Relations, generalizations and the
reference-class problem:
A logic programming / Bayesian
perspective

David Poole

Joint work with Michael Chiang.

University of British Columbia

http://www.cs.ubc.ca/spider/poole/

Overview

» Learning from relations: the reference class problem
» Inductive logic programming

» Probabilities and logic programs: aggregating vs
quantifying

» Hierarchical priors

» Putting it all together

http://www.cs.ubc.ca/spider/poole/

Relational Learning: Example

» Given a database containing the relations:

> grade(Student, Course, Grade)
dept(Course, Department)
level(Course, Year)

major (Student, Department)

Y VY ¥ v

yvear (Student, Year)

Y

» Predict the value (distribution) of G for:
grade(joe, cs322, GG)

http://www.cs.ubc.ca/spider/poole/

Where do the probabilities come from?

» To get probabilities from data, you need to aggregate.
» To get distribution for grade(joe, cs322, G)

> distribution of grades of Joe over all courses
> distribution of grades for all students in CS322

> distribution of grades for all students over all courses

» — reference class problem
> as you generalize you get better statistics, but less
specificity
> conventional wisdom: choose narrowest reference
class with adequate statistics

http://www.cs.ubc.ca/spider/poole/

Inductive Logic Programming

{pasT(S,C)}
{pass(joe,C)} {pass(S,C) « dept(C,D) & major(S,D)}

|

{pass(S,C) « dept(C,D) & level(C Y) & major(S,D) & year(S,Y+2)}

{pass(S,C) < dept(C,cs) & level(C 3) & major(S,cs) & year(S,5)}

{paﬁoe ,C) < dept(C,cs)}
{pass(joe,C) < dept(C,cs) & C # cs311} {pass(S, cs322) < major(S,cs) & year(S,5)}

{pass(joe,C) < dept(C, cs) & level(C, 3)}

{pass(Joe cs322)}

%

http://www.cs.ubc.ca/spider/poole/

Adding probabilities to logic programs

Simplest way:
» add exogenous “choices of nature” that have probabilities

» logic programs give consequences of choices

> Jogic programs have standard syntax and semantics
» it suffices to have independent choices

» these can represent any belief network:
local transformation that doesn’t increase the number of

parameters

http://www.cs.ubc.ca/spider/poole/

Independent Choice Logic

» C, the choice space is a set of alternatives.

An alternative 1is a set of atomic choices.
An atomic choice 1s a ground atomic formula.

An atomic choice can only appear in one alternative.

» F, the facts is an acyclic logic program.

No atomic choice unifies with the head of a rule.

» P, a probability distribution over alternatives:

VA € C ZPo(a) — 1.

acA

http://www.cs.ubc.ca/spider/poole/

Meaningless Example

C = {{c1, 2, 3}, {b1, b2}}

F={f<—C1/\b1, f<—C3/\b2,
d<_cl, d<_62/\b17

e < f, e < d)

Po(c1) = 0.5 Py(cp) =0.3 Py(c3) =0.2
Po(b1) =0.9 Py(by) = 0.1

http://www.cs.ubc.ca/spider/poole/

Semantics of ICL

» A total choice is a set containing exactly one element of
each alternative in C.

» For each total choice t there is a possible world w.

» Proposition f is true in w, (written w, = f) if f is true
in the (unique) stable model of F U t.

» The probability of a possible world w; is

]_[Po(a).

» The probability of a proposition f is the sum of the
probabilities of the worlds in which f 1s true.

http://www.cs.ubc.ca/spider/poole/

Meaningless Example: Semantics

There are 6 possible worlds:

w1
w2
w3
w4
ws

W6

C1
2
C3
C1
2

C3

by f

S S

(\) p— p—

~| R
Q. Q| Q& Q4 QA &

S
)
~

by, f

Q|

Q|

e

P(wy) =0.45
P(wp) = 0.27
P(wz) =0.18
P(wyg) = 0.05
P(ws) = 0.03
P(wg) = 0.02

P(e) =0.45+0.274+0.03 +0.02 = 0.77

http://www.cs.ubc.ca/spider/poole/

Logical variables = plates

» In logic programming, logical variables are universally

quantified

» A program means its grounding; multiple instances, one

for each individual

» Buntine’s plates: parametrized parts of belief networks

http://www.cs.ubc.ca/spider/poole/

Example: Multi-digit addition

Student
Time

Xj, X2 X1
+), y2 Y
Zj. 2 11

Digit

Problem

O==
@,/

http://www.cs.ubc.ca/spider/poole/

Rules for multi-digit addition

Z(D,P,S, T) =V « Z(D,P,S, T) =V «
x(D,P) =Vx A knowsAddition(S, T') »
y(D,P) =VyA mistake(D, P, S, T) N
carry(D, P, S, T) = Vc A selectDig(D, P, S, T)
knowsAddition(S, T') N =V.

noMistake(D, P, S, T) N

Vis (Vx + Vy + Ve) div 10.
VYDPST {noMistake(D, P, S, T), mistake(D, P, S, T)} € C
VYDPST{selectDig(D,P,S,T) =V |V €{0.9}} € C

http://www.cs.ubc.ca/spider/poole/

Plates tor Learning

Example: parameter estimation for probability of heads

(from [Buntine, JAIR, 94])

Cheads, >
0O Cheads><——()

Cheadsy>

http://www.cs.ubc.ca/spider/poole/

ICL Version of Parameter Learning

heads(C) <«

turns_heads(C, ®) A prob_heads(0).
tails(C) <«

turns_tails(C, ®) A prob_heads(®).
YCVO {turns_heads(C, ®), turns_tails(C, ®)} € C
{prob_heads(0) : 0 € [0, 1]} € C
Prob(turns_heads(C, 0)) = 6
Prob(turns_tails(C,0)) =1—10
Prob(prob_heads(0)) = 1 <— uniform on [0, 1].

http://www.cs.ubc.ca/spider/poole/

Explaining Data

If you observe:

heads(cy), tails(cy), tails(c3), heads(cya), heads(cs), . . .

For each 6 € [0, 1] there 1s an explanation:

{prob_heads(0), turns_heads(cy, 0), turns_tails(ca, 0),
turns_tails(cz, 0), turns_heads(cy4, 0), turns_heads(cs, 0),

)

http://www.cs.ubc.ca/spider/poole/

Aggregating versus quantifying

Consider the difference between:

» The distribution of grades for all students in all courses
» For all students, the distribution of grades in all courses
» For all courses, the distribution of grades over all students

» For all students and all courses, the distribution of grades
for that student in that course

http://www.cs.ubc.ca/spider/poole/

Quantitying and Aggregating in ICL

» for all students, use distribution of grades over all courses
F = {grade(S, C, G) < grSt(S, G)}
C = {{grSt(S, G) | G € [0, 100]} | S 1s a student}

» for all courses, use distribution of grades over all students
F = {grade(S, C, G) < grC(C, G)}
C={{grSt¢(C,G) | G € [0, 100]} | C is a course}

http://www.cs.ubc.ca/spider/poole/

Probabilistic Inductive Logic Programming

» Given a dataset, choose the best probabilistic logic
program given the data... taking into account:

> fit to the data

>> prior probability of the program

http://www.cs.ubc.ca/spider/poole/

Probabilistic Inductive Logic Programming

» Given a dataset, choose the best probabilistic logic
program given the data... taking into account:

> fit to the data

>> prior probability of the program

Is there an alternative?

http://www.cs.ubc.ca/spider/poole/

Probabilistic Inductive Logic Programming

» Given a dataset, choose the best probabilistic logic

program given the data... taking into account:
> fit to the data

>> prior probability of the program
Is there an alternative?

» Bayesian: don’t choose the best model, but have a
probability distribution over the models

> combine all of the models

http://www.cs.ubc.ca/spider/poole/

Issues with Bayesian ILP

» Need to use all of the reference classes; even the most

general one!

» The lowest reference classes will all have very few

observed 1nstances.

» Need to use more general reference classes to get the
prior on the more specific.

» Need a way to combine different most specific reference
classes.

http://www.cs.ubc.ca/spider/poole/

Specificity and Counts

{pass(S O}
100000
{pe;sos(joe,Q} {pass(S,C) « dept(C D) & major(S,D)}

, 30000
{pass(S,C) « dept(C,D) & level(C Y) & major(S D) & year(S,Y+2)}

{pass(S,C) « dept(C,cs) & level(C 3) & major(S cs) & year(S,5)}

{paﬁoe ,C) « de(])jt(C ,CS)}
{pass(]oe C) < dept(C,cs) & C # cs311} {pass(S, cs322) «— major(S1<(:)s) & year(S,5)}

{pass(joe,C) « dept(C cs) & level(C, 3)}

{pass(Joe cs322)}

%

http://www.cs.ubc.ca/spider/poole/

Using The Most General Reference Class

http://www.cs.ubc.ca/spider/poole/

Inferring distributions from generalization

Even if you knew the distribution of immediate

generalizations, how do you infer the appropriate
distribution?

{pass(S,cs322) <« major(S,cs) & year(S,5)}
{pass(joe,C) « dept(C,cs) & level(C,3)}

{pass(joe,cs322)}

http://www.cs.ubc.ca/spider/poole/

Other Sorts of Rules

passed(S, C) <
passed(S, C") A

similarCourses(C, C").

passed(S, C) <
passed(S’, C) A
similarStudents(S, S').

— Collaborative Filtering

Can we also use the same technique to learn similar grades?

2
=

http://www.cs.ubc.ca/spider/poole/

Lessons from history

» In the Seventeenth century, there were accurate models
predicting the motion of stars and planets using universal
function approximaters (epicycles).

» Even when Newton came up with the “correct” model, it
took a long time to fit the data as well.

» We need representations that can express the “correct”
models, even if these may be difficult to find.

http://www.cs.ubc.ca/spider/poole/

Conclusion

» Mix of logic programming + Bayesian learning seems to
be most promising
» Many problems still to be solved

> some, such as the reference class problem, have a

long history
> some are new

>> the combination is relatively unexplored

» You can anticipate many different solutions

http://www.cs.ubc.ca/spider/poole/

