hierarchical directory protocol.
1 Introduction

The increasing number of transistors per chip now
enable Chip Multiprocessors (CMPs)which imple-

ment multiple processor cores on a chip. CMP-based

designs provide high-performance, cost-effective com-
puting for workloads with abundant thread-level paral-
lelism, such as commercial server workloads.

Smaller-scale&single-CMP (S-CMP3ystems, such
as Stanford Hydra [16, 15] and Sun MAJC [37], use a
single CMP along with DRAM and support chips.
Larger-scaléMultiple-CMP (M-CMP)systems, such as
Piranha [5] and IBM Power4 [36], combine multiple

Figure 1 illustrates (a) a CMP node and (b) an M-CMP
with a hierarchical coherence protocol.

Hierarchical coherence presents at least two chal-
lenges. First, even non-hierarchical coherence protocols
are difficult to implement correctly. Coupling two pro-
tocols into a hierarchy creates additional transient states
and protocol corner cases, significantly increasing veri-
fication complexity [3, 6]. Races occur both among
messages within each CMP (e.g., processor requests to
readable/writable blocks, writebacks, invalidations,
acknowledgments) and between CMPs (e.g., forwarded
requests, data messages, and acknowledgments). These
messages lead to many transient states in L1 caches, L2
caches, and directory controllers, particularly with opti-

HHHE? ()
ctrir ovp P
! CMP CMP

® ® 60 6 ﬂ
OoOEOEOR L/E
| interconnect |

— — CMP CMP

CMP Node | [—) |
ode
Intra-CMP Inter-CMP Flat Coherence
(a) Coherence (b) Coherence (C)

Figure 1. A CMP Node with Two Alternative Multiple CMP

processors, private L1 caches, shared L2 cache banks, on-chip interconnect, global interconnect interface, and interface to off-

(M-CMP) Systems. Part (a) expands a CMP node with

chip memory controller with DRAM. Part (b) symbolizes a direct-interconnect M-CMP system with coherence maintained via an
intra-CMP protocol interacting with anter-CMP protocol. Part (c) symbolizes an M-CMP with a logically-flat coherence

protocol, such asokenCMPdeveloped in this paper.

mizations (e.g., all MOESI states). Second, many pre-
vious hierarchical protocols—non-CMP [7, 13, 14, 19,
21, 38] or CMP [5]—use directories at one level of the
hierarchy (an exception is Power4 [36]). Directory pro-
tocols require indirections (and thus additional latency)
on sharing misses common in many commercial work-
loads [4]. Section 2 presents our base M-CMP system,
which uses directory protocols for both intra-CMP and
inter-CMP coherence.

In contrasttoken coherencp3, 25] is well suited
to the present challenge, because it explicitly separates
the correctness substrat'om a performance policy
The correctness substrate uses token counting to guar-
antee that, at any time, a memory block can have a sin-
gle writeable copy (with all tokens), multiple read-only
copies (with one or more tokens), or is not cached (all
tokens at memory). To avoid starvation, it ugpessis-
tent requestshat are remembered at other nodes until
the requestor garners sufficient tokens.

A token coherence performance policy, on the
other hand, uses unacknowledgeghsient requestto
seek tokens and data. It can optimize common patterns,
use complex predictors, and re-issue transient requests
that don't find sufficient tokens. In all cases, the cor-
rectness substrate continues to provide safety (by token
counting) and avoids starvation (by eventually issuing
a persistent request). The original token coherence per-
formance policy [25], however, is not well-suited for
M-CMP systems because it assumes flat glueless mul-
tiprocessors with private caches.

This paper extends token coherence to M-CMP
systems by developingokenCMP TokenCMP pro-
vides coherence in a manner thafla for correctness
(Section 3) but direct and hierarchical for perfor-
mance(Section 4). We demonstrate the following three
contributions:

¢ Simplicity. TokenCMP can be shown correct by
verifying only a flat correctness substrate. Via
model checking, we show the effort required is
comparable or less than verifying a flat directory
protocol, which is known to be much simpler than
verifying hierarchical directory protocols
(Section 5).

Robustness.Under contention, the original token
coherence proposal used a persistent request
mechanism that could become a performance bot-
tleneck. We extend the original starvation avoid-
ance mechanism with persistent read requests and
a distributed activation mechanism. We use micro-
benchmarks to show that TokenCMP variants can
handle highly-contended blocks more robustly
(Section 7).

Performance. We evaluate the performance of
TokenCMP versus a hierarchical directory proto-
col. We simulate three commercial workloads
interacting with a commercial operating system on
an M-CMP system using four 4-way CMPs
(Section 6). We show TokenCMP can be 9-50%
faster than a hierarchical directory protocol
(Section 8).

2 Base M-CMP System & DirectoryCMP

In this paper, we compare TokenCMP against a
base M-CMP system that uses directory protocols, not
snooping, for both inter-CMP and intra-CMP coher-
ence (similar to Piranha [5]). This approach allows
both on- and off-chip interconnects to be unordered
and fully-connected to reduce latency.

Figure 1 shows block diagrams of a CMP node
and the 4-CMP system evaluated in this study. Each
CMP contains four processors, private L1 instruction
and data caches, shared L2 cache banks, an on-chip
interconnect, a global interconnect interface, and an

interface to an off-chip memory controller, which in enhancements to the substrate for shared caches and
turn connects to DRAMs. Using a separate memory better performance robustness under contention.
controller allows the CMP to dedicate more pins for

) 3.1 Safety
the global interconnect and support greater memory

bandwidth and capacity. Token coherence’s correctness substrate directly
Our base system uses an MOESI-based hierarchi- enforces the coherence invariant—that each block can
cal directory protocol calledirectoryCMP Each L2 haveeither a single writer or multiple readerswith
cache bank maintains an intra-CMP directory to track the simple mechanism of counting tokens. Each block
copies in L1 caches. The intra-CMP directory control- always hasT tokensone of which is distinguished as
ler maintains coherence with messages among the on- the owner token Tokens are stored at and exchanged
chip caches, and it interfaces with the inter-CMP direc- among processor nodes and memory usinddbsT]-
tory protocol. bit token counts. A processor node with @lltokens

In the inter-CMP directory protocol, each memory ~may write a block, while a node with one or more
controller maintains an inter-CMP directory to track tokens may read a block. To allow all processor nodes
which CMP nodes cache a block, but not which caches to share a blockT should be at least as large as the
within the CMP hold the block. The inter-CMP direc- number of nodes. Messages with the owner token must
tory maintains coherence with messages between itself contain valid data, while messages with only non-
and the appropriate L2 cache bank at each CMP. owner tokens may omit data (to save bandwidth).

The intra- and inter-CMP directories and protocols The original scheme implicitly assumes that once
cooperate to maintain M-CMP coherence. An L1 miss tokens are given to a node, it is straightforward to
sends a coherence request to the appropriate on-chip maintain coherence within the node. This assumption
L2 bank. Depending on the intra-CMP directory state is reasonable for a uniprocessor node, but it is not true
and the L2 cache state, a response is directly returned, for M-CMPs, in which each node has multiple proces-
or the request is forwarded to on-chip L1 caches or to Sors with private L1 caches and a shared L2 cache.
the inter-CMP directory (located at the home memory Fortunately, we can enforce safety in M-CMP sys-
controller for the block). As responses return through tems simply by passing tokens among caches, rather
the hierarchical network, they update the appropriate than among nodes. Thus, each cache—L1 data, L1
cache and directory state. instruction, and unified L2 bank—essentially acts like

In designing DirectoryCMP, we made choices that & “node”. A processor may read (fetch) a block if it's
improved runtime at the expense of additional control L1 data (instruction) cache has at least one token; it
messages. DirectoryCMP imp|ement5 a migratory may write a block if its L1 data cache has @ltokens.
sharing optimization [10, 34], in which a cache holding Caches exchange data and tokens following the origi-
a modified cache block invalidates its copy when nal token coherence rules. A block may be simulta-
responding with the block, thus granting the requesting neously cached in at most caches. Fortunately,
processor read/write access to the block (even if the doubling T (e.g., to accommodate more caches than
request was only for read access). This optimization Processors) adds only 1 bit to the token count.
substantially improves performance of many work- This flat correctness substrate provides processors
loads with read-modify-write sharing behavior. To within an M-CMP the same simple safety checks to
moderately reduce DirectoryCMP complexity and enforce the coherence invariant that existed in the orig-
enable the use of optimizations such as migratory shar- inal token coherence protocol. All the additional com-
ing, the protocol uses per-block busy states at both the plexity introduced by an M-CMP’s physical hierarchy
intra-CMP and inter-CMP directories to defer requests (e.g., finding a block locally within a CMP when possi-
to blocks with outstanding requests. It also uses three- ble) is handled by a performance policy (Section 4).
phase writebacks, at both levels, to defer and coordi-

nate writebacks with other requests. 3.2 Starvation Avoidance

Because token counting guarantees safety, perfor-
mance policies may use unacknowledged transient
requests to aggressively seek tokens without the order-
ing restrictions imposed by conventional protocols.
This provides the flexibility to optimize hierarchical
performance, but also means that transient requests
may miss in-flight tokens. To ensure this situation does

3 Flat Correctness Substrate

Token coherence provides safety (all actions cor-
rect) and starvation avoidance (take appropriate
actions) with acorrectness substratthat is separate
from aperformance policy25]. This section describes
token coherence’s correctness substrate and our

not lead to starvation, the correctness substrate issues atent request, it clears the corresponding table entry.

persistent requesthen a processor fails to acquire suf-
ficient tokens within a time interval. The substrateti-
vates at most one persistent request per block.
Coherence components rememberaalivatedpersis-
tent requests and forward all tokens for the block—
those tokens currently present and received in the
future—to the initiator of the request. When the initia-
tor has sufficient tokens, it performs a memory opera-
tion (e.g, a load or store instruction) amdactivatests
persistent request. In addition, the system must provide
a starvation-free mechanism for activating persistent
requests. For glueless multiprocessors, Martin et al.
[25] employ arbiters and fair queuing to select one
active persistent request per memory controller.

To avoid starvation in an M-CMP system, we con-

When a processor deactivates its own persistent
request, its local table “marks” all valid entries for the
same block by setting a bit in the entry. A processor is
allowed to issue a persistent request only when no
marked entries for the desired block are present in its
local persistent request table. The marking mechanism
prevents a processors from continually issuing persis-
tent requests that starve out another processor. This
approach is loosely based on FutureBus [35] arbitra-
tion, which uses a fixed priority but groups processors
into “waves” to prevent them from re-requesting bus
access until all current wave members obtain access.
Distributed activation reduces the average persis-
tent request latency by forwarding highly contended
blocks directly between processors. For example, let

sider two persistent request mechanisms. One extendsprocessors P1, P2, and P3 seek block B with persistent

the arbiter-based scheme and the other uses a new dis-requests. All three will

tributed activation approach [23]. Both also include
new mechanisms, discussed below, to improve worst-
case performance on contended blocks.

Arbiter-based Activation. Extending the original
arbiter-based persistent request mechanism to M-
CMPs is straightforward, but requires each cache, not

remember each other’s
requests, but activate only the highest priority request,
say, processor P1's. When P1 succeeds, it deactivates
its request, activates P2’s request, and sends block B to
P2. When P2 is done, it sends block B directly to P3. In
this way, the distributed scheme provides a minimum
latency hand-off on highly-contended blocks (e.g., hot

just each node, to remember active persistent requests.locks). Secondarily, locality can be enhanced by sim-
Using arbiter-based persistent requests provides flat Ply fixing processor priority so that least-significant

starvation avoidance in M-CMP systems. Furthermore,
the tables for storing active persistent requests are
small (e.g., 384 bytes for 64 six-byte entries) and

directly addressed.

However simple, the arbiter-based activation
mechanism lacksperformance robustnessThat is,

bits vary for processors within a CMP and more-signif-

icant bits vary between CMPs. In particular, with this

approach, highly-contended spin locks tend to dynami-
cally perform much like complex hierarchical or reac-

tive locks [20, 30].

Distributed activation is implemented with small

when performance gets bad, persistent requests tend totables, like the arbiter-based scheme, but with a con-
make it worse because the handoff from one persistent tent-addressable access. When tokens for block B
request to the next requires an indirect deactivate/acti- arrive, the table is searched for an active persistent

vate exchange with the arbiter, increasing both latency
and bandwidth consumption. Although this has little

effect for well-tuned workloads, we seek an alternative
mechanism that avoids surprises with more demanding

request for block B, and, if found, tokens are for-

warded. When a new persistent request for block B
arrives, the table is searched for an active persistent
request to block B. The incoming request is inserted

and made active (possibly forwarding tokens) depend-
ing on the priority of the requestor. Furthermore,
implementation is straightforward and like a fully-

associative translation lookaside buffer, but with a

applications.

Distributed Activation. The new scheme
improves worst-case performance by using a distrib-
uted arbitration mechanism to directly forward con- s - -
tended blocks to the processor's requesting L1 cache Multi-Cycle access time being acceptable.
with the next active persistent request. Each processor Persistent Read Requeststhe original persistent
initiates at most one persistent request, and each cacherequest mechanism always collects all tokens, regard-
remembers these persistent requests in a table (each'GSS of whether the starving processor wants to read or
table has one entry per processor). The table activates Write a block. This approach performs poorly for cer-
only the highest priority persistent request of those in tain access patterns, such as a highly-contended test-
the table seeking the same block. Priority among per- and-test-and-set lock. We implement a neersistent
sistent requests is fixed (e.g., by processor number). read requesthat forces all caches to give up all but one
When a cache receives a message deactivating a persistoken [23]. As long as the total number of tokens is

Table 1. TokenCMP Variants

Transient | Persistent Request
Name Performance Policy Requests Activation
TokenCMP-arb0 None: immediately issues persistent requests 0 Arbiter-based
TokenCMP-dst0 None: immediately issues persistent requests 0 Distributed activation
TokenCMP-dst4 Hierarchical protocol with 1 transient request & up to 3 retfies up to 4 Distributed activation
TokenCMP-dstl Hierarchical protocol with 1 transient request, but no retrigs. 1 Distributed activation
TokenCMP-dstl-pred Hierarchical protocol with predictor to choose immediate peb-or 1 Distributed activation

sistent request or a single transient request.

TokenCMP-dst1-filt Like TokenCMP-dst1 with filter on incoming external requgsts. 1 Distributed activatjon

greater than the number of caches, this approach (1) re-broadcasts its transient request after a timeout
guarantees the requester will receive at least one token threshold. TokenB monitors average response times to
and (2) avoids stealing read permission away from determine this timeout threshold, and it re-broadcasts a
other caches. The correctness substrate issues persistransient request up to three times. After a fourth time-
tent reads when a processor fails to make progress on aout the substrate issues a persistent request. Pseudo-

load, and issues the original persistent request for
stores and atomic memory operations.

Response Delay MechanismHighly-contended
locks can result in the coherence protocol prematurely
stealing permissions from the processor executing a
critical section. To improve locking performance, all
protocols implement a simple, non-speculative delay

random backoff avoids lock-step retries.

TokenB is not well-suited for an M-CMP system.
First, the timeout threshold does not account for the
difference in response latency between local and
remote caches. Second, broadcasting requests requires
greater cache lookup bandwidth, since all L1 and L2
caches may hold tokens. Third, requests do not exploit

mechanism that ensures that a processor holds permis-locality; doing so can reduce both latency and inter-

sions for a block long enough to perform a short criti-
cal section (inspired by Rajwar et al. [31]). Adding a
bounded delay does not affect starvation-avoidance
guarantees.

3.3 Token and Data Transfer

The correctness substrate ensures that data and

tokens are transferred without loss or corruption. Like
most cache coherence protocols,
requires that the interconnection network eventually

CMP bandwidth by finding tokens and data within the
local CMP. Finally, it may be worthwhile to filter exter-
nal requests arriving at a CMP to save the intra-CMP
bandwidth of forwarding the requests to all L1 caches.
TokenB does not consider these optimizations because
it assumed a flat system.

Table 1 lists the TokenCMP variants evaluated in
this study. TokenCMP-arb0 and TokenCMP-dst0 use

this guarantee no performance policy and never issue transient

requests; instead, they rely on the correctness substrate

delivers each message accurately. The performance to immediately issue a persistent request for all proces-

policy, discussed next, invokes the correctness sub-
strate to reliably transfer data and tokens on its behalf.

4 Hierarchical Performance Policy
The safety and starvation-freedom guarantees pro-

sor requests. We use these variants to stress robustness,
but we do not recommend deploying them in real sys-
tems (because persistent requests are less efficient than
transient requests). TokenCMP-arb0 uses the original
arbiter-based persistent request activation mechanism,

vided by the correctness substrate enable aggressivewhile TokenCMP-dst0 and all subsequent variants use

performance policies. For example, a performance pol-
icy can optimize for common cases, without concern
for the races that make conventional protocol optimiza-
tions so complex.

The original TokenB performance policy targets
flat modestly-sized glueless multiprocessors with low-
latency, high-bandwidth, unordered interconnects [25].
TokenB broadcastdransient requestdo all nodes.

the new distributed activation mechanism (described in
Section 3.2).

The last four TokenCMP variants have much in
common. On an L1 miss, each broadcasts a coherence
request onlywithin its CMP to the appropriate on-chip
L2 cache bank and other on-chip L1 caches. The local
L1 caches check their tags. On a write request, an L1
replies with data (if it holds the owner token) and all its

Nodes respond to these transient requests with one or tokens. An L1 cache responds to a local read request if

more tokens, however, a transient request may fail to
collect sufficient tokens. In such situations, a processor

it has multiple tokens. If it has all tokens and has modi-
fied the data, it optimizes for migratory sharing by

transferring the data and all tokens. Otherwise it
responds with data and one token.

On an L2 miss, each CMP broadcasts the request
to other CMPs. A CMP responds to external write
requests by returning all tokens (and data if it holds the
owner token). A CMP responds to external read
requests only if it holds the owner token. To reduce the
latency of a future intra-CMP request, read responses
includeC tokens (if possible), rather than the necessary
1 token, whereC is the number of caches on a CMP
node. A cache may also respond to a read request with
all T tokens to optimize for migratory sharing.

In all cases, a cache only responds to external
requests when it actually has tokens. In contrast, a tra-
ditional protocol may need to track or block pending
requests, allowing it to create a queue of pending
requests for a contended block.

Finally, the TokenCMP variants set their timeout
threshold using responses from memory. We found that
TokenB’s approach of averaging in the latency of all

responses led to a rapid burst of retries, because fast

on-chip hits accounted for a substantial portion of the
running average.

The last four TokenCMP variants differ as follows.
TokenCMP-dst4 follows TokenB’s approach of issuing
three retries (four transient requests total) before
resorting to a persistent request. In contrast,
TokenCMP-dstl uses a persistent request immediately
after the initial transient request times out. This policy
exploits the lower latency of the new distributed activa-
tion mechanism.

TokenCMP-dstl-pred adds a predictor to detect
highly-contended blocks and immediately issue a per-
sistent request to avoid a potential timeout. Our base
predictor uses a four-way set-associative 256-entry
table of 2-bit saturating counters (other configurations
performed similarly). A counter is allocated and incre-

TokenCMP-dstl-pred and TokenCMP-dstl-filt may
not contribute enough to justify their implementation
costs. Nevertheless, these and other ideas (e.g., multi-
cast via destination set prediction [23, 24]) may be
more valuable in larger systems.

5 Complexity Discussion & Results

Quantifying the design and verification complex-
ity of a system is notoriously hard, because what really
matters is the subjective complexity experienced by the
human designers, rather than some easily measurable
guantity. A clean, modular design might be larger in
terms of lines of code or number of transistors, yet be
far easier to understand, design, debug, and modify. We
justify our claim of simplicity two ways. First, we pro-
vide concrete examples of how we subjectively found
TokenCMP variants easier to design and modify. Sec-
ond, we present objective results from model-checking
experiments, which show that the correctness substrate
shared by all TokenCMP variants has comparable
model-checking complexity to a simplified, non-hierar-
chical version of DirectoryCMP in which all intra-
CMP details are omitted.

Subjective Experience.As an example of the
greater simplicity of TokenCMP, consider writebacks.
Handling writebacks correctly is difficult in a flat
coherence protocol and even harder in a hierarchical
one. Traditional directory protocols often require two-
phase or three-phase writebacks of dirty blocks to han-
dle races and complications arising from protocol opti-
mizations. The root of the complexity in these
protocols is that all requests must find the pertinent
copies of the block, even when they are in transit as
part of a writeback operation. In contrast, writebacks
are much simpler in protocols based on token coher-
ence. When a cache needs to write back a block (dirty
or otherwise), it simply sends tokens and (in some
cases) data to either the L2 or memory; no extra mes-

mented when a transient request is retried. Counters are sages or transient states at any caches or memory are
reset pseudo-randomly to allow adaptation to different required. A request that misses any in-flight tokens
phase behaviors. may be reissued, and the substrate will eventually
Finally, TokenCMP-dst1-filt filters external tran- invoke a persistent request to ensure that all misses
sient requests to conserve intra-CMP bandwidth. Each eventually complete. This same property allows token
L2 bank maintains an approximate directory of L1 coherence variants to more simply handle multiple
sharers and forwards external transient requests to only concurrent requests to the same block.
those caches. This filtering can be approximate because Also, in our experience, TokenCMP is easier to
the correctness substrate provides safety and preventschange and debug than DirectoryCMP. For example,
starvation (persistent requests are never filtered). This we can add or remove the migratory Sharing Optimiza-
approach contrasts with previous coherence filters that tion by changing the number of tokens returned in

could cause coherence violations if they filtered too
many coherence requests [28, 32].

For our workloads and system size (16 processors
in four 4-processor CMPs), however, we will see that

response to a read request. Adding this optimization to
TokenCMP required only one additional state and a
few small modifications to protocol finite state
machines. Moreover, these changes are clearly correct,

because they do not affect the correctness substrate. Inwe verify the correct behavior of not just one perfor-

contrast, implementing the migratory sharing optimiza-
tion in a flat directory protocol was somewhat complex
and doing so in a hierarchical directory protocol was
even more challenging.

Model Checking. In addition to our subjective
experience, we performed model-checking experi-
ments in an effort to objectively quantify the relative
complexity of TokenCMP and DirectoryCMP, as well

mance protocol, buall possible performance proto-
cols.

We verified that the protocols were free of dead-
lock and provided a serial view of memory, in which
every load returns the value of the most recent store to
the same location [27]. We also verified that the persis-
tent request mechanisms in TokenCMP variants ensure
that the system eventually satisfies all requests, under

as to increase our confidence in the correctness. Model certain fairness constraints, e.g., messages are eventu-

checking is a technique for verifying properties of
complex systems by exhaustively exploring the state
space [9, 29]. Model checking has become almost rou-
tine for enhancing confidence (and finding bugs) in

ally delivered, and once a persistent request is satisfied
it is eventually deactivated.

We were able to verify the correctness of all ver-
sions of TokenCMP for small configurations. The

cache coherence protocols, and the literature is too vast mode|_checking Comp]exity was similar between

to survey here comprehensively. We simply note a few
facts. (1) Model checking provides exhaustive analysis,

TokenCMP-arb and the simplified, non-hierarchical
version of DirectoryCMP. TokenCMP-dst was some-

completely analyzing obscure corner cases and proto- what more computationally intensive to verify;

col interactions. It provides a thoroughness difficult to

achieve via other analysis approaches. (2) The exhaus-

tive analysis is also the Achilles’ heel of model check-

TokenCMP-safety was somewhat less intense to verify
because it omits any persistent request mechanism.

Furthermore, the number of non-comment lines of

ing. Because the state space explodes exponentially, 1 a4+ descriptions is 383 lines for TokenCMP-arb and

only very small or highly simplified configurations can
be model checked successfully. With reasonably
detailed protocol models, tiny configurations with only
a few caches and a few blocks per cache are the limit of
the state-of-the-art. (3) Despite those tiny configura-
tions, model checking often finds bugs, e.g., McMillan
and Schwalbe’s seminal work for the Encore Gigamax
[26] through Joshi et al.'s recent results on the EV6 and
EV7 [17] (Braun, et al. [8] cites numerous other case
studies.) (4) We are not aware of any published work
that has reported model checking a detailed model of a
hierarchical protocoks a hierarchical protocol.The
model would simply be too large. Instead, previous
work considered only one layer of the hierarchy at a
time, manually abstracting away the other layers.

We used the TLA+ description language [18] and
its TLC model checking tool [18, 40] to model and ver-
ify TokenCMP variants and a non-hierarchical simplifi-
cation of DirectoryCMP that omits all intra-CMP
details. We used standard techniques for simplifying
the protocols to enable model checking, e.g., symme-
try, down-scaling [12], data independence [39], etc. We
verified three versions of the token coherence correct-
ness substrate: (1) TokenCMP-arb, (2) TokenCMP-dst,
and (3) TokenCMP-safety, a simplified TokenCMP,
used only for easily verifying safety properties, that
lacks any starvation-prevention mechanisms. We mod-

396 lines for TokenCMP-dst, versus 1025 for the sim-
plified, flat DirectoryCMP. Obviously, the size of the
TLA+ descriptions is only an indirect complexity met-
ric and depends on various modeling decisions and
coding style. However, we feel that this metric accu-
rately reflects the benefit of decoupling correctness
from performance in shared memory protocols: the
brevity of the token coherence TLA+ description stems
from the fact that only the correctness substrate need
be verified. The directory protocol does not afford such
a reduction because there is no clean division between
correctness and performance.

The model checking results highlight that, because
the correctness substrate is flat, the TokenCMP
approach is as model-checkable as a typical flat direc-
tory protocol, which is important because only flat pro-
tocols (or flat protocols manually sliced from
hierarchical protocols) are currently model-checkable.
Furthermore, because of token coherence’s separation
of correctness from performance, our model checking
results apply immediately tany performance policy,
including hierarchical ones. In contrast, to model check
DirectoryCMP either we would need to model check a
full, hierarchical M-CMP configuration, which is com-
putationally intractable, or else we would have to resort
to manual reasoning to justify abstracting away the
intra-CMP protocol and hope that all corner cases have

eled only the correctness substrate and the interfaces poan handled correctly. We conclude that TokenCMP is

used by any performance protocol. By allowing the
model to nondeterministically invoke these interfaces,

simpler than a hierarchical directory protocol.

Table 2. Benchmark Descriptions

Locking Micro-benchmark. In this micro-benchmark, each prd
cessor thinks for 10 ns, acquires a random lock (different from|the
last lock acquired), holds the lock for 10 ns, and repeats untilthe
total number of acquires performed by each processor reaches a
pre-determined limit. Lock acquires use test-and-test-and-set|([11]
and contention is varied by changing the number of locks.

Barrier Micro-benchmark. This micro-benchmark models prg
cessors performing local work, waiting for a sense-reversing bar-
rier [11], and repeating 99 more times. Local work takes 300Q ns
with and without optional variability. When each procesgor
reaches the barrier, it acquires a lock and increments a count ip the
same cache block. If the count is not maximum, the procegsor
releases the lock and spins on a flag in another cache block. If the
count is maximum, the processor zeros the counter, reverseg the
sense of the flag, and releases the lock. All processors now pass the
barrier and begin the next work phase.

Apache: Static Web Content ServingWeb servers such ag
Apache are an important enterprise server application. We|use
Apache 2.0.43 configured to use a hybrid multi-process multi-

threaded server model with 64 POSIX threads per server progess.
We use 800,000 requests to warm the system, 1000 requests to
warm simulated hardware caches, and detailed simulations off 100
requests for our reported results.

OLTP: Online Transaction ProcessingDB2 with a TPCC-like
workload. The TPC-C benchmark models the database activity of
a wholesale supplier. Our OLTP workload is based on the TPL-C
v3.0 benchmark using IBM’s DB2 v7.2 EEE database mangge-
ment system. We use 10,000 transactions to warm the systenp and
database buffer pool, 500 transactions to warm simulated hardvare
caches, and detailed simulations of 100 transactions for [our
reported results.

SPEC|bb: Java Server Workload. SPECjbb2000 is a server-
side Java benchmark that models a 3-tier system, but its main
focus is on the middleware server business logic. We use over a
million transactions to warm the system, 100,000 transactions to
warm simulated hardware caches, and detailed simulations of
2000 transactions for our reported results.

6 Methods

This section describes the commercial workloads,
target M-CMP system assumptions, and simulation
methods we use for our performance evaluation.

Benchmarks. We evaluate protocols with com-
mercial workloads from an enhanced version of the
Wisconsin Commercial Workload Sujfig. As detailed
in Table 2, we use locking and barrier micro-bench-
marks, a static web serving workload (Apache), an
online transaction processing workload (OLTP), and a
Java middleware workload (SPECjbb). The macro-
benchmarks execute on a simulated SPARC multipro-
cessor running Solaris 9, while the micro-benchmarks
use a testing facility immune to operating system
effects.

Target M-CMP System. We target an M-CMP

Table 3. Target System Parameters

Each CMP
number of processors 4 per CMP
cache block size 64 Bytes

split L1 | & D caches
interconnect topology
interconnect link bw
interconnect latency
shared unified L2 cache
memory/dir controllers

128kBytes, 4-way, 2ns
directly connected

64 GBytes/sec

2ns (one-way)
8MByte, 4-banks, 4-way, Tns

6ns latency

Each Dynamically Scheduled Processor

clock frequency 2 Ghz

reorder buffer/scheduler 128/64 entries
pipeline width 4-wide fetch & issue
pipeline stages 11

direct branch predictor 1kBytes YAGS
indirect branch predictor| 64 entry (cascaded)
return address stack 64 entry

Per-CMP Memory

latency to mem controllef 20ns (off-chip)
DRAM latency 80ns
memory bank capacity 1 GByte per bank

Between CMPs

number of CMPs
interconnect topology
interconnect link bw
interconnect link latency

4 (16 processors total)

directly connected

16 GBytes/sec

20ns (including
wire, & sync.)

interfag

o

containing four dynamically-scheduled SPARC pro-
cessors (16 processors total) with a total system mem-
ory of 4GB. We focus on 16-processor systems
because (1) most multiprocessor systems have a small
or moderate number of processors, and (2) the com-
mercial workloads on which we focus can less easily
exploit scalable multiprocessing systems (in contrast to
technical workloads). Figure 1a depicts the CMP node,
while Table 3 provides additional assumptions.

Target M-CMP Coherence ProtocolsWe evalu-
ate several alternative M-CMP protocols:

¢ DirectoryCMP provides coherence hierarchically
(Figure 1b) with the two-level directory protocol
described in Section 2. We show results for both a
DRAM directory and an unrealistic zero-cycle
directory QirectoryCMP-zer).

¢ TokenCMPvariants are introduced in Section 4
and summarized in Table 1.

¢ PerfectL2 provides an unimplementable lower
bound. All L1 misses hit in an infinite L2 cache
shared across all CMPs.
Simulation Infrastructure. We simulate target

M-CMPs with the Virtutech Simics full-system func-

system that uses four directly-connected CMPs, each tional execution-driven simulator [22] and a perfor-

—— TokenCMP-arb0
g --o-- DirectoryCMP
= —o— DirectoryCMP-zero
= —--- TokenCMP-dstO
3
N
©
£
5 .
o
Beeoeees = Theeeenes Qeeemenee o
e
T’ ST, A —-—-— -A—-—-—= -A
0 =— higher contention lower contentiofp—=
2 4 8 16 32 64 128 256 512
of locks

Figure 2. Locking micro-benchmark results using

only persistent requests

mance simulation infrastructure used to simulate
memory hierarchies and out-of-order processors [1].
We pseudo-randomly perturb simulations and calculate
error bars as described by Alameldeen et al. [2].
Improvements in the next section are statistically sig-
nificant with 95% confidence when error bars do not
overlap. We extended this infrastructure to model an
M-CMP’s physical hierarchy and specified both Direc-

toryCMP and TokenCMP variants in a table-driven lan-

guage for protocol specification [33].

7 Robustness Results

The distributed persistent request mechanism
(Section 3.2) tries to improve performance robustness.
We evaluate how well it does this using the locking and
barrier micro-benchmarks and performance policies
that useonly persistent requests. Figure 2 shows runt-
ime (smaller is better), normalized to DirectoryCMP
with 512 locks, for 16 processors as the number of
locks varies from 2 (high contention) to 512 (low con-
tention). The middle two lines show DirectoryCMP
with a realistic directory and an unrealizable zero-cycle
directory. The other two lines show TokenCMP vari-

ants that use only persistent requests. We see that the

original arbiter method (TokenCMP-arb0) performs
worse than DirectoryCMP, while the new distributed
method (TokenCMP-dst0) performs comparably or
better than the directory variants. Not shown,
TokenCMP-arb0O performs even worse when highly-
contended locks map to the same arbiter, while the dis-
tributed method is immune to where locks map.
Although TokenCMP-dst0 has good runtime for
this micro-benchmark, its exclusive use of persistent
requests is not well suited for macro-benchmarks, in

part, because of the traffic of broadcasting activate and

K
\,
N\
\ --o-- DirectoryCMP
29\ —e— DirectoryCMP-zero
o 1 \\ —+— TokenCMP-dst4
S ok N\ — -~ TokenCMP-dst1
5 g ._-\a - x- TokenCMP-dst1-pred
B N
N .
B 1
S 1
g =
X~§"‘%.:;_\‘_;§t.~__\ _
—-——— '—‘3!’%,‘,-*
=— higher contention lower contentiof-=
0
2 4 8 16 32 64 128 256 512
of locks

Figure 3. Locking micro-benchmark results with both
transient and persistent requests
to develop protocols that are both (1) robust for con-
tended micro-benchmarks and (2) perform well for
macro-benchmarks.

Figure 3 shows runtime results for the various
TokenCMP performance policies (normalized to Direc-
toryCMP with 512 locks). For low contention (e.g.,
512 locks), the results show that (1) TokenCMP vari-
ants perform well and (2) TokenCMP outperforms
DirectoryCMP. This result occurs because the
requested lock is often in an L1 cache in another CMP,
causing many directory indirections in DirectoryCMP.

As contention increases, TokenCMP variants dif-
fer. TokenCMP-dst4 is not robust, because it wastes
time issuing three retries that often fail before issuing a
successful persistent request. TokenCMP-dstl does
better, and comparable to directory variants, by issuing
a persistent request immediately after an initial tran-
sient request fails. Finally, TokenCMP-dstl-pred does
better by using persistent requests immediately in high
contention and acting like TokenCMP-dst1 in low con-
tention. Not shown, TokenCMP-dstl-filt performs
identically to TokenCMP-dst1.

To further exercise robustness, we also compare
protocols using the barrier micro-benchmark from
Table 2. Results in Table 4 show runtimes (normalized
to DirectoryCMP) for the various protocols, in which
the work each processor does between barriers takes
either a constant 3000 ns (middle column) or has some
uniform variability (right). These results (and results
using other parameters not shown) corroborate locking
micro-benchmark results that TokenCMP-arb0 and
TokenCMP-dst4 should be avoided (results highlighted
in bold).

In summary, TokenCMP-dstl, TokenCMP-dst1-

deactivate messages to all caches. Instead, our goal isPréd, and TokenCMP-dst1-filt all provide robust per-

formance even under high contention.

Table 4. Barrier Micro-benchmark Runtime
(Normalized to DirectoryCMP)

Work between barriers
3000 ns 3000 ns +
Protocol fixed U(-1000,+1000)

TokenCMP-arb0 1.40 1.29
TokenCMP-dst0 0.94 0.91
DirectoryCMP 1.00 1.00
DirectoryCMP-zero 0.95 0.93
TokenCMP-dst4 1.15 1.01
TokenCMP-dstl 0.99 0.95
TokenCMP-dstl-pred 0.96 0.93
TokenCMP-dst1-filt 0.99 0.95

8 Performance Results

This section evaluates TokenCMP performance
using commercial workloads, presenting runtime and
intra-CMP and inter-CMP bandwidth results.

Runtime. Figure 6 displays runtime results for the
macro-benchmarks from Table 2, normalized to Direc-
toryCMP. Hash marks for a perfect global L2 cache
bound the possible improvement, while DirectoryCMP
is shown with both a DRAM directory and an unrealis-
tic 0-cycle directory. We find:

* The TokenCMP variants perform significantly
better than DirectoryCMP. In particular,
TokenCMP-dstl is faster than DirectoryCMP
(with DRAM directory) by 50% for OLTP, 29%
for Apache, and 10% for SpecJBB.

¢ All TokenCMP variants perform similarly . This
implies that contention is modest and changes to
improve robustness did not hurt. Persistent
requests occur rarely—less than 0.3% of L1
misses for all workloads and protocols.

* TokenCMP-dstl is best.It is more robust than
TokenCMP-dst4 with similar macro-benchmark
performance. The cost of TokenCMP-dstl-pred’s
predictor and TokenCMP-dst1-filt's filter are not
justified for these workloads and system sizes.

Inter-CMP Bandwidth. For our parameters,
inter-CMP traffic generates little queuing delay. Never-
theless, to examine possible effects for other assump-
tions, we plot inter-CMP traffic in Figure 7a and break
it down by message type. Results are in bytes and nor-
malized to traffic of DirectoryCMP. Data messages are

1.0

£L L =
. FEEL
IS
B B
2
8 osH - - —
©
£
S
<]
00 as - as - [
z28EE 238EE zBYEC
O T F4d O T F4 OFT T &4
E,Q.Q.g% a&ﬁ.;g Z\Q.D.;;%
S=2=28F% S=2=2-8F% s=2=28Fs
PREIC fREic fRfs
'5.\4¥§O ExxEO Exxﬁo
SoSQ g SoQ g SoQ g
I—i—sx I—I—gx '_'_8;4
g8 g8 g8
OLTP Apache SpecJBB
[[\] DRAM Directory
[7] Perfect L2

Figure 6. Runtime of commercial workloads

the result by revealing that DirectoryCMP can send
more control messages than TokenCMP. Consider, for
example, a sequence in which a CMP obtains an exclu-
sive copy of a block from remote memory, updates it,
and writes it back to memory. With TokenCMP, a CMP
sends three request messages to the other CMPs,
receives a data message, and then sends a data write-
back message. With DirectoryCMP, a CMP sends a
request message, receives a data message, sends an
unblock message (used to reduce the implementation
complexity), requests a writeback, gets a writeback
grant, and sends a data writeback message. A total of
168 bytes for TokenCMP and 176 bytes for Directory-
CMP.

In a system with more CMPs, TokenCMP traffic
results will be worse (unless multicast with destination
set predictions is employed [24]). Our directory proto-
col also expends messages to increase performance and
manage complexity whereas other implementations
may choose different tradeoffs. Regardless, the current
TokenCMP has reasonable traffic characteristics for
modest numbers of CMPs per system.

Intra-CMP Bandwidth. Intra-CMP traffic also
generates little queuing delay for our assumptions.
However we plot intra-CMP traffic in Figure 7b and

72 bytes and control messages 8 bytes. Results show pyreak it down by message type. To first order, all proto-

TokenCMP variants generate somewHass traffic
than DirectoryCMP. We initially believed this result

cols use similar intra-CMP bandwidth. As expected,
TokenCMP protocols expend more traffic for request

incorrect, because TokenCMP uses broadcast betweenmegsages (both internal and external) due to broadcast.

nodes. Nevertheless, further investigation supported
1. X% faster = runtime(DirCMP)/runtime(TokenCMP) - 1

10

Unexpectedly, DirectoryCMP uses more traffic for
response data because of an artifact of the strictly hier-

Inter-CMP Traffic IntraaCMP Traffic

1.0+

1.0
0.8
o o
E 067 [Response Data E
g ”?2 P2 Writeback Data B os-
g / Writeback Control g
§0.4A ”’ ??” ER;ueﬂ ontrol 5 ’,/
”’ //” 2] Inv/Fwd/Acks/ Tokens
%
0.2 4 dd - [5] unblock
[] Persistent
-

0.0 c = = - 0o o = o = oy =
£33 §53%¥% 555379 §338: £533%4 23382
5204 82Q4% E3Q4g Bgpdi: Pppi: Ppgis
—§2§2§u ~—§2§é§o -—§j§§o D%é%o o%égo o%—b‘gu
SEEfy CEEPE °REyE T R T A

32 = 32 S S S

er e er [~ e I

OLTP Apache SpecIBB OLTP Apache SpeclBB
(@) b)

Figure 7. Traffic usage of commercial workloads.

archical ~ DirectoryCMP implementation: data Acknowledgments

responses must be handled by the L2 cache (intra-CMP We thank Virtutech AB, the Wisconsin Condor
directory). For example, an L1 cache responding to @ group, and the Wisconsin Computer Systems Lab for
forwarded request from an external CMP, must transfer nejr help and support. We thank Brad Beckmann,

the data to the L2 cache where it may collect other keyin Moore, the Wisconsin Multifacet group, and the

invalidation acknowledgments. Only then does the L2 \jisconsin Computer Architecture Affiliates for their
send the data to the requesting chip which in turn sends comments on this work.

the data to the requesting processor. In contrast, in
TokenCMP an L1 cache directly sends the forwarded
request to the requesting processor, using a single data
message on the on-chip interconnect.

This work is supported in part by the National Sci-
ence Foundation (CCR-0324878, EIA/CNS-0205286,
and CCR-0105721) and donations from Intel Corpora-
)))] tion and Sun Microsystems. Hu is supported in part by

As introduced in Section 4, TokenCMP-dstl-filt 5 yesearch grant from the Natural Sciences and Engi-
uses an approximate directory of L1 sharers to filter neering Research Council of Canada, and Bingham is

external transient requests. Figure 7b shows that the fil- sypported by a UBC Graduate Fellowship. Hill and

tion is sufficiently low that this does not affect runtime. \jcrosystems.

9 Conclusions References
Few papers have considered implementing coher- [1] A.R.Alameldeen, M. M. K. Martin, C. J. Mauer, K. E. Moore,
; ; ; ; ; M. Xu, D. J. Sorin, M. D. Hill, and D. A. Wood. Simulating a
ence n SyStEmS V\r/:th mu_ltlplle chip hmultlprr(])_ceissors $2M Commercial Server on a $2K PGEEE Computer
(M-CMPs). Those that do implement hierarchical pro- 36(2):50-57, Feb. 2003.
tocols (e.g., [5, 36]). This paper advocates using token [2] A.R. Alameldeen and D. A. Wood. Variability in Architectural
coherence to obtain TokenCMP protocols that have flat Simulations of Multi-threaded Workloads. PProceedings of

; hit i ; _ the Ninth IEEE Symposium on High-Performance Computer
correctness properties, but exhibit hierarchical perfor Architecture pages 7-18, Feb. 2003,

mance characteristics. We found TokenCMP variants [3; | A Barroso and K. Gharachorloo. Personal Communication,

easier to verify than hierarchical directory protocols. June 2003.

We improved token coherence performance robustness [4] tL A-CBSFFOSC:, K. ?_haratf:rgrloo, and IIE.V\EIBU?(Tior&. Nilqemordeys-
. . f - em aracterization o ommercial orkloads.Hrceed-

under hlgh-contenthn. l.:!na"y’ we showed commercial ings of the 25th Annual International Symposium on Computer

workloads can run significantly faster on M-CMP sys- Architecture pages 3-14, June 1998.

tems using TokenCMP variants instead of a hierarchi-

cal directory protocol.

11

(5]

(6]

(71

(8]

&)

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk,
S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese. Pira-
nha: A Scalable Architecture Based on Single-Chip Multipro-
cessing. IProceedings of the 27th Annual International Sym-
posium on Computer Architectyngages 282—293, June 2000.
L. A. Barroso, K. Gharachorloo, M. Ravishankar, and R. Stets.
Managing Complexity in the Piranha Server-Class Processor
Design. In2nd Workshop on Complexity-Effective Design held
in conjunction with the 27th International Symposium on Com-
puter ArchitectureJune 2001.

J. M. Borkenhagen, R.D. Hoover, and K. M. Valk. EXA
Cache/Scalability Controllers. IlBM Enterprise X-Architec-
ture Technology: Reaching the Summiages 37-50. Interna-
tional Business Machines, 2002.

T.Braun, A.E. Condon, A.J. Hu, K.S. Juse, M. Laza,
M. Leslie, and R. Sharma. Proving Sequential Consistency by
Model Checking. Innternational High-Level Design, Valida-
tion, and Test WorkshotEEE, Nov. 2001.

E. Clarke and E. Emerson. Design and Synthesis of Synchroni-
zation Skeletons using Branching Time Temporal Logic. In D.
Kozen, editorProceedings of the Workshop on Logics of Pro-
grams volume 131 ol ecture Notes in Computer Scienpag-

es 52-71, May 1981. Springer-Verlag.

A. L. Cox and R. J. Fowler. Adaptive Cache Coherency for De-
tecting Migratory Shared Data. Proceedings of the 20th An-
nual International Symposium on Computer Architectpeges
98-108, May 1993.

D. E. Culler and J. SinghParallel Computer Architecture: A
Hardware/Software ApproactMorgan Kaufmann Publishers,
Inc., 1999.

D. L. Dill, A. J. Drexler, A.J. Hu, and C. H. Yang. Protocol
Verification as a Hardware Design Aid. International Con-
ference on Computer DesigiEEE, Oct. 1992.

K. Gharachorloo, M. Sharma, S. Steely, and S. V. Doren. Ar-
chitecture and Design of AlphaServer GS32(Pinceedings of
the Ninth International Conference on Architectural Support for
Programming Languages and Operating Systgrages 13-24,
Nov. 2000.

E. Hagersten and M. Koster. WildFire: A Scalable Path for
SMPs. InProceedings of the Fifth IEEE Symposium on High-
Performance Computer Architectyrgpages 172-181, Jan.
1999.

L. Hammond, B. Hubbert, M. Siu, M. Prabhu, M. Chen, and
K. Olukotun. The Stanford Hydra CMIEEEE Micro, 20(2):71—

84, March-April 2000.

L. Hammond, B. A. Nayfeh, and K. Olukotun. A Single-Chip
MultiprocessorlEEE Computer30(9):79-85, Sept. 1997.

R. Joshi, L. Lamport, J. Matthews, S. Tasiran, M. Tuttle, and
Y. Yu. Checking Cache-Coherence Protocols with TLA®r-

mal Methods in System Desj@2(2):125-131, March 2003.

L. Lamport. Specifying Systems: The TLA+ Language and
Tools for Hardware and Software Engineefgldision-Wesley,
2002.

D. Lenoski, J.Laudon, K. Gharachorloo, A.Gupta, and
J. Hennessy. The Directory-Based Cache Coherence Protocol
for the DASH Multiprocessor. IProceedings of the 17th Annu-
al International Symposium on Computer Architectysages
148-159, May 1990.

B.-H. Lim and A. Agarwal. Reactive Synchronization Algo-
rithms for Multiprocessors. IRroceedings of the Sixth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systemasges 25-35, Oct. 1994.

T. D. Lovettand R. M. Clapp. STING: A CC-NUMA Computer
System for the Commercial Marketplace.Rroceedings of the
23th Annual International Symposium on Computer Architec-
ture, May 1996.

12

[22]
(23]

[24]

(25]

(26]

[27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

P. S. Magnusson et al. Simics: A Full System Simulation Plat-
form. IEEE Computer35(2):50-58, Feb. 2002.

M. M. K. Martin. Token CoherenceéPhD thesis, University of
Wisconsin, 2003.

M. M. K. Martin, P. J. Harper, D. J. Sorin, M. D. Hill, and D. A.
Wood. Using Destination-Set Prediction to Improve the Laten-
cy/Bandwidth Tradeoff in Shared Memory Multiprocessors. In
Proceedings of the 30th Annual International Symposium on
Computer Architecturgpages 206-217, June 2003.

M. M. K. Martin, M. D. Hill, and D. A. Wood. Token Coher-
ence: Decoupling Performance and CorrectnesRrdeedings

of the 30th Annual International Symposium on Computer Ar-
chitecture pages 182-193, June 2003.

K. L. McMillan and J. Schwalbe. Formal Verification of the Gi-
gamax Cache-Consistency Protocol. liiernational Sympo-
sium on Shared Memory Multiprocessjmages 242-251. In-
formation Processing Society of Japan, 1991.

D. Mosberger. Memory Consistency Mode{Sperating Sys-
tems Reviey27(1):18-26, 1993.

A. Moshovos, G. Memik, B. Falsafi, and A. Choudhary. JET-
TY: Filtering Snoops for Reduced Power Consumption in SMP
Servers. InProceedings of the Seventh IEEE Symposium on
High-Performance Computer Architectyidan. 2001.

J.-P. Queille and J. Sifakis. Specification and Verification of
Concurrent Systems in Cesar.3th International Symposium
on Programming pages 337-351. Springer, 1981. Lecture
Notes in Computer Science Number 137.

Z.Radovic and E. Hagersten. Efficient Synchronization for
Nonuniform Communication Architectures. Rroceedings of
SC2002Nov. 2002.

R. Rajwar, A.K&gi, and J.R. Goodman. Improving the
Throughput of Synchronization by Insertion of DelaysPliro-
ceedings of the Sixth IEEE Symposium on High-Performance
Computer Architecturegpages 168-179, Jan. 2000.

S. L. Scott and J. R. Goodman. Performance of Pruning-Cache
Directories for Large-Scale Multiprocessol&EE Transac-
tions on Parallel and Distributed Systey5):520-534, May
1993.

D. J. Sorin, M. Plakal, M. D. Hill, A. E. Condon, M. M. K.
Martin, and D. A. Wood. Specifying and Verifying a Broadcast
and a Multicast Snooping Cache Coherence Protdé&dtE
Transactions on Parallel and Distributed Syster3(6):556—
578, June 2002.

P. Stenstrém, M. Brorsson, and L. Sandberg. Adaptive Cache
Coherence Protocol Optimized for Migratory Sharing Piro-
ceedings of the 20th Annual International Symposium on Com-
puter Architecturepages 109-118, May 1993.

D. M. Taub. Improved Control Acquisition Scheme for the
IEEE 896 FuturebusEEE Micro, 7(3), June 1987.

J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy.
POWER4 System Microarchitectul®&M Journal of Research
and Developmen#6(1), 2002.

M. Tremblay, J. Chan, S. Chaudhry, A. W. Conigliaro, and
S. S. Tse. The MAJC Architecture: A Synthesis of Parallelism
and ScalabilitylEEE Micro, 20(6):12—-25, Nov-Dec 2000.

G. White and P. Vogt. Profusion: A Buffered, Cache Coherent
Crossbar Switch. IfProceedings of the 5th Hot Interconnects
Symposiumpages 87-96, Aug. 1997.

P. Wolper. Expressing Interesting Properties of Programs in
Propositional Temporal Logic. IRroc. 13th ACM Symp. on
Principles of Programming Languagepages 184-192, Jan.
1986.

Y. Yu, P. Manolios, and L. Lamport. Model Checking TLA+
Specifications. In L. Pierre and T. Kropf, editoRroceedings

of Correct Hardware Design and Verification Methods
(CHARME "99) number 1703 in LNCS, pages 54-66. Springer-
Verlag, 1999.

Appendix A: Supporting Data (not included in HPCA proceedings version)

This appendix provides supporting data for model checking (Section 5) and macro-benchmark execution (Section 8).
Table 5. Results for model checking safetiRuntimes in minutes; timeout is 10,000 minutes.

Parameter Protocol
% g_,) § % TokenCMP-dst TokenCMP-arb TokenCMP-safety | Flat DirectoryCMP
Qe [$ |o |2
Sl |5 |g|g| tme states | M€ states | "M | states | UM | states
g =128 |8 (min.) (min.) (min.) (min.)
21 2| 1 1 1 15 1,166 1] 46(Q (24
= 0 1012
21 2| 1] 1| 2 85 6,279 5 3,17 1 26y
2 2 2| 1] 1 80(Q 20,348 38 8,831 il 384
- 15 39,686
2 2| 2| 1] 2 timeout 1123 176,35p 353 24,380
2 2| 2| 2| 1 1,315 32,854 63 14,438 4 405 138 268,073
21 3| 1| 1| 1 50 5,344 1 1,004 24
0 1,296
21 3| 1] 1| 2 424 30,560 15 8,988 L 267
21 3| 2| 1 1 4,081 141,08 23b 54,502 4 384 B32 80,155
21 3] 2| 2| 1 6,301 217,18¢8 39) 91,803 4 405 582 1,086,192
3 3| 1] 1] 1 263 16,916 6 1,97¢ D 24
3 3| 1] 1] 2 timeout 77 18,616 B 270 8 16,852
3 3| 1| 1] 3 timeout 382 69,977 26 1,945
3 3| 2| 1] 1 timeout 1,297 119,281 10 384 timeout
Table 6. Results for model checking liveness Table 7. Macro-Benchmarks Absolute Data
Runtimes in minutes; timeout is 10,000 minutes. All numbers in thousands. Instruction and miss counts are totals for 16 processors.
L1 L2
Parameter Protocol Protocol Cycles Instructiong| Misses || Misses
& T SpecJBB (2,000 transactions)
§ é § & TokenCMP-dst TokenCMP-arb Perfect L2 6,017 106,799 1,13p)
g g g g 2 time time DirectoryCMP 11,707 109,463 1,418 374
g |a |5 |c (& - -
S |o |8 |8 |& (min.) states (min.) states DirectoryCMP-zero 11,324 109,422 1,405 348
a |= [< |O [F TokenCMP-dst4 10,678 108,98k 1,379 418
20 21 1 1 1 3 432 § 327 TokenCMP-dst1 10,658 108,984 1,379 417
2l 2| 2| 1] 1 262 5,952 21 4,684 TokenCMP-dstl-pred| 10,621 108,972 1,317 an3
2 2 2 2 1 418 8,920 28 7,342 TokenCMP-dst1-filt 10,675 108,994 1,380 420
21 21 1| 1] 2 3 2556 10 2 261 Apache (100 transactions)
- ! . Perfect L2 2,922 24,69 803
2l 2l 2| 1 2 timeout 361 105274 DirectoryCMP 9,083 30578 118 368
21 31 1 1| 1 19 1,966 8 723 DirectoryCMP-zero 7,028 27,584 1,048 352
2| 3| 1| 1] 2 188 12,044 15 6,853 TokenCMP-dst4 6,996 26,00 1,026 347
21 31 2 1| 1 2,109 40,684(91 29,398 TokenCMP-dst1 7,023 26,213 1,037 346
2 3 2 1 7 timeout 3.691 885,624 TokenCMP-dst1-pred 6,971 25,5211 940 345
- TokenCMP-dst1-filt 6,911 25,697 1,01p 341
2| 3| 2| 2| 1| 83,253 59,204 114 47,535 OLTP (100 Tansacions)
S| 3 1 1 1 179 6,123 14 3,654 Perfect L2 16,216 180,66 3,45B b
31 3| 1| 1 2| 2434 49,6417 110 38,191 DirectoryCMP 37,769 274,959 3,75 1,292
31 3| 2| 1| 1 timeout 1,25 179,541 DirectoryCMP-zero 30,933 228,801 3,695 1,243
TokenCMP-dst4 25,155 193,386 3,645 1,391
TokenCMP-dstl 25,038 198,909 3,642 1,362
TokenCMP-dstl-pred| 24,493 192,026 3,633 1,319
TokenCMP-dst1-filt 24,479 192,11 3,567 1,339

13

	Abstract
	1 Introduction
	Figure 1. A CMP Node with Two Alternative Multiple CMP (M-CMP) Systems. Part (a) expands a CMP no...

	2 Base M-CMP System & DirectoryCMP
	3 Flat Correctness Substrate
	3.1 Safety
	3.2 Starvation Avoidance
	3.3 Token and Data Transfer

	4 Hierarchical Performance Policy
	Table 1. TokenCMP Variants

	5 Complexity Discussion & Results
	6 Methods
	Table 2. Benchmark Descriptions
	Locking Micro-benchmark
	Barrier Micro-benchmark
	Apache: Static Web Content Serving
	OLTP: Online Transaction Processing.
	SPECjbb: Java Server Workload.
	Table 3. Target System Parameters

	7 Robustness Results
	Figure 2. Locking micro-benchmark results using only persistent requests
	Figure 3. Locking micro-benchmark results with both transient and persistent requests
	Figure 4. Barrier microbenchmark results using only persistent requests [TODO, make lines and sy...
	Figure 5. Barrier microbenchmark results with both transient and persistent requests
	Table 4. Barrier Micro-benchmark Runtime (Normalized to DirectoryCMP)

	8 Performance Results
	Figure 6. Runtime of commercial workloads

	9 Conclusions
	Acknowledgments
	Figure 7. Traffic usage of commercial workloads.

	References
	Table 5. Results for model checking safety. Runtimes in minutes; timeout is 10,000 minutes.
	Table 6. Results for model checking liveness. Runtimes in minutes; timeout is 10,000 minutes.
	Table 7. Macro-Benchmarks Absolute Data

	Improving Multiple-CMP Systems Using Token Coherence
	Michael R. Marty1, Jesse D. Bingham2, Mark D. Hill1, Alan J. Hu2, Milo M.K. Martin3, David A. Wood1
	1Computer Sciences Department
	University of Wisconsin-Madison
	{mikem, markhill, david}@cs.wisc.edu
	2Department of Computer Science
	University of British Columbia
	{jbingham, ajh}@cs.ubc.ca
	3Dept. of Comp. & Information Science
	University of Pennsylvania
	milom@cis.upenn.edu
	Appendix A: Supporting Data (not included in HPCA proceedings version)

