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Abstract

As multimedia applications with real-time constraints
rapidly invade today’s desktops, it becomes increasingly im-
portant for the operating system to provide robust resource
allocation mechanisms for both multimedia and traditional
best-effort workloads. We present a flexible CPU schedul-
ing policy that adjusts the CPU proportion allocated to each
application class using recent history as a feedback mech-
anism. The algorithm quickly adapts to varying workload
conditions and compares favorably with static proportional
scheduling schemes for mixed workloads.

1 Introduction

In recent years the average computer user has been ex-
periencing dramatic changes in hardware speeds, affordable
pricing of high-end computer equipment, and the ubiquity
of a new type of real-time applications such as multimedia
video and audio. Powered by special hardware that can ef-
fectively serve multimedia applications, a typical desktop
serves workloads that differ dramatically from those that
populated desktops just half a decade ago. Consequently,
it is not only conventional computations that need be sup-
ported by the operating system but also multimedia appli-
cations with real-time deadlines.

The diversity of the workload that frequently populates
today’s desktops brings new challenges into the design of
operating system schedulers. Schedulers need to provide
guarantees for real time tasks by effectively meeting their
deadlines so as to ensure minimization of jitter in video ap-
plications, provide lip-synchronization between audio and
video, and at the same time not to starve conventional best-
effort applications. Providing quality of service (QoS) guar-
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antees in terms of different performance measures of in-
terest in a non-predictable environment requires substan-
tial changes in the resource allocation mechanisms of tra-
ditional operating systems.

Schedulers that deal with the performance issues out-
lined above can be classified as driven by deadlines or by
proportionally sharing resources. Deadline driven sched-
ulers such as earliest-deadline first (EDF) and rate mono-
tonic [7, 6] are optimal under light load conditions but do
not support well best-effort applications. The hierarchi-
cal CPU scheduler that was first proposed in [3] addresses
this problem by statically partitioning the CPU bandwidth
among various application classes. Different scheduling al-
gorithms that are tailored for each specific application class
are used to manage the allotted CPU bandwidth per class
(e.g., EDF scheduling may be used to schedule video appli-
cations while plain time sharing may be used for best effort
tasks). Lottery scheduling [12] achieves proportional parti-
tioning of computational resources but does not provide any
specific provisions for real-time jobs. Earliest Eligible Vir-
tual Deadline First (EEVDF) focuses on real-time tasks and
is also classified as a proportional share real-time algorithm.
SMART [8] dynamically integrates a real-time scheduler
and a conventional scheduler depending upon priorities and
admission control. Resource reservations and a precom-
puted scheduling graph is used for scheduling real-time ap-
plications in the Rialto operating system [5]. BERT [2] ef-
fectively schedules multimedia and best-effort jobs but its
implementation depends on a prediction mechanism that is
tied to the Scout operating system.

The focus of this paper is on the evaluation of an adap-
tive CPU scheduler for mixed multimedia and best effort
workloads that does not depend on a priori knowledge of
the workload composition or intensity. To this end, we sys-
tematically explore the effect of static proportional resource
sharing of a hierarchical CPU scheduler. We examine the
performance of static sharing under a variety of workload



intensities, transient load, and steady state conditions. We
propose an adaptive scheduling scheme that uses recent his-
tory as a feedback mechanism. The proposed scheme is
robust because it quickly detects changes in the workload
requirements and accordingly adjusts computing resources
among competing tasks. We evaluate the proposed algo-
rithms with a discrete-event simulation. Our simulations are
driven by traces of both multimedia and best effort applica-
tions that have been collected in real systems. We conclude
that adaptive resource quantification is feasible and argue
that the proposed scheduler can effectively handle a mix of
multimedia and best-effort applications.

This paper is organized as follows. Section 2 summa-
rizes the workload and simulation environment. The perfor-
mance analysis of the static sharing policies is presented in
Section 3. Section 4 outlines the adaptive scheduling algo-
rithm and its behavior under transient and steady-state con-
ditions. Section 5 summarizes our findings and concludes
the paper.

2 Experimental Infrastructure

To evaluate the scheduling policies that we consider in
this paper, we use discrete-event simulation designed with
the next-event approach. Events are scheduled at specific
times, while the clock advances asynchronously to the time
of the next event. Event types in this system include ar-
rivals of either multimedia or best-effort jobs, and job com-
pletions at the CPU. Service times for both multimedia and
best-effort jobs are drawn from execution traces. The ar-
rival processes for both job types are generated stochasti-
cally. All performance measures presented in this paper
were obtained with a 95% confidence interval. In the fol-
lowing sections we describe the characteristics of the mul-
timedia and best-effort applications, the workload mix used
in the experiments, and the performance measures that the
CPU policies try to optimize for each application type.

2.1 Multimedia Applications

The multimedia applications we consider consist of
MPEG compressed video. The MPEG compression stan-
dard is based on the fact that within any given scene, there is
one primary image, and subsequent pictures are only small
variations of that image. There are three types of frames
used in MPEG encoding. Intra-pictures, or I frames, rep-
resent the picture on which the scene is based and are self-
contained images. Any variation within the scene is coded
into predicted pictures (P frames), or bi-directional pictures
(B frames). Videos are encoded using a specific pattern of
these frames, and because of the variations in sizes, there is
a trade-off between the number of (smaller) B frames, and
the quality of the encoding.

The frame size is also affected by the level of activity
within the video. Static videos like newscasts or talk shows
have fewer major scene changes, and thus require smaller
amounts of information in the P and B frames [9]. Action-
oriented videos like sporting events that have a lot of move-
ment within a scene require more encoded information in
the form of P and B frames. Consequently, depending on
the clip’s action, there is significant variation in the frame-
size sequence of MPEG-encoded video.

The simulations in this paper are driven by MPEG video
traces that were obtained from the Scout group at the Uni-
versity of Arizona. A workload characterization study that
describes these traces in detail is presented in [1]. We ob-
tained several trace files of MPEG video executions. Each
trace is encoded with a Group of Pictures (GOP) of size
8, with the frame pattern IBBBPBBB. The trace files
include data for the frame type (I, P, B), number of mac-
roblocks, size (in bytes), and number of CPU cycles to pro-
cess each frame. Since the scheduler does not distinguish
between frame types, we only consider the sizes of frames
of videos and the required machine cycles for processing.

Figure 1 illustrates the proportion of frames within each
video clip as a function of the frame processing times for
two selected videos, Canyon and Terminator. Note the vari-
ation in frame processing times between the two videos.
Canyon is a classic example of a video clip with small scene
changes that implies small I, P, and B frames. Terminator
is a classic example of an action video, thus its frame pro-
cessing times are significantly higher. Canyon consists of
1757 frames, which, when processed at a rate of 30 frames
per second, results approximately in one minute of video.
The Terminator clip at the same frame rate has 4471 frames
and 2.5 minutes of video. Table 1 shows the mean size and
processing time for each frame type (Z, P, B) for all videos.

Frame Size (Processing Time)

Video I P B
Canyon 2325(0.008) 1875 (0.007) 463 (0.003)
Terminator | 11756 (0.041) 7425 (0.034) 3050 (0.023)

Table 1. Mean frame size (in bytes) and
mean processing time (in seconds) for I, P, B
frames

2.2 Best-effort Applications

The best-effort workload is also drawn from execution
traces. The traces were obtained from the University of
California at Berkeley and were initially used in a model-
ing study of lifetime distributions of UNIX processes [4].
The service time distribution of one representative trace is
presented in Figure 2.
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Figure 1. Frame processing time distributions
for Canyon and Terminator.

This trace provides us with a multi-class workload within
the best-effort class. While the bulk of the jobs are short,
consisting of | s, cd, and other UNIX utilities, there is a
small proportion of larger jobs such as compilations and
program executions.

Since the scheduler needs to ensure that the best-effort
jobs are not starved, it is important to consider the effect
of job execution slowdown on user perception. We define
slowdown as the ratio of the process wall clock time ver-
sus the process service time. A slowdown of 10 is going
to be hardly perceived if the process service time is only a
small fraction of a second. If instead the process service
time is a few seconds, a slowdown of 10 will be certainly
observed. In order to examine this multi-class workload in
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Figure 2. Service time distribution of the best-
effort workload.

Best Effort Trace (Total Jobs: 776)

Centroid  Members

Short 0.039 712
Medium 1.322 53
Long 5.653 11

Table 2. Cluster centroids.

more detail, clustering analysis is performed. We used the
k-Means clustering algorithm to classify jobs within a trace
as “short”, “medium”, or “long”. Table 2 illustrates the
cluster centroids and the number of members for each clus-
ter. Since the “long” class consist of a few jobs only, col-
lecting statistics within good confidence intervals requires
extremely long simulations. To shorten our simulations, we
grouped the “medium” and “long” jobs into one class with

64 members and we labeled it “long”.
2.3 Workload Mix

The arrival process of the multimedia tasks is gener-
ated from an exponential distribution. In order to focus on
the performance of the CPU scheduler, we assume that the
frame buffer size is infinite and that the multimedia tasks
arrive in time for processing. This allows us to examine
the conditions under which multimedia deadlines are vio-
lated because of poor management of the CPU bandwidth,
i.e., we do not consider cases where deadlines are missed
because frames did not arrive in time from the network or
I/0 subsystem. Frames must be processed at a rate of at
least 30 frames per second for the scheduler to deliver the
required level of QoS to the multimedia class. In the ex-
periments presented in this paper, we set the frame arrival
rate to \,,.,, = 45 frames per second, ensuring that frames
always arrive in time for processing.

The diverse CPU demands of the Canyon and Termina-
tor clips (see Section 2.1) allow us to examine the deliv-
ered performance under multimedia workloads with light
and heavy CPU requirements. Indeed, it appears that the
Canyon workload requires a mere 20% of the CPU band-
width to meet its deadlines, while the Terminator needs al-
most 80% of the available CPU bandwidth for the required
QoS to be delivered. We return to this point in Section 3
where the performance of the static scheduler is presented.
We further combine the two videos to construct a mixed
workload that imposes a transient load of multimedia jobs
on the system. The mixed workload alternatively plays the
Canyon and Terminator clips with a delay of 60 seconds in-
terleaved between each video play.! In the remainder of the

1Space precludes presentation of the performance of mixed workloads
with delays other than 60 seconds. It is important to note that the algo-
rithms’ behavior across a variety of mixed workloads remains qualitatively
the same as the one presented here. We point the interested reader to [10]



paper, the three distinct multimedia workloads used in our
simulation experiments will be referred to as Canyon (con-
tinuous play of the Canyon video), Terminator (continuous
play of the Terminator clip), and Mix_60 (mixed workload
with 60 seconds delay between consecutive video plays).

The arrival processes of the best-effort workload are
drawn from a exponential distribution. We use both station-
ary and non-stationary arrival processes in order to examine
the scheduler’s ability to quickly adapt to different loads
and to study the performance under bursty arrival condi-
tions of the best-effort class. To model a realistic work en-
vironment where the system load varies from one extreme
to another, we use a non-stationary Poisson process with
rate Ape(time) specified as the piecewise linear spline in
Figure 3. This arrival process allows us to model the sys-
tem behavior under bursty conditions and transient heavy
conditions. Table 3 summarizes the workloads parameters
used in the simulation experiments.
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Figure 3. The non-stationary arrival process
of best-effort jobs.

MM Workload | BE Workload | Age
Exp. 1 | Canyon Stationary €10.1,5.1]
Exp. 2 | Terminator Stationary €[0.1,5.1]
Exp. 3 | Mix_60 Stationary 2.1
Exp. 4 | Canyon Non-Stationary | = (2.0, 10.0)
Exp. 5 | Terminator Non-Stationary | = (2.0, 10.0)
Exp. 6 | Mix_60 Non-Stationary | = (2.0, 10.0)

Table 3. Workload parameters of the various
experiments.

2.4 Performance Measures of Interest

To evaluate the delivered performance of the scheduler,
we select metrics which best characterize performance for
each of the application types.

o Best-effort tasks are evaluated based on their slow-
down, i.e., the ratio of response time to actual service

for a detailed presentation of the effects of different delays between two
video plays.

time, where response time is defined as the length of
time the job spends in the system.

e Multimedia performance is evaluated by its QoS,
which may be defined by several different factors. The
multimedia throughputis the number of “good” frames
processed per unit time, i.e., frames that finish in time
to meet their deadline. Another QoS metric is the pro-
portion of frames which miss their deadlines during
execution. This is analogous to throughput, in that the
two are inversely proportional to one another. Here,
we choose to evaluate multimedia performance based
on the proportion of missed deadlines.

In the next sections we present the performance of the static
and the adaptive scheduler for the two classes of applica-
tions under the workload parameters depicted in Table 3.

3 Static Proportional Resource Sharing

3.1 Static SFQ Algorithm

The selected static scheduler that achieved proportional
resource sharing is the hierarchical scheduler with Start-
time Fair Queuing (SFQ) (see [3] for a detailed discus-
sion of its performance bounds). SFQ is essentially a time-
sharing algorithm that adjusts the length of the time slice
(i.e., CPU bandwidth) allocated to each class of applications
as a function of a predefined proportion. The bandwidth
proportion that is allocated to each class is further managed
by a scheduler that strives to optimize the performance met-
ric of interest of the specific class. In our simulations EDF is
used to schedule the multimedia jobs and plain time-sharing
is used for best-effort tasks.

Fair allocation is achieved by factoring in the propor-
tion given to each class and the length of the last quantum
during which that class held the resource. SFQ is a work-
conserving policy. If the multimedia class holds proportion
p of the total weight, but has no jobs ready for execution,
then the best-effort class receives the entire CPU bandwidth
until more multimedia jobs arrive. In essence, the assigned
CPU bandwidth is a lower bound of the effective CPU band-
width used by the specific class. The CPU never sits idle
unless there are no jobs of either class that are waiting for
service.

SFQ is implemented as follows. Each class of jobs f, is
assigned a start tag Sy, and a finish tag F. Start tags Sy
are assigned according to (1), where ¢ is the time stamp of
the resource request. Jobs are scheduled according to the
minimum start tag across all classes. In [3] ties among the
start tags are broken arbitrarily. Here, we choose to break
any ties in favor of the multimedia class. Once class f is
allocated the resource, then F is updated according to (2),
where [ is the length of time that f held the resource, and w ¢



is the weight (proportion) of class f. The SFQ algorithm is
shown in Figure 4.

Sy = max{ty, Fy} 1)
F; = S;+ * (2)
wy
for ever do
processRequests(); /I check classes for arrivals
updateStartTags(); /lupdate start tags with eqn (1)
//if necessary
i f (norequests)
updateVirtual Time(); /I system is idle
el se
f=min{Spe, Smm }  //find class f with min start tag
schedule(f); /lallocate CPU to class f
updateFinishTag(f); [lupdate finish tag of class f with eqn (2)

Figure 4. Start-time Fair Queuing (SFQ) with
static bandwidth partitions.

3.2 Performance of SFQ under Stationary Ar-
rivals of Best-effort Jobs

To test the performance of the SFQ algorithm, we
ran the experiments outlined in Table 3 with the fol-
lowing multimedia/best-effort proportion combinations:
(MM,BE)= {(.2,.8),(.4,.6),(.6,.4),(.8,.2)}. Figure 5
illustrates the proportion of missed deadlines as a func-
tion of the arrival rate of the best-effort tasks under sta-
tionary best-effort arrivals and continuous playing of the
Canyon and Terminator clips (i.e., experiments 1 and
2) for the multimedia/best-effort proportion combinations
{(4,.6),(.6,.4)}. See [10] for a detailed presentation
of the performance of all experiments. In all cases, the
Canyon workload performs flawlessly, even with a high-
intensity best-effort workload. This result is a direct conse-
quence of the static subject matter of the video and its small
frames. Correspondingly, the more action-oriented Termi-
nator achieves the required QoS level when either the best-
effort workload is of very low-intensity (i.e., A\ye < 1.6), Or
when the multimedia class is statically assigned at least 80%
of the CPU bandwidth. In fact, the different frame size and
processing requirements of these two videos directly affect
the actual proportion of the CPU obtained during execution,
as well as the response time ratios (i.e., slowdowns) of the
best-effort jobs.

Figure 6 presents the graphs of the actual CPU band-
width consumed by each application class in experiments 1
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Figure 5. Proportion of missed deadlines for
the multimedia workload as a function of the
arrival rate of the best-effort tasks.

and 2. As discussed in the previous subsection, if the queue
in one class of jobs is empty, then all of the CPU bandwidth
is allocated to the other class. Consequently, the statically
allocated proportions are not fixed and constant, but rather
provide a lower bound on the CPU bandwidth that a class
receive when both classes require all of their given propor-
tions. Figure 6 demonstrates this work-conserving aspect of
the SFQ policy. When X, is low, the best-effort class is fre-
quently idle, leaving the remaining bandwidth to be used by
the multimedia class. As the arrival rate of best-effort jobs
increases, we see that the actual CPU proportion gradually
converges to its initially allocated proportion. The speed of
the convergence to the allocation percentages depends on
the video’s CPU demand and the arrival rate of the compet-
ing jobs (see the behavior of Terminator in Figure 6).

Figure 7 presents the slowdown experienced by the best-
effort jobs in experiments 1 and 2. With a static allocation
of 80% of the CPU for the best-effort class, the best-effort
jobs perform equally well regardless of the intensity of the
multimedia workload. However, as soon as the best-effort
proportion drops to 60%, the effects of the Canyon and Ter-



minator workloads become more clear. We see a substantial
increase in slowdown with the higher-intensity Terminator
workload for both classes of best-effort jobs. This trend is
further magnified as the best-effort class is given smaller
initial proportions. In fact, for experiment 2, in Figure 7(b)
no values are plotted for ;. > 4.1. The multi-class best-
effort workload requires a minimum proportion of the CPU
in order to keep system utilization below 1.0. As the ini-
tial proportion for best-effort decreases, A\ye > upe, and the
best-effort scheduler saturates.
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Figure 6. Proportion of the CPU bandwidth as-
signed to the multimedia workload as a func-
tion of the arrival rate of the best-effort tasks.

To test the performance of the policy with non-
continuous playing of video but stationary best-effort ar-
rivals we run simulations using the Mix_60 workload (ex-
periment 3). We examine the policy performance when
Apve = 2.1, amoderate arrival rate of the best effort jobs. Ta-
ble 4 illustrates the mean of the proportion of missed dead-
lines, actual CPU proportion used by the multimedia appli-
cation, and the slowdown for both short and long jobs. For
comparison, the data from experiments 1 and 2 are also il-
lustrated on the table. As expected, the periodical breaks of
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Figure 7. Slowdown of the best-effort jobs as
a function of the intensity of their arrival rate.

60 seconds where no multimedia jobs are present allow the
system to partially recover by quickly reducing the length of
waiting queue for best-effort tasks. The performance of the
best-effort jobs dramatically improves (especially in com-
parison to the more video-intense Terminator workload).
Across all performance measures, the performance of the
Mix_60 workload is consistently better than that of Canyon
and Terminator.

3.3 Performance of SFQ under Non-stationary
Arrivals of Best-effort Jobs

To further examine the performance of the SFQ policy
under non-stable workload conditions, we increase the di-
versity of the workload by drawing the best-effort arrival
times from a a non-stationary Poisson arrival process that
is specified as the piecewise linear spline of Figure 3. We
effectively induce a total of ten peak “bursty” arrival peri-
ods throughout the duration of the simulation. Table 4 illus-
trates the performance measures for experiments 4 to 6. The
non-stationary process has no effect on the missed deadlines
for Canyon. The slowdown of both short and long jobs be-
comes higher than the one shown in Table 4 and this is a



Assigned
Proportions MM Proportion of Actual MM Slowdown Slowdown
experiment (MM/BE) Workload Missed Deadlines | CPU Proportion Short Jobs Long Jobs
1 0.2/0.8 Canyon 0.001 £ 0.000 | 0.134 +0.000 3.131 £ 0.058 2.618 £ 0.067
0.4/0.6 Canyon 0.000 £+ 0.000 | 0.134 +0.000 3.126 £ 0.076 2.554 + 0.083
0.6/0.4 Canyon 0.000 £ 0.000 | 0.134 +0.000 3.138 £ 0.060 2.557 £ 0.070
0.8/0.2 Canyon 0.000 £+ 0.000 0.134 + 0.000 3.188 + 0.078 2.605 + 0.080
2 0.2/0.8 Terminator 0.366 = 0.004 | 0.519 +0.003 4.488 + 0.086 3.072 £ 0.091
0.4/0.6 Terminator 0.339 &+ 0.003 0.542 4+ 0.002 9.213 + 0.309 6.451 + 0.212
0.6/0.4 Terminator 0.261 £0.002 | 0.615 =+ 0.001 63.856 £ 2.895 35.697 £ 1.773
0.8/0.2 Terminator 0.048 £ 0.000 | 0.784 4+ 0.000 529.345 + 13.417 | 136.503 £ 7.237
3 0.2/0.8 mix-60 0.200 £ 0.010 | 0.287 +0.005 3.360 £ 0.088 2.464 £ 0.119
0.4/0.6 mix-60 0.184 + 0.012 0.295 + 0.006 4.588 + 0.232 3.481 + 0.233
0.6/0.4 mix-60 0.148 £0.005 | 0.317 £ 0.002 10.143 £ 0.714 6.336 £ 0.415
0.8/0.2 mix-60 0.032 £ 0.001 0.377 £ 0.000 46.682 £+ 5.060 14.705 + 1.264
4 0.2/0.8 Canyon 0.001 + 0.000 0.134 + 0.000 16.070 + 0.594 8.263 + 0.279
0.4/0.6 Canyon 0.000 £ 0.000 | 0.134 +0.000 16.147 £ 0.596 8.267 £ 0.279
0.6/0.4 Canyon 0.000 £+ 0.000 | 0.134 +0.000 16.154 + 0.596 8.267 £+ 0.279
0.8/0.2 Canyon 0.000 £ 0.000 | 0.134 +0.000 16.159 £ 0.596 8.267 £ 0.279
5 0.2/0.8 Terminator 0.632 £ 0.006 | 0.306 &+ 0.005 20.811 £ 0.785 10.499 £ 0.414
0.4/0.6 Terminator 0.496 + 0.001 0.416 £ 0.001 94.923 + 3.052 47.716 + 1.318
0.6/0.4 Terminator 0.277 £0.000 | 0.603 & 0.000 401.352 £ 6.450 | 135.066 + 4.898
0.8/0.2 Terminator 0.048 £0.000 | 0.784 +0.000 | 1552.623 + 17.720 N/A
6 0.2/0.8 mix-60 0.449 £+ 0.014 | 0.158 +0.007 16.212 + 0.988 8.138 £ 0.554
0.4/0.6 mix-60 0.334 +0.008 | 0.218 +0.004 28.735 + 1.849 13.922 +1.078
0.6/0.4 mix-60 0.194 £ 0.001 0.295 £ 0.000 75.515 £ 5.570 30.452 £+ 2.179
0.8/0.2 mix-60 0.034 £ 0.001 0.377 £ 0.000 239.733 + 7.929 47.187 +2.730

Table 4. Performance of SFQ with stationary and non-stationary best-effort arrivals.

result of the increase in the arrival intensity of best-effort
jobs. For Terminator (experiment 5), the performance for
both classes degrades severely in comparison to experiment
2. Finally, for Mix_60 (experiment 6), the periodic breaks
of 60 seconds allow performance to improve with respect to
experiment 5.

In addition to looking at means over the entire simula-
tion, we take a closer look at the effects of the bursty arrival
process by plotting the proportion of missed deadlines and
the slowdown of the best-effort jobs in the successive time
intervals between each knot pair of Figure 3. Figure 8 il-
lustrates the measures of interest for the two job classes as
a function of simulated time for experiment 6. It is easy
to observe the moments when the best-effort arrival peaks
occur. Furthermore, the oscillating behavior clearly demon-
strates how much a bursty arrival process can affect system
performance. We observe that for the case where the multi-
media class misses the fewest deadlines is the same case in
which the best-effort response time ratio is worst. Similarly,
when the multimedia performance is worst, the slowdown
ratio reduces. Overall, the increased variation within the
best-effort workload contributes to substantial system-wide
degradation of all performance metrics. Although the SFQ
algorithm has the capability to adjust proportions when one
class is empty, it is not able to make effective adjustments
based on the current workload. In this case, the loss in per-
formance is a result of the statically specified proportions,
which are hard to optimize for dynamically changing work-

loads.

Based on results from the experiments presented in this
section, we conclude that in order for the static proportional
resource allocation algorithm to be effective the multimedia
workload and the intensity of the best-effort arrivals must
be known a priori. The problem is further exacerbated with
bursty workload arrivals. The solution to this problem is
to develop an algorithm which can dynamically adapt to a
changing or diverse workload based on knowledge of lim-
ited past performance history.

4 Adaptive Proportional Resource Sharing

4.1 Adaptive SFQ (A-SFQ) Algorithm

In order to dynamically change the proportions of CPU
bandwidth allocated to each class, we opt to continuously
monitor the system’s performance history. We keep one per-
formance index per application class. This performance in-
dex is updated after each job’s completion throughout the
simulation. Here, we present an adaptive algorithm that
uses the per class performance indices to adjust the CPU
proportion allocated to each class as a function of the cur-
rent system state.

The main idea of the adaptive algorithm is the following.
At each time interval the current value of the performance
metrics is computed. SFQ calls the function Adj ust ()
before calling the function pr ocessRequest s() (see
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Figure 8. Performance of the SFQ scheduler

as a function of simulation time for non-
stationary best effort arrivals (experiment 6).

Figure 4). Adj ust () reallocates the CPU bandwidth
based on a comparison of the performance indices with
threshold values that are pre-specified by the user. For
the two application classes that we consider in this study,
the user needs to specify two threshold values T'h.,,,, and
T hy. for the multimedia and best-effort classes respectively.
T hm represents the proportion of missed deadlines that
the user is willing to tolerate. T'hy, represents the maxi-
mum slowdown that is acceptable for best-effort tasks.

The algorithm re-adjusts the allocated CPU proportions
in multiples of “chunks” of 5% of the available bandwidth.?
If Thpm is smaller than the current percentage of missed
deadlines, then the number of extra “chunks” required to
meet the desirable performance level is defined as the ra-
tio of percentage of missed deadlines over Thy,.,. As-
sume that the proportion of the missed deadlines is 0.10
and that Th,,., is set to 0.02. Then, 5 additional band-
width “chunks” are given to multimedia jobs (i.e., the mul-
timedia proportion is increased by 0.25 of the total available
bandwidth and the best-effort proportion is decreased by the
same factor). Similarly, if the T hs, is smaller than the num-

2 small “chunk” allows for fine grain allocation of the available band-
width. The user may change the “chunk” size so as to adapt more quickly
or slowly to workload changes.

ber of missed deadlines, then extra bandwidth “chunks” are
allotted to the best-effort class. If both classes are exceeding
their threshold values in the current time interval, i.e., the
system operates under very heavy load and cannot meet the
required levels of QoS for either class, we opt to give pri-
ority (and the extra proportion) to the multimedia class be-
cause of its soft real-time requirements. In general, we tend
to quickly allocate bandwidth to a class if we observe that it
suffers from the current allocation. If however a class is al-
located higher bandwidth than its predefined one and does
not suffer from performance loss, then the extra “chunks”
are gradually given to the other class in an attempt to re-
store the original proportions given to each class. The re-
adjustment occurs in single 5% “chunks”. This is to ensure
that once good performance is obtained, it is not immedi-
ately lost again because of some workload fluctuation.

The algorithm for the Adj ust () function is described
in Figure 9. p,.., represents the proportion of the CPU
bandwidth allocated to the multimedia class and py. repre-
sents the proportion of the CPU bandwidth allocated to the
best-effort class. The algorithm can be trivially extended to
accommodate a larger number of job classes.

i f( missed_deadlines > Thym, )
Pmm+ = 0.05 - Lmisser;L(j:amdlinesJ
Poe = 1.0 — pmm, , )
extra_chunks+ = Lim”“gﬁ:i‘nd“”“

el se if( slowdown > Thy, ) /I BE performance is bad
Pre+ = 0.05 - | slopdoun |
Pmm = 1.0 — ppe
extra_chunks— = L

/I MM performance is bad

slowdownJ

Thpe
el se ’ /I both perform below threshold
i f( extra_chunks > 0) /I MM has extra proportion
Pmm— = 0.05
Pbe = 1.0— pmm
extra_chunks— =1
el se if( extra_chunks < 0) /I BE has extra proportion
Ppe — = 0.05

Pmm = 1.0 — ppe
ertra_chunks+ =1

Figure 9. Adj ust(): recomputes the allo-
cated bandwidth to each application class.

To examine the performance of the adaptive algorithm,
we executed experiments 1 through 6. For all experiments,
the “chunk” size was set to 5% of the total CPU bandwidth,
T hye Was set to 100, and T Ay, Was set to 0.05. The results
of the experiments are outlined in the following sections.

4.2 Performance of A-SFQ under Stationary ar-
rivals of Best-effort Jobs

Table 5 presents the performance measures for experi-
ments 1 to 3. Recall that in these experiments the inter-



arrival times of the best-effort jobs are exponentially dis-
tributed. A-SFQ behaves almost identically to SFQ with the
Canyon workload (see Table 4). The multimedia demand is
so low that the work-conserving behavior of SFQ is enough
for the system to balance the CPU proportions among the
two application classes. With the high demand Terminator
video, A-SFQ improves the performance of the multimedia
class but it worsens the performance of the best-effort class.
This is a direct consequence of the fact that A-SFQ favors
the multimedia workload in high load situations. In Mix_60,
the A-SFQ proves superior to SFQ. Both missed deadlines
and slowdown remain consistently below the thresholds set
by the user. Note that across all workloads and regardless
of the assigned MM/BE proportions, the A-SFQ algorithm
achieves to “correct” the initial bandwidth partitioning and
balance the available bandwidth between multimedia and
best-effort jobs.

4.3 Performance under Non-stationary Arrivals
of Best-effort Jobs

A good balance becomes difficult to reach when we
change the best-effort workload by inducing a non-
stationary arrival process. This increases the diversity of
the workload, and thus effective scheduling of the jobs is
more challenging. A-SFQ manages to reach acceptable
levels of QoS for the multimedia class (compare Tables 4
and 5). The slowdown of the best-effort class increases, but
this is a direct outcome of the higher arrival intensity of the
best-effort jobs. In general, with bursty best-effort arrivals,
the best-effort class requires proportions which vary greatly
over time. This fluctuation between high and low workload
intensity requires that the proportions of the classes be con-
tinuously adjusted. To reach a level of balance with this
type of workload, neither class of jobs starves, but neither
can have peak performance either. This is clearly demon-
strated in Figure 10. The adaptive algorithm has improved
the multimedia performance when its initial allocated pro-
portion is too small, and slightly degraded the multimedia
performance when the allocated proportion is too large for
the best-effort class to perform well. In contrast to the be-
havior observed in Figure 8, A-SFQ manages to quickly
adapt to the workload demands and is therefore insensitive
to the initial proportion allocation.

5 Conclusions

We examined static Start-Time Fair Queuing (SFQ), a
hierarchical proportional algorithm for scheduling the CPU
among applications with different performance require-
ments. With SFQ, the user is required to statically partition
CPU bandwidth assigned to each class. Different schedul-
ing algorithms that are tailored for each specific application
class manage the allocated CPU bandwidth per class.
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Figure 10. Performance of the A-SFQ sched-
uler as a function of simulation time for non-
stationary best effort arrivals (experiment 6).

We investigated the delivered performance of the SFQ
algorithm under a variety of workload service demands and
bursty arrival conditions. Our conclusion is that determin-
ing the ideal bandwidth proportion to be allocated to each
application class is a challenging problem. This is further
exacerbated by possible variations in the workload arrival
and service processes.

To deal with this problem, we propose an extension on
the SFQ method that we call adaptive Start-Time Fair Queu-
ing (A-SFQ). The A-SFQ algorithm continuously moni-
tors the performance of the application classes and quickly
adjusts the assigned proportions per class so as to ensure
that the QoS levels set by the user are met for each class.
Even in workloads that exhibit significant variability, A-
SFQ quickly adjusts the allocated proportions in order for
the required levels of QoS to be met. A-SFQ is shown to be
a practical and effective for scheduling mixed multimedia
and best-effort workloads.
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