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Learning Under Uncertainty

➤ We want to learn models from data.

P(model|data) = P(data|model) × P(model)

P(data).

➤ The likelihood, P(data|model), is the probability that

this model would have produced this data.

➤ The prior, P(model), encodes the learning bias
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Bayesian Leaning of Probabilities

➤ Suppose there are two outcomes A and ¬A. We would

like to learn the probability of A given some data.

➤ We can treat the probability of A as a real-valued random

variable on the interval [0, 1], called probA.

P(probA=p|data) = P(data|probA=p) × P(probA=p)

P(data)

➤ Suppose the data is a sequence of n A’s out of

independent m trials,

P(data|probA=p) = pn × (1 − p)m−n

➤ Uniform prior: P(probA=p) = 1 for all p ∈ [0, 1].
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Posterior Probabilities for Different Data
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MAP model

➤ The maximum a posteriori probability (MAP) model is

the model that maximizes P(model|data). That is, it

maximizes:

P(data|model) × P(model)

➤ Thus it minimizes:

(− log P(data|model)) + (− log P(model))

which is the number of bits to send the data given the

model plus the number of bits to send the model.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 11, Lecture 5, Page 5

Information theory overview

➤ A bit is a binary digit.

➤ 1 bit can distinguish 2 items

➤ k bits can distinguish 2k items

➤ n items can be distinguished using log2 n bits

➤ Can you do better?
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Information and Probability
Let’s design a code to distinguish elements of {a, b, c, d} with

P(a) = 1

2
, P(b) = 1

4
, P(c) = 1

8
, P(d) = 1

8
Consider the code:

a 0 b 10 c 110 d 111

This code sometimes uses 1 bit and sometimes uses 3 bits.
On average, it uses

P(a) × 1 + P(b) × 2 + P(c) × 3 + P(d) × 3

= 1

2
+ 2

4
+ 3

8
+ 3

8
= 1

3

4
bits.

The string aacabbda has code 00110010101110.
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Information Content
➤ To identify x, you need − log2 P(x) bits.

➤ If you have a distribution over a set and want to a identify
a member, you need the expected number of bits:

∑

x

−P(x) × log2 P(x).

This is the information content or entropy of the
distribution.

➤ The expected number of bits it takes to describe a
distribution given evidence e:

I(e) =
∑

x

−P(x|e) × log2 P(x|e).
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Information Gain

If you have a test that can distinguish the cases where α is

true from the cases where α is false, the information gain

from this test is:

I(true) − (P(α) × I(α) + P(¬α) × I(¬α)).

➤ I(true) is the expected number of bits needed before the

test

➤ P(α) × I(α) + P(¬α) × I(¬α) is the expected number

of bits after the test.
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Averaging Over Models

➤ Idea: Rather than choosing the most likely model,

average over all models, weighted by their posterior

probabilities given the data.

➤ If you have observed n A’s out of m trials

➣ the most likely value (MAP) is n
m

➣ the expected value is n+1
m+2
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Learning a Belief Network

➤ If you

➣ know the structure

➣ have observed all of the variables

➣ have no missing data

➤ you can learn each conditional probability separately.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 11, Lecture 5, Page 11

Learning belief network example

Model Data → Probabilities

C

E

A B

D

A B C D E

t f t t f

f t t t t

t t f t f

· · ·

P(A)

P(B)

P(E|A, B)

P(C|E)

P(D|E)
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Learning conditional probabilities

➤ Each conditional probability distribution can be learned

separately:

➤ For example:

P(E = t|A = t ∧ B = f )

= (#examples: E = t ∧ A = t ∧ B = f ) + n

(#examples: A = t ∧ B = f ) + m

where n and m reflect our prior knowledge.

➤ There is a problem when there are many parents to a node

as then there is little data for each probability estimate.
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Probabilities From Experts

➤ Bayes rule lets us combine expert knowledge with data

P(model|data) = P(data|model) × P(model)

P(data).

➤ The experts prior knowledge of the model (i.e.,

P(model)) can be expressed as a pair 〈n, m〉 that can be

interpreted as though they had observed n A’s out of m

trials.

➤ This estimate can be combined with data.

➤ Estimates from multiple experts can be combined

together.
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Unobserved Variables

B

H

A

C

➤ What if we had only observed

values for A, B, C?

A B C

t f t

f t t

t t f

· · ·
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EM Algorithm

Augmented Data Probabilities

A B C H

t f t t

f t t f

t t f t

· · ·

E-step

M-step

P(A)

P(H|A)

P(B|H)

P(C|H)

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 11, Lecture 5, Page 16

EM Algorithm

➤ Repeat the following two steps:

➣ E-step give the expected number of data points for

the unobserved variables based on the given

probabilty distribution.

➣ M-step infer the (maximun likelihood) probabilities

from the data. This is the same as the full observable

case.

➤ Start either with made-up data or made-up probabilities.

➤ EM will converge to a local maxima.
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Example Data

B

H

A

C

A B C Count

t t t 143

t t f 329

t f t 57

t f f 271

f t t 87

f t f 66

f f t 23

f f f 24
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Naive Bayesian Classifier

class

att-2 att-3 att-katt1 ...
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Unsupervised Learning

➤ Given a collection of data, find natural classifications.

➤ This can be seen as the naive Bayesian classifier with the

classification unobserved.

➤ EM can be used to learn classification.
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Bayesian learning of decision trees

P(model|data) = P(data|model) × P(model)

P(data).

➤ A model here is a decision tree

➤ We allow for decision trees with probabilities at the

leaves

➤ A bigger decision tree can always fit the data better

➤ P(model) lets us encode a preference for smaller

decision trees.
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Data for decision tree learning

att1 att2 class count

t t c1 5

t t c2 7

t f c1 10

t f c2 13

f t c1 5

f t c2 13

f f c1 10

f f c2 2
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