
17thACM SymposiumonOperatingSystemsPrinciples(SOSP’99)
PublishedasOperating SystemsReview, 34(5):232–246,Dec.1999

Soft timer s: efficient micr osecond software timer suppor t
for netw ork processing

Mohit Aron Peter Druschel
Department of Computer Science, Rice University�

aron,druschel � @cs.rice.edu

Abstract

Thispaperproposesandevaluatessoft timers, a new oper-
ating systemfacility that allows the efficient schedulingof
software eventsat a granularity downto tensof microsec-
onds.Softtimerscanbeusedto avoidinterruptsandreduce
context switchesassociatedwith networkprocessingwithout
sacrificinglow communicationdelays.

More specifically, soft timers enabletransportprotocols
likeTCPto efficientlyperformrate-basedclockingof packet
transmissions.Experimentsshowthat rate-basedclocking
canimproveHTTPresponsetimeoverconnectionswithhigh
bandwidth-delayproductsby up to 89%andthat softtimers
allow a serverto employrate-basedclockingwith little CPU
overhead(2–6%)at high aggregatebandwidths.

Softtimers canalsobeusedto performnetworkpolling,
which eliminatesnetworkinterruptsandincreasesthemem-
ory accesslocality of the networksubsystemwithoutsacri-
ficing delay. Experimentsshowthat this techniquecan im-
provethethroughputof a Webserverbyup to 25%.

1 Introduction

We proposeand evaluatesoft timers, an operatingsystem
facility thatallowsefficient schedulingof softwareeventsat
microsecond(� sec)granularity.

The key ideabehindsoft timersis to take advantageof
certainstatesin the executionof a systemwherean event
handlercanbe invokedat low cost. Suchstatesincludethe
entrypointsof thevariousOSkernelhandlers,whichareex-
ecutedin responseto systemcalls, exceptions(TLB miss,
pagefault, arithmetic) and hardware interrupts. In these
“trigger states”,thecostof saving andrestoringof CPUstate
andthe shift in memoryaccesslocality associatedwith the
switchto kernelmodehave alreadybeenincurred;invoking

Permissionto make digital or hardcopiesof all or partof thiswork
for personalor classroomuseis grantedwithout feeprovided that
copiesarenot madeor distributedfor profit or commercialadvan-
tage,and that copiesbearthis notice and the full citation on the
first page.To copy otherwise,to republish,to poston serversor to
redistributeto lists,requiresprior specificpermissionand/ora fee.
SOSP-1712/1999KiawahIsland,SC
c
�

1999ACM 1-58113-140-2/99/0012.. .$5.00

anadditionaleventhandlerfrom the triggerstateamortizes
this overheadovera largeramountof usefulcomputation.

Of course,the timesat which a systementersa trigger
stateareunpredictableanddependon theworkload.There-
fore, soft timerscanscheduleeventsonly probabilistically:
A soft timer event may be delayedpastits scheduledtime
by a randombut boundedamountof time. In practice,trig-
gerstatesarereachedoftenenoughto allow thescheduling
of eventsat intervalsdown to a few tensof � secs,with rare
delaysup to a few hundred � secs. As we will show, soft
timersallow theschedulingof eventsat theseintervalswith
very low overhead,while theuseof aconventionalhardware
interrupttimerat thesameratewould resultin unacceptable
overheadon thesystem.

We explore the useof a soft timers facility to perform
two optimizationsin thenetwork subsystem.Soft timersen-
ableatransportprotocollikeTCPto efficientlyperformrate-
basedclocking, i.e., to transmitpacketsatagivenrate,inde-
pendentof the arrival of acknowledgment(ACK) packets.
Rate-basedclocking hasbeenproposedasa techniquethat
improvesthe utilization of networks with high bandwidth-
delay products[25, 18, 1, 10, 5]. Our experimentsshow
that a Web server that employs rate-basedclocking using
soft timerscanachieve up to 89%lower responsetime than
a server with a conventionalTCP over networks with high
bandwidth-delayproduct.

A second optimization is soft timer based network
polling. Here,soft timer eventsareusedto poll thenetwork
interface,thusavoiding interrupts. Experimentsshow that
theperformanceof aWebserverusingthisoptimizationcan
increaseby up to 25% over a conventionalinterruptbased
implementation.

The restof this paperis organizedas follows. In Sec-
tion 2, weprovidebackgroundandmotivationfor thiswork.
The soft timersfacility is presentedin Section3. Applica-
tions of soft timersarediscussedin Section4. We present
empiricalresultsobtainedwith a prototypeimplementation
of soft timersin Section5, discussrelatedwork in Section6
andconcludein Section7. Backgroundinformationon the
needfor rate-basedclockingcanbefoundin theAppendix.

232

2 Background and motivation

ModernCPUsincreasinglyrely onpipeliningandcachingto
achievehighperformance.As aresult,thespeedof program
executionis increasinglysensitive to unpredictablecontrol
transferoperations.Interruptsandcontext switchesarepar-
ticularly expensive,asthey requirethesaving andrestoring
of theCPU stateandentail a shift in memoryaccesslocal-
ity. This shift typically causescacheandTLB missesin the
wake of theentryandtheexit from theinterrupthandler, or
thecontext switch,respectively.

The costof interruptsandcontext switchesis generally
not a concernaslong asthey occuron a millisecond(msec)
timescale.For instance,disk interrupts,conventionaltimer
interruptsusedfor time-slicing and the associatedcontext
switchestypically occurat intervalson the orderof tensof
msecs.

However, high-speednetwork interfacescangeneratein-
terruptsandassociatedcontext switchesat intervals on the
orderof tensof � secs.A network receive interrupttypically
entailsa context switchto a kernelthreadthatprocessesthe
incomingpacket andpossiblytransmitsa new packet. Only
after this threadfinishesis the activity that was originally
interruptedresumed.

As we will show, theseinterruptsandcontext switches
canhave a significantimpacton the performanceof server
systemsperforminglarge amountsof network I/O. Even a
singleFastEthernetinterfacecandelivera full-sizedpacket
every 120� secsandGigabitEthernetis alreadyon themar-
ket. Moreover, many high-endWeb servers alreadyhave
backboneconnectionsto theInternetat Gigabitspeed.

2.1 Rate-based clocking

Achieving high network utilization on networks with in-
creasingly high bandwidth-delayproducts may require
transportprotocolslikeTCPto performrate-basedclocking,
thatis, to transmitpacketsatscheduledintervals,ratherthan
only in responseto the arrival of acknowledgment(ACK)
packets.

CurrentTCP implementationsarestrictly self-clocking,
i.e.,packet transmissionsarepacedby thereceptionof ACK
packets from the receiver. Adding the ability to transmit
packetsatagivenrate,independentof thereceptionof ACK
packets (rate-basedclocking), hasbeenproposedto over-
comeseveral known shortcomingsof currentTCP imple-
mentations:�

Rate-baseclocking can allow a senderto skip the
slow-start phasein situationswherethe available network
capacityis known or can be estimated. This can lead to
significantly increasesin network utilization and achieved
throughput,particularlywhen traffic is bursty and the net-
work’s bandwidth-delayproduct is high. Suchconditions
arise,for instance,with Web(HTTP) traffic in today’s Inter-
net[25, 18].�

Rate-basedclockingcanovercometheeffectsof ACK
compressionandbig ACKs. Eitherphenomenonmaycause
a self-clockedsenderto transmita burstof packetsin close
succession,which canadverselyaffectnetwork congestion.

�
Rate-basedclockingallows a TCPsenderto shapeits

traffic in integratedservicesnetworks[10].
Rate-basedclockingrequiresa protocolimplementation

to transmitpacketsat regular intervals. On high-bandwidth
networks, the requiredintervals are in the rangeof tensto
hundredsof � secs. For instance,transmitting1500 byte
packetsat 100Mbpsand1Gbpsrequiresa packet transmis-
sion every 120 � secsand 12 � secs,respectively. Server
systemswith high-speednetwork connectionstransmitdata
at theserateseven in today’s Internet. As we will show in
Section3, conventionalfacilitiesfor eventschedulingavail-
ablein general-purposeoperatingsystemstodaycannotef-
ficiently supporteventsat this granularity. A moredetailed
discussionof theneedfor rate-basedclockingcanbefound
in AppendixA.

To summarize this section, interrupts and context
switchesare increasinglycostly on moderncomputersys-
tems. At the sametime, high-speednetwork interfacesal-
readygenerateinterruptsandassociatedcontext switchesat
a rate that placesa significant burden on server systems.
Rate-basedclocking in transportprotocols,which hasbeen
proposedasa techniqueto increasenetwork utilization and
performanceon high-speedWANs, necessitateseven more
interruptswhenimplementedusingconventionaltimers.

In thefollowingsection,wepresentthedesignof thesoft
timers facility, which enablesefficient rate-basedclocking
andcanbeusedto avoid network interrupts.

3 Design of the soft timers facility

In thissection,wepresentthedesignof soft-timers,amech-
anismfor schedulingfine-grainedeventsin anoperatingsys-
temwith low overhead.

Conventionaltimer facilities scheduleeventsby invok-
ing a designatedhandlerperiodically in the context of an
externalhardwareinterrupt.For example,anIntel 8253pro-
grammableinterrupt timer chip is usually suppliedwith a
Pentium-basedCPU.Theformercanbeprogrammedto in-
terrupttheprocessorat a givenfrequency.

Unfortunately,usinghardwareinterruptsfor fine-grained
eventschedulingcauseshigh CPUoverheadfor thefollow-
ing reasons:�

On a hardware interrupt, the systemhasto save the
context of thecurrentlyexecutingprogramand,afterexecut-
ing the interrupthandler, restorethe interruptedprogram’s
state.�

Hardware interruptsare usually assignedthe highest
priority in the operatingsystem. Thus, irrespective of the
processcurrentlyrunningon theCPU,theinterrupthandler
is allowed to interruptthe executionof the former. In gen-
eral, thedataandinstructionstouchedby the interrupthan-
dler are unrelatedto the interruptedentity, which can ad-
verselyaffect cacheandTLB locality.

In summary, theoverheadof saving state,restoringstate
andthecache/TLBpollution associatedwith interruptslim-
its thegranularityatwhichaconventionalfacility cansched-
uleevents.In Section5 weshow thatthetotalcostof atimer
interrupt in a busy Web server amountsto on average4.45� secson a 300MHzPentium-IImachinerunningFreeBSD-

233

2.2.6. This cost is insignificantwhen interruptsare being
generatedevery msecbut it is unacceptablewheninterrupts
needto begenerated(say)every20 � secs.

The key idea behindsoft timers is as follows. During
normaloperation,a systemfrequentlyreachesstatesin its
execution where an event handlercould be invoked with
minimal overhead. Examplesof such opportunetrigger
statesare�

at the endof executinga systemcall, just beforere-
turningto theuserprogram,�
at the endof executingan exceptionhandler, suchas
theonestriggeredby a memoryexception(e.g.,TLB1

or pagefault) or anarithmeticexception(e.g.,divide-
by-zero),�
at theendof executinganinterrupthandlerassociated
with a hardwaredevice interrupt,just beforereturning
from theinterrupt,�
whenevera CPUis executingtheidle loop.

In thesetrigger states,invoking an event handlercosts
nomorethanafunctioncall andnosaving/restoringof CPU
stateis necessary. Furthermore,thecacheandTLB contents
in thesetriggerstateshavealreadybeendisturbeddueto the
precedingactivity, potentiallyreducingtheimpactof further
cachepollution by the event handler. Performanceresults
presentedin Section5 confirmthis reasoning.

Whenever the systemreachesoneof the trigger states,
the soft-timer facility checksfor any pending soft timer
eventsandinvokesthe associatedhandlerswhenappropri-
ate.As such,thefacility canexecutependingeventswithout
incurring the costof a hardwaretimer interrupt. Checking
for pendingsoft timer eventsin a trigger stateis very effi-
cient: it involvesreadingtheclock (usuallya CPUregister)
andacomparisonwith thescheduledtimeof theearliestsoft
timerevent2. As wewill show, performingthischeckwhen-
ever thesystemreachesa triggerstatehasno noticeableim-
pacton systemperformance.

A disadvantageof thesoft-timerfacility is that thetime
at which an event handleris invoked may be delayedpast
its scheduledtime,dependingon how muchtime passesbe-
tweenthe instantwhena soft timer eventbecomesdueand
theinstantwhenthesystemreachesa triggerstate.

Themaximaldelayexperiencedby a soft timer event is
bounded,becausethesoft timer facility still schedulesa pe-
riodic hardwareinterruptthat is usedto scheduleany over-
dueevents.Thekey point to noticeis thataslong asa sys-
temreachestriggerstateswith sufficient frequency, thesoft
timer facility canscheduleeventsat muchfiner granularity
thanwould befeasibleusinga periodichardwareinterrupt.

Resultspresentedin Section5 show thata300MhzPen-
tium II systemrunninga varietyof workloadsreachestrig-
gerstatesfrequentlyenoughto allow theschedulingof soft-
timereventsat agranularityof tensof � secs.�

In somearchitectures(e.g.,Pentium),TLB missesarehandled
in hardware;in thesemachines,TLB faultscannotbeusedastrig-
gerstates.�

A modified form of timing wheels[24] is usedto maintain
scheduledsoft timerevents.

Example of minimum Event Time (just larger than T=1)

Example of maximum Event Time (just smaller than T+X+1=4)

event fires

event scheduled

event scheduled

event fires

Time

interrupt clock tick

measuring clock tick

Figure 1. Lower and upper bounds for event schedul-
ing

Thesoft-timerfacility providesthefollowingoperations.�
measure resolution(). Returnsa 64-bit value
thatrepresenttheresolutionof theclock (in Hz).�
measure time() returnsa 64-bit value represent-
ing thecurrentrealtimein ticksof aclockwhosereso-
lution is givenby measure resolution(). Since
thisoperationis intendedto measuretimeintervals,the
time neednot besynchronizedwith any standardtime
base.�
schedule soft event(T, handler): sched-
ulesthe function handler to be calledat least � ticks
in thefuture(theresolutionof � is specifiedby mea-
sure resolution()).�
interrupt clock resolution(): gives the
expectedminimal resolution(in Hz) at which the fa-
cility canscheduleeventsandequalsthefrequency of
thesystem’s periodictimer interrupt,which is usedto
“backup” soft timers.

The soft timer facility fires an event (by calling
the corresponding handler) when the value returned
by measure time() exceedsthe value stored at the
time the event was scheduledby at least �	��
 (the
incrementby one accountsfor the fact that the time at
which the event was scheduledmay not exactly coincide
with a clock tick). If � is the resolution of the inter-
rupt clock relative to the measurementclock (i.e., � ������������� �������������! !��"$#&%('�)"*�+�������-,�� ./����./0 ���������1���! !��"$#2%),
thenthesoft timer facility putsthefollowing boundson the
actual time (in ticks of the measurementclock) when the
eventfires:

�4365 .7�!�8�9�;:=<9��"*� �)�>� 3?�@�A�B�C

Figure1 givesexamplesof theaboveboundswhen �ED
 and �FDHG . It is to be notedthat the incrementby one

is negligible if the measurementclock is significantlyfiner

234

thanthe interruptclock (asis thecasein mostmodernsys-
tems).

Thereasonfor theupperboundis that thesoft-timerfa-
cility usesa periodic timer interrupt to checkfor overdue
soft-timerevents.However, theactualtimeatwhichthehan-
dler is invoked is likely to bemuchcloserto � . Expressed
differently, if we assumethat

5 .7�!�8�9�;:=<9��"*� �)�>� D6�I�@J
where J is a randomvariablein the range K L;MNM �	�O
/P ,

thenthe probabilitydistribution of J would be uniform if a
conventionaltimer interruptbasedfacility wasused. With
typical valuesfor the measurementresolutionandinterrupt
clock resolutionof 1 MHz (1� secs)and1 KHz (1msec),re-
spectively, X is 1000andthemaximaldelayis 1001 � secs.

With soft timers,the probability distribution of J is de-
pendentonthesystem’sworkload,which influenceshow of-
ten trigger statesare reached.Resultsshown in Section5
show thatamonga varietyof workloads,theworstcasedis-
tribution of J resultsin a meandelayof 31.6 � secsandis
heavily skewed towards low values(medianis 18 � secs).
Therefore,applicationsthat can benefit from fine-grained
eventson the order of tensof � secsin the commoncase,
but cantolerateraredelaysup to the resolutionof the sys-
tem’s interruptclock (typically 1msec),arewell served by
soft timers.

4 Applications of soft timers

In this section,we describetwo applicationsof soft timers,
rate-basedclocking andnetwork polling. In Section5, we
will presentempirical results to evaluate the use of soft
timersin theseapplications.

4.1 Rate-based clocking

As discussedin Section2.1, achieving high utilization in
networks with largebandwidth-delayproductsmay require
transportprotocolslikeTCPto performrate-basedclocking.
In a conventionalimplementationof rate-basedclocking, a
periodichardwaretimer event mustbe scheduledat the in-
tendedrateof packet transmissions.At network speedsof
severalhundredMbpsanda packetsizeof 1500Bytes(Eth-
ernet),this would requiretimer interruptratesof oneevery
few tensof � secs. Given the overheadof hardware timer
interrupts(e.g.,4.45� secs),this would leadto unacceptable
overhead.

We observe that transmittingmultiple packetsper timer
event would leadto bursty packet transmissionsanddefeat
thepurposeof rate-basedclocking,which is to transmitdata
at a relatively constantrate. However, packet transmissions
on differentnetwork connectionsthat have separatebottle-
necklinks couldbeperformedin a singletimerevent.

Soft timers allow the clocked transmissionof network
packetsat averageintervalsof tensof � secswith low over-
head. Due to the probabilistic natureof soft timer event
scheduling,the resultingtransmissionrate is variable. In

Section5, we will empiricallyshow the statisticsof the re-
sultingtransmissionprocess.

An interestingquestionis how a protocol implemen-
tation should schedulesoft timer transmissionevents to
achievea giventargettransmissionrate.Schedulinga series
of transmissioneventsat fixed intervals resultsin the cor-
rect averagetransmissionrate. However, this approachcan
leadto occasionalbursty transmissionswhenseveral trans-
missioneventsareall dueat theendof a longinterval during
which the systemdid not entera triggerstate.A betterap-
proachis to scheduleonly onetransmissioneventat a time
andlet theprotocolmaintaina runningaverageof theactual
transmissionrate.Thenext transmissioneventis thenadap-
tively scheduledin thecontext of thepreviouseventhandler
to smooththeratefluctuations.

Our prototypeimplementationemploys a simple algo-
rithm for schedulingthe next transmission.The algorithm
usestwo parameters,the target transmissionrate and the
maximalallowableburst transmissionrate. The algorithm
keepstrackof theaveragetransmissionratesincethebegin-
ning of the currenttrain of transmittedpackets. Normally,
the next transmissionevent is scheduledat an interval ap-
propriatefor achieving the target transmissionrate. How-
ever, whentheactualtransmissionratefalls behindthe tar-
get transmissionratedueto soft timer delays,thenthenext
transmissionis scheduledataninterval correspondingto the
maximalallowablebursttransmissionrate.

Wewill experimentallyevaluatetheuseof soft timersfor
rate-basedclockingin Section5.

4.2 Network polling

In conventional network subsystemimplementations,the
network interfacesgeneratea hardware interrupt to signal
thecompletionof apacketreceptionor transmission3. Upon
a receiver interrupt,thesystemacceptsthepacket,performs
protocolprocessingandsignalsany blockedprocessthathas
beenwaiting to receive data. Upon a transmit interrupt,
thesystemdecreasesthe referencecounton thetransmitted
packets’ buffers, possiblydeallocatingthem. In busy sys-
temswith high-speednetwork interfaces(e.g., server sys-
tems),network interruptscanoccur at a rate of one every
few tensof � secs.

Another approachto schedulingnetwork processingis
polling, wherethesystemperiodicallyreadsthenetwork in-
terfaces’statusregistersto testfor completedpacket recep-
tionsor transmissions.In a purepolling system,thesched-
uler periodically calls upon the network driver to poll the
network interfaces.

Purepolling avoidstheoverheadof interruptsandit can
reducethe impact of memoryaccesslocality shifts by (1)
testingfor network eventsat “convenient”pointsin theexe-
cutionof thesystem,andby (2) aggregatingpacketprocess-
ing. By performingpolling when the scheduleris active,
packet processingis performedat a time when the system
alreadysuffersa locality shift. By polling at anappropriate
averagerate,multiplepacketsmayhavecompletedsincetheQ

Someinterfacescanbeprogrammedto signalthecompletion
of a burstof packet transmissionsor receptions.

235

lastpoll, thusallowing theaggregationof packetprocessing,
increasingmemoryaccesslocality.

However, thedisadvantageof purepolling is that it may
substantiallyincreasecommunicationlatency by delaying
packet processing.As a result, hybrid schemeshave been
proposed.Traw andSmith[23] useperiodichardwaretimer
interruptsto initiate polling for packet completionswhen
usinga Gigabit network interface. This approachinvolves
a tradeoff betweeninterrupt overheadand communication
delay. Mogul andRamakrishan[17] proposea systemthat
usesinterruptsundernormalnetwork loadandpolling under
overload,in orderto avoid receiver livelock.Whenprocess-
ing of a packet completes,thesystempolls the network in-
terfacefor moreoutstandingpackets;only whenno further
packetsarefoundarenetwork interruptsre-enabled.

Soft timersoffer a third designchoice. With soft timer
basednetwork polling, a soft timer event is usedto poll the
network interfaces. As in purepolling, network interrupts
areavoidedandmemoryaccesslocality is improvedbecause
network polling andprocessingis performedonly whenthe
associatedsoft timer event expiresand the systemreaches
a trigger state. However, sincesoft timer eventscanbe ef-
ficiently scheduledat � secgranularity, communicationsla-
tency canbecloseto thatachievedwith interruptdrivennet-
work processingin thecommoncase.

In general,thesofttimerpoll intervalcanbedynamically
chosensoasto attemptto find a certainnumberof packets
per poll, on average. We call this numberthe aggregation
quota. An aggregationquotaof oneimpliesthatonepacket
is found,onaverage,perpoll.

Wewill experimentallyevaluatetheuseof soft timersfor
network polling in Section5.

5 Experimental results

In this section,we presentexperimentalresultsto evaluate
theproposedsoft timer facility. Wequantifytheoverheadof
our proposedsoft timer facility andcompareit to thealter-
native approachof schedulingeventsusinghardwaretimer
interrupts.We alsopresentmeasurementsthatshow thedis-
tributionof delaysin soft timereventhandling,givenavari-
ety of systemworkloads.

Finally, weevaluatetheperformanceof soft timerswhen
usedto performrate-basedclockingandnetwork polling.

5.1 Base overhead of hardware timers

Our first experimentis designedto determinethebaseover-
headsof a conventionalhardwareinterrupttimer asa func-
tion of interruptfrequency.

The experimental setup consists of four 300MHz
Pentium-IImachines,eachconfiguredwith 128MBof RAM
andconnectedthrougha switched100MbpsEthernet. We
ran the Apache-1.3.3[3] Web server on oneof the PII ma-
chineswhile the other threePII machinesran a client pro-
gramthat repeatedlyrequesteda 6 Kbyte file from theWeb
server. The numberof simultaneousrequeststo the Web
serverweresetsuchthattheservermachinewassaturated.

TheFreeBSD-2.2.6OSrunson theservermachine.The
kernelusesits standardtimer facilitiesto scheduleall events
in thesystem.However, anadditionalhardwaretimer inter-
ruptwasscheduledwith varyingfrequency. A “null handler”
(i.e.,a handlerfunctionthat immediatelyreturnsuponinvo-
cation) was invoked whenever this timer interrupt fires, to
isolatetheoverheadof thetimer facility alone.

We thenmeasuredthe throughputof the Apacheserver
in thepresenceof theadditionalhardwaretimer, asa func-
tion of frequency. By measuringtheimpactof hardwarein-
terruptson the performanceof a realisticworkload,we are
ableto capturethefull overheadof hardwaretimers,includ-
ing secondaryeffect likecacheandTLB pollutionthatresult
from handlingthetimer interrupt.

Figure2 plotsthethroughputof theApacheWebserver
astheinterruptfrequency of thehardwaretimer is increased
to 100KHz. Figure 3 plots the percentagereduction in
throughputandis indicativeof theoverheadimposedby the
hardwareinterrupts.Theresultsshow thattheinterruptover-
headincreasesapproximatelylinearly with frequency and
canbeashigh as45%at an interruptfrequency of 100KHz
(oneinterruptevery 10 � secs).Fromtheseresults,it canbe
calculatedthattheaveragecombinedoverheadperinterrupt
is about4.45� secs4.

We repeatedthe experiment on a machine with a
500MHzPentiumIII (Xeon)CPUrunningFreeBSD-3.3and
found that the interruptoverheadwas4.36� secs. This in-
dicatesthat interrupt overheaddoes not scale with CPU
speedand suggeststhat the relative cost of interruptsin-
creasesas CPUsget faster. Finally, a similar experiment
performedonanAlphaStation500au(500MHz21164CPU)
runningFreeBSD-4.0-betaresultedin aninterruptoverhead
of 8.64� secs.This indicatesthat the high overheadassoci-
atedwith interrupthandlingis not uniqueto Intel PCs.

Notethat theoverheadof a timer interruptcanbe lower
on bothplatformswhenthemachineis idle, sincethecode,
dataandTLB entriesusedduring interrupthandlingremain
fully cached.Our experimenttries to obtaina moremean-
ingful measureof the overheadby evaluatingthe total im-
pactof timer interruptson the performanceof a real work-
loadthatstressesthememorysystem.Theresultsshow that
timer interruptshaveasignificantoverhead.

5.2 Base overhead of soft timers

The next experimentdeterminesthe baseoverheadof soft
timers.We implementedsoft timersin theFreeBSDkernel.
Trigger stateswere addedin the obvious placesdescribed
in Section3. In practice,we found that the trigger interval
distribution could be improved by addinga few additional
trigger statesto ensurethat certainkernel loops containa
triggerstate.Examplesof suchloopsaretheTCP/IPoutput
loop and the TCP timer processingloop. SinceIntel x86
CPUshandleTLB missesin hardware, theseeventscould
not beusedastriggerstatesin ourprototype.

Theidle loopchecksfor pendingsofttimerevents.How-
ever, to minimize power consumption,an idle CPU haltsR

Measurementsusingperformancecountersto measuretheav-
erageelapsedtimespentin theinterrupthandlerconfirmthisresult.

236

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

900

1000
T

hr
ou

gh
pu

t (
co

nn
/s

)

Frequency (KHz)

Figure 2. Apache throughput

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

O
ve

rh
ea

d
(%

)

Frequency (KHz)

Figure 3. Base interrupt overhead

wheneither(a) thereareno soft timer eventsscheduledat
timesprior to the next hardwaretimer interrupt,or (b) an-
otheridle CPUis alreadycheckingfor soft timerevents.

In our next experiment,we scheduleda periodic soft
timer event suchthat a handlerwas invoked whenever the
systemreachesa triggerstate.That is, we programmedthe
soft timer facility to invoke a soft timer eventhandlerat the
maximal frequency possible,given the Web server work-
load. As with the hardwaretimer, a “null handler”wasin-
vokedwhenever thesoft timerfired.

Thesoft timerhandlerinvocationscausedno observable
differencein theWebserver’s throughput.This impliesthat
thebaseoverheadimposedbyoursofttimerapproachis neg-
ligible. This is intuitive becausethecalls to thehandlerex-
ecutewith theoverheadof a procedurecall, whereasa hard-
wareinterruptinvolvessaving andrestoringthe CPU state.
With soft timers, the event handlerwas called every 31.5� secson average.We observe that usinga hardwareinter-
rupt timer at a frequency of oneeventevery 30 � secs(33.3
KHz) would haveabaseoverheadof approximately15%.

5.3 Soft timer event granularity under differ-
ent workloads

Recallthatonceasoft timereventis due,theassociatedhan-
dler is executedat theearliesttimewhenthesystemreaches
a trigger state. The performanceof a soft timer facility,
i.e., the granularityandprecisionwith which it cansched-
ule events,thereforedependson thefrequency at which the
systemreachestriggerstates.

We measuredthe distribution of timesbetweensucces-
sive triggerstatesfor avarietyof workloads.Figure4 shows
thecumulativedistributionfunctionof timebetweensucces-
sive triggerstates.

Theworkloadsareasfollows. “ST-Apache”corresponds
to the ApacheWeb server workload from the previous ex-
periment.In “ST-Apache-compute”,anadditionalcompute-
boundbackgroundprocessis runningconcurrentlywith the
Web server. “ST-Flash” is a Web server workloadusinga
fast event-driven Web server called Flash [20]. “ST-real-
audio”wasmeasuredwith acopy of theRealPlayer[22] run-
ning on themachine,playingbacka live audiosourcefrom

0 50 100 150
0

20

40

60

80

100

ST−nfs

ST−kernel−build

ST−real−audio

ST−Flash

ST−Apache−compute

ST−Apache

C
um

ul
at

iv
e

S
am

pl
es

 (
%

)

Trigger state interval (usec)

Figure 4. Trigger state interval, CDF

the Internet. “ST-nfs” reflectsthe trigger stateinter-arrival
timeswhenthe workloadis a NFSfileserver. Finally, “ST-
kernel-build” wasmeasuredwhile a copy of the FreeBSD-
2.2.6kernelwasbuilt on themachinefrom thesources.

Additional informationaboutthe distribution with each
workload is given in Table 1. Two million sampleswere
takenin eachworkloadto measurethedistributions.

Theresultsshow thatunderaworkloadtypicalof abusy
Web server, the soft timer facility can scheduleeventsat
a meangranularityof tensof � secswith negligible over-
headandwith delaysover 100 � secsin lessthan6% of the
samples.As shown below, this performanceis sufficient to
performrate-basedclockingof 1500bytepacketsat several
hundredsof Mbits/secandit allowseffectivepolling of net-
work interfaceeventsat thesamerate.

In a busy Web server, it is intuitive that the many net-
work packetarrivals,diskdevice interruptsandsystemcalls
provide frequent trigger states. One concernis that the
presenceof compute-boundbackgroundcomputationsmay
causelong periodswhere the systemdoesnot encounter
a trigger state,thus degradingthe performanceof the soft
timer facility.

To measurethiseffect,weaddedacompute-boundback-

237

Max (� sec) Mean(� sec) Median(� sec) StdDev (� sec) S4
�LTLU� sec(%) S4
�VTLU� sec(%)
ST-Apache 476 31.52 18 32 5.3 0.39
ST-Apache-compute 585 31.59 18 32.1 5.3 0.43
ST-Flash 1000 22.53 17 20.8 1.09 0.013
ST-real-audio 1000 8.47 6 13.2 0.025 0.013
ST-nfs 910 2.13 2 3.3 0.021 0.011
ST-kernel-build 1000 5.63 2 47.9 0.038 0.033
ST-Apache(Xeon) 1000 19.41 11 23 0.44 0.13

Table 1. Trigger state interval distribution

ground processto the Web server, which executesin a
tight loop without performing systemcalls (“ST-Apache-
compute”). The resultsshow that the presenceof back-
groundprocesseshasnotangibleimpactontheperformance
of thesofttimerfacility. Thereasonis thatabusyWebserver
experiencesfrequentnetwork interruptsthathavehigherpri-
ority thanapplicationprocessingandyield frequenttrigger
statesevenduringperiodswherethebackgroundprocessis
executing.

“ST-nfs” is anotherexampleof a server workload. The
NFSserveris saturatedbut disk-bound,leaving theCPUidle
approximately90% of the time. The vastmajority of sam-
ples indicatea trigger stateinterval around2� secson this
workload.

TheRealPlayer(“ST-real-audio”)wasincludedbecause
it is anexampleof anapplicationthatsaturatestheCPU.De-
spitethefact that this workloadperformsmostlyuser-mode
processingandgeneratesa relatively low rateof interrupts,
it yieldsadistributionof triggerstateintervalswith very low
mean,due to the many systemscalls that RealPlayerper-
forms.

Finally, we measurea workloadwheretheFreeBSDOS
kernelis built from thesourcecode.Thisworkloadinvolves
extensive computation(compilation,etc.) as well as disk
I/O.

To determinetheimpactof CPUspeedon thetriggerin-
terval distribution,werepeatedtheexperimentwith the“ST-
Apache”workloadonamachinewith a500MHzPentiumIII
(Xeon)CPUrunningFreeBSD-3.3.Thesummaryinforma-
tion aboutthe resultingdistribution is includedin Table1.
The resultsshow that the shapeof the distribution is simi-
lar to thatobtainedwith theslower CPU,however themean
is reducedby a factor that roughly reflectsthe CPU clock
speedratio of theCPUs. This indicatesthat thegranularity
of soft timer eventsincreasesapproximatelylinearly with
CPUspeed.

While our selectionof measuredworkloadsis necessar-
ily limited, webelievethatthesoft timer facility canprovide
fine-grainedevent supportacrossa wide rangeof practical
workloads. The reasonis that (1) mostpracticalprograms
frequentlymake systemcalls,suffer pagefaults,TLB faults
or generateotherexceptionsthat causethe systemto reach
a trigger stateand (2) the soft timer facility can schedule
eventsat veryfinegrainwhenevera CPUis idle.

In themostpessimisticscenario,all CPUsarebusy, the
executingprogramsmakeinfrequentsystemcalls,causefew
pagefaultsor otherexceptionsandtherearefew device I/O
interrupts. Theseconditionsmark the absenceof signifi-

cantI/O or communicationactivity in theworkload,andcan
arise,for instance,in scientificapplications.However, ob-
serve that � sectimersareusedprimarily in networking,and
it is thusunlikely that any soft timer eventsarescheduled
undersuchconditions.

5.4 Changes in trigger interval distribution
over time

Thetriggerinterval distributionsshown in theprevioussec-
tion areaggregatedover2 million samples,correspondingto
4–64secsof executiontimefor thevariousworkloads.A re-
latedquestionis how thetriggerintervaldistributionchanges
during the runtimeof a workload. For instance,it is con-
ceivablethatcontext switchingbetweendifferentprocesses
couldcausesignificantchangesin thetriggerinterval distri-
bution. To investigatethis question,we computedthemedi-
ansof the trigger interval distributionsduring intervalsof 1
msand10ms.Resultsareplottedin Figure5 for aperiodof
10 secsof the runtimeof the “ST-Apache-compute”work-
load.Thex-axisrepresentstheruntimeof theworkload,the
y-axis shows the medianof the trigger interval distribution
duringagiveninterval (1 msand10ms).

With 1msintervals,thebulk of thetriggerinterval medi-
ansarein therangefrom 14to 26� secs.A few intervals(less
than1.13%)have mediansabove40� secs.Themediansfor
the 10msintervals (which correspondsto a timeslicein the
FreeBSDsystem),on the otherhand,almostall fall into a
narrow bandbetween17 and19� secs.

Theseresultsindicatethat the dynamicbehavior of the
workloadappearsto causenoticeablevariability in thetrig-
ger interval distribution over 1msintervals. However, there
is little variability in the trigger interval distributions over
10msintervals.

5.5 Trigger interval distribution by event
source

A relatedquestionis what fraction of trigger statesis con-
tributed by each event sourceand how that contribution
affects the resulting trigger stateinterval distribution. To
answerthis questions,we separatelyaccountedfor trigger
statesby event sourcefor the “ST-Apache”workload. Ta-
ble 2 shows thefractionof triggerstatesamplescontributed
by eacheventsource.

Thesources“syscalls”and“traps” areself-explanatory.
Thesource“ip-output” generatesa triggereventevery time

238

0

20

40

60

80

100

0 2 4 6 8 10

M
ed

ia
n

In
te

rv
al

 (
us

ec
)

W

Time (sec)

0

20

40

60

80

100

0 2 4 6 8 10

M
ed

ia
n

In
te

rv
al

 (
us

ec
)

W

Time (sec)

Figure 5. Trigger interval medians during 1 ms and 10 ms intervals, ST-Apache-compute workload

anIP packet (e.g.,TCPsegment)is transmitted.Thesource
“tcpip-others”representsa numberof othertriggerstatesin
thenetwork subsystem,suchastheprocessingloopfor TCP
timers.Network interfaceinterruptsarereflectedin the“ip-
intr” source.

Source Fractionof samples(%)
syscalls 47.7
ip-output 28

ip-intr 16.4
tcpip-others 5.4

traps 2.5

Table 2. Trigger state sources

Figure6 shows the impact that eachtrigger sourcehas
on the trigger interval distribution. The graphsshow the
CDFsof theresultingtriggerinterval distributionswhenone
of the triggersourcesis removed. For instance,“no ipintr”
shows the CDF of the resultingtrigger interval distribution
whenthereis no triggerstateassociatedwith network inter-
rupts. “All” representstheoriginal distribution for the“ST-
Apache”workloadfrom Figure4. It is evident from there-
sults that systemcalls and IP packet transmissionsare the
mostimportantsourcesof triggereventsin this workload.

5.6 Rate-based clocking: timer overhead

In this section,we evaluatethe useof soft timers to per-
form rate-basedclockingin TCP. We show resultsthatcom-
pare the overheadof performingrate-basedclocking with
soft timersversushardwaretimer interrupts,weevaluatethe
statisticsof thepacket transmissionprocessandwe explore
thepotentialfor network performanceimprovementsdueto
rate-basedpacing.

Our first experiment is designedto explore the over-
headof rate-basedclockingin TCPusingsoft timersversus
hardwaretimers. The experimentalsetupis the sameasin
the previous experimentexcept that the Web server’s TCP
implementationusesrate-basedclocking using either soft
timersor aconventionalinterrupttimer to transmitpackets.

Thesoft timerwasprogrammedto generateaneventev-
ery time the systemreachesa trigger state. Onepacket is

0 50 100 150
0

20

40

60

80

100

All

no traps

no ip−intr

no ip−output

no syscalls

C
um

ul
at

iv
e

S
am

pl
es

 (
%

)

Trigger state interval (usec)

Figure 6. Impact of event sources on trigger interval,
CDF (ST-Apache workload)

transmittedwhenever thehandleris invokedanda packet is
pendingtransmission.OnaLAN, suchastheoneusedin our
testbed,FreeBSD’s TCPimplementationdoesnot useslow-
start. Thus,all packetsarenormally sentin a burst, asfast
asthe outgoingnetwork link cantransmitthem. Sincethe
transmissionof a 1500byte packet takes120 � secson our
100Mbpsnetwork, theuseof rate-basedclockinghasnoob-
servableimpacton the network. Therefore,the experiment
isolatesthe overheadof usingsoft timers versushardware
timersfor rate-basedclocking in TCP, but doesnot expose
possiblebenefitsof rate-basedclocking.

Table3 shows the performanceresultsobtainedin this
experiment. We presentresultsfor both the Apache-1.3.3
Web server aswell astheFlashserver. For the resultswith
hardwareinterrupttimers,the8253wasprogrammedto in-
terruptonceevery20 � secs(50KHzfrequency), causingthe
dispatchof a thread(BSD softwareinterrupt)that transmits
a packet. Fromthepreviousexperiments,we know thebase
overheadfor event dispatchat this rate is about22%. The
extra overheadindicatedby the resultsis most likely due
to cachepollution, sincethecomputationperformedby the
handleris exactly the sameasthatperformedduring trans-

239

Apache Flash
BaseThroughput(conn/s) 774 1303

HW timer throughput(conn/s) 560 827
HW timerOvhd(%) 28 36

HW timerAvg xmit intvl (� secs) 31 35
Soft timer throughput(conn/s) 756 1224

Soft timerOvhd(%) 2 6
Soft timerAvg xmit intvl (� secs) 34 24

Table 3. Overhead of rate-based clocking

missionof a packet in theoriginalTCPimplementation.
The results indicate that the effect of cachepollution

with hardwaretimersis at least4% (GUXZY?GTGZY6G) and8%
([-\$Y]GTG$Y^\) worsethanwith soft timersfor theApacheand
the Flashserver, respectively. The fact that Flashappears
to bemoreaffectedby thecachepollution canbeexplained
asfollows. Apacheis amulti-processserverwhosefrequent
context switchingleadsto relatively poormemoryaccesslo-
cality. Flash,on the otherhand,is a small, single-process
event-driven server with presumablyrelatively goodcache
locality. It is intuitive, therefore,that theFlashserver’s per-
formanceis moresignificantlyaffectedby the cachepollu-
tion resultingfrom thetimer interrupts.

The resultsalso show that the averagetime between
transmissionswith soft timers is only slightly higher than
with thehardwaretimer whenusingtheApacheserver, and
it is lower whenusingthe Flashserver. This resultcanbe
explainedas follows. With hardwaretimers, the transmis-
sion rateis lower thanthe rateat which the 8253chip was
programmedbecausethetransmissioneventhandlermayin
generalbedelayeddueto disabledinterrupts.On theother
hand,soft timersperformsubstantiallybetterwhentheFlash
serveris usedbecausethatserveris muchfasterthanApache
andthereforegeneratestrigger statesat a higherrate. The
combinedeffect is that soft timers with Flash result in a
lower timebetweentransmissionsthanthehardwaretimer.

In summary, theresultsof thisexperimentshow thatsoft
timerscanbeusedto do rate-basedclockingin TCPat rates
thatapproachGigabit speedwith very low overhead(2-6%
in our experiment).Using a conventionalinterrupttimer at
this ratehasan overheadof 28-36%in our experimentand
is thereforenot practical.

5.7 Rate-based clocking: transmission pro-
cess statistics

As discussedin Section4, our implementationof rate-based
clockingbasedonsoft timersusesanadaptivealgorithmfor
schedulingtransmissions,in order to smoothvariationsin
the transmissionrate causedby the probabilisticnatureof
soft timers.Thealgorithmkeepstrackof theactualsending
rate,andwhenever this ratefalls behindthe target sending
rate,thenext transmissioneventisscheduledsoasto achieve
the maximal allowable burst sendingrate, until the actual
sendingrateonceagaincatchesup with the target sending
rate.

We performedan experiment to determinethe actual

achievabletransmissionrateandtheresultingstatisticsof the
transmissionprocess,asafunctionof themaximalallowable
burst transmissionrate,assuminga target transmissionrate
of onepacketevery 40� secsand60� secs,respectively. The
workloadin thisexperimentwasthatof thebusyWebserver
(“ST-Apache”in Figure4), which is amongthe two work-
loadswith the largestmeantriggerstateinterval (i.e, worst
case).

We assumein this experimentthat thebandwidthof the
network link attachedto thesenderis 1Gbpsandthepacket
sizeis 1500bytes.Therefore,theminimal interval settingof
12 � secsreflectsthe maximal transmissionrateof the net-
work link. At thisminimal interval setting,rate-basedclock-
ing is allowed to sendpacketsat the link bandwidthwhen-
ever theactualrateis below thetargettransmissionrate.

Theresultsareshown in Tables4 and5 for target trans-
missionintervalsof 40� secsand60� secs,respectively. For
comparison,results for hardware timer basedrate-based
clocking werealsoincluded. The hardwaretimer waspro-
grammedto fire regularlyat thetargettransmissioninterval.

The results show that soft timers can support rate-
basedclockingup to ratesof onepacket transmissionevery
40� secs,if it is allowed to sendburstsat the link speedof
onepacket every 12� secs.As the minimal allowableburst
interval is increased,thesoft timerscanno longermaintain
an averagetransmissioninterval of 40� secs,and dropsto
65.9� secsat a minimalallowableinterval of 35� secs.

At a target interval of 60� secs,soft timerscanmaintain
theaverageinterval up to a minimalallowableburstinterval
of 30� secs.Thestandarddeviation is in all casesin the30–
35� secsrangeand improvesas the minimal burst interval
increases,asexpected.

We note that thesemeasurementsapply to rate-based
clockingon a singleconnection.Soft timerscanbeusedto
clock transmissionon differentconnectionssimultaneously,
evenat differentrates. (A server may performmany trans-
missionsimultaneously, resultingin large aggregateband-
widths.) In this case,multiple packetsmay be transmitted
on differentconnectionsin a singlesoft timer event (i.e., in
thecontext of onetriggerstate).

With hardwaretimers,rate-basedclockingfalls shortof
thetargettransmissionrateby 3� secsand3.6� secs,respec-
tively. Thereasonis thatsometimer interruptsarelost dur-
ing periodswhen interruptsare disabledin FreeBSD.The
hardwaretimersachieve a somewhat betterstandarddevia-
tion thansoft timers,which is to beexpectedgiventheprob-
abilistic natureof thelatter.

We alsonotethatthebaseoverheadof usingtimer inter-
rupt at the target transmissionratesof 40 and60� secsis at
least13%and8.5%,respectively (seeFigure3). Finally, we
observethatonly asinglehardwaretimerdevice is available
in mostsystem. It is impossible,therefore,to usea hard-
ware timer to simultaneouslyclock multiple transmissions
at differentrates,unlessonerateis a multiple of the other.
Moreover, reprogrammingthe timer device frequentlyto a
differentratemaybetoo expensive,dueto the long latency
associatedwith accessingdevice registers. In practice,this
maycauseadditionaldeviation from thetargettransmission
rate.

Combinedwith the high overhead,theseconcernsraise

240

Soft timers Hardwaretimers
Min interval (� sec) Avg interval (� sec) StdDev Avg interval (� sec) StdDev
12 (line speed) 40 34.5 43.6 26.8
15 48 31.6 - -
20 51.9 30.9 - -
25 57.5 30.9 - -
30 61 30.5 - -
35 65.9 30.1 - -

Table 4. Rate-based clocking (target transmission interval = 40 � secs)

Soft timers Hardwaretimers
Min interval (� sec) Avg interval (� sec) StdDev Avg interval (� sec) StdDev
12 (line speed) 60 35.9 63 27.7
15 60 33.2 - -
20 60 32.3 - -
25 60 31.2 - -
30 61 30.5 - -
35 65.9 30 - -

Table 5. Rate-based clocking (target transmission interval = 60 � secs)

questionsaboutthe feasibility of rate-basedclocking with
hardwaretimersat high network speeds.Soft timers,on the
otherhand,cansupportmultiple transmissionsat different
ratesandwith low overhead.

5.8 Rate-based clocking: network perfor-
mance

Our next experimentattemptsto quantify the potentialim-
pactof rate-basedclockingontheachievedperformanceof a
Webserverovernetwork connectionswith high bandwidth-
delayproducts.

In our prototypeimplementationof rate-basedclocking
in TCP, weassumethattheavailablecapacityin thenetwork
is known. In practice,estimatingthe availablecapacityis
not a trivial problem. Practicalmechanismsfor bandwidth
estimationandotherdetailsof the integrationof rate-based
clocking into TCP requirefurther researchandarebeyond
thescopeof thispaper. Relatedwork in thisareais discussed
in Section6.

To show the potentialeffect of rate-basedclocking on
TCPthroughput,weperformedanexperimentwherea vari-
ableamountof datais transmittedoveranetwork connection
with high bandwidth-delayproduct.We modelthis connec-
tion in thelaboratoryby transmittingthedataona100Mbps
Ethernetvia anintermediatePentiumII machinethatactsas
a “WAN emulator”.ThismachinerunsamodifiedFreeBSD
kernelconfiguredasan IP router, exceptthat it delayseach
forwardedpacket soasto emulatea WAN with a givende-
lay andbottleneckbandwidth.In ourexperiment,wechoose
theWAN delayas50msandthebottleneckbandwidthto be
either50Mbpsor 100Mbps.As aresult,theTCPconnection
betweenclient and server machinehasa bandwidth-delay
productof either5Mbits or 10Mbits. Network connections
with thesecharacteristicsarealreadyavailablein vBNS and
will soonbeavailablein thegeneralInternet.

We performed HTTP requestsacross the laboratory
“WAN” connectionto an otherwiseunloadedserver. Ei-
ther the standardFreeBSDTCP implementationwasused,
or alternatively our modifiedimplementation,which avoids
slow-start and instead uses soft-timer based rate-based
clockingataratecorrespondingto thebottleneckbandwidth,
i.e., one packet every 120� secs (100Mbps) or 60� secs
(50Mbps),respectively. Sincea persistentconnectionis as-
sumedto bealreadyestablishedprior to startingtheexperi-
ment,thereis nodelaydueto connectionestablishment.The
resultsareshown in Tables6 and7.

Weseethatrate-basedclockingcanleadto dramaticim-
provementsin throughput,responsetime andnetwork uti-
lization on networks with high bandwidth-delayproducts.
Responsetime reductionsdueto rate-basedclocking range
from 2% for largetransfersto 89%for mediumsizedtrans-
fers (100 packets or 141 KBytes). Theseimprovements
arethe resultof rate-basedclocking’s ability to avoid TCP
slow-start,which tendsto underutilizenetworks with large
bandwidth-delayproductsonall but very largetransfers.

SincetheaverageHTTPtransfersizeis reportedto bein
the 5–13KB range[4, 16], rate-basedclocking canhave a
significantimpacton theWeb.

5.9 Network polling

Our final experimentevaluatesthe use of soft timers for
network polling. We implementednetwork polling in
the FreeBSD-2.2.6kernel, using soft timers to initiate the
polling. The polling interval is adaptively setto attemptto
find a givennumberof receivedpacket perpoll interval, on
average(aggregationquota).

In this experiment,a 333MHzPentiumII machinewith
4 Fast Ethernetinterfaceswas usedas the server. Four
300MHz PII machineswere usedas the client machines,
eachconnectedto adifferentinterfaceon theserver.

241

regularTCP rate-basedclocking
Transfersize Xput Responsetime Xput Responsetime Resp.time reduction
(1448Bytepackets) (Mbps) (msecs) (Mbps) (msecs) (%)
5 0.12 496 0.57 101.2 79
100 1.01 1145 9.36 123.7 89
1000 6.75 1714 34.07 340 80
10000 29.95 3867 46.33 2500 35
100000 45.54 25432 46.60 24863 2

Table 6. Rate-based clocking network performance (Bandwidth = 50Mbps, RTT = 100 msecs)

regularTCP rate-basedclocking
Transfersize Xput Responsetime Xput Responsetime Resp.time reduction
(1448Bytepackets) (Mbps) (msecs) (Mbps) (msecs) (%)
5 0.16 350 0.58 100.6 71
100 1.09 1056 10.34 112 89
1000 6.38 1815 51.94 223 87
10000 38.46 3012 86.77 1335 55
100000 81.37 14235 91.92 12601 11

Table 7. Rate-based clocking network performance (Bandwidth = 100Mbps, RTT = 100 msecs)

We measuredthe throughput of two different Web
servers (Apacheand Flash), given a syntheticworkload,
whereclients repeatedlyrequestthe same6KB file. The
throughputwasmeasuredonanunmodifiedFreeBSDkernel
(conventionalinterruptbasednetwork processing)andwith
soft timer basednetwork polling. Table8 shows theresults
for thetwo differentservers,for aggregationquotasranging
from 1 to 15, and for conventional(HTTP) and persistent
connectionHTTP (P-HTTP).

The throughput improvementswith soft timer based
polling rangefrom 3% to 25%. The benefitsof polling are
morepronouncedwith the fasterFlashserver, asit stresses
the network subsystemsignificantlymorethanthe Apache
server and,owing to its betterlocality, is moresensitive to
cachepollution from interrupts. With P-HTTP, amortizing
the costof establishinga TCPconnectionover multiple re-
questsallowsmuchhigherthroughputwith bothservers,in-
dependentof polling.

The differencebetweenthe resultsfor the conventional
interrupt-basedsystemandnetwork polling with an aggre-
gationquotaof 1 (i.e., onepacket per poll on average)re-
flects the benefitof avoiding interruptsand the associated
improvementin locality. The network polling resultswith
aggregation quotasgreaterthan one reflect the additional
benefitsof aggregatingpacketprocessing.

In general,aggregationof packet processingraisescon-
cernsaboutincreasedpacket delayandACK compression.
However, we believe thataggregationis practicalwith soft-
timer basednetwork polling, for two reasons.Firstly, soft-
timer basednetwork polling is turned off (and interrupts
areenabledinstead)whenever a CPU entersthe idle loop.
This ensuresthatpacket processingis neverdelayedunnec-
essarily. Secondly, whenrate-basedclockingis used,packet
transmissionsarenot pacedby incomingACKs. With rate-
baseclocking,it is thereforeno longernecessaryto preserve
theexacttiming of incomingACKs, i.e.,ACK compression
is of lesserconcern.

Finally, we observe that future improvementsin CPU
andnetwork speedswill continueto increasetherateof net-
work interruptsin conventionalnetwork subsystemimple-
mentations.Sincethe relative costof interrupthandlingis
likely to increaseasCPUsgetfaster(seeSection5.1),avoid-
ing interruptsbecomesincreasinglyimportant.

5.10 Discussion

Soft timersallow theefficientschedulingof eventsatagran-
ularity below thatwhich canbeprovidedby a conventional
interval timerwith acceptableoverhead.The“useful range”
of softtimereventgranularitiesis boundedononeendby the
highestgranularitythatcanbeprovidedby ahardwareinter-
rupt timerwith acceptableoverhead,andontheotherendby
the soft timer trigger interval. On our measuredworkloads
on a 300MHz PII CPU,this usefulrangeis from a few tens
of � secsto a few hundredsof � secs. Moreover, the use-
ful rangeof soft timer eventgranularitiesappearsto widen
asCPUsgetfaster. Ourmeasurementsontwo generationsof
PentiumCPUs(300MHzPII and500MHzPIII) indicatethat
thesoft timer eventgranularityincreasesapproximatelylin-
earlywith CPUspeed,but thattheinterruptoverhead(which
limits hardwaretimergranularity)is almostconstant.

Softtimerscanbeeasilyintegratedwith anexisting,con-
ventionalinterval timer facility. The interval timer facility
providesconventionaltimer eventservices,andits periodic
interruptis alsousedto scheduleoverduesoft timer events.
Conventionaltimersshouldbeusedfor eventsthatneedtobe
scheduledat or below thegranularityof the interval timer’s
periodicinterrupt.Soft timersshouldbeusedfor eventsthat
requireagranularityupto thetriggerstateinterval, provided
theseeventscantolerateprobabilisticdelaysup to thegran-
ularity of theconventionalinterval timer.

242

InterruptXput (req/sec) SoftPoll Xput (req/sec)
Aggregation 1 1 2 5 10 15
HTTP
Apache 854(1.0) 915(1.07) 933(1.09) 939(1.10) 944(1.11) 945(1.11)
Flash 1376(1.0) 1568(1.14) 1620(1.17) 1690(1.23) 1702(1.24) 1719(1.25)
P-HTTP
Apache 1346(1.0) 1380(1.03) 1395(1.04) 1421(1.06) 1439(1.07) 1440(1.07)
Flash 4439(1.0) 4816(1.08) 5071(1.14) 5271(1.19) 5376(1.21) 5498(1.24)

Table 8. Network polling: throughput on 6KB HTTP requests

6 Related work

The implementationof soft timers is basedon the idea of
polling, which goesbackto theearliestdaysof computing.
In polling,amain-lineprogramperiodicallychecksfor asyn-
chronousevents,and invokeshandlercodefor the event if
needed.

The novel idea in soft timers is to implementan effi-
cienttimerfacility bymakingtheoperatingsystem“poll” for
pendingsoft timer eventsin certainstrategic states.These
“trigger states”areknown to bereachedveryfrequentlydur-
ing execution.Furthermore,thesestatesareassociatedwith
a shift in memoryaccesslocality, thusallowing theinterpo-
sition of handlercodewith little impacton systemperfor-
mance.The resultingfacility canthenbe usedto schedule
eventsat a granularitythatcouldnot beefficiently achieved
with aconventionalhardwaretimer facility.

Traw andSmith [23] useperiodichardwaretimer inter-
ruptsto initiatepolling for packetscompletionswhenusinga
Gigabitnetwork interface.Thisapproachinvolvesatradeoff
betweeninterruptoverheadandcommunicationdelay. With
soft timerbasednetwork polling, on theotherhand,onecan
obtainbothlow delayandlow overhead.

Mogul and Ramakrishan[17] describea systemthat
usesinterruptsundernormalnetwork loadandpolling under
overload,in orderto avoid receiver livelock. Their scheme
disablesinterruptsduringthenetwork packetprocessingand
polls for additionalpackets whenever the processingof a
packet completes;whenno furtherpacketsarefound,inter-
ruptsarereenabled.

In comparison,soft timerbasednetwork polling disables
interruptsandusespolling whenever thesystemis saturated
(i.e.,no CPUis idle). Thatis, polling is usedevenwhenthe
packet interarrival time is still larger than the time it takes
to processpackets.Moreover, soft timersallow thedynamic
adjustmentof the poll interval to achieve a predetermined
packetaggregationquota.

A numberof researchershavepointedout thebenefitsof
rate-basedclockingof TCPtransmissions[25, 18, 1, 10, 5].
Our work shows thatusingconventionalhardwaretimersto
supportrate-basedclockingat high bandwidthis too costly,
andwe proposesoft timersasanefficientalternative.

The use of rate-basedclocking has beenproposedin
the context of TCP slow-start, when an idle persistent
HTTP (P-HTTP) connectionbecomesactive [19, 16, 12].
Visweswaraiahet.al. [25] observethatanidle P-HTTPcon-
nectioncausesTCPto closeits congestionwindow andthe
ensuingslow-startphasetendstodefeatP-HTTP’sattemptto

utilize thenetwork moreeffectively thatHTTP/1.0[7] con-
nections.A similar observationwasmadeby Padmanabhan
et. al. in [18]. Soft timerscanbe usedto efficiently clock
the transmissionof packetsuponrestartof an idle P-HTTP
connection.

Allman et. al. [1] show the limiting effect of slow-start
andcongestionavoidanceschemesin TCP in utilizing the
bandwidthover satellitenetworks. Using rate-basedclock-
ing insteadof slow-startaddressestheformerconcern.Feng
et. al. [10] proposethe useof rate-basedclocking in TCP
to supportthe controlled-loadnetwork service[26], which
guaranteesaminimal level of throughputto a givenconnec-
tion.

Balakrishnanet. al. [5] have proposedACK filtering, a
mechanismthat attemptsto improve TCP performanceon
asymmetricnetwork pathsby discardingredundantACKsat
gateways.They observe that this methodcanleadto bursti-
nessdue to the big ACKs seenby the senderand suggest
pacingpacket transmissionssoasto matchtheconnection’s
sendingrate.

Besidesanefficient timer mechanism,rate-basedclock-
ing alsodependsonmechanismsthatallow themeasurement
or estimationof the available network capacity. A num-
berof techniqueshave beenproposedin the literature. The
basicpacket-pair techniquewasproposedby Keshav [14].
Hoe et. al. [13] proposemethodsto improve TCP’s con-
gestioncontrol algorithms. They set the slow-start thresh-
old (ssthresh)to an appropriatevalue by measuringthe
bandwidth-delayproductusinga variantof the packet-pair
technique.Paxson[21] suggestsa morerobustcapacityes-
timationtechniquecalledPBM thatformsestimatesusinga
rangeof packet bunchsizes.A techniqueof this typecould
be usedto supportrate-basedclocking. Allman and Pax-
son[2] compareseveralestimatorsandfind thatsender-side
estimationof bandwidthcan often give inaccurateresults
dueto thefailureof theACK streamto preserve thespacing
imposedon datasegmentsby the network path. They pro-
posea receiver-sidemethodfor estimatingbandwidththat
worksconsiderablybetter.

7 Conclusions

This paperproposesa novel operatingsystemtimer facil-
ity thatallows thesystemto efficiently scheduleeventsat a
granularitydown to tensof microseconds.Suchfine-grained
eventsarenecessaryto supportrate-basedclockingof trans-
mitted packetson high-speednetworks andcanbe usedto

243

supportefficientnetwork polling.
Unlike conventionaltimer facilities,soft timerstake ad-

vantageof certainstatesin theexecutionof a systemwhere
aneventhandlercanbeinvokedat low cost. In thesestates,
the saving and restoringof CPU statenormally required
upon a hardware timer interrupt is not necessary, and the
cache/TLBpollutioncausedby theeventhandleris likely to
have low impacton thesystemperformance.

Experimentswith a prototypeimplementationshow that
soft timers can be usedto perform rate-basedclocking in
TCP at granularitiesdown to a few tensof microseconds.
At theserates,soft timersimposeanoverheadof only 2–6%
while a conventionaltimer facility would have anoverhead
of 26–38%.Theuseof rate-basedclockingin a Webserver
canimproveclientresponsetimeoverconnectionswith high
bandwidth-delayproductsby up to 89%.

Soft timerscanalsobeusedto performnetwork polling,
thusavoiding network interruptswhile preservinglow com-
municationsdelays.Experimentsshow thattheperformance
of a Web server usingthis optimizationcanincreaseby up
to 25%overa conventionalinterruptbasedimplementation.

Furthermore,the performanceimprovementsobtained
with soft timers canbe expectedto increasewith network
andCPUspeeds.As networksandCPUsgetfaster, sodoes
therateof network interrupts.However, thespeedof inter-
rupt handlingdoesnot increaseasfastasCPUspeed,dueto
its poor memoryaccesslocality. The relative costof inter-
rupt handlingthereforeincreases,underscoringtheneedfor
techniquesthatavoid interrupts.

Soft timer performance,on the other hand,appearsto
scalewith CPU speed. Soft timersarecachefriendly and
fasterCPUspeedsimply thattriggerstatesarereachedmore
frequently, thus improving the granularity at which soft
timerscanscheduleevents.

Acknowledgments

We aregrateful to the anonymousreviewersandour shep-
herd, Mendel Rosenblum, for their helpful comments.
Thanksto SitaramIyer andErich Nahumfor theirhelpwith
someof the experiments.This work wassupportedin part
by NSFGrantCCR-9803673,by TexasTATPGrant003604,
by anIBM PartnershipAward,andby equipmentdonations
from CompaqWesternResearchLabandfrom HP Labs.

References

[1] M. Allman, C. Hayes,H. Kruse, and S. Ostermann.
TCPPerformanceoverSatelliteLinks. In Proceedings
of 5th InternationalConferenceonTelecommunication
Systems, pages456–469,Nashville,TN, Mar. 1997.

[2] M. Allman andV. Paxson. On estimatingend-to-end
network path properties. In Proceedingsof the SIG-
COMM ’99 Conference, pages263–274,Cambridge,
MA, Sept.1999.

[3] Apache.http://www.apache.org/.

[4] M. F. Arlitt andC. L. Williamson. WebServer Work-
load Characterization:The Searchfor Invariants. In
Proceedingsof the ACM SIGMETRICS’96 Confer-
ence, pages126–137,Philadelphia,PA, Apr. 1996.

[5] H. Balakrishnan,V. N. Padmanabhan,andR. H. Katz.
The Effects of Asymmetryon TCP Performance.In
Proceedingsof 3rd ACM Conferenceon Mobile Com-
putingandNetworking, pages77–89,Budapest,Hun-
gary, Sept.1997.

[6] H. Balakrishnan, V. N. Padmanabhan,S. Seshan,
M. Stemm,andR. H. Katz. TCP behavior of a busy
internetserver: Analysisand improvements. In Pro-
ceedingsof IEEE INFOCOM’98, pages252–262,San
Francisco,CA, Apr. 1998.

[7] T. Berners-Lee,R. Fielding, and H. Frystyk. RFC
1945: Hypertext transferprotocol – HTTP/1.0, May
1996.ftp://ftp.merit.edu/documents/rfc/rfc1945.txt.

[8] L. BrakmoandL. Peterson.PerformanceProblemsin
4.4BSDTCP.ACM ComputerCommunicationReview,
25(5):69–86,Oct.1995.

[9] L. Brakmo and L. Peterson. TCP Vegas: End
to End CongestionAvoidanceon a Global Internet.
IEEE Journal on SelectedAreasin Communications,
13(8):1465–1480, Oct.1995.

[10] W. c. Feng,D. D. Kandlur, D. Saha,andK. G. Shin.
Understandingand improving TCP performanceover
networks with minimum rateguarantees.IEEE/ACM
TransactionsonNetworking, 7(2):173–187,Apr. 1999.

[11] K. Fall andS. Floyd. Simulation-basedComparisons
of Tahoe,Reno,andSACK TCP. ComputerCommu-
nicationReview, 26(3):5–21,July1996.

[12] R. Fielding, J. Gettys, J. Mogul, H. Nielsen,
and T. Berners-Lee. RFC 2068: Hyper-
text transfer protocol – HTTP/1.1, Jan. 1997.
ftp://ftp.merit.edu/documents/rfc/rfc2068.txt.

[13] J.C. Hoe. Improving theStart-upBehaviour of a Con-
gestionControl Schemefor TCP. In Proceedingsof
theACM SIGCOMM’96 Symposium, pages270–280,
Stanford,CA, Sept.1996.

[14] S. Keshav. A Control-TheoreticApproachto Flow
Control. In Proceedingsof the ACM SIGCOMM’91
Symposium, pages3–15, Zürich, Switzerland,Sept.
1991.

[15] J. C. Mogul. ObservingTCP Dynamicsin RealNet-
works. In Proceedingsof the ACM SIGCOMM’92
Symposium, pages281–292, Baltimore, MD, Aug.
1993.

[16] J. C. Mogul. The Case for Persistent-Connection
HTTP. In Proceedingsof the ACM SIGCOMM’95
Symposium, pages299–313,Cambridge,MA, Sept.
1995.

244

[17] J. C. Mogul and K. K. Ramakrishnan. Eliminating
receive livelock in an interrupt-driven kernel. ACM
Transactionson ComputerSystems, 15(3):217–252,
Aug. 1997.

[18] V. N. PadmanabhanandR. H. Katz. TCPFastStart:A
TechniqueFor SpeedingUp Web Transfers. In Pro-
ceedingsof the IEEE GLOBECOM’98 Conference,
pages41–46,Sydney, Australia,Nov. 1998.

[19] V. N. PadmanabhanandJ.C. Mogul. ImprovingHTTP
Latency. In Proceedingsof the SecondInternational
WWWConference, pages995–1005,Chicago,IL, Oct.
1994.

[20] V. S. Pai, P. Druschel,andW. Zwaenepoel.Flash:An
efficientandportableWebserver. In Proceedingof the
Usenix1999AnnualTechnicalConference, pages199–
212,Monterey, CA, June1999.

[21] V. Paxson. End-to-EndInternetPacket Dynamics. In
Proceedingsof the ACM SIGCOMM’97 Symposium,
pages139–152,Cannes,France,Sept.1997.

[22] RealPlayer.http://www.realplayer.com/.

[23] J. M. Smith and C. B. S. Traw. Giving applications
accessto Gb/snetworking. IEEENetwork, 7(4):44–52,
July1993.

[24] G. Vargheseand A. Lauck. Hashedandhierarchical
timing wheels:Datastructuresfor theefficient imple-
mentationof a timer facility. In Proceedingsof the
EleventhACM SymposiumonOperatingSystemsPrin-
ciples, pages171–180,Austin,TX, Nov. 1987.

[25] V. VisweswaraiahandJ.Heidemann.Improving restart
of idle TCP connections. TechnicalReport 97-661,
Universityof SouthernCalifornia,November1997.

[26] J. Wroclawski. RFC 2211: Specification of
controlled-loadnetwork elementservice,Sept.1997.
ftp://ftp.merit.edu/documents/rfc/rfc2211.txt.

[27] L. Zhang,S. Shenker, andD. D. Clark. Observations
on the Dynamicsof a CongestionControl Algorithm:
The Effects of Two-Way Traffic. In Proceedingsof
theACM SIGCOMM’91 Symposium, pages133–148,
Zürich,Switzerland,1991.

A The need for rate-based clocking

In this appendix,we provide further motivation for rate-
basedclocking. We restrictourselveshereto a generaldis-
cussionof how anappropriatetimer facility canbeusedfor
rate-basedclocking of transmissions.The detailsof how a
specificprotocolslike TCPshouldbeextendedto addrate-
basedclocking may require further research;they are be-
yondthescopeof this paper.

A.1 ACK compression and big ACKs

Previous work hasdemonstratedthe phenomenonof ACK
compression, where ACK packets from the receiver lose
their temporalspacingdue to queuingon the reversepath
from receiver to sender[27, 15]. ACK compressioncan
causeburstypacket transmissionsby theTCPsender, which
contributesto network congestion.Balakrishnanet. al. [6]
have observedthe presenceof ACK compressionin a busy
Webserver.

With rate-basedclocking, a TCP sendercankeeptrack
of theaveragearrival rateof ACKs. Whena burstof ACKs
arrivesat a ratethat significantlyexceedsthe averagerate,
the sendermay chooseto pacethe transmissionof the cor-
respondingnew datapacketsat themeasuredaverageACK
arrival rate,insteadof theburst’sinstantaneousrateaswould
bedictatedby self-clocking.

A relatedphenomenonis that of big ACKs, i.e., ACK
packetsthatacknowledgea largenumberof packetsor up-
datetheflow-controlwindow by a largenumberof packets.
Upon receiving a big ACK, self-clocked sendersmay send
a burst of packetsat the bandwidthof the network link ad-
jacentto the senderhost. Transmittingsuchburstscanad-
verselyaffect congestionin thenetwork. A detaileddiscus-
sion of phenomenathat can leadto big ACKs (i.e., ACKs
thatcanleadto thetransmissionof morethan3 packets)in
TCPis givenin SectionA.3.

Usingrate-basedclocking,it is possibleto avoid sending
packet bursts in the sameway as was describedabove in
connectionwith ACK compression.

A.2 Slow-start

Self-clocked protocolslike TCP usea slow-startphaseto
start transmittingdataat the beginning of a connectionor
afteran idle period. During slow-start,thesendertransmits
a small numberof packets (typically two), and then trans-
mits two morepacketsfor everyacknowledgedpacket,until
eitherpacket lossesoccuror the estimatednetwork capac-
ity is reached.In this way, thesenderincreasestheamount
of datatransmittedperRTT exponentiallyuntil thenetwork
capacityis reached.

The disadvantageof slow-start is that despitethe ex-
ponentialgrowth of the transmitwindow, it cantake many
RTTs beforethe senderis ableto fully utilize the network.
The larger thebandwidth-delayproductof thenetwork, the
more time and transmitteddatait takes to reachthe point
of network saturation. In particular, transmissionsof rela-
tively small dataobjectsmay not allow the senderto reach
the point of network saturationat all, leadingto poor net-
work utilizationandlow effective throughput.

The bulk of traffic in the Internet today consistsof
HTTP transfersthat are typically short (between5KB and
13KB) [16, 4]. A typical HTTP transferfinisheswell be-
fore TCP finishesits slow-startphase,causinglow utiliza-
tion of availablenetwork bandwidthandlonguser-perceived
responsetimes[16]. The magnitudeof this problemis ex-
pectedto increaseas higher network bandwidthbecomes
available.

245

Slow-startservesa dualpurpose.It startsa transmission
pipelinethatallows thesenderto self-clockits transmission
without sendinglarge burstsof packets. At the sametime,
it probestheavailablenetwork capacitywithoutoverwhelm-
ing thenetwork. Thekey ideato avoid slow-startis thefol-
lowing. If the availablenetwork capacityis known or can
bemeasured/estimated,thena TCPsendercanimmediately
userate-basedclocking to transmitpacketsat the network
capacitywithoutgoingthroughslow-start[18].

The problemof measuringavailable network capacity
hasbeenaddressedby severalprior researchefforts, for in-
stancepacket pair algorithms[14, 9, 13] and PBM [21].
Moreover, whenstartingtransmissionafter an idle period,
thenetwork capacityduringthelastbusyperiodcanbeused
asanestimatefor thecurrentcapacity[19, 16, 12]. Finally,
in future network with QoSsupport,the availablenetwork
capacitymaybeknown a priori .

A.3 Causes of big ACKs

In theprevioussection,wediscussedtheeffectsof big ACKs
on TCPconnections.Here,we describeseveralphenomena
thatcancausebig ACKs.

3

Network Adaptor

Device Interrupt

Application

Transport
 +
Network layers

Network Interface
 layer

Protocol
input queue

Socket buffer

Software Interrupt (TCP/IP processing)

Application read

Determine whether to send ACK

1

2

Figure 7. Packet processing path in OS

Figure7 shows theprocessingof a packet,startingfrom
its receptionby the network adaptorto its delivery to the
application. 1) A high priority device interrupt placesthe
packet into the input queuesof the IP protocol,2) TCP/IP
processingis donein thecontext of a softwareinterruptand
thepacket is placedin theapplication’ssocketbuffer, 3) The
applicationreadsthe datafrom its socket; in the context of
this read,anACK is sentbackto theTCPsenderif needed.

Uponreceptionof a packet acknowledging _ packets,a
TCP sendernormally injects _ new closelyspacedpackets
into the network. In normaloperation,_ is 2 becauseTCP
receiversusuallydelayevery otherACK5 to take advantage
of piggybackingopportunities.We now presentsomesce-
nariosthat causea TCP receiver to sendbig ACKs (ACKs`

Thepresenceof TCPoptionscausesTCPreceiversto sendan
ACK for every3 packets[8].

that acknowledgemorethan3 packets),causingthe sender
to inject a burstof packetsthatcanadverselyaffect conges-
tion in thenetwork.

Figure 7 indicatesthat an ACK is sentby the receiver
whenthe applicationreadsthe datafrom the socket buffer
(or when the delayedACK timer fires). If the interarrival
time of packetsis smallerthanthe packet processingtime,
thenowing to thehigherprioritiesof the interruptsascom-
paredto applicationprocessing,all closelyspacedpackets
sentby the TCP senderwill be received beforeany ACK
is sent. Whenthe incomingpacket train stops(dueto flow
control), the receiver will senda big ACK to thesenderac-
knowledgingall packetssent. Thesamehappensif the de-
layedACK timer fires first. The problemis self-sustaining
becausetheTCPsenderrespondsto thebig ACK by sending
a burstof closelyspacedpackets.

Ona300MHzPentiumII machine,thepacketprocessing
time cantake morethan100 � secswhile the minimum in-
terarrival timeof 1500bytepacketson100Mbpsand1Gbps
Ethernetis 120 � secsand12 � secs,respectively. This sug-
geststhatbig ACKscanbeprevalentin high-bandwidthnet-
works.

The situation describedabove is not necessarilyre-
stricted to high-bandwidthnetworks. It can also happen
when the receiver applicationis slow in readingnewly ar-
riveddatafrom thesocket buffers. This canhappen,for ex-
ample,whenaWebbrowser(TCPreceiver)is renderingpre-
viously readgraphicsdataon the screen.During this time,
ACKsfor all packetsfrom theWebserver(TCPsender)shall
bedelayeduntil eitherthedelayedACK timerfires(onceev-
ery 200ms)or thebrowserreadsmoredatafrom thesocket
buffer. The ACK packet whensentwould acknowledgea
largenumberof packets.

While high bandwidth is not yet widely available in
WANs, we have analyzedTCPpacket traceson a 100Mbps
LAN and have observed big ACKs on almostevery suffi-
ciently long transfer. We have alsoanalyzedpacket traces
from theRiceCSdepartmentalWebserver. Ourresultsshow
that 40% of all transfersthat were greaterthan 20Kbytes
showed thepresenceof big ACKs, thusconfirmingour hy-
pothesisthatbig ACKs alsooccuron transfersover current
low-bandwidthWAN links.

BrakmoandPeterson[8] have alsoobserved thesebig
ACKs in the context of recovery from large number of
packet lossesandreorderingof packets.They proposeto re-
duceTCPcongestionwindow uponreceiving a big ACK so
thatslow-startis usedinsteadof sendingpacket bursts.Fall
andFloyd [11] proposeto useamaxburstparameterto limit
thepotentialburstinessof thesenderfor packetssentaftera
lossrecovery phase(fastrecovery). While thesetechniques
canlimit theburstiness,they adverselyaffectbandwidthuti-
lization asthenetwork pipelineis drainedof packets.

246

