
Human-Centered Scheduling of Interactive and Multimedia Applications
on a Loaded Desktop

Abstract

While modern desktop workloads include a substan-
tial multimedia component, virtually no contemporary
general purpose operating system provides adequate sup-
port for multimedia applications when executed under
loaded conditions. Trying to play a DVD movie or par-
ticipating in a role playing game with significant graph-
ical requirements while running demanding assignments
in the background (such as compiling the Linux kernel or
contributing to the SETI@home effort) will usually result
in poor graphical quality. This happens because general-
purpose schedulers prioritize processes mainly based on
their CPU consumption, thus failing to distinguish be-
tween heavy multimedia applications and other compu-
tational tasks.

We suggest a novel approach that solves this prob-
lem as follows: Firstly, by monitoring relevant I/O device
activity we manage to approximate the “volume of user-
interaction” associated with each process. Secondly, by
monitoring interprocess communication, we manage to
deduce the closure of processes relating to the I/O de-
vices and hence to the user (directly or indirectly). Lastly,
we define a scheduler that uses the above information to
prioritize tasks in such a way that allows interactive and
multimedia processes to achieve good results even under
extreme load conditions. We claim that this automatically
identifies the user’s interests and wishes.

Our work includes a full implementation of this sched-
uler and measurements confirming that it indeed meets its
goals. The scheduler was implemented within the Linux
X-Windows environment. The implementation involved
some modification of the X-server and a complete rewrite
of the Linux scheduler.

1 Introduction

Prevalent commodity systems use a simple scheduling
scheme that has not changed much in 30 years. Processes
are scheduled in priority order, where priority has two
main components: static and dynamic. The static com-
ponent reflects inherent importance differences (e.g. sys-
tem processes might have higher initial priority than user
processes). The dynamic part depends on CPU usage and
ensures that priority of a process is lowered proportion-
ally to the amount of CPU cycles it consumes. CPU usage

is forgotten after some time, in order to focus on recent
activity instead of distant history.

Tying priority to lack of CPU usage achieves two im-
portant goals. The obvious one is fairness: all active pro-
cesses get a fair share of the CPU. The second one is re-
sponsiveness: the priority of a blocked (I/O-bound) pro-
cess grows with time, so that when it is awakened, it has
higher priority than that of other (CPU-bound) processes
and is therefore scheduled to run immediately; in fact,
in most systems this is the only mechanism that provides
responsiveness for I/O-bound processes. This was suf-
ficient in the past, when user-computer interaction was
mainly conducted through text editors, shell consoles,
etc. — all applications that exhibit very low CPU con-
sumption. Nowadays, computer workloads (especially on
the desktop) contain a significant multimedia component:
playing of music and sound effects, displaying video clips
and animation, etc. These workloads are not well sup-
ported by conventional operating system schedulers [15],
as multimedia applications are very demanding in terms
of CPU usage and therefore indistinguishable from tradi-
tional background (batch) jobs.

Figure 1 is a good example of this deficiency. It
demonstrates what happens when a Xine movie-player
displays a short clip along with an increasing number
of CPU-bound processes (which we call stressors) exe-
cuting in the background. When no such processes are
present, Xine gets all the resources it needs (which is
about 40% of the CPU). Adding one stressor process is
still tolerable since it takes the place of the idle loop.
But after that, each additional stressor reduces Xine’s rel-
ative CPU share, and causes a significant decline in its
displayed frame rate. For example, when 4 stressors are
present, each gets about 15% of the CPU, and Xine only
gets about 20% (half of what it needs), thereby causing
the frame rate to drop by a bit more than 50%.

In recent years, there has been increasing interest in
supporting multimedia applications. Several solutions
were proposed to the above problem, which fall into two
main categories. The first involves specialized APIs that
enable applications to request special treatment, particu-
larly in the area of real-time support, and schedulers that
respect these requests [16, 7, 18, 10]. The major draw-
back of such an approach is that it reduces portability and
requires larger learning and coding effort. The second
category implements support for quality of service in the
kernel, and allows users to explicitly control the QoS pro-
vided to different applications [6]. While this does not

1

Number of Stressors
0 1 2 3 4 5 6 7 8 9 10

C
P

U
 u

til
iz

at
io

n
[%

]

0

20

40

60

80

100
Xine

X server

Stressors

other

Xine

X server

Stressors

other

frame loss [%]

ID
LE

Figure 1. Competition between the Xine movie player and
background stressor processes causes Xine to receive less
CPU resources as more stressors are added, resulting in in-
creased frame loss rates.

require any modifications in the application, it shifts the
burden of configuring the system to the user, who must
cater for each application individually. This is probably
not a good solution for transient interactive and multime-
dia tasks that come and go during normal work.

Our approach tackles the problem from a different an-
gle. We start by recognizing the fact that some I/O de-
vices can supply us with a fairly good approximation of
the user’s interests and wishes. We can assume with a rea-
sonable degree of certainty that when the user types on
the keyboard, he wants the target application to receive
this input and respond to it in a timely manner. Simi-
larly, if some application continuously produces output
that spans a significant portion of the screen, it wouldn’t
be too far fetched to conjecture that the user is interested
in this output. By getting such data from the relevant
I/O devices, it is possible for the system to identify ap-
plications that are of immediate interest to the user, and
prioritize them accordingly. In particular, this solves the
problem shown in Figure 1; the results, in which Xine
is prioritized relative to the stressors and retains its full
frame rate are shown in Figure 7.

Importantly, this approach handles both traditional in-
teractive applications (such as text editors) and modern
multimedia applications: both types can be identified by
tracking user I/O. We collectively denote such applica-
tions as being Human Centered, or HuC for short.

The rest of this paper is organized as follows. Section
2 describes the test platform and the workload we used.
Section 3 argues that identification of HuC applications
based on CPU consumption patterns fails to deliver. Sec-
tion 4 describes our alternative identification mechanism
based on monitoring relevant I/O devices. Sections 5 and
6 describe the new scheduler that makes use of the new
information obtained, and present the results achieved by
this scheduler. Section 7 surveys related work and Sec-
tion 8 discusses our conclusions.

2 Methodology and Applications

Before presenting the HuC scheduling scheme, we
first describe the experimental platform and introduce the
applications used to evaluate the newly proposed sched-
uler.

2.1 The Test Platform

Most measurements were done on a 664 MHz Pentium
3 machine equipped with 256 MB RAM and a 3DFX
Voodoo3 graphics accelerator with 16 MB RAM that sup-
ports OpenGL in hardware. The operating system is a
2.4.8 Linux kernel (RedHat 7.0), with the XFree86 4.1
X server. The clock interrupt rate was increased from
the default 100Hz to 1,000Hz. This clock rate has al-
ready been adopted in the current Linux kernel develop-
ment version, and is more suitable for multimedia appli-
cations which require millisecond timing resolution [16].
We have also verified that the increase in overhead is neg-
ligible.

2.2 The Kernel-Logger Utility

The measurements were conducted using klogger,
a kernel logger we developed that supports fine-grain
events. While the code is integrated into the kernel, its
activation at runtime is controlled by applying a special
sysctl call using the /proc file system. In order to reduce
interference and overhead, logged events are stored in a
sizeable buffer in memory (typically 4MB), and only ex-
ported at large intervals. This export is performed by a
daemon that wakes up every five seconds. The imple-
mentation is based on inlined code to access the CPU’s
cycle counter and store the logged data. Each event has a
20-byte header including a serial number and timestamp
with cycle resolution, followed by event-specific data.
The overhead of each event is only a few hundred cycles
leading to a total of about 0.95%. Logging is performed
for all scheduling-related events: context switching, re-
calculation of priorities, forks, execs, changing the state
of processes, and monitoring of activity on Unix-domain
sockets (to track potential interactions with the X server).

2.3 The Workload

As there are numerous different applications in con-
temporary desktop workloads, we have identified several
dominant application classes and chose to focus on a rep-
resentative or two from each class.

� Classic interactive applications: The (traditional)
Emacs and the (newer) OpenOffice text editors.
During the test, editors were used for standard typ-
ing at a rate of about 8 characters per second.

2

� Classic batch applications: Artificial CPU-bound
processes (stressors) and a complete compilation of
the Linux kernel. Several processes are involved in
compilation and therefore the associated data pre-
sented in this paper is a summation. The CPU-bound
processes serve as a background load that can absorb
any number of available CPU cycles, and compete
with HuC processes.

� Movie players: MPlayer and the Xine MPEG
viewer, which were used to show a short video clip
in a loop. While MPlayer is a single threaded ap-
plication, Xine’s implementation is multithreaded,
making it a suitable representative of this growing
class of applications [8]. Specifically, Xine uses six
distinct processes. The two most important ones are
the decoder, which reads the data stream from the
disk and generates frames for display, and the dis-
player, which displays the frames at the appropriate
rate. In our experiments, audio output was sent to
/dev/null rather than to the sound card, to allow fo-
cus on interactions with the X server.

� Modern interactive applications: The Quake III
Arena role playing game. An interesting feature of
Quake is that it is adaptive: it can change its frame
rate based on how much CPU time it gets. In our
experiments, when running alone it is usually ready
to run and can use almost all available CPU time.

In addition, the system runs a host of default processes,
mostly various daemons. Of these, the most important
with regard to interactive processes is obviously the X
server.

3 Identifying HuC Processes Based on
CPU Usage Patterns

Traditionally, schedulers on desktop machines priori-
tized processes based on their CPU usage, or rather, based
on lack of CPU usage. The underlying assumption was
that I/O-bound processes, which do not use significant
CPU resources, may be interactive. In this section we
show that such reasoning is obsolete, as modern HuC pro-
cesses may use significant CPU resources. More gener-
ally, we show that it is impossible to distinguish between
HuC processes and other processes based on CPU usage
patterns alone. To do so, we consider three aspects of
CPU usage: the overall CPU consumption, the lengths
of effective quanta, and the reasons for relinquishing the
CPU.

3.1 CPU Consumption

The simplest measure of CPU usage is total con-
sumption. Most general purpose schedulers base priority

C
P

U
 U

sa
ge

 P
er

ce
nt

0

20

40

60

80

100

Em
acs

OpenOffice

M
Player

Xine 1:1

Xine 2:1

Quake player

Quake dem
o

Kernel m
ake

Stressor

0.2 2.6
11.0 11.6

41.2

97.0 99.4
94.7

99.8

Other
X Server
Application

Figure 2. CPU consumption of different applications ex-
pressed as a percentage of the wallclock time. Each applica-
tion was run alone.

mainly on this metric. Processes that use the CPU lose
priority, while those that wait in the queue gain priority.
The details of how this is done is described in Appendix
A. for several leading schedulers.

The question, however, is whether low CPU consump-
tion can be used to identify HuC processes. Figure 2
demonstrates that this is not the case. HuC processes
are seen to span the full range from very low CPU usage
(the Emacs and OpenOffice editors) to very high CPU us-
age (the Quake role-playing game). Movie players such
as Xine provide an especially interesting example: their
CPU usage is proportional to the viewing scale. Showing
a relatively small movie, taking about 13% of the screen
space, required about 15% of the CPU resources for the
player and X combined. Using a zoom factor of 2:1, the
viewing size quadrupled to about half the screen, and the
resource usage also quadrupled to about 60%. Attempt-
ing to view the movie on the full screen would overwhelm
the CPU. This is despite using an optimization by which
the frame data is handed over to X using shared memory.

3.2 Effective Quantum Lengths

While CPU consumption is the main metric used by
current schedulers, other metrics are also possible. A
promising candidate is the distribution of effective quan-
tum lengths. An effective quantum is defined to be the
period from when a process is allocated a processor un-
til when the processor is relinquished: either because the
process has exhausted its allocated quantum, or because it
blocks waiting for some event, or because a newly awak-
ened process has higher priority. The intuition is that al-
though HuC processes may exhibit large CPU consump-
tion, their effective quanta probably remain very small
due to their close interaction with I/O devices. Thus we
expect to see a difference between the allocated quanta

3

Milliseconds

P
ro

ba
bi

lit
y

(a)
0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

1234567890123456
Emacs
OpenOffice

(b)
0 10 20 30 40 50

12345678901234567
12345678901234567

Kernel Make
X (with Xine)
MPlayer
Xine

(c)
0 10 20 30 40 50

12345678901234567
Demo Quake
Stressor

(d)
0 10 20 30 40 50

1234567890123456789
12345678901234567

Demo Quake
Demo Stressor
User Quake
User Stressor

Figure 3. Cumulative distribution function (CDF) of the effective quanta of the various applications. (a) Editors have very short
effective quanta. (b) Movie players also have short effective quanta, but this is similar to the profile of the traditional kernel-make
batch job. (c) Quake can consume all available CPU cycles, so when running in demo mode it behaves like a stressor. Both
are occasionally interrupted by various system daemons or by the klogger, causing around 50% of the effective quanta to end
prematurely. (d) When a stressor runs with Quake (in demo or user mode), both end up with the same distribution.

and the effective ones in HuC processes, but expect non-
HuC processes to typically use their full allocation.

An example motivating this approach is provided by
the computation pattern of movie players. After a movie
player decodes the next frame, it sends the X-server a re-
quest to display this frame, thus relinquishing the proces-
sor until such time when the frame is indeed displayed.
Since this scenario repeats itself for each frame, it leads
to a ping-pong like computation pattern in which the X-
server and the movie player run in an alternating fash-
ion, making the effective quantum orders of magnitude
shorter than the allocated quantum. Specifically, our mea-
surements show that most of the effective quanta of such
applications are much shorter then 1ms (80% for Xine,
and 94% for MPlayer), even though the default quantum
length in Linux-2.4 is a bit more than 50ms.

Unfortunately, it turns out that the distribution of ef-
fective quantum lengths does not distinguish HuC pro-
cesses any more than the total CPU consumption does.
Figure 3 shows these distributions for different groups
of applications. Multimedia applications, in particular,
are indistinguishable from other application types: on
one hand Quake behaves just like a CPU stressor, both
when running alone and when running with a competing
process, and on the other hand Xine resembles the well-
known kernel-make benchmark. Especially interesting is
the case of Quake running together with a stressor. In
this case user interactions with Quake (averaging about
165 X-events per second) cause most effective quanta of
both processes to be shorter than 10ms. This happens be-
cause X consumes much less CPU than either of them,
and therefore has much higher priority and is able to pre-
empt them whenever it needs to handle an event.

Emacs Open MPlayer Xine Quake Quake Kernel Stressor
Office user demo make

99.6 99.1 98.5 83.1 14.3 1.2 81.6 0.5

Table 1. Percent of context switches that are voluntary for
the various applications.

3.3 Voluntary vs. Forced Context Switches

Another possible metric is the type of context switch.
HuC processes (such as movie players) often relinquish
the processor voluntarily, due to their dependency on I/O
devices, through which they communicate with the user.
We can therefore classify processes according to the frac-
tion of their effective quanta that ended voluntarily, rather
than the duration of the effective quanta (as described
above).

We define a voluntary context switch as one that
was introduced by the process itself, either explicitly by
blocking on a device, or implicitly by performing an ac-
tion that triggered another process to run (such as releas-
ing a semaphore). We were able to trace such context
switches by monitoring the various kernel queues. The
results shown in Table 1 indicate that this new metric
also fails to make a clear distinction between HuC and
other processes. Here too, similarities are evident be-
tween Quake and stressors on one hand, and between
Xine and kernel-make on the other hand.

3.4 Consequences of Not Identifying HuC
Processes

To conclude, prioritizing modern HuC processes
solely based on their CPU usage no longer delivers, as
multimedia and other heavy computational tasks essen-

4

Number of Stressors
0 1 2 3 4 5 6 7 8 9 10

A
vg

. d
is

pa
tc

h
la

te
nc

y
[m

s]

0

2

4

6

8

10

12

14 1234567890123456789012
1234567890123456
1234567890123456
1234567890123456

Quake
OpenOffice
Xine
X (with Xine)
MPlayer
Emacs

Figure 4. Average dispatch latency of HuC applications
as a function of load.

tially look the same in that respect. The failure of con-
temporary general purpose schedulers to differentiate be-
tween the two types of processes results in treating them
in a similar manner. As the system load increases, the
scheduler lacks the ability to favor multimedia processes
over the others, consequently depriving them of the re-
sources they need.

In particular, when the system load grows so does the
scheduling latency (Figure 4). This is crucial for mul-
timedia applications, as a high scheduling latency may
cause them to miss a deadline. In fact, this is one of the
reasons for the high frame loss rate shown in Figure 1.
To solve this problem we must identify HuC processes
directly, and prioritize them accordingly.

4 Identifying HuC Processes Based on
User Interaction

Failing to identify HuC processes using the traditional
CPU-consumption-based metrics suggests a different ap-
proach is needed. It seems there’s no alternative to actu-
ally follow the flow of information between the user and
the various processes, and explicitly characterize HuC
processes as such according to the magnitude of this
flow. We achieve this using a combination of two mech-
anisms. The first, described in Section 4.1, is responsible
for quantifying the volume of direct interaction between
each process and the user. This by itself is insufficient
because processes may interact with the user in an in-
direct manner. This motivates the second mechanism,
described in Section 4.2, that tracks interprocess com-
munication to unearth dependency relationships between
them. Together, the two mechanisms allow the scheduler
to correctly identify and prioritize HuC processes. Sim-
ilar ideas have been suggested by Flautner et al. [8], but
not in the context of scheduling.

4.1 Monitoring User I/O

The concept of a human user is unknown to the kernel.
User interaction is mediated by peripheral devices. Iden-
tification of user interaction must therefore start with the
identification of devices that represent the user.

4.1.1 HuC Devices

Only a subset of the peripheral devices in the system are
of interest when trying to quantify the volume of interac-
tions between the user and the various processes. These
include the keyboard, mouse, screen, joystick, sound
card, etc., and will be referred to collectively as HuC de-
vices. The common property of such devices is that they
all directly interact with the user. For the purpose of this
research we’ve decided to only monitor the “bare neces-
sities”, namely the keyboard, mouse, and screen. The
same principles can be applied to the other HuC devices
in a straightforward manner.

Unix environments use the X-Windows system [27]
as the conventional mechanism to multiplex I/O between
the user (as reflected by HuC devices) and the various ap-
plications. Applications that wish to communicate with
HuC devices are referred to as X-clients. Clients con-
nect to the X-server and communicate with it using the X-
protocol. The server usually associates a window (called
a virtual terminal) with each client, such that user input
events performed within this window are forwarded to the
client (in the form of X-events), and output produced by
the client (in the form of X-requests) is directed to this
window. Consequently, the X server centralizes all work
concerning the kernel mechanisms that allow communi-
cation with the canonical HuC devices, and hence with
the user. It is therefore natural to use the X server as a
meta-device when monitoring user I/O.

X maintains in its internal data structures a client
record for each client. We have added three fields to this
record:

1. client’s process ID,

2. client’s temporal input ratings (denoted
�������

), and

3. client’s temporal output ratings (denoted
���	��
��

),

which are discussed below. The values of these fields are
communicated to the kernel once a second (using the X
native timer mechanism) through non-standard parame-
ters we’ve added to the standard POSIX sched setparam
system call [9].

Client process IDs (denoted pids) are of course needed
because eventually the scheduler will base its decisions
upon the I/O ratings associated with each pid. X doesn’t
originally maintain pids, because one of its major design
goals is to serve local or remote clients in the same way,
and holding the pid of a remote client has no meaning. In

5

the context of desktop scheduling, however, we are only
interested in monitoring local clients, since these are the
candidates for being HuC processes (the option of run-
ning HuC applications remotely in a distributed environ-
ment is beyond the scope of the current research effort).
To obtain the pids of connecting clients we slightly mod-
ified the communication layer of the X server. This is
based on the fact that local clients connect to the server
via a Unix-domain socket [23], and non-standard Unix-
domain socket options implemented in Linux [12] pro-
vide access to the sender’s pid.

4.1.2 Quantifying User Input

Input events can be perceived as an immediate and ex-
plicit expression of the user’s wishes. The number of
events is typically not so important: dragging with the
mouse, which generates multiple events per second, con-
veys the same amount of user interest as a single mouse
button click or the typing of a single character. The most
important metric is recency: the most recent user input
should get the highest priority.

Reflecting these considerations, we implement input
ratings as follows. Whenever an input event is associated
with a certain client, that client’s

� ��� �
counter is initial-

ized to a predefined constant
�

. Each second, after
� �����

is communicated to the kernel, it is decremented by 1.
Thus a process that receives input retains its HuC sta-
tus for

�
seconds, and processes with more recent input

have higher priority. The code for this is also simple. X
already has a list of callbacks to invoke whenever an input
event is read from the device files; we have added another
callback that logs this event by setting

�������
.

In addition to the regular periodic updates sent from X
to the kernel once a second, whenever a client with zero
input ratings receives an input event, the kernel is imme-
diately notified. This allows the scheduler to maximize
responsiveness by promptly handling such events.

4.1.3 Quantifying Output to the User

Unlike user input that has almost an unary nature (a hu-
man user can deliver simultaneous events to very few pro-
cesses in one second) and which reflects the immediate
wishes of the user, quantifying output is a bit more com-
plex: firstly, because various applications may simulta-
neously produce output to different windows, but more
importantly, because we don’t know which of these out-
put events is more significant to the user. To cope with
this difficulty we exploit a feature in human perception
that is a remnant of our predatory days: human vision is
more sensitive to movement [19]. By quantifying the rate
of changes produced by each client we get a reasonable
guess about which process has the user’s attention. We

further assume that the user does not like to be distracted
and will eliminate any source of interference (e.g. iconify
an irrelevant window). Anything that grabs the user’s at-
tention is assumed to be “important”. It is interesting to
note that this approach allows users to implicitly control
resource allocation by iconifying windows, which corre-
sponds to natural desktop working habits.

The question remains of how to quantify the rate of
screen changes. Simple event counting will not work in
this case since an output event can be as small as printing
a character or as large as changing the background image.
To complicate matters even more, output events may re-
fer to hidden portions of windows. Of course changes
that can’t be seen by the user, shouldn’t be included in
the client’s ratings. Our goal is therefore to approxi-
mate the percentage of the screen actually changed due
to each output event, and to accumulate this percentage
in the

� �	�
��
of the event’s initiator. This is a feasible task

since the X protocol defines a reduced set of only sev-
enteen graphical X-requests that are available to clients.
Requests include drawing a polygonal line, a character
string, an image, etc. For each X-request we have im-
plemented a function that approximates the amount of
change it introduces to the screen (for example, when
drawing a character, we use its bounding box size as
the approximation). Additionally, we’ve hooked to the
X clipping mechanism in order to find out how much of
the change is indeed visible to the user. Finally, the re-
sulting change is expressed as a percentage of the screen
area and accumulated in

���	�
 �
.

We remark that even though the X protocol is the con-
ventional paradigm used to perform user I/O in Unix en-
vironments, other mechanisms do exist. The Direct ren-
dering Infrastructure (DRI [17]) is the dominant alterna-
tive since it is used by the OpenGL graphical library [20],
which in turn is heavily used by graphical software (such
as Quake). DRI interacts directly with the graphics con-
troller, thus circumventing the X protocol. This is why
we don’t include demo-Quake in our measurements be-
low (user-Quake however is still included, since Quake
only uses OpenGL for output, and relies on X for input).
In order to make our implementation complete, OpenGL
should have also been modified (similarly to the X server)
to maintain the per-process I/O statistics and to periodi-
cally report them to the kernel.

An alternative design would be to maintain the re-
quired statistics in the relevant I/O device drivers in ker-
nel space. This approach will eliminate the need to
change OpenGL or other similar libraries. Note how-
ever that this approach is very hard to implement be-
cause device drivers are not aware of windows structure
and of high level operations. Additionally, this approach
will not eliminate the need to change X (as described
above), because without this change, all I/O activity prox-

6

ied through X will be attributed to X itself instead of to
its clients. Finally, another serious drawback of this ap-
proach is that there are a lot more display adaptor drivers
that will need to be modified than there are graphic li-
braries similar to OpenGL.

4.2 Process Dependency Graphs

As noted above, processes may interact with the user
in an indirect manner. In a Unix system, the main pro-
cess that interacts with the user is the X server. HuC ap-
plications interact with the user indirectly, using X as an
intermediary. The second component of identifying HuC
processes is therefore finding the transitive closure of the
processes that enjoy direct interaction. To do so, we must
first identify the graph of process interactions.

4.2.1 Identifying Process Interactions

Process interactions may take different forms: communi-
cation using a pipe, storing to and loading from shared
memory, the use of semaphores, etc. While all these
mechanisms are in some way mediated by the kernel,
keeping track of all of them is very arduous. Moreover,
if new mechanisms are introduced, they will require sep-
arate monitoring.

The alternative is to use a single mechanism that al-
lows the kernel to deduce that an interaction has taken
place. We chose to monitor insertions into the ready
queue for this purpose. When one process causes another
to enter the ready-to-run queue, it implies that the second
process was waiting for the first one, and hence that they
interact with each other.

Implementing this idea in Linux is very sim-
ple, because attempts to insert a waiting task to
the ready-to-run queue are always performed via the
try to wake up(process) function. This function is usu-
ally invoked on processes populating the waiting queue
associated with the awaited event. Additionally, this
function may sometimes be invoked for processes that
are already in the ready-to-run queue (which explains the
“try” component in its name), e.g. when a process signals
another process and the latter isn’t blocked-waiting for
that signal (but rather engaged in some other activity). In
any case, an invocation of try to wake up signifies a de-
pendency between the process that triggered the call and
the targeted process. A similar idea is currently being
explored by leading Linux developers [24].

However, this heuristic has the obvious drawback
that some dependencies might go unnoticed. This hap-
pens whenever the communicating processes don’t block
on the communication. Examples include explicit non-
blocking communication such as using shared memory,
and situations in which blocking is not necessary (e.g.

reading less data than what is available in a pipe). We
partly deal with the first case, shared memory, by con-
sidering a set of processes that share their address space
as a single entity, rather than considering each of them
individually.

Even with the above flaws, the approach we’ve taken
manages to produce excellent results in deducing inter-
process relations. Its success may be attributed to its
self correcting nature: When the system is under-loaded,
it doesn’t really matter whether our scheduler correctly
identifies dependencies or not, as processes get the CPU
time they require anyway. However, when the load in-
creases, HuC processes that are not identified correctly
begin to suffer (namely spend more time in various wait-
ing queues), thus allowing our scheduler to witness and
take into account the circumstances in which they are
reinserted into the ready-to-run queue.

4.2.2 The ����� ���
and ����� �
 �

Graphs

X reports to the kernel about processes it directly inter-
acts with, thus allowing the scheduler to identify them
as HuC. However, this is not enough, since these pro-
cesses may depend on other processes that are totally un-
known to the X server. Figure 5 demonstrates why this
is commonly the case in Unix environments. It describes
a scenario in which the user writes some document using
the VI text editor from within an xterm console emula-
tor. When the user presses a keyboard key, the X server
reads the associated character from the keyboard’s device
driver, sends it as an X-event message to xterm, which
in turn forwards it through a pseudo-terminal connection
[22] to VI. The latter performs the necessary processing
and may update the user’s view by propagating data in
the opposite direction. This simple example highlights
the fact that the HuC quality has a transitive nature, and
therefore its definition must be refined such that it will
also include processes that indirectly interact with the
user. We therefore define a process as being HuC if it
directly interacts with the user (through HuC devices) or
if it interacts with other HuC processes.

As described above, we identify process interactions
by noting which processes attempt to insert other pro-
cesses into the ready queue. This induces a directed graph
on the processes. We call this the Process Dependency
Graph �������	��
����� , where
 contains all active pro-
cesses in the system, and � contains edge ��� � ������� iff ���
was recently inserted to the ready-to-run queue due to an
action taken by � � .
����� as defined includes the raw dependency data.

But we need to distinguish between dependencies that re-
flect the flow of input from the user to a process, and
dependencies that reflect flow of output from a process to
the user. To do so we define two other graphs, ����� ���

7

stdin

VI

stdout

keyboard
device
driver

Xgeneratesoutput

X−event

write
character

read
character

pseudo
terminal

UNIX
domain
socket

display
adaptor
driver

user
types

inputreadsX

xtermX

kernel space user space

X−request

Figure 5. Information flow between the user and VI.

and ����� ��
��
. In each of these graphs we seek the con-

nected component that includes the X server. The con-
nected component of X in ����� ���

will identify all HuC
processes that receive some user input, and the connected
component of X in ����� �
��

will identify HuC processes
that generate output to the user.
����� ���

is actually the same as the original raw ����� .
The reason is that input flows form the X server to other
processes, and exposes process dependencies along the
way. To demonstrate this, let us reexamine the exam-
ple given in Figure 5. After reading input from the key-
board device driver, X generates a suitable X-event and
writes it through a socket to the waiting (blocking read)
xterm, consequently removing it from an internal oper-
ating system waiting-queue and inserting it to the ready-
to-run queue: its socket end is now ready for reading.
This means that �����������	�
��� ���� � ����� ��� ����� . Likewise,
xterm sends the keystroke to VI, which is blocked wait-
ing for it, and causes it to unblock, so ����� � ���	� ����������
����� . We get that the connected component of X in
����� (and hence in ����� ���

) is indeed correctly com-
posed of ��� ���������
��� ��� � � ����� ��� ����� .

This reasoning does not work for output. Consider
output flowing from VI to the screen. As VI generates
output and sends it to xterm, we get ��� �� ��� � � ���	� ���
����� . Xterm then sends a request to X, so we get
���� � ������������������
��� ��� ����� . But if we try to find the
connected component of X in this case we find that it
only contains X itself, because the arcs are oriented in
the wrong direction:

���! !"$#% !"'&)(+*� !"$,-&
/.
We therefore define ����� ��
��

to be the inverse of the raw
����� : ��� � ��� ���0� � �
 �

iff ��� � ��� � ��� � . It contains the
same arcs, but in the opposite direction.

4.2.3 Aging the Data

Interactive processes may accept input at one time, gener-
ate output at another, and just compute in between. If the

computation is long, it is not justified to retain the HuC
status indefinitely. Thus the arcs in the ����� s should
only reflect “recent” interactions.

In order to actually maintain the graphs, we need to
define the meaning of “recent”. For this purpose we have
defined a non-negative integral weight function on the
graph’s edges, such that the weight of edge ��� � ����� � is
the number of times � � was inserted to the ready-to-run
queue due to � � (each such event increments the asso-
ciated edge’s weight by one). To make weights reflect
recent history only, they are exponentially decayed by a
factor of two, once a second. The actual definition of the
PDGs is therefore:

����� ��� �1� ��� � ��� � �32�4 !57698+* ��� � ��� � �;:=< �
����� �
 � �1� ��� � ��� � �32�4 !5>6?8+* ��� � ��� � ��:@< �

When considering our VI example, this means that if
the user has typed eight characters per second and then
stopped, the edges generated due to this input burst will
sustain a positive weight for three seconds, after which
the scheduler will cease recognizing VI as HuC. Arguably
this is a very short period of time. However, this is not a
problem since according to our measurements, processes
that produce a lot of output (such as movie players) con-
tinuously sustain heavy edges in the connected compo-
nent of X within ����� �
��

. As for the more traditional
HuC processes (such as VI), recall that X immediately
notifies the kernel whenever a client with zero input rat-
ings receives an input event (Section 4.1). This allows
the kernel to immediately adjust priorities according to
the consequently generated edges, instead of relaying on
history (as will shortly be explained).

Of course using less aggressive decaying policies may
also be considered. One reasonable alternative is a lin-
ear decay of weights: decrementing weights by one each
second instead of dividing them by two (such that decay-
ing a burst of eight typed characters will take eight sec-
onds). Another reasonable alternative is to break the con-
nection between the number of times � � inserted � � to the
ready-to-run queue and the duration the associated edge

8

maintains positive weight. Instead, we can decide that a
dependency (an edge) is preserved for some fixed prede-
fined duration � , and change the definition of weight to
be a second countdown (initialized to �) from when the
most recent dependency was recorded.

4.3 Propagating I/O Ratings

Recall that X sends the kernel information regard-
ing the I/O ratings of different processes once a second.
But this relates only to processes that interact directly
with X. We therefore need to propagate the ratings to all
the other processes in X’s connected components in the
����� s. The following describes how propagation is ac-
tually done.

The Linux kernel represents each task using a struc-
ture to which we have added four fields: input rating (de-
noted � � � for process �), temporal input rating (� ��� �),
output rating (� ��
��), and temporal output rating (� �	�
��).
All these fields are initialized to zero at boot time. After
the kernel receives an update from X, it uses the tempo-
ral input component to compute the associated ratings as
follows:

1. Let � � � denote the set of processes that X identified
as heaving positive input rating (� �������

defined in
Section 4.1). We start by initializing � ��� � with the
associated

����� �
for each process � ��� � � .

2. Next, by applying a breadth-first search (BFS) from
each � ��� ��� , we propagate � ����� through ����� ���

in a cumulative manner. This means that if a process
��� is reachable from two processes ������� ��� and
�
	 ��� ��� , then �������� � �
���� �� �
	����� at the end of
this phase. ��� has higher rating than ��� and ��	 ,
because both of them depend on ��� .

3. Finally, by traversing through all processes with
positive input ratings (temporal or actual), we up-
date: � ��� ������������������ .

The overhead for running this is actually quite low, as the
PDG is typically sparse and the connected component is
small.

Figure 6 presents an example of the above algorithm.
The left graph presents X’s connected component in
����� ���

, with uppercase letters denoting input ratings
(� ���) before the propagation algorithm was executed.
Assume X has just reported to the kernel that the tem-
poral input ratings of ��� , �
� , and ��� are � , and , re-
spectively (and therefore � ��� �"! �
� ���
� ���
�$#). Low-
ercase letters in the right graph denote temporal input rat-
ings (� �����) after propagation. For example ��%�����'&)(�
� because ��% is reachable from all processes in
� ��� . The content of nodes in the right graph is of course
their new input ratings.

Output ratings are computed similarly (and are nor-
malized to the same scale as the input ratings). Non-
temporal I/O ratings are inherited upon fork.

Note that it is very common for PDGs to include cy-
cles, as processes that consume input usually also pro-
duce output (see Figure 5). Additionally, all nodes of � ���
are almost always reachable from X within the PDGs.
Our breadth-first search is therefore prohibited from go-
ing through X’s node, or else every node’s temporal rat-
ing will contribute to every other node’s rating, resulting
in equal ratings across the entire component.

In addition to the periodic executions of the above
propagation algorithm, it is also invoked whenever X re-
ports on a process with zero input rating that has just con-
sumed an input event (recall that such processes are re-
ported immediately to the kernel). When this is the case,
the breadth-first search is only conducted from the newly
reported process, rather then from all processes in � ��� .
To complement this special treatment, try to wake up
(through which all insertions to the ready queue are done)
is modified accordingly: if the inserting process is HuC
and the inserted one is not, the I/O ratings of the for-
mer are copied to the latter. Backtracking to the example
given in Figure 5, this mechanism ensures that upon in-
put, VI will immediately be identified as HuC, even if it
currently has zero I/O ratings. The immediate feedback
of X about xterm is instantly propagated to VI when the
former inserts the latter to the ready queue.

5 Linux Implementation of the HuC
Scheduler

Our implementation has two components. The first is
modifications to the X server, which monitor direct user
I/O with various processes. This is communicated to the
kernel once a second using a well-defined interface. The
second component is a modified scheduler, that creates
the PDGs and prioritizes processes accordingly.

5.1 Scheduling-Classes Hierarchy

The Linux scheduler is POSIX compliant and there-
fore supports three scheduling classes: FIFO, Round-
Robin, and OTHER (the latter is not defined by POSIX
but its implementation is mandated and it is the default
[9]). Each process is associated with a single class that
can be changed through the standard sched setparam sys-
tem call. FIFO and Round-Robin processes are cate-
gorized by POSIX as realtime and when ready to run,
should always be preferred over OTHER processes. Un-
fortunately, in Linux all three schedulers are hard-coded
into one complex function which makes it very tricky to
add adequate handling for HuC processes. For this rea-
son we have decided to rewrite the scheduler in such a

9

[H+(e+f)]/2
h

[J+(d+e+f)]/2
j

[G+d]/2
g

[F+f]/2

[E+e]/2

[D+d]/2

F H J

E

D G

XX

Figure 6. Example of the propagation of input ratings.

Class Description

FIFO POSIX First-In First-Out
RR POSIX Round-Robin
KTHREAD kernel threads
HUCIN recently consumed user input
HUCOUT recently produced output viewed by the user
OTHER Linux default

Table 2. Scheduling classes hierarchy ordered by impor-
tance.

way that will allow new policies to be easily incorporated
into the kernel. Our simple design was inspired by that
of the Solaris 8 scheduling scheme [13] and can be de-
scribed as a hierarchical scheduler: The various schedul-
ing classes are organized in a hierarchy, in order of impor-
tance. Whenever the scheduler needs to choose the next
process to run, it traverses the hierarchy in order, “ask-
ing” each class to pick its most desirable process. If no
process is eligible to run in the current class, the sched-
uler moves to the next class, until an appropriate process
is found.

Table 2 lists the scheduling classes we have im-
plemented in our scheduler. We have added the new
KTHREAD, HUCIN, and HUCOUT to the existing
FIFO, RR, and OTHER. KTHREAD is populated by the
various kernel processes which may be considered as
part of the operating system (swapper etc.). Depriving
such processes of a processor might sometimes have a
disastrous effect on the system. Prioritizing within the
KTHREAD class is done identically as in the original
OTHER class. HUCIN includes all processes with posi-
tive input ratings. HUCOUT includes all processes that
have positive output ratings (and are not already included
in HUCIN). By placing HUCIN above HUCOUT we ac-
knowledge the fact that input events reflect the immediate
and explicit expression of what the user wants. Prioritiz-
ing within the two HuC classes is very similar to the de-
fault, with the difference that when a new epoch is started
(see Appendix A.) durations of newly allocated quanta
are set to be related to the associated rating. The pro-
cess with the highest output rating in HUCOUT will be
allocated a full default quantum duration (�

� < ms). Pro-

cesses with lower rating will get a lower allocation, but
more than their proportion (e.g. a rating of 0.3 of the max-
imal rating can lead to an allocation of 0.5 of the maximal
allocation). This allows new processes to build up their
output rating.

5.2 Handling Positive Feedback

Traditional Unix schedulers are stable because they in-
clude a negative feedback loop. High priority processes
get to run and lose priority, whereas waiting processes
gain priority. As a result active processes quickly con-
verge to the same priority level and share the CPU equi-
tably.

Our scheduler has an inherent unstable positive feed-
back loop: processes that consume input and generate
output get a higher priority, which allows them to run
more, potentially creating even more output (input de-
pends on the user). Thus a new HuC process may be
unable to get started and gain enough momentum to com-
pete with existing HuC processes. However, this seems
not to be a problem in practice, because new processes
inherit the user-interaction counts of their parents. As
new processes are typically created as a result of a user
request, the process which creates them (shell or GUI)
becomes a HuC process, and the new process will start as
a HuC process.

Nevertheless, a more general solution is desirable, e.g.
to handle processes forked by non-HuC processes or pro-
cesses that change their nature over time. Such a solution
must allocate CPU time to processes despite the fact that
their I/O ratings are low or nil. Luckily, this meshes in
nicely with the Linux concept of an epoch. During an
epoch, all active processes get to run. Rather than defin-
ing the epochs within each scheduling class, we can de-
fine an epoch to span all classes. The allocation of time
within the epoch, however, depends on the class: HuC
processes will get a much higher allocation than OTHER
processes. The ratio between the allocations is a config-
urable system parameter. While essentially straightfor-
ward, this idea has not been implemented yet.

10

Number of Stressors
0 1 2 3 4 5 6 7 8 9 10

C
P

U
 u

til
iz

at
io

n
[%

]

0

20

40

60

80

100
Xine

X server

Stressors

other

Xine

X server

Stressors

other

frame loss [%]

ID
LE

Figure 7. Division of CPU time and Xine’s frame-loss rate
under the HuC-scheduler (compare with Figure 1).

Before

Number of Stressors
0 1 4

C
P

U
 u

til
iz

at
io

n
[%

]

0

20

40

60

80

100
Quake

Stressors

other

Quake

Stressors

other

After

0 1 4

Figure 8. CPU share given to quake by the default sched-
uler (left) and by the HuC scheduler (right).

6 Experimental Results

To evaluate the concept of HuC scheduling and our
Linux implementation of this concept we conducted mea-
surements with several workloads. The workloads typ-
ically included at least one HuC process, and different
numbers of stressor processes that compete for the CPU.

Probably the most striking result is shown in Figure 7.
This shows profiles of executing Xine showing a movie at
a 2:1 size ratio, with up to 10 stressor processes. Xine and
the X server require about 60% of the CPU in this case.
Under the original Linux scheduler, they do not get this
percentage when there are two or more stressors, result-
ing in an increasing frame-loss rate as stressors are added
(Figure 1). But with the HuC scheduler Xine and X are
identified and given priority over the stressor processes,
and they continue to get 60% of the CPU regardless of
the number of stressors. As a result the frame loss rate
remains negligible.

Similar results are obtained for other applications as
well. At the low end of CPU usage, applications like
the Emacs editor are unaffected by the HuC scheduler.
Emacs only requires maybe 1% of the CPU resources,

Number of Stressors
0 1 2 3 4 5 6 7 8 9 10

A
vg

. d
is

pa
tc

h
la

te
nc

y
[m

s]

0

2

4

6

8

10

12

14

1234567890123456789012
1234567890123456
1234567890123456
1234567890123456

MPlayer
Quake
Xine
OpenOffice
Emacs
X (with Xine)

Figure 9. Average dispatch latency of HuC applications
under the HuC-scheduler (compare with Figure 4).

and gets it even under the default scheduler; the HuC
scheduler provides the same. But at the high end, Quake
can adaptively use CPU resources to improve its output
quality. When run under the default scheduler, its share
of the CPU is reduced when stressor processes are added.
With the HuC scheduler, it can continue to dominate the
CPU (Figure 8).

The HuC scheduler not only allocates CPU time pref-
erentially to HuC processes, it also does so promptly. Re-
call Figure 4, which showed the dispatch latency of var-
ious process types under loaded conditions when served
by the Linux scheduler. Figure 9 shows the results of run-
ning the same experiment with the HuC scheduler. The
dispatch latencies of HuC-processes remains very low
(��� ms), regardless of the background load.

Another point worth mentioning in this context is the
improved responsiveness of the window-manger itself.
While conducting measurements involving heavy back-
ground load under the default scheduler, we have no-
ticed that moving windows around produces extremely
jerky and abrupt results. By contrast, the HuC sched-
uler impressively rectified this misfeature: identifying the
window-manager as HuC allowed smooth window move-
ment which (subjectively) felt as if no background load
was present.

Finally, we ran a measurement of overloading the ma-
chine with HuC processes to check the division of re-
sources between them. Running two Xine players at a
2:1 ratio requires about 120% of the CPU for a rate of 25
frames/sec each (from Figure 2). Figure 10 shows that
indeed together they are limited to about 40 frames/sec.
We can also see that within a few seconds they settle into
a pattern in which one gets slightly more CPU than the
other. This corresponds to the fact that their windows par-
tially overlap, so the one on the bottom is partly ocluded
and gets a lower priority.

11

Time [sec]

0 5 10 15 20 25 30 35 40

N
um

be
r

of
 fr

am
es

0

10

20

30

40

Xine1
Xine2
Sum

Figure 10. Frame rates achieved by two competing Xines.

7 Related Work

Commodity operating systems are only beginning to
recognize the importance of user interaction explicitly.
For example, Solaris and Windows give processes that
wake up after waiting on a device a priority boost that
is inversely proportional to the device speed. More ad-
vanced support for special situations exists only in re-
search prototypes, and falls into several categories.

The simplest approach is to prioritize the X server
[16], or modify it to prioritize clients as the kernel does
[6]. However, this by itself does not solve the problem.

The alternative is to modify the kernel scheduler. The
first category here is to provide soft real-time support so
that multimedia applications can sustain frame rates and
audio sample rates. This has two aspects: high resolution
timing services, and appropriate scheduling; we focus on
the scheduling here. The SMART scheduler [16] by Nieh
and Lam lets a multimedia application request the operat-
ing system for certain soft real-time assurances — mainly
computation periods — and receive feedback from the
operating system whether these requests can be met. This
has the drawback of requiring application modifications.
This problem was addressed by the BEST scheduler [2],
which tries to identify applications with periodic compu-
tation needs automatically. On a different note, Zhang
et al. [28] attempt to schedule real-time jobs along with
best-effort ones in a manner which will maintain the real-
time deadlines. Their proposed solution is dividing the
CPU time among the two classes according to a user sup-
plied “fairness” ratio, and letting each class schedule its
processes in a hierarchical model. The real-time class
uses the earliest-deadline-first (EDF) scheme.

The second category is explicit support for propor-
tional or fair-share scheduling [6]. This approach shifts
the burden to the user, and requires a specification of the
resource requirements of select applications. One of the
well known schemes in this field is Lottery Scheduling
[26]. The basic idea is to assign each process a num-

ber of lottery tickets that is proportional to its requested
percentage of the CPU time. The scheduling decision is
than made by drawing a uniformly distributed ticket thus
giving each process a chance to “win” the CPU that is
distributed according to the user/programmer’s requests.
Another well known work in this field is the Borrowed-
Virtual-Time scheduler [7]. This scheduler assigns a vir-
tual time to each running thread, and allocates the CPU
according to a user-defined weight policy. A time sensi-
tive thread can “borrow” time from its future allocations
when its schedule is tight. The Eclipse operating system
[4] went a step further in providing proportional share of
the machine, by supporting guaranteed portions of multi-
ple resources at once: not only the CPU, but also mem-
ory blocks, disk bandwidth, and network bandwidth. In
particular, the algorithm is designed so that latencies in-
curred waiting for different resources do not accumulate
over time.

A third approach is to use hierarchical schedulers —
schedulers that allocate CPU time between other, class
specific schedulers. Goyal et al. [11] designed a hierar-
chical scheduler fashioned like a tree. Each node symbol-
izes a meta-scheduler with specific proportions of CPU
time division between its children. The Vassal project
[5] from Microsoft includes a hierarchical scheduler with
strict ordering: when a dispatch decision is to be made
the dispatcher queries the various class-specific sched-
ulers for processes, in a strict, predefined order. The fo-
cus of this work is to enable the dynamic loading and
unloading of schedulers at runtime, according to the ap-
plications’ demands. This principle is somewhat similar
to the hierarchical scheduler we described in Section 5.

Although some of these schemes are very elaborate,
there is one common downside to all of them: they
still require the user/programmer to manually specify the
needs of the various application — either in terms of
deadlines or of relative weights — and use this hand
tuned process identification as a guide by which to dis-
tribute resources. The only exception to this approach is
the BEST scheduler [2] that tries to automate the identifi-
cation of soft real-time processes and their requirements,
rather then letting the user manually supply this informa-
tion. But even this provides an automation that is limited
to soft real-time processes, cannot distinguish between
interactive and non-interactive processes, and cannot han-
dle overloaded machines. Our work, by contradistinction,
is the first to fully automate the identification of HuC pro-
cesses, and make the computer anticipate the user, his de-
sires and interests. Interestingly, the idea of identifying
HuC processes as the closure of processes that interact
with the X server has been proposed by Flautner et al. [8]
— but was not used in the context of operating system
scheduling.

12

8 Discussion and Conclusions

To summarize, the main observation leading to our
work is that it is impossible to use CPU usage patterns
to identify processes that are of immediate interest to the
user. Instead, it is better to directly track the activities of
the user, and compute the closure of processes that par-
ticipate in user interactions. These processes, which we
call human-centered, are then prioritized relative to other
processes in the system.

Naturally, the implementation of this idea involves
many details. We have argued that input from the user
should take precedence over output to the user, both be-
cause it more directly reflects user interest and because it
is easier to quantify. We have developed means to quan-
tify the impact of output, and to propagate I/O ratings
among interacting processes. But for each of these mech-
anisms we also noted that alternative options are possible.
The detailed study and comparison of these options are
left for future work. In addition, we intend to check the
possibility of (and benefits from) better tracking of pro-
cess interactions, e.g. to include interactions via shared
memory. Finally, there is a need for serious study of
cognitive aspects of user interaction, e.g. regarding the
assignment of different levels of importance to different
interaction modes.

The experimental results are very promising, and show
that we can indeed identify HuC processes and prioritize
them relative to other processes. But this also raises the
question of being too successful. Consider a situation in
which a user is waiting for the output of a long computa-
tion, and engages in an interactive game to pass the time.
Our scheduler will identify the game as more important,
and might therefore deprive the awaited computation. On
the other hand, being based on I/O events also allows our
scheduler to respond to very simple cues from the user.
Simply clicking on a window will cause an X-event to
be sent to the associated application, and will raise its
priority, even if it completely ignores the actual input.
This opens intriguing possibilities for new types of in-
teractions between the user and the system.

The human-centered nature of the HuC scheduler al-
lows the system to focus on the interactive user’s immedi-
ate interests. This facilitates the prioritization of interac-
tive and multimedia applications relative to background
tasks. Importantly, this includes not only background
tasks generated by the same user, but also various sys-
tem daemons and even remote work. Thus using a HuC
scheduler can help in the implementation of grid envi-
ronments, in which spare CPU cycles not used by the
local user are made available to remote work, with the
assurence that such remote work will not interfere with
the desktop interactivity.

A. Review of Scheduling Algorithms

This review demonstrates how CPU usage is factored
into the scheduling algorithms of contemporary operating
systems.

The simplest example is the Traditional Unix sched-
uler [1]. The scheduler chooses processes based on prior-
ity, which is calculated as the sum of three terms: a base
value that distinguishes between user and kernel priori-
ties, a nice value (partially configurable by the ordinary
user to reflect relative importance), and a usage value.
Lower numerical values represent higher priorities. The
usage is incremented on each operating system clock tick
for the currently running process, so priority is reduced
linearly when a process is running. On the other hand the
accumulated usage of all processes is divided by a fac-
tor once a second, thus raising their priorities. The factor
depends on the load: when load is high, and the process
gets to run less often, the aging is also slower. BSD Unix,
which is the basis for FreeBSD and Mac OS-X, uses a
similar formula [14].

In Linux the priority dictates both which process is
chosen to run, and how long it may run [3, 25].The Linux
scheduler partitions time into epochs. In each epoch, ev-
ery process has an allocation of how long it may run, as
measured in ticks. When the process runs, the allocation
is decremented on each tick until it reaches zero. Then,
the process is preempted in favor of the ready process
with the highest positive allocation. When there are no
ready processes with an allocation left, a new epoch is
started, with all processes getting a new allocation that is
inversely proportional to their nice value (the lower the
nice value, the higher the priority and thus the higher
the allocation). In addition, processes that did not use
up all their previous allocation transfer half of it to the
new epoch. Thus processes that were blocked for I/O get
a higher total allocation, and hence a higher priority.

Solaris is somewhat more sophisticated [13].The So-
laris scheduler supports scheduler modules, so new mod-
ules can be loaded at runtime by the administrator, thus
changing the behavior of the scheduler. The default
classes are time sharing (TS), interactive (IA, which is
very similar to TS), system (SYS), and real-time (RT).
User threads are usually handled by the TS and IA
classes. Priorities and quanta are set according to a
scheduling-class-specific table, which sets (i) the quan-
tum length for each priority, (ii) the priority the thread
will have if it finishes its quantum (lower), or (iii) if it
blocks on I/O (higher). The quanta are in operating sys-
tem clock tick units, and the values in the tables can
be changed by the administrator. The basic idea is that
higher priorities get shorter quanta: when a process fin-
ishes its quantum it gets a longer one at lower priority, and

13

when it blocks it receives a shorter quantum at a higher
priority, as opposed to what might happen under Linux.

The priority of threads in Windows NT4.0/2000 also
has static and dynamic components [21]. The static com-
ponent depends on the thread’s type. The dynamic com-
ponent is calculated according to a set of rules, that may
also give the thread a longer quantum. These rules in-
clude the following:

� Threads associated with the focus window get a
quantum that is up to three times longer than they
would otherwise.

� Threads that seem to be starved get a double quan-
tum at the top possible priority, and then revert to
their previous state.

� Threads that wait for user input get a double quan-
tum at a priority level that is one less than the maxi-
mum, and then revert to their previous state.

� After waiting for I/O, a thread’s priority is boosted
by a factor that is inversely proportional to the speed
of the I/O device. This is then decremented by one at
the end of each quantum, until the original priority
is reached again.

� Users may specify the relative importance of appli-
cations.

References

[1] M. J. Bach, The Design of the UNIX Operating System.
Prentice-Hall, 1986.

[2] S. A. Banachowski and S. A. Brandt, “The BEST Sched-
uler for Integrated Processing of Best-Effort and Soft
Real-Time Processes”. In Multimedia Computing and
Networking, January 2002.

[3] D. P. Bovet and M. Cesati, Understanding the Linux Ker-
nel. O’Reilly, 2001.

[4] J. Bruno, E. Gabber, B. Özden, and A. Silberschatz, “The
eclipse operating system: providing quality of service
via reservation domains”. In USENIX Technical Conf.,
pp. 235–246, 1998.

[5] G. Candea and M. B. Jones, “Vassal: loadable scheduler
support for multi-policy scheduling”. In 2nd USENIX
Windows NT Symp., pp. 157–166, USENIX, Seattle, WA,
August 1998.

[6] S. Childs and D. Ingram, “The Linux-SRT integrated mul-
timedia operating system: bringing QoS to the desktop”.
In 7th Real-Time Technology & App. Symp., p. 135, May
2001.

[7] K. J. Duda and D. R. Cheriton, “Borrowed-virtual-time
(BVT) scheduling: supporting latency-sensitive threads
in a general-purpose scheduler”. In 17th Symp. Operating
Systems Principles, pp. 261–276, Dec 1999.

[8] K. Flautner, R. Uhlig, S. Reinhardt, and T. Mudge,
“Thread-level parallelism and interactive performance of
desktop applications”. In 9th Intl. Conf. Architect. Sup-
port for Prog. Lang. & Operating Syst., pp. 129–138, Nov
2000.

[9] B. O. Gallmeister, Posix. 4: Programming for the Real
World. O’Reilly & Associates, January 1995.

[10] A. Goel, L. Abeni, C. Krasic, J. Snow, and J. Walpole,
“Supporting time-sensitive applications on a commodity
OS”. In 5th Symp. Operating Systems Design & Imple-
mentation, pp. 165–180, Dec 2002.

[11] P. Goyal, X. Guo, and H. M. Vin, “A Hierarchical CPU
Scheduler for Multimedia Operating Systems”. In Usenix
2nd Symp. on Operating Systems Design & Implementa-
tion (OSDI), pp. 107–121, 1996.

[12] A. Kleen, Linux Manual Page: UNIX Domain Sockets.
[13] J. Mauro and R. McDougall, Solaris Internals. Prentice

Hall, Oct 2001.
[14] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quar-

terman, The Design and Implementation of the 4.4BSD
Operating System. Addison Wesley, 1996.

[15] J. Nieh, J. G. Hanko, J. D. Northcutt, and G. A. Wall,
“SVR4 UNIX scheduler unacceptable for multimedia ap-
plications”. In 4th Int’l Workshop Network & Operating
System Support for Digital Audio & Video, Nov 1993.

[16] J. Nieh and M. S. Lam, “The design, implementation and
evaluation of SMART: a scheduler for multimedia appli-
cations”. In 16th Symp. Operating Systems Principles,
pp. 184–197, Oct 1997.

[17] B. Paul, “Introduction to the Direct Rendering Infrastruc-
ture”. http://dri.sourceforge.net/doc/DRIintro.html, Au-
gust 2000.

[18] M. A. Rau and E. Smirni, “Adaptive CPU schedul-
ing policies for mixed multimedia and best-effort work-
loads”. In Modeling, Anal. & Simulation of Comput. &
Telecomm. Syst., 1999.

[19] B. Shneiderman, Designing the User Interface. Addison-
Wesley, 3rd ed., 1998.

[20] Silicon Graphics Inc., “OpenGL”.
http://www.opengl.org/.

[21] D. A. Solomon and M. E. Russinovich, Inside Windows
2000. Microsoft Press, 3rd ed., 2000.

[22] W. R. Stevens, Advanced Programming in the Unix Envi-
ronment. Addison Wesley, June 1993.

[23] W. R. Stevens, UNIX Network Programming. Vol. 1. Net-
working APIs: Sockets and XTI, Prentice Hall PTR, 2nd
ed., 1998.

[24] L. Torvalds, A. Cox, and I. Molnar, Improving Interac-
tivity. http://kerneltrap.org/node.php?id=603, Mar 2003.
Linux Kernal Mailing List, Summarized Thread.

[25] L. Trovalds, A. Cox, and many others, “The Linux Kernel
Sources, Version 2.4.8”. http://www.kernel.org.

[26] C. A. Waldspurger and W. E. Weihl, “Lottery schedul-
ing: flexible proportional-share resource management”.
In Symp. Operating System Design & Implementation,
November 1994.

[27] X Consortium, “X Windows System”. www.X.org.
[28] Y. Zhang and A. Sivasubramaniam, “Scheduling Best-

Effort and Real-Time Pipelined Applications on Time-
Shared Clusters”. In ACM Symp. Parallel Algorithms &
Architectures, pp. 209–218, July 2001.

14

