

Banff Park Lodge
Banff, Alberta
16-20 May/mai 1994

Proceedings of the
Tenth Biennial Conference

of the
Canadian Society for Computational

Studies of Intelligence

Actes de la
xe Conference biennale

de la
Societe canadienne pour I' etude de

l'intelligence par ordinateur

edited by/sous la direction de Renee Elio

Sponsored by/ Parrainee par
Canadian Society for Computational Studies of Intelligence

Supported by/Avec l'appui financier de
Natural Sciences and Engineering Research Council of Canada
Alberta Research Council
University of Alberta

In Cooperation with /et la collaboration de
University of Alberta

1

I

I
I

ISBN 0-9694596-3-7

Copyright © 1994

Canadian Society for Computational Studies of Intellignece
Societe canadienne pour l'etude de l'intelligence par ordinateur

Edited by/Sous la direction de Renee Elio

Printed by/ Imprimerie Quality Color Press, Inc. Edmonton, Alberta

Within Canada, copies of these proceedings may be obtained as follows. Send orders, together with payment of: $40
CDN each (CSCSI members), $45 CSN each (CSCSI non-members) (Add $5 CDN for postage) to:

Au Canada, priere d'adresser les commandes accompagnees du reglement en dollars canadiens (prix unitaire : 40 $
pour les membres de la SCEIO et 45 $ pour les non-membres + 5 $ de frais d'envoi) a:

Outside of Canada, please contact /
A l'exterieur du Canada, communiquer avec :

11

CIPS
243 College Street (5th Floor)
Toronto, Ontario M5T 2Yl

Morgan Kaufman Publishers, Inc.
Order Fulfillment Center
P.O. Box 50490
Palo Alto, California 94303
USA

CSCSI 1994 Program Committee
Comite de programme - SCEIO 1994

Program Chair / Presidente du Comite de programme
Renee Elio
Department of Computing Science
University of Alberta

Program Committee / Comite de programme
Fahiem Bacchus Bruce MacDonald
University of Waterloo

Veronica Dahl
Simon Fraser University

Brian Gaines
University of Calgary

Russell Greiner
Siemens Research Lab

Lev Goldfarb
University of New Brunswick

Scott Goodwin
University of Regina

Rainer von Konigslow
Cognex Corporation

Referees / Lecteurs
Fahiem Bacchus
Jacky Baltes
Charles G. Brown
Nick Cercone
Christine Chan
Joe Culberson
J. Delgrande
Chrysanne DiMarco
Marc Dymetman
Brian Gaines
Lev Goldfarb
Scott Goodwin
Jim Greer
Russell Greiner
Adam J. Grove
Narendra K. Gupta
Howard J. Hamilton
Tom Hancock
Steven J. Hanson
Xueming Huang

specialises
Chung Hee Hwang
Julia Johnson
Gregers Koch
Gina M. Koehn
B. Kramer
Petr Kubon
DekangLin

University of Calgary

Gordon McCalla
University of Saskatchewan

Robert Mercer
University of Western Ontario

John Mylopoulos
University of Toronto

Monty Newborn
McGill University

Eric Neufeld
University of Saskatchewan

David Poole
University of British Columbia

Martha Palmer
T. Pattabhiraman
F.J. Pelletier
Tony Plate
David Poole
Jonathan Schaeffer
Richard Scherl

Jose Gabriel P. Lopes
P. Loses

D. L. Silver
DavidSkuce
Bruce Spencer
Paul Tarau

P. McFedtridge
Bruce MacDonald
Stan Matwin
T. A. Marsland
Robert E. Mercer
G. Mineau
Farzin Mokhtarian
Bob Morris
John Mylopoulos
Eric Neufeld
Monty Newborn

iii

J. P. Tremblay
Andre Trudel
Peter van Beek
Rainer von Konigslow
Larry Watanabe
Ray Watrous
S.K. Michael Wong
Qiang Yang
Hong Zhang

·I

. .J

Message from the Program Chair

This volume contains the proceedings of
the AI-94, the Tenth Biennial Conference of
the Canadian Society for the Computational
Studies of Intelligence (CSCSI/SCEIO).
Since 1976, this conference has been a forum
for the best recent work by both Canadian
and international researchers in theoretical
and applied artificial intelligence. .

This year, 86 papers were subrmtted. The
program committee found the quality of the
submitted papers to be very high. Although
the initial program schedule allowed for only
30 acceptances, there many more
submissions that the reviewers considered to
be excellent work. Therefore, the
presentation times were adjuste~ as much as
possible within the constramts of the
conference schedule, allowing us to accept a
total of 37 papers. Even so, several other
outstanding submissions could not be
included.

The AI-94 conference program is due to
the efforts of many individuals. Wayne Davis
and Tony Marsland served as general co
chairs for the combined AI/GINI conference.
I am very grateful to the program ~o~ttee
and the additional referees for their d1hgent
and knowledgeable reviewing. I am also
indebted to Janice Glasgow and Peter Patel
Schneider for their insights and advice
throughout the conference planning process.
On behalf of the entire program committee, I
thank our distinguished invited speakers for
contributing to this conference, the w~rksh~p
organizers for their efforts and enthusiasm m
creating additional forums for scholarly
discussions, and of course, the authors for
their excellent research. Finally, I thank
Janet Service, who served as my
administrative assistant. Her organizational
skills, efficiency, and dedication were
invaluable assets to this process.

Renee Elio
Program Chair AI-94

iv

Message de la presidente de
programme

Voici les Actes de AI-94, la Xe
Conference biennale de la Societe canadienne
pour l'etude de !'intelligence par ordinateur
(SCEIO/CSCSI). Depuis 1976, cette
conference sert a diffuser les meilleurs
travaux recents des specialistes canadiens et
etr:m gP.r1:: nP. l'lntP.lli gP.flCe artificielle theorique
et appliquee.

Cette annee, 86 articles ont ete soumis.
Le comite de programme a juge qu'ils etaient
de tres haute qualite. Bien qu'initialement les
organisateurs n'aient prevu de retenir qu'une
trentaine de communications, les lecteurs ont
ete tres favorablement impressionnes par un
nombre bien superieur de travaux. Nous
regrettons de n'avoir pu faire place a tous,
mais nous sommes toutefois parvenus a
inscrire 37 articles au programme.

De nombreuses personnes ont travaille a la
realisation du programme de la conference.
Wayne Davis et Tony Marsland ont siege a
titre de presidents generaux pour la
conference conjointe Al/GI/VI. Je suis tres
reconnaissante au Comite de programme et
aux autres specialistes consultes du travail
diligent qu'ils ont accompli et .de leur
expertise. Je tiens egalement a expnmer ma
gratitude a Janice Glas~ow/et a Pe~er .P~tel
Schneider qui ont prod1gue leurs Judic1eux
commentaires et conseils tout au long de la
planification. Au nom du comite, je remercie
les conferenciers eminents qui ont participe a
cette conference, les organisateurs d'atelier
qui, a force d'efforts et d'enthousi~sme, ?nt
reussi a offrir des seances de d1scuss1on
supplementaires et, bien sfir, les auteurs qui
ont fourni une excellente recherche.
Finalement, merci a Janet Service, notre
assistante administrative. Ses qualites
d'organisatrice, son efficacite et son
devouement ont ere inestimables.

Renee Elio
Presidente du programme Al-94

CSCSI 1994 Organizing Committee
Comite organisateur de la SCEIO 1994

General Co-Chairs / Presidents generaux

Wayne Davis
University of Alberta

AI/GI/VI '94

Tony Marsland
University of Alberta

AI-94 Program Chair / Presidente du Comite de programme

Renee Elio
University of Alberta

Local Arrangements Chair / Organisation locale

Jan Mulder
Alberta Research Council

Treasurer / Tresorier

Peter van Beek
University of Alberta

Invited Speakers / Conferenciers invites

Bonnie Webber, University of Pennsylvania
Animated Human Agents as a Testbed/or Language Understanding and Planning

Hector Levesque, University of Toronto
Knowledge, Action and Ability in the Situation Calculus

Stephen Judd, Siemens Corporate Research
Constraint Satisfaction and Neural Net Learning

V

. , · 1

. I

. . . I

CSCSI Executive Committee 1992-1994

Comite executif de la SCEIO 1992-1994

President/Presidente

Janice Glasl!OW
Queen's Unh;;sity

Past President/President sortant

Ian Witten
University of Waikato

Vice-President/Vice-president

Peter Patel-Schneider
AT&T Bell Laboratories

Secretary/Secretaire

Stan Matwin
University of Ottawa

Treasurer/Tresorier

Eric Neufeld
University of Saskatchewan

Editor/Editeur

Roy Masrani
Alberta Research Council

Vl

Best Paper A ward

The CSCSI best paper award is
sponsored by the Editorial Board of Artificial
Intelligence. It is given for the paper or
papers that report important research results
in a clear, well-written manner. The
sponsorship by the board provides both an
honorarium and a rapid review process in the
journal for an extended version of the
conference paper(s).

Potential award-winning papers were
identified by reviewers as part of the
reviewing process. These papers were then
sent to all members of the program
committee, who read the set of nominated
papers and indicated which paper they felt
was most deserving of this award.

The CSCSI Program committee is
pleased to award the 1994 Best Paper Award
to Craig Knoblock and Qiang Yang, for
"Evaluating the tradeoffs in partial-order
planning algorithms."

vii

Prix de la meilleure
communication

Decerne par la SCEIO, le Prix de la
meilleure communication est parraine par le
Conseil de redaction de Artificial Intelligence.
11 couronne l'article ou les articles qui font
etat de travaux de recherche importants, dans
un style limpide et elegant. L'appreciation du
Conseil se traduit par des honoraires et une
rapide evaluation visant la publication
eventuelle d'une version plus elaboree de la
communication originale.

Les articles retenus font l'objet d'une
premiere evaluation et soot ensu~te
communiques a tous les membres du Conute
de programme qui designent alors celui qui
leur parait le plus meritoire. -

Le Comite de programme de la SCEIO est
heureux de decemer le Prix de la meilleure
communication 1994 a Craig Knoblock et
Qiang Yang, pour "Evaluating the tradeoffs
in partial-order planning algorithms."

I

·-1

I

• I

CSCSI Distinguished Service Award

The executive of the Canadian Society for
Computational Studies of Intelligence
(CSCSI/SCEIO) is pleased to announce that Alan
Mackworth of the University of British Columbia is
the recipient of the 1994 CSCSI Distinguished
Service Award. This award is presented biennially to
an individual who has made outstanding contributions
to the Canadian AI community in one or more of the
following areas: community service, research,
training of students, and research/industry interaction.

Alan has a long list of distinguished contributions
to AI in Canada and internationally. He has done
fundamental research in constraint satisfaction, vision
and integrated robotic systems. He was and is a leader
in the development of the University of British
Columbia AI group, one of the strongest AI groups
worldwide. He currently serves as Director of the
UBC Laboratory for Computational Intelligence. At
the national level, he was one of the founders and
intellectual leaders for the Institute for Robotics and
Intelligent Systems (IRIS), funded by the government
of Canada through its Networks of Centres of
Excellence programme.

In 1976, Alan was the program chair of the first
CSCSI/SCEIO national conference at UBC. This
event started a tradition of strongly technical AI
conferences in Canada. He subsequently served as
CSCSI/SCEIO president for 1976-78. Alan was
also a driving force in bringing the 1981 International
Joint Conference on AI (IJCAI) to Vancouver. This
event placed Canadian AI on the international map,
where it has played a prominent role ever since. He
was the general chair for the 1985 UCAI held in Los
Angeles. Between 1983 and 1991, he was a member
of the Board of Trustees of UCAI, chairing it from
1983 to 1985.

Alan has received many other awards and honors,
including the 1991 IT AC/NSERC award for
Academic Excellence, given each year to two
Canadian academics for outstanding contributions to
Canadian Information Technology. He holds a
fellowship with the Canadian Institute for Advance
Research (CIAR) and is also a fellow of AAAI.

Beyond these many distinctions, Alan has always
been a leader among his peers and a role model for
younger researchers and graduate students, always
serious and methodical in his work, always open and
forthcoming in his discussions, always worth
listening to in his presentations.

Alan is the second recipient of the Distinguished
Service Award. The inaugural award was presented to
John Mylopoulos in 1992.

viii

Prix du merite de la SCEIO

Le conseil executif de la Societe canadienne pour
l'etude de !'intelligence par ordinateur
(SCEIO/CSCSI) est heureux d'annoncer que Alan
Mackworth, de la University of British Columbia, est
le laureat du Prix du merite 1994. Ce prix est
decerne tous les deux ans a la personne qui s'est
distinguee par le caractere exceptionnel de ses
contributions a la communaute canadienne de l'IA
dans un ou plusieurs des secteurs suivants : service
communautaire, recherche. formation des eleves, et
interaction recherche/industrie.

Les contributions d'Alan a l'IA sont nombreuses,
tant au Canada qu'a l'etranger. Ses travaux de
recherche fondarnentale portent sur la satisfaction de
contraintes, la vision robotique et les systemes
robotiques integres. II a joue un role crucial dans la
creation du groupe d'IA dans son universite, une des
equipes les plus solides du monde. 11 est
presentement directeur du laboratoire d'intelligence
informatique de UBC. A l'echelle nationale, il est un
des fondateurs et des maitres de l'Institut de robotique
et de systemes intelligents (IRIS) que le
gouvemement du Canada a cree par l'intennediaire du
Programme des reseaux de centres d'excellence.

En 1976, Alan etait le president du programme de
la premiere conference nationale de la SCEIO qui a eu
lieu a UBC. Cet evenement marque le coup d'envoi
d'une serie de conferences prestigieuses d'IA au
Canada. En 1976-78, ii a ete president de la Societe
canadienne pour l'etude de !'intelligence par ordinateur
(SCEIO/CSCSI). C'est en grande partie grace a son
initiative que l'Intemational Joint Conference on AI
(UCAI) s'est tenue a Vancouver en 1981. Cette
manifestation a contribue a placer le Canada sur la
scene intemationale, ou notre pays continue a jouer
un role determinant. M. Mackworth a ete president
general de la UCAI qui a eu lieu a Los Angeles en
1985. De 1983 a 1991, il a ete membre du Conseil
d'administration des UCAI, et son president de 1983 a
1985.

Alan a reyu de nombreuses recompenses
prestigieuses, y compris le Prix d'excellence decerne
par le CCTI/CRSNG, qui couronne chaque annee
deux chercheurs canadiens exceptionnels. 11 est
membre de l'Institut canadien des recherches avancees
(ICRC) et de l'AAAI.

Au-dela de tous ces honneurs, Alan a toujours ete
un meneur parmi ses pairs et un modele pour les
jeunes chercheurs et eleves diplomes. Serieux et
methodique dans son travail, ii reste ouvert a la
discussion et merite toujours d'etre entendu.

Alan est le second laureat du Prix du merite de la
SCEIO. Le premier prix a ete attribue a John
Mylopoulos en 1992.

Table of Contents I Table des Matieres

Language

Detecting Digressions Using a Model for Interactive Generation. 1
S.M. Haller.

From Text to Hom Clauses: Combining Linguistic Analysis and Machine Leaming. 9
S. Delisle, K. Barker, J-F. De/annoy, S. Matwin, and S. Szpakowicz.

A Reasoned Interlingua for Knowledge-Based Machine Translation 17
J.R.R. Leavitt, D.W. Lonsdale, and A.M. Franz.

A Goal-Directed Multi-level Stylistic Analyzer. ... 23
P. Hoyt, and C. DiMarco.

On Multiple-Valued Deductive Databases. 31
E. Hagen and V. Dahl .

Learning I

Learning Repetition in String Transformations. 39
N.O. Schuler and B.A. MacDonald.

A Concept-Based Knowledge Discovery Approach in Databases 47
X. Hu, N. Cercone and J. Han.

Incorporating Canonical Discriminant Attributes in Classification Leaming. 63
S.P. Yip and G.I. Webb.

Disjunctive Structure in Relational Data: Empirical Evaluation. 71
R. Dechter and E. Schwalb.

Learning II

Are Vector Space Models Capable of Inductive Leaming in a Symbolic Environment? 79
L. Goldfarb, J. Abela, V.C. Bhavsar, and V.N. Kamat.

The Problem of Small Disjuncts: Its Remedy in Decision Trees 91
K.M. Ting.

Learning Def a ult Concepts. 99
D. Schuurmans andR. Greiner.

Unsupervised Learning of Planning Knowledge. .. 107
B. Pelletier and S. Matwin.

IX

· 1

• I

I

I

.• I
' j

Connectionist Learning

Identifying the Trigger Features for Hidden Units in a PDP Model of the Early Visual
Pathway. 115

M.R.W. Dawson, S.C. Kremer and TN. Gannon.

ARTST AR: A Supervised Adaptive Resonance Classifier. ... 121
T.S. Hussain and R.A. Browse.

Using Redundancy to Improve the Performance of Artificial Neural Networks. 131
D.A. Medler and MR.W. Dawson.

Problem Solving

A Diagnosis Method for Multiple Failures in a Nonlinear and Dynamic Process. 139
T. Washio, M. Sakuma and M. Kitamura.

Automated Model Generation and Simulation. 147
K. Han and A. Gelsey.

How to Automatically Generate an Inference Engine from Declarative Specifications. 155
B. Ginoux.

Case-based Reasoning for the Verification and Validation of Complex Devices' Models 163
M.P. Feret and J.I. Glasgow.

Reasoning and Knowledge Representation I

A Simple Approach to Bayesian Network Computations .
N.L. Zhang and D. Poole.

A Polynomial-Time hypothetical Reasoning Emplying an Approximate Solution Method of
0-1 Integer Programming for Computing Near-Optimal Solution.

M. Ishizuka and T. Okamoto .

A Logical Language for Natural Language Processing.
S.S. Ali.

171

179

187

GOO: A Database for Temporal Uncertainty Management. 197
K. Kanazawa.

The Specification and Implementation of a First Order Logic for Uncertain Temporal
Domains. 205

E. Ho and A. Trudel.

X

Reasoning & Knowledge Representation II

Circumscription in a Paraconsistent Logic.
Z. Lin.

213

Two Cumulativity Results on J- and PJ- Default Logics. . .. 219
J-H. You and L. Li.

A Clausal Form Translation for Propositional Modal Logic. 227
C. Mathieu.

A Non-Hom ATMS Which Allows Flexible Specification of Required Completeness. 233
B. Spencer and R. Cohen.

An Event-Based Abductive Model of Update. 241
C. Boutilier.

Planning & Search I

Can Situated Robots Play Soccer? .. . 249
M.K. Sahota and A.K. Mackworth.

Will the Robot do the Right Thing? 255
Y. Zhang and A.K. Mackworth.

Searching With Abstractions: A Unifying Framework and New High-Performance
Algorithm. . .. 263

R.C. Holte, C. Drummond, MB. Perez, R.M. Zimmer and AJ. MacDonald.

An Argument for Indexical Representations in Temporal Reasoning. 271
Y. Lesperance and H.J. Levesque.

Planning & Search II

Evaluating the Tradeoffs in Partial-Order Planning Algorithms. 279
CA. Knoblock and Q. Yang.

Indicative and Action Planning for an Intelligent Agent. 287
G.E. Kersten, P. Lu and S. Szpakowicz.

AIDA*-Asynchronous Parallel IDA*. 295
A. Reinefeld and V. Schnecke.

xi

Detecting Digressions Using a Model for Interactive Generation

Susan M . Haller
Department of Computer Science

State University of New York at Buffalo
Buffalo, New York 14260

haller@cs .buffalo.edu

Abstract

The Interactive Discourse Planner (IDP) plans
text to describe and/or justify a domain plan.
IDP uses the user 's questions to decide how to
extend its discourse plan in a way that both
satisfies the user and achieves its own discourse
goal. As part of this process, IDP can detect
three types of user-initiated digressions . As a
testbed for my model, IDP plans text to discuss
driving routes .

1 Introduction

Systems that plan text and accept feedback are called
interactive gen erators. Situations that call for interac
tive generation arise when the system is acting as an
expert advisor or a tutor which must be able to explain
and justify what it says. Instead of analyzing the user 's
questions to infer his plans and goals, these systems plan
discourse using the user's questions as feedback to try to
achieve their own discourse goals. One capability that
an interactive generator must possess is the ability to
recognize when the user 's feedback initiates a digression
from the discussion purpose.

The Interactive Discourse Planner (IDP) plans text
to describe and/or justify a domain plan . IDP uses the
user's questions to decide how to extend its discourse
plan in a way that both satisfies the user's informa
tional needs and achieves the system's discourse goal.
As part of this process, IDP can detect three types of
user-initiated digressions . As a testbed for my model ,
IDP plans text to discuss driving routes .

In the next section, I describe the interactive mode
that IDP operates in, and the assumptions that were
made to develop the IDP model. Next, I describe the
processing model. I follow this with a discussion of the
two kinds of text plan operators that IDP uses . Next,
there is a brief description of the analyzer algorithm.
Finally, I discuss how the IDP model is used to detect
user-imposed digressions .

2 The Interactive Mode

In highly interactive settings, people often are called on
to analyze and respond to vaguely articulated questions
like Why? and What ?, and ill-formed queries like Why

I

take Maple? and Why not Sheridan Drive?. In a dis
cussion that the system controls, we assume that these
kinds of questions are used by the user to tell the system
what part of the discourse plan has failed , and how it can
be replanned to succeed. For plan discussions like giv
ing route advice, IDP does not have a preset agenda. It
plans text to describe or justify a selected driving route
only in reaction to user feedback, and only until the user
indicates that he is satisfied .

IDP works in an interactive mode in which the system
is the primary speaker, the user is the primary listener,
and the system is the uncontested expert. The formu
lation of text plans and processing procedures for this
mode relies on two simplifying assumptions that expla
nation systems typically make. I refer to these as the
explanation assumptions:

l. The explanation facility's knowledge is correct.

2. The user automatically believes what the explana-
tion facility informs him of.

The first assumption excuses IDP from correcting its in
formation based on interactions with users. Therefore,
IDP is not concerned with reasoning about its own be
liefs in a context where a user presents contradictory
ones. The second assumption rules out argumentation
and reasoning about the user's beliefs.

IDP tries to achieve one of two discourse goals (DGs)
that have to do with the user's attitude or ability with
respect to a domain plan. They are

l. To have the user be able to execute a domain plan

2. To have the user adopt a recommended domain plan

The first DG requires describing a domain plan to the
user, and the second DG requires justifying a recom
mended domain plan. WHen the user indicates that he
is satisfied, he signals IDP that its DG has been achieved .
In the IDP model, the system's intentions are synony
mous with the system's unachieved DGs.

Another simplifying assumption is the discourse
knowledg e assumption. Several researchers have ar
gued that communication does not occur unless the
listener recognizes the speaker's underlying intention
[Grice, 1969; Searle , 1969; Cohen and Perrault, 1979;
Allen and Perrault, 1980]. We assume that when IDP
speaks, 1 the user knows the system's intention and the

1 IDP does not have a speech synthesis component. It

discourse plan that IDP has used to try to achieve it . We
assume that the user's feedback addresses the system's
intent by indicating how the system should extend the
discourse plan to achieve its DG.

3 Processing

3.1 Knowledge Requirements

IDP interprets the user 's feedback using three types of
knowledge:

1. the discourse plan that the system has used so far

2. possible expansions of the discourse plan

3. the user's domain knowledge

Following Carberry, when the system uses a discourse
plan, the user has expectations for what will follow [Car
berry, 1989]. Motivated by Grice's Maxim of Relation
[Grice, 1975], IDP analyzes feedback using its executed
discourse plan as the discourse context. IDP analyzes
user feedback to determine how to expand the discourse
plan further using the possibilities for expanding its dis
course plan and the user's domain knowledge.

To analyze questions like Why ?, IDP uses the most
recently expanded portion of its discourse plan (called
the active path), possibilities for expanding the discourse
plan along the active path, and a set of propositions that
comprise reasoning associated with the last proposition
that IDP expressed. Of these propositions, the ones that
the user does not know are called the localized unknowns.
Applying the Gricean maxim of Quantity, questions like
"Why?" should be coherent within this context.

3.2 The Approach to Processing
Processing proceeds by trying to find a way of expand
ing the discourse plan so that the user comes to know a
proposition from the localized unknowns . IDP searches
the active path for possible expansions of its discourse
plan that do this. The following interaction demon
strates the results:

U: Should I t ake Maple or Sheridan to go

IDP:
U:

IDP:
U:

IDP:

to the Eastern-Hills Mall?
you should take Maple.
Why?
taking Maple avoids heavy traffic.
Why?
since taking Maple there are fewer
businesses than taking Sheridan,

Consistent with the Gricean maxim of Quantity, the
more the user says, the more he feels he needs to say for
the system to identify the continuation that is sought.
IDP uses any additional information that the user sup
plies to try to recognize the discourse plan expansion
that he seeks , even if it is not an immediate continua
tion of what was said last . The following demonstration
illustrates this type of processing :

U: Should I take Maple or Sheridan to go

IDP:
U:

IDP:

to the Eastern-Hills Mall?
take Maple .
Why not go on Sheridan?
you could take Sheridan however ,
taking Maple avoids heavy traffic.

prints text out.

2

ANT-CSQNT({GOAL-ACT(?g),
ACT-PLAN(?g, ?p) ,
SECO NDARY-GOAL-ACT(?g2)
ACT-PLAN(?g2, ?p)} ,

ACT- PLAN(motivatc(user, DO(user, 7 p)),
s nse q ue nce(ad v ise(user, DO(use r, ?p)),

c irc um stantia t c(ACT-P LA N(?g2, 7 p)),
say(ACT-PLAN(?g2, ?p)),
restate(ACT-PLAN(?g2, 7 p)))))

Figure 1: A TP-operator for Motivate

In this interaction, the user's feedback indicates that he
would like IDP's response to include information about
the feasib ility of an altern atiw~ rnn te. TDP uses t.he men
tioned action go ing on Sheridan to identify a discourse
entity and a discourse plan than continues to add ress
the system's intentions while providing the implicitly re
quested information .

4 The Text Plans

4.1 Text Plan Operators

IDP's text plan operators (TP-operators) are based on
Rhetorical Structure T heory (RST) [Mann and T homp
son , 1987] and are written using the SNePS Actor plan
ning formalism [Shapiro et al., 1989]. In RST, each
essential text message (called the nucleus) can be aug
mented with additional information (called the sat ellit e)
through a rhetorical relation. In the planning formal
ism , plan operators are written as rules that state what
consequents can be deduced from a set of antecedents.

Figure 1 shows a t ext-plan operator (TP-operator) for
the motivate act . 2 In the formalism , an act decomposes
into one or more structures of other acts called plans.
IDP instantiates plans, preconditions, and effects for a
given act by satisfying a rule's antecedents. These are
the constraints on the plan, and the process of constraint
satisfaction selects new content for the text. For TP
operators that are based on rhetorical relations, this new
content is a satellite proposition that is appropria te for
the relation and a given nuclear proposition. The TP
operator in Figure 1 states that if there is a domain
goal-act ?g that is enacted by a plan ?p, and a secondary
goal-act ?g2 that is also enacted by plan ?p, then a plan
for the act of motivating the user to do ?p is a sequence
of four other acts .

4.2 The Kinds of Text Plans

IDP uses a two-way classification of t ext plans (TPs) that
separates those that directly address the system 's DGs
from ones that merely augment information that is to be,
or that has been , presented. The two kinds of TPs are
discourse t ext plans (DTPs) and cont ent- se lection text
plans (CTPs) . The overarching plan is always a DTP.
This is consistent with Moore and Pollack 's contention
that a speaker always structures information in a dis-

2 Arguments enclosed in braces, { ... }, are unordered set
arguments.

course with a high-level intention in mind [Moore and
Pollack, 1992].

The division is based on a two-way division of the
rhetorical relations that Mann and Thompson describe.
A speaker relates two text spans with a presentational
relation to increase an inclination in the hearer . In con
trast, a speaker relates two text spans with a subject
matter relation to inform the hearer of the rhetori
cal relation itself. In the IDP model, DTPs are used
to attempt and reattempt the achievement of the sys
tem's DGs. Since these goals have to do with affect
ing the user's attitudes and abilities towards domain
plans, DTPs are based on speech acts and presenta
tional rhetorical relations . The DTPs describe how to
try to achieve discourse goals by selecting some minimal
text content. IDP can augment this content by convey
ing related propositions with subj ect-matter rhetorical
relations. CTPs are used to plan additional text with
subject-matter rhetorical relations.

Figure 2(a) shows a DTP for motivate that IDP de
duces from the TP-operator given in Figure 1. The mo
tivate act takes the user and a nuclear clause (the user
taking the Maple Road route) as its arguments. This
DTP includes references to two additional CTPs that are
potential growth points: circumstantiate and restate. A
plan for circumstantiate is given in Figure 2(b). Since
CTPs are not executed to affect the user in any way
other than to provide information, the user is not an ar
gument to acts for CTPs. IDP can only deduce a CTP
for an act when there is an active cont ent-goal (CG) that
the plan satisfies. A constraint on all CTP-operators re
quires there to be an active CG to let the user know the
proposition that will be the satellite in a subject-matter
rhetorical relation .

As shown in F igure 2(b) as the second step in exe
cuting the circumstantiate CTP, the CG is retracted.
Because the ACT-PLAN proposition is deducible only
when the CG exists, the SNePS Belief Revision compo
nent (SNeBR) [M artins and Shapiro, 1988] retracts the
ACT-PLAN proposition from the knowledge base as part
of the execution of the CTP. This precludes the same
CTP from being used twice if the system reattempts a
DTP, or uses another DTP for which the same CTP is
appropriate.

4.3 The Text Plan

Figure 3 shows IDP's TP for the first demonstration run
in this paper. The TP has been formulated to achieve
the DG of having the user adopt the plan to take Maple
Road. The high-level plan is a DTP which can decom
pose into other DTPs and CTPs. The TP always bot
toms out in the primitive act, say. The argument to
say is a text message which includes a proposition as the
content to be expressed. In the TP, the checks (.J) mark
the active path. Note that the plan for motivate has not
been executed in the order indicated by the sequencing
act snsequence (see Figure 2(a)). In particular , the sec
ond act expands to an optional CTP, which IDP does
not use until it responds to Why? a second time.

3

5 The Analyzer

ID P's analyzer uses the existing TP, the active path, and
the set of localized unknowns to analyze user questions
and expand the TP. IDP tries to expand the TP in two
ways to let the user know a localized unknown:

1. Starting with the last DTP on the active path , go
through all the DTPs on the active path to try to
find another way to replan a DTP on the active
path.

2. Examine the last DTP on the active path to see if
one of its unused CTPs can be expanded.

In the first phase, IDP analyzes Why-ques tions in rela
tion to its own intent as represented by the DTPs along
the active path. T he analyzer starts with the most re
cently executed DTP (the last DTP on the active path),
and the localized unknowns associated with it. It tries
to find another way to expand a DTP along the active
path that lets the user know a localized unknown. The
analyzer backs up the active path testing each DTP in
turn. If this fails, in the second phase, the analyzer con
siders augmenting the existing DTP at the informational
level. This level is reflect ed in the CTPs. The analyzer
examines the most focussed DTP on the active path to
see if it can be expanded with a CTP to let the user
know a localized unknown.

If IDP fails to identify a DTP expansion in the first
two phases, it tries to identify a third type of expansion :

3. Examine the CTPs associated with the TP.

If one of these CTPs can be expanded to inform the
user of a localized unknown , IDP executes it. However,
in doing so, IDP recognizes this kind of expansion as a
digression.

6 Detecting User Digressions

Digressions are one of the three types of discourse inter
ruptions identified by Grosz and Sidner [Grosz and Sid
ner, 1986] . In the IDP model, a user-imposed digression
occurs when his feedback no longer addresses the sys
tem's intentions. IDP demonstrates that user-imposed
digressions can be detected from a model designed for a
single mode of interaction by using its TP and its oper
ator classification . IDP identifies the user 's question as
digressive if it is answerable by expanding a CTP that
is associated with a TP instead of expanding its TP di
rectly. There are three kinds of user-initiated digressions
that IDP can detect in this way.

6.1 Direct Questions About Used CTPs

The first and simplest kind of digression is when the user
asks a direct question about a proposition that was ex
pressed in a CTP used to expand a DTP. The following
interaction demonstrates this kind of digression and how
IDP handles it:

. 1

' · ... ··1
...

• 1

(a) ACT-PLAN(motivate(user,
DO(user, *maple-plan)),

snsequence(advise(user, DO(user, *maple-plan)),
circumstantiate(ACT-PLAN (avoid(heavy-traffi.c),

*maple-plan)),
say(ACT-PLAN (avoid(heavy-traffi.c) ,

*maple-plan)),
restate(ACT-PLAN (avoid(heavy-traffi.c),

*maple-plan)),

(b) ACT-PLAN (circumstantiate(ACT-PLAN(avoid(heavy-traffi.c) ,
*maple-plan)),

snsequence(say(OBJECT-PROPERTY(*maple-plan,
fewer- businesses)),

forget(CONTENT-GOAL(KNOW(user,
OBJECT-PROPERTY(*maple- plan,

fewer-businesses))))))

Figure 2: (a) A DTP for Motivate (b) A CTP for Circumstantiate

/ 0 (oscr, ,dop< (' m,ple-ploo))

y',eeo\d (ore,, DO(ore,, •m,ple-plao))

/,ire oscr, I

say (DO(user, *maple-plan))
''take Maple.''

...J mot'vate (user, DO(user, *maple-plan))

/ say(A VOID(heavy-traffic , *maple-plan))
. 1 ~ '' taking Mapl e avoids heavy

A VOID(heavy-traffic, *maple-plan))
VJ,· rcumstantiate(

V say(FEWER-BUSINESSES(*maple-plan , *sheridan-plan))

'' since taking Maple there a r e fewer businesses
than taking Sheridan ,''

Figure 3: The TP for the First IDP Demonstration

4

traffic .''

U:

IDP:

U:
IDP:

Should I t ake Maple or Sheridan to go
to the East ern Hills Mall?
if now there was light traffic,
you could take Sheridan however,
now there is heavy traffic .
you should take Maple.
since taking Maple there are fewer
businesses than taking Sheridan,
taking Maple avoids heavy traffic .
Why is there heavy traffic now? *
since now is rush hour .
as I was saying taking Maple avoids
heavy traffic.

(1)
(2)
(3)
(4)
(5)

(6)
(7)
(8)
(9)

(10)

As part ofIDP's advice (line (4)), it has expressed a
proposition that lets the user know a circumstances be
hind its recommendation. IDP has told the user that now
there is heavy traffic . IDP identifies the user's
question at line (8) (marked with an asterisk) as a di
gression.

Figure 4 gives IDP 's TP when the user asks the ques
tion at line (8) . DTPs like the overall plan to recom
mend the Maple Road route, are in times-roman font,
the CTPs that can be used to augment the DTPs are in
italics. All TPs bottom out in one system primitive act,
say, which is shown in boldface . When IDP executes
a say-act, it passes the proposition which is its single
argument to a generation grammar . The active path
(indicated by -J marks) marks the portion of the DTP
that has been most recently expanded and executed .

IDP recognizes that the user 's question digresses from
the discourse purpose when it must expand a previously
used CTP, circumstantiat e(do(us er, *maple-plan)), with
another CTP (Figure 5). The dashed line indicates
where the expansion has been made . This leads to the
system's response at line (9). Since this expansion does
not extend any of the DTPs along the active path , IDP
recognizes that the user's question and its own response,
digresses.

6 .2 Recovering from the Digression

We do not have a theory of managing initiative. There
fore, the IDP model does not address the question of
how to decide if a digression should be allowed, and for
how long . When IDP detects a user-imposed digression,
it answers the question, and then it immediately shifts
the discussion back to its TP. In this demonstration, its
intention as expressed in its DTP is to have the user
adopt the plan of t aking the Maple Road route.

Sidner notes that discourse markers are used by speak
ers to t ell listeners that the next utterance conveys a new
intention [Sidner, 1985]. The new intention could also be
a return to an old one. To signal a return from a digres
sion, Grosz and Sidner note that speakers use discourse
markers like "anyways ... " or "as I was saying ... ". As
demonstrated by line (10) of ID P's response, it can use
its own TP as content in order to do this . This is possi
ble because IDP 's TP is represented uniformly with the
domain plans that are under discussion. In particular,
IDP can instantiate the restate content-selection opera
tor only when there has been a digression and the TP
indicates that what IDP is about to say was stated pre-

5

J recommend(user, DO(user, *maple-plan))

l

J motivate(user, DO(user, *maple-plan)) ---------~ advise(user, DO(user, *maple-plan)) ···

circumstantiate(D~ ...

circ11mstantiat'%r NOW(heavy-traffic))
v

say(NOW(rush-hour))
since now is ru s h - hou r .

say(NOW(heavy-traffic))
now there is heavy - tra ffi c .

Figure 5: The System's Plan for the Response

V recommend(user, DO(user, • maple-plan))

v concede(u l r, DO(user, *sheridan-plan))

v=""~:~-,~"
...

................

restate(DO~E(system
say(!) VOID(•maple-plan, heavy-traffic))

say(DONE(system, '
say(system, A VOID(•maplc-plan, heavy-traffic)))

a s I was saying taking Mapl e avo i ds he avy traf fic .

Figure 6: The System's Plan for Returning from the
Digression

viously. Figure 6 shows how IDP returns to the active
path by expanding the last DTP on it (motivate) with
the restate CTP.

6.3 User Questions About Implicit Content

A second kind of digression occurs when the user refers
to a proposition that was never expressed, but that is
inferable from the content presented. This leads to the
following interaction:

- 1

·· I

j ,~ommend(as«, 1(om, •m,pl~plon))

J concede(u. er, DO(user, *sheridan-plan))

conditionalize(Dq(user, *sheridan-plan)

say(NOWcfight-traffic))
if now there was light affic.

say(DO(user, *sheridan-plan)) /
V motivate(user, DO(user, *maple-plan))

you could take Sheridan however ,

advise(user, DO(user, *maple-plan))

~ circumstantiate(A VOID(*maple-plan,
+ heavy-traffic))

circumstantiate(D~r, *maple-plan))
t

say(NOW(heavy-traffic))

say(FEWER-BUS(*maple-plan~
*sheridan-ptan))

now there i s heavy t raffic.
s ince taking Maple t here are
fewer bu s inesses than taking
Sheridan.

say(DO(user, maple-plan))
you s hould take Ma ple.

say(A VOID(*maple-plan, heavy-traffic))
taking Map le avo ids heavy t raff i c .

Figure 4: The System 's Discourse Plan

U: Should I take Maple or Sheridan to go
to the Eastern Hills Mall? (1)

IDP: take Maple . (2)
U: Why take Maple? (3)

IDP: taking Maple avoids heavy traffic. (4)
U: Why? (5)

IDP: taking Maple there are fewer
businesses than taking Sheridan . (6)

U: Why is there heavy-traffic now? * (7)
IDP: since now is rush hour, (8)

as I was saying taking Maple
avoids heavy traffic. (9)

In this demonstration, IDP uses its DTP to detect
that the user's third question, unlike the user 's first two
questions, initiates a digression. This is notwithstanding
the fact that IDP never expressed the proposition that
the user questions. The user's question at line (7) relies
on an inference that he made from the proposition that
IDP expressed a t line (4) .

T he TP at the time the user asks the question is
given in Figure 7. In this case, IDP cannot associate
its planned response:

circumstantiate(now(heavy-traffic))

with any portion of the existing TP. It can however ,
check that the proposition that the user expressed at
line (5) is inferable from a proposition that the system
expressed at line (4). Specifically, IDP finds that the
proposition that the user has inferred and questioned
is a member of the set of localized unknowns for the
proposition that IDP expressed with the DTP motivate
at line (4). IDP concludes that the user's question is
coherent, although it is digressive.

Note that digressive questions can be distinguished
from questions that are incoherent in the context of the
system's TP:

6

U: Should I take Maple or Sheridan to go
to the Eastern Hills Mall?

IDP: take Maple.
U: Why is there heavy traffic now?

IDP: Huh?

IDP answered this question in our previous example.
However , in this case ID P cannot find any association
between the question 's answer and the existing TP.

6.4 Garden-path Digressions

A third type of digression occurs when the user 's line
of questioning repeatedly refers to the last proposition
that was expressed . This eventually leads to an expla
nation that does not address the IDP 's original intent.
The interaction below demonstrates how IDP manages
digressions of this kind:

U:

IDP:
U:

IDP:
U:

IDP:

U:
IDP:

Should I take Maple or Sheridan to go
to the Eastern Hills Mall?
take Maple.
Why?
taking Maple avoids heavy traffic .
Why?
taking Maple there are fewer
businesses than taking Sheridan.
Why? *
since taking Maple is a newer
route than taking Sheridan .
anyways taking Mapl e avoids heavy
traffic.

(1)
(2)
(3)
(4)
(5)

(6)
(7)

(8)

(9)

The DTP in Figure 7 is the system 's TP when the user
asks Why? a third time. To answer this question , IDP
expands its TP as shown in Figure 8. The way that IDP
detects that the third why-question is digressive is sim
ilar to the first case. IDP determines that the only way
the question 's answer can be associated with the DTP

y' =omm'"d(as", Drse,, 'm,plo-pl~))

Jmotivate(use , DO(user, *maple-plan))

advise(user, D?(user, *maple-plan))

say(DO(user, *maple-plan))
take Maple.

circu7stantiate(DO(user, *maple-plan))

say(NOW(heavy-traffic))
now there i s h eavy traffic.

circrmstantiate(AVOID(*maple-pla~k
heavy-tra;; 1c))

say(FEWER-BUS(*maple-plan~
*sheridan-pian))

taking Ma ~l e there are
fewer businesses t han taking
Sheridan.

say(A VOID(*maple-plan, heavy-traffic))
t aki ng Maple avoids heavy traff i c.

Figure 7: The System's TP

v' recommend(user, DO(user, *maple-plan))

1 v' motivate(user, DO(user, *maple-plan))

circwnstantia1e(A VOID(*maple-plan,
·-.... hea vy-traffic))

circ11mstantiate(FE,WER-BUS(*maple-p,lan,
: *shenaan-plan))

' say(NEWER-ROUTE(*maple-plan,
•sheridan-plan))

tak ing Mapl e is a ne wer route t han
taking Sheridan .

say(FEWER-BUS(*maple-plan,
*sheridan-plan))

taking Maple there are fewer busi nesses
than taking Sheridan.

Figure 8: The System's Response

is as an expansion of the CTP circumstantiate(fewer
businesses{ maple-plan, sheridan-plan).

7 Related Work

Like the EES Text P lanner [Moore and Swartout, 1991]
IDP plans only as needed in reaction to feedback. How
ever, the EES Text Planner does not build a single text
plan [Moore and Swartout, 1991] . The system analyzes

7

questions like Why? using a stack of text plans from pre
vious exchanges and a development history provided by
the expert reasoning system . The system applies heuris
tics to these sources of information to genera te a set of
likely interpretations and select one of them.

In the IDP model, the system's TP is treated as a
ri cher resource of information . Therefore, IDP builds
a single TP. In this respect, IDP is similar to the Ex
planatory Discourse Generator (EDGE) [Cawsey, 1990].
EDGE formulates and represents a single text plan , and
uses it as the discourse context to analyze feedback.
However, EDGE plans tutorials . Therefore, unlike IDP,
EDGE formulates its text plan in advance and executes
it incrementally.

8 The System Implementation

There is a one-way flow of control through three of ID P 's
e five components: the parser, the analyzer , and the
planner-actor. During a complete user-system exchange,
this flow starts with, and cycles back to , the parsing
component. After selecting and structuring content, the
planner-actor sends a text message to a fourth compo
nent , the generation grammar written in the General
ized Augmented Transition Network (GATN) formalism
[Shapiro, 1982]. The same formalism has been used for
the parser. Finally, these four components all have ac
cess to a fifth component , a knowledge base, which they
consult to find or deduce information. [Haller, 1994] pro
vides details .

In the knowledge base, the several sources of informa
tion that the system needs to analyze and plan the dis
course are all represented uniformly using the Semantic
Network Processing System (SNePS) [Shapiro and Ra
paport, 1987; Shapiro, 1991]. This includes knowledge

' · 1

of the text plan operators , the domain plans, entities in
the domain, the user model, the discourse plan executed
so far, and rules for reasoning about all of the above.

The planning-acting component is based on the SNePS
Actor [Shapiro et al., 1989] . Based on the TOUR model
[Kuipers, 1978], the various driving routes that IDP can
discuss are represented as preconstructed plans that are
composed of two types of acts: going and turning. The
domain plans are represented at various levels of detail
and, as conceptual entities , can have properties. When
ever the system reasons about the domain , the reason
ing that leads to deductions is recorded in the knowledge
base along with the deductions themselves and is avail
able as content for explanations.

9 Current Status and Future Work

IDP currently uses ten TP-operators to formulate TPs
for justifying domain plan advice. I am extending
the system to engage in domain plan descriptions and
system-imposed topic shifts. Since my model represents
the TP uniformly with the domain plans that are under
discussion , another obj ective is to extend IDP so that
it can engage in full-blown , meta-level discussions of its
own TP.

References

[Allen and Perrault, 1980] J. Allen and C. R. Perrault.
Analyzing intention in utterances. Artificial Intelli
gen ce, 15 , 1980.

[Carberry, 1989] S. Carberry. A pragmatics-based ap
proach to ellipsis resolution. Computational Linguis
ti cs, 15(4) , 1989.

[Cawsey, 1990] A. Cawsey. Generating explanatory dis
couse. In R. Dale, C. Mellish, and M. Zock, edi
tors, Current R esearch in Natura l Language Gener
ation . Academic Press, 1990 .

[Cohen and Perrault, 1979] P. R. Cohen and C. R . Per
rault . Elements of a plan-based theory of speech acts.
Cognitive Scie nce, 3, 1979.

[Grice, 1969] H . P. Grice. Utterer's meaning and inten
tions. Philisophical R eview, 78, 1969.

[Grice, 1975] H. P. Grice. Logic and conversation. In
P. Cole and J. L. Morgan, editors, S yntax and Se
mantics 3: Speech Acts. Academic Press, New York,
1975.

[Grosz and Sidner , 1986] B. J. Grosz and C. L. Sidner.
Attention , intentions , and the structure of discourse.
Computational Linguistics , 12, 1986.

[Haller , 1994] S. M. Haller. A model for cooperative in
teractive plan explanation. In Proceedings of the Th e
Tenth IEEE Conference on Artificial Int elligence for
Appli cations, San Antonio , Texas, 1994.

[Kuipers , 1978] B. Kuipers . Modeling spatial knowl
edge. Cognitive Scie nce, 2, 1978.

[Mann and Thompson, 1987] W . C. Mann and S. A.
Thompson. Rhetorical structure theory: A theory of
text organization. Technical report, Information Sci
ences Institute, 1987 .

8

[Martins and Shapiro , 1988] J. P. Martins and S. C.
Shapiro. A model for belief revision. Artificial In
t elligen ce, 35(1), 1988.

[Moore and Pollack , 1992] J . D. Moore and M. E. Pol
lack. A problem for RST: The need for multi-level
discourse analysis . Computational Linguisti cs, 18(4),
1992. discussion.

[Moore and Swartout, 1991] J. Moore and W . Swartout.
A reactive approach to explanation : Taking the user 's
feedback into account . In C. Paris, W. Swartout , and
W. Mann , editors, Naforal Language Generation in
Artificial Int elligence and Computational Ling11istics.
Kluwer Academic Publishers, 1991.

[Searle, 1969] J. R . Searle. Speech Acts: An Essay in the
Philosophy of T,o.ng1rng c. Cambridge University P ress,
Cambridge, 1969.

[Shapiro and Rapaport, 1987] S. C. Shapiro and W . .J.
Rapaport. SNePS considered as a full y intensional
propositional semantic network. In N. Cercone
and G. McCall a, editors, T he J(now/edg e Fronti er.
Springer- Verlag , New York , 1987.

[Shapiro et al., 1989] S. C. Shapiro, D. Kumar , and
S. Ali. A propositional network approach to plans and
plan recognition . In Proceedings of th e 1988 Workshop
on Plan R ecognition, Los Altos, CA, 1989 . Morgan
Kaufmann .

[Shapiro, 1982] S. C. Shapiro . Generalized augmented
transition network grammars for generation from se
mantic networks . Ameri can Association of Co mputa
tional Linguisti cs, 8, 1982.

[Shapiro, 199 1] S. C. Shapiro . Case studies of SNePS .
SIGART Bulletin , 2(3), 1991.

[Sidner , 1985] C. Sidner. Plan parsing for intended re
sponse recognition in discourse. Computational Int el
lig en ce, 1, 1985.

From Text to Horn Clauses:
Combining Linguistic Analysis and Machine Learning
Sylvain Delisle *, Ken Barker **, Jean-Fran~ois Delannoy

Stan Matwin **, Stan Szpakowicz **
**

'

* Departement de mathematiques et d'informatique
Universite du Quebec a Trois-Rivieres

Trois-Rivieres, Quebec, Canada G9A 5H7
Sylvain_Delisle@uqtr.uquebec.ca

Abstract

The paper describes a system that extracts knowledge
from technical English texts. Our basic assumption is
that in technical texts syntax is a reliable indication of
meaning. Consequently, semantic interpretation of the
text starts from surface syntax. The linguistic com
ponent of the system uses a broad-coverage, domain
independent parser of English, as well as a user-assisted
semantic interpreter that memorizes its experience. The
resulting semantic structures are translated into Hom
clauses, a representation suitable for Explanation-based
Leaming (EBL). An EBL engine performs symbol-level
learning on representations of both the domain theory
and the example provided by the linguistic part of the
system. Our approach has been applied to the Canadian
Individual Income Tax Guide and examples from it are
used in the presentation.

1. Introduction

The goal of our project is knowledge extraction from texts.
We are building a system that accumulates knowledge using
the smallest possible domain-specific kernel prepared in
advance. In the case of texts that we characterize as technical,
our approach performs this extraction with no advanced,
precoded knowledge, assuming the assistance of a
cooperative user. The system applies natural language
processing and machine learning techniques to process
English technical text. The result is a Hom clause rule base
representing knowledge about semantic relations among
concepts presented by the text. We think that this can be
done from scratch, provided the user trains the system in the
initial phase of knowledge extraction. User intervention
should then decrease with time as the system effectively
learns from previous interactions.

This work is supported by a strategic grant from the
Natural Sciences and Engineering Research Council of
Canada. Thanks to Terry Copeck for commenting on a
very late draft of the paper.

9

** Department of Computer Science
University of Ottawa

Ottawa, Ontario, Canada KlN 6N5
{kbarker, delannoy, stan, szpak }@csi.uottawa.ca

Because much knowledge is communicated via
textbooks, manuals, handbooks etc ., a system like ours will
be an extremely useful alternative to "traditional" knowledge
acquisition tools. In domains where an expository text is
available, its user-assisted processing with our system will
provide a first, perhaps unpolished version of the knowledge
base. This version may then be debugged and improved by
the user.

We note the main features of our approach, along with
the ensuing conditions of its applicability .

• Detailed surface-syntactic analysis of a fragment of a
technical text 1 precedes semi-automatic analysis of
clause-level relations, Case relations and relations inside
noun phrases (work in progress). The resulting semantic
structure is transformed semi-automatically into Horn
clauses. Our research hypothesis is that, in technical
texts, syntax gives a reliable indication of meaning:
literal interpretation based on surface syntax is usually
appropriate [Ki eras, 1985] and a high degree of
compositionality is possible. A standard, linguistic
theory-neutral grammar of English based on Quirk et al.
[1985] underlies the parser. Details of parsing and Case
based semantic analysis are presented in Delisle [1994].

• The system needs to be trained by the user. It remembers
and generalizes the user's additions and changes to its
semantic pattern dictionaries. Saturation with domain
dependent linguistic knowledge is gradually achieved as
the user moves forward in the given text; the intervention
is eventually reduced to simple approval. We are now
working on the details of a measure of user interaction to
be used as the yardstick of our system's performance. It
will consider the amount of interaction (for example, the
number of updates of the pattern dictionaries) and the ease

1 It is widely accepted that technical texts are somehow
easier to process, despite the absence of any commonly
acceptable definition of what constitutes a technical text.
We have assembled a checklist of linguistic properties
that make a text technical; a working paper is
forthcoming.

of interaction (for example, using Angluin's [1988]
oracle types).

• We assume rich syntactic knowledge and detailed
semantics of function words. We also rely on publicly
available domain-independent lexical knowledge . The
Collins dictionary [Karp et al., 1992] is used by the
parser for part-of-speech information. WordNet [Miller,
1990] will be used for disambiguation and for semantic
clustering [Feng et al., 1994]. No domain-specific
knowledge need be assumed: the system can be run with
its semantic pattern dictionaries initially empty. Early
experiments confirm that Case analysis of a text segment
starting with empty dictionaries can produce an
acceptably high percentage of the system's hypotheses
merely confirmed by the user [Delisle, 1994].

• The system acquires knowledge incrementally during
linear processing of the input text. Although the system
can return to previously processed fragments just as
human readers do, essentially it leads the user forward and
learns useful facts even after a single pass over a
fragment. The system performs learning at the symbol
level in order to acquire accurate and sufficient knowledge
that will be used to represent the meaning of the text.

2. Organization of the System

The organization of the system is summarized in Figure 1
(ovals represent modules, light rectangles denote data passed
between modules, heavy rectangles are permanent
repositories). The MaLTe2 system receives its linguistic
data from the TAN,c,43 system. D1PETT4 is TANICA's
noncommittal surface-syntactic parser (Jacobs and Rau
[1993] briefly discuss the role of inexact parsing in text
processing). A parse tree of the current sentence produced by
DIPETT may be reorganized by the phrase reattachment
module. The structurally correct parse tree is processed by
HA11CU, a three-step interactive semantic analysis module.

HA11CU suggests semantic relations among clauses in the

sentence (for example, causality, enablement, precedence),
then Case patterns in clauses and finally relations inside
noun phrases; the user confirms or overrides those
suggestions . Relations not encountered earlier are added to
HA11CU 's semantic dictionaries (not shown in Figure 1).

The result, a composite graph containing syntactic and
semantic information about the sentence, is called a
protonetwork ("early representation of the network").
Within TANICA, it is passed on to the Network Fragment

Builder that turns it into a fragmentary conceptual network.
This fragmentary network will then be merged with a
growing conceptual network representation [Yang and

2 Machine Leaming from Text
3 Text Analysis for Knowledge Acquisition
4 Domain-Independent Parser of English Technical Texts

Szpakowicz, 1991] of the part of the source text processed
so far.

The protonetwork is simultaneously · passed on to the
first module of MaLTe, which translates it into a set of
Horn clauses. Translations of the narrative part of a text and
its examples are distinguished . The Machine Learning
module, which includes an EBL5 engine, organizes these
Horn clauses into a domain theory.

There are two main tasks in this operation . First, the
domain theory is accumulated and organized by a
hierarchization of Horn clauses into a stratified rule set in
which levels of rules are clearly delineated. This is achieved
by transformations of sets of clauses (for example,
absorption) used in Inductive Logic Programming to
reorganize clause sets into logic programs. The second task,
essential to the MaLTe approach, applies EBL to the clausal
representation of the examples. The clausal representation of
the explanatory text plays the role of domain theory. This
gives a compiled, generalized and operational rendering of
the examples which includes the knowledge necessary to
explain them.

Horn clauses representing the results of EBL are turned
into a (simplified) protonetwork and fed back into the
Network Fragment Builder. When the domain theory is
sufficiently rich, it may be transmitted to a performance task
external to the TANICA/MaLTe system. One example of such
a performance task is a rule-based program producing income
tax returns. The skeletal rule base containing the knowledge
part of this program would be acquired by TAN!CA/MaLTe
directly from the Income Tax Guide.

The system is being implemented in Quintus Prolog on
Sun SparcStations. The parser and the Case analyzer are
fully implemented. Prototypes of the machine learning
mechanisms, the clause-level relationship analyzer and the
protonetwork to Horn clause translator are close to
completion. The reattachment module, the Network
Fragment Builder and the noun-modifier relationship
analyzer have been designed.

3. Syntactic and Semantic Analysis

3.1. The Parser

The parser accepts most sentences found in a technical text.
Such a broad-coverage parser ensures that acquisition of
knowledge from text is reasonably complete. Without a rich
semantic model, syntax is the only support for meaning.
DIPETT [Delisle and Szpakowicz, 1991; Delisle, 1994]
handles, fully or partially, about 90% of the sentences in
sample unedited texts.

5 Explanation-Based Leaming

10

TAN~A

PARSE TREES

PARSE TREES

CASE
STRUCfURES

NOUN-MODIFIER
RELA TIONSIDP

ANALY2ER

CONCEPTUAL
NEIWORK

MATCHER/
INIEGRATOR

CLAUSE-LEVEL
RELATIONSIDP

ANALY2ER

PROTONEIWORK

HA1~U

BUILDER

HORNTO
PROTONEIWORK

TRANSLATOR
PROTONEIWORK

DOMAIN THEORY,
GENERALIZED

EXPLANATIONS,
(HORN CLAUSES)

MACHINE
LEARNING

MECHANISMS

HORN
CLAUSES

PROTONEIWORK
TOHORN

TRANSLATOR

MaLTe

Figure 1. The TAN~A and MaLTe Systems

11

Linguistic theories of syntax such as GPSG, HPSG and
LFG use feature structures to encode linguistic objects:
these structures' form and content depend on the underlying
theory. DIPETT is not committed to any particular
linguistic theory. Its DCG grammar formalism is theory
neutral (as are other formalisms, for example, PATR-11).
Most of the grammar's rules are based on Quirk et al.
[1985]. DIPETT may be considered as a functional grammar,
that is, one in which syntactic analysis is based on syntactic
roles instead of only word order.

In addition to standard parsing functions, the parser
contains several subsidiary non-standard components : a
simple tagger, a dynamic dictionary expansion facility, a
memorizing device (that is, a well-formed substring table or
passive chart) and an error explanation mechanism.

3.2. The Case Analyzer

We have defined a Case system which is used by HA1~U.
Six Cases appear in this paper's examples: Agent (AGT),
Accompaniment (ACMP), Beneficiary (BENF), Location to
(LTO), Object (OBJ), Time at (TAT). The complete list of
28 Cases, as well as the motivation and the discussion of
other published Case lists are presented in Barker et al.
[1993].

The Case Analyzer (CA) takes a parse tree produced by
DIPETT and semi-automatically extracts the Case pattern
that best represents its meaning. Cases are signaled by Case
markers, which are realized in two ways: lexically, for
example, apreposition that introduces a prepositional
phrase, and positionally, as subject (psubj), direct object
(pobj), indirect object (pi obj).

CA accumulates Case patterns in its semantic
dictionaries and refers to them when processing new
sentences. A sentence that has little in common with
previously encountered patterns may introduce new elements
of knowledge. These are integrated into the incrementally
growing dictionaries. For a sentence similar to previously
analyzed sentences, CA suggests a semantic interpretation
for the user to confirm or reject. CA is instrumental to our
intent of turning knowledge-based text understanding into
knowledge acquisition. Knowledge acquired during this
operation constitutes an important part of the conceptual
model of a text's domain.

The main data structures are stored in the Meaning
Dictionary, the Case-Marker Pattern Dictionary and the Case
Pattern Dictionary. All dictionaries may be empty when the
system is first used on a new text. CA does not need any
seed knowledge to work properly, though it does require
significant involvement of the user in the initial phase. The
amount of work decreases as CA processes more sentences
and acquires more patterns.

The following definitions describe CA terms used in the
rest of this paper.

A Case-Marker Pattern (CMP) is an ordered list
of Case markers, representing the markers appearing in a

clause. In CA, a clause has only one CMP, that is, only one
syntactic analysis from which a unique CMP is derived.

A Case Pattern (CP) is an ordered list of Case
abbreviations, representing the Cases appearing in a clause.
In CA, a clause normally has only one CP, although it may
have more if the clause is semantically ambiguous.

The Meaning Dictionary has entries for individual
words. A verb entry contains a list of CMPs found with this
verb in the text, and a list of Cases associated with each
marker in these CMPs. The Meaning Dictionary also
contains entries for prepositional and adverbial Case
markers. Such an entry contains a fixed list of Cases the
marker can realize; details are in Barker et al. [1993] .

The Case-Marker Pattern Dictionary has entries
for CMPs. An entry contains a list of CPs already associated
with this CMP. Each CP is illustrated by an example
sentence. This dictionary may be initialized with entries for
a number of common CMPs. In CA, a CP may be
associated with one or more examples since many
syntactically different clauses can have the same Case
pattern.

The Case Pattern Dictionary has CP entries , each
containing a list of verbs associated with this CP in the
text.

All three dictionaries are continuously updated. As
mentioned above, a parsable clause should normally be
associated with a unique CP. To accomplish this, CA first
searches its dictionaries for the target CP that matches the
CMP of the input sentence most closely, if not perfectly
[Delisle et al ., 1993a]. Next, an example sentence to
illustrate the target CP is fetched from the dictionary . If the
CP and example sentence are not acceptable, the system asks
for the user's help.

Note that order does not matter in patterns: it is only
their semantic interpretation that counts . Thus, subj - obj -

at - by is equivalent to subj-obj-by-at, and, similarly,
AGT-OBJ-LAT-TAT is equivalent to AGT-OBJ-TAT-LAT.

Sentences from the following paragraph will be used as
examples to illustrate CA as well as other processes
described in the rest of this paper.

"Jim is a member of the Canadian Armed Forces and
was posted to Lahr in 1989. Jim's wife moved with
him to Lahr. He broke all residential ties with Canada.
Jim is a resident of Canada because he is serving abroad
in the armed forces."

The fourth sentence above ("Jim is a resident of Canada
because he is serving abroad in the armed forces.") contains
two clauses, each of which will be analyzed separately by
CA. The main verb of the first clause is the stative verb
"be". Although stative verbs introduce facts about objects,
activities and their properties , they do not have Cases.
Consequently, clauses with stative main verbs are not treated
by CA but are passed on for semantic processing by
subsequent modules - for a description of the treatment of
stative verbs, see Delisle et al. [1993b]. The second clause is

Case Analyzed. The CMP psubj - adv- in is associated with
the clause's main verb "serve". CA first checks the Meaning
Dictionary to determine if the verb "serve" has appeared
previously in the text and what CMPs and CPs have been
associated with it. It also checks the CMP Dictionary to see
if the CMP psubj - adv- in has occurred previously and what
CPs have been associated with it. Based on this historical
data as well as information about which Cases the individual
Case Markers mark, CA suggests a CP to the user. The user
may accept the suggested CP or reject it and supply a new
CP for this clause. The three dictionaries are then updated to
reflect this Case assignment. The output for the sentence
(after successful Case assignment) would consist of the
following Case structures:
case_structure(*statementl* , be, p s ubj-pobj-of,

nil, 'Jim', resident, ' Canada')

case_structure(* s tatement2*, serve, psubj - adv- in,

agt-lat-benf, 'Jim', abroad, 'the armed forces ')

3.3. The Clause-Level Relationship Analyzer

Case Analysis deals with semantic interpretation of the
relationships between a verb and its arguments within a
clause. Semantic information is also conveyed by
relationships between clauses. In particular, the causal links
which are vital to the construction of rules from text are
commonly found at the inter-clausal level. We are
completing an extension of the semantic analyzer onto
Clause-Level Relationships (CLRs). The design of the CLR
Analyzer (CLRA) closely mirrors that of the Case Analyzer.
First, a list of semantic relationships was constructed based
on an exhaustive study of the lexical items signaling them.
This set was then checked for completeness against a
number of works in traditional and computational
linguistics. The current list of CLRs is : Causation ,
Enablement, Entailment, Prevention, Detraction,
Conjunction, Disjunction, Location, Temporal Precedence,
Temporal Co-occurrence - details have been presented in
Delisle et al. [1993b].

During interactive semantic analysis, CLRA is activated
when the current input sentence contains syntactically
connected clauses. The connective (a conjunction) is matched
against a list of potential CLR markers and the CLRs they
typically mark . One or more CLRs from this list are
suggested to the user who is given the option of accepting a
suggested CLR or assigning a new one.

Consider again the sentence "Jim is a resident of Canada
because he is serving abroad in the armed forces". CLRA
recognizes two clauses in the input connected by the
conjunction "because". It finds in its dictionary of CLR
markers that "because" often marks Causation, Enablement
and Entailment. The user can choose one of these or enter a
new CLR. If Entailment is chosen, the analysis will be
stored as:

12

"Jim is serving abroad in the armed forces"
<entails>

"Jim is a resident of Canada"

Input Text
"Jim is a resident of Canada because
he is serving abroad in the armed forces."

Para~"'

Clause Level Relationship Anal)'.sis - -
clr_structure(entl, "Jim is serving abroad

in the armed forces",
"Jim is a resident of Canada")

a
CLR

CLR Marker Dictionary I Suggestions ,
Dictionary , CLR Pattern Dictionary

~ , Updates '
"

- Case Anal)'.sis

clr_s tructure(entl ,*statement2* ,*statement!*)
case_structure(*statement2* ,serve,

psubj-adv-in,agt-lat-benf,
'Jim', abroad, 'the armed forces')

case_structure(*statementl * ,be ,
psubj-pobj-of,nil,

'Jim', resident, 'Canada')

H ,,
Case

Case Marker Dictionary I Suggestions
Case Marker Pattern Dictionary)

Dictionary Meaning Dictionary

Updates I ... ' Case Pattern Dictionary
• . '

'
Figure 2. A Condensed Illustration of HA1 ~U

Semantic Processing

"'

i
"'

,

The whole process of semantic analysis is summarized
in Figure 2.

We have recently incorporated additional linguistic clues
in the semantic analysis of CLRs. The syntactic makeup of
clauses themselves helps identify the semantic relationships
between them. For example , the modality of their main
verbs is useful in distinguishing between different causal
relationships, as the following example sentences suggest:
"If you claim expenses then you must have paid money for
services" (Entailment); "If you paid money for services then
you may claim expenses" (Enablement) .

13

4. The Protonetwork-to-Horn Processor

4.1. Construction of Horn Clauses

In contrast to several other approaches (see section 5), the
conversion chain followed in MaLTe involves deriving a
linguistically justified semantic encoding, which is then
translated into first-order logic. For a moderate additional
computational cost, the resulting principled process is also
general and portable. Generality relies on the separation of
processing tasks from user interaction. The source of domain
knowledge is the user, who makes domain-dependent choices
in disambiguation and Case or CLR assignment , while the
processes of parsing and semantic processing are inherently
domain-independent.

Translation from semantics to logic is done after all
phrase reattachment and pronoun resolution have been
completed. The input is the protonetwork material, which
includes the CLR structure of a sentence, the detailed Case
structure of its clauses and the internal description of the
semantics of noun phrases.

The aspect of a clause (stative versus nonstative) is a
key factor . Stative clauses in a technical context are taken to
be definitional (for example, "An eligible child could be
your child, your spouse's child, etc."), or they can describe
an attribute of an instance ("Jim is a member of the
Canadian armed forces."). HA1 ~U assigns no Cases to

stative clauses. We translate them with a predicate based on
the attribute. Nonstative clauses ("Jim moved to Lahr") are
assigned Cases whose labels are attached to the verb to form
a specific predicate name (such as serve_agt_l at_benf) .

The algorithm follows a declarative description of the
tree structure produced by HA 1 ~ U. The structural

organization corresponds roughly to the input grammar of
DIPETT, except that the structure to analyze is not a token
sequence, but Prolog terms. These terms correspond to the
sentence and its clauses; their nodes should be seen as mere
functors, not predicates, since they can have variable "arity"
according to the presence or absence of optional syntactic
constituents.

At sentence level, the clause-level relationship is the
most important criterion to determine how to piece together
the elements of the Horn clause: with Causation,
Enablement and Entailment (the latter especially important
in a tax guide), the module asserts a rule. When clauses are
simply conjoined, it asserts two independent facts. The user
is asked for confirmation in all situations, which include
more ambiguous relations like temporal precedence (which
may or may not denote causality).

Thus, the fourth sentence:

"Jim is a resident of Canada because he is serving
abroad in the armed forces"

which is represented by :

.. I

clr_structure(entl, *statement2* , *statement!*)

case_structure(*statementl*, be, psubj-pobj-of,

nil, 'Jim', resident, 'Canada ')

case_structure(*statement2*, serve, psubj-adv-in,

agt-lat-benf, 'Jim', abroad, 'the armed forces')

will be transformed into:

is_resident_of(jim, canada)

serve_agt_lat_benf (jim, abroad, armed_forces).

If a clause has a negative polarity ("X is not eligible ... ")
then we have to assert a rule involving explicit negation.
The most frequent situation, and the simplest, is to simply
assert a fact because there is no entailment or opposition
relationship between the clause and other clauses, as in the
other sentences of the example:
is_member(jim, canadian_armed_forces) .

post_obj_lto_tat (jim , lahr, 1989).

move_agt_acmp_lto (wi fe, jim, lahr).

break_agt_obj _ benf(jim, residential_ties, canada) .

Note that some inference or interaction may be needed
to relate different encoding of the same concepts, as
canadian_armed_forces and armed_forces in the example.

4.2. Learning

The logical translation of both the narrative and the example
sections of a text is fed to the learning module which
performs Explanation-based Leaming (EBL).

EBL is a learning method that generalizes a concept or
procedure description from a single example. Rather than
discriminating and generalizing from features of a large
number of examples, as in the standard inductive approach in
the spirit of ID3 [Quinlan, 1986), EBL uses an explanation
of just one training instance as the basic learning tool.
Explanation is usually a deduction that justifies (for
example, through a Prolog-style proof) the statement "this
specific instance is an instance of the concept we are
learning". The explanation is used for two purposes. Firstly,
it identifies the relevant features of the example, which are
sufficient conditions for describing the concept [Minton et
al., 1990] . Secondly, generalization in EBL is performed by
regressing the concept definition through the explanatory
structure (for example, an AND tree). Consequently, the
generalization process often turns constants of the example
into terms, rather than just variables [Mitchell et al., 1986].
Those terms bring into the explanation certain relevant parts
of domain knowledge. In order to produce an explanation, an
EBL learner must have a domain theory. If the theory is
represented in the Horn clause format, it can be easily used
to produce an explanation of the example. The concept can
be treated as a top-level Prolog goal, the example - as a
conjunction of Prolog facts, and the domain theory acts as a
Prolog program. If the goal, properly instantiated with the
constants of the example, can be proven by a Prolog-like
interpreter, EBL succeeds and the goal tree is treated as an
explanation. In the system described in this paper, the
narrative text is converted-in several steps-into a domain

theory, and the examples in the text are used as the training
instances.

As described elsewhere [Delannoy et al., -1993), we rely on
transformations such as abstraction and absorption from
Inductive Logic Programming to organize clauses into a
meaningful, hierarchical knowledge base. The EBL process
takes as input the Horn clause base produced by the
Protonetwork-to-Horn (PtH) module, as well as the clausal
representation of the examples from the text, and performs
EBL on them. We shall illustrate this process below.
Suppose that the domain theory (acquired in a manner
described above) contains the following rules:
claim_child_care_expenses (P, C, E) :-

person_deduct_expenses(P),

eligible_child (C),

deduct_amount_expenses(E) .

person_deduct_expenses(P) :

is_resident_of(P, canada), eligible (P) .

Let further facts from the example be produced by the PtH
module as shown above. The EBL process continues,
producing first the proof tree as in Figure 3 (only a fragment
is shown).

claim_ child_care_expenses(jim, child!, e)

/
person_deduct_expenses

(jim)
deduct_amount_ expense(e)

, ' , ' , '

. /d ~eligible_child(ch:ldl) ' is_ resi ent_o ,,
(jim, canada) ,' ',

, '

eligible_claimant(jim)

' ' ' .

serve_agt_ lto_benf
(jim,abroad,armed_forces)

Figure 3. Fragment of the Proof Tree Produced
by the EBL Process

EBL extracts from the whole collection of facts
available in a given example exactly those that are necessary
to prove that the example satisfies the concept definition
(here, that it is an instance of the concept
claim_child_care_expenses) . EBL also puts together
(compiles) all the knowledge necessary to show the
membership of the example in the concept. Moreover, there
is generalization in the second phase of EBL that consists in
regression of the domain theory rules through the proof tree .
Generalization will produce a useful ("operational", in the
EBL terminology) generalization, that is:

14

claim_child_care_expenses(P, C, E) :

serve_agt_lat_benf(P, abroad, armed_forces),

Such a rule is then added to the domain theory .
Consistent with the EBL paradigm, symbol-level learning
has been achieved, and it has made the theory more useful
than its general rendering (it applies now directly to all
armed forces personnel stationed overseas), and at the same
time more general than the specific example provided in the
text . Unlike in simple inductive systems, the generalization
obtained is fully justified by the existing domain theory.

5. Related Work

Work on classification tasks, useful in knowledge base (KB)
construction, uses text processing as a means of extracting
classification knowledge from various textual material.
Silvestro [1988) and Gomez [1989) are two examples of that
approach. Moulin and Rousseau [1992) describe a system
which looks for predetermined, fixed patterns (for example,
'if', 'because', 'when') in the input sentences and decompose
the original sentences into representations that stand for
production rules or KB elements. Ciravegna et al. [1992)
present the SINTESI system. It extracts knowledge from
short (4 or 5 sentences) descriptive diagnostic reports written
in Italian, in order to summarize their technical content and
support the constructing of a KB on car faults. All objects
that may be of interest in a text are described in a KB that is
available a priori and there is no incremental KB
augmentation.

Kim and Moldovan [1993) describe PALKA, a semi
automatic KA system designed to facilitate the construction
of a large KB of semantic patterns accumulated from
corpora. PALKA requires much a priori knowledge: a
general and domain-specific concept hierarchy and frame
definitions telling the system what to look for in a text
(along with the relevant keywords). Liu and Soo [1993] have
implemented a system that attempts to assign thematic roles
to sentence elements using minimal a priori knowledge. The
system uses syntactic clues to propose an initial set of
potential thematic roles . This set is then pruned by applying
heuristics and consulting the user.

Given the knowledge-intensive character of Natural
Language Processing, surprisingly little work has been done
in applying machine learning techniques in the context of
NLP systems. Hauptmann [1993) describes how a relatively
unsophisticated, rote-learning mechanism helps in the
acquisition of a mapping from syntax to the meaning of
sentences in a given domain. Zelle and Mooney [1993) and
Aliprandi [1993) show how different learning techniques,
inductive logic programming and standard induction, apply
in the resolution of the propositional phrase attachment
problem. A separate research community [Powers, 1989)
focuses on the difficult questions of applying machine
learning in the attempt to understand the cognitive aspects of
language learning. Cohen [1990) shows how crucially
learning from texts relies on a flexible definition of
operationality. His work concentrates on the learning aspects

without attempting to develop an integrated NLP-ML
system.

6. Conclusion

We propose a combination of partially automated text
processing and explanation-based learning for knowledge
extraction from unedited technical texts . Early experiments
show that this alliance yields more knowledge than standard
language processing methods alone; at the same time, novel
learning problems and opportunities originate from the fact
that the domain theory is semi-automatically constructed
directly from the text. Such mutual enrichment of natural
language processing and machine learning lies in a largely
uncharted territory. Challenging questions arise from the
design of the first version of the system. The transformation
of text fragments into a domain theory (expressed in first
order logic) adequate for explanation-based learning requires
intensive user participation, if the knowledge acquisition
exercise is to be meaningful. However, learning (inductive
generalization of user's interventions) is expected to decrease
the amount of user interaction. The characterization of this
amount as a function of the properties of the text and of the
gradual saturation of the knowledge base through experience
is an open research problem. Reliance on surface syntax as
the carrier of meaning is vindicated by the ability of the
linguistic subsystem to work up from an empty domain
specific knowledge base. Research problems in learning
include explanation-based learning in an unavoidably
incomplete domain theory, dynamic modification of the
operationality criterion according to the changing
performance task, and extension of learning from a first order
logic rule base onto sorted logic.

References

[Aliprandi and Saviozzi, 1993) G. Aliprandi and G.
Saviozzi, "A Supervised Learning Method to Solve PP
Attachment Ambiguities in Natural Language",
Proceedings Machine Learning and Text Analysis
Workshop, ECML-93, Vienna 1993, 45-52.

[Angluin, 1988) D. Angluin, "Queries and Concept
Learning", Machine Learning, 2(4): 319-342, 1988.

[Barker et al., 1993) K. Barker, T. Copeck, S. Delisle and S.
Szpakowicz, "An Empirically Grounded Case System",
submitted to the International Journal of Lexicography,
36 pages.

[Ciravegna et al., 1992) F. Ciravegna, P. Campia and A.
Colognese, "Knowledge Extraction from Texts by
SINTESI", Proceedings 15th International Conference on
Computational Linguistics-COLING-92, Nantes 1992,
1244-1248.

[Cohen, 1990) W. W. Cohen, "Learning from Textbook
Knowledge: A Case Study", Proceedings AAA/-90, 743-
748, 1990.

15

·I

[Delannoy et al., 1993) J.-F. Delannoy, C. Feng, S.
Matwin and S. Szpakowicz, "Knowledge Extraction from
Text: Machine Learning for Text-to-Rule Translation",
Proceedings Machine Learning and Text Analysis
Workshop, ECML-93, Vienna 1993, 1-7.

[Delisle and Szpakowicz, 1991) S . Delisle and S.
Szpakowicz, "A Broad-Coverage Parser for Knowledge
Acquisition from Technical Texts", Proceedings 5th
International Conference on Symbolic and Logical
Computing - ICEBOL5 (Madison, S.D., USA), April
1991, 169-183.

[Delisle, 1994) S. Delisle , "Text Processing without A
Priori Domain Knowledge: Semi-Automatic Linguistic
Analysis foi Incremental Knowledge Acquisition'', Ph.D.
thesis, Department of Computer Science-Ottawa
Carleton Institute for Computer Science, TR-94-02 ,
University of Ottawa, 1994.

[Delisle et al., 1993a] S. Delisle, T. Copeck, S. Szpakowicz
and K. Barker, "Pattern Matching for Case Analysis: A
Computational Definition of Closeness" . 0 . Abou
Rabia, C. K . Chang and W. W. Koczkodaj (eds.)
Proceedings ICCI-93, 310-315 .

[Delisle et al., 1993b] S. Delisle, K. Barker, T. Copeck and
S . Szpakowicz, "Interactive Semantic Analysis of
Technical Texts: Case Pattern Acquisition", submitted to
Computational Intelligence, 67 pages, 1993.

[Feng et al., 1994) C.Feng, T . Copeck, S. Szpakowicz and
S. Matwin, "Semantic Clustering. Acquisition of Partial
Ontologies from Public Domain Lexical Sources".
Proceedings AAA/ Knowledge Acquisition for
Knowledge-Based Systems Workshop, Banff 1994, 1-15.

[Gomez, 1989) F. Gomez, "Knowledge Acquisition from
Natural Language for Expert Systems Based on
Classification Problem-Solving Methods", Proceedings
4th AAAI-Sponsored Knowledge Acquisition for
Knowledge-Based Systems Workshop, Banff 1989, 15.1-
15.18 .

[Hauptmann, 1993) A. G. Hauptmann, "Meaning from
Structure in Natural Language Interfaces", Ph.D. Thesis,
Computer Science Department, Carnegie-Mellon
University, 1993.

[Jacobs and Rau, 1993) P. S. Jacobs and L. F. Rau,
"Innovations in Text Interpretation", AI Journal 63(1 -2)
(Special Issue on Natural Language Processing), October
1993, 143-191.

[Karp et al ., 1992) D. Karp, Y. Schabes, M. Zaidel and D.
Egedi, "A Freely Available Wide Coverage
Morphological Analyzer for English", Proceedings 15th
International Conference on Computational
Linguistics-COL/NG-92 , Nantes 1992, 950-955.

16

[Kieras, 1985) D. E. Kieras, "Thematic Processes in the
Comprehension of Technical Prose", in B. K. Britton and
J.B . Black (eds.), Understanding Expository Text (A
Theoretical and Practical Handbook for Analyzing
Explanatory Text), LEA, 89-105, 1985.

[Kim and Moldovan, 1993) J.-T. Kim and D. I. Moldovan,
"Acquisition of Semantic Patterns for Information
Extraction from Corpora", Proceedings 9thJEEE
Conference on AI Applications, 171-176, 1993.

[Liu and Soo, 1993) R.-L. Liu and V .-W. Soo, "An
Empirical Study on Thematic Knowledge Acquisition
based on Syntactic Clues and Heuristics", Proceedings
31st Annual Meeting of the ACL, Columbus, Ohio,
l':J':Jj, LAj-L,)U.

[Miller, 1990) G. A. Miller, (ed.), "WordNet: An On-Line
Lexical Database", International Journal of Lexicography,
3(4), 1990.

[Minton et al., 1990) S . Minton , J. G . Carbonell, C. A.
Knoblock, D. R. Kuokka, 0 . Etzioni and Y. Gil,
"Explanation-Based Learning: A Problem Solving
Perspective", Machine Learning (Paradigms and
Methods), J. Carbonell (ed.), MIT Press, 63-118, 1990.

[Mitchell et al., 1986) T. Mitchell , R. Keller and S. Kedar
Cabelli, "Explanation-based Generalization: A Unifying
View", Machine Learning, 1(1): 47-80, 1986.

[Moulin and Rousseau, 1992) B. Moulin and D. Rousseau,
"Automated Knowledge Acquisition from Regulatory
Texts", IEEE Expert, October 1992, 27-35.

[Powers and Turk, 1989) D. M. Powers and C. R. Turk,
Machine Learning of Natural Language, Springer-Verlag,
1989.

[Quinlan, 1986) J. R. Quinlan , "Induction of decision trees",
Machine Learning 1: 81 -106, 1986.

[Quirk et al., 1985) R. Quirk, S. Greenbaum, G. Leech and
J . Svartvik, A Comprehensive Grammar of the English
Language, Longman, 1985.

[Silvestro, 1988) K. Silvestro, "Using Explanations for
Knowledge-Based Acquisition" , International Journal of
Man-Machine Studies, 29: 159-169 , 1988 .

[Yang and Szpakowicz, 1991) L. Yang L. and S.
Szpakowicz, "Inheritance in Conceptual Networks" .
Karen S. Harber (ed.) Proceedings Sixth International
Symposium on Methodologies for Intelligent Systems
(Poster Session). Charlotte, NC, 1991, 191-202.

[Zelle and Mooney , 1993) J.M. Zelle and R. Mooney, "ILP
Techniques for Learning Semantic Grammars",
Proceedings /LP Workshop, JJCAI-93, Chambery
(France) , 83-92, 1993 .

A REASONED INTERLINGUA FOR KNOWLEDGE-BASED MACHINE
TRANSLATION

John R.R. Leavitt, Deryle W. Lonsdale, and Alexander M. Franz
Center for Machine Translation, Carnegie Mellon University,

Pittsburgh, Pa., USA, 15213.
jrrl@cs.cmu .edu, lonz@cs.cmu.edu, amf@cs.cmu.edu

Abstract
Research in machine translation (MT) has resulted in a
number of Machine Translation systems that are based
on the interlingua approach. This paper reports the re
sults of designing an interlingua for a large-scale, prac
tical MT system designed to translate technical infor
mation from English into a number of target languages.
After an analysis of the main features of the translation
problem faced by this system we describe the princi
ples underlying our design decisions. We address is
sues such as the design and development methodol
ogy, the grain size of the representation, and our efforts
to endow the interlingua representation with the abil
ity to degrade gracefully. We conclude that large-scale
MT of technical documentation can be achieved with an
interlingua-based architecture if the pivotal point of the
system, the interlingua, has been designed in a systems
oriented manner.
Keywords: Machine Translation, Applications, Knowl
edge Representation

1 Introduction

An interlingual architecture for machine translation
(MT) has a number of advantages over other possi
ble architectures, such as the "transfer" model. In an
interlingua-based architecture, source text analysis and
target text generation are divided into two separate
components. An intermediate knowledge representa
tion level, called the interlingua, mediates between the
analysis and generation components. That is, the anal
ysis component creates interlingua representations for
the source text, and the generation component starts
from the interlingua representation and creates target
text from it. This allows the various knowledge sources
(including knowledge sources for different languages)
to be developed in parallel, and it creates an indepen
dence between the different components that greatly
supports the development of more than one language
pair.

On the other hand, an interlingua-based architecture
creates a number of new difficulties, because the inter
lingua becomes the central pivot point for the entire
translation process. This paper describes the design
and implementation of the interlingua for the KANT
project [Nyberg and Mitamura, 1992J, a large-scale Ma
chine Translation project for translating technical texts

into multiple target languages.

2 Problem Definition

This section describes the problem of high-quality auto
matic translation of technical information.

2.1 Knowledge Sources

Machine translation requires the use of various types
of knowledge (hence the term "Knowledge-Based Ma
chine Translation" [Nirenburg et al., 1992]). For each
language, this includes spelling, contraction, and for
matting rules; morphological rules; lexical knowledge,
including syntactic features, semantic concepts, and col
locational and terminological information; knowledge
about the grammatical structure; and semantic rules.
In addition, a certain amount of knowledge about the
domain is required .

2.2 Multiple Targets

The KANT project deals with machine translation as a
tool for global information dissemination. For exam
ple, one KANT application under development trans
lates technical service information for Caterpillar, Inc.
products (heavy machinery) from English into the lan
guages of the major export markets. Another example
of a possible domain is user information for consumer
electronics, such as television sets. Since there is only
one source language, the analysis component can lean
towards slight language dependence, but it is necessary
to handle generation in multiple languages.

2.3 Technical Sublanguage Translation

KANT is a sublanguage translation system. That is, it is
not designed to translate all of the English language,
but rather a well-defined subset. An application sub
language is constrained both by the domain from which
the source texts are drawn (e.g. service information for
heavy machinery), and by general restrictions that form
a "Constrained Technical English." Since these restric
tions define lexical, syntactic, semantic, and conceptual
inventory that is in a fundamental sense closed (while of
course remaining open for extensions within the frame
work), it is possible to achieve complete coverage for
the source sublanguage during system development.

17

I

.1

• 1

·,

French ~
Generation ,__ __ ~

~ , Analysis 1-I--•• Interlingua

Spanish ~S . h
Generation 1----~

I Gen:ration l ,_ ___ , 8
Figure 1: The Interlingual MT Architecture

Furthermore, Standard Generalized Markup Lan
guage (SGML) text markup codes are used in the in
put. Each application uses a tailored Document Type
Definition (DTD) that includes tags for the logical and
semantic structure of the domain. These tags are used
directly during analysis, help to structure the source
text, and are explicitly represented in the interlingua.

Compared to literary prose or poetry, technical infor
mation is conceptually, semantically, and pragmatically
rather uncomplicated. This allows for another impor
tant feature: KANT translates on a sentence-per-sentence
basis, and does not attempt to compute complicated
pragmatic and discourse meanings. This means that the
information that has to be represented in the interlingua
is restricted to a feasible amount.

2.4 Modular Design
Multilingual MT is a complex problem. The different
knowledge sources for the various languages need to be
developed by separate language experts, and domain
knowledge has to be encoded into the domain model
by an expert in the domain. This calls for a modular ar
chitecture that separates knowledge sources from pro
cessing engines, shields different languages from each
other to avoid language-pair-specific development, and
that provides module interfaces that are habitable for
language experts who are not necessarily skilled pro
grammers.

2.5 The Interlingua Approach

The solution to these challenges is to divide the prob
lem into source language ana lysis, and target language
generation (see Figure 1). The interface between these
two components is an intermediate language called the
interlingua. It is a language-independent, unambiguous
representation of the meaning of the input text that has
to fulfill a simple functional condition: the interlingua
representation must be sufficient for accurate translation
in a technical domain.

3 Design Principles

This section describes the principles underlying the de
sign of the KANT interlingua. Section 4 shows how these
principles were put into practice.

3.1 Reasoned Approach

Some MT projects adopt a certain theory or methodol
ogy at the onset and adhere to it throughout develop
ment. In our approach, the first step is to analyze the
problem, and then to "reason out" a design that results
in a practical, working system.

3.2 Staged Approach

Since the interlingua plays a central role in the system,
we chose to develop it by a method of iterative refine
ment. This allows development of the separate compo
nents to proceed smoothly in parallel not only with each
other, but with the development of the interlingua itself.

3.3 Balanced Approach

[Tsujii, 1988) discusses three general ways to approach
the task of choosing and implementing an interlingua:

• top-down: by considering the domain and enu
merating a priori the concepts, processes, and rela
tionships required for its treatment;

• bottom-up: by considering the (disambiguated)
lexical content expressed by text discussing the
domain, and then defining sets, hierarchies, and
other relevant relationships; and

• decompositional: by (re-)expressing all relevant
aspects of the domain with respect to a highly re
stricted set of semantic primitives.

We believe that the best design method is a com
bination of the top-down and bottom-up approaches.
Previous work, and linguistic theory, guides an initial
top-down structuring of the domain of the interlingua.
Then, corpus-based incremental bottom-up work ex
tends the interlingua towards complete coverage of the
domain.

3.4 Comprehensive Approach

18

We believe that the interlingua must represent infor
mation from all necessary levels of linguistic analysis:
Lexical, syntactic, and pragmatic. The interlingua is de
signed to represent all such necessary features, but no
more.

4 The KANT Interlingua
The KANT interlingua is a recursive representation
scheme using nested frames to correspond to informa
tion contents of elements of source sentences. Each in
terlingua frame contains a conceptual head and a se
ries of feature-value pairs and semantic slots which in
turn contain additional interlingua frames. Concepts
can correspond to source language expressions (e.g.
the action *a -bond), semantic units from the domain
(e.g. *c - d ec ima l - numbe r), or structural elements such
as tagged SGML constituents. A sample interlingua
structure from the domain of heavy equipment manu
facturing is shown in Figure 2.

Space prohibits a complete explanation of all the parts
of the KANT interlingua here, but it is described exten
sively in [Leavitt et al., 1993]. This document includes
not only detailed discussions of the semantic roles, con
cepts, and features used in interlingua, but also exten
sive examples of their usage, which also serve as a test
suite for the implementation.

"The gasket must be bonded to the valve cover between the bolt holes
(14 places) with <product> permabond 102 <\product>." ==}

(*a-bond
(punctuation period)
(mood d ec l arat ive)
(obliga ti on med ium)
(t e nse present)
(top i c-role theme)
(theme (* a-gas ke t

(number singu l ar)
(reference definite)))

(attach_to (* o-va lve-cov er
(number s ing ul ar)
(refere nce definite)))

(l oca t ed_be tween
(*o- bo lt - hole

(number plural)
(reference d efinite)
(paren t het ica l

(*o-p l ace
(number plural)
(ge ner i c +)
(qu a ntity

(* c-dec ima l - number
(integer "14")
(numbe r - type card ina l)
(number - form numer i c)))))))

(mea n s _with (*s-product
(value "Perma bond 102 "))))

Figure 2: Example KANT Interlingua Structure

4.1 Conceptual Grain Size
Past MT efforts have addressed the problem of speci
ficity in interlingual representations in several different
ways. Many involve the creation of a highly structured
language-neutral representation which will not be sub
ject to the nuances, ambiguities, and other vagaries of

natural linguistic usage. In addressing the granularity
issue for the representation, we chose to combine the
best features from different possible design paradigms.

With respect to the choice of primitives, we proceeded
in both bottom-up and top-down fashions. On the one
hand, we established a circumscription of the domain
addressed, discourse styles, and typical document struc
ture. At the same time, though, we carried out extensive
bottom-up identification of the domain through extrac
tion of knowledge by automated corpus analysis tech
niques.

From a linguistic perspective, we also proceeded in
both directions. Whereas others have sought to in
corporate into an interlingua framework the expressive
machinery of formalisms from logic, programming lan
guages, or descriptive linguistic theories, direct inter
pretation cannot always guarantee an appropriate gran
ularity for a unified and comprehensive treatment of lin
guistic phenomena. We have chosen to avoid the small
grain size of interlingual approaches like UNilRAN,
which is based on a theory of lexical semantic descrip
tion. While useful in other contexts, and in fact are not
incompatible with a KBMT approach, it seemed overly
specific for our needs.

To illustrate this overspecificity, we include ex
amples from two other interlinguas. Figure 3
shows some excerpts from the TAMERLAN repre
sentation for an advertising text for a doughnut
store[Nirenburg and Defrise, 1994]. The representation
covers more than individual sentences, and it is struc
tured as a sequence of frames that are related to each
other via pointers. As can be seen from the example,
TAMERLAN represents a far greater level of detail, and
includes pragmatic and discourse information.

Dorr [1993] uses a different, but still overly rich, type
of interlingua. An example of this structure is shown in
Figure 4.

We have found that rather that attempting to attain
the most diminutive grain size, it is quite useful to per
form lexical chunking, combining such highly lexical
ized items as fixed phrases, technical nomenclature, and
company-specific terminology.

Our grain-size was also set based on an examination
of the communication content of the documents we ad
dress. Realizing that the complexity of natural language
phenomena tends to favor the creation of complicated
interlingua structures, we sought to avoid too complex
a set of relations, features, and concepts for our con
strained domain. For example, some systems seek to
establish a comprehensive modeling from the perspec
tive of an intelligent agent interacting with a complex
environment, and following goal-directed behavior in
volving interpretation of discourse and situational con
texts (cf. [Defrise, 1993]). Certain types of text may
well require such considerations; for ours, they tend to
introduce avoidable overhead and complexity.

Clearly our goal was to design a minimalist represen
tation, considering both the breadth and depth of the
domain addressed, and avoiding the opposing pitfalls
of over-complexity and under-specificity.

19

· I

"Drop by your old favorite Dunkin' Donuts shup . .. " ===>

(make_f rame text_l
(clauses

(value c l a u se_l c lause_2 c l a u se_ 3 ...))
(relat i on s

(value r e lation_l re l ation_2 ...))
(attitudes

(value att itude_l at titude _ 2 ...))
(producer- inte nti ons

(value producer-intention_l)))

(make_frame clau se_l
(he ad (value %vi sit_l))
(aspec t

(dura ti on prolonge d)
(phase beg in)
(ite rati o n 1))

(timP (value time_2)))

(make_frame %v i s it_l
(i s-toke n -o f (value *visit))
(agent (va lu e *consumer*))
(des tinati o n (value %s hop_l)))

Figure 3: Example Tamerlan Interlingua Structure

4.2 Graceful degradation

In that the KANT interlingua is a simple recursive data
structure, it contains very little interrelation between el
ements. Only the interrelations that are necessary for
generating output are represented. Furthermore, it is
possible for the generation component to fail to realize
various portions of the interlingua and still produce ac
ceptable (if incomplete) output. For example, consider
the interlingua structure in Figure 2. During generation,
if the contents of the means_wi th or pare nthet i cal slot
were not realized, the resulting sentence would still con
vey the main idea of the sentence.

Similarly, if an incorrect value is assigned to a feature,
an incorrect, but still comprehesible sentence can usu
ally be produced. For example, during the early devel
opment of the system, the values of the number feature
for objects were changed from SG and PL to Singul a r
and Plural. For a while after that decision was made,
an occasional (number sg) or (number pl) would ap
pear. In these cases, the generator would usually pro
duce a sentence in which the only error was the number
on the noun phrase produced from the object and per
haps the subject-verb agreement if the affected object
was mapped to the subject. Otherwise, the sentences
were just fine and were certainly comprehensible.

Of course, there are places where a missed feature
or semantic role would cause less graceful degrada
tion. For example, failing to realize the contents of
the attach_to or theme slot in the example interlingua
structure would produce unacceptable output. There
are, in essence, two classes of information in the inter-

lingua - that which is necessary to create acceptable
output and that which is not. If the latter is missing, the
KANT interlingua may still maintain integrity, while an
error or omission within the first class will cause a le
gitimate failure . Our interlingua differs from others in
that we have tried to shift as much information as possi
ble from the former class into the latter, by minimizing
interactions between elements.

"I stabbed John ." ===>

[EVENT CAUSE ([THING I],

[EvENT GOposs ([THtNGKNIFE-WOUND],

[PArn TOWARDross

([POSITION AT Poss

([THING KNIFE-WOUND], [THING JOHN])])])))]

Figure 4: Example Dorr [1993] Interlingua Structure

In addition, since the structures are simple, general
ized rules can be written for the generation components
to handle most constructions, which further minimizes
the chance of poor output. If the information for a given
sentence were represented as a collection of objects that
are connected only by a number of highly interreactive
links, this would be more difficult.

Similarly, on the analysis side, if a semantic role can
not be determined for a given piece of information, a
generic role may be used instead (i.e. gener i c_wi th
instead of g oaLwi th). Generalized rules for mapping
these slots can be included on the generation side, which
results in a further decrease in loss of information and
quality.

4.3 Specification

Throughout the design, a specification document was
maintained, to which both analysis and generation mod
ules of the system could refer for the lates t interlingua
design.

20

After initial considera tion of such issues as lexical
precision, meaning preservation, syntactic markedness,
meta textual reference, and semantic hierarchies, we es
tablished a set of relevant data types and representa
tions. These data structure had to be habitable and
mnemonic, since developers can find working with an
interlingua difficult because of its high degree of ab
straction away from the lexical form of language. De
velopment of large-scale interlingua sys tems such as
ours must not be further complicated by an opaque or
obscure data format.

These decisions formed the basis of the specification
document and test suite, both of which were iteratively
refined.

4.4 Iterative Refinement

One difficulty with interlingual system is what has been
the "horizon effect" seen in other endeavors of natural
language processing. As work proceeds at one level
of definition, specification, and implementation, a cer
tain degree of rigor and expressiveness of the interlin
gua is attained. Still, however carefully this has been
achieved, the expressive power of natural language,
even in restricted subdomains, tends to always favor
greater complexity. In effect a "new horizon" becomes
visible, inviting a further increment to the interlingua
development process.

This effect is minimized in two ways by our approach.
First, the principle of parsimony combined with the na
ture of our target domains effectively limits the amount
of information that the KANT interlingua needs to rep
resent. There are certain phenomena (pragmatics fac
tors, speaker intentions, discourse levels, etc.), which ei
ther are not significant in technical documentation or can
be eliminated via rewriting. The KANT interlingua will
not have to represent these phenomena and so certain
extensions to the horizon become impossible. Second,
due to the central role of the interlingua in the system,
a rapid prototyping and incremental refinement strat
egy, similar to the spiral software development model
[Boehm, 1985]), is necessary. By planning incremental
refinement into the design process, the remaining hori
zon effect is transformed into a forcing function for each
refinement iteration. In essence, the horizon effect be
comes part of the design process, rather than a force
opposing it.

There are also additional advantages of the incremen
tal approach. As mentioned earlier, in following an
incremental refinement strategy in designing the inter
lingua, both the analysis and generation components
of the system could be developed in parallel not only
with each other, but also with the development of the
interlingua itself. ,

The interlingua is the totality of information passed
by the analysis module to the generator. Since the in
terlingua plays this central role in the system, its design
can easily become a bottleneck for the entire develop
ment process, as neither analysis nor generation can
proceed without first having the interlingua specified.
In addition, the relationships between the concepts rep
resented in the interlingua also evolve incrementally as
the related frame-based hierarchical domain model is
refined.

By allowing for incremental development, the inter
lingua's central role in the system, rather than constitut
ing a bottleneck, became for us a focal point of develop
ment effort. That is, both sides were able to be proceed
using the latest information about the interlingua and
provide feedback to the the interlingua design process.

For example, the semantic roles that correspond to
English prepositional phrases were not specified until
well into the interlingua design process . However, be
cause the heart of the interlingua had already been spec
ified, both the analysis and generation teams were able
to work with this underspecified form (albeit without
any source prepositional phrases being represented in

21

the interlingua). Similarly, the domain model, which
supplies the concepts used to head interlingua frames,
was also developed in parallel. It was possible, when
necessary to refine the grain size of the conceptual ob
jects (e.g. to account for new subtleties of meaning)
without affecting any other parts of the interlingua, and
therefore without impacting more than necessary on the
analysis and generation efforts.

A final advantage of adopting an incremental refine
ment strategy from the onset is that information ob
tained during testing may be used as design feedback.
It is not uncommon for many representation problems
to go unnoticed until actual text is fed through the MT
system. In many cases, this form of feedback can be
difficult to integrate back into the interlingual design,
because the design and the design methodologies do
not support iterative development. In our system, we
were able to use the results of testing to create a better
interlingua specification, rather than having to retrofit
new structure into a existing inflexible base.

While in theory this approach does not eliminate
the development bottleneck since the software devel
opment could overtake the interlingua development, in
practice this is unlikely.

5 Conclusion

In this paper we have identified and described the ap
proach that we have followed in the design and imple
mentation of the interlingua for the KANT knowledge
based MT system. We have shown how, in order to
achieve a large-scale practical system, fundamental soft
ware research and development principles must be fol
lowed. Our experience indicates that such efforts are
only possible when the central knowledge representa
tion is sufficiently expressive yet constrained, thorough
yet practical, and well-specified yet extensible.

The reasoned approach we describe has been vali
dated by the KANT application discussed, the first in
stantiation of which is about to be deployed at Cater
pillar, Inc. for translation from English to French. The
approach has been tested for Japanese,German, and Ital
ian generation and development for large-scale Spanish
and German generation components is already under
way with additional languages to follow.

6 Acknowledgments

We would like to acknowledge the other members of
the KANT team, in particular Jaime Carbonell, Eric Ny
berg, Teruko Mitamura, Kathy Baker, Marion Kee, and
William Walker. We also appreciate the collaboration of
our associates at Carnegie Group Inc. and Caterpillar
Inc.

References

[Boehm, 1985] Boehm, B. (1985). A spiral model of soft
ware development and enhancement. In Proceedings
of the International Workshop on Software Process and
Software Environments.

I

I

..

I

[Defrise, 1993] Defrise, C. (1993). Discours et traduction
automatique: une approche interlangue basee sur Jes
connaissances. In Bouillon, P. and Clas, A., editors, La
traductique. Les Presses de l' Universite de Montreal.

[Leavitt et al., 1993] Leavitt,J., Franz, A., and Lonsdale,
D. (1993). The KANT interlingua specification. Tech
nical Report CMU-CMT-93-143, Center for Machine
Translation, Carnegie Mellon University.

[Nirenburg et al., 1992] Nirenburg, S., Carbonell, J.,
Tomita, M., and Goodman, K. (1992). Machine Transla
tion: A Knowledge-based Approach. Morgan Kaufman,
San Mateo, CA.

[Nirenburg and Defrise, 1994] Nirenburg, S. and De
frise, C. (1994) . Application-oriented computation
semantics. In Johnson, R. and Rosner, M., editors,
Computational Linguistics and Formal Semantics. Cam
bridge University Press.

[Nyberg and Mitamura, 1992] Nyberg, E. and Mita
mura, T. (1992). The KANT system: Fast, accurate,
high-quality translation in practical domains. In
Coling-92.

[Tsujii, 1988] Tsujii, J. (1988). What is a cross-
linguistically valid interpretation of discourse? In
Maxwell, D., Schubert, K., and Witkam, A. P. M.,
editors, New Directions in Machine Translation. Foris
Publishers .

22

A Goal-Directed Multi-Level Stylistic Analyzer

Pat Hoyt and Chrysanne DiMarco*
Department of Computer Science

University of Waterloo
Waterloo, Ontario, Canada N2L 3Gl

cdhnarco@logos.uwaterloo.ca

Abstract

Sophisticated natural language pro
cessing systems should be able to deal
with the subtle but significant ef
fects of style on communication, but
the difficulties of representing stylis
tic knowledge in a formal represen
tation had resulted in only simplis
tic and heuristic approaches to imple
mentation.
In this paper, we take the problem of
formally representing stylistic knowl
edge as our starting point. It is our
belief that stylistic knowledge must
first be formalized, rendered in a well
defined representation, before a com
putational analysis of style can be at
tempted. And it is our further con
tention that a formal representation
will facilitate a very transparent im
plementation. We show how a for
mal representation of syntactic style
can be used as the basis for a general
purpose stylistic analyzer that can
produce descriptions of the stylistic
features of an input sentence at mul
tiple levels of abstraction.

1 The importance of stylistic analysis
in natural language processing

The importance of dealing with pragmatic aspects oflan
guage in computational systems is undeniable. People
communicate a great deal of information through prag
matic nuances, and a knowledge of how these subtleties
influence meaning is part of a full understanding of lan
guage. Systems that could analyze the effects of style
on communication would provide information about the
implicit meaning that is contained in a text. And gen
eration systems that could control style would produce
text that intentionally conveys a specific pragmatic ef
fect. Both stylistic analysis and generation could be used

*Please direct all correspondence to the second author.

in applications, such as text critiquing, second-language
instruction, and machine translation, for which under
standing the effects of how something is said is as im
portant as understanding what is said. Ultimately, com
putational stylistics should be a part of any system that
attempts to deal with 'real-world' language.

But very few natural language understanding systems
have attempted to deal with issues of style, 1 and those
that do have generally taken a simplistic and heuristic
approach. Stylistic analysis has not yet developed the
systematic and rigorous methods of syntactic analysis
and semantic interpretation. Part of the reason is ob
vious: understanding style is hard . Stylistic effects are
difficult to articulate and even more difficult to define.

In this paper, we take the problem of formally repre
senting stylistic knowledge as our starting point . It is
our belief that stylistic knowledge must first be formal
ized, rendered in a well-defined representation, before a
computational analysis of style can be attempted. And
it is our further contention that a formal representation
will facilitate a very transparent implementation. We
show how a formal representation of syntactic style can
be used as the basis for a general-purpose stylistic an
alyzer that could be used as a component of a natural
language processing system.

2 A theory of syntactic style

23

A formal representation of stylistic knowledge should
ideally be based on an underlying linguistic theory: there
should be a vocabulary of concepts, a clear definition
of how the concepts are related , and a systematic way
for building new concepts out of existing ones. In our
earlier work [DiMarco and Hirst 1993; Green 1992], we
presented a computational theory of syntactic style that
is a multi-level representation of stylistic grammar rules.
This section summarizes the details of this work as pre
sented in [DiMarco and Hirst 1993]. Green [1992] de
velops the linguistic underpinnings of the theory; Hoyt
[1993] presents the representation of the complete theory
in a syntactic stylistic grammar.

1 By style, we do not mean literary style, but rather the
style of texts such as high-quality magazines and newspapers,
technical manuals, and business correspondence.

. '

I

2.1 Fundamental concepts

In designing a computational theory of style, we con
structed a vocabulary of stylistic concepts at three levels
of abstraction:

• Primitive elements are stylistically significant
syntactic properties of sentence components.

• Abstract elements are general stylistic proper
ties of groups of sentences.

• Stylistic goals are the writer's intentions for
high-level pragmatic properties of text.

At all levels, the guiding principle of the theory is that
style is goal-directed, that is, linguistic choices are made
to achieve specific stylistic goals, such as clarity or ab
straction. Therefore, we tie low-level syntactic choices
to high-level stylistic goals. The fundamentai concepts
that are used to integrate the multiple levels of the the
ory are stylistic concord and discord, which we define as
follows:

Concord: A stylistic construction that conforms to the
norm for a given genre.

Discord: A stylistic construction that deviates from the
norm. 2

2.2 Primitive elements of style

At the lowest level of the theory, there are two views of
sentence structure, connective and hierarchic:3

Connective ordering: The result of cohesive bonds
drawing together components in a linear order
ing.

Hierarchic ordering: The result of bonds of subordi
nation and superordination drawing together
components in a nested ordering.

The connective and hierarchic orderings are used in the
definition of primitive stylistic elements to provide a pre
cise syntactic basis to the theory, yet also allow a map
ping to the abstract elements.

We use the terms conjunct and antijunct with su
perscripts to indicate the degree of connectivity or dis
connectivity. Syntactic components are classified as ei
ther conjunct 5 or conjunct 6 (excessively connective),
conjuncts or conjunct4 (strongly connective), conjunct 2

(moderately connective), conjunct 1 (mildly connective),
and conjunct 0 (neutral). Similarly, the terms antijunct 0

through antijunct4 are used to indicate increasingly dis
connective effects; conjunct O and antijunct O are the
same.

There is a complementary vocabulary of primi
tive elements for the hierarchic view. The stylis
tic effects of syntactic components are correlated
with the degree of subordination or superordination;
the classifications are analogous to the connective:
subjunct4 through subjunct O (decreasingly subordinate)

2 Discord, in our view, is not necessarily 'bad'. Indeed, it
is the strategic use of discord, deviation from the norm, that
can give expressiveness to writing.

3 These two complementary kinds of analysis are implicit
in the work of most stylists and rhetoricians.

and superjunct 0 through superjunct4 ~increasingly su
perordinate); subjunct 0 and superjunct are the same.

We adapted the work of Halliday and Hasan [1976]
on cohesive relations to assign classifications to the con
nective elements. Halliday and Hasan consider substi
tution, including ellipsis, to be the most strictly co
hesive relation, followed by reference, and then con
junction. We adopted this ranking, and so we clas
sify intrasentential substitution and ellipsis as strongly
connective (conjuncts), reference as moderately connec
tive (conjunct 2), and conjunction as mildly connective
(conjunct 1). We also classify interpolation, parentheti
cal constructions, as disconnective (antijunct 2).

In assigning a hierarchic classification to a syntactic
component, we adapted Halliday's [1985] work on subor
dination, specifically, embedding and hypotaxis; and the
definition of the term superordination by Quirk et al.
[1985]. We classify embeddings as strongly subordinate,
subjuncts, and hypotactic structures as only mildly sub
ordinate, subjunct 1 •

2.3 Abstract elements of style

The primitive elements of style are combined into pat
terns of abstract elements that describe general stylis
tic properties related to syntactic parallelism, structure
nesting, and linear ordering. The abstract elements are
defined as follows:

Homopoise: A sentence with interclausal coordination
of syntactically similar components.

Heteropoise: A sentence in which one or more par
enthetical components are syntactically 'de
tached' and dissimilar from the other compo
nents at the same level in the parse tree. 4

Monoschematic: A sentence with a single main clause
with simple phrasal subordination and no ac
companying subordinate or coordinate clauses.

Centroschematic: A sentence with a central, domi
nant clause with one or more of the following
optional features: complex phrasal subordina
tion, initial dependent clauses, terminal depen
dent clauses.

Polyschematic: A sentence with more than one cen
tral, dominant clause and at least one depen
dent clause.

Resolution: A shift in stylistic effect that occurs at the
end of a sentence and is a move from a relative
discord to a stylistic concord.

Dissolution: A shift in stylistic effect that occurs at the
end of a sentence and is a move from a relative
concord to a stylistic discord.

The remaining abstract elements describe concordant or
discordant stylistic effects in particular positions. The
basic elements are initial concord, medial concord, and
final concord, with a similar range of discord elements.

4 A heteropoise can be initial, medial, or final, depending
on the position of the parenthesis in the sentence.

24

2.4 Stylistic goals

As we have noted, the abstract elements are defined in
terms of the lower-level primitive elements. The abstract
elements are in turn used as the basis for the definition
of higher-level stylistic goals. Stylistic goals can be or
ganized along orthogonal dimensions. For example a
writer might try to be dear, or obscure, or make no

1

ef
fort either way. Clarity and obscurity are thus opposite
ends of a stylistic dimension. Likewise, the goals of con
creteness and abstraction form a dimension, and so do
staticness and dynamism.

We adapted descriptions of stylistic goals from text
books of style, such as [Kane 1983], and rewrote these
descriptions in terms of our abstract elements. Clarity,
for example, is characterized by simple monoschematic
sentences, centred centroschematic sentences, and par
allel homopoisal sentences. Concreteness is associated
with sentences that highlight a particular component:
these are our heteropoises and discords. And staticness
is characteristic of 'fixed-form' sentences in which there
is little stylistic variation, that is, monoschematic or ho
mopoisal sentences.

3 A stratified grammar of style

3.1 The style of the grammar

Our theory of syntactic style is now the basis for a gram
mar of style, which in turn will provide a specification
for our stylistic analyzer. The hierarchical nature of the
theory lends itself naturally to a stratified, context-free
grammar. It is useful to think of the grammar as a means
of recognizing a particular style tree, analogous to a syn
tactic parse tree. Just as a syntax tree is built up from
individual words at the leaf nodes to a whole sentence
at the root level, a style tree can be thought of as be
ing built up from primitive elements at the leaf level to
stylistic goals at the root. The syntax-tree analogy can
be extended: we can consider the syntax-tree nodes to be
annotated with stylistic terms, starting with the leaves
and working up through the intermediate nodes to the
root node.

To illustrate the structure of the grammar, we will
present selected rules that build from simple syntactic
components to full sentences. 5

3.2 Level of primitive elements

3.2.1 Basic components

I~ the development of our theory of style, we were es
pecially concerned with the relationship between style
and the structure of the nominal group. As a conse
'.].uence, a large number of the rules in our grammar
mvolve definitions of premodification and postmodifica
tion. These definitions are built up from adjectivals,

5_T~e rules are taken from Hoyt's [1993] full syntactic
stylistic grammar of 240 rules, which is a revised and ex
tended version of the preliminary grammar presented in [Di
Marco and Hirst 1993]. The notation used in the grammar
is explained in the Appendix to this paper.

25

nouns, prepositional phrases, etc . One of the connec
tive rules for postmodification defines conjunct1 post
modification, which deals with the case of a prepositional
phrase, a conjunctive element. In the hierarchic view, a
prepositional phrase is classified as subjunct3 postmod
ification, as it is an embedded element.

conjunct1 postmodification --+

prepositional phrase

subjunct3 postmodification --+

prepositional phrase

We introduce the notion of a transitional level in the
grammar, in order to dearly separate the levels of primi
tive elements and abstract elements. At this level, prim
itive elements are combined into transitional elements,
which directly indicate the abstract elements of which
they can be a part. For example, the rules below de
fine the kinds of postmodification that can be used in
building a monoschematic, centroschematic, or concor
dant sentence.

monoschematic postmodification --+

subjunct0 postmodification

subjunct3 postmodification and
(nominal group or prepositional phrase)

centroschematic postmodification --+

conjuncti postmodification where O< i < 4

subjuncti postmodification where O< i ::;3

concordant postmodification --+

conjuncti postmodification where o::; i < 4

subjuncti postmodification where o::; i ::; 3

3.2.2 Noun phrases
The various types of premodification and postmodifi

cation are combined into different kinds of noun phrases.
In the examples below, we define the kinds of noun
phrases that can be incorporated into monoschematic,
centroschematic, and concordant sentences.

monoschematic noun phrase --+

noun phrase with
(monoschematic premodification and
monoschematic postmodification)

centroschematic noun phrase --+

noun phrase with
(centroschematic premodification and
centroschematic postmodification)

concordant noun phrase --+

noun phrase with
(concordant premodification and
concordant postmodification)

3.2.3 Main clauses
In an analogous manner, the rules for the other ma

jor sentence components (prepositional phrases, comple
ments, verb phrases, and dependent clauses) are built up
from primitive elements to form transitional elements.
The various types of majors, or main clauses, can then
be defined from component transitional elements, as m
the following examples.

monoschematic major --+

major with
{monoschematic noun phrase and
monoschematic verb phrase)

centroschematic maJor --+

major with
(centroschematic noun phrase and
centroschematic verb phrase)

concordant major --+

major with
{ concordant noun phrase and
concordant verb phrase)

3.2.4 Complete sentences

Finally, we define rules for complete sentences, which
consist of at least one main clause, with optional depen
dent clauses. Selected rules are as follows:

monoschematic complete --+

monoschematic major

centroschematic complete --+

{ concordant clause) • centroschematic maJor
(concordant clause)*

concordant complete --+

{ concordant clause)* concordant maJor
(concordant clause)*

initial concordant complete --+

concordant major (clause)•

(concordant clause) • major {clause)*

3.3 Levels of abstract elements and stylistic
goals

At the level of abstract elements, the various types of
complete sentences are used to define stylistic terms
such as monoschematic, centroschematic, and initial con
cord:

monoschematic --+

monoschematic complete

centroschematic --+

centroschematic complete

initial concord --+

initial concordant complete

Finally, at the top level, the abstract elements are used
to define stylistic goals. For example, as we described in
section 2.4, clarity would be defined by the following
rule:

clarity --+

monoschematic

centroschematic

homo poise

3.4 An application of the grammar

The following short example illustrates the kind of anal
ysis that the stylistic grammar can be used to produce
for the sentence True, posterity has been kind. 6

3.4.1 Primitive-element analysis

The sentence is concordant, for it consists of a con
cordant main clause, the major, with no subordinate
clauses. It begins with a style disjunct, true, which is
an elliptic adjectival and therefore considered to have a
connective, concordant effect, even if used in the initial,
parenthetical, position. After the initial disjunct, the
sentence continues with the bare noun posterity, which,
lacking both premodification and postmodification is a
minimal, and therefore concordant, noun phrase. The
sentence ends with the basic verb phrase has been kind,
consisting of only the copula been, and the concordant,
conjunct1 adjective kind; this is an inherently concordant
verb phrase.

The sentence is concordant from the hierarchic view
as well, for it has the form of a concordant initial het
eropoisal complete sentence. This indicates that the sen
tence begins with a parenthetical construction, which in
this case is the disjunct, true, a superordinate adjectival.
The bare noun posterity, lacking both premodification
and postmodification, is a monoschematic noun phrase.
The verb phrase has been kind is basic and therefore
monoschematic.

3.4.2 Abstract-element analysis

In the connective view, the significant elements
are initial and medial concords-the sentence is both
monoschematic and trivially centroschematic. It is also
an initial heteropoise.

In the hierarchic view, the sentence is centroschematic
and an initial heteropoise. It is the initial disjunct, true,
that introduces a superordinate effect; this feature makes
the sentence slightly too complex to be monoschematic.

6 The next six paragraphs have been adapted from [Di
Marco and Hirst 1993).

26

3.4.3 Stylistic-goal analysis

The presence of the concords in the connective
view, together with the connective and hierarchic cen
troschematic structures, give the sentence an effect of
clarity. In a less obvious manner, the presence of an
initial disjunct affects other stylistic goals. Because a
superordinate, parenthetical, component is present, the
sentence is a heteropoise and therefore considered to be
concrete.

To summarize, this is a simple, clear sentence with the
slight incongruity of an initial parenthesis to relieve its
blandness.

4 A stratified stylistic analyzer

4.1 General design

Our theory of syntactic style is represented by a corre
sponding set of grammar rules that defines the relation
ship between syntactic structures and stylistic effects.
Now, we will use this grammar of style as the specifi
cation for a stylistic analyzer, AssET, that will produce
stylistic parses of input sentences. In designing ASSET,
we were influenced by the following considerations:

Evaluation of the theory: We viewed ASSET as an
essential tool for testing and evaluating our theory of
style.

Parser independence: A syntax-based stylistic anal
ysis of a sentence will obviously include a syntactic parse
of the sentence. Thus, an ordinary parser is a nec
essary part of any stylistic analyzer. Our decision to
make ASSET totally independent of the parser was in
part theoretical-ASSET would not have to compromise
theory because of limitations and/ or methodology of
the parser-and pragmatic-developing a parser from
scratch was beyond the scope of our work.

This requirement meant that the sentence must be
parsed before the stylistic analysis. This allows the sub
stitution of parsers within the system with only the re
quirement that a module be created to transform the
output of a particular parser into the specified format
for ASSET.

Modularity: Future work on the theory will include
refinements to the abstract elements and transition el
ements, so the prospect of these revisions made modu
larity, good software engineering practice in any case, a
necessity.

Efficiency: ASSET must be reasonably efficient.

Independence from potential uses: The potential
applications of a stylistic analyzer include intelligent
computer-assisted language instruction (I CALI) and ma
chine translation (MT). At the present state of develop
ment of ICALI and MT, it is impossible to know ex
actly which information and what representation would
be most useful. This implied that, in addition to let
ting the user know which stylistic goal(s), if any, have
been met, all stylistic information generated during the
analysis must be part of the output of ASSET.

[[[[[none J, complement J, [[[runs),
lexicaLverb), verb), verb_phrase), [[[[[[[none), postmodifier),
[[[park), lexical....noun), noun], [[([the), definite_article), ad
jectival), premodifier), nominaLgroup), [[in), preposition),
prepositional_phrase), postmodifier], [[[man), lexical...:noun),
noun), [[[[the), definite_article), adjectival), premodifier), nom
inaLgroup), noun_phrase), major], complete)

Figure 1: AssET's input in its list-structure form.

The need to have all stylistic information available fur
ther implied that the analysis of one part of the sentence,
e.g., the noun phrase, cannot constrain that of another,
e.g., the verb phrase. To obtain some degree of effi
ciency, in spite of the lack of constraints on the analysis,
a bottom-up, or leaf-to-root, approach is used. A syn
tax tree that parallels the syntactic organization of our
grammar is the basic structure of ASSET. This tree is
represented as a list structure that describes a breadth
first, right-to-left traversal. Figure 1 shows the list struc
ture that is the input to ASSET for the simple sentence
The man in the park runs.

The parser used in the development of ASSET is
Pundit 7 (Prolog UN derstands Integrated Text), chosen
because of its fairly large syntactic coverage and its com
prehensive treatment of conjunctions. These are neces
sary features for the analysis of stylistically interesting
sentences. Pundit uses a restrictive grammar, written as
a set of BNF (Backus-Naur Form) rules. Pundit's out
put consists of a syntactic tree in this BNF form; it is
this output that is transformed into the parse tree input
into ASSET.

4.2 The representation of the grammar in
ASSET

AsSET's processing mechanism is data-driven, so that
the grammar rules are represented declaratively in a
database. ASSET is essentially a 'tree-walker' that tra
verses the parse tree, annotating the nodes with stylistic
information. The grammar rules have the form shown in
Figure 2.8

As ASSET walks through the parse tree, it uses the
grammar representation to match the pattern of anno
tations currently recorded at a node. At each stage,
ASSET 'knows' what it needs to look for because of the
consistency in the way the grammar is constructed: The
grammar is stratificational, 9 so that elements at each
level are composed from elements at the level below. As
a consequence, ASSET need only look at a small set of

7 Pundit is a natural language understanding system de
veloped by the Unisys Corporation.

27

8 In Figures 2 and 6, the abstract-element terms connec
tive, hierarchic, monoschematic, centroschematic, and con
cordant have been abbreviated to conn, hier, mono, centro,
and concord respectively. The te affix indicates a transition
element analysis that is dependent on the corresponding
transition-element analysis of the syntactic component's (i .e.,
the current node's) children.

9 The stratificational nature of our grammar was influ
enced by Sydney M. Lamb's work, in particular, Outline of
stratificational grammar, Georgetown University Press, 1966.

I
. I

I

. . I

· 1

postrnodification(conn, prepositional_phrase,
conjunct1).

postrnodification(hier, prepositional_phrase,
pp_subjunct3).

postrnodification(conn_te, conjunct1,
[centro, concord]).

postrnodification(hier_te, pp_subjunct3,
[mono, concord]).

norninal_group(postrnodification(concord),
[prernodification(concord)], concord).

noun_phrase(norninal_group(centro), [], centro).

rnajor(noun_phrase(concord), [verb_phrase(concord)],
concord).

cornplete(rnajor(centro), [], centro).

abstract_elernents(cornplete(centro), [], centro).
stylistic_goals(abstract_elernents(centro), [],

clarity).

Figure 2: Sample AsSET grammar rules

1: Transform the parser output into format specified for
ASSET (TRANSFORMATION MODULE).

2: Annotate the input tree with primitive element clas
sifications {ANNOTATION MODULE).

3: Assign abstract elements to the input sentence
{ABSTRACT ELEMENT MODULE).

4: Assign stylistic goal(s) to the input sentence
{STYLISTIC GOAL MODULE).

5: Output the annotated tree structure.

Figure 3: The general algorithm for ASSET

possible rules at each stage to decide on the next incre
ment in the annotation of the stylistic parse tree.

4.3 The processing modules

The general algorithm for the ASSET system is shown in
Figure 3, along with an accompanying illustration of its
architecture in Figure 4. The Transformation Module is
responsible for changing Pundit's output into the form,
as shown in Figure 1, specified for ASSET.

The Annotation Module is responsible for the task of
analyzing the style of the input sentence at the primitive
element and transition-element levels. The algorithm is
shown in Figure 5. There are two submodules that an
notate the nodes of the input tree with stylistic informa
tion:

Primitive Element Module (PEM): This module
is responsible for analyzing the appropriate nodes by us
ing the primitive-element layer of our computational the
ory. Each node is analyzed from both the connective and
hierarchical viewpoints. The result of the analysis is a
node annotated with the primitive stylistic descriptions:
either a conjunct or an antijunct element and either a

28

Parser Output

\ I

Transformation Module

(TM)

System Input

-----------, ,-----------

Annotation Module

(AM)

I I

Abstract Element Module

(AEM)

\V

Stylistic Goal Module

(SGM)

----------- -----------

\ I

System Output

Figure 4: The overall architecture of ASSET

1: Annotate 'near' leaf nodes with primitive-element
classifications (PRIMITIVE ELEMENT MODULE).

la. Analyze from the connective viewpoint
(CONNECTIVE MODULE).

lb. Analyze from the hierarchical viewpoint
(HIERARCHICAL MODULE).

2: Annotate the rest of the nodes with transition
element classifications (TRANSITION ELEMENT MOD
ULE).

Figure 5: The algorithm for the Annotation Module.

subjunct or a superjunct element.

Transition Element Module (TEM): This mod
ule takes the parse tree, previously annotated by the
PEM, and annotates the rest of the nodes with abstract
element terms. The TEM uses information provided by
the primitive-element classification of nodes lower in the
parse tree.

It should be noted that the PEM and the TEM do not
work sequentially: because of the bottom-up processing,
calls to the TEM occur whenever the PEM has anno
tated a sufficient number of nodes lower in the parse
tree. Thus, calls to the PEM and the TEM are inter
leaved with each other.

After the primitive-element and transition-element
analyses have been completed, the input sentence is then
classified in terms of the abstract elements and the stylis
tic goals. A fully annotated parse tree is input to the
Abstract Element Module, which then adds abstract el
ement information to the structure and passes it on to
the Stylistic Goal Module. Once the stylistic goals have
been determined, the output structure is complete. Fig
ure 6 shows all the stylistic information contained in the
output structure for the sentence The man in the park
runs.

5 Conclusion

Computational stylistic analysis and generation should
ideally be components of any sophisticated natural lan
guage processing system. However, the difficulties ofrep
resenting stylistic knowledge in a form amenable to com
putational implementation meant that only ad hoc ap
proaches had previously been attempted in dealing with
matters of style in NLP systems.

We have shown how a formal theory of style can be
represented by a multi-level grammar that describes the
relationship between low-level syntactic structures and
high-level stylistic goals. In turn, this grammar has been
used as the specification for an implementation, ASSET,
which produces stylistic analyses at multiple levels of ab
straction. We can foresee such a general-purpose stylistic
analyzer used as a component of NLP systems, such as
for second-language instruction or machine translation,

to produce additional information that contributes to the
full understanding of the implicit meaning of a text .

Acknowledgements

We would like to thank Graeme Hirst for helpfully read
ing earlier drafts of this paper and providing very useful
advice. We acknowledge the financial support of the
Natural Sciences and Engineering Research Council of
Canada and the Information Technology Research Cen
tre.

Appendix: Notes on terminology

At all levels of the grammar, the left-hand side of each
rule identifies what is being defined, and the right-hand
side lists one or more alternative realizations, one per
line.

In the grammar, we use various shorthand notations to
simplify the presentation of the rules. However, these ab
breviated forms can be expanded into standard context
free grammar rules. The shorthand notations are as fol
lows; they are illustrated by particular examples, but are
intended for general use:

29

1. adjectival ------+ intensifier adjective
The juxtaposition of terms on the right-hand
side of a rule indicates a concatenation of in
stances of these terms. For example, the rule
above allows the intensifier very to be followed
by the adjective happy to form an adjectival,
very happy.

2. adjectival ------+ (intensifier)* adjective
The Kleene star indicates zero or more occur
rences of the form within parentheses.

3. noun phrase with centroschematic post-
modification

Where a rule has several alternatives, this
shorthand notation using with abbreviates a
long sequence of alternatives (here, the differ
ent types of centroschematic postmodification) .

4. noun phrase with
(centroschematic premodification and
centroschematic postmodification)

And indicates that all conditions on the right
hand side of a rule must simultaneously be sat
isfied by a single constituent.

5. noun phrase with
postmodification and
(nominal group or prepositional phrase)

Or indicates that any one of the conditions on
the right-hand side of a rule must be satisfied.

References

DiMarco, Chrysanne and Hirst, Graeme. "A computa
tional theory of goal-directed style in syntax." Com
putational Linguistics, 19(3), 448-497, September
1993.

I

stylistic_goals(clarity,staticness)

abstract_elements(mono,concord,initial_concord,medial_concord, final_concord)

complete(unono,concord,initial_concord,medial_concord, final_concord])
major ([mono, concord])

noun_phrase(([centro,mono,concord])
nominal_group(([centro,mono,concord])

premodification([conjunct1],[subjunct2], [centro,mono,concord])
adjectival([conjunct1],[subjunct2])

definite_article(the)

noun([conjunctO])
lexical_noun(man)

postmodification([conjunct1j,[subjunct3], [centro,mono,concord])
prepositional_phrase([centro,mono,concord])

preposition(in)
nominal_group([centro,mono,concord])

premodification([conjunct1],[subjunct2], [centro,mono,concord])
adjectival([conjunct1],[subjunct2])

definite_article(the)

noun([conjunctO])
lexical_noun(park)

postmodification([conjunctO] ,[subjunctO], [centro,mono,concord])
postmodification(none)

verb_phrase([mono,concord])
verb(runs)

complement ([mono ,concord])
complement(none)

Figure 6: An example of AssET's output.

Green, Stephen J. A functional theory of style for nat
ural language generation. Master's thesis, Depart
ment of Computer Science, University of Waterloo,
1992. [University of Waterloo Faculty of Mathemat
ics Technical Report CS-92-48].

Halliday, M.A.K. Introduction to functional grammar.
Edward Arnold, London, 1985.

Halliday, M.A.K. and Hasan, Ruqaiya. Cohesion in En
glish. Longman Group Limited, London, 1976.

Hoyt, Patricia A. A goal-directed functionally-based
stylistic analyzer. Master's thesis, Department of
Computer Science, University of Waterloo, 1993.
[University of Waterloo Faculty of Mathematics
Technical Report CS-93-48].

Quirk, Randolph, Greenbaum, Sidney, Leech, Geoffrey,
and Svartvik, Jan. A comprehensive grammar of the
English language. Longman Group Limited, 1985.

30

On Multiple-Valued Deductive Databases

Eli Hagen
Veronica Dahl

School of Computing Science
Simon Fraser University

Burnaby, BC
Canada V5A 1S6

E-mail: {hagen, veronica }@cs.sfu.ca

Abstract

We propose a multiple-valued typed logic that
can serve as a query language to deductive
databases, and which makes it possible to
give more informative answers to queries which
would otherwise simply fail or produce mislead
ing answers. This language can also be used as
an analyser's internal representation of natural
language queries. One important consequence
of this work is our view of a database as a map
ping into relations with multiple truth values
a view that can be transposed to other query
language frameworks as well.

1 Introduction

The idea of using more than two logical values for de
ductive databases is not new. In [Colmerauer, 1982] and
[Dahl, 1982], for instance, three logical values are used
for allowing subtler responses to database queries. The
inspiration for this third value springs largely from con
sidering the semantics of natural language in order to
allow natural language queries.

Recent work on con-
sulting deductive databases through less computation
ally studied human languages-in particular, American
Sign Language-and within a framework of cooperative
responses, has pointed to the desirability of further logic
value distinctions ([Hagen, 1993]).

In this paper we propose a new class of deductive
databases which provides natural, helpful answers to
queries, through the use of a multiple valued semantics
and of incomplete types for quick reasoning on type hi
erarchies. These databases are also tailored in particular
to be used in conjunction with logic-based natural lan
guage analysers, (see e.g. [Abramson and Dahl, 1989;
Stabler, 1992; Johnson, 1991]).

Our line of research makes it possible to use logic
throughout the whole database system: as the database
definition language, as the database query language (af
ter an analyser has translated natural language queries
into logic), as the data manipulation language, and
as the analyser's language (also see [Pereira and War
ren, 1980; Dahl, 1981]). This uniformity of represen
tation helps minimize the interfacing between different

31

components of a natural language consultable deductive
database. We use Prolog as our implementation lan
guage.

Cooperative responses have long been in the literature
of question answering systems (e.g. [Kaplan and Joshi,
1978]). An example would be, for the question: "How
many square planets rotate around the sun?", an expla
nation that there are no square planets, as opposed to
the true but uninformative reply: "None", which leaves
open the possibility that square planets rotate around
other celestial objects.

Many approaches to cooperative responses have been
proposed: probability values (e.g., [Lee, 1992), exten
sions of relational operations onto tables with differ
ent types on null values (e .g., [Liu and Sunderraman,
1990], meta language techniques (e.g., [Leveque, 1981;
Konolige, 1981; Bowen and Kowalski, 1982]). A survey
of the field can be found in [Gaasterland et al., 1992].
To the best of our knowledge, cooperative responses have
not been treated within deductive databases through the
use of the multiple truth values as we propose. Our ap
proach stresses the provision of cooperative responses
from a well defined theoretical standpoint (a rigorous
multi valued logic system), combined with a smooth in
tegration with natural language front ends.

2 Multiple Logic Values-Motivation

The truth values true and false largely retain the mean
ing they have in a traditional binary logic. However, the
new values allow for subtler distinctions than are possi
ble in a binary logic, so some statements that in a binary
logic would evaluate to false will now evaluate to point
less, absurd, mixed, unknown, or inconsistent. Next we
motivate each of these new logical values.

2.1 Pointless

This value was introduced in 13 (see [Dahl, 1981]) for
detection of failed presupposition induced by the defi
nite article. We cover it briefly here for completeness. 1

Consider the following statement:

1) The sales report that John wrote was ready
in one day.

1 In [Dahl, 1981) this value is called undefined.

. J

If we evaluate this with respect to a knowledge base rep
resenting a world in which Alice, not John, wrote the
sales report, it is assigned the value pointless rather than
false, since false would imply that the negation of the
statement:

2) The sales report that John wrote was not
ready in one day.

would have to be acknowledged as true. The article the
presupposes existence and uniqueness of its referent, so if
John did not write the sales report, we say that the pre
supposition failed, and because the presupposition failed,
it is pointless to say whether the report was or wasn't
ready in one day.

2.2 Absurd

Some statements contradict basic world knowledge
rather than making a wrong assumption. Consider the
following example:

3) Can Rover speak Latin?

If we evaluate this statement with respect to a knowledge
base of ordinary dogs, it evaluates to absurd since ordi
nary dogs don't speak. While in the previous example
we can conceive of John having written a sales report,
this statement is considered semantically anomalous.

Some statements are syntactically ambiguous, but
have only one semantically acceptable interpretation.
Hum ans are not likely to choose the wrong interpretation
in these cases, but a computer may, since both interpre
tations are syntactically correct. Consider the following
question:

4) What is the price of a recorder which can
play stereo music?

It admits two interpretations: the intended one, where
the recorder plays stereo music (i.e., "recorder" is the an
tecedent of the relative clause) and an unintended one,
where the price plays stereo music (i.e., "price" is the an
tecedent of the relative clause). The latter interpretation
should evaluate to absurd.

2.3 Vague

The value vague helps us deal with statements that are
under-specified. For instance, the question

5) Who teaches Norwegian?

could result in the database system sweeping through
the domain of all people in the knowledge base, if the
interrogative pronoun who is used to find a domain for
the object queried. Vague-referring pronouns could in
duce a vague truth value, indicating that further domain
determination can perhaps be done from the context.

2.4 Mixed

Some relationships distribute a certain property among
all the elements of their arguments. For example, the
relation like in the following example:

6) Ann and Tom like karate.

To evaluate this statement, the database system checks
whether Ann likes karate and whether Tom likes karate.
If both (none) of them do, the statement evaluates to
true (false) . But if one likes karate, while the other does
not, it evaluates to mixed, which is a much more infor
mative reply than what we can expect from a binary
logic or 13, where the statement would simply evaluate
to false.

The value mixed is also useful when evaluating rela
tions that are introduced by the word "respectively" .
For example, the statement

7) Tom and Ann earn $1000 and $1100 respec-
tively

evaluates to mixed if Tom earns $1000 while Ann does
not Parn $11 ()() (or if Ann P;\fnS $1 1 nn "nrl 'l'r.m ,.J,...,,., nr.t

earn $1000).

2.5 Unknown

Generally speaking, we shall adhere to the closed world
assumption ([Reiter, 1978]), which allows us to infer -,A
from a logical program P, if A is not a logical conse
quence of P. In logic programming, negation (...,A) is
implemented as failure, i.e., only positive information is
listed in the database, and if a closed world database
system cannot prove a given query, we infer that it is
false.

Open world databases admit positive, negative, and
unknown information, but it is expensive to implement
open worlds since the negative and unknown information
usually exceed the positive information by several orders
of magnitude. Since one has to distinguish between un
known and negative information, one of them has to be
defined explicitly and thus the conciseness allowed by
negation-as-default is lost.

However, for relations whose arguments are in a one
to-many relationship, we introduce a way of simulating
an open world situation, while only including positive
information in the knowledge base. In this situation we
distinguish between false and unknown queries by intro
ducing a metalogical treatment of values retrieved from
the knowledge base. Consider the following example:

8) Does Ann live in Paris?

This query can be compiled into something like: "Find
the place X where Ann lives; if X is ground and equal to
"Paris", evaluate the query to true; if X is ground and
different from "Paris", evaluate the query to false, oth
erwise to unknown (i .e., failure implies unknown). The
unknown value allows us to produce an informative reply
instead of a misleading negative answer.

Only for one-to-many relations can we allow failure
to imply unknown, and for many-to-many relations we
must maintain the traditional interpretation of negation
as failure. Consider the following example: knowing that
Betsy is Pepe's aunt does not, in an open world, autho
rize us to conclude that Doreen is not, since Pepe can
have many aunts. Thus for many-to-many relationships
we shall stay within closed worlds, use negation as fail
ure, and only test for false versus unknown those rela
tionships in which two arguments are in a one-to-many
relationship.

32

This approach should, of course, be used with caution,
and it certainly does not solve all open world problems,
as we have seen. But it does provide a compromise that
allows greater flexibility than completely closed worlds.

2.6 Inconsistent

In a binary logic, some queries evaluate to false because
they are inconsistent to begin with. For instance, in a
world where all secretaries are insured and all part-time
employees are not (hence implying that no secretaries
are part-time), it would be inconsistent to query:

9) Which part-time secretaries are insured?

Rather than simply answering "None", which does not
point out the inconsistency, it would be more helpful
to reply, for instance, that all secretaries are insured
whereas part-time employees are not.

Rigorously speaking, the difference between inconsis
tent and absurd is a matter of degree-absurd being as
signed when the situation is unimaginable in the world
considered, and inconsistent being assigned for forbid
ding situations that are not inconceivable but are disal
lowed in our database (e.g., integrity constraints). In
consistent queries could also evaluate to pointless since
the user presupposes something that is not consistent
with the state of the database. However, we choose to
separate the inconsistent case from the absurd and the
pointless cases since the mistakes are indeed different.
We think that database systems should have the flexi
bility of distinguishing between these values in order to
provide appropriately informative responses in each case.

3 Query Evaluation during Parsing

Our database system is designed to work together with
a natural language front end, so some queries might be
assigned truth values during the natural language pars
ing stage, while others will be assigned values during
query evaluation, i.e., during the database consultation
stage. When a query is assigned a truth value during
the parsing stage, it is only partially executed. A com
plete formula representing the query is never generated
i.e., the reply is available without ever having to consult
the database system. Only queries that are found not
to be semantically anomalous by the parser produce a
complete formula and become completely evaluated with
respect to the database system.

In order to detect semantic anomalies, we introduce
types in the grammar and knowledge base, i.e., relations
range over typed variables and constants. We briefly re
view our notion of types (section 3.1, for a complete
discussion, see [Dahl, 1991]) before discussing how they
are used in query evaluation (section 3.2) .

3.1 Incomplete Types

Every constant and variable in our database are as
signed an incomplete type. For example, A- [animal I
X] , stands for a variable A of type [animal I X] . This
type is incomplete in that it contains a tail variable X,
that allows for further instantiation. Thus [animal I
X] stands for "at least of animal type". Another ex
ample: sammy-[animal, seal, sammy], stands for the

33

constant sammy of type [animal, seal, sammy]. The
type representation for constants is closed such that no
further instantiation is possible.

Formally an incomplete type is a term of the form:
t1 :::) · · · :::) tn-1 :::) t :::) V, where V is a variable ranging
over the incomplete type t1 :::) · · · :::) tn-l :::) t and where
there exists no t 0 such that t 0 :::) t 1 . In Prolog notation,
this would be a list of the form [t1, ... , tn-1, t I V], where
I is a binary infix operator that separates the tail from
the rest of the list.

3.2 Query Evaluation

The values absurd and inconsistent indicate semantic
anomalies these logical values are assigned as a result
of type incompatibility.

We can require the grammar to enforce type agree
ment between the arguments of a relation and the ar
guments of the main verb of a sentence. Returning to
example number 3 above:

Can Rover speak Latin?

The concept of speaking may be represented by the fol
lowing relation in the knowledge base:

speak(Subject- [person I X], Object-[language I Y])

where the first argument of speak is of type person,
while the query may introduce the formula:

speak(rover-[animal ,dog ,rover], latin-[language ,latin]),

where the type of the first argument is dog. Since the
types of the two first arguments don't match (Subject
[person I X] and rover-[animal, dog, rover] cannot unify)
the parse is immediately interrupted and the value
absurd is assigned to the query. This value is then in
terpreted by a natural language output module that will
print a message indicating the reason for disagreement.

Types can also serve to disambiguate some natural
language queries which have more than one syntactically
correct reading. Returning to example 4):

What is the price of a recorder which can play
stereo music?

If the concept of playing is represented by the following
relation in the knowledge base

play(Subject- [inanimate,device jX], Object-[music jY])

and if the type of 'price' is price and the type of 'recorder'
is device, the reading in which a price is required to play
stereo music is made impossible, since [inanimate, device
I X] and [inanimate, price I Z] cannot unify. Again the
incorrect reading is assigned the truth value absurd at
the parsing stage and can simply be discarded.

Sometimes ambiguities arise because words mean dif
ferent things in different situations. Consider the word
'bank' in the following examples:

1. With which bank do you have an account?

2. On which bank did you sit?

3. On which bank did you fish?

.I

In the first example, bank = money bank, in the second,
bank = river bank, and in the last example, bank =
fishing bank. If the relations have..accounLwith, sit,
and fish all insist on their arguments having different
types, the incorrect readings are easily detected at the
parsing stage.

Inconsistent queries can be detected through type in
compatibility. Recall our previous example where all full
time employees and all secretaries are insured. Then the
query:

Which part-time secretaries are insured?

introduces a type mismatch that interrupts the parse.
The value vague is just a conceptual tool that prompts

for further domain determination and is never actually
assigned to a query. The domain determination is a con
sequence of adding semantic information to the grammar
and knowledge base. Recall our previous example:

Who teaches Norwegian?

The concept of teaching may be represented by the fol
lowing relation in the knowledge base:

teach(Subject-[person,teacher lX], Object-[courselY])

i.e., the first argument of teach is of type teacher, while
the query might introduce the following formula:

teach(QSubject-[person lZ],norwegian-(course,norwegian])

i.e., the interrogative pronoun introduces a first argu
ment of type person. Since teacher is a subtype of
person, the two 'Subject' arguments are not incom
patible and we take the intersection of the two types
(person n teacher = teacher) to be the further specified
type of Q-5ubject. Through semantic agreement and
unification (Z unifies with [teacher I X] as a result of
parsing the query) the vagueness introduced by the inter
rogative pronoun simply disappears and the search space
is considerably narrowed from person to teacher without
ever having derived vague an explicit truth value.

Since semantically anomalous queries never reach the
database consultation stage, it is unnecessary to include
the values absurd, inconsistent and vague in the defini
tion of the logical system underlying our database and
query language. All the other values, true, false, mixed,
unknown and pointless, are assigned during query evalu
ation and therefore have to be defined in the logical sys
tem that underlies our deductive database and query lan
guage. Out of space considerations, we will not include
the formal definitions here, but instead we give an in
tuitive account of our multi-valued typed logic database
and its query language in section 4. The complete formal
definiton can be found in [Hagen, 1993]

3.3 Intensional Replies

If the database is typed, we can easily obtain intensional
replies, and if the user requests an extensional reply,
the search space is automatically reduced to the do
mains that are compatible with respect to type. See
[Dahl, 1991] for a discussion on using types for inten
sional replies.

4 A Typed Multiple-Valued Deductive
Database

As discussed earlier, only some of the values need to
appear explicitly in the definitions. Every relation in
our database evaluates to one of the values true, false,
mixed, and unknown. However, all four values may not
apply to a particular relation, for example, any many
to-many relations can not evaluate to unknown since we
adhere to the closed world assumption for these rela
tions. Complete queries evaluate to either true, false,
mixed, unknown, or pointless in accordance with the log
ical system defined in [Hagen, 1993] (also see section 5).

4.1 Partitioning of Relations

Natural language sentences can introduce different types
of plural, e.g., a relation may apply to a whole set as in
"The beams are parallel", where the relation parallel
must apply to the whole set of beams, while in our old
example "Ann and Tom like karate" the relation like
distributes to individual members of the set. Our sys
tem can recognize different kinds of plural and since they
are treated differently, the relations must be partitioned
into the disjoint groups distributive, inherently collec
tive, partially collective, respective, and single attribute
relations. The first four groups are further divided into
many-to-many and one-to-many relations according to
their arguments' relationship to each other.

4.2 Distributive Relations

Distributive relations are relations which distribute a
certain property to all individuals of a set. For exam
ple, in the statement "Eli and Dia speak English", the
property "speak" distributes to both Eli and Dia and we
may infer that the two statements "Eli speaks English"
and "Dia speaks English" are both true. Distributive re
lations are divided into many-to-many and one-to-many
relations.

4.2.1 Many-to-many Distributive Relations
A many-to-many relation has two attributes that are

in a many-to-many relationship with one another. An
instance of a many-to-many distributive relation evalu
ates to true, false, or mixed as follows:

- If the relation holds on every member of the set,
the instance evaluates to true.

- If the relation fails on every member of the set, the
instance evaluates to fals e.

- If the relation holds on some and fails on the rest of
the members of the set, the instance evaluates to mixed.
An example: The following instance of the many-to
many distributive relation speak:

speak([eli, dial, [english, spanish])
(= "Eli and Dia speak English and Spanish.")

evaluates to:

34

a. true if applied to the knowledge base:
{ speak(dia, spanish),

speak(dia, english),
speak(eli, spanish),
speak(eli, english) }

b. fals e if applied to the knowledge base:

{ speak(jorg, english)}
c. mixed if applied to the knowledge base:

speak(dia, english),
speak(eli, english) }

4.2.2 One-to-many Distributive Relations

A one-to-many relation has two attributes that are in a
one-to-many relationship with one another. An instance
of a one-to-many distributive relation evaluates to true,
false, unknown, or mixed as follows :

- If the relation holds on every member of the set,
the instance evaluates to true .

- If the relation fails on every member of the set, the
instance evaluates to false.

- If the relation is unknown for one or more members
of the set, the instance evaluates to unknown.

- If the relation holds on some and fails on the rest of
the members of the set, the instance evaluates to mixed.
An example: The following instance of the one-to
many distributive relation born_in:

born_in(finland, [eli, dia, jorg])
(= "Eli, Dia and Jorg were born in Finland.")

evaluates to

a. true if applied to the knowledge base:
{ born_in(finland, eli),

born_in(finland, dia),
born_in(finland, jorg)}

b. false if applied to the knowledge base:
{ born_in(norway, eli),

born_in(uruguay, dia),
born_in(germany, jorg) }

c. mixed if applied to the knowledge base:
{ born_in(norway, eli),

born_in(finland, dia),
born_in(germany, jorg) }

d. unknown if applied to the knowledge base:
{ born_in(finland, eli),

born_in(germany, jorg) }
e. unknown if applied to the knowledge base:

{ born_in(finland, eli),
born_in(finland, jorg)}

f. unknown if applied to the knowledge base:
{ born_in(norway, eli),

born_in(germany, jorg) }

4.3 Inherently Collective Relations

Inherently collective relations are relations where a cer
tain task is done collectively by a whole set of individu
als, i.e., each set member is necessary but not sufficient
for the successful completion of the task. For example,
the statement "Ala, Brigitte and Dia lifted the heavy
table" describes a situation where Ala, Brigitte and Dia
lifted a heavy table together, and we cannot infer that,
for example, the statement "Ala and Dia lifted the heavy
table" is true.

35

4.3.1 Many-to-many Inherently Collective
Relations

An instance of an inherently collective many-to-many
relation evaluates to true or false as follows:

- If the relation holds on the set, the instance evalu
ates to true.

- If the relation fails on the set, the instance evaluates
to false .
An example: The following instance of the many-to
many inherently collective relation raise (Say, a set of
nuns raise a set of orphans and the raising is a collective
job such that no child is being raised by any particular
nun, and vice versa.):

raise([nunl, nun2], [childl, child 2, child3])
(="Nunl and nun2 raised childl, child2,
child3.")

evaluates to:

a. true if applied to the knowledge base:
{ raise([nunl, nun2], [child 1, child2, child3])}

b. false if applied to the knowledge base :
{ raise([nunl, nun2, nun3], [childl, child2, child3])}

c. false if applied to the knowledge base:
{ raise([nunl, nun2], [childl, child2, child3, child4])}

d. false if applied to the knowledge base:
{ raise([nun3, nun4, nun5], [childl, child2, child3])}

4.3.2 One-to-many Inherently Collective
Relations

An instance of a one-to-many inherently collective re
lation evaluates to true, false, or unknown as follows: -
If the relation holds on the set, the instance evaluates to
true.

- If the relation fails on the set and there is no con
tradictory information available, the instance evaluates
to unknown.

- If the relation fails on the set and there is contra
dictory information available, the instance evaluates to
false .

An example: The following instance of the one-to
many inherently collective relation lift:

lift (table, [ala, dial)
(= "Ala and Dia lifted the table.")

evaluates to:

a. true if applied to the knowledge base:
{ lift(table, [ala, dial)}

b. false if applied to the knowledge base:
{ lift(table, [andrea, kaci])}

c. false if applied to the knowledge base:
{ lift(table, [ala, dia, jorg])}

d. unknown if applied to the knowledge base:
{ lift(bookcase, Liorg, allan])}

4.4 Partially Collective Relations

Partially collective relations are also relations where a
certain task is done collectively by a whole set of indi
viduals, but where a subset of the original set may be
sufficient to satisfy the relation. For example, ifwe define
lift in our previous example to be a partially collective

·. I

relation, we can infer that the statement "Dia and Ala
lifted the heavy table" is true from the statement "Ala,
Brigitte and Dia lifted the heavy table".

4.4.1 Many-to-many Partially Collective
Relations

An instance of a many-to-many partially collective re
lation evaluates to true or false as follows.

- If the sets of the instance are subsets of sets in the
knowledge base, the instance evaluates to true.

- If the sets of the instance are not subsets of sets in
the knowledge base, the instance evaluates to false.
An example: Reconsider the nuns and children exam
ple above, but assume that raise is a partially collective
relation instead of an inherently collective relation.

raise([nunl, nun2], [childl, child2, child3])
(= "Nunl and nun2 raised childl, child2,
child3.")

evaluates to:

a. true if applied to the knowledge base:
{ raise([nunl, nun2], [childl, child2, child3])}

b. true if applied to the knowledge base:
{ raise([nunl, nun2, nun3], [child 1, child2, child3])}

c. true if applied to the knowledge base:
{ raise([nunl , nun2], [childl, child2, child3, child4])}

d. false if applied to the knowledge base:
{ raise([nun3, nun4, nun5], [childl, child2, child3])}

e. false if applied to the knowledge base:
{ raise([nun2, nun4, nun5], [childl, child2, child3])}

4.4.2 One-to-many Partially Collective
Relations

An instance of a one-to-many partially collective rela
tion evaluates to true, false, or unknown as follows .

- If the sets of the instance are subsets of sets in the
knowledge base, the instance evaluates to true.

- If the sets of the instance are subsets of sets in
the knowledge base that contradicts the instance, the
instance evaluates to false.

- If the sets of the instance are not subsets of sets in
the knowledge base, the instance evaluates to unknown .
An example: The following instance of the one-to
many partially collective relation meet:

meet(park, [ala, dial) (= "Dia and Ala met
in the park.")

evaluates to:

a. true if applied to the knowledge base:
{ meet(park, [ala, dial)}

b . true if applied to the knowledge base:
{ meet(park, [eli, ala, dial)}

b. false if applied to the knowledge base:
{ meet(school, [ala, dial)}

c. false if applied to the knowledge base:
{ meet(school, [eli, ala, dial)}

d . unknown if applied to the knowledge base:
{ meet (park, Llorg, allan])}

Note, we can collapse the two classes of collective rela
tions into one class if we introduce another logical value
yes_but and make the partially collective relations that
now evaluate to true, evaluate to yes_but, while we keep
the interpretations of true, false, and unknown as de
fined above for inherently collective relations.

4.5 Respective Relations

Unlike distributive and collective relations, respective re
lations do not reflect an inherent property of a given con
cept. The most common way of introducing a respective
relation is to include the word "respectively" in a state
ment. Since respective relations are not introduced by a
concept itself, both distributive and collective relations
can participate in respective relations. Consider the fol
!0¥1ing examples,

- The one-to-many distribu-
tive relation born_in(country, human); From the
statement "Dia and Ala were born in Uruguay and
Poland (respectively)" we may infer that the state
ments "Dia was born in Uruguay" and "Ala was
born in Poland" are both true, and that, for exam
ple, the statements "Dia was born in Poland" and
"Dia was born in Norway" are false.

- The one-to-many collective relation
meet(place, human); From the statement "Brigitte
and Edwin and Eli and Jorg met in the park and
at school respectively" we may infer that the state
ments "Brigitte and Edwin met in the park" and
"Eli and Jorg met at school" are true.

It is the job of the natural language front end to detect
the words that introduce respective relations.

36

Since all the relations discussed earlier can participate
in respective relations, we need to create a corresponding
"respective" symbol for each one of them such that the
database system can distinguish between respective and
non-respective queries. The respective symbol is only
for identification purposes, and the query is evaluated
with respect to r. In this document, we simply create
new symbols by attaching the suffix _resp to the original
symbol r (e.g., speak becomes speak_resp).

There is one class of respective relations for each class
of distributive, and collective relations and we name
these respective distributive , respective inherently collec
tive and respective partially collective. In addition to new
"respective" constraints, respective relations inherit the
argument properties of the original relation (e.g., a one
to-many relation is still one-to-many). Consequently,
each respective class is divided into many-to-many and
one-to-many relations. We next discuss these two cases
for distributive respective relations.

4.5.1 Many-to-many Respective Relations
An instance of a many-to-many respective relation

evaluates to true , false, or mixed as follows :
- If the relation holds on every member of the set,

the instance evaluates to true.
- If the relation fails on every member of the set, the

instance evaluates to false.
- If the relation holds on some and fails on the rest of

the members of the set, the instance evaluates to mixed.

An example: The following instance of the many-to
many respective relation speak..resp:

speak..resp([[eli, jorg], [veronica, dia]], [ger
m an, spanish]) (= "Eli and Jorg and
Veronica and Dia speak German and Span
ish respectively.")

evaluates to:

a. true if applied to the knowledge base:
{ speak(eli, german),
speak(jorg, german),
speak(veronica, spanish),
speak(dia, spanish) }

b. false if applied to the knowledge base:
{ speak(brigitte, german)}

c. mixed if applied to the knowledge base:
{ speak(dia, spanish),
speak(jorg, german),

4.5.2 One-to-many Respective Relations
An instance of a one-to-many respective relation eval

uates to true, false, unknown, or mixed as follows:
- If the relation holds on every member of the set,

the instance evaluates to true.
- If the relation fails on every member of the set, the

instance evaluates to false.
- If the relation is unknown for one or more members

of the set, the instance evaluates to unknown.
- If the relation holds on some and fails on the rest of

the members of the set, the instance evaluates to mixed.
An example: The following instance of the one-to
many respective relation earn..resp:

earn..resp((lOOO, 1100], [brigitte, ann]) (=
"Brigitte and Ann earn $1000 and $1100 re
spectively.")

evaluates to:

a. true if applied to the knowledge base:
{ earn(lOOO, brigitte),
earn(llOO, ann)}

b. fals e if applied to the knowledge base:
{ earn(900, brigitte),
earn(1200, ann)}

c. mixed if applied to the knowledge base:
{ earn(lOOO , brigitte),
earn(1200, ann)}

d. unknown if applied to the knowledge base:
{ earn(lOOO, allan)}

5 A Logical System for a Subset of
Natural Language

We briefly summarize the logical system underlying our
multi-valued database system. The NL analyser builds
formulae of the input queries from: set formulae s, state
ment formulae e, and integer formulae n. A set formula
can take any of the forms:

• a list of constants

• a variable

37

• those(V, e), where V is a variable and e is a state
ment formula

A statement formula e can take any of the forms:

• for(V, e1, e2), where Vis a variable, e1, e2 are state
ment formulae

• r(s1 , ... ,sn), where r is a relational symbol (eg.,
speak, raise), s1, ... , Sn are set formulae

• and(e 1 ,e2), where e1 , e2 are statement formulae

• if(e1 , e2), where e1 , e2 are statement formulae

• not(e 1), where e1 is a statement formula

• equal(n 1 ,n2), where n 1 ,n2 are integer formulae

• greater ..than(n1, n 2), where n1, n2 are integer for
mulae

An integer formula n, can take any of the following
forms:

• j EN
• card(s), where s is a set formula

In a well defined situation a statement formula will
evaluate to true, false, mixed, unknown, or pointless, a
set formula will evaluate to a set, and an integer formula
will evaluate to an integer. For a complete definition of
the logical system see [Hagen, 1993].

6 Concluding Remarks

In this article, we have motivated the use of multiple
truth values to provide more helpful answers to natural
language querying of deductive databases, and we have
introduced a query language based on these new values.

We have also integrated these notions into the formal
definition of a multivalued deductive database and of an
associated query language's semantics. Our approach
has been tested within a system that translates Amer
ican Sign Language into our multi-valued logic for the
purpose of direct consultation of database information
using sign language [Hagen, 1993].2 This particular ap
plication provided interesting feedback to our approach
itself given its unique features. For instance, the distinc
tion between some of the kinds of plurals we propose is
actually explicit in ASL syntax, whereas in oral natural
languages it cannot be recovered from the syntax. With
minor variants, this query language can be adapted to
suit different concrete applications.

Other approaches to cooperative answering propose
more sophisticated capabilities than the ones proposed
here, e.g., how to add information of interest to a ·re
sponse even though the query does not mention the topic
[Cuppens and Demolombe, 1988] or how to relax queries
when a response to the original query fails [Chu et al.,
1991; Gaasterland et al. , 1992]. Each of these approaches
offers solutions to individual problems in cooperative an
swering, while our approach offers solutions to several
of the problem areas (presuppositions, misconceptions,
and intensional answers) within a single framework. It

2 This prototype assumes a previous phase of translation
from visual input into a symbolic representation, which is its
input.

. · 1

. .- 1

integrates a reasonable amount of cooperative answering
within a system which is based on a rigorous logic system
serving simultaneously as a natural language representa
tion system and as a database query language. With this
first step in the integration of cooperative answers within
such a framework, we hope to provide a solid basis for
extensions into more sophisticated cooperative features
which can maintain our focus on a rigorous theoretical
standpoint and a smooth integration with natural lan
guage front ends.

Many of the features we have introduced in our formal
ization and our treatment of queries have been inspired
on previous work on natural language processing. From
this point of view, the present work is a practical con
sequence of our advocacy for cross-fertilization between
Linguistics and AI ([Dahl, 1993]). \"lith the present \vork
we hope to inspire more research into the interactions
between language and deductive databases .

Acknowledgements

We are grateful to the Logic and Functional Program
ming Lab at Simon Fraser University, in which this work
was developed, and to CSS, LCCR and the School of
Computing Science for the use of their facilities. This re
search was supported by NSERC grants no. #31-611024
and #31-61519036, by PRG grant #13871180, and by
CSS grants # 872050 and #872049, and Simon Fraser
University .

References

[Abramson and Dahl, 1989] H. Abramson and V. Dahl.
Logic Grammars. Symbolic Computation AI Series.
Springer Verlag, 1989.

[Bowen and Kowalski, 1982] K. A. Bowen and R. A.
Kowalski. Amalgamating Language and Metalan
guage in Logic Programming. In K. L. Clark and S.-A.
Tii.rnlund, editor, Logic Programming, pages 153- 172.
Academic Press, New York, 1982.

[Chu et al., 1991] W.W. Chu, Q. Chen, and R. Lee. Co
operative Answering via Type Abstraction Hierarchy.
In S. M. Deen, editor, Cooperating Knowledge Based
Systems 1990, pages 271-290. Springer Verlag, 1991.

[Colmerauer, 1982] A. Colmerauer. An Interesting Sub
set of Natural Language. In K.L. Clark and S.-A.
Tii.rnlund, editor, Logic Programming, pages 45- 66.
Academic Press, Inc., 1982.

[Cuppens and Demolombe, 1988] F. Cuppens and
R. Demolombe. Cooperative Answering: a Method
ology to Provide Intelligent Access to Databases. In
Proc. of 2nd Int 'I. Conf. on Expert Database Systems,
pages 333-353, 1988.

[Dahl, 1981] V. Dahl. Translating Spanish into Logic
through Logic. American Journal of Computational
Linguistics, 7(3):149- 164, 1981.

[Dahl, 1982] V. Dahl. On Database Systems Develop
ment Through Logic. ACM Transactions on Database
Systems, 7(1):102- 123, 1982.

[Dahl, 1991] V. Dahl. Incomplete Types for Logic
Databases. Applied Math. Letters, 4(3):25-28 , 1991.

[Dahl, 1993] V. Dahl. What the Study of Language Can
Contribute to Al. AI Communications, 6(2) :92-106,
1993.

[Gaasterland et al. , 1992] T. Gaasterland, P. Godfrey,
and J. Minker. An Overview of Cooperative Answer
ing. J. of Intelligent Systems, 1(2), 1992.

[Hagen, 1993] E. Hagen. A Flexible American Sign Lan
guage Interface to Deductive Databases. Master's the
sis, School of Computing Science, Simon Fraser Uni
versity, 1993.

[Johnson, 1991] M. Johnson. Deductive Parsing: The
Use of Knowledge of Language. In Berwick et al., ed
itor, Principle-Based Parsing: Computation and Psy
cholinguistics. Kluwer Academic Pubishers, 1991.

[Kaplan and Joshi, 1978] S. J. Kaplan and A. K. Joshi.
Cooperative Responses: An Application of Discourse
Inference to Data Base Query Systems. In Proc.
Canadian Society For Computational Studies of In
telligence, 1978.

[Konolige, 1981] K. Konolige. A Metalanguage Rep
resentation of Relational Databases for Deductive
Question-Answering Systems. In Proc., 7th Int 'I.
Joint Conf. on Artificial Intelligence, pages 496-503,
1981.

[Lee, 1992] S. K. Lee. Imprecise and Uncertain Informa
tion in Databases: An Evidential Approach. In Proc.
8th Int'/. Conf. on Data Engineering, pages 614- 621,
1992.

[Leveque, 1981] H. Leveque. The Interaction with In
complete Knowledge Bases: A Formal Treatment. In
Proc., 7th Int 'I. Joint Conf. on Artificial Intelligence,
pages 240-245, 1981.

[Liu and Sunderraman, 1990] K.-C. Liu and R. Sunder
raman. Indefinite and Maybe Information in Rela
tional Databases. ACM Transactions on Database
Systems, 15(1):1-39, 1990.

[Pereira and Warren, 1980] F. C. N. Pereira and D. H. D
Warren. Definite Clause Grammars for Language
Analysis - A Survey of the Formalism and a Compar
ison with Transition Networks. Artificial Int elligence,
13:231-278, 1980.

[Reiter, 1978] R. Reiter. On Closed World Databases.
In H. Gallaire and J. Minker, editor, Logic and
Databases, pages 55-76. Plenum Press, 1978.

[Stabler, 1992] E. Stabler. Implementing Government
Binding Theories. In R. Levine, editor, Formal Gram
mar: Theory and Implementation. Oxford University
Press, 1992.

Learning Repetition in String Transformations

Natascha 0. Schiller and Bruce A. MacDonald
Department of Computer Science, University of Calgary,

2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
email: bruce@cpsc.ucalgary.ca

Abstract

This paper describes a system, L-EBE, that
learns text rewrite rules containing loops, by
learning a description of both the input pattern
and how that pattern is transformed into the
output. Rules are learned from input/output
examples. The work is an extension of the non
iterative EBE system built by Nix (1983; 1985).
Loop annotations are introduced to EBE's lan
guage, which describes a sequence of constant
and variable substrings. Constraints on the
examples ensure the detection of nested loops
with different numbers of iterations. L-EBE
has been implemented in Scheme and inte
grated with the Gnu Emacs editor, so it is con
venient for users to present examples to the
learner, and also execute learned transforma
tion rules during editing.

1 Introduction

Text editing on a computer can be a laborious and repet
itive manual chore (for example bibliography translation
and formatting). Most text editors have alleviated this
a little with simple fixed text replacement commands
and macro recording techniques, but these are inflexible.
Some provide powerful regular expression replacement,
but this can be awkward and therefore is not widely used.
Convenient automation of repetitive text editing opera
tions would remove much of the unwanted burden on the
user, leaving more freedom for creative writing. Com
puters must become more attuned to human instruc
tion and interaction, rather than expecting humans to
learn complicated formal command languages [MacDon
ald, 1991) .

From a user's viewpoint, a convenient method of au
tomation would observe a few editing examples and then
be able to take over the remainder of the task, as well
as remembering it for future use. The editing exam
ples provide cases of the input, editing operations,and
resulting output, which might be analyzed by a machine
learning system to produce an appropriate editing trans
formation. However, a user's editing behaviour is spe
cific to the editor command set, may vary from case to
case since there are a myriad of ways to carry out an

%l1oop,Aug1:C•,ug2:U*.g3:U*. <eol>
%1100P 1 Dug4 :N• <eol>
%Tug5:C•<eol>
%Jug5:C•<eol>
%Oug1:A•<eol>
%Ku*
=}

l toop
1

g1 ,ug2.g3.; lloop, (g4) ,<eol>
"g5" ,ug5,<eol>
g7.

Figure 1: A Bibliography Transformation in L-EBE (af
ter gap merging). T his is the iterative string transfor
mation L-EBE learns from the examples of Table 1.

editing task, and can be difficult to analyze. Our goal
in this work is to show that text transformations with
loops can be learned from the input/output behaviour
alone. Although this means throwing away potentially
useful trace information, it provides a more portable au
tomation system that is less sensitive to user behaviour.

This paper describes L-EBE, a system for learning text
transformations with loop structures and variables, from
input/output behaviour. Given a user- supplied set of
input/output text examples L-EBE learns a rewrite rule
expressed as the transformation of an input pattern to
an output one; a pattern comprises constant strings and
variables, annotated with loop structure, unary boolean
predicates, and unary transformations. Table 1 shows an
example that formats "refer" style bibliography entries.
Figure 1 shows the transformation learned, and will be
explained in later sections.

L-EBE is an extension of EBE [Nix, 1983; Nix, 1985),
which learns non- iterative rewrite rules for the editing
domain. Briefly, L-EBE first creates a non- iterative pat
tern for the input examples , using EBE's method of
(a) finding the longest common subsequence, and (b) in
serting variables. Then L-EBE extracts repeating struc
ture to form a set of possible iterative input patterns.
Finally, variable substitutions are used to create an out
put pattern for each example, and these are merged to
form the final output pattern, along with the correspond
ing input pattern. We assume the teacher is benevolent,
but not aware of the internals of L-EBE.

39

I

Input Examples Output Examples
%Au A bi-Ezzi, uS. S. < eol> Abi-Ezzi, uS.S. ;u(l 986), <eol>
%Du1986<eol> "Anuimplementer'suviewuofuPHIGS" ,u
%T uAnuimplementer'suviewuofuPHIGS<eoi> ComputeruGraphicsuanduApplications, < eol>
%JuComputeruGraphicsuanduApplications<eol> February.<eol>
%0uFebruary<eol>
%Ku*<eol>
%AuAddis,u T.R.<eoi> Addis, u T.R.;uHinton,uG.E.;u(1987),<eol>
%AuHinton,uG,E.<eol> "Auframeworkuforuknowledgeuelicitation" ,u
%Du1987<eol> ProcuFirstuEuropeanuConferenceuonuKnowledgeu
%T uAuframeworkuforuknowledgeuelicitation<eol> Acquisition,<eol>
%JuProcuFirstuEuropeanuConferenceuonuKnowledgeu September.<eol>

Acquisition <eoi>
%0uSeptember<eoi>
%Ku*<eol>
%AuAllen,uJ. F. < eoi> Allen,uJ .F. ;uKoomen,uJ .A. iu(1986), <eoi>
%AuKoomen,uJ .A.<eol> "Planninguusinguautemporaluworldumodel" ,u
%Dw1986<eol> Artificialulntelligence, < eol >
% T uPlanninguusinguautem poraluworldumodel <eol> March.<eol>
%J uArtifi.cialulntelligence<eol>
%0uMarch<eol>
%Ku*<eol>
%AuAllen,uJ,F.<eol> Allen, uJ,F.; u(1983J, <eol>
%Du1983<eol> "Maintaininguknowledgeuabou tu temporaluinstances" ,u
%T uMaintaininguknowledgeuaboututemporaluinstances<eol> CommuACM ,<eol>
%JuCommuACM<eoi> May.<eol>
%0uMay<eol>
%Ku*<eol>

Table 1: A Text Transformation Task with Iteration. The input examples are formatted in "refer" style, while the
outputs are plain text.

The input pattern learning component is closely re
lated to extended regular string pattern learning from
positive examples [Shinohara, 1982]. A string pattern is
a string over domain and variable alphabets [Angluin,
1979; Angluin, 1980]. Angluin describes an algorithm
for learning a suitable k-variable pattern in which a set
of feasible patterns is defined for each of the strings in
a sample, by constraining the number of constant and
variable symbols as well as the locations of variable sym
bols. Automata are constructed from these patterns, and
the intersection of these automata then defines a pattern
for the entire sample. The algorithm is polynomial for
one-variable patterns, but worse than polynomial for k
variable patterns. In an extended regular string pattern
each variable occurs exactly once, variables are ordered
canonically in the pattern, and null substitutes are al
lowed [Shinohara, 1982]. A suitable pattern is learned by
first finding the longest common substring of the exam
ples, then inserting variables so that the pattern matches
the entire sample. The algorithm is polynomial for ar
bitrary k, and Nix's [1983; 1985] gap pattern synthesis
bears a strong resemblance to it (although Nix does not
allow null substitutes).

The rest of this section introduces the representation
and an example of iterative text transformation. Sec
tion 2 presents the L-EBE system. Section 3 presents
results for the example in Table 1. Section 4 mentions
related work.

1.1 Representing Iterative Text
Transformations

The input "gap" pattern and the output "replacement
expression" pattern in a text transformation are each
represented as a string composed from (a) the domain
symbols, (b) the "gap" variable alphabet with annota
tions, and (c) the set of loop start and end symbols i loop1
and !100P1 respectively. The domain symbol set may be
a finite alphabet of symbols (such as characters), or the
set of strings over an alphabet, if the input is tokenised.
By convention gap variables are denoted 91, 92, A
gap pattern must meet these conditions:

40

• Each variable must be followed by a non-empty do
main string.

• Each inter- gap constant sequence Sj following gap
9j must occur only as the suffix in the concatenation
of a gap variable substitute for 9j and Sj, so that
gap variables can be determined without backtrack
ing. In addition a gap substitution must satisfy any
boolean symbol class annotation (which is similar
to a type check). A substitute meeting these two
conditions is a legal one.

• Any loop sequence must contain at least one gap,
ie., constant loops will not be considered.

• Gaps cannot be adjacent to one another. While this
is easily described in non-iterative gap patterns, in
the iterative gap pattern this also prevents a loop
subsequence beginning and ending with a gap.

• Any loop subsequence must be followed by a con
stant (not a gap) so that the end of the loop can be
determined .

• Loops may be nested, but may not overlap.

The set of substitutions that enables a gap pattern to
match an input example is referred to as the parse of
that example. The replacement expression must meet
these criteria:

• It must match each output example when the re
spective input variable substitutions are made.

• The variables must be a subset of the input variable
set.

• Any loop must contain at least one gap, ie., must
be driven by a gap variable.

• Each gap variable occurring in the replacement ex
pression must be nested (by loops) at the same
depth as that variables appear in the gap pattern.

• Loops may be nested, but may not overlap.

These conditions reduce the effort the learning algorithm
must expend in finding loops. However, a systematic
analysis of the benefits has yet to be completed [Schuler,
1993].

Annotations Unrestricted gap variable formation
overgeneralizes what may be substituted in the gap, so L
EBE restricts gap substitutions by annotations for sym
bol classes from the hierarchy in Figure 2. Gap sub
stitution is overly restrictive if a legal gap substitute
is merely copied to the output string as specified by
the replacement expression, so L-EBE allows gap sub
stitutes to be transformed by a composition of a small
number of functions. The current implementation al
lows up to one basic function (selected from: lowercase,
uppercase, capitalize) and one tabular function (selected
from: month#, month, ord, ord# for converting between
month names and numbers, and between numbers and
ordinals) . These function names are given as annota
tions to the replacement expression gap, while a boolean
test is annotated to the gap in the input pattern to en
sure that substitutes are members of the domain of any
tabular function. So the examples

3.4.1991, . . . =} TheuthirduofuApril,u1991 . . .
5.8.1992, . .. =} TheufifthuofuAugust, u1992 . . .

produce the transformation

91 :N•:ord#? .92:N•:month#? . 93:N•, .. . =}

The u 91 :ord u of u 92:month:capitaliz e : 93, ...

This gap pattern initially searches for any text that
matches the regular expression

[0-9]*. [0-9]*. [0-9]*, . ..
but discards matches in which the substitute for 91 is not
in the domain of the function ord or if the gap substitute
for 92 is not a valid month number . The substitute for
91 is converted to an ordinal name and the substitute for
92 to a capitalized month name.

A gap pattern matches any string for which (a) legal
gap substitutes can be found, (b) inter- gap constants

m atch, and (c) loop patterns match zero or more occur
rences in the string . An output is generated by substi
tuting for transformed gap variables in the replacement
expression, expanding loops by the number of gap sub
stitutes found.

During learning we seek a descriptive gap pattern.
Each member of the set of descriptive gap patterns has
a maximum of domain symbols and a minimum of gaps,
and matches all the input examples.

2 Learning Text Transformations with
Iteration

We make five simplifying assumptions about the in
put/output examples, to ease the difficulty of finding
loops. First, (1) each of the examples must show at least
one iteration of every loop that is to be learned. If there
are different numbers of iterations in different examples
then: (2) the loop body must be terminated by a con
stant, and (3) when a loop begins with a gap variable,
then the gap substitutes must not have a prefix in com
mon with the loop body terminating constant . If there
are several iterations in each example then: (4) only
loops of zero and one or more repetitions are learned, and
(5) if nested loops are to be learned, the first iteration of
any loop must be a complete prototype of that loop (ie
the first iteration must contain the nested loops). These
assumptions are somewhat ad hoc, and require further
study.

The learning of iterative gap patterns is best described
in three stages: (I) creation of a single gap pattern with
out loops; (II) creation of potential looping gap patterns;
and (III) the construction of a replacement expression.
Our initial aim was to make the minimum of changes to
the methods used by Nix [1983; 1985]. There is not room
to describe the algorithm details here; a brief description
and some insight is given, while full details appear in
[Schuler, 1993].

2.1 Step I: Constructing Non-Looping Gap
Patterns

The criteria for a descriptive gap pattern suggest a di
vision of this first step into: (a) finding the constants of
the pattern; and then (b) inserting the minimum number
of gaps into the constant sequence to make it match all
of the input examples. The constant sequence is approx
imated by the longest common subsequence [Hirshberg,
1975] of the input examples. To complete a descriptive
gap pattern, gaps are inserted into the LCS so that the
pattern matches each of the input examples individually.
When that has been achieved the pattern may have ex
traneous gaps (not needed for matching), so these are
deleted.

2.2 Step II: Constructing Gap Patterns with
Loops

When step I is used on inputs that contain repeating
sequences, we can make some useful observations about
the resulting gap pattern and substitutions. Along with
the requirement that any examples show at least one it
eration of each loop, the observations enable a technique
for forming loops when there is repetition.

41

. . I

·'t

:!
I

• I

Alpha-Numeric
AN*

Numeric
N*

Punctuation
p? Sl?ecial

s·

Upper
u•

ower
L*

Figure 2: Charader Class Hierarchy for Gap Annotation.

l. If there is repetition in the examples, and more than
one iteration is shared across all the examples -
such as two initials shared by each of the examples
in Table 1 - then this repetition is also found in
the gap pattern. In figure 3 a. the boxed sequences
are repetitions that could be loops in the iterative
gap pattern.

2. If there is repetition in the examples, but not all
the examples share the same number of iterations,
then the shared iterations can be found in the gap
pattern as noted above. Any remaining iterations
are matched by the last gap in the last repetition.
This last gap in the loop and the constant string
following it will be referred to as the endgap and
endconstant of the loop. In Table 1, all exam
ples share one author,1but the second and third ex
amples each have two authors. The subsequence
"%Aug1 ,u92.93.<eol>" in figure 3 a. matches the
initial iteration of the list of authors, while gap vari
able 93 also matches both substitutes for 93 and any
extra iterations that an example may have. In ex
ample 2 of figure 3 b. gap 93 matches both its substi
tute "R" for the current iteration and another com
plete iteration ".<eoi>% AuHinton,uG.E",while in
example 1 93 matches no further iterations.

Therefore, loop identification finds loops in the gap
pattern by looking for repetitions (repeat loops) and ex
amining an initial parse for the examples (parse loops).
If the endconstant is non- null, the endgap can be found,
and this gap's parses can be split to reveal different it
erations of the loop, and these can be analyzed to find
a gap pattern that forms the loop body (by recursively
invoking the procedure for finding gap patterns). If this
gap pattern for the loop body also matches the repeti
tion preceding the endgap, then a parse loop has been
identified.

1 Remember: One iteration is the minimum required for
the examples given.

2 Note that g3 matches the constant end of the current
iteration and the beginning of the next iteration up to and
including the substitute for g3 in the last iteration of the loop.

However, loop locations cannot be confirmed until a
replacement expression is generated. For this reason,
L-EBE constructs all possible gap patterns with loops
or zero and one or more repetitions, passing these to
step III, along with the initial non- iterative gap pattern.
These different gap patterns are ordered by decreasing
specificity of the input examples: loops found through 1
above generalize the pattern, while loops found through
2 specialize the pattern. The set of potential gap pat
terns is represented as a nondeterministic finite automa
ton, where multiple transitions represent different alter
natives (only one of these can be a transition on a con
stant or gap variable, the rest are on loop symbols) .

2.3 Step III: Replacement expression synthesis
with loops

The basic process in generating replacement expressions
is to form a finite state automaton for each input/output
example, using the parse of the input to construct the
output. Such an automaton represents all the possible
replacement expressions, including possible functions as
annotations. The intersection of these automata repre
sents the possible replacement expressions. The expres
sion we desire is the shortest accepting path through the
automaton created by this intersection.

The basic idea for finding loops in the replacement
expression is to find all possible loops in the replace
ment expressions for each output by noting those gap
variables that appear in loops in the iterative gap pat
tern (intra-example loop construction), while the inter
section of these replacement expressions selects the cor
rect loops (inter-example loop construction) [similar to
ETAR's [Heise, 1989] intra- and inter-loop construction].

After constructing the automaton for the set of non
looping replacement expressions3, intra-loop construc
tion scans this machine for the locations of gap vari
ables that occur in loops in the iterative gap pattern (in
descending order of nesting level) and attempts to con
struct loops around them. Looking at two adjacent gaps
in the replacement machine:

3 These may be invalid, because the nesting levels of gaps,
ie. the loops surrounding them, have not been considered.

42

%Aug1, u j Y2 · I g3. j<eol>
%Du g4 <eol>
%T u g5 u Y6 u g7 u Ys u gg <eol>

%J u Y10 u Yu <eoi>
%0 u Y12 <eol>
%Ku*

a.

Example#! Example#2 Example#3 Example#4
Y1 "Abi-Ezzi" "Addis" "Allen" "Allen"
92 "S" "T" "J" "J"
g3 "S" "R. <eoi> %Au Hinton "F. < eol> %AuKoomen "F"

,uG.E" ,uJ.A"
g4 1986 1987 1986 1983
g5 "An" "A" "Planning" "Maintaining"
Y6 "implementer's" "framework" "using" "knowledge"
g7 "view" "for" "a" "about"
Us "of" "knowledge" "temporal" "temporal"
gg "PRIGS" "acquisition" "worldumodule" "instances"
Yto "Computer" "Proc'' "Artificial" "Comm"
Y11 "Graphicsu "FirstuEuropeanuConference "Intelligence" "ACM"

andu uon uKnowledgeu
Applications" Acquisition"

Y12 "February" "September" "March" "May"

b.

Figure 3: The Effects of Iterative Examples on a. the Non-Iterative Gap Pattern and b. its Parse (Examples are from
Table 1).

1. If the two gaps are different (ie., they have different
numbers), but are both nested in loops at the same
depth in the input, then the two gaps may be part of
one iteration of the same loop, or they may belong
to two separate loops.

2. If the two gaps are the same, and they appear in
loops in the iterative gap pattern, then there must
be a loop in the replacement expressions such that
each of the gaps corresponds to a different iteration
of that loop.

3. If the two gaps are nested at different depths in
the input, then the difference in depths denotes the
number of loop transitions, ie., loop starts or ends,
that must occur between them in the replacement
express10n.

These motivate the search for loops in the replacement
expression. Intra-example loop construction finds loops
in the replacement expressions from the bottom up, ie.,
loops that are nested at the deepest level are located
first. This order is necessary because these inner loops
may be necessary for locating and merging outer loops.

Under the following conditions a loop will appear in
the intersected machine:

1. Both replacement machines have a loop at the states
that are currently being merged and the loop bodies
(ie., the transitions between the loop begin and end
symbol) can be matched.

2. At the states that are currently being merged one
machine has a loop and the other has a marked se
quence, and the loop body and part of the marked
sequence (starting from the current state) can be
matched .

When an output example contains only a single it
eration of a loop, then it is impossible to determine
the boundaries of the loop for that example. So dur
ing intra-example loop generation, any of the transitions
in the replacement machine for that example may be
marked. The boundaries of that loop are identified
in inter-example loop generation when that replacement
machine is intersected with others, for which the loop
boundaries could be identified.

At the end of the merging process, if any marked tran
sitions remain (ie. there are gaps that are not at the
correct nesting level) then no replacement expression is
found and the next iterative gap pattern is examined.

After a successful intersection of all the replacement
machines, the shortest replacement expression is se
lected. In terms of loops, this means that a path in
volving a loop is selected over alternate non-loop paths
because the loop contains a gap and therefore any of
the alternate paths are invalid with respect to the input
expression. That is, if a loop was constructed then its
gap variables are nested at the correct level with respect
to the iterative gap pattern . For any alternate paths
that do not involve these loops, the gap variable must
therefore be nested at the wrong level.

43

.I

I
I

Finally, if there is a sequence of the same gaps sep
arated by whitespace in both the gap pattern and the
replacement expression, then these may be merged in to
one single gap, and any character class annotation gen
eralized to cover all the classes of the merged gaps.

2.4 User hints
What type of examples are suitable for L-EBE? This is
a question that requires further study. The following are
hints and guidelines for users.

• Use common elements in the examples only when
intended. The stronger the differences are between
the constant and the variable parts of the programs
to be learned, the easier it is for L-EBE to learn
them. This does not in general affect whether a
program can be learned or not, but how n1any ex
amples must be provided for learning.

• Show at least two examples of each feature that L
EBE should pick up on. Common features can only
be discovered with two or more examples of them.

• When giving examples for a loop, show examples of
one or more iterations. L-EBE assumes that at
least one iteration of a loop will be shown at all
times, but examples with more than one iteration
are necessary to recognize the loop.

3 Results

L-EBE has been implemented and integrated into the
Emacs editor [Stallman, 1987] by Schuler [1993]. The
learning system is a Scheme process that will discover a
gap program (if there is one) from examples passed to
it from Emacs. Furthermore, when a transformation is
executed in Emacs the Scheme learner returns a regular
expression for the gap pattern it has learned and this
expression determines the text that the transformation
will be applied to. Once input text for the transforma
tion has been located, the Scheme learner returns its
replacement string. Furthermore a transformation can
be saved to and loaded from files by the learner.

The interface to the L-EBE learner is implemented in
Emacs and it allows a user to: construct new programs
by presenting examples, execute a learned program in
Emacs, and save and load programs previously learned.
The Emacs interface performs any communication with
the Scheme learner by sending it: examples for which a
transformation is to be learned, text to be transformed
by the current program, or commands to reset, save or
restore programs.

The main goal of L-EBE was to show that looping text
transformations can be learned from just input/ output
behavior. Because there are no previous methods or the
ory for learning loops represented in text transforma
tions, the goal was to find an approach to the problem.
It was not the intent of this work to find a complete so
lution, nor the best one. Other subgoals for L-EBE were
to learn text transformations that involve background
knowledge, and to learn any transformations that EBE
does.

Testing of L-EBE has involved running it on a vari
ety of different examples. Throughout the process of

designing and implementing the system, L-EBE was run
successfully on many of the examples presented in Nix's
PhD thesis [1983]. Other examples tested include all
those listed in [Schuler, 1993], as well as many other ex
amples designed to test various components of the loop
learning system. Figure 1 shows the looping transforma
tion that was learned when L-EBE was presented with
the examples from Table 1.

L-EBE is a system that aims at helping users auto
mate editing tasks in an interactive editing environment.
Therefore both the number of examples that must be
provided to teach a looping transformation and the run
ning time of the system are important factors for success
in any real setting. While a full theoretical evaluation of
L-EBE is beyond the scope of this work, some comments
can be made about example and running time complex
ity of the system.

Table 2 shows that it took 36 seconds to learn the
transformation on a Sun Spare 2 from the first three
examples. While this is reasonable in terms of the ex
amples necessary for learning, too much time is required
for it to be useful in an interactive setting - especially
as the time required for learning is expected to increase
as more examples are presented. The timing pinpoints
two inefficiencies in the design and implementation of
loop learning in L-EBE:

• Before beginning to learn a replacement expres
sion, the iterative gap patterns are separated out
of the representation and then used individually in
replacement synthesis. Most of the time spent on
gap pattern synthesis is attributed to this splitting
of iterative gap patterns.

• When the first three examples are presented to the
system for learning, there is a tremendous differ
ence in the time for learning loops in the different
replacement machines. More than half of the time
required to learn the entire program is spent in loop
construction for the replacement machine of the first
example. The first example, in comparison to the
other two, is the only one where there is only one
iteration of the author loop. For this example, the
absolute outer bounds of the loop must be found,
and this is where most of the time is spent in loop
learning for the replacement expression.

4 Related work

TELS [Mo, 1989; Mo and Witten, 1990] learns editing
tasks from examples of editing commands that trans
form input text. The command set is constrained to
typing, selection, cut and paste, in order to ease the
learning problem. In TELS a non- interactive phase pro
cesses the first example, finding loops by matching ac
tion subsequences, and inducing something similar to an
annotated gap pattern for the loop body. During the in
teractive phase the learner asks for user confirmation on
further examples, and the user may modify the learner's
behaviour by correcting its predictions.

Shinohara's Data Entry by Example system [1982]
learns a template for data entry from examples presented
by the user. The templates learned are non- iterative gap

44

Component Example 1 Examples 1,2 Examples 1,2,3
LCS Omsa 129ms 164ms
Insert Gaps lms 23ms 24ms
Initial Parse 2ms 38ms 34ms
Input Loop Learning 4ms 43ms 4028ms
Split Gap Patternsb 556ms 492ms 9760ms
Gap Pattern Synthesise 777ms 897ms 14199ms
Construct Replacement Machine lms 58ms 72ms 45ms 64ms 48ms
Maximum Loop Regiond - Oms Oms 20776ms Oms Oms
Output Loop Learning - Oms Oms 20792ms 21ms 167ms
Intersect Replacement Machines Oms 9ms 176ms 46ms
Replacement Expression Synthesis c 72ms 198ms 21559ms
Transformation Synthesis c 1091ms 1291ms 35977ms

0 Less than 0.5ms.
bSeparate all iterative gap patterns out of the representation for the set of iterative gap patterns.
cNote that timings for all components have not been included.
dFind the maximum possible region of a loop when there is only one iteration in the output example.

Table 2: Time for running the Examples from Table 1 in L-EBE

patterns. Once the template has been built from exam
ples, the system can help the user by requesting input
only for the variables in the template.

SYS [Baltes, 1991] learns disjunctive string concepts
to be applied in learning operating system tasks in the
UNIX domain. The system is presented with a sequence
of examples, where the first example is considered pos
itive and functions as a prototype of the concept to be
learned. If the learner cannot classify one of the exam
ples then the user acts as an oracle to provide classifica
tion.

VanLehn and Ball (1987] describe a learning method
for context-free grammars that uses a variation of the
version space representation. This solves two problems:
there is an infinite set of grammars that are consistent
with any finite set of examples so that the upper bound
ary in the version space may be infinite, and a partial
order for grammars is undefined. By considering only
simple and reduced grammars, the set of grammars
consistent with any finite presentation is also finite, yet
any context- free grammar can be generated with them.
A derivational version space is defined, which is a su
perset of the reduced version space, yet has the property
that a predicate can be found that partially orders its
elements.

A number of authors have discussed approaches to
synthesizing LISP functions from input/output exam
ples (e.g . [Biermann, 1978; Biermann and Smith, 1979;
Jouannaud and Guiho, 1977; Kodratoff, 1979; Summers,
1977]) .

ETAR [Heise, 1989] is a robot task acquisition system
that learns procedures by recording movements when a
robot is led through a task by the user. ETAR makes
use of a focus of attention mechanism, that determines
which objects are important for different parts of a task,
and thereby reduces the search-space for constructing
the target procedure. In ETAR's loop induction, loops
are constructed in two phases. In the intra-example pro-

cessing phase each trace is grouped into sequences of
actions that share the same focus of attention. Loops
revolve around key groups (groups that involve key ac
tions). The first key group marks the first iteration
- further iterations of that loop are found by scan
ning for more key groups that have the same key event
and the same focus- of-attention type (which depends
on whether the objects in the focus of attention are ex
plicit parameters to the task or not). Finally iterations
are merged into a loop . The inter-example processing
phase merges the traces from different examples to con
struct the final procedure. Traces are merged on a group
by group basis which again takes the focus of attention
into consideration. Special rules determine how loops are
matched against other loops and subsequences of groups.

5 Con cl us ion

We have described the L-EBE system, which learns text
rewrite rules containing loops, by learning a description
of both the input pattern and how that pattern is trans
formed into the output. The work is an extension of the
non- iterative EBE system built by Nix. Loop annota
tions are introduced to EBE's language, which describes
a sequence of constant and variable substrings. Con
straints on the examples ensure the detection of nested
loops with different numbers of iterations. L-EBE has
been implemented in Scheme and integrated with the
Gnu Emacs editor, making it convenient for users to
present examples to the learner, and also execute learned
transformation rules during editing.

Constraints on the presentation of examples, and be
tween the gap pattern and the replacement expression ,
present a working framework for learning text transfor
mations with an arbitrary number of substring repeti
tions, from input/output examples. Learning systems
must present an appropriately human-oriented environ
ment to the user if repetitive text editing is to be auto
mated.

45

. I

. I

Acknowledgements

This work was supported by the Natural Sciences and
Engineering Research Council of Canada, and the Uni
versity of Calgary.

References

[Angluin, 1979) Dana Angluin. Finding patterns com
mon to a set of strings. In Proceedings, 11th Annual
Symposium on Theory of Computing, pages 130-141,
1979.

[Angluin, 1980) Dana Angluin. Finding patterns com
mon to a set of strings. Journal of Computer and
System Sciences, 21 :46- 62, 1980.

[Baltes, 1991) Jacky Baltes. A symmetric version space
algorithm for learning disjunctive string concepts. In
Proc. Fourth UNB Artificial Intelligence Symposium,
pages 55- 65, September 1991. [Also, unpublished,
1992, pp.1-33.).

[Biermann and Smith, 1979) Alan W. Biermann and
Douglas R. Smith . A production rule mechanism for
generating lisp code . IEEE Transactions on Systems,
Man, and Cybernetics, SMC-9(5) :260- 276, May 1979.

[Biermann, 1978) Alan W . Biermann. The inference of
regular lisp programs from examples. IEEE Trans
actions on Systems, Man and Cybernetics, SMC-
8(8):585-600, August 1978.

[Heise, 1989) Rosanna Heise. Demonstration instead of
programming: Focussing attention in robot task ac
quisistion . Master's Thesis 89/ 360/ 22, University of
Calgary, September 1989.

[Hirshberg, 1975) David Hirshberg. A linear space algo
rithm for computing maximal common subsequences.
Communications of the ACM, 18(6):341- 343, June
1975.

[Jouannaud and Guiho, 1977) J . P. Jouannaud and
G . Guiho. Inference of functions with an interactive
system. Machine Intelligence, 1977.

[Kodratoff, 1979) Yves Kodratoff. A class of functions
synthesized from a finite number of examples. Interna
tional Journal of Computer and Information Science,
8(6), 1979.

[MacDonald, 1991) Bruce A. MacDonald. Instructable
systems. Knowledge Acquisition, 3:381- 420, December
1991.

[Mo and Witten, 1990) Dan H. Mo and Ian H. Witten.
Learning text editing tasks from examples: a procedu
ral approach. Technical Report 90 / 394/ 18, University
of Calgary, 1990.

[Mo, 1989) Dan H. Mo. Learning text procedures from
examples. Master's thesis, Department of Computer
Science, University of Calgary, Dec 1989.

[Nix, 1983) Robert P. Nix. Editing by Example. PhD
thesis, Yale University, October 1983.

[Nix, 1985) Robert P. Nix. Editing by example. ACM
Transactions on Programming Languages and Sys
tems, 7(4):600- 621, October 1985.

[Schuler, 1993) Natascha 0. Schuler. L-ebe: Learning it
erative editing by example. Master's thesis, Unversity
of Calgary, April 1993. In Preparation .

[Shinohara, 1982) Takeshi Shinohara. Polynomial infer
ence of extended pattern languages. In Proceedings
of Software Science and Enginieering, pages 115- 127,
1982.

[Stallman, 1987) Richard Stallman. GNU Emacs Man
ual. Version 18. Free Software Foundation, sixth edi
tion, March 1987.

[Summers, 1977) P. D. Summers. A methodology for lisp
program construction from examples. Journal of the
ACM, 24(1), 1977.

[VanLehn and Ball, 1987) Kurt VanLehn and William
Baii. A version-space approach to iearning context
free grammars. Machine Learning, 2(1):39- 74, 1987.

46

A Concept-Based Knowledge Discovery Approach in Databases *

Xiaohua Hu+, Nick Cercone+, Jiawei Han+
+De.partment of Computer Science, University of Regina

Regina, SK, Canada, S4S OA2
+School of Computing Science, Simon Fraser University

Burnaby, B.C., Canada V5A 1S6
e-mail: { xiaohua,nick } @cs.uregina.ca

Abstract

An efficient concept-based induction method is de
veloped for knowledge discovery in databases. The
method integrates the machine learning paradigm, es
pecially learning-from-examples techniques, with set
oriented database operations and extracts generalized
data from data in databases. An attribute-oriented
concept tree ascension technique is applied in general
ization which substantially reduces the computational
complexity of the database learning process. With the
assistance of knowledge about concept hierarchies, data
relevance, and expected rule forms, different kinds of
knowledge rules, including characteristic rules, equal
ity rules and inheritance rules associated with concepts
at different levels in the concepts hierarchies can be
discovered efficiently. In this paper we focus our atten
tion on the automatic discovery of knowledge associ
ated with concept hierarchies in database.

1 Introduction

1{ nowledge Discovery is the extraction of implicit,
useful information from data. Knowledge discovery
from a database is a form of machine learning. The
growth in the size and number of existing databases
far exceeds human abilities to analyze the data; this
situation creates both a need and an opportunity to
extract knowledge from databases .

In this paper, we present a method for discovering
knowledge in relational databases. Our method inte
grates a machine learning paradigm, especially learn
ing from example techniques , with database opera-

*Th e authors are members of the Institute for Robotics and
Intelligent Systems (IRIS) and wish to acknowledge the support
of the Networks of Centres of Excellence Program of the Govern
ment of Canada , the Natural Sciences and Engineering Resear ch
Council, and the participation of PRECARN Associates Inc.

1

47

tions and extracts generalized data from actual data
in databases. A key to the approach is attribute
oriented concept tree ascension for generalization which
applies well-developed set-oriented database operations
and substantially reduces the computational complex
ity of the database learning process. Initially the data
in the database is generalized to a prime relation ta
ble which contains all essential information about the
data in the database. Then the prime table is fur
ther processed to learn different kinds of rules, includ
ing characteristics rules, equality rules and inheritance
rules associated with concepts at different levels in the
concept hierarchies.

This paper is organized as follows. Primitives for
knowledge discovery in databases are introduced in Sec
tion 2. The principles and algorithms for knowledge
discovery in databases are presented in Section 3. The
test of our method using a set of animal data is illus
trated in Section 4. The discussion and conclusion are
presented in Section 5.

2 Primitives for Knowledge Discovery

in Databases

Three primitives should be provided for the specifi
cation of a learning task: task-re levant data, back
ground knowledge, and th e expected representations of
th e learning results. For illustrative purposes, we only
examine relational databases, however , the results can
be generalized to other kinds of databases .

2.1 Data relevant to the discovery pro

cess

A database may store a large amount of data, of
which only a portion may be relevant to a specific

. !

learning task. For example, to characterize the fea
tures of mammal in animal, only the data relevant
to mammal in animal are appropriate to the learn
ing process. Relevant data may extend over several re
lations . A query can be used to collect task-relevant
data from the database. Task-relevant data can be
viewed as examples for learning processes suggesting
that, learning-from-examples should be an important
strategy for knowledge discovery. Most learning-from
examples algorithms partition the set of examples into
positive and negative sets and perform generalization
using the positive data and specialization using the
negative ones [Gietterich and Michalski, 1983). Unfor
tunately, a relational database does not explicitly store
negative data, and thus no explicitly specified negative
examples can be used for specialization. Therefore, a
database induction process relies primarily on general
ization, which should be performed cautiously to avoid
over-generalization.

When learning a characteristic rule, relevant data are
collected into one class, the target class, for generaliza
tion. When learning an equality rule, it is necessary to
analyze the relationship for the data value among the
different attributes for the target class . When learn
ing a discrimination rule, it is necessary to collect data
into two classes, the target class and the contrasting
class(es). The data in the contrasting class(es) imply
that such data cannot be used to distinguish the target
class from the contrasting one(s), that is, they are used
to exclude the properties shared by both classes.

2.2 Background knowledge

Concept hierarchies represent necessary background
knowledge which are used to control the generalization
process. Different levels of concepts are often orga
nized into a taxonomy of concepts. The concept taxon
omy can be partially ordered according to a general-to
specific ordering. The most general concept is the null
description (described by the reserved word "any"),
and the most specific concepts correspond to the spe
cific values of the attributes in the database [Cai et
al, 1991). Using a concept hierarchy, the rules learned
can be represented in terms of generalized concepts and
stated in a simple and explicit form, which is desirable
to most users.

Concept hierarchies can be provided by knowledge
engineers or domain experts. This provision is reason
able for even large databases since a concept tree regis
ters only the distinct discrete attribute values or ranges
of numerical values for an attribute which in general,
are not very large and can be supplied by a domain

48

expert .

2.3 Representation of learning results

From a logical point of view, each tuple in a relation
is a logical formula in conjunctive normal form, and a
data relation is characterized by a large set of disjunc
tions of such conjunctive forms. Thus, both the data
for learning and the rules discovered can be represented
in either relational form or in first-order predicate cal
culus.

3 Principles and Algorithms For

Learning

A new method is presented which is based on the
attributed-oriented concept ascension techniques dis
cussed. The key to the approach is an attribute
oriented concept tree ascension technique for general
ization . The general idea of basic attribute-oriented
induction is one in which generalization is performed
attribute by attribute using attribute removal and con
cept tree ascension. As a result, different tuples may be
generalized to identical ones, and the final generalized
relation may consist of only a small number of distinct
tuples. In the procedure of generalization, the tuples
in database are generalized to the desirable level , the
table gained at this stage is called prime relation. The
prime relation contains all of the essential information
of the original data in the database. The prime relation
is processed further to discover different kinds of rules
associated with the concept hierarchy.

Definition 1 An attribut e is generalizable if there are
a large number of distinct va lues in the relation but
there exists a concept hierarchy for the attribute { i .e.,
there are higher level concepts which subsume th ese at
tribute values). Otherwise, it is nongeneralizable.

Definition 2 An attribute in a relatively large re lation
is desirable for consideration for generalization if the
number of distinct values it contains does not exceed a
user-specified desirability threshold (usually 6 or less).

If an attribute is nongeneralizable, then it should be
removed in the generalization process. Attribute re
moval corresponds to the generalization rule, dropping
conditions [Michlski, 1983]. Consider a tuple as a set
of conjuncts in the logical form; an attribute value,
together with its attribute name, form one of the con
juncts. By removing a conjunct, a constraint is elim
inated and the concept is generalized. If there are a

large set of distinct values for an attribute, the large
set of values must be generalized. However, if there is
no higher level concept provided for the attribute, it
cannot be further generalized by ascending the concept
tree. Therefore, the attribute should be eliminated in
generalization. Attribute removal can also be viewed
as a generalization of the attribute to the most general
concept (ANY) and then removed from the representa
tion.

If an attribute is generalizable, then it should be
generalized to a higher level concept value by concept
tree ascension techniques . Concept tree ascension cor
responds to the generalization rule, climbing general
ization trees [Michlski, 1983]. If there exists a higher
level concept for the value in the concept tree , then the
substitution of the value in each tuple in the relation
by the corresponding higher level concept makes the
tuple cover more cases than the original one, and thus
it generalizes the tuple.

Our method is performed in 4 steps. First, a set
of data relevant to the learning task is collected by a
database query. Second, the collected data is then gen
eralized by removal of nongeneralizable attributes and
by performing concept-tree ascension (replacing lower
level attribute values in a relation using the concept
hierarchy) on each generalizable attribute until the at
tribute becomes desirable (i .e ., containing only a small
number of distinct values). T he identical generalized
tuples in the relation are merged into one with a spe
cial internal attribute, vote, associated to register how
many original tuples are generalized to this resultant
tuple. The generalized relation obtained at this stage
is called the prime relation and saved for later use.
Third, we further simplify the generalized relation and
map it into the feature table, then analyze the feature
table and infer different kinds of rules . Finally, we ex
amine the prime relation once more and infer the in
heritance rules associated with the concept hierarchies.

A prime relation Rp for a set of data R stored in
the relational table is an intermediate relation gener
alized from relation R by removing nongeneralizable
attributes and generalizing each attribute to a desir
able level. Let a desirability threshold be available for
each attribute, which could be set by default or spec
ified by the user or an expert, based on the semantics
of the attributes and/ or the expected forms of general
ized rules. A prime rela tion maintains the relationship
among generalized data in different attributes for a fre
quently inquired-of data set . It can be used for extrac
tion of various kinds of generalized rules. The following
algorithm extracts the prime relation Rp from a set of
data R stored in relational table.

49

Algorithm 1 Extraction of th e prime relation from a
set of data R

Input: (i) A set of task-relevant data R (obtained by
a relation query and are stored in a relation table), a
relation of arity n with a set of a ttributes A; (1 :S
i :S n); (ii) a set of concept hierarchies, H;, where
H; is a hierarchy on the generalized attribute A ; , if
available; and (iii) a set of desirability thresholds T;, for
each attribute A;
Output. The prime relation Rp
Method

l. Rt := R; /* Rt is a temporary relation . * /

2. for each attribute A; (1 :S i :S n) of Rt do {
if A; is nongeneralizable then remove A;;
if A; is not desirable but generalizable then
generalize A; to desirable level;

/* Generalization is implemented as follows. Col
lect the distinct values in the relation and compute
the lowest desirable level L on which the number
of distinct values will be no more than T;, by syn
chronously ascending the concept hierarchy from
these values. Generalize the attribute to this level
L by substituting for each value A;'s with its cor
responding concept H; at level L. * /

}

/* Identical tuples in the generalized relation Rt
are merged
with the number of identical tuples registered m
vote * / .

3. Rp := Rt

For example, suppose we have an animal relation for
some zoo as depicted in Table 1 and the concept hier
archy for the attribute "Animal" as depicted in Figure
1:

LEVEL#
I

4

/\mom=, ,r
tiger cheetah g,ra{ zJra

~
A"~

albatross eagle ostrich penguin

Figure 1: Conceptual Hierarchy of the Animal World

In the initial relation, the first a ttribute "Label" is
the key to the relation , the key value is distinct for each

-.. -I . .

. I

Anima.l H T I EY I F Feet Eat M I Fly I s

I

2

3

4

5

6

7

8

9

tiger y pt Id N cla.w mea.t y

c h ee t a. h y pt Id N cla.w mca.t y

g ira.ffe y bt , d N ho o f grass y

ze bra. y bt ,d N h oof gra.u y

o s tri c h N N , d y cla.w grain N

pengui n N N ,d y we b fi s h N

a.lbotrou N N ,d y cla.w g ra.in N

ea.gl e N N I d y cla.w mea.t N

viper N pt Id N N mca.t N

Abbre viations: H: Hair, F: Feath er , T: T eeth, S: S wim

pt:pointed , bt: blunted, fd:forwa.rd, sd:side.

Table 1: An Animal World.

N y

N y

N N

N N
y N

N N
y y

y N

N N

Anima.l H T I EY F Fee t Eat I M Fly I S V I
I

2

3

4

5

6

7

cma.mma.l y pt Id N claw m ca.t y

ungula.te y bt ,d N h oof gra.u y

nonfly N N ,d y cla.w gra.in N

non fly N N ,d y we b fi s h N

flyingb N N ,d y cla.w g r a. in N

flyin gb N N fd y cla.w mea.t N

vip e r N pt Id N N meat N

Abbrevia.tions: H: H a.i r , F: Feath e r , T: T e et h , S: Sw im

pt:pointe d, bt: b lu nted, fd :forw a. rd, sd: si de.

Table 2: The Prime Relation Table.

N y

N N
y N

N N
y y

y N

N N

tuple in the relation . If there is no higher level con
cept provided for such an attribute in the concept tree,
the value for the attribute cannot be generalized and it
should be removed in the generalization process. Other
candidate key attributes or nonkey attributes can be
eliminated under a similar condition. The next at
tribute "Animal", has 9 distinct values, which is greater
than the threshold value for our desirable level (assume
the desirability threshold is 6), the concept-tree ascen
sion technique is applied, applying algorithm 1; the at
tribute is generalized to the desirable level (level 3)
{ carnivorous_mammal , ungulate, flying_bird,
nonf lying_bird} in the conceptual hierarchy. We ex
amine then the other attributes and since all of them
are already at the desirable level, prime relation is ob
tained as shown in Table 2:

The derivation and storage of prime relations for
fr equently inquired-of data sets may facilitate the ex
traction of different kinds of generalized rules from
the prime relation. Further generalization can be per
formed on prime relations to derive characteristic or
inheritance rules if there are still many tuples in the
prime relation. Based upon different interests, a gen
eralized relation can be directly mapped into different
feat ure tables. We have the following algorithm for the

2

2

1

l

l

l

1

50

extraction of a feature table from a generalized relation.

Algorithm 2 Feature table TA extra ction for an at
tribute A from the generalized relation R '.

Input: A generalized relation R' consists of (i) an at
tribute A with distinct values a 1 , .. . ,am, mis the number
of distinct values for A (ii) j other attributes B1 , .. . , Bj,
j is the number of a ttributes in the relation R' except A
(suppose different attributes have unique distinct val
ues), and (iii) a special attribute, vote.
Output. The feature table TA
Method.

1. The feature table TA consists of m+ 1 rows and l + 1
columns, where l is the total nurnuer of distinct
values in all the attributes. Each slot of the table
is initialized to 0.

2. Each slot in TA (except the last row) is filled by
the following procedure,

for each row r in R' do {
for each attribute Bj in R' do

TA [r.A, r.Bj] := TA [r.A, r .Bj] + r .vote ;
TA [r.A , vote] := TA [1·.A, vote]+ r .vote; }

3. The last row pin TA is filled by the following pro
cedure:

for each columns in TA do
for each row t (except the last row p) in TA do

TA[p,s] := TA[p,s]+TA [t ,s];

In our example, in order to obtain the feature table,
the prime relation is further generalized by substituting
the concept at level 3 by those at level 2, resulting in
the generalized relation as shown in Table 3.

T he feature table is then extracted from the gener
alized relation by using algorithm 2 based on the at
tribute "Animal" and the result is shown in Table 4
(since we are interested in learning for Animal) . Differ
ent feature tables can be extracted from the generalized
relation based on the interest in different attributes .
The extracted feature table is useful for derivation of
the relationships between the classification attribute
and other attributes at a high level. For example, the
generalized rule All animals with hair are mammals can
be extracted from Table 4 based upon the fact the class
mammal t akes all the votes with Hair count .

We present two algorithms for discovering different
kinds of rules, characteristic and equality, and inheri
tance from a from database system.

I # Animal I H I T EY I F Fee t E&t I M F l y I s

1 ma.mma.l y pt fd N claw meat y N y

2 ma.mma. l y bt ,d N h oof gra.n y N N

3 bird N N , d y cla.w g rain N y N

bird N N ,d y w e b fish N N N

5 bird N N , d y claw grain N y y

6 bird N N fd y claw m eat N y N

7 ot h er N pt fd N N meat N N N

Abbreviations: H, H a.ir, F: Feather, T: T eeth, S : S wim

pt:pointed, bt: blunted, fd:forwa.rd, sd:sidc.

Table 3: A generalized relation.

Animal Hair Teeth Feat h e r Swi m vote

y n p b y y

mammal 4 0 2 2 0 0 0

bird 0 0 0 4 0

o th ers 0 0 0 0

tot a.l 2 5 5 9

Abbreviation: p:pointed b:bl unt.

Table 4: The feature table for the attribute animal.

Algorithm 3 An attribute-oriented induction for dis
covering characteristic and equality rules associated
with the concept hierarchy.

Input: (i) the prime relation obtained by Algorithm 1
(ii) a concept hierarchy table. (iii) a threshold N for the
total number of tuples in the final generalized relation
Output: A set of characteristic rules and equality
rules.
Method.

1. Generalize the prime relation further by perform
ing attribute-oriented concept ascension technique
until the number of the tuples is equal or less than
the threshold value N

2. Using feature- table extraction algorithm (Algo
rithm 2), extract a feature table TA from the prime
relation based upon a certain attribute A.

3. Assume that there are total I classes, i.e., there
are I distinct values for attribute A, A1 , ... , A1.
Also, assume that there are J attributes: C 1 , . .. ,

CJ, for the data in the feature table. Using I<j to
denote the number of distinct values for attribute
Jj. According to the feature table, two probability
values, bi,j ,k and Ci,j,k, are associated with the k
th value (k = 1, .. . , I<j) of the j - th attribute (j =
1, . . . , J) in the i-th class (i = 1, ... , I). Notice
that the number of tuples associated with the k
th value of the j-th attribute in the i-th class is

V I
2

2

51

denoted by a;,j,k·

b;,j ,k a;,j,k / tota l.

c;,j,k a;,i,k/vote.

where b;,j,k represents the probability of ai,j,k m
the entire database and c;,j,k denotes the proba
bility of a;,j,k in the i-th class .

4. Extract characteristic rules and equality rules
based on the probabili ty for each distinct value
of every attribute in each class in the feature table
TA. This is performed as follows.

for each class do {

if bi,j,k = Ci,j,k = 1

then the following rule is inferred.

Aj = TA [i,j, k] +-+ C lass= C;.

if bi,j,k = 1 and c;,j ,k < l

then the following rule is inferred.

Aj = TA [i, j, k] -+ C lass= C;.

if b;,j,k < 1 and c;,j,k = l
then include Aj = TA [i,j,k] as a component for

the corresponding characteristic rule for the
i-th class.

if bi,j,k f 1 and Ci,j,k f 1 and b;,j,k * c;,j,k '.S
r frequency

then ignore this value

else include the value as one of the characteristic
values for the attribute.

/* Since data in a database may be distributed
along the full spectrum of the possible values, it
is impossible to obtain a meaningful rule for such
kinds of data without using possible quantitative
information . Various techniques can be developed
for rule extraction using quantitative information.
Our method treats data which occur rarely in the
database as exceptional or noise data and filters it
using r fr equ en cy, where a small r fr equ en cy indicates
that the data occurs with a very low frequency
ratio.* /} .

5. Simplify the learned rules .

If the distinct data value set of an attribute covers
the entire set of values for the attribute, remove
this attribute and its associated values from the

. . . ,

rule. Otherwise, compare the number of the val
ues appearing as the characteristic values for the
attribute with the total number of distinct values
for the attribute. If the difference is larger than
some pre-set number, the 'not' operator is intro
duced to the rules to simplify it.

6. Discover equality rules for different attributes
based on the feature table.

For each class Ci, for any two attributes j 1 and h
that relate the k1-th value in the ii-th attribute
and k2-th value in the j 2-th attribute, if a;,ii,ki =
ai,h,k 2 = vote, infer the following rule .

Ah = 7'.4 [i , ji, ki] +--+ Ah = 7'.4. [i , h, k2].

• The next highest concept is the concept one level
below the most generalized concept "any' . D

Algorithm 4 Attribute-oriented algorithm for discov
ering inheritance rules associated with concepts for dif
ferent levels in the concept hierarchy.

Input (i) the prime relation obtained by Algorithm 1,
and (ii) the concept hierarchy tables. (iii) the attribute
name AN AME (we intend to learn rules associated with
the concept hierarchy for attribute ANAME)
Output A set of inheritance rules associated with con
cepts at different levels in the concept hierarchy of at
tribute ANAME.
Method.

1. Attach one class attribute to the prime relation
(called E-attribute, E means extra).

2. Extract the concept hierarchy H for the attribute
AN AME from the concept hierarchy tables

3. (Iterative Step) descend one level starting from the
next highest generalized concept in the concept hi
erarchy H until reaching the desired level of the
concept hierarchy. At each decent do the follow
mg:

(a) Fill the E-attribute with the higher concept
value and the corresponding attribute (at
tribute AN AME) with the concept value one
level down of the E-attribute value in the con
cept hierarchy H.

(b) Extract the related data, and store them in
the temporary relation .

(c) Project off the corresponding attributes
which have the same values for all the low
level concepts within the same higher concept
from the temporary relation.

52

(d) Find the inheritance rules: for each tem
porary relation, those remaining attributes
which have different values for different lower
level concepts but within the same higher
concept category will be chosen as the com
ponent to form the corresponding inheritance
rule. D

4 An Example

In this section, we use a data set from [Winston and
Horn, 1984] to demonstrate algorithm 3 and algorithm
4. Given the animal world relation shown in Table 1
and the concept hierarchy for the attribute "Animai"
depicted in Figure 1, Algorithm 3 is demonstrated as
follows:

first step: Applying algorithm 1 to Table 1, results in
the prime relation of Table 2. Next, further generalize
Table 2 to the generalized relation as shown in Table
3 .

second step: Extract the feature table based on the
attribute "Animal" depicted in Table 4.

third step: Examine the values in the feature table;
there are three classes for animal category mammal,
bird and other. For Class = mammal and Hair =
yes, we have a1,1,1 = 4, bi,1,1 = c1,1,1 = 1 because
C lass = mammal appears four times, and the total
tuples for Class = mammal is four. However H afr =
yes appears only four times in the entire table, so a
rule can be inferred as follows:
(Hair= yes)+--+ (C lass= mammal).

similarly we obtain :
(Milk= yes) +--+ (Class= mammal)
(Class= mammal) -+ (Fe et = claw V hoof)

/\(Eats= meat V grass)

for Class=bird:
(Feather = yes) +--+(Class= bird)
(Class= bird)-+ (Feet= claw V web)

I\ (Eats = grain V fish V m eat)

fourth step : Simplify the above rules; count the num
ber of values appearing as characteristic values for the
attribute and compare them with the total number of
distinct values for the attribute. If the difference is
larger than some threshold (for example, 2) then the
"not" operator is introduced to the rules to simplify
the forms of the discovered rules.

Take the following rule as an example.
(Class= bird)-+ (Feet= claw V web)/\

(Eats= grain V fish V meat)

Anima.l H T I E Y I F Fee t Eat M I Fly I s

cma.mma.l y pt Id N c l a.w mea.t y N y

2 ungula.te y bt ,d N h oo f grass y N N

3 n on fly N N ,d y cla.w gr a.in N y N

nonfl y N N , d y web fi s h N N N

flyingb N N , d y cla.w gr a.in N y y

6 flyingb N N Id y cla.w mea.t. N y N

7 v ip e r N pt Id N N mea.t N N N

Abbrevia.tions: H:Hair, F:Fea.ther , T:Teeth, S :Sw im

m:ma.mma.l, b:bird, o:other, pt:point e d, bt: blunted, fd:forwa.rd, sd:side.

Table 5: A temporary relation after the substitution.

Since there are four distinct values: meat, grass,
grain and fish for the attributes Eats and Eats takes
three values out of four in the above rule, we can use
(Eats f= grass) instead of (eats= grainV fishVmeat)
as a component for this rule. Thus the rule is simplified
as
(Class= bird)----> (Feet f= hoof) I\ (Eats f= grass)

similarly, the rule:
(Class= mammal) ----> (F eet = claw V hoof)/\

(Eats = m eat V grass)
can be simplified as

(Class= mammal) ----> not(Feet = w eb)/\
(Eats= m eat V grass)

The last step is to analyze the data between differ
ent attributes and find the relationship between them
to infer equality rules: for example, for Hair=yes ,
Feather=no,
(Hair= yes) +--+ (Feather = No)
(Hair= yes) +--+ (Milk= yes)

(F eathers= yes)+--+ (Milk = No)

Next we demonstrate the usefulness of Algorithm 4.
The prime relation table is illustrated in Table 2 and
the concept hierarchy for "Animal" is shown in Figure
l.

Attach the E_attribute to the Table 2 as shown as
the right most column in Table 5, we do this by put
the values of the next higher-level concept (level 2) in
Figure 1 for attribute E and the corresponding animal
value in level 3. For example, if the E attribute value
is mammal, then the corresponding animal value in the
animal attribute should be carnivoroits mammal and
ungulate, resulting in the temporary relation shown in
Table 5:

From Table 5, the data related to mammal and bird
are extracted, resulting in the temporary Tables 6 and

I E

b

b

b

b

53

I An ima.l I H I T EY I F F eet Eat M I F l y I s
c ma.mma.l y pt Id N cla.w m ea.t y N y

2 un g ula t e y bt ,d N h oof g ra. ss y N N

Abbrev iations: H :H a. ir , F:Fea. th er, T:Teet h, S:S wim

m :ma.mma. l , b :bird, o:o th e r, pt:pointed, bt: blunted, fd:fo rwa.rd , sd:sid e.

Table 6: A temporary relation for mammal .

Anima.l I H I T E Y I F Feet Ea. t M I Fly I s I E

n o nflyb N N ,d y cla.w gra.in N N N b

n o nfl yb N N ,d y web fi s h N N N b

flyin gb N N , d y cla.w gra. in N y N b

flyin gb N N Id y cla.w meat N y N b

Abbrev iati o n s: H :Ha.ir, F:Fea.ther, T:Teeth, S:S wim

m:ma.mma.l, b:bird, o:other, pt:pointed, bt: blunted , fd:forwa.rd, sd:side.

Table 7: A temporary relation for bird.

7. Observe that Hair, Feather, Mi lk, Fly and Swim do
not distinguish mammals but Teeth, Eye, Eat and Feet
do distinguish mammals in Table 6. Thus the following
rules are generated .

(Class= mammal) I\ (Teeth= pointed)
----> (Animal = carnivorous_mammal)

(Class= mammal) I\ (Teeth= blunt)
---->(Animal= ungulate)

(Class= mammal) I\ (Eye= forward)
----> (Animal = carnivorous_mammal)

(Class= mammal) I\ (Eye= side)
----> (Animal= ungulate)

(C lass= mammal) I\ (Feet= claw)
----> (Animal = carnivorous_mammal)

(Class = mammal) I\ (Feet= hoof)
---->(Animal = ungulate)

(Class= mammal) I\ (Eats = m eat)
----> (Animal = carnivorous_mammal)

(C lass= mammal) I\ (Eat s= grass)
---->(Animal = ungulate)

In a similar manner for bird, based on Table 7, we
can derive the following rules:

(C lass= bird) I\ (Fly = yes)
----> (Animal = flying_bird)

(C lass= bird) I\ (Fly = no)
---->(Animal = nonflying _bird)

I E

·1
l

I

·1

.· ·.1

5 Discussion & Conclusion

A general framework has been presented for discovery
many kinds of rules in databases. Our algorithms adopt
the attribute-oriented conceptual ascension technique;
attribute-oriented induction provides a simple and ef
ficient way to learn different kinds of knowledge rules
in relational databases. In general, our method adopts
the concept tree ascending technique which follows the
notion of the version space m ethod, a typical method
of learning-from-examples [Gietterich and Michalski,
1983]. However our method takes advantages of the
organization of relational database systems.

The major benefit of our method when compared
with the version space method is processing efficiency.
The version space method adopts tuple-oriented gen
eralization . In contrast, our method adopts attribute
oriented generalization which treats a concept hierar
chy of each attribute as a factored version space and
performs generalization on individual attributes. Fac
toring the version space can significantly improve the
computational efficiency. Suppose there are p nodes in
each concept tree and there are k concept trees (at
tributes) in thee relation. The total size of factorized
version space should be pk [Subrammanian and Feign
baum, 1986] . The search space for attribute-oriented
generalization is much smaller than the one for tuple
oriented generalization.

We have extended our previous research for knowl
edge discovery in databases. Our approach applies
an attribute-oriented concept tree ascension technique
in generalization which integrates the machine learn
ing methodology with set-oriented database operations
and extracts generalized data from actual data in
databases. Our method substantially reduces the com
putational complexity of the database learning pro
cesses. Different knowledge rules, including charac
teristic rules, equality rules , inheritance rules can be
discovered efficiently using the attribute-oriented ap
proach.

References

(Cai et al, 1991] Cai Y.D., Cercone N. and Han
J, Attribute-Oriented Induction in Relational
databases , Knowledge Discovery in Database,
AAAI/MIT Press, G .Piatetsky-Shapiro and W .J .
Frawley (eds) pp. 213-228, 1991

(Gietterich and Michalski, 1983] Dietterich T .G. and
Michalski R. S, A Comparative Review of Se-

54

lected Methods for Learning from Examples, in
Ma chine Learning: An Artificial Int elligence Ap
proach, Vol. 1. Michalski et . al. (eds), Morgan
Kaufmann, pp 41-82, 1983.

[Frawlwy et al, 1991] Frawley W . J ., Piatetsky G. and
Matheus C. J, Knowledge Discovery in Database :
An Overview, Knowledge Discovery in Database,
AAAI/MIT Press, G.Piatetsky-Shapiro and W.J.
Frawley (eds), pp. 1-27, 1991.

(Han et al, 1992] Han J, Cai Y. and Cercone N, Knowl
edge Discovery in Databases: An Attribute
Oriented Approach, Proceeding of the 18th VLDB
Conference, Vancouver , B.C., Canada, pp 340-
355, 1992

(Michlski, 1983] Mickalski R.S, A Theory and Method
ology of Inductive Learning, in Machine Learn
ing: An Artificial Int elligen ce Approach, Vol. 1.
Michalski et. al. (eds) , Morgan Kaufmann, 1983 ,
pp 41-82.

(Subrammanian and Feignbaum, 1986]
Subrammanian D and Feignbaum J, Factorization
in experiment generalization, Proc. 1986 AAA!
Conj. Philadelphia, PA, Aug. 1986 , 518-522

(Winston and Horn , 1984] Winston P and Horn B.K,,
LISP, Reading,Mass.: Addison _Wesley, 1984.

A Concept-Based Knowledge Discovery Approach in Databases*

Xiaohua Hu+, Nick Cercone+, Jiawei Han+
+Department of Computer Science, University of Regina

Regina, SK, Canada, S4S OA2
+school of Computing Science, Simon Fraser University

Burnaby, B.C., Canada V5A 1S6
e-mail: { xiaohua,nick } @cs.uregina.ca

Abstract

An efficient concept-based induction method is de
veloped for knowledge discovery in databases. The
method integrates the machine learning paradigm, es
pecially learning-from-examples techniques, with set
oriented database operations and extracts generalized
data from data in databases. An attribute-oriented
concept tree ascension technique is applied in general
ization which substantially reduces the computational
complexity of the database learning process. With the
assistance of knowledge about concept hierarchies, data
relevance, and expected rule forms, different kinds of
knowledge rules, including characteristic rules, equal
ity rules and inheritance rules associated with concepts
at different levels in the concepts hierarchies can be
discovered efficiently. In this paper we focus our atten
tion on the automatic discovery of knowledge associ
ated with concept hierarchies in database.

1 Introduction

J{ nowledge Discovery is the extraction of implicit,
useful information from data. Knowledge discovery
from a database is a form of machine learning. The
growth in the size and number of existing databases
far exceeds human abilities to analyze the data; this
situation creates both a need and an opportunity to
extract knowledge from databases.

In this paper, we present a method for discovering
knowledge in relational databases. Our method inte
grates a machine learning paradigm, especially learn
ing from example techniques, with database opera-

*The authors are members of the Institute for Robotics and
Intelligent Systems (IRIS) and wish to acknowledge the support
of the Networks of Centres of Excellence Program of the Govern
ment of Canada, the Natura l Sciences and Engineering Research
Council, and the participation of PRECARN Associates Inc.

1

55

tions and extracts generalized data from actual data
in databases. A key to the approach is attribute
oriented concept tree ascension for generalization which
applies well-developed set-oriented database operations
and substantially reduces the computational complex
ity of the database learning process. Initially the data
in the database is generalized to a prime relation ta
ble which contains all essential information about the
data in the database. Then the prime table is fur
ther processed to learn different kinds of rules, includ
ing characteristics rules, equality rules and inheritance
rules associated with concepts at different levels in the
concept hierarchies.

This paper is organized as follows. Primitives for
knowledge discovery in databases are introduced in Sec
tion 2. The principles and algorithms for knowledge
discovery in databases are presented in Section 3. The
test of our method using a set of animal data is illus
trated in Section 4. The discussion and conclusion are
presented in Section 5.

2 Primitives for Knowledge Discovery

in Databases

Three primitives should be provided for the specifi
cation of a learning task: task-relevant data, ba ck
ground knowledge, and th e expected representations of
the learning results. For illustrative purposes, we only
examine relational databases, however , the results can
be generalized to other kinds of databases.

2.1 Data relevant to the discovery pro

cess

A database may store a large amount of data, of
which only a portion may be relevant to a specific

.1

· 1

learning task. For example, to characterize the fea
tures of mammal in animal, only the data relevant
to mammal in animal are appropriate to the learn
ing process. Relevant data may extend over several re
lations. A query can be used to collect task-relevant
data from the database. Task-relevant data can be
viewed as examples for learning processes suggesting
that, learning-from-examples should be an important
strategy for knowledge discovery. Most learning-from
examples algorithms partition the set of examples into
positive and negative sets and perform generali z ation
using the positive data and specialization using the
negative ones (Gietterich and Michalski, 1983]. Unfor
tunately, a relational database does not explicitly store
negative data, and thus no explicitly specified negative
examples can be used for specialization. Therefore, a
database induction process relies primarily on general
ization, which should be performed cautiously to avoid
over-generalization.

When learning a characteristic rule, relevant data are
collected into one class, the target class, for generaliza
tion . When learning an equality rule, it is necessary to
analyze the relationship for the data value among the
different attributes for the target class. When learn
ing a discrimination rule, it is necessary to collect data
into two classes, the target class and the contrasting
class(es). The data in the contrasting class(es) imply
that such data cannot be used to distinguish the target
class from the contrasting one(s), that is, they are used
to exclude the properties shared by both classes.

2.2 Background knowledge

Concept hierarchies represent necessary background
knowledge which are used to control the generalization
process. Different levels of concepts are often orga
nized into a taxonomy of concepts. The concept taxon
omy can be partially ordered according to a general-to
specific ordering. The most general concept is the null
description (described by the reserved word "any"),
and the most specific concepts correspond to the spe
cific values of the attributes in the database (Cai et
al, 1991]. Using a concept hierarchy, the rules learned
can be represented in terms of generalized concepts and
stated in a simple and explicit form, which is desirable
to most users.

Concept hierarchies can be provided by knowledge
engineers or domain experts. This provision is reason
able for even large databases since a concept tree regis
ters only the distinct discrete attribute values or ranges
of numerical values for an attribute which in general,
are not very large and can be supplied by a domain

56

expert.

2.3 Representation of learning results

From a logical point of view, each tuple in a relation
is a logical formula in conjunctive normal form, and a
data relation is characterized by a large set of disjunc
tions of such conjunctive forms. Thus, both the data
for learning and the rules discovered can be represented
in either relational form or in first-order predicate cal
culus .

3 Principles and Algorithms For

Learning

A new method is presented which is based on the
attributed-oriented concept ascension techniques dis
cussed. The key to the approach is an attribute
oriented concept tree ascension technique for general
ization. The general idea of basic attribute-oriented
induction is one in which generalization is performed
attribute by attribute using attribute removal and con
cept tree ascension. As a result, different tuples may be
generalized to identical ones, and the final generalized
relation may consist of only a small number of distinct
tuples. In the procedure of generalization, the tuples
in database are generalized to the desirable level, the
table gained at this stage is called prime relation. The
prime relation contains all of the essential information
of the original data in the database. The prime relation
is processed further to discover different kinds of rules
associated with the concept hierarchy.

Definition 1 An attribute is generalizable if th ere are
a large number of distinct values in the relation but
there exists a concept hierarchy for th e attribute (i.e.,
there are higher level concepts which subsume these at
tribute values) . Otherwise, it is nongeneralizable.

Definition 2 An attribute in a relatively large relation
is desirable for consideration for generalization if the
number of distinct values it contains does not exceed a
user-specified desirability threshold (usually 6 or less).

If an attribute is nongeneralizable, then it should be
removed in the generalization process. Attribute re
moval corresponds to the generalization rule, dropping
conditions (Michlski, 1983]. Consider a tuple as a set
of conjuncts in the logical form; an attribute value,
together with its attribute name, form one of the con
juncts. By removing a conjunct, a constraint is elim
inated and the concept is generalized. If there are a

large set of distinct values for an attribute, the large
set of values must be generalized. However, if there is
no higher level concept provided for the attribute, it
cannot be further generalized by ascending the concept
tree. Therefore, the attribute should be eliminated in
generalization. Attribute removal can also be viewed
as a generalization of the attribute to the most general
concept (ANY) and then removed from the representa
tion.

If an attribute is generalizable, then it should be
generalized to a higher level concept value by concept
tree ascension techniques. Concept tree ascension cor
responds to the generalization rule, climbing general
ization trees [Michlski, 1983]. If there exists a higher
level concept for the value in the concept tree, then the
substitution of the value in each tuple in the relation
by the corresponding higher level concept makes the
tuple cover more cases than the original one, and thus
it generalizes the tuple.

Our method is performed in 4 steps . First, a set
of data relevant to the learning task is collected by a
database query. Second, the collected data is then gen
eralized by removal of nongeneralizable attributes and
by performing concept-tree ascension (replacing lower
level attribute values in a relation using the concept
hierarchy) on each generalizable attribute until the at
tribute becomes desirable (i .e., containing only a small
number of distinct values). The identical generalized
tuples in the relation are merged into one with a spe
cial internal attribute, vote , associated to register how
many original tuples are generalized to this resultant
tuple. The generalized relation obtained at this stage
is called the prime relation and saved for later use.
Third, we further simplify the generalized relation and
map it into the feature table, then analyze the feature
table and infer different kinds of rules. Finally, we ex
amine the prime relation once more and infer the in
heritance rules associated with the concept hierarchies.

A prime relation Rp for a set of data R stored in
the relational t able is an intermediate relation gener
alized from relation R by removing nongeneralizable
attributes and generalizing each attribute to a desir
able leve l. Let a desirability threshold be available for
each attribute, which could be set by default or spec
ified by the user or an expert, based on the semantics
of the attributes and/or the expected forms of general
ized rules . A prime relation maintains the relationship
among generalized data in different attributes for a fre
quently inquired-of data set. It can be used for extrac
tion of various kinds of generalized rules . The following
algorithm extracts the prime relation Rp from a set of
data R stored in relational table.

57

Algorithm 1 Extraction of the prime relation from a
set of data R

Input: (i) A set of task-relevant data R (obtained by
a relation query and are stored in a relation table), a
relation of arity n with a set of attributes A; (1 :::;
i :::; n); (ii) a set of concept hierarchies, H;, where
H; is a hierarchy on the generalized attribute A;, if
available; and (iii) a set of desirability thresholds T; for
each attribute A ;
Output. The prime relation Rp
Method

l. Rt := R; /* Rt is a temporary relation. • /

2. for each attribute A; (1 :::; i :::; n) of Rt do {
if A; is nongeneralizable then remove A;;
if A; is not desirable but generalizable then
generalize A; to desirable level;

/* Generalization is implemented as follows. Col
lect the distinct values in the relation and compute
the lowest desirable level L on which the number
of distinct values will be no more than T; by syn
chronously ascending the concept hierarchy from
these values . Generalize the attribute to this level
L by substituting for each value A;'s with its cor
responding concept H ; at level L . • /
}
/* Identical tuples in the generalized relation Rt
are merged
with the number of identical tuples registered m
vote • / .

3. Rr := Rt

For example, suppose we have an animal relation for
some zoo as depicted in Table 1 and the concept hier
archy for the attribute "Animal" as depicted in Figure
1:

LEVEL#

4

/\mamm, 71"'
tiger cheetah g,ra{ zJra

~ A "" ..
albatross eagle osl ch ~ guin

Figure 1: Conceptual Hierarchy of the Animal World

In the initial relation, the first attribute "Label" is
the key to the relation , the key value is distinct for each

. -I

J # Anim&l H J T EY J F Feet E&t M I F l y I s

1

2

3

4

5

6

7

8

9

tiger y pt fd N cla.w mca.t y

cheetah y pt fd N claw mea.t y

giraffe y bt ,d N hoof gnus y

zebra. y bt ,d N hoof gra.aa y

ostr ich N N ,d y cla.w gra.in N

penguin N N ,d y web fish N

a.lbotrou N N ,d y cla.w grain N

eagle N N fd y cla.w m eat N

viper N pt fd N N mea.1. N

Abbrev ia.tions : H: Ha.ir, F: Fea.ther 1 T: Teeth, S: Sw im

pt:pointed, bt: blunted, fd:forwa.rd, sd :side.

Table 1: An Animal World.

N y

N y

N N

N N
y N

N N
y y

y N

N N

Animal H J T EY J F Feet E&t M I F l y I s V I
1

2

3

4

5

6

7

c m a.mmal y pt fd N cla.w mea.t y

ungu la.te y bt , d N h oof grass y

nonfly N N ,d y claw grain N

non fly N N ,d y web fi s h N

flyingb N N ,d y claw grain N

flyingb N N fd y claw meat N

viper N pt fd N N meat N

Abbreviations: H: Hair, F: Feather, T: Teeth, S: S wim

pt:point ed, bt: blunted, fd:forwa.rd, sd:s id e.

Table 2: The Prime Relation Table.

N y

N N
y N

N N
y y

y N

N N

tuple in the relation . If there is no higher level con
cept provided for such an attribute in the concept tree,
the value for the attribute cannot be generalized and it
should be removed in the generalization process. Other
candidate key attributes or nonkey attributes can be
eliminated under a similar condition. The next at
tribute "Animal", has 9 distinct values, which is greater
than the threshold value for our desirable level (assume
the desirability threshold is 6), the concept-tree ascen
sion technique is applied, applying algorithm 1; the at
tribute is generalized to the desirable level (level 3)
{carnivorous_mammal, ungulate, flying_bird,
nonf lying_bird} in the conceptual hierarchy. We ex
amine then the other attributes and since all of them
are already at the desirable level, prime relation is ob
tained as shown in Table 2:

The derivation and storage of prime relations for
frequently inquired-of data sets may facilitate the ex
traction of different kinds of generalized rules from
the prime relation. Further generalization can be per
formed on prime relations to derive characteristic or
inheritance rules if there are still many tuples in the
prime relation. Based upon different interests, a gen
eralized relation can be directly mapped into different
feature tables. We have the following algorithm for the

2

2

1

l

1

1

1

58

extraction of a feature table from a generalized relation.

Algorithm 2 Feature table TA extraction for an at
tribute A from the generalized relation R '.

Input: A generalized relation R' consists of (i) an at
tribute A with distinct values a1 , ... ,am, mis the number
of distinct values for A (ii) j other attributes B1 , .. . , Bj,
j is the number of attributes in the relation R' except A
(suppose different attributes have unique distinct val
ues), and (iii) a special attribute, vote.
Output. The feature table TA
Method.

1. The feature table TA consists of m+ 1 rows and l + 1
columns, where l is the tot.al number of distinct
values in all the attributes. Each slot of the table
is initialized to 0.

2. Each slot in TA (except the last row) is filled by
the following procedure,

for each row r in R' do {
for each attribute Bj in R' do

TA [r.A, r.Bj] := TA [r.A, r.Bj] + r.vote;
TA [r.A, vote] := TA [r.A, vote] + r.vote; }

3. The last row pin TA is filled by the following pro
cedure:

for each column sin TA do
for each row t (except the last row p) in TA do

TA[p, s] := TA[p, s] + TA[t, s];

In our example, in order to obtain the feature table,
the prime relation is further generalized by substituting
the concept at level 3 by those at level 2, resulting in
the generalized relation as shown in Table 3.

The feature table is then extracted from the gener
alized relation by using algorithm 2 based on the at
tribute "Animal" and the result is shown in Table 4
(since we are interested in learning for Animal). Differ
ent feature tables can be extracted from the generalized
relation based on the interest in different attributes.
The extracted feature table is useful for derivation of
the relationships between the classification attribute
and other attributes at a high level. For example, the
generalized rule All animals with hair are mammals can
be extracted from Table 4 based upon the fact the class
mammal takes all the votes with Hair count.

We present two algorithms for discovering different
kinds of rules, characteristic and equality, and inheri
tance from a from database system.

I

I
A

n
im

a
.l

I

H

I
T

I

E
Y

I

F
I

F
e
e
t

I
E

A
t

I
M

I

F
ly

I

s
I

I
I m

a.
m

m
a.

l
y

p
t

Id

N

cl
a.

w

m
e
a
.t

y

N

y

2
m

a.
m

m
a.

l
y

b
t

,d

N

h
o

o
f

g
ra

.u

y
N

N

b
ir

d

N

N

,d

y
cl

a.
w

g

ra
.i

n

N

y
N

b
ir

d

N

N

,d

y
w

e
b

fi

sh

N

N

N

b
ir

d

N

N

,d

y
cl

a.
w

g

ra
.i

n

N

y
y

6

I b
ir

d

N

N

Id

y
cl

a.
w

m

ca
.t

N

y

N

7
o

th
e
r

_
_

!:
_

 ~

Id

N

N

m
c
a
.t

N

N

N

A
b

b
rc

v
ia

.t
io

n
s:

H

:
H

a.
ir

,
F

:
F

c
a
.t

h
e
r,

 '
!'

:
T

e
e
th

,
S

:
S

w
im

p
t:

p
o

in
tc

d
,

b
t

:
b

lu
n

te
d

,
fd

:f
o

rw
a
.r

d
,

sd
:s

id
e
.

T
ab

le
 3

:
A

 g
en

er
al

iz
ed

 r
el

at
io

n.

A
n

im
a
.l

H

a.
ir

T

e
e
th

F

c
a
.t

h
c
r

S
w

im

I
v

o
te

y
n

p
b

n
"

y
n

"
y

n

m
a.

m
m

a.
l

4
0

2
2

0
0

4
4

0

b
ir

d

0
4

0
0

4
4

0
I

3

o
th

e
rs

0

1
I

0
0

0
1

0
1

to
ta

.l

4
5

3
2

4
4

5
5

•
I

9

A
b

b
r
e
v

ia
.t

io
n

:
p

:p
o

in
te

d

b

:b
lu

n
t

.

T
ab

le
 4

:
T

h
e

fe
at

u
re

 t
ab

le
 f

or
 t

he
 a

tt
ri

b
u

te
 a

ni
m

al
.

A
lg

o
ri

th
m

 3

A
n

 a
tt

ri
bu

te
-o

ri
en

te
d

in
du

ct
io

n
fo

r
di

s
co

ve
ri

ng

ch
ar

ac
te

ri
st

ic

an
d

eq
ua

li
ty

ru

le
s

as
so

ci
at

ed

w
it

h
th

e
co

nc
ep

t
hi

er
ar

ch
y.

In
p

u
t:

 (
i)

 t
h

e
p

ri
m

e
re

la
ti

on
 o

b
ta

in
ed

 b
y

A
lg

or
it

hm
 1

(i

i)
 a

 c
on

ce
pt

 h
ie

ra
rc

hy
 t

ab
le

.
(i

ii
)

a
th

re
sh

ol
d

N
 fo

r
th

e
to

ta
l

nu
m

be
r

of
 t

up
le

s
in

 t
he

 f
in

al
 g

en
er

al
iz

ed
 r

el
at

io
n

O
u

tp
u

t:

A
 s

et
 o

f
ch

ar
ac

te
ri

st
ic

ru

le
s

an
d

eq
ua

li
ty

ru

l e
s.

M

et
h

o
d

.

1.

G
en

er
al

iz
e

th
e

p
ri

m
e

re
la

ti
on

 f
ur

th
er

 b
y

pe
rf

or
m

in

g
at

tr
ib

ut
e-

or
ie

nt
ed

 c
on

ce
pt

 a
sc

en
si

on
 t

ec
hn

iq
ue

un

ti
l

th
e

nu
m

b
er

 o
f

th
e

tu
pl

es
 i

s
eq

ua
l

or
 l

es
s

th
an

th

e
th

re
sh

ol
d

va
lu

e
N

2.

U
si

ng

fe
at

ur
e-

ta
b

le

ex
tr

ac
ti

on

al
go

ri
th

m

(A
lg

o
ri

th
m

 2
),

 e
x

tr
ac

t
a

fe
at

ur
e

ta
b

le
 T

A
fr

om
 t

he
 p

ri
m

e
re

la
ti

on
 b

as
ed

 u
po

n
a

ce
rt

ai
n

 a
tt

ri
b

u
te

 A
.

3.

A
ss

um
e

th
at

 t
h

er
e

ar
e

to
ta

l
I

cl
as

se
s,

 i
.e

.,
th

er
e

ar
e

I
di

st
in

ct
 v

al
ue

s
fo

r
at

tr
ib

u
te

 A
,

A
1,

 .
..

 ,
A

1.

A
ls

o,
 a

ss
um

e
th

at
 t

he
re

 a
re

 J
 a

tt
ri

b
u

te
s:

C

1
,

.
.
.
 ,

C
1,

 f
or

 t
h

e
d

at
a

in
 t

h
e

fe
at

ur
e

ta
b

le
.

U
si

ng
 K

j
to

de

no
te

 t
h

e
nu

m
b

er
 o

f
di

st
in

ct
 v

al
ue

s
fo

r
at

tr
ib

u
te

lj

.
A

cc
or

di
ng

 t
o

th
e

fe
at

ur
e

ta
bl

e,
 t

w
o

pr
ob

ab
il

it
y

va
lu

es
,

b
;,

j,
k

an

d
 C

i,
j,

k
,

ar
e

as
so

ci
at

ed
 w

it
h

th
e

k
th

 v
al

ue
 (

 k
=

 l,
 .

.
. ,

 K
j)

 o
f

th
e

j-
th

 a
tt

ri
b

u
te

 (
j
=

1,

 .
..

 ,
J)

 i
n

th
e

i-
th

 c
la

ss
 (

i
=

 1
, .

.
. ,

 I)
.

N
ot

ic
e

th
at

 t
h

e
nu

m
b

er
 o

f
tu

pl
es

 a
ss

oc
ia

te
d

w
it

h
th

e
k

th
 v

al
ue

 o
f

th
e

j-
th

 a
tt

ri
b

u
te

 i
n

th
e

i-
th

 c
la

ss
 i

s

V

I 59

de
no

te
d

by
 a

;,
j,

k
·

b
·

·
k

=

a
·

·
k
/t

o
ta

l.

i
,J

,
i,

J,

c;
 J.

k

=
 a

;
1·

 k
/v

o
te

.
I

I
I

I

w
he

re
 b

;,
j,

k
re

p
re

se
nt

s
th

e
pr

ob
ab

il
it

y
of

 a
;,

j,
k

m

th

e
en

ti
re

 d
at

ab
as

e
an

d
C

i,
j,

k

de
no

te
s

th
e

pr
ob

a
bi

li
ty

 o
f

a
i,

j ,
k

in
 t

he
 i

-t
h

 c
la

ss
.

4.

E
x

tr
ac

t
ch

ar
ac

te
ri

st
ic

ru

le
s

an
d

eq
ua

li
ty

ru

le
s

ba
se

d
on

th

e
pr

ob
ab

il
it

y
fo

r
ea

ch

di
st

in
ct

 v
al

ue

of
 e

ve
ry

 a
tt

ri
b

u
te

 i
n

ea
ch

 c
la

ss
 i

n
th

e
fe

at
ur

e
ta

bl
e

TA
.

T
hi

s
is

 p
er

fo
rm

ed
 a

s
fo

llo
w

s.

fo
r

ea
ch

 c
la

ss
 d

o
 {

if
 b

i,
j,

k
 =

 Ci
,j

,k
 =

 1
th

en
 t

he
 f

ol
lo

w
in

g
ru

le
 i

s
in

fe
rr

ed
.

A
j

=
 TA

[i
,j

,
k]

,_

.
C

la
ss

=
 C

i.

if
 b

i,
j,

k
=

 1
a

n
d

 C
i,

j,
k

<

 l
th

en
 t

he
 f

ol
lo

w
in

g
ru

le
 i

s
in

fe
rr

ed
.

A
j

=
 TA

 [i
, j

,
k]

--

+

C
la

ss
=

 C
i,

if
 b

;,
j,

k

<

 1
 a

n
d

 C
i,

j,
k

=

 1
th

en
 i

nc
lu

de
 A

j
=

 TA
[i

,j
,

k]
 a

s
a

co
m

po
ne

nt
 f

or

th
e

co
rr

es
po

nd
in

g
ch

ar
ac

te
ri

st
ic

 r
ul

e
fo

r
th

e
i-

th
 c

la
ss

.

if
 b

·
·

k
-1

-
1

a
n

d

c·

 ·
 k

-I

-
1

a
n

d

b
·

·
k

*
c·

· k

<

i,

J
,

r
i,

J
,

I
i,

J
,

t,
J,

_

r f
r

eq
u

en
c
y

th
en

 i
gn

or
e

th
is

 v
al

ue

el
se

 i
nc

lu
de

 t
h

e
va

lu
e

as
 o

ne
 o

f
th

e
ch

ar
ac

te
ri

st
ic

va

lu
es

 f
or

 t
h

e
at

tr
ib

ut
e.

/*
 S

in
ce

 d
at

a
in

a

da
ta

ba
se

 m
ay

 b
e

di
st

ri
bu

te
d

al
on

g
th

e
fu

ll
 s

pe
ct

ru
m

 o
f

th
e

po
ss

ib
le

 v
al

ue
s,

 i
t

is
 i

m
po

ss
ib

le
 t

o
ob

ta
in

 a
 m

ea
ni

ng
fu

l
ru

le
 f

or
 s

uc
h

ki
nd

s
of

 d
at

a
w

it
ho

ut
 u

si
ng

 p
os

si
bl

e
qu

an
ti

ta
ti

ve

in
fo

rm
at

io
n.

 V
ar

io
us

 t
ec

hn
iq

u
es

 c
an

 b
e

de
ve

lo
pe

d
fo

r
ru

le
 e

x
tr

ac
ti

on
 u

si
ng

 q
ua

nt
it

at
iv

e
in

fo
rm

at
io

n
.

O
ur

 m
e t

h
o

d
 t

re
at

s
d

at
a

w
hi

ch
 o

cc
ur

 r
ar

el
y

in
 t

h
e

da
ta

ba
se

 a
s

ex
ce

pt
io

na
l

or
 n

oi
se

 d
at

a
an

d
fi

lt
er

s
it

us

in
g

r f
re

q
u

en
c
y
,

w
he

re
 a

 s
m

al
l

r f
r

eq
u

en
cy

in

di
ca

te
s

th
at

 t
he

 d
at

a
oc

cu
rs

w

it
h

a
ve

ry

lo
w

fr

eq
ue

nc
y

ra
ti

o.
 •

 /
} .

5.

S
im

pl
if

y
th

e
le

ar
ne

d
ru

le
s.

If
 th

e
di

st
in

ct
 d

at
a

va
lu

e
se

t
of

 a
n

at
tr

ib
u

te
 c

ov
er

s
th

e
en

ti
re

 s
et

 o
f

va
lu

es
 f

or
 t

he
 a

tt
ri

bu
te

,
re

m
ov

e
th

is
 a

tt
ri

b
u

te
 a

nd
 i

ts
 a

ss
oc

ia
te

d
va

lu
es

 f
ro

m
 t

h
e

· ·• ·, ·1

· I

rule. Otherwise, compare the number of the val
ues appearing as the characteristic values for the
attribute with the total number of distinct values
for the attribute. If the difference is larger than
some pre-set number, the 'not' operator is intro
duced to the rules to simplify it.

6. Discover equality rules for different attributes
based on the feature table.

For each class Ci, for any two attributes ii and h
that relate the k1-th value in the ji-th attribute
and k2- th value in the h-th attribute, if ai,ii,k, =
ai,j,,k 2 = vote, infer the following rule.

A.;,=TA[i,i1,ki] +-+ Aj,=TA[i ,h, kz].

• The next highest concept is the concept one level
below the most generalized concept "an'!/'. D

Algorithm 4 Attribute-oriented algorithm for discov
ering inheritan ce rules associated with concepts for dif
f erent levels in the concept hierarchy.

Input (i) the prime relation obtained by Algorithm 1,
and (ii) the concept hierarchy tables . (iii) the attribute
name AN AME (we intend to learn rules associated with
the concept hierarchy for attribute ANAME)
Output A set of inheritance rules associated with con
cepts at different levels in the concept hierarchy of at
tribute ANAME.
M ethod.

1. Attach one class attribute to the prime relation
(called E-attribute, E means extra).

2. Extract the concept hierarchy H for the attribute
ANAME from the concept hierarchy tables

3. (Iterative Step) descend one level starting from the
next highest generalized concept in the concept hi
erarchy H until reaching the desired level of the
concept hierarchy. At each decent do the follow
ing:

(a) Fill the E-attribute with the higher concept
value and the corresponding attribute (at
tribute AN AME) with the concept value one
level down of the E-attribute value in the con
cept hierarchy H.

(b) Extract the related data, and store them in
the temporary relation .

(c) Project off the corresponding attributes
which have the same values for all the low
level concepts within the same higher concept
from the temporary relation.

60

(d) Find the inheritance rules: for each tem
porary relation, those remaining attributes
which have different values for different lower
level concepts but within the same higher
concept category will be chosen as the com
ponent to form the corresponding inheritance
rule. D

4 An Example

In this section, we use a data set from [Winston and
Horn, 1984] to demonstrate algorithm 3 and algorithm
4. Given the animal world relation shown in Table 1
and the co11cepL hierarchy for the attribute "Animal"
depicted in Figure 1, Algorithm 3 is demonstrated as
follows:

first step : Applying algorithm 1 to Table 1, results in
the prime relation of Table 2. Next, further generalize
Table 2 to the generalized relation as shown in Table
3.

second step: Extract the feature table based on the
attribute "Animal" depicted in Table 4.

third step: Examine the values in the feature table;
there are three classes for animal category mammal,
bird and other. For C lass = mammal and Hair =
yes, we have a1,1 ,1 = 4, b1 ,1, 1 = c 1 ,1 ,1 = 1 because
Class = mammal appears four times , and the total
tuples for Class = mammal is four. However Hair =
yes appears only four times in the entire table, so a
rule can be inferred as follows:
(Hair= yes) +-+ (C lass= mammal) .

similarly we obtain:
(Milk= yes) +-+ (Class= mammal)
(C lass= mammal) --+(Feet= claw V hoof)

/\(Eats = m eat V grass)

for Class=bird:
(F eather = yes) +-+ (Class = bird)
(C lass= bird) --+ (F eet = claw V web)

I\ (Eats = grain V fi sh V meat)

fourth step: Simplify the above rules ; count the num
ber of values appearing as characteristic values for the
attribute and compare them with the total number of
distinct values for the attribute. If the difference is
larger than some threshold (for example, 2) then the
"not" operator is introduced to the rules to simplify
the forms of the discovered rules.

Take the following rule as an example.
(C lass= bird) --+ (F eet = claw V web)/\

(Eat s = grain V fi sh V m eat)

I Anima.l I H I T EY I F Feet EAt I M Fly I s

cma.mma.l y pt fd N cla.w mea.t y N y

2 ungu late y bt ,d N hoof gra.ss y N N

non fly N N ,d y cla.w grain N y N

nonfly N N , d y web fish N N N

5 flyingb N N ,d y cla.w gra.in N y y

6 flyingb N N fd y cla.w m ca. t N y N

7 viper N pt fd N N mca.t N N N

Abbrc via.tions: H:Ha.ir, F:Fea.th e r, T:Tcct h, $:Swim

m:ma.mma.l , b:bird, o:other, pt:pointed, bt: b l unte d, fd:forwa.rd, s d:sid e .

Table 5: A temporary relation after the substitution.

Since there are four distinct values: meat, grass,
grain and fish for the attributes Eats and Eats takes
three values out of four in the above rule, we can use
(Eats =j; grass) instead of(eats = grainV fishVmeat)
as a component for this rule. T hus the rule is simplified
as
(Class= bird) -t (Feet =j; hoof) I\ (Eats =j; grass)

similarly, the rule:
(Class= mammal) -t (Feet= claw V hoof)/\

(Eats = meat V grass)
can be simplified as

(Class= mammal) -t not(Feet = web) /\
(Eats= meat V grass)

The last step is to analyze the data between differ
ent attributes and find the relationship between them
to infer equality rules: for example, for Hair=yes,
Feather=no,
(Hair= yes)+--+ (Feather= No)
(Hair= yes)+--+ (Mi lk= yes)

(Feathers = yes)+--+ (Milk= No)

Next we demonstrate the usefulness of Algorithm 4.
The prime relation table is illustrated in Table 2 and
the concept hierarchy for "Animal" is shown in Figure
1.

Attach the E_attribute to the Table 2 as shown as
the right most column in Table 5, we do this by put
the values of the next higher-level concept (level 2) in
Figure 1 for attribute E and the corresponding animal
value in level 3. For example, if the E attribute value
is mammal, then the corresponding animal value in the
animal attribute should be carnivorous mammal and
ungulate, resulting in the temporary relation shown in
Table 5:

From Table 5, the data related to mammal and bird
are extracted, resulting in the temporary Tables 6 and

I E

b

b

b

b

61

I Anima.l H I T EY I F F ee t Ea.t I M Fly I s

cma.mma.l y pt fd N cla.w m ea. t y N y

ungulate y bt ,d N hoof gra.ss y N N

Abbreviations: H:Ha.ir, F:Fea.ther, T:Teeth, $:Swim

m :ma.mma.l, b:bird, o:othcr, pt:pointed, ht: blunted, fd:forwa.rd , s d:side.

Table 6: A temporary relation for mammal.

Animal I H I T EY I F Fe et EAt I M Fly I s E I
nonflyb N N ,d y cla w gra.in N N N b

nonflyb N N ,d y web fish N N N b

flyingb N N ,d y claw grain N y N b

flyingb N N fd y claw m ea. t N y N b

Abbrev ia.ti o ns: H:Ha.ir, F:Fea.thcr, T:Tccth, S:Swim

m :ma.m ma.l , b:bird, o:oth c r, pt:pointed, bt: blunte d, fd:forw a.rd, s d: sidc.

Table 7: A temporary relation for bird .

7. Observe that Hair, Feather, Mi lk, Fly and Swim do
not distinguish mammals but Teeth, Eye, Eat and Feet
do distinguish mammals in Table 6. Thus the following
rules are generated.

(Class= mammal) I\ (Teet h = pointed)
-t (Animal = carnivorous_mammal)

(C lass = mammal) I\ (Teeth = blunt)
-t (Animal = ungulate)

(Class= mammal) I\ (Eye= forward)
-t (Anima l = carnivorous_mammal)

(Class= mammal) I\ (Eye= side)
-t (Animal= ungulate)

(Class= mammal) I\ (Feet= claw)
-t (Animal = carnivorous_mammal)

(C lass= mammal) I\ (Feet= hoof)
-t (Animal = ungulate)

(C lass= mammal) I\ (Eats= meat)
-t (Anima l = carnivorous_mammal)

(Class= mammal) I\ (Eats= grass)
-t (Anima l = ungulate)

In a similar manner for bird, based on Table 7, we
can derive the following rules:

(Class = bird) I\ (Fly= yes)
-t (Anima l = f lying_bird)

(Class = bird) I\ (F ly= no)
-t (Animal = nonflying_bird)

I E

. !

· I

5 Discussion & Conclusion

A general framework has been presented for discovery
many kinds of rules in databases. Our algorithms adopt
the attribute-oriented conceptual ascension technique;
attribute-oriented induction provides a simple and ef
ficient way to learn different kinds of knowledge rules
in relational databases. In general, our method adopts
the concept tree ascending technique which follows the
notion of the version space method, a typical method
of /earning-from-examples [Gietterich and Michalski,
1983]. However our method takes advantages of the
organization of relational database systems.

The major benefit of our method when compared
with the version space method is processing efficiency.
The version space method adopts tuple-oriented gen
eralization. In contrast, our method adopts attribute
oriented generalization which treats a concept hierar
chy of each attribute as a factored version space and
performs generalization on individual attributes. Fac
toring the version space can significantly improve the
computational efficiency. Suppose there are p nodes in
each concept tree and there are k concept trees (at
tributes) in thee relation. The total size of factorized
version space should be pk [Subrammanian and Feign
baum, 1986]. The search space for attribute-oriented
generalization is much smaller than the one for tuple
oriented generalization .

We have extended our previous research for knowl
edge discovery in databases. Our approach applies
an attribute-oriented concept tree ascension technique
in generalization which integrates the machine learn
ing methodology with set-oriented database operations
and extracts generalized data from actual data in
databases. Our method substantially reduces the com
putational complexity of the database learning pro
cesses. Different knowledge rules, including charac
teristic rules, equality rules , inheritance rules can be
discovered efficiently using the attribute-oriented ap
proach .

References

[Cai et al, 1991] Cai Y.D., Cercone N. and Han
J , Attribute-Oriented Induction in Relational
databases, Knowledge Discovery in Database,
AAAJ/MJT Press, G .Piatetsky-Shapiro and W .J.
Frawley (eds) pp. 213-228, 1991

[Gietterich and Michalski, 1983] Dietterich T.G. and
Michalski R. S, A Comparative Review of Se-

62

lected Methods for Learning from Examples, in
Machin e Learning: An Artificial Int elligence Ap
proach, Vol. 1. Michalski et. al. (eds), Morgan
Kaufmann, pp 41-82, 1983.

[Frawlwy et al, 1991] Frawley W . J ., Piatetsky G. and
Matheus C. J , Knowledge Discovery in Database :
An Overview, Knowledge Discovery in Database,
AAAI/MIT Press , G.Piatetsky-Shapiro and W .J .
Frawley (eds), pp . 1-27, 1991.

[Han et al, 1992] Han J, Cai Y. and Cercone N, Knowl
edge Discovery in Databases: An Attribute
Oriented Approach, Proceeding of the 18th VLDB
Conference, Vancouver , B.C., Canada, pp 340-
355, 1992

[Michlski, 1983] Mickalski R.S, A Theory and Method
ology of Inductive Learning, in Ma chine Learn
ing: An Artificial Int elligence Approach, Vol. 1.
Michalski et. al. (eds), Morgan Kaufmann, 1983,
pp 41-82.

[Subrammanian and Feignbaum, 1986]
Subrammanian D and Feignbaum J , Factorization
in experiment generalization, Proc. 1986 AAA!
Conf. Philadelphia, PA, Aug. 1986 , 518-522

[Winston and Horn, 1984] Winston P and Horn B.K,,
LISP, Reading,Mass.: Addison _Wesley, 1984.

Incorporating canonical discriminant attributes
in classification learning

Simon P. Yip
Dept. of Computer Science

Swinburne University
Hawthorn 3122, Australia

Abstract

This paper describes a method for incorporating
canonical discriminant attributes in classification
machine learning. Though decision trees and
rules have semantic appeal when building expert
systems, the merits of discriminant analysis are
well documented. For data sets on which
discriminant analysis obtains significantly better
predictive accuracy than symbolic machine
learning, the incorporation of canonical
discriminant attributes can benefit machine
learning. The process starts by applying canonical
discriminant analysis to the training set. The
canonical discriminant attributes are included as
additional attributes. The expanded data set is
then subjected to machine learning. This enables
linear combinations of numeric attributes to be
incorporated in the classifiers that are learnt.
Evaluation on the data sets on which discriminant
analysis performs better than most machine
learning systems, such as the Iris flowers and
Waveform data sets, shows that incorporating the
power of discriminant analysis in machine
classification learning can significantly improve
the predictive accuracy and reduce the complexity
of classifiers induced by machine learning
systems.

1. Introduction

Attribute-based or selective inductive classification
learning algorithms aim to develop procedures capable of
correctly classifying instances of disjoint classes. The
condition parts of the classifiers are based on the values
of attributes provided in the examples. These algorithms
have not in general supported the derivation of
conditions based on relationships between attributes. "It
is obvious that if the class description is outside the
description space that is defined in terms of available
attributes or features, then it can only be learnt by
extending that space. Indeed, it is possible that the
relevant attributes or best features that could be used in
the class description may not be explicit or included in
the examples" [Elio and Watanabe, 1991]. The issue of

Geoffrey I. Webb
School of Computing and Maths

Deakin University
Geelong 3217, Australia

constructing new attributes or features is closely related
to constructive induction [e.g. Rendell and Seshu, 1990;
Michalski, 1983a, Bloedorn and Michalski, 1991]. This
paper describes methods of constructing new attributes
by incorporating discriminant analysis.

Discriminant analysis is another popular classification
method [e.g. Klecka, 1980]. There are two major types
of discriminant analysis. Parametric methods assume
normal distribution of the attributes while the
nonparametric methods have no such assumption.
Though discriminant analysis is a powerful classification
method, unlike symbolic machine learning, the
classifiers it develops do not have the semantic appeal of
decision trees and rules. The latter offers modularized
clearly explained formats for describing a decision
procedure and are compatible with a human's reasoning
procedures and expert system knowledge bases. Unlike
parametric discriminant analysis, machine learning
systems do not depend on the assumption that the
attributes are normally distributed and uncorrelated.
Previous research has shown that both symbolic machine
learning and statistical techniques produce superior
classifiers to those produced by the other on differing
data sets [Weiss and Kapouleas, 1989; Holte, 1993;
Breiman et al, 1984].

This paper describes techniques for incorporating
parametric discriminant analysis in symbolic machine
learning. Previous machine learning systems which
attempt to incorporate parametric discriminant analysis
include CART [Breiman et al., 1984] and LMDT (Linear
machine decision tree) [Utgoff and Brodley, 1991]. In
these systems, linear combinations of attributes are
searched and evaluated before each node of a decision
tree is created. In CART, which uses piecewise linear
discriminants, the computation cost increases
tremendously as the number of attributes and nodes
increases. In LMDT, a complicated encoding and weight
training system is implemented at each node. Another
approach is used by SWAPl [Weiss and Indurkhya,
1991] where discriminant functions are transformed to
binary attributes. One binary attribute per class is added
to the attribute space. Each binary attribute represents
the classification result of a discriminant function. The
system reports rules such as:

If (LDJ & (x > 109)) then class=];

63

. I

:I

where x is a continuous attribute and LDl represents the
condition that the instance is classified by a set of linear
discriminant functions as class J. The use of such
attributes greatly reduces the ease with which the rule is
comprehended. In the above approaches, the
discriminant functions are based on the equation:

J;(x) + ln(P(CJ) > ~{x) + ln(P(C)) 'ti i-~j
For each class Ci, J;(x), a linear function of the set of
attributes, x, is derived. An unknown case is classified
by applying the functions and choosing the class whose
linear score is the largest. Another discriminant analysis
technique is canonical discriminant analysis which is
based on a different type of function. This paper reports
methods of deriving and incorporating canonical
discriminant attributes in classification learning.

2. Incorporating canonical discriminant
analysis

Canonical discriminant analysis is a dimension-reduction
technique related to principle component analysis and
canonical correlation. [e.g. Klecka, 1980]. It derives
combinations of attributes to maximise the difference of
the centroid of different classes. This research
investigates incorporating canonical discriminant
analysis in inductive classification learning. A canonical
discriminant function is a linear combination of the
discriminating attributes. It has the following
mathematical form:

fkm = uo + u1X1km + uzXzkm + ···· + up~km
where fkm=the value (score) on the canonical
discriminant function for case m in the class k; Xikm= the
value on discriminant attribute Xi for case m in class k;
ui=coefficients which produce the desired characteristics
in the function.

The maximum number of unique functions that can be
derived is equal to the number of classes minus one or the
number of attributes, whichever is fewer. The
coefficients (the u's) for the each function are derived so
as to maximise the distance between the class centroids.
A class centroid is a imaginary point which has
coordinates that are the class's mean on each of the
attributes. In discriminant analysis, classification is a
separate activity. The canonical discriminant functions
can be used to predict the class to which an unseen case
most likely belongs. Several classification procedures
exist, but they all use the notion of comparing the case's
position to each of the class centroids in order to locate
the closest centroid. Since canonical functions aim to
maximise the distance between class centroids, they can
be utilised to transform the instance space (space
containing training instances for learning) so as to
maximise the linear separability of cases. As symbolic
machine learning systems seek to develop linear
partitions of the instance space, in this research, we
incorporate the canonical function(s) as additional

64

attribute(s) in the attribute space before submitting the
expanded data set to inductive classification learning.
Two classification learning systems are employed, C4.5
[Quinlan, 1993] and Einstein [Webb, 1992a]. C4.5, is
decision tree based while Einstein, based on the
algorithm DLG [Webb, 1992b], a variant of Aq
[Michalski, 1983a], induces decision rules. To illustrate,
suppose we have the following data:
X Y i Class
2 9 11 P
4 8 12 p

7 3 15 p

5 12 20 N
15 7 12 N
11 9 10 N
2 8 17 Q
3 10 15 Q
7 6 20 Q
With C4.5 [Quinlan, 1993], the decision tree induced is:
X > 7: N (2.0)
X<=7 :
I z <= 15 : P < 4.011.0)
I z > 15 : Q (3.0;1.o)
With Einstein [Webb, 1992a], the rules induced are:
If (X <= 7 & Y <= 9 & Z <= 15) then class=P [3]
If (X >= 5.00 & Y >= 7.00) then class=N [3]
If (6<=Y<=10 & Z >= 15) then class=Q [3]

To incorporate canonical discriminant analysis, we
can perform the following. By applying canonical
discriminant analysis (available from most statistical
packages such as SAS®, [1990]), canonical functions are
derived. With three classes, two canonical discriminant
functions are derived. The raw coefficients of the first
canonical function for attributes X, Y and Z are 0.711,
0.903 and 0.226, respectively. Since the relative values
of canonical attributes are the focus of classification, we
can ignore the constant term in the canonical function.
Thus, the value of the first canonical attribute (CANl) for
the first case is thus equal to: 2*0.711 + 9*0.903 +
11 *0.226 = 12.04. Similarly, we can derive other
canonical attribute values. The expanded data set is as
follows:
X y
2 9
4 8
7 3
5 12
15 7
11 9
2 8
3 10
7 6

11
12
15
20
12
10
17
15
20

CANl
12.04
12.78
11.08
18.91
19.70
18.21
12.49
14.56
14.92

CAN2
3.28
3.45
3.95
5.74
3.13
2.79
4.83
4.37
5.42

class
p
p
p

N
N
N
Q
Q
Q

Submitting the expanded data set to a classification
learning algorithm, the following concise trees or rules
are derived:
With C4.5 [Quinlan, 1993], the decision tree induced is:

CANl > 14.92: N (3.0)
CANl <= 14.92:
I CAN2 <= 3.95: P (3.0)
I CAN2 > 3.95 : Q (3.0)
With Einstein [Webb, 1992a], the rules are:
If (CANl <= 12.78 & CAN2 <= 3.95) then class=P (3)
If (CANl >= 18.21) then class=N (3)
If (CANl <= 14.92 & CAN2 >= 4.37) then class=Q [3]

From the theoretical perspective, incorporating
canonical discriminant attributes is a form of empirical
constructive induction. According to the framework for
constructive induction developed by Rendell & Seshu,
[1990), creating new attributes from existing attributes is
termed feature construction. Feature construction can
supplement the deficiency of selective induction in
learning hard concepts. A concept is hard if its attributes
have accurate class membership information but the
concept cannot be learned by selective inductive methods.
Hard concepts are characterised by dispersed and oddly
shaped peaks in the instance space. Feature construction
is the process of bringing together uniform regions that
are dispersed in the instance space. Examination of the
scatter plots on the above example supports the
theoretical perspective.

y

12 .N

10
f oQ . N

'b •P
•N

•Q

.p

0 X
0 JO 12 " 16

Figure 1: Scatter plot ofX-Y

z
20 •N •Q
18 Q
16

"
oQ •P

12 op •N
10

p
•N

8

0 X
0 10 12 14 16

Figure 2: Scatter plot of X-Z

CAN2

5.5 oQ

•Q
• . 5 ,Q

• p

3.5

"' ,p
,N

2.5 CANl
JO 12 14 16 18 20

Figure 3: Scatter plot of canonical attributes
(dotted lines showing simple decision surfaces)

In the scatter plots of (X-Y) and (X-Z), i.e. Fig.l and 2,
we can observe that the class members are dispersed. No
simple decision surfaces can be found. In the scatter plot
of the canonical attributes (Fig.3), the class members are
grouped together and simple decision surfaces are easily
found.

3. CAF (Canonical attribute finding)

We call the process of deriving and incorporating
canonical attributes as CAF. The objective of the
procedure is to find combinations of existing attributes
that can contribute to the discrimination performance of
existing attributes. When they are derived, each of the
combinations is transformed into a single attribute and
added to the attribute space. The application of CAF is
indicated when the predictive accuracy of discriminant
analysis for the domain is significantly higher than that
obtained by the machine learning system under focus.
The algorithm can be expressed as follows:
Algorithm: CAF
Input: a training set of examples
Output: an expanded training set of examples (ET)
Begin

raw canonical coefficients -canonical discriminant
analysis on attributes;

canonical attribute values -(attribute values,
raw canonical coefficients);

ET-Extend the descriptions of examples to include
canonical attribute(s) as additional attribute(s);

End.

4. CCAF (Clustering before Canonical
attribute finding)

Existing methods [e.g. Breiman et al., 1984; Utgoff &
Brodley, 1991 J for finding good attribute combinations
involve search at each node when constructing the
decision tree. Such methods involve high computation
costs. If CAF is applied to subsets of data or at each node
in building decision trees, the search cost at each node
can be significantly reduced, but the computation cost to
apply CAF for every node remains. CCAF is a method
for tackling part of this problem. This method starts by
applying clustering to re-classify the training set before
deriving canonical attributes. It is useful when the
possible partitions of the data are different from that
given in the training examples. Two main categories of
clustering methods exist: conceptual clustering [e.g .
Michalski, 1983b) and cluster analysis [e.g. Everitt,
1980). Since the objective is to derive canonical
attributes, cluster analysis is used in this research. The
common cluster analysis methods are based on
agglomerative hierarchical clustering procedures. Each
observation begins in a cluster by itself. Two clusters can

65

I

1

be merged to form a new cluster that replaces the two old
clusters. Various clustering methods differ in how the
distance between two clusters is computed. In this study,
we use Ward's minimum-variance method.

By re-classifying a training set of examples into
clusters before deriving canonical attributes, we can
capture the partition information of clusters. CCAF is
indicated when the predictive accuracy obtained by
discriminant analysis for the domain is significantly
higher than that of the machine learning system under
focus. In this research, we set the maximum number of
clusters to two times the number of different classes. The
algorithm can be restated as follows:
Algorithm: CCAF
Input: a training set of examples
Output: an expanded training set of examples (EI)
Begin

clusters -cluster analysis on attributes;
raw canonical coefficients -canonical discriminant

analysis on attributes with clusters as classes;
canonical attribute values -(attribute values,

raw canonical coefficients)
ET-Extend the descriptions of examples to include

canonical attribute(s) as additional attribute(s);
End.

5. Evaluation

Previous studies comparing discriminant analysis with
classification machine learning have found that each
approach outperforms the other on different sets of data.
[Weiss & Kapouleas, 1989; Holte, 1993; Breiman et al,
1984]. Since we are interested in improving the
performance of machine learning by incorporating
canonical discriminant analysis, we select the ones on
which discriminant analysis performs better. In this
research, we use the Iris plants and Waveform data sets
[Murphy & Aha, 1994]. The statistical package SAS®
[1990] is used for canonical discriminant and cluster
analysis. The machine learning systems used are C4.5
[Quinlan, 1993] and Einstein [Webb, 1992a].

5.1 Study 1 (Iris Dower data)

In this study, we use the widely examined Iris flower
data set with 150 examples. Each example consists of
four numeric-valued attributes: sepal length, sepal width,
petal length and petal width in centimetres. There are 3
classes of species: Iris setosa, Iris versicolor and Iris
vugiruca. To enable comparison with other learning
algorithms, this study uses the "leave-one-out" cross
validation method [e.g. Breiman et al., 1984). The Chi
square test for correlated samples is used to compare
predictive accuracy under different methods and the pair
wise t-test to compare complexity of induced classifiers.
In the following tabulation of results, complexity refers

66

to the number of rules or nodes in the classifier;
CAF+C4.5, for example, represents the method of
treating the data set with CAF before submitting to C4.5:
Method Accuracy(%) Complexity
(l) C4.5

(pruned)
(rules)

(2) CAF+C4.5

94.67
95.3

(pruned) 98
compare (1): (x2=5; ps.05)

(rules) 96.67
compare (1): (x2=1)

(3) CCAF+C4.5
(pruned) 94
compare (1): (x2=0.33)

(rules) 94.67
compare (1): (x2=0.33)

(4) Einstein 96

(5) CAF+Einstein 96
compare (4): (x2=0)

(6) CCAF+Einstein 95.3
compare (4): (x2=0.33)

10.79
4.02

5
(t=81.32; ps.0005)

3.96
(t=2.77; ps.025)

10.8
(t=-0.38)

4.05
(t=-1.91)

7.03

5.98
(t=36.21; ps.0005)

6.05
(t=39.04; ps.0005)

In the above tabulation, we observe that by deriving
and adding canonical attributes in a data set with CAF,
the performance of induced decision trees or rules can be
significantly improved and the complexity significantly
reduced. The results of applying CCAF are insignificant.
The best result of incorporating canonical discriminant
analysis can be compared to other methods that use
leave-one-out evaluation design:

Accuracy(%)
(5) CAF+C4.5(pruned) [this paper] 98
(6) Linear discriminant [this paper] 98
(7) Quadratic discriminant [this paper) 97.33
(8) Nearest neighbor, k=l [this paper] 96.67
(9) CART [Weiss & Kapouleas, 1989) 95 .3
(10) EACH [Salzberg, 1991) 95.3
(11) Neural net [Weiss & Kapouleas, 1989) 96.7
(12) PVM [Weiss & Kapouleas, 1989) 96.0
(13) SWAPl [this paper] 97.33
(14) SWAP1+discriminant1 [this paper] 96.67

In the above comparison to other methods, the
predictive accuracy of C4.5 (pruned tree) is improved to
equal that of linear discriminant analysis. The effect of
CAF can be further examined by plotting the
performance vs. training size graph. In this study, 20%
of the data set is used as the evaluation set and the
training set consists, in turns, of 40%, 60% or 80% of the
data set. The performance of the induced trees or rules

1 Represents SW APl with discriminant analysis option

of each training set is evaluated over 10 runs. The
comparative predictive accuracy and complexity is
illustrated in the following graphs:

98
97 9--------c..._~
96

-95
~94
t' 93 s Q2

l :~t------------
89
88
87.,___----+---------<

40 60

Training oet size(%)

80

--04 . .SC,ni•cQ

---0-- C'.AFt-<'A.5(1ft•d)

Figure 4: CAF+C4.5(pruned) vs. C4.S(pruned) Accuracy-
Training_size-plot on Iris data

In Figure 4, the predictive accuracy of
CAF+C4.5(pruned) is significantly better than that of
C4.5(pruned) at all three training set sizes (t40%=6.71, ps
.0005; t60%=6.05, ps.0005; t80%=6.71, ps.0005). In the
above presentation, "t40%", for example, represents the t
value when the training set size equals 40% of the data
set.

'i ~ +----·----
] 6

'l; 5 0------------1..1
.::!!, 4

i3
}2
81

0 .,___----+--------<
40 60

Training set size

80

-•-CUC,n1•cQ

---0-- CAFt-CA.SC,..•d)

Figure 5: CAF+C4.S(pruned) vs. C4.S(pruned) Complexity-
Training_size-plot on Iris data

Figure 5 shows that the complexity of pruned trees
induced by CAF+C4.5 is significantly less than that of
C4.5 alone, at all three training sizes (t40%=3.25, ps.005;
t60%=4.81, ps.0005; t80%=4.58, ps.005). The pattern of
the performance vs. training size graphs of C4.5 rules is
similar to that of C4.5 pruned trees.

98

96

:g94
....
p:l 92

[:! ---·-----

~ :: '------+-------< 40 60 80

Training set size(% of data set)

-•-Bia1ti11

Figure 6: CAF+Einstein vs. Einstein Accuracy
Training_s ize-plot on Iris data

In Figure 6, we can observe that the predictive accuracy
of CAF+Einstein is significantly better than that of
Einstein alone at all three training set sizes (t40%=2.33, p
s.025; t60%=2.59, ps.025; 1so%=4.71, ps.005).

'i 6

1! 5
'l;
~4 -•- Ein1lein

i3
12
81

---0- CAF+Einatcin

0
40 60 80

Training set size(% of data set)

Figure 7: CAF+Einstein vs. Einstein Complexity-
Training_size-plot on Iris data

Figure 7 shows that the complexity of rules learned by
CAF+Einstein is significantly less that learned by
Einstein alone at all three training sizes (t40%=7.75, ps
.0005; t60%=2.45, ps.025; t80%=7.75, ps.0005).

In this study, we observe that by deriving and
incorporating canonical discriminant attributes in
machine learning, we can significantly improve the
predictive accuracy and reduce the complexity of
classifiers induced from various size of the training data.
The predictive accuracy of CAF+C4.5(pruned) can be
compared to that of other methods as follows:

98

97

96

E9s -•-CAFt-C4.S(praaed)

I;' 94

i 93
J!

---0-- Llaardi.Kriati&.111111

---•---• -•-SWAPl, dooini

92

91

90
40 60 80

Training set size(% of data set)

Figure 8: CAF+C4.5(pruned) vs. Linear discriminant vs.
SW APl +discriminant Accuracy-Training_s ize-plot
on Iris data

Figure 8 shows that the predictive accuracy of
CAF+C4.S(pruned) is better than that of Linear
discriminant analysis (t40%=2.46, ps.025; t60%=2.08;
t80%=0.13) and SWAPl+discriminant (t40%=3.78, ps
.005; t60%=3.5, ps.005; t80%=5.02, ps.0005). The
performance of CAF+C4.5(pruned) at training set size of
40% is particularly notable.

5.2 Study 2

5.2.1 Waveform data set

In this study, we use the waveform data set used by the
CART system (Breiman et al., 1984]. The data were
generated with the program published in the UCI data

67

·. · . . I

. I
. I

base [Murphy & Aha, 1994]. It is a three class problem
based on the three waveforms h1(t), h2(t) and hit)
graphed as follows:

U(I)

[~_
I l S 1 9 11 13 IS 17 19 21

'2(1)

l,}(I)

[J ~
·- ~----~-----1 S 1 9 11 13 LS 17 19 21

Figure 9: The three underlying waveforms

Each class consists of a random convex combination
of two of these waveforms sampled at the integers with
noise added. The measurement vectors are of 21
dimensions: x=(x1, .. x21). To generate each vector x, a
uniform random number u and 21 random numbers e1,
e21 normally distributed with mean zero and variance 1
are generated:
For class 1 vectors, set: xm=uh1(m) + (1-u)h2(m) + Em
For class 2 vectors, set: xm=uh1(m) + (1-u)him) + Em
For class 3 vectors, set: xm=uh2(m) + (1-u)him) + Em
where m=l, ... 21

In order to compare performance with that of other
studies, in this research, training sets of 300 examples
using prior probabilities of (1/3, 1/3, 1/3) and a test data
set of 5000 records are generated. The mean
performance over 10 runs are as follows:
Method Accuracy(%) Complexity
(1) C4.5

(pruned)
(rules)

(2) CAF+C4.5

71.08
70.44

57.6
14.9

(pruned) 76.1 43.8
compare (1): (t=8.15, p:s.0005) (t=6.65, p:s.0005)

(rules)
compare (1):

(3)CCAF+C4.5
(pruned)

compare (1):

(rules)
compare (1):

76.58 10.3
(t=8.30; p:s.0005) (t=2.9, p:s.01)

78.47 46.0
(t=ll.05; p:s.0005) (t=5.41, p:s.0005)

78.91 11.6
(t=l0.42; p:s.0005) (t=2.41, p:s.025)

68

(4) Einstein 71.53 11.0

(5) CAF+Einstein 73.83 9.8
compare (4): (t=6.23, p:s.0005) (t=4.33, p:s.005)

(6) CCAF+Einstein 73.51 10.1
compare (4): (t=4.5, p:s.005) (t=3.0, p:s.01)

In the above tabulation, we observe that by
incorporating canonical discriminant attributes in
machine learning, the predictive performance can be
significantly improved and the complexity of classifiers
significantly reduced. The best result of incorporating
canonical discriminant attributes in this study can be
compared to other learning systems as follows:
Method Accuracy(%)
(7) Linear discriminant [this paper] 80.72
(8) Quadratic discriminant [this paper] 78.45
(9) CCAF+C4.5 (pruned) [this paper] 78.47

CCAF+C4.5 (rules) [this paper] 78.91
(10) CART [Breiman et al., 1984] 72
(11) Nearest neighbor 78

[Breiman et al., 1984]
(12) CART with 55 attributes added 80

[Breiman et al., 1984]
(13) CART with linear combination 80

[Breiman et al., 1984]
(14) SWAP12 [this paper] 73.06
(15) SWAPl+discriminant [this paper] 79.0

In method (12), the 55 new attributes added were
based on the averages, Xml,mZ, over the attributes from
m1 to m2 for odd values of m1 & m2 , where

m2

xml.m2 = l/(mz-m1+1) L xm, mz > ml
m•ml

In method (13), the linear attribute combination
algorithm used by CART [Breiman et al, 1984] involves
repetitive search for the best combination of attributes at
each node to make up the best split when generating the
classification tree. The computation cost of this method
is high and the attribute evaluation function is system
dependent. By using CCAF as an independent pre
machine learning step, the predictive performance of
C4.5 rules is increased from 70.44% to 78.91 %, and the
classifier complexity is reduced from 14.9 rules to 11.6
rules. However, the accuracy performance is still less
than that of linear discriminant analysis (t=2.99, p:s.01)
and SWAPl +discriminant (t=0.14).

In this evaluation, we showed that by incorporating
canonical discriminant analysis as a pre-symbolic
classification learning step, the predictive accuracy and
complexity of classifiers can be significantly improved
when compared to classification learning alone.

2 The data set, which contains noise, is offset by +4,
because SW APl accepts only positive numbers.

5.2.2 Waveform data set with noise

In the evaluation of the CART system, waveform data
sets containing the original 21 attributes plus 19 noise
attributes were also used. In this study, we use a similar
noisy data set generated by the published program of
UCI database. Again, a training data set with 300
examples and a testing data set with 5000 cases were
generated. Because of system limitations of Einstein and
SW APl, only C4.5 is used in this part. The results, based
on 10 runs can be presented as follows:
Method Accuracy(%) Complexity
(1) C4.5

(pruned)
(rules)

(2) CAF+C4.5

68.63
67.80

58.0
12.30

(pruned) 73.35 38.60
compare (1): (t=7.72, ps.0005) (t=12.93, ps.0005)

(rules) 72.89 8.8
compare (1): (t=7.02; ps.0005) (t=5.22, ps.0005)

(3) CCAF+C4.5
(pruned) 74.45 46.20

compare (1): (t=7.3; ps.0005) (t=5.5, ps.0005)

(rules) 75.06 12.0
compare (1): (t=7.7; ps.0005) (t=0.2)

In the above tabulation, we also observe that by
incorporating canonical discriminant attributes m
machine learning, the predictive accuracy can be
significantly improved and the complexity of classifiers
significantly reduced. The best result of incorporating
canonical discriminant attributes in this study can be
compared to other learning systems as follows:
Method Accuracy(%)
(4) CCAF+C4.5 (rules) [this paper] 75.06
(5) Linear discriminant analysis [this paper]76.26
(6) Quadratic discriminant [this paper] 70.72
(7) CART [Breiman et al., 1984] 72
(8) Nearest neighbor [Breiman et al., 1984] 38

By using CCAF as an independent pre-machine
learning step, the predictive accuracy of C4.5 rules is
increased from 67.8% to 75.06% but still slightly less
than that of linear discriminant analysis (t=l.65). In this
study, very noisy data sets are used. Evaluation shows
that by re-classifying the data with cluster analysis and
deriving canonical discriminant attributes as additional
attributes before submitting to classification learning, the
predictive accuracy can be significantly improved and
classifier complexity significantly reduced when
compared to classification learning alone.

5.3 Study 3

Parametric discriminant analysis is quite robust to
violation of the assumption that the attributes are
normally distributed. The purpose of this study is to

illustrate the incorporation of canonical discriminant
analysis on mixed attributes and the merit of CCAF
under certain conditions. In this study, we use an
artificial data set generated with the following decision
tree in mind:

~ A a:A1

neg pos neg pos

In the above decision tree, N is a discrete attribute; x
and y are continuous attributes; dl and d2 are different
discrete values; a, b, c, cl, and c2 are continuous values
where ao<b; clo<c2. To generate an artificial set, we set
d1=2, d2=3, a=3, b=2, c1=135 and c2=150. The class
values are {pos, neg}. With the above decision tree in
mind, we generated 400 cases, with 100 for each of the 4
leaves. For each case, x is assigned a random value
between 1 and 40. With 10-fold cross validation, the
performance of different methods can be presented as
follows:
Method Accuracy(%) Complexity
(1) C4.5

(pruned) 81.0 92.2
(rules) 84.0 37.9

(2) CAF+C4.5
(pruned) 74.25 109.2

compare (1): (t=-3.62, ps.005) (t=-2.58, ps.025)

(rules)
compare (1):

(3) CCAF+C4.5
(pruned)

compare (1):

(rules)
compare (1):

(4) Einstein

75 40.8
(t=-4.19, ps.005) (t=-1.39)

98.75 8.2
(t=8.63, ps.0005) (t=19.82, ps.0005)

98.75 4.1
(t=7.17, ps.0005) (t=25.54, ps.0005)

90.5 40.1

(5) CAF+Einstein 85.5 42.3
compare (4): (t=-1.96) (t=-1.99)

(6) CCAF+Einstein 100 4.4
compare (4): (t=6.22, ps.0005) (t=52.2 ps.0005)

Accuracy(%)
(7) Linear discriminant 43 .5
(8) Quadratic discriminant 100
(9) Nearest neighbor (k=l) 100
(10) SWAPl 96.5
(11) SWAPl+discriminant 55.75

As illustrated above, the use of CAF worsens the
performance of classifiers obtained by the machine
learning systems, but the use of CCAF leads to
significant increases in predictive accuracy and decreases
in classifier complexity. The improved performance is
comparable to that of quadratic discriminant and nearest

69

.. I . .

·,
I

neighbour methods. The incorporation of linear
combinations of mixed attributes may reduce the
semantic appeal of classifiers. Alternatively, linear
combinations of continuous attributes only can be
derived.

6. Discussion and Conclusion

In this paper, we presented two methods: CAF and
CCAF, which incorporate the power of discriminant
analysis into symbolic machine learning by deriving
canonical discriminant attributes and adding them to the
original attribute space. The expanded data set is then
subjected to classification learning. Evaluation on data
sets on which discriminant analysis perforrri..s better than
most machine learning systems, shows that such
techniques can significantly improve the performance of
the machine learning systems. Linear combinations of
attributes are derived with low search and computation
costs. Stepwise discriminant analysis can also be used to
reduce the number of terms in the linear combination.
Alternatively, terms with coefficients close to zero can
be discarded. Experiments on other data sets suggest
that the better in accuracy performance of discriminant
analysis over selective induction, the more significant is
the positive effect on selective induction by
incorporating canonical discriminant analysis.

In conclusion, discriminant analysis and symbolic
inductive machine learning have been two important
techniques in classification learning. Each has its own
advantages and limitations. This paper demonstrates
methods for combining these techniques. With a pre
machine learning step to derive and incorporate
canonical discriminant attributes, we can significantly
improve the predictive accuracy and decrease complexity
of classifiers obtained by existing symbolic machine
learning systems.

Acknowledgments

The authors wish to thank Ross Quinlan for C4.5 and
Sholom Weiss for SWAPl.

References

[Bloedorn and Michalski, 1991] Bloedorn, E. and
Michalski, R.S. (1991) Data driven constructive
induction in AQ17-PRE A method and experiments. In

Proceedings of the third international conference on
tools for AI. San Jose, CA. 30-37.

[Breiman et al., 1984] Breiman, L., Friedman, J .H.,
Olshen, R.O. & Stone, C.J. (1984) Classification and
regression trees. Wadsworth International Group,
Belmont, California.

[Elio and Watanabe, 1991] Elio, R. & Watanabe, L.
(1991) An incremental deductive strategy for
controlling constructive induction in learning from

70

examples. Machine Learning. 7, 7-44.
[Everitt, 1980] Everitt, B.S. (1980) Cluster analysis. 2nd

edition, London: Heineman Educational Books.
[Holte, 1993] Holte, R.C. (1993) Very simple

classification rules perform well on most commonly
used data sets. Machine learning, 11, 1: 63-91.

[Klecka, 1980] Klecka, W.R. (1980) Discriminant
analysis. Sage: Beverley Hills.

[Michalski, 1983a] Michalski, R.S. (1983) A theory and
methodology of inductive learning. In Michalski, R.S.,
Carbonnel, J,G. & Mitchell, T.M. (Ed.) Machine
learning: an artificial intelligence approach.
Springer-Verlag.

[Michalski, 1983b] Michalski, R.S. (1983) Leaming
from observations: conceptual clustering. In
Michalski, R.S., Carbonnel, J,G. & Mitchell, T.M.
(Ed.) Machine learning: an artificial intelligence
approach. Springer-Verlag.

rMurphy and Aha, 1994] Murphy, P.M. & Aha, D.
(1994) UCI repository of machine learning databases .
Irvine, CA: University of California, Dept. of
information and Computer Science.

[Quinlan, 1993] Quinlan, R. (1993) C4.5 Programs for
machine learning. Morgan Kaufmann.

[Rendell and Seshu, 1990] Rendell, L. & Seshu, R.
(1990) Leaming hard concepts through constructive
induction: framework and rationale. Computational
intelligence, 6: 247-270

[Salzberg, 1991] Salzberg, S. (1991) A nested hyper
rectangle learning method. Machine learning,
6:251-276.

[SAS® ,1990) SAS Institute Inc., Cary, NC: 27513

[Utgoffand Brodley, 1991] Utgoff, P.E. & Brodley, C.E.
(1991) Linear machine decision trees. COINS
Technical Report 91-10, University of Massachusetts,
Amherst, MA.

[Webb, 1992a] Webb, G. (1992) Man-machine
collaboration for knowledge acquisition. In
Proceedings of the 5th Australian joint conference on
Artificial intelligence. World Scientific, 329-334.

[Webb, 1992b) Webb, G. (1992) Leaming disjunctive
characteristic descriptions by least generalisation,
Technical report C92/9, Deakin University, Geelong
3217

[Weiss and Kapouleas, 1989) Weiss, S.M. and
Kapouleas, I. (1989) An empirical comparison of
pattern recognition, neural nets and machine learning
classification methods. In Proceedings of the 11th
international joint conference on artificial intelligence
(JJCAI) Detroit, MI: Morgan Kaufmann, 781-787.

[Weiss and lndurkhya, 1991] Weiss, S.M. and
Indurkhya, N. (1991) Reduced complexity rule
induction. In Proceedings of the 12th international
joint conference on artificial intelligence (IJCAI),
Sydney: Morgan Kaufmann, 678-684.

Compiling Relational Data into Disjunctive Structure:
Empirical Evaluation. *

Rina Dechter
Information and Computer Science

University of California, Irvine, CA 92717
dechter@ics.uci.edu

Abstract

Recent work in knowledge compilation sug
gests that relations which can be described pre
cisely by either Horn theories or tree constraint
networks are identifiable in output polynomial
time. Algorithms for computing approxima
tions using these languages were also proposed.
Upon testing such approximations on artifi
cially generated and real life data, it was im
mediately observed that they yield numerous
superfluous models. As a result, although cer
tain entailment queries can be answered reli
ably, these methods may be ineffective for a
large class of membership queries.

To improve the approximation quality, we in
vestigate here the k-decomposition problem,
that is, determining whether a relation can be
described by a disjunction of k tractable theo
ries. The paper discusses the complexity of this
task, outlines several algorithms for computing
both exact and approximate k-decompositions,
and evaluates the potential of this approach
empirically. We focus on the class of tree con
straint networks and Horn theories and report
results on artificially generated relations and
on three real life cases. Our experiments show
that for uniform random relations, the quality
of upper bound approximations improves as k
increases. However, when we require very high
accuracy, decomposition is not effective since k
grows linearly with the size of the data. When
the data comes from a near-tractable source,
the approach is useful. Experiments show that
for the King Rook King problem the general
izing power of such methods is comparable to
that of recently developed learning algorithms.

1 Introduction

Recently, frameworks for approximating intractable the
ories and relations using tractable languages were pro
posed using the notions of identifiability (2] and knowl
edge compilation (9]. The goal is to replace an in
tractable theory, or its set of models, with a tight up
per and lower bound tractable language, thus allowing
efficient query processing using the tractable approxima
tions.

•This work was partially supported by NSF grant IRI-
9157636, by Air Force Office of Scientific Research grant
AFOSR 900136, by TOSHIBA of america and by Xerox
grant.

71

Eddie Schwalb
Information and Computer Science

University of California, Irvine, CA 92717
eschwalb@ics.uci.edu

In this paper, following (2] and in contrast to (9], we as
sume that the input theory is given by its set of models
(or tuples) representing, perhaps, a set of observations
and the task is to describe these observations using a
tractable language. In [1, 2] it was shown that relations
that can be described precisely by either Horn theories
or tree networks can be identified in polynomial time.
Otherwise, tight upper bound Horn theory or tree net
work approximations can be computed. In this paper
we investigate empirically the effectiveness of such ap
proximations on artificially generated relations as well
as some real life data.

The effectiveness of an approximation should be mea
sured with respect to a class of queries. There are two
common types of queries on a theory cp: entailment
queries (whether a formula holds in all models of cp), and
membership queries (whether a given tuple is a model of
cp). The first is common in automated reasoning while
the second appears often in learning and classification
tasks. Each query type dictates a different evaluation
measure. We use, respectively, two measures: the frac
tion of clauses correctly entailed by the approximation,
and the number of superfluous models in the approxima
tion.

In our experiments it became immediately apparent that
when the relations cannot be compiled into a language
(as is often the case) the resulting tightest upper bound
approximation is effective for certain entailment quer\es,
but still yields numerous superfluous models.

To improve effectiveness relative to membership queries,
we propose here to extend the model one step further
by considering, as our target language, a disjunction of
a fixed number of tractable theories. Specifically we ad
dress the following questions: Given a relation p and a
class of theories n, can p be decomposed exact ly into
k subrelations, each represented by theories from n ? If
not, does the approximation quality improve as the num
ber of theories in the disjunction increases ? What are
the complexity issues involved?

Our experiments show that for relations generated ran
domly and uniformly, the accuracy of an upper bound
approximation improves significantly with the disjunc
tion size. When we require the number of superfluous
models to be small, decomposition is not effective be
cause the number of theories required grows linearly with
the size of the input relation. However, when the rela
tion comes from a near-tractable source, the approach is
useful.

The paper is organized as follows. Section 2 contains def
initions and preliminaries, section 3 discusses the frame
work of k-disjunctive approximations and presents the

I
· I .,

·1
I

I

.I

algorithms used, and section 4 presents our empirical re
sults. Concluding remarks are given in section 5.

2 Definitions and Preliminaries

We denote propositional symbols, also called variables,
by uppercase letters P, Q, R, X, Y, Z, ... , propositional lit
erals (i.e., P,-,P) by lowercase letters p,q,r,x,y,z, ... ,
and disjunctions of literals, or clauses, by a, /3, A
formula in conjunctive normal form (cnf) is a set of
clauses <p = {a1, ... ,at}, implying their conjunction. The
models of a formula <p, M(<p), is the set of all satisfying
truth assignments to all of the formula's symbols. A
clause a is entailed by <p, written <p I= a, iff a is true in
all models of <p. A Horn formula is a cnf formula whose
clauses all have at most one positive literal.

A relation associates a set of multivalued variables, also
called attributes, with a set of tuples specifying their al
lowed combinations of values. A constraint network is a
set of such relations, each defined on a subset of the vari
ables. Taken together, this set represents a conjunction
of constraints that restricts value assignments to comply
with each and every constituent relation . The theory of
relations has been studied extensively in the database
literature [6] .

Definition 1: (Relations and Networks)
Given a set of multivalued variables X = {Xi, ... ,X0 },

each associated with a domain of discrete values
D 1 , ... , D0 respectively, a relation (or, alternatively, a
constraint) p = p(X1 , ... ,X0) is any subset p ~ D1 x
D2 x ... x D0 • A constraint network N over X is a set
p1, ... , Pt of relations each defined on a subset of vari
ables S; ~ X. Each relation p; specifies the set of allowed
assignments of the variables in S;. A solution is an as
signment of a value to each variable that satisfies all the
constraints, and the network N represents the relation
rel(N) of all its solutions. If rel(N) = p we say that
N describes p. A constraint network in which all con
straints involve pairs of variables (IS; I = 2), is called a
binary constraint network. A constraint graph associates
each variable with a node and connects pair of variables
that appear in the same constraint. Tree networks are
binary networks whose constraint graph is a tree .

A cnf formula can be viewed as a special kind of con
straint network, where the domains are bi-valued (ID; I =
2) and each clause specifies a constraint on its proposi
tional symbols. The set of models of the formula are the
set of solutions of the corresponding constraint network .
A bi-valued relation p = p(x 1 , ... , x 0) is described by a cnf
formula <p = <p(x 1 , ... , x 0) iff M(<p) = p. We will use the
term theory to denote either a network or a propositional
formula.

Frequently, a relation cannot be precisely described by
a theory from a given language, in which case we use
approximations. We will examine primarily upper bound
approximations.

Definition 2: (Upper bounds)
Given a class of theories, n, a theory T E n is said to
be an upper bound of p relative to n if p ~ M(T). T
is a tightest upper bound if p ~ M(T) and there is no

72

T' En such that p ~ M(T') C M(T).

Clearly, if <p is a theory describing p (M (<p) = p), and T
is an upper bound of <p, then if T I= 1 we can infer <p I= 1 .
Alternatively, ift r/:. M(T) then t (/:. p (p ~ M(T)).

Some languages admit a unique tightest upper bound. In
this case, U O (p) denotes the unique relation associated
with this tightest upper bound expressed within this lan
guage. It is known that Horn theories allow a unique
tightest upper bound [1, 2] while there may be many
tight upper bound tree networks [2] .
In [2, 3] it is shown that Horn theories and tree networks
are identifiable, namely there is a polynomial algorithm
that can decide whether any given relation can be de
scribed precisely by a Horn theory or a tree-network, and
also finds the corresponding description whenever possi
ble. Otherwise, the algorithm computes an upper bound.
For Horn theories the algorithm generates the tightest
Horn upper-bound, but it is no longer polynomial in the
input relation. For tree-networks the algorithm is always
polynomial but does not necessarily generate the tight
est upper bound . For completeness sake, we present the
algorithms for computing tight upper bounds for tree
constraint networks and Horn theories.

2.1 Computing a tight tree network

The tree algorithm [2], finds a tree-network representa
tion to a given relation, if such exists, otherwise it com
putes a tight upper bound.

Given an arbitrary relation, p, let n(x;) be the number
of tuples in p for which X; = x;, and let n(x;, x j) be the
number of tuples for which X; = x; /\ Xj = x j. Let us
define weights w(X;, Xj) as

1 L) n(x;, Xj)
w(X;,Xj) = -

1
I n(x;,Xj log () ()

p n Xi n Xj
(x,,x1)Ef1x -x _(P)

' 1

The constraint graph of the tree approximation is com
puted as the maximum weight spanning tree formed with
the arc-weights w(X;, Xj). Once the structure of the
tree is determined, the constraints of the network can
be obtained by projecting p onto the pairs of connected
variables in the tree.

2.2 Computing the tightest Horn upper bound

In [1, 2] it was shown that the models of a Horn theory
are closed under intersection when intersection is defined
as follows . Let x = {xi, x2, ... , x0 } be a tuple where
x; E { 0, 1}. Then true(x) is the set of variables as
signed to 1 and false(x) is the set of variables assigned
to 0. The intersection z = x n y is defined as true(z) =
true(x) ntrue(y) and false(z) = false(x) U false(y). A
bi-valued relation is said to be closed under intersection
iff 'Ix, y E p x n y E p. The closure of p is the set of
models of the tightest Horn theory bounding p.

We compute the set of models of the tightest Horn upper
bound of a given relation by computing its intersection
closure. The procedure is polynomial in the size of the
output relation but not necessarily polynomial in the size
of its input. Once the set of its models is computed, the

Horn theory can be extracted by algorithms presented
in [1, 2].

3 Computing k-decompositions

We now extend the notion of identifiability to a disjunc
tion of theories. We will assume (except when otherwise
noted) throughout this paper that our languages admit
a unique upper bound.

Definition 3: A relation p is k-decomposable rela
tive to a class of theories n iff there exist a set of rela
tions Q = {p1, .. . , Pk} such that Pi is described in n and

p = LJ~=l p;. A language, 0, is k-identifiable if for every
relation p, deciding if p is k-decomposable relative to n
is polynomial.

Clearly, for any language that can describe a single tuple,
every theory is k-decomposable for k = IPI. The interest
ing task is to find the smallest k for which a theory is k
decomposable. The following paragraphs provide the nec
essary and sufficient conditions for k-decomposability.

Definition 4: Let U O (p) be the unique tightest upper
bound of p relative to n . We define a graph G0 (p) as
follows. Each tuple, x E p, is mapped to a node and an
arc between two nodes x, y E p exists iff U O ({ x, y}) <I,. p.

Theorem 1: Given p and n,
1. If G 0 (p) is not k-colorable then p is not k

decomposable.

2. If G O (p) is k-colorable then p is k-decomposable
iff there exists a k-coloring of x1 ... x

1
p

1
(a value

of 1 ... k assigned for every tuple in p) for which
Vi ~ k the sets p; = {x I color(x) = i} satisfy
Uo(P:) ~ P·

Consequently, a lower bound on k is the size of each
clique in Gn.

Theorem 1 suggests a brute force algorithm for comput
ing a k-decomposition . Enumerate all k-colorings for
Gn(p), and, for each coloring, check whether condition
(2) is satisfied. If condition 2 can be tested in polynomial
time (true for Horn theories), then the algorithm's com
plexity is dominated by the complexity of enumerating
all k-colorings of a graph. Since finding even one color
ing is NP-complete, the problem is clearly intractable.
However, for the special case of k = 2, enumerating all
possible colorings can be done in time linear in the num
ber of colorings [4]. Moreover, fork = 2, it can be shown
that every connected component of Gn(p) (bi-partite for
k = 2) can be colored in at most two ways1 and, there
fore, 2#component 3 possible colorings need to be checked.

Corollary 1: Given a language O such that Gn can be
computed in polynomial time, then 2-decomposability can
be decided in time polynomial in 2#component 3 of Gn(P).

3.1 Approximated Decomposition

Because computing a k-decomposition is a difficult task,
we examine polynomial approximation algorithms for

1 We thank Dan Roth for this observation.

73

two related formulation of this problem: (1) (minimiza
tion) given a theory <panda language n, find the minimal
k for which <pis k-decomposable relative ton. (2) (upper
bound decomposition) given n and k, find a k-disjunctive
upper-bound of <p relative to n that minimizes the num
ber of superfluous models.

For t.he first task, we describe a greedy approximation
algorithm. The algorithm can be viewed as a variant of
the algorithm suggested by theorem 1. It starts from two
arbitrary models x,y E p, and computes U0 ({x,y}). If
U O ({ x, y}) <l,. p it concludes that x and y must partici
pate in different relations; otherwise, the algorithm adds
U0 ({x,y}) to Pi and deletes U0 ({x,y}) from p. The al
gorithm continues with a third and fourth tuple, until
all models in pare covered (see Figure 1).

Lemma 1: Algorithm GreedyDecompose (Figure 1}
terminates in O(IPI · k · tp) steps where k is the num
ber of resulting theories and tp is the number of steps
required to test whether Un(P) ~ p.

In the second task, the disjunction size k, is fixed
in advance. The partitioning algorithm for that task,
divides the input relation p into k equal partitions,
p1, ... , Pk, and outputs their tightest upper bounds,
Un(p1), ... , Un(Pk). Clearly, p ~ U;U0 (pi) ~ U0 (p).
The complexity of partitioning is O(k · tp) where tp is
the time required to compute U0 (p). Note that for Horn
theories the greedy algorithm is always polynomial while
the partitioning algorithm can be exponential. Note also
that the partitioning algorithm has no control over the
number of superfluous models.

To control the number of superfluous models we define c
approximations and show how such approximations can
be computed by the greedy algorithm.

Definition 5: ((k, €)-approximations) A relation p
is (k, €)-decomposable relative to n iff there exists a set
of relations Q = {p1, p2 . .. Pk} such that p; is descril;>ed
inn, and,

and (1)
i::::1

Q is called a (k,c) upper bound .

A (k, c) upper bound can be computed by GreedyDe
compose if we allow only a bounded number of models
in each subrelation p; to fall outside the input relation,
namely IP; - Pl :=::; f,-IPI, and if the actual disjunction size
generated (k) happens to be smaller than k' . This can
be implemented by modifying line 10 of GreedyDecom
pose (Figure 1) to accommodate some models not in p
(e.g. "if IU0 (p; U {x}) - Pl :=::; f,- IPI then ... ").

4 Experiments

In this section we evaluate the quality of the approxi
mation obtained. We use two measures : the number of
superfluous models divided by the whole tuple space (2n)
and the fraction of clausal entailment queries answered
correctly.

Notice that the unique tightest upper bound with respect
a class n is guaranteed to correctly answer entailment

: 1 . .

I
I

I

I

I

GreedyDecompose
1. Input(p, a class of theories n
2. Output(Q = {p1, ... , pk})
3. Begin
4. Q <- {}
5. p' <- p
6. while p' /; {} do

and a polynomial algorithm to compute U O (p))
; The disjunction of the relations - see Definition 3

; Initialize an empty disjunction.
; We use p' to preserve p for comparisons.

7. choose arbitrary x E p' . . .
8. flag<- false ; flag detects whether this tuple reqmres a new relation Pi
9. if Q #, {} then

10. foreach Pi E Q do
11. if U O (Pi U { x}) ~ p then
12. Pi<- U0 (Pi U {x})

; If we can add the tuple to Pi, then
; add it, and

13. p' <- p' - Pi ; don't iterate on tuples already in Pi,
14. flag <- true ; and signal that no new relation Pi is needed.
15. end-if
16. end-for
17. end-if
18. if flag= f a/se then
19. Q<-Q U{ x}

; Here, we add to the disjunction Q
; a new relation which consists of

20. p' <- p' - {x} ; a single tuple x.
21. end-if
22. end-while
23. End.

Figure 1: The greedy algorithm for decomposing a relation.

queries of formulas expressed in n. In particular, a Horn
tightest upper bound will infer correctly all Horn queries.

Observation 1: Let U O (<p) be the unique tightest upper
bound of <p. For every a En, U0 (<p) I= a iff <p I= a.

Proof: Clearly, if U O (<p) I= a then <p I= a. If <p I=
a then a is an upper bound of <p. Since U O (<p) is the
tightest upper bound, it also entails a. D

Consequently, it is meaningless to measure the effective
ness of the approximation with respect to queries from
the bounding language since we are guaranteed correct
answers.

We evaluate the effectiveness of the approximation on ar
tificially generated relations and three real life databases:
the KRK problem from the chess domain, the "politi
cians" relation that represents voting records of politi
cians, and the "breast-cancer" relation that represents
medical records of patients.

4.1 Horn upper bound

Tables 1 and 2 summarize the results for random input
relations. In Table 1, the input is a relation (whose num
ber of attributes and models are given) and the output
is the number of superfluous models in the tightest Horn
upper bounding relation. Table 2 reports the fraction
of entailment queries correctly answered as a function of
the clauses size, for relations having 10 variables and 50
models (also reported in the 2nd row of Table 1). Addi
tional details are provided in Figure 3(a) by the curve la
beled "Single Partition". Note that most of the 3-literal
clauses were not entailed by the theory nor by its upper
bound.

Real Life Data: The "politicians" relation is defined over
16 bi-valued attributes and consists of 125 tuples. The
tightest Horn upper bound consists of 1160 tuples.

As observed, although tightest Horn upper bounds ex
clude many non-models, they also contain numerous su-

74

Table 1
membership queries

uper uous
models

Table 2
entailment queries

perfluous models and thus may be unacceptable for an
swering membership queries .

4.2 Disjunctive Horn approximations

We next show the improvement (over tightest Horn up
per bound) obtained using disjunction of Horn t4eo
ries. Given a constant k, the partitioning algorithm
computes a k-disjunctive Horn theory. As described
earlier , the algorithm partitions the input relation p
into k disjoint subrelations of equal size, P1, ... , Pk,
and compute the Horn upper bound of each Pi yield
ing U0 (p1), ... , U0 (pk), The results are summarized in
Figures 2 and 3.

In Figure 2 we plot the size I U; U O (Pi) I (number of mod
els) as a function of k, the disjunction size. The input
relations have 9 and 11 attributes with 32 and 200 models
respectively. We show, for instance, that when approx
imating with five theories, for 9 and 11 attributes the
fraction of superfluous models (with respect to 29 ,211)

was reduced from 29%,51 % to 8%,33% respectively.

In Figure 3 we report the results obtained on relations
having 10 attributes and 50 models . In this case, the
tightest single upper bound Horn approximation had 325
models on average. Every point is obtained by testing
all clauses of a fixed length and computing the fraction
of correctly answered queries. This is averaged over 50
relations. We observe in Figure 3(a) that the approxima
tion obtained using disjunction of nine Horn theories was
significantly better than the tightest upper bound. In
Figure 3(b) we report the accuracy as it improves when

I U; U0 (p;) j

150

100

50

1252
0

0
172 I U; U0 (pi)j

IPI = 32 1133 IPI = 200
146 1100 I I n=9 n = 11

1075 1038
g

976
113 1005

I 121

I 907

95 900 918 I I
87 858

94

I I 76 853 823

I l 784
73 797 I 68 783

62

700 733

1 2 3 4 5 6 1 2 3 4 5 6 7 8

Number of Partitions Number of Partitions

Figure 2: Decomposition by partitioning of random relations.

Approximation of random relations
with respect to single clause queries ;

10 attributes, 50 tuples, 200 repetitions.
100 ____

-&-- Slll3Je Partition
... Nff Partiliom

50 +-~~~~~~~~~~~~~
1234567 89

Number of Literals In the Clause

(a) effectiveness vs clause size,

Quality of k computed by Greedy Decompose
for Exact Horn k-ldentlflablllty, 900 runs,

200-210 tuples, 11-14 attr., k=40-70.
40..----------------,

~
30

'i'ii·····
~

r:~
5 10 15 20 25 30 35

Relative Error E

Figure 4: Stability of
Greedy Decompose.

Figure 3

Q,I

.!::l
"' = 0

Approximation of random relations,
single clause queries for multiple partitions
10 attributes, 50 tuples, 200 repetlrions.

100

90

80

70

2 3 4 5 6 7

Number of Partitions
9

(b) effectiveness vs number of partitions.

Corruption/Noise sensitivity for
200-400 tuples, 8-10 attributes, 120 runs.
40

30

~ 20

l 10

75

0 10 20 30 40 50 60 70

Percent of Scrambled Tuples

Figure 5: Near-Horn relations.

I

·I

. . . . I

the number of theories in the disjunction increases. We
plot results for clauses with 5,6,7 literals. Note that 50%
is the lowest accuracy possible since guessing yields at
least 50%. Figure 3(b) suggests that for small clause en
tailment, disjunctive upper bounds do not improve much
over single Horn bounds, because for small clauses the
single Horn upper bound is already quite effective. As
the clause size increases, there are more non-Horn clauses
and therefore single Horn upper bounds are less effective
and consequently disjunctive bounds can be more cost
effective.

The same experiments were performed on the "politi
cians" relation and roughly the same results were ob
tained .

In the remainder of this section we report results of ex
periments using GreedyDecompose for computing both
exact decomposition and approximate disjunctive upper
bounds.

We next focus on the behavior GreedyDecompose. Since
there exists an ordering of models for which the greedy
algorithm yields an optimal decomposition size k, we
evaluate its effectiveness by observing the variations of k
as a function of the order by which models are processed.
For every relation generated, GreedyDecompose was run
30 times, each time with a different random ordering.
Q0 denotes the smallest size decomposition out of the 30
computed, and Q1 , ... , Q29 denote the other 29 decom
positions. The stability, is measured by the relative error
Ei = 19•11Q~f 0I, namely the fraction of cases the size of

the decomposition, k; = IQd, was larger than ko = IQo l,
As shown in Figure 4, in about 32% of the cases the size
of the decomposition computed was less than 5% larger
than ko = IQol and the largest variation was 35%. Thus
the algorithm is reasonably stable.

We next report results of experiments with exact decom
positions. The experiments were performed on small
bi-valued random relations, having about 30 models,
and larger relations, having 300 models. As Table 3(a)
shows, for relations with 30-34 models having 10 at
tributes, about 15 theories were required on the average
(i .e., k=15). For larger relations with 300-325 models
having 14 attributes, about 130 theories were needed.
Clearly, since the algorithm is not optimal, we do not
know whether smaller decompositions exist.

Tree networks (constraint networks whose constraint
graph is a tree) were examined next. We observed in
Table 3(b) that, as in the case of Horn theories, k might
be arbitrary large. However, it does not increas as fast
as the number of attributes.

To evaluate sensitivity to noise, we take a relation that
can be described by a Horn theory and corrupt randomly
selected models; the degree of noise introduced is mea
sured by the percentage of models corrupted. A model is
corrupted by flipping each of its bits with 0.5 probability.
As shown in Figure 5, when only a few models were cor
rupted, the corrupted relation admits a relatively small
k.
We next examine the effectiveness of bounded overflow
on k. Namely, we compute a (k, €) upper bound. To

76

demonstrate the effect on k, we show (Figure 6(a)) the
dependence of the Horn disjunct size, k, on the overflow

. c 1u,Uq(P•)-PI A t d fraction, defined as ., = IPI . s expec e , we
see that increasing overflow reduces the decomposition
size.

Finally, we measure the trade-off between noise and over
flow. We plotted the number of overflow models with re
spect to the number of corrupted models while holding k
under 5. We observe that k, which was increased by cor
ruption or noise, can be decreased by allowing overflow
proportional to the degree of corruption (Figure 6(b)).

4.2.1 Real Life Data

We report results of experiments made with three reai
life databases taken from the machine learning repository
at U .C. Irvine. We first examine Horn k-decompositions
of a bi-valued relation that represents voting records of
politicians. The relation can be represented exactly by
48 Horn theories. However, by allowing overflow, this
number can be reduced (see Figure 7(a)).

The breast cancer relation represents records of symp
toms and diagnosis (i .e. whether the patient had breast
cancer or not). The task is to derive a theory that en
ables efficient processing queries that involve symptoms
and diagnosis. The relation can be described exactly
by 38 tree networks; however, by allowing overflow, this
number can be reduced (see Figure 7(b)).

4.3 Learning with Horn upper bound

We next suggest that perhaps compilation methods that
aim at providing a tractable and concise representation
when all the data is available can be modified and used
for learning when only part of the data is available.

The experiments are performed on the King Rook King
(KRK) problem from the chess domain. The task is to
learn a predicate that classifies board positions as either
legal or illegal, given a small training set with positive
and negative examples. Each example is a tuple with
6 attributes that specify the coordinates of the white
king, the black rook and the black king. The multi
valued training relation Ptraining is transformed into bi
valued relation P;raining using a set of predicates pro
vided by the expert, and U0 (p;raining) is computed. To
classify an unseen instance x, we map it to a bi-valued
instance x' and check whether x' E U0 (p;raining)· If
x' E U O (P;rainin) , then the classification can be deter
mined according1y. Otherwise, we guess the most fre
quent class.

We compare performance with a recent algorithm for
learning prolog programs, called FOCL [7]. Figure 4
shows that U O (Ptraining) was able to correctly classify
about 95% of the unseen examples when trained on 300
examples while FOCL was able to achieve better ac
curacy with only 200 examples. The curve labeled by
"HORN known" shows the fraction of unseen examples
found in the closure and that were correctly classified2 .

The curve labeled "HORN" shows the final accuracy

2 Since the target concept in the KRK domain is not Horn,
we can only approximate it.

orn

.~
rJ)

C:
0

~
0

e'
0
V

!

Table 3: Exact decomposability.
(a) k-Horn (b) k-Tree

Number oJ lVum lJer oJ Min Num. Max Num
Attributes Dis j uncts Disjuncts Disjun cts

300 - 325 mo e s,
70 68 72
90 84 98

113 105 122
133 126 140

Controlled Overflow Horn k-Decompositlon
32-36 tuples, 10-12 attributes, 150 runs.
16,--------------~

y = 18.668 · 0.12159x R'2= 0.921

15

•
•

30 40 50 60 70 80 90

Overflow Percentage

'1 ree k - decomposition, 32 - 36 model s,
8 9.4 8
9 11.U 9

lU 11.5 lU
11 l :l.U 11
12 13.1 12

·1 ree k - decomposition, 200 - 202 mode l s,
10 39 35
12 52 48
14 63 59
16 69 64

Controlled overflow vs Noise for Horn Dec.
120-170 tuples, 9-10 attributes, k= 1-4,

104 runs.
30-.---------------~

0

y = 4.6867 + 036303, R'2 = 0.986

10 20 30 40 50
Percentage of scrambled tuples

60

(a) (b)
Figure 6: Sensitivity to noise of Exact k-Horn decomposability.

The "Politicians" relation,
Controlled overflow Horn k(e)-Decomp.

124 tuples, 16 attributes.
20

y = 25.842 - 5.4959c-:Z. R'2= 0.911

18

16

14

12

10+-~~~~~~~~-.-~~~""""4,--j
100 125 150 175 200 225 250 275 300

Overflow Percentage
(a)

~

.!::!
"' C:
0
~
'iil
8. e
0
V
~
Q

The "Breast Cancer" relation,
Controlled overflow, Tree k(e)-Decomp.

309 tuples, 10 attributes.
32 y= 30.675 . 0.4911 8" R'2 = 0.774

•
30

28

26

24

22 •
20+.-..-1
00~0~2~0~~~~~~~0

~~~NN~g~~~~~~~~~ 

Overflow persentage 
(b) 

Figure 7: Decomposability of "real data" 

77 

125 runs 
11 
13 
13 
13 
14 

105 runs 
44 
58 
65 
73 



· 1 

I 

F 

FOCL vs HORN on KRK example, 
Accuracy tested on 1000 unseen examples 

averaged over 100 runs. 

0.8 

8 0.6 

< 

0.4 - HORN 
__,,__ HORN Known 

- FOCL 
0.2 +"------,~~---,--~----l 

0 100 200 300 

Number of Examples 

Figure 8: Learning with tightest 
Horn upper bound approximations. 

achieved by guessing the most frequent class when the 
unseen instance is not in Un (P;raining). For more details 
on the use of single-upper bounds on learning see [8] . 

5 Conclusion 

This paper builds upon prior investigations into the 
prospects of compiling empirical data into structures 
that allow efficient processing of queries (2) . Previous 
work had presented algorithms for describing or approx
imating data by Horn theories (1, 2) or tree constraint 
networks (2 , 3]. The effectiveness of these approximation 
should be measured with respect to the class of queries 
to be asked. We focus on entailment queries, which 
are common in automated reasoning, and membership 
queries, which are common in classification tasks. Upon 
testing these approximations on artificially generated 
and real life data, it was immediately observed that, al
though effective for some entailment queries, they are 
ineffective for membership queries since they yield nu
merous supefluous models. 

We therefore propose to improve on the single tightest 
upped bound approximation by approximating with a 
disjunction of theories. We define the k-decomposition 
problem: given an integer k and a relation p, deter
mine whether p can be described by a disjunction of 
k tractable theories. The paper presents the neces
sary and sufficient conditions for a relation to be k
decomposable and identifies cases in which determining 
2-decomposability is polynomial. 

Because computing a k-decomposition is a difficult task, 
we examine polynomial approximation algorithms for 
two related formulation of this problem: (1) (minimiza
tion) given a theory <panda language n, find the minimal 
k for which <pis k -decomposable relative ton. (2) (upper 
bound decomposition) given n and k, find a k-disjunctive 
upper-bound of <p relative to n that minimizes the num
ber of superfluous models. We evaluate the effedctive
ness of these approximations empirically with respect to 
both entailment and membership queries. 

In our experiments we focus on the class of tree con
straint networks and Hom theories and report results 
on artificially generated relations and on three real life 
cases. For the second task, we observe that the quality 

78 

approximation obtained by upper bound decomposition 
improves as k increases. For the first task, when the data 
comes from a near-tractable source, or when the overflow 
is proportional to the level of noise, the approach is use
ful since k is small. However, when the input relation is 
not generated by a near-tractable source and we require 
very high quality approximations in which the number 
of superfluous models is bounded, decomposition is not 
effective since k grows almost linearly with the size of 
the input relation. 

Fianlly we suggest that perhaps compilation methods, 
that aim at providing a tractable and concise represen
tation when all the data is available, can be modified and 
used for learning when only part of the data is available. 
Experiments show that for the King Rook King problem 
the generalizing power of the tightest upped bound Horn 
approximation is comparable to that of recently devel
oped learning algorithms. For more details on the use of 
single-upper bounds on learning see (8] . 

Acknowledgments 

We would like to thank Dan Roth for valuable com
ments on an earlier version of this paper. The breast 
cancer database was obtained from the University Medi
cal Center, Institute of Oncology, Ljubljana, Yugoslavia. 
Thanks go to M. Zwitter and M. Soklic for providing the 
breast cancer data. 

References 

(1] Angluin, D., Frazier, M., Pitt, L., 1991. Learning 
conjunctions of Horn Clauses, Machine Learning 
9:147-164. 

(2] Dechter, R., Pearl, J., 1992. Structure Identifi
cation in Relational Data, Artificial Intelligence 
58:237-270. 

(3] Dechter, R., 1990. "Decomposing a relation into 
a tree of binary relations", Journal of Computer 
and Systems Sciences, special issue on the Theory 
of Relational Databases, Vol 41, 2-24 (1990) 

(4) Dechter, R., Itai, A., 1992. Finding all solutions 
if you can find one. UCI Tech Rep. 92-61. 

(5) Kautz, H., Kearns, M.J., Selman, B.S., 1993. Rea
soning with Characteristic Models, Proceedings of 
AAAI-93, 34-39. 

(6] Maier, D., 1983. The theory of Relational 
Databases Computer Science press, Rockville, MD, 
1983. 

[7] Pazzani, M.,, Kibler, D. , 1992. The utility of 
knowledge in inductive learning, Machine Learning 
9 (1992), 57-94 

(8] Schwalb, E., Dechter, R., Pazzani, M, 1993. Us
ing identifiability for learning Horn logic programs, 
UCI Tech-Rep. 94-13. 

(9] Selman, B., Kautz, H., 1992. Knowledge com
pilation using Horn approximation Proceedings of 
AAAI-91, 904-909. 



Are Vector Space Models Capable of Inductive Learning in a 
Symbolic Environment?"' 

Lev Goldfarb, John Abela, Virendra C. Bhavsar and Vithal N. Kamat 
Faculty of Computer Science 
University of New Brunswick 

Fredericton, N.B., Canada E3B 5A3 
Ph. ( 506 )453-4566, Fax. ( 506 )453-3566 

E-mail:goldfarb, x45i, bhavsar, u095@unb.ca 

"Mathematicians have abstracted the 
mathematical process away from the specific 

ezamples that were used to motivate their 
introduction and they study the concept of 
'number', or 'shape', or 'distance', in the 

abstract. This is done by focusing attention 
upon the operation by which numbers are 

changed rather than upon the numbers 
themselves. Thus , a simple counting process 

like 1,2,3, ... is seen not as a list of particular 
numbers but as the result of carrying out a 

particular operation of change upon a number, 
thereby generating its successor . ... Once an 

abstract notion of number is present in the 
mind, and the essence of mathematics is seen 

to be not the numbers themselves but the 
collection of relationships that ezist between 

them, then one hall entered a new world". 
John D. Barrow. Pi in the Sky. 

Abstract 

We outline a general framework for inductive 
learning. The mathematical foundations of this 
framework include two batJic componenta: set of 
operations ( on objects) and the corresponding 
geometry which is defined by means of the op
erations. According to this framework, to per
form inductive learning in a symbolic environ
ment the set of operations must be dynamically 
updated and this requires the geometric com
ponent to have the capability of changing the 
topology dynamically. For symbolic systems, 
as used in this framework, the geometric com
ponent has the ability of dynamically changing 
its topology whereas finite-dimensional numeric 
systems can essentially have only one (static) 
topology. This implies, in particular, that the 
vector space based models, e.g. artificial neural 
networks, cannot capture inductive generaliza
tion in a symbolic setting. The recently pro
posed evolving transformation system model is 

·This research was partially supported by NSERC grants 
OGP2686 and OGP0089. 

79 

the inductive learning model within this frame
work. 

Keywords: Inductive learning, inductive gen
eralization, vector space models, artificial neu
ral networks, symbolic models, evolving trans
formation system, learning topologies. 

1 Introduction 

Learning has become one of the most important research 
areas in artificial intelligence. Within learning, the area 
of inductive learning has always been of central impor
tance. There are two major directions being pursued 
within inductive learning: numeric (vector space) and 
symbolic. Artificial neural networks (ANNs) are rep
resentative of the numeric models whereas the version
space model [Mitchell, 1982] is an example of a model 
that can be applied to symbolic representations. Cur
rently, much effort has been directed towards applying 
ANNs to learning in symbolic environments. 

The reexamination of the above two types of semi
formal models, which we undertake in this paper, has 
been prompted by the recently proposed model for in
ductive learning - the Evolving Transformation System 
model (ETS) [Goldfarb, 1990a; Goldfarb, 1992]. The 
ETS model emerged as a result of an effort to unify the 
numeric and symbolic models within one framework. 

The main objectives of this paper are as follows. The 
central objective is to compare and contrast inductive 
learning in the numeric and the symbolic models. The 
second objective is to define a new framework for in
ductive learning. We finally present strong arguments 
that suggest that the numeric models are incapable of 
inductive generalization in symbolic environments. 

Section 2 briefly discusses the problem of inductive 
learning and generalization. The characteristics of the 
vector space model are reviewed in Section 3. In Section 
4 we present a brief description of the ETS model. Some 
limitations of the vector space model are presented in 
Section 5. Finally, Section 6 discusses the fundamental 
limitations of the vector space model when applied to 
learning in symbolic environments. 



:I 

, I 

2 Inductive Learning and 
Generalization. 

We define inductive learning to be a process by means 
of which, given a finite positive training set c+ from a 
possibly infinite class (or concept) C, and a finite set c
from the complement of C, an agent is able to reach a 
state which allows it to form an idea about the class. 
This state enables the agent to recognize a new object 
as belonging to class C or not. 

Inductive learning is what humans use to learn the 
idea (or concept) of, for instance, a cat. Having seen a 
finite number of cats, we acquire the ability to recognize 
and classify any animal as being a cat or not. 

It is generally accepted that the inductive process is 
the only process by means of which an agent increases 
its semantic information [Johnson-Laird, 1988]. At the 
same time, we would like to stress that it is meaning
less to consider inductive learning without generaliza
tion, where generalization is simply the state of the agent 
after the inductive learning process. Moreover, we be
lieve that it is also meaningless to speak of recognition 
without the concept of inductive generalization. 

It appears that even motor control skills are acquired 
through inductive learning. A boy catching a ball does 
not understand ballistics, yet he manages to learn this 
feat with ease. 

Thus, unsupervised classification i.e. without the 
teacher, corresponds to the recognition stage, the stage 
which follows the inductive learning process. We be
lieve that a fundamentally new mathematical model is 
required in order to understand the inductive learning 
process. None of the classical mathematical models is 
suitable for modeling the inductive learning process. The 
reason is that, in order to construct such a model, a new 
way of encoding ( or capturing) a possibly infinite set 
C from a finite subset of training objects is required. 
Mathematicians have not addressed this question so far 
and therefore no new scheme to answer it exists within 
present mathematics. The issue of modeling the induc
tive learning process is addressed further in Section 6. 

3 The Normed Vector Space Model 

In order to understand the strengths and limitations of 
the vector space model ( which is the basis of artificial 
neural networks (ANNs)) one has to consider the un
derlying mathematical model. The underlying math
ematical model consists of two components: algebraic 
and geometric (topological). This point is often ig
nored. The algebraic model is that of a vector space, 
which is characterized by the set of vector space ax
ioms. Since all ANNs use real vector spaces, we will 
restrict ourselves in this paper to the considerations of 
a vector space over the field lR of real numbers. The 
axioms of the vector space describe, in essence, the 
properties of the two basic operations defined in the 
vector space - multiplication of a vector by a scalar 
from the field and vector addition (see [Godement, 1968; 
Jordan, 1988]). It should be noted that the underlying 
algebraic structure alone is not sufficient for the tradi
tional vector space based learning algorithms. All such 

80 

learning algorithms require introduction of the second 
component of the model - the geometric ( or topologi
cal ) structure. Without such a structure such concepts 
as distance between the vectors, convergence, and there
fore the necessary objective functions for optimization, 
cannot be introduced. All these concepts are an inte
gral part of the inductive learning process in the vector 
space. For example, during training ANNs make use of 
an iterative gradient algorithm (such as the back prop
agation algorithm) to minimize the mean square error 
[Lipmann, 1987]. 

The introduction of the geometric component in the 
vector space model has profound consequences which are 
very often overlooked. There is essentially only one ge
ometric structure (topology) in a vector space that is 
consistent v1ith the underlying algebraic operations (see 
theorem 3.3H p. 127 [Taylor, 1987]). By 'consistent' we 
mean that the two basic algebraic operations are con
tinuous with respect to the geometric structure ([Taylor, 
1987], p. 81). 

The implication of this fact ( uniqueness of geometry) 
to ANN models is as follows: there is essentially only 
one norm in a finite-dimensional vector space and this is 
usually chosen to be the Euclidean norm ( since all norms 
are equivalent, theorem 3.12A, p. 96, [Taylor, 1987]). In 
other words, all 'useful' distance functions are equivalent 
to the Euclidean distance function and no other geomet
ric (metric) structure is consistent with the underlying 
algebraic structure. By 'useful' distance functions we 
mean a distance function that is consistent with the un
derlying algebraic structure of the vector space. If a 
distance function is not consistent with the underlying 
algebraic structure, then all the standard analytical tech
niques such as limits, differentiation, integration, etc. 
become non-applicable. The continuity of the algebraic 
operations ensures that the local geometry is preserved 
throughout the entire vector space, i.e. metric proper
ties at a point v of the vector space V are the same as 
at any other point w E V. The standard techniques, in 
mathematical analysis have been developed under the 
above requirement of consistency between the algebraic 
and geometric structure. Removing the requirement will 
make life more difficult since then the homogenuity of the 
normed vector space will be broken. 

Proposition: All ANNs use a finite-dimensional 
topological vector space model consisting of two com
ponents - algebraic and geometric. 

Theorem: The geometric component is uniquely de
fined by the more fundamental (primary) algebraic com
ponent. 

The uniqueness mentioned above means that even 
though one can choose a number of different distance 
functions (metrics) on the vector space which are consis
tent with the underlying algebraic structure, these are, 
in fact, all equivalent. Two metrics are said to be equiv
alent if they generate the same topology and therefore 
the same geometric structure as we have used above. In 
other words, two metrics are equivalent if the conver
gence of a sequence of points under one of them implies 
convergence in the other one. 



4 The Evolving Transformation System 
(ETS) Model 

A new mathematical model for inductive learning -
Evolving Transformation System (ETS') has been pro
posed in [Goldfarb, 1990a). As in the case with the 
normed vector space model, the ETS also consists of 
two components. In the case of ETS, the components 
are symbolic and geometric. While both models have 
a geometric component built on top of their underlying 
structures, in the ETS model the underlying structure, 
symbolic component, is completely different - here it is 
a symbolic component. We will discuss the differences 
between the two underlying structures - symbolic and 
algebraic, in the next section. 

The symbolic component, a transformation system 
( TS ), is defined as a triple T = (0, S, CR), where O is 
a set of homogeneously structured objects, S = {Si}~1 
is a finite set of operations that can transform object 
o1 E O to another object 02 E 0, and CR is a small 
finite set of composition rules ( or operators) which per
mit one to construct new operations from the existing 
operations. 

The set CR of composition rules allows the system to 
evolve in time by changing (usually enlarging) the set S 
of operations, thus leading to the concept of an evolving 
transformation system (ETS). 

The second component, geometric structure, is defined 
as follows: 

D = {Aw}wEO 

where O is the (m - 1) dimensional simplex in !Rm 
m 

n = {w = (w1,w 2
, •• • ,wm) I wi 2'.: o,I:wi = 1} 

i=l 

and each of the distance functions Aw is defined as fol
lows. Weight wi is assigned to the operation Si and 

,. 
{L wij)} 

i=l 

where Sj is a sequence of operations that transforms o1 
into o2 • In other words, the minimum is taken over 
all possible sequences of operations that can transform 
structured object 01 into structured object o2 . 

To compute the above distance the system must use its 
set of operations in a cooperative and competitive man
ner. Thus, all properties of the system resulting from 
this definition should be viewed as emergent properties. 

Learning in a TS reduces to the following optimization 
problem: 

maxf(w), 
wEO 

f(w ) = fi(w) 
c+h(w) 

where fi ( w) is the Aw-distance between c+ and c - , 
h(w) is the average Aw-distance within c+, and c is a 
small positive constant to prevent the overflow condition 
(when the values of h(w) approach 0) . 

Let Oma:z: be a subset of O consisting of all the (global) 
maximums off on 0 . It is easy to see tha t, for the given 

81 

concept C and given set S of operations, every weighting 
scheme w• E Oma:z: generates the "best" metric config
uration of the training examples: under Aw• positive 
examples form the most compact set relative to the neg
ative examples. Thus we are justified in callin~ function 
f the quality of the {learning) class perception lGoldfarb, 
1992). It is not difficult to see that if h (w• ) = 0 and 
h(w• ) -:j:. 0, the set S of operations is sufficient to pro
duce a complete separation of c+ and c - . This is often 
not the case, since then the learning agent has no need 
to acquire any new operations, or new "features". Hence 
the need to consider an evolving system (ETS). 

The inductive learning process for the ETS proceeds 
by constructing a sequence of Si's in such a way that for 
the corresponding transformation system Ti, the mini
mum value of '2 decreases ( while making sure that the 
value of fi is not zero), i.e. the interdistances in c+ 
gradually shrink (to zero, when no noise is present), 
while the distance between c+ and c - remains non
zero [Goldfarb and Nigam, 1994). 

It is very important to note that when the set of oper
ations Si in the evolving transformation system (ETS) 
changes to Si+l the corresponding geometric structure 
changes from Di to Di+l, i.e . 

becomes 

Di+l = {Aw,+1 }w,+1E0,+1 · 

An important basic example of a TS is the string 
TS, where the set of objects O consists of strings over 
a finite alphabet, the set S of operations consists of 
single or multiple-letter insertion/ deletion/ substitution 
operations, D is a set of weighted Levenshtein 
(string-edit ) distance functions [Kruskal and Sankoff, 
1983), and CR consists of a small number(~ 3) of 
rules that allow the formation of multiple-letter dele
tion/ insertion/substitution operations. 

There are fundamental differences between the aJge
braic structure of the vector space model (ANNs) and the 
underlying symbolic structure (TS ) in the ETS. These 
stem from the fact that the concept of an algebraic oper
ation is quite different from that of a symbolic operation. 
An algebraic operation ( e.g. vector addition) is defined 
as a function that assigns for every pair of vectors an
other vector in the vector space. A symbolic operation 
( e.g. insertion of a single letter a) could be applied at any 
place in a given string, so that in this case the operation 
is multivalued. 

The above difference in the underlying structures re
sults in significant and critical differences in the cor
responding induced geometric structure. In the ETS 
model the family of distances Di+l has a member (dis
tance function ) which is not equivalent to any of the 
distances in all the previous families of distance func
tions Do, ... , Di, i.e. there exists Aw,+1 E Di+l that 
generates a topology which is different from the topolo
gies generated by any member Aw; E Dj, 0 ~ j ~ i of 
the previous families [Goldfarb, 1993). Thus instead of 
the single topology of a finite-dimensional vector space 
we now have an infinite family of topologies associated 



.:I 

with the symbolic system. This has a fundamental im
plication for the inductive learning model - ETS, as dis
cussed in the following section. It should be noted that 
by enlarging a vector space of n-dimensions to n + 1 di
mensions, the topology of the n-dimensional space (now 
a subspace) does not change. 

5 Some Limitations of the Vector Space 
Representation 

One fundamental limitation of the vector space model, 
when used in any context, relates to the fact that any 
chosen input variables cannot be assumed to be commen
surate. As discussed in [Goldfarb, 1985) the imposition 
of the Euclidean distance on the chosen set of measurable 
variables (features), as is done in ANN models, assumes 
that aii these variables (features) are commensurable. 
However, as is well known from the theory of special rel
ativity, even such well known variables as the three space 
coordinates and the time coordinate turn out to be non
commensurate ( as realized by Minkowski and Einstein) 
and consequently required the introduction of Minkowski 
distance to arrive at a more appropriate mathematical 
model for space-time. In other words, the moral of this 
physical theory for us is: even if one assumes a vector 
space structure, one should not assume that the inner
product vector space generated by any variables is nec
essarily Euclidean. 

The generality of the metric space, as compared to the 
Euclidean vector space, manifests itself, for example, in 
the following fact: consider a finite alphabet and the 
Levenshtein distance defined on a set of strings over the 
alphabet. Then, four randomly chosen strings cannot be 
represented isometrically, i.e. preserving the inter-string 
distances, in the Euclidean vector space of any dimension 
[Goldfarb, 1985). In other words, there is no Euclidean 
vector space of any finite-dimension in which one can 
find four vectors that have the same inter-distance as 
the chosen four strings. This implies that the metric in
formation, indispensable for capturing inductive gener
alization in the symbolic setting, cannot be represented 
in the finite-dimensional vector space. 

Another fundamental limitation of the vector space 
model when applied to inductive learning in a symbolic 
environment is connected to the necessity of ordering the 
input alphabet (symbols) . Consider biological sequence 
classification which is an important part of the Genome 
Project. The input space consists of strings over a fi
nite alphabet. For example, for DNA, :E = {g, a, c, u}, 
where each letter represents a DNA nucleotide (or base) 
[Creighton, 1993). In order to map the symbolic data 
into the vector space one must order the input alpha
bet. This ordering is not related to the symbolic data 
and since there cannot be any basis for such an ordering, 
any chosen ordering is arbitrary. Furthermore, an order
ing introduces a topology which is unique to the vector 
space [Section 3). Once a particular ordering has been 
chosen, a topology for that particular ordering would 
be introduced. This is because the ordering of the real 
numbers is responsible for the unique topology of the in
put vector space. Since the ordering was arbitrary, the 

82 

Geometry induced by operations 

Inductive Generalization 

Figure 1: A schematic representation of a formal frame
work for inductive learning 

induced topology will not be relevant to the structure 
of the symbolic input, as captured by the symbolic op
erations of the TS, or equivalently as is present in the 
symbolic input (biological sequences). As seen in Sec
tion 4, this means that any symbolic operation does not 
have an appropriate interpretation in a vector space. 

Ordering of the real numbers (generated by the Peano 
relation on the natural numbers) is fundamentally linked 
to the intrinsic structure of !R, while any ordering of the 
alphabet has nothing to do with the corresponding sym
bolic structure of the DNA bases. 

To recapitulate, under any mapping of a biological se
quence (string) into a vector space one must necessarily 
order the input alphabet. Contrary to the situation with 
real numbers, the ordering of the input alphabet must, as 
discussed, be arbitrary and this ordering of the symbols 
will not be related in any way to the symbolic structure 
of the input. In other words, while the Peano relation 
on the natural numbers is relevant (in fact, critical) to 
generating reals, its analog is absolutely irrelevant to a 
typical symbolic system as used in AL This is because 
symbols usually represent non-numeric object features 
such as facial or geometric features and the Peano rela
tion when imposed on an alphabet introduces a struc
ture which is inappropriate and misleading. One should 
note that more appropriate structures/ operations for the 
symbolic systems are those related to the operation of 
ETS, since insertion/deletion/substitution are the only 
natural operations for transforming one string into an
other. 

6 A Framework for Inductive Learning 
and its Implications 

Consider the mathematical framework for inductive 
learning of a single concept shown in Figure 1; the case 
for multiple concepts fits within the same framework. 
The main part of the framework is the basic mathe
matical model consisting of two components: a set of 
operations, and an induced geometry. For example, as 
discussed in Section 3, in the vector space model the 
two components are the algebraic component (viz. al
gebraic operations) and the geometric component (viz. 



the norm on the vector space). On the other hand, for 
the symbolic model (see Section 4) we have the symbolic 
component ( e.g. string TS) and the corresponding geo
metric component ( e.g. weighted Levenshtein family of 
distance functions). 

In our view, the geometric component in the above 
framework has often been overlooked in spite of its crit
ical contribution to the inductive learning process. This 
component is necessary in order to define and capture 
the idea of inductive generalization. Informally, the ge
ometry acts as a glue that holds the elements of a class 
together. This fact is reflected in the role of the similar
ity concept in the area of categorization in psychology 
[Bourne et al., 1986] . 

As discussed in Section 2, inductive learning is a pro
cess by means of which given a finite positive training 
set c+ from a possibly infinite class C, and a finite 
set of negative training examples c- from the comple
ment of C, an agent is able to construct an inductive 
generalization of C. As depicted in Fig. 1, we propose 
that inductive generalization must be expressed using 
both components of the mathematical model; the oper
ations play the role of "features" in the generalization, 
while the corresponding distance function plays the role 
of the "glue that holds the elements of the class to
gether". Formally, the inductive generalization is a triple 

(C+, S, .6.w• ), where c+ is a reduced positive training 
set, S is the final set of operations and .6.w• is the learned 

-+ distance measure. The elements of C act as reference 
patterns for defining the class and consequently a new in
put pattern is always compared with these reference pat
terns using the .6.w•. The set S of operations is necessary 
because the concept of distance can properly be defined 
only in terms of the operations: this is because the geom
etry must be consistent with the underlying set of opera
tions. This form of inductive concept representation, or 
generalization, is in complete agreement with the most 
accepted theory of concept learning - Rosch's examplar 
theory. "Exemplar theory claims that concept-learning is 
accomplished by memorizing specific instances and by 
using some measure of instance similarity" [Bourne et 
al., 1986]. 

The proposed framework has important implications 
even to inductive learning in a vector space. If the vec
tor space model is recast in the above framework ( see 
[Goldfarb, 1990a] and example 2 in [Goldfarb, 1990b]), 
then the set of operations is fixed and, as we have also 
seen in Section 3, the geometric component is uniquely 
determined by the set of operations. The most impor
tant implication of this fact relates to the form of the 
learned inductive generalization. According to the pro
posed framework, the ezact inductive generalization will 
be an affine subspace of the vector space. For exam
ple, if the vector space is the vector space of functions, 
the inductive generalization is an affine subspace in the 
space of functions. It should be noted that since there 
is only one underlying geometry, this geometry does not 
change during learning. Consequently, no learning of the 
geometric component ( corresponding to the training set) 
can occur. Therefore, to start with, the unique geometry 
of the vector space is simply imposed on the training set. 

83 

In fact, the proposed framework was motivated by the 
desire to allow the training set to generate the geome
try appropriate for the inductive generalization of the 
class. As stated in Section 4, to arrive at inductive gen
eralization in a symbolic setting, we must first learn the 
geometry corresponding to the training set and, thus, 
the geometric component begins to play a critical role. 

To recapitulate, in the symbolic setting, the set of 
operations consists of substitution operations and the 
corresponding geometric component is defined by means 
of weighted operations. During inductive learning, an 
agent acquires the necessary new operations ( composed 
from earlier operations) as well as the weights of all the 
operations [Goldfarb and Nigam, 1994]. 

We believe that the final set of learned operations rep
resents a communicable and compact form of the induc
tive generalization and, furthermore, that the numeric 
component in any model does not represent a commu
nicable part of the inductive generalization. We also 
strongly feel that communicability is related to the dif
ferences between the numeric and symbolic mathemati
cal structures. 

We also believe that the essential part of inductive 
generalization should be its communicability. The com
municability refers to that between the various compo
nents of the agent as well as between different agents 
(for example, between a learning machine and a human 
agent). In the case of symbolic processing in vector space 
learning machines, the symbols are initially converted to 
vectors, and therefore the symbolic information (see Sec
tion 5) is not present during the learning process. Hence, 
the results of this learning cannot contain any symbolic 
information. 

Thus, the vector space based models ( e.g. ANN s) are 
absolutely incapable of inductive learning in symbolic 
environments. This is essentially due to the fact that 
these models construct, as a result of learning, polyhe
dral regions (in the input vector space) enclosing c+. 
According to the proposed definition of inductive gen
eralization such regions are not sufficient to "allow the 
agent to form an idea about the class". First, there are 
uncountably many appropriate choices for such regions 
(in a vector space over reals). Second, an agent cannot 
"form an idea about the class" on the basis of such re
gions. In contrast, the ETS model is capable of capturing 
the necessary inductive generalization in symbolic envi
ronments and this generalization is communicable within 
an agent as well as between agents. 

7 Conclusion 

We have outlined a framework for inductive learning. 
We have also explicated the fact that symbolic systems 
are mathematically and computationally quite different 
from numeric systems. Moreover, we have explained 
why symbolic information cannot be captured by nu
meric systems. It should be noted that the situation is 
no different in the case when a symbolic system is con
structed on top of a numeric system. 

The implication of the above to vector space models, 
and to ANNs in particular, is that they cannot perform 



symbolic inductive generalization ( the result of the in
ductive learning process). 

As proposed in the evolving transformat ion system 
(ETS) model, the inductive learning process can cap
ture inductive generalization corresponding to an infinite 
class by means of both the symbolic information ( essen
tially the final set of operations constructed during the 
learning process) and numeric information (the weights 
attached to the operations). 

In conclusion, we think that for any agent (artifi
cial and, quite possibly, biological) engaged in inductive 
learning the symbolic component must play the central 
role. Otherwise, the agent simply will not be able to 
achieve inductive generalization. 

References 

[Bourne et al., 1986] L. E. Bourne, R. L. Dominowski, 
E. F. Loftus, and A. F. Healy. Cognitive Processes. 
2nd Ed., Prentice Hall, Englewood Cliffs, New Jersey, 
1986. 

[Creighton, 1993] T. E. Creighton. Proteins - Structures 
and Molecular Properties. W .H. Freeman and Co., 
New York, NY, 1993. 

[Godement, 1968] R. Godement. Algebra. Houghton 
Mifflin Company, Boston, MA, 1968. 

[Goldfarb, 1985] L. Goldfarb. A New Approach to Pat
tern Recognition. In Progress in Pattern Recognition 
2, eds. L. N. Kanal and A. Rosenfield, North-Holland, 
pages 241-402, 1985. 

[ Goldfarb, 1990a] L. Goldfarb. On the Foundation of In
telligent Processes - I. An Evolving Model for Pattern 
Recognition, Pattern Recognition, 23:596-616, 1990. 

[Goldfarb, 1990b] L. Goldfarb. A Unified Metric Model 
for Pattern Learning. In Proc. IASTED Int. Symp. 
on Machine Learning and Neural Networks, eds. M.H. 
Hamza, New York, 10-11 Oct, pages 96- 99, 1990. 

[Goldfarb, 1992] L. Goldfarb. What is distance and why 
we need the Metric Model for Pattern Learning. Pat
tern Recognition, 25(4):431-438, 1992. 

[Goldfarb, 1993] L. Goldfarb. On some mathematical 
properties of the ETS model. Technical Report TR93-
079, Faculty of Computer Science, UNB, September 
1993. 

[Goldfarb and Nigam, 1994] L. Goldfarb and S. Nigam. 
The Unified Learning Paradigm - A Foundation for 
A.I. Artificial Intelligence and Neural Networks: Steps 
Towards Principled Integration, eds. V. Honovar and 
L. Uhr, to appear, Academic Press. 

[Johnson-Laird, 1988] P. N. Johnson-Laird. The Com
puter and the Mind - An Introduction to Cognitive 
Science. Harvard University Press, Cambridge, MA, 
1988. 

[Jordan, 1988] M. I. Jordan. An Introduction to Linear 
Algebra in Parallel Dist ributed Processing In Parallel 
Distributed Processing, eds. D. E. Rumelhart and J. 
L. McClelland, pages 365-422, 1988. 

84 

[Kruskal and Sankoff, 1983] J. 
B. Kruskal and D. Sankoff. eds. Time Warps , String 
Edits, and Macromolecules: The Theory and Practice 
of Sequence Comparison. Addison-Wesley Publishing 
Company Inc., Reading, MA, 1983. 

[Lipmann, 1987] R. P. Lipmann. An Introduction to 
Computing with Neural Networks. IEEE ASSP Mag
azine, pages 4-22, April 1987. 

[Mitchell , 1982] T. M. Mitchell. Generalization as 
search, Artificial Intelligence, 18(2):203-236, 1982. 

[Taylor, 1987] A. E. Taylor. Introduction to Functional 
Analysis, John Wiley and Sons Inc., New York, NY, 
1987. 



Are Vector Space Models Capable of Inductive Learning in a 
Symbolic Environment?* 

Lev Goldfarb, John Abela, Virendra C. Bhavsar and Vithal N. Kamat 
Faculty of Computer Science 
University of New Brunswick 

Fredericton, N.B., Canada E3B 5A3 
Ph.(506)453-4566, Fax.(506)453-3566 

E-mail:goldfarb, x45i, bhavsar, u095@unb.ca 

"Mathematicians have abstracted the 
mathematical process away from the specific 

ezamples that were used to motivate their 
introduction and they study the concept of 
'number', or 'shape', or 'distance', in the 

abstract. This is done by focusing attention 
upon the operation by which numbers are 

changed rather than upon the numbers 
themselves. Thus, a simple counting process 

like 1,2,S, ... is seen not as a list of particular 
numbers but as the result of carrying out a 

particular operation of change upon a number, 
thereby generating its successor . ... Once an 

abstract notion of number is present in the 
mind, and the essence of mathematics is seen 

to be not the numbers themselves but the 
collection of relationships that ezist between 

them, then one has entered a new world". 

John D. Barrow. Pi in the Sky. 

Abstract 

We outline a general framework for inductive 
learning. The mathematical foundations of this 
framework include two basic components: set of 
operations ( on objects) and the corresponding 
geometry which is defined by means of the op
erations. According to this framework, to per
form inductive learning in a symbolic environ
ment the set of operations must be dynamically 
updated and this requires the geometric com
ponent to have the capability of changing the 
topology dynamically. For symbolic systems, 
as used in this framework, the geometric com
ponent has the ability of dynamically changing 
its topology whereas finite-dimensional numeric 
systems can essentially have only one (static) 
topology. This implies, in particular, that the 
vector space based models, e.g. artificial neural 
networks, cannot capture inductive generaliza
tion in a symbolic setting. The recently pro
posed evolving transformation system model is 

·This research was partially supported by NSERC grants 
OGP2686 and OGP0089 . 

85 

the inductive learning model within this frame
work. 

Keywords: Inductive learning, inductive gen
eralization, vector space models, artificial neu
ral networks, symbolic models, evolving trans
formation system, learning topologies. 

1 Introduction 

Learning has become one of the most important research 
areas in artificial intelligence. Within learning, the area 
of inductive learning has always been of central impor
tance. There are two major directions being pursued 
within inductive learning: numeric (vector space) and 
symbolic. Artificial neural networks (ANNs) are rep
resentative of the numeric models whereas the version
space model [Mitchell, 1982] is an example of a model 
that can be applied to symbolic representations. Cur
rently, much effort has been directed towards applying 
ANNs to learning in symbolic environments. 

The reexamination of the above two types of semi
formal models, which we undertake in this paper, has 
been prompted by the recently proposed model for in
ductive learning - the Evolving Transformation System 
model (ETS) [Goldfarb, 1990a; Goldfarb, 1992]. The 
ETS model emerged as a result of an effort to unify the 
numeric and symbolic models within one framework. 

The main objectives of this paper are as follows. The 
central objective is to compare and contrast inductive 
learning in the numeric and the symbolic models. The 
second objective is to define a new framework for in
ductive learning. We finally present strong arguments 
that suggest that the numeric models are incapable of 
inductive generalization in symbolic environments. 

Section 2 briefly discusses the problem of inductive 
learning and generalization. The characteristics of the 
vector space model are reviewed in Section 3. In Section 
4 we present a brief description of the ETS model. Some 
limitations of the vector space model are presented in 
Section 5. Finally, Section 6 discusses the fundamental 
limitations of the vector space model when applied to 
learning in symbolic environments. 



. . I 

j 

2 Inductive Learning and 
Generalization. 

We define inductive learning to be a process by means 
of which, given a finite positive training set c+ from a 
possibly infinite class (or concept) C, and a finite set c
from the complement of C, an agent is able to reach a 
state which allows it to form an idea about the class. 
This state enables the agent to recognize a new object 
as belonging to class C or not . 

Inductive learning is what humans use to learn the 
idea ( or concept) of, for instance, a cat. Having seen a 
finite number of cats, we acquire the ability to recognize 
and classify any animal as being a cat or not. 

It is generally accepted that the inductive process is 
the only process by means of which an agent increases 
its semantic information [Johnson-Laird, 1988). At the 
same time, we would like to stress that it is meaning
less to consider inductive learning without generaliza
tion, where generalization is simply the state of the agent 
after the inductive learning process. Moreover, we be
lieve that it is also meaningless to speak of recognition 
without the concept of inductive generalization. 

It appears that even motor control skills are acquired 
through inductive learning. A boy catching a ball does 
not understand ballistics, yet he manages to learn this 
feat with ease. 

Thus, unsupervised classification i.e. without the 
teacher, corresponds to the recognition stage, the stage 
which follows the inductive learning process. We be
lieve that a fundamentally new mathematical model is 
required in order to understand the inductive learning 
process. None of the classical mathematical models is 
suitable for modeling the inductive learning process. The 
reason is that, in order to construct such a model, a new 
way of encoding (or capturing) a possibly infinite set 
C from a finite subset of training objects is required. 
Mathematicians have not addressed this question so far 
and therefore no new scheme to answer it exists within 
present mathematics. The issue of modeling the induc
tive learning process is addressed further in Section 6. 

3 The Normed Vector Space Model 

In order to understand the strengths and limitations of 
the vector space model ( which is the basis of artificial 
neural networks (ANNs)) one has to consider the un
derlying mathematical model. The underlying math
ematical model consists of two components: algebraic 
and geometric (topological) . This point is often ig
nored. The a lgebraic model is that of a vector space, 
which is characterized by the set of vector space ax
ioms. Since all ANNs use real vector spaces, we will 
restrict ourselves in this paper to the considerations of 
a vector space over the field ~ of real numbers. The 
axioms of the vector space describe, in essence, the 
properties of the two basic operations defined in the 
vector space - multiplication of a vector by a scalar 
from the field and vector addition (see [Godement, 1968; 
Jordan, 1988]). It should be noted that the underlying 
algebraic structure alone is not sufficient for the tradi
tional vector space based learning algorithms. All such 

86 

learning algorithms require introduction of the second 
component of the model - the geometric ( or topologi
cal) structure. Without such a structure such concepts 
as distance between the vectors, convergence, and there
fore the necessary objective functions for optimization, 
cannot be introduced. All these concepts are an inte
gral part of the inductive learning process in the vector 
space. For example, during training ANNs make use of 
an iterative gradient algorithm (such as the back prop
agation algorithm) to minimize the mean square error 
[Lipmann, 1987]. 

The introduction of the geometric component in the 
vector space model has profound consequences which are 
very often overlooked. There is essentially only one ge
ometric structure (topology) in a vector space that is 
consistent with the underlying algebraic operations (see 
theorem 3.3H p. 127 [Taylor, 1987]). By 'consistent' we 
mean that the two basic algebraic operations are con
tinuous with respect to the geometric structure ([Taylor, 
1987], p. 81). 

The implication of this fact (uniqueness of geometry) 
to ANN models is as follows: there is essentially only 
one norm in a finit e-dimensional vector space and this is 
usually chosen to be the Euclidean norm ( since all norms 
are equivalent , theorem 3.12A, p. 96, [Taylor, 1987]). In 
other words, all 'useful' distance functions are equivalent 
to the Euclidean distance function and no other geomet
ric (metric) structure is consistent with the underlying 
algebraic structure. By 'useful' distance functions we 
mean a distance function that is consistent with the un
derlying algebraic structure of the vector space. If a 
distance function is not consistent with the underlying 
algebraic structure, then all the standard analytical tech
niques such as limits, differentiation, integration, etc. 
become non-applicable. The continuity of the a lgebraic 
operations ensures that the local geometry is preserved 
throughout the entire vector space, i.e. metric proper
ties at a point v of the vector space V are the same as 
at any other point w E V. The standard techniques in 
mathematical analysis have been developed under the 
above requirement of consistency between the algebraic 
and geometric structure. Removing the requirement will 
make life more difficult since then the homogenuity of the 
normed vector space will be broken . 

Proposition: All ANN s use a finite-dimensional 
topological vector space model consisting of two com
ponents - algebraic and geometric. 

Theorem: The geometric component is uniquely de
fined by the more fundamental (primary) algebraic com
ponent. 

The uniqueness mentioned above means that even 
though one can choose a number of different distance 
functions (metrics) on the vector space which are consis
tent with the underlying algebraic structure, these are, 
in fact, all equivalent. Two metrics are said to be equiv
alent if they generate the same topology and therefore 
the same geometric structure as we have used above. In 
other words, two metrics are equivalent if the conver
gence of a sequence of points under one of them implies 
convergence in the other one. 



4 The Evolving Transformation System 
(ETS) Model 

A new mathematical model for inductive learning -
Evolving Transformation System (ETS) has been pro
posed in [Goldfarb, 1990a]. As in the case with the 
normed vector space model, the ETS also consists of 
two components. In the case of ETS, the components 
are symbolic and geometric. While both models have 
a geometric component built on top of their underlying 
structures, in the ETS model the underlying structure, 
symbolic component, is completely different - here it is 
a symbolic component. We will discuss the differences 
between the two underlying structures - symbolic and 
algebraic, in the next section. 

The symbolic component, a transformation system 
( TS ), is defined as a triple T = (0, S, CR), where O is 
a set of homogeneously structured objects, S = {Si}f;1 
is a finite set of operations that can transform object 

, o 1 E O to another object 02 E 0, and CR is a small 
finite set of composition rules ( or operators) which per
mit one to construct new operations from the existing 
operations. 

The set CR of composition rules allows the system to 
evolve in time by changing ( usually enlarging) the set S 
of operations, thus leading to the concept of an evolving 
transformation system (ETS ). 

The second component, geometric st ructure, is defined 
as follows: 

D = {.6.w}wEO 

where O is the ( m - 1) dimensional simplex in !Rm 
m 

0 = {w = (w 1 ,w2
, • •• ,wm ) I wi 2'. o,Ewi = 1} 

i=l 

and each of the distance functions .6.w is defined as fol
lows. Weight wi is assigned to the operation Si and 

k 

{E wcj)} 

where Sj is a sequence of operations that transforms 01 
into o2 • In other words, the minimum is taken over 
all possible sequences of operations that can transform 
structured object 01 into structured object o2 • 

To compute the above distance the system must use its 
set of operations in a cooperative and competitive man
ner. Thus, a ll properties of the system resulting from 
this definition should be viewed as emergent properties. 

Learning in a TS reduces to the following optimization 
problem: 

maxf(w), 
wEO 

f (w) = fi(w ) 
c+h(w) 

where fi(w) is the .6.w-distance between c+ and c - , 
h ( w) is the average .6.w-distance within c+, and c is a 
small positive constant to prevent the overflow condition 
(when the values of h(w) approach 0). 

Let Oma:r: be a subset of O consisting of all the (global ) 
maximums off on 0. It is easy to see that, for the given 

87 

concept C and given set S of operations, every weighting 
scheme w* E Oma:i: generates the "best" metric config
uration of the training examples: under .6.w• positive 
examples form the most compact set relative to the neg
ative examples. Thus we are justified in callin~ function 
f the quality of the (learning) class perception l Goldfarb, 
1992]. It is not difficult to see that if h (w* ) = 0 and 
h(w*) -:j; 0, the set S of operations is sufficient to pro
duce a complete separation of c+ and c -. This is often 
not the case, since then the learning agent has no need 
to acquire any new operations, or new "features". Hence 
the need to consider an evolving system (ETS). 

The inductive learning process for the ETS proceeds 
by constructing a sequence of Si's in such a way that for 
the corresponding transformation system Ti, the mini
mum value of h decreases (while making sure that the 
value of Ji is not zero), i.e. the interdistances in c+ 
gradually shrink (to zero, when no noise is present ), 
while the distance between c+ and c- remains non
zero [Goldfarb and Nigam, 1994]. 

It is very important to note that when the set of oper
ations Si in the evolving transformation system (ETS) 
changes to Si+l the corresponding geometric structure 
changes from Di to Di+1, i.e. 

becomes 

Di+l = { .6.w,+1 }w,+1 E0,+1 • 

An important basic example of a TS is the string 
TS, where the set of objects O consists of strings over 
a finite alphabet, the set S of operations consists of 
single or mu! ti pie-letter insertion/ deletion/ su bsti tu tion 
operations, D is a set of weighted Levenshtein 
(string-edit) distance functions [Kruskal and Sankoff, 
1983), and CR consists of a small number(~ 3) of 
rules that allow the formation of multiple-letter dele
tion/ insertion/substitution operations. 

There are fundamental differences between the alge
braic structure of the vector space model (ANNs) and the 
underlying symbolic structure (TS ) in the ETS. These 
stem from the fact that the concept of an algebraic oper
ation is quite different from that of a symbolic operation. 
An algebraic operation ( e.g. vector addition) is defined 
as a function that assigns for every pair of vectors an
other vector in the vector space. A symbolic operation 
( e.g. insertion of a single letter a) could be applied at any 
place in a given string, so that in this case the operation 
is multivalued. 

The above difference in the underlying structures re
sults in significant and critical differences in the cor
responding induced geometric structure. In the ETS 
model the family of distances Di+l has a member ( dis
tance function) which is not equivalent to any of the 
distances in all the previous families of distance func
tions Do, . . . , Di, i.e. there exists .6.w,+1 E Di+l that 
generates a topology which is different from the topolo
gies generated by any member D..w; E D j, 0 ~ j ~ i of 
the previous families [Goldfarb, 1993]. Thus instead of 
the single topology of a finite-dimensional vector space 
we now have an infinite family of topologies associated 



with the symbolic system. This has a fundamental im
plication for the inductive learning model - ETS, as dis
cussed in the following section. It should be noted that 
by enlarging a vector space of n-dimensions to n + 1 di
mensions, the topology of the n-dimensional space (now 
a subspace) does not change. 

5 Some Limitations of the Vector Space 
Representation 

One fundamental limitation of the vector space model, 
when used in any context, relates to the fact that any 
chosen input variables cannot be assumed to be commen
surate. As discussed in [Goldfarb, 1985] the imposition 
of the Euclidean distance on the chosen set of measurable 
variabies (ieatures), as is done in ANN models, assumes 
that all these variables (features) are commensurable. 
However, as is well known from the theory of special rel
ativity, even such well known variables as the three space 
coordinates and the time coordinate turn out to be non
commensurate ( as realized by Minkowski and Einstein) 
and consequently required the introduction of Minkowski 
distance to arrive at a more appropriate mathematical 
model for space-time. In other words, the moral of this 
physical theory for us is: even if one assumes a vector 
space structure, one should not assume that the inner
product vector space generated by any variables is nec
essarily Euclidean. 

The generality of the metric space, as compared to the 
Euclidean vector space, manifests itself, for example, in 
the following fact: consider a finite alphabet and the 
Levenshtein distance defined on a set of strings over the 
alphabet . Then, four randomly chosen strings cannot be 
represented isometrically, i.e. preserving the inter-string 
distances , in the Euclidean vector space of any dimension 
[Goldfarb, 1985]. In other words, there is no Euclidean 
vector space of any finite-dimension in which one can 
find four vectors that have the same inter-distance as 
the chosen four strings. This implies that the metric in
formation, indispensable for capturing inductive gener
alization in the symbolic setting, cannot be represented 
in the finite-dimensional vector space. 

Another fundamental limitation of the vector space 
model when applied to inductive learning in a symbolic 
environment is connected to the necessity of ordering the 
input alphabet (symbols) . Consider biological sequence 
classification which is an important part of the Genome 
Project. The input space consists of strings over a fi
nite alphabet. For example, for DNA, :E = {g, a, c, u}, 
where each letter represents a DNA nucleotide (or base) 
[Creighton, 1993]. In order to map the symbolic data 
into the vector space one must order the input alpha
bet. This ordering is not related to the symbolic data 
and since there cannot be any basis for such an ordering, 
any chosen ordering is arbitrary. Furthermore, an order
ing introduces a topology which is unique to the vector 
space [Section 3]. Once a particular ordering has been 
chosen, a topology for that particular ordering would 
be introduced. This is because the ordering of the real 
numbers is responsible for the unique topology of the in
put vector space. Since the ordering was arbitrary, the 

88 

Geometry induced by operations 

Inductive Generalization 

Figure 1: A schematic representation of a formal frame
work for inductive learning 

induced topology will not be relevant to the structure 
of the symbolic input, as captured by the symbolic op
erations of the TS, or equivalently as is present in the 
symbolic input (biological sequences). As seen in Sec
tion 4, this means that any symbolic operation does not 
have an appropriate interpretation in a vector space. 

Ordering of the real numbers (generated by the Peano 
relation on the natural numbers) is fundamentally linked 
to the intrinsic structure of~, while any ordering of the 
alphabet has nothing to do with the corresponding sym
bolic structure of the DNA bases. 

To recapitulate , under any mapping of a biological se
quence (string) into a vector space one must necessarily 
order the input alphabet. Contrary to the situation with 
real numbers, the ordering of the input alphabet must, as 
discussed , be arbitrary and this ordering of the symbols 
will not be related in any way to the symbolic structure 
of the input. In other words, while the Peano relation 
on the natural numbers is relevant (in fact, critical) to 
generating reals, its analog is absolutely irrelevant to a 
typical symbolic system as used in Al. This is because 
symbols usually represent non-numeric object features 
such as facial or geometric features and the Peano rela
tion when imposed on an alphabet introduces a struc
ture which is inappropriate and misleading. One should 
note that more appropriate structures/ operations for the 
symbolic systems are those related to the operation of 
ETS, since insertion/ deletion / substitution are the only 
natural operations for transforming one string into an
other. 

6 A Framework for Inductive Learning 
and its Implications 

Consider the mathematical framework for inductive 
learning of a single concept shown in Figure 1; the case 
for multiple concepts fits within the same framework. 
The main part of the framework is the basic mathe
matical model consisting of two components: a set of 
operations, and an induced geometry. For example, as 
discussed in Section 3, in the vector space model the 
two components are the algebraic component (viz. al
gebraic operations) and the geometric component (viz . 



the norm on the vector space). On the other hand, for 
the symbolic model (see Section 4) we have the symbolic 
component ( e.g. string TS) and the corresponding geo
metric component ( e.g. weighted Levenshtein family of 
distance functions). 

In our view, the geometric component in the above 
framework has often been overlooked in spite of its crit
ical contribution to the inductive learning process. This 
component is necessary in order to define and capture 
the idea of inductive generalization. Informally, the ge
ometry acts as a glue that holds the elements of a class 
together. This fact is reflected in the role of the similar
ity concept in the area of categorization in psychology 
[Bourne et al., 1986). 

As discussed in Section 2, inductive learning is a pro
cess by means of which given a finite positive training 
set c+ from a possibly infinite class C, and a finite 
set of negative training examples c - from the comple
ment of C, an agent is able to construct an inductive 
generalization of C. As depicted in Fig. 1, we propose 
that inductive generalization must be expressed using 
both components of the mathematical model; the oper
ations play the role of "features" in the generalization, 
while the corresponding distance function plays the role 
of the "glue that holds the elements of the class to
gether" . Formally, the inductive generalization is a triple 

(C+,S,~w•), where c+ is a reduced positive training 
set, S is the final set of operations and ~w • is the learned 

distance measure. The elements of C+ act as reference 
patterns for defining the class and consequently a new in
put pattern is always compared with these reference pat
terns using the ~w• . The set S of operations is necessary 
because the concept of distance can properly be defined 
only in terms of the operations: this is because the geom
etry must be consistent with the underlying set of opera
tions. This form of inductive concept representation, or 
generalization, is in complete agreement with the most 
accepted theory of concept learning - Rosch's examplar 
theory. "Exemplar theory claims that concept-learning is 
accomplished by memorizing specific instances and by 
using some measure of instance similarity" [Bourne et 
al ., 1986). 

The proposed framework has important implications 
even to inductive learning in a vector space . If the vec
tor :,pace model i:, reca:,t in the above framework (see 
[Goldfarb, 1990a) and example 2 in [Goldfarb, 1990b)), 
then the set of operations is fixed and, as we have also 
seen in Section 3, the geometric component is uniquely 
determined by the set of operations. The most impor
tant implication of this fact relates to the form of the 
learned inductive generalization. According to the pro
posed framework, the ezact inductive generalization will 
be an affine subspace of the vector space. For exam
ple, if the vector space is the vector space of functions, 
the inductive generalization is an affine subspace in the 
space of functions . It should be noted that since there 
is only one underlying geometry, this geometry does not 
change during learning. Consequently, no learning of the 
geometric component ( corresponding to the training set) 
can occur. Therefore, to start with, the unique geometry 
of the vector space is simply imposed on the training set. 

In fact, the proposed framework was motivated by the 
desire to allow the training set to generate the geome
try appropriate for the inductive generalization of the 
class. As stated in Section 4, to arrive at inductive gen
eralization in a symbolic setting, we must first learn the 
geometry corresponding to the training set and, thus, 
the geometric component begins to play a critical role. 

To recapitulate, in the symbolic setting, the set of 
operations consists of substitution operations and the 
corresponding geometric component is defined by means 
of weighted operations. During inductive learning, an 
agent acquires the necessary new operations ( composed 
from earlier operations) as well as the weights of all the 
operations [Goldfarb and Nigam, 1994). 

We believe that the final set of learned operations rep
resents a communicable and compact form of the induc
tive generalization and, furthermore, that the numeric 
component in any model does not represent a commu
nicable part of the inductive generalization. We also 
strongly feel that communicability is related to the dif
ferences between the numeric and symbolic mathemati
cal structures. 

We also believe that the essential part of inductive 
generalization should be its communicability. The com
municability refers to that between the various compo
nents of the agent as well as between different agents 
(for example, between a learning machine and a human 
agent) . In the case of symbolic processing in vector space 
learning machines, the symbols are initially converted to 
vectors, and therefore the symbolic information (see Sec
tion 5) is not present during the learning process. Hence, 
the results of this learning cannot contain any :,ymbolic 
information. 

Thus, the vector space based models (e.g. ANNs) are 
absolutely incapable of inductive learning in symbolic 
environments. This is essentially due to the fact that 
these models construct, as a result of learning, polyhe
dral regions (in the input vector space) enclosing c+ . 
According to the proposed definition of inductive gen
eralization such regions are not sufficient to "allow the 
agent to form an idea about the class". First, there are 
uncountably many appropriate choice:, for such regions 
(in a vector space over reals) . Second, an agent cannot 
"form an idea about the class" on the basis of such re
gions. In contrast, the ETS model is capable of capturing 
the necessary inductive generalization in symbolic envi
ronments and this generalization is communicable within 
an agent as well as between agents. 

7 Conclusion 

We have outlined a framework for inductive learning. 
We have also explicated the fact that symbolic systems 
are mathematically and computationally quite different 
from numeric systems. Moreover, we have explained 
why symbolic information cannot be captured by nu
meric systems. It should be noted that the situation is 
no different in the case when a symbolic system is con
structed on top of a numeric system. 

The implica tion of the above to vector space models, 
and to ANNs in particular, is that they cannot perform 

89 



.'. 
.I 

. . _--._1 

symbolic inductive generalization ( the result of the in
ductive learning process). 

As proposed in the evolving transformation system 
(ETS) model, the inductive learning process can cap
ture inductive generalization corresponding to an infinite 
class by means of both the symbolic information ( essen
tially the final set of operations constructed during the 
learning process) and numeric information ( the weights 
attached to the operations). 

In conclusion, we think that for any agent ( artifi
cial and, quite possibly, biological) engaged in inductive 
learning the symbolic component must play the central 
role. Otherwise, the agent simply will not be able to 
achieve inductive generalization. 

References 

[Bourne et al., 1986) L. E. Bourne, R. L. Dominowski, 
E. F. Loftus, and A. F . Healy. Cognitive Procease6. 
2nd Ed., Prentice Hall, Englewood Cliffs, New Jersey, 
1986. 

[Creighton, 1993) T. E. Creighton. Proteins - Structure6 
and Molecular Properties. W.H. Freeman and Co., 
New York, NY, 1993. 

[Godement, 1968) R. Godement. Algebra. Houghton 
Mifflin Company, Boston, MA, 1968. 

[Goldfarb, 1985) L. Goldfarb. A New Approach to Pat
tern Recognition. In Progress in Pattern Recognition 
2, eds. L. N. Kanai and A. Rosenfield, North-Holland, 
pages 241-402, 1985. 

[Goldfarb, 1990a) L. Goldfarb. On the Foundation of In
telligent Processes - I. An Evolving Model for Pattern 
Recognition, Pattern Recognition, 23:596-616, 1990. 

[Goldfarb, 1990b) L. Goldfarb. A Unified Metric Model 
for Pattern Learning. In Proc. IASTED Int. Symp. 
on Machine Learning and Neural Networks, eds. M.H. 
Hamza, New York, 10-11 Oct, pages 96- 99, 1990. 

[Goldfarb, 1992) L. Goldfarb. What is distance and why 
we need the Metric Model for Pattern Learning. Pat
tern Recognition, 25(4):431-438, 1992. 

[Goldfarb, 1993) L. Goldfarb. On some mathematical 
properties of the ETS model. Technical Report TR93-
079 , Faculty of Computer Science, UNB, September 
1993. 

[Goldfarb and Nigam, 1994) L. Goldfarb and S. Nigam. 
The Unified Learning Paradigm - A Foundation for 
A.I. Artificial Intelligence and Neural Networks: Steps 
Towards Principled Integration, eds. V. Honovar and 
L. Uhr, to appear, Academic Press. 

[Johnson-Laird, 1988) P. N. Johnson-Laird. The Com
puter and the Mind - An Introduction to Cognitive 
Science. Harvard University Press, Cambridge, MA, 
1988. 

[Jordan, 1988) M. I. Jordan. An Introduction to Linear 
Algebra in Parallel Distributed Processing In Parallel 
Distributed Processing, eds. D. E. Rumelhart and J. 
L. McClelland, pages 365-422, 1988. 

[Kruskal and Sankoff, 1983) J. 
B. Kruskal and D. Sankoff. eds. Time Warp6, String 
Ediu, and Macromolecules: The Theory and Practice 
of Sequence Comparuon. Addison-Wesley Publishing 
Company Inc., Reading, MA, 1983. 

[Lipmann, 1987] R. P. Lipmann. An Introduction to 
Computing with Neural Networks. IEEE ASSP Mag
azine, pages 4-22, April 1987. 

[Mitchell, 1982) T. M. Mitchell. Generalization as 
search, Artificial Intelligence, 18(2):203-236, 1982. 

[Taylor, 1987) A. E. Taylor. Introduction to Functional 
Analysis, John Wiley and Sons Inc., New York, NY, 
1987. 

90 



The Problem of Small Disjuncts: its remedy in Decision Trees 

Ting, Kai Ming 
Basser Department of Computer Science 

University of Sydney, NSW 2006, Australia 
E-mail: kaiming@cs.su.oz.au 

Abstract 

For learning systems that describe a learned 
concept as a disjunction of conjunctions of 
conditions, small disjuncts are disjuncts which 
cover a small number of training instances and 
often entail high error rates. This paper investi
gates the problem of small disjuncts in decision 
trees and proposes a solution using a compos
ite learner which consists of instance-based al
~orithms [Aha, 1990; Aha et al, 1991] and C4.5 
[Quinlan, 1993]. 

Holte, Acker and Porter's [1989] findings on the 
problem of small disjuncts have motivated this 
investigation. Their findings are: (a) the choice 
of the learning system's bias (maximum gener
ality) has been the main cause that creates the 
problem of small disjuncts, and (b) it is diffi
cult to eliminate the error-prone small disjuncts 
without affecting the performance of large dis
juncts. The proposed composite learner is an 
approach that uses the maximum specificity 
bias without having any impact on the perfor
mance of large disjuncts. 

This paper also explores four definitions of 
small disjuncts. The composite learner and the 
definitions of small disjuncts are examined us
ing a set of benchmark domains [Zheng, 1993]. 

1 Introduction 

One of the current research areas in machine learning is 
integrating different kinds of representations into a sin
gle learning system. Early work concentrated on systems 
based on single representations such as decision trees 
[Breiman et al, 1984; Quinlan, 1986], rule-based systems 
[Michalski et al, 1986; Clark and Niblett, 1987], instance
based methods [Aha and Kibler, 1989; Aha, 1990; 
Aha et al, 1991] and neural networks [Rumelhart et al, 
1986]. Numerous experiments (e.g. [Mooney et al, 1989; 
Weiss and Kapouleas, 1989]) have shown that no sys
tem based on a single representation can clearly excel 
in all domains. Characterizing the strong points of each 
representation and finding ways to integrate them have 
emerged as an important research direction. [Brodley, 

91 

1993] has integrated three models ( univariate tests, lin
ear discriminants and instance-based classifiers) in a de
cision tree structure. The MCS system produces com
parable results to the best results of the systems using a 
single representation. 

We approach the same problem from a rather different 
perspective. Beginning with a seemingly unrelated prob
lem of small disjuncts [Holte et al, 1989], a composite 
learner that consists of decision trees and instance-based 
methods is proposed. It seeks to characterize capabilities 
of these differing representations insofar as they impact 
on the problem of small disjuncts. 

We first discuss the problem of small disjuncts in the 
following section. A brief introduction of the composite 
learner is given in Section 3 and followed by a report of a 
series of experiments and their evaluations. Future work 
and conclusion are described in the last section. 

2 The Problem of Small Disjuncts 

The problem of small disjuncts was first introduced and 
explored by [Holte et al, 1989]. For learning systems that 
describe a learned concept as a disjunction of conjunc
tions of conditions, small disjuncts are disjuncts which 
cover a small number of training instances and often en
tail high error rates. On the other hand, large disjuncts 
cover a large proportion of the training instances and 
have low error rates. Improving the poor predictive ac
curacy of small disjuncts becomes the crux of the prob
lem. 

Holte and his colleagues used CN2 [Clark and Niblett, 
1987], a learning system derived from AQ [Michalski et 
al, 1986] and ID3 [Quinlan, 1986], to explore the prob
lem of small disjuncts. They make the following obser
vations: 

The choice of the learning system's bias (max
imum generality) is the main cause, if not the 
only one, that creates the problem of small dis
juncts. Changing the learning system's bias, 
from maximum generality to maximum speci
ficity for small disjuncts, successfully improves 
their predictive accuracy. 

11 It is difficult to eliminate the error-prone small 
disjuncts without affecting the performance of 
large disjuncts. When the accuracy of small 



I 

I 

disj11incts is improved by more specific rules us
ing maximum specificity bias, these rules cover 
less instances than the original rules. The in
stances covered by previous maximum gener
ality small disjunct rules but not by the max
imum specificity rules would have to be cov
ered by large disjuncts or default rule. This has 
an adverse effect on large disjuncts and default 
rule that reduces their accuracies. As a result, 
the rules induced from two different bias has 
a total accuracy either comparable to or worse 
than the rules induced from the maximum gen
erality bias only. 

The experiment also raises another important issue, 
namely the definition of small disjuncts. Holte and his 
colleagues define small disjuncts using absolute nnmber 
of covered instances. For example, small disjuncts can 
be defined as those disjuncts that cover five training in
stances or less. This poses a problem as the definition 
would be expected to change when the number of train
ing instances changes; and it would also be different for 
different domains. We explore this particular problem in 
Section 4.2. 

3 The Composite Learner 

Holte and his colleagues' exposition and experiments 
have prompted the use of another representation in solv
ing the problem of small disjuncts. If maximum speci
ficity bias is the way to overcome the problem of small 
disjuncts, then instance-based learning methods [Aha 
and Kibler, 1989; Aha, 1990; Aha et al, 1991] would 
be the best remedy. Instance-based learning (IBL) algo
rithms do not learn rules in the form of a decision tree, a 
set of rules or a network. Instead, IBL stores the training 
instances and predicts the class of the stored instance 
that is nearest ( according to some distance metric) to 
the test instance. Thus, the specific instances are used 
in classification rather than generalized rules. 

We summarize our hypothesis as follows: 
Instance-based methods have higher predictive accura

cies than generalized rules in small disjuncts. 
A composite learner that consists of C4.5 [Quinlan, 

1993] and IB1 [Aha, 1990] is used to test the above hy
pothesis. The two learning systems are trained indepen
dently during the training process. In classification, the 
decision tree induced by C4.5 is used to decide whether 
C4.5 or IB1 shall be employed in actual classification. 
The composite learner will use IBl for classification if 
the test instance belongs to a small disjunct, and use 
C4.5 otherwise. Thus, the same decision tree may pro
duce different decisions depending on the definition of 
small disjuncts. 

The composite learner 'kills two birds with one stone'. 
First, the instance-based method is the furthest one can 
go with maximum specificity bias. Second, the com
posite learner has completely overcome the difficulty of 
eliminating the error-prone small disjuncts without af
fecting the performance of large disjuncts. Simply re
placing poor performance small disjuncts with instance
based methods leaves large disjuncts intact. 

92 

The first thing we have to do now is to verify the 
hypothesis. The experiment and its results are presented 
in Section 4.1. 

4 Experiments 

The experiments are conducted using twelve benchmark 
domains [Zheng, 1993] derived from the UCI Repository 
of Machine Learning database. Each experiment with 
a specific definition of small disjuncts is conducted over 
50 runs with randomly selecting 90% of the instances 
for training and using the remaining 10% as test data, 
except in the monks-2 domain where a separate set of 
training data (169) and testing data ( 432) are given. All 
the results shown in the following sections are using the 
pruned trees of C4.5, unless otherwise stated; and the 
result~ will be presented as the difference with respect 
to the performance of C4.5. 

The characteristics of the experimental domains and 
the performance of C4.5 are given in Table l. All error 
rates are calculated on the test data. 

I Domain II c4.s I #Ex I #Cl I #AT I 
lymphography 22.1% 148 4 9B+9N 
breast(bcw) 5.4% 699 2 9C 
promoter 22.6% 106 2 57N 
soybean 8.1% 683 19 16B+19N 
monks-2 35.0% 169-432 2 2B+4N 
nettalk 19.7% 5438 52 7N 
diabetes 29.3% 768 2 8C 
hypothyroid 0.8% 3163 2 18B+7C 
hepatitis 23.5% 155 2 13B+6C 
LED7 28.6% 200 10 7B 
LED24 37.9% 200 10 24B 
waveform 30.8% 300 3 40C 

C4.5: Error rate of C4.5, #Ex: Number of examples, 
#Cl: Number of classes, 
#AT: Number of attributes and types. 
B: Binary, N: Nominal, C: Continuous. 

Table 1: Details of experimental domains 
and performance of C4.5 

4.1 Verifying the Hypothesis 

For the first experiment, the simplest and straightfor
ward definition of small disjuncts is used, i.e. disjuncts 
that cover less than or equal to a fixed number of the 
training instances. We examine a few such definitions 
by varying this number from 1 to 29; for each small dis
junct definition, 50 trials are conducted with the com
posite learner. 

Figure 1 and Figure 2 present the experimental results 
for the promoter and LED7 domains respectively. Four 
graphs are plotted for each domain with respect to the 
twenty nine small disjunct definitions. The first graph 
shows the difference in error rate between C4.5 and !Bl 
on small disjuncts; a positive difference indicates that 
IB1 is more accurate than C4.5. The second graph shows 
the percentage of the test data that belongs to small 
disjuncts. The difference in error rate between C4.5 and 
IB1, if used separately, is shown in the third graph. The 



Promoter 
%_Test.1%_Err 

90.00 
' 

85.00 - - -_ ...... 
80.00 

75.00 
/ 

70.00 

65.00 

60.00 
. ,, 

55.00 
, ..... 

... 
50.00 

,,. 

··' 45.00 ,,. 
40.00 

: 

35.00 

30.00 

25.00 

., 
20.00 

~: 
X A 

15.00 
:' y ' 

I0.00 I\ 
\....,,../" '---.--. 

5.00 

0.00 5.00 10.00 15.00 20.00 25.00 

%_)!,r_Diff .. •%_Test 

Disj_size 
30.00 

%_Error 

5.20 

5.00 

4.80 

4.60 

440 

4.20 

4.00 

3.80 

3.60 

3.40 

Promoter 

+------'f------1------!----l----+----+ C4.5-IBL 
•%Adv(C4.5) 

+---~f-----1-,~--+-----+---+----+ 
.. 

'· ; .. 

•' •: 
: ' . : 

.. : .. · .... 
3.20 - : 

' . .... 
3.00 

.. ... 
: ' 2.80 

2.60 

2.40 

2.20 

2.00 

1.80 

1.60 

Disj_size 
0.00 5.00 10.00 15.00 20.00 25.00 30.00 

F igure 1: Promoter domain. Two graphs on the left show t he difference in error rate between C4.5 and IB1 on small 
disjuncts, and the percentage of test data that belongs to small disjuncts. The performance difference between C4.5 and IB1 
is shown by the straight line graph on the right. The remaining graph illustrates the performance difference between C4.5 and 
the composite learner. 

LED 7 -
%_Te.U%_Err 

105.00 

100.00 , 
95.00 

90.00 

85.00 

80.00 

75.00 

70.00 

65.00 

60.00 . 
55.00 

50.00 

45.00 . 
40.00 

35.00 

30.00 
i 

25.00 

20.00 

15.00 

__ ,.. ~-~-
10.00 .. _/--,... 
5.00 _,. 1'/ " 0.00 

'Y 
-5.00 

0.00 5.00 10.00 15.00 20.00 25.00 

%_Err_Diff 
°%_Te.,t •••• 

Disj_size 
30.00 

Figure 2: 

LED_7 
%_Error 

1.40 

1.20 

+----t---+----1f---- -t----+---- -+ C4.5-IBL 

+---~'--~~--~,._. f------l------!----+----l-•%Adv(C4.5) 

1.00 

0.80 

0.60 

0.40 

0.20 ... 
,' "._: 

0.00 ·..; 
-0.20 

-0.40 

-0.60 

-0.80 

- 1.00 

- 1.20 

-1.40 

- 1.60 

- 1.80 

-2.00 ,, ,: 
-2.20 

Disj_size 
0.00 5.00 10.00 15.00 20.00 25.00 30.00 

LED7 domain 

93 



I 

Domain IB1>C4.5 
I 

R=4% E=35% R=4% o:r T=30% T=30% or DE Largest 
E=35% E=20% Improv 

lymphography N(+0.4) -1.6 -1.9 -2.0 -2.7 -1.9 -2.1 -3.3 
bcw Y(-0.9) -1.3 -0.4 -1.3 -1.3 -1.3 -1.3 -1.5 
promoter Y(-3.3) -2.9 -4.2 -4.2 -4.2 -5.6 -6.9 -6.9 
soybean N(+0.4) +0.8 -0.3 +0.8 +0.2 +0.2 -0.3 -0.6 
monks-2 Y(-5.4) -3.0 -5.1 -5.1 -3.0 -5.4 -4.6 -6.0 
nettalk N(+6.4) +6.4 -0.1 +6.4 +1.9 +1.3 +0.5 -0.7 
diabetes N( +0.5) -2.8 -2.1 -2.9 -3.0 -2.9 -2.6 -3.5 
hypothyroid N( +1.9) +0.5 0.0 +0.5 +1.5 +1.5 +1.5 0.0 
hepatitis Y(-4.2) -0.5 -0.8 -1.0 -1.6 -2.4 -2.2 -4.6 
LED7 N(+l.6) -1.2 +1.4 +1.4 -0.6 +2.5 +1.5 -1.5 
LED24 N(+3L5) +0.7 +8.0 +10.0 +4.4 +21.4 +9.8 0.0 
waveform N(+5.7) -0.7 -1.3 -0.9 -0.8 -1.3 -0.8 -1.9 

Table 2: Experimental results of composite learner 

last graph presents the performance difference of using 
the composite learner as compared to C4.5. 

The results of these two domains clearly demonstrate 
that the instance-based method outperforms C4.5 in 
small disjuncts. In the LED7 domain, even though IB1 
alone is worse than C4.5 by 1.6%, the composite learner 
in which IBl is used to represent small disjuncts achieves 
a maximum overall advantage of 1.3% over C4.5. Both 
results show that the composite learner can be a better 
predictor than either C4.5 or IB1. 

The above experiment supports the hypothesis. How
ever, it is not clear what is the optimum size limit for 
small disjuncts in one domain. It is also anticipated that 
the absolute size limit will differ from one domain to an
other and when the training data size changes. The next 
experiment is designed to investigate a more appropriate 
small disjunct definition. 

4.2 The Definition of Small Disjuncts 

Four measures have been considered for the definition of 
small disjuncts, which based on: 

Absolute disjunct size. 

11 Relative disjunct size. 

m Percentage of training data coverage. 

IV Disjunct error rate. 
a. fixed error rate. 
b. decision tree's estimated error rate. 

The second measure attempts to solve the problem of 
using an absolute disjunct size measure when the train
ing data size changes. In this case, a fixed percentage 
of training data size is used to define a small disjunct. 
The third measure requires that the total coverage of all 
small disjuncts shall not be more than a fixed percent
age of the total training data. The use of disjunct error 
rate to define small disjuncts requires a re-orientation 
of the meaning of "small" disjuncts. To be precise, it 
means "poor performance" disjuncts rather than small 
disjuncts and is not determined by size alone. As result 
of the last measure, there are two situations where some 
small coverage disjuncts are not being regarded as small 
disjuncts. First, some small disjuncts have low estimated 

94 

error rates, and second, disjuncts which have the same 
size, possess differing estimated accuracies. While some 
disjuncts are being regarded as small disjuncts, others 
are being treated as large disjuncts; though all of them 
have the same coverage. These situations do not arise 
for the first three measures. 

The four corresponding small disjunct definitions 
based on these measures are: 

the disjunct size is less than or equal to a fixed 
number{F). 

11 the disjunct size is less than or equal to a fixed 
percentage(R) of the training data size. 

m the total small disjuncts ' coverage is less than 
or equal to a fixed percentage(T) of the training 
data size. 

IV a. the disjunct error rate is more than or 
equal to a fixed error rate{E). 

b. the disjunct error rate is more than or 
equal to decision tree's estimated error , 
rate{DE). 

The experimental results of the composite learner us
ing the above small disjunct definitions are tabulated in 
Table 2. Note that the results stated are the difference 
with reference to the error rate of C4.5 listed in Table 
1. For example, the second column shows that IBl has 
error rate 0.4% more than that of C4.5 in the lymphog
raphy domain, and likewise for the other domains. Note 
that the definitions listed in the table are determined 
from a series of experiments by varying the fixed num
ber in a way similar to the experiments in Section 4.1. A 
particular definition is chosen based on the performance 
in all twelve domains. For example, E=35% is selected 
as it enables the composite learner to produce the best 
results across all twelve domains. The best result (with 
respect to all experiments) for each individual domain is 
listed in the last column of Table 2. 

There are a few reasons why some domains do not 
conform to the hypothesis. First, IBl is known to have 
difficulty with domains that contain irrelevant attributes 
[Aha, 1990; Aha et al, 1991] such as the LED24 and 



Domain II !BL > c4.5 I % Difference. I T=30% DE I DE(unpruned} I 
lymphography N( +0.4) +1.8 -1.9 -2.1 -1.1 
bcw @ Y(-0.8) -14.8 -1.4 -1. 7 -1.6 
promoter Y(-3.3) -14.6 -5.6 -6.9 -7.7 
soybean N(+0.4) +4.9 +0.2 -0.3 -0.5 
monks-2 Y(-5.4) -15.4 -5.4 -4.6 -5.4 
nettalk N( +6.4) +32.5 +1.3 +0.5 +0.6 
diabetes@ N(+l.0) +~.4 -2.7 -1.9 -1.9 
hypothyroid N(+l.9) +237.5 +1.5 +1.5 +1.7 
hepatitis Y(-4.2) -17.9 -2.4 -2.2 -4.1 
LED7# Y(-0.9) -3.1 -2.8 -1.6 -1.8 
LED24@ N( +0.3) +0.8 -5.7 -3.5 -3.8 
waveform@ N(+l.5) +4.9 -3.2 -3.0 -3.6 

#: IB3, @: IB4, (unpruned): Unpruned trees. 

% Difference: Percentage difference in error rate wrt that of C4.5. 

Table 3: Results of the composite learner with selection rule 

waveform domains1. Noise could be another factor. In 
view of these factors, we have attempted the same exper
iments with IB3 and IB42 [Aha, 1990; Aha et al, 1991] 
acting as the small disjunct classifier in the composite 
learner. This experiment prompted the use of rule to se
lect a small disjunct classifier from the three algorithms. 
We report this investigation in the following section. 

Additionally, we also tried to narrow down the number 
of small disjunct definitions to three, namely, T=30%, 
T=30% or E=20%, and DE. Experiments are repeated 
with these definitions using two thirds of the data as 
training and one third as test (results not shown in this 
paper). Similar trends are observed in all domains. This 
shows that the definitions are robust across different data 
sizes and domains. 

4.3 Composite Learner with Selection Rule 

The experimental results using IBl, IB3 or IB4 as the 
small disjunct classifier show that no single algorithm 
can perform well in all these benchmark domains. One 
can perform well in some domains where the others fail 
and vice versa. However, it seems to exhibit some rela
tionships between the performance of different types of 
IBL and the domain that has specific attribute type. An 
attempt to construct a rule that depicts this relationship 
has been made and it is shown in Figure 3. 

The experimental results obtained by applying this 
rule are listed in Table 3. As in Table 2, the figures are 
the differences with reference to the error rates of C4.5. 
Two small disjunct definitions have been used; they are 
T=30% (IB1 uses T=30% or E=20% definition instead, 

1 IBl uses a separate metric for nominal and real-valued 
attributes. The simple metric used for nominal attributes can 
produce poor performance. See [Cost and Salzberg, 1993) for 
a better metric for nominal attributes. 

2IB3 is a noise-tolerant version and IB4 is built on top 
of IB3 with an extra capability of dealing with irrelevant 
attributes. 

95 

as shown in the rule) and DE, and their results are listed 
in the fourth and fifth columns of Table 3. Using the 
unpruned trees of C4.5 with DE definition has also been 
tried and the results are shown in the last column. 

With the T=30% small disjunct definition, the com
posite learner outperforms C4.5 in nine domains and is 
marginally worse in the other three domains. Out of 
the nine domains, the composite learner performs better 
than both IBL and C4.5 in seven domains, and performs 
equally well and worse than IBL in one domain respec
tively. 

Define small disjunct: T=30% 

If real-valued domain or known to have irrelevant 
attributes 

then use IB4 as small disjunct classifier 
else if binary domain 

then use IB3 as small disjunct classifier 
else 

use IB1 (T=30% or E=20%) as small disjunct 
classifier 

Figure 3: Selection rule for the composite learner 

Using the estimated error rate of the decision tree as 
the small disjunct definition, the composite learner out
performs C4.5 in ten domains ( the soybean domain has 
only marginal gain) and is marginally worse in the other 
two domains. The composite learner performs better 
than both IBL and C4.5 in eight domains, and performs 
worse than IBL in two domains. Comparing this defini
tion with T=30%, where the composite learner performs 
better than C4.5 in the same nine domains, the defini
tion T=30% has better results in six domains and worse 
in three domains. 

Generally, the composite learner that uses unpruned 
trees is marginally more accurate than that using pruned 
trees. With the DE(unpruned) definition, the composite 
learner achieves the best results in the promoter, monks-
2, soybean, hepatitis and waveform domains. This result 



·. 'I . . 

I 

may s~ggest that C4.5 could have overpruned in some of 
these domains. 

The composite learner has performed better than C4.5 
in one way or another in every domain, except for the hy
pothyroid and nettalk domains; and with DE(unpruned) 
definition, it performs better than IBL in all domains ex
cept in the monks-2 and hepatitis domains, where equal 
performance is achieved. 

The overall results seem to favour using the DE small 
disjunct definition and unpruned trees. 

The third column of Table 3 shows the performance 
difference with respect to that of C4.5. It indicates that 
there is no advantage in combining IBL and C4.5 if the 
difference in performance is more than 30%. In order to 
obtain any actual gain in prediction accuracy by com
bining two learning algorithms, the difference in perfor
mance must not be large. Because we split the descrip
tion space into two regions and by using only one learn
ing algorithm in each region, we expect the algorithm is 
superior in its own region. This can only be achieved 
if the overall performance of the two algorithms do not 
differ substantially. If they do, the superior algorithm is 
most likely to outperform the other one in both regions 
of the description space; thus, render no advantage in 
combining the two algorithms. 

5 Discussion 

Although the preliminary results support the hypothesis, 
the real success of the composite learner depends heavily 
on the definition of small disjuncts. The definition based 
on T=30% represents "small" disjuncts, and the defi
nition based on E=35% represents "poor performance" 
disjuncts. The disjunction of these two definitions, i.e. 
T=30% or E=20% covers both types of disjuncts. A 
still better "poor performance" disjunct representation 
seems to be the definition based on the decision tree's 
estimated error rate. Though these definitions are supe
rior to the definition based on the absolute disjunct size, 
there is no definition which is a clear winner across all 
the benchmark domains. 

The selection rule, shown in Figure 3, is by no means 
the best rule for the composite learner. Because it only 
makes use of one kind of information, i.e. domain at
tribute type, the rule is bound to fail for some new do
mains. Nevertheless, it successfully shows that the com
posite learner can be a better learner than its constituent 
parts. 

6 Related Work 

[Quinlan, 1991] demonstrates that small disjuncts asso
ciated with classes of different relative frequencies are 
likely to have different accuracies. Based on this finding, 
he gives improved estimates for the accuracy of small 
disjuncts by using an adaptation of the Bayes-Laplace 
formula. 

Work by [Danyluk and Provost, 1993] has exposed 
the fact that small disjuncts are due to exceptions and 
rare cases as well as noise. However, there is no simple 
method to differentiate between exceptions and noise. 

96 

MCS [Brodley, 1993) uses a hand-crafted rule to guide 
the construction of different models in the nodes of a 
decision tree. This work has motivated t he use of a se
lection rule for the composite learner. The major dif
ference between the two systems is that MCS produces 
a multi-model tree and each model is trained on part 
of the total training data; whereas the two algorithms 
in the composite learner are trained independently on 
the total training data and work cooperatively accord
ing to the definition of small disjuncts. Both apply a 
rule for model/ algorithm selection; MCS selects among 
three models ( univariate tests, linear discriminants and 
instance-based classifiers) whereas the composite learner 
selects among three types of instance-based methods. 

7 Future Work and Conclusion 

The key idea of this work is to use instance-based meth
ods to solve the problem of small disjuncts in decision 
trees. We have successfully shown that the composite 
learner that consists of C4.5 and one of the instance
based algorithms (IB1, IB3 or IB4) is a promising ap
proach. We would expect this will also work well in 
rule-based systems such as C4.5rules and intend to ver
ify this in the near future. 

Our hypothesis is based on Holte et al's [1989) findings 
that the maximum specificity bias should be used for 
small disjuncts. Though it has been supported by the 
empirical results, there is no reason to believe that it is 
the only bias one should apply. This opens another area 
for further investigation. Other systems such as neural 
nets might be used instead of instance-based algorithms. 

Another important issue that we have explored is the 
definition of small disjuncts. Three definitions are found 
to be robust across domains and varying data sizes. 
However, the investigation is by no means exhaustive 
and there is still room for future work. 

Acknowledgements 

This research was partially supported by an Australia 
Research Council grant (to J.R.Quinlan) and by a 
research agreement with Digital Equipment Corpora
tion. This author is partially supported by Equity and 
Merit Scholarship Scheme. Numerous discussions with 
J.R. Quinlan, Mike Cameron-Jones, Zijian Zheng, Ivan 
Bratko and Alen Varsek have provided much insight into 
this problem. They have also helped to improve the clar
ity of the previous version of the paper ( which contained 
wrong results regarding unpruned trees due to a mistake 
in the experiment) . Thanks to J.R. Quinlan and David 
W. Aha for providing C4.5 and IBL. 

References 

[Aha and Kibler, 1989] David W. Aha and D. Kibler. 
Noise-Tolerant Instance-Based Learning Algorithms, 
in Proceedings of the 11th International Joint Confer
ence on Artificial Intelligence, pages 794-799, Morgan 
Kaufmann. 

[Aha, 1990) David W. Aha. A Study of Instance-Based 
Algorithms for Supervised Learning Tasks, PhD The-



sis, Department of Information and Computer Sci
ence, University of California, Irvine, Technical Re
port 90-42. 

[Aha et al, 1991] David W. Aha, D. Kibler and M.K. Al
bert. Instance-Based Learning Algorithms, Machine 
Learning, 6, pages 37-66. 

[Breiman et al, 1984] L. Breiman, J .H. Friedman, R.A. 
Olshen and C.J. Stone (1984), Classification And Re
gression Trees, Belmont, CA: Wadsworth. 

[Brodley, 1993] Carla E. Brodley. Addressing the 
Selective Superiority Problem: Automatic Algo
rithm/Model Class Selection, in Proceedings of the 
Tenth International Conference on Machine Learning, 
pages 17-24, Morgan Kaufmann. 

[Clark and Niblett, 1987] Peter Clark and T. Niblett. 
Induction in Noisy Domains, In I. Bratko and N. 
Lavrac, editors, Progress in Machine Learning, pages 
11-30. Sigma Press. 

[Cost and Salzberg, 1993] Scott Cost and S. Salzberg. A 
Weighted Nearest Neighbor Algorithm for Learning 
with Symbolic Features, Machine Learning, 10, pages 
57-78. 

[Danyluk and Provost, 1993] A.P. Danyluk and F.J. 
Provost, Small Disjuncts in Action: Learning to Diag
nose Errors in the Local Loop of the Telephone Net
work, in Proceedings of the Tenth International Con
ference on Machine Learning, pages 81-88, Morgan 
Kaufmann. 

[Holte et al, 1989] Robert C. Holte, L.E. Acker and 
B.W. Porter. Concept Learning and the Problem of 
Small Disjuncts, in Proceedings of 11th International 
Joint Conference on Artificial Intelligence, pages 813-
818, Morgan Kaufmann. 

[Michalski et al, 1986] Ryszard S. Michalski, I. Mozetic, 
J. Hong and N. Lavrac. The multi-purpose incremen
tal learning system AQ15 and its testing application 
to three medical domains, in Proceeding of the Fifth 
National Conference on Artificial Intelligence, pages 
1041-1045. 

[Mooney et al, 1989] Ray Mooney, J. Shavlik, G. Towell 
and A. Gove. An Empirical Comparison of Symbolic 
and Connectionist Learning Algorithms, in Proceed
ings of 11th International Joint Conference on A rtifi
cial Intelligence, pages 775-780, Morgan Kaufmann. 

[Quinlan, 1986] John Ross Quinlan. Induction of Deci
sion Trees, Machine Learning, 1, pages 81-106. 

[Quinlan, 1991] John Ross Quinlan. Improved Esti
mated for the Accuracy of Small Disjuncts, Machine 
Learning, 6, pages 93-98. 

[Quinlan, 1993] John Ross Quinlan. C{5: Program for 
machine learning, Morgan Kaufmann. 

[Rumelhart et al, 1986] D.E. Rumelhart, G.E. Hinton 
and R.J. Williams. Learning Internal Representations 
by Error Propagation, in Parallel Distributed Process
ing, Vol.1, Eds. D.E. Rumelhart & J.L. McClelland, 
MIT Press, MA. 

97 

[Weiss and Kapouleas,· 1989] Sholom M. Weiss and I. 
Kapouleas. An Empirical Comparison of Pattern 
Recognition, Neural Nets, and Machine Learning 
Classification Methods, in Proceedings of 11th Inter
national Joint Conference on Artificial Intelligence, 
pages 781-787, Morgan Kaufmann. 

[Zheng, 1993] Zijian Zheng. A Benchmark for Classifier 
Learning, in Proceedings of the Sixth Australian Joint 
Conference on Artificial Intelligence, pages 281-286, 
World Scientific. 



. . ·- 1 

98 



Learning Default Concepts 

Dale Schuurmans 
Department of Computer Science 

University of Toronto, Toronto, ON M5S 1A4 
dale©cs.toronto.edu 

Abstract 

Classical concepts, based on necessary and suf
ficient defining conditions, cannot classify logi
cally insufficient object descriptions. Many rea
soning systems avoid this limitation by using 
"default concepts" to classify incompletely de
scribed objects. This paper addresses the task 
of learning such default concepts from obser
vational data. We first model the underlying 
performance task - classifying incomplete ex
amples - as a probabilistic process that passes 
random test examples through a "blocker" that 
can hide object attributes from the classifier. 
We then address the task of learning accurate 
default concepts from random training exam
ples. After surveying the learning techniques 
that have been proposed for this task in the 
machine learning and knowledge representation 
literatures, and investigating their relative mer
its, we present a more data-efficient learning 
technique, developed from well-known statisti
cal principles. Finally, we extend Valiant's PAC

learning framework to this context and obtain 
a number of useful learnability results. 

1 Introduction 

Many reasoning tasks involve "classification" [Cla85] -
i.e., determining whether a particular object belongs to 
a specified class, given a description of that object. For 
example, a diagnosis process must determine whether a 
patient, with a specified set of symptoms, has a particu
lar disease; a chess player must determine whether a par
ticular move is appropriate given a board configuration; 
and a planner must determine whether to apply a partic
ular action, given the perceived state. Many classifiers 
are based on classical concept definitions ( ccd s ), which 
specify necessary and sufficient conditions for concept 
membership. While these systems can work effectively 
when given completely specified objects ( e.g., a complete 
description of the patient's symptoms, etc. ) , they may 
be unable to categorically classify objects that are only 
partially described. 

Unfortunately, we may still have to provide a classifi
cation for such partially-described domain objects. For 

99 

Russell Greiner 
Siemens Corporate Research 

Princeton, NJ 08540 
greiner©learning.siernens.corn 

example, as doctors seldom have access to every poten
tially relevant fact about a patient, they usually cannot 
rule out all but the one true disease. The patient is usu
ally better off if the doctor makes a credulous assessment 
and suggests some treatment based on what is known, 
rather than skeptically withholding judgement. 

Notice that the doctor's diagnosis can change if he 
receives further information about the patient . As this 
type of nonmonotonic classification behavior cannot be 
described in terms of necessary and sufficient conditions, 
it cannot be encoded as a ccd . There are, however, for
malisms designed to classify partial object descriptions. 
Default concept definitions ( dcd s) are a natural general
ization of ccds, which avoid this limitation by using de
fault classification rules [Rei87]. These classifiers play an 
important role in many expert systems [Cla85 , PBH90] . 

Of course these dcds must somehow be acquired 
for such applications. As it is often quite difficult 
to explicitly extract the knowledge of domain experts, 
it makes sense to use machine learning techniques to 
automatically acquire the appropriate default concept 
based on existing "solved" cases; cf., [PBH90]. Un
fortunately, the task of learning default concept defini
tions has received relatively little attention, especially 
when compared to the vast literature on the subject 
of learning to classify complete object descriptions. To 
date, only a few empirical studies have been published 
[PBH90, Qui89, BFOS84], and the problem has yet to 
receive an adequate theoretical treatment in the machine 
learning literature; cf., [Riv87, p.245]. This means there 
is no supporting theory that specifies when proposed 
techniques can be expected to perform well, or even why 
they work when they do . 

We attempt to fill this void by studying the prob
lem of learning accurate default concepts from exam
ples within a precise mathematical framework. As pre
liminaries, Section 2 first defines the formal structure 
of default concepts and the associated object level clas
sification task, and Section 3 introduces a probabilis
tic testing model that incorporates "attribute blocking". 
Section 4 then considers the problem of learning accu
rate dcds from random training examples: It consid
ers learning under a relatively benign (resp., completely 
general) blocking model, introduces many of the exist
ing learning techniques discussed in the literature, and 
considers an alternative procedure (relatively unknown 



·· I 

. ·. ·., 

I 

**-+ 0 "thing :::} -,photo, by default" 

o* - o *o - o *1-+ 1 1*-+ 0 "plant :::} photo, by default" 

00-+ 0 01-+ 0 10-+ 0 11-+ 1 "green /\ plant ¢:> photo" 

Figure 1: Structure of a complete default concept definition 

in machine learning community) that is based on well
known ideas from theoretical statistics. It also extends 
Valiant's PAC-learning framework to the present case: 
assessing the effects of prior knowledge on learning effi
ciency, and determining the difficulty of learning 1mdP.r 
different conditions. 1 

We first close this introduction by tying this research 
to existing work: Notice first that, while there is a volu
minous literature on default and nonmonotonic reason
ing [Rei87], and even a recent trend towards probabilistic 
interpretations of default logics [Pea88, Bac90], the issue 
of learning defaults has scarcely been raised. Second, 
to avoid possible confusions, it is worth explicitly dis
tinguishing our "missing attribute" framework from two 
other models of learning from the learnability commu
nity: A system that learns with attribute noise [SV88] 
does not know which attribute values have been cor
rupted; by contrast, we know explicitly which values are 
missing. Also, a probabilistic concept [KS90] is a map
ping c; : Xn 1-+ [O , 1] from the space of complete object 
descriptions Xn to probability values; such mappings do 
not directly handle missing attribute values. 

2 Default Concepts 

Following standard practice, we consider a set of domain 
objects Xn = {O, l}n, where each object is identified 
by a vector of boolean attributes x = (x1 , ... , xn). A 
(complete) test example is specified by a pair (x, c) , con
sisting of a domain object x and its true classification 
c. In standard classification models, this domain object 
x would be passed "as is" to the classifier before test
ing its classification against the correct class c. Here, 
however we assume the classifier only sees a "degraded 
version" of x in which certain attribute values have been 
replaced by the "unknown" value *; see Figure 2. We 
model this degradation using a (stochastic) blocking pro
cess /3: Xn x {0,1}-+ {0,1,*}n that may "hide" some 
of the attribute values: replacing certain values with *, 
but otherwise leaving x intact. Thus, x; = 0 can be 
mapped to x; E {O, *},and x; = l to xt E {1, * }. We let 
X~ = { 0, 1, * }n denote the set of possible object descrip
tions. A test example (x*, c) is a (partial) description x* 
of some domain object x, along with x's true classifi
cation c E {O, 1}. The space of possible examples is 
denoted x~ x {O, 1}. 

A classical concept definition ( ccd) is a subset of Xn, 
which we represent by its indicator function c : Xn -+ 

1 Unfortunately, space constraints preclude presenting 
proofs of the results stated in this abstract; see [Sch94]. 

{O, 1}; thus c(x) = 1 iff x belongs to the concept . A 
default concept definition (dcd) d: X~ -+ {O, 1}, on the 
other hand, takes a description x* as its input and re
turns d( x* ) = 1 if the object described by x* belongs to 
t.hP. c:oncept by de.fault; and returns O otherwise. Given 
a test example (x*, c) , a dcd d makes a correct classifi
cation if d(x*) = c, otherwise it makes an error. 

We can represent a dcd d as a collection of rules of 
the form x*-+c where c E {O, 1} and x*-+c E d means 
d(x*) = c. By insisting that for every object descrip
tion x• E X~ either x•-+ l E d or x•-+ 0 E d but not 
both, we are in effect only considering complete dcds 
that categorically classify every possible object descrip
tion, even x• = (*, *, ... , *) .2 To illustrate, consider the 
example of a dcd on two attributes shown in Figure 1, 
where the first attribute is "green", the second "plant", 
and the class is "photosynthetic" .3 Notice this collection 
of rules specifies non monotonic classification behavior, 
as its assessment of concept membership can change as 
more attributes are specified. For example, even though 
non-green-plants C plants C things, the predicted pho
tosynthesis properties are 0, 1, 0, respectively. Such a 
classifier cannot be specified by a classical concept. 4 

There are many unexpected similarities between dcds 
and existing nonmonotonic knowledge representation 
formalisms. For example, Reiter [Rei87] considers com
monsense concepts like "bird", "chair", and "game" and 
notes that they do not have classical definitions in terms 
of necessary and sufficient conditions. He argues that 
these concepts can be better characterized by specify
ing "default" necessary and sufficient conditions, and 
shows that this idea is similar to Minsky's concept of 
frames [Min75]: frame selectors can be viewed as "de
fault" sufficient conditions for the frame concept, and 

2 Thus there are 23
n distinct dcds possible on n boolean 

attributes. Only some of these have "reasonable" structures, 
see Lemma 1 below. 

3 Each node in the graph represents a rule; e.g., "*l -> 1" 
encodes the rule that plants, of unspecified color, are accepted 
in the photosynthetic class. An arc descending from node n1 
to n2 means the antecedent of n1 's rule is "more general" 
than n2's antecedent, in that any object that matches n2's 
antecedent will also match n 1 's. 

4 Notice the blocking process f3 introduces only a restricted 
form of ambiguity: f3 may produce descriptions correspond
ing to disjunctions like O• = 00 V 01, but cannot produce 
a description corresponding to 01 V 10 (this is reminiscent of 
[BE89]) - i.e. , it cannot express the claim that an object 
is "either a non-green plant or a green non-plant" . This will 
restrict the type of "reference classes" we must consider when 
learning dcds; see Footnote 7 below. 

100 



(x, c) (x*, c) "RealWorld" ,__ ___ __, Blocker ,__ ____ Learner 
Pxc P 

Figure 2: Model of Blocking Process 

frame instantiations can be viewed as "default" nec
essary conditions. These notions of non-classical con
cepts appear quite similar to the account of dcds devel
oped here. Our acceptance conditions (rules of the form 
x*-+ 1) correspond to Reiter's "default" sufficient condi
tions (a.k.a. frame selectors). However our rejection con
ditions (rules of the form x*-+ 0) and Reiter's "default" 
necessary conditions (frame instantiations) are contra
positives, and do not serve precisely the same function 
[Gin87] . Still, the similarities are striking given the far 
different motivations behind these formalizations. 

3 Model: Random Test Examples 

We assume there is a "natural" source of random test 
examples against which we can evaluate the accuracy of 
any classifier. In particular, we assume there is a distri
bution P xc over the space of domain objects and con
cept labels Xn x {O, 1}, called the domain distribution, 
from which random labelled objects are independently 
drawn. Before presentation, these labelled objects (x, c) 
are first passed through a blocking process /3 to yield 
test examples (x*, c); see Figure 2. Thus, the domain 
distribution P xc and the blocking process /3 induce a 
distribution P x• c over the space of possible examples, 
called the example distribution. The accuracy of a dcd 
d, written Px•c(d), is defined as the probability that d 
correctly classifies a random test example. Note that in 
general a classifier's accuracy depends on both the do
main distribution and the blocking process. We say that 
any example distribution P x• c for which d is optimal 
satisfies d. 

Lemma 1 For any example distribution P x• c, the op
timally accurate dcd d includes the rule x*-+c E d when
ever P x• c { (x*, c)} > P x• c { (x*, ,c)}. Furthermore, for 
any dcd d, there is an example distribution P x• c which 
makes d non-trivially5 optimal. 

We can therefore interpret any dcd d as asserting a 
collection of inequalities about the underlying example 
distribution. Notice the meaning of a rule x•-+ c de
pends not only on the (objective) distribution of domain 
objects in the world Pxc, but also on the (subjective) 
blocking process /3, which specifies how information is 
received by the classifier. There are a number of rea
sonable assumptions one could make about /3, but we 
restrict our attention to just two: independent blocking 
and arbitrary blocking. 

3.1 Independent blocking 

The independent blocking model, /31, hides each object 
attribute Xi with a fixed probability Pi that is inde-

5 Here we are ruling out the "pure noise" case where 
Px•c{(x*,c)} = Px•c{(x*,,c)} = 1/2 for each x• EX~; 
here every dcd is (trivially) optimal. 

pendent of Xi's value and those of the other attributes 
Xj, j "I i. In this model, it turns out the optimally 
accurate dcd is determined strictly by the domain dis
tribution P xc, regardless of the specific blocking rates 
(P1, P2, · · · , Pn) · 

Lemma 2 Under /31, for any domain distribution Pxc , 
the optimally accurate dcd d makes maximum conditional 
likelihood {mcl} classifications under P xc, given the ob
served attributes of an object (cf., [DH73]}. 

Thus, the structure of an optimal dcd d is determined 
solely by the domain distribution, and we can inter
pret d as a collection of assertions about the domain 
distribution P xc directly: x* -+ c E d asserts that 
Px•c{(x*,c)} 2'. Px•c{(x*,,c)}. However, not all of 
the possible 23

n dcds consistently specify mcl classifica
tions in this manner - only (and all) the ones consistent 
with the following "consistent inheritance axiom." 

Definition 1 (Consistent Inheritance) A dcd d is 
inheritance consistent iff 

(x! ... 0 .. . x~ ) -+c Ed } ( ;. *) d 
( • 1 • ) E d =} X1 ... * ... xn -+ c E . 
X1··· ... Xn-+C 

Theorem 1 Under /31, d is inheritance consistent {=:> 

d is satisfiable by some domain distribution P xc . 

Existing default logics based on c-semantics (e.g., 
[Pea89]) all satisfy the consistent inheritance axiom and 
so tacitly assume independent blocking /31. Here the 
meaning of a rule x*-+c can be given a "majority" se
mantics under /31 akin to that of [Bac90]. 

3.2 Arbitrary blocking 

While /31 is a simple and convenient model, it does not 
capture every practical situation; in particular, it cannot 
deal with circumstances where our knowledge of an at
tribute is correlated with its value; e.g., ex-inmates are 
unlikely to answer the question "have you ever been in 
prison?". The arbitrary blocking model, f3A, can hide ob
ject attributes Xi according to an arbitrary probability 
distribution that can be conditioned on the entire object 
x and its classification c, allowing this model to incor
porate correlations between hidden attributes and their 
values, other attributes, or even concept membership. 

Under f3A the structure of an optimal dcd does not 
depend solely on the domain distribution P xc, but also 
on the nature of the blocking process /3. This means 
that making mcl classifications according to P xc may 
no longer be optimal. In fact, 

Lemma 3 Under f3A, making me/ classifications accord
ing to P xc can yield error rates arbitrarily close to 1/2, 
even when the optimum dcd has error rate 0. 

Of course, other classifiers, which can exploit correla
tions between missing attributes and object classifica
tions, can do much better in these situations. 

101 



I 

I 

. I 

4 Learning Accurate Default Concepts 

We now consider the task of learning an accurate dcd 
from random training examples. We assume the learner 
L receives a sequence of random training examples drawn 
from a training distribution, from which it must produce 
a dcd, which is then tested on random test examples 
drawn from a test distribution. The learner's goal is to 
produce an accurate dcd with as few training examples 
as possible. We can consider a number of distinct learn
ing problems, based on our assumptions about the form 
of training examples and the type of blocking process. 
Here, we focus the two types of blocking introduced in 
Section 3, and on the following two types of training 
examples. 

The incomplete training example model, XI, assumes 
training examples are generated by the same example 
distribution that generates test examples. This is a nat
ural model for many practical settings where we do not 
have access to complete object descriptions, even for 
training examples. One benefit of training on partial ex
amples is that learner is exposed to the natural blocking 
process operating in the domain. 

The complete training example model xc, on the other 
hand, assumes training examples are generated by the 
same domain distribution P xc underlying the process 
that generates incomplete test examples. Here, how
ever, some teacher has "filled in" the proper value of 
each attribute of each training example. Even though 
our goal is to learn classification rules that classify in
complete examples, we can still consider learning from 
complete examples. This situation that can easily arise 
in practical situations; e.g., a medical student may be 
trained to diagnose the presence of a particular disease 
given fairly complete descriptions of all relevant patient 
data, and yet as a doctor, be expected to produce diag
noses without the benefit ( and cost) of performing every 
available diagnostic test . Furthermore, we intuitively ex
pect an advantage in training on complete examples as 
they appear to provide more information than incom
plete examples. We will see below that this intuition is 
only sometimes correct. 

4.1 Learning under Independent-Blocking 

We first consider learning under the independent block
ing model /31. This is the simplest and arguably most 
natural blocking model, where the fact that an attribute 
is missing provides no information about the underly
ing values or object classifications. Lemma 2 showed 
that under /31, the structure of the optimal dopt depends 
solely on the domain distribution P xc, regardless of the 
blocking probabilities (P1 , ... , Pn ) . In particular, dopt 's 
classifications depend on the most probable class (under 
P xc) given the observed (non-*) attributes of a descrip
tion x*; i.e., if Pcix(c I obs(x*)) > Pc1x(,c I obs(x*)) 
then x*-+c E dopt· Hence, under /31, learning an accu
rate dcd requires only determining whether Pc1x (c = 
1 f obs(x*)) > Pc1x(c = 0 I obs(x*)) for each object de
scription x•, based on observing a sequence of training 
examples. 

4.1.1 Estimating Most Likely Classifications 

Complete training examples: Here the learner 
is given a sequence of random training examples 
( (x1 , c1) , . .. , (xm, cm )) ( drawn independently from the 
domain distribution Pxc - the same domain distribu
tion that will be used to generate pre-blocked test ex
amples), from which it must decide whether to use the 
classification rule x*-+ 1 or x*-+ 0 for each description 
x•. Here, it seems reasonably obvious that this decision 
should be based on the observed classification frequencies 
among all training examples x that match a description 
x•, as specified by the following learning strategy. 

MLC (Maximum Likelihood (Complete)) For description 
x•, predict the most frequent class among all train
ing examples whose domain object matches x* . 

This simple strategy turns out to have the following 
rather remarkable optimality property. 

Theorem 2 For any learner L 6 that produces the opti
mal rule x*-+c for some x• with higher probability than 
MLC, given some Pxc and sample size m, there is an
other domain distribution P~c for which L produces a 
dcd d with accuracy < 1/2 with probability > 1/2. 

Thus, no learner can outperform MLC on any non- pure
noise domain distribution (i.e., where P x• c{ (x•, c)} -f. 
1/ 2 for some x*), and object description. 

Incomplete training examples: Here the learner 
is given a sequence of random training examples 
((xi, c1) , ... , (x:.i, cm )) (drawn independently from the 
same example distribution Px•c used to generate test 
examples), from which it must decide whether to use 
classification rule x*-+1 or x*-+ 0 for description x* . As 
before, the optimal classification rules are determined 
by the underlying domain distribution P xc, and so the 
general idea is to gain as much information as possible 
about P xc from the random training examples; the dif
ficulty here is that many of the training object attributes 
will be blocked. The challenge, therefore, is to extract as 
much information as possible from the object attributes 
that are actually observed. 

A number of techniques have been proposed in the ma
chine learning literature for determining the most likely 
classification of a description from a collection of incom
plete training examples. Surprisingly, none of these tech
niques appear to make the most efficient use of the avail
able training data. This leads us to investigate a simple 
statistical principle, relatively unused in machine learn
ing, that appears to be far more efficient for this purpose. 
We first briefly survey the existing proposals and point 
out the intuitive source of inefficiency in each. 

The first technique ignores the fact that training de
scriptions are independently blocked versions of com
plete descriptions, and simply gathers separate statistics 
for each description x•; effectively treating "*" as a third 
attribute value. 

6 Given the benign assumption that L's guesses for a de
scription x• are conditionally independent of the training la
bels of domain objects i that do not match x*. 

102 



THV (Three-valued) [Qui89] For description x• , predict 
the most frequent classification among training ex
amples of the form (x•, c). 

THV clearly does not make the most effective use of the 
available training data, given that attributes are blocked 
independently of their values. In particular, it ignores 
more specific training patterns that might match the de
scription x•, which is ineffective as these patterns can 
provide additional information about the prevalence of 
a particular classification among objects matching x•. 
The next refinement is a technique that takes just this 
information into account. 

LEM (Local error minimization) For description x•, pre
dict the most frequent class among all more specific 
training patterns that match x•. 

By considering more specific training patterns, LEM 

makes more efficient use of the training data than THV. 

However, it turns out that even LEM does not fully ex
ploit all of the relevant information that can be gleaned 
from the training examples. In fact, there are situations 
where we ought to incorporate statistics from more gen
eral descriptions than x•. To illustrate this, imagine a 
simple setting where domain objects are described by 
a single bit, so any dcd for this domain will consist of 
three rules: { (0) --+co, (l ) --+c1, (*) --+c. } where each 
each c; E { 0, 1}. Now, imagine a collection of training 
examples where 

# ((0),0) =2 
# ((0),1) = 1 

# (( 1),0) =2 
# (( 1), 1) = 1 

# ((*) ,0) =0 
# ((*) , 1) = 14. 

Here, since # ((0), 0) > # ((0) , 1) , it appears (0)--+0 would 
be the optimal rule for (0); similarly# ( (1) , 0) > # ( (1) , 1) 
suggests (1)--+ 0. Notice, however, that all 14 of the (*) 
observations belong to class 1, and each of these must 
have actually been a domain object with attribute value 
(0) or (1) . So there is overwhelming evidence that at 
least one of the two attribute values (if not both) should 
be classified 1 rather than 0. This is a clear case where 
the statistics from a more general description should 
override those of the more specific. 

A learning technique that attempts to do just this has 
been proposed in the philosophy of statistics literature 
- namely Kyburg's proposals for choosing the best ref
erence class on which to base statistical judgements. 

REF (Reference class) [Kyb83, Kyb91] For description 
x•, first select a "reference-class" description x; 
( either x• itself, or possibly a more general de
scription), then predict the most likely classification 
given all training descriptions that match the refer
ence class description x;. 

The idea is to select a sufficiently general description 
x; so that our choice of classification rule x•--+c for x• 
is based on "adequate" statistics. Kyburg suggests the 
following reference class selection procedure: For each 
incomplete description x•, compute a 90% (say) confi
dence interval about the probability of observing classi
fication c given all training descriptions that match x• . 
Then employ a conflict resolution strategy (which trades
off interval bias and width) to decide whether to adopt, 

for this x• , the classification associated with successively 
more general reference classes [Kyb91]. 7 

Although the REF strategy can override the predic
tions from specific descriptions with those from more 
general descriptions, it is not clear that it does so in 
the best conceivable way. The strategy is fundamentally 
ad hoc (in particular by incorporating an arbitrary pa
rameter in the confidence intervals), and is not based 
on any real principles beyond "intuition" to adjudicate 
between candidate reference class descriptions. Further
more, there is no empirical data to support the efficacy 
of this approach. 

It is often stated that the crux of this type of statistical 
reasoning is the problem of "choosing the right reference 
class" [Bac90, BGHK92]. However, this premise might 
actually be leading us away from the most effective learn
ing approaches here. Fundamentally, our goal should be 
to preserve all available statistical information, rather 
than throwing away statistics from one class in favor of 
those from another. The best approach should involve 
combining all of the available statistics in a principled 
way. Here we note that a well-known idea from theo
retical statistics is applicable: namely, first determine 
the maximum likelihood distribution that accounts for 
all the data, then perform inferences according to this 
distribution [LR87]. This approach yields an effective 
method for determining the most likely classifications 
given incomplete training examples. 

MLI (Maximum Likelihood (Incomplete)) [LR87] First, 
determine the domain distribution P'xc:{ that max
imizes the likelihood of the observed training ex
amples. Then, for description x•, predict the most 
probable classification according to P'xc, given x* 's 
observed attributes. 

Notice that this approach never "throws away" an ob
servation; instead, it seeks the best model that accounts 
for all of them. The statistics for all relevant descrip
tions, both more general and more specific than x•, are 
combined in a principled way to yield a classification. 

Based on the preceding discussion it seems intuitive 
that MLI should be more efficient than the other learning 
strategies, i.e., we expect that MLI should produce more 
accurate classification rules, given fewer training exam
ples. Although an optimality result akin to Theorem 2 
has not yet been proven, it is fairly easy to demonstrate 
the superior efficiency of MLI empirically. 

To support this point, consider the results of the fol
lowing simulation study: Each of the four techniques was 
implemented and tested in the simple domain where do
main objects are described by a single bit (as before). 
We then tested the techniques on random domain distri
butions and blocking rates, and recorded the accuracies 

7 Philosophical discussions often mention the difficulty in 
choosing the candidate reference classes to participate in any 
conflict resolution procedure ( cf ., (Bac90, Chapter 5)) . Ky
burg simply adopts the reference classes considered here, and 
ignores other "disjunctive" classes ( cf., Section 2) by fiat. 
However, there is a principled argument behind ignoring dis
junctive classes , based on the observation that they do not 
correspond to any possible "partial states of knowledge" one 
can have about a domain object, cf., Section 2. 

103 



. I 

10 20 30 40 
Sam leSize 

M 
T 
L 
R 

50 

MLI 
THV 
LEM 
REF 

60 

10 20 30 40 50 60 
Sample Size 

Figure 3: Percent Optimal, Accuracy vs Training Size 

of the classification rules produced by each strategy. The 
graphs in Figure 3 plot the average accuracy obtained by 
each learner (resp., how often each learner returned the 
optimal dcd), as a function of training sample size; aver
aged over 10,000 trials. It is clear that, for a given num
ber of training examples, MLI both attains the highest 
average accuracy levels, and also identifies the optimal 
dcd with the highest probability, cf, Theorem 2. 

4.1.2 Scaling Up 
As efficient as the previous estimation techniques appear 
to be (particularly MLC and MLI), they cannot be applied 
"as is" to any real learning task. The problem, of course, 
is that these estimation techniques simply do not scale 
up . This is because determining the appropriate clas
sifications for arbitrary object descriptions x* can, in 
general, involve the simultaneous estimation of an expo
nential number of parameters (in n). For example, there 
are ( rn/21) descriptions containing rn/21 *'s, and most 
of the observations for one such pattern does not match 
any of the others. None of the estimation techniques 
generalize between these patterns. 

This is a well-known issue in machine learning: 
to achieve reasonable performance with reasonable 
amounts of data, we will eventually have to introduce 
some form of prior knowledge to constrain our learn
ing systems. This points to the necessity of bias. In 
any successful application, the learning system must be 
constrained to search a restricted space of appropriate 
classifiers, which here are dcds. 8 

Following the methodology pioneered by Valiant 
[Val84], we consider how learning performance scales as 
a function of prior knowledge. Here we quantify bias by 

8 THV and MLI are particularly well suited to incorporating 
background knowledge; as demonstrated for THV in many 
decision-tree applications (Qui89, BFOS84], and for MLI by 
applications of the EM algorithm to parameterized domain 
distributions (LR87]. 

its measurable effects on the quality of learning that can 
be guaranteed . A la Valiant, we consider prior domain 
knowledge that can be expressed by a restricted set of 
dcds V, which is known to include the optimal dcd. The 
difficulty of learning a set of dcds 7J is then measured 
by the number of training examples needed to reliably 
guarantee a near optimal hypothesis, in the worst case 
over all possible example distributions satisfying some 
dcddE'D. 

Definition 2 (PACO-learning) 9 A learner L PACO
learns a class of dcds 1) under f31 blocking given m( c, 8) 
x-type training examples (x E {xc, XI}), if Ve > 0, Vo > 
0, and V domain distributions P xc consistent with some 
dopt E V, L outputs a dcd dL E 7J whose accuracy is 
within f of this dopt, with probability at least l - 8. 

To investigate scaling, we consider parameterized classes 
'Dn defined on n attributes for n = 1, 2, .... 

Definition 3 (Feasible-learnability) A param eter
ized class of dcds 'Dn, n = 1, 2, .. . is said to be feasibly
learnable if there exists a polynomial function poly(- · ·) 
and a learner L that PACO-learns each 7J1 , 'D2, ... with 
sample size m( c, 8) =poly(~,}, n ) . 

Intuitively, we expect the difficulty of learning a set 
of dcds 7J to depend on the "complexity" of 1), i.e . , 
more complex Vs are harder to learn . The question 
is: what precise complexity measure ( effectively mea
suring the "amount" of prior knowledge encoded by V) 
actually determines the difficulty of PACO-learning a de
fault concept class V? It turns out the appropriate 
complexity measures can be based on the notion of the 
Vapnik-Chervonenkis dimension of a set of dcds 7J, writ
ten VCdim(V). 10 

Learning performance also clearly depends on the pre
cise learning model under consideration ( e.g., f31 block
ing and either xc or XI training examples) . For f31 block
ing and complete training examples, we have been able 
to identify precise conditions on the complexity of'Dn (as 
a function of n) that determine whether 'Dn is feasibly 
learnable. 

Lemma 4 Under f31 blocking, 'Dn is feasib ly-learnable 
from complete training examples ~ Vs C { 1, ... , n}, 
VCdim(V;) = poly(n) (where v:, is th e set of ccds in
duced by 'Dn on attribute subsets) . 

In the case of learning from incomplete training exam
ples, a much stronger condition can be shown to be suf
ficient for feasible-learning. 

Lemma 5 Under f31 blocking, VCdim('Dn) = poly(n) 
===> 'Dn is feasibly-learnable from incomplete examples. 

9 For "frobably Approximately .Qlass Qptimal". Our goal 
differs slightly from standard PAC-learning, as we are forced 
to seek near-optimal rather than near-perfect classifiers, since 
with blocking no classifier can attain perfect accuracy in gen
eral. Notice also that we are only addressing the sample com
plexity of learning, not computational complexity. 

10 This is the same measure used when learning ccds. See 
(BEHW89] for a precise definition of VCdim and its appli
cation to determining the difficulty of learning sets of ccds. 

104 



Combining these lemmas yields the intuitive result that 
learning from complete training examples is easier than 
learning from incomplete examples: 

Corollary 1 'Dn is feasibly-learnable under (/31 ,XI) 
=} 'Dn is feasibly-learnable under (/31 ,Xe). 

However, the converse (i.e., is there a class 'Dn that is 
is feasibly-learnable from complete but not incomplete 
training examples) remains an open question. 

4.2 Learning under Arbitrary-Blocking 

We now consider the arbitrary blocking model f3A- In 
this model, the fact that an attribute is missing from 
an object description can be correlated in various ways 
with the attribute values and the object's classification. 
In effect, no reliable information can be obtained about 
the value of missing attributes under /3 A. Here, learn
ing an accurate dcd amounts to determining whether 
Pe1x•(c = 11 x*) > Pe1x•(c = 0 I x*) for each object 
description x*, given training examples. 

4.2.1 Estimating Most Likely Classifications 
As in Section 4.1.1, we can consider the problem of esti
mating the most likely classification of a description x* 
from both complete and incomplete training examples. 
The relative merits of the various learning techniques dis
cussed in Section 4.1.1 change dramatically under these 
alternative learning conditions. 

Complete training examples: Notice that complete 
training examples provide no information about the 
blocking process that will be applied to future test ex
amples. By observing complete training examples, the 
learner can only estimate properties of the domain distri
bution P xe, and not the test example distribution P x• e 
(generated by a blocking process over P xe). There
fore it is fundamentally impossible to estimate whether 
P e1x• ( c = 1 I x*) > P cix· ( c = 0 I x*) for arbitrary 
blocking processes just by observing complete training 
examples. Lemma 3 exploits this fact to show that even 
given exact knowledge of the domain distribution P xe, 
any classification rule produced by a learner can still 
have an arbitrarily high error rate on incomplete test 
examples for some example distribution P x• e. There
fore no learning strategy can reliably estimate the proper 
classification of an incomplete test description x* from 
complete training examples. 

Incomplete training examples: Given incomplete 
training examples, however, the learner is directly ex
posed to the natural blocking processes operating in the 
domain. Under these conditions it is possible to esti
mate whether Pcix•(c = 1 Ix*)> Pcix•(c = 0 I x*) for 
a description x*, simply by applying the THV strategy of 
determining whether #(x*, 1) > #(x*, 0). 

The various learning techniques discussed in Subsec
tion 4.1.1 have different relative merits under the dif
ferent learning conditions: We saw in Subsection 4.1.1 
that LEM and MLI were more efficient than THV under 
/31 blocking. In general, maximum likelihood estima
tion (MLC, MLI) appears to be the superior technique for 
estimating the most probable classifications under /31, 
regardless of whether complete or incomplete training 

examples are available. However, since these techniques 
base their judgements directly on estimated properties 
of the domain distribution P xe, Lemma 3 shows that 
their classifications can have arbitrarily high error rates 
under f3A. In contrast, THV is the only provably effec
tive technique for learning under f3A, given incomplete 
training examples, and so clearly dominates in this case. 

These theoretical observations can actually help ex
plain some of the results obtained by recent empirical 
studies: Quinlan (Qui89] compared applications of the 
LEM and THV techniques ( along with some other ad hoc 
approaches) to decision-tree learning, and found that no 
single technique dominated the others over the set of 
test problem he considered. The preceding theoretical 
results, however, clearly demonstrate that the relative 
effectiveness of particular learning strategies strongly de
pends on the nature of the blocking process involved; an 
observation that can be applied in practice. For exam
ple, if blocking is known to be (more or less) independent 
(/31 ), then MLI should outperform the other techniques, 
however, if blocking were known to be strongly corre
lated (/3A), then THV should dominate. 

4.2.2 Scaling Up 

As in Subsection 4.1.2, we can determine what con
straints on prior knowledge ( expressed as a parameter
ized class of dcds 'Dn) are sufficient to permit efficient 
learning, as we scale up in n. 

Lemma 6 Under /3A, 'Dn is feasibly-learnable from in
complete examples~ VCdim('Dn) = poly(n). 

Notice that although complete training examples actu
ally make learning easier under /31, they make learning 
impossible under /3 A. This is because complete exam
ples provide information only about instance distribu
tion, but supply no information about the blocking pro
cess that will be applied to future test examples. While 
this is not a problem under /31 (where the optimal clas
sifications are determined strictly by the instance distri
bution Pxe), this issue is fatal under f3A; cf., Lemma 3. 

Lemma 7 No non-trivial set V of default concepts is 
PACO-learnable under (/3A,Xe). 

As expected, the feasible learnability of a parameter
ized class of dcds 'Dn depends on the specific conditions 
in which learning takes place. Here we compare the rel
ative difficulty of learning under the various conditions. 

Lemma 8 'Dn is feasible-learnability under (/3A,XI) 
=} 'Dn is feasible-learnability under (/31 ,XI) 
=} 'Dn is feasible-learnability under (/31 ,Xe). 

The first inclusion is strict, as 

Lemma 9 There are parameterized classes 'Dn which 
are feasibly-learnable under (/31 ,XI}, but not feasibly
learnable under (/3A,XJ) . 

Hence, learning under (/31 ,XI) is fundamentally easier 
than learning under (/3A,XI), as it can require exponen
tially fewer training examples in some cases. 

105 



5 Conclusions 

This work constitutes a start on the general problem of 
acquiring default knowledge from empirical observations. 
Of course, much remains to be done. One of the more 
immediate concerns is to develop an efficient implemen
tation of the MLI strategy for useful forms of bias. We 
are also beginning to examine many extensions to better 
cope with practical problems. For example, many appli
cation domains like medical diagnosis have the property 
that missing attribute values actually give useful infor
mation - namely that the missing attributes are irrel
evant to the classification, given the known attribute 
values [PBH90]. Notice that /31 is overly restrictive and 
f3A is too underconstrained to adequately model such 
tasks; [GHR94] provides an initial analysis of this situa
tion. We are currently investigating other intermediate 
blocking models that can more accurately model such 
domains and (we hope) lead to better empirical learning 
performance. 

Other interesting research directions involve alterna
tive generalizations of standard classification learning: 
This work has assumed that default definitions cate
gorically classify every description, no matter how in
complete. An interesting direction is to consider partial 
default definitions that sometimes say "I don't know" 
a la [RS88]. Such classifiers could prove useful in do
mains where the consequences of an incorrect classifica
tion sometimes outweigh those of remaining silent. 

Another interesting extension is to consider active 
classifiers. That is, we have assumed that classifiers pas
sively observe test examples and play no role in deter
mining which attributes are observed. It would be inter
esting to consider learning classifiers that actively decide 
which attributes to test, and when there is sufficient in
formation to posit an accurate prediction (i.e., learning 
to diagnose) . This raises the issue of how best to trade 
off the number of tests required against the accuracy of 
the classifier. 

Contributions: We formulated and studied the prob
lem of learning "default concepts" (dcds), which can 
then be used to classify incomplete object descriptions. 
After formally defining the structure and function of 
dcds, we modelled the classification (performance) task 
as a random example generator that passes examples 
through a "blocking process" that hides object attributes 
from the classifier. We then addressed the task of learn
ing dcds from random examples - first discussing many 
of the standard techniques for this problem, and then ex
plaining why MLI is more effective than many standard 
learning techniques under the (/31 ,XI ) model. We also ex
tended Valiant's PAC-learning framework to the problem 
of learning dcds: assessing the effects of prior knowledge 
on learning efficiency, and determining the difficulty of 
learning under different conditions. By providing a the
oretical understanding of many empirical observations 
in the literature, we hope that our results will lead to 
the development of more effective learning procedures 
for practical problems that involve missing data. 

References 
[Bac90] F. Bacchus. Representing and Reasoning with 

Probabilistic Knowledge. MIT Press, 1990. 

[BE89] A. Borgida and D. Etherington. Hierarchical 
knowledge bases and efficient disjunctive reason
ing. In KR-B9, 1989. 

[BEHW89] A. Blumer, A. Ehrenfeucht, D. Haussler, and 
M. K. Warmuth. Learnability and the Vapnik
Chervonenkis dimension . J. of ACM, 36 (4), 1989. 

[BFOS84] L. Breiman, J. H. Friedman, R. A. Olshen, and 
C. J. Stone. Classification and Regression Trees. 
Wadsworth, Belmont, CA, 1984. 

[BGHK92] F. Bacchus, A. Grove , J. Halpern, and D. Koller. 
From statistics to beliefs. In AAAI-92, 1992. 

[Cia85] W. Clancey. Heuristic classification. A,·tificial 
Intelligence, 27, 1985. 

[DH73] R. 0 . Duda and P. Hart . Pattern Classification 
and Scene Analysis. Wiley, 1973. 

[GHR94] R. Greiner, T . Hancock, and R. B. Rao. Knowing 
what doesn't matter. Technical report, Siemens 
Corporate Research, 1994. 

[Gin87] M. Ginsberg, editor. Readings in Nonmonotonic 
Reasoning. Morgan Kaufmann, Los Altos, 1987. 

[KS90] M. J . Kearns and R. E. Shapire. Efficient 
distribution-free learning of probabilistic con
cepts. In FOCS-90, 1990. 

[Kyb83] H. Kyburg. The reference class , Philosophy of 
Science, 50, 1983. 

[Kyb91] H. Kyburg. Evidential probability. In IJCAI-91, 
1991. 

[LR87] J. A. Little and D. B. Rubin. Statistical Analysis 
with Missing Data. Wiley, 1987. 

[Min75] M. Minsky. A framework for representing knowl
edge. In The Psychology of Computer Vision . 
McGraw-Hill, 1975. 

[PBH90] B. Porter, R. Bareiss, and R. Holte. Con
cept learning and heuristic classification in weak
theory domains. Artificial Intelligence, 45, 1990. 

[Pea88] 

[Pea89] 

[Qui89] 

[Rei87] 

[Riv87] 

[RS88] 

[Sch94] 

[SV88] 

[Val84] 

106 

J. Pearl. Probabilistic Reasoning in Intelligent 
Systems. Morgan Kaufmann, 1988. 

J. Pearl. Probabilistic semantics for nonmono
tonic reasoning: A survey. In KR-B9, 1989. 

J. R. Quinlan. Unknown attribute values in in
duction. In ML-B9, 1989. 

R. Reiter. Nonmonotonic reasoning. Annual Re
view of Computer Science, 1987. 

R. Rivest. Learning decision lists. Ma chine 
Learning, 2(3), 1987. 

R. Rivest and R . Sloan. Learning complicated 
concepts reliably and usefully. In AAAI-BB, 1988. 

D. Schuurmans. Efficien t, Accurate, and Reliable 
Machine Learning. PhD thesis, Univ. of Toronto, 
Dept. Computer Science (forthcoming) 

G. Shackelford and D. Volper. Learning k-DNF 
with noise in the attributes. In COLT-BB, 1988. 

L. G. Valiant. A theory of the learnable. Com
munications of the ACM, 27(11), 1984. 



Unsupervised Learning of Planning Knowledge 

Bertrand Pelletier 
Druide Informatique 

4333 Ste-Catherine Quest, Bur. 270 
Westmount, Quebec 

H3Z 1P9 
Canada 

bertrand@binkley.cs.mcgill.ca 

Abstract 
This paper describes an approach to the problem of 
learning from observing experts' behaviour. The 
architecture of LEADER (LEArning DEsign 
Rules), an implemented system to realize this 
form of unsupervised and non-obtrusive learning, 
is discussed. The approach exploits techniques and 
representations from machine learning and 
planning to address the problem. Starting from an 
incomplete theory of goals and plans used by the 
experts to solve problems, and using several 
instances of experts behaviours not fully 
explained by this theory, missing knowledge is 
learned to augment the theory, making it adequate 
to explain a larger part of the behaviours. The 
learning methods were applied to two domains -
entity-relationship model design and office tasks -
where favorable empirical results have been 
obtained and are described. 

1 Introduction 

Leaming by observing an expert at work is a natural way to 
acquire expertise. This type of learning is most convenient 
in situations where the expert does not want to be 
disturbed and the apprentice cannot validate immediately 
his or her (or even its) assumptions and findings through 
actual experience. These situations are the ones that 
motivate the realization of the present learning system. 

When addressing problems related to the automation 
of knowledge acquisition, one may list four classes of 
problems [Levi, Perschbacher et al., 1988]: 

• construction of an initial knowledge base 
• improvement of the existing knowledge 
• automatic adaptation of the system to the style 

and to the level of expertise of the human user 
• elaboration of principles and techniques for 

building intelligently behaving systems. 
Each of these classes contains numerous difficult 

problems. The second class of problems, the improvement 
of the information used by a knowledge-based system, is 

Stan Matwin 
Ottawa Machine Learning Group 
Department of Computer Science 

University of Ottawa 
Ottawa, Ontario 

KlN 6N5 
Canada 

stan@csi. uotta wa.ca 

known as the knowledge base refinement problem, a special 
case of the theory revision problem [Ginsberg, 1989] 
dealing with pathologies of the domain theory such as 
incorrectness, inconsistency, incompleteness and 
inefficiency. 

LEADER (LEArning DEsign Rules), the learning 
system we propose here is to acquire new plans used by 
some agent (typically a human expert) solving problems in 
a given domain. Its learning capabilities rely on the 
following assumptions: 

• the agent's behaviour is driven by goals 
• the agent creates and executes hierarchical plans to 

achieve desired goals 
• the system learns without interacting with the 

agent 
The initial knowledge base is assumed to be correct and 

consistent; the learning system focuses primarily on the 
problems of incompleteness and inefficiency: acquiring new 
plans to perform tasks. However, because acquired plans can 
be overgeneralized, correctness and consistency are also of 
concern. 

Some existing learning systems address similar 
problems to the ones involved in LEADER. Explanation -
based learning (EBL) systems [DeJong and Mooney, 1986] 
share large similarities with LEADER as LEADER uses 
EBL as a component. However, in contrast with these 
systems where learning occurs when training instances are 
fully explained (by a domain theory assumed to be 
complete), LEADER learns only when the domain theory 
fails to explain the instances: it learns the missing 
elements. 

Because the learning system acquires its knowledge by 
observing only the agent's interactions (i.e. the sequence of 
actions performed by the agent), there are no disturbances 
of the agent during the interaction with the given domain. 
This contrast with Learning Apprentice Systems (LAS). 
[Mitchell and Mahadevan, 1990]. such as ARMS [Segre, 
1988]. a system for robot control that requires that the 
teacher guides the robot arm through a series of movements 
that achieve a given goal.CLERK [Campbell, 1990], a 
system that learns tasks accomplished by an electronic-mail 
system user by recording the task and the corresponding 
sequence of actions taught by the user, or LEAP [Mitchell 

107 



-I 

and Mabadevan, 1990], a system designed to acquire new 
knowledge in VLSI by observing design steps. 

The organization of the paper is as follows: Section 2 
presents the architecture of the system and introduces 
concepts needed for its description and analysis. Section 3 
presents the system's kernel: its learning component. An 
evaluation of the system is described in Section 4, and 
Section 5 presents our conclusion. 

2 Architecture and basic concepts 

The learning system is showed Figure 1; it contains four 
components, the Observer, theExecutor, theAnalyzer and 
the Learner. Thelast three components form LEADER 
(the broken line box). 

Agent 

.... LEADER 

Figure 1. Architecture of the learning system. Ovals 
represent external sources of information, parallelograms 
represent processes, rectangles represent data used or 
produced by processes, and arrows represent data flow. 

Here is how the process goes. First, the Observer 
watches the agent interaction, with no disturbance, and 
produces the ordered sequence of actions corresponding to 
that interaction. LEADER does not perform planning; it 
observes the user. Consequently, some of the problems of 
planning (e.f. conflicting goals) never arise. Then, the 
Action Executor simulates in order each of the actions of 
the provided interaction and produces the sequence of 
corresponding states. Next, the Analyzer uses the actual 
domain theory (the one that is to be refined) to build the 
goal graph, a structure showing how each of the goals 
achieved by the agent is decomposed into subgoals and is 
ultimately realized by individual actions. Finally, the 
Learner, the component where all the learning is performed, 
uses the actual domain theory (and possibly also the 
enhanced theory) to analyze the goal graph for generating 
proposals to explain parts of the interaction that were left 

that were left unexplained by the actual theory. After the 
system has been functioning for a while, a human expert in 
the domain examines the accumulated proposed knowledge 
to verify it and add the filtered knowledge to the actual 
domain theory. 

Below, we introduce the basic structures and notions on 
which we have founded the design of LEADER. 

The basic representational components of our approach 
are: the goals (the specification of the properties the agent 
wants to achieve), the interaction (the sequence of actions 
executed), the hierarchical plan (the hierarchy of agent's 
goals and subgoals, along with the corresponding plans and 
sub-plans), the states resulting from the execution of the 
actions, and so forth. 

To represent the states, the basic operators and the 
hierarchical plans created, the approach uses a variation of 
the TWEAK formalism [Chapman, 1987]. In TWEAK, each 
operator is represented by a precondition (defining, as for 
STRIPS [Fikes and Nilsson, 1971], its condition of 
applicability) and a postcondition (defining the strongest 
condition that is true in the state resulting from the operator 
application). The TWEAK formalism leads to efficient 
planning ([Chapman, 1987; Kambhampati and Hendler, 
1990]), but its main advantage is the STRIPS assumption 
voiding the specification of frame axioms, i.e., the 
requirement that the DEL and ADD lists of an operator 
specify everything about the initiating state that is altered by 
the execution of the operator. For complex domains, such an 
enumeration can be tedious, or even impossible. 

One way to overcome the problem consists of 
separating the conditions into two classes, the primitive (or 
primary) and the inferential (or secondary) literals. As 
[Waldinger, 1977] pointed out, using inferential literals 
makes easier the description of operators, allows more 
efficient updates of the states, and makes possible the 
introduction of new relationships between literals without 
modifying the operators' descriptions. We thus augmented 
the TWEAK representation with DEL and ADD lists (while 
keeping the postcondition component), and we allow the 
presence of inferential literals: it allows the use of an 
axiomatic theory where axioms are implication formulas in 
the disjunctive normal form. 

As Figure 2 shows, to each action ai of the interaction 
corresponds an (ordered sequence ot) states Si. A goal G is 
expressed by a pair of conditions <Po,Qo> specifying what 
holds before and after its achievement, respectively. 

108 

I : aO al a2 
se so S3 

Figure 2. An interaction with its corresponding 
states. se is the empty state and ao represents the 
action that creates So, the state in which the agent 
begins the interaction. The figure also illustrates 
how the goal <Po,Qo> is achieved by the 
execution of the action a2 whose precondition and 



of the action a2 whose precondition and 
postcondition are P and Q, respectively. 

A hierarchical plan <P,H,Q> achieves a goal G = 
<Po,Qo> if P implies Po and Q implies Qo., where H is a 
hierarchical plan (i.e. a sequence of subgoals) that achieves 
the goal G. In such a case, the hierarchical plan is called a 
goal rule and is represented by G <= <P,H,Q>. 

These definitions are "conservative" in the sense of 
preferring having an eventually too strong precondition or 
too weak postcondition rather than having an incorrect 
description. One can look at data-flow analysis as an 
analogy, where useful properties of a sequence of statements 
are computed, and where to be "conservative" means to 
prefer missing optimization opportunities to guarantee no 
changes in what the program computes. 

3 Learner: the learning component of 
LEADER 

An interaction is either totally or partially explained by the 
current set of goal rules. We focus on the second case, when 
learning can occur to explain the unexplained parts. For 
instance, new goals and new hierarchical plans can be 
inferred. The following outlines our approach to this task: 

• identify a goal for which the actions contribute to 
the realization 

• identify the hierarchical plan realizing this goal 
identify the precondition and postcondition of this 
hierarchical plan. 

3.1 Identifying a candidate goal 

A given interaction may achieve a large number of goals. 
Mechanisms must be used to cut down the number of goals 
and go~l rules proposed by the Learner; these filtering 
mechamsms must ensure that (most) good candidates are not 
thrown away. 

The easiest way to identify good candidate goals is by 
having the goal provided by the agent as a component of the 
training instance. This is the approach taken in typical 
learning systems such as [DeJong and Mooney, 1986; 
Segre, 1988; Mitchell and Mabadevan, 1990; Hammond, 
1989]. 

The main limitation of this approach is precisely that 
the goal must be provided: without this focus of interest, 
learning (if possible) is restricted. An alternate way to 
identify goals is by having a predetermined list of 
"meaningful" goals to look for, a list usually provided by 
experts when the domain theory is created. The major 
problem with this approach is that the list is static: the 
searching method never looks for goals that are not in the 
list, and thus never learns new goals. 

A more useful and challenging approach consists in 
allowing the learning system to create new goals when those 
present in the domain theory are inadequate to explain the 
agent's behaviour. For instance, a promising method for 
identifying new candidate goals might rely on looking at 
consequences and prerequisites of unexplained actions or 
partially realized tasks. Indeed, failures to explain an 
interaction occur either because the hierarchical plan used by 
the agent is unknown, or because the goal is unknown (or 

both). So, focussing on unexplained parts is a good heuristic 
approach to identify new goals. 

The approach taken in LEADER is neither the creation 
of new goals nor a search through a list of provided goals: it 
is an hybrid of the two. As described below, although a list 
of goals in provided by the domain theory, LEADER does 
not directly process it: LEADER first looks for goal rules 
that are partially realized1 to get clues about good candidate 
goals. Then, it uses these candidate goals to propose new 
goal rules. 

The general method described next for identifying goals 
also provides information on what part of the interaction 
achieves them. There are several differences between the 
approach presented here, and the traditional techniques such 
as EBL and backward chaining inference. Firstly, in our 
representation we have in fact two domain theories: a theory 
of goals decomposed into subgoals and/or actions, and the 
theory of inferential literals. Secondly, the theory of goals 
is assumed to be incomplete here, and the incompleteness is 
handled with heuristics; there is no incompleteness allowed 
in EBL. Thirdly, EBL determines the weakest precondition 
for satisfying a given goal, while our method determines 
both the precondition of a goal and its postcondition after 
the execution of the interaction. The method (illustrated by 
Figure 3) is the following: 

Given: • a domain theory 
• an interaction I 
• the goal graph corresponding to I 

Build: • a good candidate goal G' = <P',Q'> 
• a sub-interaction I' of I realizing G' 

Method: 
1. Process each goal rule of the domain theory to 

find one (say, G <= <P,H,Q>, corresponding to 
the goal G = <Po,Qo>) that is partially 

satisfied! by I. 
2. Determine a sub-interaction I" corresponding to 

this goal rule. Let I" be the sub-interaction of I 
delimited by the first and the last of the action of I 
contributing to the realization of G. Let Sp and SQ 
be the states occurring before the first action and 
after the last action, respectively. 

3. Determine if the goal and the precondition and 
postcondition of the goal rule are achieved in the 
boundaries states, i.e. compute the boolean values 
P(Sp). Po(Sp). Q(SQ) and Qo(SQ). 

4. Determine G' and I'. According to the four 
values computed in Step 3, and using the partial 
realization of the goal rule, apply heuristics Hl or 
H2 described below to propose the goal G', along 
with a sub-interaction I' of I (delimited by the states 
SP' and SQ•) that achieves G'. 

1 A goal is partially satisfied, or partailly realized, if some of 
its subgoals are satisfied, and some are not The ratio of 
satisfied goals to the total number of goals is the 
measure of partial satisfiability. 

109 



. . . . 1 

. I 

G 

I 
Figure 3. Illustration of the general algorithm. 

To complete the refinement of Step 4 of the above 
generic algorithm, we now present heuristics Hl and H2 
used by LEADER for proposing a candidate goal G'. The 
heuristic methods can be summarily described as follows 
(Figures 4 and 5): 

I 
Figure 4. Illustration of Learning Heuristic Hl. 

GG' 
,, ,,;, 

,, ,' 'I ,,,,,:::,,;' .\. 
,,' ,' . , 

·s;. · · ·sP· · · · ·s~ 
t------"I I" 

I' 

I 
Figure 5. Illustration of Learning Heuristic H2. 

Learning Heuristic HI : 
learning a new plan for a goal when the corresponding 

goal rule is partially satisfied. 

This method can be applied when the hierarchical 
plan H' of a goal rule G' <= <P',H',Q'> is only 
partially realized, although the corresponding goal 
G = <Po,Qo> is realized. The method is the 
following: 

• starting from Sp (resp. SQ ), the state 
corresponding to the leftmost (resp. rightmost) 
direct action appearing in the partially realized goal 

rule, go to the left (resp. to the right) to find a state 
SP' where Po is satisfied (resp. state SQ' where Qo 
is satisfied). 

• the result is a goal G' = G = <Po,Qo> with the 
boundaries (Sp• and SQ•) of an interaction I' that 
achieves it 

Learning Heuristic H2: 
learning a new hierarchical plan for the first task of a 

goal rule. 

This method can be applied when the only missing 
task of a partially realized goal rule is the first one 
(leftmost). The assumption is the following: if the 
agent executed all but one of the tasks of a known 
goal rule, the subgoal of the missing task was 
probably achieved (because required in the known 
goal rule) in a way different as than expected. So, 
there might be a learning opportunity for acquiring 
a new hierarchical plan to achieve the subgoal in 
question. The method is as follows: 

• identify the subgoal G' = <P',Q'> corresponding to 
the missing subtask 

• starting from the state corresponding to the first 
(leftmost) direct action appearing in the partially 
realized goal rule, go backward (to the left) to find a 
state So· where Q' is satisfied (to cut down the 
search time while processing the states backward, a 
maximal search distance is specified) 

• starting from the state preceding SQ', go backward 
again to find a state SP' where P' is satisfied. 

• the result is a goal G' = <P' ,Q'> with the 
boundaries (Sp• and So•) of an interaction I' that 
achieves it 

Now that a candidate goal G' has been identified along 
with an interaction I' that achieves it, the next task is to 
extract from I the components relevant to G. This is the 
topic of the following section. 

3.2 Identifying the hierarchical plan realizing a goal 

This section briefly describes the second step of the process 
used to learn goal rules from unexplained actions, that is to 
say, the identification of the hierarchical plan involved in the 
realization of a goal. The identification first determines the 
relevant actions, then the relevant high level tasks, and 
finally the general (un-instantiated) hierarchical plan. 

Rather than identifying relevant actions through a blind 
method such as the loose-ends heuristic used by cognitive 
scientists [Lewis, 1988] ("if an action cannot be explained, 
and if an expected command is not realized, then assume that 
the unexplained action is linked to the unrealized 
command"), LEADER employs a method more similar to 
goal regression: starting with the actions that directly 
contributed to achieve Qo, it finds the actions whose 
postcondition contributed to achieve the precondition of the 
former actions, and so on, up to the action executed in the 
state Sp•. 

The previous step results in an interaction I' (delimited 
by the first and last of these contributing actions) achieving 
G. However, I' might not be the most appropriate 

110 



hierarchical (readable and informative) because it is flat: the 
high level tasks are expanded in I' and are lost To recover 
these high level goals, the goal graph is searched for trees 
whose leaves are actions of I'. These actions are then 
replaced with the root of these trees to produce a more 
structured hierarchical plan H'. This process is repeated on H' 
until no more actions can be replaced with high level tasks. 
The resulting H' is an instantiated hierarchical plan realizing 
the goal G. 

The last step is the generalization of H'. This is done 
simply by applying the inverse of the instantiation used to 
the interaction. Note that a more powerful generalization 
technique might be used; however, the technique used must 
ensure that the hierarchical plan obtained still achieves the 
goal G. 

3.3 Identifying a candidate goal 

Now that the hierarchical plan is identified, its precondition 
and its postcondition are computed. The two problems can 
be formalized as follows: 

• given a hierarchical plan, determine what must have 
held before its execution to allow its execution 

• given a condition and a hierarchical plan executed 
over this condition, determine what holds after the 
execution. 
The first problem is known as the projection problem 

[Elkan, 1989]; the second one is a version of the 
retrojection problem [ibid] (the determination of what must 
have held before the execution of a hierarchical plan, given 
what holds after it). 

An efficient solution (in time and space) for both 
problems in the propositional case (in the absence of 
inferential literals) is described in [Pelletier and Matwin, 
1992]. The idea is to reduce the computation of the 
conditions to operations on sets, and then to use bit vectors 
for representing sets. Solution for the general case of 
inferential literals can be found in [Pelletier, 1993]. 

4 Experimental verification 

In previous sections, we have described general methods to 
acquire knowledge, in an unsupervised manner, to enhance 
the domain theory of a knowledge-based system. 
This section illustrates the applicability of ideas described in 
previous sections. Two following hypotheses are verified 
experimentally: 

• the learning system can be used to increase 
significantly the relative coverage of a domain 
theory, that is to say, the percentage of actions 
(over the interaction) explained by the domain 
theory. An action is explained if it is a direct 
action, i.e., it is a leaf of a goal tree (the action is 
part of a goal rule used to explain the interaction). 

• the learning system can propose interesting 
enhancements for domain theories of practical 
domains. 
Whereas the first hypothesis, the coverage, refers to a 

quantitative measure of LEADER, the second hypothesis is 

a qualitative evaluation of the potential of the learning 
methods. 

To test the hypotheses, we have implemented a version 
of LEADER in Prolog and have conducted an experiment in 
two different domains: the execution of office tasks (to 
verify the first hypothesis), and the design of entity
relationship models (to verify the second one). The 
experiments are described in the next two sub-sections. 

4.1 Generality of the domain theory 

In order to evaluate LEADER's potential to increase the 
relative coverage of a domain theory, the protocol shown 
below was used. The main components of this protocol are 
elaborated in subsequent sections. 

1. Identify an appropriate domain and its domain 
theory T (basic goals, literals, commands and 
hierarchical plans). 

2. Define a training interaction !training for the 
domain identified in Step 1. 

3. Run LEADER over I training for producing a new 
domain theory Ttraining· 

4 . Define new (testing) sets of interactions ltesting,k, 
preferably independent ones. 

5. Compute the relative coverage of the domain theory 
T (i.e., before learning) over each of the interaction 
ltesting,k· Do the same with the domain theory 
Ttraining (i.e., after learning). 

6. Compute the relative coverage of the domain theory 
Ttraining (i.e., after learning) over each of the 
interaction ltesting,k and compare the coverage 
before and after learning. 

The first step in the application of this protocol 
consists in selecting an appropriate domain. Because experts 
are often difficult (and costly) to find, and to automate the 
generation of training and testing instances, a tempting 
approach is to choose an artificial domain. To explore this 
avenue, we looked at the artificial domains described in 
[Kambhampati and Jengchin, 1993]. However, their lack of 
meaningfulness, their poor use of hierarchical goals and their 
constraints (or absence of constraints) on what and how 
actions can be grouped to achieve goals made them 
inappropriate for our needs. After considering suitability of 
some other artificial domains (such as video games), we 
have developed the Office Tasks domain. It describes the 
tasks, goals and actions arising in a typical office involving 
persons, information and physical tools. In this domain, a 
given number of persons have information that they want to 
exchange. This information takes the form of letters, or of 
any verbal information transmittable by phone (such as 
phone and fax numbers). For instance, to satisfy the goal 
'transmit information', communication must be established 
(using a fax machine or a phone), the information must be 
transmitted, and the connection must be broken . 

We selected this domain because it is interesting and 
meaningful, it has hierarchical goals and plans, there are 
many different ways to achieve some goals, and finally it is 
easy to judge the appropriateness of the knowledge produced 
by the learning methods. 

The experiments were conducted over two different 
initial states: one involving 3 persons, 3 fax machines, 3 

111 



I 

· ' 

I 
• I 

I 

phones and 3 letters, and a more complex one involving 6 
persons, 6 fax machines, 6 phones and 6 letters. For each 
initial state, experiments with interactions of length 50 to 
300 were performed. For the more complex initial state, 
experiments were also performed with interaction's length of 
600 and 900. For each different length and initial state, 1 
training interaction and 10 testing interactions were 
randomly2 generated, the knowledge produced by the training 
interaction was added to the initial domain theory and used 
on the testing sets. The statistics were collected, and the 
entire operation was repeated 20 times, each time with a new 
training interaction. 

In addition to the coverage measurement, we were also 
interested in the representativeness of the interaction' actions 
(in comparison with the total number of possible actions, 
for a given initial state). Thus, the variety parameter, 
defined as the ratio of distinct actions appearing inside an 
interaction over the total number of possible actions for the 
given initial state, was also measured. 

In order to examine the variety, we have recorded, for 
each initial state, the proportion of distinct actions present 
in the interactions (distinct/possible). Our experiments 
[Pelletier, 1993) show that the proportion of distinct actions 
increases (to converge toward 100%) with the interaction 
length, indicating an increase of representativeness of the 
actions. 

The relative gain of coverage is presented in Figure 6. 
The graph shows the results for the two initial states. The 
observed gain varies from 5% to 13%. The second initial 
state provides a higher relative gain, indicating a better 
opportunity for learning. 

u 14 
: 
~ 12 

8 
'cl 10 

-~ ., 
u 

-~ 
] 
i:! 

I I I I I I I I I I I I I I I 

Length rl inlcractioos 

1 - ' - !nitiil SIIIC 1 --0--!nitial Stale 21 

Figure 6. Relative gain of coverage for the two 
initial states. 

As the results concerning the relative gain of coverage 
are statistically significant, the first hypothesis is verified: 
learning resulted in quantitatively important generalization 
of the domain knowledge, and a variety of available and 
observed actions was exploited during learning. 

2 With the biais that each interaction was executable over the 
initial state, and that none contained absurd actions that 
nobody executes in the real life (such as "P says something 
to P", "P phones P"). 

4.2 Application to a practical domain 

This section presents an experimentation conducted to 
evaluate the second hypothesis, i.e., LEADER's capability 
for producing interesting goal rules. LEADER was used to 
enhanced Modeller, an assistant to a database designer (a 
complete description is provided in [Tauzovich, 1990]). As 
described below, the intended use of LEADER in this 
domain is to enhance the design rules of one of the 
Modeller's components: the expert system responsible of 
assisting the designer in the creation of entity-relationship 
(ER) models . 

LEADER was applied at the conceptual design level: 
the enhancement of expert system's rules for helping the 
design process, checking for potential design flaws, etc. This 
level offers the best potential for learning because the resuit 
of the interaction with the user depends largely on her 
expertise (in contrast, most of the tasks of the two other 
expert system components can be automated). 

To illustrate the application of LEADER to the 
conceptual design expert of the Modeller, consider the 
following high-level goal: 

gen_entity(A,B,G) = "create a more general entity by 
creating a new entity and a dependency relationship". 

The definition of the goal along with the associated part 
of the domain theory is provided in Figure 8 (in particular, 
the definition of a dependency relationship that is either a 
role or a characteristic relationship). Notice that in this 
initial domain theory, the only way known to create a 
dependency relationship is to create a role link, although a 
characteristic link is also a dependency relationship. An 
example of an instantiation of the first goal is pictured in 
Figure 7: to generalize the entity teacher by creating the 
more general entity dept_ employee and by transferring the 
old link related between teacher and department to the 
new entity . 

112 

teacher 

A 

teacher 

A 

(role) 

G 

dept_employee 

Delore 

(related) 

0 
After 

department 

B 

department 

B 

Figure 7. Graphical representation of the goal 
gen_entity(A,B,G) shown in Figure 8. 



/* Definition of two goals * / 

gen_entity(A,B,G) = < Po, Qo >, where 

Po= entity(A) A entity(B) A -,entity(G) 
/\ relation(A, B, R) 

Qo = entity(A) A entity(B) A entity(G) 
A -,related(A, B) A relation(G, B, R) 
A depend_on(A, B) 

make_dependent_on(A,G) = 
< entity(A) A entity(G) A -,depend_on(A,G), 

entity(A) A entity(G) /\ depend_on(A,G) > 

/* Generalization of a relationship by creating a role 
relationship * / 

gen_entity(A,B,G) <= 
< entity(A) A entity(B) /\ -,entity(G) 

A relation(A, B, R), 

( com(addE(G)), 
make_dependent_on(A,G), 
com(addR(G, B, R)), 
com(delR(A, B)) ), 
entity(A) A entity(B) A entity(G) A-,related(A, B) 

A relation(G, B, R) A depend_on(A, G) > 

/* Creation of a dependency relationship by creating a 
role relationship * / 

make_dependent_on(A,G) <= 
< entity(A) A entity(G) A -,related(A,G), 

( com(addR(A, G, role))), 

entity(A) A entity(G) A relation(A,G,role) > 

/* Some inferential literals*/ 

related(Entl, Ent2) <= relation(Entl, Ent2, _). 
depend_on(Entl,Ent2) <= relation(Entl,Ent2,role). 
depend_on(Entl ,Ent2) <= relation(Entl ,Ent2,char). 

Figure 8. Part of the initial domain theory for 
Modeller. The figure shows two goals 
(gen_entity(A,B,G) and make_dependent_on(A,G)), 
a goal rule for achieving each of them, and the 
definition of some inferential literals. 

Then, LEADER was ran over an interaction (pictured in 
Figure 9) exhibiting a new hierarchical plan for achieving 
the goal gen_entity(A.B,G): the generalization of an entity 
by creating a characteristic relationship. Note that the 
interaction ~lso contained irrelevant actions to the goal, such 
as the creation of the entity university. 

student 
university 

(role) 

teacher 

A B 

department 
(char) 

G 

dept_employee 

Figure 9. A new way of achieving the goal G = 
<Po,Qo>. 

Using Learning Heuristic HI (learning a new 
~ierar~hical pl~ for a goal.when the corresponding goal rule 
1s partially satisfied - Section 3.1), LEADER identified that 
the goal G = gen_entity(A,B,G) was achieved by the 
partially realized corresponding goal rules. Then, a new goal 
rule for G was proposed (this time by creating a 
characteristic relationship), as shown in Figure 10. This rule 
is something a designer may use to obtain a more suitable 
model than the model of Figure 7. Consequently, it should 
be explainable by the domain theory. The initial domain 
theory did not contain this rule, which has been learned by 
LEADER. LEADER can therefore, as was postulated in 
Section 4, learn useful rules. The same has also occurred in 
the office tasks domain, where, e.g., LEADER has learned 
that instead of redialing the phone number in order to 
communicate with same agent as previously, it is enough to 
press the 'repeat' button. 

gen_entity(A,B,G) <= 
<entity(A) /\ entity(B) /\ -,entity(G) 

A -,related(G,B) A -,related(A,G) 
A relation(A, B, R), 

( com(addE(G)), 
com(addR(A,G,char)), 
com(addR(G, B, R)), 
com(delR(A, B)) ), 

entity(A) /\ entity(B) /\ entity(G) /\ -,related(A, B) 
A relation(G, B, R) 
A relation(A G char)> 

Figure 10. A goal rule produced by LEADER. 

To summarize, this section has illustrated the 
application of LEADER on the domain of databases design 
to show h.ow LE~E~ can enh~nce an initial domain theory 
about ent1ty-relat1onsh1p modelling by producing interesting 
and useful rules. 

5 Conclusion 

We have presented an approach to learning useful extensions 
to an existing body of domain knowledge from unobtrusive 
observation of an expert performing tasks in that domain. 
Our approach combines techniques from learning and 
planning to produce a more general theory of the domain 
than the one given at the outset. The learning component is 

113 



I 

based on two heuristics that we have proposed. We have 
shown experimentally that: 1) the heuristics perform ~ 
expected, increasing the explanatory power of the ?omam 
theory, and that 2) the heuristics produce ~owled~e 1~ fo~ 
of goal rules that are useful in a real-hfe apphcatton m 
which LEADER learns rules of conceptual database design. 

The work presented here puts forward a number of 
additional questions which could be investigated in the 
theoretical and experimental framework that we have 
developed. Does the approach extend to other deficiencies of 
the domain theory, e.g. inconsistency? How could a 
satisfactory theory be learned from its very scant initial 
version or even from scratch? What sequences of 
interacti,ons during training would result in faster learning? 
Is the number of rules learned by LEADER and presented for 
user's approval reasonable? Does it converge to a level 
determined by the quality of the initial theory? What steps 
could be taken to automatically pre-validate the rules 
produced by LEADER (see [Pelletier, 1993] for a discussion 
of the last question). 

Acknowledgements 

The work described here has been supported by the Natural 
Sciences and Engineering Research Council of Canada, the 
Government of Ontario (URIF and OTF Programs), the 
Department of Systems and Computer Engineering of 
Carleton University, the Departement d'informatique de 
l'Universite du Quebec a Hull, Cognos Inc, Canada Centre 
for Remote Sensing, and Druide Informatique Inc. 

References 

Bruce Campbell. Office Clerk 11, Final year project report, 
University of Calgary. 

[Chapman, 1987] David Chapman. Planning for 
Conjunctive Goals. Artificial Intelligence, 32:333-
377, 1987. 

[DeJong and Mooney, 1986] G.F. Delong and R. Mooney. 
Explanation-Based Leaming: An Alternative View. 
Machine Learning, 1:145-176, 1986. 

[Elkan, 1989] Charles Elkan. Incremental, Approximative 
Planning, Rapport KRR-TR-89-12, Department of 
Computer Science, University of Toronto, November 
1989. 

[Fikes and Nilsson, 1971] Richard E. Fikes and Nils J. 
Nilsson. STRIPS: A New Approach to the Application 
of Theorem Proving to Problem Solving. Artificial 
Intelligence, (2):198-208, 1971. 

[Ginsberg, 1989] Allen Ginsberg. Knowledge Base 
Refinement and Theory Revision. In Proceedings of the 
Sixth International Workshop on Machine Learning, 
pages 260-265, Ithaca, N.Y., 1989. Morgan Kaufmann. 

[Hammond, 1989] Kristian J. Hammond. Case-Based 
Planning: Viewing Planning as a Memory Task. 

Perspectives in Artificial Intelligence, vol. 1. Academic 
Press Inc., 1989. 

[Kambhampati and Hendler, 1990] Subbarao Kambhampati 
and James A. Hendler. A Validation Structure Based 
Theory of Plan Modification and Reuse. Artificial 
Intelligence, 1990. 

[Kambhampati and Jengchin, 1993] Subbarao Karnbhampati 
and Chen Jengchin. Relative Utility of EBG Based Plan 
Reuse in Partial Ordering vs Total Ordering Planning. 
In Proceedings of the AAAI-93, 1993. 

[Levi, Perschbacher et al., 1988] Keith R. Levi, David L. 
Perschbacher and Valerie L. Shalin. Learning Plans and 
Information Requirements for Pilot Aiding. In 
Proceedings of the Third Knowledge Acquisition fo r 
Knowledge-Based Systems Workshop, Banff, Canada, 
1988. 

[Lewis, 1988] Clayton Lewis. Why and How to Learn ~~y: 
Analysis-based Generalization of Procedures. Cogmtzve 
Science, 12:221-256, 1988. 

[Mitchell and Mabadevan, 1990] Tom M. Mitchell and 
Sridbar Mabadevan. LEAP: A Learning Apprentice for 
VLSI Design. In Machine Learning, vol. III, pages 
271-289, 1990. 

[Pelletier, 1993] Bertrand Pelletier. Unsupervised Learning 
From a Goal-Driven Agent. Ph. D. Thesis, Department 
of Systems and Computer Engineering, Carleton 
University, 1993. 

[Pelletier and Matwin, 1992] Bertrand Pelletier and Stan 
Matwin. Building Macros in Deterministic and Non
Deterministic Domains. In Proceedings of the Ninth 
Canadian Conference on Artificial Intelligence, pages 
15-21, Vancouver, B.C., 1992. Morgan Kaufmann. 

[Segre, 1988] Alberto Segre. Machine Learning of Robot 
Assembly Plans. Kluwer Academic Publishers, 1988. 

[Tauzovich, 1990] Branka Tauzovich. An Expert System for 
Conceptual Data Modelling. In Entity-Relationship 
Approach to Database Design and Querying, pages 
205-220. Elsevier Science Publisher, B.V. [North
Holland], 1990. 

[Waldinger, 1977] Richard J. Waldinger. Achieving Several 
Goals Simultaneously. In Machine Intelligence 8: 

114 

Machine Representations of Knowledge, pages 94-
136. Ellis Horwood, Chichester, UK, 1977. 



IDENTIFYING THE TRIGGER FEATURES FOR 
HIDDEN UNITS IN A PDP MODEL OF THE EARLY VISUAL 

PATHWAY 

Michael R.W. Dawson, Stefan C. Kremer and 
Timothy N. Gannon 

Biological Computation Project1 

Department of Psychology & Department of Computing Science 
University of Alberta 
Edmonton, Alberta 

ABSTRACT 

Traditionally, PDP networks have been 
interpreted by examining patterns of connection 
weights. We propose an alternative pattern-based 
method. in which the trigger feature -- the 
stimulus that produces an optimal response in a 
processing unit -- is identified. This trigger 
feature can be identified for any size of network 
without an iterative search through a pattern 
space. We demonstrate the viability of this 
method by using it to interpret the structure of a 
PDP network trained to emulate certain aspects 
of early form perception. When the output units 
of this network are trained to respond like 
complex cortical cells, our trigger feature rule 
reveals that a significant number of hidden units 
develop trigger features that are characteristic of 
simple cortical cells. 

THE NEURON DOCTRINE 

For over half a century, neuroscientists have at
tempted to understand the visual system by mapping its re
ceptive fields. This work has shown that (i) many neurons 
in the visual pathway have a retinal receptive field that de
fines a particular "trigger feature" to which these neurons re
spond optimally, and (ii) the more central the neuron, the 
more complex and abstract the trigger feature is likely to be 
(see Kandel, Schwartz & Jessel, 1991, Chaps. 28 - 30). 

These results led Barlow (1972) to propose a neu
ron doctrine for perceptual psychology. The primary impli
cation of the neuron doctrine is that in order to intepret the 
role of specific cells in the visual system, one must find the 
stimulus pattern which best matches a cell's receptive field, 

1This research was supported by NSERC Operating Grant A2038 
and NSERC Equipment Grant 46584 awarded to the first author, 
by an NSERC Postgraduate Scholarship awarded to the second 
author, and by an NSERC Undergraduate Research Assistanship 
awarded to the third author. Correspondence can be addressed to 
Dr. Michael Dawson, Biological Computation Project, Department 
of Psychology, University of Alberta, Edmonton, Alberta, 
CANADA T6G 2E9. E-mail: mike@psych.ualberta.ca 

and which thus produces maximum cell activity. 

Unfortunately, this interpretive strategy is ex
tremely difficult to apply to complex biological networks, 
because an extremely large pattern space must be explored 
to find a cell's trigger feature. As a result, biological sys
tems are usually studied by trial and error (e.g., Hubel & 
Wiesel, 1962, p. 145), and this has led to considerable de
bate about whether particular features are optimal (e.g., De 
Valois, Albrecht & Thorell, 1978). 

THE TRIGGER FEATURE RULE 

In contrast, Barlow's (1972) interpretive strategy is 
extremely easy to apply to PDP networks. If a network uses 
monotonic activation functions, then the pattern of connec
tions fanning in to any network processor defines a unique 
trigger feature. This trigger feature can be identified for any 
size of network without an iterative search through a pattern 
space. 

Assume that a processing unit uses a monotonic ac
tivation function like the logistic, and computes its net input 
by summing the weighted signals fanning in from the con
nections that define its receptive field. The monotonicity of 
the activation function implies that the processor's maxi
mum activity will be generated when it receives the maxi
mum net input possible. This occurs when the highest pos
sible signal value is transmitted through each connection 
that has a positive weight, and the lowest possible signal 
value is transmitted through each connection that has a neg
ative weight. 

For example, consider a hidden unit connected to a 
set of input units that can adopt activation values that can 
range from O to 1. The trigger feature for this hidden unit is 
simply the activation pattern that transmits a l through ev
ery positive connection and a O through every negative con
nection fanning in to it. 

AN EXAMPLE APPLICATION 

Typically, PDP networks are interpreted by apply
ing techniques that analyse patterns of connectivity (for a re-

115 



"Complex Cells" 

Figure 1 
An illustration of the experimental network trained in both studies. In this network, each output 
unit is connected to every hidden unit ("simple cell"}, but each hidden unit is only connected to a 

3X3 array of input units ("receptors"). In each study a comparison network was also used. It was 
identical to the one illustrated above with the exception that each hidden unit was connected to 

every input unit. 

view, see Hanson & Burr, 1990). The ease of applying the 
neuron doctrine suggests an alternative, pattern-based ap
proach to interpretation: identifying the trigger feature for 
each network processor. However, the success of this ap
proach depends on two additional factors. First, while one 
might be able to quickly determine a processor's trigger fea
ture, the maximum response of this processor might still be 
extremely weak. and the processor may not play a major 
role within the network (cf. Mozer & Smolensky, 1989). 
Second, Barlow's (1972) neuron doctrine must apply to the 
network being interpreted. If processing units do not func
tion as feature detectors, as would possibly be the case for a 
network trained to approximate a function, then identifying 
trigger features would be unlikely to aid network interpreta
tion. 

On the one hand, several observations suggest that 
one domain in which both of these limitations may be 
avoided is the one for which Barlow (1972) originally pro
posed the neuron doctrine: vision. First, in spite of the in
creased attention being paid to distributed representations by 
neuroscientists (e.g., Georgopoulos et al., 1989; Richmond 
& Optican, 1992), many modem researchers still attempt to 
understand biological visual systems by identifying trigger 
features for individual cells (for reviews of this type of 
work, see Kandel, Schwartz & Jessen, 1991, Chap. 30; 
Maunsell & Newsome, 1987; Rolls, 1990). Second, the 
most successful attempts to relate the structure of trained 
PDP networks to that of biological systems have compared 
the receptive fields of individual processing elements (e.g., 

Zipser & Anderson, 1988). 

On the other hand, there are no guarantees that a 
PDP network trained to process visual stimuli will be gov
erned by the neuron principle. For example, Moorhead, 
Haig and Clement (1989) trained a network consisting of a 
5X5 array of input units, 2 or 3 hidden units, and 4 or 8 out
put units. The input units represented oriented bars and 
edges after they had been passed through centre-surround 
filters. The output units were trained to behave like simple 
cells, detecting particular orientations at specific input loca
tions. Moorhead et al hypothesized that the hidden units 
would develop centre-surround receptive fields because they 
were assumed to be analogous to cells in the lateral genicu
late nucleus. However, spotrnapping of the hidden unit re
ceptive fields failed to reveal this type of organization. 
Moorhead et al. concluded that there were substantial short
comings in the use of artifical neural networks to model the 
visual pathway. 

To test the usefulness of our rule for identifying 
trigger features, we adopted an approach analogous to that 
of Moorhead, Haig, and Clement (1989), and trained a PDP 
network to perform as a highly simplified model of early vi
sual processing. However, in contrast to Moorhead et al. 's 
decision to use a very small number of hidden units con
nected to every input unit, we adopted a more biologically 
plausible design in which a larger number of hidden units 
existed, but each of these received input from a very small 
number of processors. 

116 



~ 
A 

B 

D 
= 

Figure 2 
(A) A 3X3 array representing the receptive field of a hidden unit in one of the experimental 

networks. The trigger rule being applied in this study assumes that such receptive fields must be 
binary in nature -- each cell must be either on or off. As a result, each hidden unit has the 

potential to develop one of 512 possible receptive field organizations. (B) Of the 512 possible 
receptive fields, only these 12 were considered to be representative of simple cells. As is detailed in 

the text, a statistically significant number of these receptive fields were observed in the two 
· experimental networks. 

The network, which is illustrated in Figure 1, con
sisted of three layers of processors. The first layer was an 
llXll array of input units that served as the network' s 
"retina". The second layer was a 9X9 array of hidden units. 
Each of these hidden units was connected to a 3X3 receptive 
field of input units; neighbouring hidden units had overlap
ping receptive fields. This pattern of connectivity was used 
because it is unreasonable to assume that every cell in the 
visual pathway has direct connections to every retinal gan
glion cell. The third layer consisted of two output units. 
Each of these output units was connected to every hidden 
unit in the second layer of processors. During training, one 
of these units was trained to respond whenever a horizontal 
line segment was presented to the input units. The other 
unit was trained to respond whenever a vertical line segment 
was presented to the input units. As a result, these output 
units were intended to be analogous to complex cells in the 
visual cortex. 

In our first experiment, a very small stimulus set 
was used. Each stimulus was a bar that had a width of 1 
pixel and a length of 9 pixels, and had either a horizontal or 
vertical orientation. These stimuli were presented anywhere 
in the 9X9 centre of the 1 lXl 1 array of input units. As a re
sult, the total stimulus set consisted of 9 different horizontal 
bars, 9 different vertical bars, as well as a null stimulus in 

which no input units were activated. The horizontal output 
unit was trained to respond to any of the horzontal stimuli, 
the vertical output unit was trained to respond to any of the 
vertical stimuli, and both units were trained to not respond 
to the null stimulus. The generalized delta rule (Rumelhart, 
Hinton, & Williams, 1986) was used to train the network; a 
learning rate of 0.25 and a momentum value of 0.10 were 
adopted. The network converged after 797 iterations. 

With the input units serving as a simple retina, and 
with the output units trained to respond like complex cells, 
we hypothesized that processors in the hidden unit layer 
would adopt receptive fields analogous to those that charac
terize simple cells in the visual cortex. If binary inputs are 
presented to the first layer of processors, then only a small 
number of possible trigger features would characterize sim
ple cell responses in the layer of hidden units. These possi
ble trigger features are illustrated in Figure 2. After training 
the network, we applied the trigger feature rule described 
above to the receptive field of each hidden unit to determine 
whether any of these units had acquired a trigger feature that 
belonged to the set illustrated in Figure 2. 

The results of the first simulation indicated that 13 
of the 81 processing units in the hidden layer had acquired 
one of the trigger features illustrated in Figure 2, and thus 

117 



. . · I 

.A. 

~ I-l:<:>ri:z.<:>~ta1 r 

B 

, V~i.ca1 r 

C 

Figure 3 
A 3X3 receptive field is used to illustrate how horizontal and vertical systematicity was computed 
for the large receptive fields in the comparison networks. (A) A receptive field to be measured, as 

determined by the trigger feature rule. (B) The two dimensional array from A is strung out 
horizontally as a one dimensional array. A copy is made, shifted one unit to the right, and the two 

are correlated. We call this the lag-1 horizontal autocorelation. (C) The lag-1 vertical 
autocorrelation is computed for the same receptive field by stringing it out vertically. The vertical 

correlation would be substantially higher than the horizontal correlation for this particular 
receptive field, indicating that it has substantially vertical organization. 

could be characterized as being analogous to a simple cell. 
The binomial test (Siegel, 1956, pp. 36-42) indicated that 
the likelihood of observing this many simple cells due to 
chance alone was extremely small (p < 4.82e-08). 

A second experiment was performed to determine 
whether an increased population of simple cells would be 
observed if a larger stimulus set was employed. This second 
experiment was identical to the first, with the exception that 
stimulus bars were 1 pixel wide and only 3 pixels long. As 
a result, the entire stimulus set consisted of 63 horizontal 
bars, 63 vertical bars, and the null stimulus. The network 
converged after 4395 iterations. Again, the trigger feature 
rule described above was applied to interpret the function of 
each hidden unit. Of the 81 hidden units, 27 had developed 
a trigger feature that belonged to the set illustrated in Figure 
2, and thus was analogous to a simple cell. The odds of ob
serving this many simple cells due to chance are extremely 
small, as revealed by the binomial test (p < 5.98e-24). 

The results above indicate that the trigger feature 
rule reveals significant numbers of biologically plausible re
ceptive fields in the network. This result contrasts sharply 

with that of Moorehead, Haig, and Clement (1989). One 
reason for this difference might have been our decision to 
greatly restrict the pattern of connectivity between the hid
den units and the input units. To test this possibility, we 
trained a second network on the two sets of patterns. This 
comparison network was identical to the one illustrated in 
Figure 1, with the important exception that each hidden unit 
was connected to every input unit. The comparison network 
learned the small stimulus set in 108 iterations, and learned 
the larger stimulus set in 262 iterations. 

The trigger feature rule was applied to determine 
the receptive fields for each of the hidden units after train
ing. None of the receptive fields were consistent with a 
strict definition of a simple cell (i.e., we failed to produce 
any llXll analogs of the receptive fields illustrated in Fig
ure 2). We were concerned, however, that with these larger 
receptive fields our definition of a simple cell receptive field 
was too conservative. As a result, we quantified the hori
zontal and vertical systematicity of each receptive field to 
provide a more liberal definition. To do this, we took each 
receptive field (as determined by the trigger feature rule), 
strung it out horizontally and vertically, and computed lag-1 

118 



autocorrelations as illustrated in Figure 3. Prior empirical 
tests had shown us that, for example, a perfect horizontally 
organized receptive field would produce a horizontal corre
lation coefficient in the order of 0.90 and a vertical correla
tion coefficient in the order of -0.10. None of the receptive 
fields in the trained comparison networks approached this 
high level of systematicity. Collapsing over the two training 
sets, the best horizontal receptive field had a horizontal cor
relation coefficient of 0.63 and a vertical correlation coeffi
cient of -0.18. The best vertical receptive field had a verti
cal correlation coefficient of 0.50 and a horizontal correla
tion coefficient of -0.17. In short, it appears that one of the 
major reasons that the experimental networks produced sig
nificant numbers of simple cell receptive fields was the fact 
that connections between hidden units and input units were 
restricted. 

CONCLUSIONS 

There are two main conclusions to be drawn from 
the simulations described above. First, the trigger feature 
rule that we have developed can be usefully applied when 
interpreting the structure of trained PDP networks. In two 
separate simulations, this rule revealed that a statistically 
significant number of hidden units had developed a biologi
cally plausible receptive field, responding to the types of 
trigger features that simple cells in the visual cortex respond 
to. Second, Moorhead, Haig and Clement's (1989) conclu
sion that PDP networks are not useful tools for the study of 
biological vision systems is clearly premature. When they 
used a very small number of hidden units, each connected to 
every input unit, spotmapping did not reveal receptive fields 
similar to neurons in the visual system. In contrast, with our 
more biologically plausible assumption of a larger number 
of hidden units, each with a small window on the input ar
ray, our more efficient trigger feature rule indicated a sub
stantial amount of structure consonant with biological net
works. 

REFERENCES 

Barlow, H.B. (1972). Single units and sensation: A neuron 
doctrine for perceptual psychology? Perception, 1, 
371-394. 

De Valois, R.L., Albrecht, D.G., & Thorell, L.G. (1978). 
Cortical cells: bar and edge detectors, or spatial 
frequency filters? In S.J. Cool & E.L. Smith 
(Eds.) Frontiers in visual science. New York: 
Springer-Verlag. (pp. 544-556). 

Georgopoulos, A.P., Lurito, J.T., Petrides, M., Schwartz, 
A.B., & Massey, J.T. (1989). Mental rotation of 
the neuronal population vector. Science, 243, 
234-236. 

Hanson, S.J., & Burr, D.J. (1990). What connectionist mod
els learn: Learning and representation in connec
tionist networks. Behavioral and brain sciences, 
13, 471-518. 

Hubel, D.H., & Wiesel, T.N. (1962). Receptive fields, 
binocular interaction and functional architecture in 
the cat's visual cortex. Journal of physiology, 
160, 106-154. 

Kandel, E.R., Schwartz, J.H., & Jessen, T.M. (1991). Prin
ciples of neural science, Third edition . New York: 
Elsevier 

Maunsell, J.H.R., & Newsome, W.T. (1987). Visual pro
cessing in monkey extrastriate cortex. Annual re
view of neuroscience, 10, 363-401. 

Moorhead, I.R., Haig, N.D., & Clement, R.A. (1989). An 
investigation of trained neural networks form a 
neurophysiological perspective. Perception, 18, 
793-803. 

Mozer, M.C., & Smolensky, P. (1989). Using relevance to 
reduce network size automatically. Connection 
science, 1, 3-16. 

Richmond, BJ., & Optican, L.M. (1992). The structure and 
interpretation of neuronal codes in the visual sys
tem. In H. Wechsler (Ed.) Neural networks for 
perception, V.1. Boston: Academic Press. 

Rolls, E.T. (1990). Principles underlying the representation 
and storage of information in neuronal networks in 
the primate hippocampus and cerebral cortex. In 
S.F. Zometzer, J.L. Davis, & C. Lau (Eds.) An in
troduction to neural and electronic networks. San 
Diego: Academic Press. 

Siegel, S. (1956). Nonparametric statistics for the be-
havioural sciences. Toronto: McGraw-Hill. 

Zipser, D. & Anderson, R.A. (1988). A back-propagation 

119 

programmed network that simulates response 
properties of a subset of posterior parietal neu
rons. Nature, 331, 679-684. 



. J 

. . I 
. . I 

• I 

120 



ARTSTAR: A Supervised Adaptive Resonance Classifier 

Talib S. Hussain and Roger A. Browse 
Department of Computing and Information Science 

Queen's University, Kingston, Ontario" 

Abstract 

A new neural network architecture, ARTST AR, is 
presented as a supervised modular extension to 
the ART2 network. ART2 suffers from deficiencies 
in terms of consistency and overall capability 
when applied to classification tasks. ARTSTAR 
uses a layer of INSTAR nodes to supervise and 
integrate multiple ART2 modules. Supervision 
takes the form of feedback to the ART2 output 
layer whenever a data pattern's true classification 
is known. This feedback technique may take a 
variety of forms and can model the supervision 
implemented in existing supervised extensions to 
ART networks. A more robust classification 
performance occurs when several ART2 networks 
are trained in a supervised manner, each under 
different conditions, and their outputs integrated 
during testing. These results are demonstrated in 
tests of ARTST AR using handdrawn and 
computer generated digits. The general 
functionality of ARTSTAR is extensive, and 
several further modifications to it are discussed. 

1 Introduction 

Several different unsupervised neural network 
architectures have been proposed based on the 
concept of Adaptive Resonance (Carpenter & 
Grossberg, 1987a; 1987b; 1990, Carpenter, Grossberg, 
& Reynolds, 1991; Carpenter, Grossberg, & Rosen, 
1991 a; 1991 b, Carpenter, Grossberg, Markuzon, 
Reynolds & Rosen, 1992). This class of network 
models was devised to examine the effect that 
feedback connections have on the formation of 
categorizations of input data. In general, these models 

* 

propose that self-organization of data can be achieved 
through a mechanism which forms a bottom-up 
interpretation of a given input and then, based on 
previously learned patterns, forms top-down 
expectations as to how the input should be categorized 
until the interpretations and expectations match, or 
"resonate", within a certain tolerance level, or 
"vigilance". Carpenter and Grossberg (1987a) first 
developed the ART1 network, which accepts binary 
input, and later extended their work to the ART2 
network, which accepts analog input (Carpenter & 
Grossberg, 1987b). 

The ART2 network is ideally suited for tasks 
requiring data patterns to be clustered into groups of 
similar elements, and for this purpose it is comparable 
to conventional clustering techniques (Burke, 1991; 
Baruah & Welti, 1991). Further, ART2 is a self
organizing network capable of dynamic, on-line 
learning, and can thus learn to modify its clustering 
schemes to reflect changes in data characteristics over 
time. Because of ART2's clustering capabilities, one 
might expect that if an ART2 network were presented 
with patterns known to belong to certain pre-determined 
classes, the network would learn to categorize the data 
into groups equivalent to those classes. In its basic 
form, however, ART2 does not generally perform well 
on classification tasks. One reason is that ART2 does 
not have the provision to accept supervision, and thus 
could hardly be expected to form a classification 
scheme which depicts predesignated classes as well as 
other supervised networks such as backpropagation. 
Another difficulty with ART2 as a classifier is that the 
categorizations developed by ART2 are very sensitive 
to slight changes in structure and training conditions. 
For instance, two identical networks trained on the 
same set of data but presented in different orders may 
exhibit greatly differing classification performance. 

This work was supported by the Natural Sciences and Engineering Research Council (NSERC) and by a 
grant from the Institute for Robotics and Intelligent Systems (IRIS) . 

121 



• I 

The most obvious step necessary to improve 
ART2 performance in classification is the incorporation 
of supervision. Previous research on supervision 
extensions for ART networks show two possible 
supervision techniques. One approach involves forcing 
each ART category formed to respond to data from only 
one pre-established class during training. This change 
greatly decreases the chance that data from different 
classes will be categorized as the same during 
subsequent testing and thus improves ART 
performance as a classifier. Three different networks 
have been developed which implement this approach, 
genera!!y through an architectural extension to ART. 
They are ARTMAP (Carpenter, Grossberg & Reynolds, 
1991), the Adaptive Resonance Associative Map, or 
ARAM (Tan, 1992), and the SeMi-supervised Adaptive 
Resonance Theory, or SMART2 (Merz, St. Clair & 
Bond, 1992). The latter network also introduces a 
second technique for supervising ART, which is that the 
number of categories formed by the network is 
constrained by allowing new categories to be created 
only when a pattern is initially misclassified. The 
classification performance of ARAM and SMART2 has 
actually been found to be comparable to that of 
backpropagation (Tan, 1992; Merz et al., 1992). 

A second method of improving ART2 
classification ability involves the use of redundancy to 
overcome the sensitivity of the ART2 categorization 
schemes. The assumption of this approach is that 
ART2 networks which are trained slightly differently will 
develop different categorization schemes and that these 
schemes will contain complementary information which 
can be integrated to achieve a more robust 
representation. Several methods of exploiting 
redundancy in multiple classifiers are available, with the 
simplest being a majority classifier voting approach 
(Gargano, 1991; Carpenter et al., 1992). In this 
technique, the classification returned by the majority of 
classifiers, each applied to the same input, is 
considered to be the classification of that input. 

This paper presents the ARTSTAR network. 
The development of ARTST AR has been motivated by 
the following goals: 

1 . to provide an ART-based network capable of 
effective classification, yet still retaining ART's 
inherent ability to respond to ongoing changes 
the organization of its inputs. 

2. to provide a supervision strategy which is 
general enough to include previously 
developed mechanisms and yet offer the 
q:ipnriy fa" rrorprcing re-N Sl4)8IVism tedrqJes. 

3. to provide a mechanism that can integrate 
results from several different ART2 modules. 

An ARTSTAR network consists of a number of 
ART2 modules connected to a layer of INSTAR nodes 
(Grossberg, 1982), with each INSTAR node 
representing a possible class. The INSTAR layer 
supervises the output layer of each ART2 module as 
well as integrates the outputs of all the ART2 modules. 
During training, the instar layer provides feedback to 
the ART2 modules based on the desired classification 
of the training input. The feedback influences the 
importance that each module assigns to its output 
nodes, and thereby affects the order in which each 
ART2 module considers its output nodes as possible 
winners. For each winning output node selection in an 
ART2 module, INSTAR learning associates it with the 
INSTAR node that represents the desired class. Over 
time, the connections between the ART2 output nodes 
and INSTAR layer come to represent the incidence of 
a given ART2 category being associated with a given 
class. 

After learning has taken place, the winning 
category of an ART2 module will activate all INSTAR 
nodes in proportion to the probability of that class being 
correct. Thus, if a given input pattern is presented to a 
number of redundant modules during testing, each 
redundant module will return a list of class probabilities. 
Through the simple method of summing the 
probabilities for each class, ARTST AR integrates these 
redundant responses and presents a single list of 
ranked classifications. 

122 

The feedback mechanism of ARTSTAR permits 
the manipulation of system parameters which provides 
a variety of different supervision strategies, including 
the 'forcing' method used in ARTMAP, ARAM and 
SMART2. Further, each of these strategies will exhibit 
a desirable 'dynamic supervision' due to an inheritance 
of the dynamic learning properties of ART2. Thus, an 
arbitrary ARTST AR network may be trained on data in 
which true classifications are available only periodically, 
resulting in two interleaved learning phases: simple 
ART2 clustering periods in which new instances are 
added to existing categorization schemes, and 
supervision periods in which the classifications 
associated with ART2 categories are verified and 
updated. The generality of the feedback mechanism, 
coupled with ARTSTAR's ability to perform dynamic 
supervision and integrate outputs from separate ART2 
modules, suggests that ARTSTAR may be applicable to 
a wide range of tasks. 



2 ARTSTAR Network Architecture 

ARTSTAR derives its name from its use of both ART2 
and INSTAR modules thus it is appropriate to begin the 
description of ARTSTAR with a brief outline of the 
ART2 network. 

2.1 ART2 Processing 

The ART2 network consists of three main 
components, termed by Carpenter and Grossberg 
(1987b) as the input representation field (or F1 layer), 
the category representation field (or F2 layer) and the 
orienting mechanism (see Figure 1). 

F2 LAYER 

ORIENTING 
MECHAN ISM 

F l LAYER 

INPUT 

Figure 1: A simplified diagram of ART2 architecture 

The nodes of the output layer Y•(y1 .>'l ... y,i) are intended 
to represent the classes into which input patterns are 
organized. Each output node represents a class of 
patterns by storing a template pattern as the weights 
Z·(~ Zz ... Z,i)~ ;•(z/f z" ... ;J on its connections into the 
F1 layer. During an ART2 trial, the input pattern is 
matched against each of the stored templates, resulting 
in activations at the output layer which represent the 
extent of match. At this stage of processing the output 
layer activations are established as the weighted sum 
of a layer P· ("1 P2 ... Pq) within the representation field 
F1: 

Y•P·Z' 
The element of y with the highest activation value is 
designated as the initial choice of class for the input 

123 

pattern. The results of this competition, usually denoted 
as ~ presents a value d ( o < d< 1 for a given network) 
for the winning node, and zero otherwise. 

The input pattern and the template for the 
initially chosen node are subjected to a further 
comparison in the orienting mechanism, and if the 
match is judged to be within the vigilance level, the 
initial choice is taken as final and the template for that 
winning node is updated to more strongly represent the 
current input. If the match is judged to be outside of the 
vigilance level, then the output node with the next 
highest activation value is designated as the initial 
match and it is subjected to the same processing in the 
orienting mechanism to determine if it is an acceptable 
final choice. This process continues through the 
available choices, in decreasing order of the activation 
of the output nodes, and if none of them meets the 
vigilance level test, then a new output node is recruited 
as a new class and its template is set to the current 
input. 

In ART2 processing, there is no distinction 
between training and test trials. Every trial results in a 
classification (the final choice of output node), and with 
each classification, there is the possibility of updating 
the weights which represent the stored templates. 

The choice of vigilance level will strongly 
influence the performance of ART2 in the formation of 
its classification categories. A low vigilance will result in 
over-inclusive elements, and a high vigilance could, in 
the worst case, result in a different classification 
category for each different training pattern. 

2.2 Supervision 

ARTSTAR incorporates two key properties in 
addition to those inherited from ART2. The main 
property is supervision of the ART2 learning process. 
To achieve this, ARTSTAR includes a layer of !NSTAR 
nodes, one for each true category of the input patterns. 
The !NSTAR nodes both receive input from and send 
feedback to the ART2 output layer. Supervision is 
achieved through feedback based on previous 
associations of ART2 categories with classes, 
knowledge which is stored in the INSTAR's incoming 
and outgoing connections. 

Consider, as shown in Figure 2, the full 
connection of a single output element y1 to this layer of 
INSTAR nodes. In this example, there are weightsw, 
on the connections for each of the INST AR elements as 
shown. Through !NSTAR learning during the training 



INSTAR LAYER 

Figure 2: Example connections from an ART2 output 
node to the INSTAR layer 

trials, these weights are set to designate the proportion 
of training trials for which y1 was the winning ART2 
node when each of the true classes was the one 
associated with the training trial. This means that after 
training is complete and a test trial is being considered 
for which y1 is the winning output node, the system can 
provide an ordered list of possible classifications based 
on the values of these weights ft1• If required to 
establish a single class, then the obvious choice is the 
class possibility whose INSTAR node has the highest 
activation, and was thus during training most often 
associated with the winning output node. 

INSTARLAYER 

0.08 

••• 

ART2 OUTPUT LAYER 

Figure 3: Example connections from INSTAR layer to 
ART2 output layer 

Also consider what it means to have these 
weights w available during the training phase of 
ARTSTAR. As shown in Figure 3, the true class of any 
training trial would have available through W the extent 
to which previous trials of the same class had been 
stored on each of the ART2 module output templates. 
It is possible to use these values to influence the ART2 
module to make an initial choice of an output node that 
has already been chosen most often for training trials 
of the same true class. The most straightforward way to 
accomplish this is to augment the computation of the 

values of the ART2 output layer y with feedback from 
the INST AR layer: 

Y•P,Z' +yl·W' 

2.3 Modularity 

The second key property introduced in 
ARTSTAR is modularity. The basic ARTSTAR network 
can easily be extended such that a number of ART2 
networks are connected to the instar layer (see Figure 
4). In the modular ARTSTAR, each ART2 module is 
supervised and associated with pattern classes as in 
the basic ARTSTAR, but in addition, the class 
associations of all the winning ART2 output categories 
are integrated to form a single output. Specifically, the 
likelihood that the input is of a given class is 
determined by summing the probabilities for that class 
indicated by all the winning ART2 nodes. This 
integration method is similar to the majority classifier 
voting scheme, and can emulate it under certain 
training conditions. 

INSTAR layer 

: ART2 module I ART2 modulo 2 ART2 module k 

~----_J 

Figure 4: ARTSTAR architecture supporting multiple 
ART2 modules 

2.4 ARTSTAR Processing 

The most simple ARTSTAR network consists of 
a single ART2 module, slightly modified to incorporate 
feedback, a threshold field, the INSTAR layer, and a 
feedback field as shown in Figure 5. 

124 

The threshold field ( • ( ~ &.z ... tn) is a layer of n 
nodes, connected individually to the corresponding 



ART2 output nodesy•{Yi y2 ... Yn) . Each threshold field 
node accepts the corresponding ART2 output value and 
simply thresholds it to o or 1 as follows: 

This step is required because the ART2 module outputs 
either o or d, and ARTSTAR requires the output to be 
either o or 1 . 

The instar layer l•{St s.z ... ,,.,) consists ofm 
INST AR nodes which are fully connected from the 
threshold field via the weights W•{lf1 11.i ... lfn)r, 

~- (w11 wp ... w_,,J and which can also accept input from 
a classification vector C• { c, Cz ... c,.,). The classification 
vector is a binary vector with only one non-zero 
component which indicates the class, and therefore 
which INSTAR node should be active, when the class 

W=[w,.J 
weights 

threshold 
layer 

ART2 Module 

6 
t = i, 

of the input is known. During training, each INSTAR 
node accepts weighted input from the threshold field 
and performs INSTAR learning upon the weights was 
follows: 

l•(·W 

w1• w1+.A.z[~w;~9 

~ti-{ 1 "~o 
" 0 otherwlt#J 

where A-2 is a small learning rate. The output of the 
INST AR nodes ,/ varies. If the layer is being trained, 
each INST AR node returns the desired output, and if 
not being trained each node returns the weighted sum 
of its inputs. 

Classification Vector 

• 
I 

0 

i, 

V= [v,,) 
weights 

~:~ ... 59 
/ / feedback layer 

/ 

output 
layer of 
ART2 module 

input to ART 
module 

i 
I 

i 
i 

I 
I 

___ J 

Figure 5: Schematic diagram of ARTST AR architecture 

125 



. j 

The feedback field T consists of a layer of n 
nodes which are fully connected from the INSTAR layer 
by the weights V• W1 . This feedback layer directs the 
supervision of the ART2 module rather than 
accomplishing it with direct connections from the 
INSTAR layer as suggested in Section 2.2. This 
provides threshold control over the feedback that 
reaches the ART2 module permitting a variety of 
supervision strategies. The following two-threshold 
function is used: 

If 11·W 1 < ~2 

If 11·W 1 > ~1 

where coo, p ~a, ~1 ~a and ~2:i:p. Then the output layer of 
the ART2 module is influenced by computing its 
activation level with: 

Y•P·Z' +y T 

This process influences the results of the ART2 
network by changing the order in which ART2 considers 
possible winners. The manner in which the feedback 
is used by the ART2 modules is justified based on the 
previous research on supervising ART2. The primary 
effect of match-tracking in ARTMAP (Carpenter, 
Grossberg & Reynolds, 1991), the dual-resonance in 
ARAM (Tan, 1992), and the first design principle of 
SMART2 (Merz et al., 1992) is to eliminate those nodes 
which have been associated with a previous class. 
Ideally, of course, such an inhibitory method is most 
efficient if the eligible nodes are considered before 
other nodes. This interpretation suggests that the main 
goal of feedback during training should not be to 
eliminate nodes as they are considered in turn, but to 
minimize the number of nodes that are eliminated in a 
trial by considering the most-eligible nodes first. The 
manner in which INSTAR feedback is incorporated into 
the ART2 equations for the F2 layer is based upon this 
interpretation. 

There are three straightforward forms that the 
feedback function could take: 

1. 

2. 

3. 

constant all committed nodes receive equal 
feedback, 
direct nodes receive feedback in direct 
relation to the strength of their corresponding 
instar weight, 
inhibitory. nodes receive non-zero feedback if 
and only if they represent the desired class 
(see Figure 6). 

a---- -- - ar- ---- -

t ·w{ ,£ 

' ~ -
Constant Direct Inhibitory 

Figurn 6: Main feedback functions of ARTSTAR 

Each of these feedback functions represents a 
different level of supervision. The only effect of constant 
feedback is to give more preference to ART2 output 
nodes which have been committed than to those which 
haven't. If the feedback is zero, the ART2 network is 
completely unmodified, and the basic ARTSTAR can be 
viewed as a simple naming mechanism for output 
nodes of the ART2 network. Direct feedback 
influences output nodes in proportion to their likelihood 
of being correct. Thus, over-inclusive nodes are not 
prevented from occurring, but should be discouraged 
somewhat. The inhibitory feedback represents strong 
supervision. The ART2 output nodes are essentially 
prevented from representing more than one class 
apiece. This implements a supervision similar to those 
found in existing extensions to ART2 networks, though 
it is only a single instance of many supervision 
strategies enabled in ARTST AR. 

126 

3 ARTSTAR Performance 

ARTSTAR has been applied to several test domains 
(see Hussain, 1993). For the purposes of demonstrating 
its operation this section will describe its application to 
a data set of handdrawn digits is considered. Three 
key dimensions of ARTST AR performance are 
addressed: 

1. the general performance difference between 
ART2 and ARTSTAR. 

2. the effect on performance of the use of the 
three types of feedback functions used by 
ARTSTAR, constant, direct, and inhibitory. 

3. the effect of integrating multiple, independently
trained modules in ARTST AR. 

Given these dimensions of analysis and the 
design principles of ARTST AR, several performance 
hypotheses are proposed. Firstly, it is expected that 



the performance of the ARTST AR network should be 
better with inhibitory feedback than with direct 
feedback, which in turn should be better than that with 
constant feedback. This is due to the degree of 
supervision incorporated into the network's training in 
each case. Secondly, ARTSTAR performance should 
increase with the number of ART2 modules included. 
This "redundancy" hypothesis is based on the 
ARTSTAR design assumption that differently-trained 
ART2 modules will contain complementary information. 
Thirdly, the additional redundancy effect that is 
achieved through the addition of a new module should 
eventually diminish as the number of modules 
increases past a certain point. There are two reasons 
for this expectation. On the one hand, the amount of 
new complementary information available to ARTSTAR 
should decrease as more modules are added, while on 
the other hand, the amount of conflicting information 
integrated by ARTSTAR should increase with the 
number of modules. Finally, based upon the results of 
Tan (1992) and Merz et al. (1992) and upon the design 
of ARTSTAR, an ARTSTAR network using inhibitory 
feedback should show performance comparable to that 
of a back-propagation network. 

3.1 The Tests 

The data used consists of three hundred 16x16 
images of the digits O through 9 (see Figure 7). About 
two thirds of the samples were hand drawn by 
volunteers, and the other third were derived from 
computer font sets. Each digit is roughly the same size 
and roughly centred in the image. 

0 1 2 3 4 5 6 7 8 9 
e 1. 2 3 4 s G 1 a s 
01~3~5~789 
01.l.34t:5b 7~~ 

Figure 7: Sample images from digit data set 

The complete details of the values of the 
network parameters used in the tests are provided by 
Hussain (1993), which also relates the exact algorithm 
for the version of ART2 used in the modules contained 
in the ARTSTAR tests. The threshold functions used 
are those shown in Figure 6, and in all ART2 modules 
the limiting vigilance value used for all test is 0.97, and 

127 

the limiting number of ART2 output nodes is 30. In the 
back-propagation test, a standard back-propagation 
network is used with 40 hidden nodes and no bias 
units. The learning rate is set to 0.8 at the beginning of 
training and linearly decreased to 0.2 during 10,000 
training epochs. 

The performance of each ARTST AR is tested 
in ten trials. During each trial, the complete data set is 
split randomly into two mutually exclusive halves. Each 
set contains an equal number of images from each 
possible class and in each trial, the random split is 
different. A trial consists of two phases - a training and 
a testing phase. During the training phase of a trial, 
each ART2 module of the ARTST AR is trained 
separately on the training data, with each module 
receiving the training data in a different, random, order. 
A training phase consists of three epochs, and during 
each epoch, a given ART2 module receives data in a 
different order than in previous ones. Following the 
training phase, class names are assigned to each F2 
node of each ART2 module of the ARTSTAR based on 
the class that contributed most to the training of a given 
node. During the testing phase, data from the testing 
set is presented once, simultaneously, to all the 
modules simultaneously. The performance of the ART2 
modules is compared with that of the ARTSTAR itself. 

3.2 Results 

The results of all the tests performed are 
summarized in Figure 8. In the figure, the performance 
of ARTSTAR is compared graphically to that of its best 
ART2 module over the type of feedback function and 
the number of ART2 modules; the graphs show 
performance in terms of the percentage of correct 
classifications. The difference between the dotted lines, 
representing the performance of the best ART2 module 
of the ARTSTAR, indicates the effects of the feedback 
function type (i.e., the supervision effect), while the 
difference between the solid lines, representing 
ARTSTAR performance, and their corresponding dotted 
line indicates the redundancy effect. The graph also 
includes the average performance of a back
propagation network, over two trials, as well as the 
chance level of performance for the data set. 

In interpreting the results in terms of the 
hypotheses, several observations can be made. Firstly, 
the supervision hypothesis can be seen to hold in 
general, as shown by the difference between the dotted 
lines in Figure 8. The inhibitory feedback function 
always results in an improved classification 
performance by ART2 as compared to the direct and 



· .. 1 

I 
; 

100 

90 

80 

70 

60 
%Correct 

50 
Oassification 

40 

30 

20 

10 

0 

1 2 

- - - - - -
- - - - - -D 

3 4 

--+0--+--ARTSTAR - canatant • 

-6.,..,_-ARTSTAR- •rect , 
-o.--ARTSTAR- lnhibl.tory • 

' - ,Q - Bat ARTl - canafant ' 

' - -1:r - Bat ARTl - clrect 
I I 

,- -0 - BatARTl-lnhibl.tory, 

• - - - Badi-Propqatim 
I 

- - Clumce ·------------

Number of Modules 

Figure 8: Classification performance of ARTSTAR on digits under several conditions 

constant feedback functions, and the direct function 
results in a modest performance improvement over the 
constant function. Further, the performance 
improvement of ART ST AR over ART2 using the 
inhibitory function is far larger than any improvement 
using the direct function. 

Secondly, the redundancy hypothesis can also 
be seen to hold in general. The difference between the 
solid and dotted lines in Figure 8 show that, for the 
constant and direct feedback functions, as the number 
of modules increases the ARTSTAR performs ever 
better over its best ART2 module; in the figure, the gap 
between the lines continuously increases. This 
performance difference is a direct result of the addition 
of more modules and thus reflects the redundancy 
effect. Conversely, the redundancy hypothesis does 
not hold for the inhibitory function. This suggests that 
the strong supervision might eliminate most, if not all, 
of the inconsistency in the network's categorizations; 
additional modules contribute no more complementary, 
just more conflicting information. 

128 

Thirdly, there is some support for the redundancy 
effect diminishment hypothesis. Figure 8 demonstrates 
nicely that the amount of improvement due to adding 
another module decreases as the number of modules 
increases; the solid lines flatten out. 

Finally, both ART2 and ARTSTAR performed 
better than chance but worse than the back-propagation 
network, but the performance of ARTSTAR with 
inhibitory feedback closely approached that of back
propagation, as expected. 

An additional observation, not directly related to 
the hypotheses, can be made concerning the results. 
As the number of modules increases, the performance 
of the best ART2 module increases as well; the dotted 
lines show positive slope. This is most probably due to 
the fact that as the number of modules increases, the 
chances that a very good ART2 module will be 
developed increases. Thus, in addition to the benefit 
due to redundancy, adding more modules, on average, 
results in a better "best" ART2 module and thus in 
better ARTSTAR performance. 



Overall, the ARTSTAR network demonstrates 
the desired effects of supervision and redundancy. The 
best classification ability seems to be obtained from a 
four-module ARTSTAR using inhibitory feedback, and 
the performance of such an ARTSTAR can approach 
that of back-propagation. It should be noted, however 
that the high performance is due almost entirely to the 
supervision effect - there is no redundancy effect with 
the inhibitoryfunction. ARTSTAR also shows improved 
performance over normal ART2 when using a direct 
feedback function. In this case, the improvement is due 
to a combination of the supervision and redundancy 
effect. 

4 Conclusions 

The ART ST AR neural network extends and improves 
the ART2 network (Carpenter & Grossberg, 1987b) in 
an attempt to address some of the deficiencies 
exhibited by ART2 when applied to classification tasks. 
Specifically, ART ST AR incorporates two fundamental 
design principles, the supervision of the ART2 learning 
process and the integration of multiple ART2 networks. 
A concise structural extension is proposed based on 
Grossberg's INSTAR node (Grossberg, 1982). 
ARTSTAR thereby improves the classification capability 
of ART2 while preserving the benefits of ART2's self
organization and on-line learning characteristics. 

The supervision of ART2 has been examined 
by several researchers (Grossberg, Carpenter & 
Reynolds, 1991; Tan, 1992; Merz et al., 1992), all of 
which have used one common supervision technique. 
The ARTST AR network can be made to implement the 
same technique, but its supervision process is more 
general than those previously proposed and can take 
several forms. The integration of multiple ART2 
networks, each trained slightly differently on the same 
set of data, has been briefly considered by Carpenter 
et al. (1992) and Tan (1992), but only in the context of 
a post-hoc technique of improving performance. 
ARTSTAR actually incorporates such redundancy into 
its structure through its modularity, thereby inherently 
exhibiting the improved performance. Thus, ARTSTAR 
is a superset of not just the ART2 network, but also of 
existing extensions to ART which attempt to improve 
the performance of ART as a classifier. 

The primary application of ARTST AR 
considered is the straightforward classification task, on 
which it has been demonstrated to perform better than 
the normal ART2 network. However, ARTSTAR also 
exhibits a much more general functionality because of 
its modularity, and a variety of other tasks are potential 

applications of ARTSTAR (e.g., multi-resolution 
classification, hierarchical classification, data fusion, 
and invariant pattern recognition). 

There are several aspects of ARTSTAR which 
can be examined in future work. Extensive tests of 
ARTSTAR properties are required, and the applicability 
of ARTSTAR to new tasks should be tested. Additional 
feedback functions should be analyzed to see if 
ARTSTAR exhibits any novel properties using them. 
Finally, further tests can be carried out comparing the 
learning times as well as the performance of ARTSTAR 
relative to back-propagation. ARTSTAR should have 
applications not suited for a back-propagation system, 
and these should be characterized. Finally, 
modifications and expansions to the ART ST AR network 
should be examined. 

One extension currently being researched is an 
extension of the INSTAR feedback to allow greater 
functionality. Currently, ARTST AR provides feedback 
based solely upon the classification vector and does not 
exploit the differences between the output of the 
ARTSTAR network and that vector during training. 
Incorporating feedback based on errors in performance 
during training should result in an improved ARTSTAR 
classifier. One possible method of accomplishing such 
feedback is to assign a separate vigilance factor to 
each F2 output node of each ART2 module, and to use 
training performance to adjust the vigilance of the 
nodes. Thus, for example, a node which made many 
training errors could be given a high vigilance so that it 
would become more discriminating. 

A second change is to the process of 
integration of ART2 modules. ARTSTAR currently 
integrates the outputs of all the modules with an equal 
emphasis on each module, and ARTST AR can easily 
be revised so that different modules may have different 
levels of importance. For example, each module can 
be directly connected to the INSTAR layer via a bias 
node which modifies that module's contribution to the 
activation of each INST AR node. 

ARTSTAR is a useful, novel neural network 
architecture. It succeeds in improving the classification 
capability of ART2, yet is more flexible than existing 
techniques which also attempt this; it is a modular, 
supervised network which can be applied to a wide 
variety of problems, and it exhibits a number of useful 
properties, though the research presented merely 
touches upon a few of these. Several future directions 
for future work on ARTSTAR are possible, including not 
only further tests, but also several additional design 

129 



. I 

" I 
. I 

• I 

I 

modifications. ARTSTAR is thus an interesting network 
which should provide some useful contributions to 
neural network research. 

References 

Baruah, A.B. & Welti, R.C. (1991). "Adaptive 
resonance theory and the classical leader 
algorithm.• Proceedings of the IEEE 
International Joint Conference on Neural 
Networks - Seattle (1991), !!, p. A-913. 

Burke, L.I. (1991). "Clustering characteristics of 
adaptive resonance.• Neural Networks, ±, p. 
485-491. 

Carpenter, G.A. & Grossberg, S. (1987a). "A 
massively parallel architecture for a self
organizing neural pattern recognition 
machine.• Computer Vision, Graphics and 
Image Processing, 37, p. 54-115. 

Carpenter, G.A. & Grossberg, S. (1987b). "ART 2: 
Self-organisation of stable category 
recognition codes for analog input patterns." 
Applied Optics, 26, p. 4919-4930. 

Carpenter, G.A. & Grossberg, S. (1990). "ART 3: 
Hierarchical search using chemical 
transmitters in self-organising pattern 
recognition architectures." Neural Networks, 
~. p. 129-152 . 

Carpenter, G.A., Grossberg, S., Markuzon, N., 
Reynolds, J.H. & Rosen, D. (1992). "Fuzzy 
ARTMAP: A neural network architecture for 
incremental supervised learning of analog 
multidimensional maps." IEEE Transactions 
on Neural Networks, ~. p. 698-713. 

Carpenter, G.A., Grossberg, S. & Reynolds, J. 
(1991). "ARTMAP: Supervised real-time 
learning and classification of nonstationary 
data by a self-organising neural network.• 
Neural Networks, ±, p. 565-588. 

Carpenter, G.A., Grossberg, S., & Rosen, D. (1991a). 
"ART 2-A: An adaptive resonance algorithm 
for rapid category learning and recognition." 
Neural Networks, ±, p. 493-504. 

Carpenter, G.A., Grossberg, S., & Rosen, D. (1991b). 
"Fuzzy ART: Fast stable learning and 
categorization of analog patterns by an 
adaptive resonance system." Neural 
Networks, ±, p. 759-771. 

Duda, A.O. & Hart, P.E. (1973). Pattern Classification 
and Scene Analysis. New York: Wiley. 

Filho, E. & Bisset, D.L. (1990). "Applying the ART1 
architecture to a pattern recognition task.• 
Parallel Processing in Neural Systems and 
Computers, R. Eckmiller, G. Hartmann and G. 

Hauske (Eds.). Elsevier Science Publishers 
(North-Holland), p. 343-349. 

Gargano, M.L. (1991). "Classifier voting in the neural 
networks." Proceedings of the IEEE 
International Joint Conference on Neural 
Networks - Seattle (1991), !, p. 388-391. 

Grossberg, S. (1982). Studies of Mind and Brain. 
Boston: D. Reidel Publishing. 

Hussain, T.S. (1993). "ARTSTAR: A Supervised 
Modular Adaptive Resonance Network 
Classifier". M.Sc. Thesis, Department of 
Computing and Information Science, Queen's 
University, Sept. 1993. 

Merz, C.J., St. Clair, D.C. & Bond, W.E. (1992). 
"SeMi-supervised Adaptive Resonance 
Theory (SMART2)." Proceedings of the IEEE 
International Joint Conference on Neural 
Networks (1992), !!!, p. 851-856. 

Tan, A-H. (1992). "Adaptive resonance associative 
map: A hierarchical ART system for fast 
stable associative learning." Proceedings of 
the IEEE International Joint Conference on 
Neural Networks (1992), !, p. 860-865. 

130 



Using Redundancy to Improve the Performance of Artificial Neural Networks· 

David A. Medler and Michael R. W. Dawson 
Biological Computation Project 

Department of Psychology, University of Alberta 
Edmonton, Alberta 
CANADA T6G2E9 

Abstract 

For Artificial Neural Networks (ANNs) to be effec
tive modelling tools, they must draw upon biological 
characteristics: One characteristic often overlooked 
in the design of ANN s is the replication, or redundan
cy, of processes within the brain. This paper exam
ines the effects of redundancy on the performance of 
ANNs trained on either a pattern classification task 
(e.g. parity, encoder) or a function approximation 
task (e.g. forward kinematics). Results suggest that 
there is an optimal level of redundancy that increases 
the likelihood of network convergence while decreas
ing overall network processing time. ANNs with this 
level of redundancy consistently perform better than 
standard ANNs on pattern classification tasks. 
Furthermore, redundant ANNs trained on the func
tion approximation task are more accurate in terms of 
overall system error than standard ANNs. These 
results imply that redundancy may be effectively 
used to increase the performance of ANNs, both in 
accuracy and speed. 

1 Introduction 

The design of Artificial Neural Networks (ANNs) is normally 
based on engineering principles-- make the system as simple 
and efficient as possible. From a strict computing science 
viewpoint, there is little wrong with this approach; however, 
from a cognitive science viewpoint, this approach is highly 
suspect. A growing number of scientists are now questioning 
this performance approach on the grounds that ANN s are 
moving away from their biological basis and are therefore 
losing validity as models in cognitive science [e.g. 
Lewandowsky, 1993; McCloskey, 1991]. To be effective 
models, ANNs must draw upon biological characteristics, 
especially those associated with the brain [Dawson and 
Shamanski, 1994; Dawson, Shamanski, and Medler, 1993]. 

* This research was supported by National Science and 
Engineering Research Council of Canada (NSERC) Research Grant 
2038 and NSERC F.quipment Grant 138704, awarded to MRWD. 

One biological characteristic often overlooked in the design 
of ANNs is redundancy: Redundancy is the replication of 
processes within the brain. 

Redundancy in biological systems has been documented 
since the nineteenth century when it was proposed that 
functional recovery following unilateral brain lesions was 
facilitated by replicated processes between the left and right 
hemispheres of the brain [Gall and Spurzheim, 1810-1819; 
cited in Almli and Finger, 1992]. Although we now know that 
the two hemispheres of the brain perform vastly different 
functions, redundancy within the two hemispheres is still held 
as a viable theory of functional recovery [Almli and Finger, 
1992; Marshall, 1984]. More recently, studies of hydrocepha
lus patients suggest that normal psychological functioning is 
still evident with only half the normal brain tissue mass 
[Berker, Lorber, and Smith, 1983; cited in Glassman, 1987]. 
This implies that the brain is at least twice as large as is 
needed for immediate survival, and the extra baggage of the 
normal brain simply replicates functions already present. 

Further neurophysiological evidence for redundancy in 
biological systems comes from recent studies of animal 
physiology. Kovac, Davis, Matera, and Croll [1983] found 
several physiological systems within the nervous system of 
Pleurobran.chaea californica that produced essentially the 
same behavior; when combined, though,these systems greatly 
enhanced the precision of simple and complex movements. 
Furthermore,Strehler and Lestienne [ 1986] examined the firing 
patterns of neurons within a monkey's visual cortex and found 
redundant coding in the regularity of triplets of impulses 
triggered by specific stimuli. Similarly, Swindale [1986] 
noted that orientation selectivity in the visual cortex is pro
duced by more than one mechanism, and in more than one 
location. This physiological evidence is complemented by a 
sizable theoretical literature on the biological relevance of 
redundancy. 

The vast majority of theoretical work on the relevance of 
biological redundancy has centered on the factors surrounding 
the evolution of redundancy. Although one of the earlier 
assumptions concerning redundancy was that it allowed 
recovery of functioning following brain trauma, it is unlikely 
that such a rarely survived event like brain damage could exert 
any natural selection pressure for neural spare capacity [c.f. 

131 



I 
I 

Glassman, 1987]. If we assume that recovery from brain 
damage is just a convenient side effect of redundancy, we 
must consider other evolutionary stresses. 

Most evolutionary changes involve small, simple changes 
that allow better adaptation to the surrounding environment; 
The faster a system can evolve, the greater the chance of 
survival. Therefore, it would be more advantageous to evolve 
several small systems that work in parallel to achieve a goal, 
than a large and highly specialized system [Swindale, 1986]. 
In fact, such a system is evident in the neural wirings of 
Pleurobranchaea califomica [Kovac et al., 1983]. This view 
is echoed by Calvin [1983] who considered the evolution of 
neural timing systems required by early hominids for hunting 
with thrown objects. At short distances, a single timing 
neuron is sufficient to allow the proper release time needed for 
a hit; however, the timing precision required for a strike 
increases eight-fold with a mere doubling of throwing dis
tance. Therefore, the brain combined the efforts of several 
timing neurons to increase the precision above that of any 
single neuron. Consequently, redundancy may have evolved 
not because brain damage was anticipated, but because it was 
easier to replicate, and thus improve, what was already present 
than to develop a single system beyond reproach. 

A slightly different theoretical approach to redundancy 
comes from Jacobson [1976] and Glassman [1987]. Jacobson 
[1976] considered the connections between neurons involved 
in a memory trace based on Hebb's model of the cortex, and 
defined redundancy as "to mean the condition that pairs of 
cells joined along one effective pathway are joined again along 
another" (p. 150). Using mathematical calculations and 
assuming initial random connections between neurons, 
Jacobson showed that redundancy is an inevitable conse
quence of the connections within the cortex. Glassman 
[1987], on the other hand, looked at the probability of overall 
system failure for any large structure. With no redundancy, 
failure within a finite time is guaranteed; therefore, if the 
brain had no redundancy, the chances of it functioning for any 
significant amount of time are slim. 

We have seen that redundancy is a viable, if not neces
sary, biological property, but can it be effectively implemented 
in ANNs? Recently, there has been a flurry of connectionist 
research on using multiple nets to solve problems (e.g. 
committees, agent teams, stacked generalization, model 
averaging, error correcting codes). As an example, Baxt's 
[1992] medical diagnosis network is based on two networks 
working in parallel: one network is trained to classify positive 
examples of myocardial infarction, and the other network is 
trained to classify negative examples. By combining their 
outputs, Baxt has produced a network that has a hit rate of 
97.50% and a false alarm rate of 1.63%, which is considerably 
better than any human. Although this network is not strictly 
redundant (i.e. each network is trained on different pattern 
sets), it gives some indication of the increased accuracy 
associated with redundancy. 

Another form of computational redundancy widely 
studied today centers around committee machines. Committee 

machines are based on the principle of using several comput
ers (or networks) at once to solve the same problem. The 
training algorithm for such machines is rather unique [see 
Schapire, 1990]: Briefly, the first machine is trained on one 
pattern set, and then subsequent machines are trained on new 
pattern sets composed of equal amounts of correctly and 
incorrectly classified patterns that have been passed through 
previous machines. Once trained, however, there is little 
agreement as to the best way of combining the outputs of the 
different committee machines. Several alternatives have been 
suggested, from a simple "winner-take-all" or "voting" 
strategy, to summing the outputs, to calculating the mean 
output, to implementing a separate network to choose which 
machine's output is the most appropriate. Regardless of the 
combining strategy used, the committee machines invariably 
perform better than single networks alone. 

The above research examples, however, have centered on 
improving the performance of ANNs from an engineering 
perspective solely. For example, it is not clear that any of the 
output strategies listed above, or even the training algorithms 
used for committee machines, are biologically plausible. 

Constraints borrowed from biological networks, neverthe
less, may have positive effects on the performance of ANNs 
as illustrated by Izui and Pentland's [1990] research on 
redundant networks. Using biological redundancy as a model, 
they mathematically analyzed the functional effects of one of 
neuronal duplication. Their mathematical calculations predict 
that redundant networks are more accurate, faster, and stable 
than standard networks. These predictions were confirmed by 
both a feedforward neural network trained on the XOR 
problem, and a feedback neural network trained on the 
travelling salesman problem. From these results, lzui and 
Pentland claim that the "highly redundant nature of biological 
systems is computationally important and not merely a side
effect oflimited neuronal transmission speed and lifetime" (p. 
237). Although Izui and Pentland' s research has laid the 
mathematical foundations of network redundancy, their 
practical work requires expansion before redundancy is 
accepted as a useful addition in ANN design. For example, 
larger problem sets should be considered as well as the 
applicability ofredundancy to different network architectures. 

Three different questions are addressed by this current 
research. First, is there an optimal level of redundancy that 
improves ANN convergence without increasing the amount of 
processing required? Second, how do redundant ANNs fare 
on different classes of problems (e.g. pattern classification 
versus function approximation)? Third, can redundancy be 
effectively used with different types of network processing 
units (e.g. monotonic versus non-monotonic)? It is hypothe
sized that when the optimal level of redundancy is used, 
redundant networks will have better convergence on pattern 
classification problems than standard networks. Furthermore, 
redundant networks should be more accurate than standard 
networks on function approximation tasks. Finally, redundan
cy should be effective with both types of processing units. 

132 



2 Experiment 1: Levels of Redundancy 

Adding redundancy to a network creates an interesting 
question from an engineering viewpoint: Are the added 
hardware requirements of adding extra processing nodes more 
than compensated for by an increase in performance? In other 
words, can we trade simplicity for efficiency? Theoretically, 
redundancy will not increase the overall network processing 
time as all redun-
dant layers are 
working in paral-

Hlddon 
LayerO 

connected to a Decision Unit, which acts as the redundant 
network's output unit. All connections leading into the 
Decision Unit are modifiable; therefore, the Decision Unit's 
response is a weighted sum of the replicated output units. 
Figure 1 shows the redundant network structure for an ANN 
with five levels of redundancy trained on a 3-parity problem. 
It should be noted that, as opposed to a three-layer network, 
no connections exist directly between each of replicated net-

Doclaion Unit 

Input Un01 

works. Further
more, each of 

lel; however, the 
number of pro
cessing steps re
quired will in
crease propor
tional to the num
ber of redundant 
layers. There
fore, we can com
pare the perform
ance of redundant 
ANNs to either 
the total process
ing time of a stan
dard ANN, or to 
JIN processing 
sweeps of a stan
dard ANN, where 

Figure 1. 3-Parity Network Structure with 5 Levels of Redundancy 

the replicated 
networks was 
initialized inde
pendent of the 
others. Connec
tion weights 
were randomly 
distributed over 
the range [-5, 
+5] to introduce 
more variability 
in the network, 
and all unit bi
ases were set to 
0. Seven differ
ent levels of re
dundancy were 
tested: 2, 3, 4, 5, 

N is equal to the level of redundancy. 
The problem that now exists is to find the optimal level of 

redundancy where the increase in hardware requirements is 
offset by an equal or greater increase in performance. It has 
been calculated that the brain has at least two, and as many as 
seven, different layers of redundancy [Glassman, 1987]. 
Therefore, to assess the optimal level of redundancy for an 
ANN, the performance of a standard ANN trained on varying 
levels of a difficult pattern classification task (i.e. 2- to 8-par
ity) will be compared to the performance of ANNs with from 
two to eight levels of redundancy. 

2.1 Method 

2.1.1 Network Architecture 

The standard network architecture consisted of an input 
layer, a hidden unit layer, and an output layer: The number of 
input units and hidden units was equivalent to the size of the 
parity problem (e.g. ANNs trained on 3-parity had 3 input 
units, 3 hidden units, and 1 output unit). Connection weights 
were randomly assigned from a rectangular distribution over 
the range [ -1, + 1], and processing unit biases were initialized 
to 0. All biases and connections within the network were 
modifiable. 

The redundant network architecture was created by 
replicating the hidden unit layer and the output unit layer a set 
number of times. Each of the replicated output units was then 

6, 7, and 8. 

2.1.2 Training Stimuli 

Parity is a linearly inseparable pattern classification task 
defined by the number of active input units: If the number of 
l's in the input pattern is odd, then the output is 1, otherwise 
itisO [Minsky andPapert, 1969]. ANNs were trainedon2-, 3-
4-, 5-, 6-, 7-, or 8-parity problems which had training set sizes 
of 2, 8, 16, 32, 64, 128, and 256 respectively. Each training 
set had equal numbers of positive and negative examples of 
parity. 

2.1.3 Training Procedure 

The network was trained with the backpropagation 
algorithm using the generalized delta rule (GDR) [see 
Rumelhart, Hinton, & Williams, 1986]. Backpropagation is 
described as a steepest descent optimization algorithm for tra
versing the surface of a weight space whose height measures 
error. Descent through the weight space is aided by two 
parameters: momentum ( a) and rate-of-learning (11). Momen
tum is a technique for escaping local minima within the 
weight space by averaging the weight change for one item 
with the weight change for the previous item. The rate-of
learning parameter is used to dictate how large a "step" to 
make when traversing the weight space. For all parity 
problems, a= 0.9, and 11 = 0.1. 

133 

To train the network, a pattern was randomly sampled-
without replacement-- from the pattern set and presented to 



I . , 

the network. The network's actual output was then compared 
to the desired output, and connection weights and unit biases 
were modified according to the above algorithm. If the 
absolute difference between the actual output and desired 
output was less than 0.05 then a "hit" was recorded. One 
sweep of the network was completed once all patterns were 
presented to the network. Training of the network continued 
either until the maximum number of sweeps was completed 
(30,000) or until each pattern in a sweep produced a hit. 

2.2 Results and Discussion 

The performance of standard ANNs versus redundant ANNs 
was compared using three measures: probability of conver
gence, sweeps to convergence, and total processing steps to 
convergence. As can be seen from Table 1, the standard 
networks failed to classify 5-parity and above within 30,000 
processing sweeps, whereas the redundant networks found a 
solution from 30% to 100% of the time on all parity problems. 
It should be noted that as the level of redundancy increased, 

Table 1. Median Processing Time and Steps to Convergence 
as a Function of Parity and Redundancy 

Level of Redundancy 

Problem 0 2 3 4 5 6 7 8 

2 Parity 
Time 2551 932 841 819 663 641 660 491 
Steps 2551 1864 2522 3276 3315 3846 4620 3928 
n 10 10 10 10 10 10 10 10 

3 Parity 
Time 1214 2235 973 630 587 688 447 526 
Steps 1214 4470 2919 2520 2935 4128 3129 4208 
n 10 9 10 10 10 9 10 10 

4 Parity 
Time 14126 1732 1051 709 608 680 550 543 
Steps 14126 3464 3153 2836 3040 4080 3850 4344 
n 4 9 10 10 10 10 10 10 

5 Parity 
Time -- 1548 997 831 634 748 747 693 
Steps -- 3096 2991 3324 3170 4488 5229 5544 
n 0 6 10 10 10 10 10 10 

6Parity 
Time -- 1846 1492 932 738 821 720 470 
Steps -- 3692 4476 3728 3690 4926 5040 3760 
n 0 8 10 10 10 10 10 10 

7 Parity 
Time -- 1826 1663 874 724 579 716 664 
Steps -- 3652 4989 3496 3620 3474 5012 5312 
n 0 3 7 9 10 9 9 10 

8 Parity 
Time -- 1811 1835 884 758 579 692 566 
Steps -- 3622 5505 3536 3790 3474 4844 4528 
n 0 4 9 8 10 7 10 9 

Note. Maximum number of sweeps = 30000; n = number of converged 
networks out of 10. 

so did the probability of convergence; however, only net
works with 5 levels of redundancy converged 100% of the 
time on all sires of parity problems. 

Similarly, when sweeps to convergence is considered, 
there is a general decrease in sweeps with an increase in 
redundancy. Again, though, this decrease begins to asymp
tote around 5 levels of redundancy, which suggests a floor 
effect. A slightly different function appears with the total 
processing steps to convergence, calculated by multiplying the 
number of sweeps by the level of redundancy. This time, there 
is a slight quadratic function with its lowest points being 
around 4, 5, or 6 levels of redundancy depending on the 
problem difficulty. When the number of processing steps is 
averaged across all parity problems, networks with 4 levels of 
redundancy perform best, followed by networks with 5 and 
then 6 levels of redundancy. 

Taking all of the above results into consideration, it 
appears that networks give best overall performance with 5 
levels of redundancy for this type of linearly inseparable 
pattern classification problem. It does appear, however, that 
networks trained on easier problems (e.g. 2- and 3-parity) do 
not benefit, and may actually suffer, from redundancy . 
Nevertheless, these results show that the added hardware 
requirements of redundancy are more than compensated for by 
an impressive increase in performance. Although these results 
only generalize to the parity problem, all further experiments 
within this paper will adopt a redundancy level of 5. 

3 Experiment 2: Pattern Classification 

Experiment 1 has shown that redundancy improves the per
formance of ANNs trained on the parity problem; however, 
we do not know if theses results will generalize to other types 
of pattern classification problems, or if redundancy only 
improves the performance of networks with monotonic 
activation functions. Experiment 2 looked at the effects of 
redundancy on the number of network sweeps required for 
ANNs to learn two different types of difficult pattern classi
fication tasks: 3-, 5-, 7-, and 9-parity, and 424-, 838-, and 
16416-encoder. Furthermore, the effect of redundancy on the 
"standard" ANN architecture [e.g. Rumelhart, Hinton, and 
Williams, 1986] was compared to the effect of redundancy on 
a different architecture [Dawson and Schopflocher, 1992]. 

Originally, the backpropagation algorithm was developed 
under the assumption that the activation function for process
ing units had to be differentiable and monotonic [Rumelhart, 
Hinton, and Williams, 1986]; Such processing units are termed 
integration devices by Ballard [1986]. Recently, however, 
Dawson and Schopflocher [1992] have shown that processing 
units with a non-monotonic activation function-- called value 
units [Ballard, 1986]-- can learn pattern classification prob
lems much faster than integration devices. Consequently, it is 
hypothesized that redundant ANNs will converge faster than 
standard ANNs, and that value unit ANNs will perform better 
then integration device ANNs. Therefore, the best perform
ance is expected from the redundant value unit network. 

134 



3.1 Method 

3.1.1 Network Architecture 

The standard networks used for the parity classification 
problems were two-layer networks with one output unit. The 
number of input units and hidden units, however, were 
equivalent to the size of problem being solved: namely 3, 5, 7, 
or 9 units for the respective parity problem. Networks for the 
encoder problems had 4, 8, or 16 input and output units, and 
2, 3, or 4 hidden units as dictated by the size of problem. 
Connection weights were randomized from a rectangular 
distribution over the range [-5, +5] for integration device 
networks using a sigmoidal activation function, or [-1, + 1] for 
value unit networks using a Gaussian activation function. 
Processing unit biases, regardless of activation function, were 
initialized to zero. The redundant networks were created as 
described in Experiment 1. 

3.1.2 Training Stimuli 

The 3-, 5-, and 7-parity training sets used in this experi
ment were the same as in Experiment 1: A 9-parity set with 
512 training patterns was also included. The training sets for 
the encoder problems consisted of 4, 8, or 16 orthogonal input 
patterns composed of a single 1 and filler O's (e.g. 1 0 0 0, 0 1 
0 0, 0 0 1 0, 0 0 0 1). The output patterns and input patterns 
were equivalent. 

3.1.3 Training Procedure 

The networks were trained with the backpropagation 
algorithm using either the GDR for processing units with a 
sigmoidal activation function [Rumelhart, Hinton, and 
Williams, 1986], or a modification of the GDR for processing 
units with a Gaussian activation function [Dawson and 
Schopflocher, 1992]. For the integration device networks, the 
parameters were set at a = 0.9 and 'Tl = 0.1. Parameters for the 
value unit networks were a= 0 and 'Tl = 0.05. 

Training of the ANNs proceeded as described in Experi
ment 1. A hit was recorded if the actual output was 0.95 or 
higher when a 1 was desired, or 0.05 or lower when a O was 
desired, and the maximum number of sweeps before failure 
was set at 30,000. Second, the maximum number of sweeps 
allowed was held constant at 30000 for all networks. Training 
continued until all patterns in the set were learned or until the 
maximum number of sweeps was reached. As the initial 
random assignment of connection weights introduces variabili
ty in learning, each of the four different networks (standard vs. 
redundant, integration device vs. value unit) was initialized 
and trained 10 times. The minimum, median, and maximum 
number of sweeps to convergence, and the number of ANNs 
reaching convergence were recorded. 

3.2 Results and Discussion 

Table 2 shows the minimum, median, and maximum number 
of sweeps required to reach convergence and the total number 
of networks out of 10 to reach convergence for the 3-, 5-, 7-

and 9-parity problems. The redundant networks solved the 
problems in fewer sweeps than the standard networks. 
Furthermore, the redundant networks converged on a solution 
100% of the time while the standard networks often failed to 
converge on a solution even after 30000 sweeps. When 
equalized for the total number of network processing steps, the 
redundant networks only outperform the standard networks as 
the problem difficulty increases. Finally, it should be noted 
that the value unit networks converged much faster than the 
integration device networks for both the standard network 
architecture and the redundant network architecture. Also, the 
standard value unit networks converged on a solution more 
often than the standard integration device networks, particular
ly with the more difficult problems. 

Table 2. Parity Problem: Sweeps to Convergence as a 
Function of Network Architecture and Processing Unit Type 

Network Architecture 

Standard Redundant 

Sweeps 3 5 7a 9 3 5 7 9 

Integration Device ANNs 

Minimum 661 5817 ----- ----- 261 576 353 397 
Median 2599 6943 ----- ----- 623 717 1237 1378 
Maximum 24850 8068 ----- ----- 1017 1047 2853 3695 

n 8 2 0 0 10 10 10 10 

Value Unit ANNs 

Minimum 49 213 1042 3052 37 34 71 360 
Median 81 258 2744 5848 67 84 97 918 
Maximum 200 1015 28322 14310 156 130 302 1449 

n 10 9 8 6 10 10 10 10 

Note. Maximum number of sweeps = 30000; n = number of converged 
networks out of 10. 
a. Due to the difficulty of the 7- and 9-parity problems, different values of 

11 were tried. Value units learned best with 11 = 0.01, whereas integration 
devices failed to learn at all values of 11. 

Similar results are obtained when we look at the different 
encoder problems. Redundancy decreases the amount of 
processing time and increases the likelihood of convergence 
for both integration device networks and value unit networks 
(see Table 3). When the number of processing steps are taken 
into consideration, however, redundancy does not help the 
integration device networks; On the other hand, value unit 
networks profit greatly from redundancy. In fact, the worst 
performance of the redundant value unit networks is better 
than the best performance of the redundant integration device 

135 



I 

I 

· 1 

networks. 

Table 3. Encoder Problem: Sweeps to Convergence as a 
Function of Network Architecture and Processing Unit Type 

Sweeps 

Minimum 
Median 
Maximum 

n 

Minimum 
Median 
Maximum 

n 

Network Architecture 

Standard Redundant 

424 838 16416 424 838 16416 

Integration Device ANNs 

1200 2232 5143 
1399 3377 7177 
4024 10399 22636 

10 9 6 

Value Unit ANNs 

360 482 772 
545 175 944 
975 1088 1921 

10 10 10 

353 588 827 
514 787 2265 
879 3060 8884 

10 10 10 

52 63 74 
77 96 95 

145 154 127 
10 10 10 

Note. Maximum number of sweeps = 30000; n = number of converged 
networks out of 10. 

In conclusion, convergence on pattern classification 
problems is much faster with redundant ANNs than with 
standard ANNs. Furthermore, redundant ANNs converge on 
a solution 100% of the time regardless of problem type or size, 
whereas the standard ANNs often failed to reach convergence. 
Also, standard value unit networks converged more often than 
standard integration device networks When the networks are 
equalized for total number of processing steps, the redundant 
integration device networks only outperform the standard 
networks on the more difficult problems, whereas redundancy 
always improves the performance of value unit networks. 
These findings support Dawson and Schopflocher's (1992), 
conclusions the value unit networks outperform integration 
device networks on linearly inseparable pattern classification 
problems. 

4 Experiment 3: Function Approximation 

Experiment 1 and Experiment 2 have conclusively shown that 
redundancy can improve the performance of ANNs trained on 
difficult pattern classification tasks. The last question to be 
addressed is whether or not redundancy will improve the 
performance of ANNs trained on a function approximation 
task. With function approximation, however, the number of 
sweeps to reach convergence is no longer an appropriate 
measure of network performance; therefore, performance will 
be evaluated via overall network error. 

136 

The function approximation task chosen is based on 
Churchland's [1992] crablike creature which is programmed 
to reach to a point in space. Our simulated robotic arm, 
however, will use a neural network to essentially learn forward 
kinematics. Previous research [Calvin, 1983; Kovac et al., 
1983] has suggested that redundancy in biological systems 
increases the accuracy of simple movements. Therefore, it is 
hypothesized that redundant ANNs trained on a function 
approximation task will have less error in responding than 
standard ANNs. 

4.1 Method 

4.1.1 Network Architecture 

The standard network used was a two-layer network with 
two input units, two hidden units, and two output units. 
Connection weights were randomly assigned from a rectan
gular distribution over the range [-5,+5], and processing unit 
biases were initialized to zero. The redundant network was 
created as before with the exception that there were now two 
Decision Units to correspond with each replicated network's 
two output units. 

4.1.2 Training Stimuli 

A schematic diagram of the simulated robot and the 
problem space is shown in Figure 2. An object was placed 
randomly in front of the simulated robot: If the object fell 
within an unreachable area (Le.grey area in Figure 2) then a 
new position was randomly chosen. Inputs to the network 
were the two angles (µ, ro) that the eyes subtended when con
verged on the object, while the desired network outputs were 
the angles (p, , ) that the shoulder joint and elbow joint made 

llil Indicates unreachable position 

Figure 2. Definition of Problem Space for Simulated 
Robotic Arm. 



in order for the arm to contact the object All angles were n
ormalized to fall within the range of O to 1. The inputs could 
be considered two-dimensional sensory-state space coordi
nates, and the outputs would then be considered as separate 
two-dimensional motor-state space coordinates. The network, 
therefore, learns the appropriate mapping between the two 
state spaces [see also Zipser and Anderson, 1988). As the 
mapping of the two state spaces forms a continuous function, 
there are an infinite number ofinput/output pairs; however, pr
acticality limited the training set to 50 randomly chosen pairs. 

4.1.3 Training Procedure 

Training of the networks proceeded as in Experiment 1 
with some minor changes. First, a "hit" was defined when the 
absolute error between the desired output and the actual output 
was less than 0.001. Second, the networks were trained for 
50,000 sweeps. Momentum and rate oflearning for the simu
lated robotic arm were a= 0.9, and 11 = 0.1. 

To assess the network's ability to learn the function 
approximation problem, maximum network sweeps were 
increased from 100 to 50000 in log10 steps. Total network sum 
of squared errors (SSE)- as measured by the difference 
between desired and actual network response-- as well as the 
SSE for each individual output (p, ,>. were recorded at each 
maximum sweep step. As the initial randomness of connec
tion weight assignment produces great variability in network 
learning, five different networks were trained for both the 
standard network architecture and the redundant network 
architecture. 

4.2 Results and Discussion 

The total SSE range and median for the simulated robotic arm 
for both the standard and re-

e 

5 

As hypothesized, redundant networks are significantly 
more accurate than standard networks on function approxima
tion problems. Not only is the median SSE less for the redun
dant ANNs than for the standard ANNs, but the SSE range is 
significantly less for redundant networks as well. This means 
that the responding of the redundant ANNs is much less 
variable- or more stable-- than the responding of the standard 
ANNs. Also, the advantage for the redundant ANNs increases 
with the number of sweeps completed when total network 
processing time is considered. This advantage even holds at 
the higher end of the sweep scale when the redundant and 
standard networks are equalized for total number of processing 
steps. 

s General Discu~ion 

The results from both the PC problem and the FA problem 
confirm Izui and Pentland's [1990) mathematical analysis of 
redundant networks: Redundancy produces faster conver
gence, more accurate results, and more stable networks than 
comparable standard networks. In terms of the relevance of 
redundancy to the performance of ANNs in general, redundant 
networks should be considered as a viable alternative to 
standard networks. The initial cost of the extra hardware 
associated with redundancy is far out-weighed by the savings 
in training, accuracy in responding, and network stability 
produced by redundant processes. 

Our results have shown that there is another alternative to 
the combining algorithms used by committee machines (e.g. 
mean response, winner-take-all, median response, etc.). The 
modifiable connections from the individual output units to the 
decision unit allows the network to train itself. As opposed to 
taking the mean output response of individual networks, which 

,,,,,___.. _SSEAar,ge -----SSE----SSE Aar,ge ---SSE-

1-1o' 

gives equal weighting to all 
networks, the amount of con
tribution is weighted according 
to how well the individual net
works classify the problem. 
Furthermore, all individual 
networks contribute to the fi
nal result, unlike winner-take
all or median response meth
ods. Consequently, the modi
fiable connections of the deci
sion unit have proven to be a 
functional alternative to those 
methods conventionally used 
while preserving some sem
blance of biological systems. 

dundant networks are shown 
in Figure 3. As can be seen, 
median SSE decreases faster 
for the redundant networks 
than for the standard net
works. In fact, the average 
median SSE for the redundant 
network is significantly less 
than the average median SSE 
for the standard network ( x = 
0.355, 0.892 respectively; E. 
(1,44) = 23.899, 12 < .001). 
Furthermore, the range of the 
total SSE is significantly less 
for the redundant network 
than for the standard net
work (E (1,44) = 23.90, 12 < 
.001). Thisholdstrueforboth 
the elbow joint , (E. (1,44) = 
15.95, 12 < .001) and the 
shoulder joint p (E. (1,44) = 
6.91, 12 < .05). 

Figure 3. Median and Range of Network Error for the Simu
lated Robotic Arm 

Some evolutionary the
ories are supported by the per
formance of the redundant 
ANN. For example, the in
creased precision of the redun
dant network over the standard 
network on the FA problem 

137 



.. · 1 

lends credence to Calvin's [1983) hypothesis aboutredundan
cy evolving to increase the precision of a system. In fact, as 
the upper limit of network sweeps increases, the worst 
redundant network is more precise than the best standard 
network. Also, the number of sweeps to train both the FA 
network and the PC network suggests that it is easier to evolve 
several crude mechanisms working in parallel than one 
extremely effective mechanism [Swindale, 1986). 

Further research will consider the possibility of loss of 
redundancy accounting for loss of functioning in patients with 
debilitating diseases. As stated earlier, it is widely held that 
redundancy in the brain allows for functional recovery after 
brain damage [Almli and Finger, 1992). It follows thatloss of 
redundancy may cause loss of functioning. Modelling 
redundancy via computer simulation has a distinct advantage 
over biological models, in that precise ablations can be 
performed on artificial neural networks. Therefore, predica
tions can be made about the performance of biological 
functioning when redundancy is compromised. 

For example, the results of Experiment 3 show that the 
variability in making a response is much greater for a non
redundant network than a fully redundant network; therefore, 
as redundancy decreases, variability in responding should 
increase. Monitoring the variability changes should be an 
effective tool for estimating how much damage the system has 
suffered, and should even predict when terminal drop will 
occur. A practical application of thi11 theory has already been 
hinted at by Patterson, Foster, and Heron, who conclude that 
for assessing damage by Multiple Sclerosis, "variability is a 
more sensitive indicator of visual pathway damage than the 
usual measure of mean" (1980, p.143). By attempting to 
model this increase in variability, we may be in a better 
position to understand the underlying damage associated with 
such diseases as Multiple Sclerosis and Alzheimers. 

References 

Almli, C.R., & Finger, S. (1992). Brain injury and recovery 
of function:Theories and mechanisms of functional reorgani
zation. Journal of Head Trauma Rehabilitation, 7, 70-77. 

Ballard, D. (1986). Cortical structures and parallel process
ing: Structure and function. TheBehavioral and Brain Scien
ces, 9, 67-120. 

Baxt, W. G. (1992). Improving the accuracy of an artificial 
neural network using multipledifferently trained networks. 
Neural Computation, 4, 772-780. 

Calvin, W. H. (1983). A stone's throw and its launch window: 
Timing precision and its implications for language and 
hominid brains. Journal of Theoretical Biology, 104, 121-
135. 

Churchland, P. M. (1992). A neurocomputational perspective: 
The nature of mind and the structure of science. Cambridge, 
MA: MIT Press. 

Dawson, M. R. W., & Schopflocher, D. P. (1992). Modifying 
the Generalized Delta Rule to train networks of non-mono
tonic processors for pattern classification. Connection 

Science, 4, 19-31. 
Dawson,M.R.W., & Shamanski, K. S. (1994). Connectionism, 

confusion, and cognitive science. Journal of Intelligent 
Systems, In press. 

Dawson, M.R.W., Shamanski, K. S., & Medler, D. A. (1993). 
From connectionism to cognitive science. In L. Goldfarb 
(Ed.) Proceedings of the Fifth University of New Brunsmdc 
Artificial Intelligence Symposium. Fredericton, NB: UNB 
Press. 

Glassman, R. B. (1987). An hypothesis about redundancy and 
reliability in the brains of higher species: Analogies with 
genes, internal organs, and engineering systems. Neurosci
ence & Biobehavioral Reviews, 11, 275-285. 

Izui, Y., & Pentland, A. (1990). Analysis of neural networks 
withre-dundancy. Neural Computation, 2, 226-238. 

Jacobson, J. Z. (1976). Relative possibilities of loops and 
redundant connections in neural nets. Journal of Mathemati
cal Psychology, 13, 148-162. 

Kovac, M.P., Davis, W.J., Matera, E.M., & Croll, R.P. (1983). 
Organization of synaptic inputs to paracerebral feeding 
command interneurons of Pleurobranchaea califomica. I. 
Excitatory inputs. Journal of Neurophysiology, 49, 1517-
1538. 

Lewandowsky, S. (1993). The rewards and hazards of 
computer simulations. Psychological Science, 4, 236-243. 

McCloskey, M. (1991). Networks and theories: The place of 
connectionism in cognitive science. Psychological Science, 
2, 387-395. 

Marshall, J. F. (1984). Brain function: neural adaptations and 
recovery from injury. Annual Review of Psychology, 35, 
277-308. 

Minsky, M. L., & Papert, S. A. (1969). Perceptrons. Cam
bridge, MA: MIT Press. 

Patterson, V. H., Foster, D. H., & Heron, J. R. (1980). Vari
ability of visual threshold in Multiple Sclerosis: Effect of 
background luminance on fre.quency of seeing. Brain: A 
Journal of Neurology, 103, 139-147. 

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). 
Leaming internal representations by error propagation. In D 
E. Rumelhart, J. L. McClelland, and the PDP Group (Eds.), 
Parallel distributed processing: Explorations in the micro
structure of cognition. Vol 1. (pp 318-362). Cambridge, 
MA.: MIT Press. 

Schapire, R. (1990). The strength of weak leamability. 
Machine Leaming, 5, 197-227. 

Strehler, B. L., & Lestienne, R. (1986). Evidence on precise 
time-coded symbols and memory of patterns in monkey 
cortical neuronal spike trains. Proceedings of the National 
Academy of Sciences of the United States of America, 83, 
9812-9816. 

Swindale, N. V. (1986). Parallel channels and redundant 
mechanisms in visual cortex. Nature, 322, 775-776. 

Zipser, D., & Andersen, R. A. (1988). A back-propagation 
programmed network that simulates response properties of 
a subset of posterior parietal neurons. Nature, 331, 679-ffit 

138 



A Diagnosis Method for Multiple Failures in a Nonlinear and Dynamic Process 

Takashi W ashio, Ph.D. Masatake Sakuma and Masaharu Kitamura, Ph.D. 
Safety Engineering Department 

Mitsubishi Research Institute, Inc. 
1-8- 1, Shimomeguro, Meguro-ku, 

Tokyo 153, Japan 
washio@mri.co.jp 

Abstract 

Many practical applications of diagnosis require the 
reliable identification of multiple faults of compo
nents and sensors in quantitative measures. How
ever, the state of the art is considered to be still in
sufficient to meet these severe requirements espe
cially for nonlinear and dynamic systems. 

This research proposes a method to achieve these 
practical requirements using the frameworks of opti
mum constraints, minimal conflicts based diagnosis, 
and causal ordering of physical systems. First, the 
detection of faulty behaviors of an objective system 
is performed based on the quantitative consistency 
checking between observations and the optimum 
constraints called as "minimal over-constraints". 
Second, once if some inconsistencies are detected, 
the minimal conflicts based diagnosis derives the 
candidates of faulty mechanisms. Third, the anoma
lous quantities directly disturbed by the faulty 
mechanisms are identified systematically based on 
causal ordering. Furthermore, the quantitative de
viations of these quantities are evaluated using the 
minimal over-constraints. 

The practicality of the proposed method is dem
onstrated through an example to diagnose an electric 
water heater. 

1 Introduction 

Many practical applications of diagnosis require the reliable 
and real-time identification of multiple failures of compo
nents and sensors in quantitative measures. The approaches 
of model-based constrains without using any knowledge of 
failure modes have a significant advantage to diagnose any 
unexpected failures [de Kleer and Williams, 1987; Hamilton, 
1988; Torasso and Console, 1989]. However, the state of the 
art might be still insufficient to meet the severe requirements 
in the practical applications. This research proposes a method 
to achiev~ the practical requirements by using the frame
works of optimum constraints, minimal conflicts based diag
noses , and causal ordering under the following premise. 

Premise 1 : The objective system for diagnosis is represented 
by physical or functional constraints which may 
be nonlinear and dynamic. 

Nuclear Engineering Department 
Tohoku University 

Aramaki-Aza-Aoba, Aoba-ku, 
Sendai, 980, Japan 

g21447@cctu.cc.tohoku.ac.jp 

Figure 1 shows the entire diagnostic procedure. In the step 
(1 ), the detection of faulty behaviors of an objective system is 
performed first based on the quantitative consistency check
ing between (A) the observed information and (B) a certain 
type of optimum constraints of the normal system. Once if 
some inconsistencies are detected, the minimal conflicts 
based diagnoses [Reiter, 1987; de Kleer and Williams, 1987; 
de Kleer et al., 1992] are applied. The constraints in the 
knowledge (B) are called as "minimal over-constrained sub
sets" [Washio and Kitamura, 1992; Washio et al., 1993]. 
They are established to have the maximum resolution of the 
consistency checking to identify faulty mechanisms under the 
following second and third premises which are widely com
mon in practical process systems. 

Premise 2 : The arrangement of installed sensors is initially 
given and fixed during the operation of the sys
tem, and has some redundancies to identify the 
system states. 

Premise 3 : Any quantitative expectations of dynamic system 
behaviors are not available without using the 
system description and the sensors' observations. 

In the step (2), the anomalous quantities directly disturbed by 
the faulty mechanisms are identified systematically based on 
(C) the causality information among the quantities. Further
more, the quantitative deviations of these anomalous quanti
ties are evaluated based on the knowledge (B). The knowl
edge (C) represents the orders of the determination of quanti
ties [Simon, 1977; Iwasaki and Simon, 1986; Iwasaki, 1989]. 
An extended theory of "causal ordering" proposed in our pre
vious work [Washio, 1989; Washio and Kitamura, 1992; 
Washio et al ., 1993] is adopted in this research. 

The knowledge (B) and (C) can be prepared systematically 
by off-line processing in advance, and the on-line and real
time processing for the consistency checking and the devia
tion evaluation does not require the search of any new con
straints. The diagnosis speed may be applicable to the real
time use due to this optimized feature and the recent progress 
of computer hardware. 

The performance of the proposed method is exemplified 
through the diagnosis of an electric water heater depicted in 
fig.2. A resistant wire is electrically shielded from the sur
roundings, and its resistance has a nonlinear feedback effect 
from water temperature. The water is assumed to be always 
mixed well to avoid the spatial fluctuation of its temperature. 

139 



. < 

I 

(A) quantitative information observed by sensors 

' (B) knowledge of minimal over-constrained ~ 

(I) identification of faulty mechanisms based 

subsets of the model of a system - on consistency checking between 

observations and constraints 

' (C) knowledge of causality among model ~ (2) identification of anomalous quantities 

quantities in a system - and their quantitative deviations 

Figure I Entire procedure of a proposed diagnosis method .. 

Some major physical quantities are measured by given sen
sors. The physical model of this process system is expressed 
as follows. 

l=lp (l), lg=l(2), V=IR (3), Fh=VI (4), H=L/hdt (5), 

T = H/(cM) (6), R = r+k(T-t/ (7), I *=I (8), 
l*=I (9), V*=V(lO), M*=M(l{), T,J'=T(12) 
(* indicates the measurements of sensors.) 

IP, I, 1
8

: electric currents of a power supply, a resistant wire 
and the ground; R, V, Fh: resistance, voltage and heat genera
tion rate of the resistant wire; H, M, T: contained heat, mass 
and temperature of water; c=4.2J/cal: specific heat coefficient 
of water, tc=300°K: standard temperature; r = 100 O, k = 5 0 / 
°K2

: resistance at tc and temperature coefficient of the wire. 

Each sensor model should be explicitly introduced into the 
system model to enable a uniform diagnosis of sensor failures 
and c?n:iponent failures. This example has the following char
actenst1cs to demonstrate the generality of our proposing 
method. 

(1) nonlinear mechanisms (2) feedback loops 
(3) dynamic behaviors (4) sensor models 

2 Minimal Over-Constrained Subsets 
and Failure Identification 

2.1 Minimal Over-Constrained Subsets 
First, Reiter's framework of the system definition is intro
duced for general discussion [Reiter 87]. A system is a triple 
(_SD, COMPS, OBS) where they stand for the system descrip
t10n, the system components and a set of observations re
spective)Y· Each constraint c in the system model belongs to 
the SD, 1.e., c E SD, because they are used to derive the nor
mal behaviors of the system. Furthermore, the constraints 
take a unique position in our framework that each constraint c 
provides a basic granule of anomaly, playing the role of a sys
tem component to be diagnosed, i.e., cECOMPS. Accord
ingly, eq.(1)-(12) belong to both of the SD and the COMPS 
in our case. 

T~e constr~nts ~n the SD are always over-constrained by 
the mformat10n m the OBS under the aforementioned 
premise 2. Especially, the over-constraints with one degree 
have the minimal sizes in the sense of number of their ele-

140 

to a power supply 

Figure2 An electric water heater 
( * stands for observations by sensors.). 

ments involved. They are expected to provide the maximum 
resolution in the consistency checking under the premise 3, 
because any extra information other than the SD and the OBS 
is not applicable to the consistency checking. Under this cir
cumstance, the following definitions are proposed [Washio 
and Kitamura, 1992; Washio et al., 1993]. 

over-constrained subset of nth order:C" 
a set of m constraints in the SD involving n undetermined 
quantities where m>n and all constraints form a connected 
graph. 

minimal over-constrained subset of nth order:M" 
a set of (n+l) constraints in the SD involving n undeter
mined quantities and not involving any other over-con
strained subsets where all constraints form a connected 
graph. 

The undetermined quantity is neither of a directly observed 
quantity and a nominally fixed quantity in the SD and the 
OBS under the premise 2. This categorization between unde
termined and determined quantities introduces the informa
tion of sensor arrangement explicitly to the diagnostic con
straints. The following assumption must be introduced for the 
valid use of these definitions in the consistency checking. 

~ssumption 1 : The model constraints { c I c E SD } are mutu-
ally independent which provide each minimal 
over-constrained subset M well-posed. 



The independency of model constraints in a nonlinear system 
is not always guaranteed, because the relations among quanti
ties are state-dependent. However, the model constraints of a 
process system are almost independent under its normal op
erations in practical applications. Hence, the present over
constraint condition can be adopted widely to process sys
tems. 

Although the efficiency of the derivation of all minimal 
over-constrained subsets is not the main issue for the off-line 
preparation of this knowledge in advance, a generic and effi
cient algorithm depicted in fig.3 capable of handling practi
cally large scale models has been investigated [Washio, 1992; 
Washio et al., 1993]. The Sis a constraint-quantity matrix of 

Start 

Pl : Remove the columns of all observed and 
nominally fixed quantities from S, and 
let the reminder be S'. Let the number of 
quantities in S' be N. 

P2 : Let each constraint which row has no 
elements of l be a minimal over-constrained 
subset of zero order Mp. 
(i is the index number of the constraint.) 

Yes 
N=O? 

P3 : Let every set of n quantities in S' be S? 
(i=l, ... ,NCn ). Let the set of all constraints 

that have only the quantities belonging to 
s? be L? , and let the number of constraints 
in L? be m?. If m1 is more than n, and also 
if the constraints in ~ are connected one 
another, let Lt be a over-constrained subset 
of nth order cY, 

P4 : Let every set of n+ 1 constraints in ci:t be ci:t . 
n I I J 

(j=l, ... ,mycn+l) . IfC ij does not involve 
any other minimal over-constrained subset, 
and also if the constraints in c 1 j are 
connected one another, let Cj jbe a minimal 
over-constrained subset of nth order Mi j' 

Figure 3 An algorithm to derive all minimal 
over-constrained subsets. 

n=n+l 

the SD. Each (i,j) element of the S is 1 if the ith constraint 
contains the jth quantity, otherwise it is 0 . This algorithm is 
far more efficient than the thorough search, since the enu
meration number of subsets in the SD within this algorithm is 
almost proportional to 2N where N is the number of the unde
termined quantities in the SD. Whereas, that of the thorough 
search is 2K where K is the size of the SD and larger than N. 

By applying the above algorithm to eq.(1)-(12), totally the 
following 10 minimal over-constrained subsets are derived. 

M\ = { 1,2,8,9} 
M\ = { 1,3,7,8,10,12} 
M\ = ( 2,3,7,9,10,12} 
M\ = (1,4,5,6,8,10,11,12} 
M\ = ( 2,4,5,6,9,10,11,12} 
M\ = ( 3,4,5,6,7,10,ll,12} 
M\ = { 1,3,4,5,6,7,8,10,11} 
M\ = { 1,3,4,5,6,7,8,11,12} 
M\ = ( 2,3,4,5,6,7,9,10,11 } 
M\ = {2,3,4,5,6,7,9,11,12 } 

2.2 Consistency Checking 

(13) 

The following definitions and the associated theorems estab
lish a systematic scheme of this consistency checking. The 
"deletion" of a constraint c from the SD is defined as an op
eration to remove the c while remaining the quantities in
volved in the c. A "self-contained subset" is a subset of the 
SD in which the number of undetermined quantities is identi
cal to that of the constraints while forming a connected graph 
[Simon, 1977; Iwasaki and Simon, 1986] . A self-contained 
subset determines the values of its quantities by itself. For 
example, if the deletion of eq.(1 0) in the minimal over-con
strained subset M\ is performed, the resultant constraints in 
the M\ become as follows. 

I = I (2), V = IR (3), R = r+k(T-t )2 (7), 
1:* = lg (9), V* (10), T* = T (12) c 

V* and V remain in eq.(10) and eq.(3) of the model, respec
tively. The constraints of eq .(2), eq.(3), eq.(7), eq.(9) and 
eq.(12) form a self-contained subset of five undetermined 
quantities and five constraints. Also, the eq.(10) forms a tiny 
self-contained subset of zero undetermined quantity and zero 
constraint. 

[Theorem 1] If the deletion of any one constraint c in a mini
mal over-constrained subset M is conducted, the M becomes 
one or more self-contained subset(s). • 
<Proof> By definition, the M becomes a subset of n con
straints with n undetermined quantities by the deletion of a 
constraint. 
(i) In case that the extra connections exist among quantities 
involved in the deleted c, the M remains to form a connected 
graph, and thus becomes a self-contained subset. 
(ii) In case that the deleted c involves some unique connec
tions among quantities, the Mis partitioned into Q new sub
sets (Q ~2). Each new subset involves k undetermined 

Q ' 

quantities (n=I kj). As the M forms a connected graph by 
i=l 

definition, each new subset also forms a connected graph. 
Furthermore, as the M does not involve any other over-con-

141 



strained subset by definition, each new subset which is a part 
of the original M is not over-constrained. Therefore, each 
new subset involves k or less constraints. On the other hand, 
the total number of th~ undermined quantities in all new sub
sets, i.e., n, is identical to the total number of the remaining 
constraints. Accordingly, each new subset involves ki con
straints which is identical to the number of undetermined 
quantities in the subset, and hence each new subset is a self
contained subset. D 

[Theorem 2] Any undetermined quantity x in a minimal over
constrained subset M appears in two or more constraints 
within the M. • 
<Proof> An assumption is introduced that an undetermined 
quantity x belongs to a unique constraint c in a minimal over
constrained subset M. In this case, the following smaller 
minimal over-constrained subset M' having n constraints and 
n-1 undetermined quantities can be always obtained by the 
removal of the c from the M. 
M'=M-c CM 
This is contradictory to the definition of minimal over-con
strained subsets. D 

[Theorem 3] Two or more self-contained subsets which can 
independently determine the value of an undetermined quan
tity x in a minimal over-constrained subset M always exist in 
theM. • 
<Proof> Due to the theorem 2, a constraint c involving an 
undetermined quantity x can be selected for its deletion from 
the multiple candidates in the M. The deletion of the c always 
derives one or more self-contained subset(s) in the M as 
stated in the theorem 1. Hence, two or more self-contained 
subsets which can determine the value of the x respectively 
are always obtained by the deletion of each c involving the x 
in theM. D 

Any undetermined quantity x in a minimal over-con
strained subset M can be chosen for the comparison among its 
values derived by the multiple self-contained subsets in the 
M. Once the self-contained subsets for the derivation of the x 
have been set, the values of all undetermined quantities in
cluding the x in those subsets are sequentially determined by 
following the scheme of the causal ordering [Simon, 1977; 
Iwasaki and Simon, 1986; Iwasaki, 1989] while treating the 
directly observed and nominally fixed quantities as exog
enous quantities. If the residuals among the values of the x 
exceed a certain threshold value, some constraints in the M 
are considered to be faulty. This procedure is applied to every 
minimal over-constrained subset Min the SD. 

In the example of the electric water heater, the following 
multiple failures are numerically simulated. 

The electric shield of the resistant wire and the voltage sen
sor were broken by a mechanical shock at the time 200sec. 
30% of the electric current began to leak between the 
power supply and the resistant wire, and the indication of 
the voltage sensor has been changed and fixed at the level 
of 150V. 

Ripples of 20% sine wave were added to the voltage of the 
power supply in order to evaluate the performance of the con-

142 

sistency checking in the dynamic behavior. Figure 4 repre
sents the result of the consistency checking for each minimal 
over-constrained subset M. The undetermined quantity x for 
the checking was arbitrarily chosen in each M. All subsets 
except M\ became inconsistent at the time 200sec. 

Generally speaking, each minimal over-constrained subset 
is not very robust to the errors in the system model and the 
observation noise because of its low redundancy for consis
tency checking of an undetermined quantity x. However, 
various and efficient remedies in the field of numerical state 
estimation theory can be applied to this difficulty. For in
stance, Kalman fi lter technique [Kalman, 1960) provides a 
powerful measure to distinguish the physical inconsistency 
from the observation noise. In the mean time, the difficulty is 
also reduced, as the failure identification described in the fol
lowing section usually has gradually degraded performance 
for the misjudgments in the consistency checking. 

2.3 Failure Identification 
The minimal conflicts can be easily derived from the result of 
the aforementioned consistency checking based on any 
method of "minimal diagnoses" [Reiter, 1987; de Kleer and 
Williams, 1987) and "kernel diagnoses" [de Kleer et al., 
1992), because each minimal over-constrained subset on the 
SD is also the collection of constraints c belonging to the 
COMPS as mentioned previously. In our current work for 
process diagnosis, the following assumption is introduced. 

Assumption 2 : The mutual cancellation of anomalous behav-
iors of multiple failures is hardly occurred in 
process systems. 

This assumption makes our diagnosis basically equivalent to 
Raiman's approach [Raiman, 1990] . Once all minimal con
flicts are obtained, the following standard procedure derives 
the possible sets of faulty constraints [Reiter, 1987; de Kleer 
and Williams, 1987; de Kleer et al ., 1992). 

(1) "Multiply" the minimal conflicts to give a disjunction of 
conjunctions. 

(2) Delete any conjunction containing a complementary pair 
of literals. 

(3) Delete any conjunction covered by some other conjunc
tion. 

(4) The remaining conjunctions are the prime implicants of 
the original minimal conflicts. 

These prime implicants are the possible interpretations of 
faulty states. The following premise named "minimal prin
ciple" [Reiter, 1987) being ordinary in many diagnosis meth
ods is also adopted in our work. 

Premise 4 : The combination of abnormal constraints explic
itly stated in each prime implicant is faulty, and 
the rests are considered to be normal . 

In the example, as the expression of "All equations in M\ 
are normal." is against the inconsistent result of M3

1
, its nega

tion 

M\: AB(l)V AB(2)V AB(8)V AB(9), (14) 



$1 

l 
00 

2 0.5 

! 
8 u L_ _ _:::~=~:::~ :::-=~::::-:::::--=~~ 

O t(sec) 500 

Q 330 
':., M ~ 

---- 150 c:, 

50 

00 

Q 330 
~ M~ 

<l) j 320 

g_ 
§ 310 ... 
~ 

t (sec) 500 

.--. 150 c:, 

50 

0 '----------
0 t (sec) 500 

106~-------~ 

~300'---------~ 
t (sec) 500 0 t (sec) 500 t (sec) 500 

4000.-----------, 106~-------~ 4000~-------~ 

----c: 3000 

i 2000 
ti 
'vi 
i!::! 1000 

M~ :§ M~ 

~104 
i= 
~ 
c:: 'i 102 

~ 

M~ 
S3ooo 
1:l 
§ 2000 
"' ·~ 
... 1000 

100 ........ ---=~~~-~-----~ 
t (sec) t (sec) 500 0 500 t (sec) 500 

106.-----------, 

-

-

t (sec) 500 

Figure 4 Result of consistency checking (solid lines:observations, dashed lines:evaluations by constraints). 

becomes a minimal conflict. The minimal conflicts for the 
other inconsistent minimal over-constrained subsets are de
rived as well. 

M\: AB(l)V AB(3)V AB(7)V AB(8)V AB(lO)V AB(12), 
M\: AB(2)V AB(3)V AB(7)V AB(9)V AB(10)V AB(12), 
M\: AB(1)VAB(4)V AB(5)V AB(6)V AB(8)V AB(10)V 

AB(ll)VAB(12), 
M\: AB(2)V AB(4)V AB(5)V AB(6)V AB(9)V AB(IO)V 

AB(ll)VAB(12), 
M\ AB(3)V AB(4)V AB(5)V AB(6)V AB(7)V AB(lO)V 

AB(l 1) V AB(12), 
M\ AB(l)V AB(3)V AB(4)V AB(5)V AB(6)V AB(7)V 

AB(8)VAB(10)VAB(11), 
M\: AB(l)V AB(3)V AB(4)V AB(5)V AB(6)V AB(7)V 

AB(8)V AB(ll)V AB(12), 
M\: AB(2)V AB(3)V AB(4)V AB(5)V AB(6)V AB(7)V 

AB(9)V AB(lO)V AB(ll). 
(15) 

The notation of "An equation in M\ is abnormal." is against 
the consistency of M\ under the assumption 2. Thus, the 
minimal conflicts of M 

4 
are 

M84: -iAB(2), -,AB(3), -,AB(4), -,AB(5), -,AB(6), 
-,AB(7), -,AB(9), -iAB(l 1), -,AB(12). (16) 

The aforementioned procedure (1)-(4) derives the following 
results from these minimal conflicts. 

AB(l);\ -,AB(2);\ -iAB(3);\ -iAB(4);\ -,AB(5);\ 
-,AB(6);\ -,AB(7);\ -,AB(9)AAB(10);\ -,AB(ll);\ 
-, AB(12) (17) 
-iAB(2);\ -iAB(3);\ -,AB(4);\ -,AB(5);\ -iAB(6)t\ 
-iAB(7)AAB(8);\ -,AB(9)AAB(10);\ -iAB(l l)A 
-,AB(12) (18) 

The eq.(17) stands for the violation to the electric current bal
ance between the power supply and the resistant wire (eq.(1)) 

143 



and the anomaly of the voltage sensor (eq.(1 0)). This result is 
correct for the original failures in the simulation. An errone
ous solution of the eq.(18) can not be eliminated under the SD 
and the OBS. 

3 Identification of Anomalous Quantities 
and Their Quantitative Deviations 

3.1 Causal Ordering and Identification 
of Anomalous Quantities 

Causal ordering [Simon, 1977; Iwasaki and Simon, 1986; 
Iwasaki, 1989] is required to identify anomalous quantities 
directly disturbed by faulty mechanisms. In the conventional 
framework, the determination orders of process quantities are 
derived based on the specification of exogenous quantities in 
the system and the time derivative quantities to change their 
integrals. However, any of the inlet flow and the outlet flow 
can be exogenous in a water pipe, because they just mutually 
balance. Furthermore, in Faraday's law of induction, 

dB/dt = -rot(E) or B=-J rot(E)dt, (l 9) 

B : magnetic flux density, E : electric field intensity, 

the change of B directly determines the value of E, i.e., the 
time integral determines its time derivative within a funda
mental physical law. Accordingly, the arbitrary specification 
of exogenous quantities and the unique assumption of the 
causality in time differential equations may mislead the result 
of the causal ordering for physical systems. This discussion 
we have made [Washio, 1989] is also supported by Y. 
Iwasaki and H.A. Simon [Iwasaki and Simon, 1993]. 

The authors proposed an extended theory to reduce the am
biguity of the causal ordering for physical systems [Washio, 
1989; Washio and Kitamura, 1992; Washio et al ., 1993]. The 
specific heat law (eq.(6)) in our example defines the quantita
tive relation between H and T under the exogenously given 
heat capacity cM. Either of the values of Hand Tis physically 
determined in this law, but cM is not changed by H and T 
within this law. The authors named this type of the applica
tion independent constraints on the direction of the distur
bance propagation among quantities in a physical constraint 
as "inherent causal structure" of the constraint [Washio, 
1989; Washio et al., 1993]. The details of the generic method 
to determine the inherent causal structure of each equation 
can bee seen in authors' works [Washio, 1989; Washio , 
1990] . Once the inherent causal structure of each equation 
has been identified, its knowledge representation with the 
quantitative relation of the equation is given by the following 
manner. First, let X e be a set of exogenously given quanti
ties in the equation, and let Y e be a set of the other quantities 
in the equation. Any element in Y e has a possibility to be 
physically determined. Subsequently, the quantities in each 
set are located on either of the right hand side (rhs) and the 
left hand side (lhs) by the following rule. 

if X e =I= { ¢ } then G e (Ye ) = Fe (Xe ), 
if X e = { ¢ } then G e (Y e ) = 0, (20) 
where X e n Y e = ¢ , Y e =I= ¢ , 

F e :rhs of equation, and G e :lhs of equation. 

This knowledge representation of a equation is called as an 

144 

"assumptive structural equation". 
If an assumptive structural equation has only one quantity 

on its lhs, the value of the quantity is uniquely determined by 
the other quantities on the rhs. Thus, 

determining equation: an equation having unique quantity on 
the lhs, 

determined quantity : the unique quantity on the lhs of a 
determining equation, 

are defined. When the model of the objective system is a set L 
of the assumptive structural equations, let a set of all quanti
ties in L be S. The unambiguous determination orders of the 
quantities in L can be derived by the systematic algorithm 
depicted in fig.5 . Its resultant revised equations stand for the 
determination orders of the quantities from their rhses to the 
lhses. 

The model of the electric water heater can be represented 
by the following assumptive structural equations [Washio, 
1989; Washio, 1990]. 

1-1 = 0 (1') , I -I = 0 (2') , V/1 = R (3') , Fh = VI (4'), 
p J t g 

H = F dt (5'), HIT =cM (6'), R = r+k(T-t/ (7') , 
-oo h 

I *=I (8') I *=I (9') V*=V (10'), M*=M (l l'), T*=T (12') 
p p ' g g , 

All quantities in eq.( l ') and (2') are located on their lhses, be
cause they are balance equations. The eq.(3) (Ohm's law) de
fines the relation between V and I under an exogenously 
given resistance R. The heat generation rate Fh in eq.(4') 
(Joule's law) is unidirectionally determined by V and I, be-

, cause this law represents an irreversible process in a thermo
dynamic phenomenon. The eq.(5') stands for a standard time 
evolution. The structure of eq.(6') has been aforementioned. 
The eq.(7) represents another irreversible process from T to 
R. The rests are for sensors, and their structures are trivial. 
The causal ordering procedure of fig.5 is applied to thi s 

Start 

La=¢, Sa = ¢, i = l 

P 1 ; Let the set of all determining equations in (L-La) be Li. 
Let the set of all determined quantities in (S-Sa) be Si. 

La=La+L i , Sa=Sa+Si 

P 2 : Move quantities in Si from YJ to x, in each equation) 
in (L-La), if the transfer is possible in the equation form. 

Yes 

End 

Are any determining 
equations in (L-La)? 

Figure 5 An algorithm of extended causal ordering. 



Figure 6 The causal network of an electric water heater. 

model. In the step Pl, eq.(4'),(5') and (7')-(12') are identified 
as determining equations. In the step P2, a determined quan
tity Hof eq.(5') is moved from the lhs to the rhs in eq.(6'). 

T = H/(cM). (6") 

As no other determined quantities appear in any Ihses, the 
procedure goes back to the step Pl. Then a new determined 
quantity Tin eq.(6") is identified. However, the loop is halted 
in the step P2, because no T exists in any lhses. The resultant 
equations of eq.(1 ')-(5'), (6"), and (7')-(12') indicate the deter
mination orders of the quantities. The orders are depicted in 
form of a causal network in fig .6. The quantities remaining on 
each lhs of eq.(1 '), (2') and (3') influence bidirectionally. 

In case of eq.( 17) resulted in the aforementioned diagnoses, 
the anomalous quantities directly disturbed by the fault of 
eq.(1) are identified as any of I and I based on the final struc
ture of eq.( 1 ') . In practice, any of I and I can be changed by 
the break of the electric shield betJ'een the power supply and 
the resistant wire. Also, the quantity directly disturbed by 
eq.(10) is identified as V* . 

Many physical systems partially involve the bidirectional 
causality as shown in this example, and the derivation of the 
exact causal structure of large systems is highly difficult 
within our physical intuition. Accordingly, this systematic 
causal ordering method provides an efficient remedy to iden
tify anomalous quantities directly disturbed by faulty mecha
nisms. 

$ 
c t: 0.5 
;::, 
u 

t (sec) 500 

$ 
c 
f:: 0.5 
;::, 
u 

3.2 Evaluation of Quantitative Deviations 
The following theorem assures the ability to evaluate the 
quantitative deviation of any anomalous quantity directly dis
turbed by any multiple failures identified in the section 2.3. 

[Theorem 4] For any abnormal constraint AB(c) belonging to 
a diagnosis : D, at least one inconsistent minimal over-con
strained subset exists which involve AB(c) and does not in
volve the other abnormal constraints in the D. • 
<Proof> An assumption is introduced that any inconsistent 
minimal over-constrained subset involving the AB(c) in
volves some other abnormal constraints in a D. In the step (I) 
of the standard procedure described in the section 2.3, the fol 
lowing smaller diagnosis D' can be always obtained by select
ing an abnormal constraint except the AB(c) from every mini
mal conflict corresponding to each inconsistent minimal 
over-constrained subsets. 
D' = D - AB(i) C D 
This is contradictory to the requirement in the step (3) of the 
procedure that D does not involve any other diagnoses. D 

[Theorem 5] When a quantity xis contained in an AB(c), any 
minimal over-constrained subset M involving the c involves a 
self-contained subset which detennines the value of x without 
including the c. In the mean time, the minimal over-con
strained subset M involves another self-contained subset 
which determines the value of x by using the c. • 
<Proof> Due to the aforementioned theorem 3, the former 
self-contained subset is derived by the deletion of the c in the 
M. The latter is obtained by the deletion of a constraint con
nected with the c through x in the M. D 

As a consequence of the theorem 4 and the premise 4, for 
every AB(c) directly disturbing anomalous quantity x, one 
minimal over-constrained subset always exists in which the 
AB(c) is the unique abnormal equation. Accordingly, the ac
tual anomalous value and the normal value of each anoma
lous quantity x can be always evaluated by the former and 
latter self-contained subsets in the theorem 5. The value of the 
x in these subsets is determined by the causal ordering simi
larly to the section 2.2. 

In case of the diagnosis of eq.(17), the anomalous quanti
ties are I , I disturbed by the eq.(I) and V* by the eq.(10) . As 
the miniinal over-constrained subset M\ involves eq.(l) but 
not eq.(10), the actual anomalous value of I is evaluated by 
the subset { 8} which is obtained by the d~letion of eq.( l) 
from M\. Also, the normal value of Ir is evaluated through 

t (sec) 500 

~ 150 
G 
'-' 
5 100 
0 
> 50 

0 .___ _________ __J 

0 t (sec) 500 
quantitative deviation of Ip quantitative deviation of I quantitative deviation of V 

Figure 7 Deviations of anomalous quantities (solid lines:actual anomalous values, dashed lines:normal values). 

145 



· -· · 1 

. ·· I 

the subset { 1,2,9} obtained by the deletion of eq.(8) from M3
1
. 

The actual anomalous value and the normal value of I are 
evaluated through {2,9 } and { 1,8} respectively in the same 
manner. For the quantity V*, its actual anomalous value is 
obtained by its direct measurement. The normal value is de
rived by the M\ which involves eq.(10) but not eq.(1 ). Figure 
7 shows the quantitative deviations of these anomalous quan
tities. These results are quantitatively consistent with the mul
tiple failures introduced in the simulation. 

4 Related Works 

In the ATMS-based methodology [de Kleer and Williams, 
1987), conflicts are generated incrementally as new measure
ments are made. A heuristic probing of the obvious and semi
obvious conflicts using causality information [Bakker and 
Bourseau, 1992) and one step look ahead random probing [de 
Kleer et al., 1992] indicate good efficiency to identify faults, 
when the objective system is large and has many possible 
probing points. On the other hand, the preparation of all mini
mal over-constraints beforehand in our approach usually dose 
not face the difficulty of the combinatorial explosion, since 
the size of COMPS and the number of given sensing points in 
a process component are quite limited. The definition of 
minimal over-constraints does not depend on any causality 
information. 

The idea to prepare all schemes for consistency checking in 
advance has also been presented by Biswas and Yu [Biswas 
and Yu, 1993]. They proposed "partial conflicts" to derive a 
conflict for each observation. The elements of COMPS in 
their work are parameters attributed to each process mecha
nism. Their framework essentially requires the linearization 
of process models and the steady state assumption of the pro
cess, and hence is not applicable to highly nonlinear and dy
namic systems. On the contrary, the basic element in our ap
proach is a constraint among the parameters and state vari
ables. The nonlinear and dynamic features of the system do 
not limit its application. 

5 Conclusion 

The operations and the knowledge used in this method are 
systematic, complete, well-defined and well-combined to 
synthesize an efficient and reliable procedure for diagnosis. 
This proposed method can diagnose multiple failures of com
ponent mechanisms and sensors occurred in a system. Non
linear and dynamic process in which the quantities are inti
mately connected one another can be diagnosed in high reso
lution. As the computational load required in the on-line pro
cessing is quite limited, the real-time and quantitative diagno
sis can be performed without loosing the maximum perfor
mance of this method. The specifications of this method can 
meet the severe requirements in the practical applications. 

Acknowledgments 

The authors wish to express our thanks to Dr. Hiroshi Motoda 
in Hitachi Advanced Research Laboratory and Prof. Toyoaki 
Nishida in Advanced Institute of Science and Technology for 
their useful comments. The authors extend the gratitude to 
Dr. Shuichi Koike and Dr. Hideaki Takahashi in Mitsubishi 
Research Institute, Inc. for their extensive support. 

146 

References 

[de Kleer and Williams, 1987] de Kleer, J. and Williams, 
B.C. : Diagnosing Multiple Faults, Artificial Intelligence, 
Vo.32, pp.97-130, 1987. 

[Hamilton, 1988] Hamilton, T.P. : HELIX:A Helicopter 
Diagnostic System Based on QualitativePhysics, Artificial 
Intelligence in Engineering, Vol.3,No.3, pp.141 -150, 1988. 

[Torasso and Console, 1989) Torasso, P. and Console, L.: 
Diagnostic Problem Solving, North Oxford Academic, 
1989. 

[Reiter, 1987) Reiter, R. : A Theory of Diagnosis from First 
Principles, Artificial Intelligence, Vol.32, pp.57-95, 1987. 

[de Kleer et al., 1992] de Kleer, J., Mackworth, A.K. and 
Reiter,R. : Characterizing diagnosis and systems, Artificial 
Intelligence, Vol.56, pp.197-222, 1992. 

[Washio and Kitamura, 1992] Washio, T. and Kitamura, M. : 
A New Approach for Plant Component Diagnosis Based on 
Credible and Transparent Physical Knowledge, Proc. of 
8th Power Plant Dynamics, Control & Testing Sympo
sium, pp.15.01-15.16, American Nuclear Society, 1992. 

[Washio et al., 1993) Washio, T., Sakuma, M., and Kitamura, 
M. : A Diagnosis Method for Multiple Process Failures, 
Proc. of DX-93 :Fourth International Workshop on Prin
ciples of Diagnosis, pp.327-340, Univ. College of Wales, 
Aberystwyth, UK, 1993. 

[Simon, 1977] Simon, H.A. : Models of Discovery, D. Reidel 
Pub. Co., Dordrecht, Holland, 1977. 

[Iwasaki and Simon, 1986] Iwasaki, Y. and Simon, H.A. : 
Causality in Device Behavior, Artificial Intelligence, 
Vol.29, No.I, pp.3-32, 1986. 

[Iwasaki, 1989) Iwasaki, Y. : Causal Ordering in a Mixed 
Structure, Proc. of AAAI-88, Vol.1 , pp.313-318, 1988. 

[Kalman, 1960] Kalman, R.E. : A new approach to linear fil
tering and prediction problems, Trans . ASME, Series D, J. 
of Basic Emgineering, Vol. 82, No.I, pp.33-45, 1960. 

[Washio, 1989] Washio, T. : Causal Ordering Methods 
Based on Physical Laws of Plant Systems, MITNRL-033, 
MIT Nuclear Reactor Laboratory, 1989. 

[Raiman, 1990] Raiman, 0. : A circumscribed diagnosis en
gine, Proc. of International Workshop on Expert Systems 
in Engineering, Lecture Notes in Artificial Intelligence, 
Vol.462, pp.90-101, Springer, Berlin, 1990. 

[Iwasaki and Simon, 1993] Iwasaki, Y. and Simon, H.A. : 
Retrospective on "Causality in device behavior", Artificial 
Intelligence, Vol.59, pp.141-146, 1993 . 

[Washio, 1990) Washio, T. : Derivation of Exogenously
Driven Causality Based on Physical Laws, Journal of Japa
nese Society of Artificial Intelligence, Vo.5, No.4, pp.482-
491, 1990 (in Japanese). 

[Bakker and Bourseau, 1992] Bakker, R.R. and Bourseau, 
M.: Pragmatic Reasoning in Model-Based diagnosis, Proc. 
of 10th European Conference on Artificial Intelligence, 
pp.734-738, 1992. 

[de Kleer et al., 1992) de Kleer, J., Raiman, 0., and Shirley, 
M.H. : One step lookahead is prettygood, Reading in 
Model-Based Diagnosis, edited W. Hamscher, J. de Kleer 
and L. Console, pp.138-142, Morgan Kaufmann, 1992. 

[Biswas and Yu, 1993) Biswas, G. and Yu, X. : A Formal 
Modeling Scheme for Continuous Systems: Focus on Di
agnosis, Proc. of 13th International Joint Conference on 
Artificial Intelligence, pp.1474-1479, 1993. 



Automated Model Generation and Simulation* 

Kyungsook Han and Andrew Gelsey 
kshan@cs.rutgers.edu gelsey@cs.rutgers.edu 

Department of Computer Science 
Rutgers University 

New Brunswick, NJ 08903 
U.S. A. 

Abstract 

Understanding or predicting the behavior of a 
complex physical system requires the construc
tion and execution of a model of the system. 
Such a model is often handcrafted by the person 
studying the system, and the modeling process 
is not formalized to be reusable by others. We 
describe a method which uses first principles to 
automatically create models and simulators for 
complex motions, and an implemented system 
called ORACLE. Given a description of a prob
lem involving a physical system, ORACLE au
tomatically identifies relevant model fragments, 
instantiates them for the particular entities and 
physical phenomena in the problem, composes 
the instantiated fragments to form a model, 
and executes the model. Knowledge of physical 
phenomena is represented with general model 
fragments which can be shared and reused by 
many models. Experimental results show that 
the method is capable of generating correct 
models of several different types of physical sys
tems if enough domain knowledge is available. 

1 Introduction 

Solving problems about complex physical systems gen
erally involves the creation and execution of models of 
the physics needed to reason about the problem. Mod
els are normally constructed by the person studying the 
system. Despite the considerable time and effort spent, 
a handcrafted model is often error-prone. Modifying a 
handcrafted model to solve similar problems about other 
physical systems is also difficult, and may take more time 
than building a new model for the systems. The work 
of this paper is motivated by two goals. The first goal is 
to automate the model formulation and simulation pro
cess for complex spatial reasoning tasks. In particular, 
we focus on an important subclass of spatial reasoning 

*This research was partially supported by the Advanced 
Research Projects Agency (ARPA) and National Aeronau
tics and Space Administration under NASA grant NAG2-645 
and by the National Science Foundation through grant CCR-
9209793. 

- moving objects. The second goal is to make the mod
eling process as general as possible so that common do
main theories can be shared and reused instead of being 
duplicated. 

Consider a spring one end with attached to a fixed 
point and the other end attached to a block, as illus
trated in Figure la. This harmonic oscillator is a com
mon textbook example which is often used in qualitative 
physics research. It is well known that the oscillator has 
one degree of freedom, i.e., displacement of the block 
from its equilibrium position, and its motion is oscilla
tory on a straight line. However, if you consider a block 
and a spring in more general configuration (Figure 1 b), 
predicting the behavior is not as simple as before. Is 
the motion going to be still oscillatory? More interest
ing questions include: (1) What if a spring is attached 
to a corner of a block instead of the center of the face? 
(2) What if a block attached to a spring is put in arbi
trary position and orientation before being released? (3) 
What if two blocks are connected by a spring? ( 4) What 
if multiple blocks connected by multiple springs are put 
in arbitrary positions and orientations? (see Figure 2 for 
an example) 

Different forms of these problems require spatial rea
soning to formulate equations of motion, in particu
lar the ability to reason explicitly about vector quan
tities and moving frames of reference. Many qualitative 
physics approaches by AI researchers which can solve 
the linear harmonic oscillator problem [Forbus, 1984; 
Kuipers, 1986; Struss, 1988; Weld, 1988; Williams, 1986] 
cannot handle the more complex problems we describe 
above because they lack this spatial reasoning ability. 

Consider, now, predicting the behavior of another 
physical system, a sailboat (Figure 3), which appears 

(a) 

r----
1 
' ' ' ' ._ ____ .....__.____. 

(b) 

Figure 1: (a) The block on a spring is pulled from 
its equilibrium position and released. (b) The block is 
pulled and rotated from its equilibrium position and re
leased. 

147 



------1 ~ r------1 VJ==t~ I 
I I I I I 
I 1 I I I 

------2 L------2 L------2 

Figure 2: 3 blocks connected by 2 springs. The middle 
block is pulled directly to the side and released. 

Figure 3: Stars fj Stripes, winner of the 1987 America's 
Cup competition. 

quite different from the spring-block systems. Can the 
modeling system of the spring-block systems be used to 
predict the behavior of a sailboat? Do we need a different 
modeler? Or the same modeler, but just more "knowl
edge structures" of the same types that the modeler of 
the spring-block systems handles? 

The remainder of this paper provides an overview to 
our approach to the problem of automating the model 
formulation and simulation process, and describes a 
modeling system called ORACLE, implemented in the 
mathematical manipulation language Maple [Char et al., 
1991]. We will use the spring-block system of Figure lb 
as a running example, and later show how ORACLE han
dles a multiple spring-block system and how it is ex
tended to handle different physical systems. 

2 A Framework for Model Building and 
Simulation 

2.1 Ontology and Representation 

The principal elements of our ontology are entities, phe
nomena, model fragments, and models, each represented 
in a frame [Minsky, 1975]. An entity is a physical ob
ject which either constitutes a physical system by itself 
(i.e., primitive object) or is a part of a physical system 
(i.e., composite object). The properties of an entity are 
expressed as variables in equations. The block entity, 
for example, has properties such as position and veloc
ity. An entity is represented in a frame with slots for 
the properties. Facets allowed in a slot are value, form, 
if_needed, and if_added. The value facet is initially set 
to null but will be assigned a vector, scalar, string, set, 
or any other expression as it becomes known. The form 
facet distinguishes the slot type (e.g., scalar or vector) 
and is consulted when the system creates a new Maple 

physical object 

primitive object 

~ 
solid fluid 

~ ~ 
rigid body flexible body water air 

composite object 

~ 
spring-block 

system 
ship 

I 
sailboat 

/\ I\ 
block hull spring sail 

Figure 4: Taxonomy of entities for the examples of the 
paper. Properties of a class are inherited to its sub
classes. Fut exarnple, properties of rigid body are inher
ited by block and hull. 

variable name during the problem solving process. For 
example, if the system is asked to compute the position 
of a block bl, a set of new variables {blx(t) , bly(t), 
blz(t)} will be created for the position vector and used 
in equations. The if..needed facet or if...added facet holds 
the procedure call, invoked when a slot value is needed 
or added. The if..needed procedure of the velocity slot in 
the example below says that velocity is derivable from 
position. The entities are organized in a tree as shown 
in Figure 4, which includes a set of entities to be used in 
the examples of this paper. 

block=[AKO=rigid_body, 
position(t)=[value=null, form=[x(t),y(t),z(t)]J, 
velocity(t)=[value=null, form=[u(t),v(t),w(t)], 

if_needed=[derive_velocity, position(t)]J, 
(other slots not shown) ... . ] 

A phenomenon is a process which changes one or more 
properties of an entity in a physical system. Force from a 
spring, for example, is a phenomenon which can change 
position and/ or orientation of an entity which is a ttached 
to the spring. 

A model fragm ent is a characterization of a physical 
phenomenon by a set of entities, variables, assumptions, 
and equations. There may be more than one model frag
ments for a single phenomenon, each with different as
sumption or approximation. The equations of a model 
fragment are applicable when the corresponding phe
nomenon occurs. The spring force, for example, exerted 
on an object attached to end2 of a linear spring with 
linear damping is represented as follows (syntax slightly 
modified for readability): 

Springforce2=[phenomenon='spring force at end2', 
entities=[s=linear_damped_spring], 
variables=[k=s[force_const], b=s[damping_coeff], 

e1(t)=s[end1(t)], e2(t)=s[end2(t)], 
l=s[rest_length], f(t)=s[force2(t)]], 

equations=[f(t)=-k*( I le2(t)-e1(t) I 1-1)* 
(e2(t) -e1 (t) )/11 e2(t)-e1(t) 11 -
b*diff (( I le2(t)-e1(t) I l - l)*(e2(t)-e1(t) )/ 
I le2(t)-e1(t) 11 ,t)]] 

It says that s is a linear damped spring, k is a force 
constant of the spring, bis a damping coefficient, el(t) 
and e2(t) are the position vectors of endl and end2, 
1 is the rest length, and f( t) is the spring force at 

148 



end2. II e2(t) - el(t) II is the vector norm representing 
the length of the spring at time t, II e2(t) - el(t) II -1 
is the signed length change from the rest length, and 
(e2(t) - el(t))/ II e2(t) - el(t) II is a unit vector with di
rection from endl to end2. 

A model is a composition of model fragments applica
ble to a physical system in a particular situation. Simu
lation is the execution of a model. 

The motion of an entity at any instant can be de
scribed by a set of differential equations in the twelve 
components of four vectors: position, orientation, veloc
ity, and angular velocity. 1 The differential equations are 
usually nonlinear and do not have a solution in closed 
form, so they must be solved by numeric integration. For 
a moving entity, ORACLE constructs a model with the 
four vectors (position, orientation, velocity, and angular 
velocity) as state variables, which take numeric values 
during simulation. 

The state variables of each subpart of an entity are 
initially defined in the local reference frame, which is as
sumed to be fixed to the entity. Then each subpart de
fined in its local reference frame is translated and rotated 
by having its reference frame redefined in a common in
ertial reference frame. The system chooses the common 
inertial reference frame from local reference frames which 
are not accelerated. If there is no such reference frame 
(i.e., all the local reference frames are noninertial), it 
introduces a new inertial reference frame. If there are 
several inertial reference frames, the choice is arbitrary. 

2.2 The Algorithm 

ORACLE takes as input a structural description of a phys
ical system supplemented with information about non
structural properties, constraints (if any) and variables 
of interests. As output, it produces a model of the mo
tion of the system and the variable values obtained by 
solving the model. The algorithm of ORACLE consists of 
three phases: (1) problem analysis, (2) model creation, 
and (3) model execution. In the first phase, ORACLE 

represents each entity of a problem statement in a frame 
by copying a class frame and filling in slots for prop
erty values specified in the problem statement. It also 
transforms vector quantities expressed in the local ref
erence frames into those in the inertial reference frame, 
formulates initial conditions, and executes if....added pro
cedures in the slots. A model fragment specifying forces 
on a component of a composite object is instantiated by 
if....added procedures in the this phase. After constraints 
are analyzed, variables are examined to determine if their 
values are already known in their slot values or derivable 
from other variables. In the second phase, additional 
model fragments which have not been instantiated are 
retrieved and a model is constructed from them. In the 
final phase, the constructed model is solved for the prob
lem. If ORACLE runs out of potentially relevant model 

1 The degrees of freedom of a moving entity are six instead 
of twelve because the velocity function and the angular veloc
ity function are derivable by differentiating the position and 
orientation functions, respectively. The motion of a physical 
system with n subparts can be characterized by maximum 
12n state variables with 6n degrees of freedom. 

fragments before it finds a valid solution, it prints the sit
uation, asks more information, and quits. The top-level 
algorithm of ORACLE is outlined in Algorithm 1. 

Algorithm 1 ORACLE'S top-level algorithm 

Problem Analysis Analyze a problem statement. 

1. Analyze entities, and create frames of the entities 
and a set INIT of initial-value conditions. 

2. For each constraint, determine its type and repre
sent them in equations. 

3. Analyze variables and generate a set DRVD of dif
ferential equations. 

Model Creation Search for relevant model fragments 
and compose a behavioral model with them. 

1. For each entity E of the problem statement 

For each model fragment MF indexed by the 
"mf" slot of E 

If MF has not been instantiated for E 
AND every variable of MF either 
corresponds to an entity property or variable 
of the input or can be derived from them 
AND the assumption (if any) of MF does 
not violate any entity property or constraint 
of the input 

Put MF in a list MFS . 

2. model M = DRVD 
3. #equations = #equations(M) 
4. retry: For each model fragment MF in MFS 

(a) Instantiate MF for the problem. 
(b) M =MU {MF} 
( c) #equations = #equations( M) 
( d) If #equations = #variables, do model execu

tion. 
5. Print the dead-end situation, and quit . 

Model Execution Solve the model M either analyti
cally or by numeric simulation. 

1. Determine the types of equations of the model and 
solve them with INIT for the variables. 

2. If a valid solution is obtained, print the model and 
solutions, and quit. 

3. If a valid solution is not obtained, retract the most 
recent MF from the model and go to retry. 

2.3 An Example 
We illustrate how ORACLE works with the spring-block 
system of Figure lb. Suppose the following problem de
scription is given as an input. There is no particular 
constraint in this problem and the system is asked to 
compute the four state variables of the block. 

entities=[b1=[block, mass=1, 

149 

principal_moments_of_inertia=[i/6,1/6,1/6], 
position(0)=[3 , 0 , 0], 
orientation(O)=[Pi/4,Pi/2,0], 
velocity(0)=[0,0,0], 
ang_velocity(0) =[0,0,0]], 

s1=[spring, force _const=10, 



. . I 

· I 

I 

Figure 5: Plots of the 12 state variables of the block bl as functions of time. 

damping_coeff=1/10, rest_length=3/2, 
end1 (t) =[O, O,O], end2(t )=b1[-1 /2,0,0]], 

sb=[composite_object, parts={b1,s1}]]; 
constraints=[]; 
variables=[b1[position(t)], b1[orientation(t)], 

b1[velocity(t)], b1[ang_velocity(t)]]; 

For each entity bl, sl, and sb, a frame is created and 
the given properties of the entities are recorded in their 
slot values. The if..added procedure in the end2 slot of 
sl computes the spring force acting on bl using a model 
fragment Springforce2 and records the value in the force 
slot of bl. The position of end2 in the inertial reference 
frame is computed from a translation and a rotation of 
the local reference frame of bl. The initial conditions of 
the block are also formulated. 

!NIT= 
{b1x(0)=3, b1y(O)=O, b1z(O)=O, 

b1phi(O)=O, b1theta(O)=Pi/2, b1psi(O)=O, 
b1u(O)=O, b1v(O)=O, b1w(O)=O, 
b1omega1(0)=0, b1omega2(0)=0, b1omega3(0)=0} 

None of the four state variables of bl can be assigned 
a value simply by looking at slot values ofbl, but the ve
locity and the angular velocity functions can be derived 
by differentiating the position and the orientation func
tions, respectively, according to their iLneeded facets. 
The system generates trivial differential equations for 
the velocity and angular velocity by the procedures at
tached to the iLneeded facets. 

DRVD = 
{b1u(t)=diff(b1x(t),t), 
b1v(t)=diff(b1y(t),t), 
b1w(t)=diff(b1z(t),t), 
b1omega1(t)=diff(b1theta(t),t)•cos(b1phi(t))+ 

diff(b1psi(t),t)•sin(b1theta(t))•sin(b1phi(t)), 
b1omega2(t)=diff(b1theta(t),t)•sin(b1phi(t)) 

diff(b1psi(t),t)•sin(b1theta(t))•cos(b1phi(t)), 
b1omega3(t)=diff(b1phi(t),t)+ 

diff(b1psi(t),t)•cos(b1theta(t))} 

Now ORACLE focuses on finding equations for the posi
tion and the orientation. The equations for them cannot 
be derived from other variables since they are basic vari
ables, so ORACLE looks for relevant model fragments. 
It examines model fragments, indexed by the mf slot of 
the block. ORACLE decides that N ewton2 and Euler are 
potentially relevant because the entities (solid and rigid 
body, respectively) of the model fragments are super
class of a block and the equations of the model fragments 
contain at least one variable of the problem. Model frag
ments of Newton2 and Euler are as follows. 

Newton2=[phenomenon='Newton's second law of motion', 
entities=[r=solid], 
variables=[f(t)=r[net_force(t)], 

p(t)=r[momentum(t)]], 
assumptions=[], 
equations=[f(t )=diff (p(t), t)]] 

Euler=[phenomenon='time-dependency of ang_velocity', 
entities=[b=rigid_body], 
variables=[Dmega(t)=b[ang_velocity(t)], 

M(t) =b[ang_momentum(t)], 
T ( t )=b [net_ torque ( t )] ] , 

assumptions= [] , 
equations=[add(diff(M(t), t), 

crossprod(Dmega(t), M(t))) = T(t)] 

The entity and variable names of the model fragments 
are instantiated as those of the problem and they are 
substituted in the equations of the model fragments. The 
angular momentum is derived from principal moments of 
inertia and angular velocity by the if.needed procedure 
in the ang__rnomentum slot . Likewise, the net torque is 
derived from force and position vector of the point a t 
which the force acts. 

150 



K PE TE--· 

Figure 6: The kinetic, potential, and total energy of the single spring-block system as functions of time during the 
simulation. 

Figure 7: Motion of the block bl. Spring not shown. 

The principal moments of inertia (Ii, h, h) and the po
sition vector ( r) of the spring-attached point can be as
signed from the information of the problem description. 
The angular velocity is one of the state variables asked by 
the problem, and its functions are derived in DRVD. The 
value of force f(t), which has computed using a model 
fragment Springforce2 (shown earlier in section 2.1), is 
available in the force slot of bl, and substituted in the 
equations of Newton2 and Euler . 

The system has now total 12 equations in component 
forms (6 from the model fragments and 6 from DRVD) 
plus 12 initial conditions for 12 unknowns. Several of 
the differential equations are nonlinear, and when OR

ACLE attempts to solve the model analytically, it does 
not find a solution in closed form. ORACLE then solves 
the differential equations by numeric simulation. ORA

CLE displays the simulation result by showing the state 
variables as functions of time using gnuplot (Figure 5). 
Animation of the moving block is shown (Figure 7) using 
PADL-2 solid modeling system [Hartquist, 1983]. Note 
tha t the motion of the block is much more complex than 
that of the linear harmonic oscillator. The kinetic en
ergy, potential energy, and total energy of the system 
are also displayed as part of validation criteria of the re
sults (Figure 6). The total energy in Figure 6 decreases 
over time due to the nonzero damping coefficient of the 
spring of the problem statement. 

3 Other Examples 

3.1 Multiple Spring-block System 

The previous section showed how ORACLE predicts the 
behavior of the single spring-block system. Can the mod
eling system of the single spring-block system be used to 
predict the behavior of the multiple spring-block systems 
such as Figure 2? The answer is "yes". The multiple 
spring-block system has additional entities and phenom-

Figure 8: Motion of the multiple spring-block system in 
Figure 2. Springs not shown. 

ena, but they are simply the multiple occurrences of the 
same types as the single spring-block system. Having al
ready enough knowledge represented in general form to 
handle the single spring-block system, ORACLE can han
dle the multiple spring-block systems with no change. 
The way it solves this problem is the same as it does 
for the single spring-block system. It computes the posi
tions of ends of each spring in the inertia l reference frame 
by transforming the local reference frame of its associ
a ted block, computes spring forces acting on the blocks, 
and derives differential equations for the velocity and 
angular velocity of the 3 blocks from the procedures a t
tached to the iLneeded facets. It then instantia tes model 
fragments Newton2 and Euler, and composes a model. 
Notice tha t model fr agment sharing occurs within the 
model because each of those model fragments is instanti
a ted more than once for different entities. The composed 
model has total 36 equations plus 36 initial conditions for 
36 unknowns. The result of the execution of the model 
indicates tha t although none of the blocks are initially 
rota ted, the end blocks rota te as well as transla te due 
to spring forces which are not parallel to the radius vec
tors of the points to which the springs are a ttached. If 
the spring damping is ignored (i. e., damping_coeff = 0) , 
the middle block shows transla tional motion only, but it 
shows both translational and rotational motions if the 
spring damping is considered ( damping_coeff =f. 0). Fig
ure 8 shows part of anima tion scenes for the case with 
nonzero damping_coeff. In fact ORACLE can handle mul
tiple rigid bodies connected by springs in arbitrary po
sitions and orientations because the way of identifying 
relevant model fragments and composing them is not re
stricted by the number of entities or their connections. 

151 



. I 

I 

3.2 Sailboat 

ORACLE can be extended to model a more complex and 
different type of physical system, a sailboa t (Figure 3) . A 
sailboat is a composite object whose driving force comes 
from the differential motion of air over water. Before we 
model the sailboat, we can ask the same question as be
fore. Can we use the modeling system of the spring-block 
systems to predict the behavior of a sailboat in fluids? 
The answer is "yes", provided that the modeling system 
has enough domain knowledge to handle the problem. 
We do not need to build a different modeling system. A 
modeling system with the same algorithm and the same 
model fragments plus additional model fragments and 
entities can predict the behavior of the sailboat. 

New classes of entities added to the knowledge base 
are fluids ( ,11:ater and air) and lifting surfaces (hull 
and sail). The sailboat, water, and air entity have 
their own reference frames, which move as their enti
ties move. New phenomena include hydrodynamic and 
aerodynamic forces, each with two components (lift and 
drag), and skin friction. A single model fragment is used 
to represent both hydrodynamic and aerodynamic fric
tional drag forces, and later instantiated for them. Like
wise, a single model is used to represent both hydrody
namic and aerodynamic lift forces. 

FDrag=[phenomenon='frictional drag force on 
an object in fluid', 

entities=[s=physical_object, f=fluid], 
variables=[FD=s[fdrag(t)], 

v=s[rel_fluid_speed(t)], 
fd=s[rel_fluid_direction(t)], 
Pa=s[parasitic_area], 
rho=f[density]], 

assumptions=[], 
equations= [FD=1 /2•Pa•rho•v·2•fd]] 

Lift=[phenomenon='lift and lift induced force on 
an object in fluid', 

entities=[s=physical_object, f=fluid], 
variables=[LF=s[lift(t)], 

L=s[lift_magnitude(t)], 
v=s[rel_fluid_speed(t)], 
fd=s[rel_fluid_direction(t)], 
pd=s[perpendicular_rel_fluid_dir(t)], 
Ca=s[effective_capture_area], 
rho=f[density]], 

assumptions=[s[rel_fluid_speed(t)] > OJ, 
equations=[LF=L•pd+L"2/(2•Ca•rho•v"2 )•fd]] 

Notice that the model fragment Lift has a nonempty 
assumption slot. There is another model fragment of 
lift with a different assumption; it says that lift force 
is zero when the relative fluid speed is zero. After the 
entities and model fragments are added, ORACLE can 
solve several types of problems on a sailboat, but we will 
focus on one type of problem in this section. Suppose 
that a sailboat is heading in the angle of 49 degrees from 
the direction of wind at uniform speed 16.9 ft/sec and 
that water is at rest. The system is asked to compute the 
sailboat speed which will balance all the forces involved. 

ORACLE first infers all the forces on the sailboat from 
the forces acting on its components, hull and sail. It 
instantiates the model fragments FDrag and Lift for 
each of them and records the summation of them in the 

16 
14 

'u' 
12 ., 
10 2: 8 

-0 
1H 6 
f;;< 

4 
2 
0 

0 20 40 60 80 100 
time (sec) 

Figure 9: The sailboat speed as a function of time. 

neLforce slot of the sailboat. 

F= 
iE {hull, sail} 

It then searches for a model fragment which rela tes forces 
with speed, and finds the model fragment of Newton2. 
It substitutes the equations of the forces in the equation 
of Newton2, F(t) = d(p(t))/dt. Since the problem states 
that all the forces are balanced, the net force on the sail
boat must be zero, implying the momentum p( t) is con
stant. The right hand side of the equation becomes zero 
from the constant momentum, resulting in an algebraic 
equation. However, the problem is under constrained in 
the sense that total number of equations in component 
form is 2 (Fx=O, Fy=O, Fz becomes a trivial equation 
0=0) but the total number of unknowns in the equations 
is 3 (boat speed, sail lift magnitude, and hull lift mag
nitude). ORACLE prints the situation, asking for further 
information. The user provides an addi tional equation, 
o(Fx)/o(sailJifLmagnitude) = 0, by making a simplify
ing assumption that the sail is controlled as to maximize 
the sailboat force in the direction of boat heading. The 
equations are solved algebraically, producing a solution, 
boat speed = 15.7 ft/sec. 

The previous example showed how ORACLE composes 
a model to compute the sailboat speed at a fixed point 
in time, the equilibrium state of forces in that case. If 
we are interested not only in such a speed but a lso in 
how the boat arrives at the speed, starting from zero 
speed, the boat speed must be computed as a function 
of time. Relevant model fragments are retrieved and in
stantiated in a similar way. In this case, however, the net 
force on the sailboat is not necessarily zero all the time 
because the boat accelerates until it reaches the equilib
rium state of forces. Therefore, the right hand side of the 
equation of Newton2 does not become zero, but stays as 
d(p(t))/dt. Since p(t) = d(m · v(t))/dt, ORACLE solves 
the differential equation, F(t) = d(m · v(t))/dt for v(t) 
by numeric simulation. A plot of the simulation result 
in Figure 9 shows that the sailboat ultimately accelerates 
to the same speed as the one predicted by the algebraic 
method, thus confirming the algebraic solution. Also 
notice that the model fragment N ewton2 used for mod
eling the spring-block systems is reused for modeling the 
sailboat and that model fragments Lift and FDrag are 
shared by hull and sail. 

152 



4 Related Work 

Falkenhainer and Forbus [1991] describe a form of com
positional modeling in which a model is generated by 
composing model fragments which are initially obtained 
by matching the terms of a query to a domain theory 
and then elaborated later. While a composite object in 
ORACLE can consist of any heterogeneous parts, they 
require the existence of a unique minimal covering of 
parts taken from a single part-of hierarchy to generate a 
simplest possible model. They focus on modeling ther
modynamics and do not have a capability of handling 
detailed structural relations among parts and choosing 
appropriate reference frames for parts. 

The SIGMA system [Keller and Rimon, 1992] is a tool 
which aids a scientist-user in building a model. After an 
interaction with the user, it produces a model specified 
in data flow graph and executes the model to compute 
a unknown quantity. Like ORACLE, SIGMA represents 
domain knowledge in frame. But it is a user-assistant 
system rather than an autonomous model-building sys
tem, and has several restrictions in constructing and ex
ecuting a model, which ORACLE does not have. For ex
ample, multiple quantities cannot be computed simult:t
neously, and model fragments cannot be put together m 
an arbitrary order due to the strict backchaining control 
strategy of its model building process. It converts the 
input values into a common, consistent set of scientific 
units, but does not have a provision to transform a vec
tor quantity measured in one reference frame to another, 
which is necessary in dealing with moving objects. 

Nayak [1992] describes a method to construct a device 
model by selecting an appropriate model for each com
ponent of the device using structural, behavioral, and 
expected behavioral constraints. In his system, a model 
is formulated by composing a set of model fragments, 
as in ours. However, the uses of the models produced 
by the two systems are different. While ORACLE con
structs a model to predict motions of physical systems, 
his system builds a model to explain causal relations be
tween parameters of a device. Another difference is that 
he uses order of magnitude reasoning for behavior gen
eration while we use numeric simulation. His order of 
magnitude reasoning method is restricted to generating 
the behavior at a fixed point in time, but we can predict 
the behavior changing with time as well as the behavior 
at a fixed point. 

The MSG system developed by Ling et al. [1993] con
structs a model for heat transfer, automatically gener
ating partial differential equations from geometric mod
els. Yip [1993] describes a method to formulate an ap
proximate model from a given detailed model based on 
the theory of asymptotic order of magnitude. He sim
plifies a model by examining the limiting cases where 
the model becomes singular. The IDEAL system [Falken
hainer, 1993] is similar to that of [Yip, 1993] in the sense 
that it derives a simplified model from a given detailed 
model. But they differ in that IDEAL uses two approx
imation operators (what he calls dominance-reduction 
and iso-reduction) instead of order of magnitude rea
soning and produces each simplified model's credibility 
domain as well, which specifies the range of model pa-

rameter values for a given error tolerance. 
Another relevant line of work concerns model selec

tion rather than model generation. The framework of 
Addanki et al. [1991] facilitates the selection of an ap
propriate model from alternative models, which are gen
erated a priori and organized in a graph. Weld [1992] 
provides a more general approach to model selection by 
reasoning about model accuracy. Ellman et al. [1993] 
introduces gradient magnitude model selection to guide 
model selection in the sailboat design problem. 

Yet another related works concern simulation genera
tion instead of model generation. The SrMLAB system 
[Palmer and Cremer, 1991] produces a simulator from 
a user-provided physics model. Given a mathematical 
model of a physical phenomenon and instructions for 
solving the resulting equations, SIMLAB transforms the 
model into an executable simulation code to analyze the 
phenomenon. However, the user still has the burden of 
creating the mathematical model. The program built 
by Berkooz et al. [1992] is similar to SrMLAB. It is ba
sically a compiler for translating differential equations 
expressed in mathematical and programming constructs 
into an executable code. The SINAPSE system [Kant, 
1992] also automatically transforms a given model into 
a program in desired language, though again the human 
user must create the input model. 

A number of mechanical device simulators are com
mercially available, such as ADAMS [Dawson, 1985], and 
DADS [Haug, 1989]. These programs, like most simu
lators, incorporate physics knowledge such as Newton's 
laws of motion directly into algorithms rather than rep
resenting them explicitly. The simulators include pow
erful algorithms for forming and solving the equations 
of motions for a wide variety of mechanisms, but lack 
the flexibility that ORACLE has to explicitly instantiate 
general model fragments in particular situations. 

Previous AI research in spatial reasoning about me
chanical devices [Faltings, 1987; Gelsey, 1989; Gelsey, 
1990; Joskowicz and Sacks, 1991] has devoted consider
able attention to reasoning about contacts between solid 
bodies, a problem ORACLE does not presently address. 
Like the commercial simulators, these programs incor
porate knowledge of physical phenomena directly into 
algorithms rather than attempting to explicitly instanti
ate general model fragments in particular situations, as 
ORACLE does. 

5 Conclusion and Future Work 

Automating the reasoning process about physical sys
tems with multiple moving components in arbitrary con
figurations is difficult because it requires significant spa
tial reasoning. We have presented a method and an 
implemented system for automatically generating and 
simulating models of such systems from first principles. 
Evidence of the generality of our approach across dif
ferent types of physical systems was demonstrated by 
the experimental results of testing it on the spring-block 
systems in a variety of configurations and the sailboats 
in fluids. ORACLE can also model many other types of 
physical systems with no or minor changes, including 
multiple rigid bodies connected by springs, propeller-

153 



: .· 1 

driven airplanes, and spinning balls. This applicability 
to broad class of physical systems is possible because 
knowledge is represented in general form so that com
mon domain theories can be reused and shared. 

There are several directions in which this work can 
be extended. Adding more model fragments and enti
ties would expand the types of physical systems covered 
by ORACLE. It would also be a valuable test for the 
extensibility of the system. Another extension is possi
ble by having ORACLE suggest possible directions from 
reasoning about equations and unknowns when some
thing goes wrong during problem solving Some spatial 
reasoning problems can be solved by qualitative interpre
tation of the quantitative models produced by ORACLE. 

For example, qualitative description of motions (such as 
translational, rotational, oscillatory, or tumbling) can be 
easily obtained by postprocessing the simulation results 
of the models. Coverage of space of a moving object, 
any regularity of the coverage over time (such as mono
tonically decreasing coverage of a damped spring), or 
possible contact/collision with other moving objects (in
tersection of the coverages over same time intervals) can 
also be produced by postprocessing the simulation re
sults. 

References 

[Addanki et al., 1991] S. Addanki, R. Cremonini, and J. 
S. Penberty. Graphs of Models. Artificial Intelligence, 
51:145- 177, 1991. 

[Berkooz et al., 1992] G. Berkooz, P. Chew, J. Cremer, 
R . Palmer, and R. Zippel. Generating spectral method 
solvers for partial differential equations. Technical Re
port 92-1308, Cornell University, 1992. 

[Char et al., 1991] B. W. Char, K. 0. Geddes, G. H. 
Gonnet , B. L. Leong, M. B. Monagan, and S. M. Watt. 
Maple V Language Reference Manual. Springer-Verlag, 
New York, 1991. 

[Dawson, 1985] G. Dawson. The Dynamic Duo: Dram 
and Adams. Computers in Mechanical Engineering, 
March 1985. 

[Ellman et al., 1993] T . Ellman, J . Keane, and M. 
Schwabacher. Intelligent Model Selection for Hill
climbing Search in Computer-Aided Design. In Proc. 
of the 11th National Conference on Artificial Intelli
gence, pages 594- 599, 1993. 

[Falkenhainer and Forbus, 1991] B. Falkenhainer and K. 
D. Forbus. Compositional modeling: finding the right 
model for the job. Artificial Intelligence, 51:95- 143, 
1991. 

[Falkenhainer, 1993] B. Falkenhainer. Ideal physical sys
tems. In Proc. of the 11th National Conference on 
Artificial Intelligence, pages 600- 605, 1993. 

[Faltings, 1987] B. Faltings. Qualitative P lace Vocabu
laries For Mechanisms in Configuration Space. PhD 
thesis, University of Illinois at Urbana-Champaign, 
July 1987. 

[Forbus, 1984] K. D. Forbus. Qualitative Process The
ory. Artificial Intelligence, 24:85- 168, 1984. 

[Gelsey, 1989] A. Gelsey. Automated Physical Modeling. 
In Proc. of the 11th International Joint Conference on 
Artificial Intelligence, pages 1225- 1230, 1989. 

[Gelsey, 1990] A. Gelsey. Automated Reasoning about 
Machines. PhD thesis, Yale University, 1990 . 
YALEU/CSD/RR#785. 

[Hartquist , 1983] G. Hartquist . Public PADL-2. IEEE 
Computer Graphics and Applications, pages 30- 31, 
October 1983. 

[Haug, 1989] E. J. Haug. Computer Aided Kinematics 
and Dynamics of M echanical Systems, Volume 1: Ba
sic Methods. Allyn and Bacon, Boston, etc., 1989. 

[Joskowicz and Sacks, 1991] L. Joskowicz and E. P. 
Sacks. Computational Kinematics. Artificial Intel
ligence, 51:381 - 416, 1991. 

[Kant, 1992] E. Kant. Code synthesis for mathemati
cal modeling. In Working Notes of AAA! Fall Sym
posium on Intelligent Scientific Computation, pages 
54- 59, 1992. 

[Keller and Rimon, 1992] R. M. Keller and M. Rimon. 
A Knowledge-based Software Development Environ
ment for Scient ific Model-Building. In Proc. of the 
7th Knowledge-Based Software Engineering Confer
ence, 1992. 

[Kuipers, 1986] B. Kuipers. Qualitative Simula tion. Ar
tificial Intelligence, 29:289- 388, 1986. 

[Ling et al., 1993] S. R. Ling, L. Steinberg, and Y. 
Jaluria. MSG: A Computer System for Automa ted 
Modeling of Heat Transfer. Artificial Intelligence 
for Engineering Design, Analysis and manufacturing, 
7( 4) :287- 300, 1993. 

[Minsky, 1975] M. Minsky. A Framework for Represent
ing Knowledge. In The Psychology of Computer Vi
sion, pages 211 - 277. McGraw-Hill, New York , 1975. 

[Nayak, 1992] P. P. Nayak. Automated Modeling of 
Physical Systems. PhD thesis, Stanford University, 
1992. STAN-CS-92-1443. 

[Palmer and Cremer, 1991] R. S. Palmer and J. F . Cre
mer. SIMLAB: Automatically creating physical sys
tems. Technical Report 91-1246 , Cornell University, 
1991. 

[Struss, 1988] P. Struss. Global Filters for Qualita tive 
Behaviors. In Proc. of the 7th National Conference on 
Artificial Intelligence, pages 275 - 279, 1988. 

[Weld, 1988] D.S. Weld. Comparative Analysis. Artifi
cial Intelligence, 36:333- 374, 1988. 

[Weld, 1992] D. S. Weld. Reasoning about model accu
racy. Artificial Intelligence, 56:255- 300, 1992. 

[Williams, 1986] B. C. Williams. Doing Time: Putting 
Qualitative Reasoning on Firmer Ground. In Proc. of 
the 5th National Conference on Artificial Intelligence, 
pages 105 - 112, 1986. 

[Yip, 1993] K. M. Yip. Model Simplification by Asymp
totic Order of Magnitude Reasoning. In Proc. of the 
11th National Conference on Artificial Intelligence, 
pages 634- 640, 1993. 

154 



How to Automatically Generate an Inference Engine 
from Declarative Specifications 

Bruno Ginoux 
Electricite de France 

Direction des E tu des et Recherches 
1, Avenue du General de Gaulle. 92141 Clamart. France 

Abstract 

In order to reconcile the very high-level language 
advantages: abstraction, conc1s10n, readability and 
declarativity, with the run-time efficiency of low-level 
languages, we have developed a system which automatically 
generates an optimized imperative target program from a 
program specification which is expressed in a very high
level declarative language. 
This system, called Descartes, is an expert system for 
programming. It is implemented as a knowledge-based 
system and supports a transformational methodology of 
specification refinement . It has been developed at the 
Electricite de France R&D Center for the last three years. 
In this paper, we present one of the sub-systems of Descartes, 
called Cogito, which generates an imperative algorithm from 
the Descartes specification. Our aim is not to give a 
comprehensive description of the Cogito system. It is rather 
to show it at work on a concrete example. We have chosen to 
ta~e as an exam?le, the generation of an inference engine. 
Tius paper describes the process of generation, starting from 
the si:e~fication of the engine in the Descartes language, and 
exp!ammg ~he. suc';essive transformations made by Cogito 
until an ophm1zed imperative algorithm is obtained. 

1 Introduction 

The Cogito system is an expert system for 
programming. More precisely, it is an expert in 
algorithm design. It is written as a knowledge-based 
system and supports a transformational methodology 
of specification refinement (see for example 
[Barstow, 1979]). The system is fully automatic. Its 
input is a high-level, abstract and declarative 
program specification. Its output is an imperative 
computation strategy written as an algorithm. This 
algorithm, which is still abstract, (independent of 
any target language) is then progressively 
transformed into a target program by the Ergo and 
Sum systems with which Cogito cooperates within a 
system called Descartes. 

The Cogito language is a formal language which 
uses a mathematical syntax and provides the two 
basic concepts of sets and functions. Data are 
specified by means of mathematical definitions of 
sets which refer to a conceptual description of data 
expressed in a semantic data model. Processes which 

apply to these data are in turn described by the 
defining of mathematical functions operating on 
these sets of data. 

Cogito is not dedicated to any particular 
application domain. The system has already been 
used in various domains such as management and 
industrial applications, e.g., customer management 
and scheduling loading and unloading operations in 
nuclear plant cores. 

In this paper, our aim is not to exhaustively 
describe the Cogito system (see [Ginoux, 1991]). It is 
rather to show Cogito at work on a concrete example. 
Therefore, we will just recall when necessary along 
the paper the main characteristics of the system. 

As an example, we have chosen to present the 
generation of an inference engine. In Section 2, we 
describe the conceptual data scheme as well as the 
specification of the inference engine in the Descartes 
language. Section 3 presents the transformations that 
Cogito performs in order to get an efficient algorithm. 

2 The Specification 

We want to specify a simplified inference engine for 
production rules without variables. This inference 
engine is simplified because all the premises have 
the form: entity = value, alll the actions have the 
form: entity:= value and no order is imposed on the 
actions of a rule. 

The rule base is seen as a circular sequence of rules. 
At each step, the engine starts from the last fired 
rule, looks for the next firable rule in the sequence and 
fires this rule except if it has come back to the last 
rule having modified the working memory. In this 
later case, the inference cycle is over. 

The conceptual scheme of the application domain 
is given in Figure 1. Elementary sets and functions can 
be derived from this scheme. Indeed, entities and 
relationships occuring in the scheme are seen as 
elementary sets while elementary functions come 
from attributes and from relationships. We will use 
the following entity sets: RULES, PREMISES, 

155 



- . -I 

ACTIONS, ENTITIES and TIME which obviously satisfied if the value to which the entity is 
come from the corresponding entities. compared in the premise "p" is equal to the value of 

Prem Value 

__......J 
ENTITIE 

TIM E 

Figure 1 

We '11 use also the following functions: 

1 Derived from attributes: 
- PremValue: PREMISES ---> VALUES, 

which, for any premise, gives the value to which the 
entity is compared in the premise. 

- ActValue: ACTIONS ---> VALUES, which, 
for any action, gives the value assigned to the entity 
mentioned in the action. 
2 Derived from relationships: 

- PremEntity : PREMISES ---> ENTITIES, 
which, for any premise, gives the entity concerned. 

- ActEntity: ACTIONS ---> ENTITIES, which, 
for any action, gives the entity concerned. 

- Premises: RULES ---> '.P(PREMISES), which, 
for any rule, gives the set of its premises. 

- Actions: RULES ---> '.P(ACTIONS), which, for 
any rule, gives the set of its actions. 

Once these elementary sets and operators have been 
derived from the conceptual scheme, the basic 
vocabulary is available to define more complex 
concepts. Here, the user will define the following 
functions which correspond to the specification of the 
inference engine: 

Satisfied: This function takes in input a given 
premise "p" and a given instant "n", and gives "true" 
if "p" is satisfied at "n" and "false" otherwise. "p" is 

156 

the entity in the working memory at the previous 
instant . 

. Satisfied (p,n) : PREMISES x TIME -t :B 
PremValue(p) = VallnWM(PremEntity(p), n-1) 

Firable: This function takes as input a rule "r" and an 
instant "n", and gives "true" if the rule "r" is firable 
at the instant "n" and "false" otherwise. A rule is 
firable if all its premises are satisfied . 

. Firable (r,n) : RULES x TIME -t :B 
And (Satisfied(p,n)) 

Vp e Premises(r) 

Candidate: This function takes as input two rules 
"rl ", "r2" and an instant "n", and gives the first 
firable rule located between "rl" and "r2" in the rule 
base (which is a circular sequence of rules). The order 
on rules is defined by the relationship "Successor" in 
the conceptual scheme. If there is no firable rule 
between "rl" and "r2", the function returns 1-. 

. Candidate (rl, r2, n): RULES2 x TIME -t RULES u {.l} 

If q =f2 Then .l 
Else If Firable(q , n) Then q 

Else Candidate(Successor(q), r2, n) 

Fired: This function takes as input an instant "n", and 
gives the rule which has been fired at this instant. 
The rule to be fired is the first firable rule between 
the rule which has been fired at the previous instant 
and the last rule which has modified the working 
memory. The (RULES, Successor) tuple corresponds to 
the sequence of rules of the RULES set ordered by the 
"Successor" relationship. 

. Fired (n): TIME -t RULES u {.l} 
If n = 0 Then Last (RULES, Successor) 
Else Candidate(Successor(Fired(n-1) ), LastModRule(n-1 ), n) 

LastModRule : This function takes as input an instant 
"n", and gives the last rule having modified the 
working memory. This rule is either the rule fired at 
the instant "n" (this is the case if at least one action 
of this rule modifies its entity) or the last modifying 
rule at the previous instant. This function allows to 
stop the process of looking for the next firable rule. 
Indeed, it is useless to search a new firable rule as 
soon as the last modifying rule has been reached 
because it is obvious that even if a rule is still firable, 
it will not change the content of the working memory. 

. LastModRule (n): TIME ~ RULES 
If n = 0 Then Last (RULES, Successor) 
Else If Fired (n) '#.land 3 a e Actions(Fired(n) ) / 

ModAction(ActEntity(a),a,n) 
Then Fired (n) 
Else LastModRule(n-1) 



ModAction: This function takes as input a given 
entity "e", a given action "a" and a given instant "n", 
and gives "true" if the action "a" modifies the value 
of "e" at "n" and "false" otherwise. "a" modifies the 
value of "e" if "e" is the entity mentioned in the 
action "a" and if the value of the entity in the action 
"a" is different to the value of the entity in the 
working memory at the previous instant. 

. ModAction (e,a,n): ENTITIES x ACTIONS x TIME ~ f, 

ActEntity(a) = e and ActValue(a) ~ VallnWM(e, n-1) 

Valin WM : This function takes as input an entity "e" 
and an instant "n", and gives the value of this entity 
in the working memory at this instant. This value is 
either the value mentioned in one of the actions of 
the rule fired at "n" (if an action of this rule modifies 
the entity) or the value of the entity in the working 
memory at the previous instant. 

. VallnWM(e,n): ENTITIES X TIME 
If n = 0 Then Initia!Value (e) 
Else 

~ VALUES 

If Fired (n) ~.land 3 a e Actions(Fired(n)) / ModAction(e, a, n) 
Then ActValue(a) 
Else VallnWM (e, n-1 ) 

All these functions represent pieces of knowledge. 
This knowledge is expressed in a declarative way 
and is independant of any specific problem. This is 
the declarative part of the specification. 

But a Cogito specification has a second part which 
corresponds to a computation statement. This 
statement indicates which function is to be computed 
as well as its computation domain. This is the 
imperative part of the specification, and this part is 
reduced to one instruction. The problem is to get the 
working memory at the instant when the execution 
stops, that is when there is no firable rule between 
the last fired rule and the last rule having modified 
the working memory. Thus, the computation 
statement is the following: 

COMPUTE R = { VallnWM (e,k)/ e E ENTITIES and 
k = MU n / Fired(n) = J.., n E '.N } 1 

3 The Transformations 

3.1 Preliminary analysis 

First, this specification is processed by a parser. 
Functions, as well as the computation domain, are 
represented as syntactic trees . For example, 
the"VallnWM" function has the following internal 
representation: 

1 where "k = MUn / Fired(n) = .l" indicates that k is the 

smallest integer such as Fired(k)=.l. 

Test ~ i----....... 
if then 

t + 
lnitialValue 

~ 

n 

n 

Figure 2 

3.2 Unfolding 

The first transformation consists of unfolding user
defined functions. Unfolding means replacing a 
function call by the body of the function properly 
instantiated by the parameters of the call. Here, 
this means replacing a node identified as a user
defined function by the (instantiated) tree 
representing the function. This transformation, well
known and often used in program synthesis ([Burstall 
and Darlington, 1977]) is correctness-preserving. 
Moreover, and this is the reason for unfolding, it 
makes simplifications appear, which will improve 
the efficiency of the generated program. 
The starting tree for unfolding is the tree of the 
computation statement. The unfolding process is 
iterated as long as this tree contains user-defined 
functions. Obviously, recursive functions are not 
unfolded. A recursive call is kept in the tree and a 
specific subroutine is created to deal with the 
computation of this function. So, recursive functions 
must have been detected prior to the unfolding 
process. 

3.3 Identification of recursive functions 

First, the system classifies the functions in three 
categories : the functions which are sure to be 
considered as recursive in the generated program, the 
functions which are sure to be non recursive and the 
other functions. A function which calls itself inside 
its own body is sure to be recursive. A function for 
which there exists no path between it and itself in 
the graph of function calls is sure to be non recursive 
and therefore can be unfolded. The other functions 
are those which call themselves indirectly, through 

157 



I 

a sequence of function calls. These functions are 
recursive in the mathematical sense but some of them 
can be unfolded. For example, if f and g call them 
each other but don't call themselves directly, f, for 
instance, can be unfolded in the body of g. So, f 
disappears and g calls itself in its own body and 
therefore belongs now to the first category. The 
choice of keeping f or g is not important except if one 
of the function is the function to compute which must 
not be unfolded. 

By using this technique, the graph of function calls 
between recursive functions can be simplified until it 
remains only recursive functions of the first category 
as well as the function to compute whatever it is 
recursive or not. In our example, the starting graph is: 

Firep LastModRule odAction VallnWM ..._ ___ ) '- _) 

Figure 3 

The "Fired", "Candidate", "LastModRule" and 
"ValinWM" functions are recursive because they call 
themselves. Moreover, there exists a path of function 
calls from the three other functions to themselves. 
So, there are no non-recursive function to unfold. 
However, by using the principle exposed above, some 
functions can be unfolded. By unfolding "Satisfied" 
inside "Firable" and then "Firable" inside 
"Candidate", the "Satisfied" and "Firable" functions 
disappear. In the same way, unfolding "ModAction" 
inside "VallnWM" and inside "LastModRule" makes 
the "ModAction" function disappear. So, we get: 

Candidate\ J 

n. r ' .~ \fo 
LJ~ModRt_r--- ValinL.J 

Figure 4 

3.4 Simplifications 

Syntactic simplifications consists of identifying 
identical sub-expressions in order to compute them 
only once. If we consider for example the "VallnWM" 

158 

function in which the call to "ModAction" has been 
unfolded, we get: 

. VallnWM (e,n): ENTITIES X TIME 
If n = 0 Then lnitia!Value (e) 

~ VALUES 

Else If Fired (n) #.land 3 a e Actions(Fired(n)) / 

ActEntity(a) = e and ActValue(a) # VallnWM(e, n-1) 
Then ActValue (a) 
Else Valin WM (e, n-1) 

Each of the sub-expressions: "Fired(n)", 
"ActValue(a)" and "VallnWM (e, n-1)" is used twice. 
It would be unefficient to compute them twice since we 
are in a side-effect-free context, which ensures that 
two identical sub-expressions yield the same result. 
In terms of syntactic tree, this means looking for 
identical nodes and, each time any two nodes are 
proved identical, deleting one of them and reporting 
the entering arcs into the node which is kept. 

But Cogito can also perform semantic 
simplifications. This second kind of transformations 
consists for example of proving that two sub
expressions which do not have the same computation 
formula (which denote differently) are identical. 
Very often, this is done by reasoning about the 
cardinalities of the functions. Other semantic 
simplifications concern the handling of sets, for 
example, the optimization of cartesian products. 
However, we are not going to detail here these 
aspects (see [Ginoux, 1991)) because our example is not 
directly concerned by these transformations. 

3.5 Recursion removal 

Finding techniques for removing recursion has long 
been a significant research interest. In the domain of 
recursion removal, Cogito 's knowledge is based on the 
use of a catalog of cliches, each cliche corresponding 
to a programming paradigm ([Burstall and 
Darlington, 1976), [Garijo, 1978)). More precisely, a 
cliche is an algorithmical pattern allowing to 
iteratively compute a functional recursive pattern 
without requiring any stack, but a fixed size array. 

There are three main reasons for using cliches to 
remove recursion: it easily takes into account the 
simple cases, it produces optimized algorithms, and 
the system can be extended in an incremental way. 

Here, we have four recursive functions which are 
(for clarity reasons, F, G, H and K are not detailed) : 
• Fired(n) = F(Fired(n-1),Candidate(rl,r2,n), 
LastModRule(n-1)) 
• LastModRule(n) = G(LastModRule(n-1),Fired(n), 
VallnWM(e,n-1)) 
• ValinWM(e,n) = H(ValinWM(e,n-1),Fired(n)) 
• Candidate(rl,r2,n) = K(Candidate(Successor(rl), 
r2,n),ValinWM(e,n-1)) 

To deal with the first three functions, the system 
uses the same cliche, which is concerned with a 



particular polyadical recursive function pattern. 
This pattern is: f(x) = If a(x) Then b(x) E 1 s e 
h(f(01 (x)), .... ,f(0k(x)), g(x)), where a(x) is the stop 
condition, b(x) the function giving the result when the 
stop condition is reached, and the 0i the functions 
which allow to decrease the argument until it 
reaches a value which satisfies the stop condition. 

There are two preconditions in order to apply the 
cliche. Firstly, the initialization points (the values 
which stop the recursion) must be known. This is the 
case if the a(x) function only mentions constants. 
Secondly, the 0i functions must be inversible and their 
inverse must be known. 

Our three recursive functions: "Fired", 
"LastModRule" and "VallnWM", all fulfill these 
preconditions. For example: 

. LastModRule (n): TIME ~ RULES 
If n = 0 Then Last (RULES, Successor) 
Else If Fired (n) '# J_ and 3 a e Actions(Fired(n))/ 

ActValue(a) '# VallnWM(ActEntity(a), n-1)) 
Then Fired (n) 
Else LastModRule(n-1) 

Because of the unique recursive call "LastModRule(n-
1)", thee function is: e = An. n - 1. Using its knowledge 
in the field of mathematics, the system knows that 
the inverse of this e function is An. n + 1. Besides, the 
initialization point is known because of the "If n=O 
Then Last(RULES, Successor)" statement. 

So, the cliche is applicable. The principle of the 
iterative pattern corresponding to the cliche consists 
of starting from the initialization point(s) and then 
of climbing to the initial argument by applying the 
er 1 functions inside a repeat loop. 
The pattern uses also an array containing at each 
instant all the values required to compute the next 
one. The values contained in this array are shifted 
from right to left at each step of the iteration in order 
to save memory space. 

In our particular case, the array, called TLMR 
I 

must maintain one value since the computation of the 
next value only needs the previous value. So, there is 
one value to initialize in the array before the repeat 
loop can begin. We know, for this initialization 
point, the value of the "LastModRule" function. 
Besides, the incrementation of the argument at each 
step of the iteration is one (k := k + 1) because the e-1 
function is An. n + 1. 
The "Fired" and "VallnWM" functions can also be 
computed by using this cliche. This requires to create 
two other sub-routines working on two other arrays: 
TF for the Fired function and TwM for the VallnWM 
function. It must be noticed that TwM must take into 
account all the entities. Therefore, it must be a two
dimensioned array. 

Begin 
If 

/* Computation of LastModRule "/ 
n = 0 Then result := Last(RULES, Successor) 

Else 
TLMR(O) := Last(RULES, Successor) 
/* initialisation of an associated array "/ 
k:= 0 
Repeat 

k := k + 1 r k := e-1 (k) "/ 
TLMR(l) := If Fired (k) :t- 1- and .... 
/* computation of LastModRule(k) where 

recursive calls to LastModRule (k - 1) 
are replaced by TLMR(O) "/ 

ForEach i From O To O Do 
TLMR(i) := TLMR(i+l) 

/* shifting of the values in the 
associated array "/ 

EndFor 
Until k = n 
result:= TLMR(l) 

Endlf 
End 

Now, let us see how to deal with crossed-recursion. 
Indeed, as we previously saw in Figure 4, the graph of 
function calls that Cogito builds, shows that there 
exists a path from each function to each other. 
Therefore, these functions are recursively crossed. 
These functions must consequently be computed 
simultaneously, that is, in the same loop. In fact, 
this is possible because each function is to be 
computed on the same argument, starts from the same 
initialization point (n=O), and depends on the same e 
= An. n - 1 function. It is then possible to make a loop 
fusion in order to compute the functions in a unique 
repeat loop. It must be noticed that the "Candidate" 
function can't be merged inside this loop because its 
argument, on which are made the recursive calls, is 
different. A separate sub-routine remains necessary. 

The problem to solve consists of ordering the 
computation of these three crossed-recursive 
functions. Indeed, there are mandatory precedences to 
respect. In order to determine the order of 
computation, Cogito builds a new graph by means of 
the "preceeds" relation defined by the following 
principle [Arsac, 1983) : 

f(x) appears in g(x) (1) 
£ preceeds g ~ or 

g(x-1) appears in f(x) (2) 

(1) deals with mandatory precedences. This is the 
case, for example, between the Fired and the 
LastModRule functions. (2) allows, in given contexts, 
to choose an order which saves memory space. 

By applying this principle on our example, we get 
the following graph: 

159 



· 1 

I 

. , 

. I 

i 

Fired -----LastModRule-----VallnWM 

Figure 5 

Here, there is no conflict (no cycles) in the precedence 
graph. Furthermore, if conflicts had occured, they 
could have been solved because the computation 
precedence between two functions can never be 
mandatory in the two directions, except if the 
functions are not well-defined and are in fact 
uncomputable. A non-mandatory precedence can 
always be replaced by a storage of the useful previous 
value in a data structure. This is, in fact, the way to 
solve cycles in the graph. 

As there is no cycle, the system can choose any 
total order compatible with the partial order 
defined by the precedence graph. Moreover, an 
optimization can be done. Indeed, it is useless to use 
arrays to store previous values. Variables are 
sufficient: Since the depth of the recursion is one, 
there is only one value to store in order to compute the 
next one. And since there are no cycle in the graph, it 
is ensured that the new value can always override 
the old value which cannot be useful anylonger. So, 
the TLMR array can be replaced by a unique variable: 
LASTMODRULE, TF can be replaced by the unique 
variable: FIRED and Tw M which is a two
dimensioned array (defined on ENTITIES X TIME) 
can be replaced by a one-dimensioned array (on 
ENTITIES), since the temporal dimension is yet 
useless. Consequently, it is no longer useful to shift 
the values inside the arrays at each step of the 
iteration. This is automatically done when the new 
value of the variable overrides the old one. 

If we don't explicit the "Fired", LastModRule" 
and "Valin WM" functions, the result of the loop 
fusion is an algorithm which looks like: 

Begin /* parameter: n * / 
initialization of LASTMODRULE 
initialization of FIRED 
initialization of TwM(e) 'ii e E ENTITIES 

k := 0 

Repeat 
k := k + 1 
FIRED := Fired(k) 
LASTMODRULE := LastModRule(k) 
TwM(e) := VallnWM(e, k) 'ii e E ENTITIES 

until k = n 
End 

160 

The Fired function calls the Candidate function. As 
we previously said, a separate sub-routine is created 
to compute this function. The generic cliche used to 
remove the recursion deals with tail-recursive 
functions. Indeed, after the unfolding of the 
"Firable" and "Satisfied" functions, and granted that 
the "VallnWM" function is yet represented by a one
dimensioned array (which is a global variable), the 
definition of Candidate is the following: 

. Candidate (rl,r2,n): RULES2 x TIME ~ RULES u {..L} 

If ri = r2 Then ..L 
Else If And ( PremValue(p) = TwM(PremEntity(p))) 

V p E Premises(rl) 

Then q 
Else Candidate(Successor(q), Q, n) 

This is a tail-recursive definition. The pattern is: 
f(x) = If a(x) Then b(x) Else f(0(x)). The principle of 
the iterative translation of such functions is well 
known. It is the inverse of McCarthy's 
transformation: 

Begin 
While not a(x) do 
I x := 0(x) 

EndWhile 
result := b(x) 

End 

The iterative pattern that Cogito uses is based on the 
same principle but is, for technical reasons, slightly 
different. Indeed, the cliche that it uses does not 
require to identify explicitly the a, b and 0 functions, 
which would need to make a costly unification. The 
cliche is the following: 

Begin 
Finished := False 
While not Finished Do 

If a(x) Then 

I result := b(x) 
Finished := True 

Else 
I x := 0(x) 
Endlf 

EndWhile 
End 

The interest is that inside the "While" loop, we 
have the whole body of the function. The unique 
difference comes from the fact that each time there is 
a stop condition (i.e., each time there is no recursive 
call), the system adds an instruction which updates 
the boolean variable "Finished" and allows to end 
the loop. It is therefore sufficient, instead of 



explicitely identifying the a, b and e functions, to 
detect where are the stop conditions and where are 
the recursive calls, which is very easy. The same 
method can be used for non tail-recursive functions 
(see [Ginoux, 1991]). 

Therefore, the generated "Candidate" subroutine 
is the following (the "n" argument is no longer useful): 

Begin /* Candidate: parameter: rl, r2 * / 
Finished := False 

While not Finished Do 
If q = Q Then result := .l 

Finished := True 
Else 
If And (PremValue(p) = TWM(PremEntity(p)) ) 

V p E Premises(rl) 

Then result:= rl 
Finished := True 

Else 
rl := Successor(rl) 

Endlf 
Endlf 

EndWhile 
End 

Now, the problem which remains to be solved is the 
determination. of the computation domain. 

COMPUTE R = ( Valin WM (e,k)/ e E ENTITIES and 
k = MU n/ Fired(n) = .l, n E N } 

Indeed, the VallnWM function is to be computed at a 
very particular instant. The system must determine 
the smallest integer "k" such as Fired(k) = .l. The 
difficulty comes from the fact that the "Fired" 
function is recursively crossed with the "VallnWM 
function" which is precisely the function to compute. 
This means that computing the instant means 
computing the function to compute. Therefore, an "a 
priori" computation of the instant is not possible. 

However, as we previously said, the VallnWM 
function, which is recursive, is going to be computed 
by using an iterative pattern which consists of a loop 
starting from n=O and climbing up by applying e-1 = 
An. n + 1 until the initial argument is reached. This 
initial argument is precisely the instant that we are 
looking for. Granted that the loop increments the 
successive values of the current instant, it is sure that 
the first "k" which verifies Fired(k) = .l is the 
smallest. It is therefore sufficient to take the 
condition "Fired(k) = .l", that is "FIRED = .l" as the 
stop condition of the repeat loop. 

The algorithm can now be written. Some useless 
assignments have already been deleted and a 
syntactic simplification has been made which are not 
detailed here. Besides, for clarity reasons, the 
"ModAction" function has not been unfolded: 

Begin /* Main • / 
r := Last(RULES, Successor) 
LAS1MODRULE:= r 
FIRED := r 
ForEach e e ENTITIES Do /* initializations • / 

TwM(e) := InitialValue(e) 
EndFor 
k := 0 
Repeat 

k := k + 1 
/* Computation of Fired(k) • / 
FIRED := Candidate(Successor(FIRED),LAS1MODRULE) 
/* Computation of LastModRule(k) • / 
If FIRED ~ .L and 3 a e Actions(FIRED) / 

I Mod.Action(ActEntity(a), a) 
Then LAS1MODRULE:= FIRED 

Endlf 
/*Computation of VallnWM(e,k) Vee ENTITIES*/ 

ForEach e e ENTITIES Do 

If FIRED~ .Land 3 a e Actions(FIRED) /ModAction(e, a) 
I Then TwM(e) := ActValue(a) 

Endlf 
EndFor 

until FIRED= .L 
End 

3.6 Current investigations 

There remains now some very interesting 
simplifications to do which are not implemented yet, 
because they need new sophisticated mechanisms of 
reasoning. 

At first, the "k" variable is no longer useful since 
the computation inside the repeat iteration doesn't 
need its value. Indeed, there's no need for the precise 
value of "time". What is needed is the way to move 
from an instant to the next one, which is handled by 
the iteration itself, and the values at the previous 
instant, which are stored in the data structures. So, 
the "k " variable can be suppressed. 

Second, the two tests on the value of FIRED can be 
merged because the value of FIRED is independant of 
the loop on the ENTITIES set. Then, the idea comes 
down to determining more precisely the entities 
which are going to be concerned by the "TwM(e) := 

ActValue(a)" assignment at each step of the repeat 
iteration. In fact, these entities are those for which 
there exists an action of the fired rule which 
modifies their values. Consequently, it is absolutely 
useless to scan the whole ENTITIES set. It is 
sufficient to consider the sub-set of the entities 
modified by the actions of the fired rule. Indeed, an 
action modifies only one entity and an entity is 
modified by only one action inside a rule. 

To go further, we can notice that instead of 
performing a loop on the subset of the modified 
entities, it is equivalent to do a loop on the modifying 
actions and to consider for each action the modified 
entity. The interest is that this sub-set of actions is 
also useful for the computation of "LastModRule". 

161 



, · ·I 

Indeed, the two computations of "LastModRule" and 
"Valin WM" can be made within the same loop. 
Moreover, this loop iterates on the sub-set of actions 
of the fired rule which is generally very small 
compared to the whole ENTITIES set. So, this would 
save a large amount of useless computation when 
compared to the initial algorithm. Indeed, in the 
initial algorithm, there was a first loop on the 
actions of the fired rule in order to determine if there 
was at least one modifying action, and also two 
nested loops: the first one on the whole ENTITIES set, 
and the second one on the actions of the fired rule 
again! The final algorithm is then: 

Begin /' Main •; 
r := Last(RULES, Successor) 
LASTMODRULE:= r 
FIRED:= r 
ForEach e E ENTITIES Do 
I TwM(e) := Initia!Value(e) 

EndFor 
Repeat 

FIRED := Candidate(Successor(FIRED),LASTMODRULE) 
If FIRED '# .l 

ForEach a E Actions(FIRED) / 
ModAction(ActEntity(a), a) Do 

I LASTMODRULE:= FIRED 
TwM(ActEntity(a)) := ActValue(a) 

EndFor 
Endlf 

until FIRED = .l 
Fnd 

The only problem that remains is that the 
"LASTMODRULE:= FIRED" assignment is performed 
several times. But obviously, this is not significant 
compared to the huge gain in efficiency that comes 
from the optimization of the loops. 

Conclusion 

This paper aimed at showing how to express a 
program specification in the Cogito language and 
how the Cogito system could automatically generate 
an efficient imperative algorithm, starting from this 
abstract declarative specification of a concrete non
trivial example 

Although the example of the inference engine does 
not require all the capabilities of the system, it 
allows to show some of them. In particular, the major 
transformation module, which is recursion removal, 
has been described at work. As we showed, removing 
recursion without using any stack, even for non tail
recursive functions, has deeply improved the 
generated algorithm. This is something that, as far 
as we know, classical compilers of functional 
languages cannot currently do. 

Future work includes taking into account the kind 
of optimizations described in the last paragraph, 
which are very interesting in terms of efficiency, but 

require sophisticated knowledge and reasoning 
power. We also project to raise the level of the input 
specification. We aim at starting from an actual 
problem specification as some algorithm designers 
(for example, KIDS [Smith, 1990]) do. Cogito will 
therefore have to learn from these systems some 
knowledge in the field of problem solving. 

References 

[Arsac, 1983) J. Arsac. Les bases de la Programmation. 
Dunod. Paris. 1983. 

[Barstow, 1979) D.R. Barstow. Knowledge-based 
program construction. Elsevier North Holland, New
York. 1979. 

[Burstall and Darlington, 1976) R.M. Burstall and J. 
Darlington. A system which automatically improves 
programs. Acta Inf. 6. pp 41, 60. 1976. 

[Burstall and Darlington, 1977) R.M. Burstall and J. 
Darlington. A transformation system for developing 
recursive programs. J; ACM 24, 1. Janvier. pp 44, 67. 
1977. 

[Garijo, 1978) F.J. Garijo . GPFAR 2: un systeme 
d 'ecriture automatique de programmes pour le cal cul 
optimise des fonctions recursives. Paris VI. Third 
cycle thesis. 1978. 

[Ginoux, 1991) B. Ginoux. Generation automatique 
d 'algorithmes par systeme expert a partir de 
specifications declaratives de tres haut niveau: Le 
systeme COGITO. PhD thesis. Paris IX University. 
1991. 

[Ginoux and Lagrange, 1989a] B. Ginoux and J.P. 
Lagrange. An Expert System Approach To Program 
Synthesis. AAAI Spring Symposium, Series 1989: 
Artificial Intelligence and Software Engineering, 
Standford, Ca. USA. 1989. 

[Ginoux and Lagrange, 1989b] B. Ginoux and J.P. 
Lagrange . Synthesis of Simple Programs which 
handle Complex Data . IJCAI'89 Workshop on 
Automating Software Design, Detroit, Mich. USA. 
1989. 

[Kant and Barstow, 1981) E. Kant and D.R. Barstow. 
The refinement paradigm : The interaction of coding 
and efficiency knowledge in program synthesis. IEEE 
Trans. Softw. Eng. 7, 458-471. 1981. 

[Smith, 1990) D.R. Smith. KIDS: A Semiautomatic 
Program Development System. IEEE transactions on 
software engineering. Vol. 16. No. 9. Septembre 
1990. 

[Steier and Anderson, 1989) D.M. Steier and A.P. 
Anderson. Algorithm Synthesis : A comparative 
Study. Springer - Verlag. New-York. 1989. 

162 



Case-Based Reasoning for the Verification and Validation 
of Complex Devices' Models 

Michel P. Feret and J. I. Glasgow 

Department of Computing & Information Science, 
Queen's University, Kingston, 

Ontario, Canada, K7L 3N6* 
michelf@bnr.ca, janice@qucis.queensu.ca 

Abstract 

This paper presents an approach that considers CBR 
for the verification and validation of knowledge-based 
systems. It concentrates on model-based diagnostic sys
tems by identifying practical problems with models of 
complex devices that leads to diagnostic errors. The pa
per shows that case-based reasoning, used to account for 
errors in models for complex devices, can be integrated 
with other diagnosis techniques and applied at different 
stages of the spiral model for software development. 

1 Introduction 

While researchers have studied the verification and val
idation of knowledge based systems (KBSs) [O'L87, 
OBS87, Gup91], and more specifically of case-based rea
soning (CBR) systems [O'L93], they have so far ignored 
CBR as a tool for verification and validation of knowl
edge bases. This paper presents an approach that uses 
CBR as a means to account for errors in complex device 
models used for diagnostic applications. CBR uses ex
perience to avoid repeating the same mistakes twice, to 
improve the quality of the successful results and to reach 
conclusions faster. 

This paper presents examples from our previous re
search in automated diagnosis [FGLJ90, FG91, FG92, 
FG93], which involved the design and implementation 
of a generic model-based diagnostic expert system that 
integrates model-based diagnosis and CBR. This sys
tem was based on a new model for diagnosis, called 
Explanation-Aided Diagnosis (EAD), that accounts for 
the potential incompleteness and incorrectness of the de
vice models [F93]. This system, the Automated Data 

*This research was supported through a contract from the 
Canadian Space Agency (STEAR program), a scholarship and an 
operating grant from the Natural Sciences and Engineering Re
search Council (NSERC) of Canada. We also would like to thank 
Spectrum Engineering Corporation Ltd. (Peterborough, Ontario) 
and Bell-Northern Research Ltd. (Ottawa, Ontario). 

163 

Management System (ADMS), has been fully imple
mented and has previously been described and compared 
to other diagnostic systems in [FG91]. It was applied to 
two real-world devices, a robotic system called the Fair
ing Servicing Subsystem, and a Reactor Building Ven
tilation System [FG91, FG92]. Extensive experimental 
results showed the effectiveness of the method [F93]. 

This paper focuses on insights into verification and val
idation acquired during the design and the development 
of the EAD model. Section 2 provides a brief introduc
tion to model-based diagnosis (MBD) and characterizes 
verification and validation problems in the context of 
MBD. Sections 3 and 4 describe the verification prob
lem in the context of MBD and motivates the need for 
on-line, run-time verification and validation tools. Sec
tions 5 and 6 introduce the CBR paradigm and overview 
the hybrid CBR component of the ADMS. Section 7 de
scribes how CBR can solve the problems presented in 
Sections 3 and 4. A final discussion summarizes the con
tributions of this paper and generalizes them to other 
application domains. The experimental results shown in 
Section 7 are extracted from [F93]. The contribution of 
this paper stems from the novel interpretation of these 
results from the point of view of the verification and val
idation of knowledge-based systems. 

2 Model-Based Diagnosis 

The main idea underlying research in model-based diag
nosis is that a device model can be used as the basis for 
diagnosis. These models describe the correct, expected 
behavior of the device. The search for components in an 
abnormal state is guided by the discrepancies between 
what is predicted by the model and what is observed in 
the device. A diagnostic session is triggered when ini
tial symptoms do not match with the predictions of the 
model. 

Model-based diagnosis is abductive by nature. Abduc
tion is often viewed as inference to the "best" explana
tion. After abnormal symptoms have been detected, an 



.. ·1 

I 
· ' 

abductive diagnoser constructs one or more explanatory 
hypotheses that would resolve the anomaly and explain 
the situation. In model-based diagnosis, this is done 
by chaining together causal inferences. Abduction in 
model-based diagnosis consists of "backtracking" from 
symptoms to components by uncovering the discrepan
cies between what is observed and what is expected (i.e. 
what is described by the device model). Abduction is 
said to "explain away" symptoms. 

One problem with model-based diagnosis is the diffi
culty of implementing models of complex devices. Ana
lyzing and compiling human diagnostic problem-solving 
capabilities is difficult. Misunderstandings, incorrect 
specifications, typos, etc.. t.ypica.lly lead t.o partially in
correct models which are difficult to debug, especially 
when there is no realistic simulation program available 
for the device. These errors have been described for 
general knowledge-based systems [0'193]. They typ
ically result in problems of inconsistency, redundancy, 
incompleteness, and lack of correctness. Moreover, de
vice models are not always the most natural or efficient 
representation for diagnosing faulty components (SC85]. 
These knowledge acquisition, verification and validation 
problems clearly weaken the reliability of model-based 
systems such as the ADMS and need to be addressed 
before the system can be used for critical, real-world ap
plications. 

The process of human diagnostic problem-solving is 
often suboptimal [GS88, YH88]. The following biases 
are the most relevant causes of suboptimal diagnostic 
performance: 

• Not all possible causes are taken into account. 

• Disconfirming evidence is ignored. 

• Absence of symptoms is ignored. 

• The probability of causes is estimated incorrectly. 

• Only confirming actions are performed. 

Resulting shortcomings are likely to be found m any 
model designed and implemented by humans. In our 
experience, we have found such mistakes in the experts' 
explanations and reasoning processes. This leads to de
vice models that are either incomplete or inconsistent 
because they incorporate human limitations. An aggra
vating factor with these biases is that they occur at the 
knowledge level and therefore are often only detectable 
at run-time when diagnostic errors are produced. They 
represent, to some extent, the worst possible case for 
knowledge validation. 

Because of the problems mentioned above, complex 
device models need rigorous verification and validation, 
in order to field systems with usable models. However, 
given the difficulty of the task and the state of the art 
in verification and validation, it is also likely that most 
model-based diagnostic systems will be fielded with an 
incomplete or incorrect device model. This justified, at 

the level of models for diagnosis, the development of the 
EAD model [F93]. At the software management level, 
it justifies the further study of potential verification and 
validation techniques for device models. 

3 Verification for MBD 

Verification is the process of ensuring that the knowledge 
in the system is represented correctly [ABC82]. This in
cludes that the knowledge is consistent, complete and 
correct. Sometimes, verification also includes issues re
lated to redundancy when multiple versions of the same 
information are present in the system. 

Failure mode descriptions, structural knowledge, 
symptom specifications, component interactions and/ or 
normal behaviors descriptions can be missing, incom
plete or incorrectly described in the device model. In this 
context, it is difficult to list all possible redundancy, con
sistency and completeness errors that could be present 
in device models. However, it is simpler to list diagnos
tic failures that occur because the model is incomplete, 
incorrect or inconsistent. In (F93], we have character
ized diagnostic failures using the EAD model and related 
them to errors types in the device models. 

Consistency errors occur when 1) two failure modes 
"fire" at the same time for the same component, 2) given 
a certain set of symptoms, it is impossible that a spe
cific component be faulty and yet is still considered as a 
potential cause, or 3) a potential diagnosis produced by 
the system cannot produce the described symptoms. 

Completeness errors occur when a diagnosis is over
looked or when descriptions of failure modes or specifi
cations of interactions among components are missing in 
the device model. Incorrect knowledge can also result in 
missing diagnoses. 

Redundancy errors occur when multiple versions 
of the same knowledge exist and do not match anymore. 
In the context of diagnosis, this often happens when the 
system ( or the human) performs hypothetical reasoning 
and mixes known symptoms with hypothetical ones and 
hypothetical conclusions with known facts. 

The errors mentioned above lead to systems that fail 
to produce all relevant potential diagnoses, that produce 
irrelevant and therefore incorrect potential diagnoses, or 
that produce correct diagnoses (i.e. identify the cause 
of the problem) but fail to explain them properly ( e.g. 
wrong failure mode). 

4 Validation for MBD 

Validation is the process which ensures that the system 
make correct decisions and achieve acceptable perfor
mance, usually specified by requirements defined prior 
to the development of the system. In the context of au
tomated diagnosis, these requirements vary greatly. A 

164 



critical application may require a zero diagnostic failure 
rate. Less critical applications might only accept that 
the correct diagnosis be produced along with some ir
relevant diagnoses. Expert systems used for teaching 
might insist on the quality of their explanations and not 
be as stringent about the quality of the diagnostic re
sults themselves. Nevertheless, the overall competence 
of any diagnostic system increases with the proportion of 
correct diagnoses relative to incorrect or badly explained 
ones. 

Another problem specific to automated diagnosis is 
that human reasoning errors often permeate into the de
sign of the system (see Section 2). These errors are only 
detectable at run time when diagnostic failures occur. 
The requirements imposed on diagnostic systems often 
include the need for performing better than human ex
perts, or the need for helping human experts to detect 
and characterize their own mistakes. 

Finally, performance requirements can also include 
speed requirements. It is usually difficult to estimate 
how close the resulting expert system will be to the re
quirements. If the system does not meet them, it is 
usually difficult to speedup the system without affecting 
its design and current implementation. 

The intrinsic complexity of devices and of device mod
els makes the tasks of verification and validation of the 
knowledge contained in device models extremely diffi
cult. The previous sections have emphasized that, at 
least at this point, reaching perfect device models can 
only be done through a fielded phase. Detection of some 
errors is only possible during this phase when the model 
is actually being used for diagnosis. This calls for on-line, 
run-time verification and validation techniques that ac
count for imperfect device models and, if possible, help 
the system automatically deal with detected errors. The 
rest of this paper establishes CBR as a paradigm for such 
techniques. 

5 Case-Based Reasoning 

CBR has traditionally been used as a stand-alone 
problem-solving method. A CBR system stores past ex
periences in the form of cases. When a new problem 
arises, the system retrieves the cases most similar to the 
current problem, then combines and adapts them to de
rive and criticize a solution. If the solution is not sat
isfactory, new cases are retrieved to further adapt it in 
the light of additional constraints ( expressed from the 
non-satisfactory parts of the proposed solution) until it 
is acceptable. After a problem is solved, a new case can 
be created and stored in the case base. 

Notable CBR systems include MEDIATOR (KS89] 
and PERSUADER (Syc87] for dispute resolution, JULIA 
(Kol87, Hin88] and KRITIK [GC89] for design, CHEF 
[Ham89J for planning, HYPO [AR87] for legal reasoning, 
CASEY [Kot88], PROTOS [BP87] and CELIA [Red89] 

for diagnosis, and LADIES [BBGD92] for decision sup
port. 

6 CBR and Model-Based Diag-. 
nOSIS 

The ADMS - an existing implementation for the EAD 
model - uses fault models which only specify incorrect 
behavior modes. These fault models are organized hi
erarchically along the actual structure of the monitored 
device. The general diagnostic algorithm described in 
Section 2 is adapted accordingly to fault models. Each 
node in the model represents a subpart of the device 
and is associated with necessary conditions for this sub
part to be faulty. If these necessary conditions are not 
satisfied, the components belonging to the corresponding 
subpart can be safely pruned away from the search space 
of potential diagnoses. The algorithm proceeds in a top
down manner through the decomposition hierarchy. At 
the bottom of the hierarchy, known fai lure modes are 
tested against the current symptoms and "fired" in a 
rule-based fashion. In the ADMS, this abductive algo
rithm, known as the structural isolation process, is as
sociated with a CBR system. More details can be found 
in [FG93] and in [F93]. Following is a brief description 
of the relevant features of this hybrid system. 

The CBR component of the ADMS is used for cri
tiquing the results of the model-based approach in the 
light of past experience and provides the human operator 
with a means for exploring alternative hypotheses. The 
integration of CBR with the structural isolation process 
allows for a simple and effective indexing schema as well 
as a computationally inexpensive similarity measure for 
cases. 

Cases for EAD store past diagnostic scenarios, each 
consisting of a description of the fault that occurred 
(fault type, fault time, detecting sensor), the series of 
pruning steps used to produce a list of potential diag
noses (i.e. the tests performed during diagnosis and their 
values), the list of potential diagnoses produced by the 
structural isolation process and the correct diagnosis se
lected by the operator. A successful case is a case where 
the correct diagnosis was produced by the structural iso
lation process and confirmed by the human operator. A 
fai lure case is a case where the diagnosis failed to find 
the correct diagnosis, and for which the operator chose 
a component that was not in the list of proposed diag
noses. 

The structural isolation process can be seen as a rough 
estimate of the location of a component whose failure 
explains the observed symptoms. The list of potential 
diagnoses is used as a means of indexing the case base, 
leaving the values of the associated sensor functions for 
the matching step which is a finer judgement of simi
larity. For either a successful or a fai lure case, we use 

165 



. I 

. I 

~ 
·····~ ~ ~ 

~,· 
................ 

Successful 
Case 1 

Successful 
Case4 

Failure Case 3 
compn 

Successful 
Case 1 

Successful 
Case4 

Failure Case 3 ,, 
compn 

• • • 
' • . 
• 
' . . . . . 
• • • . . 

~ ............................................... ... ...................... ! 

'"i . . 
• . . . . . 

Failure Case 9 : 
comp2 : . . 

• • . . ........................ , 

Successful 
Case 8 

I 

Structural 
Decomposition 

Casebase 

Figure 1: The case base and the structural decomposition. 

each potential diagnosis produced by the structural iso
lation process as an index for the case. Figure 1 illus
trates this indexing schema. Each case is stored at the 
bottom of the structural decomposition under the ba
sic components it contains as potential diagnoses. The 
dashed arrows originate from fai lure cases and point to 
the components representing the correct diagnoses for 
those cases. 

This indexing schema is satisfying because of the in
terdependencies that exist among "neighboring" compo
nents. Such components often share the same charac
teristics and are likely to appear in each other's lists 
of potential diagnoses. They will likely share the same 
cases, or cases that are very similar to each other, except 
for failure cases. This ensures a useful grouping of sim
ilar cases with "bridges" from one grouping to the next 
provided by failure cases. This indexing schema, based 
on the information generated by the structural isolation 
process, is therefore both simple and effective. 

Cases are retrieved from the case base to evaluate and 
criticize the current list of potential diagnoses. This can 
be done automatically or left to the operators' control. 
In the latter case, the operator can ask the ADMS to 
explore its case base and to criticize or confirm a po
tential diagnosis or to suggest new diagnoses that were 
not generated by the structural isolation process. If the 
current potential diagnosis is supported by a previous 
successful case, the level of confidence in this potential 
diagnosis can be raised. If the correct diagnosis for the 
most similar case disagrees with all the suggested diag
noses, and points towards a failure case that matches 
sufficiently well with the current situation, the validity 
of the current diagnosis is lowered. The diagnosis stored 

in the fai lure case is extracted from the case base and 
presented to the user as a new potential diagnosis that 
can, in turn, be evaluated. 

Because of the indexing method described above, com
ponents at the bottom of the hierarchy serve as point
ers to cases that represent diagnostic sessions caused by 
similar or related failures. The matching is effective be
cause the knowledge contained in those cases is relevant 
in both the current and the past cases. The matching 
algorithm is focused on the part of the system that is 
the most relevant to the current situation. 

7 CBR for Verification and Val
idation 

The problems described in Sections 2 to 4 are verifica
tion and validation problems. Some of them are general 
to all knowledge-based systems. Others are typical of 
model-based diagnostic applications. Not all of them 
are solvable at design or compile time. This conclusion 
uncovers the need for run-time techniques that either 
correct these problems "on the fly" or, at least, make 
the system account for them. The CBR paradigm pro
vides such techniques. 

Verification problems, emerging as completeness, con
sistency and correctness problems, result in diagnostic 
systems that output irrelevant diagnoses, diagnoses in
correctly justified, or that fail to produce some relevant 
diagnoses. The EAD model, presented in [F93], accounts 
for these problems. The ADMS, an implementation for 
the EAD model, learns from its mistakes and from its 
successes. As it gains experience - experience directly 

166 



related to the monitored device - its outputs become 
more focused and of better quality. Extensive experi
mental results, supporting these claims can be found in 
[F93] and in [FG93] . 

Validation problems, emerging at run-time after the 
system is fielded, are usually due to either human de
ficiencies that have been incorporated into the system, 
or to speed requirements that are not being met. CBR, 
used as a speed up learning tool, can help the system 
to acquire speed as it gains experience. The work done 
by Koton on CASEY is a good illustration of the use of 
CBR as a speedup learning mechanism [Kot88], where 
CBR is tried first as an attempt to reason from analogy. 
The cases are directly derived from the MBD system. If 
the CBR system fails to reach an appropriate solution, 
the MBD system is call to solve the problem. Its outputs 
are then stored as a new case in the case base. CASEY 
attempts to use CBR first, falling back on a traditional 
search method if CBR fai ls. The EAD approach uses 
CBR only after the abductive phase is completed. In 
this sense, the two approaches are opposite. However, 
they both implement hybrid approaches which combine 
the advantages of two separate problem-solving method
ologies. 

8 CBR in the Spiral Develop
ment Model 

A simulator was built for the Fairing Servicing Subsys
tem ( one of the two devices we applied the ADMS to), 
capable of simulating correct behavior as well as single 
faults. The ADMS was applied to the data generated by 
the simulator with progressively degraded device mod
els. The goal was to see how the CBR component allows 
the system to learn from its mistakes. We degraded the 
model by "failing" sensor functions. Sensor functions 
are functions that extracted a qualitative description of 
the device from real-time sensor data gathered from the 
device ( or the simulator) . Sensor functions were used to 
encode the necessary conditions and the fai lure modes 
used during the structural isolation process. Degraded 
models are equivalent to imperfect models: the higher 
the number of failed sensor functions, the less perfect 
the device model is. The maximum number of failed 
sensor functions corresponds to a model which is 75% 
wrong. The failure rate of the system was measured 
in relation to the case base size for different levels of 
model degradation (see [F93] for a complete description 
of the experiment1 ) . Figure 2 illustrates a typical graph 
for such an experiment (we also made other parameters 
vary, such as the similarity threshold, t.he matching al
gorithm, etc). 

1 The experimental setup for this experiment is accessible 
through anonymous ftp from ftp.qucis.queensu.ca. The code is 
located in the /pub/feret/archives /exp4 . 

B 
el 
~ 0.8 
'; 
""' 

0.6 

0.4 

0.2 

0 

# of failed 
sensor functions 

1 -+-
2 --+----· 
3 ......... 

;, 4 ----\~\ 5 __ ..,_ __ .. 
\ \ 6 -·Jlt-·-· 

ft,, \\ 7 ··•····· 
\ \ 8 --·-·· ·->\\~',, 9 .. ., ..... 

"''· ' '" 10 -

~};~l[i,\Jc0'1¥ii 
0 10 20 30 40 50 60 70 80 

casebase size 

Figure 2: Failure Rates Relative to Case Base Size 

The graphs in Figure 2 show that the larger the case 
base is, the better the diagnostic performance becomes. 
This suggests that, at least for non critical applications, 
such a hybrid diagnostic system can indeed be fielded, 
even though the device model it uses is imperfect. If an 
error is made, the CBR system stores a case register
ing the conditions under which it was made. When the 
same conditions occur, the abductive diagnostic system 
makes the same mistake but the CBR system recognizes 
a potential problem and retrieves the case. 

The shape of the curves in Figure 2 a lso suggest that 
a fielded system could be fine-tuned progressively by 
knowledge engineers. The process would involve ana
lyzing the cases in the case base, potentially replaying 
them with a simulator, to isolate the nodes where er
rors were made. Preliminary research indicates that this 
process could partly be automated. 

For critical systems, the development method de
scribed above can still be useful, assuming a simulator is 
available. Batch tests could be run and resulting cases 
would provide valuable insights about whether the sys
tem is ready for fielding and, if not, where are the re
maining problems. 

The main advantage of this method is that is allows 
the systems to make mistakes, to recover and to learn 
from them. The learning is achieved by mere accumula
tion of cases which, in turn, can be processed at regular 
intervals ( or after a batch test) by knowledge engineers 
or by an automated machine learning algorithm. 

This method can also be applied at different stages 
of the development process: a prototype can use the 
error cases for fine tuning, or for early verification and 
validation of a prototype model. A fielded system can 
use it to keep track of its mistakes so that knowledge 
engineers can periodically evaluate the system ( and fine
tune it). 

Hybrid CBR systems have been applied to diagnosis 

167 



. . I 

(FG93], to planning (GC92] and to natural language un
derstanding (Car93]. These systems can all learn from 
their mistakes, even if their CBR component is not per
fect ( as illustrated in Figure 2, the failure rate tends to 
level off, indicating the limits of the CBR system). 

This paper has established CBR as an on-line, run
time tool for verification and validation of knowledge
based systems. When used in association with an exist
ing problem-solving method (e.g. abductive diagnosis, 
hierarchical planning), CBR provides a simple and effec
tive way to learn from mistakes. CBR can also be used 
to learn from success and for speed-up learning. 

References 

(ABC82] W. Adrion, M. Branstad, and J. Cherni
avsky. Validation and verification of com
puter sotware. ACM Computing Surveys, 
14(2):159- 192, 1982. 

[AR87] K.D. Ashley and E.L. Rissland. Compare 
and contrast: A test of expertise. In Proceed
ings of 5th National Conference on Artificial 
Int elligence. Morgan-Kaufman, 1987. 

(BBGD92] E. Blevis, R. Burke, J . I. Glasgow, and 
N. Duncan. The life analysis and depreci
ation integrated exemplar system (ladies). 
International Journal of Expert Systems, 
Special issue on Case-based Reasoning, 
4(2):141-156, 1992. 

[BP87] 

[Car93] 

(F93] 

(FG91] 

E. R. Bareiss and B. W. Porter. Protos: An 
examplar-based learning apprentice. In Pro
ceedings of the 4th International Workshop 
on Machine Learning, pages 12-23, June 
1987. 

C. Cardie. A case-based approach to knowl
edge acquisition for domain-specific sentence 
analysis. In Proceedings of 11th National 
Conference on Artificial Intelligence ( AAAI-
93). AAAI Press/MIT Press, 1993. 

M. P. Feret. Explanation-Aided Diagnosis: 
Combining Case-Based and Model-Based 
Reasoning for the Diagnosis of Complex De
vices. PhD thesis, Department of Computing 
and Information Science, Queen's University, 
Kingston, Ontario, Canada, November 1993. 

M. P. Feret and J. I. Glasgow. Generic diag
nosis for mechanical devices. In Proceedings 
of the 6th International Conference on Appli
cations of Artificial Intelligence in Engineer
ing, pages 753-768, Oxford, UK, July 1991. 
Computational Mechanics Publications, El
sevier Applied Science. 

(FG92] M. P. Feret and J. I. Glasgow. Case-based 
reasoning in model-based diagnosis. In Pro
ceedings of the 7th International Confer
ence on Applications of Artificial Intelligence 
in Engineering, pages 679- 692, Waterloo, 
Canada, July 1992. Computational Mechan
ics Publications, Elsevier Applied Science. 

(FG93] M. P. Feret and J. I. Glasgow. Hybrid case
based reasoning for the diagnosis of complex 
devices. In Proceedings of AAAI-93, pages 
168- 175, Washington, D.C., July 1993. 

[FGLJ90] M. P. Feret, J. I. Glasgow, D. Lawson, and 
M. A. Jenkins. An architecture for reai
time diagnosis systems. In Proceedings of 
the Third International Conference on Indus
trial and Engineering Applications and Ex
pert Systems, pages 9- 15, Charleston, SC, 
July 1990. 

[GC89] 

[GC92] 

A. Goel and B. Chandrasakeran. Use of de
vice models in adaptation of device cases. 
In Hammond K., editor, Proceedings of the 
DARPA Workshop on Case-Based Reason
ing, Volum e 2, pages 100- 109, 1989. 

A. Goel and T. Callantine. An experience
based approach to navigational route plan
ning. In Proceedings of the IEEE/RS] Con
f erence on' Intelligent Robots and Systems, 
pages 705-710, Raleigh, NC, 1992. 

(GS88] T. Govindaraj and Y. L. Su. A model of fault 
diagnosis performance of expert marine en
gineers. Int ernational Journal on Man Ma
chine Studies, 29: 1- 20, 1988. 

[Gup91] U. Gupta, editor. Validating and Verifying 
Knowledge-Based Systems. IEEE Computer 
Society Press, Los Alamitos, 1991. 

[Ham89] K. J. Hammond. Case-Based Plannning: 

(Hin88] 

[Kol87] 

(Kot88] 

168 

Viewing Planning as a Memory Task. Aca
demic, Boston, 1989. 

T. R. Hinrichs. Towards an architecture for 
open-world problem-solving. In Kolodner J ., 
editor, Proceedings of the DARPA Workshop 
on Case-Based Reasoning, Volume 1, pages 
182- 189, 1988. 

J. L. Kolodner. Extending problem solver 
capabilities through case-based inference. In 
Proceedings of the 4th International Work
shop on Ma chine Learning, pages 167- 178, 
June 1987. 

P. Koton. Reasoning about evidence in 
causal explanations. In Proceedings of AAAI-
88, pages 256-261, 1988. 



[KS89] J. L. Kolodner and R.L. Simpson. The me
diator: Analysis of an early case-based prob
lem solver. Cognitive Science, 13(4):507- 549, 
1989. 

[OBS87] R. O'Keefe, 0. Balci, and E Smith. Validat
ing expert system performance. IEEE Ex
pert, 2( 4), 1987. 

[0 '187] D. O'Leary. Validation of expert systems -
with applications to auditing and account
ing expert systems. Decision Sciences, 18(3), 
1987. 

[0'193] Daniel E. O'Leary. Verification and valida
tion of case-based systems. Expert Systems 
with Applications, 6(1):57- 66, 1993. 

[Red89] M. Redmond. Combining case-based reason
ing, explanation-based learning and learning 
from instruction. In Proceedings of the 6th 
International Workshop on Machine Learn
ing, Ithaca, New York, 1989. Morgan Kauf
mann. 

[SC85] 

[Syc87] 

[YH88] 

V. Sembugamoorthy and 
B. Chandrasekaran. Functional representa
tion of devices and compilation of diagnostic 
problem-solving systems. Technical Report 
Tech. Rep., Ohio State University, Colom
bus, Ohio, 1985. 

E. P. Sycara. Resolving Adversarial Con
flicts: An Approach to Integrating Case
Based Reasoning and Analytic Methods. PhD 
thesis, School of Information and Computer 
Science, Georgia Institute of Technology, 
1987. 

W. C. Yoon and J. M. Hammer. Deep
reasoning fault diagnosis: An aid and a 
model. IEEE Transactions on Systems, Man, 
and Cybernetics, 18( 4):659- 675, 1988. 

169 



170 



A simple approach to Bayesian network computations 

Nevin Lianwen Zhang 
Department of Computer Science 

Hong Kong University of Science and Technology 
Clear Water Bay, Kowloon, Hong Kong 

Abstract 

The general problem of computing poste
rior probabilities in Bayesian networks is 
NP-hard (Cooper 1990). However efficient 
algorithms are often possible for particular 
applications by exploiting problem struc
tures. It is well understood that the key 
to the materialization of such a possibil
ity is to make use of conditional indepen
dence and work with factorizations of joint 
probabilities rather than joint probabilities 
themselves. Different exact approaches can 
be characterized in terms of their choices of 
factorizations. We propose a new approach 
which adopts a straightforward way for fac
torizing joint probabilities. In comparison 
with the clique tree propagation approach, 
our approach is very simple. It allows the 
pruning of irrelevant variables, it accommo
dates changes to the knowledge base more 
easily. it is easier to implement. More 
importantly, it can be adapted to utilize 
both intercausal independence and condi
tional independence in one uniform frame
work. On the other hand, clique tree prop
agation is better in terms of facilitating pre
computations. 

Keywords: reasoning under uncertainty, Bayesian 
networks, algorithm 

171 

David Poole 
Department of Computer Science 

University of British Columbia 
Vancouver, B.C., V6T 1Z2, Canada 

1 Introduction 

Several exact approaches to the computing of pos
terior probabilities in Bayesian networks have been 
proposed, studied, and some of them implemented. 
The one that is most well known is clique tree propa
gation, which has been developed over the past few 
years by Pearl (1988), Lauritzen and Spiegehalter 
(1988), Shafer and Shenoy (1988), and Jensen et al 
( 1990). Other approaches include Shachter's arc rever
sal node reduction approach (Shachter 1988), symbolic 
probabilistic inference first proposed by D 'Ambrosio 
(Shachter et al 1990), recursive decomposition by 
Cooper (1992), and component tree propagation by 
Zhang and Poole (1992). 

This paper grew out of an attempt to understand those 
approaches and the relationships among them. We 
asked ourselves: are there any common principles that 
underlie all those approaches? If yes, what are the 
choices that render them different from one another? 
What are the advantages and disadvantages of these 
choices? Are there any better choices and/or any bet
ter combinations of choices? 

Shachter et al (1992) has demonstrated the similarities 
among the various approaches. In this paper, we are 
more interested in the differences among them. 

Cooper (1990) has proved that the general problem 
of computing posterior probabilities in Bayesian net
works is NP-hard. In particular applications, however, 
it is often possible to compute them efficiently by ex
ploiting the problem structures. The key technique 
that enables the materialization of such a possibility, 
as pointed out by Shafer and Shenoy (1988), is to work 
with factorizations of joint probabilities rather than 
the joint probabilities themselves. What all the ex
act approaches have in common is that they all adopt 
this technique, while they differ in their own choices 
of factorizations. 

These understandings lead to a new approach that 
chooses a straightforward factorization for joint prob
abilities. Though very simple, the new approach 
has several advantages over clique tree propagation 



I 

·· I 

. I 

in terms of pruning irrelevant variables, accommodat
ing changes to the knowledge base and easiness of im
plementation . It also leads to a uniform framework 
for utilizing both conditional and intercausal indepen
dence. The only disadvantage we can think of is that 
it does not facilitate precomputation. 

The organization of the paper is as follows. Prelimi
nary definitions are given in section 2. Section 3 re
views results concerning the irrelevance of variables 
to a query. After the removal of irrelevant variables, 
queries about posterior probabilities can be trans
formed into a standard form, i.e queries about mar
ginal probabilities. For technical convenience, further 
exposition will be carried out in terms of potentiais 
rather the probabilities (section 4). In section 5, we il
lustrate the technique of working with factorizations of 
joint potentials. The subproblem of data management 
is identified in section 6. Clique tree propagation is 
one solution to this subproblem. A new and very sim
ple solution is proposed in section 7, which is based on 
a simple way for factorizing joint potentials. In section 
8, we compare the solution to clique tree propagation. 
Some conclusions are provided in section 9. 

2 Preliminaries 

We begin by giving a definition of Bayesian networks. 

A Bayesian network N is a triplet (V, A, P), where 

l . V is a set of variables. 

2. A is a set of arcs, which together with V consti
tutes a directed acyclic graph G = (V, A). 

3. P = {P(v J1rv) : v E V}, where 1rv stands for 
the set of parents of v. In words, P is the set 
the conditional probabilities of the all variables 
given their respective parents 1 . 

Figure 1 show a simple Bayesian network net1 with 
seven variables a, b, c, d, e, f, and g. The network 
contains the following prior and conditional probabil
ities: P(a), P(!Ja), P(b Ja), P(c Jb), P(dJb), P(e Jc, d), 
and P(g lf, e). 

Note that variables in a Bayesian network will be re
ferred as nodes when they are viewed as members of 
the underlying graph. Also note that the graphical 
structure of a Bayesian network can be read from the 
set of the prior and conditional probabilities. So, we 
can use the symbol N to refer to the set of prior and 
conditional probabilities P without causing any con
fusion. 

The prior joint probability PA{ of a Bayesian network 
N is defined by 

1 Note that when v is a root, irv is empty. In such a 
case, the expression P(v lirv) simply stands for the prior 
probability of v . 

nel2 net3 

Figure 1: Bayesian network and irrelevant variables. 

PAf(V) = II P (vl1rv) . (1) 
vEV 

For example, the prior joint probability Pnetl of net1 
is given by 

Pnet1(a, b, c, d, e, J, g) = 
P(a)P(f la)P(b Ja)P( clb )P(dlb )P( elc, d)P(g lf, e). 

For any subset X of V, the marginal probability PAf(X) 
is defined by 

PAf(X) = L PA{(V). 
V-X 

Some variables may be observed to have specific val
ues. For example, the variable b in net 1 may be ob
served to be a specific value b0 . Let Y ~ V be the 
set of variables observed and Yo be the corresponding 
set of values. Let X C V be the set of variables of 
interest. The posterio:;: probability PA{(XIY = Yo) of 
X is defined by 

p (X JY = Y,) = PAf(X, Y = Yo) 
N ° P)l((Y = Yo) . 

(2) 

The problem of concern to this paper is how to com
pute PAf(X JY = Yo)? 

3 Irrelevant variables and standard . queries 

Given a query to a Bayesian network N, it is often 
possible to graphically identify certain variables be
ing irrelevant to the query. This issue is addressed in 
Geiger et al (1990), Lauritzen et al (1990), and Baker 
and Boult (1990). The materials in this section are 
extracted from those papers . 

To remove a node v from a Bayesian network N = 
(V, A, P) is to: (1) remove v from V, (2) remove from 
A all the arcs that contain v, (3) remove from Pall the 
items that involve v, and ( 4) set the prior probabilities 

172 



for all the nodes, if any, that become roots2 because 
of the removal to be the uniform distribution. 

A node in a Bayesian network N is leaf if it has no 
children. A node is barren w.r.t a query P,N'(X IY = 
Yo), if it is a leaf and it is not in XU Y. In net 1, g is 
barren w.r .t Pnen(elb = bo). 

Theorem 1 Suppose N is a Bayesian network, and 
v is a leaf node. Let N' be the Bayesian network ob
tained from N by removing v. If v is barren w.r.t to 
the query P,N'(X IY = Yo), then 

Px(XIY =Yo)= Px,(X IY = Yo). (3) 

Consider computing Pnen(e lb = bo). The node g is 
barren w.r.t the query and hence irrelevant. According 
to Theorem 1, g can be harmlessly removed. This cre
ates a new barren node f . After the removal of g and 
f, net1 becomes net2. Thus the query Pnet1(e lb = bo) 
is reduced to the query Pnet2(e lb = bo). 

Let An(X UY) be the ancestral set of XU Y, i.e the 
set of nodes in X U Y and of the ancestors of those 
nodes. By repeatedly applying Theorem 1, one can 
easily show that 

Corollary 1 All the nodes outside An(X UY) are ir
relevant to the query P(X IY = Yo). 

The moral graph m( G) (Lauritzen and Spiegehalter 
1988) of the an directed graph G = (V, A) is the undi
rected graph obtained from G be marrying the parents 
of each node (i.e adding an edge between each pair 
of parents), and then dropping all directions. If two 
nodes x and y are separated by a set B in m(G), we 
say that x and y are m-separated by Bin G. The term 
m-separation is new, but the concept itself was used 
Lauritzen et al (1990). 

Theorem 2 Suppose N = (V, A, P) is a Bayesian 
network. Given a query P.N'(XIY = Yo), let N' be 
the Bayesian network obtained from N by removing 
all the nodes that are m-separated from X by Y. Then 

Px(XIY =Yo)= P.N"1 (XIY = Yo). (4) 

In our example, since a is m-separated from e by b in 
net2, the query can be further reduced to Pnet3(elb = 
b0 ) Note that a is not m-separated from e by bin net 1. 

It can be proved (Lauritzen et al 1990 and Geiger et 
al 1990) that, given a query, all the irrelevant nodes 
that are graphically recognizable can be recognized by 
applying those two theorems. 

From equation (2), we see that Px(X IY = Yo) can 
be obtained from P.N'(X, Y = Yo) by multiplying a 

2 Nodes that do not have parents . 

renormalization constant. However, the two queries 
are different in terms of irrelevant variables . For ex
ample, a is irrelevant to the query Pnet2(elb = bo), but 
relevant to the query Pnet2(e, b = bo) . 

From now on, we will assume that all the irrelevant 
variables have been removed unless otherwise indi
cated. Under this assumption, we can replace the 
query P.N'(XIY = Yo) with the query P.N"(X, Y = Yo). 
We call the latter a standard query. The rest of the 
paper will only be dealing with standard queries. 

4 Potentials 

A potential is a non-negative function which takes a 
positive value at at least one point. Here are some ex
ample potentials. The probability P(X) is a potential 
of X, the conditional probability P(X IY) is a poten
tial of X and Y, and P(X, Y = Yo) is a potential of 
X. 

Let S be a set of potentials over a set of variables V. · 
The marginal potential Ps(X) is defined as follows: 
Multiply all the potentials in S together to get the joint 
potential Ps(V), and Ps(X) is obtained from Ps(V) by 
summing out all the variables outside X. It is obvious 
that marginal probability is a special case of marginal 
potentials. For technical convenience, we shall be talk
ing about marginal potential Ps(X, Y = Yo) instead 
of marginal probability P.N'(X, Y = Yo) from now on. 

5 The key technique 

Let S be a set of potentials over the set V of variables. 
A naive way to compute Ps(X, Y = Yo) is first to 
explicitly compute and store the joint potential Ps(V), 
and then compute Ps(X, Y = Yo) from Ps(V). This 
method is not efficient. 

Even though the general problem of computing poste
rior probabilities in Bayesian networks is NP-hard, effi
cient algorithms often exist for particular applications 
due to the underlying structures. The purpose of this 
section is to describe a key technique that allows us 
to make use one aspect of problem structure, namely 
conditional independencies. The technique is to work 
with factorizations of joint potentials (probabilities) 
rather than joint potentials (probabilities) themselves . 

We say that a set S1 of potentials is a factori zation 
of the joint potential Ps(V) if Ps(V) is the result of 
multiplying the potentials in S1 . The set S itself is 
certainly a factorization of Ps(V), and it is the most 
straightforward one because it is what one has to begin 
with. We call S the primary factori zation of Ps(V) . 

We will see later that clique tree propagation does not 
directly adopts the primary factorization. Rather it 
first performs some pre-organizations and precompu
tations on S and then proceeds with the resulting more 
organized factorization. 

173 



I 

Exponential explosion can be in terms of both storage 
space and time. It is quite easy to see why factor
ization is able to help us to save space. For the sake 
of illustration, consider the Bayesian network net1 in 
Figure 1. If all the variables are binary, to store the 
set of potentials of net 1, i.e the prior and conditional 
probabilities, one needs to store 2 + 4 * 4 + 2 * 8 = 34 
numbers. On the other hand, to explicitly store the 
joint potential (probability) Pnet1(a, b, c, d, e,f, g) it
self, one needs to store 27 = 128 numbers. 

To see how factorizations of joint potentials enable 
us to save time, we assume that the summing-out
variables-one-by-one strategy is adopted for comput
ing marginal potentials.3 We also assume that an or
dering has been given for this purpose. This ordering 
will be referred as the elimination ordering. 

Since we choose to work with the a factorization, which 
is a set of potentials, we need to define how to sum out 
one variable from a set of potentials. To sum out a 
variable v from a set of potentials Sis to: (1) remove 
from S all the potentials that contain v, (2) multiply 
all those potentials together, (3) sum out v from the 
product, and ( 4) add the resulting potential to S. 

For example, to sum a out of net 1, we first remove 
P(a), P(b la) and P(fla) from net1, then compute 

1Pa(b, f) = L P(a)P(fla)P(b Ja), (5) 
a 

and finally add 1/;0 (b, f) to net 1. After all these 
operations, net1 becomes {P(c lb), P(dlb), P(eJc, d), 
P(g Jf, e), 1Pa (b, f)}. 

Usually, it takes much less arithmetic calculations to 
sum out one variable from a factorization of a joint 
potential than from the joint potential itself. For ex
ample, equation (5) denote all the arithmetic calcula
tions needed to sum out a from net 1. It involves only 
three variables: a, b, and f. On the other hand, to 
sum out a explicitly from Pnen(a, b, c, d, e, f, g) itself, 
one needs to perform the following calculations, 

L Pnen(a, b, c, d, e, J, g), 
a 

which involves all the seven variables in the network. 
This is the exactly why working the factorizations of 
joint potentials enables us to reduce time complexity. 

6 Three components 

In implementing Bayesian networks, if one adopts the 
key technique outlined in the previous section, then the 
resulting system can be divided into three components. 

3 It must be noted that they are exact approaches that 
do not adopt this strategy. See Poole and Neufeld (1991) 
and Poole (1992) for examples. 

The first component finds an elimination ordering. 
We call it the ordering determination component . 
Roughly speaking, an elimination ordering is good if 
the arithmetic calculations needed to sum out each 
variable, from the primary factorization, involve only 
a small number of other variables. Even with a clear 
and crisp definition, the ordering determination prob
lem proves to be a difficult one. See Kjrerulff (1990) 
and Klein et al (1990) for research progresses on the 
problem. In this paper, we shall not discuss it any 
further . 

The third component is the arithmetic calculation 
component. It takes a bunch of potentials, multiply 
them together, sum out a certain variable from the 
product, and return the result. A major goal in design
ing Bayesian network inference algorithms is to mini
mize the total number of arithmetic calculations. 

In between the first and the third components lies the 
data management component. It determines, from the 
elimination ordering produced by the first component, 
what arithmetic calculations the third component is 
going to perform, and in which order. The compo
nent also hides the design decisions as to how to store 
the potentials, how to retrieve a potential when it is 
needed, and how to update the set of potentials after 
a variable has been summed out . We call a design of 
the data management component a data management 
scheme. 

Among the existing exact approaches to Bayesian net
work computations, clique tree propagation (Jensen 
et al 1990), the arc reversal node reduction approach 
(Shachter 1988), and symbolic probabilistic inference 
(Shachter et al 1990) are data management schemes; 
while recursive decomposition (Cooper 1990) and com
ponent tree propagation (Zhang and Poole 1992) are 
mixtured of data management schemes and ordering 
determination methods. 

In the remainder of the paper, we shall first propose a 
very simple data management scheme (section 7), and 
we shall compare this scheme with clique tree propaga
tion and the arc reversal and node reduction approach 
(sections 8 and 9). 

7 A simple data management scheme 

The following algorithms describes our design of the 
data management component. It takes, as input, a 
set of potential S, a standard query (X, Y = Yo) 
and an elimination ordering Ordering. The output 
is Ps(X, Y = Ya). 

174 

PROCEDURE P(S, (X, Y Yo), 
Ordering) 

1. Set Y to Yo in the potentials in S, re
sulting in S1. 

2. Associate each potential 1/; of S1 with 
the variable that appears earliest in 



Ordering among all the variables of 
'If;, 

3. Repeat till Ordering becomes 
empty, 

• Remove the first 
variable on Ordering. Denote 
this variable by v. Call subrou
tine Arithemetic-Calculation 
to multiply all the potentials asso
ciated v together and to sum out v 
from the product, resulting in '!/;v, 

• Associate '!/;v with the variable 
that appear earliest in Ordering 
among all the variables of '!/;v, and 

4. Return the potential produced from 
the removal of the last variable in 
Ordering, which is Ps(X, Y = Y0 ) . 

As an example, let us consider computing Pnet1(g, a= 
ao) . Suppose the elimination ordering is (b, c, d, e, f) . 
Then, the initial variable-potential association scheme 
is as follows : 

b: 
P(b/ao) 
P(c /b) 
P(d/b) 

C: d: 
P(e /c, d) 

e: f: 
P(g /e, f) P(f /ao) 

Let '!/;b(c, d) = Lb P(b /ao)P(c /b)P(d/b). Then after the 
removal of b, the association scheme becomes: 

c: d: 
P(e/c, d) 
'!/;b(c,d) 

e: 
P(g /e, !) 

f : 
P(f /ao) 

Let '!/;c(d, e) = Le P(e/c, d)'!/;b(c, d). After the removal 
of c, we get 

d: 
'!/;c(d, e) 

e : 
P(g le, f) 

f : 
P(f /ao) 

Let '!/;d( e) = Ld '!/;c( d, e ). After the removal of d, we 
get 

e : 
P(gle, !) 
'!f;d( e) 

f: 
P(flao) 

Let '!/;e(f, g) = Le P(g le, !)'1/;d(e). After the removal 
of d, we get 

f: 
P(f/ao) 
'If;.(!, g) 

Finally, let '1/;f(g) = Lf P(gle, f)'!/;e(f, g) . The poten
tial '!/;f(g) is Pn et1(g, a= ao). 

(1) 

ll.i:~~! ... ~ ..... !U 

i ·············· · ····· · ·····, 
pf~(b ... a, .. d. __ .,_: 

P(cjb), P(djb) 

d P(•ic,d) 

?f, ...................... . 
~''!'•'·· .. '· .. •'.; 

(l) 

!_v; cb,_f ... •>l_ l'+'a_(b,_a •. d._•>i 

(2) 

).'Vi.<• , __ f, __ g); 

GJi) 

(4) 

Figure 2: Clique tree propagation. 

8 Comparing with clique tree 
propagation 

We begin this section with a brief review of clique tree 
propagation. For this paper, a clique can be simply 
understood as a subset of variables. A clique tree is 
a tree whose nodes are cliques such that if a variable 
appear on two different nodes, then it also appears in 
all the nodes in the path between the two nodes . A 
clique tree for a set of potentials is a clique tree such 
that for each potential in the set, there is at least one 
clique in the tree that contains all its variables. 

Like our approach, clique tree propagation reduces 
time and space complexities by working with factoriza
tions of joint potentials. Unlike in our approach, which 
begins with the primary factorization, clique tree prop
agation associates the potentials in the primary factor
ization with the cliques in a clique tree, such that each 
potential is associated with one and only one clique 
that contains all its variables. All the potentials as
sociated with one clique are multiplied together, re
sulting one single potential. If there is no potential 
associated with a clique, the constant potential 1 is 
stuck in. Thus the initial factorization for clique tree 
propagation consists of one and only one potential for 
each clique. 

Figure 2 (1) shows a clique tree for the Bayesian 
network net1 in Figure 1, together with a grouping 
of its prior and conditional probabilities (potentials) . 
The initial factorization is {'lj;1(a, b, !), 'lj;2 (b, c, d, e), 
'lf;3(b,f, e), 'lf;4(e,f, g)}, where 
'!/;1(a, b,f) =def P(a)P(bla)P(f /a), '!/;2(b, c, d, e) =def 
P(c /b)P(d/b)P(e/c, d), 'lj;3(b, f, e) =def 1, and 
'!/;d(e, f, g) =de f P(g lf, e). 

Clique tree propagation computes a marginal potential 
by message passing in the clique tree . To pass a mes
sage from one node C ( a clique) to one of its neighbors 
D, one sums out, from the potential associated with C, 
the variables in C - D, send the resulting potential to 

175 



D, and update the potential currently associated with 
D by multiplying it with the potential from C. Fig
ure 2 show the message passing process for computing 
Pneti(g, a= ao). 

In Jensen et al (1990), the prior marginal probability 
of each clique (node) in the clique tree is precomputed 
and stored at the node. To compute Pnett(g la = ao) 
in this scheme, one only needs to pass proper messages 
from node (ab!) to (bfe), and then to (efg). No mes
sage from node bcde to node (bfe) is necessary. See 
the cited paper for details. 

8.1 Cu1.1.1vc1.i-i~u11.~ 

Before commencing the comparisons, let us point out 
the both our approach and clique tree propagation 
have the same starting point. Our approach begin 
with an elimination ordering, and clique tree propa
gation begins with a clique tree. The availability of a 
clique tree is equivalent to the availability of an elimi
nation ordering for the empty query Ps(0). There are 
linear time algorithms to obtain an elimination order
ing from a clique tree and to get back the clique tree 
from the ordering (see, for example, Zhang 1991). 

To compare our data management scheme with clique 
tree propagation, we notice that our approach handles 
changes to the knowledge base more easily. Clique 
tree is a secondary structure. Any topology changes 
to the original network, like adding or deleting vari
able, or adding or deleting an arc, require recomputing 
the clique tree and the potential associated with each 
clique. In the Jensen et al (1990) scheme, one has to 
recompute the marginal probabilities for all the cliques 
even when there are only numerical adjustments to the 
conditional probabilities. 

Secondly, if in a query P.,v-(X IY = Yo), X is not con
tained in any clique of the clique tree, then the sec
ondary structure has to be modified, at least temporar
ily. This is even more cumbersome in the Jensen et al 
(1990) Scheme. 

Two major issues in comparing our approach with 
clique tree propagation are pruning and precomput
ing, to which we devote the next subsection . 

8.2 Pruning vs. precomputing 

Pruning irrelevant variables and precomputing the 
prior probabilities of some variables are two techniques 
to cut down computations. In this section, we shall il
lustrate those two techniques through an example and 
discuss some related issues. 

Consider the query about posterior probability 
Pnet4(e lh = ho), where net4 is given in Figure 3: One 
can first prune f because it is barren. Thereafter, g 
and r can also be pruned because g becomes barren af
ter the removal off and r becomes m-separated from e 
by h. Thus, pruning enables one to transform the orig-

net4 net5 nct6 

Figure 3: Pruning vs. precomputing. 

inal query into Pnets(e lh = ho), a query to a Bayesian 
network with three variables less. 

One the other hand, it is easy to see that summing 
out variables a, b, and c in net4 results in net6, where 
P(d) = Lab c P(a)P(b la)P(c la)P(dlb, c). So, if P(d) 
is precomp~t~d, the query Pnet4(e lh = ho) can be im
mediately transformed into Pnet6(e lh = ho), a query 
to a Bayesian network with three variables less. 

So, both pruning and precomputing enable us to cut 
down computations. However, they both have prices 
to pay as well. 

Pruning irrelevant variables implies that we will be 
working with a potentially different sub-network for 
each query. This usually means that an elimination 
ordering is to be found for each particular query from 
scratch, instead of deriving it from an ordering for the 
empty query. 

We argue that this is not a serious drawback for two 
reasons. First, if a query only involve a few variables, 
pruning may give us a sub-network which is only a 
small portion of the original network. After all, only 
those variables who are ancestors of variables in the 
query could be relevant to the query. Thus pruning 
makes finding a good elimination ordering much easier. 
Second, some existing hueristics for finding elimina
tion, like maximal cardinality search and lexicographic 
search (Rose 1970, Kjreruff 1990), are quite simple. It 
does not take much more time to find an ordering from 
scratch. 

As far as precomputing is concerned, it is difficult to 
decide what to precompute. For example, precompute 
P(g) is not very helpful in the previous example. One 
solution is to compute the prior probabilities for all 
the combinations of variables. But this implies an ex
ponential number of precomputations. 

Clique tree propagation works on the secondary struc
ture of clique tree, which is kept static. This makes 
precomputing possible (Jensen at al 1990). As we 
pointed out early, however, there is a price to pay. The 
approach does not prune irrelevant variables, and it is 
hard for it to accommodate changes to the knowledge 
base. 

176 



8.3 Intercausal independence 

A major reason for us to come up with a new data 
management scheme is that it leads to a uniform 
framework for utilizing conditional independence as 
well as intercausal independence. 

In Zhang and Poole (1994), we give a constructive de
finition of intercausal independence. Noisy OR-gates 
and noisy adders satisfy our definition. A nice prop
erty of our definition is that it relates intercausal in
dependence with factorization of conditional probabil
ities, in a way very similar to that conditional inde
pendence is related factorization of joint probabilities. 
The only difference lies in the way the factors are com
bined. While conditional independence implies that 
a joint can be factorized as a multiplication of sev
eral factors, intercausal independence implies that a 
conditional probability can be factorized as a certain 
combination of several factors, where combination is 
usually not multiplication. 

The concept of heterogeneous factrization is proposed. 
A heterogeneous factorization is one where different 
factors can be combined in different ways. We have 
adapted the data management scheme proposed in this 
paper to handle heterogeneous factorizations. 

9 Conclusions 

A key technique to reduce time and space complexities 
in Bayesian networks is to work factorizations of joint 
potentials rather than joint potentials themselves. Dif
ferent exact approaches can be characterized by their 
choices of factorizations. We have proposed a new ap
proach which begins with the primary factorization. 
Our approach is simpler than clique tree propagation. 
Yet it is advantageous in terms of pruning irrelevant 
variables and accommodating changes to the knowl
edge base. More importantly, our approach leads to a 
uniform framework for dealing with both conditional 
and intercausal independence. However, our approach 
does not support precomputation as clique tree prop
agation does. 

Acknowledegment: 

We wish to thank Mike Horsch for his valuable com
ments on a draft of this paper and Runping Qi for 
useful discussions. Research is supported by NSERC 
Grant OGP0044121 and travel grants from Hong 
Kong University of Science and Technology. 

References: 

M. Baker and T. E. Boult (1990) , Pruning Bayesian 
networks for efficient computation, in Proceedings of 
the Sixth Conference on Uncertainty in Artificial In-

telligence, July, Cambridge, Mass. , pp. 257 - 264. 

G . F . Cooper (1990) The computational complexity of 
probabilistic inference using Bayesian belief networks, 
Artificial Intelligence, 42, pp . 393-405. 

G. F. Cooper (1990), Bayesian belief-network infer
ence using recursive decomposition, Report No. KSL 
90-05, Knowledge Systems Laboratory, Medical Com
puter Science, Standford University. 

D. Geiger, T. Verma, and J . Pearl (1990), d-separation: 
From theorems to algorithms, in Uncertainty in Arti
ficial Intelligence 5, pp. 139-148. 

F. V. Jensen, K. G. Olesen, and K. Anderson (1990), 
An algebra of Bayesian belief universes for knowledge
based systems, Networks, 20, pp. 637 - 659. 

U. Kjrerulff (1990), Triangulation of Graphs - Algo
rithms giving small total state space, R 90-09, Insti
tute for Electronic Systems, Department of Mathemat
ics and Computer Science, Strandvejen, DK 9000 Aal
borg, Denmark. 

P. Klein, A. Agrawal, A. Ravi, and S. Rao (1990), 
Approximation through multicommodity flow, in Pro
ceedings of 31st Symposium on Foundations of Com
puter Science, pp. 726-737. 

S. L. Lauritzen and D. J. Spiegehalter (1988), Local 
computations with probabilities on graphical struc
tures and their applications to expert systems, Journal 
of Royal Statistical Society B, 50: 2, pp. 157 - 224. 

S. L. Lauritzen, A. P. Dawid, B. N. Larsen, and H. G. 
Leimer (1990), Independence Properties of Directed 
Markov Fields, Networks, 20, pp. 491-506. 

J. Pearl (1988), Probabilistic Reasoning in Intelligence 
Systems: Networks of Plausible Inference, Morgan 
Kaufmann Publishers, Los Altos, CA. 

D. Poole and E. Neufeld (1991), Sound probabilis
tic inference in Prolog: An executable specification 
of Bayesian networks, Department of Computer Sci
ence, University of British Columbia, Vancouver, B. 
C., V6T 1Z2, Canada. 

D. Poole (1992), Search for Computing posterior prob
abilities in Bayesian networks, Technical Report 92-
24, Department of Computer Science, University of 
British Columbia, Vancouver, Canada. 

D. J. Rose (1970), Triangulated graphs and the elimi
nation process, Journal of Mathematical Analysis and 
Applications, 32, pp 597-609. 

R. Shachter (1986), Evaluating Influence Diagrams, 
Operations Research, 34, pp. 871-882. 

R . Shachter (1988), Probabilistic Inference and Influ
ence Diagrams, Operations Research, 36, pp. 589-605. 

R. D Shachter, S. K. Andersen, and P. Szolovits 
(1992), The equivalence of exact methods for prob
abilistic inference in belief networks, Department of 

177 



Engineering-Economic Systems, Stanford University. 

R. D. Shachter, B. D'Ambrosio, and B. A. Del Favero 
(1990), Symbolic Probabilistic Inference in Belief Net
works, in AAAI-90, pp. 126-131. 

G. Shafer and P. Shenoy (1988), Local computation in 
hypertrees, Working Paper No. 201, Business School, 
University of Kansas. 

L. Zhang (1991), Studies on hypergraphs (I): Hyper
forests, accepted for publication on Discrete Applied 
Mathematics. 

L. Zhang and D. Poole (1992) Sidestepping the tri
angulation problem in Bayesian net computations, in 
Proc. of 8th Conference on Uncertainty in Artifi
cial Intelligence, July 17-19, Standford University, pp . 
360-367. 

L. Zhang and D. Poole (1994) Intercausal indepen
dence and heterogeneous factorizations, submitted to 
The Tenth Conference on Uncertainty in Artificial In
telligence 

178 



A Polynomial-time Hypothetical Reasoning employing 
an Approximate Solution Method of 0-1 Integer Programming 

for Computing Near-optimal Solution 

Mitsuru Ishizuka and Tomoki Okamoto+ 
Dept. of Information & Communication. Eng. 
Faculty of Engineering, University of Tokyo 

7-3-1, Hongo, Bunkyo-ku, Tokyo 113, Japan 

+Presently with Tokyo Electric Power Co. 

Abstract 
A hypothetical reasoning is an important knowledge 
system's framework because of its theoretical basis and its 
usefulness for practical problems including diagnosis, 
design, etc. One crucial problem with the hypothetical 
reasoning is, however, its slow inference speed. In order 
to achieve practical or tractable inference speed, we apply 
an approximate solution method of 0-1 integer 
programming to a weight-based hypothetical reasoning, 
where a numerical weight is assigned to each possible 
element hypothesis and the optimal solution hypothesis 
set with minimal sum of its element hypotheses' weights 
is searched. In this method, we regard all described 
knowledge as constraints. To narrow down the search 
space, we first extract restricted knowledge relevant to the 
proof of a given goal. Then, we transform the restricted 
knowledge into inequatlities to apply 0-1 integer 
programming. While the computational complexity of 
the hypothetical reasoning is NP-complete or NP-hard, an 
approximate solution method of 0-1 integer programming 
allows polynomial inference time for finding a near
optimal solution hypothesis. 

1. Introduction 

A hypothetical reasoning is an important framework for 
advanced knowledge-based systems because of its 
theoretical basis and its usefulness for many practical 
problems including diagnosis, design, etc. [Poole 87, 88, 
lshizuka 90, Makino 90]. It is an abductive inference 
mechanism for finding consistent solution hypotheses 
satisfying given constraints. One crucial problem with 
the hypothetical reasoning is its slow inference speed 
because a non-monotonic inference is needed due to the 
use of hypothetical or defeasible knowledge. 

In order to overcome this problem, the authors' 
group has developed so far several fast hypothetical 
reasoning methods, e.g., 1) fast hypothetical reasoning 
using inference-path network [Ito 91, lshizuka 91] which 
includes ATMS mechanism [deKleer 86], 2) fast 
hypothetical reasoning for predicate-logic knowledge-base 
[Kondo 91] which employs a deductive database 
technique, 3) fast hypothetical reasoning using analogy 

[lshizuka 93], and 4) knowledge-base compilation 
method [Tsuruta 91, 92]. Since the computational 
complexity of the hypothetical reasoning is NP-complete 
or NP-hard [Kautz 89, Rylander 89, Stillman 90], we 
cannot overcome the wall of exponential inference time 
with respect to problem size as long as we use ordinary 
inference methods. The above methods 2) and 3), for 
example, use analogical reasoning and knowledge-base 
compilation, respectively, to overcome this inference 
speed limit. 

In this paper, we present another efficient 
hypothetical reasoning method based on an approximate 
solution method of 0-1 integer programming. Here, we 
consider a weight-based or cost-based hypothetical 
reasoning [Charniak 90], where a numerical weight is 
assigned to each possible element hypothesis and an 
optimal solution hypothesis set is searched which has the 
minimum weight sum of the element hypotheses. This 
framework is useful, for example, for finding the most 
possible diagnosis or the least expensive design satisfying 
given constraints. 

We regard the described logical knowledge as 
constraints and transform them into inequalities to apply 
the 0-1 integer programming method. Before this 
application, we find the restricted portion of knowledge 
relevant to the proof of a given goal so as to narrow down 
the search space. As a result, we show that the 
approximate solution method of 0-1 integer programming 
is very effective to find a near-optimal solution 
hypothesis in polynomial time. 

Recently, it is recognized that the combination of 
mathematical programming techniques with knowledge
based processing is useful to achieve an efficient inference 
[Hooker 88, Dhar 90, Charniak 92]. However, the use of 
an approximate solution method was not considered in 
[Chaniak 92] . While its use was considered in [Dhar 90], 
a preprocessing of restricting the scope of knowledge 
being introduced in this paper had not been incorporated. 
Since the computational complexity of 0-1 integer 
programming is still NP-complete, it is necessary to 
incorporate a preprocessing of reducing the number of 
variables for 0-1 integer programming and to apply an 
approximate solution method, for achieving an efficient 
and tractable inference of the hypothetical reasoning. 

179 



· I 

Probabilistic search methods based on simulated 
annealing(SA) [Kirkpatrik 83] or genetic algorithm(GA) 
[Goldberg 89] are also exploited recently in AI area for 
efficiently finding near-optimal solutions. The search of 
our inference method is different from these probabilistic 
methods; our method uses guiding information obtained 
by the efficient simplex method for a corresponding 
problem relaxed from 0-1 integer domain to real domain, 
and excecutes a local search for a 0-1 optimal solution 
around the optimal solutuion in real domain. 

Also, the efficiency of the local search for CSP 
(constraint satisfaction problem) or SAT (satisfiability 
testing) is recently recognized such as in a heuristic repair 
method [Minton 92] and GSAT [Selman 93a, 93b]. Our 
method differs from these methods in that the efficient 
simplex method is used to obtain a good initial guess and 
analog-value points between (or sometimes outside) 0-1 
vertex points are considered in the local search process. In 
addition, our method can compute a near-optimal solution 
rather than a simple single solution satisfying the 
constraints. The use of unconstrained nonlinear 
programming for CSP or SAT is shown in [Gu 93]. 
This local search process is conceptually similar to our 
method; however, it does not provide any mechanism to 
determine a good initial search point. Thus our method, 
while it is described in the context of the hypothetical 
reasoning in this paper, may indicate a new efficient 
search for wider problem solving under declarative 
knowledge. 

2. Logic-based Hypothetical Reasoning 

The hypothetical reasoning in this paper is a logic-based 
one [Poole 87, 88, Ishizuka 91, Ito 91], where knowledge 
is divided into two categories, i.e., background knowledge 
( or fact in [Poole 87, 88]) and hypothesis. Background 
knowledge denoted by I: has no possibility of 
inconsistency, whereas the hypothesis denoted by H has 
the possibility of contradiction with other hypotheses, and 
thus is defeasible knowledge. 

As illustrated in Fig. I, the basic behavior of this 
hypothetical reasoning is as follows. When a goal G is 
given, the system first tries to prove this goal from 
background knowledge. If it fails, then the system selects 
a subset of the hypotheses so that the given goal is 
proved from the union of bacground knowledge and this 
hypothesis subset, which should be consistent with 
background knowledge. This consistent subset of 
hypotheses becomes a solution for the given goal in the 
hypothetical reasoning system. The generation of this 
consistent hypothesis subset can be viewed as abduction. 

The structure of above hypothetical reasoning can be 
summarized to find a solution h satisfying 

• h k H (h is a subset of H) 
• I: u h I- G (G can be derived from I: u h), and 
• I: u h ~ 0 (F u h is consistent, 0 : empty 

clauses), 
where I:, H and G are background knowledge, possible 
hypotheses and a given goal, respectively. 

In this paper, we restrict the knowledge 
representation to propositinal Hom clauses, since our 

180 

Background Knowledge Goal 

~G 

consistent 

~ 
Hypothesis 

H 

Fig. 1 Basic structure of logic-based hypothetical 
reasoning. 

main concern here is an efficient inference mechanism. 
Since the logical negation of an atom cannot be expressed 
with Hom clauses, we introduce an atom called "inc" to 
denote inconsistency among hypotheses, such as, 

inc~ h1, h2., 
which says that h1 and h2 cannot be coexist in an 
environment. 

Rule-type hypotheses are allowed in general in our 
hypothetical reasoning system. They are, however, 
transformed by a preprocessing into newly introduced 
single-atom hypotheses and modified background 
knowledge. For example, a rule-type hypothesis 'p~q.' 
will be transformed by introducing a new atom 'r' into, 

background knowledge p ~ q, r., and 
hypothesis r. 

In this case, the hypothesis 'p~q.' can be interpreted as 
being included in a solution hypothesis set if 'r' is 
included in the solution hypothesis set. With this 
preprocessing, all the hypotheses become unit clauses 
(single atoms). 

There are often cases that a goal with a non-Horn 
clause such as, 

SI & --- & Sm~ lI ---, tn, 
is given to the system; ti'.---, tn and s1, ---, sm may be, 
for example, input and output observations, respectively, 
in a fault diagnosis problem, or an input-output 
specification in a circuit design problem. In these cases, 
by introducing an atom 'g' indicating an inference goal, 
weadd 

g ~ s1, --- , sm 
lI. 

tn. 
into the knowledge-base as background knowledge, and 
then try to prove 'g'. 



There exist plural solution hypotheses sets in 
general. In many cases, an optimal solution hypothesis 
set with the minimum weight sum of its element 
hypotheses is required as the solution. We consider this 
type of a weight-based or cost-based hypothetical 
reasoning in this paper. A weight for each element 
hypothesis is defined in our system , for example, as, 

hyp (h1, 2), 
where 2 is a numerical weight assigned to hypothesis h 1 · 

Figure 2 dipicts the functions of the hypothetical 
reasoning system described in this paper. 

Knowledge-base 
(Background Knowledge 
+ Hypotheses) Goal 

Extraction of Knowledge 
relevant to Proving the Goal 
and its Simplification 

Transfo'rmation 
into Inequalities 

Solving 0-1 Integer 
Programming 

(Near-) Optimal Solution 
Hypohesis Set 

Fig. 2 Structure of the hypothetical reasoning 
of this paper. 

3. Transformation of Knowledge into 
Inequalities for Applying 0-1 Integer 
Programming 

In order to apply 0-1 integer programming for solving a 
hypothetical reasoning problem, we have to transform 
described knowledge into linear inequalities. We first 
describe this transformation method employed in our 
system. 

We assume closed world assumption (CWA) [Clark 
78] for the knowledge-base; i.e., we regard knowledge not 
explicitly described in the knowledge-base as false. In 
this situation, we can interpret a fact unable to be 
deductively proved from the knowledge-base as false; this 
is called 'negation as failure' . For example, suppose that 

a f- b, c., a f- d., e f- f., b., f., 
are described in a knowledge-base. In this case, since 'a' 
cannot be proved to be true from this knowledge-base, we 
interpret '-,a' is true. 

To give a model theoretic semantics to the negation 
as failure, we introduce the concept of completion [Clark 
78, Lloyd 84]. Simply speaking, we rewrite 'e f- f.' into 
'e H f.' ('e' is true iff 'f is true). Also, if an atom 'd' 
appears in the body of a Horn clause and there exist no 
Horn clause with the head of 'd', we add '-,d' to the 
knowledge-base. By this completion procedure, the 
above-mentioned illustrative knowledge-base becomes 

a H ((b /\ c) V d), b, -, C, 

-,d, e Hf, f. 
In the case of propositional Hom clauses, it is known that 
the completion and the closed world assumption are 
equivalent 

In the framework of our hypothetical reasoning, we 
can assume the closed world assumption for background 
knowledge and apply the completion. Since it is 
unknown whether a hypothesis is true or not in a certain 
environment, we regard it as a variable to be determined 
for satisfying a given goal under the background 
knowledge. That is, we regard the hypothesis as a 0-1 
variable in 0-1 integer programming. 

Generally speaking, logic formulae in the 
knowledge-base can be regarded as constraints. 
Transforming these constraints into inequalities, we can 
apply 0-1 integer programming for obtaining a solution. 
Here, we consider a method of transforming the completed 
knowledge-base into inequalities. (Another 
transformation method for uncompleted knowledge-base is 
shown in [Hooker 88].) 

Firstly, modeling the propositional logic formulae 
by Boolean algebraic equations, we rewrite the truth value 
(true/false) of an atom into 1/0, and equivalence symbol 
( H) into equality symbol(=). Then, we can reduce all the 
knowledge except hypotheses into one of the following 
forms. 

(l)p=q1 v--- vqn, 
(2) p = (q1 A --- A qn) v r 

(3) p = 1 
(4) p = 0 

where p, qj, r E {0,1 }, i = 1,2, ---, n, 
if p is defined, 
if -,p is defined. 

Next, we transform above Boolean equations of (1) 
and (2) into equivalent linear inequalities. These 
equivalent linear inequalities are not unique; however, we 
adopt here, 

(l') qi+···+ qn < P<q1+•• • +qn 
n 

(2') q, + · · ·+ qn+ nr -(n-1) / / q, + ... + qn+ n r 
2n ~ p~ n 

for (1) and (2), respectively. All the rule-type knowledge 
can be expressed by these linear inequalities, if necessary, 
by introducing supplementary variables. The atom 'inc' 
indicating inconsistency is transformed into 'inc=O', and 
the atom indicating the goal is assigned 1 since it is a 
constraint to be satisfed. 

With above procedures, the hypothetical reasoning 
with the propositional logic expression can be 
reformulated into 0-1 integer programming; among 0-1 
integer solutions satisfying all the constraints, the 
variables with 1 become to represent a solution 
hypothesis set. Setting the weight sum of element 

181 



·I 

-1 

hypotheses to the objective function of the 0-1 integer 
programming, we can obtain the optimal solution 
hypothesis set by calculating the optimal solution of the 
0-1 integer programming. 

4. Extraction of Knowledge Relevant to 
Proving a Goal and its Simplification 

With above-mentioned method, the optimal solution 
hypothesis set in the hypothetical reasoning can be 
computed in principle by the 0-1 integer programming 
method. However, if we transform all knowledge in the 
knowledge-base into inequalities and apply 0-1 integer 
programming, it becomes quite inefficient because the 
number of 0-1 variables becomes large. Practical 
performance cannot be attained by this simple application 
of 0-1 integer programming for practical-scale knowledge
bases, since, different from linear programming in real 
domain, the speed of integer programming is not 
sufficient. 

For the hypothetical reasoning with propositional 
Hom clauses, it is possible to efficiently extract limited 
knowledge relevant to proving a given goal, while leaving 
the synthesis of necessary hypotheses to a later process, 
by the same method as one used in a fast hypothetical 
reasoning using inference-path network [Ito 91, lshizuka 
91]. The extracted knowledge can be further simplified or 
compiled efficiently. These procedures can be constructed 
on the basis of a linear-time algorithm of satisfiability 
testing for propositional Horn clauses [Dowling 84]. 
Since the computational complexity of 0-1 integer 
programming is NP-complete and its computational time 
increases exponentially with respect to the number of 
variables, this type of preprocessing for reducing the 

Background Knowledge 

a~ c,d. 
b ~e. 
b ~ i. 
C ~ f. 
C ~j. 
C ~ 1. 
d ~h1, k. 
e ~ h2. 
e ~ 1. 
i ~m,n. 
f. 
j ~h3. 
j ~ h4. 
k ~ hs. 
k ~ h6. 

1 ~ h1. 
1 ~ hs. 
m ~ h9. 
m ~ h10. 
p ~ e, h11 . 
q ~ k, 1. 
r ~ q, h12. 
r ~ m, h13. 

inc~ h1, h4. 
me~ h2, h6. 
inc~ hs, h1. 
inc~ h9, h11 . 
inc~ h10, h13. 
inc~ h11, h12. 

Hypotheses 
with weights 

hyp (h1, 1) 
hyp (h2, 2) 
hyp (h3, 3) 
hyp (h4, 1) 
hyp (hs, 3) 
hyp (h6, 1) 
hyp (h1, 2) 
hyp (hs, 4) 
hyp (h9, 1) 
hyp (h 10, 2) 
hyp (h 11 , 1) 
hyp (h12, 2) 
hyp (h13, 3) 

variables is necessary for achieving a highly efficient 
computation. 

Our preprocessing consists of three processes. The 
first process is the formation of a goal-directed initial 
inference-path, and the second is its simplification. The 
third one is the extraction of relevant constraint 
knowledge indicating inconsistent combinations among 
hypotheses (hereinafter, inconsistency knowledge). For 
illustration purpose, we consider a knowledge-base 
including hypotheses h 1-h 13 with numerical weights and 
a goal (a, b) shown in Fig. 3. 

An initial inference-path network can be formed by a 
backward inference originated from the given goal. This 
inference-path network becomes to contain all relevant 
knowledge possibly to contribute to the proof of the goal. 
The unit clauses of background knowledge and element 
hypotheses are placed at the leaf nodes of this network. 
For the knowledge-base and the goal of Fig.3, the initial 
inference-path network of Fig.4 can be formed, for 
example. Knowledge such as p~e.h11., q~k. I.---- , 
and the element hypotheses of h9-h 13 are not included in 
this network, since they are irrelevant to proving the goal 
(a, b) in this case. 

In the simplification process of the inference-path 
network, 'true' state at the nodes corresponding to unit
clause background knowledge, and 'false' state at the nodes 
with no possibility of turning into 'true' because of 
lacking their child hypothesis nodes are propagated 
upward. That is, we assign 'true-by-hypothesis' state to 
all the intermediate nodes in the inference-path network 
except ones corresponding to the unit clauses of 
background knowledge. We also assign 'true-by
hypothesis' state to the hypothesis nodes. Then, the 'true' 
and 'false' states are propagated upward by changing the 
'true-by-hypothesis' state of an AND node to 'true' state if 

Goal 

all its AND-connected child nodes 
are in 'true' state and to false' state 
if one of them is in 'false' state, and 
by changing the 'true-by
hypothesis' state of an OR node to 
'true' state if one of its OR
connected child nodes is in 'true' 
state and to 'false ' state if all of 
them are in 'false' state. 

In the illustrative initial 
inference-path network of Fig.4, 
since node 'f is in 'true' state, node 
'c' having this 'f' as its OR
connected child node turns into 
'true' state. As a result, at node 'a' 
having this node 'c' as its AND
connected child node, we don't need 
to consider this node 'c' and its child 
nodes any more in the synthesis 
process of necessary hypotheses and 
need to consider only child node 'd'. 
Furthermore, node 'n' in Fig.4 can 

Fig. 3 An example of knowledge-base with hypotheses 
and an inference goal to be satisfied. 

be identified as 'false' state, since it 
doesn't have any child hypothesis 
nodes and thus has no possibility of 
turning into 'true' state. Then, node 

182 



inc 

D: 'true' node • : hypothesis node 

Fig.4 Agoal-directed initial inference-path network. 

'i' also becomes 'false' state because it has this node 'n' as 
its AND-connected child node. Thus, at node 'b' having 
this node 'i' as its OR-connected child node, we don't need 
to consider node 'i' any more in the synthesis process of 
necessary hypotheses and need to consider only child node 
'e'. As a result, a simplified inference-path network 
shown in Fig.5 is obtained. 

Moreover, since it is a constraint that the goal 
becomes 'true' if a solution exists, we can determine the 
state of AND-connected child nodes by propagating this 
constraint downward. For example, in the inference-path 
network of Fig.5, nodes 'a' and 'b' are required to be 'true'; 
as a consequence, node 'd', node 'k' and hypothesis node 
'h1' are also required to be 'true'. In the same manner, it 
is necessary for node 'e' to be 'true'. Thus we can obtain 
simplified constraint equations shown in the right side of 
Fig.5. Here, 'h1=l' means that the element hypothesis 
'h 1' should be adopted to satisfy the given goal; 
otherwise, the goal cannot be satisfied. We can thus 
reduce the number of variables for 0-1 integer 
programming. 

The extraction of relevant inconsistency knowledge 
can be performed by selecting only inconsistency 
knowledge in which every body atom is appeared i~ the 
simplified inference-path network as hypothesis or 
intermediate node. We can ignore other inconsistency 
knowledge in the case of the given goal. 

····································· 
inc 

goal= 1 
a=b= 1 
d=l 
h1 = 1 (element 

of solution} 

k=l 
1 =hsvh6 
e = 1 
1 = h2vl 
l=h1vhs 

0 = h2/\h6 
0 =hs/\h7 

Fig. 5 A simplified inference-path network and extracted 
constraint Boolean equations (right side). 

By the above procedures, the simplified constraint 
(Boolean) equations shown in the right side of Fig.5 are 
obtained for the case of Fig.3. Excluding the variables 
already determined to O or 1, we can have simplified 
constraint equations with only five variables as, 

1 = h5 V h6, 
1 = h2 v h7 v hg, 
0 = h2" h6, 
O=h5"h7. 

We transform these constraint equations into linear 
inequalities according to the method described in section 
3. The objective function z for integer programming can 
be set based on the weights of the element hypotheses, for 
example, in this case as, 

z = h1 + 2h2 + 3h5 + h6 + 2h7 + 4hg 
= 1 + 2h2 + 3h5 + h6 + 2h7 + 4hg, 

Then, we can apply 0-1 integer programming for solving 
the weight-based hypothetical reasoning. 

5. Applying Exact and Approximate 
Solution Methods of 0-1 Integer 
Programming and their Evaluation 

For solving 0-1 integer programming, we have applied 
two exact methods and one approximate method, i.e., 1) 
all integer method, 2) implicit enumeration method [Balas 

183 



I 
. I 

65), and 3) pivot and complement method [Balas 80]. See 
[Greenberg 71, Garfinkel 72, Konno 81], for example, for 
general discussion on integer programming methods. 

There are two main approaches in the exact solution 
methods for 0-1 integer programming; they are cutting 
plane method and branch-and-bound method. The all 
integer method is a variant of the cutting plane method. 
The implicit enumeration method is based on the branch
and-bound method. Both methods partially employ an 
efficient linear programming method, i.e., simplex 
method in their processes. It is recognized in general that 
the implicit enumeration method is the most efficient 
among currently available exact solution methods. 

On the other hand, the pivot and complement (P&C) 
method is an efficient approximate solution method for 
finding a near-optimal solution in polynomial time. 
Integer constraint is first relaxed in this method to find an 
optimal solution in real domain by employing the 
simplex method. Then, by repeating the change of bases 
(pivot operation) so as to decrease the degree of non
integer index and by rounding the assignments to 
variables into O or 1 while allowing the slight increase of 
the objective function value, the P&C method finds a 
feasible integer solution. In the next step, the P&C 
method executes a local search around this feasible integer 
solution for finding a better 0-1 integer solution 
(complement operation). 

For example, the problem illustrated in section 4 
and in Figs.3-5 becomes to the following 0-1 integer 
programming problem after removing unnecessary 

equations because of already determined variables. 
h5 + h6 ~ 1 
h2 + h7 + h8 ~ 1 
-h2 - h6 ~ -1 
-h5-h7~-l 

where 
h2, h5, h6, h7, h8 E {0,1}, 

and the objective function 
z = 1 + 2h2 + 3h5 + h6 + 2h7 + 4hg 
~ minimize. 

In this example, together with already determined element 
hypothesis h 1, a final solution will be obtained as (h 1, 
h6, h7) with the minimum value 4 of the objective 
function. 

Hypolhelicai reasoning sysiems empioying above
described 0-1 integer programming methods have been 
implemented in C language and their performance was 
evaluated. Fault diagnosis problems of digital circuits 
were used as examples in experiments. The CPU time on 
Sun4/370 was measured with respect to several sizes of 
the digital circuits. The CPU time here includes the 
extraction of relevant knowledge, its simplification, 
transformation into inequalities, and 0-1 integer 
programming. Table 1 shows the experimental results. 

The time expressed as simplification in Table 1 is 
the time spent for the extraction of knowledge relevant to 
a given goal and its simplification; this is within 0.1 sec 
in the used examples and is very fast. Figure 6 depicts 
these measurements against the number of possible 

Table 1 Experimental performance of hypothetical reasoning 
systems employing 0-1 integer programming methods. 

( - indicates the cases that a solution was not obtained in 
a pre-determined time limit.) 

Number of 
[sec] 

Value of 
Element CPU time Objective Function Example 

No. Hypotheses Implicit Pivot and Value by 
Before Simpli- All Integer Optimal 
Simplificatin Enumeration Complement Pivoland 

~Afler fication Method Value Complemenl 

Simolification 
Method Method Method 

(1) 15~10 0.01 0.02 0.01 0.04 9 9 

(2) 30"'724 0.02 75.53 9.37 2.25 14 14 
(3) 45"'738 0.03 - 1301.04 12.01 19 19 
(4) 60"'752 0.06 - - 35.77 ? 24 

(5) 75"'766 0.09 - - 87.57 ? 29 
(6) 15"'77 O.Dl 0.01 0.01 0.02 10 11 
(7) 30"'724 0.02 9.73 40.60 1.63 15 15 
(8) 45"'738 0.04 13094.15 8172.21 11.86 20 20 
(9) 60~52 0.05 - - 35.27 ? 25 

(11) 15~ 11 0.01 0.02 0.10 0.08 9 9 

(12) 30"'725 0.02 83.75 55.03 1.98 14 15 
(13) 45"'739 0.03 - 8598.74 11.96 19 21 

(14) 60"'753 0.07 - - 50.18 ? 25 
(16) 15~11 0.01 0.03 0.05 0.12 4 7 
(17) 30~25 0.02 2.56 18.15 2.16 8 15 

(18) 45~39 0.04 1850.41 1877.5 12.01 12 17 

(19) 60"'753 0.06 - - 39.67 ? 25 

184 



CPU time 
(sec ) 

[

• : All Integer Method J 
A: Implicit Enumeration 

Method 
o : Pivot and Complement 

Method 

, , , , , , 

•/ 
.t . , 

.,l-t_ . . , . . . , . . . , 
1o2 . 

10 

10-2 

. ,' ~, 
,'Ji,. ..... . , . : . . , , . . . . . 

: . a . 
cl. 

€ •• 

15 30 45 60 7 

Number of possible element 
hypotheses 

Fig. 6 Inference time (CPU time) of hypothetical reasoning 
systems employing 0-1 integer programming methods. 

element hypotheses which indicates the scale of 
knowledge-base. Since the 0-1 integer programming is 
NP-complete problem, the all integer method and the 
implicit enumeration method which are exact solution 
methods show exponential-time performance against the 
scale of knowledge-base, though these methods were 
applied after the preprocessing including the extraction of 
relevant knowledge, etc. 

On the other hand, Table 1 and Fig.6 show that the 
pivot and compliment (P&C) method which is an 
efficient approximate solution method can find a near
optimal solution in polynomial time. The regression 
analysis of the experimental data reveals that the CPU 
time is approximately 4.7th power of the number of 
possible element hypotheses in the knowledge-base. The 
obtained solutions coincide with the optimal solutions in 
many cases, or are good near-optimal solutions as seen in 
the original paper [Ballas 80] and Table 1. (It appears that 
the solution by the P&C method for example No.17 in 
Table 1 is not good, since its objective function value is 
8 whereas the value of the optimal solution is 15. It 

becomes clear, however, by a detailed analysis that this 
approximate solution is the second best solution in this 
case.) 

As seen in the above experiments, the pivot and 
complement (P&C) method allows a practical 
polynomial-time hypothetical reasoning. It is, however, 
not necessarily suitable from its algorithm for the 
following cases. 

• The constraints in 0-1 integer programming is 
strong. 

• The optimal real-number solution and the optimal 
integersolution are located far away to each other. 

In other words, since this method emphasizes the near
optimality of the solution rather than reliably finding a 
feasible solution, there are cases that the method fails to 
find a 0-1 solution even if the solution exists. There 
may be possibilities of improving its performance by 
considering each problem structure particularly in the 
hypothetical reasoning problem. 

185 



6. Conclusions 

This paper has presented a polynomial-time hypothetical 
reasoning which employs an approximate solution 
method of 0-1 integer programming. A preprocessing 
including the extraction of restricted knowledge relevant 
to a given goal and its simplification is incorporated to 
effectively reduce the number of variables of 0-1 integer 
programming. Unlike existing probabilistic search 
methods such as simulated annealing(SA) and genetic 
algorithm(GA), and other local search methods such as 
the heuristic repair method [Minton 92], GSAT [Selman 
93a, 93b] and Gu's method based on the unconstrained 
nonlinear programming [Gu 93], the salient feature of our 
method is the efficient local search arround the optimal 
real-domain solution obtained by the efficient simplex 
method. A further improvement may be possible if we 
take account of a specific knowledge structure of the 
hypothetical reasoning. 

References 

[Balas 65] E. Balas: An Additive Algorithm for Solving 
Linear Programs with Zero-One Variables, Opsearch, 
Vol.13, pp.517-546 (1965) 

[Balas 80] E. Balas and C. Martin : Pivot and 
Complement -- A Heuristic for 0-1 Programming, 
Management Science, Vol.26, pp.86-96 (1980). 

[Bylander 89] T. Bylander, D. Allemang, et al.: Some 
Results Concerning the Complexity of Abduction, 
Proc . Int'! Conf. on Principles of Knowledge 
Representation and Reasoning (KR'89), (1989). 

[Chamiak 90] E. Chamiak and S. Shimony: Probabilistic 
Semantics for Cost Based Abduction, Proc. AAAI'90 
(1990). 

[Chamiak 92] E. Charniak and E. Santos Jr.: Dynamic 
MAP Calculation for Abduction, Proc. AAAI'92 
(1992). 

[Clark 78] K. L. Clark: Negation as Failure, in Logic and 
Databases (H. Gallaire and J. Minker (eds.)), Plenum 
Press, N.Y., pp.293-322 (1978). 

[deKleer 86] J. deKleer: An Assumption-based TMS, 
Artifi. Intelli., Vol.28, pp.127-167 (1986). 

[Dhar 90] V. Dhar and N. Ranganathan : Integer 
Programming vs. Expert Systems: An Experimental 
Comparison, Comm. ACM, Vol.33, No.3, pp.323-
336 (1990). 

[Dowling 84] W. F. Dowling and J. H. Gallier: Linear
time Algorithm for Testing the Satisfiability of 
Propositional Hom Formulae, Jour. of Logic 
Programming, Vol.3, pp.267-284 (1984). 

[Garfinkel 72] R. Garfinkel and G. L. Nemhauser: Integer 
Programming, Jon Wiley and Sons (1972) 

[Goldberg 89] D. E. Goldberg: Genetic Algorithm in 
Search, Optimization & Machine Leaming, Addison
Wesley (1989). 

[Greenberg 71] H. Greenberg: Integer Programming, Jon 
Wiley and Sons (1971) 

[Gu 93] J. Gu: Local Search for Satisfiability (SAT) 
Problem, IEEE Tran. SMC, Vol.23, No.4, pp.1108-
1129 (1993). 

186 

[Hooker 88] J. N. Hooker: A Quantitative Approach to 
Logic Inference, Decision Support Systems, Vol.4, 
No.I, pp.45-69 (1988). 

[Ishizuka 90] M. Ishizuka and T. Matsuda: Knowledge 
Acquisition Mechanisms for a Logical Knowledge 
Base including Hypotheses, Knowledge-Based 
Systems, Vol.3, No.2, pp.77-86 (1990). 

[Ishizuka 91] M. Ishizuka and F. Ito: Fast Hypothetical 
Reasoning System using Inference-Path Network, 
Proc. Int'! Conf. on Tools for AI (T AI'91 ), San Jose 
(1991). 

[Ishizuka 93] M. Ishizuka and A. Abe: Fast Hypothetical 
Reasoning using Analogy on Inference-path 
Networks, Proc. Int'! Conf. on Tools with AI 
(T AI'93), Boston (1993). 

[Ito 91] F. Ito and M. Ishizuka: Fast Hypothetical 
Reasoning System using Inference-Path Network (in 
Japanese), Jour. Japanese Soc. for AI, Vol.6, No.4, 
pp.501 -509 (1991). 

[Kirkpatrik 83] S. Kirkpatrik, et al.: Optimization by 
Simulated Annealing, Science, No.220, pp.671-681 
(1983). 

[Kondo 91] A. Kondo, T. Makino and M. Ishizuka: An 
Efficient Hypothetical Reasoning System for 
Predicate-logic Knowledge-base, Proc. Int'l Conf. on 
Tools for AI (TAI'91), San Jose (1991). 

[Konno 81] H. Konno: Integer Programming (in 
Japanese), Sangyo-Tosho (1986) 

[Makino 90] T. Makino and M. lshizuka: A Hypothetical 
Reasoning System with Constraint Handling 
Mechanism and its Application to Circuit-Block 
Synthesis, Proc. PRICAI'90, Nagoya (1990). 

[Minton 92] S. Minton, et. al.: Minimizing Conflicts: a 
Heuristic Repair Method for Constraint Satisfaction 
and Scheduling Problems, Artif. Intelli., Vol.58, 
pp.161-205 (1992). 

[Poole 87] D. Poole, R. Aleliunas and R. Goebel: 
Theorist: A Logical Reasoning System for Defaults 
and Diagnosis, in The Knowledge Frontier: Essays in 
The Knowledge Representation (N. J. Cercone and G. 
McCalla (eds.)), Springer-Verlag, N.Y. (1987). 

[Poole 88] D. Poole: A Logical Framework for Default 
Reasoning, Artif. Intelli., Vol.36, pp.27-47 (1988). 

[Selman 93a] B. Selman and H. Kautz: An Empirical 
Study of Greedy Search for Satisfiability Testing, 
Proc. AAAI-93 (1993). 

[Selman 93b] B. Selman and H. Kautz: Domain
Independent Extensions to GSAT: Solving Large 
Stractured Satisfiability Problems, Proc. IJCAI-93 
(1993). 

[Tsuruta 91] S. Tsuruta and M. lshizuka: A Compiling 
Method of Propositional Knowledge Base for 
Abductive Generation of Lacked Knowledge (in 
Japanese), Jour. Japanese Soc. for AI, Vol.6, No.I, 
pp.117-123 (1991). 

[Tsuruta 92] S. Tsuruta and M. Ishizuka: A Compiling 
Method of Predicate Knowledge Base for Efficient 
Abductive Hypothesis Synthesis (in Japanese), Jour. 
Japanese Soc . for AI, Vol.7, No. I, pp.130-137 
(1992). 



A Logical Language for Natural Language Processing 

Syed S. Ali 
Department of Computer Science 

Southwest Missouri State University 
901 South National Avenue 

Springfield, MO 65804 
ssa231f@cnas.smsu.edu 

Abstract 

We present a formal description of a logical 
language that is based on a propositional se
mantic network. Variables in this language 
are not atomic and have potentially complex 
structure. We start from the individual com
ponents of a semantic network system, atomic 
nodes and relations that connect nodes, and 
provide a complete specification for the struc
ture of nodes and a subsumption procedure be
tween nodes. We differ from other work in sub
sumption in that the representation language is 
uniform and based on an extended first-order 
predicate logic. The language is particularly 
suitable for addressing some problems associ
ated with natural language processing, namely 
the representation of complex natural language 
descriptions and inference associated with de
scription subsumption. 

1 Introduction 

We present a formal description of a propositional 
semantic-network-based knowledge representation sys
tem . Variables in this representation are not atomic 
and have potentially complex structure. We start from 
the individual components of a semantic network system, 
atomic nodes and relations that connect nodes, and pro
vide a complete specification for the structure of nodes 
and a subsumption procedure between nodes. We differ 
from other work in subsumption in that the represen
tation language is uniform and based on a first-order 
predicate logic. The language is particularly suitable for 
addressing some problems associated with natural lan
guage processing, namely the representation of complex 
natural language descriptions and inference associated 
with description subsumption . 

Subsumption is a partial ordering on related concepts 
(nodes in a semantic network) that relates more general 
concepts to more specific instances of those concepts. 
The manner in which "more general" is determined char
acterizes the type of subsumption. Woods has classified 
subsumption into extensional, structural, recorded, ax
iomatic, and deduced subsumption [Woods, 1991]. In 

general, the more complex the structure of the concepts 
( and their associated semantics) the more difficult sub
sumption becomes. 

Our formalism embeds a procedure for determining 
structural and deduced subsumption between concept 
nodes in a propositional semantic network representa
tion ( one in which propositions are represented by nodes 
and not arcs of the network). We specify the structure of 
the nodes of the propositional semantic network system 
in terms of its components, nodes and relations between 
nodes, and specify the subsumption procedure in terms 
of these components. This subsumption procedure can 
do the type of subsumption inference associated with 
KL-ONE classification lBrachman and Schmolze, 1985] 
and its successors (most notablely KRYPTON [Brach
man et al., 1985]). This subsumption procedure does 
this without a distinction between an assertional and 
terminological component (and their associated difficul
ties [Beierle et al., 1992]) . 

Sections 2 and 3 summarize the formal specification of 
the logical language. Section 4 describes the subsump
tion procedure in detail. Sections 5 and 6 describe the 
concept matcher and inference mechanism. These sec
tions provide a framework in which the natural language 
processing examples of Section 7 can be best understood. 

2 Syntax and Semantics of the Logic 

We specify the syntax and semantics of a logic whose 
variables are not atomic and have structure. We call 
these variables structured variables. The syntax of the 
logic is specified by a complete definition of a propo
sitional semantic network representation formalism ( an 
augmentation of [Morgado, 1986, Shapiro, 1991]). By 
a propositional semantic network, we mean that all in
formation, including propositions, "facts", etc., is repre
sented by nodes. The implemented system, ANALOG, is 
used here, for convenience, to refer to the logical system. 

2.1 Semantics 

As a propositional semantic network formalism, any the
ory of semantics that ascribes propositional meaning to 
nodes can be the semantics used in ANALOG. In this 
paper, examples and representations are tised that fol
low the case frame semantics of [Shapiro and Rapaport, 

187 



I 

1987) which provide a collection of propositional case 
frames and their associated semantics based on an ex
tended first-order predicate logic . We augment that logic 
further with arbitrary individuals (for the semantics of 
structured variables) in a manner similar to the semantic 
theory of [Fine, 1985). For a more complete specification 
of the syntax and semantics of ANALOG and its suit
ability for NLP, see [Ali, 1994). 

2.2 The Domain of Interpretation 

ANALOG nodes are t erms of a formal language. The 
interpretation of a node is an object in the domain of in
terpretation , called an entity. Every ANALOG node de
notes an entity, and if n is an ANALOG node, then [ n] 
denotes the entity represented by n. Nodes arc atomic 
or structured. In the latter case, they are connected 
to other nodes by labelled arcs. The labels on arcs are 
called "relations". It is useful, for discussing the seman
tics of ANALOG networks , to present them in terms of 
an "agent". Said agent has beliefs and performs actions, 
and is actually a model of a cognitive agent. In the 
rest of this explication , the term "node" will be used for 
ANALOG node, and "relation" for ANALOG relation. 

2.3 Metapredicat es 

To help form alize this description we introduce the 
metapredicates Co nceive, B eli eve, and =. If n , n 1 , n 2 are 
metavariables ranging over nodes, and p is a metavari
able ranging over proposition nodes , the semantics of the 
metapredicates listed above are: 

• Co nceive( n) Means that the node is actually con
structed in the network . Conceive(n) m ay be true 
without [ n] being known to be true or false. Also 
note that n need not be a proposition. 

• Believe(p) Means that the agent believes the propo
sition [P]. 

• n1 = n2 Means that n1 and n 2 are the same, iden
tical, node. 

Belief implies conception , as specified in Axiom l. 

Axiom 1: Believe(p) => Conceive(p) 

In practical t erms , this means that for a proposition to 
have a belief status it must be a node in the semantic 
network . This is a reasonable assumption since for an 
agent to believe som ething the agent must have some 
conceptualization for it. 

2.4 Definition of Nodes 

Informally, a node consists of a set of labeled (by rela
tions) directed arcs to one or more nodes. Additionally, 
a node may be labeled by a "name" (e.g. , BILL, Mi, 
Vi) as a useful (but extra- theoretic) way to refer to the 
node. This naming of a proposition node is of the form 
Mn , where n is some integer . A "!" is appended to the 
name to show that the proposition represented by the 
node is believed to be true ( Believe(Mi)). However, the 

"!" does not affect the identity of the node or the propo
sition it represents. Similarly, variable nodes are labeled 
Vn, where n is some integer, and base nodes are named 
Bn, where n is some integer ( additionally, base nodes 
may be named for the concept they represent, e.g ., man) . 
More formally a node is defined as follows: 

D efinition 1: There is a non-empty collection of la
belled atomic nodes called base nodes. Typically, base 
nodes are mnemonically labelled to indicate the entity 
they denote. Example: bill is a base node. 

Definition 2: A wire is an ordered pair <i·, n> , where r 
is a relation, and n is a node. Metavariables w, w 1 , w 2 , ... 

range over wires . Example: <member , john> is a wire. 

Definition 3: A nodeset is a set of nodes, { n 1 , . .. , n k } . 
Meta-variables n s, ns1, n s2, ... range over nodesets. Ex
ample: {john, bill} is a nodeset if john and bill are 
nodes. 

D efinition 4: A cable is an ordered pair <i·, ns>, 
where r is a relation, and n s is a non-empty nodeset. 
Meta-variables c, c1 , c2 , ... range over cables. Examp le: 
<member, {john, bill}> is a cable. 

Definition 5: A cableset is a non-empty set of cables, 
{<r1 , ns1>, . .. , <i·k,nsk>}, such that r; = 1'j <==> i = 
j. Meta-variables cs, cs1 , cs 2 , ... range over cablesets. 
Example: { <member, {john, bill}>, <class, {man}>} 
is a cableset. 

D efinition 6: Every node is either a base node or a ca
bleset. Example: bill is a base node, {<member , {john, 
bill}>, <class, {man}>} is a cableset. 

D efinition 7: We overload the membership relation 
"E" so that x E s holds just under the following condi
tions: 

l. If x 1s a node and s is a nodeset , 
x Es <==> :ly [y Es I\ Subsume(y, x ).] 
Example: Mi E {Mi, M2, M3} 

2. If x is a wire such that x = <1·1, n>, and s is a cable 
such that s = <r2, ns>, then 
x E s <==> r 1 = r2 /\ n E ns . 
Example: 
<member, john> E <member, {john , bill}> 

3. If x is a wire and s is a cableset, then 
x E s <==> :lc[c E s I\ x E c). 
Example: <member, john> E {<member , {john, 
bill}>, <class, {man}>} 

Because we need more definitions before Subsume can be 
defined, we defer its definition to Figure 2. 

D efinition 8: An nrn-path from the node n 1 to 
the node nk+i is a sequence, n1, r1, ... , nk, rk, nk+l, 
for k ~ l where the n; are nodes, the r; are rela
tions, and for each i, <r;, n;+ 1> E n ;. Example: If Mi 
= {<member , {john, bill}> , <class, {man}>} , then 

188 



In the following model (A, B, M, R, U, E, r): 

A={relation, arg}, B ={bill, john, ted}, M={Mi, M2, M3}, f = {Mi, M2, M3} 

where: 

Mi = {<relation, {brothers}>, <arg, {bill, john, ted}>} 
M2 = {<relation, {brothers}>, <arg, {john, ted}>} 
M3 = {<relation, {brothers}>, <arg, {bill, john}>} 

Some reductions: Reduce(M2, Mi), and Reduce(M3, Mi) 

Figure 1: Example of Subsumption by Reduction for a Particu lar Model 

Mi, member, john and Mi, class, man are some nrn
paths. 

Definition 9: A node n 1 dominates a node 
n 2 just in case there is an nrn-path from n 1 
to n 2. The predicate dominat e( n1, n2) is true 
if and only if n1 dominates n 2. Example: 
If Mi = {<member, {john, bill}>, <class, {man}>}, 
then Mi dominates john, bill, and man. 

Definition 10: A variable node is a cableset of 
the form { <any, ns>} (universal variable node) or 
{ <some, ns1>, <depends, n s2>} (existential variable 
node). Additionally, a node is a variable node only if: 

l. If it has the form { <any, ns> }, then every n E ns 
must dominate it. 

2. If it has the form { <some, ns1>, <depends, ns2> } , 
then every n E n s 1 must dominate it and every n E 
ns2 must be a universal variable node. 

Example: Vi = {<any, { {<member, {Vi}>, <class, 
{man}>}}>} is the variable node corresponding to every 
man. The variable label Vi is just a convenient extra
theoretic m ethod of referring to the variable. 

We define two selectors for variable nodes : 

{ 
ns 

rest(v) = 
ns1 

if v = { <any, ns>} 
if v = { <some, ns1>, <depends, ns2>} 

depends(v) = ns2 ifv = {<some, ns1>,<depends,ns2>} 

Informally, rest( v) is the set of restriction propositions 
on the types of things that m ay be bound to the vari
able node v . D epend(v) is the set of universal variable 
nodes on which the existential variable node, v, is scope
dependent. 

Definition 11: A molecular node is a cableset that 
is not a variable node. Example: {<member, {john, 
bill}>, <class, {man}>} is a molecular node, since it 
is a cableset but not a variable node. 

Definition 12: A rule node is a molecular node that 

dominates a variable node that does not , in turn, domi
nate it. Example: 
Given the labelled nodes below: 
Vi= {<any, {Mi}>} 
Mi= {<member, {Vi}>,<class, {man}>} 
M2 = {<member, {Vi}>, <class, {mortal}>} 
M2 is a rule node since M2 dominates Vi, which does 
not, in turn, dominate M2. Mi is not a rule node be
cause, while it dominates Vi, it is also dominated by 
Vi. The non-rule nodes that dominate variable nodes 
correspond to restrictions on binders of those same vari
able nodes. 

Definition 13: A wireset of a node n is de
fined as {w lw E n}. Example: If M2 = {<member, 
{john, bill}>, <class, {man}>} then : wireset(M2) 
{<member, john>,<member, bill>,<class,man>} . 

2.5 The ANALOG model 

Definition 14: An ANALOG mode l is a tuple 
(A, B, M, R, U, E, r) where A is a set of relations, B 
is a set of base nodes, M is a set of non-rule molecular 
nodes, R is a set of rule nodes, U is a set of universal vari
able nodes, and E is a set of existential variable nodes , 
and r s;; M U R. B , M , R, U, and, E are disjoint. r 
consists of the set of asserted nodes. 

2.6 Reduction 

We follow [Shapiro, 1986, Shapiro, 1991] in arguing for 
a form of reduction inference ( defined in Axioms 2 and 3 
below) as being useful. This is a form of structural sub
sumption [Woods, 1991], peculiar to semantic network 
formalisms , which allows a proposition to "reduce" to 
(logically imply) propositions whose wires are a subset 
of the wires of the original proposition . Figure 1 gives 
an example of a proposition expressing a brotherhood 
relation among a group of men . Node Mi represents the 
proposition that bill, john , ted, and joe are broth
ers . By reduction subsumption, all proposition nodes 
(such as M2 and M3) involving fewer brothers follow. 

However, we must restrict the use of reduction infer
ence to precisely those propositions and rules which are 

189 



.I 

· 1 

.1 

I 

reducible through the use of the I sReducible metapred
icate. 

Axiom 2: Reduce( cs1, cs2) ¢:::::> (Yw[w E cs2 => w E 
csi] /\ IsReducible(cs 1, cs2)). 

Note that the semantics of the metapredicate IsReducible 
will be specified in terms of the particular case frames 
used in a representation language. Propositions like 
Mi are clearly reducible, but not all propositional case 
frames are reducible. For example, 

Yx((man(x) /\ rich(x)) => happy(x)) (1) 

should not allow the reduced proposition: 

Yx(man(x) => happy(x)) (2) 
which involves fewer constraints on x than than propo
sition ( 1), as the latter does not follow from the former . 
New propositions derived by reduction should be implied 
by the propositions from which they are derived. For 
example note that reduction to proposition (2) is appro
priate when the constraints in the antecedent of the rule 
are disjunctive as in: 

Yx((man(x) V rich(x)) => happy(x)) (3) 

IsReducible should be define appropriately for the partic
ular representation language to allow ( or disallow) these 
reductions. In Section 3.3 we specify some of the re
ducible case frames we use in this paper. 

A proposition that is a reducible reduction of a be
lieved proposition is also a believed proposition. Since 
nodes are, by definition, cablesets, we state this as in 
Axiom 3. 

Axiom 3: (Reduce(n1, n2) I\ Believe(n1 )) 
Believe(n2) 

2.7 Types of Nodes 

We have defined four types of nodes: base, molecular, 
rule, and variable nodes. Informally, base nodes cor
respond to individual constants in a standard predicate 
logic, molecular nodes to sentences and functional terms, 
rule nodes to closed sentences with variables, and vari
able nodes to variables. Note that syntactically all are 
terms in ANALOG, however. 

3 Semantic Issues 

ANALOG is specified in terms of a propositional se
mantic network. By this is meant that all information, 
including propositions, "facts", etc., is represented by 
nodes. Labelled arcs are purely structural and carry no 
assertional import. The benefit of representing proposi
tions by nodes is that propositions about other propo
sitions may be represented. T his means that ANALOG 
is not strictly first-order as variables may quantify over 
nodes that correspond to propositions or predicates 
rather than individuals. T his has useful consequences 
when processing natural language, particularly questions 
whose answers are propositions, in that any node (in
cluding non-base nodes) can be bound to the variable 
associated with a question . 

3.1 Intensional Representation 

ANALOG nodes correspond to intensional entities. 
What is being represented, in ANALOG, is an agent's 
mind. Objects in that mind need not represent any ex
tensional object in the world. To connect objects of mind 
to extensional objects in the world, ANALOG uses a case 
frame with a lex arc to the object of thought denoting 
its extension. Additionally, sensory nodes can also make 
this connection to the external world. 

3.2 The Uniqueness Principle 

No two nodes in the network represent the same individ
ual, proposition, or rule. 

This is a consequence of the intensional semantics, since 
nodes correspond to objects of thought in an agent's 
mind. T he objects of thought are intensional: a mind 
can have two or more objects of thought that corre
spond to only one extensional object, or no extensional 
object. The classic example of this is the Morning Star 
and the Evening Star which might be distinct objects of 
thought, but have a single extensional referent . Thus the 
nodes representing the Morning Star and the Evening 
Star are distinct, and any node can denote only one in
tensional object which no other node can denote [Maida 
and Shapiro, 1982]. 

A benefit of this is a high degree of structure-sharing 
in large networks. Additionally, the network representa
tion of some types of sentences can reflect the re-use of 
natural language terms expressed by pronouns and other 
reduced forms. 

3.3 Case Frame Semantics 

ANALOG can support any propositional representations 
that have a consistent syntax and semantics. In this 
paper, examples of representations used will follow the 
syntax and semantics of [Shapiro and Rapaport, 1987]. 
Here we describe only two case frames (those used in 
the brothers example of Figure 1), due to space limita
tions. We specify their syntax, semantics, and status for 
reduction. 

190 

1. {<member,ns1>, <class,ns2>}: For any n1 E ns1, 
and any n2 E ns2, [ n1] is a member of class [ n2] . 
Valid reductions are specified by: 

IsReducible( { <member, ns1 U ns3>, <class, ns2 U ns4>}, 
{<member, ns1>, <class, ns2>}) 

where ns1 -f:. {}, and ns2 -f:. {}. 
2. { <1·elation, ns1 >, <arg, ns2>}: For every n1 E ns1, 

and every n2, n3 E ns2, n2 -f:. n3, [ n2 ] is in relation 
[ ni] to [ n3 ], and [ n3] is in relation [ ni] to [ n2]. 
Valid reductions are specified by : 

IsReducible( { <rel at ion, ns1 U ns3>, <arg, ns2 U ns4 >}, 
{ <relation, ns1 >, <arg, ns2>}) 

where ns1 -f:. {} , and Jns2 J ~ 2 



Subsum e(x, y) in a model (A , B, M , R, U, E , r) if and only if, one of: 

l. X = y. 
2. Reduce(x , y) 
3. For x E U and y EB UM UR, if not occurs- in( x , y) and there exists a substitution S such that 

'v'i·[r E rest( x ), r f- i·{y/x} · SJ. 
Logical derivation is here denoted by "f- ." 
4. For x EU and y EU U E , if 

'v'r[r E rest( x )::::} :ls[s E rest(y) I\ Subsum e(r, s)ll 

5. For x, y EE, if all of the following hold: 

'v's [s E rest(y)::::} :lr[r E rest(x ) I\ Subsume(r, s)]] 
'v'r[i· E rest( x ) ::::} :ls[s E rest(y) I\ Subsume(r, s)ll 

'v'd[d E depends(y) ::::} :lc[c E depends(x) I\ Subsum e(c, d)]] 

Figure 2: Subsumption Procedure 

Note that most of the valid reductions of these proposi
tional case frames follow directly from their semantics . 
There are numerous other case frames that are useful 
and necessary (for a complete dictionary of them, see 
[Shapiro et al., 1993]). 

4 Subsumption 

Sem antic network form alisms provide "links" that re
late more general concepts to more specific concepts; this 
is called a taxonomy. It allows information about con
cepts to be associated with their most general concept, 
and it allows information to filter down to more specific 
concepts in the t axonomy via inheritance. More gen
eral concepts in such a taxonomy subsum e more specific 
concepts, the subsumee inheriting information from its 
subsumers . For atomic concepts, subsumption relations 
between concepts are specified by the links of the taxon
omy. We specify subsumption for non-atomic concepts, 
below. 

D efinition 15: A binding is a pair v/u, where either u 
is a universal SV and v is any node or u and v are both 
existential nodes . Examples: Vi/V2 , JOHN/Vi. 

D efinition 16: A substitution is a (possibly empty) 
set of bindings, {ti/vi , .. . , tn/vn } . Examples: {Vi/V2, 
JOHN/V3} , {Bi/Vi, Mi/V2} . 

D efinition 17: The result of applying a substitution , 
() = {ti/vi , ... , tm/vm}, to a node n is the instance n() 
of n obtained by simultaneously replacing each of the v; 
dominated by n with t;. If () = {} , then n() = n . Exam
ple: If Mi = {<member, {Vi} >, <class , {MAN}>} then : 
Mi{JOHN/Vi} = {<member , {JOHN}> , <class , {MAN}>} 

D efinition 18: Let () = {si/ui , ... , sn /un} and p = 

{ti/vi, ... , tm/vm} be substitutions. Then the com
position () · p of () and p is the substi tution obtained 
from the set: {si p/ui, ... , Snp/un , ti/vi , . . . , tm/ vm } by 
deleting any binding s; p/u; for which u; = SiP· Exam
ple: If() = {Vi/V2, V4/V3} , and p = {V2/Vi, JOHN/V4} 
then()· p = {JOHN/V3, JOHN/V4} . 

D efinition 19: A substitution , () , is consistent iff nei
ther of the following hold : 

:Ju, t , s[t/u E () I\ s/u E () I\ s -:j:. t] 
:Ju , v , t[t/u E () I\ t/v E () I\ u -:j:. v] 

We note that this is different from the standard defini
tion of consistency for substitutions. A substitution that 
is not consistent is termed inconsistent. T he motiva
tion for the second constraint ( called the unique variable 
binding rule, UVBR) is that in natural language , users 
seldom want different variables in the same sentence to 
bind identical objects [Shapiro, 1986]. For example, Ev
ery elephant hates every elephant has a different inter
pret ation from Every elephant hat es himself. Typically, 
the most acceptable interpret ation of the former sentence 
requires that it not be interpreted as the latter . UVBR 
requires that within an individual sentence that is a rule 
(has bound variables), any rule use (binding of variables) 
must involve different terms for each variable in the rule 
to be acceptable. Examples: 

{ JOHN/V2, BILL/V2} is inconsistent . 
{JOHN/Vi, JOHN/V2} is inconsistent . 
{JOHN/Vi, BILL/V2} is consistent . 

D efinition 20: T he predicate occurs- in( x, y) where 
x is a variable is defined: occurs-in(x, y) {=::} 

dominat e(y , x ). Occurs- in is used for the standard oc
curs check of the unification algorithm ( and is just a 
more perspicacious naming of dominate). 

191 



In the following model (A, B, M, R, U, E, f): 

A = {member, class, any}, B = {man, mortal, Socrates}, M ={Mi, M3, M4}, R ={M2}, U ={Vi} 

where: 

Mi= {<member, {Vi}>,<class, {man}>}, 
M3 = {<member, {Socrates}>,<class, {man}>} , 
Vi = {<any, {Mi}>} 

The resulting subsumption: Subsume(M2, M4) . 

M2 = {<member, {Vi}>, <class, {mortal}>} 
M4 = {<member, {Socrates}>,<class , {mortal}>} 

Figure 3: Example of Subsumption for a Particu lar Model 

In ANALOG, we specify subsumption as a binary rela
tion between arbitrary nodes in the network. We define 
subsumption between two nodes x and y in Figure 2. 
This definition of subsumption includes subsumption 
mechanisms that Woods classifies as structural, recorded, 
axiomatic, and deduced subsumption [Woods, 1991]. In 
Figure 2, case ( 1) corresponds to identical nodes (anode, 
obviously, subsumes itself) . Case (2) is the reduction in
ference case discussed in section 2. 6. Case (3) applies 
when a universal structured variable node subsumes an
other node. This corresponds to a description like any 
rich man subsuming John if John is known to be a man 
and rich. Such a variable will subsume another node 
if and only if every restriction on the variable can be 
derived (in the current model) for the node being sub
sumed. Subsumption, consequently, requires derivation. 
For the examples shown here, standard first-order logi
cal derivation may be assumed. Case ( 4) allows a more 
general universal variable node to subsume a less general 
existential variable node. For this to happen, for every 
restriction in the universal variable node there must be 
a restriction in the existential variable node, and the 
former restriction must subsume the latter restriction . 
For example, the variable node corresponding to every 
rich girl would subsume some rich happy girl (but not 
som e gir0 . Case (5) allows one existential variable node 
to subsume another . The requirement for this case is, 
essentially, that the variables be notational variants of 
each other, except for those universal structured vari
ables they are scope dependent upon . This is because 
it is not , in general, possible for any existential variable 
to subsume another except when they are structurally 
identical. The reason this case is needed (rather than 
just excluding it entirely) is that for a rule node corre
sponding to every boy loves some girl to subsume every 
rich boy loves some girl, the existential variable node cor
responding to the some girl in the first rule node must 
subsume the existential variable node corresponding to 
the .some girl in the second rule node. 

In Figure 3, a more det ailed example for a parti cul ar 
model is given. Node M2 represents t he proposition that. 
all m en are mortal, M3 the proposit ion that. Socrates 
is a man, and M4 the proposition that. Socrates is 
mortal. Vi is the structured variab le reprcs<~nt.inµ; any 

man. It then follows that M4 is a special case of M2 
directly by subsumption, since Vi subsumes Socrat es. 
Note that the restrictions on subsumption involving vari
ables is stricter than Reduce, which only requires that 
the wires of one node be a subset of the other. 

As with reduction (Axiom 3), a proposition that is 
subsumed by a believed proposition is also a believed 
proposition. This can be stated as a more general form 
of Axiom 3. 

Axiom 5: (Subsume(n1 , n 2) I\ Believe(n1)) => 
Believe(n2) 

Axiom 5 allows the sorts of commonsense description 
subsumption evident in natural language. 

5 Node Matching 

Matching in ANALOG is the process of determining the 
most general common instance (MGI) of two nodes such 
that one instance subsumes the other instance. Match
ing is specified in t erms of nodes ( and the arcs connect
ing them) and sets of substitutions ( .substitutionset.s) for 
variables in the nodes. 

0 
n

1
s 

Subsume 

Figure 4: Pictori al View of Node Matching Process 

T he process looks like Figure 4. When two nodes are 
being considered to determine a subsumption relation
ship (n1 and n2), the matcher attempts to find two sub-

192 



Algorithm 1 Match(i, j, SJ in a model (A, B, M, R, U, E, f) 

IF i = j THEN ( 1) 
RETURNS 

ELSEIF i EU and Subsume(iak,jbk) THEN (2) 
RETURN {(ak · {j/i}, bk) I (ak, bk) ES I\ ak · {j/i} is consistent.} 

ELSEIF j EU and Subsume(jbk, iak) THEN (3) 
RETURN {(ak,bk · {i/j}) I (ak,bk) ES' I\ bk· {j/i} is consistent.} 

ELSEIF i, j E E THEN 
IF Subsume(iak,jbk) THEN (4) 

RETURN {(ak · {j/i}, bk) I (ak, bk) ES I\ ak · {j/i} is consistent.} 
ELSEIF Subsume(jbk,iak) THEN (5) 

RETURN {(ak,bk · {i/j}) I (ak,bk) ES I\ bk· {j/i} is consistent.} 
END 

ELSEIF i, j E MU R THEN (6) 
RETURN matchwires(wireset(iJ, wireset(jJ, SJ 

ELSE 
RETURN fail 

END 

Algorithm 2 Matchwires(ws1, ws2, SJ 

IF S = fa il or ws 1 = {} THEN 
RETURN fail 

ELSEIF ws2 = {} THEN 
RETURNS 

ELSE 

S <- <r,n>Ews 1 
U [ matchwires( 

<r,m>Ews 2 

ws1 - { < r, n > }, l 
ws2 - { < r, m > }, - {fail} 
match(n, m, s)) 

END 

IFS'={} THEN 
RETURN fail 

ELSE 
RETURNS 

END 

Figure 5: Match and Matchwires Algorithms 

stitutions s and t ( called the source and target substi
tutions, respectively), such that if s is applied to n1 to 
produce n3 , and if t is applied to n 2 to produce n4, then 
n3 will subsume n4 . Given two nodes, the matcher re
turns a set of ( s;, Sj) pairs that are possible substitutions 
for the two nodes that result in the subsumption rela
tionship. If none is possible, the empty set is returned. 

5.1 Match Algorithm 

The two-way matching procedure takes a pair of nodes 
i, j and returns a substitution set consisting of source
target substitutions ( s;, t;) such that Subsume( is;, jt;). 
To account for the possibility of multiple source-target 
substitutions, match also takes a substitution set which 
constrains the possible matches (based on previous re
cursive matchings). Match is defined in Algorithm 1 of 
Figure 5 and works by recursively generating all possi
ble consistent source-target substitutions on a case by 
case basis. Each case of the match procedure potentially 

adds a new binding to the source or target substitutions 
in the substitution set that is the result of the matching. 

In Algorithm 1, case (1) will succeed only if the two 
nodes are identically the same node. This follows from 
the uniqueness principle. Since this match involves no 
variables, no new bindings are added in the event of a 
successful match. This case occurs when matching two 
terms that share a subterm. This is particularly likely 
to occur for base nodes, since there will only be one base 
node for any intensional individual in the network. Cases 
(2) and (3) deal with attempted matches where one node 
is a universal variable. If the universal variable node sub
sumes the other node (subject to the current source and 
target substitutions), a new binding is added to all the 
source-target substitution sets and the consistent source
target substitutions become the resulting substitution 
set. Cases ( 4) and (5) deal with attempted matchings 
where both nodes are existential variable nodes. De
pending on whether the source subsumes the target or 
the target subsumes the source (subject to the current 

193 



· .. 1 .. 

I 

. I 

I 

.· / 

(parse -1) 
ATN parser initialization ... 
Input sentences in normal English orthographic convention. 
Sentences may go beyond a line by having a space followed by a <CR> 
To exit the parser, write -end. 

Every man owns a car 
I understand that every man owns some car. 

Every young man owns a car 
I understand that every young man owns some car. 

Every young man that loves a girl owns a car that is sporty 
I understand that every young man that loves any girl owns some sporty car . 

Every young man that loves a girl that owns a dog owns a red car that is sporty 
I understand that every young man that loves any girl that owns any dog owns some red 
sporty car. 
: Every young man that loves a girl and that is happy owns a red sporty car that wastes gas 
I understand that every young happy man that loves any girl owns some sporty red car that 
wastes gas. 
: ' end 
ATN Parser exits ... 

Figure 6: Examples of comp lex noun phrase use that corre
spond to structured variab les 

source and target substitutions), a new binding is added 
to all the source or target substitutions and the con
sistent source-target substitutions become the resulting 
substitution set. Case (6) is the general case and deals 
with attempts to match two molecular or rule nodes. 
Both the source and target nodes are converted into their 
equivalent wiresets, and all possible matchings of wires 
are attempted to determine if the source node can match 
the target node. This is done using the match wires func
tion in Algorithm 2. M atchwires works by attempting to 
find consistent source-target substitutions such that all 
wires of a source instance's wireset are in the target in
stance's wireset. 

6 Node Inference 

The primary form of inference in ANALOG is instan
tiation, that is, replacing more statements with more 
specific statements by applying substitutions generated 
by the matcher. The metarule for this is: 

Believe(n1) 
Conceive(n 2) 
(s,t) E match(n1,n2, {}) 

Believe( n2t) 

In this metarule, n 1 is a node that represents a statement 
that is believed, and n2 is a node that is merely con
ceived, typically corresponding to a question. If match 
returns a substitution pair that allows the belief of an 
instance of n 2 this rule allows the system to believe that 
instance. Because syntactically similar natural language 
statements are mapped into structurely similar repre
sentations (including questions) this rule allows general 
inference, as illustrated in the next section. 

7 ANALOG for NLP 

So far, we have motivated some aspects of the logic 
underlying the ANALOG knowledge representation and 
reasoning system and formalized some important con
cepts, such as subsumption, associated with the logical 
system. At this point, we will attempt to illustrate the 
utility of the system for natural language processing with 
specific examples the system modelling natural language 
use. 

ANALOG includes a generalized augmented transition 
network (GATN) natural language parser and generation 
component linked up to the knowledge base (based on 
[Shapiro, 1982]). A GATN grammar specifies the trans
lation/generation of sentences involving complex noun 
phrases into/from ANALOG structured variable repre
sentations. 

We present two demonstrations of the NLP component 
of ANALOG. The first illustrates the representation and 
use of complex noun phrases, the second is a demonstra
tion that illustrates the use of description subsumption 
and inference in providing useful answers to questions. 

7.1 Representation of Complex Noun Phrases 

An apparent advantage of the use of structured variables 
lies in the representation and generation of complex noun 
phrases that involve restrictive relative clause comple
ments. The restriction set of a structured variable typi
cally consists of a type constraint along with property 
constraints (adjectives) and other more complex con
straints (restrictive relative clause complements) . So, 
when parsing a noun phrase all processing is localized 

194 



Every man is mortal 
I understand that every man is mortal. 

Who is mortal 
Every man is mortal. 
: I s any rich man mortal 
Yes, every rich man is mortal . 

John is a man 
I understand that John is a man. 
: Is John mortal 
Yes, John is mortal . 
: Who is mortal 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

John is mortal and every rich man is mortal and every man is mortal. 
: Are all rich young men that own some car mortal 

{10} 
{11} 
{1 2) 
{1 3) 
(14) 
(15) 
(16} 
(17} 
(1 8} 
(19} 
(20} 
(21} 
(22} 
(23) 
(24) 

Yes, every young rich man that owns some car is mortal . 
Any rich young man that owns any car is happy 

I understand that every young rich man that owns any car is happy . 
Is John happy 

I don't know. 
Young rich John owns a car 

I understand that mortal rich young John owns some car. 
Who owns a car 

Mortal rich young John owns some car. 
: Is John happy 
Yes, mortal rich young John is happy . 

Figure 7: Deduced Subsumption wit h Comp lex Descriptions . 

and associated with building its structured variable rep
resentation. When generating a surface noun phrase cor
responding to the structured variable, all constraints as
sociated with the variable are part of its structure and 
can be collected and processed easily. This is in contrast 
to non-structured variable representations (such as first
order predicate logic) where the restrictions on variables 
are disassociated from the variables themselves, in the 
antecedents of rules. 

In Figure 6, user input is italicized, the text at the 
beginning is a st andard m essage and will be omitted 
from the remaining figure. Figure 6 shows example sen
tences with progressively more complex noun phrases be
ing used . These noun phrases are uniformly represented 
using structured variables . Parsing and generation of 
these noun phrases is simplified because structured vari
ables collect all relevant restrictions on a variable into 
one unit, a structured variable. The parser parses the 
user's sentence and builds an ANALOG representation 
for the user input . The resulting representation is then 
passed to the generation component, which generates 
the output response (sometimes prefixed by the canned 
phrase I understand that). Notice how, in Figure 6, 
the descriptions in the sentences get progressively more 
complex. Because structured variables collect all con
straints on a variable into one term, it is relatively simple 
to parse complex natural language noun phrases , as in 
the examples. Similarly, for generation of language from 
the representation, it is simple to generate complex nat
ural language descriptions from structured variables. If 

constraints on variables corresponding to the complex 
noun phrases were represented using first-order predi
cate logic, then it would be difficult to generate natural 
language noun phrases corresponding to these variables. 
This is because the constraints on variables would, likely, 
be well-separated from the variables in the antecedents 
of rules involving these variables . This is not the case in 
a structured variable representation. 

7.2 Description Subsumption and Question 
Answering 

Because the structure of the representation of rules is 
"flat", that is, there is not the artificial antecedent
consequent structure associated with first-order logic
based representations, it is possible to frame questions 
whose answers are rules and not just ground formulas. 
Since the structure of the question will mirror the struc
ture of the rule, any rule that is subsumed by a question 
is an answer to that question . Figure 7 gives a sam
ple dialog involving questions whose answers are ground 
propositions (e.g., Is John morta0 as well as questions 
whose answers are rules (e.g., Who is morta0. This 
dialog also illustrates the uses of subsumption . Since 
we told the system Every man is mortal, it follows that 
any more specifically constrained man (e.g. , Every rich 
young man that owns some car) must also be mortal. 
Note that this answer (a rule) follows directly by sub
sumption from a rule previously told to the system. This 
is another way in which rules may be answers to ques
tions . 

195 



We examine the subsumption inference in Figure 7 in 
detail. All references to sentences will be to the num
bered sentences in Figure 7. After sentence (1) is pro
cessed, sentence (3) then asks who is mortal. In a stan
dard first-order-predicate-logic-based system, no answer 
could be given because there are, as yet, no instances of 
men in the knowledge base. This is contrary to the com
monsense answer of sentence (4), which reiterates the 
rule of sentence (1). This is possible in ANALOG be
cause the structure of the representation of the question 
( Who is morta0 is similar to that of any of its answers. 
Thus, any asserted proposition that is subsumed by the 
question is a valid answer (including rules). 

Sentence (5) is an example of a question about a rule. 
Sinr.P. l'.111'.T'!J m.nn is m.nrtn.l is hP.li P.vP.rl ( t.h P. syst.P.m was 
told this in sentence (1)) it follows that any more re
stricted sort of man is also mortal. The subsumption 
procedure specifies this explicitly. The representation 
of sentence ( 5) in is a less general form of sentence ( 1), 
since any man subsumes any rich man. Since the rule 
of sentence (5) is subsumed by a believed node (that of 
sentence (1)), it follows by Axiom 5 that sentence (5) is 
believed ( thus, the representation of the question itself 
is a believed proposition) and the system answers yes to 
the question. Sentence (7) asserts that John is a man. 
At this point, the system knows all men are mortal and 
John is a man. When the question of sentence (9) is 
asked, the system finds the rule of sentence (1) and de
termines that it subsumes sentence (9) because John is 
a man and, again by axiom 5, the result follows . How
ever, note that in this derivation the result is a ground 
formula rather than a rule . Sentence ( 11) illustrates the 
retrieval of the system's information about who is mor
tal; note the additional believed propositions. Sentence 
(13) is an example of a more complex noun phrase in a 
rule. The representation of (13) is subsumed by that of 
sentence ( 1) or ( 5) leading to the yes answer. In sentence 
(1 5), a new rule about rich young car-owning men be
ing happy is introduced . The question of sentence (17) 
( is John happy) cannot be answered, because the sys
tem cannot determine that any rich young car-owning 
man subsumes John. This is because, while John is a 
man, he is not known to be young, rich, and owning a 
car (requirements for this subsumption). Sentence (19) 
informs the system of these requirements the systems un
derstanding is verified by question (21). Note that the 
structure of the question involving two variables ( Who 
and a car) is identical to that of the structure of its an
swer, which would not be the case if constraints were 
separated from variables in the antecedents of rules ( as 
is done in typical logics) . The question is asked again 
and, because the subsumption relationship can be deter
mined, is answered in the affirmative. 

8 Summary 

We have described a logical language designed for nat
ural language processing. We have shown how the pri
mary means of automated deduction is a form of sub
sumption, that models reasoning methods used in natu-

ral language. We have illustrated the suitability of our 
work for natural language processing. 

References 

[Ali, 1994] Syed S. Ali. A "Natural Logic " for Natural 
Language Processing and I( now ledge R epresentation. 
PhD thesis, State University of New York at Buffalo, 
Computer Science, January 1994. 

[Beierle et al., 1992] C. Beierle, U. Hedtstuck, U. Ple
tat, P.H. Schmitt, and J . Siekmann. An Order-sorted 
Logic for Knowledge Representation Systems. A rtifi
cial Intelligence, 55(2-3): 149- 191, June 1992 . 

[Brachman and Schmolze, 1985] Ronald J. Brachman 
and J. Schmolze. An Overvievv of the KL-ONE 
Knowledge Representation System. Cognitive Science, 
9(2):171- 216, 1985. 

[Brachman et al., 1985] Ronald J. Brachman, Victo
ria Pigman Gilbert, and Hector J . Levesque. An 
Essential Hybrid Reasoning System: Knowledge and 
Symbol Level Accounts of KRYPTON. Proceedings 
IJCAI-85, 1:532- 539, 1985. 

[Fine, 1985] Kit Fine. R easoning with Arbitrary Objects. 
Basil Blackwell, Oxford, 1985. 

[Maida and Shapiro, 1982] A. S. Maida and S. C. 
Shapiro. Intensional Concepts in Propositional Se
mantic Networks. Cognitive Science, 6(4):291- 330, 
1982. Reprinted in R eadings in Knowledg e Repre
sentation, R. J. Brachman and H. J. Levesque (eds.) , 
Morgan Kaufmann, San Mateo, CA, 1985, 170- 189. 

[Morgado, 1986] E. J. M. Morgado . Semantic Networks 
as Abstract Data Types. Technical Report 86- 19, 
Department of Computer Science, SUNY at Buffalo, 
1986 . 

[Shapiro and Rapaport, 1987] S. C. Shapiro and W. J . 
Rapaport. SNePS Considered as a Fully Intensional 
Propositional Semantic Network. In N. Cercone and 
G. McCalla, editors, The Knowledge Fronti er, pages 
263- 315. Springer- Verlag, New York, 1987. 

[Shapiro et al., 1993] S. C. Shapiro, W. J. Rapaport, 
and the SNePS Research Group . A Dictionary of Case 
Frames, 1993. In preparation. 

[Shapiro, 1982] S. C. Shapiro. Generalized augmented 
transition network grammars for generation from se
mantic networks . Th e American Journal of Compu
tational Linguistics, 8(1): 12- 25, 1982. 

[Shapiro, 1986] S. C. Shapiro. Symmetric relations, in
tensional individuals, and variable binding . Proceed
ings of the IEEE, 74(10) :1354- 1363 , 1986. 

[Shapiro, 1991] S. C. Shapiro. Cables, Paths, and "Sub
conscious" Reasoning in Propositional Semantic Net
works . In John F. Sowa, editor , Principles of Semantic 
Networks, pages 137- 156 . Morgan Kaufmann, 1991. 

[Woods, 1991] William A. Woods. Understanding Sub
sumption and Taxonomy: A Framework for Progress. 
In John F. Sowa, editor, Principles of Semantic N et
works , pages 45- 94. Morgan Kaufmann, 1991. 

196 



Goo: A Database for Temporal Uncertainty Management 

Keiji Kanazawa 
Computer Science Division 

University of California 
Berkeley, CA 94 720 

kanazawa©cs.berkeley.edu 

Abstract 

This paper introduces Goo, a system for rea
soning about temporal uncertainty. Goo is a 
system for maintaining a picture of the likeli
hood of facts and events over time. Goo fea
tures a flexible knowledge representation lan
guage based on a continuous-time probabilis
tic temporal logic. It constructs and main
tains probabilistic networks models from logi
cal knowledge in response to queries and asser
tions. Unlike most approaches, Goo is not con
fined to the representation of state transition 
models . It can model continuous change, and 
it can answer a rich class of relational queries. 
Goo offers a simple and expressive framework 
for reasoning about time and probability in a 
practical manner . 

1 Introduction 

We are interested in the design of robust inference sys
tems for supporting activity in dynamic domains . In 
most domains, things cannot always be predicted accu
rately in advance. Thus, the capabili ty to reason about 
change in uncertain environments is an important com
ponent of robust performance. Our goal is to develop 
theory and implementations of temporal reasoning under 
uncertainty that are well suited to a variety of domains . 
To this end, in past work, we presented an approach to 
representing knowledge about time and probability using 
temporal logic and Bayesian networks [Kanazawa, 1991] . 
In this paper, we present an implementation of these 
ideas in Goo, a probabilistic temporal database ( PTD B). 

Goo is a system for modeling the change in the likeli
hood of facts and events continuously over time. In con
trast to state transition models such as Markov processes 
that focus on modeling what is true in successive states, 
Goo simplifies reasoning about the lifetimes of facts and 
the relationships between facts and events. 

Goo was developed with an eye to app lications in plan
ning, schedu ling, and medical decision making . An ex
amp le domain is planning a trip: in order to form a good 
trip plan, il is useful lo eslimale the likely time of arrival 

at different locations. Suppose that we are trying to de
termine the best way to reach the Statue of Liberty from 
Lincoln Center in New York City. One way is to drive 
through Times Square. We know that there are often 
traffic jams in Times Square. To assess the impact of 
driving through Times Square, we would need to deter
mine the likely time of arrival in Times Square, the like
lihood of traffic jams at that time, and how they affect 
the overall plan. To take another example, in medicine, 
it is often critical to know the likely changes in a pa
tient's condition over time in order to form a treatment 
plan. 

In Goo, users enter facts and rules about the world, 
and Goo makes inferences drawing on that knowledge. It 
is based on the logic of lifetimes, a logic for representing 
knowledge about time and probability, and time nets, 
a type of Bayesian network for reasoning about time. 
Users can query the probability of facts and events, com
plex relational queries, and "what if?" queries based on 
hypothetical facts and events. Goo incrementally con
structs and maintains time nets from logical knowledge 
in response to queries and assertions. It updates prob
ability distributions as necessary in response to changes 
asserted by users . In its combination of a declarative 
knowledge representation with probabilistic networks, 
Goo is simil ar to work by Breese [Breese, 1987], Wellman 
[Wellman, 1990], and Goldman and Charniak [Goldman, 
1990]. Goo is distinguished by its ability to represent and 
reason about time. 

In the next section, we present the basic concepts un
derlying Goo. Then, we consider in more detail the op
eration of Goo, and the language used to program and 
interact with Goo . Finally, we present an example of its 
use. 

2 Basic Concepts 

In this section, we outline the basic concepts underly
ing a logic for declaratively expressing knowledge about 
time and uncertainty, and a graph representation that 
simplifies reasoning from such knowledge. 

In our framework, we distinguish between facts and 
events. A fact is something that once it becomes true, 
stays true for some time. 1 By contrast, an event occurs 

1 A fact is a fluent [McCarthy and Hayes, 1969]; each fact 

197 



I 
I 

instantaneously; it is true over an infinitesimally s?1all 
interval of time . Each fact has a range, the maximal 
interval [u, v] over which the fact holds true uninterrupt
edly. The lifetime of a fact is v - u. Each event has a 
single date d at which it occurs. 

For each fact 'P, we automatically consider the events 
beg(<p) and end(<p), corresponding to the dates at which 
the fact becomes true and false. These events are known, 
respectively, as the enabling and clipping events of the 
fact. For the fact "Sally is here", its enabling event corre
sponds to the instant when Sally begins to be here, and 
its clipping event corresponds to the instant when she 
ceases to be here. There are also other types of events, 
called point events, such as "Sally arrives here", which 
are not themselves the enabling or clipping event of any 
fact. but which may trigger the enabling or clipping of a 
fact· such as "Sally is here". 

With each event, we may associate a probability den
sity. For instance, if Sally is scheduled to arrive around 
1 p.m., then we might model the likely time of Sally 's 
arrival by a normal density with the mean at 1 p.m .. 

The logic of lifetimes (LL) [Kanazawa, 1992] is a 
continuous-time logic for representing knowledge about 
facts and events as outlined above. It is temporally
quantified and has real-number functions for represent
ing probability distributions. LL is otherwise proposi
tional as far as facts and events are concerned. The 
semantics of LL is based on a probabi lity measure over 
possible worlds. For details on the syntax and seman
tics of LL, the reader is referred to [Kanazawa, 1991; 
Kanazawa, 1992] (see also [Haddawy, 1991] for a similar 
logic). 

In LL, there is a set of propositional symbols <I> rep
resenting facts and events. From these propositions, it 
is possible to build up sentences associating the propo
sitions with time points and probabi lities. This is done 
with the holds, occ, and P sentence formers. holds(u, 
v, <.p ) means that fact <.p is true throughout the time 
interval [u, v]2, occ(u, <.p) means that event <p occurs 
at time point u, and P(<p) is the probability of a wff <p. 
For instance, consider the fact here (Sally) represent
ing "Sally is here". holds(1pm, 2pm, here(Sally)) 
means that Sally is here between 1 and 2 p.m., occ(1pm, 
beg(here(Sally))) means that Sally begins to be here 
at 1 p.m., and P (holds (2pm, oo, here (Sally))) is the 
probability that Sally never leaves here after 2 p.m .. 
Such sentences can be combined with logical connectives 
such as and and not . Conditional probability statements 
encode knowledge about how different facts and events 
affect one another. 

As we see in ensuing sections, in Goo, we express 
knowledge about facts and events in a language essen
tially the same as LL called bayesl. Before we present. 
bayesl, we introduce the graph representation used for 
reasoning about facts and events. 

The time net belongs to the popular class of directed 

must remain true throughout an interval of time, and it cor
responds to the liquid proposition of [Shoham, 1988]. 

2 Let [b , e] be the range of cp. holds ( u, v, <p) is true iff [ u, v] 
is a subset of the interval [b, e]. Not.e that this docs not imply 
b = u or e = v. 

(beg (here sally)) (end (here sally)) 

Figure 1: The time net for a fact. 

graph representation of knowledge about probability of
ten known as the Bayesian network [Charniak, 1991; 
Pearl, 1988] . A Bayesian network is a directed acyclic 
graph G = ( l'l, .A. ), consisting of a set of nodes Pl, and a 
set of arcs A. Each node represents a random variable 
of interest, which may be discrete or continuous-valued. 
Arcs are directed edges that represent dependencies be
tween the random variables represented by nodes. Par
ents and children of nodes, on the basis of arc direc
tion are defined in the usual fashion, as are root and 
leaf 'nodes . Let nn be the set of values ( or continuous 
range) of a node n E N. There is a probability distribu
tion ( density for continuous variables) Pr( n = w, w E r2n) 
for each node n E N. If the node is a root node then this 
is its marginal probability distribution; otherwise, it is 
a conditional probability distribution dependent on the 
states of the parents of n in G. The text by Pearl [Pearl, 
1988] provides a comprehensive treatment of Bayesian 
networks. 

In a time net, facts and events are represented as 
nodes, and conditional dependence between facts and 
events (on the basis of conditional distributions) are rep
resented as arcs. For each point event of interest, a time 
net contains one node representing the date of the event. 
For each fact of interest, a time net contains three nodes, 
one node representing the range of the fact, and one node 
each representing the dates of the enabling and clipping 
events of the fact (see Figure 1). All fact and event 
nodes have continuous densities agsociated with them. 
For instance, a node representing the event "Sally ar
rives" might have associated with it a normal density 
with the mean at 1 p.m. as before. 

A time net may also include nodes that correspond 
to compound sentences formed with logical connectives 
and temporal relations. For example, given two nodes 
representing the dates of two events a and b, we can add 
a node giving the probability that a precedes b, P( a < b ). 

The time net is used for answering queries about the 
probabilities of facts and events, as well as compound 
and relational queries like the above. When a time net 
is created, only the marginal distributions of root nodes 
are known, perhaps along with some evidence about the 
value of some other random variables. Distributions for 
all other nodes must be computed on the basis of the 
known marginal distributions, evidence, and conditional 
distributions. Computing the distributions in a time net 
can be performed by a number of standard methods of 
evaluating Bayesian networks [Pearl, 1988]. Goo uses an 
approximation algorithms based on sampling [Shachter 

198 



and Peot , 1989]. In such simulation algorithms, in each 
trial, the nodes in a network are visited in some order, 
and values for the random variables represented by the 
nodes are sampled from their probability distributions. 
Over repeated trials, the (weighted) averages of the sam
ples converge approximately to the true distributions. 
Goo typically discretizes each density into a vector of 
"buckets" for recording the samples. 

3 Goo 

Goo is a system for combining declarative knowledge 
about time and probability with time nets for reason
ing. In Goo, users assert knowledge in a language based 
on LL called bayesl. bayesl differs from LL chiefly by 
restricting the type of rules that can be asserted . 

The ontology of bayesl is basically the same as that of 
LL. bayesl extends LL by the addit ion of simple facts. 
A simple fact is a variable that is either true or false. 
It is normally used to record background context. For 
example, a simple fact may assert that there is a plan to 
drive to the Statue of Liberty. 

Goo combines a simple assertional database as in Pro
log with time nets for reasoning involving probabilities. 
Simple facts, user assertions , and probability rules are all 
stored in the assertional database. In the current version 
of Goo, there is one time net that is being evalu ated, up
dated, and modified at any given time. This time net 
represents the events and facts of interest. Goo incorpo
rates an inference module that determines the time net 
that is app licable at any given time. Goo is event driven 
in the sense that it does nothing without a user com
mand such as recording of information or queries (note 
that a "user" might be another program). Goo is im
plemented in CMU Common Lisp on Sun Sparcstations. 
The language bayesl is implemented directly in Lisp. 
Knowledge about time and probability is given to Goo 
as bayesl statements which are in turn just Lisp state
ments. In the following sections, we present assertions, 
queries, rules, and inference in Goo and bayesl. 

3.1 Assertions in Goo 

To assert facts and events in Goo, the record form is 
used. For example, to record that Sally left home at 
noon, we might use the form (record (o cc #©"12:00" 
(leave Sally home))).3 In general, a record ex
pression takes the form (record <assertion> ) where 
<assertion> is a ground sentence of the following type: 

• ( true <fact> ) : Simple <fact> is true. 

• (false <fact>): Simple <fact> is false. 

• ( occ <t> <event> ) : <event> occurs at time <t>. 
• ( extent <ti> <t2> <fact> ) : <fact> becomes 

true at <t 1 > and becomes false at <t 2> . 

3 1n bayesl, a date constant is represented with a #© "date 
string" expression such as #©"noon" or #© "2: 34pm". A time 
constant is represented with a#! "time string" expression 
such as # ! "0 : 05" and # ! "3: 00" , meaning, respectively, 5 
minutes and 3 hours. 

199 

In Goo, knowledge about how events affect other events 
or facts is represented by conditional probability rules. 
record is also used to record such rules. (record 
(pdf <event> <antecs> <fun> )) asserts that the con
ditional density of <event> given <antecs> is given by 
the function <fun>. <antecs> is a list of facts and events 
that <event> is directly dependent on. If <antecs> 
is empty, then <fun> is the prior density of <event>. 
<antecs> are the antecedents of the rule, and <event> 
is the consequent of the rule. A Goo rule may contain 
variables, which start with the letter ? . Variables in 
rules are assumed to be universally quantified. 

In Goo, each event probability density function is rep
resented with a Lisp function. Goo uses sampling for 
assessment. Therefore, it is convenient to let each Lisp 
function sample from the density that it represents, 
based on the sample values of the random variables ( typ
ically other events) that the event depends on, if any. 
For example, to represent the fact that arriving in T imes 
Square usually occurs about half an hour after leaving 
home, we might use the following rule (Rule (1) in the 
ensuing text): 

(pdf ( arrive TimesSquare) 
(( leave home) (drive home TimesSquare)) 
( lambda () 

(norm ( + (date (leave home )) #! "0 :30" ) 
#!"0:15"))) 

where norm is assumed to be a function that samples 
from a normal density, in this case with mean at 30 min
utes after t~e time of leaving home and a variance of 
15 minutes. T he bayesl (date <event>) construct is 
translated at run-time into an expression that returns 
the current sample or evidence date of the event named 
<event> . 

Each time norm is called in the function above, it 
returns a sample value for the arrival time at Times 
Square. A sample might be "11:45 a.m .". Over repeated 
calls, norm returns different samples with different fre
quencies depending on the mean and the variance. In the 
above example, assuming that the time of leaving home 
is 11 a.m ., the samples for t he time of arrival at Times 
Square would be concentrated around 11 :30 a.m. ( the 
mean) and approximate a normal density. 

The lambda body for a density can contain any Lisp 
form. Goo implements a fami ly of common densities and 
other functions useful in such forms [Kanazawa, 1992]. 
More examples of pdf forms are given in a later section. 

Goo does not currently allow the specification of the 
distribution of a fact. It assumes that the probabili ty 
density function of a fact can be recovered from the 
probability density functions of its enabling and clip
ping events. This is not a severe restriction; given the 
distribution of a fact, it is relatively simple to recover 
the densities of its enabling and clipping events . 

3.2 Queries in Goo 

A query in Goo takes one of two forms . The first, used 
for simple facts, looks like (true? <fact> ) and re
turns whether or not simple fact <fact> is true . The 
second, used for probabi lity est imates, looks like (P 



I 

<wff>) and returns the probability of a ground sentence 
<wff>. For example, (P (occ #(!)"noon" #©"1prn" (beg 
traffic-jam)))) is a query for the probabi lity that the 
traffic jam begins between noon and 1 o 'clock. 4 Goo ap
pears to be the first system for probabilistic temporal 
reasoning that features a rich class of queries including 
logical and temporal relations. 

The basic wffs in probability queries are the following: 

• (occ <t1> <t2> <event>): <event> occurs be
tween <t1> and <t2>. 

• ( occ <t> <event>): <event> occurs at time <t>. 5 

• (holds <t1> <t2> <fact>): <fact> holds true 
throughout the interval from <t1> to <t2> . 

• (holds <t> <fact>): <fact> holds true at time 
<t>. 

In addition, we may recursively form compound queries 
involving the logical connectives and, or, and not, as 
well as temporal relations: 

• (<point-rel> <date1> <date2>): <point-rel> 
is a point temporal relation in{<,<=,>,>=,=,/=}, 
the last of which is the inequality relation . <date1> 
and <date2> are either constants or expressions of 
form (date <event >). T hus we can compare two 
events with each other, or the time of one event in 
relation to a fixed point in time. 

3.3 Rules in Goo 

In Goo, knowledge about how facts and events affect 
other facts and events are represented by pdf rules (e .g., 
rule ( 1) on page 3.1). Goo applies rules to : 

• Determine the probability function of a newly added 
node. 

• Determine if any other nodes should be added when 
adding a node. 

• Determine if the probability fun ction of any existing 
nodes need to be upd ated to refl ect the changes in 
the model. 

T he conditions under which the rule app lies are given 
by its antecedents . The action that the rule specifies is 
either to add its consequent as a node (and arcs from the 
nodes for the antecedents to the consequent node), or if 
the node already exists, to assign the node its density 
fun ction . 

A rule is pot entially applicable whenever all of the an
tecedents of the rule are present in the database. We only 
perform the action specified in a potentially applicable 
rule when the rule has not yet been app lied, and there 
is no other rule t hat applies better in the situ at ion . In a 
given situation, any number of rules may app ly. Two po
tentially app licable rules whose consequents are the same 
and whose antecedents have a non-null intersection are 
said to compete . 

4 It is also possible to direc tly read or plot the densities 
associated with time net nodes. 

5 The probability of an event at a point is always 0. Goo 
returns the event density over a small f interval corresponding 
to the discretization granularity in sampling computations. 

As an example, suppose that A and B are in the 
database. The two rules (pdf C (A) <fn1>) and (pdf 
C (A B) <fn2>) compete. Both rules specify t hat a 
node named C is to be added, but which probability den
sity function is to be selected?6 

In general, the second rule corresponds to the exis
tence of more conditioning information and is to be pre
ferred. In Goo, the rule that applies in such situations 
is the rule with the maximal antecedent set with respect 
to set inclusion . Goo currently requires that there be a 
total order with respect to antecedent set inclusion over 
each set of competing rules. This is because there is no 
general way to "complete" an ambiguous set of rules . 

In [Kanazawa, 1992), we present a polynomial-time al
gorithm for rule applicat ion in Goo . The algorithm is a 
forward chaining aigorithm that is recursively invoked 
whenever a previously unrecorded fact or event is as
serted . The a lgorithm provably terminates for rule sets 
which are ground and acyclical. Rule set cyclicity is 
defined by regarding each rule as a hyperedge from its 
antecedents to its consequent. If there is a cycle in the 
hypergraph consisting of all the rules in a set, then the 
rule set is cyclic . With a ground rule set, acyclicity is a 
sufficient condition to avoid creating cycles in time nets. 
It is not a necessary condition; one reason is that a rule 
set may contain redundant information . It appears to 
be non-trivial to unfold such spurious cycles from a rule 
set. 

Goo a llows cycl ical rule sets if the rules are univer
sally quantified ( the rules have variables in them). Such 
rule sets are not necessarily problematic, especially when 
there are asymm etric dependencies in the rule set that 
effectively render the rule set acyclic [Geiger and Heck
erman, 1991; Fung and Shachter, 1990] . Unfortunately, 
Goo's rule application algorithm is not guaranteed to ter
minate for such rule sets. Currently, the burden is on 
the bayesl programmer to handle potential circularities 
correctly. An important future research topic for Goo 
concerns such circul ariti es in rule sets, for both ground 
and nonground cases. 

3.4 Answering Queries in Goo 

To answer queries of the form (t r ue? <fact>), Goo 
simply looks through its assertion database. To answer 
a probability query, Goo may need to assess probabilities 
by evaluating its current time net, possibly after first 
augmenting it with additional nodes. If the model has 
not changed since it was last evalua ted, then Goo will 
not perform inference to answer a query. 

Once the current time net has been evaluated, it is 
trivial to answer basic queries about a fact or event rel
ative to a time point or interval. For a time point, Goo 
simply looks up the appropriate estimate from the den
sity for the node representing the fact or event. For a 
t ime interval, Goo integrates the same density over the 
interval. Because Goo discretizes densities, its answer for 
a time point is really the probability for the "bucket" 
containing the point. For the same reason, integrating 

6 Assuming that the probability density functions are dif
ferent - if they are the same, then C doesn't depend on B. 

200 



Figure 2: The portion of a time net for a compound 
query. 

over an interval is a simple summation over the buckets 
contained in the interval. 

A query may also involve the derivation of relations 
from known entities. For instance, a query may ask 
"What is the probability that flight1437 will arrive be
fore flight989?". We may know the densities for each 
separate flight, but not explicitly their relation. To com
pute it, Goo performs backward chaining to extend the 
model first. 

The rules that Goo uses for this backward chaining 
are similar to pd:f rules . They take the form (answer 
<query> <antecs> <fun>) where <query> corresponds 
to a relational query, <antecs> is the set of antecedents 
to the rule, and <fun> is the density of the consequent 
relation. For example, this rule applies in conjunctive 
quenes: 

(answer (and ?wff1 ?wff2) 
(?wff1 ?wff2) 
(lambda () 

(indicator (and ?wf:f1 ?wff2)))) 

This states that to answer a (probability) query that 
is the conjunction of two wffs, the function given as a 
lambda expression can be used given the nodes for the 
wffs . indicator implements the indicator function I: it 
returns 1 if its argument is non-nil, and O otherwise. 

If nodes corresponding to the antecedents do not exist, 
then Goo will recursively apply the backward chaining 
algorithm to try to add them to the current time net. 
For instance, consider the query "how likely is it that 
Tom will be home during the entire time that Sally is 
home?": 

(P (and(<= (date (beg (home sally))) 
(date (beg (home tom)))) 

(<= (date (end (home tom))) 
(date (end (home sally)))))) 

Goo will apply the rule for and, and then try to find 
nodes corresponding to each of the conjuncts. If it fails 
to find such nodes, then it will try to add them recur
sively by backward chaining. Goo has backward chaining 
rules for all of the basic logical and relational constructs 
allowed in queries such as<=. So provided that the facts 
(home tom) and (home sally) have been asserted in 
the database, Goo will eventually construct a node to 
answer the query (Figure 2) . 

Arrival at Times Square 

(pdf (arrive times-square) 
((leave home) (drive home times-square)) 
(lambda () 

, , ' 

(norm(+ (date (leave home)) #!"1:00") 
#!"0:30"))) 

Leaving depends on the traffic jam 

(pd:f (leave times-sq) 
((arrive times-sq) 

(beg traffic-jam) 
(end traffic-jam)) 

(lambda () 
(if (or(< (date (arrive times-square)) 

(date (beg traffic-jam))) 
(> (date (arrive times- square)) 

(date (end traffic- jam)))) 
(norm(+ (date (arrive times-square)) 

#!"0:15") 
#!"0:05") 

(norm(+ (date (arrive times - square)) 
#!"0:30") 

#!"0:15")))) 

Being in Times Square 

(pdf (beg (loc times - square)) 
((arrive times-square)) 
(lambda () 

(date (arrive times-square)))) 

(pdf (end (loc times-square)) 
((beg (loc times-square)) (leave times-square)) 
(lambda () 

(if (< (date (leave times-square)) 
(date (beg (loc times-square)))) 

(error "Left Times Square before arrival!") 
(date (leave times-square))))) 

Figure 3: Goo code for the Times Square example. 

4 An Example 

Let us now examine an example of the use of Goo for dy
namic reasoning about time and probability. This is the 
example of driving through Times Square on our way to 
the Statue of Liberty. Again, our interest is in predict
ing what time we are likely to arrive in Times Square, 
whether or not the traffic jam has already begun, and in 
predicting our eventual time of arrival at the Statue of 
Liberty. 

Figure 3 shows the part of the bayesl causal theory 
used for reasoning about when we are likely to arrive 
in Times Square and how long we are likely to be there 
once we arrive. The first rule gives time of arrival at 
Times Square as a normal density with mean at an hour 
after time of departure from home and a variance of 30 
minutes. The time of leaving Times Square depends on 

201 



• 1 

Figure 4: The time net after record ing departure time. 

whether or not the traffic jam is going on at the time of 
arrival. Two normal densities with different means and 
variances are given for the two cases. Note that this is an 
approxhr1ation, in that the rule only depends on whether 
or not the traffic jam was going on time of arrival at 
Times Square: even if the Traffic Jam begins one second 
after arrival, this rule gives time of departure from Times 
Square as if there is no traffic jam. A different model 
might give it in terms of a proportional hazard model 
[Cox, 1972). The last two rules relate the dates of the 
enabling and clipping events of being in Times Square, 
with the arrival event for the former, and the leaving 
event for the latter. These are given deterministically 
with no uncertainty (e.g., the date of beginning to be in 
Times Square is exactly the same as the date of arriving 
in Times Square). 

For the entire planning problem, there would also be 
similar rules for reasoning about arrival at the Statue of 
Liberty, and various other rules and assertions. Given 
such a bayesl causal theory, Goo constructs the appro
priate model automatically on the basis of asserted facts 
and events and queries. 

To initiate inference in Goo, a user makes assertions. 7 

For example, we inform Goo of our plan to drive to 
Times Square by asserting a simple fact : (record ( true 
(drive home times-square))). Next, we record the 
time at which we are planning to leave home: (record 
(occ #©"11am" (leave home))). Goo first checks to 
see if an assertion concerning the (leave home) event 
!s alr~ady in the database. If no such assertion exists ( as 
111 this case), then Goo adds a node to the current time 
net representing the event. In addition, it begins forward 
chaining to determine what other facts or events need to 
be. added as a consequence. As it happens, Goo adds 
quite a few events and facts (Figure 4). Note that at 
this point, we have not asserted any information about 
the traffic jam. 

Goo never evaluates its time net unless requested by 
a user, either explicitly with the (compute) form or 
implicitly by a probability query. In add ition to ans~er
in.g queries, Go.o can display a density or distribution by 
wmdow graphics, or by dumping a plot files in popular 
formats. Here we request Goo to plot the likely time of 
arrival at Times Square to a file: 8 (display #{ (arrive 
times-square)} : output : gnu plot). This is an im-

7This is an excerpt from an actual Goo session that is 
recorded in fuller detail in [Kanazawa, 1992]. 

8 The bayesl #{ <wff>} construct is shorthand for the node 
representing <wff>. 

0.2, .----.--~-~-=··:.;.":..:.'"0

::....':::'";.:: .. ::....-•:::•":;:"'.::·
1
~-----

o.u 

,., 

. ...... . . - .. . . 
-· A. •.l:':-"'.'":"'~IILi:::-:-::'-::"'~---------....1 

9. 00 10. 00 ll, 00 12.00 l. 00 2:00 3: oo t:00 S:00 5:00 7:00 

Figure 5: The plot for time of arrival. 

Figure 6: The time net after recording traffic jam. 

plicit query for a probability value, and therefore, Goo 
first evaluates the time net, and then dumps a plot file 
(Figure 5). 

Let us now assert information about the traffic 
jam: (record (pdf (beg traffic-jam) () (lambda 
(norm #©"12:30" #!"0:45")))) . This results in nodes 
being added about the traffic jam (Figure 6). In ad
di.tion, the con? itional density for the time of leaving 
T imes Square 1s replaced by a new function that de
pends on the traffic jam. To estimate the start time of 
the traffic jam, Goo knows that it needs to recompute 
the probabilities in the time net. If we request its den
sity, Goo goes ahead and makes the inferences. Figure 7 
shows the plot of this density. 

One of our main interests 1s the probability of 
ending up in a traffic jam if we drive through 

U""f U1(tlc- ) a.) 

., .... 

./.'-'.,.._ 
.~··" ., .... ,. 

: ... 1:-:.-,,~ ... ~. -:',.'::,.,,-,,,.,,::-.. ..,.,...,, .. ~ ....... - ....... - ....... -.-, .. -,, .... -Jl,00 

Figure 7: The density of the beginning of traffic jam. 

202 



Times Square: (P ( < (date (arrive times-square)) 
(date (beg traffic- jam)))). Becausethisisan event 
relational query, and it has not been asked before, Goo 
must create a node representing the relational query. Af
ter creating the node, Goo would evaluate the time net 
again to estimate the probability of the query (which it 
estimates as 0.69). 9 

What if we now ask for the probability that we arrive 
in Times Square before noon? This time, we can esti
mate the probability directly from the density for the 
arrival event as outlined in Section 3.4. All we need is to 
integrate the density through noon. Goo will not create 
a node for this query, and will return an estimate right 
away (in this case, 0.523). 

This concludes a brief example of how to program Goo , 
and how it operates in response to user assertions and 
quen es. 

5 Related Work 

McDermott considered the issues behind a system for 
mana&ing knowledge about time in [McDermott, 1982] . 
Dean lDean, 1985] developed those ideas in his TMM 
(Time Map Manager). The T MM was a database for 
knowledge about time, facts, and events . Its representa
tion of time was discrete, and it did not address issues 
of uncertainty direct ly. 

The author earlier implemented a PTDB called ODDS 
[Dean and Kanazawa, 1989]. ODDS was one of the first AI 
systems for probabilistic temporal reasoning, along with 
efforts by Cooper and colleagues [ Cooper et al. , 1988] 
and Hanks [Hanks, 1990]. ODDS was similar to Goo but 
considerably less sophisticated in its language and model 
of uncertainty. 

LL combines elem ents of the logics of time by Shoham 
[Shoham, 1988] with elements of the logics of probabil
ity by Bacchus [Bacchus, 1988) and Halpern [Halpern, 
1989]. As noted, the resu lting logic is simil ar to work by 
Haddawy [Haddawy, 1991]. Martin and Allen have pro
posed a framework for reasoning about time and statis
tics [Martin and Allen, 1991]. The time net is an exten
sion of the network of dates of Spiegelhalter and Berzuini 
[Berzuini, to appear]. 

6 Summary 

We have presented Goo, a system for reasoni ng about 
time and prob ability in support of dynamic activity. 
Goo features a fl exible and semanti cally well-founded 
language for expressing knowledge about facts, events, 
and their probability. The same language is a lso used 
for expressing a rich cl ass of queries. Goo offers a sim
ple and expressive framework for supporting reasoning 
about time and probability in a practical manner. 

9 Goo has an option whereby it can estimate this probabil
ity without re-evaluating th e tim e net. T his option can be 
expensive because it involves keeping around samples gener
ated during evaluation. Therefore, it is us ually not enabled . 

Goo has other capabilities omitted from this paper. 
First of all , Goo implements a simple capability for per
forming hypothetical reasoning. Users are able to pos
tulate facts or events and their times in order to de
termine their effects . Goo implements this by allow
ing creation of copies of the da tabase. In addition to 
the point temporal relations mentioned in this paper, 
Goo implements all of the interval temporal relations de
fined by Allen [Allen, 1983]. Finally, Goo can be used 
to generate discrete time nets, Bayesian networks that 
model discrete Markov processes and semi-Markov pro
cesses [Howard, 1969; Kanazawa, 1992; Dean et al., 1992; 
Provan and Clarke, 1993; Nicholson, 1992]. 

Goo has two major restrictions. First of all , the only 
type of update a llowed in Goo is to assert new facts 
and events, and to enter a known value for a previously 
uncertain random variable. Goo currently does not al
low retraction of previously asserted facts and events .10 

This hampers its ability to support a more sophisticated 
scheme for hypothetical inference. 

A more fundamental limitation of Goo is the inabil
ity to translate arbitrary LL theories into time nets. It 
was necessary to ensure that propositional theories are 
acyclic to ensure termination of the model construction 
algorithm. Although Goo allows the specification of less 
restricted theories , it does not guarantee that models will 
be acyclic or tha t the model construction algorithm will 
terminate. Theories for Goo need to be built with a firm 
understanding of the implementation rather than being 
truly general purpose. The gap between the expressive
ness of the logic and time nets is a ripe area for future 
research. 

Of other restrictions, the single time net assumption 
is either very simple or very difficult to solve. It can be 
very difficult if different time nets can provide different 
estimates for the same quantity. Complete subsumption 
over competing rules is restrictive but well motivated. It 
can be relaxed by considering prototypical interactions 
between events such as a temporal analogue of the noisy
or [Pear l, 1988]. 

Acknowledgements 

Most of this work was performed at Brown University 
and supported in part by a National Science Foundation 
Presidential Young Investigator Award IRI-8957601, by 
the Air Force and the Advanced Research Projects 
Agency of the Department of Defense under Contract 
No. F30602-91-C-0041, and by the National Science 
Foundation in conjunction with the Advanced Research 
Projects Agency of the Department of Defense under 
Contract No. IRI-8905436. The author is currently sup
ported by the State of Cali fornia, PATH MOU-130. 

References 

10 It is possible to hypothesize different values for existing 
facts and events . 

203 



1 

[Allen, 1983] James Allen. 
about temporal intervals. 
ACM, 26:832- 843, 1983. 

Maintaining knowledge 
Communications of the 

[Bacchus, 1988] Fahiem Bacchus. Representating and 
Reasoning with Probabilistic J( now/edge. PhD thesis, 
University of Alberta, 1988. Also issued as Waterloo 
University Technical Report CS-88-31. 

[Berzuini, to appear] Carlo Berzuini. A probabilistic 
framework for temporal reasoning. Artificial Int elli
gence, to appear. 

[Breese, 1987] John S. Breese. Knowledge represen-
tation and inference in intelligent decision systems. 
Technical Report 2, Rockwell International Science 
Center, 1987. 

[Charniak, 1991] Eugene Charniak. Bayesian networks 
without tears. AI Magazine, 12(4):50-63, 1991. 

[Cooper et al., 1988] Gregory F. 
Cooper, Eric J. Horvitz, and David E. Heckerman. A 
method for temporal probabi listic reasoning. Memo 
KSL-88-30, Knowledge Systems Laboratory, Stanford 
University, 1988 . 

[Cox, 1972] D. R. Cox. Regression models and life ta
bles (with discussion). Journal of the Royal Statistica l 
Society Series B, 34:187- 220, 1972. 

[Dean and Kanazawa, 1989] Thomas Dean and Keiji 
Kanazawa. Persistence and probabilistic project ion. 
IEEE Transactions on Systems, Man and Cybernet
ics, 19(3):574- 585, May/June 1989. 

[Dean et al., 1992] Thomas Dean, Jak Kirman, and 
Keiji Kanazawa. Continuous-time stochastic processes 
for applications in planning and control. In Proceed
ings of the First International Conference on AI Plan
ning Systems, 1992. 

[Dean, 1985] Thomas Dean. Temporal imagery: An ap
proach to reasoning about time for planning and prob
lem solving. Technical Report 433, Yale University 
Department of Computer Science, 1985 . 

[Fung and Shachter, 1990] Robert M. Fung and Ross D. 
Shachter. Contingent influence diagrams. Submitted 
for publication, 1990. 

[Geiger and Heckerman, 1991] Dan Geiger and David 
Heckerman. Advances in probabilistic reasoning. In 
Proceedings of the Seventh Conference on Uncertainty 
in Artificial Intelligence, pages 118-126, Anaheim, 
California, 1991. 

[Goldman, 1990] Robert Goldman. A Probabilistic Ap
proach to Language Understanding. PhD thesis, De
partment of Computer Science, Brown University, 
1990. Available as Technical Report CS-TR-90-34. 

[Haddawy, 1991] Peter Haddawy. Representing Plans 
Under Uncertainty: A Logic of Time, Chance, and 
Action. PhD thesis, Department of Computer Science, 
Un iversity of Illinois Urbana-Champaign, 1991. 

[Halpern, 1989] Joseph Y. Halpern. An analysis of first
order logics of probability. In Proceedings of the 

Eleventh International Joint Conference on A rtifi
cial Int elligence, pages 1375- 1381, Detroit, Michigan, 
1989 . IJCAI. 

[Hanks, 1990] Steven John Hanks. Projecting Plans for 
Uncertain Worlds. PhD thesis, Yale University De
partment of Computer Science, January 1990. 

[Howard, 1969] Ron A. Howard. Dynamic Probabilistic 
Systems, volume I: Markov Models. Wiley, New York, 
1969. 

[Kanazawa, 1991] Keiji Kanazawa. A logic and time nets 
for probabilistic inference. In Proceedings of the Ninth 
National Conference on Artificial Intelligence, Ana
heim, California, 1991. AAAI. 

[Kanazawa, 1992] Keiji Kanazawa. Reasoning about 
Time and Probability. PhD thesis, Department of 
Computer Science, Brown University, Providence, 
Rhode Island, 1992. 

[Martin and Allen, 1991] Nathaniel Martin and James 
Allen. A language for planning with statistics. In Pro
ceedings of the Seventh Conference on Uncertainty in 
Artificial Intelligence, pages 220-227, Anaheim, Cali
fornia, 1991. 

[McCarthy and Hayes, 1969] John McCarthy 
and Patrick J. Hayes. Some philosophical problems 
from the standpoint of artificial intelligence . Machine 
Intelligence, 4, 1969. 

[McDermott, 1982] Drew V. McDermott. A temporal 
logic for reasoning about processes and plans. Cogni
tive Science, 6:101- 155, 1982. 

[Nicholson, 1992] Ann E. Nicholson. Monitoring Dis
crete Environments using Dynamic Belief Networks. 
PhD thesis, Department of Engineering Sciences, Ox
ford University, 1992. 

[Pearl, 1988] Judea Pearl. Probabilistic Reasoning in 
Intelligent Systems: Net works of Plausible Inference. 
Morgan Kaufmann, Los Altos, 1988 . 

[Provan and Clarke, 1993] Greogory M.A. Provan and 
John R. Clarke. Dynamic network construction and 
updating techniques for the diagnosis of acute abdom
inal pain. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 15, 1993. 

[Shachter and Peot, 1989] 
Ross D. Shachter and Mark A. Peot. Evidential rea
soning using likelihood weighting. Technical report, 
Artificial Intelligence, Engineering-Economic Systems 
Department, Stanford University, 1989. 

[Shoham, 1988] Yoav Shoham. Reasoning About 
Change: Time and Causation from the Standpoint of 
Artificial Intelligence. MIT Press, Cambridge, Mas
sachusetts , 1988. 

[Wellman, 1990] Michael P. Wellman. Formulation of 
Tradeoffs in Planning Under Uncertainty. Pitman, 
London, 1990. 

204 



The specification and implementation of a first order logic for 
uncertain temporal domains 

Ehric Ho 
Bell-Northern Research 

P.O. Box 3511, St.at.ion C 

Ottawa., Ontario 

Canada, IO Y 4H7 

ehric@bnr.ca 

Abstract 

We formally define a first order logic that is 
suitable for representing and reasoning a.bout 
uncertain temporal domains. The logic can 
represent both interval and point based qualita
tive and quantitative information. We provide 
a syntax, semantics , a nd axiomatization for the 
logic. We then describe the constrain t logic 
programming implementation of th e log ic. The 
implementation , along with its formal spec ifica
tion, is suitable for tackling rea l world t.ernp oral 
problems. 

1 Introduction 

A popular approach in Artificial Intelligence for repre
senting and reas oning about temporal domains is to use 
a first order (temporal) logic. Ideally, the first order logic 
should be formally defined and implemented. The for
mal definition, which consists of a. syntax and semanti cs, 
removes a.II ambiguity from the stru cture and meaning of 
formulas. The implementation allows a user to so lve real 
world temporal problems a nd eva.l ua.te t.h e usef u I ness of 
the logic. 

Very few temporal logi cs in AI a.re form a ll y defined 
and implemented. Table 1 contains a list of some of the 
most influential and popular temporal logi cs. Note t.hat 
out of the six logics, only the situation calculus is for
mally defined and implemented. This logic is primarily 
suited for simple single a.gent. domains where actions oc
cur in isolation. If the user has a. complex domain whi ch 
involves interval based information and/or simultaneous 
actions, one of the other logi cs must be chosen. \,Vhen 
choosing another logic, the use r mu st. sac rifi ce either th e 
formal definition or the implement.at.ion. Vile a.re not. 
aware of a popula r logic in AI s uitable for compl ex rea l 
world domains th a t is both impl ement.eel and formally 
defined. 

In the next section, we formally defin e a. first order 
temporal logic by giving its syntax , sem a ntics, and ax
ioms . The proposed logic is based on the technique 
used in RGCH [Goodwin et al. , 1992] of defining in
terval based information in terms of what is true at. the 
point level, and using the Riema nn integral. We then de
scribe th e log ic's implementati o n in t.h e constraint. logi c 

205 

Andre Trudel 
Judt ey School of Compute r Sc ience 

Acad ia. Unive rsit.y 

\,Volfville, NowL Sco t.ia 

Ca.na.da., BOP lXO 

t.ruclel @AcacliaU.ca 

programming language C LP(JR) [Heintze et al. , 199 2] . 
One feature of the implementation is the a bility to spec
ify temporal uncertainty with probabilities. The imple
mentation, which is available from the authors, can be 
thought of as a temporal expert system shell that is 
ready to be used with real world problems . 

2 Proposed logic 

There a.re four typ es o f temp oral inform a tio n that need 
to be represent.eel: po in t and in terva l based qu a li La
t.ive a.nd qua.nt.it.at.ive informati on. A11 exa mple of point. 
based qu a. lit.at.iw inform a l.i o n is : 

John is working at time t 1 . (1) 

An examp le of point. based quant.it.at.ive informa tion is: 

John is walking at. a. speed of 5 km/hr a.t. 

time t 1 . (2) 
An example of interval based qualita. t.ive i11form a.Li on is: 

.John is not working from tim e t 1 to l 2 . (3) 

An exam pie of int.erval based q ua.11 t.i La.ti Vt' i nform a. t.i on 
JS: 

.J ohn is walking a t a speed of :3 km / hr from 

time 1.1 to 12. (4) 

Both qualitative and qu a ntitative temporal inform a
tion are represented by real valued fun ctions of several 
variab les. The quantitative exampl es (2) and (4) a.re 
written as : 

velocity(t 1 , john) = 5, and 

velocily(t 1 , t2 , john) = :3. (5) 

A 0-1 valued fun cti on is used t.o represe nt. qu a.Jit.a.t.i ve 
inform a tio n. Zero a 11d 011 e represent. fa ls ity and truth 
res pec tively. Exampl es (I) a.11d (:3) a rc ' wri tten as: 

wo1·1.:(/. 1 , j ohn) = 1. and 

work(t 1 , t2 , )ohn) = 0. (G) 

Formu la. (fi) is equival ent. to : 

VT. t1 < T < t 2-> work(T, j ohn) = 0 (7) 

(i. e ., John is not working at ea.ch point in the open in
terval). Similarly for formula. (5). 

The uniform represent. at.i o n of qua.lit. a.t ive a nd qu a nti 
ta tive inform a ti on as rea l va lu ed fun cti ons simplifies t he 



.1 
• I 

. ' 
I 

I Logic II Implem entation Syntax a nd semanti cs I 
Situation calculus [McCarthy, 1985, Kowalski, 1979J Yes Yes 
Allen [Allen, 1984J Yes No 
McDermott [McDermott, 1982J ? No 
Shoham [Shoham, 1987J No Yes 
Kowalski and Sergot [Kowalski and Sergot, 1986J Yes No 
BTK [Bacchus et al., 1989J No Yes 

T able 1: Comparison of popular logi cs in AI 

implem entation . Externally, the user makes a clear dis
tinction between the two types of information. However , 
both types of information are represented with identical 
functions internally. 

We use the approach from [Goodwin et al., 1992] 
where real va lued functions can be integrated. When 
integrating a 0-1 valued qualitative function, the dura
tion of truth is obtained. Th e result of integrating a 
real valued quantitative fun ction depends on the fun c
tion being integrated. For example, t.he integ ral of a 
velocity function is the total displ acement: 

displacement(t 1 , t 2 , john) = ; ·
1

.;,e locdy(t , john)dt. 
t, 

The syntax, sem antics and ax ioms for the proposed 
logic are presented below . 

2.1 Syntax 

G iven a set of non-temporal fun ction sy mbols FN, non
temporal constant symbols CN , non-temporal variable 
symbols VN, temporal fun ction sy mbols Fr, temporal 
constant symbols Cr , and temp oral va riable sy mbols Vr 
(where t E Vr ), temporal terms (Tr) are defin ed as : 

• Cr, Vr <;:; Tr 

• If g E Fr is an n-ary (n 2: 1) temporal fun ct ion 
symbol, s 1, ... , Sn E Tr, then g( s 1, ... , Sn) E Tr . 

T he temporal terms Tr give time a special status in the 
logic. Non-temporal terms (TN) are defin ed as: 

• CN , VN <;:; TN , 

• If f E FN is an n -ary ( n 2: 1) non-temporal fun ction 
symbol , P1,P2 E Tr , Pl S ])2, and 1·1, ... ,1·,, _ 1 E 
TN, then f(P1 , JJ2, r1 , . . , r,, _~ ). f(P1 , r1 , .. . ,1·,, _ 1) , 
and J,P 2 f(t , 1·1, .. . , 1·,, _i)dl E TN. T he first. ar-p , . 
gument. to a non-temp ora l fun cti o n is temp oral, 
the second argu ment. is tempora l fo r interval based 
information and non-temp oral fo r point. based in
formation, and the rem aining argum ents are non
temporal. 

• Ifr1,r2 E TrUTN, then (r1+r2) , (1·1- r 2) , (r1 x r 2) E 
TN. 

Well-formed formu las (wffs) a re defin ed as: 

• If 1r1, 1r2 E TN U Tr, then 1r1 < 1r2, 1r1 S 1r2, 1r1 > 
1r2, 1r1 2: 1r2, and 1r1 = 1r2 a re wffs . 

• If ¢ 1, ¢2 a re wffs, and z E Vy U Viv t.h en [ ¢ 1 /\ ¢2], 
[¢ 1 V ¢2], [¢ 1 _. ¢l2] , [¢;1 - ¢;:J . [, ¢;i], [V.::. ¢> t] , 
and [3z . ¢ i] are wffs. 

206 

When there is no ambiguity, parentheses and square 
brackets are som etimes omitted . 

Our proposed logic is based on another first. o rder tem
poral logic ca.!! ed P..,GCH [Goochvin et al., 1992]. A.s in 
RGCH, we have real valued fun ct ions that are integ ra.ted 
t.o produce interval based information. One m aj or dif
ference with RGCH , is our di stin ction between temporal 
a nd non-temporal terms . This dis tin ct ion, which does 
not exist. in RGCH, a ll ows th e use r to customi ze the 
t.empora l terms whi ch are used for representing t ime. 
ln RGC I-1 , th e use r is for ced to use t he real numb ers . 
Anot.h er difference wit h RGCH, a re interval based real 
valu ed fun cti ons (e.g ., fo rmulas (5) a nd (f3)) On ly point 
based fun ction s are a ll owed in RG C H. 

2.2 Semantics 

T he sem antic dom ain or ontology is JR. A n interpret.a
t.ion for the proposed log ic is a tup le 1 = ( M C, SF , MF ) 
wh ere: 

• MC:Cru CN>--- lR.. 

• SF is a set. of piece wise continuo us fun ctions. Each 
element. of SF is a fun ct io n fr om IR." t.o JR. for some 
n. 

• MF: Fr u F'N t--i- SF. 

A variab le ass ignm ent is a fun ct ion \/ A Vr U VN ~ 
JR. The fun ction TA assigns an elem ent of JR to each 
temporal or non-ternp ora.l term as fo ll ows: 

• If x E Cr U CN then TA (.'!: ) = J\4C( .'I: ) 

• If ;1: E Vr U VN then TA(;c) = VA(;r). 

• If !J E Fr is a n n-ary (n > 1) tempo
ral fun ct ion symbo l, a nd s 1 , ... , s,, E Ty, t hen 
TA (g(s 1, ... , s11))= MF(q)(TA (s1 ), ... , TA (s,,)). 

• ]ff E FN is a n 11 -ary (n 2: I) non-temporal function 
sy mbol , Pi , /J'.! E Tr , JJ1 S ])'.! , a nd r1 , ... , 1'n - I E 
TN , t.h en: 

TA(f(p1 , P2 , r1 , .. . ,1·,, -2)) = MF(f)(TA(p1). 
TA(p2 ), TA(r1 ) , ... , T A (1·,, -2 )) , 

TA(f(p1,r1, ... ,r,,_ 1)) = MF(f)(TA(Jh) , 
TA(ri) , ... , TA (1·,, _ i)) , 

, J,1'2 fr A( po I 
7 A(,,, f(t , r1 , .... 1·,, _i)dt) = TA!p,J 

M F (f)( t, T A(r1 ) , .. . , T A(r,, _ 1 ))cit .. 

Note t.hat th e above definit. e integ ral is a lways de
fin ed because th e int.eg rand is a piece wise continu
o us functi on. 

• If1·1 , 1·~ ETTUTN , th en: 



TA((r1 + 1·2)) = T A(i'i) + TA(1·2), 
TA((r1 - r2)) = TA(i'i) - TA(1·2), 
T A((r1 x r 2) ) = T A(ri) x T A(r2) 

The interpretation I = ( MC, SF, MF ) and variab le 
assignment VA satisfy a formu la <p (written FI <p (VA]) 
under the following conditions: 

• FI ?rj < 1r2 (VA] iff TA(1r1) < TA(1r'.!), 

• FI ?r1 :'S 1r2 [VA] iff TA(1rI) ~ TA(1r'.!) , 

• FI ?r1 > 1r2 [VA] iff TA(1r 1) > TA(1r'.!), 

• FI 1r1 2': 1r2 (VA] iff TA(1r1) 2': TA(1r'.!)• 

• FI ?rj = 1r2 [VA] iff TA(1r1) = TA(1r2). 

• FI (<p1 /\ <p2)[VA] iff FI cp i[VA] and FI <p2 [VA]. 

• FI (<p1 V <p2 J[VA) iff FI ip i[VA] or FI <p2 [VA]. 

• FI [<p1 -> <p2 J[VA] iff FI [·'Pl V <p2 J[VA] . 

• FI [<p 1 - <p2 J[VA) iff FI [<p 1 -> <p2 ][VA] and FI 
[<p2--+ <p1][VA]. 

• FI (,cp](VA] iff ~I cp [VA]. 

• FI [Vz . <p][VA] iff FI <p [VA '] for a. II VA' t ha t ag ree 
with VA everyw here except. possib ly on :: . 

• FI [:lz . cpl[VA] iff FI <p [VA '] for som e VA' t hat 
agrees with VA every where except. possibly on z. 

2.3 Axioms 

Besides the standard integral axioms for polynomials, we 
have an axiom for converting between in terval and point 
based informat ion: 

[ Predicate(Tirnebegin, Time en d , A rgumenl s ) 

= Real\/ alued F unct.ion ] ? 

[ VT. Tirn. et,egin < T < Timf:rnd -

P1·edicate (T, Argwnenfs) = 
RealV a. luedFunction ]. (8) 

This axiom is used to convert formu la. (6 ) into form ul a 
(7) . 

Note that in axiom (8) , Rea. IV a. luedFu n ction cannot 
contain any temporal term s. For example, t he axiom is 
not app licable to displa.ceme nt(T 1 , T2, john) = T 2 - T 1 . 

T his formu la has no point based eq uiva lent. 

3 Implementation 

Our proposed log ic is impl emen t.eel in t.h e cons traint. 
logic programming la ng uage CLP (JR) [Hein tze et. al. , 
1992]. Figure 1 g ives a n overvi ew of th e implemented 
system which consists of a temporal fo rm a t. sp ecifi cat ion 
component (Time Fi le) a nd th ree typ ical expert sys tem 
shell components: a knowledge base , an inference eng ine , 
and a user interface. 

Recall that in t he syntax (sect ion 2. 1), t emporal t erms 
a re not explicitly sp ecified . The onus is on the user to 
supply temporal constants, variabl es, a nd fun ct ions that 
a.re appropriate for t he pa.rt. ic. u la r problem domain . T he 
code for the temporal rep resent.at. io n a nd its opera.tors is 
stored in the "T ime F il e" . 

T he kn ow ledge base co nt.a. in s pro blen1 do m ain dep en
dent facts and ru les that. a.re st.o rPd in fil es , which a. re 
loaded during use r cons ult.at. io n. 

207 

The inference eng in e is t he work horse of the system 
a nd is divided into three modu les: the interpreter, t he 
analyser , and t he est im ato r . T he interpreter retri eves 
pertinent point a nd in terva l informat io n from th e knowl
edge base . Us ing t.h<~ ret. ri ev,~d info rm at io n and ax ion1 s 
(e.g., axiom (8)) , t he a na lyser at.tempts to der ive re
q uired conclus ions . The es t.irn at.o r , a n optional feat ure , 
t. ri es t.o comput.e miss in g po in t in fo rm at io n. The fi 11 ,d 
res ult prod uced by t he infe rence eng ine is passed to t he 
user int.e rface. 

T he user int.e rfac.e is responsible fo r formatt ing, vali 
dating and packaging the inpu t. a nd output . 

T he system a lso optionall y suppor ts un certainty wit h 
probabili t ies . 

An overvi ew of the imp lemented system is given in 
the remainder of t he pa.per. See [Ho, 1994] for a detai led 
description . A sample sess ion wit h t he implem entat ion 
is g iven in t.h e Appe ndi x. 

4 Temporal format specification 

Th e user mu st. sp eci ry a t.ern po ra l represent.at.ion In 
t. he t inw fi le. A sampl e t.i rne f-il e, whi ch is included 
with t he irn p lem ent.a.tion, co nta ins a specificat ion for a 
t emporal representat ion called JVIDHM. lVIDHl'vI uses a 
Mont.h :Da.y@Hom :Minut.e format.. For example, 3:00am 
on June 10 is wr itte n as 6:10@3 :0 , and 2:30pm on Jul y 
8 is written as 7:8@14 :30 . Intervals a.re written as pairs 
of points . A ll po ints a.re ass um ed to be in the same 
calend a r year (no t. a leap yea r) . In pract ice , th e finite 
num ber of time points is no t. a lin1it. a. t.io n s ince t.here a.re 
ove r 500 , 000 po int. co ns t. a. nt.s. 

lt is possibl e t.o re prese 11t. repea t.e el t.ime poin ts. Fo r 
examp le , X :[ (QI Y: 2 mea ns t. he S<' co nd minute of every 
hour o r t.h e fir s t. d ay o r every 111 ont.h a nd X@3:Y mea ns 
eve ry minut.e oft.h e th ird hour of every cl ay. 

4.1 Syntax of MDHM 

Given a set of temporal constants CT where CT E 
{0 , ... ,59 } , a. set of t emp oral fun ct ions FT= {: ,@} , 
disjoint sets of t emporal var iab le symbol VM onth, \!nay, 
Vif ou,·, \!Min11t e, \/LHS. \/Rf-I S, and Viv , tempora l terms 
TT a.re defin ed as fo llows: 

• Month E \/Mo1111,m· { I ..... 12} . 

• Day E \!oayoi·{ l , ... , :3 1} , 

• I-l o ur E \//-1 0 ,,,.0·1·{0 .... . 2:q . 
• Min11 t.e E \/Minu1.e 01·{0 ... . . 5\-J}. 

• LT-JS E Vu1s or l'vlonth:Oay. 

• RI-IS E Vn Hs or Ho ur :M in ut.e, 

• Vw, LHS@RHS <;;: T7, 
T he l'vfonth:Da.y pair must be a vali d combination . For 
example, 2 :30 is invalid bee.a.us<~ Febru a ry 30 is no t. a. 
vali d date . 

4.2 Operators for MDHM 

Sys t.em defin ed operato rs , s uch as < and ::=; . can only 
be used t.o com pa.re rea l nu m he rs. Bi na ry opera.tors a.re 
int ro du ced fo r co mpa.ri ng te n1po ra l t. e rm s : >@, >=@, 
<(f.!! . <=(QI and = (9! . T he co mpa ri son o r temporal terms 



Knowledge Ba.se Time File 

t t 
Inference 
Engine Interpreter 

Analyser Estimator 

t 
User Int.e rfa.ce 

Figure l: Imple ment.a t.i o n Overvi ew 

usually results in a system of constraints. For example, 
the solution to the inequality: 

IS: 

?_ X @l2:0 >@ Y @Z. 

X = Y, Z = HH:MM, I-IH < 12: o r 
X = M:Dl , Y = IVI:D2, Z = 1-11-I:MM, D2 < D I : 
or 
X = Ml:Dl , Y = M2D2, Z = Hll MM . M2 < 
Ml. 

5 Knowledge base 

The syntax used in the know ledge base differs from 
the syntax given in section 2. 1 for the proposed logic. 
Informa tion is stored in the know ledge base with t he 
kb prefixed predi cates: kb_point/4 , kb_interval/5 a nd 
kb_integral/5. Since we make no distin ct. ion be t.ween 
qualitative a nd qua.nt.it.ative informat.io n , o nl y t.wo predi 
cat es, kb_point/4 a nd kb_inte rva l/5 , a.re needed t. o re pre
sent point and in te rva l based inforrnat.io n. ;\ t.hird pred 
icat e, kb_integral/5, is used fo r re prese11t.ing integ ral s . 

To represent a wff fro m the proposed log ic in the 
knowl edge base, we ex tra.ct t he temporal arg uments. For 
example , velocity(t 1 , john) = 5 km/hi· is represent.eel by 
the following fact in the kn owledge base : 

kb_point(t1, velocity(john) , 5). 

Note t h at inequalities, such as velocity(t 1 , john) > 0, 
cannot be s tored in the know ledge base. 

The reason for cha ng ing the syntax in the knowl edge 
base is to simplify the imple m e nt.at io n . The kb pred
icat es a llow us t.o write generi c co de for point., int.e r
val , a nd integral inform a l.i o n . Fo r <~xample. t.lie cod <:' for 

208 

kb_point/4 works for any poss ible point based in forma
tion that. can appear as its second argument. In additi on , 
the kb predi cates a llow the implem ent.at.i on t.o easil y dis
ting ui sh bet.ween point. and int.erva.l information . 

To deal wit.h un certainty, we use proba.b ilit.ies. T he 
la.st argument. o f ea.ch re la ti o n in t.h e kn ow ledge base is 
o pti o nal a.nd is used to s t.ore a prob a bility value . If t. he 
arg um e nt. is o mit.t.ed , a pro bab ility o f o ne is ass umed. 

In t.h e remaind e r o ft.hi s sec t.i o n. we di scuss t. he re la
t.i o 11 s used fo r representing po int., i11t.e rva l, a nd in t eg ral 
i 11 format.ion. 

5.1 Point information 

Qualitative and quantitat ive point. based in fo rm at ion is 
represent.eel with t.h e kb _point./4 predi cat e . To s pec ify 
that. Fae/ has a \/ alv e a t. Time wit.Ii Probabil-il.y , we 
write 

/.;/; _7Join /.( T-imr , Fad, Va lue , P,·obab-ility) 

wh ere Time is a ti111 e po int. . Fact is th e sy mbo lic re p
rcsent.a.1.io 11 o f' t.lw info r111 a t.io 11 . \.'a lu ! is a real numbe r 
o r a po ly no rnial , a nd P'l'obabi l-ity (o pt.io n a. l a rg um ent.) is 
a real 11u111be r whi ch re fl ec ts t. l1 e probability o f th e fact. 
Fo r exarnp le, 

kb_point( 12::31@12:00, wo1·k(john) , #trne, 0.7) 

expresses the fa.ct. that there is a. 70 percent ch a.nee of 
J o hn working on New Yea.r 's Eve a.t noon. #tru e a nd 
#false a re const.a nt.s whi ch a re d e nn ed a.s one a.nd ie ro 
respective ly. 

The proba.l.1i li t.y (t.h e 4th arg um e nt.) in t he kb_po in t/4 
precli cat.e may be 0 111it.t.cd. For exarnp le, Lhe foll owing 
re prese nt.s t.lw fo rmul a p /\ q - r wit ho ut re ly in g o n 
prob ab i Ii t. ics: 



kb_point(T, 1·, Z ) :- kb_point(T, p, Z ), 
kb_point(T, q, Z ). 

Probabilities at a point are related by the fo llowing ax-
10m: 

kb_point(T, F, #true , P) ~ 

kb_point(T, F, #false, 1 - P). (9) 

The implementa tion m akes a di st in ction between ex
plicit and derived inform a tion in the knowledge base . 
Derived point based inform a tion is specified with t he 
poinLva lue/4 predicate . For example , cons id er th e case 
where q -+ pat time 1:1 @5 :0 a nd q is tru e over th e in 
terval ( 1: l @l:O, 1: 1@10:0): 

kb_point(l:1 @5: 0,p, Z ) :- kb_point(l:1 @5:0, q, Z ), 
kb_interval(l:1 @1:0 , 1:1@10:0, q, #trne ). 

T he query kb_point(l:1 @5:0, p , #frt1 e) fail s because the 
knowledge base does not contain a fa.ct that exp li citly 
specifies that q is true at time 1:1@5: 0. If instead we 
write : 

kb_point(l:1 @5 :0 , p, Z ) :
poinLvalue(l:1 @5: 0 , q, Z ) , 

kb_interval(l:1 @1:0 , l:1 @10:0 , q, #true ), 

we can prove kb_point(l:1@5:0 , p , #true ). T he s ub
goal poinLvalue( l:1 @5:0, q, #tru e ) s ucceeds beca use we 
derive it from the inte rval inform a ti on stored in th e 
kb_interva l relation . Simil a rly , the re a.re intervaLva lue/5 
and integra.Lvalue/5 predi cates for derived in te rval a nd 
integral informat ion respec tively. 

5.2 Inte rval information 

Qualitative and quantitative interval based inform a ti on 
is captured with the kb_interva.l/ 5 predi cate . T he gen
eral format of kb_interva.1/ 5 is : 

kb_int e1·val( Timeb egin, T iml'end, Fa.ct, 
Valu e , Probability). 

where Tinieb egin is th e beg innin g t.irn e o f th e interval, 
Tirneend is t he ending time of t.h e interval , Fa ct is t.he 
symbolic representatio n of t he in fo rm at ion , V ed u c is a 
rea l number or a poly nom ia l fun ction , a nd Probability 
(option al argument) is a real number which refl ects the 
probabili ty of the fa.ct. Over the open in terval from 
Tirneb egin to Tirneen d, the value of Fact is Va ltt.e with 
Probability at ea.ch point. For example, ass ume John 
works from nine to five everyday and at ea.ch point in 
t ime b etween nine and five there is a 75% probability 
that he is actually working: 

kb_.int erval( X@~):0, ,\" (~ J 7: U. wor-1,:(j ohn) , 
#true, 0.75). 

Interva ls a.re open at bot h end s. Va lu es a l. encl po in ts 
a re specified with kb _po int. /'1. T hi s a ll ows us to sp ec ify 
facts that a re true onl y at. one oft.h e end po ints. Con
sider t he above examp le, J ohn starts work a t. nine in 
the m orning and leaves at 5:00pm (he does no t work at 
5:00pm): 

kb_point( X @9:0 , w ork(john) , #true ), 
kb _interval( X @9:0 , X@ l7 :0 , work(john) , #true ). 
kb_point(X@l 7:0, work:(john) , # fal se ). 

209 

T he foll owing exampl e s t. at.es t. ha t. r is true when p 1s 
followed by q and they overl ap: 

p(A , B) & q(C , D) - r(A , D) 
when A < C' < B < D. 

Assum e the probability of r equals th e p rn ba bility of q. 
In our im plem ented system , we have : 

Not.e 

k:b _int e1·val( A , D , r , #tru e, Pq) :

·i.nk rva. l_ valu e( A, B , p , #true , Pp), 

int ervoLvalv.e (C', D, q , #lnu: , Pq), 

i\ <@ C, C < 19) B , B < IQ.} D. 

that. in t.er-
vaLva.lue/5 is used ins tead o f kb_int.erval/5 srn ce p or 
q may be comput.ecl fr om other in fo rm at ion . 

From ax iom s (8 ) and (9) , the fo llowing axiom is de
ri vecl: 

kb_int e1·val( T 1 , T2, F , #true, P) <==> 

kb_int e1·val(T 1 , T2, F, #fa lse, 1 - P). (10) 

5.3 Integral information 

It is possible t.o int.egra.te qu a li tat ive a nd quantita tive 
po int. based inform a ti o n . Fo r examp le . .J ohn walks 5 km 
to work ea.ch 111 orning bet. ween 8: 00am a nd f):OOarn 1s 
exp ressed as : 

/.;b _i.nt er1ra l( s 1n18:0 , x (n)9:0. ue/oci.ty(john) , 5). 

T he ge neral fo r111a.l. fo r th e predi ca.t.e is : 

kb _int er1ra/(T1 , T2 , P, Z, P) 

which ho lds if J;:, F(t)dt = Z, with probability P (op

tion a l) . 
Subint.erva.ls must. som etim es be cons idered when com

puting a n integral. For exa.111pl e . ass um e J ohn walks at. a 
speed of five a nd three km /hr fro m 8 :00 to 8 :30 an d 8:30 
to 9:00 respec tively. ln o rde r t.o co mpute his to t. a. I d is
pl acement., t.wo kb _int.e rva.1/5 fa.ct.s a. re used . The pro ba
bility fo r th e integ ral is defin ed as t he weighted average 
of the P 's o f a ll s u hi n te rva. l va.l ues used in computing th e 
in teg ra l. 

6 Inference engme 

The inference eng in e is m a.de up of t hree co111pon ents : 
a.n in terprete r , a n analyse r and a n est im a to r. Th e in ter
preter in te racts with t he know ledge base. T he a na lyser 
deals with t he co nvers io n bet.ween po int., interva l, a nd 
integ ral informat.ion. ln compl e t.e kn owledge is ha nd led 
by t he es t. i m a t.o r. 

'v\lh en a qu ery is rec:e ivc·)d , t.h e interpre t.e r accesses (.he 
kn owlcd g<:' base a nd ret 11rns pe rt.in e11t in format ion to the 
a na lyse r and es tirn a. t.0 1· . T he int.e rpre t.e r ens ures th at. re
t.11rnecl i11fo r111 a. t.i o n is with in t he tim e in terval o f in ter
es t. whi ch is se t. by t.h e use r . T he i11 t.e rpreter a lso en
s ures th a t. a ll temp ora l terrn s passed to t he es timator 
a re bound. T he es ti 111 a. to r o nl y deals with compl etely 
specifi ed t.irne poi nts. Ano t.her tas k of the interpre t.e r is 
to compute t he probab ili ty fo r rul es when required. 

T he a nal yse r deals with the tr a nsfo rm a tion between 
po int , interval and int.egra.l in formati on. Po int. info rm a
t.io n may he con1pu t.ed fr o m int.c rva. l in fo rm a tion . ln t.e
g ra l in fo rrn at. io n m a.y lw co111p11t.ed from o ne o r morP 



I 

J 

:J 

I 

pieces of subinterval information. T he analyser a lso 
computes probabilities for the transformed information. 
When point information is derived from interva l informa
tion, it takes the probability of the corresponding inter
val informa tion . When integrating an interval , the prob
ability is defined as the weighted average of the proba
bilities of a ll the subintervals. 

As its nam e implies , the estimator estimates unknown 
point information. Expon ential decay fun ctions are used 
to approximate probabiliti es (a s imil ar approach is used 
in [Eberbach and Trudel, 1992]). With quantitat ive in 
formation, linear interpolation is used to estimate a point 
value . For qualitative information, the estim ated point 
value is based on the com puted probabilities. User de
fined approximation fun ctions can b e associated wi t.h 
temporal information . See [Ho, 1994] for a detail ed de
scription of the estimator. \h,'e conclude with a qu ali
tative example . John works between 9:00am and noon , 
and h as lunch between 12:30 a nd 1:30pm: 

k b_int erval(X@9:0, X@l2: 0, work(john), 
#trv e, 1) , 

kb_int erval( X@ l 2:30 , ,\@ 13::30, w ork:(john) , 
#false , 1). 

T he truth value of woi·k(john) is unknown between 
noon and 12:30 . F igure 2 shows the es t.im at.ecl values 
of work(john) over this interva l. T he probabilities a re 
computed to be near 1 over the interval (1 2: 00 , 12: 09) , 
and near O over the interval (12:29 , 12:30). We estimate 
work(john) to be true and false over these intervals re
spectively. Between 12:09 and 12:29 , the probabilities 
are estimated to be near 0. 5 a nd we m a ke no predi ction 
about the truth valu e of w ork(john). T he coefficient. of 
the decay fun ction is determin ed by th e length of th e 
interval used in computing the es timated value ( t here is 
a three hour and one hour duratio n bet.ween 9:00- 12: 00 
and 12:30-13 :00 respectively ). He nce, the cl uration of th e 
two intervals estimated a bove are differe nt. . 

7 User interface 

T he command line user interface su pports a predicate, 
called ui , which t akes a variable numb er of a rguments. It. 
validates input arguments and formats output data. All 
user interface routines are invoked fr om this ui predi cate. 
T he first argument of the predi cate is a se lector whi ch 
describes the routine to be call ed. T he fo llowing exampl e 
specifies the time range that is of in teres t: 

?- ui( change_tim e_ i·a nge , G:6@0: 0, G:7@23 :59). 

Any informat ion t hat lies outside of the a bove time range 
will not be reported to t he user . T he fo ll owing example 
queries the point information of any fa.ct. in the kn ow l
edge base within the time boundary: 

?- ui(poinLvalu e, Tim e, Fa ct, \lalue,Probability). 

When specifying temporal in fo rm at ion , the first argu
ment to ui makes th e qualitat ive or quall titat.ive dist in c
tion. For examp le, qua li tat ive i11fo rnrnl. io 11 is entered as: 

?- ui(poinUrnth, X @9: 15, work(john). # fru e). 

Q uantitat ive informati on is ent.e red as : 

?_ ui(poinLvalue, X@8:45, veloci/.y(john) , 3). 

210 

8 Directions for future work 

T he following is a lis t of improvem ents to the implem en
tation t hat we a re contemplat ing: 

• Re-implement t he log ic in a constrain t log ic p ro
gramming language other than CLP (JR.) t hat sup
ports graphi cal use r inter faces. Ins tead of th e cur
rent comma nd line interface, a ll fun cti ons wou ld be 
entered and di spl ayed us ing grap hs. Diffe rent. co l
ors could be used fo r po int, inte rva l, integral, and 
es timated values . 

• As in a typical expert system, the implementation 
should prompt the user for missin g information . 

• Units of m easurem ent should be added to the sys
tem (e.g., miles and kilometres ) . 

• Using our implem entat ion , constru ct a t emporal ex
pert system t.o solve a compl ex real worl d pro ble lll. 

• Ea.ch consult a tion is ind ependen t . Rout ines sho uld 
be provided t.o save t he t' tiv iro n ment of a sess io n , 
whi ch in cludes t.he use r s t.irn e of inte res t a nd t.he 
ce rta inty thres ho ld. 

• C urre nt ly, t he system s1 1p po rt.s in tegrat io n ove r 
truth. It sho uld be an option fo r a user to in teg ra te 
over t.rue o r fa lse. 

9 Conclusion 

\"f\'e proposed a firs t ord er log ic fo r temp oral dom ain s. 
T he logic is formall y spec ifi ed via a sy 11t. a.x, sem a nti cs, 
a nd ax ioma tiza tion. Po int. a nd int.e rva l based qu a li ta
tive and qu a nt.itat. ive info rm a l.i o n a re uni form ly dealt. 
with in t he log ic . Also, Ull ce rt. a inty ca n be represented 
with probab ilities . T he log ic is impl em ented usin g a con
s traint. log ic programming la ng uage. T he implem enta
tion, a long with its fo rm a l specifi cat ion , is sui tab le fo r 
t ackling real world t emporal prob lem s . 

Acknowledgements 

Research of the first a uth o r is s uppo rt.eel by a n Acadi a 
Uni versity Gradu ate Fell ows hi p. Research of t he second 
author is s up ported by Natural Scie ll ccs a nd E 11 g in ec ri11 g 
Research Coun cil o f Canada g ra nt. OGP0046773. \,Ve 
wo uld like t.o t.ha nk Scott. Good win a nd E r ic Ne ufe ld fo r 
he lpfu l co mm ents o n t.he pap e r . 

A Example 

V\/e present. a. 11 example, its represe ntation in t he pro
posed logic, its kn owledge base fil e, a nd a. sample sess io n 
with th e implem ent.at. ion. T he exampl e deals wit h J ohn 
who works in a n o ffi ce from nin e to five everyday in 
cluding Saturd ay a nd S und ay. He takes an hour lun ch 
break from 12:30 t.o 13:30. Hi s unknow n if Jo hn wo rks 
between [2: 00 am! l 2::l0 . 1;;very 111 o rning, he wa lks t.o 
work at a ve loc ity of fiw.' a lld three kil omet res pe r hour 
from e ig ht. t.o eig ht. thirty a nd eight. thirt.y t.o nin e re
s pectively. It. takes hirn a n ho 11r to walk to wo rk. T he 
exampl e is re present.eel in t.h e log ic as fo ll ows: 



work(john) 

#true 

#false 

9:00 12:00 12:09 13::30 
time 

Figure 2: A plot. of work(j ohn) against tim e 

work( X@0:00, john ) = #false. 
work( X@0:00, X@9:00, john ) = #false. 
work( X@9:00, john ) = #true. 
work( X@9:00, X@l2 :00 , john ) = #trne. 
work( X@l2:00, john ) = #t.rn e. 
work( X@l2:30, X@l3:30, john ) = #false. 
work( X@l3:30, john ) = #true 
work( X@l3:30, X@l7:00, john ) = #tru e. 
work( X@l7:00, john) = #false. 
work( X@l 7:00 , X@2:3:5!), john ) = #false. 
work( X@23:59, john ) = #false. 
VT. work( T, john ) ~ in _o ffi ce( T, john ). 
velocity( 8:00, 8:30, john ) = 5. 
velocity( 8:30, 9:00, john ) = 3. 
\:IX, Y. displacement( X , Y , john ) = 

J}: velocity(t , john) cit . 

Note that probabi lities are omitted. Also note that it 
is unknown if John is working between 12:00 and 12::30. 
See figure 3 for a plot of the work fun ction. T he code in 
the knowledge base for th e exampl e is: 

kb_point( X@9:0 , work(.io hn ), #tr1w ). 
kb_interval( X@9:0, X@12:U , work(j o li11) , #t.ru e ). 
kb_point( X @l 2:0 , work(.i o lrn ), #t. r11< ' ). 
kb_interval( X@ l 2:30 ,X@l '.J::30,wo rk(.i ohn ),#f'alse ). 
kb_point( X@l3:30, work(j ohn) , #true). 
kb_interval(X@l3:30,X@l7:0 , work(j ohn) ,#t. ru e). 
kb_point( X@l 7:0, work(john) , #false ). 
kb_interval(X@l 7:0,Y@9 :0,work(john) ,#false) :-

time_next_day( X, Y ). 
kb_point( X, in _offi ce(j ohn) , A, P ) :

point._ value( X, work (job n) ,A , P). 
kb_interva l( X, Y , in _o ffi ce(john) , A , P ) :-

int.ervaLva l 11 e( X ,Y, work(jo l111 ),A ,P ). 
kb_interval( X@S :O , X{i18:3U. vt: loc it.y (.i o li11) , 5 ). 
kb_int.erval( X((\18:30 , X(fi' 9:0. v<' locit.y(.io li11) , :l ). 
kb_interval( X, Y, displa<·c111 c111.(j o li11) , D, P) :-

int.egraLval 11 c( X , Y, V<~ lori t.y(j ohn) , D, P) . 

T he following is an anuot.at.<~d (li1ws ii< 'gi 1111i11 g wit. Ii a. 
"%" ) session with th e impl e rn ent.a.t. io11: 

2 ?_ ui( loacl_new , joh n ). 

211 

% load a knowledg e base file 
Time Lower Bound = 1 1 ,g_, 0 : 0 
Tim e Upper Bound = l : 4 @ 23 : 59 
Probability Threshold = 0.5 
The Point. Estimator is ON 
The kn ow ledge base has th e fo ll owing li st. of 
Truth fun ct.io11s: -

work(j ohn) 
i11(.i o l111 , oflice) 

and I.li e fo ll owing li st. o f' fl ea l Val11 ed fun ct.i ons: 
vP lor it.y( jolin) 
d ispla<·en 1e11t.(.i oh 11) 

** Yes 

3 ?_ ui( intervaUruth , l:l 1Q1!):15 , l:1 @11:0, 
work(john) , Z ). 
% query if john is worbng betwee11 
% th e tim e int erval 
Z = t.ru e 

4 'I _ 11i( i11t.ervaLva l1w . I : 1,c\1t::O, I :1<919 :U , 
cli sp la.ce111e11t.(john ), '/, ). 
% q11. ny l/11 dis71/a N·mr11./ of joh11 between 
% !h r lin1C 111/ r rual 
% ii is co 111p11.l cd by 111/ eqrnlin,11 /h t ve locity of john 
Z = 2£10 

5 ?_ 11i( turn _est.irnat.or , off). 
% disable estim a lo, . 
** Yes 

(j ?_ ui( poinU.rut.h , I :1@12:2, work(j ohn) , Z ). 
% lrnl/1 1:a/ur is unkno1u11 al this 71 oinl 
** No 

'i 'I_ 11i(t.11rn _es ti111at.or . 0 11 ), 11i(poi11Lt.rut.h, 
l:l i(1, J2 :2, work(j olrn) , Z. P). 
% <"1111b/(' cs tw,a/ 01·, and qu ery point based 
% q11.alila.l1.ve information 
Esti111 at. in g point. in fo rrn a t.ion ... 
Z = true 
P = 0.79 5956 



·j 

work(j ohn ) 

#true 

#false 

10 12 14 16 18 24 

ti me 

Figu re 3: A plot of work(j ohn ) against time 

8 ?- ui( change_prob _threshold, 0.9 ), 
ui( poinUru t. h , l: 1@12:2, work( john) , Z, P ). 
% change the proba bility thresh. old 
% to a high. er vaht e 
% and query the sam e point infonnat.ion agarn 
Estimating poin t info rmat ion .. . 
** No 

9 ?- ui ( integra.Uru th , 1 :2@8:0 , l :2@10:0 , 
work(j ohn) , Z, P ). 
% how long does .John work betwee n the int erva. l '.2 
Z = 0 : 0 @ 1 : 0 
p = 1 

References 

[Allen , 1984) .J. F. Allen . Towards a general t heory of 
action and t ime. Artificia l !nt elligrn.ce, 23 ( 2 ): 123- 154, 
1984. 

[Bacchus et al., 1989) f. Bacc hus , J. T c>1wnherg , and 
.J. A. Koorn en. A non-reifi ed tempora l logic. In F1.rst 
In ternational Conf erence on Principles of Ji'nowlcdg e 
Representation an d Reasoning, pages 2-- 10, Toronto, 
Canada, May 1989 . 

[Eberbach and T rudel, 1992) Eugene Eberbach 
and Andre Trudel. Representing spati a l and temporal 
uncertainty. In the Int ernational Co11f crence on 111.for
mation Processing and Ma.nag em e11 t of Uncertainty i11 
Know ledg e- Based Systems, pages !l29- 5:32 , Mallorca , 
Spain , July 1992. 

[Goodwin et al. , 1992] Sco tt. D. (;oodwin , l~ri c Neufe ld , 
and Andre Trudel. Tern pora l reaso n i 11 g w i t.h rea l 
valued fun ct ions. In Proceedings of th e !2nd Pa cific 
Rim Int ernalional Co11.fercnu 011 A rlificial Jnt clli
gence, Seou l, Korea, Sept.ember 1992 . 

[Hein tze et al. , 1992) Nevin C: . Heint.ze, ,Joxan .Ja. ffar , 
Spiro Michaylov, Peter J. St uckey. a nd Ro la nd 1-1. C. 
Yap. T he CLP(R) Programmer's Ma. n'/1. a. l, 1992. 

21 2 

[Ho , 1994) Ehri c IC H. Ho. T he spec ifi cat ion a nd im ple
menta tion of a. fi rst o rd er loge fo r u ncert.ai n t.em pora I 
doma ins . Mas t.er 's t.hes is, ,\ cadi a U11 iv<~rsity, 199,1. 

[K owalski and Sergo t., 1986) R A. J(owalski and ]VI. Ser
got.. ;\ logic- based ca lculus of event.s . N ew Genern.tio11 
C:01 11puli11g , 4:67--95 , 1986 . 

[Kowalski, 1979) ll. A. h owa.lski . Logic f or Pro blem 
So lving. Elsevier North ll o ll and. New York, 1979 . 

[McCart. hy, l985) .J . l\tlcC:ar l. hy. P roga rns wit h common 
sense . In JL J . Brachm a n a nd H . .J. Levesqu e, ed
itors , Readings in K nowledge Representation , pages 
299- 307 , Los Altos, USA , l985 . Morgan Kaufm ann . 

[lVlcDerrnot.t , 1982) D. V. Mc Derrnot.t . A tern poral logic 
fo r reaso nin g aho1Jt. pro cesses a nd pl a ns. Cog11 iliuc 
Scien ce , 6:101 - 155 , 1982. 

[S hoham, 1987) Y. Shoha1r1 . Tem pora l logics in Al: S<~
ma.nLical and ontological rn nsiderat.ions. A rlifi cial hi 
tclliqen ce , :33 :89-- 104. I D87. 



Circumscription in a Paraconsistent Logic 

Zuoquan Lin* 
Computer Science Department 

Shantou University 
Shantou 515063, China 

zqlin%stumis@hkuc nt. hku. hk 

Abstract 

In this paper we describe paraconsistent cir
cumscription by the application of circumscrip
tion in a paraconsistent logic. It turns out 
that paraconsistent circumscription can be well 
characterized by the minimal semantics which 
is nonmonotonic and paraconsistent. It brings 
us advantages in two respects: it makes that 
nonmonotonic logic would be nontrivial when 
there was a contradiction, and that paraconsis
tent logic would be equivalent to classical logic 
when there was not effect of a contradiction. 

Keywords. paraconsistent logic, nonmono
tonic logic, circumscription, minimal models 

1 Introduction 

A theory is nonmonotonic if it might not entail A from 
an enlarging set of premises S' while A was entailed 
by S which is contained in S'. Nonmonotonic logics 
are those theories which are nonmonotonic. Reasoning 
with incomplete knowledge is nonmonotonic as well be 
motivated in recent Artificial Intelligence (AI) literature 
[ Ginsberg 1987]. A theory is inconsistent if it contains 
both A and -,A for some proposition A. A theory is triv
ial if it contains every proposition. Paraconsistent logics 
are those theories in which an inconsistent theory can 
be nontrivial. Reasoning with inconsistent knowledge is 
paraconsistent as early motivated in philosophy litera
ture [Priest et al., 1989]. 

In the presence of incompleteness, the reasoner usually 
makes some assumptions which may be restracted when 
facing with new knowledge. The key idea of nonmono
tonic reasoning is that it transforms partial knowledge 
into more complete one. The state of relatively complete 
knowledge is arrived on by the mechanism of managing 
the consistency of knowledge by ruling out a contradic
tion. In the other words, nonmonotonic reasoning can 
be viewed as a kind of handling inconsistency. In the 

*The author is supported in part by Natural Science Foun
dation (NSF number 69375011 ), in part by National Hi-Tech 
R&D '863' Project under contract 863306513A and in part 
by Key Project of Fundamental Research Climbing Program 
of China. 

presence of inconsistency, the reasoner usually localizes 
the effect of a contradiction and destroies troublesome 
problem of triviality. The key idea of paraconsistent rea
soning is that it takes some state of affairs of consistent 
knowledge under inconsistent one. The state of affairs 
of knowledge constrains the effect of no controlling con
tradictions in order to maintain relative consistency of 
knowledge. In the other words, paraconsistent reasoning 
can be viewed as a kind of handling incompleteness. 

Although they share some common feature of deal
ing with contradictions, both logics differ in a significant 
sense. From the viewpoint of contradiction, the former 
dynamically maintains the consistency of knowledge by 
ruling out a contradiction when facing with new knowl
edge, while the later statically tolerates contradictions 
when facing with inconsistent knowledge . Genenally 
speaking, nonmonotonic logic is not paraconsistent since 
everything would follow from a single contradiction, and 
paraconsistent logic is not nonmonotonic since adding 
new knowledge might not invalidate the previous con
clusions. 

As best known, classical logics are not adequate for 
formalizing commonsense reasoning because they are 
consistent, trivial and monotonic. In human common
sense reasoning, the complete and consistent knowledge 
is usually expected but not attained. The knowledge
based systems would be apparent intelligent only if they 
had capacity of reasoning with commonsense knowledge. 
It is well recognized that commonsense reasoning with 
incomplete and inconsistent knowledge is nonmonotonic 
and paraconsistent [Lin 1992b]. There is increasing inter
est in search for the formalisms of reasoning in the pres
ence of incompleteness and inconsistency. As argued in 
[Lin 1992b], sometimes nonmonotonic logic needs para
consistency, and paraconsistent logic needs nonmono
tonicity. Nonmonotonic and paraconsistent logic is more 
general basis for formalizing commonsense reasoning. In
terestingly, it is possible and useful to combine with both 
logics in the same logical framework. 

The logic of paradox LP was proposed by Priest f 1979], 
which is one of well-known paraconsistent logics Priest 
et al., 1989]. As a paraconsistent logic, LP can localize 
contradictions and obtain nontriviality. It has, however, 
one important drawback: some inferences that are clas
sical valid are not valid in LP so that it would be too 
weak to permit any interesting conclusion. In [Priest, 

213 



I 

·j 
I 

1989], the logic of minimal paradox LPm provided as a 
nonmonotonic extension of LP can overcome the draw
back. Therefore, nonmonotonicity can yield a solution 
to the weakness of paraconsistent logic. 

LPm is nonmonotonic in a sense that the inconsistency 
is minimal. However, it is not well suitable for dealing 
with reasoning with incomplete knowledge in the sense of 
the motivation of nonmonotonic formalism. In fact, LP m 

extended LP based on the idea of circumscription. Cir
cumscripton CIRC was proposed by McCarthy [1980], 
which is well-known one of major nonmonotonic logics 
[Ginsberg 1987]. CIRC is a nonmonotonic extention of 
classical logic based on minimal models. As a nonmono
tonic logic, CI RC can transform incomplete knowledge 
into more complete one. It has, however, one basic objec
tion: the nonmonotonic theory v:ould be collapsed into 
triviality if the theory contained a single contradiction. 
As pointed out in [Hanks and McDermott, 1987], non
monotonic logic in general and circumscription in special 
lead paradoxical problems. This is because conflicting 
or contradictory conslusions are split into different mod
els. It is not guarantee that circumscription has unique 
model property. If nonmonotonic logic is not trivial then 
the problems of nonmonotonic paradox would not be 
arised. Therefore, paraconsistency can yield a solution 
to the problem of nonmonotonic logic. 

In this paper we would like to revise LPm by the ap
plication of circumscription in LP, the logic of circum
scriptive paradox LPc , or so-called paraconsistent cir
cumscrtption, will be truly nonmonotonic and paracon
sistent. It truns out that paraconsistent circumscription 
can be well characterized by minimal semantics. Sim
ply speaking, the logic LPc will have the nice properties 
of LPm and have the ability of circumscription for non
monotonic reasoning. It brings us advantages in two re
spects: it makes that nonmonotonic logic would be non
trivial when there was a contradiction, and that paracon
sistent logic would be equivalent to classical logic when 
there was not effect of a contradiction. 

The remainder of this paper is organized as follows. 
In Section 2, we define the minimal semantics of cir
cumscription from the viewpoint of minimal entailment. 
In Sections 3 and 4, we review the semantics of logics 
of paradox LP and LPm and point out some problems, 
respectively. In Section 5, we provide paraconsistent cir
cumscription LPc as a paraconsistent version of circum
scription. Finally, we discuss some related works in the 
concluding section. 

2 Minimal Entailment 

Throughout this paper, we suppose L as a propositional 
language, and the (well-formed) formulas are defined as 
usual. An evaluation v assigns to each atomic proposi
tion p in L one of the two values: 0 (false) or 1 (true). 
In the rest of the paper, we say that an evaluation is 
a model of a proposition ( a set of propositions) if the 
proposition ( every member of the set) is true under the 
evaluation. Let S be a set of formulas and A a formula. 
In classical logic, A is a semantic consequence of S, writ
ten as S F A, defined as: A is true in all models of S. 
The minimal entialment will be determined by restrict-

214 

ing entailment to the subclass of minimal models with 
respect to a partial order (preferential relation) -< over 
evaluations.1 

Definition 1 Let v, v' be two evaluations. We say that 
v' is smaller than v, written as v' -< v, iff for every 
atomic proposition p, 

1. if v'(p) = 1 then v(p) = 1, and 

£. there is an atomic proposition q such that v(q) = 1 
but v'(q) ;;f 1. 

Definition 2 Let S be a set of formulas. An evaluation 
v is a minimal model of S, iff 

1. v is a model of S, and 

£. th.ere i.q no other model v1 of S such that v 1 --< v. 

Definition 3 Let S be a set of formulas and A a for
mula. We say that S minimally entails A, written as 
S Fm A, if A is true in all minimal models of S. 

The property of minimal entailment can be easily seen 
by the following simple example. 

Example 1. Let p and q be two different atomic propo
sitions. It can be ckecked that p V q Fm ,p V ,q, for 
under the evaluations v1 and v2 ,there are only two min
imal models of p V q such that v1 (p) = 1, v1 ( q) = 0 and 
v2(q) = 1, v2(P) = 0. 

One of the motivations behind nonmonotonic logic is 
that we should transform the incomplete knowledge into 
less incomplete one. For example, if we had an incom
plete set of propositions S = {p, r} and a query about 
q, we would answer the query ,q by S Fm ,q. This is 
so-called closed-world assumption in [Reiter, 1978] since 
we can add the negative knowledge into the incomplete 
knowledge base when the positive knowledge lacked. 

Minimal entailment is nonmonotonic because the min
imal models of an enlarging set of premises would be 
changed so that some previous conclusion could be with
drawn. In fact, the minimal entailment stems from 
the idea of circumscription. The semantic counterpart 
of circumscription is just minimal entailment based on 
a dynamic concept of minimality for a set of atomic 
propositions. 2 Semantically, circumscription is defined 
as the minimal entailment with respect to the partial 
order -<P. 

Definition 4 Let v and v' be two evaluations, v' -<r v, 
iff 

1. for every atom p E P, if v'(p) = 1 then v(p) = 1, 
and 

£. there is an atom q E P such that v(q) = 1 but 
v' ( q) 'f' 1. 

1 Refer [Shoham, 1987] and [Lin, 1991] for some intuitions 
of the preferential semantics for nonmonotonic reasoning. 

2For further explanation of the variants of circumscription 
see [Lifschitz, 1988] and [Lin, 1992a], among others. Theo
retically, We only need to consider the simplest version of 
circumscription. 



Definition 5 Let S be a formula and P a tuple of 
atomic propositions that appears in S. Circumscription 
is defined as the minimal entailment, denoted by F p, 

with respect to -<P. 

The property of circumscription can also be seen by 
the following simple example. 

Example 2. Let S be the conjunction of the following 
formulas: 

birdrw eety I\ ,abnormalrw eety -+ f lyrw eety 

birdrw eety 

penguinrweety -+ ·f lyrw eety 

Vve have 
that neither S F f lyrw eety nor S Fm f lyrw eety· If we 
set P = { abnormalrweety, penguinrw eety, birdrw eety } 
we find that S FP flYTw eety· 

Thus circumscription, as a major nonmonotonic logic, 
is indeed stronger than plain form of minimal entailment. 
There is, however, one basic objection for nonmonotonic 
logics, namely circumscription. Since circumscription is 
based on classical logic, everything should follow from 
circumscribing theory S if S contains a single contradic
tion. For instance, if we have a contradictory knowledge 
of wether the color of Tweety is yellow or not, by in
corperating yellowrw eety I\ ,yellowrweety into S, then 
we infer anything. Intuitively, we hope that this contra
dictory knowledge does not effect the conclusion of the 
ability of Tweety to fly. 

3 Logic of Paradox 

The semantics of logic of paradox LP is defined as fol
lows. An evaluation 1r assigns to each atomic proposition 
pin L one of the following three values: 0 (fal se and false 
only), 1 ( true and true only) and 01 ( both true and false) . 

Definition 6 We say that a proposition p is true under 
1r if 1r(p) = 1 or 1r(p) = 01; and p is false under 1r if 
1r (p) = 0 or 1r(p) = 01. 

Thus LP is one kind of three-valued semantics in 
which under an evaluation, some proposition may be 
both true and false. 

Definition 7 Under an evaluation, truth values can be 
extended conventionally to non-atomic propositions as 
follows: 3 

1. ,A is true ijf A is false; 
, A is false ijf A is true. 

2. AV B is true ijf either A is true or B is true; 
AV B is false ijf both A and B is false. 

S . A I\ B is true ijf both A and B are true; 
A I\ B is false ijf either A or B is false. 

3 It is easy to illustrate the truth tables of LP by the def
inition which are exactly the same as Kleene's strong three
valued logic. 

Obviously, other connectives can be easily defined as 
usual, e.g., A-+ B defined as ,AV B . 

Definition 8 Let S be a set of formulas and A a for 
mula. A is a semantic consequence of S, written as 
S F LP A, ijf A is true in all models of S, that is , 
for any evaluation 1r, if every member of S is true under 
1r, then A is also true under 1r. 

The properties of LP can be easily seen by the follow
ing simple example. 

Example 3. Let p and q be two different atomic propo
sitions. It is easy to see that p I\ ,p F LP p; but 
p I\ ,p licLP q, for under the evaluation 1r such that 
1r(p) = 01 and 1r (q) = 0, p I\ , p is true (actually it is 
both true and false) but q is not true. 

One of the motivations behind paraconsistent logic is 
that we should not allow everything to follow from a sin
gle contradiction. Thus LP get rid of the trivial problem 
of classical logic, and as a paraconsistent logic, it indeed 
in a sense localizes contradictions. It has, however, paid 
a price: if S is a classically consistent proposition and A 
follows from S in classical logic, then A may not follow 
from S in LP. VI/hat fails is the disjunctive syllogism: 
A, ,AV B / B, for taking an evaluation 1r that makes A 
both true and false and B false only. In fact, the disjunc
tive syllogism is the only classically valid inference to fail 
for LP in the sense that if this is added into LP then LP 
collapses into classical logic [Priest, 1989]. The logic of 
minimal paradox LPm, among other things, overcomes 
this drawback. 

4 Minimal Inconsistentcy 

Notice that to obtain a LP counter example to the dis
junctive syllogism we must render the situation inconsis
tent by making some formula both true and false. Thus 
it is natural to take consistency as a default assumption . 
LPm extends LP based on the intuition that normally 
contradictions are rare, and we assign a truth value that 
is both true and false (01) to a proposition only when we 
are forced to do so, that is, only when the proposition 
is a contradiction. In fact, LPm is based on the idea 
of circumscription as a kind of minimally inconsistent 
entailment . 

Definition 9 Let S be a set of formulas. A model 1r of S 
is minimally inconsistent (mi) ijf there is no other model 
1r' of S such that 1r' -<m 1r, where the partial order -< m is 
defined in the following : let 1r and 1r' be two evaluations, 
1r' -< m 1r, if for any atomic proposition p, 

1. if 1r'(p) = 01 then 1r(p) = 01, and 

2. there is an atomic proposition q such that 1r(q) = 01 
but 1r'(q) 'I= 01. 

Intuitively, 1r' -<m 1r iff 1r contains more contradictions 
than 1r' does, and the mi-models are those in which the 
contradictions would be minimal. 

Semantically, we define the entaiment of LPm , written 
as FLPm, as follows. 

215 



I 

i 

Definition 10 Let S be a set of formulas and A a for
mula, S F LPm A, iff every minimally inconsistent model 
(mi-model) of S is also a model of A. 

Similarly, the properties of LPm can be also seen by 
the following simple example. 

Example 4. Let p and q are two different atomic propo
sitions. It is no hard to see that p, ·P V q F LPm q, 
for under the evaluation 1r that makes 1r(p) = 01 would 
not be a mi:.model (actually there is unique mi:.model 
1r that makes both 1r(q) = 1 and 1r(p) = 1) ; but 
,p V q,p,p I\ ,p ~LPm q, for under the evaluation 7r 

such that 1r(p) = 01 and 1r(q) = 0, p I\ ,pis true and q 
is not true. 

LPm has some nice properties. It can gives all clas
sical consequences if the premises are consistent. This 
can be proved by noting that the mi:.models of consis
tent premises are exactly classical models, that is, there 
are no assignment 01 to any proposition of consistent 
premises. Moreover, LP m still validates the disjunctive 
syllogism even in inconsistent situation. For example, 
p, · P V q, r I\ ,r F LPm q, for the evaluation 7r that makes 
1r(p) = 1, 1r(q) = 1 and 1r(r) = 01 is the unique mi:. 
model. In the other words, LPm validates all classical 
inferences except where inconsistency would make them 
naturally doubtful anyway. As we mentioned above, the 
disjunctive syllogism is the only classically valid to fail 
for LP. Therefore LPm is equivalent to classical logic 
when there was not effect of a contradiction. 

A further fact of interest about LP m is that there is no 
more danger of collapse into triviality with F LP m than 
F LP ( as will be seen in the next section). 

LPm is nonmonotonic only since the inconsistency is 
minimal similar to the plain form of minimal entailment. 
4 Obviously, LPm is not enough to capture the reasoning 
of transforming partial knowledge into more complete 
one such as circumscription in Example 2. 

5 Paraconsistent Circumscription 

As mentioned above, we would like to consider circum
scription in the paraconsistent logic LP. We consider 
that there are several advantages to do so. Firstly, we 
define circumscription based on a paraconsistent logic so 
that circumscription should not allow everything to fol
low from a single contradiction. Secondly, we extend the 
paraconsistent logic by circumscription that should have 
the ability of circumscription to infer conclusion from 
incomplete knowledge and permit all classical inferences 
reasonably. 

The logic of circumscriptive paradox LPc will be de
fined as a paraconsistent version of circumscription. 
Technically, we only need to define the minimal seman
tics of LPc by the policy of combining the criterion of 
the minimality of extension of propositions with the min
imality of inconsistency based on LP in circumscription. 

4 Note that LPm is weaker than the plain logic of minimal 
entailment to capture nonmonotonic reasoning. 

216 

Definition 11 Let S be a set of formulas in L in which 
the tuple P of atomic propositions appears, and 1r, 1r' be 
two evaluations of LP. We define 1r' -<~ 1r, iff 

1. for every atom p E P, if 1r'(p) = 1 then 1r(p) = 1; 
if 1r'(p) = 01 then 1r(p) = 01. 

2. there is an atom p E P such that 1r(p) = 1 or 01 
but 1r'(p)-/- 1 or 01. 

A model 1r of S is said-<~ - minimal iff there is no other 
model 1r' of S such that 1r' -<~ 1r . 

The semantic entailment of paraconsistent circum
scription LPc, written as F LPc, can be easily defined 
as follows. 

Definition 12 Let S be a set of formulas and A a for
mula. S FLPc A, if! A i's t-rue in all -<t:i-min·imal 1nodels 
of S. 

We have the following simple and important fact. 

Theorem 1 Let 1r be a model of a set S of formulas . 
There is a -<~ -minimal model 1r' such that 1r' -<;,, 1r. 

Proof. Let II be the following set of models: 

II= {1ril 'Tri is a model of S, 'Tri-<~ 1r and if pis true 
in 'Tri then p occurs in S } 

Since II is finite, it has a minimal element with respect 
to -<~,. 

The property of LPc can be easily seen by the following 
simple example. 

Example 5. Let S be the conjunction of the following 
formulas: 

bird - Tweety I\ ,abnormal - Tweety--> f lyrw r. ety 

birdrweety 

yellowrw eet y I\ ,yellowrweety 

penguinrw eety --> · f lyrw eety 

and P = { abnormalrw eety, penguinrweety, birdrw,,dy }. 
We have that S FLPc f lyrw eety as expected. That 
is, the contradictory knowledge of whether the color of 
Tweety is yellow or not does not effect the conclusion of 
the ability of Tweety to fly. Notice that we do not have 
that s FLPm f lyrw eety• 

Thus the logic LPc is truly nonmonotonic and para
consistent. In fact, we can prove the following reassuring 
facts which represent the relations among LP, LPm and 
LPc. 

Theorem 2 Let S be a set of formulas, if there exists a 
-<~ -model of S, then S F LPc A is true for every A iff 
S FLP A is true for every A. That is, there is no more 
greater of collapsing into triviality with FLI'c than with 
FLP· 



Proof. It is easy to see that we only need to prove that 
a -<~-model of LPc contains all formulas iff the model 
of LP does. It is straightforward since there exists a 
--<~ -model 'll' of S which is finite, and S F LPc A is true 
for every A, it is also the LP-model of S, and S FLP A 
is true for every A. 

Theorem 3 Let S be a set of formulas which does not 
contain contradictions and A a formula, then S FLPc 

A if/ S pp A . That is, there is no more greater of 
col lapsing into monotonicity with FLPc than with pp. 

Proof. It is easy to check that for consistent S, a --<~ -
model of LPc is the same as the minimal model of cir
cumscription under taking the evaluation that no atomic 
proposition is both true and false. Thus if there exists a 
-<~-model 'll' of S which is finite, and S FLPc A , it is 
the same as the --<P -model of S, and S pp A. 

Theorem 4 Let S be a set of formulas, if there exists 
a -<;;,-model of S, then S FLPc A is true for every A if 
S FLPm A is true for every A. That is, there is no more 
greater of collapsing into triviality and monotonicity with 
F LPc than with F LPm. 

Proof. It is no hard to see that we only need to prove 
that a -<:::-model of LPc contains all formulas if the 
model of LPm does. It is straightforward since there 
exists a -<:;:-model 'll' of S which is finite, and S FLPc A 
is true for every A, it is also the LPm-model of S, and 
S FLP A is true for every A. 

Hence the logic LPm can be viewed as a special case of 
the logic LPc. The reversion of the theorem is not true 
just as the case of Example 5. As a corollary, we conclude 
this section by the following reassurance theorem of LP m 

announced in [Priest, 1989]. 

Theorem 5 Let S be a set of formulas, if there exists a 
mi-model of S, then S FLPm A is true for every A if/ 
S FLP A is true for every A. That is, there is no more 
greater of collapsing into triviality with p= LPm than with 

FLP· 

6 Concluding Remarks 

To summarize, LP, as a paraconsistent logic, can destroy 
the triviality to formalize reasoning in the presence of 
inconsistency, but it invalidates some classical inferences 
that seems too weak to permit reasonable conclusions. 
Circumscription, as a nonmonotonic logic, makes mini
mal inference to formalize reasoning in the presence of 
incompleteness, but it is trivial that everything should 
follow from a single contradiction. We define paraconsis
tent circumscription LPc by the application of circum
scription in LP. It turned out that LPc is truly non
monotonic and paraconsistent. We found that LPc has 
advantages in two respects: it makes that nonmonotonic 
logic would be nontrivial when there was a contradic
tion, and that paraconsistent logic would be equivalent 
to classical logic when there was not effect of a contradic
tion . In other words, nonmonotonicity yields a solution 
to the weakness of paraconsistent logic, and paraconsis
t ency yields to a solution to the triviality of nonmono
tonic logic. The nonmonotonic and paraconsistent logic 

can solve the difficulties existing in nonmonotonic logic 
and paraconsistent logic and obtain the advantages each 
other. As pointed out in [Lin, 1994b], the nonmonotonic 
and paraconsistent logic is the formalization of reason
ing with incomplete and inconsistent knowledge which 
provides a more general basis for formalizing common
sense reasoning in Al. We note that the logic LPc can be 
viewed as a special case of so-called fault-tolerant logic in 
[Lin, 1994b], and the technique of LPc is general enough 
in a sense that it could be viewed as a general approach 
to define nonmonotonic and paraconsistent logic. 

The main results of this paper can be straightfor
wardly extended into first-order case. The logic LPc 
can be defined based on various variants of circumscrip
tion to increase the capacity of nonmonotonic reason
ing, and defined based on other paraconsistent and rele
vant logics for different considerations where they found 
applications. We, however, wish to provide first-order 
LPc by considering to provide a satisfactory proof the
ory. As pointed out by [Priest, 1989], there was not a 
satisfactory proof theory for LPm , though some proof 
theories for LP were introduced. Although circumscrip
tion was originally provided as a simple schema of proof 
theory based on classical logic, it is not available for 
LP since paraconsistent logic lacks necessarily classical 
inferences to formulate circumscriptive shema. Fortu
nately, [Lin, 1993] has proposed a minimal tableaux for 
the logic LPm as a satisfactory proof theory, and hence 
it is not difficult to present a proof theory for LPc [Lin, 
1994a]. Futhermore, it has remained to see if first-order 
LPc has the same propeties as in propositional level. We 
conjecture that first-order LPc would have better prop
erties, though circumscription lacks completeness result 
in general. Hopefully, first-order paraconsistent circum
scription would shed new sight to solve the paradoxical 
problems of nonmonotonic reasoning. 

Acknowledges: 

The author would like to thank Wei Li, Fangzhen Lin, 
Vladimir Lifschitz, Yoav Shoham, Grogori Schwarz, Ji
ahuai You and Jun Gu. Thanks also the referees for 
useful comments on improving this paper. 

References 

[Ginsberg 1987] Ginsberg. M (Ed.}, Readings in Non
monotonic Reasoning, Morgan Kaufmann, 1987 

[Hanks and McDermott, 1987] Hanks. S and McDer
mott. D, Nonmonotonic Reasoning and Temporal 
Projection, Artificial Intelligence 35 (1987) 

[Lifschitz, 1988] Lifschitz. V, Circumscriptive Theories: 
A Logic-Based Framework for Knowledge Represen
tation, ] . of Philosophical Logic 17 ( 1988), 391-441 

[Lin, 1991] Lin. Z, Parametric Systems: A Uniform Ba
sis for Monotonic and Nonmonotonic Logics, Pat
tern Recognition and Artificial Intelligence 4 ( 1991), 
20-27 

[Lin, 1992a] Lin. Z, A Generalization of Circumscrip 
tion, J. of Computer Science and Technology 7 
(1992}, 97-104 

217 



•' .1 

[Lin 1992b] Lin. Z, Reasoning with Incomp lete and In
consistent Information, Proceedings of ICIIPS'92, 
IAP Press, 1992, 382-388 

[Lin, 1993] Lin. Z, A Note on Proof Theories of Logics 
of Paradox, STU-AI-TR-41, Computer Science De
partment, Shantou University, 1993; also in: Pro
ceedings of Chinese Conference on Intelligent Com
puter, 1994 

[Lin, 1994a] Lin. Z, Paraconsistent Circumscription, 
Working Papers on the 3th International Sympo
sium on Artificial Intelligence and Mathematics, 
January 2-5 , Florida, 1994 

[Lin, 1994b] Lin. Z, Fault- Tolerant Reasoning, Proceed
ings of the 2nd World Congress on Expert Systems, 
January 10-14, Lisbon, 1994 

[McCarthy, 1980] McCarthy. J, Circumscription - A 
Form of Non-Monotonic Reasoning, Artificial Intel
ligence 13 (1980), 27-39 

[Priest, 1979] Priest. G, Logic of Paradox, J. of Philo
sophical Logic 8 (1979), 219-241 

[Priest, 1989] Priest. G, Reasoning about Truth, Artifi
cial Intelligence, 39 (1989), 231-244 

[Priest et al., 1989] Priest. G et al. (Eds. ), Paraconsis
tent Logic: Essays in the Inconsistency, Philosophia 
Verlag, 1989 

[Reiter, 1978] Reiter. R, On Closed World Data Base, 
in: Logic and Data Base, Gallaire. H and Minker. 
J (Eds.), Plenm Press, 1978 

[Shoham, 1987] Shoham. Y, Nonmonotonic Reasoning: 
Meaning and utility, Proceedings of IJCAI-87, Mor
gan Kaufmann, 1987, 388-393 

218 



Two Cumulativity Results On J- and PJ-Default Logics 

Jia-Huai You* 
Department of Computing Science 

University of Alberta 
Edmonton, Alberta, Canada T6G 2Hl 

you@cs . ual berta .. ca 

Liwu Li 
School of Computer Science 

University of Windsor 
Windsor, Ontario, Canada N9B 3P4 

liwu@cs.uwindsor. ca 

Abstract 
This paper reports two cumulativity results for 
J- and PJ-default logics formalized by Del
grande and Jackson [Delgrande and Jackson, 
1991] in the context of skeptical reasoning: (1) 
PJ-default logic is cumulative, and (2) J-default 
logic is not cumulative in general but there is a 
nontrivial class of theories for which the rnmu
lativity property can still hold. We also investi
gate semantical implications of the Cumulative 
Default Logic [Brewka, 1991] and compare it 
with J-default logic with regard to cumulativ
ity for skeptical reasoning. 

1 Introduction 

In nonmonotonic reasoning, the traditional m easure of 
complexity seems not indicative of computational diffi
culties, since it is normal that the inference process en
dorsed by a formalism is totally undecidable in general 
and intractable in the propositional case. 

Some authors have addressed behavioral regularity of 
nonmonotonic inferences. Makinson [Makinson, 1988] 
has investigat ed the regularity properties for some infer
ence formalisms . One property is named cumu/ativity. 
Intuitively, the property guarantees that adding a the
orem derived from a set of premises to the set will not 
eliminat e any previous theorem. The property can be 
form ally described by the condition: 

When we have W f-'-' :i:, W f-'-' y iff WU {:c} f-'-' y, 

where f-'-' denotes an arbitrary inference relation. Makin
son's result shows tha t Reiter's default logic is not cu
mulative [Makinson, 1988; Reiter, 1980]. 

The cumulativity property is closely related to the 
problem of whether default inferences can be carried 
out. increm ent.ally. In light of the difficulties evide11ced 
in nonmonotonic reasoning, there exist syst ems which 
attempt to compile some of the important queries and 

*Currently Oil le,tve with Dep a.rtment of Computer Sci
eHce, Rice U Hiversity, HoustoH, Texas. 

store them for future use (cf. [Sat.tar and Goebel , l991]). 
The property of c1mrnlativity is essent ial for s 11 ch a u ap
proach . 

Recently, some consistency-based default logics liave 
been proposed to address some of the problems associ 
at.ed with Reiter 's default logic [Brewka, 199 l; Delgrande 
and Jackson , 1991]. J - and P.l -default. logics of Del
grande and Jackson [Delgrande a nd .Jackson, lDDl] ar<-: 
intended to solve the problem of unint11itive ext.e11sions 
and missing extensions in Reiter 's logic. (The sirnilar 
idea was explored earli er in [Lukaszewicz, UJ87].) Rea
soning in J -default logic is a natural nondet.ermi11ist.i c it
erative pro cess of augmenting a given theory, where ea.cl1 
augmentation step is required to yield a consistent new 
theory. A sequence of pa.rt.ia.l extensions built this way is 
thus nondecreasing. When no more beliefs ca n he added 
without ca.using inconsistency , a. .1 -extension is rea.cl1 ed. 
PJ-defa.ult logic converts all defaults in a give11 default 
theory to prereq uisi te-fre<c defa.111 ts , w hos<~ .1-ex tensions 
are then defin ed a.s the semantics of P.l -defa ult. logi c. 
PJ -defa.11lt. logic has been 11sed in belief revis ion [Gh os<' 
d al., 1993] 

T his paper studies the Clllll!dat.ivity prop<crty of .I - and 
PJ -default. logics. We also comp a.r<c them wit.It t.h e C11-
mul at.ive Default. Logi c (CDL) [Brewka , lDDl], a11d pro
vide insights into semantical impli cations of C DL. Two 
results are reported. F irs t. , we show that tJw class of 
prerequisite- free J -defa.ult theo ri es possess the cunrnla
tivit.y property. T his leads to t.he couc.lusiou th a t. P.1 -
defa.ult. logi c is cumulative . This result. is present.<~d in 
Section :3. Incidentally , the key reason that. tlw revi
sion met.hod given in [G hose d al. , 199:3] works smoothly 
seems t.o m a inly due to the fact that. P.1 -dd'a ult log ic is 
cunrnla.t.ive . 

Secondly, W<~ dem oust.r a te that. t.l1e pn~cis<~ n~a.so 11 for 
P.l -defa.ult logic to be cum11la.t.ive is hecaus<c it has weak
ened the skeptical reasoning ability of .1 -defa.u lt. log ic, 
resulting in possible loss of intuitive skeptical lw li<-{s 
C umulat.ivity seems inherently clifficult for skepti cal r<c a
sorung. Recently proved c11rn1d a tivity results ar<c all 
for t.he well-founded sem anti cs and it.s ex t.ensio11 s for 

219 



I 

logic programs (see, for example, [Dix, 1991; Dix, 1992; 
Dix, 1994; Li and You, 1991]). However, we show that 
there is a nontrivial class of J-default theories for which 
the cumulativity property still holds. The details can be 
found in Section 5. 

CDL is cumulative both for skeptical reason ing and 
choice reasoning. However, the notion of belief in CD L 
is quite different from the one in Reiter's logic and J
and PJ- logics. This may cause strange behavior for some 
default theories. T his is discussed in details in Section 4. 

T he next section introd uces J - and PJ-default logics, 
fo llowed by sections on the cumulativity resu lts as well 
as on CDL. 

2 J- and PJ-Default Logics 
We assume a first order language that consists of usual 
well-formed formulas (wffs) over an alphabet A. Recall 
that a default theory is a pair (D, W), where D is a set 
of defaults and W is a set of first-order formulas. A 
default is an inference rule of the form A : B 1, ... , Bk / C 
with k 2: 0, where A, B; 's and C are formulas, and A is 
called the prerequisite, B; 's the justifications and C the 
consequent. We will be dealing with defau lt theories with 
closed defaults. An open default is a shorthand denoting 
the set of all instantiated defaults. 

J-default logic is defined in terms of J-extension. The 
following definition is a reformulation of J-default logic 
for arbitrary default theories. T his reformulation is also 
crucial in simplifying proofs of our cum11lativity results. 

Definition 2.1 (E, H) is a J-extension of a default the
ory (D, W) iff 

00 00 

(E, H) = (LJ E;, LJ H;) , 
i=O i= O 

where 
Eo =Wand Hu= 0, 

and for i 2: 0, if A: B/C E D, E; I= A, 
{ B, C} is consistent, then 

E;+1 = E; U {C} 
H;+ 1 = H; U {B} . 

and E; UH; U 

We sometimes also refer to E as a J-extension when we 
are primarily concerned with the der ived beliefs, with 
the understanding that there exists a set H of form ulas 
which are used to derive E. D 

Remarks: 

l. In the above definition, we define a J-ext.ension E as 
a set of derived form ulas instead of Cn( E ), where 
Cn denotes the fam iliar Tarskian consequence op
erator. This is only a tactic choice since for any 
formula¢, E; I=¢ iff ¢ E Cn(E;) . We define E this 
way only because it. is more convenient technically 
in proving the cumulativity results in Section 3 . 

2. Our primary interest in a J-extension (E, H) is the 
set E of derived beliefs . When we refer to E as a J
extension, however, it should be mentioned that the 
corresponding assumption set H may not be unique . 
For example, with the default theory (D , 0) with 
D = {: a/b, : ,a/b} , there are two J-extensions 
with identical E. 

3. For J-default logic, a default. A B 1 , ... , Bk/C is 
equivalent to A: B 1 I\ ···I\ Bk/C T hen~fon~. w,-, 
only consider defaul ts with a single justificatio11 

In P-default logic, a normal default (A: B/ B) is re

placed with a default without prerequisite ( :A :J B / A ::) 
B ) and a semi-normal default (A:B /\C / C ) is rep laced by 
(:A::) (B/\C)/A::) C). This allows a default to fir e with
out requiring that the prerequisite be proved. Let us call 
such a resulting default a P-default. and resul ting theory 
a P-default theory. T he J-extensions of a P-default the
ory are then defined as the semantics of PJ-default logic. 
It is known P.J-default logic is closely related to Poole's 
fr amework for default reasoning [Poole, HJ88] 

According to Reiter, there are two reasoning modes 
in usinJ! default loJ!ic: each arb it rarily chosen extension 
can be ~5een as an ;cceptable set of b-eliefs, or the truth 
of a formula is determined by whet.her it. is contai11 ed 
in all extensions. T he former is called choi ce reason
ing and latter skept1.cal reasoning. Th is pap er is mai11ly 
concerned with skeptical reasoning. 

The rest of this sect ion provides aclditio11al 11otat io11s. 
Notations: 

l. G iven a default t heory (D, W), w,~ ddi1w t.lw fo l-
lowing sets: 

Preq( D) = {A I A: B/C ED} 
Just(D ) = {B I A: B/C ED} 
Cons(D) = {C I A B/C ED}. 

2. If E is a .J-extension of (D, W), t lw11 by o,~fi11i 
tion 2.1, there ex ists a seque11 cP E11, E 1, ... , swh 
that E = LJ: 0 E;. We denote such a seqll(~nce by 
{Ei} and say that the seq11 e11 ce lrnds to E. 

Definition 2.2 Let E an d H be sets of fo rm ul as such 
that EU H is cons istent. T he set of genernt1.11.g d1:fault .s 
of (E, H), with respect. to a default theory 6. = (D , W), 
denoted as Gc,.(E, H), is defined as: 

Gc,.(E, H) 
= {A: B/C I A : B/C ED, { A, C } <;;; E a11d BE H} . 

We wi ll simplify Gc,. (E, H) to G(E, H) when t he de-
fault theory is u11derstoo d . D 

The following lemma is useful i11 proving t he cmnu la
t.ivit.y results in the nex t section. 

Lemma 2.1 A.s.rn.111. 1. Pn;11(D) = 0 f<IT' default lh. 1-
ory (D , W). Let al.so (E, H) In a J-u:tt11.sio n of 
(D , W). Then, (i) E = Cons(G(E, H)) u W and H = 
Just(G(E, H)); and (ii) for any ( B/C) E D/G(E, H) , 
EU H U { B, C } is inconsisit:nt . 
Proof: 

For any J -extension (E, H) , one ca11 co11struct. a se
lJUence {E;, Hi} by using each default from G(E, H) at 
a step, in any order. This shows (i). 

For (ii) , suppose E U HU { B, C } is cons istent for some 
default(: B/C) E D/G(E, H). Then the defa11l t. ( B/C) 
can be used to co11st ru ct. (E, H) so that. C E E aml 
BE H. T his contradicts the assumption that ( B/C) E 
D/G(E, H). o 

220 



3 Cumulativity Results 

In this section we show that J-logic for default theories 
with only prerequisite-free defaults is cumulative. T his 
leads to the result that P J-default logic is cumulative. 

In the following , by (D , W) f--- x, we mean for each 
J -extension E of (D, W), E I= x . 

Theorem 3 .1 Let (D, W) be a default theory with 
Preq(D) = 0 and assum e (D, W) f--- x . T hen, for every 
]-ext ension E of (D , W) there exists a ]-extension E ' 
of (D , WU {x}) such that C n( E ) = Cn (E '), and vi ce 
versa. D 

We postpone the proof to Appendix . 
T his result can be extended to default theories (D, W) 

where each prerequisite therein can be derived directly 
from W. 

Corollary 3.1 Let ( D , W) be a default th eory and as
sume (D, W) f--- x. If W I= A for each default (A : 
B / C ) E D , then, for every ]-ext ension E of (D, W) 
th ere exists a ]-extension E ' of ( D , W U { x}) such that 
C n(E ) = C n( E ') , and vi re ve rsa.. 
Prnof: 

Let D' = {: B / C I A : B / C E D} . Clearly, (E , H) is 
a J -extension of (D, W) if and only if it is a J-extension 
of ( D', W) . T he claim t hen holds by T heorem 3 .1. D 

We point out that the prerequisite- free condition does 
not make Reiter's default logic cum ulative. Consider the 
fo llowing default theory: 

D = {:,a/b , :, b/a , :, a/c, :,c/ c}. 

T he defaults are all prerequisite-fr ee, but (D , 0) is not 
cumulative. 

J-default logic is not guaranteed wi t h the cumulativity 
property when prerequisites are present in defaults . 

Example 3.1 Let ~= (D , 0) where 

D = { :,b/a , :,b/c, c :,a/b} . 

T here is exactly one J-extension that contains a and c. 
Adding c to W makes t he last default applicable and 
results in an additional J-extension. D 

T he question arises as to what m akes PJ-default, logic 
cumulative while J-default logic is not. T he fo llowing 
exam ple shows that the price for a ttaining the cumula
tivity property fo r PJ-default. logic is its weakening of 
the skep ti cal reasoning abili ty, resulti ng in possible loss 
of skeptical beliefs . 

Example 3.2 Consider again the default theory in Ex
ample 3. 1. 

T he fi rst two defaults therein are already P- <lefaults. 
T he third defaul t can be t ransformed to a P-defaul t re
sulting in a P-default theory as : 

Dp = {: , b/a , : , b/ c, : c:) (,a I\ b)/c:) b }. 

Now there are two J-extensions fo r theory ( D p, 0) . 
Besides t he J-extension E 1 = { a , c}, we have an addi
tional one E 2 = { a , c :) b} . As t he result, the skeptical 
belief c of ( D , 0) is no longer a skeptical consequence of 
( D p, 0) . From this example we see that t he reason th at 
PJ-default logic possesses the cum ulativity property is 
precisely because it is a weaker logic th an J- logic with 
regard to skeptical reasoning . D 

4 Cumulative Default Logic: Abstract 
Beliefs versus Compositive Beliefs 

In this sect.ion we give a reformula ted definition of CDL 
and show it is essentially the same as .l - logic. T he only 
difference is that the for mer semantically reli ~~s on co m
positive beliefs, the beliefs semantically insq)(t.rn.hif from 
the formul as used to deri ve them , while the lat te r ac
commoda tes abtrn ct beliefs which a.re norn1al firs t. order 
formul as. It is only this difference tha t m akes th e fo rmer 
cum ula tive and the latter not cumula ti ve i11 ge 11 eral. 

4.1 Cumulative Default Logic 

In Brewka 's C umula tive Default Logic (CDL) [Brewka, 
HJDl], obj ects being manipulated are called as.w:rtions. 
An assertion is of th e fo rm 

(A :{j1 , ... , jm}) , 

where A is a fo rm ula, called t he (asserted) fo n nula of 
the assertion , and Ji 's are fo rmulas, called the s11pporl8 
of A . 

Default. theor ies (D, W ) with assertion se t. W are 
ca.lied assertion deja.ult th eories. A default (A : B/C ) 
can be applied if an assert ion (A: J) holds fo r sorne sup
port J and { B, C } is consistent with the formul as of the 
assertions, either derived or in W, and their supports. 
T he derived fo rmula C is t hen attached with the sup
port of A , a.long with B and C to fo rrn rww asse rt io11 
(C : Ju {B,C}) . 

G iven a se t S of asser ti ons, w<~ denote by f ( S ) the set. 
of a.II form ul as th at occur in any asse rtio11 i11 S', c~it.lHor as 
an asser ted fo rmula or as a supp ort. T ha t. 1s, 

f (S) = {C I (A : J) ES such t ha t. C = A or C E .! } . 

T he pro pagation of supports is imp ortant.. \,Ve say an 
asser tion (A : J) is der ived fro m a set S of assert ions, 
denoted as S'f- -' "P/J(A : J) , if there exist a.ssertio11 s (B 1 

J 1 ) , ... , (B., ,h) in S such tha t {B 1 , , B k} I= A and 
J = {11 , . . , Jk} 

We are now ready to define COL-extension based on 
an iterative constrn ctio11 . One<' agaill , om dtc fi11it.1 011 
does not use the closure of firs t. order cousequeuces .1 

Definition 4.1 E is a COL-extension of an asscort.i o11 
default. theory (D, W ) iff 

()(J 

E= LJ E ,., 

where 
E 11 = W 

and for i 2 0 , if A : B/C E D, E; f- .,111,l'(A J), and 
f( E; ) U {B, C } is consistent. , t he11 

E;+ 1 =E1U {(C: .! U { B } ) } . D 

1 T lt ere a.re a.Isa som e 11 011 esse 11 t ia.l diffe re 11 ces l, c,t.wec 11 0 11r 
refor11111l a. tio 11 a.nd Bre wka.'s de fiui t io11 Fo r exa.mpl e, we 0 11l y 
record j11stifica.t io ns o f defa.11l ts a.s s111i1io d s wltile i11 Bre wka.'s 
defin it ion , co 11 seq 11 ents a.re a.lso i11 c l11d ed ;,s pa.rt o f t lt e s up
po rts in t lte deriv ,Lt io n . 

221 



I 

From our reformulations of J-defau lt logic and CDL, 
it is easy to see a one- to-one correspondence between the 
extensions of the two logics . 

Given a set S of assertions, let us denote by Form(S) 
the set of asserted formulas of S, that is: 

Form(S) = {AI (A: J) ES'}. 

Theorem 4.1 Let (D, W) be a default th eory and 
(D, Wa) be th e corresponding assertion default th eory 
with Wa = { (A : 0) J A E W} . 

(i) If E is a CDL-extension of (D, Wa), th en th ere 
exists a set H of formula s such that (Form(E), H) is a 
]- ext ension of (D, W). 

(ii) For any ] -extension (E, H) of (D, W), th ere exists 
a CDL-extension E ' of (D, Wa) such that Form(E') 
E. 
Proof: By using an induction on the sequence of partial 
extensions in both cases. D 

This result says that computing a CDL-extension is 
essentially the same process of computing the corre
sponding J-extension, and vice versa. T his implies that 
when computational efficiency is concerned, neither of
fers more advantage over the other. 

4.2 Abstract Beliefs versus Compositive Beliefs 

We assume a knowledge base that consists of the knowl
edge: 

Twcety has wings and th ere is no evidence sug
gesting its wings being degen erated, so we be
li eve Tweety fli es. 

In CDL we do not have the abstract belief Tw eety fli es; 
we are only able to derive the composit.ive belief: 

Tweety fli es because th ere is no evidence sug
gesting it s wings arc degen erat ed. 

Arguably, the user of a knowledge base sometimes does 
want to know what assumptions have been made in de
riving an abstract belief. Indeed, a default logic is a log ic 
of plausible belief inference. Assumptions and derived 
beliefs are never theless two distinct. concepts. Because 
of this, a derived belief and its assumptions should be 
separable to the user of a knowledge base . Compositive 
beliefs however do not separate a derived belief with its 
associated assumptions. This is an undesirable feature, 
in our opinion, particularly when the size of the knowl
edge base is large and the derivation of a belief involves 
a long sequence; in such a case, a com positive belief may 
contain a large number of assumptions. In many situ a
tions, a cornpositive belief is virtually a reflection of th e 
entire derivation sequenet:. 

Compositive beliefs have another drawback. Suppose 
we are ab le to derive some totally irrelevant but consis
tent compositive beliefs, we can then have many con
fusing and unintuitive compositive beliefs with the same 
asserted formula. For example, suppose we also have a 
compositive belief: 

Fred is healthy because th ere is no eviden ce sug
gesting he is sick, 

we would then have a seemingly strange compositive be
lief: 

Tw ect y flu:s btcans(; thr: n: is no coiden r:t .rng
gesting it8 ·wings 1/.n: dcgn1.t:ratf:d 1/.11.d lh tTc: 1.s 

no evidence sugg est ing Fn:d is s ick. 

If we ask the knowledge base if the above st.at.ernent 1s 
true , strangely, the answer is yt:s. To see this , let us 
represent. the above problem by 

W={wings} 
D = {wings: ,deg/fly, : ,sick/hwlthy} 

Then, the assert ion (fly {,deg, ,sick}) is indeed rn 
the unique CDL-ext.ension. 

This second problem may be resolved by requiring sup
port be minima.I. However , it is the m echanism of record
ing all assumptions that limits our a bility to think of a 

compositive belief in terms of its asserted belief. From 
Theorem 4.1, we know th a t th e only reason t.liat. C DL is 
cumulative while .1-default. logic is not. is C DL 's employ
ment of compositive beliefs. Therefore, it is impossi ble 
to reduce a com positive belief to its abstract counterpart 
and at the sam e time retain the cumulat.ivity proper ty. 

T he fail m e to accommodate a bstract. beliefs ca11 some
times cause st.range behaviors to ar ise in sk<-:pt ica.l rea
son 111g . 

Exainple 4.1 Assume a11 assertioll d<-d°a ul t. theory 
(D, W) where 

W = 0 and D = { a/b , : , 11./b}. 

T here a.re two CDL-exte11 sions, 01w co11t.ai11i11g (/; : { 11.}) 
and the other having (b { , 11.}). No skeptical beli ef 
about b can be drawn in CDL, even though IJ is i11tu
itively a skeptical belief. D 

From Theorem 3 .1, and also hy T heorem 4 .1 on 
the one- to-one correspondence between .J -exte11sions and 
COL-extensions, we know that. when defaults in a de
fault theory are prerequisite- fr ee, compositive beli efs can 
be reduced to their a bst rac t. counterp a rts without los in g 
the cumul a.tivit.y property . T his rn ea.ns that. cmnu la tiv
ity is guaranteed wit.l1011 t resor ting t.o t.l1 e a.t.t.achnient of 
assumptions. For the preceding exa111pl <-~ for ins l.anc, \ we 
ca.11 have /; as a skeptical belid'. 

5 Practical Considerations of 
Cumulativity 

Practically, a nonmonotonic r<~a.soning forrna li srn can lw 
affected by t.he cumulat ivity prop erty in two aspects: 
computat ional efficiency and cOlflJllltat.ional stra tegy. 

Consistency-based default logics, such as .1 - logic and 
C DL, have indeed gained some computationa l effici ency 
over Reiter 's default logic. For example, it. is easy to 
see that when defaults in a propositio11al default theory 
(D, W) only involve lit.era.ls and W is a se t of literals, 
the problem of computing /1.1/. <~xtension is a tractable 
problem.' On t he other hand , the one- to-one corn~spon
dence between .1 -extensions a11d CDL-exte11 sions implies 

2 111 fact , e a.ch defa.ult ca.11 h e a.pplied a.t. m ost u11ce, t.lt e 
problem of co11siste11cy check for the cla.ss of th eories co11 s id 
e red he re ha.s a. poly1101uia.l algorithm , a.ud a.11 ex t. e 11sio11 ca.11 

b e i11cre111c, 11ta.lly co ust. rnct.ed. 

222 



that neither offers more advantage over the other in 
terms of computational efficiency. Tlrns, cumulativity 
may only affect computational strategies, such as pre
compiling queries and increment.al computation . Now, if 
abstract. beliefs and a full skeptical reasoning capability 
are desired, J-default logic seems to be a good candidate. 

In this section we consider how to make pre-compiling 
queries and incremental computation a safe computa
tional strategy for some important classes of J-default 
theories. First, we follow the same line of argument. by 
Poole [Poole, 1991]: if a default cannot be used to derive 
any belief, there is no reason for it. to be in the theory. 
Due to Theorem 3 .1, we need only be concerned with de
faults with non-empty prerequisites . We then show that 
under this approach, there is an important class of J 
default theories that possess the cumula.tivity property. 

D efinition 5.1 Let .6. = (D, W) be a default theory. A 
default d E D of the form A : B / C with a non-empty pre
requisite A is said to be irrelevant if for every J-extension 
(E, H) of (D, W), d (/. G(E, H); otherwise, it is relevant. 
We denote by F( .6. ) the set of all relevant defaults in D. 
D 

Theorem 5.1 (E, H) is a ]-ext ension of a default th e
ory .6. = (D, W) iff it is a ]- ext ension of (F(.6.), W). 
Proof: It follows directly from Definition 5.1 D 

We argue that the semantics of a default theory 
should be defined with resp ect to relevant defaults in 
F(.6.) as far as reasoning with the (fixed) theory is 
concerned. In such a setting, increment.al computation 
and pre-compilation can be carried out with respect to 
the defaults in F(.6.). Non-applicable defaults are not. 
abandoned; they will be used to accommodate possible 
changes of the theory. This is the case when W needs to 
be revised according to newly acquired knowledge, say :r:, 
irrelevant defaults can then be re-calculated with respect. 
to ( D, W U { x}) to refl ect the change of the theory. 3 

The definition of irrelevant defaults is based on all J
extensions. We now show that one need not compute 
all extensions in order to determine whether a default is 
irrelevant. There is a simpler way to identify irrelevant 
defaults. 

To illustrate the idea, we consider a simple example. 

Example 5.1 Consider the default theory given earli er 
in Example 3.1: 

W=© 
D = {:,b/a , :,b/c, c :,a/b} 

The reason that the third default, above initially was not 
app licable is that there is no way c can be confirmed by 
consistent. justification and consequent. To see this, let 's 
reduce the third default. using the second. We then get. 
(: ,b/\,a/b). Because its justification is inconsistent with 
its consequent, the default. cannot. be fir ed. If this non
applicable default is "ignored", then the default. theory 
is guaranteed with the cumulat.iv ity property. D 

Let's exam a more involved example. 

3 T his will a.ffect pre-compiled queries. However, due to 
the nonmonotonic na.t nre of default rea.soning, they need to 
be re-complied a.nywa.y. 

Example 5.2 [Brewka. , HJ!Jl] W<~ ass 1111 w a defa11l1. t.li1~
ory (D , W) with 

W = {dog V bird ::) pet, dog ::) ,bird, sinr1 s } 
D = {pet : dog/dog , sings : bird/bird} 

T he only J -extension (which coincides with the uniq11e 
extension in Reit.er's default logic) contains bird and pet. 
Adding pet t.o W makes the first. default. appli cabl P. a11d 
results in an add ition al J-extension. 

First, we see that. PJ-default logic has weakened skep
tical reasoning. The corresponding P-defau lts are: 

:pet::) dog/pet::) dog , 
: sings ::) bitd/sing s ::) bird 

Besides the previous J -ex tension that contains bird , 
there is one more J-extension tha t. contains pet ::) dog 
and derives ,bird. Therefore, we no longP.r have t.li e 
intuitive belief bird as a skeptical belief. Clearly , this 
is caused by allowing every default. to have a chance to 
be app lied without. its prerequisite being JHOVP.d , an d by 
doing so, a different. extension is introd11ced . 

The reason that the default ( sings : bin// bird) is ap
plicable is clear: the pren~quis i1.P. si 11.y s ca.11 lw r1~d11 c1-:d 
to lrn i:, and thus the default can be red11 ced to an eq11iv
alent one without any prereq11is it.e. This is not. t.lw cas<~ 
for the default (pet: day/dog) , as show 11 by the followi11g 
reason mg. 

Since W U {dog} I- pet and W U { bin/} I- pet , t li e 
app licability o f this default depends on t.liat. of ( doq : 
doy/doy) an d (bird: doy/doy). T lw first. is circ11l ar a11d 
can be thrown away. The second can be n~d11cP.d , 11s111 g 
(s ings: bird/bird) , t.o 

sings: bird I\ dog/ doy , 

and furth er t.o 

: bii-rl I\ doy / rloy, 

whose justifi cat.ion is in consistent. with W. D 

The preceding two P.Xamp les sugges t tlia.t. a. default 
wit.Ii a 11011-empt.y prereq11i sit.e is not applicable if it ca11-
not. be red11ced to a prerequis ite- fn·!e defa11lt. whose .i11 s
tifi cation and consequ ent. an·! consiste11t wit.Ii \IV 

We now define this pro cess more forrna. ll y. To simplify 
the notat ion, let. 11s co11 sid er defaults A : B/C when~ A 
and Care literals and B is a co 11j1111 cti o 11 o f lit.1"rals. 

Definition 5.2 Let .6. = (D, W) be a dda11lt. t. lwory. 
A default. (A: B/C) ED 111c1.y IH· t.ra 11 s f'o r11wd r<'Jl<'itl.

edly by the foll owing mies: 

(a) if WI= A, t.hen get ( B/C); 

(b) if (P: Q/Z ) ED, {P, Q, Z } U W is co 11sist.e11t, a.11d 
WU { Z } I- A, tli e11 gd. P: BI\ Q/C:. 

A default (A : B/C ) E D is said to lw 11niliwblc if 
and only if t.li ere is a dd·a.1111. (:BI\ R/C), wlwn-: R = 
Q1 I\ ... I\ Qn, for some 11. 2 0, wliich is dPrived froni 
(A: B/C) using t.he transforrna.ti on rules given a bove, 
such tha t. {B , R, C } U Wis co 11s ist,t!lll,. Ot.herwi s<~, it. is 
said to be 11.011.-11.pplic11.h/1: D 

223 



If a default (A: B/C) is applicable, then there must 
exist a J -extension (E , H) and a sequence {En} leading 
to E so that (A: B / C) is in G(E, H). On the converse, if 
(A :B/C) is a generating default of J-extension (E,H), 
then A can be consistently derived using W and other 
defaults, and hence can be reduced to a prerequisite
free default. This means that the notion of applicability 
(resp. non- applicability) coincides with that of relevance 
(resp. irrelevance) given earlier. 

Under this approach, we are able to identify a non
trivial class of default theories for which the cumulativ
ity property is guaranteed. The following theorem is an 
extension of Theorem 3 .1. 

Theorem 5.2 Let b. = (D, W) be a default th eory 
with F( b.) = D. Suppos e ( D, W) f--, x. Further as
sume for each default A : B / C E D where W l;!= A, 
A : B/C E G(E, H) for any ]-extension (E, H) of 
(D, W) . Then, for every ] -extension E of (D, W) there 
exists a ]-extension E' of b. 1 = ( D, W U { :r;}) such that 
Cn(E) = Cn(E'), and vi ce versa. 

The condition in the theorem essentially says that any 
applicable default must be a generating default of ev
ery J-extension . The condition seems very easy to be 
satisfied in many practical situations; for example, it is 
trivially satisfied for default theories with exactly one 
J-extension. A proof of this theorem is included in Ap
pendix. 

We note that the approach described here is not ap
plicable to Reiter's logic, since default theories wit.h 
prerequisite-free defaults are not guaranteed with cumu
lativity, and hence every default in a default theory is 
potentially irrelevant. 

6 Summary 

Recently proposed consistency-based default logics, like 
J- and PJ-logics of Delgrande and Jackson and CDL of 
Brewka, have shown very good promises in default rea
soning by improving Reit.er 's logic for different purposes . 

This paper has provided a unified reformulation 
of these consistency-based logics, based on an itera
tive construction of extensions. We have proved that. 
prerequisite-free J-default theories possess the cumula
tivit.y property. Two impor t.ant. implications immedi
ately follow : (i) PJ-default. logic is cumulative, and (ii) 
for this class of default theories , it is not necessary to 
make the process of a reasoned belief explicit as in CDL. 
We have shown that PJ-default logic attains the cumula
tivity property by weakening skeptical reasoning, result
ing in sometimes losing intuitive skeptical beliefs. Since 
J-default logic can provide abstract beliefs and has a 
reasonable capability of skeptical reasoning, we have em
phasized on an approach to gain the practical benefits 
of cumulativity by identifying non-applicable defaults. 
This approach enables a safe application of computa
tional strategies such as precompilation and increment. al 
computation for some important classes of default tbeo
n es . 

Acknowledgement: Both authors are supported by 

grants from the N at.ural Sciences and Engineering Co 11 n
ci l of Canada. The final revision was carrieJ out while 
Jia-Huai You was on sabbat ical with Rice University . 

7 Appendix 

Proof of Theore m 3.1: 
We show this result in two steps, one about. the if pa. rt. 

of the cumulat,ivit.y and other about the only-if part.. It 
turns out that only the only-if pa.rt requires t.ll!~ coudit.iou 
Preq(D) = 0. The if part is given in Theorem 7.1 and 
the only-if part is proved in Theorem 7.2. 

Theorem 7.1 Let E be a J- ext enswn of rhfau/t thwry 
(D , W). Assume (D, W) f--, :r:. Th en, th en : e:cisfa a ]

extension E' of ( D, WU { :r:}), such that for any 8equcnce 
{ E; l leadinlJ to E th ere exists serntence { E'.1 lcadino lo 
E' ;oith E; lJ {:r:} = E; for each·i 2: 0, \,;;.;/ C n(E) = 
Cn(E') . 
Proof: 

The claim trivia lly holds when W is incousisteut. . 
Suppose W is consistent. From ( D, W) f--, :i:, an d the 

fact that.Eis a .I -extension of (D , W), we have EI= :i:, 
and EU H U { :1:} is consistent.. 

Now , from sequence { E;} , we show by iud uct.i ou th at. 
{ED can be constructed which leads t.o a .1-ex tensiou of 
(D, WU {:r:}). 

Basis: For Eo = W and Ho = 0, let. E!1 = WU {:1:} 
and H 0 = H(1. Clearly, E!1 is consistent.. 

Inductive step: Assume E; U {:1:} = E; and H; = Hf. 
Let E;+1 be deduc,~d from E; by tlw default. A; 

B;/C; ED. We have E; I= A;, E; u H, u {B;,C;} is 
consistent., and E;+ 1 = E, U { C; }. 

Since E I= E1 , H I= H, , aud EU HU { :r} is co11sisk11t. , 
we get 

E; u { :1:} u H, u { B; , C;} 
is consistent.. 

From E; I= A; and E; U { :1:} = E;, we have E! I= A;. 
It. follows that. 

EI u HI u {B;, Ci} 

is consistent. Tims, w<~ can ext.end E; t.o E:+i = E; U 
{Ci}. Hence we have 

E;+1 U {:1:} = Ei+i aud H1+1 = H/+ 1 = H; u {B;}. 

T herefore , EU { ;,: } = E' . By t.he fact that. E I= :i: , we 
have Cn(E) = C n(E'). 

To show tha t. E ' so const.rnct.ed is a ]-extension of 
(D, WU {:1;} ) , we 011ly need to show that 11 0 default. in 
D can be used to properly ext.e11d E'. 

That. E is a J -ext.ension of (D , W) implies there is uo 
default. A: B/C ED such that.EI= A , Eu Hu {B , C'} 
is consistent., and EU { C } is a proper ex t.ensio11 of E, 
i. e., E l;!= C. The same clearly holds for E' because 
E U { :r:} = £' aud E I= :c. Thus , E' is a .1 -ex t.ensiou of 
(D, WU { :i:}). D 

Theorem 7.2 Lt:! (D , W) ht n d1:fanlt tlu:ory will, 
Pr· eq( D) = 0 and U88n111.1: ( D , W) f--, :r. T h <:n , for any 
J- cxtfn8ion E of(D , WU{ :i:}) , tht"f'f ni8 l.\ 11. J-n: ll'nsion 
E' of ( D , W), such that for any scqun 1.u : { E;} if:arliny 
to E for default th.wry ( D , W U { :1:}) th en : c.1:i8l.\ .\ C
qnencc {E;} lrndi11.11 to E ' for 1/c/ault. th cm·y (D , W) with 

224 



Ei = E; U {x} for each i 2'. 0 and Cn (E) = Cn(E'). 
Proof: 

Assume W is consistent , otherwise it is trivial. 
We first show that there exists such a sequence { E:}. 
Basis: For Eo = WU {:r:} and Hu = 0, let Eb = W 

and Hb = 0. 
Inductive step: Assume Ei = E; U {x}, and Hi= HI. 
Consider a default (:B;/ Ci ) ED such that E; UH; U 

{ B;, Ci} is consistent. Assume the defau lt ( : B;/ C;) is 
used to extend E;, and we have E;+l = Ei U { Ci} and 
Hi+1 = H; U {Bi}. 

Since Ei = E;u{x} and H; = HI, E;uH1u{Bi,C;} is 
consistent; and hence the default (: B;/ C; ) can be used 
to extend EI- Therefore, we have 

E;+1 = E:+i U {x} and H;+1 = Hf+i = H; U {B;}. 

Therefore, E = E'U{x }. Ifwe can show that E ' is a J
extension of ( D, W), then by the hypothesis ( D, W) f--' x, 
we will have E' I= x and it fo llows Cn (E) = Cn(E') . 

Since E is a J-extension of (D, W U {:r:}) and 
Preq(D) = 0, by Lemma 2.1, for any (: B/C) E 
D/G(E, H), E U HU {B , C } must be inconsistent. We 
show that E ' UH' U { B, C } must be inconsistent., too. 

Assume not . Then by the definition of J-extension, 
there exists a J-extension E" of (D, W) such that E ' <;;; 
E" , G(E,H) = G(E' ,H') C G(E" ,H") , and 

E" u H" u Cons(G(E" , H")) u Just(G(E", H")) 

is consis tent . 
Since E" is a J-extension of ( D, W), we have E" I= :i:. 

It follows E " I= E' U { :r:}. By the fact. that E = 
E 'U{x}, we have E " I= E. Since H" I= H, and 
G(E",H") -G(E,H ) =p 0, there exists some default(: 
B' /C') E G(E" , H")/G(E, H) such that E UHU{B', C'} 
is consistent. This contradicts the fact. that E is a J
extension of (D, WU {x}) and no default outside its 
generating default set may be applicable. 

T herefore, E' is a J-extension of (D, W). D 

Proof of Theorem 5.2: 
Let Ll = (D , W) be a default theory with F(Ll) = D. 

Suppose ( D, W) f--' :c. Further assume for each default 
A : B/C E D where W [i= A, A : B/C E G(E, H) for 
any J -extension (E, H) of (D, W) Then, for every J
extension E of (D , W ) there exists a J -extension E ' of 
Ll1 = (D, WU{x}) such that Cn(E) = Cn(E') , and vice 
versa. 

We first prove a utility lemma. 

Lemma 7.1 Let Ll = (D, W) and Ll 1 (D , WU {:r: }) 
be hoo default th eories. Assume F (Ll ) = D. T hen 
F (Ll') = D only if (D, W) f--' a:. 
Proof: Assume (D , W) f--' x. That F (Ll') <;;::Dis imme
diate. We show D <;;; F(Ll ' ), i. e ., assume for any d ED, 
and show d E F(Ll ' ). From the assumption F(Ll) = D, 
we know d is a generating default of some J-extension 
E of Ll . By Theorem 3.1 , there exists a J-extension E' 
such that Cn(E) = Cn(E') . Clearly, d is a generating 
default of E' and hence is in F(Ll'). D 

Proof of T heon:m 5. 2: 
The if part follows directly from T heorern 7. l . 
For the only-if part. , we need to show that for any .1 -

extension E' of ( D, W U { x}), there exists a J-extension 
E of (D, W) with Cn(E) = Cn(E' ). 

If W I= x, then the claim holds trivially. Consider 
w ti= :r; . 

T hat E ' is a J-extension of (D, WU {:i: }) implies, by 
the definition of J-extension, there exist one or more se
quences { E~} that lead to E ' . 

First, since E' is a J-ext.ension of (D, WU{:,:}) , el
ements in each sequence { E;.} that leads t.o E' can lw 
partitioned into two parts: 

E/1 = E0 U {:c } where E0 = W; 
EI+ i = Ei+l U {x} 
where Ei+l = E; U { C;}, 
for (A; : B;/Ci) ED used in the it. h step. 

Let us also denote the corresponding sets of assump
tions as: 

H(1 = Ho = 0 
H/+ 1 = H,+1 = H; u {Bi}. 

If we can show that there exists one such seq uene<-: 
{ E;J that leads to E ' , such that at ea.ch step k using 
default Ak : Bk/Ck ED, 

E~ I= Ak if and only if Ek I= Ak, 

we then can conclude, E = E ' - { :i:}, where E is the J
extension of ( D, W) extended from Ei. T he conclusion 
Cn (E) = Cn(E') then directly fo llows from the assump
tion th at ( D, W) f--' :i:. T h11s, all w1~ need to show is th1·: 
above cl aim. 

We now show this cl aim by contra.di et.i on . 
Assume the claim does not. hold. That. is, for a 11y 

sequence { E~} that. leads t.o E' , t he above property is 
not satisfied. Th is impli es, for ea.cl> such { E;,.} , t.lw re 
exists EI for some i 2'. 0, such that eith1~r 

E'. [i= A; and £, I= A; , 

or 
E/ I= A; and E, [i= A;. 

T he first case is obviously not possible since E/ I= E; fo r 
each i 2'. 0 . We therefore on ly w:ed t.o show a contr a.di c
tion for the secon d case-:. 

T he fact. that. E/ I= A; and E; [i= A; for any seq 11e11 c<~ 
{E~} that. leads to E' implies there exists a t lea.s t. oue 
such sequence {E~ } such that. (i) E; [i= :i: , and (ii) there is 
no st.ep j, j > i, such that A_; : B;/CJ ED is app li cab le 
at the it.h step with Ei I= Aj. (i .e. there m ust. exist one 
such sequence { E;.} in which the app licat ion of defa. ull. 
A; B;/C; cannot. be delay1~d iu {E;,} ). Note that. a ll 
prerequisite-fr ee defaults are applied before ith step. 

Le t. us define a subset. D" of defaults as: 

Da = {A: B/C I A: B/C ED and W [i= A}. 

From Lemma 7.1, we know that. F(Ll) = F(Ll') = D. 
T hat. is, the defaults that are used to construct. {E~} a.re 
also avail ab le for th e construct.ion of {E,,} Thus , t hen~ 
exists a J-ext.ension (E, H) of (D , W) whi ch is exte11d ed 
from E; and, by the assumption t.liat. the defaults i11 D,,. 

225 



are all generating defaults of any J-extension, we have 
Dex~ G(E, H). Since E; l/= A;, there exists a subset D' 
of defaults in D that can be used to extend E; to yield 
E; UN such that E; UN I= A;. Since Dex ~ G(E, H), 
the defaults in D' must be all prerequisite-free . Then, 
the set E; UN U Cons(Da) is a J -extension of (D, W). 
This implies the defaults in D', which are not part of 
generating defaults of E', can be used to properly extend 
E'. Hence, E' is not a J-extension of (D,WU {x}). 
Contradiction. D 

References 

[Brewka, 1991] G. Brewka. Cumulative default logic: in 
defense of nonmonotonic inference rules. Artificial In
t elligence, 50:183- 205, 1991. 

[Delgrande and Jackson, 1991] J. Delgrande 
and W. Jackson. Default logic revisited. In Proc. 2nd 
international Conference on Principif.s of Know ledg e 
Representation and R easoning, pages 118- 127, 1991. 

[Dix, 1991] J. Dix. Classifying semantics of logic pro
grams. In Proc. th e Workshop on Nonmonotonic Rea
soning and Logic Programming, pages 167- 180, 1991. 

[Dix, 1992] J. Dix. A framework for representing and 
characterizing semantics of logic programs. In Proc. 
I<R '92, pages 591- 602, 1992. 

[Dix, 1994] J. Dix. A classification theory of semantics 
of normal logic programs. Fundamenta Informatica e 
(to appear), 1994. 

[Ghose et al., 1993] A. Ghose, P. Hadjinian, A. Sat.tar, 
J. You, and R. Goebel. Iterated belief change: A pre
liminary repor t. In Proc. Australian Joint Conference 
on Artificial Int ellig ence, 1993. 

[Li and You, 1991] L. Li and .1. You . Making default 
inferences from logic programs. Comp utational Intel
lig ence, 7(3):142- 153, 1991. 

[Lukaszewicz, 1987] W. Lukaszewicz. Two results on 
default logic. Computers and Artificial Int ellig ence, 
6:329- 343, 1987. 

[Makinson, 1988] D. Makinson. General theory of cumu
lative inference. In M. Reinfrank, J . de IGeer, M.L. 
Ginsberg, and E. Sandewall, editors , Non-Monotonic 
R easoning, Lecture Not es in Artificial Int ellig ence 
346, pages 1- 18. Springer-Verlag, 1988. 

[Poole, 1988] D. Poole. A logical framework for default 
reasoning. Artificial Int ellig ence, 36:27- 47, 1988. 

[Poole, 1991] D . Poole. The effect of knowledge on be
lief: conditioning, specificity and the lottery paradox 
in default reasoning. Artificial Int ellig ence, pages 281 -
308, 1991. 

[Reiter, 1980] R. Reiter . A logic for default. reasoning. 
Artificial Int ellig en ce , 13:81- 132, 1980 . 

[Sattar and Goebel, 1991] A. Sattar and R . Goebel. Us
ing crucial literals to select better theories . Comp uta
tional Int ellig en ce , 7(1):11- 22 , 1991. 

226 



A Clausal Form Translation for Propositional Modal Logic * 

Christophe MA THIEU 
Laboratoire d'Informatique de Marseille URA CNRS 1787 

Universite de Provence Case A 
3 place Victor Hugo 

13331 Marseille Cedex 3 
({): (33) 91 10 61 28 Fax: (33) 91 10 61 02 

E-Mail: mathieu@gyptis.univ-mrs.fr 

Abstract. 
In this paper we present a clausal form 
translation for modal logic. In order to 
define a theorem prover based on the 
resolution principle, we need modal 
formula to be in clausal form. But an 
important problem with modal logic is 
that there is no such simple clausal form 
as in classical logic. So we propose an 
original clausal transformation for modal 
formulas. This new translation preserves 
the modal structure of formulas and also 
avoids the exponential increase in size 
which may occur with another 
translation. Moreover, initial modal 
formulas and their translation are 
equivalent on the language of the initial 
formula. This technique should increase 
the attractiveness of modal resolution 
theorem provers for automated 
reasoning. 

1 Introduction 

Modal Logic is now very popular in Computer 
Science. It's used in the Logic of Programs such 
as temporal logic or dynamic logic, in Artificial 
Intelligence i.e. Knowledge Representation, 
Natural Language, .. . The importance of modal 
logic motivates the development of automated 
proof methods. 

* This work has been partially supported by the ESPRIT BRA 
(Basic Research Action) project DRUMS II (Defeasible 
Reasoning aud Uncertainty Management Systems) Action 6156 
of the European community and the french project PRC-GDR 
CNRS Geslion de l'evolutif el de l'incertain dans les bases de 
connaissances. 

Thus, several methods such as Tableau methods 
[Fitting, 1988], Matrix methods [Wallen, 1987], 
Resolution methods [Abadi and Manna, 1990], 
. . . have been developed. Many automated 
theorem provers are based on resolution (a 
standard in theorem proving) [Robinson, 1965], 
they deal with a given knowledge represented 
by a set of clauses that confers them a great 
simplicity and allows optimizations. But there is 
a reason which makes the definition of 
resolution methods for modal logic difficult: 
there is a lack of normal clausal form in modal 
logic. This lack is due to this fact: in normal 
modal logic D(11 vl2v ... vln) and 
D11vDl2v ... vDln, 0 011'12A ... 1'1n) and 
Ol1A0hA ... AOln are not equivalent. So it's 
impossible to exhibit the same clausal form 
translation as classical logic one's. Then, among 
several automated deduction methods for modal 
logic given in the literature, some are based on 
translation into other formalisms such as 
classical logic or deterministic logic that possess 
normal form theorem [Farinas and Herzig, 
1991]. Even the best adaptation of propositional 
normal clausal form translation defined in 
[Farinas and Herzig, 1991] can't solve the fact 
that the and connective can't cross over the 
possible modality. 

To solve these problems, we present a clausal 
form translation for modal logic that converts 
any propositional modal formula fin a set C of 
what we called pseudo-clauses, featuring a 
linear ratio of lengths. The obtained pseudo
literals don't contain any conjunction. A 
resolution method based on these pseudo
clauses should be easily defined. 

227 



·I 

. I 

,, 

. . · 1 

The basic idea of the translation, due to 
[Tseitin, 1983] and [Plaisted and Greenbaum, 
1986] (see also [Siegel, 1987]), is to introduce 
new proposition P to refer to various sub
formulas A of the original formula. Then the 
assertion P~A may be added to the set of 
formulas (this technique is used in propositional 
calculus to cut a clause in two clauses of inferior 
length). This idea can be extended to modal 
logic: if the formula is Of (or Of), we add 
OP/\[J(P ~ f) (or OPAO (P ~ f) ) to the set of 
formulas where P is a new proposition, and 0 
(0) is the necessity (possible) operator of some 
modal logic. 

The translation enables us to transform modal 
propositional formulas into pseudo-clauses 
without exponential increase of the size of 
formulas. Its interest is, first, that the translation 
should happen linearly (the ratio between the 
initial and final formula's length is linear), as the 
classical algorithm under conjunctive normal 
form is theoretically exponential. The typical 
propositional example is (p11 vp12v ... VP1n>"· .. A 
(Pml VPm2V .. . VPmn) where the associated clausal 
form is a formula with nm clauses of m literals. 
With our method, we obtain m+ 1 clauses of n+ 1 
literals. Secondly, as the translation uses new 
propositions, the initial formula and the set of 
modal pseudo-clauses C are equivalent on the 
language which contains only the propositions 
occurring in the initial formula. Particularly, the 
translation preserves the satisfiability or the 
unsatisfiability of the initial formula. And lastly 
the translation preserves the modal structure of 
the formulas: the obtained pseudo-clauses are 
modal formulas. 

In the first part, we introduce modal logic. In 
the second we present the modal pseudo-clausal 
translation. 

2 Modal Logic 

2.1 Definitions 

A logic of any kind needs a language. Although 
we consider different logics here, the syntax for 
all of them is essentially the same. Given a set 
of propositions P labelled p, p', q, q ', ... and the 
modal operators O and O, the language !t is a 
set of fomrnlas defined recursively by: 

• every proposition of Pis a formula 

• if f and g are formulas, f v g, f A g 
and -,fare formulas 

228 

• if f is a formula, 0 f and Of are 
formulas 

We use the standard abbreviations f ~ g for 
-,fv g, Of for -,0-,f. 

The size of a formula f in !f is its length 
over the alphabet PU{O, O}. 

The modal degree of a formula f ( deg(f)) is 
the number of nesting modal operators in f. 
More formally, deg(p)=O for a proposition pe P, 
deg(-,f)=deg(f), deg(f~g)= max( deg(f),deg(g)) 
and deg( { } f)=deg (f)+ 1 where { } is O or O. For 
example, the modal degree of the formula 
O(p1 -tO(p1-tp2)-tOO(p3-tP4)) is 3. 

We also define a sub-formula of a formula f 
by induction on the structure of f: g is a sub
formula off if either f=g, or f is of the form -,f 
(respectively, f-tf ', Of) and g is a sub-formula 
off (resp. g is either a sub-formula off or off', 
g is a sub-formula off). For example, O(p1 -tp2) 
is a sub - formula of 
O(p1 ~O(p1-tP2)-tOO (p3-tp4)). In order to 
simplify the notation, we write F=uGv to mean 
that G is a sub-formula of F. 
Let Ii be the empty modal operator defined by 
Ii (f)=f The power of n of the necessity modal 
operator O · (written CJl) is defined for all n~ 
by: 

• oo= n 
• on+ 1 = 0 on V n ~ 0. 

2.2 Axiom systems 

The normal system . K consists of axioms and 
inference rules: 

Axion-is 
• all instances of tautologies of 

propositional calculus. 

• distribution axiom O (A-tB)-t{DA-tO B). 

Inference rules 

• I- A ( 1· . ) genera 1zat1on 
1-0 A 

A, A-tB 
B (Modus Ponens) • 

If we add axioms to the minimal normal 
system K, we can obtain different modal 
systems such as T adding O f -t f, S4 adding 0 
f -t f and [J f -t O O f, and S5 adding O p -t 0 
0 p to S4. We now only consider normal 
systems. 



2.3 Possible worlds semantics 

A Kripke model is a tuple (W ,R,V), where W is 
a set of state or possible-worlds, R a binary 
relation on the states of W (w is in relation with 
w' is written wRw') and Vis a truth assignment 
to the propositions of P (i.e. V : WxP......,. 
{true.false}). (W ,R) is a Kripke structure. 

We define an inductive "satisfaction" relation 
I= between a model and a formula. 

(W ,R, V) I= w g means that the model 
(W,R,V) satisfies the formula gin the world w. 

• (W,R,V) l=w p iff V(w,p)=true, peP 

• (W,R,V) l=w -,g iff (W,R,V)li=w g 

• (W,R,V) l=w (g ~ h) iff: if (W,R,V) l=wg 

then (W,R,V) l=wh 
• (W,R,V) l=w Dg iff (W,R,V) l=w· g for all 

w' satisfying wRw' 

• (W ,R, V) I= w Og iff if there is some w' 

satisfying wRw' and (W,R,V) l=w· g 
We say that a formula g is valid in a model 

(W ,R, V) or satisfiable and write (W ,R, V) I= g 
iff (W ,R, V) I= w g for all we W; we say that a 
formula g is valid in a structure (W ,R) and 
write (W ,R) I= g iff g is valid in all models 
(W,R,V); we say that a formula g is valid and 
write I= g iff g is valid in all the structures 
(W,R). 

3 Pseudo-Clausal Form Translation 

To simplify the translation, we first put formulas 
into negative normal form; this can be done 
linearly and retaining the logical equivalence. 

3.1 Negative Normal Form 

A formula is in negative normal form if the -, 
connective occurs only in the literals and the ~ 
connective does not appear. 
Theorem: Any modal formula is equivalent 
to a formula in negative normal form with the 
same size. 
Proof : The translation into negative normal form is 
classical. We just mention the modal cases: -, Of is 
translated into 0-,f and -, <r is translated into 0 -,f. The 
entire proof can be found in [Mathieu, 1993a] . • 
The.formulas are now in negative normal.form. 

3.2 Clausal Form Translation in propositional 
calcu:'.ls 

The idea of the translation is to introduce new 
proposition P to replace subformula g of the 

original formula, and to add the new clause 
P~g. We can see it on an example: 

Let O 11 Al 12A ... Al 1n)v(l21 Al22A ... Al2n)V ... V 
Om1Alm2A ... Almn) be the initial formula. 

We obtain P1 v 021Al22A ... Ahn) v ... v 
Om1Alm2A. · .Almn) /\ (P1 ~ 111) A.· .A (P1 ~ l1n) 
by replacing the subformula 011Al12A ... Al1n) by 
P1 and adding P1 ~ (l11Al12A ... Al1n). 

We obtain finally n+m+l clauses: 
P1 vP2v ... vPm 

-,Pm V hi2 -,Pm V hin 

3.3 Clausal Form Translation in modal logic 

3.3.1 Two examples 

The translation is extended to the modal case 
by retaining the "modal context" of a formula. 
This can be seen on two examples that show a 
necessary and a possible translation example: 

First example: 

Let D[(111Al12A ... Al1 0 ) v .. . v 
Om1Alm2A ... Almn)J be the initial formula. 

We obtain D [P1 v 021Ah2A ... Al2n) v ... v 
Om1Alm2A ... Almn)J /\ D(P1 ~ 111) /\ ... /\ D(P1~ 
11 n) by replacing the subformula 
(111Al12A ... Al1 0 ) by P1 and adding D [P1~ 
(l11Al12A ... Al1 0 )] distributed in D(P1 ~ 111) 
A ... A D(P1 ~ 11 0 ). 

We obtain finally n+m+l "clauses": 
D [P1 V P2 V ... V Pm] 

D (-,P1 V 111) D (-,P1 V 112) ... D(-,P1 V l1n) 

D (-,Pm V k1) D (-,Pm V \n2) ... D(-,Pm V kn) 

Second example: 

Let O [(A AB) v C] be the initial formula. 
We obtain O[P v C] A D (P ~ A) A D(P ~ B) 

by replacing the subformula A A B by P and 
adding D [P~ (A AB)] distributed in D (P ~ A) 
A D(P ~ B). 

We obtain finally four "clauses": 
0 P O C D (-,Pv A) D (-,Pv B) 

As we can see on the two examples, we 
introduce two main translations: 

Of is translated into D P A D (P ~ f) and 
Of is translated into O PAD (P ~ f). 

3.3.2 Definitions 

As the results of the translation in 
propositional calculus are clauses, the modal 

229 



I 

. ·1 

logic results are what we call pseudo-clauses. 
These pseudo-clauses are composed of pseudo
literals defined by: 
A pseudo-literal is: 

• a classical literal1 
• O(li) where li is a classical literal 
• D(l1vl2v ... vlm) where each li is a pseudo
literal. 

Example: D(BvCvF) or OB are pseudo-literals, 
but not D(AAX) and O(BvF). 

A pseudo-clause is a disjunct pl1 v . .. vplm, 
where each pli is a pseudo-literal. 
Example: D(D(AvOX)vCvOF) is pseudo-clause. 
A formula is in pseudo-clausal form if it's a 
conjunct of pseudo-clauses. As usual we 
identify a conjunct of pseudo-clauses with the 
sequence c1c2 ... Cn . 

Let ~ be a propositional modal language and 
~ a set of propositions (non modal) that don't 
belong to ~. ~ ~ is the language obtained by 
adding ~ to ~. 

A formula f of ~ and a formula h of~~ are 
:£-equivalents ( ¢:::> :t) iff for each formula k of 
~: I= f~ k if and only if I= h~k (I= f means f is 
valid in all Kripke structures). 

3.4 Translation Theorem 

Let F = u G v be a modal formula in negative 

normal form of a modal language ~, u and v are 

sequences of symbols of~ (by definition G is a 
subformula of F). Let P be a proposition of ~ 
not belonging to ~. 

"one step" Theorem 
Let F = u G v and set tp= u P v A on(P ~ G) 
where n is the number of modal operators 

governing G then F and tp are ~-equivalents. 

Proof Schema: The complete proof can be found in 
[Mathieu, 1993a]. The first step is to say that if a formula 
is valid, then there exists a model such that the formula is 
satisfiable. We show by induction of the structure of the 
formula that the following :f-equivalencies are true: 

f /\ g <=>!f (f /\ p) /\ (p-)g) 
f V g <=>!;f (f V p) /\ (p-)g) 
D (f~g) <=>:t D(p~g) /\ D(p-)f) where~ is v or/\ 

O(f~g) <=>:t O(p~g) /\ D(p-)f) where~ is v or/\ 
D(fAg) <=>!;f D(f) /\ D(g) 

O(fvg) <=>:t 0(f) v O(g) 

1 A classical literal is a non modal literal, i.e. a literal of 
propositional calculus. 

230 

(The two last equivalencies are classical modal 
equivalencies. They are added to simplify modal formulas 
and to guarantee modal formuulas to be in a minimal 
form) 
The reasoning is first to say that if a formula F is valid in 
all structure then F is valid in one model for a world wo. 

If F F-)k then I= tp-)k: It's easy to check that if we 

have a model of tp then it's a model of F, and then of k 

(for example if this model satisfies (f v p) /\ (p-)g) then it 

satisfies f (then it satisfies fvg) or it satisfies p then it 

satisfies g(then it satisfies fvg). 

If I= lF-)k then I= F-)k: If we have a model of F 

then it's possible to extend this model to the new language 

:f ~ (the language of F adding the new propositions) such 

that this extended model is a model of tp and then of k. 

This extension depends on the structure of the formula F: 

if F is aAb or avb, the extended model is chosen to satisfy 

the proposition pin the world wo and false elsewhere. if F 

is D g, the extended model is chosen to satisfy the 

proposition pin all the world in relation with wo and false 

elsewhere. if F is Og, the extended model is chosen to 

satisfy the proposition p in all the world in relation with 

wo where g is satisfies and false elsewhere. • 

Translation Theorem 

Any modal formula F can be translated into a set 
of pseudo-clauses tp such that F and tp are ~ 
equivalents. 

Proof Schema: By induction on the "one step" 
theorem. • 

4 Detailed Pseudo-Clausal Translation 

Let Pl, P2, ... , Pm be pseudo-literals and let P be 
a new proposition that doesn't belong to~- We 
are going to detail the pseudo-clausal form 
translation. 

If the formula F is a propositional one, the 
translation is: 

u v(p1AP2A . .. Apm)V v ¢:::>!;f 

u vPv v A(-, Pv p1)A ... A(-, Pv Pm) 

u A(p1VP2V .. . vpm)A v ¢:::>!;f 

u APA v A(-, Pv P1VP2V . .. Vpm) 
If F is a modal formula, let u and v be 

sequences of symbols, u containing n-1 modal 
operators, and let u' and v' be sequences of 
symbols that don't contain any modal operator. 
The translation is: 

(1) u D(u' AP1 vp2v .. . VPmA v') v ¢:::>!;f 

U D(u' APA v') VA on(-, p vp1vp2v ... Vpm) 



(2) u D(u' VP1"P2"·. ·"PmV v') v <=>£ 

uD(u' vPv v')v" on(-,P\.P1)/\ .. ·" on(-,Pvpm) 

(3) u O(u' /\p1vp2v ... vpm/\ v') v <=>£ 

U O(u' /\Pl\ v') V /\ on(-, P vp1v ... Vpm) 

(4) u O(u' vp1"P2"·. ·"PmV v') v <=>£ 

uO(u' vPv v')v "on(-,Pvp1)/\ ... /\On(-, P '-'Pm) 

(5) D (P1"P2" ·. ·"Pm) <=>£ 

D(p1)/\0(p2)/\ .. ·" D(pm) 

(6)0(p1vp2v ... vp <=>£ 

O(p1 )vO(p2)v ... vO(pm) 

Example: The formula D[(A v O(B "C))" 
DD] is translated into the following set of 
pseudo-clauses: 

D P2 DD D DD (P1 ~ B) 
DD (P1 ~ C) D(P2 ~A v O P1) 

with the following translations: 
• D[(A v O(B" C)) "DD] 

Using (4), replacing B " C by P1 and 

adding DD (P1 ~ B) "DD (P 1 ~ C) as 

B/\C is governing by D O. 

• D[(A v O P1) " DD] "DD (P1 ~ B) " 

DD (P1 ~ C) 

Using (1), replacing AvOP1 by P2 and 

adding D (P2 ~ A v O Pi) as AvOP1 is 
governing by D. 

• D [ P2 /\OD] " DD (P1 ~ B) " DD (P1 ~ 

C) " D (P2 ~ A v O P1) 

Using (5), we obtain D P2/\0D D from 

D [P2 /\OD]. 

5 A Linear Pseudo-Clausal Translation 

A recursive and anarchic use of the theorem will 
not allow the achievement of a set of modal 
pseudo-clause without exponential increase of 
the ratio of the lengths. To make this ratio 
linear, we must replace only the elementary sub
formulas (the non splittable formulas) of the 
initial formula. 
A non splitta.ble formula is a conjunction or a 
disjunct of pseudo-literals that are not sub
formulas of a pseudo-literal. 

Example: In the formula 
D ((A/\B)v(C/\D)v(E/\F)) there are three non 
splittable formulas: (A/\B), (C/\D) and (E/\F). 

Property: Any propositional modal formula f 
can be translated into a set of modal pseudo
clauses C such that the ratio of the lengths off 
and C is at most 2n+3 where n is the modal 
degree off 

Proof: If we decrease the size of the formula by one 
unit (this difference corresponds to the translation of the 
formula D(a1Aa2) into DP A D(P~a1) AD(P~a2)), we 
must add at most two clauses of a total size 2(n+2). After 
the translation, the remaining formula has a size at most 
equal to L-1, if L is the size of the initial formula. We 
obtain a ratio of size at most equal to 2n+3. • 

6 Particular case 

The pseudo-clausal form translation is 
independent of the modal system considered. 
Therefore the translation can be optimized if we 
consider a particular modal system. 

In the modal system S5, every modalities (list 
of modal operator) can be rewritten in one of the 
following: 11,-,, D, 0, -,D,-, O(see [Audureau 
et al., 1989] for example). In this case, the 
modal degree of the formula is equal to one and 
then D 11 is equivalent to 0 
A pseudo-literal is: 

• a classical literal 
• O(li) where li is a classical literal 
• D(11vl2v ... vlm) where each liis a classical 

literal. 
The detailed rules are the following 

u D(u 1

/\ Pl vp2v ... VPn /\V
1

) v <=>:t 

u D (u'" P /\V 1

) v /\ D (-, Pv P1VP2V ... vpn) 

u D (u'v PI"P2"·. ·"Pn vv') v <=>:t 
uD(u'v P vv')v /\0(-, P vp1)/\ ... /\ D(-, Pvpn) 

u O(u'/\ p1vp2v ... vpn /\V 1
) v <=>:t 

u O(u1
/\ P /\V 1

) v /\ D(-, Pv p1v ... Vpn) 

u O(u'v P1"P2"·. ·"Pn vv') v <=>:t 
uO(u'v P vv')v /\0 (-, Pv P1)/\ ... /\0 (-, Pvpn) 

and u doesn't contain any modal operator 

7 Conclusion 

We present a clausal form translation for modal 
logic. This method is based on the introduction 
of new propositions. This translation allows to 
obtain from a propositional modal formula f, a 
set of modal clauses whose length depends only 
linearly on the length of f. The set of clauses is 

231 



· 1 . . 

·, 

~ -equivalent with the initial formula i.e. 
equivalent on the language ~. This result is 
more general in the sense that it can be used not 
only to check the satisfiability of a set of 
formulas but also to produce formula with a 
consequence finding algorithm. Moreover, the 
structure of the modal formulas is retained. It 
appears that this translation should significantly 
increase the use of resolution based theorem 
provers for modal logic. 

The clausal form translation can be extended 
to multimodal logic. The complete translation 
can be found in [~~1athieu, 1993a]. It's also 
possible to define a resolution theorem prover 
using the pseudo-clausal form. This new modal 
clausal form simplifies this kind of proof 
procedure because there is no and connective 
inside modal formulas. Resolution rules are 
defined between clauses. An example can be 
found in [Mathieu, 1993b]. 

References 

[Abadi and Manna, 1990] M. Abadi et Z. 
Manna. Nonclausal Deduction in First Order 
Temporal Logic, Journal of ACM, Vol 37, N° 
2, p. 279-317 

[Audureau et al., 1989] E. Audureau, P. 
Enjalbert et L. Farinas del Cerro, Logique 
temporelle semantique et validation de 
programmes paralleles, ERi MASSON 

[Farinas and Herzig, 1991] L. Farinas Del 
Cerro, A. Herzig : Modal Deduction with 
Applications in Epistemic and Temporal 
Logics. 5th draft, to appear in: Handbook of 
Logic in Art~ficial Intelligence edited by Dov 

232 

Gabbay and Chris Hogger, Oxford University 
Press 

[Fitting, 1988] M. Fitting, First Order Modal 
Tableaux, Journal of automated Reasoning, 
4, p. 191-213 

[Mathieu, 1993a] C. Mathieu: Une procedure de 
preuve pour une logique modale non 
monotone, These de doctorat informatique de 
l'universite de Provence, Marseille 

[Mathieu, 1993b] C. Mathieu, A Resolution 
Method for a Non Monotonic Multimodal 
Logic, Proc. of the European Conference on 
Sy'mbolic and Quantitative .,A.pproaclies to 
Reasoning and Uncertainty, ECSQARU'93. 
LNCS 747 

[Plaisted and Greenbaum, 1986] D. A. Plaisted 
and S. Greenbaum: A Structure-Preserving 
Clause Form Translation, Journal of 
Symbolic Computation, 2, pp 293-304 

[Robinson, 1965] J. A. Robinson: A Machine 
Oriented Logic Based on the Resolution 
Principle, JACM, Vol 12 n°1, pp 23-41 

[Siegel, 1987] P. Siegel : Representation et 
utilisation de la connaissance en ca/cul 
propositionnel, These de Doctorat d'etat en 
Informatique, Universite d'Aix-Marseille II 

[Tseitin, 1983] G.S. Tseitin: On the Complexity 
of Derivations in Propositional Automation 
Of Reasoning 2: Classical Papers On 
Computational Logic pp 466-483 Siekmann 
Wrightson eds (1983) 

[Wallen, 1987] L.A. Wallen: Matrix Proof 
Methods for Modal Logic, Proc. of the 
International Joint Conference on Artificial 
Intelligence, Milano 



A Non-Horn ATMS Which Allows Flexible Specification of Required 
Completeness* 

Bruce Spencer 
Faculty of Computer Science 
University of New Brunswick 
Fredericton, New Brunswick 

Canada E3B 5A3 
bspencer@unb.ca 

Abstract 

In this paper, we present an ATMS that can reason 
with non-Horn clauses. The A TMS is significantly 
different from de Kleer's extended A TMS. It 
incorporates a variant of Loveland's MESON proof 
procedure and a mechanism for reducing redundant 
proofs, to improve efficiency. The ATMS is 
designed to allow users to specify whether one, some 
or all proofs are required. This, in turn, allows 
further reduction in computation. The design of the 
ATMS is described in detail, illustrating how 
reductions in proofs can be achieved. The usefulness 
of the A TMS is illustrated with examples from plan 
recognition and circuit diagnosis and through 
comparisons to de Kleer's extended A TMS and 
Stickel's PTTP. 

1 Introduction 

Current assumption-based truth maintenance systems 
(A TMS) [de Kleer 86a] used for automated reasoning are 
not sufficiently flexible. Users may want to reason with 
problems that can only be represented with disjunctions and 
so require non-Horn clauses as input to the A TMS. Further, 
with the introduction of disjunctions, the number of proofs 
to compute may be prohibitively expensive. But allowing 
users to specify whether all environments need to be 
computed or not allows a necessary reduction in work for 
long problems; it permits a complete result for problems 
that are not too time consuming. 

In this paper, we present a system that allows users to 
employ an A TMS for a wider range of problems and to 
have flexibility in deciding how the A TMS is used. Our 
solution involves integrating the MESON proof procedure 
[Loveland 78] into an ATMS, but improving on that proof 

• This work was supported by grants from NSERC. 

Robin Cohen 
Department of Computer Science 

University of Waterloo 
Waterloo, Ontario, Canada 

N2L 301 
rcohen@watdragon.uwaterloo.ca 

procedure to reduce the work. We have implemented the 
system and compared its performance to that of Stickel's 
Prolog technology theorem prover [Stickel 88] and 
de Kleer's extended ATMS [de Kleer 86b]. We 
demonstrate the usefulness of the method by discussing 
examples that benefit from the use of the system and 
comparisons to other systems. Our contribution, therefore, 
is to provide a tool for truth maintenance that is more 
efficient (in certain cases), more widely applicable (non
Horn) and flexible to allow users to sacrifice completeness 
for efficiency. 

2 Motivation 

The A TMS we designed was motivated by some problems 
in the area of plan recognition. Kautz's plan recognition 
system [Kautz 87] was significant in that it produced as 
output a list of all possible plans covered by the 
observations, rather than employing heuristics that may 
over-commit to a single interpretation. But the system 
operated with a predefined plan library; it was not designed 
to accommodate changes to the plan library in the face of 
new observations. In order to provide a system to do plan 
recognition with updates, we needed to incorporate a truth 
maintenance system, but now required one that could 
reason with the kinds of non-Horn clauses typically used to 
represent plan recognition. (Non-Horn clauses may arise to 
describe some uncertainty about the observation, as in "The 
agent is holding a key case or a wallet." A disjunction may 
also arise when drawing conclusions, "The agent is taking 
car keys either to lock the car door or to start the car.") 
Moreover, we needed to modify Kautz's plan recognition 
algorithms to accommodate truth maintenance, in order to 
manage changes to the library and the resulting candidate 
plans. To reduce redundancy in the possible proofs 

233 



· .·1 

I 

(generated to display candidate plans), we developed a 
variant of the MESON proof procedure [Loveland 78] and 
incorporated it into the A TMS. 

The solution for the plan recognition case is fairly 
detailed, including a specific description of Kautz's plan 
recognition system and the procedures required to manage 
both changes to the plan library and modifications to the 
proof procedures for generating candidate plans. In this 
paper, therefore, we will focus on a simpler example for 
illustration, as discussed below. (See [Spencer 90) and 
[Cohen and Spencer 93) for details on the plan recognition 
case.) 

The application area of circuit diagnosis is one where it 
is usefol to employ a truth maintenance system to reason 
from assumptions about whether gates are faulty or 
working to conclusions about the values of the circuits. If a 
set of conditions leads to a conclusion that is contrary to 
observations, then the assumptions underlying that 
conclusion are contradicted. This may allow us to conclude 
that other assumptions are correct. For these kinds of 
problems, it is often necessary to reason with non-Horn 
clauses - for example, it may simply be known that either a 
gate is tied high, tied low or working, leading to a 
disjunctive clause representation. The circuit diagnosis 
area is therefore one where a non-Horn A TMS is useful. In 
section 5 we comment further on these application areas, 
and the usefulness of our particular ATMS. 

3 Background 

In this section we discuss the assumption-based truth 
maintenance system (ATMS) of de Kleer's [de Kleer 86a], 
the MESON proof procedure of Loveland's [Loveland 78) 
and the ordered clause refinement of it [Spencer 91, 
Spencer 93). Where propositional logic appears, we use v 
for OR,',' for AND,-, for NOT and f- for IF. 

3.1 The ATMS 

This section illustrates the A TMS algorithms from a high 
level perspective, but for a more detailed discussion, we 
refer the reader to [de Kleer 86a]. 

The A TMS is a restricted default reasoning system 
[Reiter 80, Reiter 87, Kean and Tsiknis 93]. A default 
reasoning system computes explanations [Poole 87). Given 
a formula J, where some literals of J are designated as 
assumptions (or normal defaults), an explanation for a 
literal L is a set E of assumptions such that E u J i= L, and 
E u J is consistent. The A TMS restricts J to a set of 
propositional Horn clauses, and it computes and stores all 
minimal explanations for all positive literals in J. Each 
positive literal is stored in the A TMS with its label, a set of 
environments. An explanation is called an environment in 
ATMS terms. 

The A TMS operates by building an and/or graph from 
each of the clauses in J. Each or node contains one positive 
literal and its label. There is exactly one and node for each 

clause in J. For the clause a f- bi, ... , bn, directed arcs are 
created from the or node for bi to this and node, and one 
arc connects this and node to the or node containing a. 

If the literal a in an or node is an assumption then it 
label is initially set to { {a}} . 

For example, if the clauses are 
Xisl f- A 
Yis2 f- B 
Zis3 f- Xisl, Yis2 

where A and B are A TMS assumptions, then the ATMS 
generates the and/or graph in Figure 1. Or nodes are 
shown as literals; and nodes are shown as filled circles. 

Zis3 

Xisl Yis2 

' + A B 

Figure l And/Or Graph 

The A TMS algorithms propagate labels along the arcs 
in the graph. For instance the label for A is { {A}}, which 
is propagated to Xis 1, so that its label becomes {{A}} also. 
Similarly Yis2 gets the label { {B} }. Theses labels are 
further propagated up the graph, but they are conjoined at 
the and node, creating { {A, B}} This new label is 
propagated to Zis3. 

Propagation through the and nodes requires a 
conversion of a conjunction of labels, each of which is a 
disjunctive normal formula, to a single disjunctive normal 
formula. Non-minimal conjuncts are removed. For 
instance, if the label for Xisl was { {A, C}, {D, E}} and the 
label for Yis2 was { {A, B}, {B, C, D}}, then the new label 
for Zis3 would be { {A, B, C}, {A, B, D, E}, {B, C, D, E} }. 
The label {A, B, C, D} is removed because {A, B, C} 
subsumes it. 

There is always a distinguished node J_ that represents 
false. Horn clauses that contain no positive literals have 
the form J_ f- b1 , ••• , b0 • Any environment propagated to J_ 

is inconsistent. In ATMS terminology, it is called a 
nogood. Any superset of a nogood environment is removed 
from every label in the graph. So if {A, B, E} is a nogood, 
then the label for Zis3 will become { {A, B, C}, {B, C, D, 
E} }. 

There are two operations that can be performed with an 
A TMS: making a literal into an assumption, and adding a 
new clause to J. To make a literal L into an assumption the 
A TMS creates an or node for L, if there is not already one, 

234 



and adds the environment {L} to L's label. Then 
propagation is invoked so that all consequences of L receive 
the effect of the new environment. To perform the 
operation of adding a (- b1 , ... , b0 , the A TMS creates a new 
or node for each atom if necessary, then creates a new and 
node for the clause and finally initiates a propagation phase 
to transfer the labels from the b; to a. Further propagation 
carries the effect to the direct and indirect consequences of 
a. 

Two features of the ATMS algorithms streamline 
propagation. First, calculating new explanations does not 
require searching. All of the information needed to 
calculate the new explanations is propagated to where it is 
needed. In the example above, there was no need to search 
beyond Xisl and Yis2 to generate the label for Zis3. 

Second, redundant and inconsistent environments are 
not propagated. Since the label contains all of the 
explanations, any duplicate or subsumed explanation can 
easily be detected. Inconsistent explanations are supersets 
of a nogood, so they can be detected. In the example above 
Xis 1 has two environments and Yis2 also has two 
environments. Thus, there could have been four 
environments propagated to Zis3, but instead only two were 
actually propagated; the subsumed and inconsistent 
environments were not. 

3.2 The MESON proof procedure 

The MESON proof procedure [Loveland 78) is a variant of 
linear resolution that is convenient to automate. It operates 
on clauses, and so is not restricted to the Horn subset. We 
consider only the propositional form of MESON in this 
paper. 

We need two preliminary definitions. Let the-, function 
mean "complement of' when applied to a literal so that if a 
is a negative literal then .a is positive. A contrapositive 
rule from a clause 

a1 v ... van 
is for any i 

a; (- -,a1, .. ,,-,ai-!, ,a;+J, .. , -,an 

To build a MESON proof of a literal L from a set P of 
clauses, build a goal tree for L using contrapositives of the 
clauses. In that tree, a goal is satisfied in one of two ways. 
One way is to find a contrapositive rule with that goal to 
the left of the arrow such that all the literals to the right of 
it can be satisfied. These literals become children of L in 
the goal tree. The other way is to look for -,L among the 
ancestors ofL in the goal tree. 

Consider the clauses 
p V -,a 
p V -,b 
avb 

The contrapositive rules are 
p (- a 
-,a (- -,p 

p (-b 
-,b (- -,p 
a (- -,b 
b (- -,a 

When we build a tree to satisfy p, we use p (- a, and then 
try to satisfy a. We may choose the rule a (- -,band then 
-,b (- -,p. Since -,p has p for an ancestor, it is satisfied. 

See Figure 2. 

p p 

I I 
a b 

I 
-, b -, a 

-, p -, p 

Figure 2 MESON proof trees 

3.3 The Ordered Clause refinement of MESON 

Figure 2 shows two MESON proofs of p. Both use 
essentially the same argument, but they use different 
contrapositive rules from the same clauses. This 
redundancy is common with MESON proofs, and it grows 
worse for more complex clause sets. 

We can remove this redundancy with a simple extra 
condition. Assign a total order to the clauses. Build the 
goal tree as before. If a goal g was introduced to the tree by 
a clause with ordinal value M, and its ancestor is g was 
satisfied by a clause with ordinal value N then accept the 
complement ancestor proof if M ~ N. 

p p 

I I 2 

a b 

3 3 

-, b -, a 

2 

-, p -, p 

Accept 2~1 Reject 

Figure 3 Proofs and ordered clauses 

Figure 3 shows the effect of this condition on the proofs 
above when the clauses are ordered as 

235 



. I 

·., I 

1: p V -,a 
2: p V --,b 
3 . avb 

This restriction of MESON proofs preserves 
completeness and sometimes greatly improves efficiency 
because redundant proofs can be detected and avoided 
before they are completely built. In some cases the speed 
up is exponential. 

4 Union of the MESON proof procedure and 
an A TMS structure 

We feel it is natural to ask if the ATMS can be extended to 
employ the !v!ESO}J proof procedure. ~A~pparently h,vo 
additions are necessary. For each clause of n literals 

L1 V ... v Lu. 
there must be n justifications added to the truth 
maintenance system 

Li f- ,Li, ... , --,Li-t, --,Li+t, .. . , ,Lu 
Also some manner for reasoning by cases in the ATMS 
must be found to take the place of MESON's complement 
ancestor proof. 

4.1 Ancestor Path Graph 

We propose adding to the ATMS a separate justification 
structure, the ancestor path graph (APG), which contains 
the clauses that lead from a goal to its complementary 
ancestor in a proof tree. A justification is put in the APG 
only when the A TMS is required to prove a goal g and this 
justification is needed on a path from a literal to its 
complementary ancestor in a MESON proof of the goal. 
See Figure 4. 

g 

~ 
--,L 

l 
added to ancestor 

J 
path graph 

L 

Figure 4 Ancestor Path Justifications 

Thus our truth maintenance system has two 
components: one stores the usual A TMS graph plus the 
ancestor path graph, and the other searches for paths to add 
to the APG. Note that the searcher does not need to 
explicitly store the MESON proof, but it does need to 
traverse the implicit MESON proof. 

Note, too, that it is not necessary to traverse every 
MESON proof of the goal. We discuss this more in the 
upcoming sections. 

4.2 Propagation in the APG 

Whenever a path of clauses is added to the ancestor path 
graph, the literal on the descendent end of that path, say L, 
is treated the same way an assumption is treated in the 
normal A TMS. That is, an environment containing only L 
is added to L's own label in the APG. This environment is 
propagated to its ancestors of L. Whenever an environment 
E containing L is added to the label for L then we have 
determined that E - {L} u {L} I= --,L. But this means that 
E - {L} I= -,L so "1'C can propagate E - {L} to the o; node 
for --,L in the normal ATMS graph. This simple addition 
to the ATMS algorithms ensures that we can prove every 
true conclusion from our set of propositional clauses. That 
is, we have completeness for propositional logic in the 
A TMS. This addition requires a minor extension to the 
existing A TMS algorithms. 

4.3 Including the Ordered Clause Rfstriction 

The ordered clause restriction of MESON is only a 
restriction on what ancestor paths ought to be accepted. 
We can incorporate this restriction into our A TMS simply 
by using a given ordering of the clauses and by not adding 
any paths to the ancestor path graph if the first 
contrapositive on the path is ordered after the last one. 

ATMS Graph 

p:{{d}} 

I 

Ancestor Path 
Graph 

q:{{d}} (- - - - - - - - q: { {-i q ,d}} 

I 2 I 2 

a:{} a:{{-,q,d}} 

~ ~ 
-, b: {} c:{{d}} -, b:{ {-, q}} c:{ {d}} 

I 4 I s I 4 

-, q: {} d: { { d}} -, q: { {-, q}} 

1 1 
-, p: {} 

Figure 5 The ATMS graph and APG for --,q 

Suppose we are given the ordered clauses below, and we 
are told to assume d. 

1. p V --,q 
2. q V -,a 

236 



3. a Vb V -,C 

4. q V -,b 
5. CV -,d 

Figure 5 shows a portion of the main ATMS and/or graph, 
including some of the justifications. If only this graph were 
used, the label ofp would be empty. By using the MESON
like searcher, some contrapositives are identified to be 
added to the ancestor path graph for -,q. Notice that (q +
b), (b +- -,a, c) and (-,b +- -,q) are not added because they 
form a path rejected by the ordered clause restriction. 
Figure 5 shows the complete ancestor path graph for -,q. 
The key idea for propagation is that the label { { d}} of q is 
propagated from the ancestor path graph on the right to the 
node q in the main ATMS graph since { {-,q, d}} is the 
label for q in the ancestor path graph for -,q. Thus the 
complete label for p is { { d}}. 

4.4 The Payoff 

The integration of our variant of MESON into an ATMS 
structure now provides us with an assumption-based truth 
maintenance system that can handle non-Horn clauses as 
input and that includes a mechanism for removing 
redundant proofs, making this a tool that is reasonable to 
use for various automated reasoning tasks. In the following 
section, we elaborate on possible uses for this particular 
A TMS and compare its performance to alternate tools. 

5 Flexible completeness and examples of use 

The A TMS described in section 4 is designed to allow 
flexible use - namely, to reduce computation, when users 
specifically request any proof that works rather than 
requiring a list of all possible proofs. For any problem 
where reasoning through cases is required, we may set the 
searcher to find one, some or all possible proofs. This 
feature is illustrated in the circuit example below. 

5.1 Circuit diagnosis example 

Consider the circuit diagnosis example in Figure 6. G 1 is 
an OR gate and G2 is an AND gate. Suppose a gate can 
malfunction in one of two ways: tied high, which means it 
always produces a 1 output, or tied low, 0 output. Then 
each gate is in one of three states, working, high or low. 
We use propositional symbols, such as GlWorks to 
represent statements about the world. 

Al 

Bl 

A2 

B2 

Figure 6: A simple circuit 

Thus 
G l Works v G 1 High v G 1 Low +-

says that either G l is working or it is low or it is high. 
These four clauses express the OR truth table about G 1, 

assuming that G 1 works. B 1 isO says that B 1 's value is 0. 
BlisO +- GI Works, AlisO, A2is0 

Blisl +- GI Works, AlisO, A2isl 

Bl isl+- GlWorks, Alis!, A2is0 
B I is 1 +- GI W arks, A I is l , A2 isl 

Similar clauses are provided for G2. 
The next clauses describe the effect of faults on the 

output of a gate. 
BlisO +- GlLow 
Bl isl+- GlHigh 

Similar clauses are provided for G2. 

Al 
0 BI 

A2 
0 

B2 

Figure 7 Initial Values (Time l) 

C 

Suppose the input values are set as in Figure 7 and we 
observe that C's value is 1. One diagnosis of this error is 
that G l is tied high while G2 works; another is that G2 is 
tied high. These are the only possibilities. Using a truth 
maintenance system, if a set of conditions leads to a 
conclusion that is contrary to observations, then the 
assumptions underlying that conclusion are contradicted 
(declared nogood). This may allow us to conclude that 
other assumptions are correct. After the first observation, 
we conclude that G2 is either high or working. We have 
reduced the possible states from nine (three possible states 
for each of two gates) to four: { {GlHigh, G2Works}, 
{GlWorks, G2High}, {G!High, G2High}, {G!Low, 
G2High} }. 

A user who required merely one possible proof could 
simply terminate interaction with the system at this point. 
In general with circuit diagnosis, a user would test a further 
observation and narrow down the range of possibilities. 
(This step-at-a-time request for proofs is typical of the plan 
recognition setting as well, where each new observation 
constrains the interpretation of possible plans.) 

Continuing with the example, to further reduce the 
possibilities, we need more observations. Suppose we set 
B2 to O and then observe C is 0, as in Figure 8. 

Then we can eliminate the conclusion that G2 is tied 
high, leaving just one possible diagnosis, that G 1 is tied 
high and G2 is working. 

237 



·I 

' ·.J 

Bl 

C 
0 

82 
0 

Figure 8 Values at Time 2 

The second observation leads us to reject the assumption 
that G2 is low, nogood(G2Low), so we can be sure it is 
working. Returning to the first situation, since G2 works, 
we can be sure B 1 is 1 which implies that G 1 must be high. 

We described the circuit diagnosis example to our truth 
maintenance system in clausal notation. The clauses 
described the action of each gate under working conditions 
and under each of the faulty conditions. It was told to 
assume GlWorks, GlHigh, GlLow, G2Works, G2High 
and G2Low. Each of the observed inputs were entered as a 
single-literal clause with a time stamp, such as A 1 isO( 1 ). 
Finally clauses describing the observed outputs were added: 

obs+- Cisl(l), Cis0(2). 
The label generated for obs after all of these additions was 

{ {GI High, G2Works}} 
which concurs with our analysis. In fact, for this example, 
when all possible proofs were requested, following two 
separate observations, no extra searching was needed, and 
no paths were added to the ancestor path graph. 
Occasionally reasoning by cases is not needed to reach 
desired conclusions from non-Horn clauses. 

6 Comparisons to other systems 

6.1 Comparison with de Kleer's extended ATMS 

The extended A TMS [ de Kleer 86b] and our proposed truth 
maintenance system compute sound, complete, consistent 
and minimal explanations of literals. De Kleer's ex tended 
A TMS allows the problem solver to express disjunctions 
only in a restricted form 

choose{A1 ,.,.,An} 
where each A; is a positive A TMS assumption. It is possible 
to encode any clause as a set of Horn clauses and a set of 
disjunctions of positive assumptions. Four encoding 
methods are given by de Kleer; each method involves 
introducing new assumptions that are not relevant to the 
problem at hand. These so-called encoding assumptions 
ought not to be revealed to the problem solver, so any 
explanation that involves an encoding assumption should 
be ignored. 

In order to reason with disjunctions, two new procedures 
arc needed, positive hyperresolution and negative 
hyperresolution. The negative hyperresolution procedure 
finds nogoods that arise as a consequence of disjunctions. 
It implements the following rule: 

choose{A1, ... , An} 
nogood ai where Ai E ai and Aj:;t:i ~ ai for all i 

nogood ui(ai - {Ai}) 

In order to perform this step we must find a choose 
statement such that for each assumption there is a nogood 
with a singleton intersection with the choose. Then from 
the remainders of these no goods we build a new nogood. 

To discover all nogoods with the negative 
hyperresolution rule, this procedure must be applied 
whenever a new choose or a new nogood is given or 
discovered. Whenever the procedure succeeds, a new 
nogood is discovered, and the search must begin anew. 

The positive hyperresolution procedure finds the new 
environments for propositions. See [ de Kleer 86b] for more 
details. 

Various special cases of each of these rules can be 
efficiently implemented. For example when a choose is a 
singleton, it can be removed from each nogood. The 
general cases, however, are still necessary. 

The hyperresolution procedures in the extended ATMS 
are considered expensive [de Kleer 86b, de Kleer 88]. 
There are four reasons for this: 

First, encoding adds work. Besides the cost of 
automatically translating non-Horn clauses into ATMS 
inputs, each assumption introduced for encoding adds some 
work to the A TMS. In the worst case, each assumption 
could double the amount of work, since the amount of work 
is proportional to the number of environments, which is 
exponential in the number of assumptions. 

Second, hyperresolution must be applied frequently, to 
guarantee consistency and completeness. Both positive 
hyperresolution and negative hyperresolution will be 
invoked each time a new choose is declared and each time 
a new nogood is discovered. Positive hyperresolution will 
also be invoked as a new env ironment is added to a label, 
which is the most common operation. 

Third, new information is not propagated to where it is 
needed. Hyperresolution must search for relevant 
information. For instance, a new choose requires positive 
hyperresolution to search the entire database, and parts of it 
many times. This is contrary to the design philosophy of 
the basic A TMS, where discovered information is 
propagated to all of the places it is needed. 

Last, hyperresolution might produce uninteresting 
information. Positive hyperresolution may add 
environments containing encoding assumptions, that will 
be ignored on output. Negative hyperresolution may 
discover nogoods with encoding assumptions, so 
explanations with them would not have been reported 
anyway. In these cases the results are not relevant to the 
problem solver. 

Our solution, with ancestor path graphs, does not 
exhibit these causes of inefficiency. Since the input form of 
the clauses is not restricted, there are no encoding 

238 



assumptions. This covers the first and last causes. The 
second does not apply. As for the third, our system does 
propagate discovered information to where it is needed, and 
integrates well with the basic A TMS. 

Three criticisms can be raised against our solution. Our 
and/or graph contains all of the contrapositives of the 
clauses and additional and/or graphs, while de Kleer's 
extended ATMS just contains one form of each clause. 
This will increase our storage requirements and also the 
amount of propagation that is needed. It is difficult to 
compare how this affects the overall runtime however, 
since the propagation in our system is doing the same work 
that is done by searching in de Kleer's system. Next, our 
system requires an extra search phase for ancestor paths. 
We pointed out how this search can be controlled, by use of 
ordered clauses, and that it is not always necessary to do it. 
Our circuit example shows that useful conclusions can still 
be drawn. Finally our solution finds explanations for all 
positive and negative literals, whereas de Kleer's only 
explains positive literals. This additional work may be an 
advantage of our system, when there is interest in 
explanations for negative literals. What our system is 
designed to do, therefore, is to be generally applicable to a 
wide range of problems, in tune with the design of the basic 
ATMS. 

The cases where additional computation is required are 
those cases where the computation is necessary, for 
completeness and the system is built to take advantage of 
reduction in proofs, wherever possible. 

6.2 Comparison with PTTP 

There are advantages of our ordered clause restriction 
which other theorem provers do not incorporate. Basically, 
a conclusion may be reached much faster, since redundant 
parts of the search space can be detected and avoided. 

For example Stickel's Prolog Technology Theorem 
Prover, PTTP [Stickel 88] was asked to find one proof of s 
from the clauses below: 

s ~ p, q, r, w 

p~q. r 
q~p, r 
r~p,q 

pv q ~ r 
pv r~q 
qv r~p 

pv qv r ~ 
s 

The time was long ( 1.7 seconds) because PTTP first chose 
the first clause to prove s. That clause was doomed to fail 
because there is no clause mentioning w. On backtracking 
the final clause is tried, the unit clause s, and the proof 
succeeds 

Our system was given the same set of clauses and the 
searcher was asked to find one proof of s. It, too, attempted 
the first clause first , but because of the ordered clause 

restriction, it concluded that there was no proof with that 
clause in 0.67 seconds. It then went on to find the proof. 
(All programs are written in Quintus Prolog 3.1.1 run on a 
Sun 670MP.) 

This example illustrates that in cases where one proof is 
required there may be additional expense, and that this 
expense can be reduced by the ordered clause restriction. 

7 Conclusions 

We have presented an ATMS which can reason with non
Horn clauses and integrates well with de Kleer's original 
A TMS. In developing this A TMS we have shown how to 
integrate a MESON type proof procedure, but to do so by 
incorporating a restriction of the amount of search that has 
to be performed. This restriction makes our system faster in 
some cases than PTTP, a high performance reasoning 
system. Moreover, the A TMS is designed to permit a "pay 
as you go" policy for computing a complete set of 
environments. Users have the flexibility to further reduce 
computation by requiring one or some of a set of proofs, 
foregoing completeness. We feel that the resulting ATMS is 
useful, therefore, for reasoning with a variety of problems 
in an efficient and flexible manner. 

References 

[Cohen and Spencer 93] Robin Cohen and Bruce Spencer, 
Specifying and Updating Plan Libraries for Plan 
Recognition Tasks, In Proceedings of the IEEE 
Conference on Artificial Intelligence Applications, 
Orlando, Florida, 27-33, March 1993. 

[de Kleer 86a]. Johan de Kleer, An assumption-based Truth 
Maintenance System. Artificial Intelligence, 28: 163-
196, 1986. 

[ de Kleer 86b] Johan de Kleer, Ex tending the A TMS. 
Artificial Intelligence, 28: 128-162, 1986 

[de Kleer 88] Johan de Kleer. A General Labeling 
Algorithm for Assumption-based Truth Maintenance. In 
Proceedings AAAl-88 Seventh National Conference on 
Artificial Intelligence, 188-192, 1988. 

[Kautz 87] Henry Kautz, A Formal Theory of Plan 
Recognition. Ph.D. Thesis, University of Rochester, 
1987. Available as Technical Report 215. 

[Kean and Tsiknis 93] Alex Kean and George Tsiknis, 
Clause Management Systems (CMS), Computational 
Intelligence, Blackwell Publishers, Cambridge MA and 
Oxford UK, 9: 11 -40, 1993. 

[Loveland 78] Donald Loveland. Automated Theorem 
Proving: A logical Basis. North Holland, Amsterdam, 
1978. 

[Poole 87) David Poole, Randy Goebel and Romas 
Aleliunas. Theorist: a logical reasoning system for 
defaults and diagnosis. In Nick Cercone and Gord 
McCalla, editors, The Knowledge Frontier: Essays in 

239 



. 1 

the Representation of Knowledge, 331-352. Springer 
Verlag, New York, 1987. 

[Reiter 80] Raymond Reiter. Logic for Default Reasoning. 
Artificial Intelligence, 13:81 -132, 1980. 

[Reiter and de Kleer 87] Raymond Reiter and Johan de 
Kleer. Foundations of assumption-based truth 
maintenance systems: Preliminary Report. in 
Proceedings AAAI-87 Sixth National Conference on 
Artificial Intelligence, 183-188, 1987. 

[Spencer 90] Bruce Spencer, Assimilation in Plan 
Recognition via Truth Maintenance with Reduced 
Redundancy, University of Waterloo Ph.D. Thesis, 
available as Technical Report TR90-060, Faculty of 

Computer Science, University of New Brunswick, 
Fredericton, New Brunswick, Canada. 

[Spencer 91] Bruce Spencer, Linear Resolution with 
Ordered Clauses. In Proceedings of the Workshop on 
Disjunctive Logic Programming, held in conjunction 
with the International Logic Programming Symposium, 
1991. 

[Spencer 93] Bruce Spencer, The Ordered Clause 
Restriction of Model Elimination and SLI. In 
Proceedings of the International Logic Programming 
Symposium, 678, 1993. 

[Stickel 88] Mark Stickel, A Prolog Technology Theorem 
Prover. Journal of Automated Reasoning, 4:353-380, 
1989 . 

240 



An Event-Based Abductive Model of Update 

Craig Boutilier 
Department of Computer Science 

University of British Columbia 
Vancouver, British Columbia 

CANADA, V6T 1Z4 
email: cebly@cs.ubc.ca 

Abstract 

The Katsuno and Mendelzon theory of be
lief update has been proposed as a reason
able model for revising beliefs about a chang
ing world. However, the semantics of update 
relies on information which is not readily avail
able. We describe an alternative semantical 
view of update in which observations are in
corporated into a belief set by: a) explaining 
the observation in terms of a set of plausible 
events that might have caused that observation; 
and b) predicting further consequences of those 
explanations. We also allow the possibility of 
conditional explanations. We show that this 
picture naturally induces an update operator 
under certain assumptions. However, we argue 
that these assumptions are not always reason
able, and they restrict our ability to integrate 
update with other forms of revision when rea
soning about action . 

1 Introduction 

Reasoning about action and change has been a central 
focus of research in AI for many years, dating back at 
least to the origins of the situation calculus (McCarthy 
and Hayes 1969). For example, a planning agent must 
be able to predict the effects of its actions on the world 
in order to verify whether a potential plan achieves a 
desired goal. Actions can be viewed as effecting changes 
in the world, and agents must be able to change their 
beliefs about the world to reflect such considerations. 

One of the most influential theories of belief change 
has been the AGM theory proposed by Alchourr6n, 
Gardenfors and Makinson (1985). Imagine an agent pos
sesses a belief set or knowledge base KB. The AGM the
ory provides a set of postulates constraining the possible 
ways in which the agent can change KB in order to ac
commodate a new belief A . Notice that this revision of 
KB need not be straightforward, for the new belief A 
may conflict with beliefs in KB. It was pointed out by 
Winslett (1988) that the AGM theory is inappropriate 
for reasoning about changes in belief due to the evolution 
of a changing world. A new form of belief change dubbed 
update was proposed in full generality by Katsuno and 

Mendelzon (1991), who provided a set of postulates, dis
tinct from the AGM postulates, that characterize this 
type of belief change. 

Semantically, Katsuno and Mendelzon have shown 
that belief update can be viewed by positing a family 
of orderings over possible worlds, with each ordering be
ing indexed by some world. The ordering associated with 
a specific world can be viewed intuitively as describing 
the most plausible ways in which that world can change. 
To update a knowledge base KB with some proposition 
A, the worlds admitted by KB are each updated by find
ing the most plausible change associated with that world 
satisfying A ( we describe this formally below). 

In this paper, we present an abductive view of up
date that breaks the Katsuno-Mendelzon semantics into 
smaller, more primitive parts. We argue that such a 
model provides a more natural perspective on belief up
date in response to changes in the world, and exploits 
information that is more readily available. In general, 
we take update to be a two stage process of explanation 
followed by prediction: first, an agent explains an ob
servation by postulating some plausible event or events 
that could have caused that observation to hold, rela
tive to its initial state of knowledge; second, an agent 
predicts the (further) consequences of these events, rela
tive to this initial state. We formalize this notion in an 
abstract manner obtaining a class of explanation-change 
operators. We show that explanation-change satisfies 
some of the properties of update operators determined 
by the Katsuno-Mendelzon (KM) theory. Furthermore, 
if we make two additional assumptions our model deter
mines a KM update operator. However, we will argue 
that these additional assumptions are not always appro
priate. In particular, should we intend to use update to 
reason about action, and have the results of actions pro
vide information about the state of the world, the general 
form of update has to be modified. This modification is 
pursued in (Boutilier 1993; Boutilier 1994b ). 

We also briefly describe and characterize a special class 
of update operators. Finally, we compare our construc
tion to the model of update proposed by del Val and 
Shoham (1992). Proofs of the results can be found in 
(Boutilier 1994b). 

241 



·I 

2 The Semantics of Update 

Katsuno and Mendelzon (1991) have proposed a gen
eral characterization of belief update. Update is dis
tinguished from belief revision conceptually by viewing 
update as reflecting belief change in response to changes 
in the world, whereas revision is thought to be more ap
propriate for changing (possibly erroneous) beliefs about 
a static world. Update is described by Katsuno and 
Mendelzon with a set of postulates constraining accept
able update operators and a possible worlds semantics, 
which we review here. 

We assume the existence of some knowledge base KB, 
perhaps the set of beliefs held by an agent about the cur
rent state of the world. We take our underlying logic to 
be propositional, based on a finitely generated language 
LcPL· We use W to denote the set of possible worlds (or 
models) suitable for this language. 

If some new fact A is observed in response to some ( un
specified) change in the world (i.e., some action or event 
occurrence), then the formula KB o A denotes the new 
belief set incorporating this change. The KM postulates 
(Katsuno and Mendelzon 1991) governing admissible up
date operators are 

(Ul) KBoA p A 

(U2) If KB p A then KB o A is equivalent to KB 

(U3) If KB and A are satisfiable, then KBoA is satis-
fiable 

(U4) If p A= B then KBoA = KBoB 

(U5) (KBoA)/\.B p KBo(A/\.B) 

(U6) If KBoA p Band KBoB p A then 
KBoA = KBoB 

(U7) If KB is complete then 
(KBoA) /\. (KBoB) p KBo(A VB) 

(US) (KB1 V KB2) oA = (KB1 oA) V (KB2 oA) 
A better understanding of the mechanism underly

ing update can be achieved by considering the possible 
worlds semantics described by Katsuno and Mendelzon, 
which they show to be equivalent to the postulates. For 
any proposition A, let IIAII denote the set of worlds satis
fying A. Clearly, IIKBII represents the set of possibilities 
we are prepared to accept as the actual state of affairs. 
Since observation O is the result of some change in the 
actual world, we ought to consider, for each possibility 
w E II KBII , the most plausible way (or ways) in which w 
might have changed in order to make O true. To cap
ture this intuition , Katsuno and Mendelzon postulate a 
family of preorders 

where each $w is a reflexive, transitive relation over W. 
We interpret each such relation as follows: if u $w v 
then u is at least as plausible a change relative to w as is 
v. Finally, a faithfulness condition is imposed: for every 
world w, the preorder $w has was a minimum element; 
that is, w <w v for all v -:j:. w. 

Naturally, the most plausible candidate changes in w 
that result in O are those worlds v satisfying O that are 
minimal in the relation $w . The set of such minimal 

~-, 
I ' I 

' I 
I I 

I I 
I Dept(P) I Dept(P) Dept(P) 

I 
I Sa1(40) I Sa1(50) Sa1(50) I I 

I Lev(N) I Lev(N) Lev(N+l) 
I I 
I 

0 0 o-I 

w w' w" 

Dept(F) Dept(F) Dept(F) 

I Sa1(40) 
I 

Sa1(45) Sa1(50) 
I Lev(N) I Lev(N) Lev(N+l) 
I I 
I • I • ·-I 

I I v' v" IV I 
\ I 

\4!]/ 

Figure 1: An Update Model 

0-worlds for each relation $w, and each w E IIKBII , 
intuitively capture the situations we ought to accept as 
possible when updating KB with 0 . In other words, 

IIKBoOII = LJ {min{v : v F O}} <.., 
we 11 KB 11 -

where min$.., X is the set of minimal elements (w.r.t . 
$w) within X. Katsuno and Mendelzon show that such 
a formulation of update captures exactly the same class 
of change operators as the postulates; thus, we can treat 
this as an appropriate semantics for update. 

As an example, consider the following scenario illus
trating the application of the KM update semantics to 
database update. We know certain facts about an em
ployee Fred: his salary is $40,000, his job classification 
is level N, and so on. But, we are unsure whether he 
works for the Purchasing department or the Finance de
partment. Thus, our KB admits two possibilities, wand 
v, reflecting this uncertainty ( see Figure 1) . If the order
ings $w and $v are as indicated in the figure, then KB 
updated with the fact that Fred's salary is $50,000 con
tains, among other things, the facts Dept (P) V Dept (F), 
Dept(P) :J Level(!) and Dept(F) :J Level(N+1). This 
is due to the fact that the closest world to w with the new 
salary is w', while the closest to vis v"; hence, KB is de
termined by the set of worlds { w', v"}. This may reflect 
the fact that such a raise comes only with a promotion 
in Finance, whereas promotions are rare and raises more 
frequent in Purchasing. 

3 Update as Explanation 

3.1 Plausible Causes of Observations 

The orderings upon which update semantics are based 
are interpreted as describing the most plausible manner 
in which that world might change. Given the role of 
update, this interpretation seems correct: worlds closer 
to w in the ordering $w are somehow more plausible 
states into which w might evolve. It seems reasonable 
then to update a KB by considering those most plausible 
changes. In our example above, if Fred is in Purchasing 
(world w), then a change of salary of this type is more 

242 



likely to come without a change in rank ( w') than with 
a change in rank ( w"). 

While reasonable, it begs the question: why would 
one change be judged more plausible than another? In
tuitively, it seems that there are certain events or actions 
that would cause a change in w, and that those leading 
to w' are more plausible than those leading to w" . For 
example, the event RAISE might be more probable than 
the event PROMOTION (at least, in Purchasing). 

Given an observation Sal(60000) - in this case an 
update transaction - an agent might come to believe 
Dept(P) :::> Level(N) (as we have in our example) as fol
lows. Assuming Dept (P), the most plausible event that 
might cause such a change in salary is RAISE (rather 
than PROMOTION). Thus RAISE is the best explanation 
for the observation. Adopting this explanation has, as 
a further consequence, that job rank (and department) 
stays the same; thus, belief in Level(N) remains. In con
trast, RAISE (to $50,000) is less likely than PROMOTION in 
the Finance department. 1 Thus, PROMOTION is the most 
plausible explanation for the observation, which has the 
additional consequence Level (N+1) . Thus, the two be
liefs Dept(P) :::> Level(N) and Dept(F) :::> Level(l+1) 
hold in the updated belief state. 

This leads to a very different view of update. When 
confronted with an observation or update O, an agent 
seeks an explanation of O, in terms of some external 
event that would have caused O had it occurred.2 While 
many events might explain O in this way, some will be 
more plausible than others, and it will be those the agent 
adopts. Given such an explanation, one may then pro
ceed to predict further consequences of these events, and 
produce the set of beliefs arising from the observation. 
With this point of view, the essence of update is captured 
by a two-step process: a) explanation of the observation 
in terms of some event(s); and b) prediction of the (ad
ditional) consequences of that event. 

Before formalizing this idea, it is important to real
ize that this perspective is very natural. It is reason
able to suppose that an agent (or builder of a KB) has 
ready access to some description of the preconditions and 
effects of the possible events in a given domain. This 
assumption underlies all work in classical planning and 
reasoning about action, ranging from STRIPS (Fikes and 
Nilsson 1971) to the situation calculus (McCarthy and 
Hayes 1969; Reiter 1991) to more sophisticated prob
abilistic representations (Kushmerick, Hanks and Weld 
1993; Dean et al. 1993). With such information, the 
predictions associated with explanations ( event occur
rences) can be easily determined. Furthermore, an or
dering over the relative likelihood of possible events also 
seems something which an agent or system designer or 
user might easily postulate. This should certainly be 
easier to construct than a direct ordering over worlds 

1 In our example, we assume that a raise to $45,000 is most 
likely (world v'), but that a higher raise is unlikely without 
a promotion. 

2 In this paper we will usually think of (external) events 
as the impetus for change, rather than actions over which 
the agent has direct control ( or of which the agent has direct 
knowledge). 

according to their likelihood of "occurring." Indeed, we 
will show that such an ordering over worlds is derivable 
from this more readily available information. 

This provides a possible interpretation of the update 
process, and in our view, a very natural one.3 Further
more, as we describe in the concluding section ( and in 
detail in (Boutilier 1993)), by breaking update into two 
components, we will be able to extend the type of rea
soning about action one can perform in this setting. 

Using explanation for reasoning about action has been 
proposed by a number of people, especially within the 
framework of the situation calculus. Work on tempo
ral projection and prediction failures often exploits the 
notion of explanation. For instance, Morgenstern and 
Stein (1988) propose a model where an observation that 
conflicts with the predicted effects of an agent's actions 
causes the agent to infer the existence of some external 
event occurrence. Shanahan (1993) proposes a model 
with a similar motivation, but adopts a truly abductive 
model (where candidate events are hypothesized rather 
than deduced from an observation) . Our model will be 
rather different in several ways. First, explanations will 
be conditional (i.e., explaining events are conditioned 
on certain propositions). Second, the criteria used for 
adopting explaining events will be based on the relative 
plausibility of events. Third, we will not limit attention 
to any particular model of action (such as the situation 
calculus). Finally, our goal is to show how explanation 
can account for the update of a knowledge base. We 
should point out that Reiter (1992, and personal com
munication) has informally suggested that update can 
be viewed as explanation to events causing an observa
tion. We will now proceed to show that this is, in fact, 
the case. 

3.2 A Formalization 

To capture update in terms of explanation, we require 
two ingredients missing from the Katsuno-Mendelzon ac
count: a set of events that cause changes, and an event 
ordering that reflects the relative plausibility of different 
event occurrences. 

We assume a finitely generated propositional language 
with an associated set of worlds W. Let E be a finite 
event set, the elements of which are primitive events. In 
general, e EE is a mapping e: W-> 2w. For w E W 
and e E E, we use e( w) to denote the result of event e oc
curring in world w. This is a set of worlds, each of which 
is a possible outcome of e occurring at w. An event with 
more than one possible outcome is nondeterministic. A 
deterministic event is any e E E such that e( w) is a sin
gleton set for each w E W. A deterministic event set is 
an event set all of whose events are deterministic. We 
assume that events are total functions on the domain W, 

3 This should not be taken as a criticism of update for 
requiring that a reasoning agent have an explicitly specified 
family of preorders at its disposal. One can reason about 
update with syntactic constraints or by any other means. The 
point is that, from a semantic point of view, the preorders and 
syntactic constraints seem to be induced by considerations 
about action effects and plausible event occurrences. 

243 



I 

I 

so that every event can be applied to each world.4 

Typically, events are not specified as mappings of this 
type. Rather, for each event ( or action), a list of con
ditions are provided that influence the outcome of the 
event. For each such condition, a set of effects is speci
fied. An example of this is the classical situation calculus 
representation of actions (in the deterministic case). An
other is the modified STRIPS representation presented 
in (Kushmerick, Hanks and Weld 1993). The key fea
ture of these, and other representations, is that each ac
tion/ event induces a function between worlds (or worlds 
and sets of worlds). 5 Thus, most action representations 
will fit within this abstract model. 

As a further generalization, if events are nondetermin
istic, we might suppose that the possible outcomes are 
ranked by probability or plausibility. We set aside this 
complication (but see (Boutilier 1993)). 

In order to explain certain observations by appeal to 
plausible event occurrences, we need some metric for 
ranking such explanations. We assume that the events in 
the set E are ranked by plausibility; hence, we postulate 
an indexed family of event orderings 

{jw:wEW} 

over E. We take e jw f to mean that event e is at least 
as plausible (or likely to occur) as event f in world w. 
We require that jw be a preorder for each w, and will 
occasionally assume that jw is a total preorder. 

Putting these ingredients together, we have the follow
ing definitions: 
Definition An event model is a triple (W, E, j ), where 

W is a set of worlds, E is a set of events (map
pings e : W -> 2w) and j is an indexed family of 
events orderings {jw: w E W} (where each jw is a 
preorder over E). 

Definition A deterministic event model is an event 
model where every e E E is deterministic (i.e., for 
all w E W, e(w) = {v} for some v E W). A to
tal order event model is an event model where each 
event ordering jw is a total preorder over E. 

Given an event model, an agent is able to incorporate 
a new piece of information through a process of explana
tion and prediction as discussed above. An explanation 
of an observation is some event e that, when applied to 
the world under investigation, possibly causes 0. How
ever, the agent should be interested only in the most 
plausible such events. 

Definition Let O be some proposition and w E W. The 
set of weak explanations of O relative to w is 

Expl(O, w ) = min{e EE: e(w) n 11 011 f. 0} 
jw 

4It is best to think of events as analogous to "action at
tempts." If the preconditions for the "successful" occurrence 
of the event are not true at a given world, then the effects 
can be null, or unpredictable or something like that. Allow
ing preconditions is a trivial and uninteresting addition for 
our purposes here. 

5 In the case of the situation calculus, dynamic logic or 
other temporal formalisms, one would require some solution 
to the frame problem. For example, the solution of Reiter 
(1991) induces just such a mapping. 

e @ 0 

w~:~o 
@ 0 

Figure 2: Weak and Strong Explanations 

An event e is a weak explanation of O relative to w 
iff e E E:i:pl(O, w). If Expl(O, w) = 0, we say that 
0 is unexplainable relative to w. 

In other words, e explains O in a world w just when there 
is some possible result of e that satisfies O, and no more 
plausible event e' has this feature. Such explanations are 
called weak explanations because, before the observation 
0 is made, an agent would not, in general, be able to 
predict that O would result from e. The agent merely 
knows that O is true in some possible outcome. A strong 
explanation is similar, but is predictive: each outcome 
of e satisfies O. 

Definition The set of strong explanations of O relative 
tow is 

~in{e EE : e(w) ~ 11 0 11 } 
_w 

The distinction between weak and strong explanations 
is very similar to that made between consistency-based 
diagnosis (Reiter 1987) and predictive ( or abductive) di
agnosis (Poole 1988). This distinction is illustrated in 
Figure 2. Both e and / are nondeterministic events. 
Event e strongly explains O, while f weakly explains 0 
but does not strongly explain O. We are interested here 
in weak explanations, for these seem most appropriate 
when dealing with nondeterministic events. However, we 
note the following: 

Proposition 1 If e is a deterministic event, then e 
weakly explains O if! e strongly explains O. 

For a particular world w, Expl(O, w) denotes those 
most plausible events that would cause O to be true. 
The possibilities admitted by such a set of explanations 
are the possible results of each of these events; that is: 

Definition The result of O relative to w is the set of 
worlds 

Res(O, w) = LJ{e(w) n IIOII : e E Expl(O, w)} 

Note that if O is unexplainable relative to w, then 
Res(O, w) = 0. Thus, that w might have evolved into a 
world satisfying O is impossible. 

Taking a cue from the Katsuno-Mendelzon update se
mantics, the result of an observation with respect to a 
knowledge base KB is obtained by considering all plau
sible evolutions of each world w E IIKBII , However, if 0 
is unexplainable for some w E IIKBII , we take O to be 
unexplainable relative to KB as a whole. 

244 



, , , , 

I 
I 

' V 
I I 

', KB,' 
I 

\ I ,_, 

v' 

Figure 3: An Event Ordering 

Definition The result of O relative to KB is the set of 
worlds 

Res(O, KB)= LJ{Res(O, w): w E IIKBII} 
If Res(O, w) = 0 for some w E IIKBII, we let 
Res(O, KB)= 0. 

The motivation for this last condition, that O must be 
explainable relative to every w E IIKBII, comes from up
date semantics itself. In update, the updated KB is con
structed by considering the possible evolution of every 
possibility admitted by KB. We might have allowed the 
result of O to be nontrivial even if some worlds could not 
evolve so as to satisfy 0, and define Res(O, KB) with
out this last condition. However, we adopt the current 
approach for two reasons: first, our goal is to pursue 
the analogy with update semantics; and second, when 
we drop this restriction, we intend to make this defini
tion even weaker than we can by simply dropping the 
last condition. In (Boutilier 1993), we consider how to 
exclude both impossible and implausible evolutions. We 
elaborate on this in the concluding section. 

With such a result function, we can now define the 
explanation-change operator relative to a given event 
model, which determines the consequences of adopting 
an observation. 

Definition The explanation-change operator induced 
by an event model EM is <>EM: 

KB<>EM O = {A E LcPL: Res(O, KB) FA} 

In our example, we have two event types, Promotion and 
Raise. A PROM event (promotion of one level) ensures 
an employee's rank is increased and his salary is raised 
$10,000 . Events RS(5) and RS(10) raise salary $5000 
and $10,000, respectively. We assume the following event 
orderings for each department : 

Purchasing: RS(10) -<PROM-< RS(5) 
Finance: RS(5) -<PROM-< RS(10) 

This is illustrated in Figure 3, where shorter event arcs 
depict more plausible occurrences. The explanation rel
ative to purchasing is a raise, while for finance it is a 

promotion. The updated KB' is determined by w' and 
v" and induces the beliefs described earlier. 

As another example, imagine that a warehouse control 
agent expects a series of trucks to pickup and deliver 
certain shipments, but at time t1 an expected truck A 
has not arrived. Assume that this might be explained 
by snow on Route 1 or a breakdown. If snow is the most 
plausible of the two events, the agent might reach further 
conclusions by predicting the consequences of that event; 
for example, trucks B and D will also be delayed since 
they use the same route. The proper explanation and 
subsequent predictions are crucial, for they will impact 
on the agent's decision regarding staffing, scheduling and 
so on. Notice also that such explanations are defeasible, 
which is reflected in the defeasibility of update: if A is 
late but B is on time, then snow is no longer plausible 
(therefore, e.g., D will not be delayed). 

We should remark at this point that the intent of this 
model is to provide an abductive semantic model for up
date, not a computational model. Just as we do not 
expect actions or events to be represented as abstract 
functions between worlds, explanations will not typically 
be generated on a world by world basis. Usually, the 
same event will explain an observation for a large subset 
of the worlds with IIKBII - In particular, we expect that 
IIKBII to be partitioned according to some small number 
of propositions ( or conditions) for which a certain event 
is deemed to be a reasonable explanation. Indeed, these 
can naturally be viewed as conditional explanations, for 
example, "If Fred is in Finance, a PROMOTION must have 
occurred; but otherwise a RAISE must have occurred." 
How such conditional explanations should be generated 
will be intimately tied to the action or event representa
tion chosen, and is beyond the scope of this paper . 

3.3 Relationship to Update 
We are interested in the question of whether the 
explanation-change operator satisfies the update postu
lates. As presented above, this is not the case. 

Proposition 2 Let <>EM be the explanation-change op
erator induced by some event model. Then <>EM satisfies 
postulates {Ul}, (U4), (U6) and (U7). 

There are two reasons why the remainder of the postu
lates are not satisfied in general, hence two assumptions 
that can be made to ensure that <>EM is an update op
erator. 

The first difference in the explanation-change opera
tor is reflected in the failure of (U2), which asserts that 
KB<> A is equivalent to KB whenever KB entails A. A 
simple example illustrates why this cannot be the case 
is general. Consider a KB satisfied by a single world w 
where w F A. Postulate (U2) requires that the obser
vation of A induce no change in KB. However, it may 
be that the most plausible event in the ordering :::Sw is 
e, where e(w) = {v} for some distinct world v. But as
suming v FA, then KB <>EM A is captured by v and is 
thus distinct from w. In order to conform to postulate 
(U2), we must make the assumption that no change in 
w is more plausible than change induced by some event. 
Formally, we postulate null events and make these most 
plausible. 

245 



I 

I 

Definition The null event is an event n, where n( w ) = 
{ w} for all w E W . 

Definition Let EM = (W, E, ~ ) be an event model. 
EM is centered iff the null event n E E and, for 
each w E Wand e EE (e =/= n) we haven -<w e. 

Thus, a centered event model is one in which the null 
event is the most plausible event that could occur at any 
world. This seems to be the crucial assumption under
lying postulate (U2). 

Proposition 3 Let <>EM be the explanation-change op
erator induced by some centered event model. Then <>EM 

satisfies postulates {UJ), {U2}, {U4), {U6) and {U7) . 
This assumption of persistence of the truth of KB seems 
to hP. reasonahlP. in many domains; bnt should probably 
be called into question as a general principle. It may 
be the case in a domain where change is the norm that, 
despite the fact that an observation is already believed, 
some change in KB should be forthcoming. In this sense, 
the more general nature of the explanation-change oper
ator may be desirable. 

Postulate (U3) is also violated by our model, and for a 
similar reason, so too are (U5) and (U8). For a given KB, 
we may have that Res(O, w) = 0 for each w E IIKBII , 
In other words, there are no possible events that would 
cause an observation O to become true. The potential 
for such unexplainable observations clearly contradicts 
(U3), which asserts that KB<> 0 must be consistent for 
any consistent 0 . The assumption underlying (U3) in 
update semantics seems to be the following: every consis
tent proposition is explainable, no matter how unlikely. 
In order to capture this assumption, we propose a class 
of event models called complete. 

Definition Let EM = (W, E, ~ ) be an event model. 
EM is complete iff for each consistent proposition 
0 and w E W, 0 is explainable relative tow. 

Proposition 4 If EM is a complete event model then 
Res(O, KB) "I 0 for any consistent O and KB. 

Of course, this condition is sufficient to ensure (U5) and 
(U8) are satisfied as well. 

Proposition 5 Let <>EM be the explanation-change op
erator induced by some complete event model. Then <>EM 

satisfies postulates {Ul}, {U3), {U4), {US), {U6), {U7) 
and {UB). 

The completeness of an event model refers, in fact, to 
the completeness of its event set E. If this set is rich 
enough to ensure that, for every world and observation, 
some event can make that observation hold, then the 
event model will be complete. Typically, domains will 
not be so well-behaved. However, the simple addition of 
a miracle event to an event set will ensure completeness. 
Intuitively, a miracle is some event which is less plausi
ble than all others and whose consequences are entirely 
unknown . 

D efinition Let EM = (W, E, ~ ) bean event model. A 
miracle is an event m such that m( w) = W for all 
w E W, and e -<w m for all w E W and e E E 
(e =/= m) . 

Proposition 6 Let EM = (W, E, ~ ) be an event model. 
If E contains a miracle event, then EM is complete. 

If all observations must be explainable, and no obser
vation is permitted to force an agent into inconsistency, 
then miracles are one embodiment of the required as
sumptions. The reasonableness of such a requirement 
can be called into question, however. Having unexplain
able observations is, in general, a natural state of af
fairs. Rather than relying on miraculous explanations, 
the threat of an inconsistency can force an agent to re
consider the observation, its theory of the world, or both . 
As we will see in the concluding section, it is just this 
type of inconsistency that can force an agent to revise its 
beliefs about the world prior to the observation. Update 
postulate (U3) makes it difficult to combine update with 
revision in this way. 

If we put together Propositions 3 and 5, we obtain the 
main representation result for explanation-change. 

Theorem 7 Let <>EM be the explanation-change oper
ator induced by some complete, centered event model. 
Then <>EM satisfies update postulates {Ul} through {UB). 

A useful perspective on the relationship between ex
planation change and update comes to light when one 
considers that the plausibility ordering on events quite 
naturally induces an indexed family of preorders of the 
type required in the Katsuno-Mendelzon update seman
tics. 

Definition Let EM = (W, E, ~ ) be an event model. 
The plausibility ordering induced by EM, for each 
w E W, is defined as follows: v :S;w u iff for any 
event eu such that u E eu ( w), there is some event 
ev (where v E ev(w)) such that ev ~w eu . 

Theorem 8 Let {:S;w: w E W} be the family plausibil
ity orderings induced by some complete, centered event 
model EM . Then 

{ a) Each relation :S;w is a faithful preorder over 
w. 

{b) The change operation determined by { :S; w: 
w E W} is an update operator. 

(c) The update operator determined by {:S;w : 
w E W} is equivalent to the explanation-change 
operator <>EM. 

If we have an event model where each event ordering is 
a total preorder, then the induced plausibility orderings 
over worlds are also preorders. 

Proposition 9 Let EM = (W, E, ~ ) be an event model 
such that ~w is a total preorder for each w E W. Then 
each plausibility ordering :S;w induced by EM is a total 
preorder. 

Since such a circumstance may arise rather frequently, 
the properties of such total update operators are of inter
est . We can extend the Katsuno-Mendelzon representa
tion theorem to deal with update operators of this type. 
The required postulate embodies a variant of the princi
ple of rational monotonicity, cited widely in connection 
with nonmonotonic systems of inference and conditional 
logics (see, e.g., (Boutilier 1994a)). 

246 



(U9) If KB is complete, (KB<>A) V= -.Band (KB<>A) F 
C then (KB<> (A I\. B)) F C then 

Theorem 10 An update operator <> satisfies postulates 
( Ul} through (U9} iff there exists an appropriate family 
of faithful total preorders {::;w: w E W} that induces <> 
(in the usual way) . 

As a final remark, we note that the converses of The
orems 7 and 8 are trivially and uninterestingly true. For 
any update operator <>, one can construct an appropriate 
set of events ( and orderings) that will induce that opera
tor . This not of interest, since the point of explanation
change is to provide a natural view of update, character
izable in terms of the events of an existing domain. The 
ability to construct such events to capture a particular 
update operator provides little insight into update. The 
appropriate perspective is to reject any update opera
tor (in a given domain) that cannot be induced by the 
existing set of events (or event model). 

4 Concluding Remarks 

We have provided an abductive model for incorporating 
into an existing belief set observations that arise through 
the evolution of the world. While our model allows more 
general forms of change than KM-update, we can impose 
restrictions on our model to recover precisely the KM 
theory. However, these restrictions are inappropriate in 
many cases, calling into question the suitability of some 
of the update postulates. 

Of particular concern, as emphasized earlier, is pos
tulate (U3) . This embodies the assumption that all ob
servations are explainable in terms of some event . This 
is not always reasonable. For instance, in our database 
example we might have a transaction to update Fred's 
salary to $90,000 when there is a salary cap of $80,000 
in Finance. Thus, no event could have caused such an 
occurrence if Fred is indeed in Finance. Far from being 
a miraculous occurrence, it suggests that Fred in actu
ally in Purchasing. Thus the observation not only forces 
KB to be updated (reflecting a change in the world), but 
also revised (reflecting additional knowledge about the 
world. 

Note that this is not an artifact of out definition of up
date, where we insist that an observation be explainable 
for every w E II KBII - One might argue that we should 
simply update those worlds for which explanations exist 
and ignore the others. This is reasonable, but it is no 
longer simply update; rather it is a combination of up
date and revision. Furthermore observations may often 
be unexplainable for every world in II KBII . For instance, 
suppose a solution is believed to be an acid and a litmus 
strip is dipped into it, which promptly turns blue. This 
~snot explainable for any KB-world (it should turn red) 
m terms of event effects. Instead, the intuitive explana
tion (the solution is a base) requires that KB be revised 
before adopting the update observation. Finally notice 
that an observation need not be strictly unexplainable 
to force revision. Often an implausible explanation will 
suffice. For instance, a raise to $90,000 might not be 
impossible in Finance, but just so implausible that the 

database is willing to accept the fact that Fred is in Pur
chasing. 

Issues of this sort make postulate (U3) ( and certain 
aspects of (U5) and (U8)) somewhat questionable, and 
provides further motivation for adopting an abductive 
view of update. This perspective is especially fruitful 
when combining the process of update ( changing knowl
edge) with belief revision (gaining knowledge) . A model 
that puts both components together in a broader abduc
tive framework is described in (Boutilier 1993; Boutilier 
1994b ). Roughly, the logic for belief revision set forth in 
(Boutilier 1994c) is used to capture the revision process, 
but is combined with elements of dynamic logic (Harel 
1984) to capture the evolution of the world due to action 
occurrences. 

Other have presented models of update that, like ours 
and unlike the KM-model, have their basis in reasoning 
about action . del Val and Shoham (1992; 1993), using 
the situation calculus, show how one can determine an 
update operator by reasoning about the changes induced 
by a given action . Very roughly, when some KB is to be 
updated by an observation O, they postulate the exis
tence of some action Af§B whose predicted effects, when 
applied to the "situation" embodied by KB, determine 
the form of the update operator . Most critically, the ef
fect axiom for such an action states that O holds when 
Af§B is applied to KB, and other effects are inferred via 
persistence mechanisms. 

This model differs from ours in a number of rather 
important ways. First, del Val and Shoham assume that 
the update formula O describes the occurrence of some 
action or event. This severely restricts the scope of up
date, which in general can accept arbitrary propositions. 
They provide no mechanism for explaining an observa
tion using the specification of existing actions. In or
der to deal with arbitrary observations an action is "in
vented" for the purpose of causing any observation in 
any situation. Naturally, the effects of such new actions 
are not specified a priori in the domain theory. So they 
propose that the effect of invented actions is to induce 
minimal change in the knowledge base according to some 
persistence mechanism. However, the plausible cause of 
an observation O may carry with it, in general, other 
drastic (rather than minimal) changes in KB. This can 
only be accounted for by explaining an observation in 
terms of existing actions. A persistence mechanism is 
required primarily because existing action or event spec
ifications are not employed. 

Another drawback of this model is its failure to ac
count for the possibility that any of a number of actions 
might have caused 0, and that update should reflect the 
most plausible of these causes. Finally, there is an as
sumption that the update of KB is due to the occurrence 
of a (known) single action. As we have described above, 
this will usually not be the case. Conditional explana
tions, explanations that use different actions for different 
"segments" of KB, will be very common. 

A related mechanism is proposed by Goldszmidt and 
Pearl (1992), who use qualitative causal networks to rep
resent an action theory. Again, update formula are im
plicitly assumed to be propositions asserting the occur-

247 



·-1 

rence of some action or event. An observation O is incor
porated by assuming some proposition do( 0) has become 
true, and using a forced-action semantics to propagate 
its effects. Explanations are not given in terms of exist
ing actions. 

We should point out that both theories adopt a theory 
of action that provides a representation mechanism for 
actions and effects, as well as incorporating a solution to 
the frame problem (implicitly in the case of Goldszmidt 
and Pearl). We have side-stepped such issues by focus
ing on the semantics of update. We are currently inves
tigating various action representations, such as STRIPS 
and the situation calculus, and the means they provide 
for generating conditional explanations. This is partially 
developed in (Boutilier 1993; Boutilier 1994b ), where we 
provide a representation for actions using a conditional 
default logic to capture the defeasibility and nondeter
minism of action effects, and use elements of dynamic 
logic to capture the evolution of the world. Action the
ories such as those exploited in ( del Val and Shoham 
1992; Goldszmidt and Pearl 1992) might also be used to 
greater advantage. 

References 

Alchourr6n, C., Gardenfors, P., and Makinson, D. 1985. 
On the logic of theory change: Partial meet con
traction and revision functions. Journal of Symbolic 
Logic, 50:510- 530. 

Boutilier, C. 1993. Explaining observations in reasoning 
about action. (manuscript). 

Boutilier, C. 1994a. Conditional logics of normality: A 
modal approach. Artificial Intelligence . (in press). 

Boutilier, C. 1994b. Two types of explanation in rea
soning about action. Technical report, University 
of British Columbia, Vancouver. (Forthcoming). 

Boutilier, C. 1994c. Unifying default reasoning and be
lief revision in a modal framework . Artificial Intel
ligence. (in press) . 

Dean, T., Kaelbling, L. P., Kirman, J., and Nichol
son, A. 1993. Planning with deadlines in stochas
tic domains. In Proceedings of the Eleventh Na
tional Conference on Artificial Intelligence, pages 
574-579, Washington, D.C. 

del Val, A. and Shoham, Y. 1992. Deriving properties 
of belief update from theories of action. In Proceed
ings of the Tenth National Conference on Artificial 
Intelligence, pages 584- 589, San Jose. 

del Val, A. and Shoham, Y. 1993. Deriving properties 
of belief update from theories of action (ii). In Pro
ceedings of the Thirteenth International Joint Con
ference on Artificial Intelligence, pages 732-737, 
Chambery, FR. 

Fikes, R. E. and Nilsson, N. J . 1971. Strips: A new 
approach to the application of theorem proving to 
problem solving . Artificial Intelligence, 2:189-208. 

Goldszmidt, M. and Pearl, J. 1992. Rank-based systems: 
A simple approach to belief revision, belief update, 

and reasoning about evidence and actions. In Pro
ceedings of the Third International Conference on 
Principles of Knowledge Representation and Rea
soning, pages 661-672, Cambridge. 

Hare!, D. 1984. Dynamic logic. In Gabbay, D. and Guen
thner, F ., editors, Handbook of Philosophical Logic, 
pages 497-604. D. Reidel, Dordrecht. 

Katsuno, H. and Mendelzon, A. 0 . 1991. On the differ
ence between updating a knowledge database and 
revising it. In Proceedings of the Second Interna
tional Conference on Principles of Knowledge Rep
resentation and Reasoning, pages 387- 394, Cam
bridge. 

Kushmerick, N., Hanks, S., and Weld, D. 1993. An algo
rithm for probabilistic planning. Technical Report 
93-06-04, University of Washington, Seattle. 

McCarthy, J. and Hayes, P. 1969. Some philosophical 
problems from the standpoint of artificial intelli
gence. Machine Intelli_qence, 4:463- 502. 

Morgenstern, L. and Stein, L. A. 1988. Why things go 
wrong: A formal theory of causal reasoning. In Pro
ceedings of the S eventh National Conferen ce on Ar
tificial Intelligence, pages 518- 523, St. Paul. 

Poole, D. 1988. A logical framework for default reason
ing. Artificial Intelligence, 36:27- 47. 

Reiter, R. 1987. A theory of diagnosis from first princi
ples. Artificial Intelligence, 32:57- 95. 

Reiter, R. 1991. The frame problem in the situation cal
culus: A simple solution (sometimes) and a com
pleteness result for goal regression . In Lifschitz, 
V., editor, Artificial Intelligence and Mathematical 
Theory of Computation (Papers in Honor of John 
McCarthy), pages 359- 380. Academic Press, San 
Diego. 

Reiter, R . 1992. On specifying database updates. Tech
nical Report KRR-TR-92-3, University of Toronto, 
Toronto. 

Shanahan, M. 1993. Explanation in the situation calcu
lus. In Proceedings of the Thirteenth International 
Joint Conference on Artificial Intelligence, pages 
160- 165, Chambery, FR. 

Winslett, M. 1988. Reasoning about action using a pos
sible models approach. In Proceedings of the Sev
enth National Conference on Artificial Intelligence, 
pages 89- 93, St . Paul. 

Acknowledgements 

Discussions with Ray Reiter have helped to clarify my 
initial thoughts on update. Thanks to Richard Dearden 
and David Poole for helpful discussions on this topic and 
to Alvaro de! Val for well-considered comments on an 
earlier draft of this paper . This research was supported 
by NSERC Research Grant OGP0121843. 

248 



Can Situated Robots Play Soccer? 

Michael K. Sahota and Alan K. Mackworth 
Laboratory for Computational Intelligence 

Department of Computer Science 
University of British Columbia 

Vancouver, B.C., Canada, V6T 1Z4 
sahota@cs.ubc.ca, mack@cs.ubc.ca 

Abstract 

The goal of creating an integrated cognitive robot 
is still only a tantalizing dream. Current artificial 
intelligence and robotics research is highly diver
gent with little or no commonality among special
ized subfields. New rich task domains are needed 
to pose the right challenges to extant theories 
and promote convergence. We propose soccer
playing as such a task since it requires situated 
robotics, perception, real-time decision making, 
planning, plan recognition, learning and multi
robot coordination and control. The technology 
to perform real-time vision and build autonomous 
robots is available; the Dynamite testbed has been 
built to perform experiments with multiple robots. 
A soccer tournament has been carried out using 
the testbed to evaluate aspects of the proposed 
reactive deliberation robot architecture. The re
sults raise new issues and problems for research 
on robotic agents operating in dynamic environ
ments. 

1 Introduction 

One of the dreams of Artificial Intelligence is the construc
tion of integrated cognitive robots . Such robots must be 
able to integrate perception, reasoning, and action. These 
robots should be able to operate in the real world, which 
is dynamic and uncertain , not just in highly restricted en
vironments such as factories. If building real robots is still 
part of the dream of AI, then we need to develop tools and 
theories to accomplish this goal. 

Unfortunately, current research in AI is highly diver
gent with little or no overlap between specialized subfields 
such as computational vision, knowledge representation, 
robotics, and learning. Each group has its own confer
ences and journals, and when they do all meet at a single 
conference, they diverge in parallel sessions. The version 
of divide-and-conquer that we have been playing, namely, 
functional decomposition, is not now the best strategy. 

For significant progress to be made on the AI dream, 
researchers must work on common tasks. But which tasks? 

It is clear that any science must close its eyes to most of 
the allures and mysteries of nature and choose a highly 
circumscribed fragment of reality to examine. Indeed, the 
key experimental task domain may well be an abstraction 
of the world; but we must take care to preserve the key 
problems and not abstract them away. For example, Galileo 
chose, as his blocks world, bodies sliding on a friction-free 
inclined plane in a vacuum; Newton considered point masses 
of infinite density. The danger in selecting a problem domain 
is that researchers must steer a course between the Scylla of 
enunciating a vacuous general theory of an artificial world 
and the Charybdis of implementing a collection of quick and 
dirty hacks that work, after a fashion, on an overly complex 
domain not properly abstracted, delimited or understood. 

There have been a number of task domains that have 
served to focus AI research since its inception. Chess, 
the blocks world, video games, Tweety, the Yale Shooting 
Problem and many others have all served to motivate and 
focus the efforts of communities of researchers . We should 
realize that the choice of task domain is a theory-laden 
decision; that decision should be taken explicitly by the 
research community. 

The Good Old Fashioned AI and Robotics (GOFAIR) 
[Mackworth, 1993) research paradigm has shaped the area of 
robotics since the time of the robot Shakey [Nilsson, 1984]. 
Some of the fundamental assumptions made of the world 
were that there is only one agent, that the environment is 
static unless the agent changes it, that actions are discrete 
and are carried out sequentially and that the world the robot 
inhabits can be accurately and exhaustively modeled by the 
robot. These assumptions proved to be overly restrictive 
and ultimately sterile. In the usual dynamic of the scientific 
dialectic, a new movement has emerged as the antithesis to 
GOFAIR: Situated or Nouvelle Al, which we will call the 
Situated Agent approach. 

The Situated Agent paradigm is loosely characterized 
by the guiding principles set forth by Brooks : situatedness, 
embodiment, intelligence and emergence [Brooks, 1991]. 
The key idea of situatedness and embodiment is that re
searchers in Al should consider embodied agents that are 
connected to a larger world that provides the context for 
their activity. The essence of intelligence and emergence is 
that the intelligence of an agent can be judged by the qual-

249 



I 
. I 

ity of its interaction with its environment. The motivation 
for these principles is to direct research toward more real
istic tasks and architectures and away from the Scylla of 
ungrounded theories. 

A paradigmatic domain is needed to test and develop 
the competing GOFAIR and Situated Agent approaches. It 
must be suitable for testing extant theories and be sufficiently 
rich to bring the many threads in AI back together. 

2 Why Soccer as a Task Domain? 

We propose that playing soccer be a paradigmatic task do
main since it breaks with nearly all of the restrictive assump
tions on which GOFAIR is based and meets the standards 
proposed in the Situated .l\.gent approach. The soccer do
main can be characterized by the following: 

D Neutral, friendly, and hostile agents 
D Interagent cooperation 
D Real-time interaction 
D Dynamic environment 
D Real and unpredictable world 
D Objective performance criteria 
D Repeatable experiments 

The GOFAIR assumptions do not hold in the soccer 
world. The one agent assumption is violated: there are 
cooperating agents on the robot's team, competing agents 
on the other team, and neutral agents such as the referee 
and the weather. The world is not completely predictable: 
it is not possible to predict precisely where the ball will go 
when it is kicked, even if all the relevant factors are known. 
The simplifying assumption of discrete sequential actions 
is violated: continuous events such as a player running 
to a position and the ball moving through the air occur 
concurrently. 

Soccer meets the standards of the Situated Agent ap
proach. In soccer, robot agents are embodied and are sit
uated in an unfolding game. Although it is still true that 
the intelligence of an agent can be judged from the dynam
ics of interaction with the environment, soccer also provides 
objective performance criteria. 

The ability to score and prevent goals and the overall 
score of the game are objective measures of success. These 
measures allow explicit comparisons of alternative controller 
designs. The effects of chance can be factored out by car
rying out repeated experiments. With objective criteria and 
repeatability, short-term and long-term learning strategies, 
as well as experiments in automatic evolution of controllers, 
become feasible. The availability of objective criteria is a 
critical feature of soccer that distinguishes it, along with the 
aspect of a real and unpredictable environment, from many 
of the other task domains proposed for driving the new re
search paradigm. 

Soccer as a task domain is sufficiently rich to support 
research integrated from many branches of Al. In addition 
to the obvious potential of the soccer domain for research 
in perception and robotics, there are many other areas of 

Al that are applicable: reasoning under uncertainty, on-line 
reasoning, resource-bounded reasoning, planning, decision 
theory, qualitative physics, plan recognition, learning, and 
multi-agent theory. 

Soccer is not the real world, but a suitably circum
scribed fragment of it. Soccer is an appropriate abstraction 
of the world to challenge research in AI to focus on achiev
able tasks, and to drive the development of relevant theories. 

3 Dynamite: A Testbed for 
Multiple Mobile Robots 

The Dynamite testbed provides a practical platform for test
ing theories in the soccer domain using multiple mobile 
robots. The testbed consists of a fleet of radio controlled 
vehicles that perceive the world through a shared perceptual 
system [Barman et al., 1993). In an integrated environ
ment with dataflow and MIMD computers, vision programs 
can monitor the position and orientation of each robot while 
planning and control programs can generate and send out 
motor commands. This approach allows umbilical-free be
haviour and very rapid, lightweight fully autonomous robots. 

The mobile robot bases are commercially available ra
dio controlled vehicles. We have two controllable 1/24 scale 
racing-cars, each 22 cm long, 8 cm wide, and 4 cm high ex
cluding the antenna. The testbed (244 cm by 122 cm in size) 
with two cars and a ball is shown in Figure 1. The cars have 
each been fitted with two circular colour markers to allow 
the vision system to identify their position and orientation. 
The ball is the small object between the cars. 

The hardware used in this system is shown in Figure 2. 
There is a single colour camera mounted in a fixed position 
above the soccer field . The video output of the camera is 
transmitted to special-purpose video processing DataCube 
hardware in Figure 2. The DataCube is a dataflow com
puter which has been programmed to classify image pixels 
into different colour classes at video rate (60 Hz). This in
formation is transmitted to a network of transputers which 
form a MIMD computer. Additional vision processing is 
performed on the transputers to find the position, in screen 
coordinates, of the centroid of each coloured blob and to 
transform these positions from screen to world coordinates. 
The vision subsystem is called the Vision Engine [Little et 
al., 1991 ]. The Vision Engine produces the absolute posi
tion of all the objects on the soccer field; the orientation of 
each car is also reported. This is done at 60 Hz with an 
accuracy in position of approximately 1 mm. 

The reasoning and control components of a vehicle 
can be implemented on any number of transputers out of 
the available pool. Currently, each vehicle is controlled 
by a distributed user program running on two transputer 
nodes. An arbitrary number of nodes, labeled I to n in 
Figure 2, can be used in parallel to control independent 
vehicles. The movement of all vehicles is controlled through 
radio transmitters attached to a single shared transputer node. 
Commands are transmitted to the vehicles at a rate of 60 Hz. 

250 



Figure I Robot Players on the Soccer Field 

A physics-based real-time graphics simulator for the 
Dynamite world is also available for testing and developing 
reasoning and control programs. 

A feature of the Dynamite testbed is that it is based on 
the "remote brain" approach to robotics. The testbed avoids 
the technical complexity of configuring and updating on
board hardware and makes fundamental problems in robotics 
and artificial intelligence more accessible. We have elected 
not to get on-board the on-board computation bandwagon, 
since the remote (but untethered) brain approach allows us 
to focus on scientific research without devoting resources to 
engineering compact electronics. 

4 A Robot Architecture for Dynamic Domains 

Most extant theories of robot architectures do not directly 
address the problems posed by dynamic environments. In 
a changing world, an agent must be able to generate intel-

ligent behaviour in real-time. The soccer domain is a good 
testing ground for theories that address these issues since 
it is a highly dynamic environment. In this section, an ar
chitecture targeted towards dynamic environments, reactive 
deliberation, is described. 

Much of the previous work on architectures for dy
namic environments has been addressed by two distinct 
schools. Architectures in the situated behaviour school 
[Brooks, 1986; Agre and Chapman, 1987; Kaelbling and 
Rosenschein, 1990] typically allow frequent changes in the 
actions of the robot, yet restrict the allowable computational 
models. The planning school [Nilsson, 1984; Firby, 1992; 
Oat, 1992] allows unrestricted computational models, yet 
the commitment to arbitrary length plans hinders the ability 
of the agent to change its goals and actions in response to 
unanticipated changes in the environment. 

The problem of deciding what to do next has also been 
addressed in decision theory [Kanazawa and Dean, 1989], 

,.------------ ----------- ..... 
/' Vision Engine --- -,~--------------------------, 

RGB Camera 
(Single CCD) 

I 
' 

' \ 
\, 

• 

Soccer Field 

' -... ---

DataCube 
\ ,. .. --- ... , 

'· \ . \ ,/- D D 
I' 

) \. Available D 
I 
' I 

' \ 

-" ·,, Transputers ... ____ ,,.' 
-----------

User Nodes: Reasoning & Control 

Radio Transputer Network, 
Transmitter , 

~------- --------------- ---- ---- --) 
Figure 2 The Dynamite Hardware Setup 

251 

UNIX 
Workstation 



I 
I 

· I 

From 

Deliberator 

Snoot 
'Wait 

Clear 

'1Jefena behaviours (jo to { 
:Midjiefa Own (joa 

Sensor Data 
and Status 

(jo to 
:MitlfaU 

'lJejena 
(joa{ 

Executor 

Follow 
Path stop 

Action and 
Parameters 

-------Sensors 
action schemas 

Idle 
~To 

Effectors 
-;:,ervo 

Defend 

Figure 3 The Reactive Deliberation Controller 

Maes ' dynamics of action selection [Maes, 1990], and Min
sky's mental proto-specialists [Minsky, 1986]. Decision the
oretic tools are limited in their ability to handle continuous 
variables and perform sophisticated spatial reasoning. The 
dynamics of action selection performed poorly in simula
tions [Tyrrell, 1993] in part due to a reliance of the model on 
predicate inputs. Minsky's arguments against mental proto
specialists (that bid against one another for control of the 
agent) neglect to include the external state of the world as 
a valid basis for decisions. 

Reactive deliberation is a robot architecture that com
bines responsiveness to the environment with intelligent de-
cision making [Sahota, 1993; Sahota, 1994]. Even delib-
eration must be to some extent be reactive to respond to 
changes in the environment. Although the name is appar
ently an oxymoron, it is consistent with Artificial Intelli
gence nomenclature (cf. Reactive Planning). 

Under reactive deliberation, the robot controller is par
titioned into a deliberator and an executor; the distinction 
is primarily based on the different time scales of interac
tion. Informally, the deliberator decides what to do and how 
to do it, while the executor interacts with the environment 
in real-time. These components run asynchronously to al
low the executor to interact continuously with the world and 
the deliberator to perform time consuming computations. A 
structural model illustrating the partition with examples can 
be seen in Figure 3. The deliberator is responsible for gen
erating a single action, whereas other planning-based archi
tectures generate a complete plan (i.e. sequences of actions). 
This distinction helps focus the deliberative activities on the 
immediate situation. 

The executor is composed of a collection of action 
schemas. An action schema is a robot program that interacts 
with the environment in real-time to accomplish specific 
actions. Only one action schema is enabled at a time and 
it interacts with the environment through a tight feedback 

; 

loop. The active schema receives run-time parameters from 
the deliberator that fully define its activity. 

The focus of the deliberator is on an effective mech
anism for selecting actions or goals in a timely manner. 
A central feature of reactive deliberation is that the delib
erator is composed of concurrently active modules called 
behaviours that represent the goals of the robot. The no
tion of a behaviour is used in the sense of Minsky's mental 
proto-specialists [Minsky, 1986] with some important dis
tinctions. In reactive deliberation, each behaviour computes 
an action and generates a bid reflecting how suitable it is in 
the current situation. The most appropriate behaviour, and 
hence action, is determined in a distributed manner through 
inter-behaviour bidding. Some examples of behaviours are: 
shoot ball, defend goal, go Lu midfield, ciean floor, and de
liver mail. 

A behaviour is a robot program that computes an ac
tion that may, if executed, bring about a specific goal. Be
haviours propose actions whereas action schemas perform 
actions. Each behaviour must perform the following : I) se
lect an action schema, 2) compute run-time parameters for 
the schema (plan the action), and 3) generate a bid describ
ing how appropriate the action is. 

Behaviours in reactive deliberation have a number of 
features. Different computational models can be used within 
behaviours to provide flexibility in the design of robot con
trollers. Inter-behaviour bidding is an effective mechanism 
for goal arbitration [Tyrrell, 1993] and can also be accom
plished in a distributed computing environment. Another 
important property is that behaviours can be used as a mech
anism for distributing computational resources. 

Reactive deliberation is not a panacea for robotic ar
chitectural woes. A further disclaimer is that it is an in
complete robot architecture since it focuses on the issues 
related to dynamic domains and ignores a number of issues 
such as perceptual processing and the development of world 
models. The proposal is orthogonal to those issues. How
ever, it makes explicit the need to evaluate the actions and 
goals of the robot at a rate commensurate with changes in 
the environment. 

5 Some Experimental Results 

Several controllers based on reactive deliberation have been 
implemented to allow robots to compete in complete one-on
one games of soccer [Sahota, 1993]. Current functionality 
includes various simple offensive and defensive strategies, 
motion planning, ball shooting and playing goal. The robots 
can drive under accurate control at speeds up to 1 mis, 
while simultaneously considering alternate actions. We have 
produced a 10 minute video that documents these features . 

As documented in [Sahota, 1993], a series of exper
iments, soccer games, called the Laboratory for Compu
tational Intelligence (LCI) Cup were performed using the 
Dynamite testbed. The most elaborated reactive delibera
tion controller competed with subsets of itself to provide, 

252 



through the scores of the games, an objective utility mea
sure for some of the architectural features of reactive delib
eration and the behaviour themselves. Through the results of 
the LCI Cup the importance of modifying goals in response 
to changes in the environment has been shown. Further, the 
results demonstrate that the architectural elements in reactive 
deliberation are sufficient for real-time intelligent control in 
dynamic environments. 

The reactive deliberation architecture provides a first 
step towards an integrated intelligent agent for dynamic 
environments. The current version of the controller can only 
play adequately in one-on-one soccer. Even in this restricted 
task domain, there are many unresolved problems. There are 
several important issues that need to be further addressed in 
building robot agents, such as: 

D Real-time decision making - Reasoning about the world 
and selecting appropriate actions in real-time. 

D Planning - Efficiently computing motion plans, predict
ing future world states, and reasoning about actions in an 
uncertain world. 

D Plan recognition - Identifying the goals, actions and 
plans of other agents. 

D Modeling - Acquiring implicit or explicit models of the 
robot and the environment. 

D Learning - Changing behaviour at many levels through 
tuning models and refining actions using objective per
formance criteria. 

D Multi-agent theory - Determining how agents can co
operate to accomplish group tasks. 

D Robot architectures - Integrating all of the above com
ponents in new organizational forms. 

We have shown that the Dynamite testbed is a useful 
abstraction of the soccer domain that can be used to test and 
develop many theories. However, it has a significant lim
itation. Off-board perception through an overhead camera 
leads to the pervasive use of world coordinates. The con
venience of using a world model bypasses many important 
issues in robot vision and sensory robotics. For soccer exper
iments to address these issues in situated perception, a new 
testbed with on-board sensing will have to be developed. 

6 Conclusions 

Soccer has been proposed as a task for the development and 
unification of divergent theories in Artificial Intelligence. 
Soccer captures a number of essential properties of the real 
world including dynamics, real-time requirements, and cog
nitive functions. To perform experiments with soccer, the 
Dynamite testbed has been constructed with support for mul
tiple mobile robots. A theory of robot architecture, reactive 
deliberation, has been applied to the soccer domain using 
the Dynamite testbed with demonstrated success. The re
sults suggest that a wide range of theories from decision 
theory to robot control need further development to be suc
cessful in domains like this. This paper can be viewed as 

a challenge to researchers to apply their theories to the soc
cer domain to determine whose team of agents will win the 
Robot Soccer World Cup. 

The question posed in the title, "Can Situated Robots 
Play Soccer?" has at least four possible answers: "Yes", 
"No", "Don't Know", and "Don't Care". We claim to have 
provided evidence for "Yes". But, one could argue for 
"No" based on the limitations of our experiments or our 
theories. "Don't Know" now seems inappropriate. "Don't 
Care" is a response that ignores the current theoretical and 
experimental needs of the field. Not only can situated robots 
play soccer but they also should! 

Acknowledgments 

We are grateful to Rod Barman, Keiji Kanazawa, Stewart 
Kingdon, Jim Little, Dinesh Pai, Heath Wilkinson and Ying 
Zhang for help with this. This work is supported, in part, by 
the Canadian Institute for Advanced Research, the Natural 
Sciences and Engineering Research Council of Canada and 
the Institute for Robotics and Intelligent Systems Network 
of Centres of Excellence. 

References 

[Agre and Chapman, 1987] Philip Agre and David Chap
man. Pengi: An implementation of a theory of activity . In 
AAA/-87, pages 268-272, 1987. 

[Barman et al., 1993] R. Barman, S. Kingdon, J. Little, 
A. K. Mackworth, D.K. Pai, M. Sahota, H. Wilkinson, and 
Y. Zhang. Dynamo: real-time experiments with multpile mo
bile robots. In Proceedings of Intelligent Vehicles Sympo
sium, pages 261-266, 1993. 

[Brooks, 1986] Rodney A. Brooks. A robust layered control 
system for a mobile robot. IEEE Journal of Robotics and 
Automation, RA-2:14- 23, 1986. 

[Brooks, 1991] Rodney A. Brooks. Intelligence without 
reason. In /JCA/-91, pages 569-595, 1991. 

[Firby, 1992] R. James Firby. Building symbolic primitives 
with continuous control routines. In First International 
Conference on Artificial Intelligence Planning Systems, 
pages 62--69, 1992. 

[Gat, 1992] Erann Gat. Integrating planning and reacting in 
a heterogeneous asynchronous architecture for controlling 
real-world mobile robots. In AAAl-92, pages 809- 815, 1992. 

[Kaelbling and Rosenschein, 1990] Leslie Pack Kaelbling 
and Stanley J Rosenschein. Action and planning in embed
ded agents. In Pattie Maes, editor, Designing Autonomous 
Agents: Theory and Practice from Biology to Engineering 
and Back, pages 35-48. M.I.T. Press, 1990. 

[Kanazawa and Dean, 1989] Keiji Kanazawa and Thomas 
Dean. A model for projection and action. In /JCA/-89, pages 
49- 54, 1989. 

[Little et al., 1991] J. Little, R. Barman, S. Kingdon, and 
J. Lu. Computational architectures for responsive vision: the 

253 



·:. I 

· 1 

./ 

I 

I 
. . I 

vision engine. In Proceedings of Computer Architectures for 
Machine Perception, pages 233-240, 1991. Paris . 

[Mackworth, 1993] Alan Mackworth. On seeing robots. In 
A. Basu and X. Li, editors, Computer Vision: Systems, 
Theory, and Applications, pages 1-13. World Scientific 
Press, 1993. 

[Maes, 1990] Pattie Maes. Situated agents can have goals. 
In Pattie Maes, editor, Designing Autonomous Agents: 
Theory and Practice from Biology to Engineering and Back, 
pages 49-70. M.I.T. Press, 1990. 

[Minsky, 1986] Marvin Minsky. The Society of Mind. 
Simon & Schuster Inc., 1986. 

[Nilsson, 1984] Nils Nilsson. Shakey the robot. Technical 
Report 323, SRI International, 1984. Collection of Earlier 
Technical Reports. 

[Sahota, 1993] Michael K. Sahota. Real-time intelligent 
behaviour in dynamic environments: Soccer-playing robots . 
Master's thesis, University of British Columbia, 1993. 

[Sahota, 1994] Michael K. Sahota. Reactive deliberation: 
An architecture for real-time intelligent control in dynamic 
environments. In Proceedings of AAAI-94, 1994. Forthcom
mg. 

[Tyrrell , 1993] Toby Tyrrell. Computational Mechanisms 
for Action Selection. PhD thesis, Edinburgh University , 
1993. 

254 



Will The Robot 
Do The Right Thing? 

Ying Zhang and Alan K. Mackworth* 
Department of Computer Science 

University of British Columbia 
Vancouver, B.C. 
Canada v6T 1 Z4 

Abstract 

Robots are generally composed of multiple sen
sors, actuators and electromechanical parts. 
The overall behavior of a robot is emergent 
from coordination among its various parts and 
its interaction with its environment. Designing 
a 'correct' robot which does 'the right thing ' in 
a given environment is an important and chal
lenging problem. The question posed in the 
title is decomposed into two questions. First, 
what is the right thing? Second, how does one 
guarantee the robot will do it? We answer these 
questions in this paper by establishing a formal 
approach to the design and analysis of robotic 
systems and behaviors. 

1 Motivation and Introduction 

Building control systems for intelligent, reliable, robust 
and safe autonomous robots working in complex environ
ments is an increasingly important challenge for research 
in electrical and mechanical engineering, and computer 
science. 

Robots are generally composed of multiple sensors, ac
tuators and electromechanical parts. Robots should be 
reactive as well as purposive systems, closely coupled 
with their environments; they must deal with inconsis
tent, incomplete and delayed information from various 
sources. Such systems are usually complex, hierarchical 
and physically distributed. Each component functions 
according to its own dynamics. The overall behavior of a 
system is emergent from coordination among its various 
parts and its interaction with its environment. We call 
the integration of a robot and its environment a robotic 
system, and the relation on the state of a robot and its 
environment over time the robotic behavior. 

The current trend for developing intelligent robots is 
to combine AI techniques with traditional control the
ory [Schoppers, 1991] . However, most of this work is ad 
hoc; there is no well defined interface between the higher 
level ( AI) and the lower level (control). The coordina
t10n between these levels is not fully understood , and the 

*Shell Canada Fellow, Canadian Institute for Advanced 
Research 

behavior of the whole system cannot be analyzed. One 
fundamental problem is the mismatch of the underlying 
computational models. AI is based on off-line compu
tational models and control is based on on-line compu
tational models. (The distinction between off-line and 
on-line models is analogous to the distinction between 
functions and processes. ) 

In this paper, we advocate a formal approach to mod
eling a robotic system. We have developed a formal 
model, Constraint Nets ( CN), for general dynamic sys
tems [Zhang and Mackworth, 1994a]. CN is an abstrac
tion of general dynamic systems so that a system with 
discrete as well as continuous time, and asynchronous 
as well as synchronous event structures can be modeled 
in a unitary framework. Using aggregation operators, a 
system can be modeled hierarchically in CN · therefore 
the dynamics of the environment as well as t'he dynam~ 
ics of the robot can be modeled individually and then 
integrated. Based on abstract algebra and topology, CN 
supports multiple levels of abstraction, so that a sys
tem can be analyzed at different levels of detail. With 
a rigorous formalization , CN provides a programming 
semantics for the design of robot control systems. 

We believe that the intelligence of an agent should be 
judged by the quality of the agent's interaction with the 
~nvironment [Brooks, 1991]. The intelligence of an agent 
1s measured by its ability to accomplish difficult tasks in 
complex, hazardous or uncertain environments. How
ever, because there is, as yet, no rigorous definition for 
intelligent behaviors, we shall use the concept of desired 
behaviors. 

In this paper, we advocate a formal approach to spec
ifying desired behaviors and to verifying the relation
ship between a dynamic system and its behavior spec
ification. Since robotic behaviors are the relationships 
between robots and their environments over time, the 
specification language should at least be able to represent 
temporal behaviors : states of a system over time. Vari
ous forms of temporal logics [Emerson, 1990] have been 
proposed in both the systems [Manna and Pnueli 1992· 
Lamport, 1991; Ostroff, 1989; Alur and Henzinger: 1989] 
and AI [Allen, 1990; Shoham, 1988; McDermott, 1990; 
Rosenschein, 1985] communities. We have adopted 
an automaton-based specification language, called \:/
automata [Manna and Pnueli, 1987], which is capa
ble of representing a large class of temporal properties 

255 



·I 

such as safety, liveness (recurrence, persistence, stability 
or controllability), goal achievement (reachability) and 
bounded response . Furthermore, a system modeled by a 
constraint net can be verified against its desired behavior 
specification by a general verification method. 

The rest of the paper is organized as follows . Section 
2 depicts the structure of robotic systems and the speci
fication of robotic behaviors, illustrated by two running 
examples: a hand coordinator and a maze traveler . Sec
tion 3 gives the formal model for robotic systems, the 
Constraint Net model, and demonstrates constraint net 
modeling via the examples. Section 4 presents the for
mal specification language and its relationship with the 
Constraint Net model. Section 5 describes the formal 
verification method . Section 6 concludes the paper and 
points out some related r 0 sca.rch. 

2 Robotic Systems and Behaviors 

From a systemic point of view, a robotic system is a 
coupling of a robot to its environment, while the robot 
is an integration of a plant and its controller (Fig. 1). 
Basically, the roles of these three subsystems can be char-

r,....,VIJl.0!'.Ml,l\T 

Figure 1: A robotic system 

acterized as follows: 

• Plant: a plant is a set of entities which must be con
trolled to achieve certain behaviors . For example , a 
robot arm with multiple joints , a car with throttle 
and steering, an airplane or a nuclear power plant 
can be considered as the plant of a robotic system. 

• Controller: a controller is a set of sensors and ac
tuators together with software/hardware computa
tional systems which sense the states of the plant 
(X) and the environment (Y), and compute desired 
inputs (U) to actuate the plant . For example, an 
analog circuit , a program in a digital computer, var
ious motors and sensors can be considered as parts 
of the controller of a robotic system. 

• Environment: an environment is a set of entities 
beyond the control of the controller, with which the 
plant may interact. For example, obstacles to be 
avoided, obj ects to be reached, and rough terrain to 
be traversed can be considered as the environment 
of a robotic system. 

We introduce two running examples to illustrate the 
general structure of robotic systems. 

Example 2.1 The Hand Coordinator: Suppose a 
two-handed robot is required to fit caps on j ars on an 
automated assembly line. The robot must pick up a jar 
and hold it with one hand and then fit a cap on the 

jar with its other hand . However , the hands work asyn
chronously at their own speed; for example, j ars or caps 
may occasionally be unavailable, but we can assume that 
the acts of j ar picking and cap fitting take some constant 
time. We will design a hand coordinator so that the right 
hand will cap only if the left hand is holding a j ar; the 
left hand will put down the jar and pick up a new one 
only if the right hand has done the capping. 

The robotic system, shown in Fig. 2, consists of the 
hand coordinator, and the left and right hands . 

Hand 

Coordinator 

Figure 2: The hand coordinator system 

T he whole system should work as follows. Whenever 
there are more j ars available, the left hand will request 
permission (Rl) to pick up a jar, and the coordinator 
will grant the request (C l) if the previous jar has been 
capped. On the other hand , whenever there are more 
caps available, the right hand will request permission 
( R2) to cap a jar , and the coordinator will grant the 
request ( C2) if the left hand is holding a jar in place. 

Example 2.2 The Maze Traveler: Consider a maze 
composed of separated T-shaped obstacles of bounded 
size placed in one of four orientations on an unbounded 
plane . A simple robot (Fig. 3 (a)) is required to traverse 
the maze from west to east (Fig. 3 (b)). 

SN MS 

ME SE 

SW MW 

MN SS 

(• J i h) 

Figure 3: ( a) A simple robot (b) A simple maze 

In this example, the plant is the body of the robot 
which can move in one of four directions; the environ
ment is the maze; and the controller connects sensing 
signals to motor commands (Fig . 4) . For example, when 
the north sensor SN is on, the robot is touching a wall 
directly to its north; when the east motor ME is on, the 
robot moves east, if it is not blocked. 

While the model of a robotic system states how the 
system is composed and how the system works formally, 
the specification of a robotic behavior represents what 
should the robot do overall. For the hand coordinator, 
one desired behavior is that the acts of j ar picking and 
cap fitting should interleave. For the maze traveler , one 
desired behavior is that the robot should move to the 
east persistently. Given a formal model of a designed 
system and a formal specification of a desired behavior , 

256 



-@ 

ci::~~~---9 
-@ 

l:!a.~ t Scni;or Norlh Sensor Easl Motor Norlh Molur Soulh Motor X-Cool'Uinete Y-Coonlinatc 

Figure 4: The maze traveler robotic system 

one should be ab le to prove that the model does satisfy 
the specification, that is, that the robot will do the right 
thing . 

Therefore, 'do the right thing' here does not necessar
ily mean that the robot has rationality built in [Russell 
and Wefald, 1991]; it simply means that the robot does 
what it is designed to do. Furthermore, the specification 
language we propose focuses only on temporal aspects; 
probability and stochastic analysis will be incorporated 
into this modeling framework in the future. 

3 Model for Robotic Systems 

In this section, we introduce the Constraint Net model 
and characterize its composite structure and modularity. 
The formal semantics of the model, based on the fix
point theory of continuous algebras, has been presented 
in [Zhang and Mackworth, 1994a]. 

3.1 Dynamic systems 

Since a robotic system is a dynamic system in general, we 
start with some basic concepts of dynamic systems . Let 
a tim e structure be a totally ordered set, which could 
be intervals of reals or ordered events , with a metric 
topology. Let a domain be a set of values, which could 
be numbers , symbols or strings . Both time and domains 
can be either continuous or discrete. In this paper, we 
mainly discuss discrete systems. However, all definitions 
here works for the general case. 

• Trace: A trace v : T -> A is a function from a time 
structure T to a domain A. The set of traces is de
noted by trace space A 7. Traces can be transformed 
from one to another via transductions. 

• Transduction: A transduction is a function from in
put traces to output traces which satisfies the causal 
relationship between its inputs and outputs, viz . the 
output values at any time are determined by the 
input values up to that time. Transductions can 
be considered as transformational processes . For 
example, a temporal integration is a typical trans
duction in continuous time; a state automaton de
fines a transduction in discrete time. Clearly, trans
ductions are closed under functional composition . 
There are two basic types of transductions: translit
erations and delays . 

• Translit eration: A transliteration fT is a pointwise 
extension of function f on time structure T, that is, 
the output value at any time is the function of the 

input value at that time only. Let v be the input 
trace then we have h(v) = >.t . f(v(t)). Intuitively, a 
transliteration is a transformational process without 
memory or internal state, for example, a combina
tional circuit. We use f to denote the transli teration 
h if no ambiguity arises. 

• Unit delay: A unit delay 8(vo) is a transduction de
fined mainly for discrete time structures, such that 
the output value at initial time O is v0 and the rest 
of the output values are the input values at the pre
vious time: 

{ 
Vo 

8( vo)( v) = >.t . v(pre(t)) 
if t = 0 
otherwise 

where pre(t) indicates the previous time point ad
jacent to t in the total order. The definition of 
pre(t) can be generalized to arbitrary time struc
tures [Zhang and Mackworth, 1994a]. A unit delay 
acts as a unit memory in discrete dynamic systems. 

Any discrete dynamic system can be modeled using 
only transliterations and unit delays . A hybrid dynamic 
system, composed of both discrete and continuous com
ponents, can be modeled by event-driven transductions 
and transport delays , in addition to these two types of 
transductions [Zhang and Mackworth , 1994a] . 

3.2 Constraint nets 

A dynamic system can be modeled by a constraint net. 
Influenced by some dataflow-like models [Ashcroft, 1986; 
Lavignon and Shoham, 1990; Benveniste and LeGuernic, 
1990; Caspi et al., 1987], the Constraint Net model is de
veloped on an abstract dynamics structure, with abstract 
time and domains. 

Intuitively, a constraint net consists of a finite set of 
locations , a finit e set of transdu ctions and a finit e set 
of connections. A location can be regarded as a wire, a 
channel, a variable, or a memory location , whose value 
may change over time. Each transduction is a causal 
mapping from input traces to output traces. Connec
tions relate locations with ports of transductions. 

Syntactically, a constraint net is a trip le C N = 
(Le, Td, Cn) , where Le is a finite set of locations, each 
of which is associated with a domain ; Td is a finite set of 
labels of transduetions, each of which is associated with a 
set of input ports and an output port; C n is a set of con
nections between locations and ports of transductions , 
with the following restrictions : (1) there is at most one 
output port connecting to each location, (2) each port 
of a transduction connects to a unique location and (3) 
no location is isolated . 

A location l is an output location of a transduction F iff 
there is a connection between the output port of F and l; 
l is an input location of F iff there is a connection between 
an input port of F and l . A location is an output of the 
constraint net if it is an output location of a transduction 
otherwise it is an input. The set of input locations of 
a constraint net C N is denoted by I( C N ), the set of 
output locations is denoted by O(CN ). A constraint 
net is open if there is an input location otherwise it is 
closed. 

257 



. ·-1 

A constraint net is represented by a bipartite graph 
where locations are depicted by circles, transductions are 
depicted by boxes and connections are depicted by arcs. 
We have seen examples of constraint nets in Fig. 1, Fig. 
2 and Fig. 4. 

Semantically, a constraint net is a set of equations, 
o = F(i, o), where each left-hand side is an individual 
output location and each right-hand side is an expres
sion composed of transductions and locations. The se
mantics is defined as a solution of the set of equations 
[Zhang and Mackworth, 1994a]. If CN is a constraint 
net with time structure T and domain A1 for l E Le, the 
semantics is a transduction from input traces to output 
traces: [CN] : XJ(CN)A[ ........ Xo(CN)Ar where XLAT 
denotes the product of a family of trace spaces. 

A constraint net can be hierarchically organized. A 
module is a triple (CN, I, 0), denoted by CN(I, 0), 
where CN is a constraint net, I ~ I(CN) and O ~ 
0( C N) are subsets of the input and output locations of 
C N; IUO defines the interface of the module. Locations 
I( CN ) - I and 0( C N) - 0 are called hidden input and 
hidden output locations respectively. 

Graphically, a module is depicted by a box with 
rounded corners. If [ C N] is the semantics of C N, the 
semantics of CN(I, 0) is the semantics of CN projected 
onto the interface, i. e. [CN(I, O)] = II1uo[CN] = 
{ (i, o) lo= [CN] 0 (u,i), it E xuAT} where U = I(CN)-
1 is the set of hidden input locations. If U f. 0, i.e. 
IC I(CN), [CN(I, O)] is a relation between input and 
output traces in general, rather than a function . Thus, 
while more powerful, and simpler, than most inherently 
nondeterministic models, nondeterminism can be mod
eled with hidden inputs, and probabilistic and stochastic 
analysis can be incorporated (if we provide random dis
tributions on hidden inputs) . 

Generally speaking, modularity provides a kind of ab
straction: hidden inputs capture nondeterminism and 
hidden outputs encapsulate internal state. 

Furthermore, a complex module can be constructed 
from simple ones with aggregation operators [Zhang and 
Mackworth, 1994a], and the semantics has compositional 
properties . 

Given a system modeled as a module CN(I, 0), the 
behavior of the system can be formally defined as a set 
of observable input/output traces {v E XJuoATlv E 
[CN (I, O)]}. We also use [CN(I, O)] to denote the be
hav ior of the system . 

So far, we have briefly presented the Constraint Net 
model (CN). CN is as powerful as the existent compu
tational models, in either discrete sequential computa
tions (Turing Machines) or continuous analog computa
tions (smooth non-hypertranscendental functions [Shan
non, 1941]) [Zhang, 1994]. CN is able to represent a 
hybrid system, consisting of a non-trivial mixture of dis
crete and continuous components. For the two running 
examples given in the previous section, we focus here 
only on their discrete models. Examples of hybrid sys
tem modeling can be found in [Zhang and Mackworth, 
1993b] . 

In general, a robotic system is modeled as an integra
tion of a plant module, a control module and an environ-

ment module (Fig. 1), and each of which may be further 
decomposed into a hierarchy of modules. The overall be
havior of the system is not determined by any one of the 
modules, but emerges from the coupling of the interac
tion among all the components. Formally, the behavior 
of the system is the solution of the following equations: 

X PLANT(U, Y), 
U CONTROLLER(X, Y), 
Y ENVIRONMENT(X). 

As we can see here, a robot, composed of a plant and 
a controller, is an open system in general, and a robotic 
system, with a robot coupled to its environment, is a 
closed system. 

Now we iilustrate the constraint net modeiing using 
the two examples: the hand coordinator and th e maze 
traveler. 

Example 3.1 The Hand Coordinator: The hand 
coordinator can be designed using negated Muller C
elements [Sutherland, 1989], since the desired behavior 
of the hand coordinator is similar to a buffer synchro
rnzer. 

Consider the request and grant signals as events , tran
sitions from Oto 1 or 1 to 0. The Muller C-element acts 
as the 'and ' for events: if both of its inputs have the 
same value, the output and its next state are copies of 
that value, otherwise the output and its next state are 
unchanged. 

A Muller C-element can be modeled by a module 
C({i1,i2},o) composed of a transliteration c and a unit 
delay: 

o = c(i1, i2, q), q = o(O)(o) 

where 
if i1 = i2 
otherwise. 

We use the standard 'and ' logic symbol with a 'C' inside 
it to represent Muller C-elements and 'bubbles' on input 
or output ports to represent inversions. 

Assume that jar picking and cap fitting each take con
stant time. Two negated Muller C-elements and two 
delay elements are used to synchronize events in the con
troller (Fig. 5). 

Figure 5: The hand coordinator 

Example 3.2 The Maze Traveler: The controller for 
the maze traveler can be built using 'and ' and 'not' gates 
with a flip -flop memory unit (Fig. 6). 

The flip-flop FF( { i1, i2}, o) is composed of a translit
eration ff and a unit delay: 

o = f J(i1, i2, q), q = o(O)(o) 

258 



-~ 
' ' 

s; : : ff :f::,. .. ~ 
s l'F I :,-~, 

Figure 6: The controller for the maze traveler 

where 

ifi 1 = 1 (set) 
else if i 2 = 1 (reset) 
otherwise. 

The control outputs to the robot body are: ME = 
,SE, MN= ,F FI\ SE and MS= FF I\ SE. 

The robot body BODY({ME,MN,MS},{X,Y}) is 
composed of a transliteration f xy and a unit delay: 

where 

(NX,NY) 

(X, Y) 
fxy(ME,MN,MS,X , Y), 
c5(xo, yo)(N X, NY) 

f xy (ME,MN,MS,X,Y) = (X+ME,Y+MN-MS), 

i. e. the next (X, Y) position is displaced by a grid point 
depending on the motion commands. 

Even though sensor and command domains are 
Boolean {O, l}, notice that this robotic system is not 
finite, since the domain of both X and Y is the integers. 

Will these robots do the right thing? We have given 
informal descriptions of what these two robotic systems 
are supposed to do in the previous section. Enthusi
astic readers will check by hand that they seem to do 
the 'right thing'. However, even though a constraint net 
model gives a precise definition of what the behavior of 
the system is, it is infeasible to generate the behavior and 
check all the traces of the behavior. In the next two sec
tions, we will present a behavior specification language 
for representing the desired behaviors of a system and a 
verification method for ensuring that the behavior of the 
system does satisfy its specification. 

4 Specification for Robotic Behaviors 

While modeling focuses on the underlying structure of 
a system, the organization and coordination of compo
nents or subsystems, the overall behavior of the modeled 
system is not explicitly expressed. However, for many 
situations, it is important to specify some global proper
ties and guarantee that these properties hold in this de
sign. For example, the acts of jar picking and cap fitting 
must interleave, the maze traveler should persistently 
move east. In this section, we present an automaton
based language for formally specifying robotic behaviors, 
and establish the relationship between a constraint net 
and a behavior specification. 

A trace v : T --+ A is a generalization of a sequence. 
In fact, when T is the set of natural numbers, v is an 
infinite sequence. A set of sequences defines a conven
tional formal language. If we take the abstract behavior 

of a system as a language, a specification can be rep
resented as an automaton, and verification checks the 
inclusion relation between the language of the system 
and the language accepted by the automaton. 

There is always a trade-off between the power of rep
resentation, i.e., the class of languages the type of au
tomaton can accept, and the power of analysis, i. e. 
the computability of checking the acceptance of traces. 
We would like the type of automaton to be powerful 
enough to state certain temporal and real-time proper
ties, yet simple enough to have formal, semi-automatic 
or automatic verifications. We have adopted \I-automata 
[Manna and Pnueli , 1987] for our purpose. 

\I-automata are non-deterministic finite state au
tomata over infinite sequences. These automata were 
proposed as a formalism for the specification and verifi
cation of temporal properties of concurrent programs. It 
has been shown that \I-automata have the same expres
sive power as Buchi automata [Thomas, 1990] and the 
extended temporal logic (ETL) [Wolper, 1983], which 
are strictly more powerful than the linear propositional 
temporal logic [Thomas, 1990; Wolper, 1983]. More im
portantly, there is a form al verification method. We have 
been ab le to generalize \I-automata for accepting general 
traces [Zhang and Mackworth, 1994b]. In this pap er, we 
focus only on discrete systems and infinite sequences. 

Let an ass ertion be a logical formula defined on states 
of a dynamic system, i. e. any assertion a on a given state 
s, denoted a(s), will be evaluated to either true , s I= a, 
or fals e, s [i= a . 

A \I-automaton A is a: quintuple (Q, R, S', e, c) where Q 
is a finite set of automaton-states , R ~ Q is a set of recur
rent states and S' ~ Q is a set of stable stat es. With each 
q E Q, we associate an assertion e(q) , which character
izes the entry condition under which the automaton may 
start its activity in q. With each pair q, q' E Q, we asso
ciate an assertion c( q, q'), which characterizes the tran
sition condition under which the automaton may move 
from q to q'. R and S' are the generalization of accept
ing states to the case of infinite inputs . We denote by 
B = Q - (RU S) the set of non-accepting (bad) states. 

For simplicity, let time be the set of natural numbers 
N and v : N--+ A be a sequence. A nm of A over v is 
a mapping r: N--+ Q such that (1) v(O) I= e(r(O)), and 
(2) for all n > 0, v(n) I= c(r(n - 1), 1·(n)) . 

A \I-automaton is called complete iff the fo llowing re
quirements are met: 

• V qEQ e(q ) is valid. 

• For every q E Q, V q'EQ c(q , q') is valid . 

These two requirements guarantee that any sequence has 
a run over it , and that any par tial run can always be 
extended to an infinite sequence. We will restrict our
selves to complete automata. This is not a real restric
tion, since any automaton can be transformed to a com
plete automaton by introducing an additional error state 
qE E B, with the corresponding entry condition and 
transition conditions [Manna and Pnueli, 1987]. 

If r is a run, let Inf(r) be the set of a utomaton-states 
appearing infinitely many times in r , that is Inf(r) = 

259 



{q lVn:lm > n, r(m) = q} . A run r is defined to be 
accepting iff: 

l. Inf(r) n R i= 0, i.e. some of the states appearing 
infinitely many times in r belong to R, or 

2. Inf(r) ~ S, i. e. all the states appearing infinitely 
many times in r belong to S. 

A \I-autom aton A accepts a sequence v, written v I= A, 
iff all possible runs of A over v are accepting. A \/
automaton A accepts a discrete time system C N (I , 0) , 
written CN(I, 0) I= A, iff for all v E [CN(J, O)Il , v I= 
A. 

One of the advantages of using automata as a spec
ification language is the graphical representation. It is 
useful and illuminating to represent \I-automata by di
agrams . The basic conventions for such representations 
are the following: 

• T he automaton-states are depicted by nodes in a 
directed graph . 

• Each initial state is marked by a small arrow, called 
the entry arc, pointing to it . 

• Arcs, drawn as arrows, connect some of the states . 

• Each recurrent state is depicted by a diamond shape 
inscribed within a circle. 

• Each stable state is depicted by a square inscribed 
within a circle. 

Nodes and arcs are labeled by assertions. A node or 
an arc that is left unlabeled is considered to be labeled 
with true. T he labels define the entry conditions and 
the transition conditions of the associated automaton as 
follows: 

• Let q E Q be a node in the diagram. If q is labeled 
by 1/; and the entry arc is labeled by <p, t he entry 
condition e(q) is given by : e(q) = <p I\ 1/;. If there is 
no entry arc, e(q) = false . 

• Let q, q' be two nodes in the diagram. If q' is la
beled by ¢, and arcs from q to q' are labeled by 
<p;,i = l..n, the transition condition c(q,q' ) is given 
by: c(q , q') = ( i.p 1 V ... V 'Pn ) I\ 1/; . If there is no arc 
from q to q', c(q, q') = f alse . 

A diagram representing an incomplete automaton is 
interpreted as a complete automaton by introducing an 
error state and associated entry and transition condi
tions . 

This type of automaton is powerful enough to spec
ify various quali tative behaviors. Some typical desired 
behaviors are shown in Fig. 7. F igure 7(a) accepts a 
sequence which satisfies ,G only finitely many times, 
Figure 7(b) accepts a sequence which never satisfies B , 
and Figure 7( c) accepts a sequence which will satisfy S 
in the finite future whenever it satisfies R . 

Now we can formally specify the desired behaviors for 
the hand coordinator and the maze traveler. 

Example 4.1 The Hand Coordinator: Let the acts 
of jar picking and cap fitting be controlled by the events 
at C l and C2 respectively. Let E (X ) be an assertion 
denoting that there is an event at X. If E ( C l) , the 
robot picks up a jar, and if E (C2), the robot fits the cap. 

, s '" 

~ j M " ,., "'' (c) 

Figure 7: \I-automata: (a) goal achievement or reacha
bility (b) safety ( c) bounded response 

One desired behavior for the hand coordinator is that 
E (Cl) and E(C2) must interleave and E(C l) always 
precedes E ( C2). T his behav ior can be represented by a 
\I-automaton in Fig. 8 (a). 

Example 4.2 The Maze Traveler: Let ME be an 
assertion denoting that the east motor is on, or ME = 1. 
One desired behavior for the maze traveler is the liveness 
property represented by a \I-automaton in Fig. 8 (b) , 
meaning that the robot will persistent ly move east. 

1 E(C l )/\ 1 E(C2) -, E(C I) /\-, 1:(Cl) 

(•) o,, 

Figure 8: The specification of (a) the hand coordinator 
(b) the maze traveler 

5 A Formal Verification Method 

In this section, we present a verification method modi
fied from [Manna and Pnueli , 1987] with concurrent pro
grams replaced by discrete constraint nets . 

Any discrete constraint net CN is composed of two 
types of transductions, transli terations and unit delays . 
T herefore C N can be represented by two sets of domain 
equations, each of the form lb = l , if lo is an output 
location of a unit delay from the input location l , or 
lo = f(l 1 , ... , ln), if lo is an output location of a transli t
eration f from the input location tuple (11 , .. . , ln)· 

T he domain equations for the hand coordinator and 
the m aze traveler are as fo llows. 

Example 5.1 The Hand Coordinator: For simplic
ity, assume that the delays in the hand coordinator in 
Fig. 5 are unit delays. The set of equations for the hand 
coordinator is: 

C l = c(Rl, ,Q2, Ql) , Ql' = C l , 

C2 = c(Ql, ,R2 , Q2), Q2' = C2. 

Example 5.2 The Maze Traveler: The set of equa
tions for the maze traveler is: 

260 

FF= ff(SN , ,SE,Q), Q' = FF, 

ME = ,SE,MN = ,FF/\SE,MS= FF/\SE, 

(X ' ,Y' ) = f xv (ME,MN,MS,X,Y) 



A state s of C N is a mapping from locations to do
mains, i.e. s E X £ cA1 where Le = I(CN) U O(CN) . 
A pair of states (s, s') is said to be consist ent with 
CN, denoted CN(s, s'), iff for every equation of the 
form lo = f(l1, .. . , ln), s( lo) = f(s(li), ... , s(ln)) and 
s'(lo) = f(s'(l1), ... , s'(ln)) , and for every equation of 
the form l~ = l, s'(l0 ) = s(l). 

Let cp and 1/; be assertions on states of a constraint 
net. We write { cp }C N { 1/;} to denote that the consecutive 
condition: cp(s) /\ CN(s, s')--+ 1/;(s') is valid. 

Let 0 be an assertion indicating the initial state of 
CN, and A= (Q,R,S,e,c) be a \I-automaton . A set of 
assertions { O:'q} qE Q is called a set of invariants for C N 
and A iff 

• Initiality: \fq E Q.0 A e(q)--+ O:'q . 

• Consecution: \fq,q' E Q.{aq}CN{c(q,q')--+ O:'q1}. 

Given that {aq}qEQ is a set of invariants for CN 
and A and W is a well-founded set, i.e. any decreas
ing sequence of W is finite , a set of partial functions 
{pq }qEQ : x L cA1 --+ Wis called a set of ranking fun ctions 
for C N and A iff the following conditions are satisfied : 

• Defin edness: \fq E Q. O:'q--+ :3w.pq = w . 

• Non-increase: \fq E Q, q' ES. 

{aq Apq = w}CN{c(q , q') --+ Pg' :S w}. 

• Decrease: \fq E Q, q' EB. 

{aq Apq = w}CN{c(q,q')- Pq' < w.} 

We conclude that if the following requirem ents are sat
isfied the validity of a \I-automaton A over a constraint 
net C N is proved: 

(I) Associate with each automaton-state q E Q a state 
formula aq, such that {aq}qEQ is a set of invariants 
for CN and A. 

(R) Associate with each automaton-state q E Q a partial 
function pq : X £ c A1 -> W, such that {pq}qEQ is a 
set of ranking functions for C N and A. 

As in [Manna and Pnueli , 1987], the verification rules 
(I) and (R) are sound and complete for a complete \/
automaton A and a discrete constraint net CN, i.e. A 
accepts C N iff there exist a set of invariants and ranking 
functions. 

Now we can prove that the hand coordinator in Fig . 5 
does satisfy its specification in Fig. 8(a) , and the maze 
traveler controlled by the control circuit in Fig . 6 does 
satisfy its specification in Fig . 8(b). 

Example 5.3 The Hand Coordinator: The \/
automaton in Fig. 8(a) is not complete. To make it 
complete, we add another automaton-state qE E B with 
e(qE) = fals e, c(qo, qE) = E(C2), c(q1 , qE) = E(Cl ), 
c(qE, q;) = false for i = 0, 1, and c(qE, qE) = true. 

Let E(Cl) be C l f- Ql and E (C2) be C2 f- Q2. 
Let the initial condition 0 be Cl = C2. It is easy to 
check that C l = C2, Cl =J. C2 and fals e are invariants 
for qo, q1 and qE respectively. Therefore the verification 
rule (I) is satisfied. 

Since qo, q1 E Rand the invariant of the only bad state 
qE is fals e, the verification rule (R) is trivially satisfied. 

As a result, we have proved that the acts of j ar picking 
and cap fitting, controlled by the hand coordinator, do 
interleave. 

Example 5.4 The Maze Traveler: Let qo, q1 in Fig. 
8(b) be associated with ME and ,ME respectively. The 
verification rule (I) is trivially satisfied. 

Suppose the maximum length of an obstacle is L. As
sociate with each automaton-state the same function 
p : { 0, 1} x { 0, 1 } x { 0, 1 } x Z _, { 0, 1 } x D where Z 
is the set of integers and D is the interval [O , L + 1] of 
natural numbers. Let p be defined as: 

{ 

(1, 1 + L) 
p(ME,MN,MS,Y) = (1,DN-Y) 

(0, Y - DS ) 

if ME= 1 
if M N= 1 
if M S= 1 

where DN (DS) is the Y-coordinate of the north (south) 
end of the current maze block. Obviously DN - Y 
and Y - D S :S L . The order on {O, 1} x D is defined 
as: (0, -) < (1, - ) and (X, Y1 ) :S (X, Y2) iff Y1 :S Y2. 
{O, 1} x D is a well-founded set since L is finite. With 
this function and the well-founded set, any transition 
that ends up at q1 E B would lead to a decrease . There
fore, p is a ranking function. 

As a result, we have proved that the maze traveler 
does move east infinitely often, escaping any finit e maze 
of that type. 

We should notice that the verification method is for
mal but not necessarily amenable to automation if the 
domains of the constraint net are not finit e. In fact, there 
is no verification algorithm, in general, since the discrete 
constraint net is powerful enough to simulate a Turing 
machine and the specification language is rich enough 
to state the halting problem. However, an automatic or 
semi-automatic theorem prover can be used for proving 
the validity of the formulas derived from this method. 

6 Conclusion and Related Work 

Will the robot do the right thing? One can guarantee 
the answer 'yes' by modeling the robotic system, includ
ing the environment when necessary, at an appropriate 
level of abstraction and proving that the model satisfies 
the desired behavior specification. In this paper, we have 
illustrated a formal approach to the modeling, specifica
tion and verification of discrete robotic systems. 

We have done some further related work on this sub
ject, (1) designing a verification algorithm for finite sys
tems [Zhang and Mackworth, 1994c], (2) extending \/
automata to timed \I-automata to deal with real-time 
responses [Zhang and Mackworth, 1994c], and (3) ex
tending ranking functions to Liapunov functions to deal 
with continuous time and domains [Zhang and Mack
worth, 1994b]. We have also worked on control syn
thesis based on constraint satisfaction using Liapunov 
functions [Zhang and Mackworth , 1993a]. In fact, the 
problems of synthesis and verifi cation are coupled in the 
design and analysis of robotic systems. 

261 



'_. •I 

Acknowledgement 

We wish to thank the anonymous referees for their con
structive comments on the paper. This research was 
supported by the Natural Sciences and Engineering Re
search Council and the Institute for Robotics and Intel
ligent Systems. 

References 

[Allen, 1990] J . F. Allen. Towards a general theory of 
action and time. In James Allen, James Hendler, and 
Austin Tate, editors, Readings in Planning, pages 464 
- 479 . Morgan Kaufmann Publishers Inc., 1990 . 

[Alur and Henzinger, 1989] R. Alur and T. A. Hen
zinger A really temporal logic . In 30th Annual Sym
posium on Foundations of Computer Science, pages 
164 - 169, 1989. 

[Ashcroft, 1986] E. A. Ashcroft. Dataflow and eduction: 
Data-driven and demand-driven distributed compu
tation. In J . W. deBakker, W.P. deRoever, and 
G. Rozenberg, editors , Current Trends in Concur
rency, number 224 in Lecture Notes on Computer Sci
ence. Springer-Verlag, 1986. 

[Benveniste and LeGuernic, 1990] A. Benveniste and 
P. LeGuernic. Hybrid dynamical systems theory and 
the SIGNAL language . IEEE Transactions on Auto
matic Control, 35(5), May 1990. 

[Brooks, 1991] R. A. Brooks. Intelligence without rep
resentation . Artificial Intelligence, 47(1 - 3), January 
1991. 

[Caspi et al., 1987] P. Caspi, D. Pilaud, N. Halbwachs, 
and J. A. Plaice. LUSTRE: A declarative language for 
programming synchronous systems. In A CM Proceed
ing of Principles of Programming Languages , 1987. 

[Emerson, 1990] E. Emerson. Temporal and modal 
logic. In Jan Van Leeuwen, editor, Handbook of The
oretical Computer Science, volume B: Formal Models 
and Semantics. Elsevier, The MIT Press, 1990. 

[Lamport, 1991] L. Lamport. The temporal logic of ac
tions. Technical Report 79, Digital Systems Research 
Center, Palo Alto, California, December 1991. 

[Lavignon and Shoham, 1990] J. Lavignon and Y. 
Shoham. Temporal automata. Technical Report 
STAN-CS-90-1325, Robotics Laboratory, Computer 
Science Department, Stanford University, Stanford, 
CA 94305, 1990. 

[Manna and Pnueli, 1987] Z. Manna and A. Pnueli . 
Specification and verification of concurrent programs 
by Ii-automata. In Proc. 14th Ann. ACM Symp. on 
Principles of Programming Languages, pages 1- 12, 
1987. 

[Manna and Pnueli, 1992] Z. Manna and A. Pnueli. The 
Temporal Logic of Reactive and Concurrent Systems. 
Springer-Verlag, 1992. 

[McDermott , 1990] D. McDermott. A temporal logic for 
reasoning about processes and plans. In James Allen, 
James Hendler, and Austin Tate, editors, Readings in 

Planning, pages 436 - 463. Morgan Kaufmann Pub
lishers Inc., 1990. 

[Ostroff, 1989] J. S. Ostroff. Temporal Logic For R eal
Time Systems. John Wiley & Sons Inc., 1989. 

[Rosenschein, 1985] S. J. Rosenschein. Formal theories 
of knowledge in AI and robotics. New Generation 
Computing, 1985. 

[Russell and Wefald, 1991] S. Russell and E. Wefald . Do 
the Right Thing: studies in limit ed rationality. MIT 
Press, 1991. 

[Schoppers, 1991] M. Schoppers, editor . Communica
tions of ACM. ACM, August 1991. Special Section 
on Real-Time Knowledge-Based Control Systems. 

[Shannon, 1941] C. E. Shannon. 1\.1ath "'matical th ory 
of the differential analyzer. Journal of Mathematics 
and Physics, 20:337 - 354, 1941. 

[Shoham, 1988] Y. Shoham. Reasoning about Change. 
MIT Press, 1988. 

[Sutherland , 1989] I. E. Sutherland. Micropipeline. 
Communication of ACM, 32(6), June 1989. 

[Thomas, 1990] W. Thomas. Automata on infinite ob
jects. In Jan Van Leeuwen, editor, Hand book of T he
oretical Computer Science. MIT Press, 1990. 

[Wolper, 1983] P. Wolper . Temporal logic can be more 
expressive. Information and Control, 56:72 - 99, 1983 . 

[Zhang and Mackworth, 1993a] Y. Zhang and A. K. 
Mackworth. Constraint programming in constraint 
nets. In First Workshop on Principles and Practice 
of Constraint Programming, pages 303- 312, 1993. 

[Zhang and Mackworth, 1993b] Y. Zhang and A. K. 
Mackworth. Design and analysis of embedded real
time systems: An elevator case study. Technical Re
port 93-4, Department of Computer Science, Univer
sity of British Columbi a, February 1993 . 

[Zhang and Mackworth, 1994a] Y. Zhang and A. K. 
Mackworth. Constraint Nets: A semantic model for 
hybrid dynamic systems, 1994. Working Paper . De
partment of Computer Science, UBC. 

[Zhang and Mackworth, 1994b] Y. Zhang and A. K. 
Mackworth. Specification and verification of 
constraint-based dynamic systems. In Second Work
shop on Princip les and Practice of Constraint Pro
gramming, May 1994. 

[Zhang and Mackworth, 1994c] Y. Zhang and A. K. 
Mackworth. Specification and verification of dis
crete dynamic systems using timed Ii-automata, 1994 . 
Working Paper. Department of Computer Science, 
UBC. 

[Zhang, 1994] Y. Zhang. A foundation for the design 
and analysis of robotic systems and behaviors, 1994. 
PhD thesis, forthcoming. Department of Computer 
Science, UBC. 

262 



Searching With Abstractions: 
A Unifying Framework and New High-Performance Algorithm1 

R.C. Holte, C. Drummond, M.B. Perez 
Computer Science Department 

University of Ottawa 
Ottawa, Ontario, CANADA KlN 6N5 

{holte, cdrummon, mbperez}@csi.uottawa.ca 

R.M. Zimmer, A.J. MacDonald 
Electrical Engineering Department 

Brunel University 
Uxbridge, Middlesex, ENGLAND UB8 3PH 

{Robert.Zimmer, Alan.MacDonald }@brunel.ac.uk 

Abstract 
This paper presents a common algorithmic framework 
encompass ing the two main methods for using an 
abstract solution to guide search. It identifies certain 
key issues in the design of techniques for using 
abstraction to guide search. New approaches to these 
issues give rise to new search techniques. Two of 
these are described in detail and compared 
experimentally with a standard search technique, 
classical refinement. The "alternating opportunism" 
technique produces shorter solutions than classical 
refinement with the same amount of search, and is a 
more robust technique in the sense that its solution 
lengths are very similar across a range of different 
abstractions of any given space. 

1 Introduction 

Heuristic search is ubiquitous in AI. A particular form of 
heuristic search, state-space search, is the cornerstone of 
many AI systems, inc luding most planning and problem
solving systems. Consequently, techniques for speeding up 
heuristic search, or for automatically generating or 
improv ing heuristics, are of central importance to AI. 

Abstraction is a widely studied means of speeding up 
state-space search. Instead of directly solving a problem in 
the original search space, the problem is mapped into and 
solved in an "abstract" search space. The abstract solution 
is then used to guide the search for a solution in the original 
space. 

1 1his research was supported in part by an operating grant from the 
Natura l Sciences and Engineerin g Research Council of Canada and in part 
by the EEC's ESPRIT in itiative (project "PA TRJCIA"). 

Abstraction very often produces impressive performance 
improvements (e.g. (Knoblock,1991)), but it is not 
guaranteed to speedup search. The guidance provided by 
an abstract solution is not even guaranteed to reduce the 
amount of search in the original space; if the guidance is 
positively misleading, it will increase the amount of search 
in the original space (e.g. (Holte et al., 1992)). Even if 
abstraction does speedup search in the original space, there 
are overhead costs associated with abstraction: the cost of 
creating an abstract space, and the costs associated with 
finding one or more abstract solutions and using them to 
guide search in the original space. The former cost can be 
amortized if there are many searches of the same space and 
the same abstract space is used each time. The speedup in 
the original space that results from using abstraction must 
more than compensate for these costs in order for a net 
speedup to be achieved. 

Research on abstraction aims to find methods for creating 
and using abstract spaces that reliably speedup search 
without undue degradation in solution quality (i.e. the 
length of the solution). Most research on abstraction has 
investigated different methods for creating an abstract 
space; in this paper we investigate different methods for 
using an abstract solution to guide search. 

There are two principal methods for using an abstract 
solution to guide search. In one method, the length of the 
abstract solution is used as a heuristic estimate of the 
distance to the goal (Pearl,1984; Prieditis and Janakiraman, 
1993). In the other method, the individual steps of the 
abstract solution are used as a sequence of subgoals whose 
solutions link together to form the final solution 
(Minsky,1963; Sacerdoti,1974; Knoblock,1991; Yang and 
Tenenberg,1990). In the latter method, the abstract solution 
serves as a skeleton for the final solution; the process of 

263 



., 

"fleshing out" the abstract solution is called "refinement". 
Until now, these two methods have been seen as mutually 

exclusive. This paper presents a computational framework 
in which the two methods are seen to be very similar. As 
algorithms, their differences are "minor", in the sense of 
being small in number and highly localized (i.e. 
independent of one another and of other aspects of the 
algorithms). Consequently, hybrids of the two methods can 
easily be constructed. But there is a much more important 
consequence. The algorithmic differences correspond to 
specific issues that arise in designing techniques for using 
abstract solutions. Having clearly identified these issues for 
the first time, it becomes immediately apparent that there 
arc numerous promising alternatives to the existing 
methods. Two of these alternatives, calied ;;path-marking" 
and "alternating opportunism" , are examined in this paper. 
These techniques are experimentally compared with the 
classical refinement technique on a range of problems and 
abstraction methods . "Alternating opportunism" emerges as 
the best of the three techniques compared. It is between 3 
and 12 times faster than breadth-first search, and very 
reliably produces near-optimal solutions. 

Sec tion 2 describes the method used to create 
abstractions, and the parameters of this method varied in the 
experiment. Section 3 describes the general computational 
fram ework encompassing both standard methods for using 
an abstract solution, and presents the three specific 
techniques studied in the experiment. Section 4 describes 
the experimental setup and resulls. 

2 The "Star" Method of Abstraction 

1 n most AI search systems, a search space is defined 
implicitly, typically in the STRIPS notation (Fikes and 
Nilsson,1971)) . A state is defined to be a set of sentences in 
a formal language (containing constants, variables, 
predicate symbols, etc.). The successor relation between 
states is represented by operators that map one state to 
another by adding to or deleting from the set of sentences 
(i.e. the state) to which it is applied. Each operator has 
preconditions, stated in the formal language, specifying to 
which states the operator may be applied. An abstract 
search space is created by removing symbols from the 
formal language and/or the definitions of the operators and 
states (e.g. see (Knoblock ct al., 1991)). 

By contrast, in our system a search space is represented 
by an explicit graph . A state is a node in the graph; the 
successor relation between states is represented by edges 
connecting each node to its successors. In this way of 
representing search spaces, search space SSA is an 
abstraction of search space SSB iff there is a graph 
homomorphism from SSB to SSA. 

In a graph homomorphism, each state in the abstract 
space, SSA, corresponds to one or more states in SSB. We 
view the abstract state as a class "containing" the 
corresponding states from SSB. Henceforth the terms 
"class" and "abstract state" will be used interchangeably, 
and the term "state" will mean a state in the original space. 

In the figures a class will be indicated by drawing a circle 
around the states it contains. 

Each edge in the abstract space connects one class to 
another. There must be an edge in the abstract space 
corresponding to each edge in the original space. Thus, if 
there is an edge in the original space from state S 1 to state 
S2, then there must be an edge in the abstract space from 
the class containing S 1 to the class containing S2. If S 1 and 
S2 are in the same class, an edge from S 1 to S2 corresponds 
to an identity edge in the abstract space. Identity edges are 
not drawn in the figures. 

The use of an explicit graph has the obvious drawback 
that it is feasible only for relatively small search spaces (the 
largest we have studied to date had 50,000 states). But it 
has the very great advantage, for research purposes, of 
flexibility and generality. It permits a very wide range of 
different abstraction-creating and abstraction-using 
techniques to be easily implemented and investigated. The 
ultimate aim of our research is to develop techniques that 
operate on implicit graphs; and indeed, the principles 
underlying new search techniques described in this paper 
can be used in the ordinary STRIPS representation as 
readily as in the explicit graph representation. 

The standard STRIPS-based definition of abstraction is a 
highly restricted type of graph homomorphism. Some of 
the limitations and weaknesses of this type of graph 
homomorphism are discussed in (Holte et al.,1993). To 
overcome them, we have been developing alternative 
methods of abstraction. 

The "star" method of abstraction was first investigated in 
(Mkadmi,1993). Each class consists of a "hub" state and all 
the neighbours of the hub within a given distance, R , called 
the "radius" of abstraction. The classes are built one at a 
time; once a state is included in a class it is ineligible to be 
included in any other. The process is repeated until all 
states have been assigned to a class (it may happen that a 
class contains just one state). Then edges are added 
between classes, as described above, to complete the 
construction of the abstract space. 

As with any abstraction method, the star method can be 
applied recursively to the abstract space it creates in order 
to construct a "hierarchy" of abstract spaces. In our current 
implementation, successively more abstract search spaces 
are added to the hierarchy until the trivial search space is 
produced (the trivial search space consists of just one class). 
For simplicity, the discussion will speak as if there were 
only two levels in the hierarchy, the original search space 
(which is always at the bottom of the hierarchy) and one 
abstract search space. But all of the discussion applies 
equally to any two adjacent levels in a larger abstraction 
hierarchy. 

The two main decisions in using the star method are: how 
to choose the hub states, and what value of R to use. These 
are parameters that will be varied in the experiments below. 
We will consider two ways of choosing hub states: choose a 
random state, and choose the state having the greatest 
number of immediate neighbours. The radius will be varied 
from 2 (which means a class contains only the hub and its 

264 



Figure 1. 

immediate neighbours) to 9. 
The value of R has great impact on the performance of 

search systems that use abstraction. For example, the total 
amount of search done at all levels of abstraction is 
bounded above by W(R)x(2R)\ where A is the number of 
levels in the abstraction hierarchy and W(R) is the amount 
of search done to solve a problem when the start and goal 
arc both in the same class of radius R (Mkadmi,1993). 
Soluti on length is also affec ted by R, typically decreasing as 
R increases. Certain overhead cost.s increase as R 
increases, but others decrease. Generally speaking, the 
choice of R affcct.s - in antagonistic ways - the quantity 
and quality of the guidance that an abstract solution 
provides for search in the original space. When R is small, 
there are few states in each class. Consequently, knowing 
which classes are in the abstract solution provides 
information about very few states, but the information is 
specific to those states and therefore is highly reliable. 
When R is large there are many states in each class: the 
abstract solution provides information about many more 
states, but the information is not very specific and so is 
indi scriminate, possibly even misleading. 

3 Search Methods That Use Abstractions 

There are two main ways that abstract solutions can be used 
to guide search. "Heuristic" methods are based on the 
observation that distance (number of edges in the shortest 
path) between two states is greater than or equal to the 
distance, in the abstract space, between the corresponding 

265 

classes. For example, in Figure 1, the distance between 
Start and Goal in the original space is 3 (the shortest path 
passes through state X); the distance between the 
corresponding classes is 2. Distance in the abstract space is 
therefore an admissible heuristic and can be used in the A* 
algorithm (Hart et al., 1968) to find optimal solutions. 

When the A* algorithm visits state Sit computes h(S), an 
estimate of the distance from S to a goal state. If h(S) is 
defined to be the abstract distance from the class containing 
S to a goal class, computing h(S) involves searching in the 
abstract space. The result of this search is a shortest path, 
i.e. a sequence of classes, connecting S's class to a goal 
class. In Figure 1, when A* visits state A, it would 
compute h(A) by finding a shortest path between the class 
containing A and the goal class. In this example there are 
two shortest paths. h(A) would be 2, the length of 
whichever of the two was actually found. 

We note, however, that the abstract path found in the 
course of computing h(A) provides the information needed 
to compute h(-) for many other states. Suppose, in the 
example, that the path found is the one including B's class. 
Firstly, for every state S in the same class as A, h(S)=h(A). 
Secondly, this path also allows us to compute h(B), because 
it includes a shortest path from B's class to the goal class. 
And, of course, it allows us to compute h(S) for every S in 
the goal class. In general, one abstract shortest path enables 
the computation of h(S) for every state S contained in every 
class on the path. 

This h(-) information is easily cached with each state. 



: : i 

I 

I 

. I 

c. k I - --------~ ~-• • • • -~~ 
•••• 

Figure 2. 

Now when A* visits state S it only needs to search in the 
abstract space if the class containing S has not occurred on 
any of the abstract paths previously computed. Although 
this may seem like a minor implementation detail, it 
provides a conceptual link to the other method of using 
abstract paths to guide search. 

"Refinement" methods find one abstract path from Start to 
Goal and use each class in this path as a subgoal when 
searching in the original space. The Start state, S 1, is, by 
definition, in the first class, Cl, on this path. A path (in the 
original space) is sought, typically using breadth-first 
search, from S 1 to any state, S2, in C2, the second class on 
the abstract path. In searching for this path, only states in 
C 1 are considered: all other states are disregarded (this is 
the graph equivalent of "goal protection"). In our example 
(Figure I), a path in the original space is sought from Start 
to a state in the same class as B. In searching for this path, 
state X, and other states in X's class are ignored, because 
that class is not on the abstract path. 

Having reached S2 in class C2, a path wholly within C2 is 
sought from S2 to any state, S3, in C3, the third class in the 
abstract path. This process, called refinement, is repeated 
for each successive class on the abstract path until a path in 
the original space has been constructed from Start to a state, 
Sg, in Cg, the class containing the goal state. Then, as the 
final step, a path who11y within Cg is sought from Sg to the 
actual goal state. 

Figure 2 shows a portion of the abstract path C
1 

••• C
0 

being refined and a typical intermediate situation during 
refinement, in which we arc searching forward from state S, 
in class C., looking for any stale in class C. 

1
• The five 

1 ~ 

successors of S illustrate the different possibilities for a 
state's successors. N1 is not in a class on the abstract path; 
it will be ignored. N2 is in a previous class; it too will be 
ignored. N

3 
and N4 are in the current and next class, 

respectively. N4 would be preferred to N
3

, and would result 
in Ci•J becoming the current class. But if S happened not to 
have any successors in the next class, states in the same 

266 

class (N
3
) would be pursued during refinement. State N

5 
is 

in a class more than 1 ahead of the current class. If the 
abstract path is a shortest path, such states cannot exist. 
However, refinement techniques (unlike the heuristic 
methods described above) are not guaranteed to find 
shortest paths, so this situation certainly can arise. In 
classical refinement, this opportunity to jump ahead is 
ignored. Techniques that exploit such opportunities we call 
"opportunistic". 

Thus, when a state is visited during refinement, it is 
necessary to know whether or not it is in a class on the 
abstract path, and, if so, the position of the class in the 
abstract path. This is precisely the information that would 
be cached when h(Start) is computed by the implementation 
of the heuristic method described above. It is clear 
therefore that the two methods for using abstract paths are 
very similar, differing only in two respects: 
(1) the refinement method restricts itself to states that are 

part of the first abstract path computed, whereas the 
heuristic method considers all states (and may have to 
find additional abstract paths to do so); 

(2) the refinement method does not take into account the 
distance of a state from the start state, whereas the 
heuristic method adds this to the abstract distance to the 
goal in order to compute a state's overall "score" . 

These two classical methods are not the only ways in which 
the information derived from an abstract path can be used to 
guide search. The following are two novel variants of the 
classical refinement technique. 

Path-Marking 
Classical refinement derives its efficiency from two sources: 
from ignoring states that are not part of the abstract path, 
and from associating a position in the abstract path with 
each state. The path-marking technique uses only the first 
of the sources: it does ordinary breadth-first search (in the 
original space) but ignores all states that are not in classes 
on the abstract path. This is guaranteed to find the shortest 
possible refinement of the abstract path. 



Alternating Search Direction 
While searching in the abstract space, many classes may be 
visited that, in the end, arc not on the abstract path. For 
these classes the distance to a goal class is not known; that 
distance is known only for classes on the abstract path. 
However, the distance to the abstract start class is known 
for all classes visited during the search, because the start 
class is where the search began. This information has no 
utility if search in the original space is in the same direction 
as search in the abstract space (e.g. from start to goal). But, 
if search in the original space proceeds in the opposite 
direction, from goal to start (using the inverse of the 
successor relation), then distance from the start is precisely 
what is need to guide search. If there are several levels of 
abstraction, search direction alternates from one level to the 
next. 

Using this technique, search is not confined to states that 
arc on the abstract path: heuristic distance information is 
available for every state in every class visited during the 
abstract search. This means that the solutions found by 
alternating search direction could be shorter than those 
found using the path-marking technique. Such solutions 
would not, of course, be refinements of the abstract path in 
the normal sense. 

Our implementation of this alternating-direction 
technique is "opportunistic" , as defined above.2 Like 
classical refinement, alternating opportunism never moves 
"away" from the destination: once it finds a state whose 
heuristic distance from the destination is D, it ignores all 
st.ates whose heuristic distance is greater than D. For this 
reason, the solutions found by alternating opportunism 
could be longer than those found by the path-marking 
technique. 

4 Experimental Comparison 

This experiment compares three search techniques -
classical refinement (abbreviated CR), path-marking (PM), 
and alternating opportunism (AO). The two performance 
measures of interest arc the length of the solution found, 
and the amount of "work" required to find a solution. 

We originally measured work in terms of CPU time, but 
this proved extremely sensitive to low-level programming 
detail s of no significance to the algorithms themselves. In 
this paper, work is measured by counting the number of 
edges traversed during search (at all levels of abstraction) 
and the number of "overhead" operations performed during 
search (for example, to pass the heuristic distance 
information from one level of abstraction to the next). As 
these two counts have roughly comparable units, they can 
sensibly be added to give a composite "total work" figure. 
Overhead cosL<; associated with creating the abstraction arc 

2 we have also impl emented a variation of classical refinement that is 
opportuni stic. This was not used in the experiments because with star 
ahstraction and the types of graphs used in the experiments, it can be 
proved that the heuri stic distance must decrease by 1 if search is confined 
10 the abstract path. 

not included in the "work" measure because our aim is to 
compare different techniques for using abstractions; the cost 
of creating the abstractions is the same for them all. 

Also of interest is the robustness of a search technique: to 
what extent docs good performance depend upon the 
abstract space that is used. To investigate this, abstractions 
were created using several different radii and two different 
methods for choosing the hub states (see section 2). 

Four different search spaces, derived from well-known 
puzzles, were used in the experiment. These are described 
below. For each space, 100 pairs of states were chosen 
randomly. Each pair <Sl,S2> gives rise to two problems: 
<start=S 1,goal=S2> and <start=S2,goal=S 1>. The same 
200 problems were used for every different combination of 
system and abstraction-parameter settings. All the results 
shown are averages over these 200 problems. 

A simple breadth-first search system was also run on the 
200 test problems for each search space. Its performance 
figures allow us to compare the solutions found using 
abstraction to the optimal solutions, and to measure how 
much work is being saved by using abstraction to guide 
search. 

4.1 Search Spaces 

Towers of Hanoi. The 7-disk version has 37 = 2187 states. 
Each state (except for the 3 extreme "comers") has 3 
successors, but the effective branching factor is 
considerably less than 3 because of the structure of the 
s~ace. The maximum distance between two states is 
2 = 128. 

5-puzzle. This is a 2x3 version of the 8-puzzle. The state 
space comprises two unconnected regions each containing 
360 states. We have connected the space by adding a single 
edge between one randomly chosen state in each of the two 
regions. Two-thirds of the states have only 2 successors, 
which means the branching factor at these states is 
effectively 1 (because every edge has an inverse, so one of 
the 2 successors will be the state from which the current one 
was reached). The other states have 3 successors. 

Blocks World. There are 6 distinct blocks, numbered 1 to 
6, each of which is either on the "table" or on top of another 
block. There is a "hand" that can hold one block at a time 
and execute one of four operations: put the block being held 
onto the table, put it down on top of a specific stack of 
blocks, pick up a block from the table, and pick up the 
block on top of a specific stack. With 6 blocks there are 
7057 states. Unlike the other search spaces, in the blocks 
world the branching factor varies considerably from one 
state to another, depending as it docs on the number of 
stacks in the state. The maximum distance between two 
states is 11. 

Permutation. A state is a permutation of the integers 1-7; 
there are 7! = 5040 states. There arc 6 operators numbered 
2 to 7. Operator N reverses the order of the first N integers 
in the current state. For example, applied to the state 
[3,2,5,6,1,7,4] operator 4 produces [6,5,2,3,1,7,4]. Operator 
7 reverses the whole permutation. All operators are 

267 



·I 

TABLE 1. Solution Length. 
States with the most neighbours are used as the hubs of the abstract classes. 
The ontimal solution len!!th is shown in brackets. 

Towers of Hanoi 5-puzzle Blocks World Permutation 
(66) (21) (9.5) (6.2) 

radius CR PM AO CR PM AO CR PM AO CR PM AO 
2 98 88 80 29 27 25 14.7 13.2 11.2 11.6 10.6 8.3 
3 101 77 76 27 24 24 11.5 11.0 10.8 9.5 9.3 8.0 
4 80 72 75 24 23 23 12.1 11.6 11.2 9.7 8.9 8.1 
5 82 72 76 29 25 25 11.9 11.2 11.3 8.1 7.3 7.4 
6 82 72 77 27 26 25 11.6 10.5 10.8 7.1 6.4 6.8 
7 79 69 75 26 25 24 10.3 9.7 10.2 7.3 6.4 6.8 
8 73 69 71 25 25 24 9.5 9.5 9.5 6.2 6.2 6.2 
9 78 68 74 26 25 24 9.5 9.5 9.5 6.2 6.2 6.2 

TABLE 2. Total Work (#edges+ overhead). 
States with the most neighbours are used as the hubs of the abstract classes. 
The work done bv ordinarv breadth-first search is shown in brackets. 

Towers of Hanoi 5-puzzle 
(3058) (802) 

radius CR PM AO CR PM 
2 894 1048 767 299 362 
3 867 903 711 251 308 
4 776 903 751 294 333 
5 752 927 740 314 371 
6 777 944 765 335 392 
7 802 950 828 333 392 
8 932 1079 938 348 413 
9 916 1082 946 386 469 

applicable in every state, so each state has 6 successors. 
The maximum distance between two states is 14. 

4.2 Results 

Tables 1 and 2 show the solution length and total work 
results when states having the most immediate neighbours 
arc used as the hubs of abstract classes. The solutions 
found using abstraction are relatively short, within 30% of 
the optimal length in most cases and never more than 
double the optimal length. Total work is impressively small 
for small radii, in most cases, but for large radii search 
using abstraction is not cost-effective. This is particularly 
evident in the Blocks World and Permutation spaces, whose 
maximum distance between states is small: a radius of 7 or 
greater causes almost all states to be put into the same class, 
making abstraction of little value. Only in the Towers of 
Hanoi space, where the maximum distance between two 
states is large, does abstraction with large radii pay off. In 
the comparisons that follow, data for radius ~ 7 for the 
Blocks World and Permutation spaces will be ignored. 

The experiment shows that PM's solutions are roughly 
10% shorter than CR' s. Regarding total work, it is possible 
for PM to do less than CR, if their solutions are different 
lengths. In the experiment, this never happened: PM 
always did more work, sometimes much more. In most 
circumstances, the 10% improvement in solution length PM 

AO 
255 
238 
301 
300 
321 
325 
346 
389 

Blocks World Permutation 
(3936) (5570) 

CR PM AO CR PM AO 
724 1073 762 512 868 460 

1200 1339 1227 616 762 609 
902 1127 889 750 1191 790 

1268 1767 1395 1407 2443 2527 
2124 2906 2146 3055 3926 5454 
3424 4258 4149 5739 7053 6416 
5915 5915 5973 7982 7982 7982 
5973 5973 5973 7982 7982 7982 

provides is probably not sufficient to justify the additional 
work. 

CR produces its poorest solutions when radius=2. It was 
hoped that PM would find much shorter solutions in this 
case, but the experiment reveals that its solutions are just 
10% shorter, as usual. Since PM produces the optimal 
refinement of an abstract solution, one may conclude that 
the relatively poor performance when radius=2 is an 
inherent property of the the general strategy of using a 
single abstract solution to guide search. 

AO does not follow the same general strategy, and its 
solutions are 10-15% shorter than PM's when radius=2. 
For larger radii, AO and PM give solutions of similar 
lengths - PM's are slightly shorter in the Towers of Hanoi 
space, AO's in the Permutation space. However, AO 
always does much less work than PM. AO does the same 
amount of work as CR and produces shorter solutions, 
sometimes very much shorter. The single exception is the 
Permutation space, where AO begins to degenerate to 
breadth-first search slightly sooner (radius=5) than CR. 

The same patterns arise when random states are used as 
the hubs when constructing abstract classes (see Tables 3 
and 4). The solutions found by all techniques have 
increased in length but CR's have increased more than 
PM's which, in tum, have increased more than AO's. 
Consequently, the difference in solution lengths has become 

268 



TABLE 3. Solution Length. 
Randomly chosen states are used as the hubs of the abstract classes. 
The ontimal solution len11:th is shown in brackets. 

Towers of Hanoi 5-puzzle Blocks World Pennutation 
(66) (21) (9.5) (6.2) 

radius CR PM AO CR PM AO CR PM AO CR PM AO 
2 91 80 75 32 29 26 27.2 21.3 12.7 15.6 12.0 8.4 
3 95 81 83 30 29 26 22.0 19.1 13.1 11.4 10.0 8.1 
4 82 72 77 27 25 25 19.7 16.5 13.6 IO.I 9.6 8.5 
5 86 74 78 28 25 24 14.3 13.6 12.1 9.5 8.5 8.6 
6 95 86 79 26 26 24 15.6 14.8 13.0 9.0 7.7 8.0 
7 88 81 79 25 25 25 17.0 16.2 13.8 6.9 6.4 6.6 

TABLE 4. Total Work (#edges+ overhead). 
Randomly chosen states are used as the hubs of the abstract classes. 
The work done bv ordinarv breadth-first search is shown in brackets. 

Towers of Hanoi 5-puzzle 
(3058) (802) 

rad ius CR PM AO CR PM 
2 847 1021 765 316 411 
3 794 957 763 282 338 
4 734 870 738 269 337 
5 776 924 763 280 360 
6 931 1111 830 306 363 
7 942 l 106 9 16 292 354 

greater (except, perhaps, for the Towers of Hanoi). It is 
now the case that the shortest of CR 's solutions for any 
rad ius is comparable in length to AO's longest solution. 

For radii other than 2, total work has decreased in most 
cases; dramatically so in the Blocks World. But all the 
search techn iques have benefited roughly equally: CR and 
AO sti ll do comparable amounts of work, and PM does 
significantly more. 

AO's solution lengths are remarkably insensitive to the 
manner in wh ich hub states are chosen and to the choice of 
rad ius (as long as the radius is not so large as to cause AO 
Lo degenerate to breadth-first search). This robustness of 
the search technique is important because it relieves the 
abstraction -constructing system of the responsibility of 
ensuring good solutions. The abstraction-construction 
system can therefore foc us on other issues; for example, it 
could attempt to construct abstract spaces that were 
"mean ingful" to a human in the sense that each class has a 
succ inct description. 

6 Conclusions 

Thi s paper has provided a common algorithmic framework 
encompass ing the two main methods of using an abstract 
so lution to guide search. In doing so, it has identified 
certain key issues in the design of techniques for using 
abstraction to guide search. The clear identification of these 
issues is important for research in abstraction, because 
doing so sharply focuses research. In response to these 
issues, two new new search techniques have been 
developed - path -marking and alternating opportunism. 

AO 
285 
264 
264 
265 
303 
302 

Blocks World Pennutation 
(3936) (5570) 

CR PM AO CR PM AO 
1310 1526 1070 806 1015 817 
571 783 546 800 978 806 
699 1027 738 811 1250 1038 
902 1093 896 1258 2491 1456 
808 1048 780 3142 5064 3674 
964 1297 964 6295 7008 6566 

These have been compared experimentally with a standard 
search technique, classical refinement Path-marking is 
guaranteed to find the optimal refinement of a given abstract 
path; the experiments show that classical refinement, in 
general, produces refinements whose length are within 10% 
of the optimal refinement. However, the optimal refinement 
of a somewhat arbitrarily chosen abstract path is not 
necessarily close to being an optimal solution. The 
alternating opportunism technique is based on a 
generalization of the notion of "refinement of an abstract 
path". It produces shorter solutions than classical 
refinement with the same amount of search. It is also a 
more robust technique, in the sense that its solution lengths 
are very similar across a range of different abstractions of 
any given space. 

This study has been carried out with a system in which 
search spaces are represented as explicit graphs. However, 
this is incidental to the general framework and specific 
techniques developed and compared in the paper. Path
marking, alternating search direction, and opportunism 
could all be implemented as search techniques in a 
traditional STRIPS-style search system. 

References 

[Fikes and Nilsson, 1971] Fikes, R. and NJ. Nilsson (1971), 
"STRIPS: A New Approach to the Application of 
Theorem Proving to Problem Solving", Artificial 
Intelligence, vol.2, pp.189-208. 

269 



! 
I 

[Hart cl al., 1968) Harl, P.E., NJ. Nilsson, and B. Raphael 
(1968) , "A Formal Basis for the Heuristic Determination 
of Minimum Cosl Paths", IEEE Transactions on 
Syslems Science and Cybernetics, vol.4(2), pp.100-107. 

[Holle el al., 1993) Holle, R.C., R. Zimmer, and A.J. 
Macdonald (1993), "A Study of the Representation
Dependency of Abstraclion Techniques", ML'93 
workshop on Knowledge Compilation and Speedup 
Leaming, June 1993. (unpublished) 

[Holte et al., 1992) Holte, R.C., R. Zimmer, and A. 
MacDonald (1992), "When does Changing 
Representation Improve Problem-Solving Performance 
?", in M. Lowry (ed.), Proceedings of the Workshop on 
Change of Representation and Probiem Reformuiation, 
NASA Ames technical report FIA-92-06. May 1992. 

[Knoblock, 1991) Knoblock, C.A. (1991). Automatically 
Gcneraling Abstractions for Problem Solving. 
Lech . report CMU-CS-91-120, Computer Science Dept., 
Carnegie-Mellon University. 

[Knoblock ct al., 1991) Knoblock, C.A., J.D. Tenenberg, 
and Q. Yang (1991), "Characterizing Abstraction 
Hierarchies for Planning", Proc. AAA!, pp.692-697. 

[Minsky, 1963) Minsky, M. (1963), "Steps Toward 
Artificial Intelligence" , in Computers and Thought, E. 
Feigenbaum and J. Feldman (eds.), McGraw-Hill, 
pp.406-452. 

[M kadmi, 1993) Mkadmi, T. (1993). Speeding Up State
Space Search by Automatic Abstraction. Master's 
Thesis. Computer Science Dept., University of Ottawa. 

[Pearl, 1984) Pearl, J. (1984), Heuristics, Addison-Wesley. 

[Prieditis and Janakiraman, 1993) Prieditis, A., and B. 
Janakiraman (1993), "Generating Effective Admissible 
Heuristics by Abstraction and Reconstitution", Proc. 
AAAI, pp.743 -748. 

[Saccrdoti, 1974) Saccrdoti, E. (1974). Planning in a 
hierarchy of abstraction spaces. Artificial Intelligence, 
vol. 5(2), pp. 115-135. 

[Yang and Tenenbcrg, 1990] Yang, Q. and J.D. Tenenberg 
( 1990). Abtweak: Abstracting a nonlinear, least 
commitment planner. Proc . AAAl'90, pp. 204-209. 

270 



An Argument for Indexical Representations in Temporal Reasoning* 

Yves Lesperance and Hector J. Levesque t 
Department of Computer Science 

University of Toronto 
Toronto, ON, Canada M5S 1A4 

{lesperan, hector }@ai.utoronto. ca 

Abstract 

This paper discusses the need for indexicals in 
a representation language. It has been claimed 
that the cost of updating a knowledge base 
containing indexicals would be prohibitive and 
thus that a robot should use its internal clock 
to eliminate indexicals from its representations. 
We criticize this view and give an example of 
a commonplace temporal reasoning/planning 
problem that can only be solved in a represen
tation formalism that includes both indexical 
and absolute terms and supports reasoning us
ing both. We show that the example can be 
formalized within our theory of knowledge and 
action. We argue that rather than trying to 
find restricted settings where indexical knowl
edge can be reduced to objective knowledge, 
one should investigate when and how planning 
and temporal knowledge base update can be 
performed efficiently in the presence of indexi
cals. 

1 Introduction 

To someone accustomed to the objective point of 
view of science or mathematics, indexicality ( context
sensitivity) may appear as little more than an artifact of 
natural language. One may thus claim that while using 
indexical descriptions (e.g., now, three hours ago, one 
meter in front of me) is often convenient, in practice, in
dexical knowledge can always be understood objectively. 
One reason for wishing that this claim were true has to 
do with the fact that the semantic content of indexical 
representations depends on the context, so if the context 
changes you may have to adjust the representations to 
keep the semantic content unchanged. For instance, if 
an agent's knowledge base describes some facts as hold
ing 'now', then at the next time step, it should describe 

*This research received financial support from the Insti
tute for Robotics and Intelligent Systems (Canada), the In
formation Technology Research Center (Ontario, Canada), 
and the Natural Science and Engineering Research Council 
(Canada). 

1Fellow of the Canadian Institute for Advanced Research 

these facts as holding 'one time step before now' .1 Haas 
[1991] points out that the cost of adjusting a knowledge 
base that contains indexical time references for the pas
sage of time would be high, if implemented in the obvious 
way. He proposes that a robot use its internal clock to 
eliminate all occurrences of 'now' in its representations. 

This proposal and the general strategy of trying 
to eliminate indexical representations are misguided. 2 

First, humans do not have internal clocks that they can 
use in the way a robot can, and they do not always know 
what time it is. A system that is interacting with hu
mans will need to model this ( e.g. to remind a user that 
his meeting is just starting). Even if we limit ourselves 
to simple robotics contexts, it seems unlikely that the in
ternal clocks of robots could always be guaranteed to be 
accurate. In such cases, Haas's scheme leads to indexi
cal information being misrepresented. Moreover, Haas's 
robot cannot even represent the fact that his internal 
clock is incorrect; it could not monitor for this and plan 
to get its clock reset when appropriate. Also, for very 
simple (e.g . insect-like) robots, the cost of fitting them 
with internal clocks and setting them may be too high. 
Finally, as Haas recognizes, it is not at all clear that the 
cost of updating a temporal knowledge base that con
tains indexicals need be prohibitive; for example, if all 
occurrences of 'now' are replaced by a new constant and 
the fact that this new constant is equal to 'now' is added, 
then only this single assertion need be updated as time 
passes. 

In the next section, we will give an example of a com
monplace temporal reasoning/planning problem that 
can only be solved in a representation formalism that 
includes both indexical and non-indexical concepts and 
supports reasoning using both. The example involves an 
agent that does not initially know what time it is; he 
must keep track of time in relative terms (using a timer), 
but later convert this indexical knowledge into absolute 
knowledge for communication to another agent. We will 

1 Subramanian and Woodfill [1989] prove that such a 
transformation is truth-preserving within their indexical sit
uation calculus framework. 

2 Philosophers such as Perry [1979] have long argued that 
indexical knowledge cannot be eliminated. But the exam
ples they cite to support their position can appear farfetched. 
Here we try to make the point that this does apply to the 
practice of building intelligent systems. 

271 



I 

I 

I 

show in detail in Section 4 that this example can be 
formalized within the theory of knowledge and action 
that we proposed in [Lesperance and Levesque, 1994; 
Lesperance, 1991]. We will return to our discussion of 
whether indexical knowledge can be eliminated in the 
final section. 

2 The Example 

The example goes as follows . Imagine that you arrive at 
home and are greeted by the following note: 

"The turkey is ready to go into the oven (at 
325°F) . I will be home in time to take it out, 
but leave me a message before you go telling 
me at what time you put it in." 

Unfortunately, the only timing devices you have are the 
one-hour timer on the stove, and a radio station that 
announces the time at least every 30 minutes. You also 
want to put the turkey to roast as early as possible and 
be done as quickly as possible. 

It is not too hard to see what needs to be done. A 
reasonable plan is to put the turkey in the oven, set the 
timer to one hour, then listen to the radio until the time 
is announced while keeping track of the roasting time 
with the timer, and finally calculate the time the turkey 
started roasting, and leave a message to that effect .3 

Obviously, a single example by itself is not much of an 
argument for anything. However, the example illustrates 
a simple but extremely common situation where two very 
different notions of time need to be dealt with : indexical 
or relative time, as determined by the timer ( "the turkey 
went in 20 minutes ago"), and absolute or objective time, 
as calculated from the radio announcement ( "the turkey 
went in at 12:45pm") . The key point is that either notion 
of time by itself is inadequate to model the situation. 
To see this, observe that the problem cannot be solved 
without the radio , and yet all it provides is information 
like "It is now l:05pm." To make sense of this essential 
piece of information, we need to be able to relate the 
two separate conceptions of time. In purely indexical or 
purely absolute terms, the information is meaningless. 

3 Overview of the Formalism 

Before presenting a formalization of the example, we 
briefly review a formal theory of indexical knowledge, 
action and ability (see [Lesperance and Levesque, 1994; 
Lesperance, 1991] for a more detailed presentation .) The 
goal is to be able to express attributions of indexical 
knowledge, for example, that Rob knows that he himself 
was holding a cup five minutes ago. 4 In such cases, what 
is known is a "proposition" that is relative. It may be 
relative to the knower, or to the time of the knowing, or 
perhaps to other aspects of the context. To handle this, 

3 It would be more efficient to listen to the radio as one is 
putting the turkey in, but we do not want to deal with true 
concurrency here. 

4 As well, we want to be able to distinguish this from hav
ing objective knowledge, such as Rob's knowing that Rob was 
holding a cup at some specified time, say, 4:37pm. 

our language includes two special terms: self, which de
notes the current agent, and now, which denotes the 
current time; these terms are called primitive indexicals. 
Non-logical (domain-dependent) symbols may also de
pend on the current agent and time for their interpreta
tion, for example, :lxHOLDING(x) may express the fact 
that the current agent is currently holding something 
- we say that such symbols are non-primitive indexi
cals. Our semantics handles this by interpreting terms 
and formulas with respect to indices, which consist of a 
possible-world (modeling the objective circumstances), 
and an agent and a time (modeling the context) . 

The language used is a many-sorted first-order modal 
language with equality called LIKA (Language of Index
ical Knowledge and Action). It includes terms of four 
different sorts : terms for ordinary individuals ( as usual), 
temporal terms, agent terms, and action terms. For each 
of these sorts, there are both variables and function sym
bols (i .e. , functions whose values are of the proper sort); 
as usual, constants are taken to be 0-ary function sym
bols. 

The atomic formulas include predications using predi
cate symbols and terms, written R(B1, ... Bn), which are 
used to assert that ()1 , ... Bn stand in static relation R at 
the current time for the current agent. We also have 
equality expressions (B1 = B2 ), between terms of the 
same sort, as well as expressions of temporal precedence 
(Bf < o;) . We assume that time is linearly ordered . 
Finally, Does( ()d, ()1) is used to assert that the current 
agent does action ()d starting from the current time and 
ending at time () 1

. 

Non-atomic formulas may be composed using the stan
dard boolean connectives and quantifiers as well as a set 
of modal operators. At( () 1

, tp) means that if' holds at 
time ()1 , that is, when ()1 is taken to be the current time. 
By( ea, if') means that if' holds when ea is taken to be the 
current agent. . Dtp means that if' is historically necessary 
at the current time, that is, that if' now holds in all pos
sible courses of events that are identical to the current 
one up to the current time. We also introduce a dual to 

def 
D : Otp = ,D,tp. 

Know(tp) is used to represent the fact that the cur
rent agent knows at the current time that tp. If if' con
tains indexical elements, Know( if') should be taken as 
attributing indexical knowledge, that is, knowledge the 
agent has about himself and the current time. For ex
ample, Know(HOLDING(x)) could mean that the agent 
knows that he himself is currently holding the object 
denoted by x. The semantics for Know is a simple gen
eralization of the standard possible-world scheme. The 
knowledge accessibility relation K is taken to hold over 
indices rather than plain possible worlds. Informally, 
((w, a, t), (w' , a', t' )) E Kif and only if as far as agent a 
at time t in world w knows, it may be the case that w' is 
the way the world actually is and he is a' and the current 
time is t'. T hus, we allow an agent to be uncertain not 
only about what world he is in, but also about who he 
is and what time it is . We assume that the knowledge 
accessibility relation K is reflexive and transitive, mean
ing that Know obeys the principles of modal logic S4. 
We also assume that agents have perfect memory and 

272 



always know what actions they have done. 
For the example to follow, it is convenient to make 

two general assumptions beyond those embodied in the 
logic. First, we assume that the domain of times is ( or is 
isomorphic to) the integers, that is, we assume that the 
facts about integer arithmetic that we need are valid and 
that constants and function symbols representing arith
metic operations are rigid. Secondly, we assume that all 
actions are "solid", in the sense that any overlapping in
stances of an action (type) must be the same instance 
(have the same endpoints) [Shoham, 1987]. This ensures 
that we can refer to things like "the starting time of the 
action I have just done". 

To talk more easily about a wider class of actions, it is 
useful to extend the use of Does to a new syntactic cat
egory, that of action expressions. These include action 
terms as above, which represent simple actions, noOp, 
which represents the empty action and takes no time, 
( 81; 82), which represents the sequential composition of 
the actions 81 and 82 , and if(<p, 81, 82), which represents 
the action that consists in doing action 81 if the condi
tion <p holds, and in doing action 82 otherwise. Formulas 
of the form Does( 8, {}t) where 8 is an action expression, 
can be thought of as abbreviations that reduce to for
mulas where Does ranges only over the simple action 
terms, in the obvious way. We also define a bounded 
form of "while loop" as an action expression as follows: 

{ 

noOp ifk = 0 

whilek('P, 8) ~f if(<p, (8; whilek-l ('P , 8)), noOp) 
if k > 0, k E 1W 

Let us also define some dynamic-logic-style opera
tors that will be used in our formalization of ability. 
After N ec( 8, <p), which is intended to mean "<p must hold 
after 8", is defined inductively as follows: 

AfterNec(Bd,'P)~f D'v'vt(Does(Bd,vt):::) At(v1 ,<p)), 
where vt is a temporal variable that does not oc
cur free in <p 

AfterNec(noOp, <p) ~f <p 

AfterNec((81; 82 ), <p) d1f 

After N ec( 81 , After N ec( 82 , <p)) 

AfterNec(if(<pc, 81, 82), <p ) ~r 
('Pc:::) AfterNec(81,<p)) /\ 
(·'Pc:::) AfterNec(82,'P)) 

def Also, let PhyPoss(8) ,AfterNec(8, False). 
Phy Poss( 8) is intended to mean that it is "physically 
possible" for self to do action 8 next ( even though he 
may not be able to do it because he does not know what 
primitive actions 8 stands for). True (False) stands for 
some tautology (contradiction). 

Our formalization of ability, based on that of Moore 
[1980], says that the agent is able to achieve the goal <p 
by doing action 8, formally Can(8, <p), if and only if he 
can do action 8 and knows that after doing 8, the goal <p 
must hold: 

Can(8, <p) ~r CanDo(8) /\ Know(AfterNec(8, <p)) 

CanDo( 8) is defined inductively as follows: 5 

CanDo(Bd) d~f 
3vdKnow(vd = Bd)/\Know(PhyPoss(Bd)) , where 
action variable vd does not occur free in (Jd 

CanDo(noOp) ~r True 

CanDo( 81; 82) d1f Can( 81 , CanDo( 82)) 

CanDo(if(<p, 81 , 82)) ~r 
(Know(<p) /\ CanD0(81)) V 
(Know( •'Pc) /\ CanDo( 82)) 

Note that we eliminate Moore's requirement that the 
agent know who he is; instead, we require indexical 
knowledge (see [Lesperance and Levesque, 1994] for a 
discussion of why this is better) . Also, as we will see in 
the next section, the fact that our account of ability is 
based on a more expressive temporal logic allows it to 
deal with actions whose prerequisites or effects involve 
knowledge of absolute times and knowing what time it 
lS. 

4 Formalizing the Example 

Let us formalize the example and prove that the agent 
is able to achieve his goal by executing the proposed 
plan given some reasonable assumptions about his initial 
knowledge. Our formalization will be rather simplistic, 
but could easily be made more accurate and general. We 
define the agent's plan as follows: 

GETDINNERGOING ~f 
STARTROASTING; SETTIMER(lH); 
LISTEN UNTIL TIMEANNOUNCED; 
LOOKATTIMER; LEAVEMSG 

We use abbreviations such as lH (1 hour) and 30MIN (30 
minutes) for readability; it is assumed that such abbre
viations stand for the corresponding number of seconds. 
The complex action LISTEN UNTIL TIMEANNOUNCED is 
defined below . Let ANNOUNCEDTIME mean that the 
time has been announced on the radio during the last 
step of LISTEN :6 

ANNOUNCEDTIME ~f 
:3t 3 :3t;(DoesFromTo(LISTEN, i s, now)/\ 

is :S l; :Snow/\ At(t;, ANNOUNCINGTIME)) 

LISTEN UNTIL TIMEANNOUNCED stands for repeatedly 
doing LISTEN until the time is announced ( at least once 
and at most some very large number of times vln): 

LISTEN UNTIL TIMEANNOUNCED ~f 
LISTEN; whilevln (,ANNOUNCED TIME, LISTEN) 

5 T his way of defining Can is preferable to the one in 
[Lesperance, 1991; Lesperance and Levesque, 1990] as it sepa
rates the knowledge prerequisites involving the goal from the 
rest. The definitions of AfterNec and PhyPoss given here 
are also changed; they now behave exactly as their dynamic 
logic [Goldblatt , 1987] counterparts do . 

6 DoesFromTo (8, B;, B!) means that the agent does action 
8 from time B; to time B!; formally: DoesFromTo(8, B;, B! ) 

~r 3v!(v! = B! A At(B~, Does(8, v!))), provided that v! does 
not occur anywhere in B;, B!, or 8. 

273 



I 

I 

I 

I 

Let us now formalize the actions involved in the plan. 
First note that we must specify an appropriate limit on 
the duration of the actions, otherwise they might take so 
much time as to prevent the goal from being achieved. 
But note also that we cannot have these actions take a 
fixed length of time that is known to the agent, for oth
erwise, he could use them to measure time and dispense 
with the timer. What we will do is specify that basic 
actions take a indeterminate amount of time that must 
be between given bounds. So we specify the effects of 
the STARTROASTING action as follows: 

Assumption 1 (Effects of STARTROASTING) 

I= Vts Vte(DoesFromTo(STARTROASTING, ts, ie) :J 
ie =(is+ lMIN) ± 30s /\ At(te, ROASTING)/\ 
Vt(( < t < tc:) At(i; ,ROASTING))) 

This says that setting the turkey to roast takes one 
minute plus or minus 30 seconds (i.e., between half a 
minute and a minute and a half), that the turkey is 
roasting afterwards, and that it is not roasting while the 
action is being done. 

For the action of setting the timer, we have the fol
lowing: 

Assumption 2 (Effects of SETTIMER) 

I= Vts Vi e Vn(DoesFromTo(SETTIMER( n), ts, te) :J 
i e = (ts+ 15s) ± 5s /\ At(te, TIMER VAL= n)) 

This says that doing SET TIMER( n) takes 15 seconds plus 
or minus 5 seconds, and that afterwards, the timer is set 
to show that the time left is n seconds. 

For the action of listening to the radio (LISTEN), we 
assume that it takes 10 seconds plus or minus 4 seconds, 
and that afterwards, the agent either knows that the 
time has not been announced during the action, or knows 
that it has been announced and knows what time it is 
within a margin of error of 7 seconds: 

Assumption 3 (Effects of LISTEN) 

I= Vt.Vte(DoesFromTo(LISTEN, is, i e) :J 
te= (t.+10s)±4s/\ 
At(te,Know(,ANNOUNCEDTIME) V 

(Know(ANNOUNCEDTIME) /\ 
:ltKnow(now = t ± 7s)))) 

It is assumed that the time is announced on the radio at 
least every half hour. 

For the action of looking at the timer, we assume that 
it takes 5 seconds plus or minus two seconds and that 
afterwards, the agent knows what duration is left on the 
timer: 

Assumption 4 (Effects of LOOKATTIMER) 

I= Vis Vte(DoesFromTo(LOOKATTIMER, ts, te) :J 
t e =(ts+ 5s) ± 2s /\ At(te, :3nKnow(n = TIMERVAL))) 

Finally, we need to specify the effects of leaving a mes
sage. Let TSR(gt) stand for the claim that the turkey 
has been roasting since time gt and was not roasting 
prior to that: 

TSR( gt) '!:~fvvt w ::; Vt ::; now :J At( Vt' ROASTING)) 
I\ At(gt - ls, ,ROASTING), 

where vt is not free in gt 

We will assume that LEAVE MSG, that is, leaving a mes
sage about what time the turkey started roasting, takes 
one minutes plus or minus 30 seconds, and that after
wards, there must be a message on the table stating 
that the turkey started roasting at some time tm that 
is within c seconds of the time at which the turkey actu
ally started roasting: 

Assumption 5 (Effects of LEAVE MSG) 

F Vts Vte(DoesFromTo(LEAVEMSG, ts, te) ::) 
i e = (ts + lMIN) ± 30s /\ 
At(te, :ltr:ltm(MsGONTBL(tm) /\ TSR(t,.) /\ 

tm =tr± c))) 

For this example, the error bound c can be made as tight 
as 14 seconds, but nothing depends crucially on this. 

Now, let us specify the physical prerequisites of the 
actions. We assume that it is physically possible for the 
agent to do STARTROASTING whenever the turkey is not 
roasting: 

Assumption 6 (Prerequisites of STARTROASTING) 

I= ,ROASTING :J PhyPoss(STARTROASTING) 

We also assume that it is physically possible for the agent 
to set the stove timer to any duration between O and 1 
hour ( the formal statement is similar to the one above). 
As well, it is assumed that LISTEN, LOOKATTIMER, and 
LEAVEMSG are always physically possible. 

We must also specify the conditions under which 
agents know how to perform the basic actions. We as
sume that one always knows how to do STARTROASTING: 

Assumption 7 (STARTROASTING is known) 

I= :ldKnow(d = STARTROASTING) 

Similarly, we assume that agents always know how to do 
LOOKATTIMER, LISTEN, and SETTIMER(n) (for any n) . 
Finally, we assume that the agent must know how to do 
LEAVE MSG if he knows when the turkey started roasting 
within a margin of error of c: 

Assumption 8 (LEAVEMSG is known) 

l=:3tmKnow(:3tr(TSR(tr) /\tr = tm ± c)) 
::) :ldKnow(d = LEAVEMsG)) 

We also have various frame assumptions that specify 
what remains unchanged as actions are done. First, we 
assume that actions other than START ROASTING have no 
effects on whether or not the turkey is roasting. 7 Sec
ondly, we assume that for any action other than setting 
the timer, the time shown by the timer must accurately 
reflects the passage of time during the action: 

Assumption 9 (Frame assumption about timer values) 

I= Vt 8 Vt e VdVnVti(DoesFromTo( d, ts, te) I\ 
Vm(d -::j:. SETTIMER(m)) /\ 
At(t 8 ,n=TIMERVAL)/\ts < ti ::;te 
::) At(ti, TIMER VAL= MAX(O, n - (t; - ts)))) 

7 This frame assumption (and the subsequent ones) should 
not really be taken to hold for all actions. But given the 
limited domain under consideration, this causes no harm. 
Such assumptions would probably be best specified as de
fault statements. 

274 



Finally, we have unique name assumptions for all the 
actions introduced. 

Given this formalization, our framework now allows 
us to prove the following proposition, which says that 
if the agent knows that the turkey is not yet roasting, 
then by doing the action GETDINNERGOING, he is able 
to achieve the goal that there be a message on the table 
telling when the turkey started roasting within c seconds 
of accuracy and that the time after the action be less 
than 32 minutes and 12 seconds after the turkey started 
roasting: 

Proposition 1 

!=Know( ,ROASTING) :) 
Can( GETDINNERGOING, 

:lt,.:ltm(MsGONTBL(tm) /\ TSR(t,.) /\ 
t r = tm ± f /\ now - tr .S 32MIN12s)) 

A sketch of the proof is provided in appendix. 

5 Discussion 

Let us return to our discussion of the claim that index
ical knowledge can be reduced to objective knowledge. 
In our semantics for knowledge, indexical terms and for
mulas are treated as relative to an agent and a time; for 
example, knowing that something is h ere amounts to 
knowing that something is at one's position at the cur
rent time. Given this, it is clear that if one knows who 
one is and knows what time it is (we are t aking this to 
require knowing a standard name), then anything that 
one knows in an indexical way is also known in an obj ec
tive way. But is it reasonable to assume that an agent 
always knows who he is and what time it is? 

As argued in section 1, the temporal part of this ques
tion must clearly be answered negatively.8 Humans do 
not always know what time it is and computers need to 
model this. And even robots sometimes need to get their 
internal clocks reset. Work on reactive agent architec
tures supplies other reasons for wanting a formalism that 
can represent indexical knowledge. As pointed out by 
Agre and Chapman [1987], the world can change in un
expected ways and reasoning about change can be very 
costly; in some cases it is better to rely on perception to 
get fresh information at every time step rather than try 
to update a representation of the world ; in such cases, 
the problem of updating indexical representations does 
not arise. And as Rosenschein and Kaelbling [1986] have 
shown , it is legitimate to ascribe knowledge to agents 
even when they have no explicit representation of this 
knowledge. In such cases, one needs a formalism that 
distinguishes between indexical and objective knowledge 
just to accurately model the agent 's thinking . T he out
put of the agent 's perception module says nothing about 
time, and even if the agent has a correct internal clock, 
he may have no need to time-stamp his knowledge . We 
want a formalism that makes the distinctions required 
to model this. 

8 We also think that it should not be assumed that 
agents always know who they are; see [Lesperance and 
Levesque, 1994; Lesperance, 1991; Grove and Halpern , 199 1] 
for arguments. 

T hus, rather than trying to find restricted settings 
where indexical knowledge can be redu ced to objective 
knowledge, we think it would be more productive to in
vestigate when and how planning and t emporal knowl
edg e base update can be performed effi ciently in th e pres
en ce of indexicals. Once one allows for agents not know
ing what time it is, then examples like the one formalized 
here easily come to mind , examples that require both in
dexical and absolute terms for their representation and 
the ability to relate them in reasoning. A formalism 
along the lines of ours is required for handling such 
cases. Grove and Halpern's logic of knowledge lGrove 
and Halpern , 1991] handles some aspects of indexical
ity, but does not deal with time; so it cannot handle 
the kinds of situations discussed here. Subramanian and 
Woodfill 's version of the situation calculus [Subramanian 
and Woodfill, 1989] handles aspects of indexicality, but 
not knowledge ; thus, it cannot account for knowledge 
acquisition actions. 

Let us conclude by discussing various areas in which 
our fr amework could be extended or improved. It may 
be possible to develop more convenient constructs for 
specifying of the temporal constraints associated with 
actions. We are currently reformulating our framework 
into an extended version of the situation calculus, to in
corporate a solution to the frame problem described in 
[Scher! and Levesque, 1993]. We are also developing a 
more general account of the notions of "ability to achieve 
a goal" and "knowing how to execute a plan" [Levesque 
et al., 1994]. Other important issues are how default in
formation could be specified, and identifying restrictions 
on domain theories and queries that guarantee tractabil
ity or decidability. 

Acknowledgements 

We would like to thank Andy Haas for his comments on 
the ideas advanced in this paper. 

A Outline of the Proof of P roposition 1 

T he following lemmas are the main steps in proving 
proposition 1. One proves the proposition by "chaining" 
these lemmas using the following properties of Can: 

If I= 'Pi:) Can(82, 'Pe), 
then I= Ca n(81 ,'Pi ) :) Ca n((81 ; 82), 'Pe )· 

I= Can(o, cp) :) Can(o, Know( cp)) 
T he first lemma shows that given his initial knowledge, 
the agent is able to set the turkey to roast: 

Lemma 1 

!=Know( ,ROASTING) :) 
Can (STARTROASTING, TSR(now)) 

T he proof uses assumptions 1, 6, and 7. 
The second lemma shows that once he has set the 

turkey to roast, the agent is able to st art measuring the 
roasting time by setting the timer to one hour. Let us 
first define MRT , meaning that the agent is measuring 
the roasting time: 

MRT <l~r :lt (TS R(t) /\ 
. t = (now - (lH - TIMER VAL) - 15s ) ± 5s ) 

275 



· I 

-.-i 
·I 

We can then establish that: 

Lemma 2 

!=Know(TSR(now)):) 
Can(SETTIMER(lH), MRT /\ TIMER VAL= lH) 

The proof uses assumption 2, the assumptions that 
SETTIMER is always known and physically possible, the 
frame assumption for ROASTING, and the unique name 
assumption for actions. 

Then, we show that once he gets in that state, by do
ing the iterative action LISTEN UNTIL TIMEANNOUNCED 
the agent can find out what time it is within 7 seconds 
of accuracy, with the timer still measuring the roasting 
time: 

Lemma 3 

!=Know(MRT /\ TIMER VAL= lH):) 
Can(LISTENUNTIL TIMEANNOUNCED, 

MRT /\ 30MIN - 14s < TIMER VAL /\ 
:3tKnow(now = t ± 7s)) 

To prove this, we need the following two sublemmas. 
Let us define ATSTS, meaning that the time has been 
announced on the radio since the timer was set: 

ATSTS ~f :3t(now - (lH - TIMERVAL) ::St=:-; now 
/\ At(t, ANNOUNCING TIME)) 

The first sublemma states that if the agent knows that he 
is measuring the roasting time with the timer and that 
the time has not been announced on the radio since he set 
the timer, then by doing LISTEN, he is able to either find 
out that the time has been announced during the action 
and know what it is (within 7 seconds of accuracy), or 
know that it has not been announced during the action 
and since he set the timer, while continuing to measure 
the roasting time with the timer: 

Lemma 4 

F \fm( 
Know(MRT /\ 30MIN < TIMER VAL '.:Sm/\ ,ATSTS):) 
Can(LISTEN, MRT /\ 

([Know(ANNOUNCEDTIME) /\ :3tKnow(now = t ± 7s) 
/\ 30MIN - 14s < TIMERVAL] V 

[Know(,ANNOUNCEDTIME) /\ ,ATSTS /\ 
30MIN < TIMER VAL ::-; m - 6s]))) 

This is proven using assumptions 3 and 9, the assump
tions that LISTEN is always possible and known, the 
frame assumption for ROASTING, the assumption that 
the time is announced at least every thirty minutes, and 
the unique name assumption. From the above lemma, 
we can then prove the following by induction over the 
bound on the number of iterations n: 

Lemma 5 

For all n E ru , 
!= Know(MRT) /\ 
([Know(ANNOUNCEDTIME /\ 30MIN - 14s < TIMER VAL) 

/\ :3tKnow(now = t ± 7s)] 
V Know(,ANNOUNCEDTIME /\ ,ATSTS /\ 

30MIN < TIMERVAL ::S 30MIN + n6s)) :J 
Can(whilen(,ANNOUNCEDTIME, LISTEN), 

MRT /\ 30MIN - 14s < TIMER VAL/\ 
:3tKnow(now = t ± 7s)) 

This says that if the agent either knows that the time 
has been announced during the previous LISTEN step and 
knows what it is (within 7 seconds), or knows that it has 
not been announced during the action and since he set 
the timer, while measuring the roasting time, then by 
repeatedly doing LISTEN until the time is announced, he 
is able to find out what time it is ( within 7 seconds) 
while continuing to measure the roasting time. Lemma 
3 is then proven by "chaining" the two results above. 

Returning to the proof of the proposition, we then 
show that once he has found out the time, the agent 
can find out at what time the turkey started roasting by 
looking at the timer : 

Lemma 6 

!=Know(MRT /\ 30MIN - 14s < TIMERVAL) /\ 
:3t Know(now = t ± 7s) :) 
Can(LOOKATTIMER, 

:3tmKnow(:3t,. (TSR(tr) /\tr= tm ± 14s /\ 
now - tr ::S 30MIN42s))) 

This is shown using assumptions 4 and 9, the assump
tions that LOOKATTIMER is always possible and always 
known, the frame assumption for ROASTING, and the 
unique name assumption. 

Finally, we sh0w that once he has found out when the 
turkey started roasting, by doing LEAVE MSG, the agent 
can ensure that there is a message on the table telling 
when the turkey started roasting (within 14 seconds of 
accuracy): 

Lemma 7 

!=:3tmKnow(:3tr(TSR(tr) /\ tr = tm ± 14s /\ 
now - tr ::S 30MIN42s)) :) 

Can(LEAVEMSG, 
:3tr:3tm(TSR(tr) /\ MsGONTBL(tm) /\ tr = tm ± 14s 

/\ now - tr ::S 32MIN12s)) 

The proof uses assumptions 5 and 8, the assumption that 
LEAVEMSG is always physically possible , the frame as
sumption for Ro AS TING, and the unique name assump
tion. 

References 

[Agre and Chapman, 1987] Philip E . Agre and David 
Chapman. Pengi : An implementation of a theory of 
activity. In Proceedings of the Sixth National Confer
ence on Artificial Intelligence, pages 268- 272 , Seattle, 
WA, July 1987. American Association for Artificial 
Intelligence, Morgan Kaufmann Publishing. 

[Goldblatt, 1987] Robert Goldblatt. Logics of Time and 
Computation. CSU Lecture Notes No . 7. Center for 
the Study of Language and Information, Stanford Uni
versity, Stanford, CA, 1987. 

[Grove and Halpern, 1991] 
Adam J. Grove and Joseph Y . Halpern . Naming and 
identity in a multi-agent epistemic logic. In James 
Allen, Richard Fikes, and Erik Sandewall, editors, 
Principles of Knowledge Representation and Reason
ing: Proceedings of th e Second International Confer
ence, pages 301- 312, Cambridge, MA, 1991. Morgan 
Kaufmann Publishing . 

276 



[Haas, 1991) Andrew R. Haas. Indexical expressions and 
planning. Unpublished manuscript, Department of 
Computer Science, State University of New York, Al
bany, NY, 1991. 

[Lesperance and Levesque, 1990) Yves Lesperance and 
Hector J. Levesque. Indexical knowledge in robot 
plans. In Proceedings of the Eight National Confer
ence on Artificial Intelligence, pages 868- 87 4, Boston, 
August 1990 . American Association for Artificial In
telligence, AAAI Press/MIT Press. 

[Lesperance and Levesque, 1994) Yves Lesperance and 
Hector J. Levesque. Indexical knowledge and robot 
action - a logical account. To appear in Artificial 
Intelligence, 1994. 

[Lesperance, 1991) Yves Lesperance. A Formal Theory 
of Indexical Knowledge and Action. PhD thesis, De
partment of Computer Science, University of Toronto, 
Toronto, ON, January 1991. Also published as tech
nical report CSRI-248. 

[Levesque et al. , 1994) 
Hector J. Levesque, Yves Lesperance, Fangzhen Lin, 
and Richard B. Scher!. Knowledge, action, and ability 
in the situation calculus. In preparation, 1994. 

[Moore, 1980) Robert C. Moore . Reasoning about 
knowledge and action. Technical Report 191, AI Cen
ter, SRI International, Menlo Park, CA, October 1980. 

[Perry, 1979) John Perry. The problem of the essential 
indexical. Nous, 13:3- 21, 1979. 

[Rosenschein and Kaelbling, 1986) Stanley J. Rosen
schein and Leslie P. Kaelbling. The synthesis of dig
ital machines with provable epistemic properties. In 
Joseph Y. Halpern, editor, Theoretical Aspects of Rea
soning about Knowledge: Proceedings of the 1986 Con
ference, pages 83-98, Monterey, CA, 1986. Morgan 
Kaufmann Publishing. 

[Scher! and Levesque, 1993) Richard B. Scher! and Hec
tor J. Levesque. The frame problem and knowl
edge-producing actions. In Proceedings of the Elev
enth National Conf erence on Artificial Intelligence, 
pages 689- 695, Washington, DC, July 1993. AAAI 
Press/ The MIT Press. 

[Shoham, 1987) Yoav Shoham. Temporal logics in AI: 
Semantical and ontological considerations . Artificial 
Intelligence, 33(1):89- 104, 1987. 

[Subramanian and Woodfill, 1989) Devika Subramanian 
and John Woodfill. Making the situation calculus 
indexical. In Proceedings of the First Int ernational 
Conference on Principles of Know ledge R epresenta
tion and R easoning, pages 467- 474, Toronto, ON, May 
1989. Morgan Kaufmann Publishing. 

277 



278 



Evaluating the Tradeoffs in 
Partial-Order Planning Algorithms* 

Craig A. Knoblock 
Information Sciences Institute 

University of Southern California 
4676 Admiralty Way 

Marina del Rey, CA 90292 
knoblock@isi.edu 

Abstract 
Most practical partial-order planning systems 
employ some form of goal protection. How
ever, it is not clear from previous work what 
the tradeoffs are between the different goal
protection strategies. Is it better to protect 
against all threats to a subgoal, some threats, 
or no threats at all? In this paper, we con
sider three well-known planning algorithms, 
SNLP, NONLIN, and TWEAK. Each algorithm 
makes use of a different goal-protection strat
egy. Through a comparison of the three al
gorithms, we provide a detailed analysis of 
different goal protection methods, in order to 
identify the factors that determine the per
formance of the systems. The analysis clearly 
shows that the relative performance of the 
different goal-protection methods used by the 
systems, depends on the characteristics of the 
problems being solved. One of the main de
termining factors of performance is the ratio 
of the number of negative threats to the num
ber of positive threats . We present an artifi
cial domain where we can control this ratio 
and show that in fact the planners show radi
cally different performance as the ratio is var
ied. The implication of this result for some
one implementing a planning system is that 
the most appropriate algorithm will depend 
on the types of problems to be solved by the 
planner. 

1 Introduction 
There has been a great deal of work recently on com
paring total and partial order planning systems [Barrett 

*The first author is supported by Rome Laboratory of 
the Air Force Systems Command and the Defense Advanced 
Research Projects Agency under contract no. F30602-91-C-
0081. The second author is supported in part by grants from 
the Natural Science and Engineering Research Council of 
Canada, and ITRC: Information Technology Research Cen
tre of Ontario. The views and conclusions contained in this 
paper are the author's and should not be interpreted as repre
senting the official opinion or policy of DARPA, RL, NSERC, 
ITRC, or any person or agency connected with them. 

Qiang Yang_ 
University of Waterloo 

Computer Science Department 
Waterloo, Ont., Canada N2L 3Gl 

qyang@logos. u waterloo. ca 

and Weld, 1992; Minton et al. 1991], but little has been 
done in comparing different partial order planners them
selves. There are a variety of design decisions that must 
be made in order to build a general planner. This pa
per focuses on one of these design choices - the choice 
of a protection strategy. In particular, we compare the 
protection strategy employed in three basic planning al
gorithms, SNLP' NONLIN and TWEAK. 

On the surface, the three planners are quite different. 
However, on a careful examination one can find that they 
mainly differ in which conditions they protect. During 
planning, an inserted plan step can interact with previ
ously inserted steps. If a goal is achieved by one plan 
step, then later it could be threatened by other steps. 
A goal is protected by removing all threats by impos
ing additional constraints on a plan whenever a threat 
is detected. Among the three planners, TWEAK protects 
nothing, NONLIN protects against all negative threats, 
and SNLP protects against both negative and positive 
threats. 

The use of goal protection in SNLP prevents the plan
ner from generating redundant plans and thereby could 
potentially reduce the size of the search space. However, 
enforcing the goal protection has a cost. In this paper, 
we show that none of the planners is always a winner. In 
some domains our planner based on TWEAK greatly out
performs both a planner based on NONLIN 1 and SNLP. 

In other domains, SNLP and NONLIN perform much bet
ter than TWEAK. The challenge is to identify the fea
tures of the domains where each planner is expected to 
perform well, so that practitioners can balance the pro
tection methods based on the application domain. 

In the following sections, we first review the three al
gorithms. Then we present an analysis of the algorithms 
to identify their relative merits. We also report on two 
critical domain features that have the greatest impact 
on the performance of the planners. Finally, we present 
empirical results on an artificial domain to support the 
analysis. 

1 For convenience we will simply refer to them as TWEAK 

and NONLIN. 

279 



2 Comparison of the Algorithms 

This section presents the SNLP, TWEAK, and NONLIN 
planning algorithms. First, we present the SNLP algo
rithm based on the algorithm descriptions of McAllester 
and Rosenblitt's Find-Completion algorithm [McAllester 
and Rosenblitt, 1991] and Barrett and Weld's POCL al
gorithm [Barrett a~d Weld, 1992]. We start with this 
algorithm because we can build on the elegant algo
rithm description and implementation provided in pre
vious work. Then, we describe the changes necessary 
to transform the SNLP algorithm into algorithms that 
implement NONLIN [Tate, 1977] and TWEAK [Chapman 
1987]. 

2.1 The SNLP Algorithm 

In the planning algorithms that we consider below, we 
follow the notations used by Barrett and Weld [Barrett 
and Weld, 1992]. A plan is a 3-tuple, represented as 
(S, 0, B), where S is a number of steps, 0 is a set of 
ordering constraints, and B the set of variable binding 
constraints associated with a plan. A step consists of a 
set of preconditions, an add list, and a delete list. The 
binding constraints specify whether two variables can be 
bound to the same constant or not. 

The core of SNLP is the recording of the causal links 
for why a step is introduced into a plan, and for protect
ing that purpose. If a step Si adds a proposition p to 
satisfy a precondition of step S1, then Si .E... S1 denotes 

the causal link. An operator Sk is a threat to S; .E... S1 if 
Sk can possibly add or delete a literal q that can possi
bly be bound to p. For convenience, we also refer to the 
pair ( Sk, S; .E... S1 ) as a threat. In addition, we define an 

operator Sk to be a positive threat to S; .E... S1, if Sk can 
possibly be between Si and S1 , and Sk adds a literal q 
that can possibly be bound to p. Likewise, Sk is a neg
ative threat if it can possibly be between Si and S1, and 
deletes a literal q that can possibly be bound to p . 

The following algorithm which is an adaptation of 
McAllester and Rosenblitt's Find-Completion algorithm 
[McAllester and Rosenblitt, 1991] and Barrett and 
Weld's POCL algorithm [Barrett and Weld, 1992], has 
been shown to be sound, complete, and systematic 
(never generates redundant plans). Let the notation 
codesignate(R) denote the codesignation constraints im
posed on a set of variable pairs R. For example, if 
R = {(xi, Yi) I i = 1, 2, ... k}, then codesignate(R) = 
{xi = Yi I i = 1, 2, ... k}. Similarly, noncodesignate(R) 
denotes the set of non-codesignation constraints on a 
set R of variable pairs. The parameters of the algorithm 
are: S:::::Steps, O:::::Ordering constraints, B::::: Binding con
straints, G::::: Goals, T ::::: Threats, and L:::::Causal links. 

Algorithm SNLP((S, 0, B), T, G, L) 
1. Termination: If G and T are empty, report suc

cess and stop. 
2. Declobbering: A step sk threatens a causal link 

s; .E... s1 when it occurs between Si and s1, and it 
adds or deletes p. If there exists a threat t E T such 
that t is a threat between a step sk and a causal 
link Si .E... s1 E L, then: 

• Remove the threat by adding ordering con
straints and/ or binding constraints using pro
motion, demotion, or separation. For com
pleteness, all ways of resolving the threat 
must be considered. 

Promotion: O' = OLJ{sk -<si }, B' = B 
Demotion: O' = OLJ{s1-<sk}, B ' = B 
Separation: 
O' = OLJ{ si-<sk}LJ{ Sk -<s1 }. Let q be 
the effect of sk that threatens p and let 
P be the set of binding pairs between 
q and p. B' = BLJcr, where er E {a I 
a = noncodesignate(s)LJcodesignate(P -
s), wheres ~ PI\ s =p 0}. 2 

• Recursive invor.ation: 
SNLP( (S, 0 ' , B'), T - {t}, G, L) 

3. Goal selection: Let p be a proposition in G, and 
let Sneed be the step for which pis a precondition. 

4. Operator selection: Let Sadd be an existing 
step, or some new step, that adds p before Sneed. 
If no such step exists or can be added then back-

track. Let L' = LLJ{Sadd .E... Sneed}, S' = 
SLJ{Sadd}, O' = OLJ{Sadd -<Sneed}, and B' = 
BLJ the set of variable bindings to make Sadd add 
p. Finally, update the goal set : G' = ( G - {p} )U 
preconditions of Sadd, if new. For completeness, 
all ways of achieving the step must be considered. 

5. Threat identification: Let T' = { t I for every 
step sk that is a positive or negative threat to a 

causal link Si .E... Sj E L', t = (sk,si .E... Sj)}, 

6. Recursive invocation: 
SNLP( (S'' O', B'), T', G', L'). 

2.2 The NONLIN Algorithm 

SNLP is a descendant of NONLIN [Tate, 1977], so the al
gorithms are quite similar and differ mainly in which 
threats they protect against and how they perform sep
aration. These two differences stem from the added con
straints on SNLP that are used to ensure systematicity. 
NONLIN also provides some additional capabilities such 
as hierarchical task-network decomposition, but these 
capabilities are orthogonal to the point of this paper and 
are not considered. 

The first change to the SNLP algorithm is in the threat 
identification step. In contrast to SNLP, only the negative 
threats are added to the list T': 

Threat identification: Let T' = { t I for every step 

Sk that is a negative threat to a causal link Si .E... s1 E L', 

t = (sk, Si .E... Si)}. 
The second change is that to perform separation, 

there is no requirement that promotion, demotion and 
separation are made mutually exclusive. In this case, 
separation simply entails that one or more of the possi
ble bindings are forced not to codesignate, but imposes 
no ordering constraints. 

2 The possible binding constraints are mutually exclusive, 
since systematicity requires that the search space is parti
tioned into non-overlapping parts. 

280 



Separation: O' = 0. Let q be the effect of Sk 

that possibly codesignates with p and let P be the set 
of binding pairs between q and p. B' = BLJo-, where 
o- E {a I a= noncodesignate(e), where e E P}. 

As we will see in the experimental results section, the 
differences in performance of goal protection methods 
employed by SNLP and NONLIN are relatively minor. 

2.3 The TWEAK Algorithm 

The primary difference between TWEAK and the two 
previous algorithms is that instead of building explicit 
causal links for each condition established by the plan
ner, TWEAK uses what is called the Modal Truth Crite
rion [Chapman 1987] to check the truth of each precondi
tion in the plan. This difference results in four changes 
from the SNLP algorithm and only three changes from 
the NONLIN algorithm. The differences are in termina
tion, separation, goal selection, and threat identification. 
Each of these are discussed in turn. 

Since TWEAK does not maintain explicit causal links 
for each precondition, it must test the truth of all of the 
preconditions in the plan to determine when the plan 
is complete. It does this using the Modal Truth Crite
rion check [Chapman 1987]. This algorithm takes O(n3 ) 

time, as compared with the 0(1) time termination rou
tine of SNLP. We will refer to the algorithm that imple
ments the Modal Truth Criterion as mtc. This algorithm 
returns true if a given plan is complete and otherwise re
turns a precondition of some step in the plan that does 
not necessarily hold. 

Termination: If mtc( (S, 0, B)) is true, report suc
cess and stop. 

Similar to NONLIN, there is no requirement that all of 
the separation constraints are mutually exclusive. Thus, 
TWEAK uses the same method for separation as NONLIN. 

Separation: O' = 0. Let q be the effect of Sk 

that possibly codesignates with p and let P be the set 
of binding pairs between q and p. B' = BLJo-, where 
o- E { a I a = noncodesignate( e ), where e E P}. 

Since TWEAK does not maintain an explicit set of 
causal links, there is no explicit record of which pre
conditions much be achieved. Thus, goal section is done 
using the mtc algorithm. The mtc returns a precondition 
of a step in the plan that is not necessarily true. 

Goal Selection: Let p be the precondition of step 
Sneed returned by the mtc procedure. 

Finally, unlike both SNLP and NONLIN, TWEAK makes 
no attempt to protect all of the previously established 
preconditions against either negative or positive threats . 
TWEAK does, however, ensure that at each step all neg
ative threats to the most recently built causal link are 
removed. However, after a precondition is established 
and threats are removed, it can be clobbered again. In 
such a case, TWEAK will have to re-establish the condi
tion. 

Threat identification: Let lnew = Sadd .I'.. Sneed, 
which is the causal link constructed in step 4. Let T' = 
{ t lfor every step Sk that is a negative threat to lnew, 
t = (sk , lnew)}, 

As we stated above, the mtc routine for the termina
tion check is more expensive than that for SNLP. How-

ever, this does not mean that TWEAK is less efficient 
than SNLP, since in many cases, TWEAK will explore 
fewer nodes. In the next section, we consider the ma
jor factors that affect the search space, and present a 
complexity analysis of the three algorithms. 

3 Analyzing the Algorithms 

3.1 Algorithm Complexities 

Let eb be the effective branching factor and ed the ef
fective depth of the search tree. In both algorithms, eb 
is the maximum number of successor plans generated ei
ther after step 2, or after step 5, while ed is the maximum 
number of plan expansions in the search tree from the 
initial plan state to the solution plan state. Then with 
a breadth-first search, the time complexity of search is 

O(ebed * Tnode), 

where Tnode is the amount of time spent per node. 
We next analyze the complexity of the algorithms by 

fleshing out the parameters eb, ed and Tnode. In this 
analysis , let P denote the maximum number of precon
ditions or effects for a single step, let N denote the total 
number of operators in an optimal solution plan, and let 
A be either the SNLP' NONLIN' or TWEAK algorithm. 

To expand the effective branching factor eb, we first 
define the following additional parameters. We use 
b_new for the number of new operators found by step 
4 for achieving p, b_old for the number of existing op
erators found by step 4 for achieving p, and Tt for the 
number of alternative constraints to remove one threat . 
The effective branching factor of search by either algo
rithm is then 

since each time the main routine is followed, either step 2 
is executed for removing threats, or step 3 -6 is executed 
to build causal links. If step 2 is executed, Tt successor 
states are generated, but otherwise, ( b_new + b_old) 
successor plan '!itates are generated. 

Next, we expand the effective depth ed. In the solu
tion plan, there are N * P number of (p, Sneed) pairs, 
where p is a precondition for step Sneed. Let f A be the 
fraction of the N * P pairs chosen by step 3. For each 
pair (p, Sneed) chosen by step 3, step 5 accumulates a 
set of threats to remove. Let t A be the number of threats 
generated by step 5. Finally, let v be the total number 
of times any fixed pair (p, Sneed) is chosen by step 3. 
Then we have 

edA = fA * N * p * tA * VA, 

A summary of the parameters can be found in Table 3.1. 
For SNLP, each pair (p, Sneed ) must be visited exactly 

once. Therefore, !snip = I and Vsnlp = I. Also, SNLP 

examines every causal link in the current plan in step 
4. Thus, in the average case, the amount of time per 
node is half of the total number of links in the solution 
plan, i.e., N * P /2. Thus, the average time complexity 
for SNLP is: 

O(max( b_new + b_oldsnlp, Ttrn1p)N • P • t ... ,p * N * P). 

281 



·1 

I 
I . ' 

.. j 

eb effective branching factor 
ed effective search depth 

Tnode average time per node 
N total number of operators in a plan 
p total number of preconditions per operator 
fA fraction of (P, Sn.,.,rl ) pairs examined by algorithm A 
VA average number of times a (p, Sn.,.,rl ) pair is visited by A 
tA average number of threats found by A at each node 
rtA average number of ways to reso lve a threat by A 

b_new average number of new establishers for a precondition 
b_old average number of existing ( or old) establishers for a precondition 

Table 1: Parameters used in complexity analysis. 

NONLIN's behaviour is similar to SNLP in that each 
pair (p, Sneed) must be visited exactly once. Therefore, 
f nonlin = 1 and Vnonlin = l. Also similar to SNLP, NON
LIN examines every causal link in the current plan in 
step 4. The difference between NONLIN and SNLP is that 
NONLIN resolves only negative threats. This means that 
in general NONLIN will have a smaller t value. The aver
age time complexity for NONLIN is: 

O(max( b_new + b_oldnonlin, rtnonliJN•P•tnonlin * N * P) 

In TWEAK, !tweak ~ l, and can be much smaller than 
one since TWEAK does not build explicit causal links for 
every precondition. If many preconditions already hold, 
then the number of chosen preconditions by step 3 in 
TWEAK could be much smaller than the total number of 
preconditions in the solution plan. Since TWEAK does 
not protect any past causal links, a precondition can be 
visited twice. Therefore, Vtweak 2: 1. itweak, on the other 
hand, should be much smaller than tmzp and tnon lin, 
since TWEAK only declobbers for the most recently con
structed causal link, and only negative threats are con
sidered. Thus the number of threats is much smaller. 
Finally, TWEAK uses MTC to check the correctness of a 
plan, resulting a complexity per node to be O((N * P)3 ) . 

Overall, the complexity of TWEAK is: 

O (max( b_new + b_oldtweak, rt,w ea h)m * Ttweak 

where m = !tweak * N * P * itweak * Vtweak and Ttweak = 
(N * P)3

• 

In the next section, we discuss how these parameters 
change with certain domain features. 

3.2 Systematicity 

SNLP is systematic, which means that no redundant plans 
are generated in the search space. In contrast, neither 
TWEAK nor NONLIN are systematic. However, a plan
ner that is systemati(,: is not necessarily more efficient. 
The systematicity property reduces the branching factor 
by avoiding redundant plans. However, systematicity is · 
achieved in SNLP by protecting against both the negative 
and positive threats, which increases the factor t, a mul
tiplicative factor in the exponent . Thus, SNLP reduces 
the branching factor at a price of increasing the depth 
of search. Therefore, one can get a systematic, but less 
efficient planning system. 

4 Domain Features and Search 
Performance 

The analysis in the previous section can be used to pre
dict the relative performance of the three planning al
gorithms in different types of domains. An important 
feature of a domain that determines the relative per
formance of any two algorithms is the ratio between 
the number of positive threats and number of negative 
threats. The ratio is an important factor in differentiat
ing the algorithms because the major difference between 
any two algorithms is the way they handle positive and 
negative threats. Among the three algorithms, TWEAK 

only avoids some negative threats, SNLP protects against 
all positive and negative threats, and NONLIN protects 
against all negative threats but not the positive ones. 

4.1 Predictions 

The major difference between the algorithms manifest 
themselves in the execution of Step 1, the termination 
subroutine, and Step 4, threat detection. To see their ef
fect on search efficiency, let t+ denote the average num
ber of positive threats, and let L be the average number 
of negative threats detected by Step 4 of SNLP. Let R 
denote t he ratio of L to t+: R = !~ . In this section we 
predict the performance of the three planning algorithms 
based on the value of R. 

Case 1: R «: 1 

Since SNLP resolves all positive threats, it imposes 
more constraints on a plan. Thus, on the average an 
SNLP plan is more linearly ordered than either a TWEAK 

plan or a NONLIN plan. A more linearly ordered plan 
has a smaller number of existing establishing operators 
for a given precondition, and thus a smaller branching 
factor. Thus , the branching factor of SNLP is likely to be 
the smallest among the three, and that for TWEAK is the 
largest due to its conservative stand in resolving threats . 

When t+ is relatively large, the total number of 
threats t resolved by SNLP is large, which in turn in
creases SNLP's search depth. Also , for both NONLIN and 
SNLP, a causal link has to be built for every precondition 
in a plan, a behavior that fixes a lower bound on their 
search depths. With many positive threats in a plan, a 

282 



precondition is more likely to be achievable by an ex
isting step. Therefore TWEAK will be able to skip many 
more preconditions compared to NONLIN and SNLP. Thus 
the search depth of TWEAK will be much less than both 
NONLIN and SNLP, and the search depth of NONLIN will 
be smaller than SNLP because it does not resolve positive 
threats. 

As R decreases below one, the branching factor for 
TWEAK and NONLIN increase, while the search depth for 
SNLP increases. The time complexity for the former go 
up polynomially, while for the latter it goes up exponen
tially. Moreover, the depth of NONLIN is greater than 
the depth of TWEAK. Therefore, we predict that when 
R « l TWEAK will perform better than NONLIN, which 
in turn will perform better than SNLP. 

Case 2: R ~ l 
As with the previous case, the additional constraints 

imposed by SNLP and NON.LIN over TWEAK imply that 
SNLP will have a smaller branching factor then NON

LIN, and NONLIN will have a smaller branching factor 
than TWEAK. However, the difference in the number of 
threats t resolved by TWEAK, SNLP, and NONLIN will be 
reduced since there are fewer positive threats and more 
negative threats. The reduced number of positive threats 
will reduce the depth for SNLP and NONLIN and the in
creased number of negative threats increases the chance 
that TWEAK will be forced to revisit the same precon
dition/step pair. As a result, the performance of the 
different planners could be very close and will depend 
on depth and branching factors for the problems being 
solved. 

Case 3: R ~ l 
TWEAK is likely to have the largest branching factor 

because every time a negative threat occurs, all existing 
and new operators are considered as establishers again. 
This effect increases the factor b_old for TWEAK, result
ing in the effective branching factor for TWEAK being 
greater than both SNLP and NONLIN. Also due to its 
resolution of positive threats, a SNLP plan is likely to be 
more linearized than a NONLIN plan, thus the branching 
factor of SNLP will be smaller than NONLIN. 

Each negative threat creates a chance for TWEAK to 
revisit the same precondition/step pair. Since in the 
R ~ l case, there is a large number of negative threats, 
the number of times each precondition is visited, Vtw eak, 

is likely to increase. Since TWEAK is expected to have 
a larger branching factor and depth greater than both 
SNLP and NONLIN' when R ~ l TWEAK is expected to 
perform the worst. SNLP will outperform NONLIN slightly 
due its smaller branching factor. 

4.2 Empirical Results 

In order to verify our predictions by comparing SNLP, 

NONLIN and TWEAK on problems with different ratios of 
negative and positive threats, we constructed an artificial 
domain where we could control the value of R. In this 
domain, each goal can be achieved by a subplan of two 
steps in a linear sequence. Each step either achieves a 
goal condition or a precondition of a later step. The 
preconditions of the first step always hold in the initial 

state. In addition, we also added extra operator effects to 
create threats in planning. The difficulty of the pro bl ems 
in this domain can be increased by increasing the number 
of goal conditions and the total number of threats. 

( defstep :action Ail :precond Ii :equals {} 
:add {Pi;li+l if i < n+;Io if i = n - land n+ > O} 
:delete {Ii - 1, if O < i < n _ ; In - 1 if i = 0 

and n _ > O}) 

( defstep :action Ai2 :precond Pi :equals {} 
:add {Gi; Pi+l if i < n+; Po if i = n - land n+ > O} 
:delete {Pi-1, if O < i < n_; Pn - 1 if i = 0 

and n _ > O}) 

We used this artificial domain to run a set of experi
ments to compare the performance of the different plan
ners . In these experiments we simultaneously varied the 
number of positive and negative interactions, such that 
the total number of interactions remained the same, but 
the ratio R changes from zero to infinity; the number 
of negative interactions increased from O to 9 while the 
number of positive interactions decreased from 9 to 0. 
Below, we present the results of our empirical tests on 
different points of the spectrum of as defined by the ratio 
R. 

In the experiments, each problem was run in SNLP 

[Barrett and Weld, 1992], a version of NONLIN and a 
version of TWEAK that were modified from SNLP. The 
problems were solved using a best-first search on the 
solution size in order to fairly compare the size of the 
problem spaces being searched by each system. All the 
problems were run on a SUN IPC in Lucid Common Lisp 
with a 120 CPU second time bound. For each value of 
ratio R, we ran the systems on 20 randomly generated 
problems. The points shown in the graphs below are an 
average of the 20 problems. 

4.2.1 Branching Factor 
The branching factor results are shown in Figure 4.2.1. 

Most of our predictions for branching factors are observ
able in the figure. For example, due to its conservative 
stand in resolving both positive and negative threats, 
SNLP imposes the most constraints onto a plan, and as a 
results it generally has the lowest branching factor. Also, 
as the number of negative threats increases, which con
strains the possible plans, the branching factor decreases 
to one. 

However, there are a few surprises shown in the fig
ure. When R « l, we had predicted that TWEAK would 
have a larger branching factor than SNLP and would be 
similar to NONLIN . This prediction cannot observed from 
the figure. In order to explain this effect we have broken 
the branching factor into the two parts described in the 
analysis, the establishment branching factor and the de
clobbering branching factor, which are combined to form 
the overall branching factor. These graphs are shown in 
Figures 4.2.1 and 4.2.1. As shown in the graphs, the 
smaller than expected branching factor for TWEAK is 
due to a smaller than expected establishment branching 
factor. 

283 



. 1 

I 

I 

I 

I-< 
0 
j.J 

u 
cu 

µ_, 

01 
r: 
·rl 

..c: 
u 
C: 
cu 
I-< 
III 

Q) 
01 
cu 
I-< 
Q) 

~ 

1 . 8 ',,'i' 
\ 

1. 7 

1.6 

1.5 "-

1.4 

1.3 

1.2 

\ 
\ 

\ 
\ 

\ 

l,,, 

SNLP--+--
NONL IN -+--· 

TWEAK -a--

', .. \ 
', 

', 
',, 

' ' 
f] ••• ·E]-. - . ·8· . . '..~{::. - - ~, 

'," \ 
' ' \' 

\ ' \ 'l 

'\\ 
\' 

\ \ 

''. t ,S;J 
0/ 9 1/8 2/7 3/ 6 4/ 5 5/4 6/3 7 /2 8/1 9/ 0 

R = (negative int erac ti ons/ pos i ti ve interact ions ) 
Figure 1: Comprison of the Average Branching Factor 
of each of the Algorithms 

I-< 
0 
j.J 

u 
cu 

µ_, 

01 
C: 

·rl 
..c: 
u 
r: 
cu 
>I 
III 

j.J 

r: 
Q) 

8 
..c: 
(J] 
·rl 
,-j 

.Q 
cu 
j.J 

(J] 
[ii 

Q) 
01 
cu 
I-< 
Q) 
::, 
'~ 

1.8 

1 . 7 

1. 6 

1.5 

1. 4 

1.3 

1.2 

1. 1 

SNLP--+--
NONL IN -+- - · 

TWEAK -0--

' ' \, 
' ' ' ' \ 

\ 

'°,, ... 1 ~___. _ __,_ _ _..___.._____. _ __,_ _ _._ _ _.___ 

0/9 1/8 2/7 3/6 4/5 5/4 6/3 7/ 2 8/1 9/ 0 
R = (negative interac ti ons / pos i t ive i nterac tions) 

Figure 2: Comprison of the Average Establishment 
Branching Factor of each of the Algorithms 

Careful analysis of the data shows that this dis
crepency with the predictions is due to the assumption 
that the branching factor is uniform across an entire 
problem-solving episode. In fact, where there are many 
positive interactions, TWEAK quickly narrows in on a 
plan and reduces the establishment branching factor. In 
contrast, because both SNLP and NONLIN build explicit 
causal links and resolve more threats they spend more 
time in the early plan formation stage when the branch
ing factor is higher. Thus overall, SNLP and NONLIN 

expand a larger part of the search space that has a 
large branching factor, while TWEAK uses it ability to 
exploit positive threats to rapidly traverse that part of 
the search space. 

H 
0 
j.J 

u 
fll 

µ_, 

01 
r: 

·rl 

..c: 
u 
r: 
cu 
I-< 
III 

01 
r: 
·rl 
I-< 
Q) 

.Q 

.Q 
0 
r l 
u 
Q) 
0 

Q) 

01 
cu 
I-< 
Q) 

~ 

1. 2 

0.8 

0.6 

0.4 

0.2 

SNLP--+--
NONLIN -+-

TWEAK - 0--

0 '-------'----'---'-----'- --'--- -'----'- ---'--------' 
0/9 1/ 8 2/7 3/ 6 4/ 5 5/4 6/3 7/ 2 8/1 9/0 

R = (n egative interactions/ pos itive interact ions ) 

Figure 3: Comprison of the Average Declobbering 
Branching Factor of each of the Algorithms 

4 .2.2 Depth 
The comparison of the search depths is shown in Fig

ure 4 and they are as predicted. The only apparent dis
crepency is that the difference between SNLP and TWEAK 

should be larger when R ~ l. However, the graph is 
a bit misleading in this case because it includes prob
lems that could not be solved within the time bound by 
NONLIN and SNLP and so it underestimates their search 
depth. 

..c: 
j.J 

P, 
Q) 
0 

..c: 
u 
I-< 
fll 
Q) 
(/) 

Q) 
01 
cu 
H 
Q) 

> 
st: 

40 
SNLP _._ 

35 NONLI N -+-- · 

TWEAK -a --

10 

0 '-------'-- --'---'-----'---'--- -'------'- ----'-----' 
0/9 1/ 8 2/7 3/ 6 4/5 5/4 6/3 7/2 8/1 9/ 0 

R = (negative interactions / pos i t ive interact ions ) 

Figure 4: Comprison of the Average Depth of each of 
the Algorithms 

The overall search depth is composed of a number of 
factors described in the analysis, which includes the frac
tion of the preconditions considered, the average number 
of times each precondition is visited,a and the average 

284 



number of threats detected by each algorithm. Figure 5 
shows the fraction of preconditions considered. This 
number should be one for both SNLP and NONLIN but 
again the graphs are distorted by the fact that these two 
systems did not complete all of the problems within the 
time limit . In that case, there are a number of precon
ditions of operators that had not yet been considered. 
Note that for most of the problems, TWEAK only ex
panded roughly 60-80% of the preconditions and as the 
problems had fewer positive interactions, it was forced 
to expand more and more of the preconditions. 

'Cl 
Q) 
JJ 
·rl 
Ill 
·rl 

> 
Ill 
i:: 
0 

JJ 
·rl 
'Cl 
i:: 
0 
u 
Q) 
H 
Cl, 

4-l 
0 

0.8 

0 .6 

0.4 

0.2 

,....+ __ _ 

- - 0. 

SNLP-+
NONLIN -+--· 

TWEAK -0--

... .+---
_ ............ -

,/ ... -

,a' 

o~--'-~-~-~~---'-~-~~ 
0/9 1/ 8 2/7 3/6 4/ 5 5/4 6/3 7/2 8/1 9/ 0 

R = (nega tive interactions/ positive interac ti ons) 
Figure 5: Com prison of the Average Fraction of Precon
ditions Considered by each of the Algorithms 

Figure 6 shows the average of number of times each 
precondition is visited. As predicted, SNLP and NONLIN 

visit every precondition exactly once, while TWEAK vis
its some preconditions more than once. As the number 
of negative interactions increase, the value for TWEAK 

increases because it does not protect the conditions that 
have already been achieved. 

Figure 7 shows the average number of threats detected 
by each of the systems. The fact that SNLP detects a 
much larger number of threats than both NONLIN and 
TWEAK comes as no surprise. However, the fact that the 
number of threats detected by NONLIN is less than the 
number detected by TWEAK when R ~ l was not pre
dicted by the analysis. This appears to be due to the fact 
that the negative threats that NONLIN protects against 
impose additional ordering constraints on the plan and 
a more linearly ordered plan has fewer potential threats. 

4.2.3 Average CPU Time 

The average CPU time for solving problems in the 
artificial domain is shown in Figure 8. The result fits 
exactly with our predictions. One thing to note is that 
no system performs absolutely the best throughout the 
entire spectrum defined by R. Another is that although 
NONLIN did well as compared to SNLP when R is small, it 
is never significantly better than SNLP. In the case where 

.w 
·rl 
Ill 
·rl 

1. 16 > 
Ill 

!' -- - - -e - - - - {J 

·rl 1.14 SNLP-+-
i:: NONLIN -+-
0 

1.1 2 TWEAK -B--·rl 
JJ !' ·rl 
'Cl 1.1 i:: 
0 
u 

1. 08 Q) 
H )' 
Cl, 

.r:: 1. 06 
u o' 
fll 

1. 04 µ] 

Ill 
Q) 1. 02 E 

·rl 
I'-< ' 

'1-l 
0 
H O. 98 ~--'-~-~-~--'-~-~-~~ 
OJ 0/9 1/8 2/7 3/6 4/5 5/4 6/3 7/2 8/1 9/0 
~ R = (n egative interact ions/ posit ive interact ions ) 

Eigure 6: Comprison of the Average Number of Times 
each Precondition is Visited by each of the Algorithms 

'Cl 
QI 
JJ 
u 
Q) 
JJ 
Q) 
0 

Ill 
JJ 
fll 
Q) 
H 

.r:: 
I'-< 

4-l 
0 

H 
Q) 

.Q 
E 
::J 
z 

1. 2 

0.8 

0. 6 

0.4 

0. 2 

SNLP-+
NONLIN -+-· 

TWEAK -0--

,/.,... ___ ...._ ,,, 

y" . ,[3' 

,/..a-···..a ,_. 
o-···/f,

' / 

,0' I# 
/ 

/ 
I 

I 
I 

,0' / 

,//' 
,,a' ,...-t 

0 ,,.·-~<_-~ ..... _-_,,~-~-~~~--'-~-~~ 
0/9 1/8 2/7 3/6 4/5 5/4 6/3 7/2 8/1 9/0 

R = (negative interactions/ positive interactions) 

Figure 7: Comprison of the Average Number of Threats 
Detected by each of the Algorithms 

it does outperfrom SNLP it is dramatically worse than 
TWEAK. This effect should lend credibility to the protec
tion against positive threats as used in SNLP. Although 
protection of positive threats seemed clumsy when R is 
small, when the number of negative threats is relatively 
large the protection method used by SNLP imposes more 
constraints on a plan. The resulting plans in SNLP 's 
search space are more linear due to the additional con
straints. The computational advantage of dealing with 
a more linear plan compansates for the loss of efficiency 
due to the protection of positive threats. 

285 



I 

- I 

·I 

120 
\ 

\ 
\ 

\ 
\ 

100 \ 
\ 

\ 
\ 

\ 
I!) o--- · -El, 
E ', 
·.-l 80 SNLP---+- '• .a 
8 

\ , .. 
NONLIN -+-- o-'\ 

::i TWEAK · •·-
\ 

\ 0, \ 

" u 60 
\ 

/J \ ' \ 
I!) \ 

Ol \ 
\ 

f\j \ 
H \ 
I!) 40 I 

> .• I 
I 

,i: I 
if I 

I 

20 
\ 
I 

o I u 
0/9 1/8 2/7 3/6 4/5 5/4 6/3 7 /2 8/1 9/0 

R = (negative interactions/ pos itive interactions) 
Figure 8: Comprison of the Average CPU Time of each 
of the Algorithms 

5 Related Work and Conclusions 

As we stated in the introduction, little work has been 
done on comparing different partial order planners. An 
exception is the work by Kambhampati[Kambhampati, 
1993; Kambhampati, 1992], who ( concurrently with our 
work) carried out a set of experiments to t est the merits 
of different partial-order planners. In that work, a pair of 
partial-order planners MP and MP-I are proposed that 
build upon SNLP and NONLIN by making use of multiple 
contributors to achieve a precondition. Experiments in 
a set of closely related domains were conducted, and the 
resulting comparison of SNLP, NONLIN, TWEAK, MP, and 
MP-I show that MP-I outperforms all of the rest, and 
that NONLIN in one test performed much better than 
both SNLP and TWEAK (Figure 8, [Kambhampati, 1993]). 

Contrasting Kambhampati's results to ours, we note 
that the former is based on a fixed domain. Our results 
clearly demonstrate that varying the ratio R of positive 
to negative threats experienced by a planner, almost any 
comparison result can be obtained; when R « 1 the 
comparison results should be dramatically different from 
that when R ~ I. Thus, it is not surprising that one 
can find a domain, with a specific R value, where SNLP 

and/ or TWEAK perform worse than NONLIN. From this 
perspective, the work by Kambhampati can be seen as 
orthogonal to ours; while we search for domain features 
by which to determine the relative performance of each 
system, Kambhampati looks for the best planner on a 
single point in the spectrum of features. 

In summary, we have presented a detailed compari
son of the goal protection strategies used in the SNLP, 

NONLIN, and TWEAK planning algorithms. The analy
sis provides a foundation for predicting the conditions 
under which different planning algorithms will perform 
well. As the results show, SNLP and NONLIN performs 
better than TWEAK when the ratio of negative threats 
to positive threats is large, and TWEAK performs signifi-

cantly better than SNLP and NONLIN in the opposite case. 
The implications of these results for someone building a 
practical planning system is that the most appropriate 
goal protection strategy depends on the characteristics 
of the problem being solved. This paper provides an im
portant step in building useful planners by identifying a 
feature of planning domains that has a major impact on 
the performance of different planning algorithms. 

References 

[Barrett and Weld, 1992] Anthony Barrett and Dan 
Weld. Partial order planning: Evaluating possible 
efficiency gains. Technical Report 92-05-01, Univer
sity of Washington, Department of Computer Science 
and Engineering, 1992. 

[Chapman 1987] David Chapman Planning for Con
junctive Goals. Artificial Intelligence, volume 32, pp . 
333-377, 1987. 

[Korf, 1987] Korf, R.E., "Planning as Search: A Quan
titative Approach," Artificial Intelligence (33), 1987, 
65-88. 

[Oren et al., 1992] Oren Etzioni, Steve Hanks, Daniel 
Weld, Denise Draper, Neal Lesh, and Mike 
Williamson. An approach to planning with incom
plete information. submitted for publication, Univer
sity of Washington, Department of Computer Science 
and Engineering, 1992. 

[McAllester and Rosenblitt, 1991] David McAllester 
and David Rosenblitt. Systematic nonlinear plan
ning. In Proceedings of the 9th AAA!, Anaheim, CA, 
1991. 

[Minton et al. 1991] Steve Minton, John Bresina, and 
Mark Drummond. Commitment strategies in plan
ning: A comparative analysis . In Proceedings of the 
12th IJCAI, Sydney, Australia, 1991. 

[Pednault, 1986] Edwin P.D. Pednault Toward a Math
ematical Theory of Plan Synthesis. Ph.D. Thesis, 
Department of Electrical Engineering, Stanford Uni
versity, Stanford, CA, 1986. 

[Kambhampati, 1992] Subbarao Kambhampati. Multi
Contributor Causal Structures for Planning: A For
malization and Evaluation. Arizona State University, 
technical report ASU-CS-TR-92-019, July 1992. 

[Kambhampati, 1993] Subbarao Kambhampati. On the 
Utility of Systematicity: Understanding Tradeoffs 
between Redundancy and Commitment in Partial
ordering Planning. Proceedings of 13th IJCAI, 
Chambery, France, 1993, 1380-1387. 

[Tate, 1977] Austin Tate Generating Project Networks. 
IJCAI77, pp. 888-893, 1977. 

[Yang et al. 1991] Qiang Yang, Josh Tenenberg, and 
Steve Woods. Abstraction in nonlinear planning. 
University of Waterloo Technical Report CS 91-65, 
1991. 

286 



Indicative and Action Planning for an Intelligent Agent 

Gregory .E. Kersten I, Ping Lu 

1 School of Business 

Stan Szpakowicz 2 

2 Department of Computer Science 
University of Ottawa 

Ottawa, Ontario, Canada, KIN 6N5 
szpak@csi.uottawa.ca 

Carleton University 
Ottawa, Ontario, Canada, KlS 5B6 

{gregory, lping}@business .carleton .ca 

Abstract 

We propose a generalization of reactive planning, 
motivated by economic planning and decision-theoretic 
principles. A two-level architecture consists of an action 
planner and an indicative planner. The indicative planner 
assesses the current situation and the history and 
outcomes of actions to determine goals and behaviour 
for the action planner. Action planning produces actions 
within the framework given by indicative planning. 
This planning architecture, expressed in the formalism 
o(the Negoplan knowledge-based decision analysis and 
simulation system, is discussed and illustrated by an 
example of a robot carrying out a planetary mission. 

KEYWORDS 

Reactive planning, behavioural planning, simulation, 
restructurable modelling, knowledge-based systems. 

1. Introduction 

Classical planning is unsuitable for spatially distributed, 
unpredictable, dynamic domains. Attempts to overcome this 
limitation include interleaving the processes of plan 
formation and execution [Ambros-Ingerson and Steel, 1988], 
applying temporal reasoning with its logic to a formaliza
tion of temporal events [Allen, 1991] and dealing with new 
requirements for the representations that would help model 
the increasingly complex domains. Since none of these seem 
to offer an entirely satisfactory solution , reactive planning 
has been proposed [Agre and Chapman, 1987; Blythe and 
Reilly, 1993; Godefroid and Kabanza, 1991 ; Kaelbling, 
1986; Schoppers, 1987]. 

We dedicate this article to the memory of our long-time 
friend and collaborator Zbig Koperczak. 

This work has been supported by a strategic grant from 
the Natural Sciences and Engineering Research Council of 
Canada. 

Reactive planning is based on the use of real-time 
mechanisms that generate and modify plans for working in a 
dynamic environment. After gathering new observations, a 
reactive planner can immediately generate a new plan to cope 
with the new situation [Dornand and Hommel, 1991] . 
Another direction , replanning, follows the classical planning 
paradigm, with the additional flavour of interleaving plan
ning and execution in order to gain reactivity [Kambham
pati, 1992]. A plan is constructed, but it is constantly 
revised. Reactivity is gained by monitoring execution. 

The general idea of reactive planning is that an action is 
justified more by the situation and less by what it is 
expected to achieve. Actions are determined by behaviour 
that guides the agent towards the goal. The question we 
address here is whether behaviour can and should be planned. 

Brooks [1986, 1991] proposed decomposing the overall 
problem into task-achieving units that realize distinct 
behaviour. His system is a layered architecture using 
situation-reaction rules for deriving actions directly from the 
sensed environment. Kae lbling [1986] proposed an 
interesting hybrid architecture based on an idea similar to 
Brooks's; it uses the Rex language to specify the control 
system. Agre and Chapman [1987] proposed a scheme 
whereby a highly reactive system can encode reactive 
behaviour by exploring plan representations . 

The reactivity of PRS [Georgeff and Lansky, 1987] is 
driven by decomposing goals activated by a rule into 
primitive actions like a classical planner. PRS also uses 
"metareasoning" during execution to recognize problems that 
cause additional planning. The RAP architecture [Firby, 
1992] consists of three layers : a planner produces sketchy 
plans for goals as they come in, the RAP execution system 
fills in the details of the sketchy plan at run time, and a 
control system actually carries out actions in the world . 
Hap, developed at Carnegie Mellon University, is a reactive 
system that uses pre-defined plans with reactive annotations 
(the success-test and context-conditions) to achieve goals 
[Loyall and Bates 1991; Blythe and Reilly 1993] . 

McDermott's RPL [1991; 1992a, 1992b] aims at using 
reactive plans in a simulated world . It contains " local 
variables, loops, multiple processes, interrupts, and several 

287 



other features" to meet the requirements of "being flexible to 
control a realistic robot", and "being transparent enough so 
that the planner can reason about the execution of plans and 
see ways to improve them". These systems all focus on 
implementation of behaviour-driven and situation-based 
actions. 

Kersten et al. [1994) propose the negotiation metaphor 
in a simulation of an agent's behaviour in an unknown, 
changing milieu. The milieu is viewed as an opponent that 
reacts to the agent's actions or acts independently of the 
agent. In this paper we discuss the use of Negoplan [Kersten 
et al . 1991) as a tool for robot motion planning . A planner 
expressed in Negoplan allows us to develop reactive plans 
and to modify the agent's goals and behaviour according to 
the current, past, and predicted states of the environment. 
Negoplan provides a two-level planning architecture for 
responding to new situations during plan execution and 
modifying its goals and intentions accordingly. 

2. Two-level planning architecture 

A plan is a sequence of actions for reaching desired goals. It 
is not realistic to complete planning before an autonomous 
agent acts in a changing and unpredictable environment. We 
may first determine behaviour required for the agent to 
achieve its goals and then use this behaviour to guide its 
actions. Following Shu [1990) and Blythe and Reilly [1993) 
we propose a two-level planning architecture. Our archi
tecture, however, has its roots in economic planning and 
decision theory. 

In economic planning one talks about directive versus 
indicative planning. Directive planning is concerned with a 
set of specific directives or actions . A firm in a decentralized 
planned economy is given a set of indicator levels (value of 
production, total wage level, profit) and it is free to 
determine its activities within the framework given by the 
economic indicators. The assumption is that the firm will 
normally face unpredictable situations or situations too 
complex to be detailed a priori. Instead of combining 
specific actions, the indicative planner gives a set of 
indicators that are used to determine behaviour. Next, the 
action planner determines actions for a given behaviour and 
environment. 

The two-level planning architecture is illustrated in Fig . 
1. Behaviour that is an outcome of the indicative planner is 
an input of the action planner. Indicative planning specifies 
behaviour for an agent. Behaviour is a set of decision 
criteria, aspirations, goals, bounds and restrictions. Action 
p lanning produces a structure of actions within the 
framework given by the indicative planner. The indicative 
planner may also define new or temporary desired state 
(Current Desired State in Fig. 1) that the agent needs to 
achieve before the overall (ultimate) desired state can be 
achieved. 

Note that the action planner need not know the expected 
results of a plan and the desired state. It only controls the 
agent 's fast and intelligent reactions in a dynamic 
environment under the guidance of behaviour generated by 

the indicative planner. If the situation changes so that a 
change of the agent's behaviour is required, the indicative 
planner modifies the conditions in which the action planner 
operates. 

State of the 
environment 

t 

environment 

Specific 
behaviour 

Current 
state 

@ Plan of actions 
..._-----,.-----,--' In di ca ti v e 

~ Planning 

Actions Action 
Planning 

@ Assessment 

~ Adjustment 
~ of the agent's state 

Figure 1. Indicative planning (IP) and action planning (AP) 
processes in Negoplan 

Such specialization of agents resembles the model 
decision maker and model decision problem proposed in 
decision theory [French , 1986]. The model decision maker 
represents behaviour of the agent and the model decision 
problem represents the planning problem. It is also similar 
to strategic and tactical planning in a company. This is also 
a generalization of reactive planning which only considers 
generation of feasible actions and choice for one step ahead 
and for a given type of behaviour. 

3. Negoplan -an outline 

Negoplan is a method and a software tool that supports the 
solution of complex, dynamic, sequential decision making 
problems. It is based on the concept of restructurable 
modeling that allows one to modify the agent's behaviour in 
response to actions external to the agent [Kersten et al 1991; 
Matwin et al. 1989). The Negoplan system has been used to 
model and support negotiations [Kersten and Michalowski 
1989; Kersten et al 1990], and simulate sequential decision 
processes of intelligent agents [Kersten et al. 1993; 1994). It 
is usually assumed that the supported or simulated agent 
makes decisions in a dynamic environment and distinguishes 
a separate entity with which it must cooperate or negotiate 
in order to succeed. 

288 



Negoplan 's rule-based formalism represents the 
interacting entities. The agent has a hierarchy of goals or an 
internal hierarchical organization represented by a graph that 
we call goal representation (GR). A node of this graph is 
described by a decomposition rule that relates a goal to 
subgoals or an element of the agent's structure to 
substructures. Constraint propagation is used to determine a 
problem solution - a hierarchical decomposition of the 
decision problem; it is represented by a sub-graph of GR 
that we call goal solution (GS) . Each node in this graph is · 
represented by a predicate and given a logical value (true or 
false) that represents its status. 

A set of metafacts is derived from GS. They define the 
agent's decision. A metafact is a predicate given a logical 
value and labeled by a symbol denoting one of the sides, 
participants in the decision process. 

The process of decision making or simulation is 
modeled in Negoplan by means of metarules. Response 
metarules describe the participants' reactions to various 
elements of the situation represented by metafacts. A 
response metarule consists of triggers-a list of metafacts 
(describing elements of the current or past states) and 
embedded calls, and conclusions-a list of metafacts 
(describing actions and reactions) and embedded calls . An 
embedded call invokes a procedure external to the hierarchical 
decomposition of the problem; it is used to determine values 
of parameters or perform tests. 

Response metarules change the current set of metafacts. 
New metafacts change the problem's solution chosen by the 
agent and define the state of the other agents and the 
environment. The agent must consider these changes and 
actions to make a new decision. The outcomes of the earlier 
decisions and exogenous actions of the participants often 
make the previously defined decision problem inadequate to 
the current situation. The supported agent can transform the 
problem representation GR to account for the new elements 
of the situation. This is modelled by restructuring metarules 
that add or replace rules in GR. A restructuring metarule 
may introduce new goals into the current problem 
representation . 

Negoplan offers a rich structure for problem 
representation, sequencing, conditionals, adjustments and 
restructuring . We use the following constructs to model the 
robot 's behaviour and actions in reactive planning: 

• states, goals, information about the world, and 
attributes of behaviour and action outcomes 
represented with metafacts, 

• internal structure of the robot GR represented with 
rules, 

• behavioural mechanisms: recording behaviour in a 
GR and modifying behaviour by restructuring 
metarules, 

• response metarules that convert behaviour into 
actions, analyze the situation of the environment 
and results of the actions, 

• adjustment metarules that update the current state of 
the agent (currently represented with restructuring 
metarules), 

• embedded calls to external procedures that simulate 
the environment and determine parameter values. 

4. A robot and its exploratory mission 

4.1. The mission 

Consider a robot that moves through a surface represented by 
a grid with integer coordinates . Its initial position is at point 
(O,Q) and it must move to point (8,8). At the beginning of 
planning the robot is unclear about the environment
positions of rough paths and randomly appearing obstacles 
in the grid. Movement requires energy and time: traveling 
one step on a smooth surface requires 0.5 energy unit and 
0.5 time unit; traveling on a rough surface requires 1 energy 
unit and 1 time unit. If the robot has insufficient energy to 
arrive at the desired position, it will go to a near refuelling 
station to replenish energy. The goal of robot motion is to 
arrive at the desired position and also pick up some samples. 
The robot knows locations of energy supply stations and 
sample stations. 

Reactive planning may require temporary or permanent 
changes of choice criteria, goals and desired states. We view 
these as part of an agent's behaviour. Six typical kinds of 
behaviour are used to determine actions of the robot: 

• the shortest path criterion, 

• the obstacle avoidance requirement, 

• the save-time criterion, 

• the save-energy criterion, 

• the maximize samples taken criterion, 

• the temporary goal "go to an energy station". 

Behaviour of various kinds can be combined . For 
example, we may have a combined behaviour of moving 
towards a desired position without hitting anything. 

4.2. Initial goal representation and the 
environment 

The planning problem is represented as a graph GR that is 
constructed from node descriptions . GR rules take the form: 

goal<- s ubgoal1 & ... & s ubgoaln , 

The initial GR of the robot is as fo llows: 

robot <-
states & static_environ_info & 
attributes & behaviour & history. 

states<
present_position(O, 0) & 

desired_position(8, 8). 

289 



.. I 

.. ! 

static environ_info <
energy_station( [ t(2,6), t(6,5), t(4,l) J ) & 

sample_station( [ t(l,3), t(l,5), t(3,4), 
t(S,3), t(7,2), t(7,5)]). 

attributes<-
energy_left(B.O) & time_left(B.O). 

behaviour <
criterionl(gather_sample) & 

criterion2(short_path). 

history<-
history_record(O.O, 0.0, [ t(O,O) J ) & 

start. 

The robot's behaviour is determined by two criteria, 
criterionl(gather_sample),criterion2(short_path) 
and the final goal desired_position(B, 8). The robot 
must consider both criteria: gather as many samples as 
possible and arrive at the desired position in the shortest 
time. 

The environment is represented by a grid illustrated in 
Fig. 2. Samples are located at six points (dots) . There are 
also three energy stations (rectangles) . These are the static 
elements of the environment known to the robot before the 
mission . The dynamic and unpredictable elements are 
obstacles that may appear anywhere; the static but unknown 
element is the type of the surface (smooth or rough). 

8 

7 

6 

5 

4 

3 

2 

1 

0 V 
0 

I a 
I a 

/ 

2 

"' 
. 

•• 

3 4 

I• / 
V 

/ 

5 6 7 8 

Figure 2. A path for gathering samples and arriving at 
the desired position 

In Fig. 2 we show one of the shortest paths for the 
robot moving from point (O,Q) to point (8,8) that allows it 
to pick the sufficient number of samples. This plan is 
developed for an ideal state of the environment. The robot 
does not pick samples located at points (1,5) and (7 ,2) 
because they are too far from the shortest path between (0 ,0) 
and (8,8) . 

Planning is a process of determining actions to achieve 
a goal (desired position) given current states, behaviour and 

environment information. Static environment information is 
recorded in the lists, parameters of predicates. For example: 

energy_station(List_energy), 

sample_station(List_sample). 

The problem solver estimates and evaluates outcomes of 
behaviour and actions. Attributes of these outcomes include 
time and energy consumed by executing actions. The 
predicate history(Eh, Th, Lish) is used to record how 
much energy and time has been used for moving from the 
initial position to the current point t ( x, Y) . The important 
information such as the starting position, the visited sample 
and energy stations is recorded in the list Lish . The 
predicate start indicates the start of the planning process. 
The initial behaviour of the robot is guided by the criteria of 
following the shortest path and gathering as many samples 
as possible. 

4.3. Planning behaviour and modifying goals 

The indicative planner defines the required behaviour and 
provides conditions required to determine actions. Behaviour 
is dynamically modified according to changes in the 
situation and the environment. The modification of the 
behaviour is done by restructuring metarules of the form: 

LHS ==> modify ( new_rules ) . 

Elements of the left-hand side contain information about 
the current state of the world as well as the state of the 
search process. The right-hand side contains decomposition 
rules that are introduced into the current GR. 

For example, the robot changes its criterion from 
short_path to save_energy if it does not have enough 
energy. This criterion causes it to avoid rough surfaces. 

290 

robot: criterionl(Cl) : := true & 

robot: criterion2(short_path) : := true & 

robot: present_position(Xl, Yl) : := true & 

robot: 
current_desired_position(Xd, Yd) : : = true & 

robot: desired_position(Xdd, Ydd) .. - true & 

robot: energy_left(El) : := true & 

robot: time_ left(Tl) : := true & 

robot: energy_station(List_energy) 
robot: sample_station(List_sample) 
robot: 

true & 

true & 

history_record(Ehl, Thl, Listhl) .. - true & 

predict(Ehl, Thl, Listhl, t(Xl, Yl)' 
t(Xd, Yd), Efl, Tfl), 

El < Efl, Tl< Tfl 
% not enough energy and time left 

==> 
modify ( 

states<-
present_position(Xl, Yl) & 

current_desired_position(Xd, Yd) & 

desired_position(Xdd, Ydd), 
static_environ_info <

energy_station(List_energy) & 

sample_station(List_sample), 



attributes<-
en ergy_left(El) & time_l e ft(Tl), 

behaviour <-
crite rionl(Cl) & 

criterion2(save_en ergy ), 
history<-

hi s tory_ record(Ehl, Thl, Listhl) & 

start_action_pla nning & 

action_index(l ) ) . 

A prediction mechanism with the ability to learn from 
past experience is built into the embedded call 
predict(Eh, Th, Listh, t(X, Y), t(Xd, Yd), Ef , 
Tf J . According to the energy Eh and time Th used in 
moving from the original point ( o, o J to the current point 
(X, Y), the robot predicts the amount of energy Ef and 
time Tf needed to move from the current point (X, Y) to 
the desired point (Xdl, Ydl) using the following formulre: 

Ef = a * Eh * shortest distance to goal 
shortest_distance_in_past ' 

Tf = ~ * Th * shortest di.stance ~o goal , 
shortest_d1stance_m_past 

where a, ~ are normalization coefficients . 

If the robot has insufficient energy to arrive at the goal, 
moving to a nearby energy station to refuel should be 
considered. In this case, the current goal is changed. 

robot : criter ionl(Cl) : := true & 

robot: criterion2(C2) : := true & 

robot : present_position(X, Y) : := true & 

robot: 
current_desi r ed_position(Xd, Yd ) : := true & 

robot: desired_position(Xdd, Ydd) : := true & 

robot: en e rgy_s tation( List_energy) .. - true & 

robot: sampl e_s tation(Li st_sampl e) .. - true & 

robot: en ergy_le ft(El) : := true & 

robot : time_left(Tl) : := true & 

robot : 
history_ record(Ehl, Thl, Listhl) 
Cl\== get_energy, 
predict(Ehl, Thl, Listhl, t(X, Y), 

t(Xdd, Ydd), Efl, Tfl), 
El < Efl, 

true & 

Tl< Tfl, % not e nough energy and time l eft 
c losest_point(t(X, Y), Li s t _energy, 

t(Xe, Ye ), t(Xdd, Ydd)) 

== > 
modify 

states<-
present_position( X, Y) & 

cu rrent_desired_position( Xe , Ye ) & 

desired_position(Xdd, Ydd), 
static_environ_ info <

energy_stati on(List_en ergy ) & 

sampl e_station(Li st_sampl e ), 
attributes<-

energy_left (El) & time_l eft (Tl), 
b ehaviour<

criterion2 (save_energy) & 

criterionl(get_energy), 

hi story <
hi story_record(Ehl, Thl, 

[ t(Xd, Yd) I Listhl] ) & 

start_action_pl anning & 

action_index(l) ) . 

After replenishing energy the planning process is 
restarted from the current position 

A different kind of metarules are used to end the 
mission . For example, the following metarule terminates a 
successful mission: 

robot: present_pos ition ( X, Y) 
robot: desired_position( X, Y) 
==> 

true & 

true 

terminate ' Reached t h e desired position.'. 

4.4. Actions, states and assessments 

The action planner obtains information from the indicative 
planner and constructs a plan by reactively responding to 
changes in the environment. The LHS of a response 
metarule represents the current behaviour, the state of the 
agent and the environment. The RHS represents an action 
undertaken by the agent. 

The action planning process is divided into the 
fo llowing steps: 

1. determine possible actions (without considering the 
environment) according to the current behaviour and 
situation ; 

2. collect information on the environment; 

3. choose an action: move to a point determined by 
the situation and the environment, then change the 
agent's states: position , energy level, time level. 

The robot assesses the situation at the currently visited 
point of the grid and selects a neighbouring point. In so 
doing it takes into account the current criteria and goals. The 
following metarule illustrates the robot's selection at the 
beginning of the mission : 

robot : start : := true & 

robot : criteri onl(gath er_sampl e) : := true & 

robot : present_position(X, Y) : := true & 

robot: desired_position(Xd, Yd ) : : = true & 

robot: sample_station(List_sample) : := tru e & 

closest_point ( t(X, Y) , List_sample, 
t(Xs , Ys), t (Xd, Yd)) 

==> 
robot: 
current_des ired_position (Xs , Ys) : : = true & 

robot: start_action_pl anning : : = true & 

robot: action_index(l) : := true. 

The embedded call closest_point ( t (X, Y), 
Sample_list,t (Xs, Ys),t(Xd, Yd ) Jgivesaselection 
mechanism for choosing a sample station or an energy 
station . It is used to choose the point ( xs, Ys) from the 

291 



I 

· 1 

list Sample_li s t that is the closest to the current point 
( X , Y) . If more than one point is close to (X, Yl the 
closer to the desired point ( xd, Yd l is selected. For 
example, after the robot has arrived at the point (3,1), it 
determines the move either to point (5,1) or point (4,3) 
depending which is closer to the desired point (8,8). 

An example of a response metarule that determines 
actions: 

robot: action_index(l) : := true & 

robot : start_action_planning : : = true & 

robot: present_position(X, Y) : := true & 

robot: current_ desired_position(Xdl, Ydl) 
true & 

get_sorted_candidate_list( 
t(X, Y), t(Xdl, Ydl), List) 

==> 
robot : candidates(List) : := true & 

robot: action_index(l) false & 

robot: action_ index(2) : := true . 

The embedded call get_sorted_candidate_list ( 
t (X, Y) , t (Xdl, Ydl) , Li s t ) produces a list of points 
around point (X, Y), sorted according to the distance from a 
neighbouring point to the goal point. Different lists are 
determined by different situations . The point that is the 
closest to the goal point is put at the head of the list. 

The robot checks the environment of the path to the 
first point in the candidate list to see whether it is possible 
to move to this point. If the move fails (there is an obstacle 
on the path), the robot will check the next point on the 
candidate list. The state of the environment is determined by 
metarules of the following form: 

robot : start_action_planning : := true & 

robot: action_index(2) : := true & 

robot : pres ent_pos ition(X, Y) : : = true & 

robot: candidates( [ t(Xa, Ya) IListl ] ) : : = 

true & 

get_path_ condition(t(X, Y), t(Xa, Ya), 
Obstacle, Surface) 

= = > CD 
robot : proposed_position(Xa, Ya) : := true & 

robot: future_candidates (Listl) : : = true & 

robot: 
candidates( [ t(Xa, Ya) IListl]) : : = false & 

environment: path_condition( 
t( X, Y), t(Xa, Ya), Obstacle, Surface) 
true & 

robot: action_index(2) : := false & 

robot: action_ index(3) : := true . 

This metarule is used to determine randomly the 
presence of an obstacle and the surface condition on the path 
leading from point (X, Y) to point (Xa, Ya). The embedded 
call get_ path_ condi tion ( ) invokes a pseudo
random number generator that returns values indicating the 
state of the environment. 

4.5. Adjustment mechanisms 

The outcome of the assessment metarules is the 
evaluation of the current situation of the agent, the plan 
implementation and the environment. This evaluation may 
lead to a decision that the current behaviour remains 
appropriate or that it must be modified. If the behaviour need 
not be modified, the adjustment mechanism updates the 
current GR and the action planner continues. Response 
metarules for actions and assessment metarules are then 
applied. The adjustment mechanisms* change the parameter 
values of the predicates in GR and set controls for repeated 
searching and moving in action planning. For example, the 
following restructuring rule is used to continue action 
pianning from response ruie CD in order to consider the next 
point on the candidate list of intended moving direction . 

robot: start_ action_planning: := true & 

robot : action_ index(S) : : = true & 

robot: crite rionl(Cl) : : = true & 

robot: crite rion2 (C2) : : = true & 

robot: present_position(X, Y) : : = true & 

r obo t : 
current_desired_position(Xd, Yd) : := true & 

robot: desired_position(Xdd, Ydd) .. - true & 

robot: energy_ left(El) : : = true & 

robot : time_left(Tl) : : = true & 

robot: energy_s tation(Li s t_e nergy) . . - true & 

robot : s ample_ station(Lis t _ sample) true & 

robot : 
hi s tory_record(Eh, Th, Li s th) : := true & 

robot: candidates(Listl) true 
==> 
modify 

states<-
present_position(X, Y) & 

candidates(Listl) & 

current_ d e sire d_po s ition(Xd, Yd) & 

des ired_position( Xdd, Ydd), 
static_environ_info <

energy_ station(List_ energy) & 

sample_ station(List_sample), 
attributes<-

energy_left(El) & time_ l e ft(Tl), 
b ehaviour <-

c rite rionl(Cl) & 

criterion2 (C2), 
history <-

history_ record(Eh, Th, Listh) & 

start_ action_planning & 

action_index(2) ) . 

5. An experiment 

We ran several experiments with the knowledge bases whose 
small fragments are shown in Section 4. The experiment 

* The adjustment mechanisms have not been implemented 
in the current version of Negoplan . We are working on an 
implementation because such mechanisms will be useful 
for different applications of Negoplan (for example, a 
patient simulator). 

292 



discussed in this section is illustrated in Fig. 3. The robot 
initially follows the plan given in Fig. 2 and moves to 
point (1,1) and then to (1,2). However, when it plans to 
move from (1,2) to (1,3), there is an obstacle on the path . 
Therefore it has to move through other paths-first move to 
(0,3) and then to (1,3) so that it can pick sample s 1 located 
in (1,3). Although the path from (1,2) to (0,3) is rough, the 
robot sti ll moves on it, because it operates under the 
criterion short_path . 

After reaching point (1,3) the behavioural planner 
determines the plan for the second stage. It specifies the 
current goal for the robot: pick sample s3 at (3 ,4). This is 
the sample closest to (1,3) and it is also closer to the desired 
point (8 ,8) than the sample s2 at (1,5) . Due to the 
environmental conditions the robot moves from ( 1,3) to 
(2,4) to (3,3) and finally to (3,4) where s3 is located (see 
Fig. 3). 

e2 • sample 

• energy -obstacle 

~ 
rough 

Figure 3. Results of an experiment 

In the third stage of the planning process, the current 
goal is to reach point (5,3). However, when the robot arrives 
at (5,2), it has insufficient energy to complete the mission. 
The behavioural planner decides to change the current goal 
from picking a sample to moving to the energy station el at 
(4,1). Once the robot has replenished its energy, the goal of 
picking sample s4 becomes active. Next, the robot plans to 
pick sample s6 at (7 ,5). At point (7 ,5), it decides not to pick 
the remaining samples located at ( 1,5) and (7 ,2) because they 
are far from the destination (8 ,8). The robot changes its 
criterion and goes directly to (8,8). 

6. Conclusions 

Planning systems that solve complex tasks in unpredictable 
and changing environments have to provide solutions for 
several problems: 

• to deal explicitly with the unpredictable situations, 

• to modify the set of tasks and goals that are 
currently pursued, 

• to treat planning time as a limited resource, i.e. 
quick responses, 

• to reason about further planning, 

• to be able to synthesize plans that implement any 
problem-solving behaviour necessary to solve 
complex tasks in its environment. 

We used the Negoplan system to solve some of these 
problems. The system gives us a strong structure for 
replanning and real-time reacting and allows us to use the 
following mechanisms for reactive planning: 

• selection mechanism for determining current goals, 

• prediction mechanism for predicting the uncertain 
future by learning from the past experience, 

• mechanisms for determining goal-oriented and 
problem-solving behaviour, 

• decision making mechanisms to determine 
alternatives and make choice, 

• mechanisms for the actions according to 
environment and behaviour, 

• replanning mechanism to plan update and plan 
extension . 

We proposed a two-level architecture for reactive 
planning and showed it could be expressed in Negoplan, a 
general-purpose decision analysis and simulation system. An 
action planner and an indicative planner are interlocked in 
our case study for robot motion planning. 

The specialization of the two planners allows us to 
separate behaviour control from actions, to represent 
complex behaviour independently of the agent's states and 
plans of actions, and to formulate conditions in which the 
action planner operates. This simplifies the activities in the 
action planner and makes the planning process clearer. We 
show on a simple example the indicative planner generating 
behaviour for solving a problem and the action planner 
generating a sequence of actions. If a situation change 
requires plan modification, the indicative planner generates a 
new plan; otherwise the action planner continues to generate 
actions. 

The same approach may app ly to more complex 
situations in which the agent performs multiple tasks and 
needs to consider multiple facets of the environment as well 
as the actions of the other agents. The behavioural control 
mechanisms give the agent his goals and choice criteria . At 
any time, such goals and criteria may be in apparent conflict 
with a specific action that the agent must undertake, for 
example, when an obstacle is to be avoided. This conflict, 
however, does not impede the agent's ability to plan and act. 
The behavioural mechanisms, providing overall guidance, 
are of a strategic nature . The action planning mechanisms 
use them in plans and actions whose specifics need not be a 
direct transformation of behaviour. Moreover, the agent may 
be unable to follow the required behaviour. If there is a 
consistent discrepancy between the current behaviour and the 
actions generated by the action planner, the indicative 
planner may be forced to propose another behaviour. 

293 



:I 

References 

[Agre and Chapman, 1987] P. E. Agre and D. Chapman. 
Pengi: An Implementation of a Theory of Activity. Proc 
AAAI-87, 268-272. 

[Allen, 1991] J. F. Allen. Planning as Temporal Reasoning. 
Proc Second International Conj on Principles of 
Knowledge Representation and Reasoning, Cambridge, 
MA, April 1991, 3-14. 

[Ambros-Ingerson and Steel, 1988] J. A. Ambros-Ingerson 
and S. Steel. Integrating Planning, Execution, and 
Monitoring. Proc AAA/- 88, 83-88. 

[Blythe and Reilly, 1993] J. Blythe and W. S. Reilly. 
Integrating Reactive and Deliberative Planning for 
Agents . Technical Report CMU-CS-93-155, Department 
of Computer Science, Carnegie Mellon University, May 
1993. 

[Brooks, 1986] R. A. Brooks. A Robust Layered Control 
System for a Mobile Robot. IEEE Trans on Robotics 
and Automation, 2(1): 14-23, 1986. 

[Brooks, 1991] R. A. Brooks. Integrated Systems Based on 
Behaviors. Proc AAAI-Spring Symposium on Integrated 
Inte lligent Architectures, Stanford University, March 
1991. Available in SIG ART Bulletin, 2( 4), August 
1991, 46-50 . 

[Dornand and Hommel, 1991] J. Dornand and G. Hommel. 
Reactive Planning-A Model of Knowledge-Based Real 
Time Planning. Information Processing in Autonomous 
Mobile Robots, Proc International Workshop, Munich, 
Germany, March 1991, Berlin: Springer-Verlag, 219-
230 . 

[Firby, 1992] J. R. Firby. Building Symbolic Primitives 
with Continuous Control Routines, Proc First 
International Conj on Artificial Inte lligence Planning 
Systems, 1992, 62-69 . 

[French, 1986] S. French. Decision Theory . An Introduction 
to the Mathematics of Rationality, New York: Wiley, 
1986. 

[Georgeff and Lansky, 1987] M. P. Georgeff and A. L. 
Lansky. Reactive Reasoning and Planning. Proc AAAI-
87, 677-682. 

[Godefroid and Kabanza, 1991] P. Godefroid and F. Kabanza. 
An Efficient Reactive Planner for Synthesizing Reactive 
Plans. Proc AAAI-91, 640-645. 

[Kaelbling, 1986] L. P. Kaelbling . An Architecture for 
Intelligent Reactive Systems. M. P. Georgeff and A. 
Lansky (eds.) : Reasoning about Actions and Plans, 
Morgan Kaufmann , 1986, 395-410. 

[Kambhampati, 1992] S . Kambhampati, A Validation 
Structure-Based Theory of Plan Modification and Reuse. 
Artificial Intelligence, 50(2-3): 193-258, 1992. 

[Kersten and W. Michalowski 1989] G. E. Kersten and W. 
Michalowski. A Cooperative Expert System for 
Negotiation With a Hostage-Taker. International Journal 
of Expert Systems, 2: 357-376, 1989. 

[Kersten et al. 1990] G. E. Kersten, L. Badcock, M. 
Iglewski and G .R . Mallory, "Structuring and 
Simulating Negotiations: An Approach and an 
Example", Theory and Decision, 28(3): 243-273, 1990. 

[Kersten et al. 1991] G. E. Kersten, W. Michalowski, S. 
C'7n"lL-Au,1,-.,--, "'"rl 7 lcAnt:llrr"''7".llr o~c-tr11,-.t11r..:.h l ,=,,. 
\JLl-'U.J.'-VYY.lVL U.l.lU L...J, .1.ltr..V_lJVJ.VL.,U,1'\ .. , .l.'-V.;JI..J.UVI.U.1.U.VJ.V 

Representations of Negotiation . Management Science, 
37(10): 1269-1290, 1991. 

[Kersten et al . 1993] G. E . Kersten, S . Macdonald, S. Rubin 
and S. Szpakowicz . Knowledge-based Simulation for 
Medical Education . Proc IASTED International 
Conference on Modelling and Simulation, Pittsburgh 
1993 , 630-633. 

[Kersten et al. 1994] G. E. Kersten, Z. Koperczak and S. 
Szpakowicz. Modeling Autonomous Agents in Changing 
Environments. Y. Ho and G. W. Zobrist (eds .): Progress 
in Robotics and Intelligent Systems, Norwood: Ab lex (in 
print). 

[Loyall and Bates, 1991] A. B. Loyall and J. Bates. Hap: A 
Reactive, Adaptive Architecture for Agents. Technical 
Report CMU-CS-147, Department of Computer Science, 
Carnegie Mellon University, Pittsburgh, PA, June 1991. 

[Matwin et al. 1989] S. Matwin, S. Szpakowicz, Z . 
Koperczak, G. Kersten and W. Michalowski. Negoplan: 
An Expert System Shell for Negotiation Support. IEEE 
Expert, 4: 50-62, 1989. 

[McDermott, 1991] D. McDermott. Planning Reactive Be
havior: A Progress Report. Proc Workshop on In
novative Approaches to Planning, Schedu ling and 
Control, 450-458 . 

[McDermott, 1992a] D. McDermott. Robot Planning. AI 
Magazine 13(2): 55-79, Summer 1992. 

[McDermott, 1992b] D. McDermott. Transformation 
Planning of Reactive Behavior. Research Report No. 
941, Department of Computer Science, Yale University, 
December 1992. 

[Schoppers, 1987] M. J. Schoppers. Universal Plans for 
Reactive Robots in Unpredictable Environments . Proc 
/JCAI-87, 1039-1046. 

[Shu, 1990] H. Shu. Planning with Reactivity. Proc 
Artificial Intelligence in the Pacific Rim, Nagoya, Japan, 
Nov . 1990, 681-686. 

294 



AIDA* - Asynchronous Parallel IDA* 

Alexander Reinefeld and Volker Schnecke 

PC2 - Paderborn Center for Parallel Computing 

D-33095 Paderborn, Germany 

{ ariossi }@uni-paderborn.de 

Abstract 

We present AIDA*, a generic adaptable scheme 
for highly parallel iterative-deepening search 
on large-scale asynchronous MIMD systems. 
AIDA* is based on a data partitioning scheme, 
where the different parts of the search space are 
processed asynchronously in parallel. Existing 
sequential solution algorithms can be linked to 
the AIDA* routines to build a fast, highly par

allel search program. 

Taking the 15-puzzle as an application domain, 
we achieved an average speedup of 807 on a 
1024 processor system, corresponding to an ef
ficiency of 79% on Korf's [1985] 25 largest prob
lem instances. Specific problem instances yield 
more than 90% efficiency. 

The total time taken by AIDA* to solve Korf's 
100 random puzzles on a 1024-node system was 
24.2 minutes. This is 5.7 times faster than the 
most efficient parallel algorithm on a 32 K CM-
2 machine, SIDA* by Powley et al. 

1 Introduction 

Heuristic search is one of the most important techniques 
for problem solving in Artificial Intelligence and Opera
tions Research. Since search algorithms usually exhibit 
exponential run-time, and sometimes also exponential 
space complexity, the design of efficient parallel search
ing methods is of obvious interest. 

The backtracking approaches used in AI and OR ben
efit from a wealth of powerful heuristics that eliminate 
unnecessary states in the search space without affecting 
the final result. The most prominent m ethods include 
the universal branch f3 bound technique and dynamic 

programming, which examine only branches that are be
low / above a current upper/lower bound on the solution 
value. While these schemes a re successfully applied in 

295 

many problem domains, they do not work in domains 
with 

• low solution density, 

• high heuristic branching factor, 

• poor initial upper/ lower bounds on the optimal so-
lution value. 

Typical examples include single-agent games like the 
15-puzzle [Korf, 1985], VLSI floorplan optimization 
[Wimer et al., 1988], and some variants of the cut ting 
stock problem [Morabito et al. , 1992] . For this kind of 
applications, there exists a simple and efficient back
tracking method, called It erativ e- Deepening A* (IDA*) 

[Korf, 1985], that performs a series of independent 
depth-first searches, each with the cost-bound increased 
by the minimal amount . 

In this paper, we present AIDA*, a parallel imple
mentation of iterative-deepening search on a massively 
parallel asynchronous MIMD system. AIDA* is based 
on a data partitioning scheme, where the different parts 
of the search space are processed asynchronously by the 
distributed processing elements . A simple, but effective 
task attraction scheme combined with a weak synchro
nization mechanism ensures high processor utilization 
and good scalability for up to more than a thousand 
processors . 

Running on a 1024 processor transputer system, we 
achieved a speedup of 807 on twentyfive problem in
stances of the 15-puzzle, corresponding to an effici ency 
of 79%. Using Korf's [1985] random problem instances 
as a benchmark suite, AIDA* runs more than five times 
as fast as the fastest SIMD implementation, SIDA* by 
Powley et al. [1993], which was implemented on a CM-2 
with 32 K processing elements. While such a compari
son might seem unfair, because a single CM-2 process ing 
element is about 100 times slower than the T805 trans
puters of our system, there are 32 times more process
ing elements in the CM-2. Hence one would expect our 



. ! 

·I 

I 

I 

transputer program to run three times faster. However, 
we achieved a time improvement by a factor of 5.7, due 
to faster work-load balancing and almost zero synchro
nization costs. 

In the following, we first discuss the basic ideas of 
sequential IDA*, give a brief overview about previous 
parallel approaches, and present the AIDA* algorithm. 
Most of the paper is devoted to the discussion of our 
empirical performance results, including an analysis of 
the various overheads. 

2 Iterative-Deepening Search 

Iterative-Deepening A* (IDA*) [Korf, 1985] performs a 
series of independent depth-first searches, each with the 
cost-bound increased by the minimal amount. Following 
the lines of the well-known A* heuristic search algorithm 
[Nilsson, 1980, Pearl, 1985], the total cost f (n) ofa node 
n is made up of the cost already spent in reaching that 
node g(n), plus a lower bound on the estimated cost of 
the path to a goal state h( n). At the beginning, the cost 
bound is set to the heuristic estimate of the initial state, 
h(root) . Then, for each iteration , the bound is increased 
to the minimum value that exceeded the previous bound, 
as shown in the following pseudo code: 

procedure I DA* (n); 
bound := h( n ); 
while not solved do 

bound := DFS(n,bound); 

function DFS (n, bound); 
if f(n) > bound 

then return f(n); 
ifh(n)=O 

then return solved; 
return lowest value of DFS(n;, bound) 

for all successors n; of n 

With an admissible ( =non-overestimating) heuristic 
estimate function h, IDA* is guaranteed to find an 
optimal (shortest) solution path [Korf, 1985]. More
over, IDA* obeys the same asymptotic branching fac
tor as A* [Nilsson, 1980], if the number of newly ex
panded nodes grows exponentially with the search depth 

[Korf, 1985, Mahanti et al., 1992]. This growth rate, the 
heuristic branching factor, depends on the average num
ber of applicable operators per node and the discrimina
tion power of the heuristic estimate h. 

3 Applications 

Typical application domains for IDA* search include 
VLSI floorplan optimization, some variants of the cut
ting stock problem and single-agent games like the 15-

296 

puzzle. These problems may be characterized by a high 
heuristic branching factor, a low solution density and 
poor information about bounds that can be used to 
prune the search tree. 

We tested the performance of our parallel AIDA* al
gorithm on one hundred randomly generated problem in
stances [Korf, 1985] of the 15-puzzle. In its more general 
n x n extension, this puzzle is known to be NP-complete 
[Ratner and Warmuth, 1986]. While exact statistics on 
solving the smaller 8-puzzle are known [Reinefeld, 1993], 

the 15-puzzle spawns a search space of 16!/2 ~ 1013 

states, which cannot be exhaustively examined. Using 
IDA*, an average of 108 node expansions are needed to 
obtain a first solution with the popular Manhattan dis

tance (the sum of the minimum displacement of each tile 
from its goal position) as a heuristic estimate function. 

4 Parallel Approaches 

Previous approaches to parallel iterative-deepening 
search include parallel window searches, tree decompo
sition, search space mappings and special schemes for 
SIMD machines . 

Powley and Korf [1991] presented a Parallel Window 

Search, where each processor examines the entire search 
space, but with a different cost-bound. Depending on 
the application, this method works only for a hand fu ll of 
processors (e.g., 5- 9 in [Powley and Korf, 1991, p. 475]) 
and the solution cannot be guaranteed to be optimal. 

Kumar and Rao's [1987,1990] parallel IDA* variant 
is based on a task attraction scheme that shares sub

trees (taken from a donator's search stack) among the 
processors on demand. For a selected problem set they 
achieved almost linear speedups on a variety of MIMD 
computers. These favorable results, however, apply only 
for MIMD systems with small communication diameters, 
like a 128 processor Intel Hypercube, a 30 processor Se
quent Balance and a 120 processor BBN Butterfly. On a 
128-node ring topology their algorithm achieved a maxi
mum speedup of 63. From Kumar and Rao's analysis, it 
is evident that these results do not scale up to systems 
of, say, some thousand processors. 

The algorithm of Evett et al. [1990] performs a map
ping of the search space onto the processing elements of a 
SIMD machine. This allows to eliminate duplicate states 
at the cost of an increased communication overhead. 

Two other approaches, SIDA* by Powley et al. [1993] 
and IDPS by Mahanti and Daniels [1993] also run on 
the CM-2. From these, SIDA* is probably the fastest 
parallel IDA* implementation, solving all 100 problem 
instances [Korf, 1985] of the 15-puzzle in 2.245 hours. 



1. Phase 

2. Phase 

3. Ph. individual searches start here base level for 

load balancing 

Figure 1: AIDA* Algorithm Architecture 

5 AIDA* 

In the following we describe AIDA*, a generic adapt
able scheme for highly parallel iterative-deepening search 
on asynchronous MIMD systems. AIDA* is based on a 
data partitioning scheme, where the different parts of 
the search space are processed asynchronously by the 
fastest available sequential routines running in parallel 
on the distributed processing elements . Existing sequen
tial search code can be adapted to the parallel AIDA* 
system by linking the routines for initial tree partition
ing, work-load balancing and communication. A sim
ple, but effi cient task attraction scheme combined with 
a 'weak' synchronization mechanism ensures a high pro
cessor utilization and good scalability up to some thou
sand processors . 

AIDA* consists of three phases (cf., Fig. I): 

• a short initial data partitioning phase, where all pro
cessors redundantly expand the first few tree levels 
in an iterative-deepening manner until a sufficient 
amount of nodes is generated to keep each proces
sor busy in the next phase, 

• an additional distribut ed node expansion phase, 
where each processor expands its 'own' nodes of the 
first phase to generate a larger set of, say, some 
thousand fine grained work packets for the subse
quent asynchronous search phase, 

• an asynchronous search phase, where the proces
sors generate and explore different subtrees in an 
iterative-deepening manner until one or all solutions 
are found. 

None of these three phases reqmres a hard synchro
nization . Processors are allowed to proceed with the 
next phase as soon as they finished the previous one. 
Only in the third phase, some mechanism is needed to 
keep all processors working on about the same search 
iteration. However, this synchronization is a weak one 
(as opposed to hard barrier synchronization), allowing 
the processors to proceed with the next iteration after 
checking for work in their neighborhood only. 

297 

Similar to Newborn's (1 988] unsynchronized iteratively 
deepening parallel alpha-beta , each processor carries out 
an iterative-deepening search on its selected subset of 
nodes . Our work-load balancing scheme ensures that all 

processors finish their iterations at about the same time. 

5.1 Phase 1: Initial Data Partitioning 

Before starting a distributed tree search , each proces
sor must be supplied with a suitable amount of different 
nodes which can then be further expanded in parallel. 
This could be achieved in logarithmic time, O(log P) , 
on P processors, using a binary divide-and-conquer ap
proach. However, since communication on a MIMD
machine is usually an order of m agnitude more time
consuming than the node expansion costs1 , AIDA* gen
erates the first few tree levels redundantly on all pro
cessors. In the 15-puzzle, the processors perform an 
iterative-deepening search, saving all nodes of the last 
search frontier in a local node array, until there are at 
least 5 · P entries. This gives a sufficient number of sub
tree roots (some 10,000 nodes) while not overflowing the 
memory resources of our transputer system . 

At the end of this phase , duplicate nodes can be elim
inated from the node array. In our experiments, how

ever , we found that sorting the node array takes too 
much time. A total of 30% removed duplicate nodes ( cf. 
(Powley et al., 1993]) at the end of this phase gave only 
a 10% reduction of the total nodes, which did not pay 
for the increased overhead. 

In practice, the first phase is short, t aking less than 
three seconds (cf., Fig. 4) on the 1024-node system. 
T here is neither communication or synchronization 111-

volved in this phase. 

5.2 Phase 2: Generating Fine Grained Work 
Packets 

In the second phase, processor P; takes its nodes 

n;, np+i, n 2p+i, . . . from the frontier node array tin it to 
get a wide-spread distribution of search frontier nodes. 
The nodes are expanded by applying two IDA* itera
tions , giving a new search frontier, 'tb ase, as shown in 
Figure 1. At the end of the second phase, the local node 
arrays of the individual processors contain about 3000 
frontier nodes each. These nodes make up the work pack
ets used in dynamic load bal ancing in the third phase. 
As before, there is neither synchronization nor commu
nication involved in this phase. 

1 This is especially true for the 15-puzzle with its cheap 

operator cost . 



. I 

5.3 Phase 3: Asynchronous Search with 
Dynamic Load Balancing 

The following iterations start on the frontier nodes tbase. 

All processors expand the nodes of their local array up 
to the current search-threshold. Since the size of the 

subtrees emanating from the tbase nodes is not known a 

priori, dynamic load balancing is required. 

Our implementation of AIDA* employs a simple task 
attraction scheme. The P = n 2 processing elements are 
connected in a n x n torus topology (i .e. a mesh with 
wrap-around links in the rows and columns). Each pro
cessor is a member of two rings with n elements: the 
horizontal and the vertical ring. 

A processor first expands its local frontier nodes of 
level tbaoe· When running out of work, it sends a 
work...request in clockwise order along the horizontal 
link of the torus . The first processor with unexpanded 
frontier nodes in its array sends a work packet back to 
the requester. If none of the processors on the horizon
tal ring has work to share, the request continues its path 
along the ring and eventually returns to the requester, 
indicating that the current iteration run out of work on 
this horizontal ring of the torus . The requester now 
sends a work request along the vertical ring using the 
same mechanism. If again no processor responds with 
a work packet, an out_of_work message is sent on both 
rings and this processor starts the next iteration. We 
call this a weak synchronization - as opposed to a hard 
barrier synchronization . It keeps all processors work
ing at about the same iteration, while not requiring too 
much idle time [Newborn, 1988]. In practice, our weak 
synchronization works much like a majority consensus 
approach. When searching for a first solution, care must 
be taken that all processors working on shallower iter
ations finish their search before returning the optimal 
solution. 

Note, that any work package is exclusively owned by 
a single processor. Whenever a package is transferred to 
another processor, it changes ownership. This is done 
with the expectation that all subtrees grow at about the 
same rate from one iteration to the next. Hence, the load 
balance will automatically improve during the search . In 
fact, the number of work packets decreases with increas
ing search time (cf., Fig. 7). 

5.4 Implementation Details 

While the above description gives a general outline of 
the AIDA* scheme, the actual implementation is more 
sophisticated: 

• When a processor is done with its local nodes, 
it can start a new iteration when it receives an 

298 

out_of_work message or detects a work...request 

with a higher cost threshold on the ring. 

• To keep communication costs low, up to five nodes 
are bundled in a work packet. To avoid the donator 
from giving away all of its non processed nodes, only 

half of these are transferred. 

• At the end of each iteration the nodes in 
tbase are re-ordered 2 : Medium size subtrees with 
avg_nodes/2 < x < 2 x avg_nodes are sorted to 
the end of the array, so that only work packets of 
average size will be transferred to other processors . 

• In the hard problems (with many iterations), 
the size of work packets can differ by an or
der of magnitude. We therefore experimented 
with node splitting and node contraction strategies 
[Chakrabrti et al., 1989] to adjust the work packets 
to an average size. Our preliminary results indicate 
that the additional overhead does not pay off. 

6 Empirical Results 

We implemented AIDA* on a 1024-node MIMD trans
puter system, using the 15-puzzle as a sample app lica
tion. Figures 2 and 3 show the speedup results for two 
sets of 25 random problem instances with different diffi
culties . Speedup anomalies (cf. [Kumar and Rao, 1990]) 
were avoided by searching all nodes of the last (goal) it
eration. We call this the 'all-solutions-case' as opposed 
to the 'first-so lution-case', where it suffices to find one 
optimal solution. Our fifty problem instances are the 
larger ones from Korf [1985], here sorted to the number 
of node generations in the 'all-solutions-case'. We also 
run AIDA* on Korf's fifty smaller problems. However, 
with an average parallel solution time of 8 seconds, a 
1024-node MIMD system cannot be sufficiently utilized, 
so we did not include the data in this paper. 

The speedup S of a parallel algorithm is measured as 
the ratio of the time taken by an equivalent and most 
efficient sequential implementation, T(l), divided by the 
time taken by the parallel algorithm, T(P): 

T(l) 
S(P) = T(P)" 

Care was taken to use the most efficient sequential 
algorithm for comparison. Our IDA* is written in C and 
generates nodes at a rate of 35,000 nodes per second 
on a T805 transputer, corresponding to 350,000 nodes 
per second on a SUN Classic Workstation, or 660,000 

2 T his is just a partial re-ordering, not a total sort. Nodes 

are sorted to the average size of all subtrees in the last iter

ation, avg_nodes. 



1024 

768 Sopt 

s 
p 
e Sreal e 
d 512 
u Sa ll _sol p 

s 
256 

128 
64 

128 256 512 768 1024 

Processors P 

Figure 2: Speedup, prob. #51..75 

1024 
Sopt 

768 
Sreal 

s Sall_sol p 
e 
e 
d 512 
u 
p 

s 
256 

128 
64 

128 256 512 768 1024 

Processors P 

Figure 3: Speedup, prob. #76 .. 100 

nodes per second on a SUN SparcStation 10/40. Similar 

sequential IDA* run-times have been reported by Powley 
et al. [1993] . 

Figures 2 and 3 show the performance results on a 
torus topology. For each problem set, three graphs are 
shown: 

Sopt: The topmost graph shows the maximum 
speedup that could be achieved with an opti
mal parallel algorithm (with zero overheads) 
after the first phase is done. This is a hy

pothetical measure to show how much time is 
taken by the initial data distribution phase. 

Sr eal : The middle graph shows the speedup that 
would be obtained by a search for the first so
lution, one that stops right after one solution 
has been found. It includes the startup-time 

299 

overhead, the communication overhead due to 
load balancing and the weak synchronization 
between iterations of the third phase. 

The bottom graph shows the actual speedup 
(measured in terms of elapsed time) of the 'all
solutions-case'. Compared to Sr eal, it also con
tains termination detection overhead and idle 

times due to processors which are done 'too 
soon' in the last iterations while others are still 
working on their last subtree.3 

As is evident from Figures 2 and 3, good speedups are 
more difficult to achieve for the small problem instances 
#51..75 than for the hard ones #76 .. 100 . On the 1024-

node system, the small problems take only an average 

of 16 seconds to solve, while the more difficult require 

three minutes. Hence, the negative effect of the initial 
work distribution, which is about constant for all prob

lems, does not hamper the overall speedup in the hard 
problems too much. 

7 Overheads in AIDA* 

In this section, we analyze the various sources of over
heads in more detail. 

7.1 Initial Work Distribution 

In the first phase, all processors perform a synchronous 
iterative-deepening search on the first few tree levels, 
storing all nodes of the last search frontier until there 
are at least 5 · P nodes in each processor's local node 

array. This gives a suffi cient number of work packets 
while not overflowing the memory resources. 

For the larger systems, more nodes must be generated 
to give every processor a sufficient amount of 'own' nodes 
to work on. Hence , the CPU time spent in the first phase 
increases linearly with the system size, as shown in Fig
ure 4. This additional node generation overhead does 

not reduce the overall effi ciency of AIDA* in the large 
problems #76 .. 100 too much. As shown in Figure 5, less 
than 1.5% of the total search time is spent in the first 

phase. Only the small problems #51..75 require up to 
10% for the initial work-load distribution. This is just 
another manifestation of Amdahl's Law. The scalab il
ity of AIDA* can be improved by reducing the size of 

3 While in the 'first-solution-case' node expansion can be 
stopped after a first solution is found, all processors must fin 
ish searching their current subtree in the 'all-solutions-case'. 
Due to different work packet sizes, which vary most in the last 
iteration, some processors might get idle while others are still 
expanding their last tree. Most of the overheads in SalL.al 

can be reduced by implementing a stack-splitting strategy as 
in (Kumar and Rao, 1990] . 



, I 

.. j 

3.0 

2.5 

2.0 

abs. 
time 1.5 
[sec] 

1.0 
/ 

/ 
/ 

0.5 / 

128 256 

/ 
/ 

/ 

512 

Processors P 

/ 
/ 

/ 

768 

/ 
/ 

#76 .. 100 

/ #51..75 
/ 

1024 

Figure 4: Absolute time of first phase 

10.0 

8.0 

relat. 6.0 
time 
[%] 4.0 

2.0 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

128 256 512 768 

Processors P 

/ 
/ 

/ 

#51..75 
/ 

#76 .. 100 

1024 

Figure 5: Time of first phase relative to 
total search time 

the first phase or by expanding different subtrees on the 
parallel processors in a divide-and-conquer approach. 

Note, that in the second phase, every processor starts 
node expansion on its own subtrees, thereby fully ex
ploiting the parallel processing power. 

7.2 Communication Overhead 

Communication is another source of overhead hamper
ing the performance of parallel algorithms, especially 
those running on massively parallel systems. Fortu
nately, AIDA* exhibits a very low communication over
head. Starting with 64 processors, one would expect 
the communication rate to increase by a factor of six
teen when increasing the system size to 1024 processors. 
However, as can be seen in Figure 6, the actual number 
of messages increases only by a factor of six. The curves 
seem to level off with growing system size, which can be 
explained by an increased likelihood that work...requests 

are answered in the immediate neighborhood of the idle 

300 

300 

#mess 
200 

per 

proc 
1po 

128 256 512 

Processors P 

768 

total mess. 

#51..100 

work-mess. 

#51..100 

1024 

Figure 6: Messages per processor (last iteration only) 

total 
mess. 

300 

200 

100 

1st 2nd 3rd 4th 5th 

Iteration 

300 

200 

100 

work
mess. 

Figure 7: Messages per iteration (1024 procs.) 

processor. As a consequence, the average distance be
tween sender and receiver does not increase linearly with 

the system size. 
At the end of an iteration, only a single work...request 

is sent around the ring to indicate that there is no fur
ther work available in the current iteration. All other 
processors on the ring are informed by an out_of_work 

message. They directly start the next iteration without 
asking for further work. 

Moreover, as shown in Figure 7 the communication 
overhead seems to decrease with increasing search time. 
This is because the transferred nodes change ownership 
when being shipped to another processor, thereby con
stantly improving the global work-load balance. The 
number of messages that went through a single proces
sor on a 1024-processor system decreases rapidly in the 
last two iterations. Due to this effect, one can assume 
an even lower communication overhead in other applica
tions involving more iterations. 

7.3 Termination Detection 

With the weak synchronization scheme between the iter
ations, special provision must be taken to ensure that the 
returned solution is optimal in the 'first-solu tion-case'. 
When a goal node is found in iteration i, all processors 



working on iterations < i must complete their search to 
prove that no better solution exists. 

In the 'all-solutions-case' (subject of this paper) the 
last iteration is searched to completion until all proces
sors examined all their assigned subtrees. Due to the 
varying branching degree, the subtree sizes can hardly 
he estimated in advance. This results in different ter
mination times for the parallel processors. As shown in 
Figures 2 and 3 ( compare the two bottom graphs Sr eal 

and Sa 11 _, 0 1) the time spent in the finishing phase is ap
preciable. Note however, that this will usually not occur 
in the search for one solution, a case, that is more im
portant in practice. 

8 Conclusions and Future Research 

In this paper, we presented a universal scheme for 
asynchronous parallel iterative-deepening search on mas
sively parallel MIMD systems. Any sequential iterative
deepening algorithm can be linked to our generic AIDA* 
routines without much modification. Compared to a 
similar parallel MIMD scheme by Kumar and Rao [1990] , 
our method is more general and obeys less communica
tion overhead, especially on MIMD systems with a large 
diameter. 

Moreover, AIDA* proved to be scalable for more than 
one thousand processors with a high efficiency. 

For the 'first-solution-case', we solved Korf's [1985] 
hundred puzzle instances in 24 minutes, which is 5.7 
times faster than SIDA* (Powley et al., 1993] running 
on a 32 K CM-2. Comparing SIDA *'s theoretical speed 
of 32K processors x 322 nodes/sec = 10,551,296 
nodes/sec for the whole system with AIDA*'s theo
retical speed of 1024 processors x 35,000 nodes/sec 
= 35,840,000 nodes/sec for our whole system, it is evi
dent, that our MIMD approach makes better use of the 
processors. This is a remarkable result, considering that 
our faster machine solves the smallest 70 problems in less 
than 10 seconds each. Here, losses due to initialization 
are most pregnant. On the other hand, it is a more am
bitious task to keep all processors of a SIMD machine 
working on relevant parts of the search space. 

Our future work includes the solution of the 19-puzzle, 
where all heuristics that are known up to date, must be 
put together to obtain a solution within reasonable time 
limits. At the present time, we have solved 20 smaller4 

problems of 100 random 19-puzzle instances with an av
erage runtime of 34 minutes on the 1024 processor sys
tem. VLSI floorplan optimization [Wimer et al., 1988] is 

4 avg. values: Manhattan distance h = 46, solution path 
length g = 67.5, 11.8 iterations, 56.2 billion nodes 

301 

another practical application, which we intend to solve 
with AIDA*. 

Appendix: All-Solutions-Case Data 

Prob. Speedup Time 
S(256) S(512) S(768) S(1024) T(1024) 

51 163.8 278.9 363.3 419.4 11 
52 195.2 351.8 492.0 303.9 18 
53 209.7 393.7 389.2 453.4 11 
54 196 .6 360.3 502 .1 620.2 9 
55 211 .8 402.9 430.2 419.5 10 
56 196.9 355.1 503.8 597.2 10 
57 184.8 341.0 474.8 541.0 11 
58 211.0 330.4 446.9 531.9 11 
59 213.8 338.3 460.5 563.8 12 
60 210.6 403.3 577.2 500.1 13 
61 190.5 354.2 323.3 349.1 24 
62 221.2 393.8 562.2 707.8 11 
63 215 .3 359.4 492.4 604.4 13 
64 213.3 411.4 457.1 560.8 14 
65 208.8 401.4 573.4 728.9 13 
66 211.1 317.2 432.1 518 .8 18 
67 216.2 413.8 473.6 579 .1 16 
68 219.9 399.0 570.5 730.6 17 
69 216.5 415.8 595.3 769.2 14 
70 216.2 416.9 599 .4 534.9 24 
71 211.2 352.2 494.9 616.5 20 
72 212.5 427 .1 625.3 653.5 21 
73 221.4 404.5 576.6 736.5 21 
74 222.4 406.5 589.6 754.0 24 
75 222.0 382.8 541.3 682.8 23 
76 220.3 428.8 624.4 811.9 21 
77 218.0 423.5 625.0 801.0 32 
78 218.0 413.7 599.7 775.1 34 
79 222 .0 444 .2 536.3 666.0 37 
80 221.3 397.1 559.1 717.3 34 
81 220 .1 431.3 637.1 677.9 42 
82 208.3 396.8 580.3 733.0 40 
83 220.1 430 .5 636.6 662.2 55 
84 221.1 434.6 565.7 719.4 46 
85 221.4 433.5 562.4 709.7 54 
86 219.2 429.7 633 .2 828.7 62 
87 220.7 432.7 647 .2 846.0 66 
88 223.1 439 .8 602 .4 777.2 88 
89 220.5 435.7 646.9 852.4 79 
90 225.5 435.2 642.4 845 .9 80 
91 225 .7 396 .7 576.5 734 .8 125 
92 226.2 448.7 671.2 890.6 165 
93 224.1 445.5 664.6 882 .6 144 
94 223.6 446.0 665.9 869.9 149 
95 225.5 450.7 658.5 870.7 175 
96 224 .8 448.1 652 .7 858.9 207 
97 226.3 449.8 672.3 897.4 214 
98 235 .8 467.6 698.1 924.9 520 
99 230.4 452.2 675.0 896.4 579 
100 230.4 459.8 687.3 915.3 1300 



I 

I 

· . .i 

I 

I 

Acknowledgements 

Thanks to Tony Marsland for many valuable comments 
and for visiting the PC2 at the right time. 

References 

[Altmann et al., 1988] E. Altmann, T. A. Marsland, T. 
Breitkreutz. Accounting for Parallel Tree Search Over

heads. Procs. Int . Conf. Par . Proc. (1988), 198 - 20 1 

[Chakrabrti et al., 1989] P.P. Chakrabarti, S. Ghose, A. 
Acharya, S.C. de Sarkar. Heuristic search in restricted 

m emory. Art. Intel!. 41,2(1989/ 90), 197 - 221. 

[Evett et al., 1990] M. Evett, J. Hendler, A. Mahanti, 
D.S. Nau. PRA *: A m emory-limit ed heuristic search 

procedure for the Co nnection Machine. 3rd IEEE 
Symp. Frontiers Mass . Par . Comp. (1990) , 145 - 149 . 

[Korf, 1985] R.E. Korf. Depth-first iterative-deepening: 

An optimal admissible tree search. Art . In tell . 

27(1985), 97 - 109. 

[Kumar and Rao, 1990] V. Kumar, V.N. Rao. Scalab le 

parallel formulation s of depth-first search . In : Ku
mar, Gopalakrishnan, Kanai (eds.), Parallel Algo
rithms for Machine Intelligence and Vision, Springer
Verlag (1990), 1 - 41. 

[Mahanti et al. , 1992] A. Mahanti, S. Ghosh, D.S . Nau, 
A.K. Pal and L. Kanai. Performance of IDA * on trees 

and graphs. 10th Nat. Conf. on Art. Int ., AAAI-92, 

San Jose, CA, (1992), 539 - 544. 

[Mahanti and Daniels, 1993] A. Mahanti, C.J. Daniels. 
A SIMD approach to parallel heuristic search. Art. In
tell . 60(1993), 243 - 282. 

[Morabito et al. , 1992] R .N. Morabito, M.N. Arenales , 
V.F. Arcaro. An and-or-graph approach for two di

mensional cutting problems. European J. of OR 
58(1992), 263 - 271. 

[Newborn, 1988] M. Newborn. Unsynchronized it era

tively deepening parallel alpha-beta search. IEEE 
Trans. Pattern Anal. Mach . Int ., PAMI-10,9 (1988), 
687 - 694 . 

[Nilsson, 1980] N .J. Nilsson . Principles of Artificial In
t elligence. Tioga Publishing, Palo Alto, CA, (1980) . 

[Pearl, 1985] J. Pearl. Heuristics. Int elligent Search 

Strategies for Comput er Problem Solving. Addison
Wesley, Reading, MA, (1984). 

[Powley and Korf, 1991] C. Powley, R.E. Korf. Single

agent parallel window search. IEEE Trans. Pattern 
Anal. Mach. Int. , PAMI-13,5 (1991) , 466 - 477 . 

302 

[Powley et al., 1993] C. Powley, C. Ferguson, R.E. Korf. 
Depth-first heuristic search on a SIMD machine. Art . 
Intel!. 60(1993), 199 - 242. 

[Rao et al. , 1991] V.N. Rao, V. Kumar, R.E. Korf. 
Depth-first vs. best-first search. 9th Nat . Conf. on Art. 
Int. AAAl-91, Anaheim, CA, (1991) , 434 - 440. 

[Rao and Kumar, 1987] V .N. Rao, V. Kumar. Parallel 

depth-first search. Part I. Imp lem entation. Int. J. Par. 

Progr . 16,6(1987) , 479 - 499. 

[Ratner and Warmuth, 1986] D. Ratner, M. Warmuth. 
Finding a shortest so lution for the N x N ext ension 

of the 15-puzzle is intractable. AAAI-86, 168 - 172. 

[Reinefeld and Marsland, 1993] A. Reinefeld , T.A. Mar
sland . Enhanced iterative- deepening search. Univ. Pa
derborn, FB Mathematik-lnformatik, Tech . Rep. 120 
(March 1993), to appear IEEE-PAMI. 

[Reinefeld, 1993] A. Reinefeld . Comp let e so luti on of the 

Eight-Puzzle and the benefit of node- ordering in IDA *. 

Procs. Int. Joint Conf. on AI, Chambery, Savoi, France 
(Sept. 1993), 248 - 253 . 

[Russell , 1992] S. Russell. Efficient m emory- bounded 

search m ethods. European AI-Conference, ECAI-92, 
Vienna, (1992), 1 - 5. 

[Wimer et al., 1988] S. Wimer, I. Koren, I. Cederbaum. 
Optimal aspect ratios of building blocks in VL SI. 

Procs. 25th ACM/ IEEE Design Automation Confe r
ence, 1988, 66 - 72. 




