
Computational Intelligence Chapter 6, Lecture 4, Page 1

Explanation

➤ The system must be able to justify that its answer is

correct, particularly when it is giving advice to a human.

➤ The same features can be used for explanation and for

debugging the knowledge base.

➤ There are three main mechanisms:

➣ Ask HOW a goal was derived.

➣ Ask WHYNOT a goal wasn’t derived.

➣ Ask WHY a subgoal is being proved.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 4, Page 2

How did the system prove a goal?

➤ If g is derived, there must be a rule instance

g ⇐ a1 & . . . & ak.

where eachai is derived.

➤ If the user asksHOW g was derived, the system can

display this rule. The user can then ask

HOW i.

to give the rule that was used to proveai .

➤ TheHOW command moves down the proof tree.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 4, Page 3

Meta-interpreter that builds a proof tree

hprove(G, T) is true ifG can be proved from the base-level%%%%%%%%%%

KB, with proof treeT.%%%%

hprove(true, true).

hprove((A & B), (L & R)) ←
hprove(A, L) ∧
hprove(B, R).

hprove(H, if (H, T)) ←
(H ⇐ B) ∧
hprove(B, T).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 4, Page 4

Why Did the System Ask a Question?

It is useful to find out why a question was asked.

➤ Knowing why a question was asked will increase the

user’s confidence that the system is working sensibly.

➤ It helps the knowledge engineer optimize questions

asked of the user.

➤ An irrelevant question can be a symptom of a deeper

problem.

➤ The user may learn something from the system by

knowing why the system is doing something.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 4, Page 5

WHY question

➤ When the system asks the user a questiong, the user can

reply with

WHY

➤ This gives the instance of the rule

h ⇐ · · · & g & · · ·
that is being tried to proveh.

➤ When the user asksWHY again, it explains whyh was

proved.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 4, Page 6

Meta-interpreter to collect rules forWHY

wprove(G, A) is true ifG follows from base-level KB, and%%%%%%%%%%

A is a list of ancestor rules forG.%%%%%%%%

wprove(true, Anc).

wprove((A & B), Anc) ←
wprove(A, Anc) ∧
wprove(B, Anc).

wprove(H, Anc) ←
(H ⇐ B) ∧
wprove(B, [(H ⇐ B)|Anc]).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 4, Page 7

Debugging Knowledge Bases

There are four types of nonsyntactic errors that can arise in

rule-based systems:

➤ An incorrect answer is produced; that is, some atom that

is false in the intended interpretation was derived.

➤ Some answer wasn’t produced; that is, the proof failed

when it should have succeeded, or some particular true

atom wasn’t derived.

➤ The program gets into an infinite loop.

➤ The system asks irrelevant questions.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 4, Page 8

Debugging Incorrect Answers

➤ An incorrect answeris a derived answer which is false

in the intended interpretation.

➤ An incorrect answer means a clause in the KB is false in

the intended interpretation.

➤ If g is false in the intended interpretation, there is a proof

for g usingg ⇐ a1 & . . . & ak. Either:

➣ Someai is false: debug it.

➣ All ai are true. This rule is buggy.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 4, Page 9

Debugging Missing Answers

➤ WHYNOT g. g fails when it should have succeeded.

Either:

➣ There is an atom in a rule that succeeded with the

wrong answer, useHOW to debug it.

➣ There is an atom in a body that failed when it should

have succeeded, debug it usingWHYNOT.

➣ There is a rule missing forg.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 4, Page 10

Debugging Infinite Loops

➤ There is no automatic way to debug all such errors:

halting problem.

➤ There are many errors that can be detected:

➣ If a subgoal is identical to an ancestor in the proof

tree, the program is looping.

➣ Define a well-founded ordering that is reduced each

time through a loop.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

