
PhD Thesis Proposal

Active Behaviour Learning: Mapping Play
Strategies into Action Sequences

Student: Fahong Li

Thesis committee: Dr. Robert J. Woodham (supervisor)

To be assigned.

To be assigned.

Department of Computer Science

The University of British Columbia

February 8, 2007

Abstract

its definition

i

Contents

Abstract i

Contents ii

List of Tables ii

List of Figures iii

1 Introduction 1

2 Related work 2
2.1 Learning in RCS2DS . 2
2.2 Agent control architecture . 4
2.3 Active learning . 6
2.4 Game (Opponent) AI . 7
2.5 Constraints and AI planning 8

3 Proposed solution 9

4 Discussion and conclusion 10

Bibliography 11

ii

List of Tables

iii

List of Figures

iv

Chapter 1

Introduction

1

Chapter 2

Related work

2.1 Learning in RCS2DS

[1] presents a flexible team member agent architecture and a general-purpose
layered machine learning paradigm which allows learning at each level of
a hierarchy composed of complex tasks. The RoboCup Soccer simulator
environment is used as the major testbed. The author identifies the char-
acteristics of the environment and define it as a PTS (Periodic Team Syn-
chronization) domain. Roles, formations and set-plays are used to compose
teamwork structure, and paradigms of communication among agents with a
single unreliable low-bandwidth channel are also analyzed. In the layered
learning paradigm: neural network is used to learn an individual soccer skill,
ball interception; decision tree is employed to learn a multi-agent behavior,
pass evaluation; and a new algorithm TPOT-RL (Team-Partitioned, Opaque-
Transition Reinforcement Learning) is taken to learn a team behavior, pass
selection. The algorithm TPOT-RL is also tested in the domain of network
routing. A fully functioning multi-agent system embodying the algorithms
and architecure was implemented and participated in the RoboCup Soccer
competitions. The author also suggests to use observational reinforcement
learning for strategic positioning and memory-based algorithm for strategic
adaptation. As the author stated one problem with the layered learning is
the error propagation or credit assignment among layers.

[2] defines the coaching problem, i.e., an automated coach agent provid-
ing advice to one or more automated advice-receiving agents, and explores
solutions to the challenges posed in the prolem, such as learning and us-

2

ing models of the environment, adapting advice to receivers’ peculiarities,
representing advices and modeling opponents. The author co-developed the
standard advice language CLang for the simulated robot soccer environment,
and proposed a multi-agent plan representation MASTN (Multi-Agent Sim-
ple Temporal Network) and an associated distributed plan execution algo-
rithm. However, in the current implementation of the algorithm, the agents
do not take over actions which were originally assigned to others but not
executed successfully by them. Based on two assumptions: 1) the variation
in opponents can be approximately expressed in a reasonably sized set of
models from which to choose; and 2) the output of an opponent model does
not explicitly depend on the positions of the agent’s teammates, the author
built several models of opponent movements in setplays while game stops.

[3] introduces a constraint-based agent architecture to address the issues
of an agent’s: synchronization with and response to the dynamic environ-
ment, and operating proactively and appropriately in the environment. In-
tentions represented in the form of constriants are attributed to the agent
to achieve its resource-bounded deliberation. The architecture adaptively
schedules deliberation processes so that the agent can evolve its action with
the natural frequency of the environment’s dynamics. The architecture is
modular and its execution is interruptible to produce quality-varying solu-
tions. Transcribed in a dynamic and probabilistic multi-agent environment,
a theory of intentionality is presented to abstract behaviors and to facili-
tate agents’ behavior generation and recognition. The architecture is im-
plemented and tested as agents playing in the RoboCup Soccer Simulation
League: the agents’ internal representations of the world are compared with
the true states of the environment and the agents’ successes in dynamic sit-
uations with varying resource requirements and uncertain percepts are eval-
uated. The internal representation model has yet been integrated into the
whole decision process of the agents.

[4] presents a formalization of team strategy and concepts of Situation
Based Strategic Positioning (SBSP) and Dynamic Positioning and Role Ex-
change (DPRE) for homogeneous agents to collaborate against opponents in
dynamic, real-time and uncertain environments. The formalized team strat-
egy is composed of a set of tactics and several possible agent types. A tactic
consists of formations that are applied in different situations. A formation
assigns each agent its agent types and its positions in the field. The strategic
positioning of one agent depends on the situation and the positioning of other
agents assigned in the formation. Agents take more reactive behaviours, i.e.,

3

domain-specific high-level and low-level skills, when they are in active situa-
tions, which are identified out of strategic situtations. Agents are also able
to switch their positions and roles (specific behaviours) at run-time, within
one formation. A high-level decision module is used to decide an agent’s cur-
rent tactic, formation, role and action at a given moment. The FC Portugal
RoboCup Soccer team implemented an agent architecture embodying this
team strategy and concepts of SBSP and DPRE. It won all the opponent
teams in both the European and the World RoboCup 2000, without losing
any goal in any of the competitions.

2.2 Agent control architecture

[5] presents a soft real-time agent control architecture to generate schedules
satisficing temporal, structural and resource constraints, to merge new goals
with existing ones, and to detect and handle unexpected results from activ-
ities. The architecture uses TAEMS, a description language for hierarchical
task decomposition, to model goals, subgoals and low-level activities with
quantitative and probabilistic parameters. Given a TAEMS representation
of a task, a planner DTC (Design-To-Criteria) and a scheduler POS (Partial
Ordered Scheduler) evaluate current runtime context and execution charac-
teristics to generate and rank a range of candidate plans and schedules, and
select one from them. An execution subsystem executes activities in this
plan, tracks the performance, and reschedules or resolves conflicts when ap-
propriate. Though the authors claim the TAEMS structure and parameters
for a task can be learned, it is difficult to come up with a reasonable de-
composition of a complex task as required in TAEMS. In addition, when a
failure occurs during the execution of some activity, the architecture can not
indicate which factor(s) caused that failure.

[6] presents IDEA (Intelligent Distributed Execution Architecture), a
framework to unify planning and execution with four major components: the
domain model, the plan database, the plan runner, and the reactive planner.
Deliberative planning is achieved through modeling and problem solving on
the plan database within the framework. IDEA allows the specification of
agents that operate within a guaranteed reaction time and supports flexible
specification of reactive vs. deliberative agent behavior. It also defines a sim-
ple communication protocol among several agents which implement IDEA.
In IDEA a layered system can be implemented as separate agents, one per

4

layer, each representing its interactions with the world in a model. At all
levels, the model representation primitives and their semantics is the same.
IDEA is used to supersede the functionalities of the Deep Space 1 Remote
Agent (DS1 RA) [7]. The DS1 RA architecture includes three layers of func-
tionality: a constraint-based planner/scheduler (PS), a reactive executive
(EXEC), and a Model Identification and Recovery system (MIR) consist-
ing of a model-based truth maintenance system with diagnosis and recovery
module. These layers use different modeling languages and different ways
specifying problem-solving control. Although this heterogenous approach
has the advantage of tuning each module to maximize performance at that
level, it is difficult to validate all the models and procedures and to insure
no conflict among them.

[8] describes a flexible and reusable agent architecture STEAM to address
teamwork requirements such as coordination and communication in complex,
dynamic multi-agent domains. Based on the Joint Intentions theory [9], team
members in the STEAM framework synchronously builds up a hierarchy of
shared intentions, individual intentions and beliefs about others’ intentions.
They use decision theory to decide whether to communicate to get mutal
belief while building or disbanding joint intentions. With explicit represen-
tation of team goals and plans, STEAM monitors team performance during
the execution of the hierarchy of reactive plans, and reorganizes the team
when an individual fails in fullfilling its responsibilities or no team member
is covering a new task. The implementation supplements rules for teamwork
to the SOAR agent architecture [10].

In order to generate intelligent agent behavior in complex, real-time and
dynamic computer game worlds, [11] proposes an anytime planner A-UMCP
(Anytime Universal Method Composition Planner) and an agent architec-
ture, which supports the planner and deals with the game domain features
such as real-time interactivity and complexity. The planner trades off plan-
ning time against plan quality by using hierarchical task networks and al-
lowing its planning process interruptible at any time, even without the re-
quirement of finding an initial solution first. It generates information to
guide agent behavior rather than exact solutions to problems. The agent
itself is responsible for translating the information into its executable prim-
itives. This additional translation step between planning and acting is one
of the weaknesses of the architecture. The weaknesses also include a lack of
inter-agent communication features and a lack of proactive intelligence.

5

2.3 Active learning

Given the freedom of choosing future training data based on those that have
been used, [12] proposes a general approach for active learning to minimize
the number of training data required and thus to reduce the cost of gathering
them. This approach first defines a model and an associated model quality
or loss function appropriate for the learning task at hand. Then it chooses a
method to compute the potential model loss given a potential query, and fi-
nally asks the query which causes the lowest potential model loss. It has been
applied in three areas of machine learning: classification with Support Vec-
tor Machines, parameter estimation and causal structure discovery in static
Bayesian Networks. Empirical results show the active learning technique can
significantly reduce the need for training data. There are still many aspects
for the active learning method to explore, such as dealing with situations
involving missing data values, hidden variables, high-dimensional problems
and temporal domains.

[13] presents a framework and objective functions for active learning to
close the data-gathering loop in three fundamental Hidden Markov Model
(HMM) problems: learning individual states, learning the most likely path
of hidden states given some observations, and learning the model which gen-
erated the data. The active learning HMM is equivalent to a standard HMM
except some observations in the former are hidden and queryable. In the
framework, the loss function is determined by what one dislikes about one’s
current belief state. Uncertainty about hidden variables and expected error
on tasks (e.g., mislabelling A into B) are two common types of them. The
Value of Information (VOI) is defined as the expected reduction in loss (un-
certainty or cost) once the information is observed or provided as an answer
to some query. The primary bottleneck of the framework is to incorporate
the information learned from the quries into the HMM’s beliefs, since the
VOI computations are fast enough.

Assuming the model class used by an active learner can actually describe
the true distribution underlying the data and the model has no hidden, con-
tinuous variables, [14] generalized the Query by Committee approach to un-
supervised active learning tailored for domains with large number of random
variables. As the standard information gain (Jensen-Shannon divergence)
requires a committee size growing exponentially with the number of indepen-
dent subdomains involving uncertainty, the authors propose a new additivite
divergence measure to quantify the degree of disagreement in terms of av-

6

erage Kullback-Leibler divergence between all pairs of committee members,
so that the lowest committee size required is given by the subdomain with
the largest uncertainty. A bootstrap approach for committee selection is also
presented.

2.4 Game (Opponent) AI

[15] proposes a taxonomy of domain knowledge in simulated soccer to fa-
cilitate the definition of similarity measures between two situations. The
taxonomy classifies domain knowledge at the first level into two categories:
distributional knowledge and virtual or derived attributes. Distributional
knowledge is about variables’ range and distribution or ordering of nomi-
nal feature values. Virtual attributes have two types: matching knowledge,
which can be taxonomies or continuous/discrete transformational knowledge,
and inferential knowledge, which includes relations and contextual knowl-
dege such as weights. A non-extended similarity measure only incorporates
weighted Eculidean distances between players’ and balls’ position and ve-
locity vectors. An extended similarity measure takes various knowledge-rich
virtual attributes and their weights (which can be learned) into account.
With respect to the extended similarity measure, players in two situations
are first matched, and if the two situations are similar enough, the high-level
action (such as shoot-on-goal) taken by player A in one situation will be
given as the predcited action of player A’s counterpart in the other situation.
The difficulty of this similarity-based opponent modelling lies in defining
the similarity measure which incorporates reasonable virtual attributes and
appropriate weights for different situations.

A case-based reasoning system CAT (CAse-based Tactician) is designed
in [16] to win against randomly selected opponents in WARGUS, a real-time
strategy game using the open-source engine STRATAGUS [17, 18]. CAT
uses three sources of WARGUS domain knowledge, i.e., a state lattice, a
set of tactics (subplans) for each state, and cases that map game situations
to tactics and their performance, to facilitate case acquisition and tactic
selection. It is tested in TIELT [19] and the results show that CAT learns to
play significantly better than the best performing genetically evolved counter-
strategy against WARGUS opponents.

[20] Online Adaptation of Game Opponent AI in Simulation and in Prac-
tice

7

2.5 Constraints and AI planning

[21] Constraints and AI Planning

8

Chapter 3

Proposed solution

9

Chapter 4

Discussion and conclusion

10

Bibliography

[1] Peter Stone. Layered Learning in Multiagent Systems: A Winning Ap-
proach to Robotic Soccer. MIT Press, 2000.

[2] Patrick Riley. Coaching: Learning and Using Environment and Agent
Models for Advice. PhD thesis, Computer Science Dept., Carnegie Mel-
lon University, 2005. CMU-CS-05-100.

[3] Jeffrey Montgomery. Situated observation and participation in multiple-
agent systems. Master’s thesis, Computer Science Dept., The University
of British Columbia, November 2003.

[4] Lúıs Paulo Reis, Nuno Lau, and Eugénio C. Oliveira. Situation based
strategic positioning for coordinating a team of homogeneous agents.
In Markus Hannebauer, Jan Wendler, and Enrico Pagello, editors, Bal-
ancing Reactivity and Social Deliberation in Multi-Agent System – From
RoboCup to Real-World Applications, number 2103 in Springer’s Lecture
Notes in Artificial Intelligence, pages 175–197. Springer, Berlin, 2001.

[5] Bryan Horling, Victor Lesser, Régis Vincent, and Thomas Wagner. The
soft real-time agent control architecture. Autonomous Agents and Multi-
Agent Systems, 12(1):35 – 91, Jan 2006.

[6] Nicola Muscettola, Gregory A. Dorais, Chuck Fry, Richard Levinson,
and Christian Plaunt. Idea: Planning at the core of autonomous reactive
agents. Artificial Intelligence, 2002.

[7] Nicola Muscettola, P. Pandurang Nayak, Barney Pell, and Brian
Williams. Remote agent: To boldly go where no ai system has gone
before. Artificial Intelligence, 103((1-2)):5–48, August 1998.

11

[8] Milind Tambe. Towards flexible teamwork. Journal of Artificial Intelli-
gence Research, 7:83–124, 1997.

[9] H. J. Levesque, P. R. Cohen, and J. Nunes. On acting together. In
Proceedings of the National Conference on Artificial Intelligence, pages
94–99, Menlo Park, Calif., 1990. AAAI press.

[10] URL. Soar. retrieved from http://sitemaker.umich.edu/soar on July 25,
2006.

[11] N. A. Hawes. Anytime Deliberation For Computer Game Agents. PhD
thesis, School of Computer Science, The University of Birmingham,
Birmingham, B15 2TT, November 2003.

[12] Simon Tong. Active Learning: Theory and Applications. PhD thesis,
Stanford University, August 2001.

[13] Brigham Anderson and Andrew Moore. Active learning for hidden
markov models: Objective functions and algorithms. In Luc De Raedt
and Stefan Wrobel, editors, Proceedings of the 22nd International Ma-
chine Learning Conference. ACM Press, 2005.

[14] H. Steck and T. Jaakkola. Unsupervised active learning in large do-
mains. In Proceedings of the 18th Annual Conference on Uncertainty
in Artificial Intelligence (UAI-02), pages 469–476, San Francisco, CA,
2002. Morgan Kaufmann Publishers.

[15] Timo Steffens. Similarity-based opponent modelling using imperfect
domain theories. In Graham Kendall and Simon Lucas, editors, IEEE
2005 Symposium on Computational Intelligence and Games (CIG’05),
pages 285–291, 2005.

[16] D. W. Aha, M. Molineaux, and M. Ponsen. Learning to win: case-based
plan selection in a real-time strategy game. In To appear in Proceedings
of the Sixth International Conference on Case-Based Reasoning, pages
15–20. Chicago, IL: Springer, 2005.

[17] M.J.V. Ponsen, S. Lee-Urban, H. Munoz-Avila, D.W. Aha, and M. Mo-
lineaux. Stratagus: An open-source game engine for research in real-time
strategy games, 2005. Washington, DC: Naval Research Laboratory,
Navy Center for Applied Research in Artificial Intelligence.

12

[18] URL. Stratagus: A real time strategy engine. retrieved from
http://stratagus.sourceforge.net/index.shtml on August 3, 2006.

[19] URL. Tielt: Testbed for integrating and evaluating learning techniques.
retrieved from http://www.tielt.org/ on August 3, 2006.

[20] Pieter Spronck, Ida Sprinkhuizen-Kuyper, and Eric Postma. Online
adaptation of game opponent ai in simulation and in practice. In Quasim
Mehdi and Norman Gough, editors, Proceedings of the 4th International
Conference on Intelligent Games and Simulation (GAME-ON 2003),
ISBN: 90-77381-05-8, pages 93–100, EUROSIS, Belgium, 2003.

[21] A. Nareyek, R. Fourer, E. C. Freuder, E. Giunchiglia, R. P. Goldman,
H. Kautz, J. Rintanen, and A. Tate. Constraints and ai planning. IEEE
Intelligent Systems, 20(2):62–72, 2005.

13

