CPSC 312 — Functional and Logic Programming

@ Project #2 - should be well underway....

@ Practice exam questions on web page.

“Once you replace negative thoughts with positive ones, you'll
start having positive results.”

Willie Nelson, 2006 in “The Tao of Willie"

©D. Poole 2024 CPSC 312 — Lecture 31 1/14

Since Midterm
o difference lists, definite clause grammars and natural language
interfaces to databases
@ computer algebra and calculus
@ Triples are universal representations of relations, and are the
basis for RDF, and knowledge graphs
e URIs/IRIs provide constants that have standard meanings
@ Ontologies define the meaning of symbols
@ You should know what the following mean: RDF, IRI,
rdf:type, rdfs:subClassOf, rdfs:domain, rdfs:range
@ Complete Knowledge Assumption, Negation as failure, unique
names assumption
To do:
o Negation-as-failure (cont)
o Extra-logical predicates

@ Proofs
©D. Poole 2024 CPSC 312 — Lecture 31 2/14

Clark Normal Form

The Clark normal form of the clause

p(tl,...,tk) :- B.

is the clause
p(Vi,..., Vi) = 3IWp ... 3W, Vi=ty, ..., Vk =1t B.
where
@ V4,...,V\ are k variables that did not appear in the original
clause
o Wih,..., W, are the original variables in the clause.

@ When the clause is an atomic clause, B is true.
e Often can be simplified by replacing IW V = W A p(W)
with P(V).

©D. Poole 2024 CPSC 312 — Lecture 31 3/14

Clark normal form

For the clauses
student(mary).
student(sam).
student(X) :- undergrad(X).
the Clark normal form is
student(V) := V = mary.
student(V) := V = sam.
student(V) :- 3X V = X A undergrad(X).

©D. Poole 2024 CPSC 312 — Lecture 31 4/14

Clark's Completion

Suppose all of the clauses for p are put into Clark normal form,
with the same set of introduced variables, giving

p(\/l,...,\/k) - Bl.

p(Va,..., Vk) := By.

which is equivalent to
p(Vi,...,V,) := Bi1 V...V B,

Clark’'s completion of predicate p is the equivalence
VYV YV p(Va,. .., Vi) <> B V...V B,

If there are no clauses for p, the completion results in
V\/l .. .VVk p(\/l, ey Vk) < false

Clark’s completion of a knowledge base consists of the completion
of every predicate symbol along the unique names assumption.

©D. Poole 2024 CPSC 312 — Lecture 31 5/14

Clark normal form

For the clauses

student(mary).

student(sam).

student(X) :- undergrad(X).
the Clark normal form is

student(V) := V = mary.

student(V) := V = sam.

student(V) :- 3X V = X A undergrad(X).
which is equivalent to

student(V) := V = mary V V = samV 3X V = X A undergrad(X)
The completion of the student predicate is

VV student(V) <> V = mary V V = sam

Vv 3X V = X A undergrad(X).

©D. Poole 2024 CPSC 312 — Lecture 31 6/14

Completion Example

Consider the recursive definition:
passed_each([], St, MinPass).
passed_each([C|R], St, MinPass) :-
passed(St, C, MinPass),
passed_each(R, St, MinPass).
In Clark normal form, this can be written as
passed_each(L,S, M) :- L =1].
passed_each(L,S, M) :-
3C 3R L = [C|R], passed(S,C, M), passed_each(R,S, M).

Here we renamed the variables as appropriate. Thus, Clark's
completion of passed_each is

VL VS VM passed_each(L,S,M) <> L =[] Vv
3C 3R L = [C|R], passed(S, C, M), passed_each(R,S, M).

©D. Poole 2024 CPSC 312 — Lecture 31 7/14

Clark's Completion of a KB

@ Clark’s completion of a knowledge base consists of the
completion of every predicate.

@ The completion of an n-ary predicate p with no clauses is
p(Va,..., Vy) < false.

@ You can interpret negations in the body of clauses.
\+ a means a is false under the complete knowledge
assumption. \+ ais replaced by —a in the completion.
This is negation as failure.

©D. Poole 2024 CPSC 312 — Lecture 31 8/14

Defining empty _course

Given database of:
e course(C) that is true if C is a course
e enrolled(S, C) that is true if student S is enrolled in course C.

Define empty_course(C) that is true if there are no students
enrolled in course C.

e Using negation as failure, empty _course(C) can be defined by
empty_course(C) :- course(C), \+ has_enrollment(C).
has_enrollment(C) : - enrolled(S, C).

@ The completion of this is:
VC empty_course(C) <= course(C), —has_enrollment(C).
VC has_enrollment(C) <= 3S enrolled(S, C).

©D. Poole 2024 CPSC 312 — Lecture 31 9/14

Problem Cases

e p:-p.

@ r:— \+r

@ a:- \+ b
b:- \+ a

@ c:- \+d.
d:-c.

@ It isn't clear what the semantics should be.
Prolog goes into an infinite loop.
Avoid cycles!

©D. Poole 2024 CPSC 312 — Lecture 31 10/14

Problematic Cases

p(X) := *+ a(X)
q(X) 1= \+ r(X)
r(a)

7- p(X).

@ What is the answer?

@ How can this be implemented?

©D. Poole 2024 CPSC 312 — Lecture 31 11/14

Asserting and retracting clauses

New clauses can be added using

@ assertz(atom) adds atom as the last clause.
atom must be declared dynamic.
@ assertz((h :- b)) addsh :- b as the last clause
(note double parenthases). h must be declared dynamic.
@ asserta adds a clause as the first clause.

These are not undone by backtracking.
Example: count the number of times counthis is called

:- dynamic countn/1.

countn(0) .

countthis :-
retract (countn(N)),
N1 is N+1,
assertz(countn(N1)).

©D. Poole 2024 CPSC 312 — Lecture 31 12/14

Cut / commit

cut, or commmit, written as !
@ when called, exits

@ when retried, fails the atom it is used in

p —_—

Example: implementing negation as failure

mynot(A) :- call(A), !, fail.
mynot (A) .

©D. Poole 2024 CPSC 312 — Lecture 31 13/14

bagof, setof, findall

setof (t(Xs),Ys " foo(Xs,Ys,Zs), L)

where t(Xs) is a term containing variables Xs.

Ys is a set of existential variables

Zs is the other variable in foo

is true when L = {t(Xs) | Y foo(X,Y,Z)} # {}

there is an answer for each Z.

bagof (t (Xs),Ys " foo(Xs,Y¥s,Zs), L) returns a list not a set
Try from cs312_2024:

bagof (P, D"S"F~office_hour(P, D, S, F), Bag).
setof (P, D"S"F~office_hour(P, D, S, F), Bag).
bagof (P, S"F office_hour(P, D, S, F), Bag).
bagof (P, office_hour(P, D, S, F), Bag).

bagof (s(P,S), F office_hour(P, D, S, F), Bag).

findall (t (Xs),foo(Xs,Ys,Zs), L) like
bagof (t (Xs),Ys"Zs"foo(Xs,Y¥s,Zs), L)

©D. Poole 2024 CPSC 312 — Lecture 31 14 /14

