Automatable Verification of Sequential Consistency

*

[Extended Abstract]

Anne E. Condon and Alan J. Hu
Department of Computer Science
University of British Columbia
2366 Main Mall
Vancouver, B.C. V6T 1Z4
Canada

(condon,ajh)@cs.ubc.ca

ABSTRACT

Sequential consistency is a multiprocessor memory model of
both practical and theoretical importance. Designing and
implementing a memory system that efficiently provides a
given memory model is a challenging and error-prone task,
so automated verification support would be invaluable. Un-
fortunately, the general problem of deciding whether a finite-
state protocol implements sequential consistency is undecid-
able. In this paper, we identify a restricted class of protocols
for which verifying sequential consistency is decidable. The
class includes all published sequentially consistent protocols
that are known to us, and we argue why the class is likely to
include all real sequentially consistent protocols. In princi-
ple, our method can be applied in a completely automated
fashion for verification of all implemented protocols.

Categories and Subject Descriptors

B.3.3 [Performance Analysis and Design Aids]: [For-
mal Models]; C.0 [Computer Systems Organization]:
General—systems specification methodology

General Terms

theory, verification

Keywords

sequential consistency, memory model, model checking

1. INTRODUCTION

The memory model of a shared memory multiprocessor is a
specification of how memory will behave from the program-
mer’s perspective. Memory systems use intricate finite-state

*The authors were supported in part by research grants from
the National Science and Engineering Research Council of
Canada.

protocols to implement the desired memory model. These
protocols are notoriously difficult to design and debug
because the primary objective is performance rather than
simplicity =~ making them natural targets for formal verifi-
cation.

Sequential consistency is a memory model introduced by
Lamport [9]. A memory system is sequentially consistent
iff there always exists an interleaving of the program or-
ders of all the processors such that each load returns the
value of the most recent store to the same address. Sequen-
tial consistency is important both as a practical memory
model that provides intuitive ease-of-programming while al-
lowing efficient hardware optimizations (e.g. [8]) and also as
an extensively studied memory model that can be used to
understand other, more relaxed models (e.g. [1]).

Ideally, we would like an algorithm that inspects a finite-
state protocol and determines automatically whether or not
the protocol provides sequential consistency. Unfortunately,
the general problem of deciding sequential consistency of a
finite-state protocol is undecidable [3].

Real protocols, however, might not be fully general, sug-
gesting that the undecidability result may not be relevant
in practice. Suppose we can characterize a class of protocols
with the following properties: membership in the class is
decidable, all members of the class are sequentially consis-
tent, and all real protocols that implement sequential consis-
tency belong to the class. This paper proposes such a class,
thereby reducing automatic verification of real, sequentially
consistent protocols to testing for membership in the proto-
col class.

The basis for our verification method is a graph-based def-
inition of sequential consistency that arises in the work of
Gibbons and Korach [6]. For an execution trace of a proto-
col, they define a constraint graph with a node for each load
and store operation in the trace. The graph has four kinds of
edges: edges that enforce program order for each processor,
edges that provide a total order over all store nodes to each
memory location, edges from each store node to every load
node that gets its value from that store, and forced edges
from each load node to the store node that follows in the
total store order the store node from which the load got its

value. A protocol is sequentially consistent if and only if all
of its traces have acyclic constraint graphs.

To perform automatic formal verification using this formula-
tion of sequential consistency, we must provide an automatic
way to construct the constraint graph and verify that it is
acyclic for all possible executions of the protocol. In prac-
tice, this suggests that the construction and checking of the
constraint graph must be done in (hopefully small) finite
state, so that automatic verification based on finite-state
model checking [5] is possible.

The remainder of this paper addresses these problems. In
Section 3, we introduce a graph description notation tailored
to describe constraint graphs, and a finite-state checker to
verify that a graph so described is acyclic. We describe how
the graph description notation and checker can be used to
verify sequential consistency. In Section 4, we show how
real protocols can be annotated with finite-state informa-
tion, to obtain a finite state observer which generates a de-
scription of the constraint graph. Our method of generating
this description characterizes a class of protocols for which
sequential consistency is decidable, and we argue why all
real protocols are likely to belong to this class. Finally, we
derive size bounds on the finite-state observer, suggesting
that our method is at the edge of what is currently feasible
for automatic verification tools.

1.1 Related Work

There has been considerable work over the years on veri-
fying memory system protocols and memory models. For
brevity, we mention here only closely related work, pertain-
ing to finite-state verification of protocols with respect to
sequential consistency.

Plakal et al. [12] introduce a verification approach based on
logical clocks and apply it to a directory based protocol.
Our approach is inspired by the logical clocks approach, but
in contrast to logical clocks, which are unbounded, our ap-
proach reduces verification to a language inclusion problem
between finite state automata.

Henzinger et al. [7] propose a very similar approach to ours,
using a finite-state observer to reorder loads and stores to
construct a witness of sequential consistency. Because of
the finite-state limit on reordering, the method is too re-
strictive to handle most real protocols. One could view our
approach as a generalization of theirs that handles all re-
alistic protocols. We note that Henzinger et al. prove very
strong results for protocols in their restrictive class, namely
that it is sufficient to reduce verification of a protocol with
arbitrarily large parameters (number of processors, number
of blocks, number of values per block) to a fixed-parameter
problem. In contrast, our method applies to verification of
only fixed-parameter protocols.

Nalumasu et al. [11] propose the Test Model-Checking tech-
nique, in which a protocol is checked against various prede-
fined finite-state automata that test certain memory model
properties. These tests can be considered to be finite-state
observers. By combining these tests, it is possible to verify
memory models that are close to, but not identical to, se-
quential consistency. Determining exactly how these test

combinations relate to sequential consistency and to the
class of protocols we can handle is an open question.

At a recent, informal workshop, Qadeer proposed an ap-
proach for automatically verifying that a memory protocol
implements a memory model [13]. The basic idea is to iden-
tify and formalize many assumptions that typically hold of
real protocols and real memory models. In the presence of
these assumptions; one can generate a finite-state witness
automatically. The protocol class we can verify is much
more general than Qadeer’s, which cannot handle Afek et
al’s Lazy Caching protocol [2], for example. On the other
hand, his complexity bounds (on the size of the finite state
witness) are better than ours, and he considers memory
models other than just sequential consistency. We believe
the two approaches are complementary: Qadeer’s approach
can be generalized by adopting our model; our approach can
be made more efficient by exploiting Qadeer’s assumptions.

At the same workshop, we presented a preliminary version
of the ideas that evolved into this work [10]. The general
approach was the same as in this paper, but the underly-
ing model for recording and checking constraints was differ-
ent, resulting in wildly impractical finite-state size bounds.
In subsequent work [4], we demonstrated that the method
does allow verification, using current model-checking tools,
of the sequential consistency of a substantial cache proto-
col, provided that some human insight is used to reduce the
complexity of the observer. In contrast, the present paper
presents a revised theoretical framework that encompasses a
broader class of protocols, yet allows proving much stronger
complexity bounds, suggesting that this work will apply to
more protocols and be fully automatable in practice. We do
not have experimental results yet, but are hopeful given our
previous experiences.

2. DEFINITIONS

2.1 Protocols

A protocol P is a tuple (p,b,v,Q,q, AU A ,§ UJ, 1L).
The constants p, b, and v specify the number of processors,
memory blocks, and data values in the protocol. The symbol
1 denotes the initial value of each block. The set of states
is @), of which ¢q is the initial state. The set A is the set of
all actions of the protocol that are LD and ST operations,
namely actions of the form LD(P,B,V) and ST(P, B,V),
where 1 < P<p,1<B<b,and1 <V <w. For notational
convenience, we use *’s to denote sets of LD and ST actions
over all values of a parameter: e.g., ST(*,B, V) denotes the
set {ST(P,B,V) |1 < P < p}. Thus, A = ST(*,*,%) U
LD(*,, *). A’ is the set of actions of the protocol other than
LD and ST operations. Corresponding to A and A’ there
are two transition relations, § and §', with 6§ C Q x A x Q@
and ' CQ x A x Q.

A sequence of actions A, As,..., Ay is a protocol run if
there is a sequence of states qo,q1,q>2, ..., qr such that for
all j, with 1 < j < k, the transition (gj—1,4;,q;) € U
§'. A protocol trace is the subsequence of a protocol run
that includes only the actions in A (i.e., the ST and LD
operations). Two protocols P and P’ are equivalent if the
set of traces of P equals the set of traces of P'. Note that
the runs and traces of a protocol are finite, so our theory
uses regular automata rather than w-automata.

2.2 Sequential Consistency

Intuitively, a serial trace is one in which each LD returns
the value of the most recent (prior to the LD) ST to the
same block. If there were no prior STs to that block, the
load must return L. Formally, a trace T' = t1,t2,...,t
is a serial trace if for all blocks B and values V, for all
1<j<k:

(t; € LD(x,B,V)) =

(V=1)A Vi<j[ti ¢ ST(x, B, *)]
Vv
E|h<j[th € ST(*, B, V) AVihcic (ti ¢ ST(*7 B, *)]

A reordering of a trace of length k is simply a permutation
II of the numbers from 1 to k. Let II = w(1),7(2),...w(k)
be a reordering of a trace T. Let T' = tr(1), tr2)s - -tr(h)-
II is called a serial reordering and T" is the corresponding
serial trace if IT and T' have the following two properties.
First, II preserves the “per processor” order of T, i.e., for
all processors P, if t, and ¢, are operations of processor P
then a < b if and only if 7~ '(a) < 7~ '(b). Second, T' must
be a serial trace.

A protocol is sequentially consistent if all of its traces
have a serial reordering.

3. VERIFICATION USING CONSTRAINT
GRAPHS

In our method for verifying that a protocol is sequentially
consistent, a finite-state observer watches a protocol as it
executes and gathers information about how to reorder the
trace. The observer presents this information, in the form
of a finite-state constraint graph, to a checker. A key task of
the checker, which is also finite state, is to ensure that the
graph is acyclic. Verification reduces to proving that the
checker accepts all constraint graphs generated by the ob-
server. See Figure 1. Overall, the method exploits the “less
is more” principle: a total reordering of a trace is too much
to be collected and checked with a finite number of states,
but partial information about the reordering is sufficient to
deduce sequential consistency.

We first define sequential consistency using graph-theoretic
notation. Application of this definition to protocol verifi-
cation requires a finite state method for testing if a graph
is acyclic. In Section 3.2, we identify a class of graphs for
which this test can be done. We describe the finite state
cycle-checker in Section 3.3. We combine everything into
our verification method in Section 3.4.

3.1 A Graph-Based Definition of Sequential
Consistency

A constraint graph G for a trace T records ordering con-
straints on the operations in T that must be obeyed for T
to have a serial reordering. The nodes of G are labeled by
operations of 7. Nodes are numbered by consecutive inte-
gers, starting from 1, according to their order in the trace.
Edges of G include program order edges, along with inher-
itance edges, which indicate from which ST operation a LD
inherits its value; ST order edges, which provide a total or-
dering of all ST nodes to the same block, and forced edges,

Original
Protocol

¥/

Trace Automatically

Equivalence? converted into
A

*| "Observer"
Augmented
Protocol

\1/ Compose with Checker

Observer

Constraint Graph
Description

Accept/Reject?

Figure 1: Verification Method Overview. The Ob-
server is simply the original protocol augmented
with reordering information. Automatic creation
of the observer is discussed in Section 4. The ob-
server generates a description of a constraint graph,
which is checked by a finite-state checker. The same
checker is used for all protocols. Constraint graphs
and the checker are described in Section 3. The
trace equivalence check can be omitted in practice
because the observer is created in a non-interfering
way from the original protocol.

"
Model Check:
Does the checker
always accept?

which force the constraint that on any path from a ST node
to a LD node that inherits its value, there is no other ST
node to the same block. More precisely, edges of G must
satisfy the following edge annotation constraints:

1. Each edge may be annotated as an inheritance, pro-
gram order, ST order, or forced edge. An edge may
have zero or more annotations.

2. For each processor P, if u nodes of G are labeled by
operations of P then G has u — 1 program order edges
that define a total order on these u operations, consis-
tent with trace order.

3. For each block B, if u nodes of G are labeled by ST
operations to B, then G has u —1 ST order edges that
define a total order on these u operations.

4. Each node labeled by LD(P, B, V) has one incoming
inheritance edge from a ST(P’, B,V) node (where P
may equal P’).

5. For all nodes i, 7, and k such that there is a ST order
edge from ¢ to k£ and an inheritance edge from i to
j, there is a forced edge on some path from j to k.
Specifically, if j is labeled by LD(P, B, V) then there
is either a forced edge directly from j to k or there
is a (program order) path from j to another node j’
labeled by LD(P, B, V), and a forced edge from j'tok.
Similarly, for each node j labeled by a LD(P, B, 1)
operation, there is a forced edge on the path to the
first node in the ST order for block B.

LD(P2,B,2)
5

Figure 2: A Constraint Graph. Edge labels indicate
inheritance (inh), program order (po), store order
(STo), or “forced” edges. The inheritance edge from
node 1 to node 4 and the store order edge from node
1 to node 3 forces an edge from node 4 to node 3,
which prevents trace orders in which the LD in node
4 does not get its value from the most recent ST.

The graph has no annotated edges other than those specified
in 2-5 above. An example of a constraint graph is given
in Figure 2. The following claim is implicit in the work
of Gibbons and Korach [6] and follows directly from the
definition of constraint graph.

Cramm 3.1. A trace T has a serial reordering if and only
if some constraint graph for T is acyclic.

3.2 Node Bandwidth Bounded Graphs

For verification purposes, we are interested in constraint
graphs (with ordered nodes) that are node bandwidth
bounded. We denote the set {1,2,...,i} by N;. We say that
a graph with node set N, is k-node bandwidth bounded if
for all ¢, at most k nodes in N; have edges to or from nodes
in the set N,,— N;. For example, the graph in Figure 2
is 3-node-bandwidth bounded. Note that node bandwidth
boundedness is a property of both the graph and a fixed
node ordering. Also, note that our definition differs from
the usual edge-based notion of graph bandwidth, e.g., the
number of edges between nodes in N; and N, — N; may
be unbounded. For brevity, we omit the word “node” and
simply refer to bandwidth bounded graphs.

We will represent a directed, k-bandwidth bounded graph
G as a string, in a way that facilitates a finite state test
that a graph is acyclic. For later convenience, nodes and
edges of G may have labels from some finite alphabets A
and &, respectively. (In our application, .4 will be the set of
trace operations, and symbols in £ will denote the edge an-
notations of section 3.1.) Intuitively, our graph description
notation simply lists nodes by number and edges as pairs of
node numbers, with additional labels (if any) immediately
following the node or edge to which they belong. A naive
approach numbers all nodes and lists them in order. For ex-
ample, the graph in Figure 2 corresponds to the description:

1, ST(P1,B,1), 2, LD(P2,B,1), (1,2), inh, 3,
ST(P1, B,2), (1,3), po-STo, 4, LD(P2, B,1), (1,4),
inh, (2,4), po, (4,3), forced, 5, LD(P2, B,2), (3,5),
inh, (4,5), po

Our approach is like the naive approach, but is finite-state
by exploiting k-bandwidth boundedness. In our approach,
node numbers are not used directly to identify nodes and
edges. Rather, each node has an ID (identification number)
between 1 and k + 1. When all edges in or out of the node
with ID 7 have been listed, this node may be removed from
the identification scheme and ¢ can be used to identify an-
other node. The graph in Figure 2 is 3-bandwidth bounded,
so we can describe it as:

1, ST(P1,B,1), 2, LD(P2,B,1), (1,2), inh, 3,
ST(P1, B,2), (1,3), po-STo, 4, LD(P2, B,1), (1,4),
inh, (2,4), po, (4,3), forced, 1, LD(P2, B,2), (3,1),
inh, (4,1), po

More formally, with respect to some fixed k and symbol al-
phabets A and £, we define a node descriptor to be a symbol
in Ny41, possibly followed by a symbol in A (that is, a node
ID possibly followed by a node label) and an edge descriptor
to be a symbol of the form (i, j) where i, € Ny41, possibly
followed by a symbol in £. A sequence of node descrip-
tors and edge descriptors is a k-graph descriptor. Testing
if a string is a proper graph descriptor (does not have two
consecutive symbols from A, for example), is easily done in
finite state.

Let s be a k-graph descriptor. The graph G represented
by s has a number of nodes equal to the number of node
descriptors of s, with the ith node having the label (if any) of
the ith node descriptor. Associated with each prefix s’ of s is
a set of active nodes which are associated with ID’s, defined
as follows. If s’ has fewer than 4 node descriptors, then
ID(i,s') is undefined. If s’ has exactly i node descriptors
with the 7th having ID I, then ID(4, s') = I. Finally, suppose
that s' has more than i node descriptors, with the ith having
ID I. If no node descriptor in s" after the ith node descriptor
has ID I, then ID(i,s") = I, else ID(i, s') is undefined. Now,
the edges of G are defined as follows: for each prefix of the
form s',(I,I') of s, if for some pair (i,5) of nodes of G,
ID(i,s') = I and ID(j,s') = I’ then edge (i,j) is in G.
Moreover, if s, (I,I'), 3 is also a prefix of s for some 8 € £
then the edge (7, j) has label 3.

A slightly extended notation for describing k-bandwidth
bounded graphs will be useful later. Intuitively, in this ex-
tension, an active node may have more than one ID. This
is useful, for example, when modeling the following situa-
tion: the value of a ST node in the constraint graph is in
multiple cache locations of a finite state protocol, in which
case it is convenient that these location addresses are the
graph IDs for the ST node. For this purpose, we extend
our graph descriptor strings to be sequences of node de-
scriptors, edge descriptors and also symbols from the set
{add-ID(I,I') | 1 < I,I' < k + 1}. Intuitively, the add-
ID(I,1') symbol causes the ID I’ to be added to the node
with ID I (and I' is no longer associated with any other
node).

Such an extended graph descriptor represents a graph in
which the nodes and node labels are defined just as for a
valid string. To define the edges, for each node i, we define
the ID-set of i with respect to s’, denoted by ID-set(i, s'),

as follows. If s’ has fewer than i node descriptors, then ID-
set(i, s') is empty. If s’ has exactly i node descriptors with
the ith having ID I, then ID-set (i, s') = {I}. Next, suppose
that s’ has more than i node descriptors.

o If s =s" T and I € ID-set(i,s”), then ID-set (i, s') is
defined to be ID-set(i,s"”)—{I}. (ID I is now being
used to label another node, and so is no longer in the
ID-set of the ith node.)

o If ' = 5" add-ID(I,I') and I € ID-set(i, s"), then ID-
set(i, s') is defined to be ID-set(i,s")U{I'}. (Add I
to the ID-set of node i.)

oIf & = s, addID(I',]) with I # I' and I €
ID-set(,s""), then ID-set(i,s') is defined to be ID-
set(i, s’)—{I}. (Again, ID I is now being used to label
another node, and so is no longer in the ID-set of the
ith node.)

e Otherwise, ID-set(i,s') = ID-set(i,s”’). (No change to
the ID-set of the ith node.)

Then, the edges of G are defined as follows: for each prefix of
the form s'(I,1I') of s, if for some pair (i, j) of nodes of G, I €
ID-set(i, s') and I' €ID-set(j, s') then edge (i,7) isin G. Any
extended graph descriptor can be converted in finite state
to a (standard) graph descriptor without add-ID symbols,
so both types of descriptor can be used interchangeably.

3.3 Checking for Cycles in a Bandwidth
Bounded Graph

CrAM 3.2. There is a finite state cycle-checker that,
given as input a k-graph descriptor, accepts if and only if
the string represents an acyclic graph.

As node and edge descriptors are read off from the input
string, the cycle-checker maintains a so-called active graph
containing at most k + 1 nodes, in which each node has a
unique ID. The checker ignores edge labels and, upon read-
ing a node ID or edge pair, does the following:

e When a node ID, say I, is read, then if there is a
node with ID I in the active graph, for all pairs of
edges (H,I),(I,J) in the active graph (where H,I,J
refer to node IDs) a new edge (H,J) is added, if not
already in the graph. Then, the node with ID I and all
incident edges are removed from the graph. Finally, a
new node with ID T is added to the graph.

e When edge (I,1I') is read, an edge is added from node
with ID I to the node with ID I’. If addition of this
edge introduces a cycle in the graph, the automaton
rejects.

If, upon reaching the end of the string, the checker has not
rejected, it accepts. Correctness of the checker follows from
the fact that the node removal plus edge contraction done
in the first test of the checker preserves cycles in the graph.

3.4 Observer-Checker Verification Method

In our method for protocol verification, the observer gener-
ates the same set of traces as the protocol, but augments
each trace with a description of a k-bandwidth bounded
graph. Given a run of the observer, the checker checks that
the graph is an acyclic constraint graph for the trace.

Let P be a protocol. Let A be the set of LD and ST opera-
tions of P. An observer for P is itself a finite state protocol.
The alphabet (set of actions) of an observer consists of the
symbols used in a k-graph descriptor for some k, in which
the node label set is A and the edge label set £ is {inh,
po, forced, STo, po-STo, po-inh, po-forced}, where
inh; po, STo and forced indicate inheritance, program or-
der, ST order and forced edges, respectively, and po-STo,
po-inh, and po-forced denote edges with two annotations.
Note that each run of an observer contains a trace as a sub-
sequence, namely the subsequence of symbols from A.

An observer O for P is a witness for P if (i) the set of traces
of O equals the set of traces of P, and (ii) each run of O
describes an acyclic constraint graph (as defined in section
3.1).

Checking property (i) can easily be reduced to the language
equivalence problem for finite state automata. In practice,
this check is trivial by construction, since the observer is a
noninterfering augmentation of the protocol. The checker is
a finite state automaton that checks property (ii). In what
follows, assume that k (the bandwidth bound) is fixed. The
alphabet of the checker equals that of the observer. Given as
input a run r of observer O, the checker does the following:

e Run the cycle-checker for k-bandwidth bounded
graphs on r. If the cycle-checker rejects, then re-
ject. Otherwise, r is an acyclic, k-bandwidth bounded
graph.

e If not already rejected, check that edges satisfy the
edge annotation properties listed in section 3.1. If so,
then accept else reject.

By the definition of a witness in section 3.1, the checker
accepts if and only if r describes an acyclic constraint graph.
Also the checker has a finite number of states since the cycle
checker of section 3.3 does, and the edge annotation checks
are easy to do with a finite number of states. We now have
the following theorem.

THEOREM 3.1. Let P, O be protocols. If O is a witness
for P, then P is sequentially consistent. Moreover, testing
whether O is a witness for P can be reduced to the language
inclusion problem for finite state automata.

4. VERIFICATION OF REAL-WORLD
PROTOCOLS

We claim that every real-world sequentially consistent proto-
col has a finite state witness observer and that the observer
can be generated automatically from the protocol. To pro-
vide intuition that supports this claim, we first argue infor-
mally that a weaker property holds for real-world sequen-
tially comsistent protocols, namely that the witness graph

corresponding to each protocol run is bandwidth bounded.
Later in this section we make this intuition precise, and also
show the stronger property that the witness graph corre-
sponding to each run is not only bandwidth bounded but
can be generated in finite state from the run.

Let R be a run of a protocol and let R; be a prefix of R. Let
R» be the corresponding suffix of R, so that R = R1R>. We
need to show that if we view the operations of R as nodes
of a constraint graph, the number of operations of R; with
edges to operations of R» is bounded. We consider each type
of edge in turn. It is easy to see that at most p operations
of Ry have program order edges to operations of R, namely
the last operation in each processor’s program order, if any.

We next consider inheritance edges; here we appeal to our
understanding of how real-world sequentially consistent pro-
tocols work. These protocols create “views” of a block via
ST operations, then copy these views into various protocol
storage locations (such as queues, network message packets,
or caches of other processors) where they can be read via
the LD operation, and eventually delete or overwrite views.
Multiple views of a block may exist in the protocol state.
For example, one processor may do a ST to a block, thus
creating a new view, while stale views of the block still exist
in other caches. We call a ST operation of Ry inh-active if
one or more copies of the value (view) written by that ST is
stored in the protocol state upon completion of run R;. If
a ST is inh-active, its value may be inherited by LDs in R».
A key point is that, since the protocol is finite-state, only a
constant number of STs of Ry can be inh-active. Moreover,
in real-world protocols, LDs of R, that inherit their values
from STs of R can only do so from STs of R; that are inh-
active, because these LDs obtain their values from storage
locations of the protocol.

Third, we consider ST order edges. Again, we appeal to
a property of real-world protocols here, namely that for all
runs, for each block B, the order of STs to B in the run is in
fact the same as the order of the STs in the corresponding
serial reordering. Thus, if we call ST nodes of R; with no
outgoing ST order edge STo-active nodes, the number of
STo-active nodes is at most the number of blocks b of the
protocol. (Our class of verifiable protocols will actually be
defined in section 4.2 to encompass protocols that do not
satisfy this per-block real-time ST reordering property.)

Finally, we consider forced edges. The only LD nodes of
R, that may have forced edges to STs of R» are those LDs
which inherit their values from STo-active STs of R;. For
each STo-active operation S of R; and each processor P,
at most one LD of processor P in R; need have a forced
edge to a node in Ry, namely the last LD in P’s program
order that inherits its value from S. (This follows from edge
constraint 5 of section 3.1.) Call such a LD operation a
forced-active LD. Thus, the number of forced-active LDs of
Ry is at most pb. In addition, there may be ST nodes of
R, that have incoming forced edges from LD nodes in R».
Call these forced-active STs. Each forced-active ST is the
immediate successor of an inh-active ST in ST order; thus,
the number of forced-active STs is bounded by the number
of inh-active STs, and therefore is bounded.

In section 4.1 we define a class of protocols for which the
inheritance edges of a constraint graph can be generated in
finite state. Protocols in this class have two properties, mo-
tivated by our informal arguments above. First, on a LD
transition, the value of the LD is obtained from a known
storage location of the protocol. Second, by tracking the
movement of data among protocol storage locations, it is
possible to automatically infer which ST conferred its value
to each storage location. Then in section 4.2 we describe
conditions under which the ST order edges of a constraint
graph can be generated in finite state. In section 4.3, we
define a class I' of protocols that simultaneously satisfy the
conditions of sections 4.1 and 4.2. We show that for pro-
tocols in T', the forced edges of a protocol run can also be
generated in finite state, and conclude that such protocols
have finite state observers.

4.1 Tracking Labels for Protocols

When a LD is performed by a protocol, how can we tell from
which ST it inherits its value? We need to know from which
storage location [of the protocol the LD gets its value, and
which ST operation conferred its value to location . We
now descibe protocols with tracking labels which provide an
automatic way to infer this knowledge. While real protocol
descriptions do not explicitly have tracking labels, for all
sequentially consistent protocols known to us, with an ap-
propriate protocol description language the labeling could
be generated automatically from the protocol description.

In a protocol with tracking labels, each state of the protocol
records block values in at most L locations for some constant
L (in caches, queues, and memory where blocks are stored).
The tracking labels are of two types.

e Each transition in § (where § is the set of transitions
on LD and ST operations) is labeled by a location
identifier [€ [1, L]. Intuitively, the operation is read
from or written to location I. Formally, the LD/ST
tracking function is a mapping f : § — [1, L].

e For each transition ¢ in §' (where ¢’ is the set of transi-
tions on actions other than LD and ST operations) and
each I € [1, L], the copy tracking label, ¢;(¢), indicates
whether the value stored in location [/ is unchanged by
the transition ¢ or whether it has been copied from
another location, namely ¢;(¢). Formally, for each I,
there is a copy tracking function ¢; : 6’ — [1, L] (with
ci(t) =1 if the value is unchanged).

Intuitively, for every run R and location ! of a protocol P
with tracking labels, the ST index of [with respect to R
is either 0 or is the index of the ST operation from which
location [inherits its value upon completion of run R. For-
mally, the ST indez, denoted by ST-index(R,l), can be
defined inductively using the tracking labels as follows.

1. If |R| = 0 then ST-index(R,1) = 0.

2. If R = R', A, if the transition ¢ taken on A is a ST
operation with tracking label [, and if A is the ith trace
operation of R, then ST-index(R,l) = i. Otherwise,

if A is not a LD or ST operation then ST-index (R, 1)
= ST-index(R’,c/(t)). Otherwise, ST-index(R,1) =
ST-index(R',1).

Example: An example to illustrate ST indexes and track-
ing labels is given in Figure 3. This example describes a run
of an extremely simple protocol with two processors, P1 and
P2, and three blocks, B1, B2, and B3. Each processor has
two cache locations in which values of blocks can be stored
(part (a) of the figure). Thus, there are four locations in all:
P1’s locations are numbered 1 and 2, and P2’s locations are
numbered 3 and 4. In the illustration, each location contains
information about which block is being stored there, if any,
and what its value is. Thus, block B1 with value 1 is stored
(by P2) in location 3, whereas location 2 is undefined.

The location values reflect the protocol state at the end of
the run R given in part (b) of the figure. R is of length
four and has three ST operations and one “Get-Shared” op-
eration. The Get-Shared operation causes the value of B1
stored in location 1 by P1 after the first action of R to be
copied to location 3 of P2; it is reminiscent of how values
of blocks can be shared or copied in real protocols, albeit
highly simplified. The tracking label of each transition cor-
responding to each action in run R is also given. The first
operation of R, ST(P1, B1,1) has tracking label 1, indicat-
ing that B1l’s value is written in location 1. The second
operation, ST(P2,B2,2), has tracking label 4; thus B2’s
value is written into location 4. The third action of R is not
a LD or ST operation and so there are four copy tracking la-
bels c1,...,cq4 associated with this action, one per location.
Note that ¢3 = 1 since the value now stored in location 3 is
copied from location 1, but ¢; = i for ¢ = 1,2, and 4, since
the contents of locations 1, 2, and 4 are unchanged by the
Get-Shared action. The last operation of R, ST(P1, B3, 3),
has tracking label 1 indicating that block B1 is overwritten
by B3 in location 1. Thus, upon completion of run R, the

ST index of each location is given by part (c) of the figure.
O

Let R', LD(P,V, B) be a prefix of R in which the LD(P,V, B)
operation is the jth trace operation of R. Intuitively, if the
LD operation gets its value from location ! and location [in-
herits its value from the ith trace operation of R (which must
be a ST operation), then (i, j) is an inheritance edge. More
precisely, let ¢ be the transition taken on the LD operation,
and let the tracking label of ¢ be . Then, if ST-index(R',1)
0 the edge (ST-index(R',1), j) is an inheritance edge of
R.

For any run R of a protocol with tracking functions f and
c, 1 <1 <L, let the inheritance graph of R with respect
to these tracking functions be the graph whose nodes are
the trace operations of R, numbered by their order in R,
and whose edges are the inheritance edges of R. This graph
is L-bandwidth bounded, where L is the total number of
locations in a state of the protocol. This is because, for any
prefix R of R, at most L ST operations are “active”, in the
sense that they are indexed in the set {ST-index(R')}
and thus may be in future inheritance edges. Indeed, we
have the following claim.

P1 P2

location | contents location | contents
1 B3:3 3 Bl:1
2 1 4 B2 :2
(a)
Protocol run R tracking
labels
ST(P1, B1, 1) 1
ST(P2,B2,2) 4
C1 1
C2 2
Get-Shared(P2, B1)
C3 1
cq | 4
ST(P1, B3,3) 1
(b)
ST — index(R,1) | 3
ST —index(R,2) | 0
ST —index(R,3) | 1
ST — index(R,4) | 2

Figure 3: ST Index Example. Part (a) depicts the
state of four protocol locations, where locations 1
and 2 correspond to cache lines of processor P1 and
locations 3 and 4 correspond to cache lines of pro-
cessor P2. Location 2 is empty, and each of the other
locations stores the value of one of blocks B1, B2, or
B3. Part (b) lists an example run R of length 4, in
which the Get-Shared action copies block B1 from
location 1 to location 3. Also, the tracking labels of
each transition corresponding to the actions of R are
given. The state of the protocol in part (a) repre-
sents the state upon completion of run R. Part (c)
Lists the ST-index of each location with respect to
run R.

CrLAaM 4.1. Let P be a protocol with L locations and
tracking functions f,{c;}. There is a finite state automa-
ton that, given a run R of P, generates a descriptor of the
inheritance graph of R.

The generator generates the graph while executing the pro-
tocol on run R, and outputs an extended graph descriptor.
Upon transition t = (q, A, q'), the generator does the follow-

ing:

e If Ais a ST operation and ¢ has tracking label [then
output “I, A”. (Recall that this adds a new node to
the graph with ID [and label A.)

e For each I, if ¢;(t) # | then output “add-ID(¢;(t),1)”.
(Intuitively, the ST node with ID ¢;(¢) is being copied
to location [, so [is added to the set of IDs for this ST
node. More generally, the number of IDs of a ST node
equals the number of copies of the ST in the protocol
state.)

e If Ais a LD operation and ¢ has tracking label | then
output “L+ 1, A,(l,L + 1), inh”. (This causes a new
node with ID L + 1, labeled A, to be added to the
graph, and an inheritance edge to be added into A.)

4.2 Finite State ST Reordering

Let R be a run of protocol P. A ST order graph for R is a
graph whose nodes are the trace operations of R, numbered
by their order in R. As in section 3.1, for each block B, if
there are u ST operations to B in R then there are u—1 ST
order edges in the graph which define a total order on these
u, operations.

A ST order generator for P is a finite state automaton that,
given run R as input, generates a k-graph descriptor that
describes the ST order graph, for some k. Moreover, the
number of states of the automaton is at most the number of
states of P.

Protocols implemented in practice have the real-time ST re-
ordering property that for all traces, for each block B, the
trace order of STs to B is in fact the same as the correspond-
ing serial reordering. Thus, the ST order generator is trivial.
One well-known protocol that does require non-trivial (but
still finite state) ST ordering is the lazy caching protocol of
Afek et al. [2], but this protocol has not been implemented
in a real machine.

4.3 Ther Protocol Class

Let P be a protocol. Let f,{c;,1 < I < L} be tracking
functions and let G be a ST order generator. With respect
to f,{a}, and G, for each run R of P, let W(R) be the
graph whose nodes are the trace operations of R. The edges
of W(R) are the inheritance edges of the inheritance graph
with respect to f and {¢;}, the ST order edges given by G,
the forced edges implied by these inheritance and ST order
edges, and the program order edges given by the order of
operations in R.

DEFINITION 4.1. A protocol P belongs to the class T if
for some tracking functions f,{c;} and some ST order gen-
erator G, for all runs R of P, the graph W (R) is an acyclic
constraint graph.

THEOREM 4.1. Ewvery protocol in T has a finite state wit-
ness observer.

ProOOF. We describe a finite state observer O that, given
P in T, along with associated tracking functions f, {c;} and
ST order generator G, converts a run R of P into a descriptor
for a constraint graph W (R).

O adds each LD and ST operation of R to the graph as
the operation is read. From Claim 4.1 and section 4.2, the
inheritance and ST order edges can be generated in finite
state. It is also trivial to generate the program order edges.

It remains to extend the observer so that forced edges are
also generated. For this purpose, each node N' labeled by

a LD(P, B, V) operation remains in the active graph main-
tained by the observer until one of the following events oc-
curs. Let the inheritance edge to N’ be from node N. (i)
Another node, N, labeled by LD(P, B, V) is added to the
graph, along with inheritance edge (N, N"). Node N' can
now be removed because there is a path of program order
edges from the N' to N". (ii) A ST order edge from N, say
to node S, is present in the graph. In this case, a forced
edge is added from N’ to S.

The number of LD nodes that need to be in the active graph
for the purpose of generating forced edges is bounded by p
(the number of processors) times the number of ST nodes
with no outgoing ST order edges. The latter number is
bounded, since the ST order graph is bandwidth bounded.
In addition, if ST node S has an incoming ST order edge
(N, S) where the value of the ST labeling N may be read by
future LDs, then S must be maintained in the active graph.
The number of such ST nodes S is at most L.

Thus, the witness graph is bandwidth bounded, where the
bound depends only on G, L, p, and b and does not otherwise
depend on R, and so the observer is finite state. [

To summarize, we have shown the following. Let P be a
protocol for which tracking labels can be generated auto-
matically and the real-time ST reordering property holds
(or more generally, for which a ST order generator exists).
Then, sequential consistency can be verified by an algo-
rithm that first generates the observer from the protocol
in a noninterfering fashion (so that the the set of traces of
the observer equals those of the protocol) and then uses a
model checker (based on our cycle-checker) to verify that
every graph descriptor generated by the observer describes
an acyclic constraint graph. Note that the checker is inde-
pendent of the protocol.

4.4 Size of Observer

In order to apply our constraint graph method to the veri-
fication of a protocol, the major obstacle will be the size of
the observer. In addition to the protocol state, the observer
needs to maintain in its state a subgraph of the constraint
graph that may have a number of nodes up to the bandwidth
bound of that graph. Here, we describe an upper bound on
the number of bits of extra state required by the observer,
under reasonable assumptions.

First, we bound the bandwidth of the constraint graphs of a
protocol P with L locations. We consider here the case that
the protocol has real-time ST ordering, and that the value
of a ST is stored in some protocol location at least until the
ST following it in ST order has been done. In this case, with
respect to a prefix of a run, at most L distinct ST nodes may
be actively stored in protocol locations and thus may have
future outgoing inheritance edges. Up to pb LD nodes may
contribute to the bandwidth needed for generating forced
edges. Nodes needed for generation of program order edges
and ST order edges are already counted among these nodes,
so the total bandwidth is bounded by L + pb.

For each active node of the constraint graph, the node label
must be stored. This requires up to lgp+Igb+1lgwv+1 bits.

Here 1g denotes the ceiling of log to the base 2; 1 bit indicates
whether the label is a LD or ST, and parameters P, B, and
V' are represented using the other bits. Also, IDs for each
ST node are needed, in order to generate inheritance edges.
An addition Llg L bits are needed to store IDs.

Edges of the constraint graph must also be represented. If
the active nodes are stored in a linear array, no extra storage
is needed for edges. Roughly, this is because the nodes can
be stored in an order consistent with the partial order of
the constraint graph, so that graph edges can be inferred.
For example, in the linear array order, a ST to block B
is followed (not necessarily contiguously) by LD nodes that
inherit its value, and no other ST to the same block separates
them, so inheritance edges are completely determined by the
linear order.

Thus, an upper bound on the number of bits of extra state
needed by the observer (in addition to the protocol state)
is (L + pb)(lgp +1gb +1gv + 1) + Llg L bits. This up-
per bound is likely to be substantially less than the number
of bits in the protocol itself. Real memory system proto-
cols, however, are already roughly at the limits of current
model checking tools, so any additional state is problematic
in practice. Fortunately, some simple optimizations should
help to reduce the size of the observer. For example, the
value of a node is needed only to check that each LD gets
the same value as the ST from which it supposedly inherits
its value. This check can be done independently from the
cycle-testing check, thereby saving lg v bits per node.

5. FUTURE WORK

Understanding how the size of the observer can be reduced,
perhaps by imposing further assumptions on the class of
protocols to be handled, is an important direction for future
work from a practical point of view, and will help to relate
this work to that of Qadeer [13]. Extending these techniques
to other memory models is another important direction of
this research.

Experimental results will be needed to assess the applicabil-
ity of our results in practice. We intend to apply our tech-
niques to substantial memory system protocols using model
checking tools and explore means to combat state explosion.

An interesting theoretical question is whether the problem
of testing sequential consistency is undecidable for protocols
that are bandwidth bounded. The reduction used in the
undecidability result of Alur et al. [3] exploits protocols that
are not bandwidth bounded.

Finally, we note that our method can also be used for testing
that a particular run of a protocol does not violate sequen-
tial consistency, building on the approach proposed by Gib-
bons and Korach [6]. The finite-state observer and checker
could be simulated together with detailed implementation
descriptions that are too complex for formal verification.

Acknowledgments

We thank Mark Hill, Dan Sorin, Manoj Plakal and the other
members of the Wisconsin Multifacet group for sharing their
insights and intuition about proving sequential consistency.

6. REFERENCES

[1] Sarita V. Adve and Kourosh Gharachorloo. Shared memory
consistency models: A tutorial. IEEE Computer, pages
66 76, December 1996.

Yehuda Afek, Geoffrey Brown, and Michael Merritt. Lazy
caching. ACM Transactions on Programming Languages
and Systems, 15(1), January 1993.

Rajeev Alur, Ken McMillan, and Doron Peled.
Model-checking of correctness conditions for concurrent
objects. In Eleventh Symposium on Logic in Computer
Science, pages 219-228. IEEE, 1996.

[4] Tim Braun, Anne E. Condon, Alan J. Hu, Kai S. Juse,
Marius Laza, Michael Leslie, and Rita Sharma. Proving
sequential consistency by model checking. Technical Report
TR-2001-03, Department of Computer Science, University
of British Columbia, April 2001.

[5] Edmund M. Clarke and E. Allen Emerson. Design and
synthesis of synchronization skeletons using branching time
temporal logic. In Dexter Kozen, editor, Workshop on
Logics of Programs, pages 52 71, May 1981. Published
1982 as Lecture Notes in Computer Science Number 131.

Phillip B. Gibbons and Ephraim Korach. Testing shared
memories. STAM Journal on Computing, 26(4):1208-1244,
August 1997.

[7] Thomas A. Henzinger, Shaz Qadeer, and Sriram K.
Rajamani. Verifying sequential consistency on
shared-memory multiprocessor systems. In Computer-Aided
Verification: 11th International Conference, pages
301-315. Springer, 1999. Lecture Notes in Computer
Science Vol. 1633.

[2

(3

6

[8] Mark D. Hill. Multiprocessors should support simple
memory-consistency models. IEEE Computer, pages 28 34,
August 1998.

[9] Leslie Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs. ACM
Transactions on Computer, 28(9):690 691, September 1979.

[10] Marius Laza, Rita Sharma, Anne Condon, and Alan J. Hu.
Protocols for which proving sequential consistency is easy.
In Workshop on Formal Specification and Verification
Methods for Shared Memory Systems. Unpublished
Proceedings, October 31, 2000. Workshop affiliated with
FMCAD 2000, Austin, TX.

[11] Ratan Nalumasu, Rajnish Ghughal, Abdel Mokkedem, and
Ganesh Gopalakrishnan. The ‘test model-checking’
approach to the verification of formal memory models of
multiprocessors. In Computer-Aided Verification: 10th
International Conference, pages 464-476. Springer, 1998.
Lecture Notes in Computer Science Vol. 1427.

[12] M. Plakal, D. Sorin, A. Condon, and M. Hill. Lamport
Clocks: Verifying a directory cache coherence protocol. In
Symposium on Parallel Algorithms and Architectures,
pages 67-76, 1998.

[13] Shaz Qadeer. On the verification of memory models of
shared-memory multiprocessors. In Workshop on Formal
Specification and Verification Methods for Shared Memory
Systems. Unpublished Proceedings, October 31, 2000.
Workshop affiliated with FMCAD 2000, Austin, TX.

