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Abstract

Today, high-quality media streaming and rich-media ap-
plications have become available on desktop computers,
and mobile devices are increasingly video enabled. Al-
though computing power is improving over time, user ex-
pectations of video quality are also increasing, and thus
the resource requirements of these applications is keeping
pace with computing improvements. Hence, these appli-
cations must adapt gracefully based on resources such as
available CPU and network bandwidth to maintain their
timing constraints. Unfortunately, current operating sys-
tems provide little support for time-sensitive applications
whose adaptation mechanism can interact poorly with the
kernel’s scheduling mechanism leading to poor perfor-
mance.

In this work, we present an event-driven application
model called cooperative polling that is aimed at sup-
porting adaptive, time-sensitive applications. Coopera-
tive polling reduces unpredictable timing by minimiz-
ing involuntary preemption, and it facilitates cooperation
between applications by sharing event information such
as deadlines and priorities across applications. This ap-
proach together with a simple deadline-based scheduling
policy achieves overall predictable timing, and also en-
ables application-centric adaptation during overload. Our
evaluation with a streaming video player shows the sig-
nificant benefits of this model.

1 Introduction

The distinction between general-purpose and real-time
computing has become blurred as rich media applica-
tions such as audio, video, and animated computer graph-
ics have become an integral part of everyday computing.
These applications have become increasingly demanding

as CPU and network capacity has improved over time.
For example, desktop computers are being used for com-
plex media applications such as picture-in-picture, video
editing, remote surveillance, and multi-party conferenc-
ing. At the same time, improvements in video sources and
sinks such as cameras and displays have kept pace with
improvements in other computing resources so that data
rates of high quality video often correlate with or surpass
the limits of various resources such as CPU, local storage
or wide-area networking. For instance, with high defi-
nition video, the compression algorithms in current video
standards such as MPEG-4 and H.264 have computational
demands that can saturate the fastest processors currently
available.

Media applications are characterized by three require-
ments. They have timing constraints that must be satis-
fied for correct operation, the resource requirements of
these time-sensitive applications can vary dramatically
over time, and they must be able to adapt their behavior to
avoid overloading the bottleneck resources. These adap-
tive, time-sensitive applications require both short-term
responsiveness and long-term throughput. This combina-
tion of requirements is a challenge for general-purpose
operating systems which use simple scheduling heuris-
tics that are mainly optimized for throughput-oriented ap-
plications. For example, a scheduler may use a large
scheduling quantum to reduce context switching costs but
this choice can affect timing response.

Traditionally, applications in a general-purpose envi-
ronment are written by different programmers and use
separate processes across applications to provide address
space isolation. However, these processes are scheduled
using a preemptive discipline which introduces unpre-
dictable timing behavior, especially in the presence of is-
sues such as priority inversion, lock preemption, livelock,
deadlock, etc. As a result, applications that are time-
sensitive may not run at the desired time, get the desired
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allocation, or may miss important deadlines, and these
problems are hard to understand or debug.

Unpredictable timing in general-purpose systems is
a symptom of a more fundamental problem that time-
sensitive applications are not aware of the timing require-
ments of other time-sensitive applications. If such appli-
cations were aware of the timing requirements of other ap-
plications, they may be able to accommodate the others,
and vice versa. Furthermore, by sharing timing informa-
tion, these applications may be able to more effectively
adapt their behavior while still preserving timeliness dur-
ing overload.

In this paper, we focus on providing support for adap-
tive, time-sensitive applications in general-purpose oper-
ating systems. We present an event-driven application
model that we call cooperative polling and a simple ex-
tension to the operating system interface that is aimed
at facilitating cooperation between time-sensitive applica-
tions.

Applications in our cooperative polling model use
events that have deadlines or priorities associated with
them that serve as the basis for intra-application timing
and inter-application cooperation. Events in our model
are either triggered by deadlines or are best-effort. Dead-
line events have deadlines associated with them and they
execute after their deadline has occurred, while best effort
events have priorities associated with them and they exe-
cute in priority order.1 The application will typically gen-
erate a mix of the two types of events during the course
of its execution. For example, a simple video decoding
application will generate deadline events for display and
best-effort events for decoding. This type of model is of-
ten called reactive, because many events are generated in
reaction to external activities such as arrival of data from
the network.

The cooperative polling model has three characteristics
that make it suitable for adaptive, time-sensitive applica-
tions. First, it uses a cooperative scheduling mechanism
that aims to run events to completion. This approach
reduces involuntary preemption which can cause unpre-
dictable timing. Second, it uses a simple deadline-based
scheduling policy of giving precedence to deadline events
over best-effort events so that the timing constraints of the
deadlines events can be met. Finally, the model supports
inter-application cooperation by sharing event informa-
tion such as deadlines and priorities across applications.
This information is used within a time-sensitive applica-
tion to voluntarily yield at appropriate times. Since our
applications use an event model, voluntary yielding does
not impose additional burden on the programming model.
Through reciprocal cooperation, the model achieves over-

1Although we use the term deadline, note that the event dispatcher
in our model never skips or drops events. It is the responsibility of the
application to adapt to delayed events.

all predictable timing, minimizes involuntary preemptions
and enables application-centric adaptation during over-
load.

A cooperative-polling application specifies its event in-
formation to the kernel that then conveys this information
to other similar applications. The kernel also performs
policying (i.e., preemption) when applications fail to yield
at the appropriate times and hence the kernel ensures that
applications get their desired allocations. Furthermore,
these applications are run as processes and get the same
benefits of address space isolation as traditional applica-
tions.

We have implemented a video streaming application
called QStream that uses cooperative polling and adapts
video quality based on available CPU and network band-
width [15, 14]. Our evaluation shows the benefits of us-
ing cooperative polling to achieve predictable timing with
single as well as multiple media applications both in un-
derload and overload.

The following sections describe our approach in de-
tail. Section 2 discusses related work in the area. Sec-
tion 3 provides motivation for our approach, and then
Section 4 presents the cooperative polling model. Sec-
tion 5 describes the implementation of the model and dis-
cusses some aspects of the QStream application. Section 6
presents our evaluation, and Section 7 presents our con-
clusions.

2 Related Work

Traditionally, operating systems provide a process inter-
face that isolates the different execution contexts, simi-
lar to virtual machines. However this isolation does not
provide any timing guarantees. The cooperative polling
model supports time-sensitive applications by facilitat-
ing cooperation between these applications via sharing of
their internal deadlines or priorities.

Our model is most closely related to split-level schedul-
ing [11] which aims to correctly prioritize user-level
threads in different address spaces while minimizing
user/kernel interactions. The main difference is that the
higher priority classes in split-level scheduling can pre-
empt the lower priority classes, while our model aims to
avoid preemption altogether via cooperative yielding.

Both scheduler activations [3] and our model aim to
avoid the ill-effects of preemption by informing the user
level about the scheduling decisions made by the kernel.
However, the main difference is that activations are up-
calls that inform the application when a new scheduling
decision is made while our model uses application-level
polling to synchronize with the kernel’s scheduling deci-
sions. This difference is partly a result of the different
application domains: activations are mainly designed for
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throughput-oriented applications where the upcall model
is easier to use, while cooperative polling is mainly de-
signed for time-sensitive applications where polling is
a commonly used method to meet timing requirements.
Also, with activations, the user level only informs the ker-
nel when it yields the processor,2 while with cooperative
polling, applications also inform the kernel about their
deadlines or priorities.

While cooperative polling is implemented by applica-
tions, soft timers [4] is a kernel-based polling approach.
It uses trigger states such as kernel entry points to effi-
ciently schedule events (e.g., packet transmission). Both
approaches aim to avoid unnecessary preemption or inter-
rupts.

Although the relative merits of event-driven and multi-
threaded architectures remain contentious [16, 23, 30, 1,
29], generally events are considered to offer better perfor-
mance while threads are considered to offer ease of pro-
graming. Our model uses events because they appear to
be a natural match for time-sensitive applications that are
designed to quickly respond to external input. For exam-
ple, the worst-case execution time (WCET) of a job or a
response is an important metric for time-sensitive appli-
cations. This metric is trivial to instrument with events.
Nevertheless, we believe that it is possible to use non-
preemptive threads libraries such as Pth [7] as an alterna-
tive for implementing cooperatively-polled applications.

Currently, our model supports applications that are pri-
marily single threaded. Zeldovich et. al. [31] provide
multiprocessor support for event-driven programs. Their
approach would directly apply to our work.

While events have been used extensively, most event
systems have focused on the efficiency and scalability ad-
vantages of events rather than predictable timing. As a re-
sult, most event systems do not distinguish between dead-
line and best-effort events. The PulseAudio [24] sound
server uses events that are closest to our model. It uses
separate event types corresponding to our deadline and
best-effort types, but unlike our model, applications can-
not control the order of best effort events.

There exists a large body of work that aims to provide
operating system support for multimedia and real-time ap-
plications [18, 12, 13, 20, 28, 5, 25, 10]. Based on our
experiences, we have found that preemption is one of the
most serious concerns when implementing time-sensitive
applications. As a result, our model avoids using pre-
emptive kernel threads and requires minimal support, in
the form of sharing timing information, from the kernel.
Our user-level scheduler is simple and gives precedence
to deadline events [17] over best-effort events. The rea-
son this approach works well is that deadline events are
typically short and do not overload the CPU in our appli-

2With multi-processors, the user level can also ask for more proces-
sors.
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Figure 1: Performance of the VLC and MPlayer video
players in underload

cations, while best-effort events can overload the CPU but
are designed to be adaptive.

Our model focuses on time-sensitive applications that
can adapt during overload. Our QStream video streaming
application uses a technique called Priority-Progress to
adapt to available network bandwidth [15] and CPU avail-
ability [14]. This technique was inspired by several other
works on quality-adaptive streaming [26, 8, 27]. Seda [30]
provides a framework for performing overload manage-
ment primarily for throughput-based applications such as
Internet services.

3 Motivation
The main motivating applications for this work are video
streaming over mobile devices and high-quality stream-
ing. A variety of video-capable mobile devices such as
smart phones, PDAs, Internet tablets, iPods, etc. have be-
come available today. These mobile devices have modest
CPU speeds because of the need to conserve power usage
and maximize battery life. Our previous work on CPU
adaptation [14] is part of a project to port our QStream
software to two such devices, the Series 60 (S60) smart
phones [22] and the Nokia 770 Internet Tablet [21].
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Figure 2: Performance of the VLC and MPlayer video players in overload.

At the other end of the spectrum, high-quality stream-
ing is highly resource intensive, and it has significant con-
currency and tight timing requirements. It must concur-
rently handle network processing, audio and video com-
pression and I/O to several devices (audio, video, stor-
age). Rich media with multiple streams increases concur-
rency even further. In addition, audio and multiple video
streams are time constrained and must be synchronized
before presentation. The timeliness requirements of these
streams are typically in millisecond timescales. These re-
quirements are at least an order of magnitude tighter than
the response requirements of typical throughput-oriented
applications such as web servers, and they are challenging
for general-purpose CPU schedulers that have historically
been biased towards improving throughput.

Our previous work [14] measured the performance
of two of the most popular open source video players,
MPlayer [9] and the VideoLan Client (VLC) [2]. As a mo-
tivation for this work, we present these results here again.
We chose two players because they have substantially dif-
ferent architectures: MPlayer is event-driven while VLC
is multi-threaded, and we chose open source players be-
cause they could be instrumented easily. Both these play-
ers are mature and of high quality and support frame-rate
adaptation during CPU overload. They have been imple-

mented by large teams of talented and dedicated develop-
ers and have a large user base.3

We measured the performance of MPlayer and VLC by
playing 3 and 6 videos (the same video) simultaneously.
Each video is played in a separate player. The CPU us-
age remains just below saturation with 3 videos while the
CPU is fully saturated with 6 videos. These experiments
were performed on a Dell Inspiron 1300 laptop PC, with
a 1.8 GHz Pentium-M CPU and 512 MB memory run-
ning the Ubuntu Linux 6.06 distribution. The video is a
movie taken from a DVD and converted to MPEG-4 for-
mat. We measured the frame rate and jitter of the videos.
Frame rate is better for expressing the overall smoothness
of video, while jitter is the inter-frame display time and it
captures noticeable pauses better.

Figure 1 shows the frame rates of the three videos for
the VLC and MPlayer video players during underload.
Both players maintain close to the full frame rate of 24,
and subjectively, the videos play with normal smoothness
and no noticeable pauses.

Figure 2 shows the performance of VLC and MPlayer
during overload (CPU usage is pegged at 100%) when the

3The download page for VLC reports over 10 million downloads,
and the mailing lists for each of the projects receive hundreds and even
thousands of postings per month.
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frame-rate adaptation mechanism was active in both the
players. The graphs on the left show that the frame rates
of the videos varies dramatically. Both players exhibit bi-
modal fairness with many of the videos experiencing zero
or low frame rates and some that have almost full frame
rate. Figure 2(b) shows that jitter reaches up to one second
for VLC, which experiences several pauses. MPlayer is
able keep jitter below 200 ms.

To conclude, these players maintain acceptable perfor-
mance during underload but not during overload. Inter-
estingly, the event-driven MPlayer is more consistent than
the threaded VLC player even though both players adapt
quality similarly during overload. While we have not an-
alyzed this difference in performance in detail, we believe
it results mainly as a result of the interaction between the
adaptation mechanism and the kernel’s scheduling mech-
anism.

4 Cooperative Polling
The cooperative polling model aims to provide support
for applications that require timeliness and that adapt
during overload. This model consists of an event-
driven cooperative scheduling mechanism and a deadline-
based scheduling policy. In addition, the model enables
inter-application cooperation by sharing event informa-
tion across applications. We discuss these aspects of the
model below.

4.1 Cooperative Scheduling
The cooperative scheduling model is based loosely on the
principles of reactive programming described below:

1. The model is event-driven with a per-thread event
dispatcher that operates independently of event dis-
patchers in other threads. Program execution is a se-
quence of events or function invocations that are run
non-preemptively or cooperatively.

2. Events must avoid actions that can block or sleep.

3. Events should avoid long running computations.

Adaptive, time-sensitive applications have some computa-
tions that have deadlines while others are best effort. Our
model avoids using preemptive kernel threads by schedul-
ing these computations non-preemptively at the user level.
The lack of preemption implies that reactive programs are
generally free of locking and synchronization primitives
required in multi-threaded programs.

The second rule against blocking is generally challeng-
ing to satisfy in practice. However, we have implemented
an asynchronous I/O subsystem described in Section 5
that eases programming significantly. The third rule may

submit(EventLoop *l, Event *e);
cancel(EventLoop *l, Event *e);
run(EventLoop *l);
stop(EventLoop *l);

Figure 3: Basic event API

struct Event {
enum { BEST_EFFORT, DEADLINE } type;
Callback callback;
TimeVal deadline;
int priority;
...

};

Figure 4: Event type definition

seem the most counter intuitive. Obviously, long compu-
tations may be inherent to the task at hand (e.g. decom-
pressing video). However, most long computations use
loops and this rule simply means that reactive programs
must divide the iterations of long running loops into sep-
arate events. The focus on short non-blocking events pro-
motes a environment that allows software to quickly re-
spond to external events when they occur and hence the
name reactive.

Figure 3 lists the key primitives in our scheduling
model. The application calls submit to submit an event
for execution. To initiate dispatching of events, the appli-
cation calls run, which normally runs for the lifetime of
the application. The application must submit at least one
event before calling run, and it calls stop from within
one of its events to end the dispatching of events. The ap-
plication can also call cancel to revoke an event it had
previously submitted.

4.2 Scheduling Policy
The scheduling policy component of our model aims to
provide predictable timing by reducing scheduling la-
tency. It distinguishes between deadline-based and best-
effort events and gives precedence to deadline events so
that their timing constraints can be met.

Figure 4 shows the type definition of an event. An ap-
plication specifies each event as either a best-effort or a
deadline event. The callback specifies the function
that will handle the event and any data arguments to be
passed. The deadline field specifies an absolute time
value. Deadline-based events are not eligible for execu-
tion until the deadline time has passed. Once eligible,
deadline events take priority over all best-effort events.

The priority field is used by best-effort events. It is
up to the application to use priorities to control execution
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run(EventLoop l) {
do {
if (head_expired(l.deadline_events)) {
e = q_head(l.deadline_events);
callback_dispatch(l, e);
cancel(l, e);

} else if
(q_not_empty(l.best_effort_events)) {
e = q_head(l.best_effort_events);
callback_dispatch(l, e);
cancel(l, e);

} else {
yield(l);

}
} while (l.stop != True);

}

yield(EventLoop l) {
if (q_not_empty(l.deadline_events)) {

sleep until next deadline;
} else {

l.stop = True;
}

}

Figure 5: Event dispatcher algorithm

order. For example, in a video application it is important
to keep sound uninterrupted because users are sensitive
to audio glitches. Hence, the application would assign a
high priority to events related to servicing the audio output
device. When best-effort events have the same priority,
we overload the deadline field and use it as a secondary
sort key for ordering best-effort events. For the rest of the
paper, we call this combination the priority of the best-
effort event.

Figure 5 shows the the event dispatch al-
gorithm. The deadline and best-effort events
are stored in the deadline_events and the
best_effort_events priority queues, and the
submit and cancel operations are realized by inser-
tion and removal from these queues. These operations
are idempotent and have no effect if the event is already
submitted or canceled, or is a null event.

The dispatcher simply services all events as provided
by the application even when events arrive faster than
they are dispatched. This approach can cause the queue
fill levels to increase, perhaps unboundedly, if overload
is persistent (e.g. the CPU is just too slow for the given
application). However, we chose this approach because
it makes the scheduling policy and the dispatcher simple
and predictable, and also because we believe that effec-
tive overload response requires application-specific adap-
tation. Our QStream video client implements such adap-
tation by reducing the generation of certain events and in-

yield(EventLoop l) {
cancel(l, l.coop_deadline_event);
cancel(l, l.coop_best_effort_event);
if (q_non_empty(l.deadline_events) ||

q_non_empty(l.best_effort_events)) {
// coop_poll sleeps until next deadline
coop_poll(q_head(l.deadline_events),

q_head(l.best_effort_events),
&l.coop_deadline_event,
&l.coop_best_effort_event);

l.coop_deadline_event.callback =
l.coop_best_effort_event.callback =

yield;
submit(l, l.coop_deadline_event);
submit(l, l.coop_best_effort_event);

} else {
l.stop = True;

}
}

Figure 6: Dispatcher support for inter-application cooper-
ation

voking cancel for some existing events to skip the less
important steps of video decoding as necessary to main-
tain timeliness [14].

4.3 Inter-Application Cooperation
We enable cooperation between time-sensitive applica-
tions with one new primitive, coop_poll. This func-
tion yields the processor to another cooperatively polled
thread that either has the next expired deadline or has the
highest priority best-effort event. It takes two IN and two
OUT parameters. The two IN parameters specify the most
important deadline and best-effort events in the current
thread. These values are used to wake up the thread at its
next deadline or when its best-effort event has the high-
est priority among all threads. When the coop_poll
call returns, the two OUT parameters are set to the most
important deadline and best-effort events across all other
threads. This information is used by the current thread to
yield the processor as well as by the kernel to preempt the
thread if the thread fails to yield. Section 5 discusses an
implementation of this primitive.

Figure 6 shows the use of the coop_poll call in a
modified yield function that enables inter-process coop-
erative scheduling. The run routine remains unchanged
from Figure 5. This yield function is designed so that
events are executed across threads in the same order as
events in the single-threaded dispatcher function shown
in Figure 5.

The first two arguments in the call to coop_poll ex-
port the thread’s own most important deadline and best
effort events. To enable sharing, we add two proxy events
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to the event loop state, coop_deadline_event and
coop_best_effort_event, that act on behalf of
other applications. The deadline and priority values of
these proxy events are set by coop_poll to reflect the
most important deadline and best effort event of all the
other applications. After the coop_poll call, the proxy
events are submitted to their respective event queues in
the current thread. The callback function for these events
is set to yield so that the current thread yields voluntar-
ily to other applications in the callback_dispatch
routine shown in Figure 5.

The cancel calls at the beginning ensure that the
event queues contain only events internal to the current
process. This in turn prevents yield from spinning where
a thread transitively yields to itself.

5 Implementation

The implementation of cooperative polling consists of
three main components, the coop_poll function, an event-
driven polling library and an asynchronous I/O library that
eases programming. We describe these components in
turn. We also briefly describe the QStream application
that we will use to evaluate our model.

5.1 Coop_Poll

The coop_poll primitive has a relatively straight-
forward implementation. It uses two priority queues, one
for deadline events and another for best-effort events. The
first two arguments of the call (see Figure 6) are inserted
into the queues. The next thread is scheduled based on the
head event in the deadline queue, or if it is empty then the
best-effort queue. This event is removed and the last two
arguments of the call are filled with the new head events
of the two queues.

When the deadline queue is empty, coop_poll sets
the deadline to a maximum timeslice value as determined
by the process scheduler. This approach is designed to
allow scheduling of regular best-effort jobs when only
cooperatively-polled best-effort jobs are present in the
system [11, 12].

Currently, we have implemented coop_poll in our
user-level polling library. With this implementation, the
kernel does not preempt threads that fail to yield. We
plan to implement this call in the kernel with the Bossa
scheduling framework [19]. This implementation will
allow experimenting with other scheduling policies that
provide more control for interactive and other regular
best-effort jobs.

5.2 Cooperative Polling Library

Although there are programming languages designed
specifically for reactive programming, our event-driven
model is implemented in C, so the principles of reactive
programming are implemented by idiom, rather than en-
forced by the language or runtime.

Our cooperative polling library is called libqsf, and
it has several similarities with other event libraries. Al-
though it was initially implemented as part of the QStream
framework, it is generic and intended to be used by other
time-sensitive applications. The core of our scheduling
model is implemented with an event dispatcher that uses a
pair of priority queues, one for each type of event. For ef-
ficiency, these queues are implemented using a heap data
structure.

5.3 Asynchronous I/O

Besides the core event dispatch primitives, libqsf also
provides a complementary set of primitives for perform-
ing asynchronous I/O. The use of asynchronous I/O (AIO)
is an integral part of the overall reactive model, because
it helps ensure the rule that events should never block or
sleep. The AIO API in libqsf is similar to the synchronous
I/O API provided by POSIX standards. Figure 7 lists
some of the primitives. The meaning of most arguments
is analogous to counterparts in the traditional socket API.
The extra callback argument reflects the asynchronous
semantics. These primitives always return immediately
and the callback is dispatched when the requested opera-
tion is complete. This API is implemented using a com-
bination of our event mechanism and the standard socket
API in non-blocking mode. The AIO facility takes care
of tracking the progress of I/O operations and managing
the details of invoking kernel notification facilities such as
the poll() system call. We believe that these services
greatly reduce the burden imposed on the programmer by
the non-blocking rule of our reactive model.

Even with the AIO facility, it is not always feasible
to implement entire applications using our cooperative
polling model. The reason is that much existing soft-
ware is designed only for the synchronous, multi-threaded
paradigm. For instance, POSIX functions such as stat
(provides details about a file such as its size and modifica-
tion date) and getaddrinfo (translates DNS names to
IP addresses) provide the only way to accomplish the re-
spective tasks, and there is no easy way for an application
to prevent them from blocking or sleeping. Similarly, use-
ful libraries such as Berkeley DB (among other things, it
provides a robust and mature implementation of B-trees)
often only provide synchronous APIs.

We handle these situations by reverting to the common
strategy of employing helper threads. The helper thread

7



aio_accept(Aio *listen_fd, AioAddress *addr, Aio *fd, Callback *callback)
aio_connect(Aio *fd, AioAddress *addr, Callback *callback);
aio_read(Aio *fd, void *buf, size_t length, Callback *callback);
aio_write(Aio *fd, void *buf, size_t length, Callback *callback);
...

Figure 7: Asynchronous I/O API in libqsf

performs the synchronous operation on behalf of the main
thread and communicates with the main thread using AIO
(e.g., via a local socket), thereby isolating the main thread
from the blocking operation. In theory, this approach rein-
troduces preemption and non-determinism that we have
sought to avoid with the reactive model. However, in prac-
tice it has not caused a significant problem for our appli-
cations. So far, the demand for worker threads has only
arisen for operations that are I/O dominated and compu-
tationally light. Hence, these threads spend most of their
time sleeping and have a negligible scheduling effect on
the main program thread.

To ease the process of isolating synchronous APIs,
libqsf provides primitives that handle the details of
worker thread creation, creation of an optional private
event dispatcher within the helper thread and communi-
cation with the main thread. In the future, we plan to
use a promising and elegant technique called Lazy Asyn-
chronous I/O [6] that converts synchronous system calls
to asynchronous calls.

5.4 The QStream Video Application

As part of our broader work, we have implemented a com-
plete adaptive video streaming system called QStream.
QStream is a substantial application consisting of over
100,000 lines of code, mostly written in C. It uses the
libqsf library and is implemented entirely using the co-
operative polling model. QStream uses a scalable video
compression technique called Priority-Progress to adapt
to available network bandwidth [15] and CPU availabil-
ity [14].

The development of QStream led to the design and re-
finement of our cooperative polling model. The imple-
mentation of cooperative polling is entirely contained in
the libqsf library. As a result, we were able to convert
the QStream video streaming application to a cooperative
polling application simply by re-linking against a modi-
fied version of libqsf.

6 Evaluation
In this section, we evaluate the performance of coopera-
tive polling using our QStream video streaming system.

For all the results in this section, the experimental setup
consists of a pair of PCs connected by a LAN, one act-
ing as a video server and the other as the player. The
server machine is also responsible for collecting the mea-
surement data produced by our player. The video player
machine is a white box desktop PC with a 3.0 GHz Intel
Pentium 4 and 1 GB memory running the Fedora Core 5
Linux distribution.

Similar to Section 3, we play multiple, concurrent
streaming videos as the workload. Each video is differ-
ent, and has both variable bit rate and variable process-
ing requirements. We evaluate scheduling performance
by measuring the timeliness and the quality of the videos.

Below, in Section 6.1, we first use the basic reactive
event model as described in Sections 4.1 and 4.2 to es-
tablish baseline performance. Then, in Section 6.2, we
examine the performance of the cooperative polling event
model as described in Section 4.3.

6.1 Single Player Performance
For the baseline performance, we play multiple videos all
within a single application thread. Similar to the measure-
ments presented in Section 3 with MPlayer and VLC, we
measured the performance of QStream across a range of
load levels by varying the number of videos played simul-
taneously. From these loads, we selected the number of
videos just below the point where CPU saturation occurs,
and then we doubled that amount to induce heavy CPU
saturation. For the machines used in our experiments, the
number of videos is four and eight for the underload and
overload cases respectively.

Figure 8 shows the frame rate and the total CPU uti-
lization of all the videos in the QStream application in the
underload and overload cases. Figure 8(a) shows that that
QStream timeliness in underload, similar to the MPlayer
and VLC results, is excellent and all videos play at the
maximum frame rate. In contrast, Figure 8(b) shows that
QStream’s performance in overload degrades much more
gracefully than MPlayer and VLC. QStream is able to ad-
just video quality fairly across videos, avoiding major tim-
ing interruptions, despite the fact that the CPU is saturated
(100% utilization) the entire time.

The comparison above takes advantage of a feature
unique to QStream in that it plays all the videos within a
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Figure 8: Monolithic QStream Video Player in underload
and overload

single OS thread in these tests, an approach we call mono-
lithic playback. Monolithic playback allows QStream
maximum control over its own timing. The performance
advantages enjoyed by QStream are a result of a com-
bination of its adaptation method, and a single-threaded
approach which is a work-around to kernel scheduling is-
sues that hampered the other players. Nevertheless, the
performance of QStream’s monolithic playback provides
us a useful baseline for how well we can expect to perform
with multiple time-sensitive applications.

6.2 Multiple Player Performance

This section repeats the same workloads of the previ-
ous section, but instead of the monolithic playback ap-
proach, we now start a separate QStream player process
for each video (4 for underload and 8 for overload), and
allow these processes to communicate via our coopera-
tive polling mechanism. Figure 9 shows the results of this
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Figure 9: Cooperative QStream Video Player in underload
and overload

experiment. Figure 9(a) shows that the QStream player
maintains the maximum frame rate for all the videos in
underload, similar to MPlayer and VLC. Compared to
these players, the strength of our approach lies in the
overload case shown in Figure 9(b). All videos have the
same consistent frame rates in overload. The cooperative
polling mechanism is able to maintain the advantages of
the monolithic baseline both in underload and overload.

Frame rate is better for expressing the overall smooth-
ness of video, while jitter is the inter-frame display time
and captures noticeable pauses better. Figure 10 shows
frame jitter for the frames displayed in the underload and
overload workloads respectively. QStream avoids any ma-
jor frame jitter spikes, which subjectively translates into
consistent temporal quality for the viewer.

There is a slight divergence between the monolithic
and cooperative polling results in Figure 8(b) and Fig-
ure 9(b) despite the fact that we have designed coopera-
tive polling to execute events in an order that is as close
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Figure 10: Frame jitter for QStream with cooperative
polling in underload and overload

to the monolithic case as possible. There are numerous
potential sources of non-determinism that could account
for this difference, but we suspect the biggest contribut-
ing factor is polling for asynchronous I/O completions. In
the monolithic case, polling occurs for all pending I/O of
all the videos in one shot, whereas in the cooperative case,
each process only polls for completion events relating to
its own video. We are considering possible solutions to
mitigate this discrepancy, but leave them to future work.

To better understand the performance of cooperative
polling, we present several related measurements. Fig-
ure 11 shows the challenges inherent in continuous media
workloads. Figure 11(a) shows the bit rate over the time-
line of the experiment for each of the eight videos. The
bit rate is highly variable, which is generally considered
a formidable CPU scheduling challenge. Figure 11(b)
shows the CPU usage for each of the QStream video play-
ers that make up our workload. While we achieve our de-
sired goal of same video quality as shown in Figure 9(b),
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Figure 11: Dynamics of video playback for the coopera-
tive QStream players during overload

the corresponding CPU allocations is Figure 11(b) are
highly variable. These results indicate that application-
specific quality adaptation using conventional heuristic-
based kernel CPU scheduling is unlikely to yield good re-
sults.

The predictable timing and the address space isolation
of the co-operative polling approach comes with nomi-
nal overhead. We instrumented our cooperative poll im-
plementation and measured the rate of voluntary context
switches. Although these numbers are high, we find that
the impact on performance is relatively low. For the un-
derload workload (four videos), the number of context
switches is roughly 1252 per second, while for the over-
load workload (8 videos) the context switch rate is about
roughly 3630 per second. Figure 12 shows the aggregate
frame rate across all videos in underload and overload re-
spectively. In Figure 12(a), the total frame rate is constant
at 96 fps because all the four videos play at the maxi-
mum frame rate. In overload, the average throughput is
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Figure 12: Overall throughput: monolithic vs cooperative

150.2 and 133.5 for the monolithic and cooperative cases
respectively. With eight videos running simultaneously,
the cooperative case has a 12.5% overhead in terms of
frame rate. This overhead is lower with fewer videos be-
cause the context switch rate goes down.

The last aspect of performance concerns the timeliness
of our approach in absolute terms, independent of our
video application. Our event dispatcher is instrumented to
measure the dispatch latency. Recall from Section 4.2 that
our event dispatcher only invokes the callback for dead-
line events after the deadline has passed. The dispatch la-
tency is the difference between the time when a deadline
event is actually serviced and the deadline value specified
in the event by the application.

Figure 13 shows the dispatch latency for one of the
videos through the course of the experiment. Each spike
in the figure shows the worst case dispatch latency for
one or more events that occur close together. This graph
shows the timeliness that can be expected from the co-
operative polling approach. We believe that these results
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Figure 13: Dispatch latency for one cooperative QStream
player during overload

show that our cooperative polling approach holds great
promise in supporting a variety of time sensitive applica-
tions in general-purpose operating systems.

7 Conclusions
An important goal while developing our QStream video
streaming application has been to gain a deeper under-
standing of the requirements of large-scale, time-sensitive
applications. Our motivating applications have been
video-enabled mobile devices and high-quality media
streaming, both of which are resource intensive and re-
quire adaptive applications. This combination of time
constraints, heavy resource demands and adaptation is
challenging for current systems. This limitation led to the
design and implementation of our event-driven coopera-
tive polling model.

Cooperative polling aims to reduce unpredictable tim-
ing by minimizing involuntary preemption, and it facili-
tates cooperation between applications by sharing event
information such as deadlines and priorities across ap-
plications. Our evaluation has shown that this approach
together with a simple deadline-based scheduling policy
achieves overall predictable timing, and it allows appli-
cations to make adaptation decisions during overload that
cooperate with rather than get overwhelmed by the ker-
nel’s scheduling policy.

The QStream application as well as the cooperative
polling framework is open source software and is avail-
able at http://qstream.org.
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