
Computational Intelligence Chapter 6, Lecture 2, Page 1

Vanilla Meta-interpreter

prove(G) is true when base-level bodyG is a logical

consequence of the base-level KB.

prove(true).

prove((A & B)) ←
prove(A) ∧
prove(B).

prove(H) ←
(H ⇐ B) ∧
prove(B).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 2, Page 2

Example base-level KB

live(W) ⇐
connected_to(W, W1) &

live(W1).

live(outside) ⇐ true.

connected_to(w6, w5) ⇐ ok(cb2).

connected_to(w5, outside) ⇐ true.

ok(cb2) ⇐ true.

?prove(live(w6)).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 2, Page 3

Expanding the base-level

Adding clauses increases what can be proved.

➤ Disjunction Let a; b be the base-level representation for

the disjunction ofa andb. Bodya; b is true whena is

true, orb is true, or botha andb are true.

➤ Built-in predicatesYou can add built-in predicates such

asN is E that is true if expressionE evaluates to number

N.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 2, Page 4

Expanded meta-interpreter

prove(true).

prove((A & B)) ←
prove(A) ∧ prove(B).

prove((A; B)) ← prove(A).

prove((A; B)) ← prove(B).

prove((N is E)) ←
N is E.

prove(H) ←
(H ⇐ B) ∧ prove(B).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 2, Page 5

Depth-Bounded Search

➤ Adding conditions reduces what can be proved.

bprove(G, D) is true ifG can be proved with a proof tree%%%%%%%%%%%%

of depth less than or equal to numberD.%%%%%%%

bprove(true, D).

bprove((A & B), D) ←
bprove(A, D) ∧ bprove(B, D).

bprove(H, D) ←
D ≥ 0 ∧ D1 is D − 1 ∧
(H ⇐ B) ∧ bprove(B, D1).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 2, Page 6

Delaying Goals

Some goals, rather than being proved, can be collected in a

list.

➤ To delay subgoals with variables, in the hope that

subsequent calls will ground the variables.

➤ To delay assumptions, so that you can collect

assumptions that are needed to prove a goal.

➤ To create new rules that leave out intermediate steps.

➤ To reduce a set of goals to primitive predicates.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 2, Page 7

Delaying Meta-interpreter

dprove(G, D0, D1) is true ifD0 is an ending of list of%%%%%%%%%%%

delayable atomsD1 andKB ∧ (D1 − D0) |= G.%%%

dprove(true, D, D).

dprove((A & B), D1, D3) ←
dprove(A, D1, D2) ∧ dprove(B, D2, D3).

dprove(G, D, [G|D]) ← delay(G).

dprove(H, D1, D2) ←
(H ⇐ B) ∧ dprove(B, D1, D2).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 2, Page 8

Example base-level KB

live(W) ⇐
connected_to(W, W1) &

live(W1).

live(outside) ⇐ true.

connected_to(w6, w5) ⇐ ok(cb2).

connected_to(w5, outside) ⇐ ok(outside_connection).

delay(ok(X)).

?dprove(live(w6), [], D).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

