
LCI Open House

Computational Statistics,
Empirical Algorithmics,

and Game Theory



Introduction

• Five LCI faculty members:
– Nando De Freitas
– Holger Hoos
– Kevin Leyton-Brown
– Kevin Murphy
– David Poole

• Three interlocking research areas:
– Probabilistic Reasoning & Machine Learning

• De Freitas, Murphy, Poole

– Empirical Algorithmics
• Hoos, Leyton-Brown

– Game Theory
• Leyton-Brown, Poole



Nando De Freitas



Holger Hoos

• Hard combinatorial problems from AI and 
Bioinformatics

• Design and characterisation of stochastic 
local search algorithms for such problems

• Human-centred information management 

• Computer music











Kevin Leyton-Brown

• Research goals:
– theoretical problems in multiagent systems

– understanding empirical properties of algorithms

• Research areas:
– Game Theory

– Auction Theory, Mechanism Design

– Empirical Hardness Models



Game Theory

• Formal model of interactions between multiple self-
interested agents
– can be competitive, cooperative, or a mix

• Central concept: Nash equilibrium
– a set of strategies with the property 

that no single agent would prefer a 
different strategy

• Problem: compute equilibrium of 
games involving large numbers 
of players, actions
– represent the game compactly

– design an algorithm that leverages this structure
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Auctions

• A theoretical framework for resource allocation 
among self-interested agents
– Imagine I want to give a new laptop to the grad 

student who would benefit the most from having it.  
How should I choose if students can exaggerate?

• Sample research problems:
– design an auction to meet a set of both economic and 

computational requirements

– predict or suggest strategies for a complex auction 

– facilitate or deter collusion between bidders

– combinatorial auctions



Empirical Hardness Models

• Often, empirical runtimes of identically-sized instances of 
NP-hard problems vary by many orders of magnitude 
– e.g., combinatorial auction

winner determination
– this graph: CPLEX

runtimes for 9 CA 
test distributions, 
fixed problem size
(note log scale)

• Research agenda
– use machine learning to build models of an algorithm’s runtime 

for such a problem
– analyze a model to understand sources of empirical hardness
– model several algorithms and build an algorithm portfolio
– use sampling to build harder benchmark distributions
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Kevin Murphy

• Machine learning/ computational statistics
– Probabilistic graphical models (PGMs)

• Applications to computer vision
– Visual object detection and scene understanding



Probabilistic Graphical Models

• Combines graph theory and probability theory

• Kevin’s focus:
– Efficient (exact and approximate) inference algorithms

– Flexible software toolkits (eg. BNT)



Visual Object Detection
and Image Understanding

• Focus: model probabilistic relationships between objects and 
scenes.

• Applications to wearable computing and mobile robotics.

Inter-object
context

Scene



Demo of Car Detection using 
Local and Global Image Features



David Poole

What should
an agent do?

logic

probability

utility/preferences

game theory

knowledge representation
representations

algorithms

learning

perception

dynamics

Adaptive user interfaces
Diagnosis
Robotics
Electronic commerce
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“What should an agent do based on its prior knowledge, 

what it observes about the world, and its values or goals?”



Probabilistic Reasoning 

• Search algorithms for Bayesian Networks 
– enumerate very likely possible worlds; estimate probabilities

– works well for skewed probability distributions

• Exploiting Contextual Independence in Probabilistic 
Inference
– a rule-based representation of Bayes nets, which can leverage 

contextual independence for exponential computational gain

• Decision Making Under Uncertainty
– sequential decision making under imperfect sensors

– represent the problems as influence diagrams or partially 
observable Markov decision processes (POMDPs). 



Combining Logic and Probability

• Probabilistic Horn Abduction
– an early combination of logic and probability with a very weak logic (e.g., 

no disjunction)

• Independent Choice Logic
– a semantic framework allowing for independent choices by multiple 

agents, and a logic program to give consequences of their choices
– an expansion of Probabilistic Horn abduction to include a richer logic 

and choices by multiple agents
– extends logic programs, Bayesian networks, influence diagrams, MDPs, 

and game theory representations

• Central issues:
– representation (e.g., introducing a notion of time)
– inference algorithms that leverage compactness in representation
– learning
– applications (e.g., diagnosis, robotics, user modeling)



Related Grad Courses

Term 1:

• CS532c: Graphical Models – Murphy

Term 2:

• CS532a: Multiagent Systems – Leyton-Brown

• CS532d: Stochastic Search Algorithms – Hoos

• CS540: Machine Learning – de Freitas

LCI Forum: alternate Fridays at noon (with food!)
– next forum: September 17



Summary

• People:
– Nando De Freitas
– Holger Hoos
– Kevin Leyton-Brown
– Kevin Murphy
– David Poole

• Research areas:
– Probabilistic Reasoning & Machine Learning

• De Freitas, Murphy, Poole
– Empirical Algorithmics

• Hoos, Leyton-Brown
– Game Theory

• Leyton-Brown, Poole

• …and now it’s time to meet some students, 
           and see some cool demos!


