Summary of Search Strategies

Strategy Frontier Selection | Halts? | Space
Depth-first Last nodeadded | No Linear
Breadth-first First node added | Yes Exp
Heuristic depth-first | Local min h(n) No Linear
Best-first Global minh(n) | No EXp
L owest-cost-first Minimal g(n) Yes EXp
A* Minimal f(n) Yes EXp

http://www.cs.ubc.ca/spider/poole/ci.html

Cycle Checking

T

L] You can prune a path that ends in anode already on the
path. This pruning cannot remove an optimal solution.

L] Using depth-first methods, with the graph explicitly
stored, this can be done in constant time.

] For other methods, the cost is linear in path length.

jDD

http://www.cs.ubc.ca/spider/poole/ci.html

Multiple-Path Pruning

L] You can prune a path to node n that you have already
found a path to.

[Multiple-path pruning subsumes a cycle check.

L] Thisentails storing all nodes you have found paths to.

jl:lD

http://www.cs.ubc.ca/spider/poole/ci.html

Multiple-Path Pruning & Optimal Solutio

Problem: what if a subsequent path to n is shorter that the
first path to n?

L] You can remove all paths from the frontier that use the
longer path.

L] You can change theinitial segment of the paths on the
frontier to use the shorter path.

1 You can ensure this doesn’t happen. You make sure that
the shortest path to anode is found first.

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Multiple-Path Pruning & A*

Suppose path p to n was selected, but there is a shorter path to
N. Suppose this shorter path isvia path p’ on the frontier.

Suppose path p’ ends at noden'.

cost(p) + h(n) < cost(p’) + h(n’) because p was selected
beforep'.

cost(p’) + d(n’, n) < cost(p) because the pathtonviap' is
shorter.

d(n’, n) < cost(p) — cost(p’) < h(n) — h(n).

You can ensure this doesn’t occur if |h(n) — h(n)| < d(n’, n).

http://www.cs.ubc.ca/spider/poole/ci.html

Monotone Restriction

] Heuristic function h satisfiesthe monotone restriction if
lh(n") — h(n)| < d(m, n) for every arc (m, n).

L1 If h satisfies the monotone restriction, A* with multiple
path pruning always finds the shortest path to a goal.

jDD

http://www.cs.ubc.ca/spider/poole/ci.html

Iterative Deepening

So far all search strategies that are guaranteed to halt use
exponential space.

ldea: let’s recompute elements of the frontier rather
than saving them.

Look for paths of depth 0, then 1, then 2, then 3, etc.

| You need a depth-bounded depth-first searcher.

If apath cannot be found at depth B, ook for a path at
depth B + 1. Increase the depth-bound when the search
fails unnaturally (depth-bound was reached).

Ll
[]
H

http://www.cs.ubc.ca/spider/poole/ci.html

Complexity with solution at depth k & branching factor b:

Iterative Deegpening Complexity

level | breadth-first | iterative degpening | # nodes
1 1 K b
2 1 k—1 b?
k—111 2 k-1
k 1 1 bX

S)

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Direction of Search

The definition of searching is symmetric: find path from start
nodes to goal node or from goal node to start nodes.

Forward branching factor: number of arcs out of a node.

Backward branching factor: number of arcs into a node.

Search complexity isb". Should use forward search if
forward branching factor is less than backward branching
factor, and vice versa.

Note: sometimes when graph isdynamically constructed, you
may not be able to construct the backwards graph.

Ll
[]
H

http://www.cs.ubc.ca/spider/poole/ci.html

Bidirectiona Search

You can search backward from the goal and forward from
the start simultaneoudly.

Thiswins as 2b%/2 « bX. Thiscan resultin an
exponential saving in time and space.

The main problem is making sure the frontiers meet.

Thisis often used with one breadth-first method that
builds a set of locations that can lead to the goal. Inthe
other direction another method can be used to find a path
to these interesting locations.

Ll
[]
H

http://www.cs.ubc.ca/spider/poole/ci.html

|sland Driven Search

ldea: find aset of islands between sand g.
S— 1 —l0— ... — Im1—0
There are m smaller problems rather than 1 big problem.

This can win as mb¥/™ « bX.

The problem isto identify the islands that the path must pass
through. It isdifficult to guarantee optimality.

You can solve the subproblems using islands =
hierarchy of abstractions.

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Dynamic Programming

|dea: for statically stored graphs, build atable of dist(n) the
actual distance of the shortest path from node n to agoal.

This can be built backwards from the goal.

dist(n) = if is_goal (n)

MmN myeal(l(N, M)| + dist(m)) otherwise
This can be used locally to determine what to do.

There are two main problems:
e YOu need enough space to store the graph.
e The dist function needs to be recomputed for each goal.

OJ
5

http://www.cs.ubc.ca/spider/poole/ci.html

