
Automatable Verification of Sequential Consistency �
[Extended Abstract]

Anne E. Condon and Alan J. Hu
Department of Computer Science

University of British Columbia
2366 Main Mall

Vancouver, B.C. V6T 1Z4
Canada

(condon,ajh)@cs.ubc.ca

ABSTRACTSequential
onsisten
y is a multipro
essor memory model ofboth pra
ti
al and theoreti
al importan
e. Designing andimplementing a memory system that eÆ
iently provides agiven memory model is a
hallenging and error-prone task,so automated veri�
ation support would be invaluable. Un-fortunately, the general problem of de
iding whether a �nite-state proto
ol implements sequential
onsisten
y is unde
id-able. In this paper, we identify a restri
ted
lass of proto
olsfor whi
h verifying sequential
onsisten
y is de
idable. The
lass in
ludes all published sequentially
onsistent proto
olsthat are known to us, and we argue why the
lass is likely toin
lude all real sequentially
onsistent proto
ols. In prin
i-ple, our method
an be applied in a
ompletely automatedfashion for veri�
ation of all implemented proto
ols.
Categories and Subject DescriptorsB.3.3 [Performan
e Analysis and Design Aids℄: [For-mal Models℄; C.0 [Computer Systems Organization℄:General|systems spe
i�
ation methodology
General Termstheory, veri�
ation
Keywordssequential
onsisten
y, memory model, model
he
king
1. INTRODUCTIONThe memory model of a shared memory multipro
essor is aspe
i�
ation of how memory will behave from the program-mer's perspe
tive. Memory systems use intri
ate �nite-state�The authors were supported in part by resear
h grants fromthe National S
ien
e and Engineering Resear
h Coun
il ofCanada.

proto
ols to implement the desired memory model. Theseproto
ols are notoriously diÆ
ult to design and debug |be
ause the primary obje
tive is performan
e rather thansimpli
ity | making them natural targets for formal veri�-
ation.Sequential
onsisten
y is a memory model introdu
ed byLamport [9℄. A memory system is sequentially
onsistenti� there always exists an interleaving of the program or-ders of all the pro
essors su
h that ea
h load returns thevalue of the most re
ent store to the same address. Sequen-tial
onsisten
y is important both as a pra
ti
al memorymodel that provides intuitive ease-of-programming while al-lowing eÆ
ient hardware optimizations (e.g. [8℄) and also asan extensively studied memory model that
an be used tounderstand other, more relaxed models (e.g. [1℄).Ideally, we would like an algorithm that inspe
ts a �nite-state proto
ol and determines automati
ally whether or notthe proto
ol provides sequential
onsisten
y. Unfortunately,the general problem of de
iding sequential
onsisten
y of a�nite-state proto
ol is unde
idable [3℄.Real proto
ols, however, might not be fully general, sug-gesting that the unde
idability result may not be relevantin pra
ti
e. Suppose we
an
hara
terize a
lass of proto
olswith the following properties: membership in the
lass isde
idable, all members of the
lass are sequentially
onsis-tent, and all real proto
ols that implement sequential
onsis-ten
y belong to the
lass. This paper proposes su
h a
lass,thereby redu
ing automati
 veri�
ation of real, sequentially
onsistent proto
ols to testing for membership in the proto-
ol
lass.The basis for our veri�
ation method is a graph-based def-inition of sequential
onsisten
y that arises in the work ofGibbons and Kora
h [6℄. For an exe
ution tra
e of a proto-
ol, they de�ne a
onstraint graph with a node for ea
h loadand store operation in the tra
e. The graph has four kinds ofedges: edges that enfor
e program order for ea
h pro
essor,edges that provide a total order over all store nodes to ea
hmemory lo
ation, edges from ea
h store node to every loadnode that gets its value from that store, and for
ed edgesfrom ea
h load node to the store node that follows in thetotal store order the store node from whi
h the load got its

value. A proto
ol is sequentially
onsistent if and only if allof its tra
es have a
y
li

onstraint graphs.To perform automati
 formal veri�
ation using this formula-tion of sequential
onsisten
y, we must provide an automati
way to
onstru
t the
onstraint graph and verify that it isa
y
li
 for all possible exe
utions of the proto
ol. In pra
-ti
e, this suggests that the
onstru
tion and
he
king of the
onstraint graph must be done in (hopefully small) �nitestate, so that automati
 veri�
ation based on �nite-statemodel
he
king [5℄ is possible.The remainder of this paper addresses these problems. InSe
tion 3, we introdu
e a graph des
ription notation tailoredto des
ribe
onstraint graphs, and a �nite-state
he
ker toverify that a graph so des
ribed is a
y
li
. We des
ribe howthe graph des
ription notation and
he
ker
an be used toverify sequential
onsisten
y. In Se
tion 4, we show howreal proto
ols
an be annotated with �nite-state informa-tion, to obtain a �nite state observer whi
h generates a de-s
ription of the
onstraint graph. Our method of generatingthis des
ription
hara
terizes a
lass of proto
ols for whi
hsequential
onsisten
y is de
idable, and we argue why allreal proto
ols are likely to belong to this
lass. Finally, wederive size bounds on the �nite-state observer, suggestingthat our method is at the edge of what is
urrently feasiblefor automati
 veri�
ation tools.
1.1 Related WorkThere has been
onsiderable work over the years on veri-fying memory system proto
ols and memory models. Forbrevity, we mention here only
losely related work, pertain-ing to �nite-state veri�
ation of proto
ols with respe
t tosequential
onsisten
y.Plakal et al. [12℄ introdu
e a veri�
ation approa
h based onlogi
al
lo
ks and apply it to a dire
tory based proto
ol.Our approa
h is inspired by the logi
al
lo
ks approa
h, butin
ontrast to logi
al
lo
ks, whi
h are unbounded, our ap-proa
h redu
es veri�
ation to a language in
lusion problembetween �nite state automata.Henzinger et al. [7℄ propose a very similar approa
h to ours,using a �nite-state observer to reorder loads and stores to
onstru
t a witness of sequential
onsisten
y. Be
ause ofthe �nite-state limit on reordering, the method is too re-stri
tive to handle most real proto
ols. One
ould view ourapproa
h as a generalization of theirs that handles all re-alisti
 proto
ols. We note that Henzinger et al. prove verystrong results for proto
ols in their restri
tive
lass, namelythat it is suÆ
ient to redu
e veri�
ation of a proto
ol witharbitrarily large parameters (number of pro
essors, numberof blo
ks, number of values per blo
k) to a �xed-parameterproblem. In
ontrast, our method applies to veri�
ation ofonly �xed-parameter proto
ols.Nalumasu et al. [11℄ propose the Test Model-Che
king te
h-nique, in whi
h a proto
ol is
he
ked against various prede-�ned �nite-state automata that test
ertain memory modelproperties. These tests
an be
onsidered to be �nite-stateobservers. By
ombining these tests, it is possible to verifymemory models that are
lose to, but not identi
al to, se-quential
onsisten
y. Determining exa
tly how these test

ombinations relate to sequential
onsisten
y and to the
lass of proto
ols we
an handle is an open question.At a re
ent, informal workshop, Qadeer proposed an ap-proa
h for automati
ally verifying that a memory proto
olimplements a memory model [13℄. The basi
 idea is to iden-tify and formalize many assumptions that typi
ally hold ofreal proto
ols and real memory models. In the presen
e ofthese assumptions, one
an generate a �nite-state witnessautomati
ally. The proto
ol
lass we
an verify is mu
hmore general than Qadeer's, whi
h
annot handle Afek etal's Lazy Ca
hing proto
ol [2℄, for example. On the otherhand, his
omplexity bounds (on the size of the �nite statewitness) are better than ours, and he
onsiders memorymodels other than just sequential
onsisten
y. We believethe two approa
hes are
omplementary: Qadeer's approa
h
an be generalized by adopting our model; our approa
h
anbe made more eÆ
ient by exploiting Qadeer's assumptions.At the same workshop, we presented a preliminary versionof the ideas that evolved into this work [10℄. The generalapproa
h was the same as in this paper, but the underly-ing model for re
ording and
he
king
onstraints was di�er-ent, resulting in wildly impra
ti
al �nite-state size bounds.In subsequent work [4℄, we demonstrated that the methoddoes allow veri�
ation, using
urrent model-
he
king tools,of the sequential
onsisten
y of a substantial
a
he proto-
ol, provided that some human insight is used to redu
e the
omplexity of the observer. In
ontrast, the present paperpresents a revised theoreti
al framework that en
ompasses abroader
lass of proto
ols, yet allows proving mu
h stronger
omplexity bounds, suggesting that this work will apply tomore proto
ols and be fully automatable in pra
ti
e. We donot have experimental results yet, but are hopeful given ourprevious experien
es.
2. DEFINITIONS
2.1 ProtocolsA proto
ol P is a tuple (p; b; v;Q; q0;A [A0; Æ [Æ0;?).The
onstants p, b, and v spe
ify the number of pro
essors,memory blo
ks, and data values in the proto
ol. The symbol? denotes the initial value of ea
h blo
k. The set of statesis Q, of whi
h q0 is the initial state. The set A is the set ofall a
tions of the proto
ol that are LD and ST operations,namely a
tions of the form LD(P;B; V) and ST(P; B; V),where 1 � P � p, 1 � B � b, and 1 � V � v. For notational
onvenien
e, we use *'s to denote sets of LD and ST a
tionsover all values of a parameter: e.g., ST(*,B; V) denotes theset fST(P;B; V) j 1 � P � pg. Thus, A = ST(�; �; �) [LD(�; �; �). A0 is the set of a
tions of the proto
ol other thanLD and ST operations. Corresponding to A and A0 thereare two transition relations, Æ and Æ0, with Æ � Q�A �Qand Æ0 � Q�A0 �Q.A sequen
e of a
tions A1; A2; : : : ; Ak is a proto
ol run ifthere is a sequen
e of states q0; q1; q2; : : : ; qk su
h that forall j, with 1 � j � k, the transition (qj�1; Aj ; qj) 2 Æ [Æ0. A proto
ol tra
e is the subsequen
e of a proto
ol runthat in
ludes only the a
tions in A (i.e., the ST and LDoperations). Two proto
ols P and P 0 are equivalent if theset of tra
es of P equals the set of tra
es of P 0. Note thatthe runs and tra
es of a proto
ol are �nite, so our theoryuses regular automata rather than !-automata.

2.2 Sequential ConsistencyIntuitively, a serial tra
e is one in whi
h ea
h LD returnsthe value of the most re
ent (prior to the LD) ST to thesame blo
k. If there were no prior STs to that blo
k, theload must return ?. Formally, a tra
e T = t1; t2; : : : ; tkis a serial tra
e if for all blo
ks B and values V , for all1 � j � k: (tj 2 LD(�; B; V)))0� (V = ?)^ 8i<j [ti 62 ST(�; B; �)℄_9h<j [th 2 ST(�; B; V) ^ 8ih<i<j(ti 62 ST(�; B; �)℄ 1A :A reordering of a tra
e of length k is simply a permutation� of the numbers from 1 to k. Let � = �(1); �(2); : : : �(k)be a reordering of a tra
e T . Let T 0 = t�(1); t�(2); : : : t�(k).� is
alled a serial reordering and T 0 is the
orrespondingserial tra
e if � and T 0 have the following two properties.First, � preserves the \per pro
essor" order of T , i.e., forall pro
essors P , if ta and tb are operations of pro
essor Pthen a < b if and only if ��1(a) < ��1(b). Se
ond, T 0 mustbe a serial tra
e.A proto
ol is sequentially
onsistent if all of its tra
eshave a serial reordering.
3. VERIFICATION USING CONSTRAINT

GRAPHSIn our method for verifying that a proto
ol is sequentially
onsistent, a �nite-state observer wat
hes a proto
ol as itexe
utes and gathers information about how to reorder thetra
e. The observer presents this information, in the formof a �nite-state
onstraint graph, to a
he
ker. A key task ofthe
he
ker, whi
h is also �nite state, is to ensure that thegraph is a
y
li
. Veri�
ation redu
es to proving that the
he
ker a

epts all
onstraint graphs generated by the ob-server. See Figure 1. Overall, the method exploits the \lessis more" prin
iple: a total reordering of a tra
e is too mu
hto be
olle
ted and
he
ked with a �nite number of states,but partial information about the reordering is suÆ
ient todedu
e sequential
onsisten
y.We �rst de�ne sequential
onsisten
y using graph-theoreti
notation. Appli
ation of this de�nition to proto
ol veri�-
ation requires a �nite state method for testing if a graphis a
y
li
. In Se
tion 3.2, we identify a
lass of graphs forwhi
h this test
an be done. We des
ribe the �nite state
y
le-
he
ker in Se
tion 3.3. We
ombine everything intoour veri�
ation method in Se
tion 3.4.
3.1 A Graph-Based Definition of Sequential

ConsistencyA
onstraint graph G for a tra
e T re
ords ordering
on-straints on the operations in T that must be obeyed for Tto have a serial reordering. The nodes of G are labeled byoperations of T . Nodes are numbered by
onse
utive inte-gers, starting from 1, a

ording to their order in the tra
e.Edges of G in
lude program order edges, along with inher-itan
e edges, whi
h indi
ate from whi
h ST operation a LDinherits its value; ST order edges, whi
h provide a total or-dering of all ST nodes to the same blo
k, and for
ed edges,

"Observer"
Augmented

Protocol

Constraint Graph
Description

Observer

Checker

Accept/Reject?

Model Check:
Does the checker
always accept?

Automatically
converted into

Original
Protocol

Trace
Equivalence?

Compose with Checker

Figure 1: Veri�
ation Method Overview. The Ob-server is simply the original proto
ol augmentedwith reordering information. Automati

reationof the observer is dis
ussed in Se
tion 4. The ob-server generates a des
ription of a
onstraint graph,whi
h is
he
ked by a �nite-state
he
ker. The same
he
ker is used for all proto
ols. Constraint graphsand the
he
ker are des
ribed in Se
tion 3. Thetra
e equivalen
e
he
k
an be omitted in pra
ti
ebe
ause the observer is
reated in a non-interferingway from the original proto
ol.whi
h for
e the
onstraint that on any path from a ST nodeto a LD node that inherits its value, there is no other STnode to the same blo
k. More pre
isely, edges of G mustsatisfy the following edge annotation
onstraints:1. Ea
h edge may be annotated as an inheritan
e, pro-gram order, ST order, or for
ed edge. An edge mayhave zero or more annotations.2. For ea
h pro
essor P , if u nodes of G are labeled byoperations of P then G has u� 1 program order edgesthat de�ne a total order on these u operations,
onsis-tent with tra
e order.3. For ea
h blo
k B, if u nodes of G are labeled by SToperations to B, then G has u�1 ST order edges thatde�ne a total order on these u operations.4. Ea
h node labeled by LD(P;B; V) has one in
ominginheritan
e edge from a ST(P 0; B; V) node (where Pmay equal P 0).5. For all nodes i, j, and k su
h that there is a ST orderedge from i to k and an inheritan
e edge from i toj, there is a for
ed edge on some path from j to k.Spe
i�
ally, if j is labeled by LD(P;B; V) then thereis either a for
ed edge dire
tly from j to k or thereis a (program order) path from j to another node j0labeled by LD(P;B; V), and a for
ed edge from j0tok.Similarly, for ea
h node j labeled by a LD(P;B;?)operation, there is a for
ed edge on the path to the�rst node in the ST order for blo
k B.

1 2 4 5

3

ST(P1,B,1) LD(P2,B,1) LD(P2,B,1) LD(P2,B,2)

ST(P1,B,2)po−STo

inh

inh

po po

inh

forcedFigure 2: A Constraint Graph. Edge labels indi
ateinheritan
e (inh), program order (po), store order(STo), or \for
ed" edges. The inheritan
e edge fromnode 1 to node 4 and the store order edge from node1 to node 3 for
es an edge from node 4 to node 3,whi
h prevents tra
e orders in whi
h the LD in node4 does not get its value from the most re
ent ST.The graph has no annotated edges other than those spe
i�edin 2-5 above. An example of a
onstraint graph is givenin Figure 2. The following
laim is impli
it in the workof Gibbons and Kora
h [6℄ and follows dire
tly from thede�nition of
onstraint graph.Claim 3.1. A tra
e T has a serial reordering if and onlyif some
onstraint graph for T is a
y
li
.
3.2 Node Bandwidth Bounded GraphsFor veri�
ation purposes, we are interested in
onstraintgraphs (with ordered nodes) that are node bandwidthbounded. We denote the set f1; 2; : : : ; ig by Ni. We say thata graph with node set Nn is k-node bandwidth bounded iffor all i, at most k nodes in Ni have edges to or from nodesin the set Nn� Ni. For example, the graph in Figure 2is 3-node-bandwidth bounded. Note that node bandwidthboundedness is a property of both the graph and a �xednode ordering. Also, note that our de�nition di�ers fromthe usual edge-based notion of graph bandwidth, e.g., thenumber of edges between nodes in Ni and Nn� Ni maybe unbounded. For brevity, we omit the word \node" andsimply refer to bandwidth bounded graphs.We will represent a dire
ted, k-bandwidth bounded graphG as a string, in a way that fa
ilitates a �nite state testthat a graph is a
y
li
. For later
onvenien
e, nodes andedges of G may have labels from some �nite alphabets Aand E , respe
tively. (In our appli
ation, A will be the set oftra
e operations, and symbols in E will denote the edge an-notations of se
tion 3.1.) Intuitively, our graph des
riptionnotation simply lists nodes by number and edges as pairs ofnode numbers, with additional labels (if any) immediatelyfollowing the node or edge to whi
h they belong. A naiveapproa
h numbers all nodes and lists them in order. For ex-ample, the graph in Figure 2
orresponds to the des
ription:1, ST(P1; B; 1), 2, LD(P2; B; 1), (1,2), inh, 3,ST(P1; B; 2), (1,3), po-STo, 4, LD(P2; B; 1), (1,4),inh, (2,4), po, (4,3), for
ed, 5, LD(P2; B; 2), (3,5),inh, (4,5), po

Our approa
h is like the naive approa
h, but is �nite-stateby exploiting k-bandwidth boundedness. In our approa
h,node numbers are not used dire
tly to identify nodes andedges. Rather, ea
h node has an ID (identi�
ation number)between 1 and k + 1. When all edges in or out of the nodewith ID i have been listed, this node may be removed fromthe identi�
ation s
heme and i
an be used to identify an-other node. The graph in Figure 2 is 3-bandwidth bounded,so we
an des
ribe it as:1, ST(P1; B; 1), 2, LD(P2; B; 1), (1,2), inh, 3,ST(P1; B; 2), (1,3), po-STo, 4, LD(P2; B; 1), (1,4),inh, (2,4), po, (4,3), for
ed, 1, LD(P2; B; 2), (3,1),inh, (4,1), poMore formally, with respe
t to some �xed k and symbol al-phabets A and E , we de�ne a node des
riptor to be a symbolin Nk+1, possibly followed by a symbol in A (that is, a nodeID possibly followed by a node label) and an edge des
riptorto be a symbol of the form (i; j) where i; j 2 Nk+1, possiblyfollowed by a symbol in E . A sequen
e of node des
rip-tors and edge des
riptors is a k-graph des
riptor. Testingif a string is a proper graph des
riptor (does not have two
onse
utive symbols from A, for example), is easily done in�nite state.Let s be a k-graph des
riptor. The graph G representedby s has a number of nodes equal to the number of nodedes
riptors of s, with the ith node having the label (if any) ofthe ith node des
riptor. Asso
iated with ea
h pre�x s0 of s isa set of a
tive nodes whi
h are asso
iated with ID's, de�nedas follows. If s0 has fewer than i node des
riptors, thenID(i; s0) is unde�ned. If s0 has exa
tly i node des
riptorswith the ith having ID I, then ID(i; s0) = I. Finally, supposethat s0 has more than i node des
riptors, with the ith havingID I. If no node des
riptor in s0 after the ith node des
riptorhas ID I, then ID(i; s0) = I, else ID(i; s0) is unde�ned. Now,the edges of G are de�ned as follows: for ea
h pre�x of theform s0; (I; I 0) of s, if for some pair (i; j) of nodes of G,ID(i; s0) = I and ID(j; s0) = I 0 then edge (i; j) is in G.Moreover, if s0; (I; I 0); � is also a pre�x of s for some � 2 Ethen the edge (i; j) has label �.A slightly extended notation for des
ribing k-bandwidthbounded graphs will be useful later. Intuitively, in this ex-tension, an a
tive node may have more than one ID. Thisis useful, for example, when modeling the following situa-tion: the value of a ST node in the
onstraint graph is inmultiple
a
he lo
ations of a �nite state proto
ol, in whi
h
ase it is
onvenient that these lo
ation addresses are thegraph IDs for the ST node. For this purpose, we extendour graph des
riptor strings to be sequen
es of node de-s
riptors, edge des
riptors and also symbols from the setfadd-ID(I; I 0) j 1 � I; I 0 � k + 1g. Intuitively, the add-ID(I; I 0) symbol
auses the ID I 0 to be added to the nodewith ID I (and I 0 is no longer asso
iated with any othernode).Su
h an extended graph des
riptor represents a graph inwhi
h the nodes and node labels are de�ned just as for avalid string. To de�ne the edges, for ea
h node i, we de�nethe ID-set of i with respe
t to s0, denoted by ID-set(i; s0),

as follows. If s0 has fewer than i node des
riptors, then ID-set(i; s0) is empty. If s0 has exa
tly i node des
riptors withthe ith having ID I, then ID-set(i; s0) = fIg. Next, supposethat s0 has more than i node des
riptors.� If s0 = s00; I and I 2 ID-set(i; s00), then ID-set(i; s0) isde�ned to be ID-set(i; s00)�fIg. (ID I is now beingused to label another node, and so is no longer in theID-set of the ith node.)� If s0 = s00; add-ID(I; I 0) and I 2 ID-set(i; s00), then ID-set(i; s0) is de�ned to be ID-set(i; s00)[fI 0g. (Add I 0to the ID-set of node i.)� If s0 = s00; add-ID(I 0; I) with I 6= I 0 and I 2ID-set(i; s00), then ID-set(i; s0) is de�ned to be ID-set(i; s00)�fIg. (Again, ID I is now being used to labelanother node, and so is no longer in the ID-set of theith node.)� Otherwise, ID-set(i; s0) = ID-set(i; s00). (No
hange tothe ID-set of the ith node.)Then, the edges of G are de�ned as follows: for ea
h pre�x ofthe form s0(I; I 0) of s, if for some pair (i; j) of nodes of G, I 2ID-set(i; s0) and I 0 2ID-set(j; s0) then edge (i; j) is inG. Anyextended graph des
riptor
an be
onverted in �nite stateto a (standard) graph des
riptor without add-ID symbols,so both types of des
riptor
an be used inter
hangeably.
3.3 Checking for Cycles in a Bandwidth

Bounded GraphClaim 3.2. There is a �nite state
y
le-
he
ker that,given as input a k-graph des
riptor, a

epts if and only ifthe string represents an a
y
li
 graph.As node and edge des
riptors are read o� from the inputstring, the
y
le-
he
ker maintains a so-
alled a
tive graph
ontaining at most k + 1 nodes, in whi
h ea
h node has aunique ID. The
he
ker ignores edge labels and, upon read-ing a node ID or edge pair, does the following:� When a node ID, say I, is read, then if there is anode with ID I in the a
tive graph, for all pairs ofedges (H; I); (I; J) in the a
tive graph (where H; I; Jrefer to node IDs) a new edge (H;J) is added, if notalready in the graph. Then, the node with ID I and allin
ident edges are removed from the graph. Finally, anew node with ID I is added to the graph.� When edge (I; I 0) is read, an edge is added from nodewith ID I to the node with ID I 0. If addition of thisedge introdu
es a
y
le in the graph, the automatonreje
ts.If, upon rea
hing the end of the string, the
he
ker has notreje
ted, it a

epts. Corre
tness of the
he
ker follows fromthe fa
t that the node removal plus edge
ontra
tion donein the �rst test of the
he
ker preserves
y
les in the graph.

3.4 Observer-Checker Verification MethodIn our method for proto
ol veri�
ation, the observer gener-ates the same set of tra
es as the proto
ol, but augmentsea
h tra
e with a des
ription of a k-bandwidth boundedgraph. Given a run of the observer, the
he
ker
he
ks thatthe graph is an a
y
li

onstraint graph for the tra
e.Let P be a proto
ol. Let A be the set of LD and ST opera-tions of P. An observer for P is itself a �nite state proto
ol.The alphabet (set of a
tions) of an observer
onsists of thesymbols used in a k-graph des
riptor for some k, in whi
hthe node label set is A and the edge label set E is finh,po, for
ed, STo, po-STo, po-inh, po-for
edg, whereinh, po, STo and for
ed indi
ate inheritan
e, program or-der, ST order and for
ed edges, respe
tively, and po-STo,po-inh, and po-for
ed denote edges with two annotations.Note that ea
h run of an observer
ontains a tra
e as a sub-sequen
e, namely the subsequen
e of symbols from A.An observer O for P is a witness for P if (i) the set of tra
esof O equals the set of tra
es of P, and (ii) ea
h run of Odes
ribes an a
y
li

onstraint graph (as de�ned in se
tion3.1).Che
king property (i)
an easily be redu
ed to the languageequivalen
e problem for �nite state automata. In pra
ti
e,this
he
k is trivial by
onstru
tion, sin
e the observer is anoninterfering augmentation of the proto
ol. The
he
ker isa �nite state automaton that
he
ks property (ii). In whatfollows, assume that k (the bandwidth bound) is �xed. Thealphabet of the
he
ker equals that of the observer. Given asinput a run r of observer O, the
he
ker does the following:� Run the
y
le-
he
ker for k-bandwidth boundedgraphs on r. If the
y
le-
he
ker reje
ts, then re-je
t. Otherwise, r is an a
y
li
, k-bandwidth boundedgraph.� If not already reje
ted,
he
k that edges satisfy theedge annotation properties listed in se
tion 3.1. If so,then a

ept else reje
t.By the de�nition of a witness in se
tion 3.1, the
he
kera

epts if and only if r des
ribes an a
y
li

onstraint graph.Also the
he
ker has a �nite number of states sin
e the
y
le
he
ker of se
tion 3.3 does, and the edge annotation
he
ksare easy to do with a �nite number of states. We now havethe following theorem.Theorem 3.1. Let P, O be proto
ols. If O is a witnessfor P, then P is sequentially
onsistent. Moreover, testingwhether O is a witness for P
an be redu
ed to the languagein
lusion problem for �nite state automata.
4. VERIFICATION OF REAL-WORLD

PROTOCOLSWe
laim that every real-world sequentially
onsistent proto-
ol has a �nite state witness observer and that the observer
an be generated automati
ally from the proto
ol. To pro-vide intuition that supports this
laim, we �rst argue infor-mally that a weaker property holds for real-world sequen-tially
onsistent proto
ols, namely that the witness graph

orresponding to ea
h proto
ol run is bandwidth bounded.Later in this se
tion we make this intuition pre
ise, and alsoshow the stronger property that the witness graph
orre-sponding to ea
h run is not only bandwidth bounded but
an be generated in �nite state from the run.Let R be a run of a proto
ol and let R1 be a pre�x of R. LetR2 be the
orresponding suÆx of R, so that R = R1R2. Weneed to show that if we view the operations of R as nodesof a
onstraint graph, the number of operations of R1 withedges to operations of R2 is bounded. We
onsider ea
h typeof edge in turn. It is easy to see that at most p operationsof R1 have program order edges to operations of R2, namelythe last operation in ea
h pro
essor's program order, if any.We next
onsider inheritan
e edges; here we appeal to ourunderstanding of how real-world sequentially
onsistent pro-to
ols work. These proto
ols
reate \views" of a blo
k viaST operations, then
opy these views into various proto
olstorage lo
ations (su
h as queues, network message pa
kets,or
a
hes of other pro
essors) where they
an be read viathe LD operation, and eventually delete or overwrite views.Multiple views of a blo
k may exist in the proto
ol state.For example, one pro
essor may do a ST to a blo
k, thus
reating a new view, while stale views of the blo
k still existin other
a
hes. We
all a ST operation of R1 inh-a
tive ifone or more
opies of the value (view) written by that ST isstored in the proto
ol state upon
ompletion of run R1. Ifa ST is inh-a
tive, its value may be inherited by LDs in R2.A key point is that, sin
e the proto
ol is �nite-state, only a
onstant number of STs of R1
an be inh-a
tive. Moreover,in real-world proto
ols, LDs of R2 that inherit their valuesfrom STs of R1
an only do so from STs of R1 that are inh-a
tive, be
ause these LDs obtain their values from storagelo
ations of the proto
ol.Third, we
onsider ST order edges. Again, we appeal toa property of real-world proto
ols here, namely that for allruns, for ea
h blo
k B, the order of STs to B in the run is infa
t the same as the order of the STs in the
orrespondingserial reordering. Thus, if we
all ST nodes of R1 with nooutgoing ST order edge STo-a
tive nodes, the number ofSTo-a
tive nodes is at most the number of blo
ks b of theproto
ol. (Our
lass of veri�able proto
ols will a
tually bede�ned in se
tion 4.2 to en
ompass proto
ols that do notsatisfy this per-blo
k real-time ST reordering property.)Finally, we
onsider for
ed edges. The only LD nodes ofR1 that may have for
ed edges to STs of R2 are those LDswhi
h inherit their values from STo-a
tive STs of R1. Forea
h STo-a
tive operation S of R1 and ea
h pro
essor P ,at most one LD of pro
essor P in R1 need have a for
ededge to a node in R2, namely the last LD in P 's programorder that inherits its value from S. (This follows from edge
onstraint 5 of se
tion 3.1.) Call su
h a LD operation afor
ed-a
tive LD. Thus, the number of for
ed-a
tive LDs ofR1 is at most pb. In addition, there may be ST nodes ofR1 that have in
oming for
ed edges from LD nodes in R2.Call these for
ed-a
tive STs. Ea
h for
ed-a
tive ST is theimmediate su

essor of an inh-a
tive ST in ST order; thus,the number of for
ed-a
tive STs is bounded by the numberof inh-a
tive STs, and therefore is bounded.

In se
tion 4.1 we de�ne a
lass of proto
ols for whi
h theinheritan
e edges of a
onstraint graph
an be generated in�nite state. Proto
ols in this
lass have two properties, mo-tivated by our informal arguments above. First, on a LDtransition, the value of the LD is obtained from a knownstorage lo
ation of the proto
ol. Se
ond, by tra
king themovement of data among proto
ol storage lo
ations, it ispossible to automati
ally infer whi
h ST
onferred its valueto ea
h storage lo
ation. Then in se
tion 4.2 we des
ribe
onditions under whi
h the ST order edges of a
onstraintgraph
an be generated in �nite state. In se
tion 4.3, wede�ne a
lass � of proto
ols that simultaneously satisfy the
onditions of se
tions 4.1 and 4.2. We show that for pro-to
ols in �, the for
ed edges of a proto
ol run
an also begenerated in �nite state, and
on
lude that su
h proto
olshave �nite state observers.
4.1 Tracking Labels for ProtocolsWhen a LD is performed by a proto
ol, how
an we tell fromwhi
h ST it inherits its value? We need to know from whi
hstorage lo
ation l of the proto
ol the LD gets its value, andwhi
h ST operation
onferred its value to lo
ation l. Wenow des
ibe proto
ols with tra
king labels whi
h provide anautomati
 way to infer this knowledge. While real proto
oldes
riptions do not expli
itly have tra
king labels, for allsequentially
onsistent proto
ols known to us, with an ap-propriate proto
ol des
ription language the labeling
ouldbe generated automati
ally from the proto
ol des
ription.In a proto
ol with tra
king labels, ea
h state of the proto
olre
ords blo
k values in at most L lo
ations for some
onstantL (in
a
hes, queues, and memory where blo
ks are stored).The tra
king labels are of two types.� Ea
h transition in Æ (where Æ is the set of transitionson LD and ST operations) is labeled by a lo
ationidenti�er l 2 [1; L℄. Intuitively, the operation is readfrom or written to lo
ation l. Formally, the LD/STtra
king fun
tion is a mapping f : Æ ! [1; L℄.� For ea
h transition t in Æ0 (where Æ0 is the set of transi-tions on a
tions other than LD and ST operations) andea
h l 2 [1; L℄, the
opy tra
king label,
l(t), indi
ateswhether the value stored in lo
ation l is un
hanged bythe transition t or whether it has been
opied fromanother lo
ation, namely
l(t). Formally, for ea
h l,there is a
opy tra
king fun
tion
l : Æ0 ! [1; L℄ (with
l(t) = l if the value is un
hanged).Intuitively, for every run R and lo
ation l of a proto
ol Pwith tra
king labels, the ST index of l with respe
t to Ris either 0 or is the index of the ST operation from whi
hlo
ation l inherits its value upon
ompletion of run R. For-mally, the ST index, denoted by ST-index(R; l),
an bede�ned indu
tively using the tra
king labels as follows.1. If jRj = 0 then ST-index(R; l) = 0.2. If R = R0; A, if the transition t taken on A is a SToperation with tra
king label l, and if A is the ith tra
eoperation of R, then ST-index(R; l) = i. Otherwise,

if A is not a LD or ST operation then ST-index(R; l)= ST-index(R0;
l(t)). Otherwise, ST-index(R; l) =ST-index(R0; l).Example: An example to illustrate ST indexes and tra
k-ing labels is given in Figure 3. This example des
ribes a runof an extremely simple proto
ol with two pro
essors, P1 andP2, and three blo
ks, B1; B2; and B3. Ea
h pro
essor hastwo
a
he lo
ations in whi
h values of blo
ks
an be stored(part (a) of the �gure). Thus, there are four lo
ations in all:P1's lo
ations are numbered 1 and 2, and P2's lo
ations arenumbered 3 and 4. In the illustration, ea
h lo
ation
ontainsinformation about whi
h blo
k is being stored there, if any,and what its value is. Thus, blo
k B1 with value 1 is stored(by P2) in lo
ation 3, whereas lo
ation 2 is unde�ned.The lo
ation values re
e
t the proto
ol state at the end ofthe run R given in part (b) of the �gure. R is of lengthfour and has three ST operations and one \Get-Shared" op-eration. The Get-Shared operation
auses the value of B1stored in lo
ation 1 by P1 after the �rst a
tion of R to be
opied to lo
ation 3 of P2; it is reminis
ent of how valuesof blo
ks
an be shared or
opied in real proto
ols, albeithighly simpli�ed. The tra
king label of ea
h transition
or-responding to ea
h a
tion in run R is also given. The �rstoperation of R, ST(P1; B1; 1) has tra
king label 1, indi
at-ing that B1's value is written in lo
ation 1. The se
ondoperation, ST(P2; B2; 2), has tra
king label 4; thus B2'svalue is written into lo
ation 4. The third a
tion of R is nota LD or ST operation and so there are four
opy tra
king la-bels
1; : : : ;
4 asso
iated with this a
tion, one per lo
ation.Note that
3 = 1 sin
e the value now stored in lo
ation 3 is
opied from lo
ation 1, but
i = i for i = 1; 2, and 4, sin
ethe
ontents of lo
ations 1, 2, and 4 are un
hanged by theGet-Shared a
tion. The last operation of R, ST(P1; B3; 3),has tra
king label 1 indi
ating that blo
k B1 is overwrittenby B3 in lo
ation 1. Thus, upon
ompletion of run R, theST index of ea
h lo
ation is given by part (
) of the �gure.Let R0, LD(P; V;B) be a pre�x of R in whi
h the LD(P; V;B)operation is the jth tra
e operation of R. Intuitively, if theLD operation gets its value from lo
ation l and lo
ation l in-herits its value from the ith tra
e operation of R (whi
h mustbe a ST operation), then (i; j) is an inheritan
e edge. Morepre
isely, let t be the transition taken on the LD operation,and let the tra
king label of t be l. Then, if ST-index(R0; l)6= 0 the edge (ST-index(R0; l); j) is an inheritan
e edge ofR.For any run R of a proto
ol with tra
king fun
tions f and
l, 1 � l � L, let the inheritan
e graph of R with respe
tto these tra
king fun
tions be the graph whose nodes arethe tra
e operations of R, numbered by their order in R,and whose edges are the inheritan
e edges of R. This graphis L-bandwidth bounded, where L is the total number oflo
ations in a state of the proto
ol. This is be
ause, for anypre�x R0 of R, at most L ST operations are \a
tive", in thesense that they are indexed in the set fST-index(R0; l)gand thus may be in future inheritan
e edges. Indeed, wehave the following
laim.

P1 P2lo
ation
ontents1 B3 : 32 ? lo
ation
ontents3 B1 : 14 B2 : 2(a)Proto
ol run R tra
kinglabelsST(P1; B1; 1) 1ST(P2; B2; 2) 4Get-Shared(P2, B1)
1 1
2 2
3 1
4 4ST(P1; B3; 3) 1(b)ST� index(R,1) 3ST� index(R,2) 0ST� index(R,3) 1ST� index(R,4) 2(
)Figure 3: ST Index Example. Part (a) depi
ts thestate of four proto
ol lo
ations, where lo
ations 1and 2
orrespond to
a
he lines of pro
essor P1 andlo
ations 3 and 4
orrespond to
a
he lines of pro-
essor P2. Lo
ation 2 is empty, and ea
h of the otherlo
ations stores the value of one of blo
ks B1, B2, orB3. Part (b) lists an example run R of length 4, inwhi
h the Get-Shared a
tion
opies blo
k B1 fromlo
ation 1 to lo
ation 3. Also, the tra
king labels ofea
h transition
orresponding to the a
tions of R aregiven. The state of the proto
ol in part (a) repre-sents the state upon
ompletion of run R. Part (
)Lists the ST-index of ea
h lo
ation with respe
t torun R.Claim 4.1. Let P be a proto
ol with L lo
ations andtra
king fun
tions f; f
lg. There is a �nite state automa-ton that, given a run R of P, generates a des
riptor of theinheritan
e graph of R.The generator generates the graph while exe
uting the pro-to
ol on run R, and outputs an extended graph des
riptor.Upon transition t = (q; A; q0), the generator does the follow-ing:� If A is a ST operation and t has tra
king label l thenoutput \l, A". (Re
all that this adds a new node tothe graph with ID l and label A.)� For ea
h l, if
l(t) 6= l then output \add-ID(
l(t); l)".(Intuitively, the ST node with ID
l(t) is being
opiedto lo
ation l, so l is added to the set of IDs for this STnode. More generally, the number of IDs of a ST nodeequals the number of
opies of the ST in the proto
olstate.)

� If A is a LD operation and t has tra
king label l thenoutput \L+ 1; A; (l; L+ 1), inh". (This
auses a newnode with ID L + 1, labeled A, to be added to thegraph, and an inheritan
e edge to be added into A.)
4.2 Finite State ST ReorderingLet R be a run of proto
ol P. A ST order graph for R is agraph whose nodes are the tra
e operations of R, numberedby their order in R. As in se
tion 3.1, for ea
h blo
k B, ifthere are u ST operations to B in R then there are u�1 STorder edges in the graph whi
h de�ne a total order on theseu operations.A ST order generator for P is a �nite state automaton that,given run R as input, generates a k-graph des
riptor thatdes
ribes the ST order graph, for some k. Moreover, thenumber of states of the automaton is at most the number ofstates of P.Proto
ols implemented in pra
ti
e have the real-time ST re-ordering property that for all tra
es, for ea
h blo
k B, thetra
e order of STs to B is in fa
t the same as the
orrespond-ing serial reordering. Thus, the ST order generator is trivial.One well-known proto
ol that does require non-trivial (butstill �nite state) ST ordering is the lazy
a
hing proto
ol ofAfek et al. [2℄, but this proto
ol has not been implementedin a real ma
hine.
4.3 The� Protocol ClassLet P be a proto
ol. Let f; f
l; 1 � l � Lg be tra
kingfun
tions and let G be a ST order generator. With respe
tto f; f
lg, and G, for ea
h run R of P, let W (R) be thegraph whose nodes are the tra
e operations of R. The edgesof W (R) are the inheritan
e edges of the inheritan
e graphwith respe
t to f and f
lg, the ST order edges given by G,the for
ed edges implied by these inheritan
e and ST orderedges, and the program order edges given by the order ofoperations in R.Definition 4.1. A proto
ol P belongs to the
lass � iffor some tra
king fun
tions f; f
lg and some ST order gen-erator G, for all runs R of P, the graph W (R) is an a
y
li

onstraint graph.Theorem 4.1. Every proto
ol in � has a �nite state wit-ness observer.Proof. We des
ribe a �nite state observer O that, givenP in �, along with asso
iated tra
king fun
tions f; f
lg andST order generator G,
onverts a run R of P into a des
riptorfor a
onstraint graph W (R).O adds ea
h LD and ST operation of R to the graph asthe operation is read. From Claim 4.1 and se
tion 4.2, theinheritan
e and ST order edges
an be generated in �nitestate. It is also trivial to generate the program order edges.It remains to extend the observer so that for
ed edges arealso generated. For this purpose, ea
h node N 0 labeled by

a LD(P;B; V) operation remains in the a
tive graph main-tained by the observer until one of the following events o
-
urs. Let the inheritan
e edge to N 0 be from node N . (i)Another node, N 00, labeled by LD(P;B; V) is added to thegraph, along with inheritan
e edge (N;N 00). Node N 0
annow be removed be
ause there is a path of program orderedges from the N 0 to N 00. (ii) A ST order edge from N , sayto node S, is present in the graph. In this
ase, a for
ededge is added from N 0 to S.The number of LD nodes that need to be in the a
tive graphfor the purpose of generating for
ed edges is bounded by p(the number of pro
essors) times the number of ST nodeswith no outgoing ST order edges. The latter number isbounded, sin
e the ST order graph is bandwidth bounded.In addition, if ST node S has an in
oming ST order edge(N;S) where the value of the ST labeling N may be read byfuture LDs, then S must be maintained in the a
tive graph.The number of su
h ST nodes S is at most L.Thus, the witness graph is bandwidth bounded, where thebound depends only on G, L, p, and b and does not otherwisedepend on R, and so the observer is �nite state.To summarize, we have shown the following. Let P be aproto
ol for whi
h tra
king labels
an be generated auto-mati
ally and the real-time ST reordering property holds(or more generally, for whi
h a ST order generator exists).Then, sequential
onsisten
y
an be veri�ed by an algo-rithm that �rst generates the observer from the proto
olin a noninterfering fashion (so that the the set of tra
es ofthe observer equals those of the proto
ol) and then uses amodel
he
ker (based on our
y
le-
he
ker) to verify thatevery graph des
riptor generated by the observer des
ribesan a
y
li

onstraint graph. Note that the
he
ker is inde-pendent of the proto
ol.
4.4 Size of ObserverIn order to apply our
onstraint graph method to the veri-�
ation of a proto
ol, the major obsta
le will be the size ofthe observer. In addition to the proto
ol state, the observerneeds to maintain in its state a subgraph of the
onstraintgraph that may have a number of nodes up to the bandwidthbound of that graph. Here, we des
ribe an upper bound onthe number of bits of extra state required by the observer,under reasonable assumptions.First, we bound the bandwidth of the
onstraint graphs of aproto
ol P with L lo
ations. We
onsider here the
ase thatthe proto
ol has real-time ST ordering, and that the valueof a ST is stored in some proto
ol lo
ation at least until theST following it in ST order has been done. In this
ase, withrespe
t to a pre�x of a run, at most L distin
t ST nodes maybe a
tively stored in proto
ol lo
ations and thus may havefuture outgoing inheritan
e edges. Up to pb LD nodes may
ontribute to the bandwidth needed for generating for
ededges. Nodes needed for generation of program order edgesand ST order edges are already
ounted among these nodes,so the total bandwidth is bounded by L+ pb.For ea
h a
tive node of the
onstraint graph, the node labelmust be stored. This requires up to lg p+lg b+lg v+1 bits.

Here lg denotes the
eiling of log to the base 2; 1 bit indi
ateswhether the label is a LD or ST, and parameters P;B, andV are represented using the other bits. Also, IDs for ea
hST node are needed, in order to generate inheritan
e edges.An addition L lgL bits are needed to store IDs.Edges of the
onstraint graph must also be represented. Ifthe a
tive nodes are stored in a linear array, no extra storageis needed for edges. Roughly, this is be
ause the nodes
anbe stored in an order
onsistent with the partial order ofthe
onstraint graph, so that graph edges
an be inferred.For example, in the linear array order, a ST to blo
k Bis followed (not ne
essarily
ontiguously) by LD nodes thatinherit its value, and no other ST to the same blo
k separatesthem, so inheritan
e edges are
ompletely determined by thelinear order.Thus, an upper bound on the number of bits of extra stateneeded by the observer (in addition to the proto
ol state)is (L + pb)(lg p + lg b + lg v + 1) + L lgL bits. This up-per bound is likely to be substantially less than the numberof bits in the proto
ol itself. Real memory system proto-
ols, however, are already roughly at the limits of
urrentmodel
he
king tools, so any additional state is problemati
in pra
ti
e. Fortunately, some simple optimizations shouldhelp to redu
e the size of the observer. For example, thevalue of a node is needed only to
he
k that ea
h LD getsthe same value as the ST from whi
h it supposedly inheritsits value. This
he
k
an be done independently from the
y
le-testing
he
k, thereby saving lg v bits per node.
5. FUTURE WORKUnderstanding how the size of the observer
an be redu
ed,perhaps by imposing further assumptions on the
lass ofproto
ols to be handled, is an important dire
tion for futurework from a pra
ti
al point of view, and will help to relatethis work to that of Qadeer [13℄. Extending these te
hniquesto other memory models is another important dire
tion ofthis resear
h.Experimental results will be needed to assess the appli
abil-ity of our results in pra
ti
e. We intend to apply our te
h-niques to substantial memory system proto
ols using model
he
king tools and explore means to
ombat state explosion.An interesting theoreti
al question is whether the problemof testing sequential
onsisten
y is unde
idable for proto
olsthat are bandwidth bounded. The redu
tion used in theunde
idability result of Alur et al. [3℄ exploits proto
ols thatare not bandwidth bounded.Finally, we note that our method
an also be used for testingthat a parti
ular run of a proto
ol does not violate sequen-tial
onsisten
y, building on the approa
h proposed by Gib-bons and Kora
h [6℄. The �nite-state observer and
he
ker
ould be simulated together with detailed implementationdes
riptions that are too
omplex for formal veri�
ation.
AcknowledgmentsWe thank Mark Hill, Dan Sorin, Manoj Plakal and the othermembers of the Wis
onsin Multifa
et group for sharing theirinsights and intuition about proving sequential
onsisten
y.

6. REFERENCES[1℄ Sarita V. Adve and Kourosh Ghara
horloo. Shared memory
onsisten
y models: A tutorial. IEEE Computer, pages66{76, De
ember 1996.[2℄ Yehuda Afek, Geo�rey Brown, and Mi
hael Merritt. Lazy
a
hing. ACM Transa
tions on Programming Languagesand Systems, 15(1), January 1993.[3℄ Rajeev Alur, Ken M
Millan, and Doron Peled.Model-
he
king of
orre
tness
onditions for
on
urrentobje
ts. In Eleventh Symposium on Logi
 in ComputerS
ien
e, pages 219{228. IEEE, 1996.[4℄ Tim Braun, Anne E. Condon, Alan J. Hu, Kai S. Juse,Marius Laza, Mi
hael Leslie, and Rita Sharma. Provingsequential
onsisten
y by model
he
king. Te
hni
al ReportTR-2001-03, Department of Computer S
ien
e, Universityof British Columbia, April 2001.[5℄ Edmund M. Clarke and E. Allen Emerson. Design andsynthesis of syn
hronization skeletons using bran
hing timetemporal logi
. In Dexter Kozen, editor, Workshop onLogi
s of Programs, pages 52{71, May 1981. Published1982 as Le
ture Notes in Computer S
ien
e Number 131.[6℄ Phillip B. Gibbons and Ephraim Kora
h. Testing sharedmemories. SIAM Journal on Computing, 26(4):1208{1244,August 1997.[7℄ Thomas A. Henzinger, Shaz Qadeer, and Sriram K.Rajamani. Verifying sequential
onsisten
y onshared-memory multipro
essor systems. In Computer-AidedVeri�
ation: 11th International Conferen
e, pages301{315. Springer, 1999. Le
ture Notes in ComputerS
ien
e Vol. 1633.[8℄ Mark D. Hill. Multipro
essors should support simplememory-
onsisten
y models. IEEE Computer, pages 28{34,August 1998.[9℄ Leslie Lamport. How to make a multipro
essor
omputerthat
orre
tly exe
utes multipro
ess programs. ACMTransa
tions on Computer, 28(9):690{691, September 1979.[10℄ Marius Laza, Rita Sharma, Anne Condon, and Alan J. Hu.Proto
ols for whi
h proving sequential
onsisten
y is easy.In Workshop on Formal Spe
i�
ation and Veri�
ationMethods for Shared Memory Systems. UnpublishedPro
eedings, O
tober 31, 2000. Workshop aÆliated withFMCAD 2000, Austin, TX.[11℄ Ratan Nalumasu, Rajnish Ghughal, Abdel Mokkedem, andGanesh Gopalakrishnan. The `test model-
he
king'approa
h to the veri�
ation of formal memory models ofmultipro
essors. In Computer-Aided Veri�
ation: 10thInternational Conferen
e, pages 464{476. Springer, 1998.Le
ture Notes in Computer S
ien
e Vol. 1427.[12℄ M. Plakal, D. Sorin, A. Condon, and M. Hill. LamportClo
ks: Verifying a dire
tory
a
he
oheren
e proto
ol. InSymposium on Parallel Algorithms and Ar
hite
tures,pages 67{76, 1998.[13℄ Shaz Qadeer. On the veri�
ation of memory models ofshared-memory multipro
essors. In Workshop on FormalSpe
i�
ation and Veri�
ation Methods for Shared MemorySystems. Unpublished Pro
eedings, O
tober 31, 2000.Workshop aÆliated with FMCAD 2000, Austin, TX.

