
Hrtimers and Beyond: Transforming the Linux Time
Subsystems

Thomas Gleixner
linutronix

tglx@linutronix.de

Douglas Niehaus
University of Kansas

niehaus@eecs.ku.edu

Abstract

Several projects have tried to rework Linux
time and timers code to add functions such as
high-precision timers and dynamic ticks. Pre-
vious efforts have not been generally accepted,
in part, because they considered only a sub-
set of the related problems requiring an inte-
grated solution. These efforts also suffered sig-
nificant architecture dependence creating com-
plexity and maintenance costs. This paper
presents a design which we believe provides a
generally acceptable solution to the complete
set of problems with minimum architecture de-
pendence.

The three major components of the design are
hrtimers, John Stulz’s new timeofday approach,
and a new component called clock events.
Clock events manages and distributes clock
events and coordinates the use of clock event
handling functions. The hrtimers subsystem
has been merged into Linux 2.6.16. Although
the name implies “high resolution” there is no
change to the tick based timer resolution at
this stage. John Stultz’s timeofday rework ad-
dresses jiffy and architecture independent time
keeping and has been identified as a fundamen-
tal preliminary for high resolution timers and
tickless/dynamic tick solutions. This paper pro-
vides details on the hrtimers implementation
and describes how the clock events component

will complement and complete the hrtimers and
timeofday components to create a solid foun-
dation for architecture independent support of
high-resolution timers and dynamic ticks.

1 Introduction

Time keeping and use of clocks is a fundamen-
tal aspect of operating system implementation,
and thus of Linux. Clock related services in op-
erating systems fall into a number of different
categories:

• time keeping

• clock synchronization

• time-of-day representation

• next event interrupt scheduling

• process and in-kernel timers

• process accounting

• process profiling

These service categories exhibit strong interac-
tions among their semantics at the design level
and tight coupling among their components at
the implementation level.



334 • Hrtimers and Beyond: Transforming the Linux Time Subsystems

Hardware devices capable of providing clock
sources vary widely in their capabilities, accu-
racy, and suitability for use in providing the de-
sired clock services. The ability to use a given
hardware device to provide a particular clock
service also varies with its context in a unipro-
cessor or multi-processor system.

TOD Clock source HW

ISR Clock event source HW

TOD Clock source HW

ISR Clock event source HW

TOD Clock source HW

ISR Clock event source HW

Arch 1

Arch 2

Arch 3

Timekeeping

Tick

Process acc.

Profiling

Jiffies

Timer wheel

Figure 1: Linux Time System

Figure 1 shows the current software architec-
ture of the clock related services in a vanilla 2.6
Linux system. The current implementation of
clock related services in Linux is strongly asso-
ciated with individual hardware devices, which
results in parallel implementations for each ar-
chitecture containing considerable amounts of
essentially similar code. This code duplication
across a large number of architectures makes it
difficult to change the semantics of the clock
related services or to add new features such
as high resolution timers or dynamic ticks be-
cause even a simple change must be made in
so many places and adjusted for so many im-
plementations. Two major factors make im-
plementing changes to Linux clock related ser-
vices difficult: (1) the lack of a generic ab-
straction layer for clock services and (2) the
assumption that time is tracked using periodic
timer ticks (jiffies) that is strongly integrated
into much of the clock and timer related code.

2 Previous Efforts

A number of efforts over many years have ad-
dressed various clock related services and func-
tions in Linux including various approaches to
high resolution time keeping and event schedul-
ing. However, all of these efforts have encoun-
tered significant difficulty in gaining broad ac-
ceptance because of the breadth of their impact
on the rest of the kernel, and because they gen-
erally addressed only a subset of the clock re-
lated services in Linux.

Interestingly, all those efforts have a common
design pattern, namely the attempt to inte-
grate new features and services into the existing
clock and timer infrastructure without changing
the overall design.

There are no projects to our knowledge which
attempt to solve the complete problem as we
understand and have described it. All existing
efforts, in our view, address only a part of the
whole problem as we see it, which is why, in
our opinion, the solutions to their target prob-
lems are more complex than under our pro-
posed architecure, and are thus less likely to be
accepted into the main line kernel.

3 Required Abstractions

The attempt to integrate high resolution timers
into Ingo Molnar’s real-time preemption patch
led to a thorough analysis of the Linux timer
and clock services infrastructure. While
the comprehensive solution for addressing the
overall problem is a large-scale task it can be
separated into different problem areas.

• clock sources management for time keep-
ing



2006 Linux Symposium, Volume One • 335

• clock synchronization

• time-of-day representation

• clock event management for scheduling
next event interrupts

• eliminating the assumption that timers are
supported by periodic interrupts and ex-
pressed in units of jiffies

These areas of concern are largely independent
and can thus be addressed more or less inde-
pendently during implementation. However,
the important points of interaction among them
must be considered and supported in the overall
design.

3.1 Clock Source Management

An abstraction layer and associated API are re-
quired to establish a common code framework
for managing various clock sources. Within
this framework, each clock source is required to
maintain a representation of time as a monoton-
ically increasing value. At this time, nanosec-
onds are the favorite choice for the time value
units of a clock source. This abstraction layer
allows the user to select among a range of avail-
able hardware devices supporting clock func-
tions when configuring the system and pro-
vides necessary infrastructure. This infras-
tructure includes, for example, mathematical
helper functions to convert time values specific
to each clock source, which depend on prop-
erties of each hardware device, into the com-
mon human-oriented time units used by the
framework, i.e. nanoseconds. The centraliza-
tion of this functionality allows the system to
share significantly more code across architec-
tures. This abstraction is already addressed by
John Stultz’s work on a Generic Time-of-day
subsystem [5].

3.2 Clock Synchronization

Crystal driven clock sources tend to be impre-
cise due to variation in component tolerances
and environmental factors, such as tempera-
ture, resulting in slightly different clock tick
rates and thus, over time, different clock val-
ues in different computers. The Network Time
Protocol (NTP) and more recently GPS/GSM
based synchronization mechanisms allow the
correction of system time values and of clock
source drift with respect to a selected standard.
Value correction is applied to the monotoni-
cally increasing value of the hardware clock
source. This is an optional functionality as
it can only be applied when a suitable refer-
ence time source is available. Support for clock
synchronization is a separate component from
those discussed here. There is work in progress
to rework the current mechanism by John Stultz
and Roman Zippel.

3.3 Time-of-day Representation

The monotonically increasing time value pro-
vided by many hardware clock sources cannot
be set. The generic interface for time-of-day
representation must thus compensate for drift
as an offset to the clock source value, and rep-
resent the time-of-day (calendar or wall clock
time) as a function of the clock source value.
The drift offset and parameters to the func-
tion converting the clock source value to a wall
clock value can set by manual interaction or
under control of software for synchronization
with external time sources (e.g. NTP).

It is important to note that the current Linux im-
plementation of the time keeping component is
the reverse of the proposed solution. The inter-
nal time representation tracks the time-of-day
time fairly directly and derives the monotoni-
cally increasing nanosecond time value from it.



336 • Hrtimers and Beyond: Transforming the Linux Time Subsystems

This is a relic of software development history
and the GTOD/NTP work is already addressing
this issue.

3.4 Clock Event Management

While clock sources provide read access to
the monotonically increasing time value, clock
event sources are used to schedule the next
event interrupt(s). The next event is currently
defined to be periodic, with its period defined
at compile time. The setup and selection of
the event sources for various event driven func-
tionalities is hardwired into the architecture de-
pendent code. This results in duplicated code
across all architectures and makes it extremely
difficult to change the configuration of the sys-
tem to use event interrupt sources other than
those already built into the architecture. An-
other implication of the current design is that
it is necessary to touch all the architecture-
specific implementations in order to provide
new functionality like high resolution timers or
dynamic ticks.

The clock events subsystem tries to address
this problem by providing a generic solution to
manage clock event sources and their usage for
the various clock event driven kernel function-
alities. The goal of the clock event subsystem
is to minimize the clock event related architec-
ture dependent code to the pure hardware re-
lated handling and to allow easy addition and
utilization of new clock event sources. It also
minimizes the duplicated code across the ar-
chitectures as it provides generic functionality
down to the interrupt service handler, which is
almost inherently hardware dependent.

3.5 Removing Tick Dependencies

The strong dependency of Linux timers on us-
ing the the periodic tick as the time source

and representation was one of the main prob-
lems faced when implementing high resolution
timers and variable interval event scheduling.
All attempts to reuse the cascading timer wheel
turned out to be incomplete and inefficient for
various reasons. This led to the implementation
of the hrtimers (former ktimers) subsystem. It
provides the base for precise timer scheduling
and is designed to be easily extensible for high
resolution timers.

4 hrtimers

The current approach to timer management in
Linux does a good job of satisfying an ex-
tremely wide range of requirements, but it can-
not provide the quality of service required in
some cases precisely because it must satisfy
such a wide range of requirements. This is why
the essential first step in the approach described
here is to implement a new timer subsystem
to complement the existing one by assuming a
subset of its existing responsibilities.

4.1 Why a New Timer Subsystem?

The Cascading Timer Wheel (CTW), which
was implemented in 1997, replaced the original
time ordered double linked list to resolve the
scalability problem of the linked list’s O(N) in-
sertion time. It is based on the assumption that
the timers are supported by a periodic interrupt
(jiffies) and that the expiration time is also rep-
resented in jiffies. The difference in time value
(delta) between now (the current system time)
and the timer’s expiration value is used as an in-
dex into the CTW’s logarithmic array of arrays.
Each array within the CTW represents the set
of timers placed within a region of the system
time line, where the size of the array’s regions
grow exponentially. Thus, the further into the



2006 Linux Symposium, Volume One • 337

array start end granularity
1 1 256 1
2 257 16384 256
3 16385 1048576 16384
4 1048577 67108864 1048576
5 67108865 4294967295 67108864

Table 1: Cascading Timer Wheel Array Ranges

future a timer’s expiration value lies, the larger
the region of the time line represented by the
array in which it is stored. The CTW groups
timers into 5 categories. Note that each CTW
array represents a range of jiffy values and that
more than one timer can be associated with a
given jiffy value.

Table 1 shows the properties of the different
timer categories. The first CTW category con-
sists of n1 entries, where each entry represents
a single jiffy. The second category consists of
n2 entries, where each entry represents n1*n2
jiffies. The third category consists of n3 en-
tries, where each entry represents n1*n2*n3
jiffies. And so forth. The current kernel uses
n1=256 and n2..n5 = 64. This keeps the num-
ber of hash table entries in a reasonable range
and covers the future time line range from 1 to
4294967295 jiffies.

The capacity of each category depends on the
size of a jiffy, and thus on the periodic in-
terrupt interval. While the 10 ms tick period
in 2.4 kernels implied 2560ms for the CTW
first category, this was reduced to 256ms in the
early 2.6 kernels (1 ms tick) and readjusted to
1024ms when the HZ value was set to 250.
Each CTW category maintains an time index
counter which is incremented by the “wrap-
ping” of the lower category index which occurs
when its counter increases to the point where
its range overlaps that of the higher category.
This triggers a “cascade” where timers from the
matching entry in the higher category have to

be removed and reinserted into the lower cat-
egory’s finer-grained entries. Note that in the
first CTW category the timers are time-sorted
with jiffy resolution.

While the CTW’s O(1) insertion and removal
is very efficient, timers with an expiration time
larger than the capacity of the first category
have to be cascaded into a lower category at
least once. A single step of cascading moves
many timers and it has to be done with inter-
rupts disabled. The cascading operation can
thus significantly increase maximum latencies
since it occasionally moves very large sets of
timers. The CTW thus has excellent average
performance but unacceptable worst case per-
formance. Unfortunately the worst case perfor-
mance determines its suitability for supporting
high resolution timers.

However, it is important to note that the CTW
is an excellent solution (1) for timers hav-
ing an expiration time lower than the capac-
ity of the primary category and (2) for timers
which are removed before they expire or have
to be cascaded. This is a common scenario
for many long-term protocol-timeout related
timers which are created by the networking and
I/O subsystems.

The KURT-Linux project at the University of
Kansas was the first to address implementing
high resolution timers in Linux [4]. Its con-
centration was on investigating various issues
related to using Linux for real-time computing.
The UTIME component of KURT-Linux exper-
imented with a number of data structures to
support high resolution timers, including both
separate implementations and those integrated
with general purpose timers. The HRT project
began as a fork of UTIME code [1]. both
projects added a sub-jiffy time tracking compo-
nent to increase resolution, and when integrat-
ing support with the CTW, sorted timers within
a given jiffy on the basis of the subjiffy value.



338 • Hrtimers and Beyond: Transforming the Linux Time Subsystems

This increased overhead involved with cascad-
ing due to the O(N) sorting time. The experi-
ence of both projects demonstrated that timer
management overhead was a significant factor,
and that the necessary changes in the timer code
were quite scattered and intrusive. In sum-
mary, the experience of both projects demon-
strated that separating support for high resolu-
tion and longer-term generic (CTW) timers was
necessary and that a comprehensive restructur-
ing of the timer-related code would be required
to make future improvements and additions to
timer-related functions possible. The hrtimers
design and other aspects of the architecture de-
scribed in this paper was strongly motivated by
the lessons derived from both previous projects.

4.2 Solution

As a first step we categorized the timers into
two categories:

Timeouts: Timeouts are used primarily by
networking and device drivers to detect when
an event (I/O completion, for example) does
not occur as expected. They have low resolu-
tion requirements, and they are almost always
removed before they actually expire.

Timers: Timers are used to schedule ongoing
events. They can have high resolution require-
ments, and usually expire. Timers are mostly
related to applications (user space interfaces)

The timeout related timers are kept in the ex-
isting timer wheel and a new subsystem opti-
mized for (high resolution) timer requirements
hrtimers was implemented.

hrtimers are entirely based on human time
units: nanoseconds. They are kept in a time

sorted, per-CPU list, implemented as a red-
black tree. Red-black trees provide O(log(N))
insertion and removal and are considered to
be efficient enough as they are already used
in other performance critical parts of the ker-
nel e.g. memory management. The timers are
kept in relation to time bases, currently CLOCK_
MONOTONIC and CLOCK_REALTIME, ordered
by the absolute expiration time. This separa-
tion allowed to remove large chunks of code
from the POSIX timer implementation, which
was necessary to recalculate the expiration time
when the clock was set either by settimeofday
or NTP adjustments.

hrtimers went through a couple of revision cy-
cles and were finally merged into Linux 2.6.16.
The timer queues run from the normal timer
softirq so the resulting resolution is not better
than the previous timer API. All of the struc-
ture is there to do better once the other parts of
the overall timer code rework are in place.

After adding hrtimers the Linux time(r) system
looks like this:

TOD Clock source HW

ISR Clock event source HW

TOD Clock source HW

ISR Clock event source HW

TOD Clock source HW

ISR Clock event source HW

Arch 1

Arch 2

Arch 3

Timekeeping

Tick

Process acc.

Profiling

Jiffies

Timer wheel

hrtimers

Figure 2: Linux time system + htimers

4.3 Further Work

The primary purpose of the separate imple-
mentation for the high resolution timers, dis-



2006 Linux Symposium, Volume One • 339

cussed in Section 7, is to improve their sup-
port by eliminating the overhead and variable
latency associated with the CTW. However, it is
also important to note that this separation also
creates an opportunity to improve the CTW
behavior in supporting the remaining timers.
For example, using a coarser CTW granular-
ity may lower overhead by reducing the num-
ber of timers which are cascaded, given that an
even larger percentage of CTW timers would be
canceled under an architecture supporting high
resolution timers separately. However, while
this is an interesting possibility, it is currently
a speculation that must be tested.

5 Generic Time-of-day

The Generic Time-of-day subsystem (GTOD)
is a project led by John Stultz and was pre-
sented at OLS 2005. Detailed information is
available from the OLS 2005 proceedings [5].
It contains the following components:

• Clock source management

• Clock synchronization

• Time-of-day representation

GTOD moves a large portion of code out of
the architecture-specific areas into a generic
management framework, as illustrated in Fig-
ure 3. The remaining architecture-dependent
code is mostly limited to the direct hardware in-
terface and setup procedures. It allows simple
sharing of clock sources across architectures
and allows the utilization of non-standard clock
source hardware. GTOD is work in progress
and intends to produce set of changes which
can be adopted step by step into the main-line
kernel.

HW

ISR Clock event source HW

HW

ISR Clock event source HW

HW

ISR Clock event source HW

Arch 1

Arch 2

Arch 3

Timekeeping

Tick

Process acc.

Profiling

Jiffies

Timer wheel

hrtimers

Clock source

TODClock synchr.

Shared HW

Figure 3: Linux time system + htimers +
GTOD

6 Clock Event Source Abstraction

Just as it was necessary to provide a general
abstraction for clock sources in order to move
a significant amount of code into the architec-
ture independent area, a general framework for
managing clock event sources is also required
in the architecture independent section of the
source under the architecture described here.
Clock event sources provide either periodic or
individual programmable events. The manage-
ment layer provides the infrastructure for regis-
tering event sources and manages the distribu-
tion of the events for the various clock related
services. Again, this reduces the amount of es-
sentially duplicate code across the architectures
and allows cross-architecture sharing of hard-
ware support code and the easy addition of non-
standard clock sources.

The management layer provides interfaces for
hrtimers to implement high resolution timers
and also builds the base for a generic dy-
namic tick implementation. The management
layer supports these more advanced functions
only when appropriate clock event sources have
been registered, otherwise the traditional peri-
odic tick based behavior is retained.



340 • Hrtimers and Beyond: Transforming the Linux Time Subsystems

6.1 Clock Event Source Registration

Clock event sources are registered either by the
architecture dependent boot code or at mod-
ule insertion time. Each clock event source
fills a data structure with clock-specific prop-
erty parameters and callback functions. The
clock event management decides, by using the
specified property parameters, the set of system
functions a clock event source will be used to
support. This includes the distinction of per-
CPU and per-system global event sources.

System-level global event sources are used for
the Linux periodic tick. Per-CPU event source
are used to provide local CPU functionality
such as process accounting, profiling, and high
resolution timers. The clock_event data
structure contains the following elements:

• name: clear text identifier

• capabilities: a bit-field which describes
the capabilities of the clock event source and
hints about the preferred usage

• max_delta_ns: the maximum event delta
(offset into future) which can be scheduled

• min_delta_ns: the minimum event delta
which can be scheduled

• mult: multiplier for scaled math conversion
from nanoseconds to clock event source units

• shift: shift factor for scaled math conver-
sion from nanoseconds to clock event source
units

• set_next_event: function to schedule the
next event

• set_mode: function to toggle the clock event
source operating mode (periodic / one shot)

• suspend: function which has to be called be-
fore suspend

• resume: function which has to be called be-
fore resume

• event_handler: function pointer which is
filled in by the clock event management code.
This function is called from the event source
interrupt

• start_event: function called before the
event_handler function in case that the
clock event layer provides the interrupt han-
dler

• end_event: function called after the
event_handler function in case that the
clock event layer provides the interrupt han-
dler

• irq: interrupt number in case the clock event
layer requests the interrupt and provides the in-
terrupt handler

• priv: pointer to clock source private data
structures

The clock event source can delegate the inter-
rupt setup completely to the management layer.
It depends on the type of interrupt which is as-
sociated with the event source. This is possible
for the PIT on the i386 architecture, for exam-
ple, because the interrupt in question is handled
by the generic interrupt code and can be ini-
tialized via setup_irq. This allows us to com-
pletely remove the timer interrupt handler from
the i386 architecture-specific area and move the
modest amount of hardware-specific code into
appropriate source files. The hardware-specific
routines are called before and after the event
handling code has been executed.

In case of the Local APIC on i386 and the
Decrementer on PPC architectures, the inter-
rupt handler must remain in the architecture-
specific code as it can not be setup through
the standard interrupt handling functions. The
clock management layer provides the function
which has to be called from the hardware level



2006 Linux Symposium, Volume One • 341

handler in a function pointer in the clock source
description structure. Even in this case the
shared code of the timer interrupt is removed
from the architecture-specific implementation
and the event distribution is managed by the
generic clock event code. The Clock Events
subsystem also has support code for clock event
sources which do not provide a periodic mode;
e.g. the Decrementer on PPC or match regis-
ter based event sources found in various ARM
SoCs.

6.2 Clock Event Distribution

The clock event layer provides a set of prede-
fined functions, which allow the association of
various clock event related services to a clock
event source.

The current implementation distributes events
for the following services:

• periodic tick

• process accounting

• profiling

• next event interrupt (e.g. high resolution
timers, dynamic tick)

6.3 Interfaces

The clock event layer API is rather small.
Aside from the clock event source registration
interface it provides functions to schedule the
next event interrupt, clock event source notifi-
cation service, and support for suspend and re-
sume.

6.4 Existing Implementations

At the time of this writing the base framework
code and the conversion of i386 to the clock
event layer is available and functional.

The clock event layer has been successfully
ported to ARM and PPC, but support has not
been continued due to lack of human resources.

6.5 Code Size Impact

The framework adds about 700 lines of code
which results in a 2KB increase of the kernel
binary size.

The conversion of i386 removes about 100 lines
of code. The binary size decrease is in the range
of 400 bytes.

We believe that the increase of flexibility and
the avoidance of duplicated code across archi-
tectures justifies the slight increase of the bi-
nary size.

The first goal of the clock event implementation
was to prove the feasibility of the approach.
There is certainly room for optimizing the size
impact of the framework code, but this is an is-
sue for further development.

6.6 Further Development

The following work items are planned:

• Streamlining of the code

• Revalidation of the clock distribution de-
cisions

• Support for more architectures

• Dynamic tick support



342 • Hrtimers and Beyond: Transforming the Linux Time Subsystems

6.7 State of Transformation

The clock event layer adds another level of
abstraction to the Linux subsystem related to
time keeping and time-related activities, as il-
lustrated in Figure 4. The benefit of adding the
abstraction layer is the substantial reduction in
architecture-specific code, which can be seen
most clearly by comparing Figures 3 and 4.

HW

HW

HW

HW

HW

ISR HW

Arch 1

Arch 2

Arch 3

Timekeeping

Tick

Process acc.

Profiling

Jiffies

Timer wheel

hrtimers

Clock source

TODClock synchr.

Shared HW

Clock events

ISR

Event distribution

Shared HW

Figure 4: Linux time system + htimers +
GTOD + clock events

7 High Resolution Timers

The inclusion of the clock source and clock
event source management and abstraction lay-
ers provides now the base for high resolution
support for hrtimers.

While previous attempts of high resolution
timer implementations needed modification all
over the kernel source tree, the hrtimers based
implementation only changes the hrtimers code
itself. The required change to enable high
resolution timers for an architecture which is
supported by the Generic Time-of-day and the

clock event framework is the inclusion of a sin-
gle line in the architecture specific Kconfig file.

The next event modifications remove the im-
plicit but strong binding of hrtimers to jiffy
tick boundaries. When the high resolution ex-
tension is disabled the clock event distribu-
tion code works in the original periodic mode
and hrtimers are bound to jiffy tick boundaries
again.

8 Implementation

While the base functionality of hrtimers re-
mains unchanged, additional functionality had
to be added.

• Management function to switch to high
resolution mode late in the boot process.

• Next event scheduling

• Next event interrupt handler

• Separation of the hrtimers queue from the
timer wheel softirq

During system boot it is not possible to use the
high resolution timer functionality, while mak-
ing it possible would be difficult and would
serve no useful function. The initialization of
the clock event framework, the clock source
framework and hrtimers itself has to be done
and appropriate clock sources and clock event
sources have to be registered before the high
resolution functionality can work. Up to the
point where hrtimers are initialized, the sys-
tem works in the usual low resolution peri-
odic mode. The clock source and the clock
event source layers provide notification func-
tions which inform hrtimers about availability
of new hardware. hrtimers validates the usabil-
ity of the registered clock sources and clock



2006 Linux Symposium, Volume One • 343

event sources before switching to high reso-
lution mode. This ensures also that a kernel
which is configured for high resolution timers
can run on a system which lacks the necessary
hardware support.

The time ordered insertion of hrtimers pro-
vides all the infrastructure to decide whether
the event source has to be reprogrammed when
a timer is added. The decision is made per timer
base and synchronized across timer bases in a
support function. The design allows the system
to utilize separate per-CPU clock event sources
for the per-CPU timer bases, but mostly only
one reprogrammable clock event source per-
CPU is available. The high resolution timer
does not support SMP machines which have
only global clock event sources.

The next event interrupt handler is called from
the clock event distribution code and moves
expired timers from the red-black tree to a
separate double linked list and invokes the
softirq handler. An additional mode field in the
hrtimer structure allows the system to execute
callback functions directly from the next event
interrupt handler. This is restricted to code
which can safely be executed in the hard inter-
rupt context and does not add the timer back
to the red-black tree. This applies, for exam-
ple, to the common case of a wakeup function
as used by nanosleep. The advantage of exe-
cuting the handler in the interrupt context is the
avoidance of up to two context switches—from
the interrupted context to the softirq and to the
task which is woken up by the expired timer.
The next event interrupt handler also provides
functionality which notifies the clock event dis-
tribution code that a requested periodic interval
has elapsed. This allows to use a single clock
event source to schedule high resolution timer
and periodic events e.g. jiffies tick, profiling,
process accounting. This has been proved to
work with the PIT on i386 and the Incrementer
on PPC.

The softirq for running the hrtimer queues
and executing the callbacks has been separated
from the tick bound timer softirq to allow ac-
curate delivery of high resolution timer signals
which are used by itimer and POSIX interval
timers. The execution of this softirq can still be
delayed by other softirqs, but the overall laten-
cies have been significantly improved by this
separation.

HW

HW

HW

HW

HW

ISR HW

Arch 1

Arch 2

Arch 3

Timekeeping

Process acc.

Profiling

Jiffies

Timer wheel

hrtimers

Clock source

TODClock synchr.

Shared HW

Clock events

ISR

Event distribution

Shared HW

Next event

Figure 5: Linux time system + htimers +
GTOD + clock events + high resolution timers

8.1 Accuracy

All tests have been run on a Pentium III
400MHz based PC. The tables show compar-
isons of vanilla Linux 2.6.16, Linux-2.6.16-
hrt5 and Linux-2.6.16-rt12. The tests for inter-
vals less than the jiffy resolution have not been
run on vanilla Linux 2.6.16. The test thread
runs in all cases with SCHED_FIFO and pri-
ority 80.

Test case: clock_nanosleep(TIME_
ABSTIME), Interval 10000 microseconds,
10000 loops, no load.



344 • Hrtimers and Beyond: Transforming the Linux Time Subsystems

Kernel min max avg
2.6.16 24 4043 1989
2.6.16-hrt5 12 94 20
2.6.16-rt12 6 40 10

Test case: clock_nanosleep(TIME_
ABSTIME), Interval 10000 micro seconds,
10000 loops, 100% load.

Kernel min max avg
2.6.16 55 4280 2198
2.6.16-hrt5 11 458 55
2.6.16-rt12 16

Test case: POSIX interval timer, Interval 10000
micro seconds, 10000 loops, no load.

Kernel min max avg
2.6.16 21 4073 2098
2.6.16-hrt5 22 120 35
2.6.16-rt12 20 60 31

Test case: POSIX interval timer, Interval 10000
micro seconds, 10000 loops, 100% load.

Kernel min max avg
2.6.16 82 4271 2089
2.6.16-hrt5 31 458 53
2.6.16-rt12 21 70 35

Test case: clock_nanosleep(TIME_
ABSTIME), Interval 500 micro seconds,
100000 loops, no load.

Kernel min max avg
2.6.16-hrt5 5 108 24
2.6.16-rt12 5 48 7

Test case: clock_nanosleep(TIME_
ABSTIME), Interval 500 micro seconds,
100000 loops, 100% load.

Kernel min max avg
2.6.16-hrt5 9 684 56
2.6.16-rt12 10 60 22

Test case: POSIX interval timer, Interval 500
micro seconds, 100000 loops, no load.

Kernel min max avg
2.6.16-hrt5 8 119 22
2.6.16-rt12 12 78 16

Test case: POSIX interval timer, Interval 500
micro seconds, 100000 loops, 100% load.

Kernel min max avg
2.6.16-hrt5 16 489 58
2.6.16-rt12 12 95 29

The real-time preemption kernel results are sig-
nificantly better under high load due to the gen-
eral low latencies for high priority real-time
tasks. Aside from the general latency opti-
mizations, further improvements were imple-
mented specifically to optimize the high reso-
lution timer behavior.

Separate threads for each softirq. Long
lasting softirq callback functions e.g. in the
networking code do not delay the delivery of
hrtimer softirqs.

Dynamic priority adjustment for high reso-
lution timer softirqs. Timers store the prior-
ity of the task which inserts the timer and the
next event interrupt code raises the priority of
the hrtimer softirq when a callback function
for a high priority thread has to be executed.
The softirq lowers its priority automatically af-
ter the execution of the callback function.

9 Dynamic Ticks

We have not yet done a dynamic tick imple-
mentation on top of the existing framework, but
we considered the requirements for such an im-
plementation in every design step.

The framework does not solve the general prob-
lem of dynamic ticks: how to find the next ex-
piring timer in the timer wheel. In the worst



2006 Linux Symposium, Volume One • 345

case the code has to walk through a large num-
ber of hash buckets. This can not be changed
without changing the basic semantics and im-
plementation details of the timer wheel code.

The next expiring hrtimer is simply retrieved
by checking the first timer in the time ordered
red-black tree.

On the other hand, the framework will deliver
all the necessary clock event source mecha-
nisms to reprogram the next event interrupt and
enable a clean, non-intrusive, out of the box, so-
lution once an architecture has been converted
to use the framework components.

The clock event functionalities necessary for
dynamic tick implementations are available
whether the high resolution timer functionality
is enabled or not. The framework code takes
care of those use cases already.

With the integration of dynamic ticks the trans-
formation of the Linux time related subsystems
will become complete, as illustrated in Fig-
ure 6.

HW

HW

HW

HW

HW

ISR HW

Arch 1

Arch 2

Arch 3

Timekeeping

Process acc.

Profiling

Jiffies

Timer wheel

hrtimers

Clock source

TODClock synchr.

Shared HW

Clock events

ISR

Event distribution

Shared HW

Next event

Dynamic tick

Figure 6: Transformed Linux Time Subsystem

10 Conclusion

The existing parts and pieces of the overall so-
lution have proved that a generic solution for
high resolution timers and dynamic tick is fea-
sible and provides a valuable benefit for the
Linux kernel.

Although most of the components have been
tested extensively in the high resolution timer
patch and the real-time preemption patch there
is still a way to go until a final inclusion into
the mainline kernel can be considered.

In general this can only be achieved by a step by
step conversion of functional units and archi-
tectures. The framework code itself is almost
self contained so a not converted architecture
should not have any impacts.

We believe that we provided a clear vision of
the overall solution and we hope that more de-
velopers get interested and help to bring this
further in the near future.

10.1 Acknowledgments

We sincerely thank all those people who helped
us to develop this solution. Help has been pro-
vided in form of code contributions, code re-
views, testing, discussion, and suggestions. Es-
pecially we want to thank Ingo Molnar, John
Stultz, George Anzinger, Roman Zippel, An-
drew Morton, Steven Rostedt and Benedikt
Spranger. A special thank you goes to Jonathan
Corbet who wrote some excellent articles about
hrtimers (and the previous ktimers) implemen-
tation [2, 3].

References

[1] George Anzinger and Monta Vista. High
resolution timers home page.



346 • Hrtimers and Beyond: Transforming the Linux Time Subsystems

http://high-res-timers.
sourceforge.net.

[2] J. Corbet. Lwn article: A new approach to
kernel timers. http:
//lwn.net/Articles/152436.

[3] J. Corbet. Lwn article: The high resolution
timer api. http:
//lwn.net/Articles/167897.

[4] B. Srinivasan, S. Pather, R. Hill, F. Ansari,
and D. Niehaus. A firm real-time system
implementation using commercial off-the
shelf hardware and free software. In 4th

Real-Time Technology and Applications
Symposium, Denver, June 1998.

[5] J. Stulz. We are not getting any younger:
A new approach to timekeeping and
timers. In Ottawa Lnux Symposium,
Ottawa, Ontario, Canada, July 2005.


