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Abstract
Improvements in semiconductor technology now

enable Chip Multiprocessors (CMPs). As many future
computer systems will use one or more CMPs and sup-
port shared memory, such systems will have caches that
must be kept coherent.

Coherence is a particular challenge for Multiple-
CMP (M-CMP) systems. One approach is to use a hier-
archical protocol that explicitly separates the intra-
CMP coherence protocol from the inter-CMP protocol,
but couples them hierarchically to maintain coherence.
However, hierarchical protocols are complex, leading
to subtle, difficult-to-verify race conditions. Further-
more, most previous hierarchical protocols use directo-
ries at one or both levels, incurring indirections—and
thus extra latency—for sharing misses, which are com-
mon in commercial workloads.

In contrast, this paper exploits the separation of
correctness substrate and performance policy in the
recently-proposed token coherence protocol to develop
the first M-CMP coherence protocol that is flat for cor-
rectness, but hierarchical for performance. Via model
checking studies, we show that flat correctness eases
verification. Via simulation with micro-benchmarks, we
make new protocol variants more robust under conten-
tion. Finally, via simulation with commercial work-
loads on a commercial operating system, we show that
new protocol variants can be 10-50% faster than a
hierarchical directory protocol.

1  Introduction
The increasing number of transistors per chip now

enable Chip Multiprocessors (CMPs),which imple-
ment multiple processor cores on a chip. CMP-based
designs provide high-performance, cost-effective com-
puting for workloads with abundant thread-level paral-
lelism, such as commercial server workloads.

Smaller-scaleSingle-CMP (S-CMP)systems, such
as Stanford Hydra [16, 15] and Sun MAJC [37], use a
single CMP along with DRAM and support chips.
Larger-scaleMultiple-CMP (M-CMP)systems, such as
Piranha [5] and IBM Power4 [36], combine multiple

CMPs to further increase performance. Because all
these systems use shared memory (to preserve ope
ing system and application investment), a key challen
for M-CMP systems is implementing correct and high
performance cache coherence protocols. These pro
cols keep caches transparent to software, usually
maintaining thecoherence invariantthat each block
may haveeither one writer or multiple readers. S-CMP
systems are conceptually straightforward, in pa
because designers can leverage the large body of lite
ture on Symmetric Multiprocessors (SMPs) [11] an
maintain coherence with traditional non-hierarchic
snooping protocols(which rely on a logical bus) or
directory protocols(which track cached copies at mem
ory).

M-CMPs present a greater challenge, because th
must maintain bothintra-CMP coherence andinter-
CMP coherence. Ideally, an M-CMP protocol would
exploit locality by separately optimizing for the low-
latency, high-bandwidth intra-CMP communication a
well as the higher-latency, lower-bandwidth inter-CM
communication. One approach uses ahierarchical pro-
tocol to separate the intra-CMP coherence protoc
from the inter-CMP protocol, but couples them hiera
chically to maintain the coherence invariant. Thi
approach can apply experience with non-CMP hiera
chical protocols [7, 13, 14, 19, 21, 38] to CMPs [5, 36
Figure 1 illustrates (a) a CMP node and (b) an M-CM
with a hierarchical coherence protocol.

Hierarchical coherence presents at least two ch
lenges. First, even non-hierarchical coherence protoc
are difficult to implement correctly. Coupling two pro-
tocols into a hierarchy creates additional transient sta
and protocol corner cases, significantly increasing ve
fication complexity [3, 6]. Races occur both amon
messages within each CMP (e.g., processor request
readable/writable blocks, writebacks, invalidation
acknowledgments) and between CMPs (e.g., forward
requests, data messages, and acknowledgments). T
messages lead to many transient states in L1 caches
caches, and directory controllers, particularly with opt
1
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mizations (e.g., all MOESI states). Second, many pre-
vious hierarchical protocols—non-CMP [7, 13, 14, 19,
21, 38] or CMP [5]—use directories at one level of the
hierarchy (an exception is Power4 [36]). Directory pro-
tocols require indirections (and thus additional latency)
on sharing misses common in many commercial work-
loads [4]. Section 2 presents our base M-CMP system,
which uses directory protocols for both intra-CMP and
inter-CMP coherence.

In contrast,token coherence[23, 25] is well suited
to the present challenge, because it explicitly separates
the correctness substratefrom a performance policy.
The correctness substrate uses token counting to guar-
antee that, at any time, a memory block can have a sin-
gle writeable copy (with all tokens), multiple read-only
copies (with one or more tokens), or is not cached (all
tokens at memory). To avoid starvation, it usespersis-
tent requeststhat are remembered at other nodes until
the requestor garners sufficient tokens.

A token coherence performance policy, on the
other hand, uses unacknowledgedtransient requeststo
seek tokens and data. It can optimize common patterns,
use complex predictors, and re-issue transient requests
that don’t find sufficient tokens. In all cases, the cor-
rectness substrate continues to provide safety (by token
counting) and avoids starvation (by eventually issuing
a persistent request). The original token coherence per-
formance policy [25], however, is not well-suited for
M-CMP systems because it assumes flat glueless mul-
tiprocessors with private caches.

This paper extends token coherence to M-CMP
systems by developingTokenCMP. TokenCMP pro-
vides coherence in a manner that isflat for correctness
(Section 3), but direct and hierarchical for perfor-
mance(Section 4). We demonstrate the following three
contributions:

• Simplicity. TokenCMP can be shown correct by
verifying only a flat correctness substrate. Vi
model checking, we show the effort required i
comparable or less than verifying a flat director
protocol, which is known to be much simpler tha
verifying hierarchical directory protocols
(Section 5).

• Robustness.Under contention, the original token
coherence proposal used a persistent requ
mechanism that could become a performance b
tleneck. We extend the original starvation avoid
ance mechanism with persistent read requests a
a distributed activation mechanism. We use micr
benchmarks to show that TokenCMP variants ca
handle highly-contended blocks more robust
(Section 7).

• Performance. We evaluate the performance o
TokenCMP versus a hierarchical directory proto
col. We simulate three commercial workload
interacting with a commercial operating system o
an M-CMP system using four 4-way CMPs
(Section 6). We show TokenCMP can be 9-50%
faster than a hierarchical directory protoco
(Section 8).

2  Base M-CMP System & DirectoryCMP
In this paper, we compare TokenCMP against

base M-CMP system that uses directory protocols, n
snooping, for both inter-CMP and intra-CMP coher
ence (similar to Piranha [5]). This approach allow
both on- and off-chip interconnects to be unordere
and fully-connected to reduce latency.

Figure 1 shows block diagrams of a CMP nod
and the 4-CMP system evaluated in this study. Ea
CMP contains four processors, private L1 instructio
and data caches, shared L2 cache banks, an on-c
interconnect, a global interconnect interface, and

Figure 1. A CMP Node with Two Alternative Multiple CMP (M-CMP) Systems. Part (a) expands a CMP node with
processors, private L1 caches, shared L2 cache banks, on-chip interconnect, global interconnect interface, and interfac
chip memory controller with DRAM. Part (b) symbolizes a direct-interconnect M-CMP system with coherence maintained v
intra-CMP protocol interacting with ainter-CMP protocol. Part (c) symbolizes an M-CMP with a logically-flat coherenc
protocol, such asTokenCMP developed in this paper.
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interface to an off-chip memory controller, which in
turn connects to DRAMs. Using a separate memory
controller allows the CMP to dedicate more pins for
the global interconnect and support greater memory
bandwidth and capacity.

Our base system uses an MOESI-based hierarchi-
cal directory protocol calledDirectoryCMP. Each L2
cache bank maintains an intra-CMP directory to track
copies in L1 caches. The intra-CMP directory control-
ler maintains coherence with messages among the on-
chip caches, and it interfaces with the inter-CMP direc-
tory protocol.

In the inter-CMP directory protocol, each memory
controller maintains an inter-CMP directory to track
which CMP nodes cache a block, but not which caches
within the CMP hold the block. The inter-CMP direc-
tory maintains coherence with messages between itself
and the appropriate L2 cache bank at each CMP.

The intra- and inter-CMP directories and protocols
cooperate to maintain M-CMP coherence. An L1 miss
sends a coherence request to the appropriate on-chip
L2 bank. Depending on the intra-CMP directory state
and the L2 cache state, a response is directly returned,
or the request is forwarded to on-chip L1 caches or to
the inter-CMP directory (located at the home memory
controller for the block). As responses return through
the hierarchical network, they update the appropriate
cache and directory state.

In designing DirectoryCMP, we made choices that
improved runtime at the expense of additional control
messages. DirectoryCMP implements a migratory
sharing optimization [10, 34], in which a cache holding
a modified cache block invalidates its copy when
responding with the block, thus granting the requesting
processor read/write access to the block (even if the
request was only for read access). This optimization
substantially improves performance of many work-
loads with read-modify-write sharing behavior. To
moderately reduce DirectoryCMP complexity and
enable the use of optimizations such as migratory shar-
ing, the protocol uses per-block busy states at both the
intra-CMP and inter-CMP directories to defer requests
to blocks with outstanding requests. It also uses three-
phase writebacks, at both levels, to defer and coordi-
nate writebacks with other requests.

3  Flat Correctness Substrate
Token coherence provides safety (all actions cor-

rect) and starvation avoidance (take appropriate
actions) with acorrectness substratethat is separate
from aperformance policy[25]. This section describes
token coherence’s correctness substrate and our

enhancements to the substrate for shared caches
better performance robustness under contention.

3.1  Safety

Token coherence’s correctness substrate direc
enforces the coherence invariant—that each block c
haveeither a single writer or multiple readers—with
the simple mechanism of counting tokens. Each blo
always hasT tokens, one of which is distinguished as
the owner token. Tokens are stored at and exchange
among processor nodes and memory using 1+log2T]-
bit token counts. A processor node with allT tokens
may write a block, while a node with one or more
tokens may read a block. To allow all processor nod
to share a block,T should be at least as large as th
number of nodes. Messages with the owner token m
contain valid data, while messages with only non
owner tokens may omit data (to save bandwidth).

The original scheme implicitly assumes that onc
tokens are given to a node, it is straightforward t
maintain coherence within the node. This assumpti
is reasonable for a uniprocessor node, but it is not tr
for M-CMPs, in which each node has multiple proces
sors with private L1 caches and a shared L2 cache.

Fortunately, we can enforce safety in M-CMP sys
tems simply by passing tokens among caches, rat
than among nodes. Thus, each cache—L1 data,
instruction, and unified L2 bank—essentially acts lik
a “node”. A processor may read (fetch) a block if it’s
L1 data (instruction) cache has at least one token;
may write a block if its L1 data cache has allT tokens.
Caches exchange data and tokens following the ori
nal token coherence rules. A block may be simult
neously cached in at mostT caches. Fortunately,
doubling T (e.g., to accommodate more caches tha
processors) adds only 1 bit to the token count.

This flat correctness substrate provides process
within an M-CMP the same simple safety checks t
enforce the coherence invariant that existed in the or
inal token coherence protocol. All the additional com
plexity introduced by an M-CMP’s physical hierarchy
(e.g., finding a block locally within a CMP when possi
ble) is handled by a performance policy (Section 4).

3.2  Starvation Avoidance

Because token counting guarantees safety, perf
mance policies may use unacknowledged transie
requests to aggressively seek tokens without the ord
ing restrictions imposed by conventional protocol
This provides the flexibility to optimize hierarchica
performance, but also means that transient reque
may miss in-flight tokens. To ensure this situation do
3
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not lead to starvation, the correctness substrate issues a
persistent requestwhen a processor fails to acquire suf-
ficient tokens within a time interval. The substrateacti-
vates at most one persistent request per block.
Coherence components remember allactivatedpersis-
tent requests and forward all tokens for the block—
those tokens currently present and received in the
future—to the initiator of the request. When the initia-
tor has sufficient tokens, it performs a memory opera-
tion (e.g., a load or store instruction) anddeactivatesits
persistent request. In addition, the system must provide
a starvation-free mechanism for activating persistent
requests. For glueless multiprocessors, Martin et al.
[25] employ arbiters and fair queuing to select one
active persistent request per memory controller.

To avoid starvation in an M-CMP system, we con-
sider two persistent request mechanisms. One extends
the arbiter-based scheme and the other uses a new dis-
tributed activation approach [23]. Both also include
new mechanisms, discussed below, to improve worst-
case performance on contended blocks.

Arbiter-based Activation. Extending the original
arbiter-based persistent request mechanism to M-
CMPs is straightforward, but requires each cache, not
just each node, to remember active persistent requests.
Using arbiter-based persistent requests provides flat
starvation avoidance in M-CMP systems. Furthermore,
the tables for storing active persistent requests are
small (e.g., 384 bytes for 64 six-byte entries) and
directly addressed.

However simple, the arbiter-based activation
mechanism lacksperformance robustness. That is,
when performance gets bad, persistent requests tend to
make it worse because the handoff from one persistent
request to the next requires an indirect deactivate/acti-
vate exchange with the arbiter, increasing both latency
and bandwidth consumption. Although this has little
effect for well-tuned workloads, we seek an alternative
mechanism that avoids surprises with more demanding
applications.

Distributed Activation. The new scheme
improves worst-case performance by using a distrib-
uted arbitration mechanism to directly forward con-
tended blocks to the processor’s requesting L1 cache
with the next active persistent request. Each processor
initiates at most one persistent request, and each cache
remembers these persistent requests in a table (each
table has one entry per processor). The table activates
only the highest priority persistent request of those in
the table seeking the same block. Priority among per-
sistent requests is fixed (e.g., by processor number).
When a cache receives a message deactivating a persis-

tent request, it clears the corresponding table ent
When a processor deactivates its own persiste
request, its local table “marks” all valid entries for th
same block by setting a bit in the entry. A processor
allowed to issue a persistent request only when
marked entries for the desired block are present in
local persistent request table. The marking mechani
prevents a processors from continually issuing pers
tent requests that starve out another processor. T
approach is loosely based on FutureBus [35] arbitr
tion, which uses a fixed priority but groups processo
into “waves” to prevent them from re-requesting bu
access until all current wave members obtain access

Distributed activation reduces the average pers
tent request latency by forwarding highly contende
blocks directly between processors. For example,
processors P1, P2, and P3 seek block B with persist
requests. All three will remember each other
requests, but activate only the highest priority reque
say, processor P1’s. When P1 succeeds, it deactiva
its request, activates P2’s request, and sends block B
P2. When P2 is done, it sends block B directly to P3.
this way, the distributed scheme provides a minimu
latency hand-off on highly-contended blocks (e.g., h
locks). Secondarily, locality can be enhanced by sim
ply fixing processor priority so that least-significan
bits vary for processors within a CMP and more-signi
icant bits vary between CMPs. In particular, with thi
approach, highly-contended spin locks tend to dynam
cally perform much like complex hierarchical or reac
tive locks [20, 30].

Distributed activation is implemented with smal
tables, like the arbiter-based scheme, but with a co
tent-addressable access. When tokens for block
arrive, the table is searched for an active persiste
request for block B, and, if found, tokens are for
warded. When a new persistent request for block
arrives, the table is searched for an active persiste
request to block B. The incoming request is inserte
and made active (possibly forwarding tokens) depen
ing on the priority of the requestor. Furthermore
implementation is straightforward and like a fully
associative translation lookaside buffer, but with
multi-cycle access time being acceptable.

Persistent Read Requests.The original persistent
request mechanism always collects all tokens, rega
less of whether the starving processor wants to read
write a block. This approach performs poorly for cer
tain access patterns, such as a highly-contended t
and-test-and-set lock. We implement a newpersistent
read requestthat forces all caches to give up all but on
token [23]. As long as the total number of tokens
4
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greater than the number of caches, this approach (1)
guarantees the requester will receive at least one token
and (2) avoids stealing read permission away from
other caches. The correctness substrate issues persis-
tent reads when a processor fails to make progress on a
load, and issues the original persistent request for
stores and atomic memory operations.

Response Delay Mechanism.Highly-contended
locks can result in the coherence protocol prematurely
stealing permissions from the processor executing a
critical section. To improve locking performance, all
protocols implement a simple, non-speculative delay
mechanism that ensures that a processor holds permis-
sions for a block long enough to perform a short criti-
cal section (inspired by Rajwar et al. [31]). Adding a
bounded delay does not affect starvation-avoidance
guarantees.

3.3  Token and Data Transfer

The correctness substrate ensures that data and
tokens are transferred without loss or corruption. Like
most cache coherence protocols, this guarantee
requires that the interconnection network eventually
delivers each message accurately. The performance
policy, discussed next, invokes the correctness sub-
strate to reliably transfer data and tokens on its behalf.

4  Hierarchical Performance Policy
The safety and starvation-freedom guarantees pro-

vided by the correctness substrate enable aggressive
performance policies. For example, a performance pol-
icy can optimize for common cases, without concern
for the races that make conventional protocol optimiza-
tions so complex.

The original TokenBperformance policy targets
flat modestly-sized glueless multiprocessors with low-
latency, high-bandwidth, unordered interconnects [25].
TokenB broadcaststransient requeststo all nodes.
Nodes respond to these transient requests with one or
more tokens, however, a transient request may fail to
collect sufficient tokens. In such situations, a processor

re-broadcasts its transient request after a timeo
threshold. TokenB monitors average response times
determine this timeout threshold, and it re-broadcast
transient request up to three times. After a fourth tim
out the substrate issues a persistent request. Pseu
random backoff avoids lock-step retries.

TokenB is not well-suited for an M-CMP system
First, the timeout threshold does not account for th
difference in response latency between local a
remote caches. Second, broadcasting requests requ
greater cache lookup bandwidth, since all L1 and L
caches may hold tokens. Third, requests do not expl
locality; doing so can reduce both latency and inte
CMP bandwidth by finding tokens and data within th
local CMP. Finally, it may be worthwhile to filter exter-
nal requests arriving at a CMP to save the intra-CM
bandwidth of forwarding the requests to all L1 cache
TokenB does not consider these optimizations becau
it assumed a flat system.

Table 1 lists the TokenCMP variants evaluated
this study. TokenCMP-arb0 and TokenCMP-dst0 u
no performance policy and never issue transie
requests; instead, they rely on the correctness subst
to immediately issue a persistent request for all proce
sor requests. We use these variants to stress robustn
but we do not recommend deploying them in real sy
tems (because persistent requests are less efficient
transient requests). TokenCMP-arb0 uses the origin
arbiter-based persistent request activation mechanis
while TokenCMP-dst0 and all subsequent variants u
the new distributed activation mechanism (described
Section 3.2).

The last four TokenCMP variants have much i
common. On an L1 miss, each broadcasts a cohere
request onlywithin its CMP to the appropriate on-chip
L2 cache bank and other on-chip L1 caches. The loc
L1 caches check their tags. On a write request, an
replies with data (if it holds the owner token) and all it
tokens. An L1 cache responds to a local read reques
it has multiple tokens. If it has all tokens and has mod
fied the data, it optimizes for migratory sharing b

Table 1. TokenCMP Variants

Name Performance Policy
# Transient
Requests

Persistent Request
Activation

TokenCMP-arb0 None: immediately issues persistent requests 0 Arbiter-based

TokenCMP-dst0 None: immediately issues persistent requests 0 Distributed activation

TokenCMP-dst4 Hierarchical protocol with 1 transient request & up to 3 retries up to 4 Distributed activatio

TokenCMP-dst1 Hierarchical protocol with 1 transient request, but no retries. 1 Distributed activation

TokenCMP-dst1-pred Hierarchical protocol with predictor to choose immediate per-
sistent request or a single transient request.

0 or 1 Distributed activation

TokenCMP-dst1-filt Like TokenCMP-dst1 with filter on incoming external requests. 1 Distributed activation
5
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transferring the data and all tokens. Otherwise it
responds with data and one token.

On an L2 miss, each CMP broadcasts the request
to other CMPs. A CMP responds to external write
requests by returning all tokens (and data if it holds the
owner token). A CMP responds to external read
requests only if it holds the owner token. To reduce the
latency of a future intra-CMP request, read responses
includeC tokens (if possible), rather than the necessary
1 token, whereC is the number of caches on a CMP
node. A cache may also respond to a read request with
all T tokens to optimize for migratory sharing.

In all cases, a cache only responds to external
requests when it actually has tokens. In contrast, a tra-
ditional protocol may need to track or block pending
requests, allowing it to create a queue of pending
requests for a contended block.

Finally, the TokenCMP variants set their timeout
threshold using responses from memory. We found that
TokenB’s approach of averaging in the latency of all
responses led to a rapid burst of retries, because fast
on-chip hits accounted for a substantial portion of the
running average.

The last four TokenCMP variants differ as follows.
TokenCMP-dst4 follows TokenB’s approach of issuing
three retries (four transient requests total) before
resorting to a persistent request. In contrast,
TokenCMP-dst1 uses a persistent request immediately
after the initial transient request times out. This policy
exploits the lower latency of the new distributed activa-
tion mechanism.

TokenCMP-dst1-pred adds a predictor to detect
highly-contended blocks and immediately issue a per-
sistent request to avoid a potential timeout. Our base
predictor uses a four-way set-associative 256-entry
table of 2-bit saturating counters (other configurations
performed similarly). A counter is allocated and incre-
mented when a transient request is retried. Counters are
reset pseudo-randomly to allow adaptation to different
phase behaviors.

Finally, TokenCMP-dst1-filt filters external tran-
sient requests to conserve intra-CMP bandwidth. Each
L2 bank maintains an approximate directory of L1
sharers and forwards external transient requests to only
those caches. This filtering can be approximate because
the correctness substrate provides safety and prevents
starvation (persistent requests are never filtered). This
approach contrasts with previous coherence filters that
could cause coherence violations if they filtered too
many coherence requests [28, 32].

For our workloads and system size (16 processors
in four 4-processor CMPs), however, we will see that

TokenCMP-dst1-pred and TokenCMP-dst1-filt ma
not contribute enough to justify their implementatio
costs. Nevertheless, these and other ideas (e.g., mu
cast via destination set prediction [23, 24]) may b
more valuable in larger systems.

5  Complexity Discussion & Results
Quantifying the design and verification complex

ity of a system is notoriously hard, because what rea
matters is the subjective complexity experienced by t
human designers, rather than some easily measura
quantity. A clean, modular design might be larger i
terms of lines of code or number of transistors, yet b
far easier to understand, design, debug, and modify. W
justify our claim of simplicity two ways. First, we pro-
vide concrete examples of how we subjectively foun
TokenCMP variants easier to design and modify. Se
ond, we present objective results from model-checkin
experiments, which show that the correctness substr
shared by all TokenCMP variants has comparab
model-checking complexity to a simplified, non-hierar
chical version of DirectoryCMP in which all intra-
CMP details are omitted.

Subjective Experience.As an example of the
greater simplicity of TokenCMP, consider writebacks
Handling writebacks correctly is difficult in a flat
coherence protocol and even harder in a hierarchi
one. Traditional directory protocols often require two
phase or three-phase writebacks of dirty blocks to ha
dle races and complications arising from protocol op
mizations. The root of the complexity in these
protocols is that all requests must find the pertine
copies of the block, even when they are in transit
part of a writeback operation. In contrast, writeback
are much simpler in protocols based on token cohe
ence. When a cache needs to write back a block (di
or otherwise), it simply sends tokens and (in som
cases) data to either the L2 or memory; no extra me
sages or transient states at any caches or memory
required. A request that misses any in-flight token
may be reissued, and the substrate will eventua
invoke a persistent request to ensure that all miss
eventually complete. This same property allows toke
coherence variants to more simply handle multip
concurrent requests to the same block.

Also, in our experience, TokenCMP is easier t
change and debug than DirectoryCMP. For examp
we can add or remove the migratory sharing optimiz
tion by changing the number of tokens returned
response to a read request. Adding this optimization
TokenCMP required only one additional state and
few small modifications to protocol finite state
machines. Moreover, these changes are clearly corre
6
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because they do not affect the correctness substrate. In
contrast, implementing the migratory sharing optimiza-
tion in a flat directory protocol was somewhat complex
and doing so in a hierarchical directory protocol was
even more challenging.

Model Checking. In addition to our subjective
experience, we performed model-checking experi-
ments in an effort to objectively quantify the relative
complexity of TokenCMP and DirectoryCMP, as well
as to increase our confidence in the correctness. Model
checking is a technique for verifying properties of
complex systems by exhaustively exploring the state
space [9, 29]. Model checking has become almost rou-
tine for enhancing confidence (and finding bugs) in
cache coherence protocols, and the literature is too vast
to survey here comprehensively. We simply note a few
facts. (1) Model checking provides exhaustive analysis,
completely analyzing obscure corner cases and proto-
col interactions. It provides a thoroughness difficult to
achieve via other analysis approaches. (2) The exhaus-
tive analysis is also the Achilles’ heel of model check-
ing. Because the state space explodes exponentially,
only very small or highly simplified configurations can
be model checked successfully. With reasonably
detailed protocol models, tiny configurations with only
a few caches and a few blocks per cache are the limit of
the state-of-the-art. (3) Despite those tiny configura-
tions, model checking often finds bugs, e.g., McMillan
and Schwalbe’s seminal work for the Encore Gigamax
[26] through Joshi et al.’s recent results on the EV6 and
EV7 [17] (Braun, et al. [8] cites numerous other case
studies.) (4) We are not aware of any published work
that has reported model checking a detailed model of a
hierarchical protocolas a hierarchical protocol.The
model would simply be too large. Instead, previous
work considered only one layer of the hierarchy at a
time, manually abstracting away the other layers.

We used the TLA+ description language [18] and
its TLC model checking tool [18, 40] to model and ver-
ify TokenCMP variants and a non-hierarchical simplifi-
cation of DirectoryCMP that omits all intra-CMP
details. We used standard techniques for simplifying
the protocols to enable model checking, e.g., symme-
try, down-scaling [12], data independence [39], etc. We
verified three versions of the token coherence correct-
ness substrate: (1) TokenCMP-arb, (2) TokenCMP-dst,
and (3) TokenCMP-safety, a simplified TokenCMP,
used only for easily verifying safety properties, that
lacks any starvation-prevention mechanisms. We mod-
eled only the correctness substrate and the interfaces
used by any performance protocol. By allowing the
model to nondeterministically invoke these interfaces,

we verify the correct behavior of not just one perfor
mance protocol, butall possible performance proto-
cols.

We verified that the protocols were free of dead
lock and provided a serial view of memory, in which
every load returns the value of the most recent store
the same location [27]. We also verified that the pers
tent request mechanisms in TokenCMP variants ens
that the system eventually satisfies all requests, un
certain fairness constraints, e.g., messages are eve
ally delivered, and once a persistent request is satisfi
it is eventually deactivated.

We were able to verify the correctness of all ve
sions of TokenCMP for small configurations. Th
model-checking complexity was similar betwee
TokenCMP-arb and the simplified, non-hierarchica
version of DirectoryCMP. TokenCMP-dst was some
what more computationally intensive to verify
TokenCMP-safety was somewhat less intense to ver
because it omits any persistent request mechanism.

Furthermore, the number of non-comment lines
TLA+ descriptions is 383 lines for TokenCMP-arb an
396 lines for TokenCMP-dst, versus 1025 for the sim
plified, flat DirectoryCMP. Obviously, the size of the
TLA+ descriptions is only an indirect complexity met
ric and depends on various modeling decisions a
coding style. However, we feel that this metric accu
rately reflects the benefit of decoupling correctne
from performance in shared memory protocols: th
brevity of the token coherence TLA+ description stem
from the fact that only the correctness substrate ne
be verified. The directory protocol does not afford suc
a reduction because there is no clean division betwe
correctness and performance.

The model checking results highlight that, becau
the correctness substrate is flat, the TokenCM
approach is as model-checkable as a typical flat dire
tory protocol, which is important because only flat pro
tocols (or flat protocols manually sliced from
hierarchical protocols) are currently model-checkabl
Furthermore, because of token coherence’s separa
of correctness from performance, our model checkin
results apply immediately toany performance policy,
including hierarchical ones. In contrast, to model che
DirectoryCMP either we would need to model check
full, hierarchical M-CMP configuration, which is com-
putationally intractable, or else we would have to reso
to manual reasoning to justify abstracting away th
intra-CMP protocol and hope that all corner cases ha
been handled correctly. We conclude that TokenCMP
simpler than a hierarchical directory protocol.
7
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6  Methods
This section describes the commercial workloads,

target M-CMP system assumptions, and simulation
methods we use for our performance evaluation.

Benchmarks. We evaluate protocols with com-
mercial workloads from an enhanced version of the
Wisconsin Commercial Workload Suite[1]. As detailed
in Table 2, we use locking and barrier micro-bench-
marks, a static web serving workload (Apache), an
online transaction processing workload (OLTP), and a
Java middleware workload (SPECjbb). The macro-
benchmarks execute on a simulated SPARC multipro-
cessor running Solaris 9, while the micro-benchmarks
use a testing facility immune to operating system
effects.

Target M-CMP System. We target an M-CMP
system that uses four directly-connected CMPs, each

containing four dynamically-scheduled SPARC pro
cessors (16 processors total) with a total system me
ory of 4GB. We focus on 16-processor system
because (1) most multiprocessor systems have a sm
or moderate number of processors, and (2) the co
mercial workloads on which we focus can less eas
exploit scalable multiprocessing systems (in contrast
technical workloads). Figure 1a depicts the CMP nod
while Table 3 provides additional assumptions.

Target M-CMP Coherence ProtocolsWe evalu-
ate several alternative M-CMP protocols:

• DirectoryCMP provides coherence hierarchically
(Figure 1b) with the two-level directory protocol
described in Section 2. We show results for both
DRAM directory and an unrealistic zero-cycle
directory (DirectoryCMP-zero).

• TokenCMPvariants are introduced in Section 4
and summarized in Table 1.

• PerfectL2 provides an unimplementable lowe
bound. All L1 misses hit in an infinite L2 cache
shared across all CMPs.

Simulation Infrastructure. We simulate target
M-CMPs with the Virtutech Simics full-system func-
tional execution-driven simulator [22] and a perfor

Table 2. Benchmark Descriptions

Locking Micro-benchmark. In this micro-benchmark, each pro-
cessor thinks for 10 ns, acquires a random lock (different from the
last lock acquired), holds the lock for 10 ns, and repeats until the
total number of acquires performed by each processor reaches a
pre-determined limit. Lock acquires use test-and-test-and-set [11]
and contention is varied by changing the number of locks.

Barrier Micro-benchmark. This micro-benchmark models pro-
cessors performing local work, waiting for a sense-reversing bar-
rier [11], and repeating 99 more times. Local work takes 3000 ns
with and without optional variability. When each processor
reaches the barrier, it acquires a lock and increments a count in the
same cache block. If the count is not maximum, the processor
releases the lock and spins on a flag in another cache block. If the
count is maximum, the processor zeros the counter, reverses the
sense of the flag, and releases the lock. All processors now pass the
barrier and begin the next work phase.

Apache: Static Web Content Serving.Web servers such as
Apache are an important enterprise server application. We use
Apache 2.0.43 configured to use a hybrid multi-process multi-
threaded server model with 64 POSIX threads per server process.
We use 800,000 requests to warm the system, 1000 requests to
warm simulated hardware caches, and detailed simulations of 100
requests for our reported results.

OLTP: Online Transaction Processing.DB2 with a TPCC-like
workload. The TPC-C benchmark models the database activity of
a wholesale supplier. Our OLTP workload is based on the TPC-C
v3.0 benchmark using IBM’s DB2 v7.2 EEE database manage-
ment system. We use 10,000 transactions to warm the system and
database buffer pool, 500 transactions to warm simulated hardware
caches, and detailed simulations of 100 transactions for our
reported results.

SPECjbb: Java Server Workload. SPECjbb2000 is a server-
side Java benchmark that models a 3-tier system, but its main
focus is on the middleware server business logic. We use over a
million transactions to warm the system, 100,000 transactions to
warm simulated hardware caches, and detailed simulations of
2000 transactions for our reported results.

Table 3. Target System Parameters

Each CMP
number of processors 4 per CMP
cache block size 64 Bytes
split L1 I & D caches 128kBytes, 4-way, 2ns
interconnect topology directly connected
interconnect link bw 64 GBytes/sec
interconnect latency 2ns (one-way)
shared unified L2 cache 8MByte, 4-banks, 4-way, 7n
memory/dir controllers 6ns latency

Each Dynamically Scheduled Processor
clock frequency 2 Ghz
reorder buffer/scheduler 128/64 entries
pipeline width 4-wide fetch & issue
pipeline stages 11
direct branch predictor 1kBytes YAGS
indirect branch predictor 64 entry (cascaded)
return address stack 64 entry

Per-CMP Memory
latency to mem controller 20ns (off-chip)
DRAM latency 80ns
memory bank capacity 1 GByte per bank

Between CMPs
number of CMPs 4 (16 processors total)
interconnect topology directly connected
interconnect link bw 16 GBytes/sec
interconnect link latency 20ns (including interface

wire, & sync.)
8
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mance simulation infrastructure used to simulate
memory hierarchies and out-of-order processors [1].
We pseudo-randomly perturb simulations and calculate
error bars as described by Alameldeen et al. [2].
Improvements in the next section are statistically sig-
nificant with 95% confidence when error bars do not
overlap. We extended this infrastructure to model an
M-CMP’s physical hierarchy and specified both Direc-
toryCMP and TokenCMP variants in a table-driven lan-
guage for protocol specification [33].

7  Robustness Results
The distributed persistent request mechanism

(Section 3.2) tries to improve performance robustness.
We evaluate how well it does this using the locking and
barrier micro-benchmarks and performance policies
that useonly persistent requests. Figure 2 shows runt-
ime (smaller is better), normalized to DirectoryCMP
with 512 locks, for 16 processors as the number of
locks varies from 2 (high contention) to 512 (low con-
tention). The middle two lines show DirectoryCMP
with a realistic directory and an unrealizable zero-cycle
directory. The other two lines show TokenCMP vari-
ants that use only persistent requests. We see that the
original arbiter method (TokenCMP-arb0) performs
worse than DirectoryCMP, while the new distributed
method (TokenCMP-dst0) performs comparably or
better than the directory variants. Not shown,
TokenCMP-arb0 performs even worse when highly-
contended locks map to the same arbiter, while the dis-
tributed method is immune to where locks map.

Although TokenCMP-dst0 has good runtime for
this micro-benchmark, its exclusive use of persistent
requests is not well suited for macro-benchmarks, in
part, because of the traffic of broadcasting activate and
deactivate messages to all caches. Instead, our goal is

to develop protocols that are both (1) robust for co
tended micro-benchmarks and (2) perform well fo
macro-benchmarks.

Figure 3 shows runtime results for the variou
TokenCMP performance policies (normalized to Direc
toryCMP with 512 locks). For low contention (e.g.
512 locks), the results show that (1) TokenCMP var
ants perform well and (2) TokenCMP outperform
DirectoryCMP. This result occurs because th
requested lock is often in an L1 cache in another CM
causing many directory indirections in DirectoryCMP

As contention increases, TokenCMP variants di
fer. TokenCMP-dst4 is not robust, because it wast
time issuing three retries that often fail before issuing
successful persistent request. TokenCMP-dst1 do
better, and comparable to directory variants, by issui
a persistent request immediately after an initial tra
sient request fails. Finally, TokenCMP-dst1-pred doe
better by using persistent requests immediately in hi
contention and acting like TokenCMP-dst1 in low con
tention. Not shown, TokenCMP-dst1-filt performs
identically to TokenCMP-dst1.

To further exercise robustness, we also compa
protocols using the barrier micro-benchmark from
Table 2. Results in Table 4 show runtimes (normalize
to DirectoryCMP) for the various protocols, in which
the work each processor does between barriers ta
either a constant 3000 ns (middle column) or has som
uniform variability (right). These results (and result
using other parameters not shown) corroborate locki
micro-benchmark results that TokenCMP-arb0 an
TokenCMP-dst4 should be avoided (results highlighte
in bold).

In summary, TokenCMP-dst1, TokenCMP-dst1
pred, and TokenCMP-dst1-filt all provide robust pe
formance even under high contention.

Figure 2. Locking micro-benchmark results using
only persistent requests

Figure 3. Locking micro-benchmark results with both
transient and persistent requests
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8  Performance Results
This section evaluates TokenCMP performance

using commercial workloads, presenting runtime and
intra-CMP and inter-CMP bandwidth results.

Runtime. Figure 6 displays runtime results for the
macro-benchmarks from Table 2, normalized to Direc-
toryCMP. Hash marks for a perfect global L2 cache
bound the possible improvement, while DirectoryCMP
is shown with both a DRAM directory and an unrealis-
tic 0-cycle directory. We find:

• The TokenCMP variants perform significantly
better than DirectoryCMP. In particular,
TokenCMP-dst1 is faster than DirectoryCMP
(with DRAM directory) by 50% for OLTP, 29%
for Apache, and 10% for SpecJBB.1

• All TokenCMP variants perform similarly . This
implies that contention is modest and changes to
improve robustness did not hurt. Persistent
requests occur rarely—less than 0.3% of L1
misses for all workloads and protocols.

• TokenCMP-dst1 is best.It is more robust than
TokenCMP-dst4 with similar macro-benchmark
performance. The cost of TokenCMP-dst1-pred’s
predictor and TokenCMP-dst1-filt’s filter are not
justified for these workloads and system sizes.

Inter-CMP Bandwidth. For our parameters,
inter-CMP traffic generates little queuing delay. Never-
theless, to examine possible effects for other assump-
tions, we plot inter-CMP traffic in Figure 7a and break
it down by message type. Results are in bytes and nor-
malized to traffic of DirectoryCMP. Data messages are
72 bytes and control messages 8 bytes. Results show
TokenCMP variants generate somewhatless traffic
than DirectoryCMP. We initially believed this result
incorrect, because TokenCMP uses broadcast between
nodes. Nevertheless, further investigation supported

the result by revealing that DirectoryCMP can sen
more control messages than TokenCMP. Consider,
example, a sequence in which a CMP obtains an exc
sive copy of a block from remote memory, updates
and writes it back to memory. With TokenCMP, a CMP
sends three request messages to the other CM
receives a data message, and then sends a data w
back message. With DirectoryCMP, a CMP sends
request message, receives a data message, send
unblock message (used to reduce the implementat
complexity), requests a writeback, gets a writeba
grant, and sends a data writeback message. A tota
168 bytes for TokenCMP and 176 bytes for Directory
CMP.

In a system with more CMPs, TokenCMP traffic
results will be worse (unless multicast with destinatio
set predictions is employed [24]). Our directory proto
col also expends messages to increase performance
manage complexity whereas other implementatio
may choose different tradeoffs. Regardless, the curr
TokenCMP has reasonable traffic characteristics f
modest numbers of CMPs per system.

Intra-CMP Bandwidth. Intra-CMP traffic also
generates little queuing delay for our assumption
However we plot intra-CMP traffic in Figure 7b and
break it down by message type. To first order, all prot
cols use similar intra-CMP bandwidth. As expected
TokenCMP protocols expend more traffic for reque
messages (both internal and external) due to broadc
Unexpectedly, DirectoryCMP uses more traffic fo
response data because of an artifact of the strictly hi1.  X% faster = runtime(DirCMP)/runtime(TokenCMP) - 1

Table 4. Barrier Micro-benchmark Runtime
(Normalized to DirectoryCMP)

Protocol

Work between barriers

3000 ns
fixed

3000 ns +
U(-1000,+1000)

TokenCMP-arb0 1.40 1.29
TokenCMP-dst0 0.94 0.91
DirectoryCMP 1.00 1.00
DirectoryCMP-zero 0.95 0.93
TokenCMP-dst4 1.15 1.01
TokenCMP-dst1 0.99 0.95
TokenCMP-dst1-pred 0.96 0.93
TokenCMP-dst1-filt 0.99 0.95

Figure 6. Runtime of commercial workloads
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archical DirectoryCMP implementation: data
responses must be handled by the L2 cache (intra-CMP
directory). For example, an L1 cache responding to a
forwarded request from an external CMP, must transfer
the data to the L2 cache where it may collect other
invalidation acknowledgments. Only then does the L2
send the data to the requesting chip which in turn sends
the data to the requesting processor. In contrast, in
TokenCMP an L1 cache directly sends the forwarded
request to the requesting processor, using a single data
message on the on-chip interconnect.

As introduced in Section 4, TokenCMP-dst1-filt
uses an approximate directory of L1 sharers to filter
external transient requests. Figure 7b shows that the fil-
ter reduces intra-CMP bandwidth 6-8%, but the utiliza-
tion is sufficiently low that this does not affect runtime.

9  Conclusions
Few papers have considered implementing coher-

ence in systems with multiple chip multiprocessors
(M-CMPs). Those that do implement hierarchical pro-
tocols (e.g., [5, 36]). This paper advocates using token
coherence to obtain TokenCMP protocols that have flat
correctness properties, but exhibit hierarchical perfor-
mance characteristics. We found TokenCMP variants
easier to verify than hierarchical directory protocols.
We improved token coherence performance robustness
under high-contention. Finally, we showed commercial
workloads can run significantly faster on M-CMP sys-
tems using TokenCMP variants instead of a hierarchi-
cal directory protocol.
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This appendix provides supporting data for model checking (Section 5) and macro-benchmark execution (Section 8)

Table 5. Results for model checking safety.Runtimes in minutes; timeout is 10,000 minutes.

Parameter Protocol
P
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s

M
es

sa
ge

s

A
dd

re
ss
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C
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he
 S

iz
e

To
ke

ns

TokenCMP-dst TokenCMP-arb TokenCMP-safety Flat DirectoryCMP

time
(min.)

states
time

(min.)
states

time
(min.)

states
time

(min.)
states

2 2 1 1 1 15 1,166 1 460 0 24
0 1012

2 2 1 1 2 85 6,279 5 3,177 1 267

2 2 2 1 1 800 20,348 38 8,831 4 384
15 39,686

2 2 2 1 2 timeout 1123 176,356 353 24,380

2 2 2 2 1 1,315 32,856 63 14,438 4 405 138 268,073

2 3 1 1 1 50 5,344 1 1,004 0 24
0 1,296

2 3 1 1 2 425 30,560 15 8,988 1 267

2 3 2 1 1 4,081 141,080 235 54,502 4 384 32 80,155

2 3 2 2 1 6,301 217,188 397 91,803 4 405 582 1,086,192

3 3 1 1 1 263 16,916 6 1,976 0 24

8 16,8523 3 1 1 2 timeout 77 18,616 3 270

3 3 1 1 3 timeout 382 69,977 26 1,945

3 3 2 1 1 timeout 1,297 119,281 10 384 timeout

Table 6. Results for model checking liveness.
Runtimes in minutes; timeout is 10,000 minutes.

Parameter Protocol
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TokenCMP-dst TokenCMP-arb

time
(min.)

states
time

(min.)
states

2 2 1 1 1 3 432 8 327

2 2 2 1 1 262 5,952 21 4,688

2 2 2 2 1 418 8,920 28 7,342

2 2 1 1 2 32 2,556 10 2,463

2 2 2 1 2 timeout 361 105,274

2 3 1 1 1 19 1,966 8 723

2 3 1 1 2 188 12,044 15 6,853

2 3 2 1 1 2,109 40,680 91 29,388

2 3 2 1 2 timeout 3,691 885,624

2 3 2 2 1 3,253 59,204 114 47,535

3 3 1 1 1 170 6,123 14 3,658

3 3 1 1 2 2,434 49,647 110 38,191

3 3 2 1 1 timeout 1,255 179,541

Table 7. Macro-Benchmarks Absolute Data
All numbers in thousands. Instruction and miss counts are totals for 16 p

Protocol Cycles Instructions
L1

Misses
L2

Misses

SpecJBB (2,000 transactions)

Perfect L2 6,017 106,795 1,130 0

DirectoryCMP 11,707 109,462 1,418 374

DirectoryCMP-zero 11,324 109,422 1,405 36

TokenCMP-dst4 10,676 108,984 1,379 41

TokenCMP-dst1 10,658 108,984 1,379 41

TokenCMP-dst1-pred 10,622 108,972 1,377 41

TokenCMP-dst1-filt 10,675 108,994 1,380 42

Apache (100 transactions)

Perfect L2 2,922 24,690 808 0

DirectoryCMP 9,083 30,575 1,180 363

DirectoryCMP-zero 7,928 27,583 1,048 35

TokenCMP-dst4 6,996 26,006 1,025 34

TokenCMP-dst1 7,023 26,212 1,037 34

TokenCMP-dst1-pred 6,977 25,521 960 34

TokenCMP-dst1-filt 6,911 25,697 1,012 34

OLTP (100 transactions)

Perfect L2 16,216 180,668 3,458 0

DirectoryCMP 37,769 274,955 3,750 1,29

DirectoryCMP-zero 30,933 228,801 3,695 1,24

TokenCMP-dst4 25,155 193,385 3,645 1,39

TokenCMP-dst1 25,038 198,909 3,642 1,36

TokenCMP-dst1-pred 24,492 192,026 3,633 1,3

TokenCMP-dst1-filt 24,479 192,111 3,567 1,33

Appendix A: Supporting Data (not included in HPCA proceedings version)
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