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Abstract

In this work we study the abelian girth and sheaves on graphs. The girth of
a graph is the length of the shortest cycle in a graph, and the abelian girth
of a graph is the girth of the graph’s universal abelian covering graph. We
denote the abelian girth of a graph G as Abl(G) and show that for d-regular
graphs on n vertices with d constant and n growing we have

Abl(G) ≤ 6 logd−1 n+ on(1).

This can be seen as an version of the Moore bound for abelian girth. We
also prove Girth(G) ≤ Abl(G)/3, which implies that any multiplicative im-
portant to the abelian girth Moore bound would also improve the standard
Moore bound.

Sheaves on graphs and two of their homological invariants, the maximum
excess and the first twisted Betti number, were used in the proof of the
Hanna Neumann Conjecture from algebra and may be of use in proving
several related conjectures. These conjectures can be proven by showing that
certain sheaves called ρ-kernels have vanishing maximum excess. Gapped
sheaves have maximum excess equal to the first twisted Betti number, and
it is easy to compute the maximum excess of a given sheaf in the case that
the sheaf is not gapped. For general sheaves though, there is no known
way of computing the maximum excess in polynomial time. We give several
conditions that a sheaf must satisfy if it is gapped. These conditions include
that a sheaf must have edge dimension at least as large as the abelian girth
of the underlying graph. The ρ-kernels are subsheaves of constant sheaves.
We prove that gapped subsheaves of constant sheaves exist, implying that
finding maximum excess of some ρ-kernels may be computationally difficult.
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Preface

This dissertation is unpublished research done in collaboration with Joel
Friedman, Lior Silberman and myself with the bulk of the research done
in regular meetings between Joel Friedman and myself. The scope of the
project was planned by Joel Freidman and myself. Though the vast major-
ity of the research originates from discussions between myself and Friedman
with Silberman joining occasionally, some results I first discovered on my
own. These include the chain decomposition described in Chapter 9, the
minimal gapped sheaves on the figure-eight graph and the theta graph de-
scribed in Chapter 11 and the existence of the gapped subconstant sheaf
also described in Chapter 11, though computations verifying the sheaf was
gapped were done by myself and Friedman.

I wrote the first drafts of every chapter except Chapters 7 and 8 which
were written by Joel Friedman and subsequently edited by the author.
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Chapter 1

Introduction

This dissertation is divided into two main parts. In the first, we discuss a
graph invariant called the abelian girth of a graph, which Friedman intro-
duced in his proof of the the Hanna Neumann Conjecture (or HNC) [17].
In the second part we discuss sheaves on graphs and their homological in-
variants. Though these two parts are fairly independent from one another,
they are tied together by a main result of this dissertation which shows that
what we call a minimally gapped sheaf on a graph has total dimension equal
to the abelian girth of the underlying graph.

In the first part of this dissertation, we show several relations between
the abelian girth of the graph and the standard girth of a graph as well
as between the abelian girth and the volume bound on girth known as the
Moore bound. Specifically, we give some evidence to show that bounding
the abelian girth from above is a possible approach to improving the Moore
bound for regular graphs of fixed degree with a large number of vertices.
Let us make this more precise.

The girth of a graph is the length of the shortest non-trivial cycle in the
graph. If Gn,d is any d-regular graph on n vertices, it is known that for fixed
d and large n we have

Girth(Gn,d) ≤ 2 logd−1 n+ on(1), (1.1)

and we are interested to know if the factor of 2 can be improved upon.
This bound follows from the Moore bound (see [11]); although the Moore
bound for regular graphs is very easy to prove, there has been only slight
improvements to it in the last 50 years—only an additive constant of one or
two—and, in particular, to the factor of 2 in (1.1) is the best factor known
to date. Graphs of large girth have numerous applications ([2, 28, 33]) and
much has been written on the girth and the Moore bound (see [3]).

The abelian girth of a graph, G, denoted Abl(G), is the girth of its univer-
sal abelian cover, or equivalently the shortest length of a non-trivial, closed,
non-backtracking walk that traverses each edge the same number of times
in each direction. The abelian girth is important in sheaf theory on graphs
and the first proof of the Hanna Neumann Conjecture [17]; furthermore, in
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Chapter 1. Introduction

the second portion of this dissertation we show the abelian girth is strongly
related to what we call minimal gapped sheaves on a graph. First though,
we show that there is an analogue of the Moore bound for the abelian girth,
and that improving this analogue would improve the Moore bound. We also
provide evidence that such an improvement may be possible.

Specifically, we show that

girth(G) ≤ 3 Abl(G),

for any graph, G. Second, we show that there is an argument analogous to
the Moore bound that shows that for fixed d we have

Abl(Gn,d) ≤ 6 logd−1 n+ on(1)

for any d-regular graph on n vertices, Gn,d; we remark that the proof of this
theorem is not as immediate as that of the Moore bound. It follows that
any improvement to the factor of 6 in (1) would give an improvement to the
factor of 2 in (1.1).

Ideally we would show that all known explicit constructions of families
of d-regular graphs have abelian girth at most c logd−1 n for some c < 6. In
this paper, we will focus on the only family of d-regular graphs with d fixed
which has girth greater than logd−1 n. It is known that the factor of 2 in
(1.1) cannot be less than 4/3, at least for certain d: indeed, [27] constructs
graphs, Xp,q, for primes p, q ≡ 1 (mod 4), that are d = p + 1 regular on
n = q(q2 + 1) vertices for which

girth(Xp,q) = (4/3) logd−1 n+ on(1)

for fixed d = p+ 1 and large n = q(q2 + 1). Furthermore there are no known
families of graphs which improve on the above 4/3; in fact, for general d, the
best girth lower bound is 4/3 replaced with 1, by choosing a random graph
and slightly modifying it [10], [12]. To show that it is plausible to improve
on the factor of 6 in (1), we will show that

Abl(Xp,q) ≤ (16/3) logd−1 n+ on(1)

which suggests that there is room for the factor of 6 to decrease. We con-
jecture that the 16/3 can be replaced with 4, for reasons we shall explain
later. We are unaware of any other graph constructions in the literature for
which one can improve upon the 16/3 above.

To prove (1), we prove a fundamental lemma that suggests many possible
generalizations of the above discussion of abelian girth and the Moore bound.
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Chapter 1. Introduction

First we remark that the girth of a graph is smallest positive length of a cycle
that embeds in the graph. Our fundamental lemma states that the abelian
girth is the smallest number of edges in a graph of Euler characteristic −1
that embeds in the graph, provided that we weight the edges appropriately:
namely, we count each edge twice, except that in “barbell graphs” we count
each edge in the bar four times.

We remark that both girth and abelian girth can be viewed as linear
algebraic invariants of graphs; indeed, girth is often studied as a property
of the adjacency matrix of the graph (see, for example, [3]), and the abelian
girth relates to sheaves of vector spaces over the graph. So our lemma
fundamental to proving (1) also suggests that there could be other such
girth-type invariants, both (1) arising as linear algebraically from the graphs,
and (2) satisfying inequalities analogous to (1).

The rest of this paper is organized as follows. In Section 2 we give
some precise definitions and state our main theorems. In Section 3 we
prove Equation (1). In Section 4 we prove the fundamental lemma as well
as Equation (1) which follows quickly from the fundamental lemma. In
Section 5 we describe the graphs Xp,q from [27] and show that they obey
Equation (1).

The next part of this dissertation studies sheaves on graphs and their
homological invariants. One invariant we study is the maximum excess of a
sheaf. The maximum excess has a definition with no reference to homology
theory, but it is also arises as a limit of Betti numbers akin to the L2 Betti
numbers studied by Atiyah [4] and has a long/short exact sequence theory.
The maximum excess originally was discussed in Friedman’s proof of the
HNC [17]. The reason maximum excess is necessary for Friedman’s proof
and a reason we study it in this paper is that it generalizes the notion of
reduced cyclicity, a graph invariant from the graph theoretic reformulation
of the HNC (see [21], [22], [30], [20], [6], [32], [29], [13].) In particular, the
maximum excess of a sheaf on a graph is equivalent to the reduced cyclicity
of that graph if the sheaf is what we call a structure sheaf.

Our study of the maximum excess is partially motivated by our desire
to prove certain conjectures related to the HNC (see [23], [24], [8], [9] [34].)
These are conjectures on the rank of the intersection of two subgroups from
a free product of groups. In Friedman’s proof, he shows that the HNC
is true if certain sheaves called ρ-kernels have vanishing maximum excess,
and similarly these other conjectures can be verified if one can prove that
certain other ρ-kernels also have vanishing maximum excess. Unfortunately,
the techniques from Friedman’s proof of the HNC are alone not sufficient in
proving the other conjectures.

3



Chapter 1. Introduction

A drawback of using the maximum excess is that there is no known way
to compute the maximum excess of a sheaf on a graph in time polynomial in
the total dimension of the sheaf. Friedman’s proof also defines the twisted
homology groups and twisted Betti numbers of a sheaf, and the first twisted
Betti number is easy to compute, bounds the maximum excess from above,
and is in many cases equal to the maximum excess. We refer to sheaves
as gapped if the maximum excess and first twisted Betti number are not
equal. In this dissertation, we give several results describing the properties
of gapped sheaves.

In our paper, we describe sheaves on graphs as a collection of vector
spaces indexed along the vertices and edges of the graph, along some linear
maps from the edge spaces to the vertex spaces that we call restriction maps.
A constant sheaf is sheaf where all of those vector spaces are identical and
the restriction maps are all the identity, and a subconstant sheaf is simply
any subsheaf of a constant sheaf. One of the more surprising results of my
dissertation is that there exists gapped subconstant sheaves. Since the ρ-
kernels from the conjectures related to the HNC are subconstant sheaves,
any attempted proof may need to take into account that the first twisted
Betti number on these sheaves could be nonzero even though the maximum
excess vanishes on that sheaf. In related work (to appear) we do find ρ-
kernels that correspond to a conjecture in [8] that are gapped.

Not only do gapped subconstant sheaves exist, but there are gapped
subconstant sheaves on a graph that is only two vertices and multiple edges
but no self loops. This implies an interesting, purely linear algebraic result.
The usual notion of linear independence of vectors in a vector space can be
stated in many equivalent ways. In quiver representation theory, there arises
a notion of what we call linear k-indepedence, which is defined for every
integer k, and which reduces to the usual linear indepedence for k = 1.
This notion seems most interesting for k = 2 in quiver theory (see [25]);
the notion of linear 2-independence defines a remarkable type of sheaf on a
graph which we call a pseudobundle. Unfortunately, linear k-independence,
for k ≥ 2, is difficult to check directly. However, there is a related notion,
which we call tensorial k-independence, which is easier to verify and which
immediately implies linear k-independence. We prove though, using the
existence of gapped subconstant sheaves on two vertices and no self loops,
that tensorial k-dependence does not imply linear k-independence.

We also find a connection between gapped sheaves on a graph and the
abelian girth of the underlying graph. We prove that the abelian girth on
a graph is equal to the minimum of the total dimensions of the gapped
sheaves on the graph. This result can also be viewed as an improvement on
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Chapter 1. Introduction

Theorem 1.10 from [17], which states that if a lift of a sheaf on a graph has
a sufficiently large degree dependent on the abelian girth of the graph , then
the pullback sheaf is not gapped. Our result implies that in the case that
the lift is just the identity map, then we can remove the factor of 2 from
Friedman’s Theorem 1.10.

Though our research is mainly motivated by our desire to prove conjec-
tures related to the HNC, there are other reasons we are interested in an-
swering fundamental questions about sheaves on graphs. A sheaf on a graph
can be viewed as a generalization of the incidence matrix of the graph; in-
deed the structure sheaf of a graph has the same incident matrix equal as the
underlying graph. It follows that sheaves on graphs allow a generalization of
standard algebraic graph theory. Tools such as long/short exact sequences
can allow for new graph theoretic inequalities. Also, any morphism between
graphs can be represented by a morphism on sheaves on graphs, but there
are morphisms between sheaves on graphs that do not correspond to any
morphism between graphs. These “new morphisms” are necessary in Fried-
man’s proof of the HNC but may also be useful in studying other aspects of
graph theory.

Section 6 introduces linear and tensorial 2-independence in terms of only
linear algebra and gives a counterexample to the two being the same. Sec-
tion 7 gives an introduction to sheaf theory on graphs, twisted Betti numbers
and maximum excess. At the end of the chapter, we also explicitly state the
main results of the paper. In Section 8 we define minimal gapped sheaves
and establish several properties of minimal gapped sheaves. In Section 9 we
prove the fundamental lemma of this paper, what we call the twist trick.
This allows us to give lower bounds on the edge dimension of minimally
gapped sheaves. Section 10 defines homotopy preserving operations that
will allow us to transform a sheaf on a graph while not changing the gap
of the sheaf. Finally, in Chapter 11 we introduce three minimally gapped
sheaves which then allows us to prove that the abelian girth of a graph is
the minimal edge dimension of a gapped sheaf on that graph. We also use
one of those gapped sheaves to construct the counterexample to linear and
tensorial 2-independence being equivalent.

5



Chapter 2

Main Results

In this section we fix some terminology regarding graphs and formally state
the main results of the first part of this dissertation.

2.1 Graph Terminology

This entire subsection consists of definitions used throughout this paper;
they are more or less standard.

By a graph we shall mean a quadruple G = (VG, EG, tG, hG) where
VG and EGsection are sets (the “vertices” and “edges”, respectively) and
tG, hG : EG → VG are maps (the “tail” and “head” of each edge, respec-
tively). The Euler characteristic of G is

χ(G) = |VG| − |EG|,

where | · | denotes the cardinality, provided that G is finite, i.e., that |VG|
and |EG| are finite. We define the unoriented edge set of G to be

UG = EG × {+,−},

and we extend hG and tG to be functions on UG such that for e ∈ EG

hG(e,+) = tG(e,−) = hG(e), tG(e,+) = hG(e,−) = tG(e);

for e ∈ EG we say that (e,+) and (e,−) are inverses of each other. We
denote the inverse of u ∈ UG by u−1. A walk of length m in G is a sequence
of unoriented edges

w = (u1, . . . , um)

such that the head of ui is the tail of ui+1 for i = 1, . . . ,m − 1; we define
the vertices tG(u1) and hG(um) to be the starting and terminating vertices
of w, jointly the endpoints of w, and the length of w to be m, denoted l(w);
we say that w is closed if its two endpoints are the same vertex; we refer
to the edges of w as the e ∈ EG such that at least one of (e,+), (e,−) is
an unoriented edge of w; we say that w is non-backtracking if there is no

6



2.2. Our Fundamental Lemma

i = 1, . . . ,m − 1 for which u−1i = ui+1; we say that w is strongly closed,
non-backtracking if w is closed and non-backtracking, and u1, um are not
inverses of each other; we say that w is a path (respectively, cycle) if w is
non-backtracking with distinct endpoints (respectively strongly closed, non-
backtracking), and each edge e ∈ EG appears at most once in w (i.e. (e,+)
and (e,−) appears at most once in u1, . . . , um). The inverse of w is defined
as the walk

w−1 = (u−1m , . . . , u−11 ).

Given a walk w = (u1, . . . , um) and a walk k = (t1, . . . , tn) such that the
terminating vertex of w is the starting vertex of k, we define the product wk
to be the walk (u1, . . . , um, t1, . . . , tn). We say that a walk w as above joins
its two endpoints. We say that G is connected if any two of its vertices are
joined by some walk in G.

As usual, a morphism of graphs, f : G → H, is a pair f = (fV , fE)
of maps fV : VG → VH and fE : EG → EH such that tH ◦ fE = fV ◦ tG
and hH ◦ fE = fV ◦ hG. We often drop the subscripts from fV and fE .
The set of morphisms will be denoted Mor(G,H). Thus morphisms are
homomorphisms of the underlying undirected graphs which preserve the
orientation.

As usual, the girth of a graph is the length of its shortest closed, non-
backtracking walk; this length is necessarily positive by our conventions
above. (In the literature one often allows for walks of length zero, which we
do not consider here.)

2.2 Our Fundamental Lemma

In this subsection we discuss our main results.

Definition 2.1. The abelian girth of a graph, G, denoted Abl(G), is the
minimum m ≥ 1 such that there is a closed, non-backtracking walk

w = (u1, . . . , um)

such that each edge is traversed the same number of times in w in both
directions, i.e., for each e ∈ EG the edge (e,+) appears the same number of
times among u1, . . . , um as does (e,−).

The abelian girth is the same as the girth of the universal abelian cover
of G; see [17]. Given a walk w and an e ∈ EG, if (e,+) appears i+ times
and (e,−) appears i− times we say e appears a net i+ − i− times in w. We
refer to a walk as edge neutral if every edge appears a net 0 times in it.

7



2.3. Main Results on Abelian Girth

We begin with a fundamental lemma. We remind the reader that our
conventions insists that cycles and paths are of positive length.

Definition 2.2. Let G be a connected graph of Euler characteristic −1
without leaves, i.e., without vertices of degree one. We say that G is

1. a figure-eight graph if G consists of two cycles, mutually edge disjoint,
sharing the same endpoint;

2. a barbell graph if G consists of two cycles, w1, w2, and one path b, all
mutually edge disjoint, such that b joins the endpoints of w1 and w2;
we refer to b as the bar of G;

3. a theta graph if G consists of two vertices joined by three paths mu-
tually edge disjoint.

It is well known that the above three cases classifies all connected graphs
of Euler characteristic −1 without leaves (see, for example, [26].)

Definition 2.3. Let G be a connected graph of Euler characteristic −1
without leaves. We define the abelian length of G, denoted lAbl(G), to be
twice its number of edges except that each edge of its bar (if G is a figure-
eight graph) is counted four times.

We call the following lemma the Fundamental Lemma, as it gives an
alternative definition of the abelian girth that we use in several proofs.

Lemma 2.4. For any graph, G, we have

Abl(G) = min
G′⊂G

lAbl(G
′)

taken over all subgraphs, G′, that are connected, of Euler characteristic −1,
and without leaves. If no such G′ exist, then the above minimum is taken
to be infinity, as is the abelian girth of G, and there are no closed non-
backtracking walks that traverse each edge the same number of times in both
directions.

2.3 Main Results on Abelian Girth

Now we can easily state the other main results of the first part of this
dissertation.

8



2.3. Main Results on Abelian Girth

Theorem 2.5. For any graph we have

Girth(G) ≤ Abl(G)/3.

This theorem is an easy corollary of Lemma 2.4.

Theorem 2.6. For any fixed d, let Gn,d be any d-regular graph on n vertices.
Then for large n we have

Abl(G) ≤ 6 logd−1 n+ on(1).

section
Our last theorem uses the LPS graphs Xp,q [27] whose definition we save

for Section 5

Theorem 2.7. Let p, q ≡ 1 (mod 4) be prime with (q/p) = 1. The graph
Xp,q of [27] of our Definition 5.1 has degree d = p + 1 and n = q(q2 + 1),
and for fixed p and large q (i.e., fixed d and large n) we have

Abl(Xp,q) ≤ (16/3) logd−1 n+ on(1).

9



Chapter 3

Proof of Theorem 2.6

In this section we prove Theorem 2.6. First we state a few well known facts
regarding free groups and graphs.

Lemma 3.1. Let G be a finite graph. Then the fundamental group, π1(G, u),
of homotopy classes of closed walks in G about u for any u ∈ VG is isomor-
phic a free group on a finite set of generators.

The contiguous appearance of an edge and its inverse in a walk is called
a reversal. Each walk, w, can be reduced by successively discarding its
reversals; the walk obtained is the reduction of w and is independent of the
choice of pairs to reduce; the reduction therefore contains no reversals and is
non-backtracking. We use the notation red(w) for the reduction of w. Note
that red(w−1) = red(w)−1 for any walk w since the portion of a walk that
are removed by reduction remain the same when we take the inverse of that
walk.

Definition 3.2. In each element ω of π1(G, u), there exists one unique
non-backtracking walk in G; any walk in ω reduces to that unique non-
backtracking walk. By the length of ω, denoted |ω|, we mean the length of
the unique non-backtracking walk in ω. Note this is not length with respect
to a set of generators of π1(G, u). Similarly, even though closed walks are
members of homotopy classes in the fundamental group, when we refer to the
length of a walk or the reduction of a walk w we mean length and reduction
as defined earlier and not in with respect to a set of generators for a free
group.

The following fact is well known. For ease of reading we provide a proof,
for which we thank Seirius on Stackexchange1.

Lemma 3.3. Let F be a free group and let α and β be two elements of F
that commute with each other. Then there exists a ω ∈ F such that α = ωm

and β = ωm
′

for m,m′ ∈ Z.

1See http://math.stackexchange.com/questions/213576/

in-a-free-group-two-elements-commute-if-and-only-if-they-are-powers-of-a-common
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Chapter 3. Proof of Theorem 2.6

Proof. By the Nielsen-Schreier theorem, the subgroup that α, β generate is
a free group. And yet, any two elements of this subgroup commute, and
hence this subgroup cannot be free and rank more than one. Hence this
subgroup is generated by some ω ∈ F , and the conclusion follows.

For any closed walk w, we use the notation [w] for the homotopy class in
π1(G, u) that has w as a representative. Suppose a and b are closed walks and
[a] and [b] commute in π1(G, u). Note that equality in the previous lemma
is with regards to π1(G, u), meaning an equality of homotopy classes but not
necessarily walks. Reducing all the element of a homotopy class gives one
unique walk though. So since [a] and [b] commute, we have red(a) = red(wm)
and red(b) = red(wm

′
) for m,m′ ∈ Z and w a closed walk. These equalities

may not exist without the reductions. We may assume w is reduced, since
red(wm) = red(red(w)m).

The following lemma is also well known and easy.

Lemma 3.4. Let w be a closed nontrivial non-backtracking walk in a graph.
Then if for integers m,m′ we have that the length of red(wm) equals that of
red(wm

′
), then m = ±m′.

Proof. Let y be a maximal length walk such that w = yxy−1 for some walk
x. Then it is easy to check that for m 6= 0 the length of red(wm) with
respect to S is precisely

2|y|+ |m||x|.

Proof of Theorem 2.6. Fix any vertex, v ∈ VG. Then for any integer h ≥ 1,
there are d(d − 1)h−1 non-backtracking walks of length h from v. So let h
be the smallest integer for which

d(d− 1)h−1 ≥ 2n+ 1;

then, by the pigeon hole principle, there are three distinct non-backtracking
walks, a, b, c, in G beginning in v and terminating in the same vertex u
(which may or may not equal v). We remark that

h =
(
1 + on(1)

)
logd−1 n.

Hence, to prove the theorem it suffices to show that we have

Abl(G) ≤ 6h. (3.1)

11
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The rough idea is simple. We break the analysis into two cases: u = v
and u 6= v. In either case we define new walk, d, based on a, b, c such that (1)
the length of d is 4h or 6h (in the respective two cases), (2) each edge of EG
appears a net 0 times in d, but (3) d is not necessarily non-backtracking. The
main work is to show that d does not reduce to the empty word. Discarding
a consecutive pair of an (unoriented) edge of d and its opposite retains
the property that each edge is traversed the same number of times in each
direction. Hence if d is reduced to a non-empty, non-backtracking walk, d′,
then d′ is edge neutral, and so

Abl(G) ≤ 6h.

Let us describe d as above. If u = v, then at least two of a, b, c are not
inverses of each other; if a, b are such walks, then we set d = aba−1b−1. This
walk is of length 4h. If u 6= v, then we set d to d = ab−1ca−1bc−1, which is
s walk of length 6h. For any e ∈ EG, if e appears a net k times in a walk
w then e appears a net −k times in the walk w−1. Thus d in either case is
edge neutral.

It remains to show that d reduces to a non-empty non-backtracking walk.
The case u = v and d = aba−1b−1 where a and b (are distinct and) are

not inverses of each other is relatively easy. If d reduces to the empty word
e and if α = [a], β = [b] and δ = [d] then δ = [e] = [α, β]comm where [ , ]comm

denotes the commutator. So α and β commute as elements of π1(G, u).
Hence, by Lemma 3.3, and since π1(G, u) is a free group, it follows that
a = red(wm) and b = red(wm

′
) for some closed walk w with w 6= 1; but

then by Lemma 3.4, since a and b have the same length, we have m = ±m′,
which contradicts the fact that a and b are distinct and not inverses of each
other.

Now suppose u 6= v. We remark that as elements of π1(G, u) we have

d = ab−1cb−1ba−1bc−1 = [ab−1, cb−1].

Let δ = [d], α = [ab−1] and γ = [cb−1] and let e be the trivial walk. So if d ∈
[e], we have that 1 = δ = [α, γ]comm and so [ab−1] and [cb−1] commute in the
fundamental group. Hence red(ab−1) = red(wm) and red(cb−1) = red(wm

′
)

for some closed non-backtracking walk w. Let w = yxy−1 with x a closed
non-backtracking walk and y a walk of maximal length; then (1) x 6= 1 as
that would imply a = b, (2) the first and last edges of x are not inverses of
each other, and (3) red(wm) = yxmy−1.

Next we want to make some remarks on ab−1 and wm based on the fact
that red(ab−1) = red(wm); we will later repeat similar remarks for cb−1 and

12
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wm
′

based on the fact that red(cb−1) = red(wm
′
). Note

a = red(ab−1b) = red(red(ab−1)b) = red(red(wm)b) = red(wmb)

as reductions are independent of the order in which we reduce portions of
the word.

Let p be the maximal prefix of b that is a suffix of red(wm) = yxmy−1

(a priori p could be as large as the shorter of yxy−1 and b); since

a = red(wmb),

we have
|a| = 2|y|+ |m| |x|+ |b| − 2|p|.

But by assumption |a| = |b|, and hence

2|y|+ |m| |x| = 2|p|.

It follows that
|p| = |y|+ |m| |x|/2 > |y|, (3.2)

since x 6= 1 and m 6= 0. Since |p| > |y| and p is a suffix of wm = yxmy−1, it
follows that p−1 begins with y and contains at least one more edge; hence
p = yx1 where |x1| > 0 and the first edge of x1 is the inverse of the last edge
of xm.

However, since red(cb−1) = red(wm
′
), the very same arguments show

that if p′ is defined analogously, i.e., as the maximal prefix of b that is a
suffix of red(wm

′
), then p′ = yx′1 where |x′1| > 0 and the first letter of x′1 is

the inverse of the last letter of xm
′
. But since both p and p′ are both prefixes

of b, we must have that m and m′ have the same sign: for if, say, m > 0 and
m′ < 0, then the last edge of xm or it’s orientation is different than the last
edge of xm

′
by the maximality of y in the equation w = yxy−1.

Hence
a = red(wmb), c = red(wm

′
b),

a, b, c have the same length, and without loss of generality we may assume
m > m′ > 0. But then Equation (3.2) and its analog for cb−1 = wm

′
show

that
m = (|p| − |y|)/|x|, and m′ = (|p′| − |y|)/|x|.

It follows that |p| > |p′|. Since both p and p′ are prefixes of b, we have that
p′ is a prefix of p. But p′ is the maximal suffix of wm

′
that is also a prefix

13
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of b; since wm
′

is also a suffix of wm it follows that p′ = wm
′

(otherwise p
could not be larger than p′). But in this case

|c| = |b| − |p′| < |b|,

which contradicts that fact that |c| = |b|.

14



Chapter 4

Proofs of the Fundamental
Lemma and Theorem 2.5

Proof of the Fundamental Lemma. Let w be an edge neutral, closed, non-
backtracking walk of minimal (positive) length, and let B be the subgraph
of G of vertices and edges that occur in w. Then B is a connected subgraph
of G such that each vertex has degree at least two. If every vertex in B has
degree exactly two, then B would be a cycle, which is impossible any non-
backtracing walk in a cycle traverses edges in at most one direction. Hence
at least some vertex of B is strictly greater than two; hence the formula

χ(B) =
∑
v∈VB

(
2− deg(v)

)
shows that χ(B) ≥ −1.

Now w traverses each edge of B at least once in each direction, and hence

l(w) ≥ 2 |EB|.

We claim that if w is a figure-eight graph or a theta graph, then there is a
non-backtracking walk on B traversing each edge exactly twice, and hence

l(w) = lAbl(B).

We claim that this formula also holds if B is a barbell graph; indeed,
it suffices to show that the edges of the bar have to be traversed at least
four times in w, since there is a closed, non-backtracking walk on a barbell
graph that traverses each edge of the bar four times and the other edges
twice. Since each edge is traversed an even number of times in w, it suffices
to show that w cannot traverse an edge of the bar twice. Let e be an
edge of the bar; by cyclically shifting w, we may assume that w beings by
traversing (e,+). Then w wraps some number of times around the cycle in
this direction of e, and eventually traverses (e,−), wrapping some number
of times around the other cycle and returning to the tail of e. At this point
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each edge in the cycle has been traversed in only one direction, so that w
must traverse (e,+) again. Hence e cannot be traversed only twice. This
establishes

l(w) = lAbl(B)

in the case where B is a barbell graph.
It suffices to show that for, w, as above, there is another walk, w′ which

is edge neutral and closed non-backtracking for which l(w) ≥ l(w′) and the
graph corresponding to w′ a subgraph of B with Euler characteristic −1. So
assume, for the sake of contradiction, that this fails to hold.

First we claim that B cannot contain a theta or figure-eight graph B′;
indeed

l(w) ≥ 2|EB|;

but walking along the theta or figure-eight graph, there is a balanced, closed
non-backtracking walk of length 2|EB′ |; but χ(B′) = −1, so B′ is a strict
subgraph of the connected graph, B, and hence 2|EB′ | ≤ 2|EB|, contradict-
ing the minimality of w.

Second, we claim that B cannot contain an edge, e such that when we
remove e, B is disconnected; indeed, assume otherwise, and extend e in both
directions until it meets vertices v1 and v2 whose degrees are greater than
two; let p denote the walk from v1 to v2 through e. The same argument
used for the case where B is a barbell shows that (1) the path p is traversed
in W four times, and (2) each endpoint of p is traversed in two cycles about
that endpoint that do not meet p. If c1 is the shortest cycle about v1 that
does not meet p, and similarly for c2 and v2, then

|W | ≥ lAbl(B
′),

where B′ is the subgraph of B consisting of p, c1, and c2. But B′ is just a
barbell graph.

Third, we claim that either the first or second claim must be contra-
dicted; this will complete the proof of the lemma. Indeed, B is not a tree,
and therefore must contain a cycle, C. The cycle must contain a vertex, v,
of degree at least three, or else B would consist entirely of C, which would
then have Euler characteristic zero. Let e be any edge not in C that is in-
cident upon v, and let u be the other endpoint of e. Since removing e does
not disconnect B, there must be a walk from u to a vertex of C that does
not contain e; let p be such a walk of minimal length. Then p begins in u
and is a beaded path to a vertex of c. But then the path e followed by p
is disjoint from C and joins v to another vertex of C, which yields either a
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figure-eight graph (if p terminates in v) or a theta graph (if p terminates in
a vertex of C that is not v).

Hence the first claim is violated.

We now prove Theorem 2.5 as a consequence of the Fundamental Lemma.

Proof of Theorem 2.5. Let G′ ∈ C be the subgraph of G of minimal abelian
length. If G′ is homeomorphic to the barbell graph, then Abl(G) ≥ 4 +
4 Girth(G) since each of the two simple cycles in G′ is at least as long as
the girth. Similarly, Abl(G) ≥ 4 Girth(G) if G′ is homeomorphic to a figure-
eight graph. In the case of a theta graph, we have two vertices u and v in
G′ of degree 3 and three simple paths from u to v. Let the lengths of the
simple path be l, m and n. Then l + m,m + n, n + l ≥ Girth(G). Adding
these inequalities gives

3 Girth(G) ≤ 2(l +m+ n) = 2|EG′ | = Abl(G).

17



Chapter 5

Abelian Girth of the LPS
Expanders

The Ramanujan graphs of Lubotzky, Phillips and Sarnak [27] are an infinite
family of graphs with the largest known asymptotic girth. As mentioned
earlier, theseare graphs Xp,q, for primes p, q ≡ 1 (mod 4), that are d = p+1
regular on n = q(q2 + 1) vertices for which

girth(Xp,q) = (4/3) logd−1 n+ on(1).

This immediately leads to the bound on abelian girth

Abl(Xp,q) ≥ 4 logd−1 n+ on(1).

We will describe these Ramanujan graphs and obtain an upper bound on
their abelian girth in order to show that their abelian girth isn’t so large
that it would be impossible to improve Theorem 2.6.

Definition 5.1. Let p and q be unequal primes congruent to 1 mod 4 with
(p/q) = −1 and q >

√
p. The integral quaternions, denoted H(Z), are given

by
H(Z) = {α = α0 + α1i + α2j + α3k|aj ∈ Z}.

We denote the conjugate of α by α and define N(α) = αα. Let S be the
set of all α in H(Z) satisfying N(α) = p, α ≡ 1(mod2) and α0 ≥ 0. It can
be shown that |S| = p + 1. Define Λ′(2) as the set of α ∈ H(Z) such that
N(α) = pv for some non-negative integer v and α ≡ 1(mod2). Define Λ(2)
as equivalence classes that identify α and β ∈ H(Z) if ±pv1α = pv2β for some
v1, v2 ∈ Z. It is known that the Cayley graph of Λ(2) is the (p+ 1)-regular
tree. Define Λ(2q) by

Λ(2q) = {[α] ∈ Λ(2)|2q divides αj , j = 1, 2, 3}.

This is a normal subgroup of Λ(2) and Xp,q, the LPS graph, is defined as the
Cayley graph of Λ(2)/Λ(2q) with generators S/Λ(2q). This graph is known
to be a (p+ 1)-regular bipartite graph on q(q2 + 1) vertices.
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Since Xp,q is a Cayley graph it is vertex transitive which allows us to
assume its smallest cycle goes from the identity element of Λ(2) to some
nontrivial element of Λ(2q) along the infinite Cayley graph of Λ(2). We now
define a vertex’ depth as its distance from the identity in the Cayley graph
of Λ(2). Biggs and Boshier [5] show that if [b] ∈ Λ(2) is at depth 2r and
r > 0 then there is some b in the equivalence class [b] such that

b0 = ±(pr −mq2)

with m > 0 and even.

Definition 5.2. Positive integers are called good if they are not of the form
4α(8β + 7) for integers α, β ≥ 0.

The following is Lemma 2 of [5].

Lemma 5.3. There exists a [b] ∈ Λ(2q) at level 2r with b0 = pr −mq2 with
m > 0 and b0 positive if and only if 2mpr −m2q2 is good.

In the paragraph before this Lemma, Biggs and Boshier prove at least
one of the integers 2mpr −m2q2 is good for the cases m = 2 and m = 4 so
long as they are both positive.

The following lemma is original.

Lemma 5.4. If m = 4 + 8c for nonnegative integers c, then 2mpr −m2q2

is good if it is positive.

Proof. Note

2mpr −m2q2

4
= (2 + 4c)pr − (4 + 16c+ 16c2)q2 ≡ 2 mod 4

implying that 2mpr −m2q2 is good.

So for m = 4, 12, 20, 2mpr −m2q2 is good if we can show it is positive.
Let r0 be the smallest positive integer such that pr0 > 10q2, which makes
2mpr0 −m2q2 positive for those values of m. Then pr0−1 < 10q2 and so

r0 < 2 logp q + logp 10 + 1.

Thus there exists three distinct [b] ∈ Λ(2q), since each value of m produces
a different b0, which means there are three distinct closed walks of length
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r0 from the identity vertex to itself of length 2r0. From the proof of Theo-
rem 2.6 we showed that this situation would imply the abelian girth of Xp,q

is 8r0. Since n = q(q2 + 1) and d− 1 = p we have

Abl(Xp,q) ≤ 16

3
logd−1 n(1 + o(1)).

The 16/3 constant above may be improved. In our arguments, we found
three closed walks of length 2r0. If instead we found three walks share one
starting vertex and another terminating vertex, all walks of length r0, then
our arguments from we showed that this situation would imply would mean
we could instead have a constant of 4 in the previous equation. Any closed
walk from a vertex v to itself of length 2r0 already implies there exists two
distinct walks of length r0 from v to the m, the middle vertex of the cycle.
Identifying one more walk from v to m of length r0 would be sufficient to
improve the 16/3 coefficient.
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Chapter 6

k-Independence

In this section, we introduce one of the main results from our paper in
terms of only linear algebra. The main concepts discussed here are linear
and tensorial k-independence. In the section following this one, we show a
connection between our two forms of 2-independence and abelian girth using
sheaf theory.

6.1 Oriented Graphs

In this subsection we fix some terminology on graphs and morphisms of
graphs, and define some invariants of graphs that will be guiding examples
in graph homology. We may state easy results without proof; in some cases
more details may be found in [17].

Even though the graphs we consider are undirected, it is more natural to
state the theory in terms of directed graphs (and arbitrarily orient the edges
of every undirected graph). There is an equivalent formulation without the
choice of orientation, but at the cost of more cumbersome notation; for more
on this see [17]. Our choice of formulation motivates the following choice of
nomenclature:

By an oriented graph (henceforce simply “graph”) we shall mean a
quadruple G = (VG, EG, tG, hG) where VG and EG are sets (the “vertices”
and “edges”, respectively) and tG, hG : EG → VG are maps (the “tail” and
“head” of each edge, respectively). We also sometimes use the notations
e+G = hG and e−G = tG

Note that we allow multiple edges and self-loops (but not half-edges).
Unless otherwise indicated all graphs are assumed finite (that is, the sets
VG, EG are finite).

While our graphs are oriented, we shall treat them as undirected for
graph-theoretic purposes, that is allow paths in the graphs to traverse each
edge in either direction. Formally, a walk of length m ≥ 1 in a graph G
shall be a sequence of pairs (e1, s1), . . . , (em, sm) where ei ∈ EG for each i,
si ∈ {±} and esiG(ei) = e

−si+1

G (ei+1) for 1 ≤ i < m. The vertices e−s1G (e1),
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esmG (em) will be called the starting and terminating vertices of the walk, and
jointly the endpoints.

This level of formality is mainly necessary for graphs with multiple edges
or self-loops, since a self-loop may be traversed along or against its orien-
tation and this cannot be determined from knowing the order at which the
endpoint of the edge are met.

A walk is closed if its starting vertex is the same as its terminating
vertex. A walk in which all the edges are distinct is called simple, and a
closed, simple walk is also known as a cycle. Recall that a graph is acyclic
if it has no cycles, connected if every two vertices in G are the endpoints of
a walk, and a tree if it is connected and acyclic.

A walk is a path if all the edges and vertices of the walk are distinct.
If G1 and G2 are subgraphs of a graph G, by a walk (or path) from G1 to
G2 we mean a walk (or path) in G with starting vertex in G1, terminating
vertex in G2 and no other vertex of the walk in G1 or G2. We say a path
or cycle is beaded if every vertex is of degree 2 besides possibly the starting
and terminating vertex.

A morphism of graphs, f : G → H, is a pair f = (fV , fE) of maps
fV : VG → VH and fE : EG → EH such that tH ◦ fE = fV ◦ tG and hH ◦
fE = fV ◦ hG. We shall usually drop the subscripts from fV and fE , but
may include them in the interests of clarity. The set of morphisms will be
denoted Mor(G,H). Thus morphisms are homomorphisms of the underlying
undirected graphs which preserve the orientation.

We say that π ∈ Mor(G,B) is a covering map (respectively, is étale2) if
for each v ∈ VG, πE gives a bijection (respectively, injection) of incoming
edges of v (i.e. those edges whose head is v) with those of fV (v), and a
bijection (respectively, injection) of outgoing edges of v and πV (v).

If π : G→ B is a covering map and B is connected, then the fibres π−1(v)
(v ∈ VH) and π−1(e) (e ∈ EH) are all in bijection, and we call their joint
cardinality the degree of f and denote it [G : H]. Even if H is not connected,
one can still write [G : H] when π is of constant degree, that is when the
number of preimages of a vertex or edge in H is the same for all vertices
and edges.

6.2 k-Independence

In this subsection we describe two notions of k-independence and give an
example showing they are not equivalent. In later sections, we will show

2Stallings, in [31], uses the term “immersion.”

22



6.2. k-Independence

how the two notions of 2-independence correspond to certain homological
invariants of certain sheaves on graphs.

Definition 6.1. Let A1, . . . , Ar be subspaces of a finite-dimensional vector
space W over a field F. We say that A1, . . . , Ar are linearly k-independent
with k a positive integer if for all subspaces B ⊂W we have

r∑
i=1

dim(Ai ∩B) ≤ k dim(B). (6.1)

We define the total dimension of the subspaces to be |A1|+ . . .+ |Ar|

This notion arises implicitly in quiver representation theory in [25], where
the case k = 2 is of special interest. We shall explain in this paper that the
k = 2 case also arises in what we call pseudobundles on a graph. Notice that
k-independence could easily be defined for any real number k.

It is easy to see that r vectors in a vector space, W , are linearly inde-
pendent (in the usual sense) iff the one-dimensional spaces that the vectors
span are linearly 1-independent.

Definition 6.2. Let A1, . . . , Ar be subspaces of a vector space, W , over a
field, F, and let F be an algebraic closure of F. Let k be a positive integer. We

say that A1, . . . , Ar are tensorially k-independent if for any f1, . . . , fr ∈ Fk

and any ai ∈ Ai for 1 ≤ i ≤ r we have that

f1 ⊗ a1 + . . .+ fr ⊗ ar = 0

only if
a1 = . . . = ar = 0

or the jth components of the f1, . . . , fr are all 0 for some 1 ≤ j ≤ k.

It is easy to see that r vectors in a vector space, W , are linearly indepen-
dent (in the usual sense) iff the one-dimensional spaces that the vectors span
are tensorially 1-independent. It is also easy to see that if the Ai are not
tensorially k-independent, they also are not tensorially k + 1-independent

We claim that tensorial k-independence implies linear k-independence
(this is also shown in[18].) For this, consider A1, . . . , Ar ⊂ W that are not
linearly k-independent; then there exists a B ⊂W such that

dim(A1 ∩B) + · · ·+ dim(Ar ∩B) > k dim(B).
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For a vector space, U , over F, let U denote the corresponding vector space
over F, namely U ⊗F F. Consider the map

A1 ∩B ⊕ · · · ⊕Ar ∩B → B

given by
f1 ⊗ a1 + . . .+ frar

for some f1, . . . , fr ∈ Fk and ai ∈ Ai∩B. Since the dimension of the domain
is greater than that of the range, there must exist a nontrivial element in
the kernel.

Theorem 6.3. Linear 2-independence does not imply tensorial 2-independence.

Here is an example of a collection of subspaces that are linearly but
not tensorially 2-independent. If W = F6 has basis α, β, γ, δ, ε, ζ then the
subspaces are

A1 = Span(α, δ), A2 = Span(β, ε), A3 = Span(γ, ζ),

A4 = Span(β − γ, δ − ε, ζ − α), A5 = Span(α− β, γ − δ, ε− ζ).

We will provide sheaf theoretic tools in later sections in order to prove
these subspaces are linearly but not tensorially 2-independent. We also
conjecture that this is the smallest such collection of subspaces in terms of
total dimension of the subspaces.
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Chapter 7

Sheaves on Graphs

In this section we describe the notion of “sheaf on a graph” and show the
2-independence problem is a special case of a general problem concerning
two homological invariants of certain sheaves on graphs with two vertices.

7.1 Sheaves and Homology

Definition 7.1. Let G = (V,E, t, h) = (VG, EG, tG, hG) be a directed graph,
and F a field. By a sheaf of finite dimensional F-vector spaces on G, or
simply an F-sheaf on G, we mean the data, F , consisting of

1. a finite dimensional F-vector space, F(v), for each v ∈ V ,

2. a finite dimensional F-vector space, F(e), for each e ∈ E,

3. a linear map, F(t, e) : F(e)→ F(te) for each e ∈ E,

4. a linear map, F(h, e) : F(e)→ F(he) for each e ∈ E,

We will often write just refer to the sheaf, F , with the graph, G, being
implicit. The vector spaces F(P ), ranging over all P ∈ VGqEG (q denoting
the disjoint union), are called the values of F . The morphisms F(t, e) and
F(h, e) are called the restriction maps. If U is a finite dimensional vector
space over F, the constant sheaf associated to U , denoted U , is the sheaf
comprised of the value U at each vertex and edge, with all restriction maps
being the identity map. The constant sheaf F will be called the structure
sheaf of G (with respect to the field, F), for reasons to be explained later.
We say that F1 is a subsheaf of F if F1 is a sheaf on G whose value at
any vertex or edge is a subspace of the value of F at that vertex or edge,
and if the restriction maps of F1 are induced by those of F . Subsheaves of
constant sheaves will be called subconstant sheaves.

To a sheaf, F , on a digraph, G, we set

F(E) =
⊕
e∈E
F(e), F(V ) =

⊕
v∈V
F(v).
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We associate a transformation

dh = dh,F : F(E)→ F(V )

defined by taking F(e) (viewed as a component of F(E)) to F(he) (a com-
ponent of F(V )) via the map F(h, e). Similarly we define dt. We define the
differential of F to be

d = dF = dh − dt,
and define the Euler characteristic of F to be

χ(F) = dim
(
F(V )

)
− dim

(
F(E)

)
.

We call the sheaf F a constant sheaf if F(e) = F(v) for all vertices v and
edges e in G and the difference maps are all the identity.

Definition 7.2. We define the zeroth and first homology groups of F to
be, respectively,

H0(G,F) = cokernel(d), H1(G,F) = kernel(d).

We denote by hi(G,F) the dimension of Hi(G,F) as an F-vector space,
and call it the i-th Betti number of F . This definition agrees with sheaf
homology theory. We often just write hi(F) and Hi(F) if G is clear from
the context (when no confusion will arise between hi(F), the dimension, and
h the head map of a graph). We call Hi(F) the i-th homology group of G
with coefficients in F, denoted Hi(G) or, for clarity, Hi(G,F). This agrees
with the standard definition of Hi(G).

In particular, we have

χ(F) = h0(F)− h1(F).

Example 7.3. For F = F, d is just the usual incidence matrix; thus, if F is
of characteristic zero, then the hi(G), i.e., the dimension of the Hi(G), are
the usual Betti numbers of G.

Example 7.4. For any morphism φ : G′ → G of digraphs, and any sheaf
F on G′, there is a sheaf φ!F such that Hi(G

′,F) is naturally isomorphic
to Hi(G,φ!F). See [16, 18] for more details on this and other examples of
sheaves.

One of the main tools in sheaf homology is the ability to get information
about them by the long exact sequence in homology associated to a short
exact sequence of sheaves. For this we need to describe what is meant by a
morphism of sheaves.
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Definition 7.5. A morphism of sheaves α : F → G on G is a collection
of linear maps αv : F(v) → G(v) for each v ∈ V and αe : F(e) → G(e) for
each e ∈ E such that for each e ∈ E we have G(t, e)αe = αteF(t, e) and
G(h, e)αe = αheF(h, e).

It is not hard to check that all Abelian operations on sheaves, e.g., taking
kernels, taking direct sums, checking exactness, can be done “vertexwise
and edgewise,” i.e., F1 → F2 → F3 is exact iff for all P ∈ VG q EG,
we have F1(P ) → F2(P ) → F3(P ) is exact. This is actually well known,
since our sheaves are presheaves of vector spaces on a category (see [14] or
Proposition I.3.1 of [1]).

The following theorem results from a straightforward application of clas-
sical homological algebra.

Theorem 7.6. To each “short exact sequence” of sheaves, i.e.,

0→ F1 → F2 → F3 → 0

(in which the kernel of each arrow is the image of the preceding arrow), there
is a natural long exact sequence of homology groups

0→ H1(F1)→ H1(F2)→ H1(F3)
δ−→

H0(F1)→ H0(F2)→ H0(F3)→ 0.

7.2 Twisted Homology

Here we define twisted homology. We refer to [16, 17] for its motivation;
in brief, it represents a “scaled Abelian limit” of ordinary homology, and
has “reduced cyclicity” as a special case. Here we give a self-contained
description of these invariants, and the reader who does not consult [16, 18]
may regard twisted homology as simply an alternate homology theory.

Definition 7.7. Let F be a sheaf of F-vector spaces on a digraph, G, and
let F′ be a field containing F. A twist or F′-twist, φ, on G is a map

φ : EG → F′.

By the twisting of F by φ, denoted Fφ, we mean the sheaf of F′-vector
spaces given via

Fφ(P ) =
(
F(P )

)
⊗F F′
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for all P ∈ VG q EG, and

Fφ(h, e) = F(h, e), Fφ(t, e) = φ(e)F(t, e),

where F(h, e) and F(t, e) are viewed as F′-linear maps arising from their
original F-linear maps.

In other words, Fφ is the sheaf obtained by extending scalars to F′ and
twisting the tail maps. The map, dFφ , viewed as a matrix, has entries in
the field F′ and the groups Hi(Fφ) are F′-vector spaces.

Definition 7.8. Let F be a sheaf of F-vector spaces on a digraph, G. By
the full twist of F we mean the twist EG → F(ψ), where ψ = {ψ(e)}e∈EG
is a collection of |EG| independent indeterminates, and F(ψ) is the field of
rational functions in the {ψ(e)} over F, and where the map EG → F(ψ) is
given by e 7→ ψ(e). We shall refer to this twist as ψ when no confusion will
arise. The twist ψ can be defined in the same way given a graph G and a
field F even if no sheaf is specified. In this case we refer to ψ as the full twist
of G.

In the above situation, d = dFψ can be viewed as a morphism of finite
dimensional vector spaces over F(ψ), given by a matrix with entries in F(ψ).

Definition 7.9. We define the i-th twisted homology group of F , denoted
by

Htw
i (F) = Htw

i (F , ψ),

for i = 0, 1, respectively, to be the cokernel and kernel, respectively, of dFψ
described above as a morphism of F(ψ) vector spaces. We define the i-th
twisted Betti number of F , denoted htwist

i (F), to be dimension of Htw
i (F).

Notice that twisted homology as above is just the homology of certain
sheaves over F(ψ). In particular, the following results from applying Theo-
rem 7.6.

Theorem 7.10. Let F be a field, and let ψ be a full twist on G. For any
short exact sequence

0→ F1 → F2 → F3 → 0

of sheaves of F-vector spaces on G, there is a long exact sequence of F(ψ)
vector spaces,

0→ Htw
1 (F1)→ Htw

1 (F2)→ Htw
1 (F3)

δ−→

Htw
0 (F1)→ Htw

0 (F2)→ Htw
0 (F3)→ 0.
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7.3 Maximum Excess of a Sheaf

Definition 7.11. Let F be a sheaf on a graph, G. We define the excess of
F to be

excess(F) = −χ(F).

We define the maximum excess of F to be the maximum excess over all
subsheaves of F , i.e.,

m.e.(F) = max
F ′⊂F

excess(F ′).

The excess and maximum excess has a number of remarkable properties
that are established in [16, 18]; let us mention a few here without proof,
referring the reader to [16, 18] for more details and the proofs.

Let F be a sheaf on a graph, G. The dimension of the kernel of any
linear map from F(E) to F(V ) is at least

dim
(
F(E)

)
− dim

(
F(V )

)
= −χ(F) = excess(F).

If ψ is a full twist on G, then the map dFψ resticts to a map from F ′(E) to
F ′(V ) for any subsheaf, F ′, of F ; hence

htw1 (F) ≥ m.e.(F).

Definition 7.12. The gap of a sheaf, F , is the non-negative integer

gap(F) = htw1 (F)−m.e.(F).

We say that a sheaf is gapped or has a gap if its gap is positive; otherwise
we say that the sheaf has no gap.

This paragraph is written to give the reader some intuition for the gap,
htw1 , and the maximum excess, though the results mentioned here will also
be useful later on. In [16, 17] Friedman defines the pullback, µ∗F , for any
graph morphism µ : G′ → G and any sheaf on G (in a natural and standard
fashion); he shows that if µ is a covering map then

m.e.(µ∗F) = deg(µ)m.e.(F), (7.1)

and he shows that for any fixed sheaf, F , on G, we have

m.e.(µ∗F) = htw1 (G′, µ∗F), (7.2)
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provided that µ : G′ → G is a covering map and the girth of G′ is sufficiently
large. Therefore, if we order covering maps under refinement, we can say
that any sheaf has no gap if pulled-back via a covering map to a graph of
sufficiently large girth. We can also write

m.e.(F) = lim
µ

htw1 (µ∗F)

deg(µ)
, (7.3)

where the limit is taken over the directed set of covering maps, u, under
refinement.

As a consequence of (7.3), we have that the maximum excess is additive,
i.e., if F1,F2 are sheaves on a graph, then

m.e.(F1 ⊕F2) = m.e.(F1) + m.e.(F2);

this follows since htw1 is additive and (arbitrary) pullbacks are additive. Sim-
ilarly, we get inequalities from short exact sequences, which we now describe.

Definition 7.13. For a sheaf, F , on a graph, we define its dual maximum
excess, denoted d.m.e.(F) to be

d.m.e.(F) = χ(F) + m.e.(F).

We easily see that

d.m.e.(F) = max
F�F ′

χ(F ′),

since
d.m.e.(F) = χ(F) + max

F ′′⊂F
−χ(F ′′) = max

F ′′⊂F
χ(F/F ′′).

It follows that the dual maximum excess is non-negative and

d.m.e.(F)−m.e.(F) = χ(F) = htw0 (F)− htw1 (F),

for any sheaf, F ; in particular

htw1 (F)−m.e.(F) = gap(F) = htw0 (F)− d.m.e.(F),

which gives an alternate expression for the gap of a sheaf.

Theorem 7.14. To each short exact sequence of sheaves,

0→ F1 → F2 → F3 → 0,
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the sequence of non-negative integers

. . . , 0, 0,m.e.(F1),m.e.(F2),m.e.(F3),

d.m.e.(F1),d.m.e.(F2), d.m.e.(F3), 0, 0, . . .

is “triangular,” meaning any element of the sequence is at most the sum of
its successor and its predecessor.

This follows from (7.3) and Theorem 7.6. Alternatively, this can be
proven from scratch (see Warren Dicks’ appendix in [18].)

The following definition is a crucial observation to the proof of the Hanna
Neumann Conjecture in [15, 18] and to this paper.

Definition 7.15. A maximizer of the sheaf F is any subsheaf whose excess
is the maximum excess of F .

If F1,F2 are subsheaves of the sheaf F one can easily verify that

χ(F1) + χ(F2) = χ(F1 ∩ F2) + χ(F1 + F2).

It follows that the set of maximizers of F is closed under intersection and
addition of subsheaves. In particular, each sheaf F has a unique maximum
(or maximal) maximizer (namely the sum of all the maximizers) and unique
minimum (or minimal) maximizer (namely the intersection of all the maxi-
mizers).

It is not hard to see that the structure sheaf, F, of a connected graph G
has

m.e.(G,F) = max
(
0,−χ(G)

)
,

and that

d.m.e.(G,F) =

{
1 if G is cyclic, and
0 if G is acyclic,

where G is acyclic if G is a vertex or a tree, and otherwise G is cyclic; if G
is not connected, then the maximum excess of F is the sum composed of the
maximum excess of each of G’s connected components, and similarly with
“maximum excess” replaced with “dual maximum excess.”

7.4 Main Theorems

In this section we fix some terminology regarding sheaves on graphs and
formally describe the main theorems of the second part of this dissertation.
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Definition 7.16. Let F be a sheaf on a graph. By a subquotient of F we
mean any sheaf of the form F2/F1, where F1 ⊂ F2 ⊂ F .

Theorem 7.17. If G is a graph on two vertices, no self loops, and at least
five edges, then there exists a gapped subconstant sheaf on G with maximum
excess 0.

Theorem 6.3 follows quickly from this theorem in the following way. Let
F be the gapped subquotient sheaf on the graph G with vertices v1 and
v2 produced by the previous theorem. Let the vector space W = F(v1) +
F(v2). If G has edges e1, ..., er, then let Ai = F(ei) for i = 1, . . . , r. For
any subconstant sheaf the head and tail maps are inclusions since they
are induced by identity maps, and so the Ai are subspaces of W . Since
m.e.(F) = 0, for any B ⊂W

r∑
i=1

dim(Ai ∩B) ≤ 2 dim(B),

showing that the Ai are linearly 2-independent.
Given any nonzero α ∈ Htw

1 (F), let ai be α restricted to the edge space
on ei. Then

r∑
i=1

fi ⊗ ai = 0

where fi = (1,−ψei). This shows that theAi are not tensorially 2-independent.
The proof for Theorem 7.17 is constructive, using a sheaf that is modi-

fied from a minimally gapped sheaf necessary in the proof of the following
theorem.

Theorem 7.18. For any graph G we have

Abl(G) = min{dim(F(E))|F is a gapped sheaf on G}.

The proof of this theorem includes explicit constructions of gapped sheaves
with minimal edge dimension for any graph. This theorem implies that sheaf
theory could potentially be useful for finding better upper bounds on the
girth of a regular graph.

Corollary 7.19. Let G be a graph with χ(G) < 0. Then there exists a
subconstant sheaf on G with positive gap. If F is a subquotient of a constant
sheaf on G with positive gap then dim(F(E)) ≥ 6.

The smallest edge dimension known to us for a a gapped subconstant
sheaf on a graph is 12. Before this research, it was not known whether
gapped subconstant sheaves even existed.

Proving the results in this subsection will occupy the rest of this paper.

32



Chapter 8

Remarks on Gapped Sheaves

Recall that that gap of a sheaf, F , on a graph is defined to be

gap(F) = htw1 (F)−m.e.(F) = htw0 (F)− d.m.e.(F)

and that we say that F has a gap (or is gapped) if its gap is positive.
The goal of the next few sections is to prove that certain sheaves have no

gap. Furthermore, when a collection of sheaves contains gapped sheaves, we
wish to describe the “simplest” example of a gapped sheaf in the collection.
This section contains some important definitions and some easy observations
regarding these matters.

As an example, Theorems 7.6 and 7.14 imply that htw1 , h
tw
0 and the max-

imum excess and dual maximum excess are additive invariants, and hence
so is the gap; i.e.,

gap(F1 ⊕F2) = gap(F1) + gap(F2)

for any sheaves, F1,F2 on a graph. Hence if F1 ⊕ F2 is gapped, then so is
F1 or F2. On certain collections of sheaves, with a certain partial order, this
will mean that a minimal gapped sheaf (if it exists) is not a proper direct
sum. However, we need to specify the collections of sheaves and partial
orders we use.

8.1 Minimality

In this subsection we define what is a “simplest” or “minimal” sheaf in a
collection, in a sense useful to our theory. This section consists only of
definitions and very simple remarks.

Definition 8.1. Let F be a sheaf on a graph, G. The total dimension (or
T-dim) of F , denoted T− dim(F) shall mean the quantity

T− dim(F) =
∑

P∈VGqEG

dim
(
F(P )

)
.
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Definition 8.2. By a sheaf collection we mean a set of pairs, (G,F), where
G is a graph and F is a sheaf on G.

If C is a sheaf collection, we may write F ∈ C instead of the more
cumbersome (G,F) ∈ C when G is implicit.

Definition 8.3. Given a sheaf collection, C, a T-minimal element of C is
an F ∈ C of minimal total dimension.

Clearly any nonempty sheaf collection has T-minimal element.

Definition 8.4. Given a sheaf collection, C, a T-minimal gapped element
is a T-minimal element among the subcollection of sheaves in C which have
a positive gap (if this subcollection is nonempty).

8.2 Minimal Elements and Stability

We now wish to state the main result in this section. It will be proved over
the next few subsections. First though, we include some addition definitions
related to the ones we need.

Definition 8.5. The sheaf F is called

1. cyclic if m.e.(F) = −χ(F), i.e., χ(F ′) ≥ χ(F) for each F ′ ⊂ F ;

2. semistable if it is cyclic, and χ(F) = 0;

3. stable if it is semistable, and for all F ′ ⊂ F we have χ(F ′) > χ(F)
unless F ′ is 0 or F ;

4. superstable if for all F ′ ⊂ F we have χ(F ′) > χ(F) unless F ′ is F .

The minimum maximizer of F is called its supercore.

A supercore is therefore necessarily superstable. Our terminology is
borrowed from [25] and [7]. It is easy to see that for F ′ ⊂ F , if F is
semistable, stable, or superstable, then so is F/F ′. Furthermore, if F is
stable and F ′ 6= F , then F/F ′ is superstable.

A graph is cyclic if it contains no components that are trees; it is
semistable if its connected components all have Euler characteristic zero
(i.e., when its leaves are repeatedly “pruned,” the graph becomes a union of
cycles); it is stable if it consists of a single cycle; it is superstable if all its
connected components have no leaves and have negative Euler characteristic.

One can also define dual or “co” notions of stability.
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Definition 8.6. A sheaf, F , on a graph is called co-acyclic, co-semistable,
co-stable, co-superstable, by taking the respective notion in Definition 8.5
(omitting the prefix “co-”) and replacing “maximum excess” with “dual
maximum excess,” “χ” with “−χ,” and “F ′ ⊂ F” with “F ′ is a quotient of
F .”

Generally speaking, to most of the notions and lemmas in this section,
there is a “co” or “dual” notion; typically a lemma and its dual lemma are
different and both important to proving Theorem 8.9 below. We mention,
however, that stability, one of the cornerstones of this article, is equivalent
to its dual notion, co-stability. Indeed, to every subsheaf, F ′, of a sheaf, F ,
there is a short exact sequence

0→ F ′ → F → F ′′ → 0,

(with F ′′ = F/F ′), and to every quotient, F ′′, of F there is a short exact
sequence (with F ′ the kernel of the map F → F ′′). So whenever χ(F) = 0,
the condition of having a subsheaf with non-negative Euler characteristic is
equivalent to having a quotient sheaf with non-positive Euler characteristic.
Hence stability and co-stability amount to the same thing.

Definition 8.7. We say that a sheaf collection, C, is closed under subsheaves
and quotients provided that for all F ∈ C, any subsheaf or quotient sheaf of
F lies in C.

Definition 8.8. We say that a sheaf is faithful if every restriction map is
an injection.

Here is the main theorem of this section. Parts of this theorem are valid
under weaker hypothesis, as will be evident in the subsections that follow.

Theorem 8.9. Let C be a sheaf collection that is closed under subsheaves
and quotients. Assume that C contains at least one gapped sheaf, and let
F be any T-minimal gapped sheaf. Then F is stable, and htwi (F) = 1 for
i = 0, 1.

The proof will take up the rest of this section and will be completed in
Subsection 8.6; the proof is straightforward and independent of the rest of
this paper. The same theorem holds for any T-minimal gapped sheaf, as
well, although we will not need this result.
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8.3 Edge Subsheaf Closed Collections

Definition 8.10. An edge subsheaf of a sheaf, F , is a subsheaf F ′ ⊂ F
such that F ′ and F agree on their values of each vertex. A sheaf collection,
C, is edge subsheaf closed if F ∈ C implies that F ′ ∈ C whenever F ′ is an
edge subsheaf of F .

Lemma 8.11. Let F be a sheaf on a graph G with m.e.(F) ≥ 1. Then there
is an edge subsheaf, G, of F such that F/G is of total dimension one with
m.e.(G) = m.e.(F)− 1.

Proof. (Given in [17].) Let F ′ be the minimal subsheaf of F with −χ(F ′) =
m.e.(F). Since m.e.(F) ≥ 1, there exists an e ∈ EG such that F ′(e) 6= 0; let
A ⊂ F(e) be a subspace of codimension one such that F ′(e)∩A is a proper
subspace of F ′(e). Let G be the (A, e) edge subsheaf of F . Then F/G is of
total dimension one. We claim m.e.(G) = m.e.(F)−1; indeed, any subsheaf,
G′, of G is also a subsheaf of F , but G′ does not contain the miniminal excess
maximizer of F ; hence −χ(G′) ≤ m.e.(F)− 1.

Lemma 8.12. Let F be a sheaf on a graph, G with htw1 (F) ≥ 1. Then there
is an edge subsheaf, G, of F such that F/G is of total dimension one with
htw1 (G) = htw1 (F)− 1.

Proof. Let α ∈ Htw
1 (F , ψ) with α 6= 0. Since α is nonzero, there is an

e ∈ EG with α(e) 6= 0. For some A ⊂ F(e) we have α(e) /∈ A(ψ). Fix some
such A, and let G be the (A, e) edge subsheaf of F . Then Htw

1 (G, ψ) is a
subspace of Htw

1 (F , ψ), but since the former does not contain α, the former
is a strict subspace of the latter. But since F/G is of total dimension one,
the former cannot be of codimension greater than one in the latter. Hence
htw1 (G) = htw1 (F)− 1.

Lemma 8.13. Let F be any gapped sheaf on a graph. Then there exists an
edge subsheaf, F ′, of F , such that m.e.(F ′) = 0 and htw1 (F ′) = 1.

Proof. We claim that it suffices to consider the case where m.e.(F) = 0.
Indeed, assume that m.e.(F) > 0. By Lemma 8.11, F has an edge subsheaf,
G, with m.e.(G) = m.e.(F) − 1 with F/G of total dimension one. But
htw1 (G) ≥ htw1 (F ) − 1, since FcG is of total dimension one. Hence G is a
gapped edge subsheaf of F with maximum excess one less than F . Repeating
this argument gives a gapped edge subsheaf, G′, of F with maximum excess
zero, and it suffices to prove the lemma for G′.

Similarly, if m.e.(F) = 0 but htw1 (F) ≥ 2, we may repeatedly ap-
ply Lemma 8.12 to find an edge subsheaf, F ′, of F , with htw1 (F ′) = 1.
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But passing to edge subsheaves cannot increase the maximum excess, so
m.e.(F ′) = 1.

Corollary 8.14. Let C be a sheaf collection that is closed under edge sub-
sheaves and that contains a gapped element. Then any T-minimal gapped
element, F , of C has m.e.(F) = 0 and htw1 (F) = 1.

Proof. We know that F has an edge subsheaf, F ′, with m.e.(F ′) = 0 and
htw1 (F ′) = 1. But F ′ is also gapped, and by minimality must equal F .

8.4 Vertex Quotient Closed Collections

At this point we give “dual” versions of all the statements in the previous
subsection.

We remark that some readers can infer all the dual statements from the
following principle (and therefor need not read any proofs in this section.)
Our sheaves on graphs can be viewed as presheaves of vector spaces on a
1-dimensional category (in the evident sense.) For any presheaf of vector
spaces of finite dimension on a category, the dual spaces form a presheaf
on the opposite category. Since the statements in the previous subsection
generalize to this wider setting, the dual statements follow immediately.

Definition 8.15. A vertex quotient of a sheaf, F , is a quotient of F whose
values agree with those of F on all the edges. A sheaf collection, C, is vertex
quotient closed if F ∈ C implies that F ′ ∈ C whenever F ′ is a vertex quotient
of F .

Lemma 8.16. Let F be a sheaf on a graph, G with d.m.e.(F) ≥ 1. Then
there exists a vertex quotient, G, of F , such that d.m.e.(G) = d.m.e.(F)− 1
and the total dimension of G is one less than the total dimension of F .
Furthermore, G can be taken equal to F except at any vertex, v, for which
the maximum excess maximizer’s value at v is not all of F(v).

Proof. Let F ′ be the maximum subsheaf of F that maximizes the excess.
Since

1 ≤ d.m.e.(F) = m.e.(F) + χ(F),

we have F ′ 6= F and −χ(F ′) > −χ(F). It follows that for some v we have
F ′(v) 6= F(v); let A be a one dimensional subspace of F(v) that does not
lie in F ′(v), for such a v, and let G be the (A, v) quotient of F .
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We claim that m.e.(G) = m.e.(F); this will finish the proof of the lemma,
since then

d.m.e.(G) = m.e.(G) + χ(G) = m.e.(F) + χ(F)− 1 = d.m.e.(F)− 1.

To see that m.e.(G) = m.e.(F), consider the image of F ′ under the inclusion
to F followed by the quotient map to G; this gives a subsheaf, G′, of G that
is isomorphic to F ′. Hence

m.e.(G) ≥ m.e.(F). (8.1)

But for any subsheaf, G′′, of G, consider its inverse image, F ′′, in F : we have
χ(F ′′) = χ(G′′) + 1, because of the quotienting at v, but F ′′ contains A and
therefore cannot maximize the excess of F . Hence

−χ(F ′′) ≤ m.e.(F)− 1,

and hence
−χ(G′′) = −χ(F ′′) + 1 ≤ m.e.(F).

Hence, maximizing the above over all G′′ in G, we have

m.e.(G) ≤ m.e.(F).

Combing this with (8.1) shows that m.e.(G) = m.e.(F), completing the proof
of the lemma.

Lemma 8.17. Let F be a sheaf on a graph, G with htw0 (F) ≥ 1. Then there
exists a vertex quotient, G, of F , such that htw0 (G) = htw0 (F) − 1 and the
total dimension of G is one less than the total dimension of F .

Proof. For v ∈ VG and w ∈ F(v), consider the element δv,w of F(V ) defined
as 0 outside of v and w at F(v). Clearly the δv,w span F(V )(ψ). Hence
if Htw

0 (F) 6= 0, there is some δv,w with w 6= 0 that is not in the image of
dFψ . Fix such a v and w. Let G be the same as F except that its value at
v is F(v) modulo the span of w. Then α is an equivalence class modulo the
image of F(E) in F(V ) under dcf. ψ .

Lemma 8.18. Let F be any gapped sheaf on a graph. Then there exists a
vertex quotient, F ′, of F , such that d.m.e.(F ′) = 0 and htw0 (F ′) = 1.
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Proof. We claim that it suffices to consider the case where d.m.e.(F) =
0. Indeed, assume that d.m.e.(F) > 0. By Lemma 8.16, F has a vertex
quotient, G, with d.m.e.(G) = d.m.e.(F) − 1 with F/G of total dimension
one. But htw0 (G) ≥ htw0 (F )− 1, since FcG is of total dimension one. Hence
G is a gapped vertex quotient of F with dual maximum excess one less than
F . Repeating this argument gives a gapped vertex quotient, G′, of F with
dual maximum excess zero, and it suffices to prove the lemma for G′.

Similarly, if d.m.e.(F) = 0 but htw0 (F) ≥ 2, we may repeatedly apply
Lemma 8.17 to find a vertex quotient, F ′, of F , with htw0 (F ′) = 1. But
passing to vertex quotients cannot increase the dual maximum excess, so
d.m.e.(F ′) = 1.

Corollary 8.19. Let C be a sheaf collection that is vertex quotient closed
and that contains a gapped element. Then any T-minimal gapped element,
F , has d.m.e.(F) = 0 and htw0 (F) = 1.

Proof. Let F be T-minimal gapped. Then F ′ has a vertex quotient with
d.m.e.(F ′) = 0 and htw0 (F ′) = 1. But its T-dimension is strictly less unless
F ′ = F .

8.5 Edge Quotient Closed Collections and
Injectivity

Definition 8.20. Let F be a sheaf on a graph, G. Given e ∈ EG, and a
subspace A ⊂ F(e), we define the A skyscraper (of F) at e, denoted A|e
(with F understood), to be the subsheaf whose values for P ∈ VG qEG are

A|e(P ) =


A if P = e,
F(e, h)A if P = he and P 6= te,
F(e, t)A if P = te and P 6= he,
F(e, h)A+ F(e, t)A if P = he = te, and
0 otherwise

and where the restriction maps are given by restricting F(e, h) and F(e, t).
By the A edge quotient of F at e we mean the quotient F/A|e. We say
that a sheaf collection, C, is edge quotient closed if for any F ∈ C, any edge
quotient of F also lies in C.

Lemma 8.21. Let C be a sheaf collection that is edge subsheaf, vertex quo-
tient, and edge quotient closed. Let F ∈ C be T-minimal gapped. Then for
any edge, e we have that both restriction maps at F(e) are injective.
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Proof. Let e be any edge with two distinct endpoints. Assume that F(e) 6=
0. For any nonzero a ∈ F(e) we claim that we must have F(e, h)a 6=
0 and F(e, t)a 6= 0. Indeed, let F ′ be the A edge quotient of F at e,
where A is the span of a; then F ′ ∈ C and F ′ < F in the T-order. If
F(e, h)a = 0 and F(e, t)a = 0, then F is the direct sum of F ′ plus A|e. But
in this case m.e.(A|e) = htw1 (A|e) and both the maximum excess and the first
twisted Betti of a direct sum is the sum of the individual invariants. Hence
m.e.(F ′) > htw1 (F ′), contradicting the minimality of F . The other case to
consider is F(e, h)a = 0 and F(e, t)a 6= 0 (the case with h and t reversed is
argued identically). In this case we have an exact sequence

0→ A|e → F → F ′ → 0,

and htw0 (A|e) = htw1 (A|e) = 0, so F and F ′ have the same twisted Betti num-
bers. Similary for any covering map φ : G′ → G we have that htw0 (φ∗A|e) =
htw1 (φ∗A|e) = 0, so we have that F and F ′ have the same maximum excess
and dual maximum excess. This again contradicts the minimality of F .

8.6 The Proof of Theorem 8.9

Proof of Theorem 8.9. Let C be a sheaf collection that is closed under sub-
sheaves and quotients. Assume that C contains at least one gapped sheaf,
and let F be any T-minimal gapped sheaf. According to Corollaries 8.14
and 8.19 we have that m.e.(F) = d.m.e.(F) = 0 and htwi (F) = 1 for i = 0, 1.
Furthermore, by Lemma 8.21, we have that each restriction is an injection.

Consider any short exact sequence

0→ F ′ → F → F ′′ → 0 (8.2)

in which F ′ and F ′′ are both nonzero. Then F ′ and F ′′ are both less than
than F in T-order, and hence F ′ and F ′′ have no gap.

By Theorem 7.14, we have

m.e.(F ′) = d.m.e.(F ′′) = 0.

Since F ′ and F ′′ have no gap, we have

htw1 (F ′) = m.e.(F ′) = 0, htw0 (F ′′) = d.m.e.(F ′) = 0. (8.3)

We also have

χ(F ′) = d.m.e.(F ′)−m.e.(F ′) = d.m.e.(F ′) ≥ 0. (8.4)
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Furthermore,
χ(F ′′) = χ(F)− χ(F ′) = −χ(F ′). (8.5)

We claim that χ(F ′) > 0. Indeed, otherwise, by (8.4), χ(F ′) = 0, and,
by (8.5), χ(F ′′) = 0. But χ(F ′) = 0 implies that htwi (F ′) is independent of
i, and similarly with F ′′ replacing F ′. Then (8.3) implies that htwi (F ′) = 0
for i = 0, 1, and the same with F ′′ replacing F ′. But Theorem 7.10 shows
that if F ′ and F ′′ have all their twisted homology groups vanishing, then so
does F . But we know htwi (F) = 1 for i = 0, 1.

But if F ′ is any subsheaf of F , then it forms a subsequence of the form
in (8.2), with F ′′ = F/F ′. Hence for any subsheaf, F ′, we have χ(F ′) > 0.
Hence F is stable.
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Chapter 9

The Twist Trick and Edge
Detachment

In this section we describe what we call the “twist trick.” It amounts to
modifying a sheaf by setting the head or tail map to zero along an edge, e,
and noting that the new sheaf’s twisted homology groups do not depend on
the twist at e; this seemingly trivial observation yields one of our main tools.
Intuitively, these theorems seem to specialize the value of an edge twist to be
zero or infinity or some other value, and draw interesting conclusions (this
“specialization” has to be explained and justified before it makes sense).

We then define an operation on graphs and sheaves called “edge loopi-
fication” and interpret our twist trick results in those terms. This leads us
to a conjecture on sheaves on graphs which will occupy us for most of the
rest of this paper.

9.1 The Fundamental “Twist Trick” Lemma

The basic “twist trick” is to take a sheaf, F , on a graph and modify it by
setting its head or tail map at some edge to zero, obtaining F ′. If S is a
vector space or a linear map, we use S∨ to denote the dual of S. Clearly
htwist
0 cannot decrease, and the elements of Htwist

0 (F)∨ can be written in
terms of Htwist

0 (F ′)∨; however, Htwist
0 (F ′)∨ elements are independent of the

twist at the discarded edge, and this gives interesting results.
First we give a lemma that describes the basic technique. Then we give

its consequences and some variants. The simplest consequence roughly says
that “one can always set a twist to zero or infinity.’

Lemma 9.1. Let F be a sheaf on a graph, G, and let e0 ∈ EG. Let G′ be
G with e0 deleted, and let F ′ be F restricted to G′. If htwist

0 (G;F) 6= 0, then
there exists an element of Htwist

0 (G′;F ′)∨ whose value at he0 (respectively
te0) is a linear functional that vanishes at the image of F(e0, h) (respectively
F(e0, t)).
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Our primary application is the case where te0 6= he0, but the lemma
holds even if e0 is a self-loop.

Proof. Let ψ be a full twist of G, and which we will write as ψ = (ψ′, ψe0),
where ψ′ is a full twist of G′ and ψe0 is the twist at e0. There is a natural
injection:

Htwist
0 (G;F)∨ → Htwist

0 (G′;F ′)∨(ψe0) = Htwist
0 (G′;F ′)∨ ⊗F(ψ′) F(ψ),

simply because an element, α, of Htwist
0 (G;F)∨ is just a collection of linear

functionals, α(v) ∈ F(v)(ψ)∨ that satisfy consistency conditions along the
edges, namely for each e ∈ E:

α(he)F(e, h)∨ = ψeα(te)F(e, t)∨.

The elements of Htwist
0 (G′;F ′)∨(ψe0) are the same, except that the condition

of consistency is not required at e = e0; since G′ has the same vertices as
G, and F ′ has the same vertex spaces as F , the above map is an injection.
Let α1, . . . , αr be a basis for Htwist

0 (G′;F ′)∨. Any non-zero element, β, of
Htwist

0 (G′;F ′)∨ may therefore be written as

β =
r∑
i=1

ci(ψ)αi(ψ
′),

where the ci(ψ) ∈ F(ψ) and not all ci are zero, and where we have written
αi as αi(ψ

′) to emphasize the fact that the αi depend only on the twists of
ψ′ are are independent of ψe0 . By clearing denominators we may assume
that ci(ψ) ∈ F[ψ], i.e., are polynomials in the ψ; we may therefore write, for
some integer, s,

ci(ψ) =

s∑
j=0

ψje0cij(ψ
′),

where the cij ∈ F[φ′]; furthermore, by dividing common factors of ψe0 , we
may assume that ci0 6= 0 for at least one value of i. But then the consistency
condition at e0 implies that

r∑
i=1

s∑
j=0

ψje0cij(ψ
′)αi(ψ

′)(he)F(e, h)∨

= ψe0

r∑
i=1

s∑
j=0

ψje0cij(ψ
′)αi(ψ

′)(te)F(t, h)∨. (9.1)
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Setting ψe0 to zero yields

r∑
i=1

ci0(ψ
′)αi(ψ

′)(he)F(e, h)∨ = 0.

In other words, if

γ =

r∑
i=1

ci0(ψ
′)αi(ψ

′) ∈ Htwist
0 (G′;F ′)∨,

then γ(he)F(e, h)∨ = 0, or, in other words, the entire image of F(e) via the
map F(e, h) in F(he) is taken to zero by the linear functional γ(he). The
coefficient of ψs+1

e0 must be equal on either side of Equation 9.1 and so

ψs+1
e0

r∑
i=1

cis(ψ
′)αi(ψ

′)(te)F(e, t)∨ = 0.

Thus we also have a linear functional in Htwist
0 (G′;F ′) that is zero over the

image of F(e0, t).

9.2 Edge Detachment

In this section we define “edge detachment” and explain that conjectures
about this process imply that certain sheaf collections have no gap.

Definition 9.2. Let F be a sheaf on a graph, G, and e an edge. By the
e-head detachment of F we mean the sheaf on G that is identical to F except
that F ′(h, e) = 0. We define e-tail detachment analogously.

Corollary 9.3. Let F be a sheaf on a graph, G, such that htwist
0 (F) 6= 0.

Then htwist
0 (F ′) 6= 0, where F ′ is any head or tail detachment of F

Proof. Let Ge be the graph G with an edge e deleted, and let Fe be F
restricted to Ge. Any element of Htwist

0 (Ge;Fe)∨ that satisfies the condition
α(he)F(e, h)∨ = 0 in the case F ′ is the tail detachment is also an element of
Htwist

0 (G′;F ′)∨. Such an element is guaranteed to exist by Lemma 9.1 and
so Htwist

0 (G′;F ′)∨ and it’s dual space are nonempty.

Corollary 9.4. Let F be a sheaf on a graph, and let F ′ be any head or tail
detachment of F . Then for i = 0, 1 we have

htwi (F ′) ≥ htwi (F).
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Proof. Since F ,F ′ have the same Euler characteristic, it suffices to prove the
inequality for i = 0. We claim that for any positive integer n, if n ≤ htw0 (F),
then n ≤ htw0 (F ′); we will use induction on n. The case n = 1 is just
Corollary 9.3. Assume that our claim is true for some value of n ≥ 1, and
assume that n + 1 ≤ htw0 (F); then htw0 (F ′) 6= 0, and so, by Lemma 8.17
there exists G′ a vertex quotient of F ′ of total dimension one less with
htw0 (G′) = htw0 (F ′) − 1. But the if G agrees with F except that it has
the same vertex values as F ′ (i.e., it equals F except that its value at
one vertex is a quotient of F ’s value there of dimension one less), then
htw0 (G) ≥ htw0 (F)− 1 ≥ n. Hence, by the inductive hypothesis, htw0 (G′) ≥ n,
and hence

htw0 (F ′) = htw0 (G′) + 1 ≥ n+ 1.

This proves the inductive step.

Definition 9.5. Given a sheaf F on a graph G with some edge e, we define
the other space to e, h to be

span{imF(e′, h)|he = he′, e′ 6= e}+ span{imF(e′, t)|te = te′}

and define the other space to e, t to be

span{imF(e′, t)|te = te′, e′ 6= e}+ span{imF(e′, h)|he = he′}

. These spaces are denoted by other(e, h) and other(e, t) respectively. We
say that the edge e is internal if imF(e, h) ∈ other(e, h) and imF(e, t) ∈
other(e, t).

The technical lemma below immediately implies that if F is a minimally
gapped sheaf from a sheaf collection closed under quotients, then F is sup-
ported on a graph with no leaves. It also shows that if e1 and e2 are two
edges incident to a degree two vertex v by, without loss of generality, their
tail maps then imF(e1, t) = imF(e2, t).

Lemma 9.6. Let F be a gapped sheaf on a graph G. If there is some
e ∈ E(G) such that e is not internal, then there is a gapped proper subsheaf
of F .

Proof. Without loss of generality, assume imF(e, h) 6⊂ other(e, h). Let F ′
be the same as F except F ′(e) = F(e, h)−1(other(e, h) ∩ imF(e, h)). This
is a proper subsheaf. Any element of α ∈ Htw

1 (F) can be restricted to
an element of Htw

1 (F ′), else dψ would map α|e to something nonzero in
imF(e, h)/other(e, h) and no other head or tail map could cancel that out .
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Since it is a subsheaf, we have htw1 (F) = htw1 (F ′). Any subsheaf of F must
have at least as large an excess as the corresponding subsheaf in F ′, since
their only difference is that we made the edge dimension of F ′ smaller. This
directly implies that m.e.(F) ≥ m.e.(F ′) and so F ′ is gapped.

Corollary 9.7. Let C be a sheaf collection that is closed under subsheaves
and quotients and let F be a T-minimal gapped sheaf in C over a graph G.
Then all e ∈ E(G) must satisfy

dim (F(e)) > 1.

Proof. Suppose to the contrary there exists e ∈ E(G) with dim (F(e)) = 1.
Let span(a) be the image of F(e, h) with v the vertex mapped to by the
head of e and a ∈ F(v). Let F ′ be the the e-head detachment of F . By
the previous corollary and theorem 8.9 we know htwi (F ′) ≥ 1 and that F is
stable with m.e.(F) = 0. For any subsheaf U of F assign a corresponding
subsheaf U ′ of F ′ that has the same values on each edge and vertex as U ,
implying that we have excess(U) = excess(U ′). A subsheaf R′ of F ′ is not
mapped to in this way if and only if span(a) 6⊂ R′(v) and R′(e) 6= 0. For
any such R′ let R be the subsheaf of F with R′(E) = R(E) and the values
on the vector spaces also agree except for R(v) = R′(v) + span(a). By the
definition of excess, excess(R′) = excess(R) + 1. By the stability of F , we
have excess(R′) ≤ 0 unless R is 0 or F . Since R(e) 6= 0, we know R 6= 0.
If R = F on the other hand, then by Lemma 9.6 since F is a T-minimal
gapped sheaf there is some element of R′(E) that maps to F(he) under a
sum of the head and tail maps, which contradicts that R′(he) = 0. Thus
m.e.(F ′) = 0.

Let span(b) be the image of F(e, t) for some b ∈ F(te). Let S1 be the
subsheaf of F that agrees with F on all vertices and edges except S1(e) = 0
and let S2 be the subsheaf of F that is zero on all vertices and edges except
F(te) = span(b). The sheaf S = S1/S2 is a subquotient of F . For any
subsheaf S ′ of S assign a corresponding subsheaf G of F ′ that is equal to S ′
on all vertices and edges except G(e) = F(e) and G(te) = S ′(te) + span(b).
The excess of S ′ is equal to the excess of G, as G is exactly one dimension
larger in the vertex space and one dimension larger in the edge space than
S ′. So for any subsheaf of S there is a subsheaf of F with equal excess,
implying m.e.(S) ≤ m.e.(F) = 0.

Given any α ∈ Htw
1 (F ′), let α′ be the restriction of α to all edge spaces

except the edge space on e. So dF ′ψ(alpha′) is 0 on all vertex spaces except
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possibly on te where it is in span(b). This implies that α′ ∈ Htw
1 (S) and so

Htw
1 (S) ≥ Htw

1 (F ′). Thus S is a gapped subquotient of F

9.3 Alternate Proof of the Twist Trick

One can also give a proof of Corollary 9.4 by arguing about htw1 directly
rather than htw0 . The nice thing about such a proof is that one can state
a very general linear algebra lemma that illustrates the main technique in
broad terms.

To explain the lemma, recall that if F is a field and ψ an indeterminate,
then to every vector space, W , over F, there is a naturally associated vector
space, W (ψ) = W ×F F(ψ) over F(ψ). Any vector of W can be identified
with one in W (ψ) (via w 7→ w⊗1), and any basis of W as such gives a basis
of W (ψ); similarly for any subspace of W . One can reverse this process, to a
certain extent. Any vector in W (ψ) is a finite sum of terms wi×fi(ψ), where
wi ∈ W and fi(ψ) ∈ F(ψ) is a rational function in ψ; scaling the vector by
the product of the denominators of the fi(ψ) gives a proportional vector in
W [ψ] = W ×F F[ψ], i.e., a finite sum of terms wi × pi(ψ), where the pi(ψ)
are polynomials. For any vector in W [ψ] and any c ∈ F, we can substitute
c for ψ to get a vector in W ; if w1, . . . , wr are linearly independent vectors
in W [ψ], then w1 ∧ . . .∧wr is a nonzero element of (ΛrW )[ψ], and therefore
for all but at most finitely many c ∈ F, this element is nonzero when we
substitute c for ψ. It follows that for any subspace of W (ψ), there is a basis
of elements of W [ψ], for which we may substitute all but at most finitely
many c ∈ F, we get a subspace of W of the same dimension.

Lemma 9.8. Let F be a field, and ψ an indeterminate. Let A,B be subspaces
of F, and let J,K be subspaces of A ⊕ B. As usual, let A(ψ) = A ×F F(ψ)
be A extended as an F(ψ) vector space, and similarly for B(ψ), J(ψ),K(ψ).
Let

J∩ψK = {(j1, j2) ∈ J(ψ) | (j1, ψj2) ∈ K(ψ)},

and for c ∈ F let

J∩cK = {(j1, j2) ∈ J | (j1, cj2) ∈ K}.

Then for all c ∈ F we have

dimF(ψ)(J∩ψK) ≤ dimF(J∩cK) . (9.2)
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The paragraph above the lemma shows that, by considering a basis for
J∩ψK in (A×B)[ψ], that (9.2) holds for all but at most finitely many c ∈ F.
The novelty in the above lemma is that it holds for every c ∈ F, without a
finite number of exceptions.

Proof. We may assume J∩ψK is nonzero. We start by proving that this
implies that J∩cK is nonzero. So let (j1, j2) ∈ J∩ψK be nonzero; we may
assume that (j1, j2) ∈ J [ψ], and write

(j1, j2) =

r∑
i=0

(ji1, j
i
2)(ψ − c)i

for some ji1, j
i
2 and r; by dividing by an appropriate power of (ψ−c) we may

assume that at least one of j01 , j
0
2 is not zero. It follows that

(j1, ψj2) =
r∑
i=0

(ji1, ψj
i
2)(ψ − c)i

lies in K[ψ]. Hence

(j01 , ψj
0
2) = (j1, ψj2) + (ψ − c)w,

where w ∈ (A×B)[ψ]. Hence

(j01 , cj
0
2) = (j01 , ψj

0
2) + (ψ − c)(0,−j02) = (j1, ψj2) + (ψ − c)w′,

where w′ ∈ (A×B)[ψ]. In other words,

(j01 , cj
0
2)− (ψ − c)w′ ∈ K[ψ],

and so

(j01 , cj
0
2)− (ψ − c)w′ =

s∑
i=0

(ψ − c)iki,

for some ki ∈ K and s. Hence

(j01 , cj
0
2) = k0 ∈ K.

Hence J ∩c K contains the nonzero vector (j01 , j
0
2).

We have shown

1 ≤ dimF(ψ)(J∩ψK) ⇒ 1 ≤ dimF(J∩ψK),
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and we can use this to establish that

n ≤ dimF(ψ)(J∩ψK) ⇒ n ≤ dimF(J∩ψK)

for any positive integer n. There are a number of ways of doing this, at least
one of which is similar to our inductive proof of Corollary 9.4.

For example, we can use induction on n. The case n = 1 has been
established. Assuming the claim for a particular value of n ≥ 1, assume
that

n+ 1 ≤ dimF(ψ)(J∩ψK).

Then we know there is a nonzero element, j = (j01 , j
0
2) ∈ J∩cK; let J ′ be J

modulo the span of j. Then

dim(J ′∩cK) = dim(J∩cK)− 1;

but since dim(J ′) = dim(J)− 1, we have

dimF(ψ)(J
′∩ψK) ≥ dimF(ψ)(J∩ψK)− 1 ≥ n.

Hence
dim(J∩cK) = dim(J ′∩cK) + 1 ≥ n+ 1.

9.4 The Chain Decomposition

The main point of this subsection is to show that if F is a stable sheaf
on a graph, G, and F(e) 6= 0 for a self-loop e about a vertex, then F(e)
and its restriction maps to F(v) have a fairly simple description in terms
of “chains,” provided that F is not supported entirely on e and v; this is
Theorem 9.12 below. This will be useful for what we call “the second twist
trick.” However, we will make a number of additional remarks regarding
chains.

Let us give some definitions that will allow us to state the main theorem
of this section.

Definition 9.9. Let H : E → V and T : E → V be two linear maps of vector
spaces over some field, and let i ≥ 0 be an integer. We say that (H,T ) is
superstable if for any finite dimensional subspace E ′ ⊂ E such that E ′ 6= 0
we have

dim
(
H(E ′) + T (E ′)

)
> dim(E ′). (9.3)
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By an (H,T )-chain of order i we mean an alternating sequence of elements
of V and E

c = (v1, e1, . . . , vi, ei, vi+1)

(i.e., vj ∈ V for 1 ≤ j ≤ i+ 1 and ej ∈ E for 1 ≤ j ≤ i+ 1) such that

Tej = vj and Hej = vj+1.

for all 1 ≤ j ≤ i. By the edge sequence of the chain, c, we mean the sequence
(e1, . . . , ei), and by the edge space of c, denoted cE , we mean

cE
def
= span(e1, . . . , ei);

we similarly define the vertex sequence and vertex space, cV , of the chain,
c, based on the vj . If i ≥ 0 and j ≥ 1 are integers with j ≤ 2i + 1, we
refer to the j-th element of a chain as its j-th component (which lies in V
or E according to whether j is odd or even). We often drop the “(H,T )”
or “order i” from the term chain when H,T or i are understood (or when i
does not matter).

A chain superficially resembles a walk in a graph. Also, a chain of order
0 is simply an element of V. The last definition we need to state the main
theorem is the notion of a canonical form in the above setting.

Definition 9.10. Let H : E → V and T : E → V be two linear maps of
vector spaces over some field. By a chain decomposition for (H,T ) we mean
a collection of (H,T )-chains such that their edge sequences are mutually
disjoint and their union comprises a basis for E , and similarly for vertex
spaces and V. In analogy with Jordan canonical form, we call also call a
chain decomposition a canonical form for (H,T ).

Example 9.11. Let U be the unhappy 4-bundle over the graph with vertex,
v, and two self-loops, e1 and e2. Let H and T be the respective restrictions of
dh and dt to U(e1). Then if α, β is a basis for U(e1), thenHα,Hβ, Tα, Tβ are
linearly independent, spanning U(v). In this case Tα, α,Hα and Tβ, β,Hβ
are two chains that give a canonical form for H,T ; the same is true if α and
β are replaced by any two linear combinations of α and β that are linearly
independent.

Here is the main theorem of this section.

Theorem 9.12. Let (H,T ) be a superstable pair of linear maps E → V
of finite dimensional vector spaces over some field. Then there exists a
canonical form for (H,T ).
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We remark that if V is larger than the span of the images of H and T then
the canonical form for (H,T ) will necessarily contain a number of chains of
order zero, whose number is precisely the codimension of H(E) +T (E) in V.

The rough idea of the proof of the above theorem is to build a canonical
form by starting with any chain of maximal order, and successively adding
new chains that are maximal subject to being linearly independent of the
previous chains.

The setting of our notion of canonical form shares a number of other
similarities with the setting of Jordan canonial form. First, in either setting
there is a polynomial time algorithm to compute a maximal chain, and hence
a polynomial time algorithm to compute a canonical form. Second, in either
setting chains of any order form a vector space. Third, if the chains of
maximal order form a vector space of dimension d, then exactly d chains of
maximal order appear in any canonical form. Fouth, the number of chains
of a given order in any canonical form is independent of the particular choice
of canonical form. Fifth, the dimension of chains of a given order and a basis
for this space of chains can be easily calculated once we find a canonial form.
Sixth, there is a way to view our canonical form as related to the Jordan
canonical form of a certain nilpotent matrix, which we now state.

Theorem 9.13. Let (H,T ) be a superstable pair of linear maps E → V of
finite dimensional vector spaces over some field. Let T ⊂ V be the span of
the first elements of the chains in any canonical form. Then

1. the first element of any maximal chain lies in T regardless of the par-
ticular choice canonical form;

2. the spaces H(E) and T are complementary spaces of V, i.e.,

H(E) ∩ T = 0, and H(E) + T = V.

We remark this implies there is a unique linear map A : V → V such
that A restricts to TH−1 on H(E) and A maps T to 0; we have that A is
nilpotent, and there is a one-to-one correspondence between canonical forms
for (H,T ) given T , the span of the first elements of the chains, and Jordan
canonical forms for A.

Below we will state some lemmas on (H,T )-chains which will not only
prove the above theorems, but give more insight into chains.

Let us record some simple remarks whose proofs are immediate.

Proposition 9.14. Let H : E → V and T : E → V be two linear maps of
vector spaces. Then
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1. for any integer i ≥ 0, and any integer j ≥ 1 with j ≤ 2i+ 1, the map
that takes a chain to its j-th component is a linear map; the chains of
order i are a vector space under term-by-term addition and term-by-
term scalar multiplication;

2. any chain is determined by its edge part;

3. if H and T are injections, then any chain of a given order is deter-
mined by any of its components.

Let us begin with some remarks about superstable pairs.

Proposition 9.15. Let (H,T ) be a superstable pair of linear maps E → V
of vector spaces over some field. Then

1. H and T are injections, and hence any chain is uniquely determined
from any of its components;

2. if
c = (v1, e1, . . . , ei, vi+1)

is any nonzero chain of order i, then v1, . . . , vi, vi+1 are linearly inde-
pendent in V, and e1, . . . , ei are linearly independent in E.

In particular, if E and V are finite dimensional, then there is no nonzero
chain of order greater than dim(E).

Proof. If H were not an injection, then Hu = 0 for some u 6= 0, and then
(9.3) would be violated for E ′ being the space spanned by u. Hence H is an
injection. Similarly T is an injection.

Let us prove the second part by induction on i. If i = 0, then c consists
of a single element of V, and the claim is clear. Now say that the second
part holds for a value of i ≥ 0, and let us prove that the same is true for i
replaced with i+ 1. So consider a chain

(v1, e1, . . . , ei, vi+1, ei+1, vi+2).

If this chain is not the zero chain, then since the value of v1 determines
the values of the entire chain, we have v1 6= 0. By induction, we know
that v1, . . . , vi+1 are linearly independent; hence, since T is an injection,
and ej = T−1vj for j = 1, . . . , i + 1, we have that e1, . . . , ei+1 are linearly
independent. But then

E ′ = span(e1, . . . , ei+1)
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is i+ 1 dimensional, and hence

T (E ′) +H(E ′) = span(v1, . . . , vi+2)

must be of dimension at least i+ 2, by (9.3); hence v1, . . . , vi+2 are linearly
independent. This proves the inductive argument, and hence the second
part of the proposition holds.

We remark that the inductive proof of independence can be viewed as
starting from v1, then proceeding to u1, then v2, then u2, etc. As such the
proof can be viewed as zig-zagging up and down, or moving along the com-
ponents of the chain. This type of induction will also be used in Lemma 9.18.

We now define a canonical form for superstable pairs.

Definition 9.16. Let (H,T ) be a superstable pair of linear maps E → V.
We see that a sequence, c1, . . . , cm, of chains is successively maximal if

1. c1 is a maximum order chain; and

2. for each j ≥ 2,
cj = (vj1, e

j
1, . . . , v

j
ij+1)

which is of maximum order among all chains for which vj1 is not in the

span of the vj
′

` ranging over all j′ ≤ j−1 and any ` (i.e., 1 ≤ ` ≤ ij′+1).

We say that the a successively maximum sequence, c1, . . . , cm is complete if
the span of the vertex spaces of c1, . . . , cm is all of V.

Clearly a successively maximum sequence of chains exists if V is finite
dimensional, since vertex spaces of some chains is not all of V, then we may
take any element of V that is not in this chain as the first element of a new
chain.

Now we come the some lemmas that culminate in showing that any com-
plete sequence of successively maximum chains actually comprise a canonical
form.

Lemma 9.17. Let (H,T ) be a superstable pair of maps of vector spaces
over a field, F. Let c1, . . . , cm be a sequence of successive maximum (H,T )-
chains, with

cj = (vj1, u
j
1, . . . , vij+1).

Then we have
i1 ≥ i2 ≥ . . . ≥ im.
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For j = 1, . . . ,m − 1 let c̃j be the chain cj that is truncated to a chain of
order im taking its first 2im + 1 components, i.e.,

c̃j = (vj1, u
j
1, . . . , vim+1).

Then for any α1, . . . , αm−1 ∈ F, we have that c1, . . . , cm−1, c is also a se-
quence of successive maximum chains, for

c = cm − α1c̃
1 − · · · − αm−1c̃m−1.

Proof. If ij < ij+1 for some j = 1, . . . ,m − 1, then cj+1 is of order greater

than cj and yet vj+1
1 is linearly independent of the vj

′

k with j′ < j and any

k; hence cj is not of maximal order subject to vj1 being linearly independent

of vj
′

k for j′ < j.
For the second part of the theorem, c has the same order as cm, and

since the first component of c is

vm1 − α1v
1
1 − · · ·αm−1vm−11 ,

this cannot be linearly dependent on the vjk with j < m unless vm1 is linearly
dependent as well.

Lemma 9.18. Let
cj = (vj1, e

j
1, . . . , v

j
ij+1)

for j = 1, . . . ,m be a sequence of successively maximal chains. Then

1. the subspace

T def
= span(v11, v

2
1, . . . , v

m
1 ) ⊂ V

satisfies T ∩H(E) = 0;

2. the vjk, ranging over all k and j, are linearly independent, and similarly

for the ujk; and

3. the subspace

H def
= span(v1i1 , v

2
i2 , . . . , v

m
im) ⊂ V

satisfies H ∩ T (E) = 0.

Proof. We will prove this by induction on m. The inductive step will be
very similar to the proof of Proposition 9.15. Of course, this proposition
also proves almost everything we need for the base case m = 1.
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If m = 1, i.e., we have a single maximum chain, c1, then by Proposi-
tion 9.15 we know that the v1k are linearly independent in V, as are the u1k
in E . Since c is a maximum order chain, v11 cannot lie in the image of H(U),
for otherwise we could lengthen the chain; similarly for v1i1 . This establishes
the claims about a sequence of successively maximum chain in the lemma
in the case where m = 1. Let us establish the situation m ≥ 2 by induction.

So assume that for some m ≥ 2 we have established the claims regard-
ing any sequence of maximum chains c1, . . . , cm−1, and let us add to this
sequence cm, a chain of maximum order subject to vm1 is not in the span of
the vjk for j < m and all k.

We first show that T ∩H(U) = 0 for c1, . . . , cm. Assume, to the contrary,
that

α1v
1
1 + · · ·αmvm1 ∈ H(U)

for some αi ∈ F that are not all zero; since

span(v11, . . . , v
m−1
1 ) ∩H(U) = 0,

we have that αm 6= 0. By subtracting multiples of the c1, . . . , cm−1 truncated
appropriately, as in Lemma 9.17 from cm, we may assume that αj for j < m
are all zero. But then vm1 is in the span of H, and there is a unique way to
extent cm “backwards” to a longer chain

(vm0 , u
m
0 , v

m
1 , . . . , v

m
im+1).

We wll now get a contradiction by showing that vm0 is not in the span of the
vjk for all k and j with j ≤ m− 1.

For the sake of contradiction, assume that

vm0 =
∑

j≤m−1
αjkv

j
k.

Since ∑
j≤m−1

αij+1v
j
ij+1 = vm0 −

∑
j≤m−1

∑
k≤ij

αjkv
j
k,

and the right hand side is in the image of T (U), we have∑
j≤m−1

αij+1v
j
ij+1 ∈ T (U);

but by the inductive assumption, this implies that∑
j≤m−1

αij+1v
j
ij+1 = 0.
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Hence
vm0 =

∑
j≤m−1

∑
k≤ij

αjkv
j
k.

But vm0 and all the vjk are in the image of T , so we can apply HT−1 to both
sides and conclude that

vm1 = HT−1vm0 =
∑

j≤m−1

∑
k≤ij

HT−1αjkv
j
k =

=
∑

j≤m−1

∑
k≤ij

αjkv
j
k+1.

But this contradicts the fact that vm1 is not in the span of the vjk for j ≤ m−1.
Hence vm0 would also not be in this span, and we must have T ∩H(U) = 0
unless cm is not successively maximum when added to c1, . . . , cm.

Next we claim that um1 (assuming that cm is of order at least one) is
linearly independent of the ujk with j ≤ m − 1: indeed, if not, then by

applying T to um1 and its expression as a linear combination of the ujk with
j ≤ m − 1, we would conclude that Tum1 = vm1 is a linear combination of
some vjk with j ≤ m− 1, which is impossible.

Now, similar to the proof of Proposition 9.15, we show that for ` =
2, 3, . . . , im we have that vm` is not a linear combination of the “previous

vjk,” meaning vm`′ with `′ < k and the vjk with j ≤ m− 1 (and k arbitrary),
and also that the same holds for u replacing the v’s everywhere. Again we
use induction on `, having established ` = 1 as a base case. Indeed, since
vm` is in the image of H, and so are all the vjk with k ≥ 2 and j ≤ m − 1
and with 2 ≤ k < `, the same argument as in the previous paragraph shows
that any way for writing vm` in terms of the previous vjk cannot involve any

of the vj1, with j ≤ m, since this would mean that some linear combination

of the vj1 would lie in H. Hence we need show that vm` cannot be written as

a sum of the “previous vjk” where k ≥ 2; but then we can apply H−1, and
conclude that expressing vm` as such would imply that um`−1 could be written

in term of “previous ujk” (meaning with j ≤ m− 1 or j = m and k < `− 1),
contradicting the inductive claim. And then the claim for um` instead of vm`
follows by applying T .

To finish the lemma, we see, by the same argument, that vmim+1 cannot

be written in terms of the previous vjk (meaning either j ≤ m− 1 or j = m
and k ≤ im). Now we finish by showing that

H = span(v1i1+1, . . . , v
m
im+1)
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has H ∩ T (U) = 0. But here we can use the same argument as used for
T ∩H(U) = 0, by truncating c1, . . . , cm−1 from their beginning, rather than
their end, and using the inductively known fact that

span(v1i1+1, . . . , v
m−1
im−1+1) ∩ T (U) = 0.

Now we get to the whole point of successively maximum chains.

Lemma 9.19. Let c1, . . . , cm be a sequence of successively maximum (H,T )
chains that is complete, where (H,T ) is a superstable pair. Then this se-
quence is a canonical form for (H,T ).

As remarked earlier, complete sequences exist since we can always aug-
ment a sequence by adding chains of order zero, consisting of a single element
of V.

Proof. By definition, the vertex spaces of the chains spans all of V. Similarly,
if the edge spaces of the chains does not span all of E , then choose some
nonzero ε in E that is not in this span. Then (Tε, ε,Hε) is a new chain.
But now we claim that Tε cannot be a linear combination of elements of
the vertex spaces of the chains: indeed, otherwise this linear combination
cannot involve any of the last components of the chains (the vj

ij+1
in the

previous notation), for otherwise H would intersect T . But then we could
apply T−1 to the equation representing Tε as a linear combination of vertex
space elements and conclude that ε is a linear combination of the edge spaces
of c1, . . . , cm.

Hence the sum of the vertex and edge spaces of the chains are, respec-
tively, the entirety of V and E , and by Lemma 9.18, these chains give bases
for V and E and are therefore a canonical form for (H,T ).

Proof of Theorem 9.12. Any complete sequence of successively maximal chains
gives a canonical form for (H,T ).

Proof of Theorem 9.13. Let c1, . . . , cm be a complete sequence of succes-
sively maximum chains of (H,T ), with

cj = (vj1, e
j
1, . . . , v

j
ij+1).

Let ` be the order of the chain of maximum order, and let the dimension
of the vector space of maximum order chains be d. Since any chain is
determined by its first component, if we write down any sequence of at most
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d−1 chains, there is always a chain of maximal order whose first component
is linearly independent of the edge spaces of the chains in this sequence. It
follows that c1, . . . , cd must all be of maximum order. However, then the
v11, . . . , v

d
1 span the space of first components of chains of maximal order. It

follows that cd+1, . . . , cm are all of order strictly less than `.

9.5 The Second Twist Trick

This section shows that the twist trick can give a better result when the
edge we are detaching is a self loop. This will give us stronger conditions on
minimally gapped sheaves with self loops.

Definition 9.20. Given a sheaf F on a graph G and a basis for F(E),
b1, . . . , br, we can express any α ∈ Htw

1 (F) as d1b1+. . .+drbr with di ∈ F(ψ).
If all of the bi are elements of

⋃
e∈E F(e), we call the sequence (d1, . . . , dr)

a representation of α with respect to the sequence (b1, . . . , br). We say F
is full if it satisfies htw1 (F) = 1 and for any nontrivial α ∈ Htw

1 (F) and
given any basis of F(E), the representation of α does not contain 0. Note
that any minimally gapped sheaf H from a sheaf collection closed under
taking subsheaves and quotients is also a full sheaf, since if there exists a
α ∈ Htw

1 (H) with a representation (d1, . . . , dr) with respect to (b1, . . . , br)
and some di = 0 then we may quotient out span(bi) from the edge space of
H to create a new quotient sheaf H′ with maximal excess still 0 and Htw

1 (H)
containing

d1b1 + . . .+ di−1bi−1 + di+1bi+1 + . . .+ drbr,

contradicting that H is minimal.

Lemma 9.21. Let C be a sheaf collection closed under taking subsheaves
and quotients and let F be a full, stable, gapped sheaf in C on a graph G.
Suppose G has a self loop l on a vertex v and F is supported on l. Let F̃ be
F except F̃(l) = 0, F̃(v) = 0 and any restriction map into F(v) is now the
zero map. Then htw1 (F̃) ≥ 2.

Proof. Let α ∈ Htw
1 (F) be nonzero on l and let ψ and ψ̃ be the full twists for

F and F̃ respectively. By definition α is a direct sum consisting of a vector
α|e ∈ F(e)(ψ) for each e ∈ EG. For each vertex u ∈ VG, α must satisfy the
condition that ∑

e∈h−1
G (u)

F(h, e)(α|e) +
∑

e∈t−1
G (u)

ψeF(t, e)(α|e) = 0.

58



9.5. The Second Twist Trick

Fix a basis be1, . . . , b
e
re for F(e) for each edge e. We can write α|e as

be1d
e
1 + . . .+ bered

e
re

with de1, . . . , d
e
re ∈ F(ψ). By multiplying out denominators for every edge

though, we may assume that dei ∈ F[ψ] for any edge e and 1 ≤ i ≤ re. In
other words, the dei are polynomials in ψ.

Given a f ∈ F, we may define αf ∈ F̃(e)(ψ̃) to be α restricted to all
edges except l and for each dei we substitute every instance of ψl with f .
Then αf ∈ Htw

1 (F̃) since for every u ∈ VG we have∑
e∈h−1

G (u)

F̃(h, e)(ã|e)−
∑

e∈t−1
G (u)

ψeF̃(t, e)(ã|e) = 0.

Let C = (v1, e1, . . . , ek, vk+1) be a chain from a canonical form on F(l).
Let S be the span of the ei. We can express α|S as

e1γ1 + ...+ ekγk

for γ ∈ F [ψ]. Since C is from a canonical form, (dh − ψldt)α|l restricted to
the span of the vi is the same as (dh−ψldt)α|S . If Θ = {αf |f ∈ F} ∈ Htw

1 (F̃)
must have dimension at most 1, then so must (dh−ψldt)Θ|E . This implies

ψlγ1
ψlγ2 − γ1

...
ψlγk − γk−1
−γk

 = c0


c1
c2
...
ck
ck+1

 (9.4)

where c0 ∈ F(ψ) and for i = 1, . . . , k + 1 we have ci ∈ F(ψ̃). We also have
c1 and ck+1 are nonzero since otherwise F wouldn’t be a full sheaf. Also c0
is nonzero or else stability is violated on the chain. Dividing by c0 gives

ψlγ
′
1

ψlγ
′
2 − γ′1
...

ψlγ
′
k − γ′k−1
−γ′k

 =


c1
c2
...
ck
ck+1

 ∈
(
F(ψ̃)

)k+1
. (9.5)

59



9.5. The Second Twist Trick

So

γ′k = ±ck+1

γ′k−1 = ±ψlck+1 ± cl
γ′k−2 = ±ψ2

l ck+1 ± ψlcl ± ck−1
...

γ′1 = ±ψllck+1 ± ψk−1l cl ± . . .± c2.

But c1 = ψlγ
′
1 6∈ F(ψ̃) since ck+1 6= 0.

Corollary 9.22. Let G be a graph with a self loop e on a vertex v and let F
be a minimally gapped sheaf supported on e. Then dim(F(v)) > dim(F(e))+
1.

Proof. Note dim(F(v)) 6= dim(F(e)) simply by stability. If dim(F(v)) =
dim(F(e)) + 1 then F̃ has maximum excess 1 and by the previous lemma
htw1 (F̃) = 2 contradicting that F is minimally gapped.
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Chapter 10

Homotopy Simplifications
and Vector Bundles

In Lemma 2.4 we gave an alternate definition of the abelian girth using
certain subgraphs with no leaves. Pruning a graph, or more generally taking
subdivisions can be seen as examples of “homotopy preserving operations”
and this view will allow us to define many different ways of transforming
a sheaf on a graph while preserving maximum excess and twisted Betti
numbers. This will be useful in our proof of Theorem 7.18.

Homotopy operations are also intrinsically interesting, as each sheaf in a
homotopy equivalence class has similar properties. In this section we will not
be extremely formal in discussing homotopy; rather, we shall define some
operations on sheaves and show that they preserve certain sheaf invariants.
Later we will describe in rough terms what one might mean by homotopy
equivalence and briefly quote theorems in [18] to justify certain theorems.

10.1 Some Homotopy Operations

The following operations are examples of homotopy operations; we will jus-
tify the terms later.

Definition 10.1. Let F be a sheaf on a graph, G, and let e ∈ EG. If
u ⊂ F(e) with F(e, h)u = 0 and F(e, t)u 6= 0, we say that u is tail retractible.
By the tail retract (at e) of F along u we mean the sheaf F ′ on G such that

1. the values of F ′ equal those of F except that F ′(e) = F(e)/U , and
F ′(te) = F(te)/W , where U is the span of u, and W is the span of
F(e, t)u;

2. the restriction maps of F ′ are inherited from those of F in the natural
way.

We similarly define a head retract.
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Note that in the above definition, the edge e may be a self-loop.
Here we introduce particular notion for the standard notion of a graph

contraction.

Definition 10.2. Let G be a graph and let e be an edge. We define the
subdivision of e (in G) to be the graph, se(G), where e is discarded and
replaced with a new vertex and two new edges incident to it; formally se(G)
has

1. edge set {e1, e2} q EG \ {e};

2. vertex set VG q {e}, i.e., VG with a new vertex with the label e;

3. the head/tail maps of G along with new maps te1 = te2 = e, he1 = he
and he2 = te.

We caution the reader that while e is an edge in G, e becomes a vertex in
se(G); this (perhaps unusual) convention for the “new vertex” makes edge
contraction in a sheaf quite simple.

Definition 10.3. Let F be a sheaf on a graph, G, and let e ∈ EG be an
edge for. We define the subdivision of e (in F), also called se(F) to be the
sheaf of se(G) (with notation as in Definition 10.2) given by

1. the edge and vertex spaces are the same as in F except se(F)(e) =
F(e) (note e is an edge in G and a vertex in se(G)) and se(F)(e1) =
se(F)(e2) = se(F)(e),

2. the restriction maps of se(F) are the same as those in F , except tail
maps of the new edges e1, e2 are both the identity, se(F)(e1, h) =
F(e, h) and se(F)(e2, h) = F(e, t).

Now we note that the above defined homotopy operations do not change
many of the fundamental invariants of a sheaf.

Definition 10.4. We say that two sheaves have isomorphic homology if
they have isomorphic homology groups and twisted homology groups, and
the same maximum excess.

Any such two sheaves also, therefore, have the same Euler characteristic
and dual maximum excess. In Subsection 10.4 we show that it is enough
to check that the homology groups are the same, when the two sheaves are
related by a “functorial procedure,” in a certain sense.
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Theorem 10.5. Two sheaves have isomorphic homology if one is obtained
from the other by a head or tail retract. (Definition 10.1).

Proof. Let F be a sheaf on a graph G with F ′ being a tail or head retract
on some edge e. The natural map from F to F ′ also maps subsheaves of
F to subsheaves of F ′ with the same excess. Any member of H1(F) or
Htw

1 (F) under the same map would also be a member of H1(F ′) or Htw
1 (F ′)

respectively. Let v ∈ G be the vertex affected the by head or tail retract,
and let W be defined as they are in Definition 10.1. Any member of H1(F ′)
or Htw

1 (F ′) can be mapped to some subspace S of F(E) in a natural way.
Then d or dFψ on that subspace must be zero on all vertices except F(v)
where it is some element of W (ψ). Thus adding some element of V to the
edge space over e in S creates an element of H1(F) or Htw

1 (F) respectively.
Similarly, given any S subsheaf of F ′ we can create a subsheaf of cf. with
the same excess by adding W to S(v), adding U to S(e) and letting all other
vertex and edge spaces remain the same.

Theorem 10.6. If F is a sheaf on a graph G and e ∈ EG then F and se(F)
have isomorphic homology.

Proof. First we note that

dim (se(F)(V )) = dim (F(V )) + dim (F(e))

and
dim (se(F)(E)) = dim (F(E)) + dim (F(e))

and so subdividing a sheaf preserves the excess of the sheaf. Since subdi-
vision maps subsheaves of F to subsheaves of se(F), we have m.e.(F) ≤
m.e.(se(F)). Let K be a maximizer of se(F). Then K(e) = K(e1) + K(e2)
since if not we could restrict K(e) to that subspace and have a sheaf with
larger excess. Thus

dim(K(e)) = dim(K(e1)) + dim(K(ee))− dim(K(e1) ∩ K(e2)).

Define K′ to be the same as K except

K′(e1) = K′(e2) = K′(v) = K(e1) ∩ K(e2).

The excess of K′ is the same as K and K′ is a subdivision of some sheaf on
G, implying m.e.(F) = m.e.(se(F)).

We now define a map m : Htw
1 (F)→ Htw

1 (se(F)). Given α ∈ Htw
1 (F) let

(c1, . . . , ct) be a representation of α with respect to (b1, . . . bt) where the bi
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are a basis for F(E) with b1, . . . , br a basis for F(e) for some r < t. Here we
may assume that ci ∈ F[ψG] by multiplying out denominators. We define c′i
for 1 ≤ i ≤ t to be the same as ci except we substitute every occurrence of ψe
with ψe1ψ

−1
e2 . We also define m(α) restricted to the sum of all the edge spaces

in Ese(G) \ {e1, e2} has the representation c′r+1, c
′
r+2, . . . c

′
t. Let g1, . . . , gt

and h1, . . . , ht be the bases for e1 and e2 respectively with gi = hi = bi.
The representation of m(α) restricted to e1 is (c′1, . . . , c

′
t) with respect to

(g1, . . . , gt) and the representation of m(α)|e2 is (ψe1ψ
−1
e2 c
′
1, . . . , ψe1ψ

−1
e2 c
′
t)

with respect to (h1, . . . hr). All of this gives a representation for m(α). For
any β ∈ Htw

1 (se(F)), we must have

β|e1 = ψe1ψ
−1
e2 β|e2

or else the twisted differential map would sent β to something nonzero on
the vertex e. Thus m is invertible and a bijection between Htw

1 (F) and
Htw

1 (se(F)).

10.2 A Twisted Homotopy Operation

Here we define an example of what we will call a “twisted homotopy oper-
ation;” this will be formally explained in Subsection 10.4. For now we just
define the opearation.

Definition 10.7. Let F be a sheaf of F-vector spaces on a graph, G. Let
e ∈ EG be a self-loop such that if I is the sum of the images of F(e, h) and
F(e, t), then for some ψ ∈ F we have that F(e, h) + ψF(e, t) has no kernel.
We define the contraction of e (in F), denoted F//e, to be the sheaf in G
given by

1. the values of F//e agree with those of F , except that (F//e)(he) =
F(e)/I and (F//e)(e) = 0;

2. the restriction maps of F//e are the same as those in F , except that
the restrictions taken to F(he) are set to zero.

Example 10.8. Let G be the sheaf with a single vertex and a single self
loop. Let F1 be the sturcture sheaf of G, and let F2 be the sheaf which
is the same as the structure sheaf except that the tail restriction (at the
single edge) is minus the identity. Then the Betti numbers of F1 both equal
one; those of F2 are both zero, provided that the underlying field, F, has
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characteristic different than two. (Morally, F2 is essentially the Möbius
strip.) Hence self-loop contraction does not preserve Betti numbers. (The
twisted Betti numbers of F1,F2 are all zero.)

Definition 10.9. We say that two sheaves have isomorphic twisted invari-
ants if they have isomorphic twisted homology groups, and the same maxi-
mum excess.

Any such two sheaves also, therefore, have the same Euler characteristic
and dual maximum excess. Similarly to Definition 10.4, in Subsection 10.4
we will explain that it suffices to check equality of twisted homology groups
when one sheaf is obtained from another by a “sufficiently functorial oper-
ation.”

For completeness we mention the following theorem.

Theorem 10.10. Let F be a sheaf on a graph, G. Assume that for some
self-loop e ∈ EG we have that F(e, h) and F(e, t) are isomophisms. Then F
and the contraction of F at e have isomorphic twisted invariants.

Proof. Easy, using the fact that any square matrix has finitely many eigen-
values.

10.3 Example: Vector Bundles

Vector bundles, which we now define, is an illustrative application of edge
contraction.

Definition 10.11. A sheaf, F , on a connected graph, G, is a vector bundle
if all its restriction maps are isomorphisms. In this case, all F ’s values have
the dimension, we which call the dimension of the vector bundle.

Theorem 10.12. Let F be a vector bundle of dimension d on a connected
graph, G. Then

htw1 (G,F) = m.e.(F) = d m.e.(G) = d htw1 (G),

htw0 (G,F) = d.m.e.(F) = d d.m.e.(G) = d htw0 (G),

and
χ(F) = dχ(G).

Proof. Any vector bundle remains so after an edge contraction, and a vector
bundle can be contracted along every edge. Hence it suffices to prove the
theorem when G has exactly one vertex. If G has no edges, then the theorem
is immediate, and if G has more than one edge we contract along any self-
loop.
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10.4 A High Road to Homotopy

The goal of this subsection is to describe homotopy in simple and fairly
general terms. However, some of the theory we will use (the L2 Betti number
computation implicit in [17], for example), is not self-contained here. This
subsection is not essential to the rest of this paper; rather, it unifies and
simplifies the ad hoc constructions of the previous subsections in this section.

In topology one defines a notion of homotopic spaces; among other
things, homotopy preserves certain invariants. Regarding homology groups,
topological homotopies usually give “chain homotopies” of the chains from
which the homology groups are computed.

Ideally we would define a topological notion of homotopy for sheaves,
say based on the Zariski topology or étale topology, and then show that
they result in the appropriate chain homotopies. However, we will content
ourselves here to view the notion of a homotopy in terms of chains alone.

Definition 10.13. Let F be a field, and let u : F → F be an morphism of
a sheaf of F-vector spaces, F , on a graph, G, to itself. We say that u is null
homotopic if there is a linear map k : F(V )→ F(E) for which

uE = kdF , uV = dFk,

where, as usual, dF = dF ,h − dF ,t is the differential map of F . We say that
u is weakly null homotopic if for a full twist, ψ, on G there is a linear map
K : F(V )(ψ)→ F(E)(ψ) for which

uE = KdF ,ψ, uV = dF ,ψK,

where, as usual, dF ,ψ = dF ,h − ψdF ,t is the twisted differential map of F
(with respect to the fill twist ψ).

Definition 10.14. Let F ,G be sheaves on a graph, G. Given maps u : F →
G and w : G → F , we say that (u,w) is a homotopy pair (respectively,
weak homotopy pair) for (F ,G) if uw − 1 and wu − 1 are null homotopic
(respectively, weakly null homotopic), where 1 denotes the identity map.

We shall use (as is typical) the term “homotopy” and “weak homotopy”
in diverse ways; for example, we refer to a morphism u : F → G alone as a
(weak) homotopy, provided there exists there exists a w for which (u,w) is
a (weak) homotopy pair; we say F and G are (weakly) homotopic if there
exists a weakly homotopy pair for (F ,G).

As an example we show that if F is a sheaf on a graph G then se(F)
are homotopic. Let e1 and e2 be the new edges of se(F) as described in
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Definition 10.3) and let v1 and v2 be the head and tail respectively of e in
G. We define the map u : F → se(F) as the following collection of linear
maps

1. for any f ∈ EG other than e uf : F(f)→ se(F)(f) is the identity map,

2. ue : F(e) → se(F)(e1) ⊕ se(F)(e2) is given by ue(x) = (x,−x) for all
x ∈ F(e),

3. uv : F(v) → se(F)(v) is the identity map for any v ∈ VG other than
v1 or v2,

4. uvi : F(vi)→ se(F)(vi) is the zero map for i ∈ {1, 2}.

We now define another map w : se(F) → F as the following collection of
linear maps

1. wf : se(F)(f) → F(f) is the identity map for any f ∈ Ese(G) other
than e1 or e2,

2. we1 : se(F)(e1)→ F(e) is also the identity map,

3. we2 : se(F)(e2)→ F(e) is the zero map,

4. wv : se(F)(v)→ F(v) is the identity map for any v ∈ Vse(G) other than
e ,

5. we : se(F)(e)→ F(v2) is F(e, t).

Checking each of the vertex and edge spaces shows wu is the identity map
on F , implying wu− 1 is null homotopic by setting k from Definition 10.13
to be the zero map. The map (uw−1)E is the zero map on each of the edge
spaces except (uw − 1)e1⊕e2(x, y) = (0,−x− y). For (uw − 1)V we find the
zero map on all vertex spaces except (uw − 1)e⊕v2(x, y) = (−x,F(e, t)(x)).
If we let ke : e→ e2 be the identity and define k : se(F)(V )→ se(F)(E) be
the zero map elsewhere, then k satisfies the conditions of null homotopy.

Theorem 10.15. Homotopic sheaves have naturally isomorphic homology
groups. Weakly homotopic sheaves have isomorphic twisted homology groups.

Recall from [17] that if F is a sheaf on a graph, G, and u : G′ → G
is a morphism of graphs, then the pullback of F via u, denoted u∗F , is
the naturally arising sheaf on G′, i.e., the sheaf whose value at any P ∈
VG′ q EG′ equal is just F(u(P )), and whose restriction maps are given by
(u∗F)(e, h) = F(u(e), h), and similarly with h replacing t.
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Definition 10.16. We say that sheaves F ,G on a graph, G, are universally
homotopic (respectively, weakly universally homotopic) if for every covering
map u : G′ → G we have that u∗F and u∗G are homotopic (respectively,
weakly homotopic).

(The notion of a covering map is the usual one, also given in [17].)
The operations of retracting and edge contraction (and other such “gen-

eral” operations) have a sort of “functoriality” or “commuting with pull-
backs” in a way that makes the universality almost immediate from the
basic notion. For example, contracting a sheaf along an edge, e, and pulling
it back via a covering map is the same as first pulling back and then con-
tracting along all the edges in the preimage of e.

Theorem 10.17. Universally homotopic sheaves have isomorphic twisted
homology groups and the same maximum excess.

Proof. The twisted homology groups arise from the the homology groups of
abelian covers of the graph. Let F be a sheaf on a graph G. Take a random
Galois cover µ : G′ → G with group Z/qZ with q prime. Friedman shows as
an immediate result of Lemma 1.17 in [17] that h1(µ

∗F)/p tends to htw1 (F)
in probability as p goes to infinity. Thus if F is universally homotopic to a
sheaf G on a graph, then they have isomorphic twisted homology groups.

In [17] Friedman shows that cov(G), the set of covering maps over a
graph G, is a directed set using fibre products to create a partial ordering
of the covers. Friedman then shows for a sheaf F over G that

m.e.(F) =
limφ∈cov(G) h

tw
1 (φ∗F)

deg(φ)
.

Hence universally homotopic sheaves have equal maximum excess.

10.5 Contracting and Subdividing Gapped
Sheaves

The inverse operation of subdivision is called contraction. Instead of being
defined for a given edge like subdivision, contraction is defined for a given
degree 2 vertex with two distinct incident edges. Contraction simply replaces
the degree 2 vertex v and the incident edges, e1 and e2, with a single edge.
Contraction of a vertex v on a sheaf F is well-defined when v has degree
2, and if e1 and e2 are incident upon v, then they are distinct and the
restriction maps from F(e1) and F(e2) are both the identity map.

68



10.5. Contracting and Subdividing Gapped Sheaves

Corollary 10.18. Let G be a graph and let W be a beaded path or beaded
cycle in G. If F is a minimally gapped sheaf on G from a sheaf collection
closed under quotients then for each vertex v of W that is not the starting or
terminating vertex, s−1v (F) is a well defined sheaf and if F ′ is the sheaf pro-
duced by contracting every vertex of W besides the starting and terminating
vertices then F ′ is gapped and stable.

Proof. Let e1 and e2 be the edges incident upon a degree 2 vertex v in G
and without loss of generality, assume the tail map sends both edges to
v. By Lemma 9.6, im(F(e1, t)) = im(F(e2, t)). We may assume F(v) =
im(F(e1, t)) since if not we could restrict F(v) to im(F(e1, t)) and have a
gapped sheaf with smaller total dimension. By a change of basis, and since
the tail maps are all injections, we may also assume F(e1, t) and F(e2, t) are
both the identity map. Thus s−1v (F) is a well-defined sheaf for every degree
2 vertex and is gapped since subdivision produces universally homotopic
sheaves. This remains true after repeated contractions of the vertices in W
besides the starting and terminating vertex. Contraction preserves stability
since it preserves the Euler characteristic on sheaves for which it is well-
defined, and contraction is a bijection from the set of subsheaves of F for
which contraction is well-defined to set subsheaves of s−1v (F).

We now show a condition under which subdivision of a minimally gapped
sheaf produces another minimally gapped sheaf. We say a gapped sheaf F
from C is minimal on an edge e if, for any gapped sheaf H from C we have
that dim(F(e)) ≤ (H(e)).

Theorem 10.19. Let G be a graph and e an edge of G. If F is a minimally
gapped sheaf on G from C, the collection of all sheaves on G, and F is min-
imal on an edge e then se(F) is minimally gapped over the sheaf collection
of all sheaves on se(G). If e1 and e2 are the new edges in se(G), then se(F)
is minimal on the edges e1 and e2.

Proof. Let K be a minimally gapped sheaf on se(G) over the collection of all
sheaves on se(G) and suppose dimT (K) < dimT (se(F)). Since e is a vertex
of degree 2 in se(G) and K is minimally gapped, by Corollary 10.18 s−1e (K)
is a well-defined sheaf on G. We call this sheaf K′.

Since subdivision on an edge e simply adds a new edge and vertex with
the same dimension as e we have that

dimT (K′) + 2 dim(K′(e)) = dimT (K)

and
dimT (F) + 2 dim(F(e)) = dimT (se(F)).
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Since dimT (K) < dimT (se(F)) and dimT (F) ≤ dimT (K′) since F is min-
imally gapped, we have that dim(K(e)) < dim(F(e)), contradicting our
assumption.

Let H be a gapped sheaf on se(G). By Lemma 9.6 and arguments from
Corollary 10.18, there exists a sheaf I that has the same dimension as H
or less on every edge and dim(I(e1)) = dim(I(e2)) and I(e1, t) and I(e2, t)
are both the identity map. Thus s−1e (I) is a well-defined sheaf on G which
we will call I ′. Then

dim(I ′(e)) = dim(I ′(e1)) = dim(I ′(e2))

and since dim(cF (e)) ≤ dim(I ′(e)) we have that dim(se(F)(e1)) ≤ dim(I(e1))
and dim(se(F)(e2)) ≤ dim(I(e2)).

In other words, if a minimally gapped sheaf from the collection of all
sheaves results is minimal on all edges, any sequence of subdivisions on that
sheaf also results in minimally gapped sheaf from the collection of all sheaves
results is minimal on all edges.

Theorem 10.20. Subdivision and contraction map full sheaves to full sheaves
and stable sheaves to stable sheaves.

Proof. First we show subdivision can’t map a full sheaf to a sheaf that isn’t
full. Let F be a full sheaf on a graph G with an edge e. Let b1, . . . , br
be a basis for F(e) and b1, . . . , br, . . . , bs a basis for F(E). Let H = se(F)
be a sheaf on the graph H = se(G) and let e1 and e2 be the new edges
produced by the subdivision. Since F(e1) and F(e2) are identical to F(e),
let bi1, . . . , b

i
r be the basis the for H(ei) for i = 1, 2 where we identify bi1 = bi.

If α ∈ Htw
1 (F) has representation (d1, . . . , ds) with respect to (b1, . . . , bs),

then
(ψe1ψ

−1
e2 d1, . . . , ψe1ψ

−1
e2 dr, d1, . . . , dr, dr+1, . . . ds)

is a representation of an β ∈ Htw
1 (H) with respect to

(b11, . . . , b
1
r , b

2
1, . . . , b

2
r , br+1, . . . , bs).

All elements of the representation are nonzero since the di are all nonzero,
and that is true no matter our original choice of basis. If contraction maps a
full sheaf to a sheaf that isn’t full, then subdivision maps a sheaf that isn’t
full to a sheaf that is. But from our previous arguments, if any of the di are
zero in our representation of α then there is also a zero in our representation
of β.
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Subdivision on any subsheaf of F does not change it’s Euler characteristic
but it does not map to all subsheaves ofH. Let v1 be the vertex in H incident
to e1 but not e2 if e is not a self loop in G, and define v2 similarly. Let G be
a subsheaf H and let G′ be defined the same of G except G′(e1) = G′(e2) =
G(e1) + G(e2) and, if e is not a self loop in G, G′(vi) = G(vi) + imG′(ei, h).
We also set G′(e) = G(e1) + G(e2), and we note G′(e) must be a subspace of
G(e). For e a self loop in G, we do not need to change the vertex spaces for
the subsheaf G′ to be well defined. The excess of G′ is at least as large as
the excess of G, since the amount we add to the total edge dimension is at
least as large as the amount we add to the total vertex dimension. G′ must
have excess at most zero though if F is stable, since it can be mapped to by
a subdivision of a subsheaf of F .

Contraction also doesn’t change the Euler characteristic on any subsheaf
of a sheaf, and contraction on the subsheaves of H for which contraction is
well-defined maps to all the subsheaves of F .

We finish this section by remarking that if F is the reals or complex
numbers, then there is a natural way of viewing a sheaf on a graph as a CW-
complex, much in the way that a graph can be viewed as a CW-complex;
in this case, retracting and contracting are clearly topological homotopies.
However, we imagine that one could do this, say for any algebraically closed
field, say for the Zariski topology (or, perhaps, the étale topology if need
be). We shall leave this for future work.
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Chapter 11

Proofs of Theorems 7.17 and
7.18

In this section we give the proofs of the main theorems of our paper.

11.1 Three Minimal Gapped Sheaves

We will now describe three gapped sheaves that will be necessary for the
main proofs in this paper. The first sheaf known as the unhappy bundle is
given by Friedman in [18]. This sheaf is over the minimal figure-eight graph
on vertex v with two directed self-loops, e1 and e2. The sheaf U is defined
as

U(v) = F4, U(ei) = F2for i = 1, 2

with

dh =


1 0 1 0
0 1 0 0
0 0 0 1
0 0 0 0

 , dt =


0 0 0 0
0 0 1 0
1 0 0 0
0 1 0 1


where these matrices multiply the coordinates of U(E) as a column vector
to the right of the matrix with U(E)’s coordinates ordered as U(e1)⊕U(e2).
Friedman also gives Htw

1 (U) and shows that maximum excess is zero. Corol-
lary 9.7 clearly shows that U is a T-minimal gapped sheaf over the figure-
eight graph, B2.

We now introduce a gapped T-minimal sheaf over the minimal barbell
graph, though we will not prove its minimality until our proof of Theorem
7.18. Consider B, the barbell graph labelled in the following way. Vertex v1
has a self loop e1 and vertex v2 has a self loop e2. The edge e0 is directed
from v1 to v2. The sheaf V which we will call the small barbell has

V(vi) = F4, V(ei) = F2 for i = 1, 2, V(e0) = F4.
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Both restriction maps of V(e0) are the identity map. For i = 1, 2, the re-
striction maps for V(ei) are the same as the restriction maps for U(ei) except
they map to the F4 over vi. A quick computation shows that Htw

1 (V) = 1.
Let V ′ be a subsheaf of V with excess equal to the maximum excess of V.

The excess of V ′ is at most that of the subsheaf V ′′ of V where V ′′ is defined
by V ′′(ei) = V ′(ei) for i = 1, 2 and

V ′′(v1) = V ′′(v2) = V ′′(e0) = V ′(v1) + V ′(v2).

This can be seen by noting that any increase in vertex dimension is compen-
sated for by an increase in the dimension of the edge space of e0. Let the
subsheaf U ′ of U be the same as V ′′ over e1 and e2 and set U ′(v) = V ′′(v1).
This subsheaf has the same excess as V ′′. Thus

m.e.(U) = m.e.(V) = 0.

Given an element of α of Htw
i (U) we create an element of Htw

i (V) in
order to show that V is a gapped sheaf. The element α is a collection of
vectors, α(ei) ∈ U(ei), such that

dUψ(α(e1)) + dUψ(α(e2)) = 0.

Define β as the collection of vectors from the edge spaces of V with

β(e1) = ψe0α(e1), β(e2) = α(e2)andβ(e0) = dUψ(α(e1)).

It is now easy to verify that β is then a member of Htw
i (V).

Now we describe W, the T-minimal sheaf over the minimal figure eight
graph with vertices v1, v2 and edges e1, e2 and e3. Let W = F6 have basis
α, β, γ, δ, ε, ζ. Then

W(e1) = Span < α, δ >, W(e2) = Span < β, ε >, W(e3) = Span < γ, ζ >,

and

W(v1) = W/Span < β−γ, δ−ε, ζ−α >, W(v2) = W/Span < α−β, γ−δ, ε−ζ > .

The restriction maps for any edge are the canonical quotient maps. Comput-
ing the kernel of the twisted difference map shows that htw1 (V) = 1. Let G′ be
the figure eight graph without e3 and let u be a connected degree 2 covering
map of the figure eight graph for which u−1(G′) is a disconnected graph. By
computation, we have that htw1 (u∗V) = 0. Since htw1 (F) ≥ m.e.(F) for any
sheaf F , m.e.(u∗V) = 0. Equation 7.1 implies m.e.(V) = 0 as well. Thus the
sheaf is gapped and, since every edge has dimension 2, Corollary 9.7 shows
it is in fact a gapped T-minimal sheaf.
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11.2 Proof of Theorem 7.17

Let W ′ be the following sheaf on the graph G with vertices t and v and five
edges e1, ..., e5 from one vertex to the other. The vertex spaces both are F6

and let W ′(ei) =W(ei) for i ∈ 1, 2, 3. Here W is the gapped sheaf over the
figure eight graph we described in the previous subsection. Using the same
notation for the basis of F6 as we did in defining W, we define

W ′(e4) = Span < β − γ, δ − ε, ζ − α >

and
W(e5) = Span < α− β, γ − δ, ε− ζ > .

Similarly to the case of W, we show the maximum excess of W ′ is zero by
examine a cover of G. Let G′ have vertices four vertices, t1, t2, u1 and u2
and edges e′i, e

′′
1 for i = 1, ..., 5. For i = 1, 2 and 3 let e′i have tail t1 and

head v1 and e′′i have tail t2 and head v2. For all other i, let e′i have tail t1
and head v2 while e′′i has tail t2 and head v1. Then G′ is a covering graph
of G with covering map u that takes vi to v, ti to t, e′i to ei and e′′i to ei
as well. Computing the kernel of the twisted difference map for u∗W ′ show
that htw1 (u∗W ′) = 0 and so m.e.(W ′) = 0

11.3 Proof of Theorem 7.18

First, we prove that there does not exist gapped sheaves supported on only
a cycle or a tree. Then we show that if a graph has Euler characteristic −1
than the edge dimension of a minimally gapped sheaf is derived readily from
the three examples of minimally gapped sheaves discussed earlier. Finally
we consider the case of a minimally gapped sheaf supported on a graph G
of Euler characteristic less than −1. Since the figure-eight graph and theta
graph have dimension 2 on all edges, it will be easy to show that minimality
implies the G cannot contain either as a subgraph. We then argue about
the structure of G and use the twist trick on loops to show that there exists
a smaller gapped sheaf on a barbell subgraph of G.

Let F be a sheaf on a graph G and π : G[Z] → G be the universal
abelian covering. Lemma 1.30 from [17] states that Htw

1 (F) is non-trivial
iff H1(π

∗F) non-trivial. If G is a tree or cycle then G[Z] is a tree and so
H1(π

∗F) and Htw
1 (F) must both be trivial. Thus any sheaf supported on

only a cycle or graph is not gapped.
Now we argue that the previously defined gapped sheaf V on the minimal

barbell graph is T-minimal. Corollary 9.7 implies this so long as V is minimal
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on the edge e0. By Corollary 9.22, if F ′ is identical to F except F ′(e0) = 0
then χ(F ′) ≥ 4 as it is just two self loops. So by stability, dim (F(e0)) ≥ 4,
showing V is minimally gapped.

As mentioned before, U andW are minimal gapped sheaves on the figure-
eight graph and theta graph respectively since each edge on those sheaves has
dimension 2, the minimal dimension possible. By Lemma 9.6, any minimal
gapped sheaf is supported on a pruned graph. So Theorem 10.19 implies
Theorem 7.18 in the case the graph has Euler characteristic −1, as any such
graph is either a figure-eight, theta or barbell graph.

Let F be a minimally gapped sheaf from the collection of all sheaves on
a graph G and now suppose F is supported on a graph G′ with χ(G′) < −1.
If G′ contains a subgraph S that is homeomorphic to a figure-eight graph or
theta graph then 2|ES | < 2|EG′ | ≤ |F(EG)|, but |2ES | is the edge dimension
of a gapped sheaf on S when S is a figure-eight graph or a theta graph
contradicting the minimality of F .

Thus we may assume G′ contains no figure-eight graph or theta graph
as a subgraph. So any pruned subgraph of G′ with Euler characteristic −1
is a barbell graph. Let B be a barbell graph that is a subgraph of G′ with
minimal bar length out of all the barbell graphs that are subgraphs of G′.
Let R be the bar of B and let r be the number of edges of R. Let C1 and
C2 be the two cycles in B. We also set c1 and c2 to be the number of edges
in C1 and C2 respectively. If B is the minimal gapped sheaf on B, then

dim(B(E)) = 2c1 + 2c2 + 4r.

Since
dim(B(E)0 > dim(F(E)) > 2|EG′ |

we have
|EG′ | < c1 + c2 + 2r. (11.1)

In other words, there are at most r edges in G′ that are not also in B.
There can be no walk from C1 to C2 nor a walk from either C1 or C2

to B in G′ else G′ would contain a theta graph. Any walk from either C1

or C2 to itself must begin and end with the same edge or else G′ contains a
theta graph or a figure-eight graph in the case the walk is closed. Suppose
there exists a walk not in B but in G′ from Ci to Ci for i = 1, 2. Since,
G′ contains no leaves and the only Euler characteristic −1 subgraphs are
barbell graphs, walk contain a cycle as a subgraph that is not in B. This
implies there is a barbell graph in G′ that contains C1 as a subgraph but
no other part of B. The bar of this barbell graph has at least r edges, since
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11.3. Proof of Theorem 7.18

the bar length of B is minimal, but then this violates Equation 11.1. Hence
any walk from B to itself must begin and end in R, excluding the starting
and terminating vertices of R as those in C1 or C2.

If a walk from R to R in G′ has different first and last edges, than G′

contains a cycle with at least one vertex in R. This implies there is barbell
graph as a subgraph of G′ whose bar is only a portion of R, contradicting
the minimality of the length of R. Thus any non-backtracking walk from R
to R contains a path P from R to a cycle C3. Let v be the vertex in P and
R and let Ri be the path in R from from Ci to v. Set ri to be the number
of edges in Ri, for i = 1, 2, let p be the number of edges in P and let c3 be
the number of edges in C3. By Equation 11.1, p ≤ r. Note P,C3, Ri and Ci
form a barbell graph for i = 1, 2. Thus by the minimality of R, ri + p <≥ r
for i = 1, 2 and since r1 + r2 = r this means p ≥ r/2. Thus the only edge of
G′ not in B with one endpoint in B is in P , or else we’d have another path
with at least r/2 edges and another cycle with at least 1 edge which would
contradict Equation 11.1.

The same arguments can be repeated from earlier to show there is no
walk in G′ from P and C3 to themselves or to B. Thus G′ is the union of the
vertex sets and edge sets of C1, C2, C3, R and P . So the Ci are beaded cycles
in G′ starting and terminating at a degree 3 vertex. By Corollary 10.18 we
may contract each Ci to a self loop on the degree 3 vertex, resulting in a new
gapped sheaf H supported on a graph H. Note H also contains P and R as
subgraphs and the sheaf H is identical to F on P and R. It is also a full,
stable gapped sheaf by Theorem 10.20 and because contraction is universally
homotopic. If si is the self loop that results from contracting Ci then we also
have that dim(H(si)) = dim(F(ci)) where ci is any edge in Ci. For each si
define Si to be the cycle composed of si and the vertex vi that si is incident
to. Then by Corollary 9.22, dim(H(si)) + 1 < dim(H(vi). Any chain on
H(si) has edge dimension exactly one less than it’s vertex dimension. Thus
a canonical form on H(si) contains at least two chains. Let Fi be the span
of the first elements of the chains from a canonical form on H(si) and Li
be the span of the last elements of the chain from the canonical form. So
Fi ∈ H(si, t) but Fi 6∈ H(si, h) and Li ∈ H(si, h) but Li 6∈ H(si, t). Let ei be
the only edge incident to si and without loss of generality assume the head
map sends ei to vi. Then Fi + Li ∈ H(ei, h) since H is a full sheaf and so
any nontrivial element of the first twist homology group is nonzero on the
portion of the edge space that maps to Fi and Li. The dimension of F + L
is at least 4 and so the di is also at least 4.
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Chapter 12

Subquotients, Submodularity
and Supermodularity

In this section, we give a few results that aren’t necessary for the main the-
orems of this dissertation but still are of interest. Theorem 8.9 characterizes
a minimal gapped sheaf in any collection of sheaves that is closed under
taking subquotients. We now wish to show that there are many such collec-
tions; the most basic such collection is the collection of all subquotients of
a given sheaf. We also prove a theorem that can simplify computations on
such sheaves. Using that theorem, we show there are no gapped subquotient
sheaves of the constant sheaf on any graph with only one vertex. After doing
this we show that although excess is a supermodular function, as proven in
Section 1.6 of [17], the gap is neither supermodular nor submodular.

12.1 Subquotients of a Sheaf

We wish to show that there are many interesting sheaf collections that are
subquotient closed.

Definition 12.1. Let F be a sheaf on a graph, G. We say that a sheaf,
F ′, on G is a subquotient of F if there are sheaves F1 ⊂ F2 ⊂ F such that
F ' F2/F1. We denote the set of subquotients of F by SubQuo(F).

Lemma 12.2. The set of subquotients, SubQuo(F), of a sheaf F on a graph
G is closed under taking subsheaves and quotient sheaves.

Proof. It suffices to take F1 ⊂ F2 ⊂ F and consider subsheaves and quo-
tients of F2/F1.

Let F ′ be a subsheaf of F2/F1. Then it follows that for each P ∈ VGqEG
we have F ′(P ) ⊂ F2(P )/F1(P ), i.e., F ′(P ) consist of a collection of F1(P )
equivalence classes in F2(P ); let F ′2(P ) be all the vectors in these classes.
We easily check that F ′2, with the natural restriction maps obtained from
F2, forms a subsheaf of F2 that contains F1. Hence F ′, which is clearly
isomorphic to F ′2/F1, is a subquotient of F .
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12.2. Simplifications for Stable Sheaves

The case of a quotient of F2/F1 is handled analogously.

12.2 Simplifications for Stable Sheaves

Theorem 7.17 is statement about subconstant sheaves. The reason that
we consider a larger collection of sheaves, namely subquotients of constant
sheaves, is that there are certain theorems, such as Theorem 8.9, regarding
what one can say about a minimal gapped sheaf (if it exists). The prob-
lem with working with subquotients is the values are quotient spaces, and
this can complicate calculations. The following theorem will simplify our
calculation.

Theorem 12.3. Let F be a sheaf on a graph, G, and F ′ ∈ SubQuot(F).
Then there exist F1 ⊂ F2 ⊂ F such that (1) F ′ ' F2/F1, (2) F1(e) = 0 for
all e ∈ EG, and (3) F2(v) = F(v) for all e ∈ EG.

Proof. By definition, F = F2/F1 for some F1 ⊂ F2 ⊂ F .
For each e ∈ EG, choose a We ⊂ F2(e) that is a subspace of “representa-

tives” of F2(e)/F1(e), i.e., such that We∩F1(e) = 0 and We+F1(e) = F2(e).
Then replace the value F1(e) with 0 and the value F2(e) with We, and re-
place the restriction maps from e to he or te with zero maps at F1(e), and
with the old restriction maps at F2(e) restricted to We. We easily see that
this replacement does not change the isomorphism class of F2/F1.

Similarly, for each v ∈ VG, we choose a subspace Wv ⊂ F(v) such that
Wv+F2(v) = F(v); then we can replace F1(v) and F2(v), respectively, with
F1(v) +Wv and F(v).

12.3 Single Vertex Graphs

Now we use several of our results on gapped sheaves to establish that a
gapped sheaf on one vertex cannot be a subquotient of a constant sheaf.

Lemma 12.4. Let G be a graph with exactly one vertex. Let C be the sheaf
collection of subquotient sheaves of a constant sheaf on G. Then no element
of C has a gap.

Proof. Assume, to the contrary, that C contains a sheaf with a gap, and let
F be a T-minimal gapped sheaf. Then Theorem 8.9 implies F satisfies

χ(F) = m.e.(F) = d.m.e.(F) = 0, htw0 (F) = htw1 (F) = 1.
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12.4. Submodularity and Supermodularity

Let VG = {v}, and let EG = {e1, . . . , er}. Theorem 12.3 implies that if
F is a subquotient of the constant sheaf L, for a F-vector space, L, then we
may assume, by passing to an isomorphic subquotient of L, that

F(e1) = A1, . . . , F(er) = Ar, F(v) = B/C

for some subspaces, A1, . . . , Ar, B,C, of L. Now we gather a few facts about
these subspaces.

First, Ai ⊂ B for all i, since F is a sheaf, and, of course, C ⊂ B. Second,
A1 + · · ·+ Ar + C = B, or else F would have a quotient sheaf whose value
is zero at all the edges and nonzero at v (namely B/(A1 + · · · + Ar + C)),
contradicting the fact that d.m.e.(F) = 0.

Third, we claim that A1, . . . , Ar, C are linearly independent, i.e., that if
ai ∈ Ai for i = 1, . . . , r and c ∈ C, and

a1 + · · ·+ ar + c = 0,

then a1 = · · · = ar = c = 0. If not, then consider the subsheaf, F ′, of F
whose values are F(ei) being the (one-dimensional) span of ai for all i, and
F(v) = A′/(A′∩C), where A′ is the span of of the ai. Since a1+· · ·+ar ∈ C,
we have that F(v) is at most r − 1 dimensional. Hence

−χ
(
F(v)

)
= dim

(
F(E)

)
− dim

(
F(V )

)
≥ r − (r − 1) = 1,

which contradicts the fact that m.e.(F) = 0. Hence A1, . . . , Ar, C are lin-
early independent.

But we will easily see that linear independence of A1, . . . , Ar, C implies
that htw1 (F) = 0. Indeed, fixing a full twist, ψ, on G, we have that elements
of Htw

1 (F) are given by tuples (a1, . . . , ar) such that ai ∈ Ai(ψ) and

(1− ψ1)a1 + . . .+ (1− ψr)ar ∈ C(ψ).

But the linear independence of A1, . . . , Ar, C over F implies the linear in-
dependence of A1(ψ), . . . , Ar(ψ), C(ψ) over F(ψ) (this is an easy exercise),
and this implies that a1 = · · · = ar = 0. Hence the only element of Htw

1 (F)
is the zero element; i.e. htw1 (F) = 0. But this contradicts the fact that, by
Theorem 8.9, htw1 (F) = 1. Hence our assumption that C contains a sheaf
with a gap is impossible.

12.4 Submodularity and Supermodularity

We say that a function g over sheaves on graphs is supermodular if given
any A and B that are subsheaves of any sheaf F over a graph G we have
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12.4. Submodularity and Supermodularity

that
g(A ∩ B) + g(A ∪ B) ≥ g(A) + g(B).

Alternatively we say g is submodular if we have

g(A ∩ B) + g(A ∪ B) ≤ g(A) + g(B)

for any subsheaves A and B. In this section we give two quick counterex-
amples to show the gap is neither submodular nor supermodular.

To disprove submodularity let F be the unhappy bundle on the figure-
eight graph discussed in the previous section and let A be F restricted to v
and e1 and let B F restricted to v and e2. Since A∩B has no edges, it isn’t
gapped. The sheaves A and B are only supported on single self loops, and
so have no gap as well. But gap(A∪B) = 1 since the union is the unhappy
bundle.

To disprove supermodularity, let G be a single vertex v with four self
loops ei for i = 1, . . . , 4. Let F(v),F(e1) and F(e2) be the same as in the
unhappy bundle and also let F(v), F(e3) and F(e4) be another copy of the
unhappy bundle. Then define A and as the copy of the unhappy bundle
over v, e1 and e2 and B as a copy of the unhappy bundle over v the other
two edges. Then m.e.(A ∪ B) = 4 since A is a stable sheaf and A ∪ B has
the same vertex space as A and edge dimension that is larger by four. The
sheaves A and B each have positive gap, but by computing the first twisted
Betti number of the union we find that it isn’t a gapped sheaf. Once again,
the intersection isn’t gapped since it is not supported on any edges.
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Chapter 13

Conclusion

This dissertation has shown several links between the abelian girth of a graph
and the standard girth as well as between gapped sheaves and the abelian
girth. In Section 3 we proved Theorem 2.6, which can be seen as a version
of the Moore bound for abelian girth. In Section 4 we proved Theorem
2.5, which implied that any multiplicative improvement on Theorem 2.6
would also improve the Moore bound. Then in Section 5, we show that
the bipartite LPS graphs do not have abelian girth so large as to preclude
any possibility of improving Theorem 2.6.We also showed in Section 11 that
the abelian girth of a graph is the minimal dimension of any gapped sheaf
on that graph. These results might allow for techniques that improve the
Moore bound or answer other questions about the girth.

Conjectures related to the HNC (see [9]) may potentially be verified by
showing that certain ρ-kernels have vanishing maximum excess, as is done in
the proof of the HNC [17]. These ρ-kernels are subconstant sheaves on two
vertices and in Section 11 we demonstrated the existence of gapped subcon-
stant sheaves on two vertices. Thus any attempt to prove the conjectures
related to the HNC using the first twisted Betti number of the ρ-kernels
should take into account that the ρ-kernels may be gapped. Though we can
still compute the maximum excess of a gapped sheaf by finding the first
twisted Betti number of a cover of the sheaf with sufficient degree, this may
be a computationally intensive task. It remains to be shown whether com-
puting the maximum excess of a sheaf can be done in time polynomial in
the degree of the sheaf.

Though it may be time-intensive to compute the maximum excess of a
gapped sheaf, thoughout this dissertation we have proved several results that
can be used to verify that a sheaf is not gapped, in which case computing the
maximum excess can be done quickly. Theorem 7.18 implies that any sheaf
with total dimension less than the abelian girth of the underlying graph is
not gapped. Lemma 8.21 and Theorem 8.9 show that any gapped sheaf must
have a gapped, stable, faithful sheaf as a subquotient. We have shown that
any gapped sheaf must have dimension at least 2 on any edge and dimension
at least 4 on self loops. Lemma 9.6 shows that any gapped sheaf contains a
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Chapter 13. Conclusion

gapped subsheaf with every edge being internal.
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