Using Uncertain Knowledge

> Agents don't have complete knowledge about the world.

- Agents need to make decisions based on their uncertainty.
- It isn't enough to assume what the world is like. Example: wearing a seat belt.
$>$ An agent needs to reason about its uncertainty.
- When an agent makes an action under uncertainty it is gambling \Longrightarrow probability.

Probability

$>$ Probability is an agent's measure of belief in some proposition - subjective probability.

Example: Your probability of a bird flying is your measure of belief in the flying ability of an individual based only on the knowledge that the individual is a bird.
$>$ Other agents may have different probabilities, as they may have had different experiences with birds or different knowledge about this particular bird.
$>$ An agent's belief in a bird's flying ability is affected by what the agent knows about that bird.

Numerical Measures of Belief

$>$ Belief in proposition, f, can be measured in terms of a number between 0 and 1 - this is the probability of f.
$>$ The probability f is 0 means that f is believed to be definitely false.
$>$ The probability f is 1 means that f is believed to be definitely true.
$>$ Using 0 and 1 is purely a convention.
$>f$ has a probability between 0 and 1 , doesn't mean f is true to some degree, but means you are ignorant of its truth value. Probability is a measure of your ignorance.

Random Variables

$>$ A random variable is a term in a language that can take one of a number of different values.
$>$ The domain of a variable X, written $\operatorname{dom}(X)$, is the set of values X can take.
$>$ A tuple of random variables $\left\langle X_{1}, \ldots, X_{n}\right\rangle$ is a complex random variable with domain $\operatorname{dom}\left(X_{1}\right) \times \cdots \times \operatorname{dom}\left(X_{n}\right)$. Often the tuple is written as X_{1}, \ldots, X_{n}.
$>$ Assignment $X=x$ means variable X has value x.
$>$ A proposition is a Boolean formula made from assignments of values to variables.

Possible World Semantics

A A possible world specifies an assignment of one value to each random variable.
$>w \models X=x$ means variable X is assigned value x in world w.
$>$ Logical connectives have their standard meaning:

$$
\begin{aligned}
& w \models \alpha \wedge \beta \text { if } w \models \alpha \text { and } w \models \beta \\
& w \models \alpha \vee \beta \text { if } w \models \alpha \text { or } w \models \beta \\
& w \models \neg \alpha \text { if } w \not \models \alpha
\end{aligned}
$$

$>$ Let Ω be the set of all possible worlds.

Semantics of Probability: finite case

For a finite number of possible worlds:
$>$ Define a nonnegative measure $\mu(w)$ to each world w so that the measures of the possible worlds sum to 1 .

The measure specifies how much you think the world w is like the real world.

The probability of proposition f is defined by:

$$
P(f)=\sum_{w \models f} \mu(\omega) .
$$

Axioms of Probability: finite case

Four axioms define what follows from a set of probabilities:
Axiom $1 P(f)=P(g)$ if $f \leftrightarrow g$ is a tautology. That is, logically equivalent formulae have the same probability.

Axiom $20 \leq P(f)$ for any formula f.
Axiom $3 P(\tau)=1$ if τ is a tautology.
Axiom $4 P(f \vee g)=P(f)+P(g)$ if $\neg(f \wedge g)$ is a tautology.
These axioms are sound and complete with respect to the semantics.

Semantics of Probability: general case

In the general case we have a measure on sets of possible worlds, satisfying:
$>\mu(S) \geq 0$ for $S \subseteq \Omega$
$>\mu(\Omega)=1$
$>\mu\left(S_{1} \cup S_{2}\right)=\mu\left(S_{1}\right)+\mu\left(S_{2}\right)$ if $S_{1} \cap S_{2}=\{ \}$.
Or sometimes σ-additivity:

$$
\mu\left(\bigcup_{i} S_{i}\right)=\sum_{i} \mu\left(S_{i}\right) \text { if } S_{i} \cap S_{j}=\{ \}
$$

Then $P(\alpha)=\mu(\{w \mid w \models \alpha\})$.

Probability Distributions

- A probability distribution on a random variable X is a function $\operatorname{dom}(X) \rightarrow[0,1]$ such that

$$
x \mapsto P(X=x) .
$$

This is written as $P(X)$.
This also includes the case where we have tuples of variables. E.g., $P(X, Y, Z)$ means $P(\langle X, Y, Z\rangle)$.
$>$ When $\operatorname{dom}(X)$ is infinite sometimes we need a probability density function...

Conditioning

Probabilistic conditioning specifies how to revise beliefs based on new information.
> You build a probabilistic model taking all background information into account. This gives the prior probability.

All other information must be conditioned on.
If evidence e is the all of the information obtained subsequently, the conditional probability $P(h \mid e)$ of h given e is the posterior probability of h.

Semantics of Conditional Probability

Evidence e rules out possible worlds incompatible with e.
Evidence e induces a new measure, μ_{e}, over possible worlds

$$
\mu_{e}(\omega)= \begin{cases}\frac{1}{P(e)} \times \mu(\omega) & \text { if } \omega \models e \\ 0 & \text { if } \omega \not \models e\end{cases}
$$

The conditional probability of formula h given evidence e is

$$
\begin{aligned}
P(h \mid e) & =\sum_{\omega \models h} \mu_{e}(w) \\
& =\frac{P(h \wedge e)}{P(e)}
\end{aligned}
$$

Properties of Conditional Probabilities

Chain rule:

$$
\begin{aligned}
P\left(f_{1} \wedge\right. & \left.f_{2} \wedge \ldots \wedge f_{n}\right) \\
= & P\left(f_{1}\right) \times P\left(f_{2} \mid f_{1}\right) \times P\left(f_{3} \mid f_{1} \wedge f_{2}\right) \\
& \times \cdots \times P\left(f_{n} \mid f_{1} \wedge \cdots \wedge f_{n-1}\right) \\
= & \prod_{i=1}^{n} P\left(f_{i} \mid f_{1} \wedge \cdots \wedge f_{i-1}\right)
\end{aligned}
$$

Bayes' theorem

The chain rule and commutativity of conjunction ($h \wedge e$ is equivalent to $e \wedge h$) gives us:

$$
\begin{aligned}
P(h \wedge e) & =P(h \mid e) \times P(e) \\
& =P(e \mid h) \times P(h)
\end{aligned}
$$

If $P(e) \neq 0$, you can divide the right hand sides by $P(e)$:

$$
P(h \mid e)=\frac{P(e \mid h) \times P(h)}{P(e)}
$$

This is Bayes' theorem.

Why is Bayes' theorem interesting?

Often you have causal knowledge:
$P($ symptom \mid disease $)$
P (light is off \mid status of switches and switch positions) P (alarm | fire)
P (image looks like \boldsymbol{F} a tree is in front of a car)
$>$ and want to do evidential reasoning:
$P($ disease \mid symptom $)$
P (status of switches \mid light is off and switch positions)
$P($ fire \mid alarm $)$.
$P($ a tree is in front of a car | image looks like $\boldsymbol{*})$

