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Summary of Search Strategies

Strategy Frontier Selection Halts? Space

Depth-first Last node added No Linear

Breadth-first First node added Yes Exp

Heuristic depth-first Local min h(n) No Linear

Best-first Global min h(n) No Exp

Lowest-cost-first Minimal g(n) Yes Exp

A∗ Minimal f (n) Yes Exp
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Cycle Checking

s

➤ You can prune a path that ends in a node already on the
path. This pruning cannot remove an optimal solution.

➤ Using depth-first methods, with the graph explicitly
stored, this can be done in constant time.

➤ For other methods, the cost is linear in path length.
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Multiple-Path Pruning

s

➤ You can prune a path to node n that you have already

found a path to.

➤ Multiple-path pruning subsumes a cycle check.

➤ This entails storing all nodes you have found paths to.
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Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to n is shorter that the

first path to n?

➤ You can remove all paths from the frontier that use the

longer path.

➤ You can change the initial segment of the paths on the

frontier to use the shorter path.

➤ You can ensure this doesn’t happen. You make sure that

the shortest path to a node is found first.
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Multiple-Path Pruning & A∗

Suppose path p to n was selected, but there is a shorter path to

n. Suppose this shorter path is via path p′ on the frontier.

Suppose path p′ ends at node n′.

cost(p) + h(n) ≤ cost(p′) + h(n′) because p was selected

before p′.

cost(p′) + d(n′, n) < cost(p) because the path to n via p′ is

shorter.

d(n′, n) < cost(p) − cost(p′) ≤ h(n′) − h(n).

You can ensure this doesn’t occur if |h(n′) − h(n)| ≤ d(n′, n).
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Monotone Restriction

➤ Heuristic function h satisfies the monotone restriction if

|h(n′) − h(n)| ≤ d(m, n) for every arc 〈m, n〉.
➤ If h satisfies the monotone restriction, A∗ with multiple

path pruning always finds the shortest path to a goal.
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Iterative Deepening

➤ So far all search strategies that are guaranteed to halt use

exponential space.

➤ Idea: let’s recompute elements of the frontier rather

than saving them.

➤ Look for paths of depth 0, then 1, then 2, then 3, etc.

➤ You need a depth-bounded depth-first searcher.

➤ If a path cannot be found at depth B, look for a path at

depth B + 1. Increase the depth-bound when the search

fails unnaturally (depth-bound was reached).
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Iterative Deepening Complexity

Complexity with solution at depth k & branching factor b:

level breadth-first iterative deepening # nodes

1 1 k b

2 1 k − 1 b2

k − 1 1 2 bk−1

k 1 1 bk

≥ bk ≤ bk
(

b
b−1

)2
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Direction of Search

The definition of searching is symmetric: find path from start

nodes to goal node or from goal node to start nodes.

Forward branching factor: number of arcs out of a node.

Backward branching factor: number of arcs into a node.

Search complexity is bn. Should use forward search if

forward branching factor is less than backward branching

factor, and vice versa.

Note: sometimes when graph is dynamically constructed, you

may not be able to construct the backwards graph.
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Bidirectional Search

➤ You can search backward from the goal and forward from

the start simultaneously.

➤ This wins as 2bk/2 � bk . This can result in an

exponential saving in time and space.

➤ The main problem is making sure the frontiers meet.

➤ This is often used with one breadth-first method that

builds a set of locations that can lead to the goal. In the

other direction another method can be used to find a path

to these interesting locations.
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Island Driven Search

Idea: find a set of islands between s and g.

s −→ i1 −→ i2 −→ . . . −→ im−1 −→ g

There are m smaller problems rather than 1 big problem.

This can win as mbk/m � bk .

The problem is to identify the islands that the path must pass

through. It is difficult to guarantee optimality.

You can solve the subproblems using islands �⇒
hierarchy of abstractions.
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Dynamic Programming

Idea: for statically stored graphs, build a table of dist(n) the

actual distance of the shortest path from node n to a goal.

This can be built backwards from the goal:

dist(n) =



0 if is_goal(n),

min〈n,m〉∈A(|〈n, m〉| + dist(m)) otherwise.

This can be used locally to determine what to do.

There are two main problems:

• You need enough space to store the graph.

• The dist function needs to be recomputed for each goal.
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