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Message from the Chairs 

This volume comprises the Proceedings of the Ninth 
Biennial Conference of the Canadian Society for Com­
putational Studies of Intelligence. Over the last 17 
years, biennial conferences sponsored by CSCSI have 
acquired a reputation for excellence, collegiality and 
friendliness. It is our belief that this conference contin­
ues the tradition, and that the volume now before you 
testifies to the high quality and timeliness of research 
presented to the conference. 

This year 112 papers were submitted in time to be 
considered for the conference. Of these, 35 were se­
lected for presentation and inclusion in these proceed­
ings. Each of these papers was reviewed by at least two 
reviewers, and in some instances, as many as four were 
consulted. Undoubtedly, some worthy papers were not 
accepted, due to the number of papers submitted and 
the time constraints of our program. Final decisions 
were made after careful deliberation by six members of 
program committee, including the program co-chairs. 

We would like to take this opportunity to recognize 
and thank the people who made this program and con­
ference possible. First, we would like to thank our 
invited, distinguished speakers, who have contributed 
much to the quality and success of the meeting. We 
would also like to thank all members of our program 
committee and auxiliary review committee, who con­
tributed long hours and much effort to make this pro­
gram a success. Recognition is due to the general chairs 
of the three conferences, Kellogg Booth and Alain 
Fournier, our publicity chair, Fred Popowich and our lo­
cal arrangements chair, David Poole. We would also like 
to express our appreciation to Carol Morrison, Sandra 
Crocker, Christine Adams, Ranabir Gupta, Pierre Mas­
sicotte, Michel Feret, members of the Centre for Systems 
Science (at Simon Fraser University) and of MAGIC (at 
the University of British Columbia) for their adminis­
trative, technical and French translation assistance in 
the organization of the conference and the production 
of these proceedings. In addition, we are indebted to Pe­
ter Patel-Schneider, Dick Peacocke, and Nick Cercone 
for their continual and invaluable advice and guidance 
in the organization of this conference. 

We wish you all an enjoyable and rewarding confer­
ence. 

Janice Glasgow and Bob Hadley 
Program Co-Chairs, AI '92 
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Message des Presidents 

Ce volume contient les Actes de la Neuvieme Confe­
rence Biennale de la Societe Canadienne pour l'Etude 
de l'Intelligence par Ordinateur. Durant les 17 dernieres 
annees, les conferences biennales ont acquis une reputa­
tion d'excellence, de collegialite et d'ouverture. Nous 
pensons que la presente edition de cette conference main­
tient cette tradition. Ce volume, maintenant entre vos 
mains, temoigne de la haute qualite et de la pertinence 
des recherches presentees a cette conference. 

Cette annee, 112 communications furent envoyees 
clans les delais impartis. Trente cinq furent retenues 
pour presentation a cette conference et sont publiees 
dans ces actes. Chacun de ces articles a ete juge par au 
moins deux arbitres, et clans certains cas, par pas moins 
de quatre. Sans aucun doute, certaines communications 
de valeur n'ont pas ete acceptees. Ceci est du au grand 
nombre d'articles soumis et aux contraintes de temps 
liees a notre programme. Les decisions finales ont ete 
prises a pres deliberation attentive d 'un jury de six mem­
bres du comite de programme, incluant les presidents de 
la conference. 

Nous tenons a exp rimer nos remerciements aux per­
sonnes qui ont participe a la mise sur pied de cette 
conference: aux conferenciers invites, dont la contribu­
tion a la qualite et au succes de la conference a ete 
grandement appreciee, aux membres du comite de pro­
gramme et du sous-comite d'arbitrage, qui ont travaille 
de longues heures a !'elaboration du programme, aux 
presidents des trois conferences, Kellogg Booth et Alain 
Fournier, au directeur de la publicite, Fred Popowitch, 
ainsi qu'au directeur pour !'organisation locale, David 
Poole. Nous tenons aussi a exprimer notre gratitude 
a Carol Morrison, Sandra Crocker, Christine Adams, 
Ranabir Gupta, Pierre Massicotte, Michel Feret, aux 
membres du Centre pour la Science des Systemes (Uni­
versite Simon Fraser), et a MAGIC (Universite de Colom­
hie Britannique) pour l'assistance administrative, tech­
nique et de traduction qu'ils ont fournie pour l'organisa­
tion de cette conference et pour la publication de ces 
actes. Finalement, nous sommes redevables a Peter 
Patel-Schneider, Dick Peacocke, et a Nick Cercone de 
leurs precieux conseils et de leur aide assidue pour 
!'organisation de cette conference. 

Nous vous souhaitons, a tous, une conference produc­
tive et agreable. 

Janice Glasgow et Bob Hadley 
Presidents du comite de programme, IA 92 
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Best Paper A ward 

The CSCSI best paper award is sponsored by the Edi­
torial Board of Artificial Intelligence. It is given for the 
paper or papers that best combine significant new re­
sults with clarity of writing and accessibility across the 
conference. The sponsorship by the board provides both 
an honorarium and a rapid review process in the journal 
for an extended version of the conference paper(s) . 
This year the CSCSI Program Committee is pleased to 
award the CSCSI best paper award to Russell Greiner, 
for "Probabilistic Hill-Climbing: Theory and Applica­
tions" . 

v i i 

Prix de la Meilleure Communication 

Le prix CSEIO de la meilleure communication est par­
raine par le conseil de redaction de la revue Artificial 
Intelligence. Le prix est decerne a la OU a les communi­
cations qui allient au mieux !'importance des resultats, 
la clarte de !'expression, et l'accessibilite au plus grand 
nombre. Le parrainage du conseil comprend un prix en 
espeeces et une procedure d'evaluation rapide, en vue 
de la publication clans la revue de versions etendues des 
communications. 
Le comite de programme de la conference SCEIO 1990 
est heureux de decerner le prix de la meilleure com­
munication a Russell Greiner, pour "Probabilistic Hill­
Climbing: Theory and Applications". 
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CSCSI Distinguished Service A ward 

1992 - John Mylopoulos 

The executive of the Canadian Society for Computa­
tional Studies of Intelligence (CSCSI/ SCEIO) is pleased 
to announce that John Mylopoulos of the University of 
Toronto will be presented with the inaugural CSCSI Dis­
tinguished Service Award. Henceforth, this prestigious 
award will be presented biennially to an individual who 
has made outstanding contributions to the Canadian 
AI community in one or more of the following areas: 
community service, research, training of students, and 
research/ industry interaction. John Mylopoulos is con­
sidered by many to be the "father" of AI research in 
Canada. One of his most important accomplishments is 
the supervision of many of Canada's AI PhD and MSc 
students, several of whom have gone on to have sig­
nificant careers. John is also responsible for the birth, 
nurturing and adolescence of the AI group we see today 
at the University of Toronto. 

John's public service accomplishments are a matter of 
record and include serving on the steering committee for 
the formation of CSCSI to more recently co-chairing the 
IJCAI'91 conference. He either is or has been an impor­
tant member of virtually every AI-oriented academic or­
ganization in Canada, including: Senior Fellow, CIAR; 
CIAR/ PRECARN Associate; and Principal Investiga­
tor in ITRC, IRIS, and PRECARN's APACS project. 

John Mylopoulos has also made significant contribu­
tions in the area of research in Al. His work in knowl­
edge representation systems involves formalisms for in­
tegrating concepts from semantic networks, logical and 
procedural representations and has resulted in two sys­
tems, PSN (Procedural Semantic Networks) and Telos. 
His research in the application of knowledge represen­
tation systems to information system development has 
produced a series of requirements modelling and design 
languages culminating in Taxis, intended for the design 
of interactive information systems. 

Prix du Merite de la SCEIO 

1992 - John Mylopoulos 

Le Conseil executif de la Societe Canadienne pour 
l 'Etude de I 'Intelligence par Ordinateur (SCEIO / CSCSI) 
a l'honneur de decerner le Prix inaugural du Merite de la 
SCEIO a John Mylopoulos de l'universite de Toronto. 
Cette recompence prestigieuse sera dorenavant remise 
biannuellement a une personnalite qui aura fait benefi­
cier la communaute canadienne de l'IA de contribu­
tions remarquables dans un ou plusieurs des domaines 
suivants: service rendu a la communaute, recherche, 
enseignement, rapports recherche-industrie. John My­
lopoulos est considere par beaucoup comme le "pere" 
de la recherche en IA au Canada. Ses qualites de su­
pervi"seur ont permis a de nombreux etudiants au doc­
torat et en maltrise d'entreprendre de carrieres bril­
lantes. John Mylopoulos a litteralement forge le groupe 
d'IA de l'universite de Toronto, pour l'amener au ni­
veau d'excellence que la communaute lui reconnalt au­
jourd'hui. 

Les services rendus par John Mylopoulos a la commu­
naute sont bien connus, notamment sa participation au 
comite constitutif de la SCEIO et, plus recemment, son 
poste de vice-president de la Conference IJCAI'91. 11 
est, OU a ete, une personnalite d'importance au Sein de 
nombreux organismes academiques orientes vers !'IA: 
Membre de la CIAR, Membre Associe de la CIAR/ 
PRECARN, et Directeur de recherche de projets ITRC, 
IRIS et PRECARN-APACS. 

Les contributions de John Mylopoulos clans le domaine 
de I 'IA sont importantes. Son travail relatif aux systemes 
de representation de connaissances a abouti a des for­
malismes d'integration de concepts provenant des re­
seaux semantiques, ainsi que des representations logiques 
et procedurales. Ces travaux ont permis le developpe­
ment de deux systemes que sont PSN (Procedural Se­
mantic Network) et Telos. Ses recherches traitant de 
l'application des systemes de representation de connais­
sances au developpement de systemes d'information ont 
produit une serie de langages de modelisations de specifi­
cations et de design tels Taxis, orientes vers la concep­
tion de systemes interactifs d'information. 
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Generating Object Descriptions: Integrating Examples with Text 

Vibhu 0. Mittaf 1* and Cecile L. Paris* 

i.JSC/Information Sciences Institute 
4676 Admiralty Way 

Marina del Rey, CA 90292 
U.S.A 

Abstract 

Descriptions of complex concepts often use exam­
ples for illustrating various points. This paper dis­
cusses the issues that arise in generating complex 
descriptions in tutorial contexts. Although some tu­
torial systems have used examples in explanations, 
they have rarely been considered as an integral part 
of the complete explanation - they have usually 
been merely supportive devices - and inserted in 
the explanations without any representation in the 
system of how the examples relate to and comple­
ment the textual explanations that accompany the 
examples. This can lead to presentations that are at 
best, weakly coherent, and at worst, confusing and 
mis-leading for the learner. 
In this paper, we consider the generation of exam­
ples as an integral part of the overall process of 
generation, resulting in examples and text that are 
smoothly integrated and complement each other. 
We address the requirements of a system capable 
of this, and present a framework in which it is pos­
sible to generate examples as an integral part of a 
description. We then show how techniques devel­
oped in Natural Language Generation can be used 
to build such a framework. 

1 Introduction 

It has long been known that examples are very useful in 
communication - especially in explanations and instruction. 
New ideas, concepts or terms are conveyed with greater ease 
and clarity, if the descriptions are accompanied by appropri­
ate examples (e.g., [Houtz et al., 1973; MacLachlan, 1986; 
Pirolli, 1991; Reder et al., 1986; Tennyson and Park, 1980]). 
People like examples because examples tend to put abstract, 
theoretical information into concrete terms they can under­
stand. 

We gratefully acknowledge the support of NASA-Ames 
grant NCC 2-520 and DARPA contract DABT63-91-C-0025. 
The authors may be contacted through electronic mail at: 
{MrrrAL.PARIS }@ISi.EDU 

toepartment of Computer Science 
University of Southern California 

Los Angeles, CA 90089 
U.S.A 

Explanation capabilities are becoming increasingly impor­
tant nowadays, especially as domain models become larger 
and more specialized. One requirement in such systems is 
the ability to explain complex objects, relations or processes 
that are represented in the system. Advances in natural lan­
guage generation and research in user modelling have resulted 
in impressive descriptions being produced by such systems. 
However, these systems have not, for the most part, con­
centrated on the issue of generating examples as a part of 
the overall description. While examples can, in some cases, 
be retrieved from a pre-defined 'example-base' and added to 
the description, using examples effectively, as an important 
and a complementary part of the overall description, requires 
the system to reason with the constraints introduced by both 
the textual explanation, as well as the examples, in making 
decisions during the generation process. 

There are many issues that must be considered in selecting 
and presenting examples - in this paper, we shall briefly high­
light some of these issues. We view example generation as 
an integral part of generating descriptions, because examples 
affect not only other examples that follow, but also the sur­
rounding text. We describe how a text generation system that 
plans text in terms of both intentional and rhetorical goals, 
can be structured to plan utterances that can include examples 
in an integrated and coherent fashion. Some of the issues 
addressed in this regard are equally important in the plan­
ning and presentation of other explanatory devices - such as 
diagrams, pictures and analogies. 

2 Previous Work and Unaddressed ~ues 

Most previous approaches to the use of examples in gen­
erating descriptions and explanations focused on the issue 
of finding useful examples. Rissland's (1981) CEO sys­
tem , for instance, investigated issues of retrieval versus con­
struction of examples; Rissland and Ashley's (1986) HYPO 
system retrieved examples and investigated techniques for 
modifying them along multiple dimensions to fit required 
specifications; Suther's example generator [Suthers and Riss­
land, 1988] is also similar to CEO, and investigated effi­
ciency of search techniques in finding examples to modify. 
Later work by Woolf and her colleagues focused on de­
sign issues of tutoring systems, including determination of 
when examples are necessary [Woolf and McDonald, 1984; 
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Woolf and Murray, 19871. However, it did not address is­
sues of discourse generation and the integration of text with 
examples. 

Our work builds upon these and other studies (e.g., [Reiser 
et al., 1985; Rissland et al., 1984; Woolf et al., 1988)) to 
study how to provide appropriate, well-structured and coher­
ent examples in the context of the surrounding text. It has been 
shown previously that presentation of descriptions without the 
use of examples is not effective, perhaps because the use of 
definitions on their own may lead to a learner merely memo­
rizing a string of verbal associations [Klausmeier, 19761. The 
converse - presentation of examples alone - has also been 
shown previously to be less effective than the use of both ex­
amples and descriptions; the use of both almost doubled user 
comprehension in certain cases (e.g., [Charney et al., 1988; 
Feldman, 1972; Feldman and Klausmeier, 1974; Gilling­
ham, 1988; Klausmeier, 1976; Merrill and Tennyson, 1978; 
Reder et al., 1986]). However, text and examples that are not 
well integrated can cause greater confusion than either one 
alone (e.g., [Ward and Sweller, 1990]). Thus it is clear that if 
descriptions are to make use of examples effectively, both the 
descriptions and the examples must be integrated with each 
other in a coherent and complementary fashion. Furthermore, 
there is often a lot of implicit information in the sequence of 
presentation of the examples. The system should be capa­
ble of representing this information to structure the sequence 
correctly. 

There are many points that must be considered by any sys­
tem that attempts to generate effective descriptions of complex 
concepts: 

1. What aspects of information should be exemplified? A 
system is likely to have detailed knowledge about the 
concept. It typically needs to select some aspects to 
present to the user. (This issue has often been raised in 
natural language generation.) 

2. When should a description include examples? A few 
researchers have started to look at this issue [Woolf and 
McDonald, 1984; Woolf and Murray, 1987; Woolf et al., 
1988], although much work still remains to be done. 

3. How is a suitable example found? Is it retrieved from 
a pre-defined knowledge base and modified to meet cur­
rent specifications (as in [Rissland et al., 1984]), or is it 
constructed (as in [Rissland, 1981])? 

4. How should the example be positioned with respect to 
the surrounding text? Should the example be within the 
text, be/ ore it, or after it? 

5. Should the system use one example, or multiple exam­
ples? If more than one example is used, how many 
should be used, and what information should each one 
convey? 

6. If multiple examples are to be presented, how is the order 
of presentation to be determined? 

7. What information should be included in the prompts1 

and how can they be generated? 

1'Prompts' are attention focusing devices such as arrows, marks, 
or even additional text associated with examples [Engelmann and 
Carnine, 1982]. 

A list always begins with a left parenthesis. Then come zero 
or more pieces of data (called the elements of a list) and a 
right parenthesis. Some examples of lists are: 

(AARDVARK) ;;; an atom 
(RED YELLOW GREEN BLUE) ;;; many atoms 
(2 3 5 11 19) ;;; numbers 
(3 FRENCH FRIES) ;;; atoms & numbers 

A list may contain other lists as elements. Given the three 
lists: 

(BLUE SKY) (GREEN GRASS) (BROWN EARTH) 

we can make a list by combining them all with a parentheses. 

((BLUE SKY) (GREEN GRASS) (BROWN EARTH)) 

Figure 1: A description of the object LIST using examples 
(From [Touretzky, 1984], p.35) 

8. How is lexical cohesion maintained between the exam­
ple and the text? The text and the example(s) should 
probably use the same lexical items to refer to the same 
concepts. 

9. We already know from work in natural language genera­
tion that a description is affected by issues such as user­
type, text-type, etc. How is the generation of examples 
(when they should be included, the type of information 
that they illustrate, and the number of examples) within 
a text affected by: 

• the prospective audience-type (naive vs. advanced, 
for instance), 

• the knowledge-type (concepts vs. relations vs. pro­
cesses), 

• the text-type (tutorial vs. reference vs. report, etc), 
and 

• the dialogue context? 

While each of these issues needs to be addressed in a prac­
tical system, we shall only discuss some of them here: the 
issues of positioning the example within a text, the num­
ber of examples to be presented, and their order. (Issues 
#1, #2 and #3 have already been studied to some extent, by 
other researchers, for e.g., [paris, 1987; Woolf et al., 1988; 
Rissland et al., 1984; Rissland and Ashley, 1986; Rissland, 
1983]). We now discuss in more detail, the points we are con­
cerned with. We illustrate each point with the description in 
Figure 1. We are not yet (for this paper) addressing the issues 
of user-type, the text-type and the dialogue context, though 
they can all affect the generation of examples. We take as 
our initial context the generation of a description in a tutorial 
fashion, for a naive user and as a 'one-shot' response. 

3 Integrating Examples in Descriptions 

As mentioned previously, a number of studies have shown 
the need for examples to illustrate descriptions and definitions, 
as well as a need for explanations to complement the examples 



presented. Presentation of either on their own is not as useful 
an approach as one that combines both of them together. 

3.1 Positioning the Example and the Description: 

Should the example be placed before, within or after the ac­
companying text? This is an important issue, as it has been 
reported that there are significant differences that can result 
from the placement of examples before and after the explana­
tion [Feldman, 1972]. 

Our analyses of different instructional materials reveal that 
examples usually tend to follow the description of a concept in 
terms of its critical attributes. Critical attributes are attributes 
that are definitional - the absence of any of these attributes 
causes an instance to not be an example of a concept. In 
the lisp domain, for example, a LIST has parentheses as its 
critical attributes; the elements of the list itself are not. The 
examples can then be followed by text which elaborates on 
features in the examples, unless prompts are included with 
the examples. If more than one example needs to be pre­
sented, the example is usually placed separately from the text 
(rather than within it). Otherwise, the example is integrated 
within the text, as in: An example of a string is 
"The qui ck brown fox". Following the examples, the 
description continues with other attributes of the concept, pos­
sibly accompanied by further examples. 

Sometimes, examples are used as elaborations for certain 
points which might otherwise have been elaborated upon in 
the text. For instance, in Figure 1, the LIST could have been 
described as "A list always begins with a left parenthesis. 
Then come zero or more pieces of data, which can be either 
symbols, numbers, or combinations of symbols and numbers, 
followed by a right parenthesis." Instead, the elaboration on 
the data types is embodied in the information present in the 
examples. The first set of examples in Figure 1 have prompts 
associated with them, highlighting features (number and type 
information) about the examples. Following these examples, 
some text elaborates on the fact that the elements of a list can 
also be lists. Further examples of lists are used to show how 
these can be combined to form another list. 

3.2 Providing the Appropriate Number of Examples 

Studies have indicated that information transfer is maximized 
when the learner has to concentrate on as few features as 
possible [Ward and Sweller, 1990]. This implies that teach­
ing a concept is most effectively done one feature at a time. 
This has important implications for example generation: it 
indicates that examples should try and convey one point at 
a time, especially if the examples are meant to teach a new 
concept. Thus, should the concept have a number of different 
features, a number of examples are likely to be required, one 
( or a set ot) examples for each feature. This is also supported 
by experiments on differences in learning arising from using 
different numbers of examples [Clark, 1971; Feldman, 1972; 
Klausmeier and Feldman, 1975; Markle and Tiemann, 19691 

This is illustrated in Figure 1, in which each example high­
lights one feature of LISTs: that the data can be a single 
symbol, a number of symbols, numbers, etc. Contrast those 

examples, with a single example which summarizes most of 
the features a LIST can have, as given below: 

(FORMAT T ,, _ A - A - A" 'abcdef 123456 
' ( abc ( 12 3 ( "ab" ) ) ) ( ) ) 

It is important that the system generate an appropriate num­
ber of examples, each emphasizing certain selected features. 

3.3 Ordering the Examples 

Given a number of examples to present, the sequencing is also 
an important matter, because examples often build upon each 
other. Furthermore, the difference between two adjacent ex­
amples is significant, as proper sequencing can be a very pow­
erful means of focusing the hearer's attention (e.g., [Feldman, 
1972; Houtz et al., 1973; Klausmeier et al., 197 4; Litchfield et 
al., 1990; Markle and Tiemann, 1969; Tennyson et al., 1975; 
Tennyson and Tennyson, 1975]). Consider the sequence of 
examples on LISTs in Figure 1: the first two examples focus 
attention on the number of elements in a LIST - they highlight 
the fact that a LIST can have any number of elements in it; the 
second and third ones illustrate that symbols are not always 
required in a LIST - a LIST can also be made up of numbers; 
the fourth example contrasts with the third, and illustrates the 
point that a LIST need not have elements of just one type -
both numbers as well as symbols can be in a LIST at the same 
time. 

It has also been shown that presenting easily understood 
examples before presenting difficult2 examples has a signif­
icant beneficial effect on learner comprehension [Carnine, 
1980]. Ordering is thus important - it is worth noting that the 
linguistic notion of the maxim of end-weight [Giora, 1988; 
Werth, 1984 ], also dictates that difficult and new items should 
be mentioned after easier and known pieces of information; 
since there is a direct correlation between the description and 
the examples, this maxim offers additional motivation for a 
sequencing of the examples from easy to difficult. Possible 
orderings may also depend upon factors such as the type of 
concept being communicated (whether for instance, it is a dis­
junctive or a conjunctive concept) or whether it is a relation. 
For example, in Figure 1, the order of examples is determined 
both by the order in which features are mentioned ("zero or 
more" and "pieces of data''), and the complexity of exam­
ples within each grouping (symbols, followed by numbers, 
followed by combinations of symbols and numbers). 

3.4 Generating Prompts for the Examples 

Instructional materials that include examples often. have tag 
information associated with each example. This is often re­
ferred to as "prompting" information in educational literature 
(e.g., [Engelmann and Carnine, 1982]). Prompts help focus 
attention on the feature being illustrated. They often replace 
long, detailed explanations, and therefore play a role similar 
to the one of explanation of the examples. However, as they 

2The terms ' easy' and 'difficult' are difficult to specify, and are 
usually highly domain specific - in the case of LISP, for instance, 
one measure of difficulty is the number of different grammatical 
productions that would be required to parse the construct. 
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occur in the same sequence as the examples, they capture the 
change in the examples very efficiently. Consider the example 
sequence in Figure 1. In this case, the prompts (tags such as 
''List of Symbols" and ''List of combined Symbols and Num­
bers'') cause the learner to focus on the feature that is being 
highlighted by the examples. 

3.5 Maintaining Lexical Cohesion between the Text and 
the Examples 

In any given domain, there are likely to be a number of terms 
available for a particular concept. It is important that the sys­
tem use consistent terminology throughout the description: 
both in the definition, as well as in the examples. Consider 
for instance, the description in Figure 1. Both the examples 
and the definition use the term 'list', although the terms list, 
s-expression and (sometimes)/orm are interchangeable. Dif­
ference in terminology can result in confusing messages being 
communicated to the learner (e.g., [Feldman and Klausmeier, 
1974]). This issue becomes especially important in cases 
where the examples are retrieved, as the terms used in the ex­
ample may be different from the terms used in other examples, 
or the definition. The construction of the textual definition and 
the examples must thus be done in a coordinated and cooper­
ative manner. 

3.6 The Knowledge-Type and its Effect on Descriptions 

It has been observed that the type of the knowledge com­
municated (concept vs. relation vs. a process) has im­
portant implications for the manner in which this commu­
nication talces place (e.g., [Bruner, 1966; Engelmann and 
Carnine, 1982]). Not only is the information different, but 
the type of examples and their order of presentation is af­
fected. This is because, if, for instance, the system needs 
to present information on a relation, it must first make sure 
that the concepts between which the relation holds are un­
derstood by the hearer - this may result in other examples 
of the concepts being presented before examples of the rela­
tion can be presented. The order is usually different too and 
there are no negative3 examples of relations presented in ini­
tial teaching sequences (e.g., [Engelmann and Carnine, 1982; 
Bruner, 1966]). 

In this section, we have described in somewhat greater 
detail, a few of the issues that we identified in Section 2. In 
the following section, we describe a framework for generation 
that addresses some of the above issues. We should mention 
that our system has only a simple user-model, and in the 
description, we shall not discuss other aspects of the system 
such as how dialogue is handled [Moore, 1989al, the effect of 
the text-type, etc. The description is meant to convey a flavor 
of how the system processes a goal to describe concepts and 
uses examples to help achieve its goal. 

3'Positive' examples are instances of the concept they illustrate; 
'negative' examples are those which are not instances of the concept 
being described. 

Figure 2: A block diagram of the overall system. 

4 A Framework to Generate Descriptions 
with Examples 

Using techniques developed in natural language generation, 
we are working on a framework within which it is possible 
to integrate examples in a description. This framework will 
also enable us to investigate and test more carefully the issues 
raised in Section 2, incorporating and building upon the work 
of other researchers (e.g., [Faris, 1991b; Woolf et al., 1988; 
Rissland et al., 1984; Rissland et al., 1984; Rissland et al., 
1984]). Our current framework implements the generation of 
examples within a text-generation system by explicitly posting 
the goals of providing examples. Our system uses a planning 
mechanism: given a top level communicative goal (such as 
(DESCRIBE LIST)), the system finds plans capable of 

achieving this goal. Plans typically post further sub-goals to 
be satisfied, and planning continues until primitive speech acts 
- i.e., directly realizable in English - are achieved. The result 
of the planning process is a discourse tree, where the nodes 
represent goals at various levels of abstraction (with the root 
being the initial goal, and the leaves representing primitive 
realization statements, such as ( INFORM ••• ) statements. 
In the discourse tree, the discourse goals are related through 
coherence relations. This tree is then passed to a grammar 
interface which converts it into a set of inputs suitable for 
input to a natural language generation system (Penman [Mann, 
1983]). A block diagram of the system is shown in Figure 2. 

Plan operators can be seen as small schemas (scripts) which 
describe how to achieve a goal; they are designed by study­
ing natural language texts and transcripts. They include 
conditions for their applicability. These conditions can re­
fer resources like the system knowledge base (KB), the user 
model, or the context (including the dialogue context). A com­
plete description of the generation system is beyond the scope 
of this paper - see [Moore and Paris, 1992; Moore, 1989b; 
Moore and Paris, 1991; Paris, 1991a; Moore and Paris, 1989] 
for more details. 

We are adding an example generator to this generation sys­
tem. Examples are generated by explicitly posting a goal 
within the text planning system: i.e., some of the plan oper-



ators used in the system include the generation of examples 
as one of their steps, when applicable. This ensures that the 
examples embody specific infonnation that either illustrates 
or complements the information in the accompanying textual 
description. It is clear that there are additional constraints (for 
e.g., the user model, text type, dialogue context, etc) that will 
be needed in any comprehensive implementation of exam­
ple generation, but we shall investigate those issues in future 
work. These additional sources of knowledge can be currently 
added to the system by incorporating additional constraints in 
the plan operators which reference these resources. Thus, ex­
perimenting with different sources in an effort to study their 
effects is not very difficult. 

The number of examples that the system needs to present 
is determined by an analysis of the features that need to be 
illustrated. These features depend on the representation of 
the concept in the knowledge base and the user model. Not 
all the features illustrated in the examples may be actually 
mentioned in the text. This is because the description may 
actually leave the elaboration up to the examples rather than 
doing it in the text. In Figure 1, for instance, the different data 
types (numbers, symbols or combinations of both) that may 
fonn the elements of a list are not mentioned in the text, but are 
illustrated through examples. The user model influences the 
choice of features to be presented. The number of examples 
is directly proportional to the number of features - in case of 
the naive user, there is usually one example per feature. In 
our framework, the features to be presented are determined 
based on the domain model and a primitive categori7.ation of 
the user (naive vs. advanced). 

The order of presentation of examples is dependent mainly 
upon the order of the features being mentioned in the text. 
In case the text does not explicitly mention the features (as 
in Figure 1, where the different data types are not mentioned 
in the text), the system orders them in increasing complexity. 
Since the ordering in the text is in an increasing order of 
complexity too (the maxim of end-weight), the least complex 
examples are presented first. We have devised domain specific 
measures of complexity. In the case of LISP for instance, the 
complexity of a structure is measured in tenns of the number 
of different productions that would need to be invoked to parse 
the example. 

The system maintains lexical cohesion by replacing all oc­
currences of equivalent tenns with one uniform term. This 
is done as the last step in the discourse tree, before it is used 
as input to the language generator. There are clearly more 
issues to be studied to obtain lexical cohesion, but this indi­
cates our framework's ability to at least ensure a consistent 
use of vocabulary. Our framework is thus centered around 
a text-planner that generates text and posts explicit goals to 
generate examples that will be included in the description. 
Plans also indicate how and when to generate the prompt 
infonnation. By appropriately modifying the constraints on 
each plan-operator, we can investigate the effects of differ­
ent resources in the framework. In the following section, 
we shall illustrate the working of the system by generating a · 
description similar to the one in Figure 1. 

4.1 A Trace or the System 

The system initially begins with the top-level goal being given 
as (DESCRIBE LIST). The text planner searches for ap­
plicable plan operators in its plan-library, and it picks one 
based on the applicable constraints such as the user model 
(introductory), the knowledge type (concept), the text type 
(scientific), etc. The user model restricts the choice of the 
features in this case (naive user) to syntactic ones. The main 
features of LIST are retrieved, and two subgoals are posted: 
one to list the critical features (the left parenthesis, the data 
elements and the right parenthesis), and another to elaborate 
upon them. 

At this point, the discourse tree has only two nodes: 
the initial node of (DESCRIBE LIST) - namely LIST­
-MAIN-FEATURES and DESCRIBE-FEATURES, linked 
by a rhetorical relation, ELABORATE.4 

The text-planner now has these two goals to expand: 
LIST-MAIN-FEATURES 
DESCRIBE- FEATURES 

The planner searches for appropriate operators to satisfy these 
goals. The plan operator to describe a list of features indicates 
that the features should be mentioned in a sequence. Three 
goals are appropriately posted at this point. These goals re­
sult in the planner generating a plan for the first sentence 
in Figure 1. The other sub-goal of DESCRIBE-LIST also 
causes three goals to be posted for describing each of the crit­
ical features. Since two of these are for elaborating upon the 
parentheses, they are not expanded because no further infor­
mation is available. A skeleton of the resulting text plan is 
shown in Figure 3. 

The system now attempts to satisfy the goal 
DESCRIBE-DATA-ELEMENTS by finding an appropriate 
plan. Data elements can be of three types: numbers, symbols, 
or lists. The system can either communicate this infonnation 
by realizing an appropriate sentence, or through examples (or 
both). The text type and user model constraints cause the 
system to pick examples. It generates two goals for the two 
dimensions in which the data elements can vary in: the num­
ber and the type. The goal to illustrate the number feature of 
data elements causes two goals to be generated: 

GENERATE-EXAMPLE-SINGLE-ELEMENT 
GENERATE-EXAMPLE-MULTIPLE-ELEMENTS 

so as to highlight the difference in number of elements be­
tween the two examples. (Each of these goals posts further 
goals to actually retrieve the example and generate an appro­
priate prompt, etc.) The example generation algorithm en­
sures that the examples selected for related sub-goals (such as 
the two above) differ in only the dimension being highlighted. 

The goal to illustrate the type dimension using examples ex­
pands into four goals: to illustrate symbols, numbers, symbols 
and numbers, and sub-lists as possible types of data elements. 
(The other combinations possible - numbers and sub-lists, 

4We use rhetorical relations from Rhetorical Structure Theory 
(RST) [Mann and Thompson, 1987] to ensure the generation of 
coherent text- ELABORATE is one of the relations defined in RST 
that can connect parts of a text. 
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Figure 3: Plan skeleton for listing the main features of a LIST. 

symbols and sub-lists, and all three together- are also possible 
data element types, but are not illustrated because of a global 
constraint that the number of examples generated should not 
exceed four ([ Clark, 1971 ]) and the system attempts to present 
small amounts of information at a time (because of the user 
model). Each of the first three goals posts appropriate goals 
to retrieve examples and generate prompts. The first goal of 
generating a LIST of atoms can be collapsed with the previ­
ously satisfied goal of generating an example of a LIST with 
multiple elements in our case. 

In the fourth case, the user-model prevents the system from 
simply generating an example of a LIST which has other 
LISTs as its data elements. The system therefore posts two 
goals, one to provide background information (which presents 
three simple lists), and the other to build a list from these three 
lists. Heuristics in the system cause the system to generate text 
for this fourth case, rather than just a prompt. A skeleton of 
the second half of the complete text plan is shown in Figure 4. 

The resulting discourse structure is then processed to make 
final decisions, such as the choice oflexical items. Finally, the 
completed discourse tree is passed to a a system that converts 
the INFORM goals into an intermediate form that is accessible 
to Penman, which generates the desired English output. 

5 Conclusions and Future Work 

This paper has largely focused on the issues that need to be 
addressed for an effective presentation of information in the 
form of a description with accompanying examples. We have 
identified and outlined the various questions that need to be 
considered, and shown through the use of examples in the 
domain of LISP, how some of these may be computationally 
implemented. We have integrated a text generator with an 
example generator, and have shown how this framework can 
be used in the generation of coherent and effective descrip­
tions. Our work is based on an analysis of actual instructional 
materials and books and other studies on examples. It illus-
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trates the possibility of planning and generating examples to 
illustrate definitions and explanations, by considering both of 
them together during the planning operation. This method 
also takes into account various linguistic theories on the order 
of presentation of facts in the descriptions, and extends them 
to the presentation of accompanying examples. Our system 
recognizes the importance of information that is usually im­
plicit in the sequence order, and maintains information in the 
discourse tree that would allow it to generate prompting in­
formation. We have illustrated our framework with a brief 
trace of an actual description that uses examples. Our work 
expands on previous work that has been limited to the inclu­
sion of examples with text - without explicit regard for many 
of these factors such as sequence, content of each example 
and prompts. 

In future work, we shall investigate questions on issues such 
as when an example should be generated, and how a previous 
one may be easily re-used after appropriate modification. 
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Abstract 

This paper formalizes the notion of justified 
plans, which captures the intuition behind 
"good" plans. A justified plan is one that does 
not contain operators which are not necessary 
for achieving a goal. The importance of formal­
izing this notion is due to two reasons. First, 
it gives rise to methods for optimizing a given 
plan by removing "useless" operators. Second, 
several important concepts describing abstrac­
tion hierarchies are defined via justified plans. 
In the past, relatively few attempts have been 
made to formalize such a notion. This paper 
defines several different kinds of plan justifica­
tions, presents algorithms for finding a justi­
fied version of a plan, and shows that the task 
of finding the best possible justified version of 
a plan is NP-complete. Finally, it presents a 
greedy algorithm for finding a near-optimal jus­
tified plan in polynomial time. 

1 Introduction 

While searching for a plan that achieves a certain goal, 
we wish to find an efficient plan, which does not contain 
"useless" steps. Such a plan can be obtained from an 
inefficient plan by removing all operators that are not 
necessary for achieving the goal. For example, suppose 
that one wishes to prepare tea, by following the plan: 
"put a tea bag into a cup; boil water in a kettle; pour 
water into the cup". Suppose that later on one discovers 
that the kettle already contains hot water. Then the sec­
ond step of the plan, "boil water", is no longer necessary 
for achieving the goal. After removing the second step, 
the resulting plan "put a tea bag into a cup; pour water 
into the cup" contains fewer steps while still achieving 
the same goal. The operation of removing useless oper­
ators from a plan is known as justification. The main 
purpose of our paper is to formalize different ways of 
performing plan justifications. 

One application of plan justification is to augment a 
non-optimal planner such as STRIPS with an optimiza-
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tion routine. The resulting plan will then be more ef­
ficient to execute. Another application is reusing old 
plans. Suppose that we have found a plan for achieving 
goals G1, G2, and Ga. Later on we may use the same 
plan to achieve the goal G1 alone. In this case we wish 
to find a subset of the initial plan which is "relevant" 
to achieving G1 , by removing all unnecessary operators. 
Thus, justification is useful for adapting an old plan to 
new situations. 

The notion of justified plans is important not only for 
the purpose of optimizing plans, but also for abstract 
problem solving. Several impqrtant concepts describing 
the algorithms for generating abstraction hierarchies are 
defined via justified plans. For example, the theoretical 
concepts underlying Knoblock's planner ALPINE [Kno­
block, 1990] are based on the notions of justified plans. 
Other results that depend on this notion are presented 
in [Tenenberg and Yang, 1990], [Knoblock et al., 1991], 
and [Bacchus and Yang, 1991]. 

In spite of the importance of the concept of justified 
plans, relatively few efforts have been made to explore 
different kinds of justification. This paper begins to ad­
dress this problem by formalizing and extending the pre­
vious work. We first consider the notion of backward 
justified plans that researchers have used before, which 
guarantees that each operator in a plan establishes a 
literal necessary for achieving a goal. We then present 
a definition of well-justified plans. Informally, a plan 
is well-justified if none of its operators may be omitted 
without violating the correctness of the plan. We also 
compare well-justified and backward justified plans in 
terms of their qualities. Finally, we consider the task of 
finding the "best possible" justification of a given plan, 
a subplan of a given plan that cannot be further opti­
mized by removing any subset of its operators. We show 
that the task of finding such a subplan is NP-complete. 
To satisfy the practical need for efficient planning, we 
present a greedy algorithm that finds a near-optimal jus­
tification in polynomial time. 

We begin by presenting a formal description of the 
problem space language used for describing our results. 
Then we consider each type of justification in turn. 
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2 Problem Space Language 

A planning domain consists of a set of literals C and a 
set of operators O. Each operator a is defined by a set 
of precondition literals Pre(a) and effect literals Eff(a). 

A state of the world is a set of literals. Applying an 
operator a to some state produces a new state, where all 
literals from Eff( a) hold, and all literals that do not con­
flict with Eff(a) are left unchanged. For example, sup­
pose Pt and P2 are some atomic statements in a problem 
domain. The corresponding literals are Pl, P2, -,Pl, and 
-ip2. Let Eff (a) = { -ip1}. Then applying a to the state 
S = {pi, P2} produces the new state S' = {-ip1, P2}, 

A linearly ordered plan II = ( a:1, ... , a,.) is a se­
quence of operators, which can be applied to some ini­
tial state by executing each operator in order. A plan 
II= (a1, ... ,a,.) is legal relative to an initial state So 
if the preconditions of each operator are satisfied in the 
state in which the operator is applied, i.e. 'vi E [1 ... n], 
Pre(a,) ~ S,-1. A plan II solves a goal state Sg if II is 
legal and the goal is satisfied in the final state: Sg ~ S,.. 
A legal plan that solves the goal Sg is called correct rel­
ative to Sg. 

A partially ordered plan is a set of operators 
{a1, a2, ... , a,.} with a partial order -<n on it. This 
partial order represents the time-precedence relation be­
tween operators: a1 -<n a2 means that a 1 must be ex­
ecuted before a 2. A linearly ordered plan II is a lin­
earization of II if it contains all the operators of II and 
the order defined by -<n is not violated, that is for any 
a, and a;, if a, -<n a;, then a, occurs before a; in II. 
A partially ordered plan is legal if all its linearizations 
are legal, and it solves a goal Sg if all its linearizations 
do. Throughout the remainder of the paper all plans are 
partially ordered unless otherwise specified. 

A plan II' is called a subplan of II if it is obtained from 
II by eliminating one or more operators. The precedence 
relation between the remaining operators must be pre­
served. That is, II' is a subplan for II if and only if 

'va1, a2 E II' 
(1) a1, a2 E II and 
(2) a1 -<n• a2 ¢? a1 -<n a2. 

3 Backward Justification 

To formalize the notion of justified plans, we first gener­
alize the concept of establishment defined in [Knoblock 
et al., 1991] to partially ordered plans. 

Definition 1 (Establishment) Let II be a legal lin­
early ordered plan. Let a 1 and a 2 be two operators of 
the plan II, a1, a2 E II, l E Eff(a1), and l E Pre(a2), 
Then a 1 establishes l for a2 if 

1. a1-< a2, and 
2. \fa E II, if a1 -<a-< a2 then l, -,z (}. Eff(a) 

We say that a1 possibly establishes a literal l for a 2 in 
a partially ordered plan II if it establishes l for a 2 in at 
least one linearization of II. 

Intuitively this means that the precondition l of the op­
erator a2 holds before the execution of a2, and a 1 is the 
last operator that achieves it. 

Definition 2 (Backward justification) Let II be a 
legal plan that achieves a goal Sg. An operator a E II 
is called backward justified if 31 E Eff(a) such that a 
possibly establishes l either for the goal Sg or for another 
backward justified operator. 

We say that a plan II is backward justified, if all its 
operators are backward justified. This definition of jus­
tification was used in the planner ALPINE [Knoblock et 
al., 1991]. For linearly ordered plans it is equivalent to 
the definition stated in [Tenenberg and Yang, 1990]. For 
partially ordered plans, backward justification is weaker 
then the justification described in [Tenenberg and Yang, 
1990]. 

An operator is backward justified if it possibly estab­
lishes some literal necessary for achieving the goal. How­
ever, it may happen that l has already been established 
before a, and then a is useless in II. Thus backward jus­
tified operators are not "truly justified". We illustrate 
this point with the following example. 

Assume that one has a kettle with hot water and an 
empty cup, and wishes to have a cup of hot water. The 
following plan achieves the goal 

1. Pour water into the cup. 
2. Put the cup into a microwave. 

The second operator is backward-justified, because it 
makes the water hot, while no other operator after it 
achieves the same goal. However, this operator may still 
be removed, because the water was already hot before 
its execution. Thus, the second operator is not truly 
justified. 

Observe that if a is the last operator in some lineariza­
tion of a plan that does not establish any goal literals or 
operator preconditions, then it can be removed without 
violating correctness of the plan. After its removal, the 
plan remains correct. We could then apply the same 
procedure recursively, until no more operators can be 
removed without violating the correctness of the plan. 
This is the basis of the algorithm for finding a backward 
justified plan. 

The algorithm is shown in Table 3a. It first linearizes 
the plan II. Then it checks whether or not the last opera­
tor a in the plan establishes a goal. If a doesn't establish 
any goal, then it should be removed. Then the algorithm 
considers the rest of the operators, going from the end 
to the beginning of the plan. Each operator that does 
not establish any literal for the goal nor for any other 
operator is removed. Observe that when we consider an 
operator, all operators after this operator that are not 
backward justified are already removed. Thus, the op­
erator is not removed only if it establishes a literal for 
some backward justified operator, which means that the 
operator itself is backward justified. Since the algorithm 
proceeds from the end to the beginning of the plan, the 
resultant plan is called backward justified. 

To check the condition in line 5, we need to check 
for every a1 E II with the precondition l, if there is a 
linearization of the plan II where no operator between 
a and a1 establishes or removes the literal l. In other 
words, for each operator that achieves l or -,z, we have 



to check whether it is necessarily between o: and o:11. 
If. there is no such an operator, o: possibly establishes 
l for o:1 . If the order of operators is represented by a 
transitively closed graph, this condition may be checked 
in O{IITI) time for each 0:1, where IITI is the number 
of operators in the initial plan. Therefore the search 
of o:1 established by o: takes O{IITl2) time. The overall 
running time of the algorithm is O(E · IITl 2), where E = 
Z:o:eo IEff{o:)1, and IEff(o:)1 is the number ofliterals in 
the set of effects of o:. 

4 Well Justification 

Definition 3 (Well-justification) An operator O:i in 
a linearly ordered plan IT is called well-justified if 31 E 
Eff{ O:i) such that O:i establishes l for some operator or 
for the goal S 9 , and l does not hold before o:i, that is 
l(J.Si-1· 

An operator in a partially ordered plan is called well­
justified if it is well-justified in at least one linearization 
of the plan. 

A plan is well-justified if all its operators are well­
justified. Intuitively, an operator is well-justified if it 
establishes some literal which has not been established 
before, and which is necessary for executing some other 
operator. This means that if we remove a well-justified 
operator from a plan, the plan is no longer correct. We 
state this result as a lemma. 

Lemma 1 An operator is well-justified if and only if we 
cannot remove it from the plan without violating correct­
ness of the plan. 

The next theorem follows directly from the lemma. 

Theorem 1 A plan is well-justified if and only if there 
is no operator that can be removed without violating cor­
rectness of the plan. 

This theorem shows that well-justification captures 
the intuition behind "good" plans: a well-justified plan 
does not contain any operator that is not necessary for 
achieving the goal. Recall that if a plan IT is not back­
ward justified, then any operator that is not backward 
justified may be removed without violating the correct­
ness of IT. By Theorem 1 this means that IT is not 
well-justified either. Thus, every well-justified plan is 
backward justified. In other words, well-justification is 
stronger than backward justification. 

For a given legal plan, there might be several distinct 
well-justified subplans of the same plan, as the following 
example demonstrates. 

Suppose one has a kettle of cold water, and needs a 
cup of hot water. The following plan would lead to the 
desired result 

1. Boil water by putting the kettle onto a stove. 
2. Pour the water into the cup. 
3. Put the cup into a microwave. 

This plan is not well-justified, because either the first 
or third dperator may be skipped without violating the 

1 An operator /3 is neceuarily between a and a1, if a ~ /3 
and /3 ~ a1, 

correctness of the plan. Thus, the plan has two well­
justified subplans: one of them consists of the first two 
operators, and the other consists of the last two. 

The simple algorithm that finds a well-justified sub­
plan of a given plan is shown in Table 3b. The run­
ning time of the algorithm that checks correctness of a 
given plan is O(P · IITl 2), where P = Z:o:eo IPre(o:)I, 
and IPre(o:)I is the number of literals in the set of pre­
conditions of o:. Therefore the overall running time of 
the algorithm is O(P · IITl 4

). 

5 Perfect Justification 

While well-justified plans cannot contain unnecessary 
operators, they still may contain unnecessary groups of 
operators. This means that while no single operator may 
be eliminated from the plan, several operators may be 
eliminated together. In particular, a linearly ordered 
well-justified plan IT = (0:1, 0:2, ... , 0:11 ) may contain a 
cycle, which means that the same state is achieved twice 
during the plan execution. Formally, a sequence of oper­
ators o:i+1, o:i+2, ... , o:; in IT is called a cycle if Si 2 S;. 
Observe that we may eliminate a cycle from IT without 
violating correctness of IT. For example, consider the 
following plan of boiling water: 

1. Fill a cup with water. 
2. Empty the cup. 
3. Fill the cup with water again. 
4. Put the cup into a microwave. 

This plan is well-justified: we cannot skip operator 2, be­
cause then we could not fill the cup again; and we cannot 
skip operator 3, because the cup has to be full when we 
put it into a microwave. However, we may skip opera­
tors 2 and 3 together. To formalize this observation, we 
introduce the notion of perfect justification. 

Intuitively, a plan is perfectly justified if no subset of 
its operators may be removed from the plan. In other 
words, this is the "best possible" justification. 

Definition 4 (Perfect justification) A correct plan 
IT is called perfectly justified w.r.t. a goal S9 if it does 
not have any legal proper subplan that achieves the goal. 

Just by definition perfect justification is stronger than 
all justifications discussed above. Unfortunately, a per­
fect justification of a given plan cannot be found in poly­
nomial time. In this paper we show that the task to find 
a perfect justification of a given plan is NP-hard, even for 
linearly ordered plans. Moreover, it is NP-hard to check 
whether a linearly ordered plan is perfectly justified. 

Theorem 2 Suppose we are given a linearly ordered 
plan IT with an initial state So and a goal S9 , and we 
wish to determine whether this plan is perfectly justified. 
This problem is NP-complete. 

Sketch of the proof. The problem is trivially NP, 
since, given a subplan of IT, we may check whether this 
subplan is legal and achieves the goal in polynomial time. 
To show that the problem is NP-hard, we reduce 3-clause 
satisfiability problem to our problem. 

Suppose we are given a 3-clause conjunctive normal 
form with n distinct variables Vi, V2 , ••• , V11 , and k dis-
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operators preconds effects 

a, (for each i E (1 ... n]) - ,-r -'V, ' -i'l), 
/3u (for each V. E C;) 'Vi Cj, P,i --
'YH (for each -iV. EC;) 11; c;,pu 
6 -,11;- 1 -,11; 1 • , , , -i11: 11;-, 11;, ... , 11: and all -ip,; 's 

Table 1: Operators in the proof of NP-completeness 

tinct clauses Ci, C2, ... , C1r.. For each variable V. we in­
troduce two predicates, vt and 11;. For each clause C; 
we introduce a corresponding predicate c;. Finally, for 
each pair (V., C;), where V. is a variable in the clause 
C;, we introduce a predicate Pii. We define a problem 
domain that contains all literals defined by the intro­
duced predicates. (Each predicate p gives rise to the two 
literals: p and -ip.) We define operators in our problem 
domain as shown in Table 1. 
We define an initial state So as follows 

o (Vi E (1 ... n]) 11; = True and vt = False 
o (Vj E (1. . . kl) c; = False 
o for all predicates p,; in our domain, p,; = True 

and a goal S9 as follows: 
o (Vj E (1 ... kl) c; = True 
o for all predicates Pii in our domain, p,; = True 

Now we present a linearly ordered plan with the initial 
state So: 

II=(a1, a2, ... , an, 6, all /3,;'s, all 1,;'s) 

where the order of /3,; 's and 'Yii 's is arbitrary. It is 
straightforward to verify that the plan II is legal and 
solves the goal S9 • Further, one may show that if II 
has a legal proper subplan that achieves the goal, this 
subplan cannot contain 6, for if some of a-operators is 
removed from II, the preconditions of 6 are not satisfied, 
and if one or more {3's or 1's are removed, 6 interferes 
with achieving the goal. Thus, if II has a legal proper 
subplan, this subplan must have the form 

II'=( a1c1 I a1c2 I • • • I a,.,m I some /3,; 's, some 'Yij 's) 

It may be shown that the following two statements are 
equivalent: 

- -, 
• II has a legal subplan of the form II that achieves 

the goal 

e v,.,1 = v,.,2 = • • • = v,.,m = True, and all other vari­
ables V1cm+i = . . . = V1c,. = False is a satisfying 
assignment of the conjunctive normal form 

Thus, the conjunctive normal form has a satisfying as­
signment if and only if the plan II has a legal proper 
subplan that achieves the goal, in other words, if and 
only if II is not perfectly justified. D 

Corollary 1 The problem to find a perfectly justified 
subplan of a given plan is NP-complete. 

6 Greedy justification 

While the task of finding the best possible justified plan 
is NP-hard, one can design a greedy algorithm that finds 
an "almost" perfect justification. To check "usefulness" 

of some operator a in a plan II, the algorithm proceeds 
as follows. First, it removes an operator a from the plan. 
After a has been removed, some operators of II may be­
come illegal, which means that now their preconditions 
are not satisfied before their execution. The algorithm 
removes every operator which is the first illegal operator 
in at least one linearization of II . Then the algorithm ex­
amines the resulting plan, finds the remaining illegal op­
erators, and again removes all earliest illegal operators. 
The algorithm repeats this step until the plan becomes 
legal. If this plan still solves the goal, then the initially 
removed operator a was not useful, and we say that a is 
not greedily justified. 

The description of the algorithm is presented in Ta­
ble 3c. The set of illegal operators in line 3 may be 
found in O(P · III l2) time. The same time is required 
for correctness checking in line 6. Finally, computing 
the set Earliest..Illegals in line 4 requires O (III 12) time, 
if the order of operators is represented by a transitively 
closed graph. The overall running time of the algorithm 
is O(P · III l3). 

As an example, consider again the water-boiling plan: 

1. Fill a cup with water. 
2. Empty the cup. 
3. Fill the cup with water again. 
4. Put the cup into a microwave. 

Suppose we remove operator 2. Now operator 3 is illegal, 
because we cannot fill a cup which is already full, and it 
should be removed from the plan. The resulting plan is: 

1. Fill a cup with water. 
4. Put the cup into a microwave. 

which is legal and solves the goal. Thus, operator 2 in 
the initial plan is not greedily justified. 

If an operator a in a plan is not well-justified, and 
we use the algorithm Greedy_Justify_Checking to check 
the usefulness of a, then a will be removed at the first 
step of execution. The resultant plan is legal and solves 
the goal. Thus, if an operator is not well-justified, it 
is not greedily justified either, and therefore greedy jus­
tification is stronger than well-justification. Also, the 
algorithm is able to detect and remove cycles: if a lin­
early ordered plan contains a cycle a,+i, ai+2, ... , a;, 
then, while testing usefulness of a,+i, the algorithm will 
remove a,+1, then ai+2, then ai+3 , and so on till a;, 
and then it receives a legal subplan that solves the goal. 

A plan is greedily justified if all its operators are greed­
ily justified. It follows from the above discussion that 
such a plan is always well-justified and does not contain 
cycles. An algorithm that finds a greedily justified sub­
plan of a plan II may be briefly described as follows 



kind (?f subplan running time 
perfectly justified NP-complete stronger justification 
greedily justified 0 p · III l0 i 
well-justified 0 p · JIIJ4 l 
backward justified 0 E · IIIl2 weaker justification 

Table 2: Kinds of justified subplans and running time to find them 

1. for each operator of the plan II 
la. use Greedy_Justify_Checking to check 

if the operator is greedily justified 
lb. if it is not greedily justified, we receive some cor­

rect subplan II' of II; then we recursively call the 
algorithm for II', to find its greedy justification 

2. if all operators are greedily justified, then our plan 
is greedily justified, and so a greedily justified 
subplan of the initial plan is found 

It may be shown that Greedy_Justify_Checking is called 
at most 11112 times, and thus the running time of the 
algorithm is O(P · 1111 5

). 

The running time may be considerably improved in 
the case of a linearly ordered plan. The algorithm for 
this case is shown in Table 3d. To determine whether 
some operator o: is greedily justified, the algorithm re­
moves this operator and executes the remaining opera­
tors in order. If an illegal operator is encountered, the 
algorithm removes this operator and continues to exe­
cute the plan. Thus, it removes all illegal operators and 
receives the final state that the plan achieves with the 
illegal operators removed. If the goal is not achieved, 
then the initially removed operator o: is greedily justi­
fied. On the other hand, if the new plan achieves the 
goal, than it is an optimized version of the initial plan. 
Then we apply our algorithm recursively to check if this 
new, shorter plan is greedily justified. The running time 
of the algorithm is O((P + E)III l2), providing the prob­
lem domain contains the finite number of literal classes. 

7 Conclusion and Open Problems 

This paper formalizes the intuition behind "good" par­
tially and linearly ordered plans. Table 2 presents differ­
ent kinds of justification and running time necessary to 
find justified subplan of a plan for each kind of justifica­
tion. Running time is presented for algorithms dealing 
with partially ordered sets. Recall that the algorithm to 
find a greedily justified version of a linearlr_ ordered plan 
is much faster; it takes only O((P + E) · 11112 ) time. 

The table may be viewed as a spectrum of justified 
plans. On one end of the spectrum plans are backward 
justified. A backward justified subplan of a given plan is 
not hard to find, but it may contain some "useless" oper­
ators. The other end of the spectrum contains perfectly 
justified plans. They cannot have any useless operators, 
but it is NP-hard to find a perfectly justified subplan of 
a given plan. 

The results of this paper may be used for creating ab­
straction hierarchies. According to the definition of or-

dered abstraction hierarchies presented in [Knoblock et 
al., 1991], different kinds of justification give rise to dif­
ferent ordered hierarchies. More restrictive kinds of jus­
tifications give rise to less restrictive conditions for build­
ing an abstraction hierarchy, resulting in finer-grained 
hierarchies. So, using the definitions of well-justified and 
greedily justified plans, we may build finer ordered ab­
straction hierarchies than those generated by Knoblock's 
ALPINE. The theoretical results and algorithms that al­
low us to build such finer hierarchies are presented in 
[Fink, 1992]. 
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Table 3: ALGORIHMS 

Backward_J ustification 
1. let II be some linearization of II; 
2. for a := (last operator of II) downto (first operator of II) do 

begin 
3. Justified := False; 
4. for each l E EJJ(a) do 
5. if (3a1 E II sth a establishes l for a 1) or (a establishes l for S9 ) 

6. then f * a is backward justified *f Justified := True; 
7. if Justified=False f * a is not backward justified *f 
8. then remove a from the plan II; 

end 

(a) Finding the backward justified subplan of a given plan. 

WellJ ustification 
1. repeat 
2. for each a E II do 
3. if II without a is legal and achieves the goal 
4. then remove a from II 
5. until no operator is removed during the last execution of the loop 

(b) Finding a well-justified subplan of a given plan. 

Greedy_Justify_Checking(II,a) 
1. remove a from II 
2. repeat 
3. fllegals := "the set of illegal operators of II"; 
4. EarliestJllegals := { a' E fllegals I ('v'a1 E II) a1 ~ a' => a1 ft nlegals} 

/ * That is EarliestJllegals is the set of earliest illegal operators * / ; 
5. remove all operators of the set EarliestJllegals from II; 
6. until II does not contain illegal operators; 
7. if II still achieves the goal 
8. then return("II is a legal subplan of the initial plan") 
9. else return("a in the initial plan is greedily justified") 

( c) Checking if the operator a in the plan II is greedily justified. 

Linear_WellJustification(II, So, S9 ) 

1. for each a E II do 
b~in -

2. II1 := II with a removed; 
3. S := So; 
4. for a1:= (first operator of II1) to (last operator of II1) do 
5. if Pre(a1) ~ S f* a1 is legal *f 
6. then f * execute a1 *f S := state received by applying a 1 to S 
7. else remove a1 from II1; 
8. if S9 ~ S f * II1 achieves the goal S9 *f 
9. then return(Linear_Wel1Justification(II1, So, S9 )) 

end; 
10. return(II) 

{d) Finding a greedily justified subplan of a linearly ordered plan. 
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Abstract 
This paper describes TWEAK+, a STRIPS-like 
formalism for the description of operators and 
macros constructed by chaining operators. In 

TWEAK+, each operator or macro is described by 
four lists of positive or negative literals: a 
precondition, a DEL list, an ADD list and a 
postcondition. We show how the description of 
macros can be efficiently computed, in certain 
situations, using bit vector equations (in linear 
time and space with respect to the number of 
operators contained in the macro). These situations 
are characterized by deterministic domains; if the 
domain also uses an axiomatic theory, the 
equivalent reduced operator descriptions must not 
contain disjunctions. For the other situations, the 
bit vector equations cannot be used, and heuristical 
methods to compute sufficient precondition and 
postcondition for macros are proposed. 

1 Introduction 

As [Fikes and Nilsson 1971] pointed out in their pioneering 
work, providing a priori a problem solver with the complete 
set of specialized operators for solving new problems is not 
realistic (although desirable). It is more appropriate that the 
problem solver learns new operators by "chaining together 
existing operators into more complex ones" [Fikes and 
Nilsson 1971]. Building macros also leads to more efficient 
problem solving by storing and reusing "building-blocks" 
plans. For instance, in [Pelletier 1992], macros in the form 
of design rules are learned and used to enhance a software 
tool that assists designers when constructing entity­
relationship models. 

This paper addresses the problem of constructing macros 
by chaining operators. Our focus is on the issues of efficient 
representation of macros (e.g., for solving more complex 
problems or or building higher level macros), rather than on 
learning macros. In other words, it is assumed that the 
sequence of operators is provided by some expert, or by 
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some problem solver, and the goal is to determine its 
description (its precondition and its effect). In particular, it 
must be determined if there exists an initial condition under 
which the macro is executable. 

To represent the basic operators and the macros created, 
the proposed approach uses a variation of the TWEAK 
formalism [Chapman 1987], a descendant of the STRIPS 
formalism [Fikes and Nilsson 1971]. 

In STRIPS, an operator is described by a precondition 
defining its condition of applicability (i.e., the minimal 
condition that must hold in the initiating state prior to 
executing the operator), an ADD list specifying the set of 
formulas that are true in the resulting state, and a DEL list 
specifying the set of formulas that may no longer be true in 
the resulting state (note that the formulas appearing in the 
DEL list are not necessarily false in the resulting model; 
their truth value is unknown). Typically, the precondition in 
STRIPS is an arbitrary formula, the DEL and ADD lists are 
restricted to a predetermined set of "allowable formulas", and 
no operators have an effect that is not described inside the 
DEL/ADD lists (the STRIPS assumption). This guarantees 
the soundness of the representation [Georgeff 1987]. 

In TWEAK, each operator is represented by a 
precondition (defining, as for STRIPS, its condition of 
applicability) and a postcondition (defining the strongest 
condition that is true in the state resulting from the operator 
application). Both the precondition and the postcondition are 
assumed to be finite sets of positive and/or negative literals. 
Any TWEAK representation can be converted into an 
equivalent STRIPS representation: the precondition of the 
operator remains the same, the positive literals of the 
postcondition become the elements of the ADD list, and the 
negative literals of the postcondition (without their negation 
connective) become the elements of the DEL list. As in 
STRIPS, the TWEAK representation assumes that the 
domain operators can be described without conditional 
actions, derived side effects, or dependencies of effects on the 
initiating state. 

Despite the representation limitations it imposes, the 
TWEAK formalism is used by a number of problem solvers, 
particularly planners, mainly because it neatly bypasses the 
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frame problem [Genesereth and Nilsson 1987) (i.e., the need 
to specify that everything not affected by an operator 
remains as it was) and because it leads to efficient planning 
([Chapman 1987; Kambhampati and Hendler 1990)). . 

Other formalisms have been proposed for representing 
macros. For instance, [Korf 1985) and [Tadepalli 1991) use 
macro tables as a compact and efficient representation to 
store and use macros. However, the representation requires 
that the domain be serially decomposable (i.e., all domain 
features can be ordered such that the effect of any operator on 
a feature value is a function of the values of that feature and 
all the features that precede it). 

In [Fikes et al. 1972), macros are represented with 
triangle tables where the ith row corresponds essentially to 
the state resulting from the application in sequence of the 
first i operators of the macro. The operators used to build 
macros are represented in the STRIPS formalism; in 
particular, they can have arbitrary prec_onditions. i:owe.ver, 
elements of the triangle tables are restncted to conJunctions 
of literals (e.g., literals that constitute the "support" of the 
precondition of an operator), and so is the precondition of 
macros. So, macros are in fact represented via a TWEAK­
like formalism. Triangle tables provide an efficient way to 
trace the execution of macros. However, they do not give 
complete description of the objects they represent: althou?h 
they provide the precondition of a macro o~rat?r Op, !ts 
DEL list is not represented, and only approximations of lts 
ADD list and its postcondition are provided (e.g., the union 
of cells of the last row gives a set S such that 
ADD(Op) \;;; S ~ postcond(Op)). 

More recently, [Prieditis 1990) describes a system that 
discovers iterative macro-operators. The learned operators are 
represented using a TWEAK-like formalism with recursive 
equations for the precondition, and for the DEL and ADD 
lists. The repeated sub-sequences are provided by the user, 
and the explanation-based generalization (EBG) technique 
[Mitchell et al. 1986) is used to identify and generalize their 

· description. Then, the description of the macro-operator that 
repeats the sub-sequences is computed. In order to compute 
the description of the macro, constraints are imposed on the 
way the repeated sub-sequences interact (e.g., the DEL list of 
a sub-sequence shares common elements only with the ADD 
list of the very next sub-sequence). 

The formalism we propose is described in Section 2, 
and an efficient solution is given for computing the 
description of macros built by chaining operators described 
in this formalism. In Section 3, the method is illustrated 
with an example from the blocks world. Section 4 proposes 
extensions to this formalism, and presents difficulties of 
deriving efficient solutions for these extensions. Section 5 
presents our conclusion. 

2 Computing Macros in TWEAK+ 

In this section, we present the formalism used and derive 
equations for computing the description of a macro according 
to this formalism, given the description of the operators that 
the macro contains. 

2.1 The TWEAK+ Formalism 

The proposed formalism (called TWEAK+) consists of 
augmenting the 1WEAK representation with DEL and ADD 
lists, and of allowing these lists to contain negative li~rals: 

The traditional STRIPS use of DEL and ADD hsts is 
generalized here. In the "pure" use of DEUADD lists, it is 
not possible to specify that a given literal becomes false 
under the application of some operator. Indeed, states, DEL 
and ADD lists contain only positive literals, and the 
presence of a (necessarily positive) literals in the DEL li~t 
indicates only that its negation may become true. In this 
context, a simplified version of the closed-world assumption 
[Genesereth and Nilsson 1987] is used to infer the tr~th 
value of such negative literals: only the (necessarily 
positive) literals present in the description of the state are 
assumed to be true, all the other (including all negative 
literals) are assumed to be false. 

In the formalism proposed here, negative literals are 
allowed for the description of the states as well as for the 
DEL and ADD lists, with the usual interpretation of 
DEL/ADD lists: the presence of a literal (negative or 
positive) in the DEL list indicates that its truth val~e is 
unknown in the resulting state, and the presence of a hteral 
(negative or positive) in the ADD list in<?cates that i~ truth 
value is true in the resulting state. It is thus possible to 
indicate that a literal becomes false in the resulting state by 
inserting its negation inside the ADD list. Consequently, 
the use of the closed-world assumption becomes 
unnecessary. 

Some other considerations could be taken into account, 
such as the presence of the same literal in both the DEL and 
ADD lists of a given operator, or the addition of a partial~y 
instantiated literal to a state. These problems are treated m 
[Pelletier 1992). 

2.2 Bit Vector Equations 

We now derive the equations for computing the description 
of macros. We are interested in equations involving only set 
operators (union, difference) because of the obvious 
efficiency of implementation of these operators: sets can be 
represented as bit vectors for efficient storage and use. These 
equations are thus called "bit vector equations". 

We derive the equations for the propositional case. For 
the case where literals are predicates, two approaches can be 
taken: using generalized equations with a different 
interpretation for the union and the difference of sets, or 
using a two-step method (as in the construction of triangle 
tables in [Fikes et al. 1972)): (1) transfer and solve the 
problem into the propositional case by consi~ering onl~ the 
full instantiation of an operator once apphed to a given 
state, and (2) generalize the solution found in (1~ .. 

The equation computing the postcondition of an 
operator or a macro operator Op, given its pr~on_dition 
precond(Op) and its lists DEL(Op) and ~D(Op), is ~ectly 
derived from the way DEL and ADD hsts are apphed on 
states: 
(1) postcond(Op) = 

(precond(Op)- DEL(Op)) u ADD(Op). 



Now, we will concentrate on deriving the equations 
giving the precondition, the DEL list and the ADD list of a 
macro Op = (Opt , ... ,Opn) (the operator Opi is executed in 
the state resulting in the execution of the operator Opi-t). 
Because operators of a macro are applied in sequence, it is 
sufficient to consider macros of length 2. So, assume that 
Op = (Opt ,Op2) is given, along with the respective 
description of Opt and Op2: (P1,D1,A1,Q1) and 
(P2,D2,A2,Q2) (for the precondition, DEL list, ADD list 
and postcondition). The description cP1,2,D1,2,A1,2,Q1,2) 
of the macro Op can be obtained by following equations: 

(2) P1 ,2 = P1 u (P2 - Q1) 
Explanation: to find the precondition of the macro, 
add to the precondition of Op1 (i.e., P1) what is 
required by the precondition of Op2 but is not 
provided by the execution of Op1 (i.e., P2 - Q1). 

(3) A 1, 2 = [ ( A 1 - D 2) u A 2] - p 1 , 2 
Explanation: this is derived from the order of 
application: A1,2 contains everything that is added 
by Op1 (except what is later on deleted by D2), 
plus what is added by Op2. From that, do not 
consider, as literals to add, the literals that were 
already true in the precondition of the strategy 
(i.e., P1,2). 

(4) D1 ,2 = [[(D1 - A1) u D2] - A2] - -,Pl,2 
(where the negation of a set is given by 

(5) -, {11, 12,···• In} = (-,11, -,12,···• -,1n}) 
Explanation: again, this is derived strictly from 
the order of application: D1,2 contains everything 
that is deleted by Op1 (except what is later on 
added by A1), plus what is deleted by Op2; from 
that do not consider what is finally added by A2, 
and from that, do not consider, as literals to delete, 
the literals that were already false in the 
precondition of the strategy. (i.e., -iP1,2). 

The equation (2) for P1,2 can be simplified as follows: 

P1 ,2 = P1 u (P2 - Q1) 

= P1 u (P2 - [(P1 - D1) u Ai]) 
using (1): Q 1 = (P1 D1) u A1 

= P1 u (P2 - [A1 u (P1 - D1)]) 
using A u B = B u A 

= P 1 u [(P2 - A1) - (P1 - D1)]) 
using A - (B u C) = (A - B) - C 

= [P 1 u (P2 - A1)] 
- [((P2 - A 1) n (P1 - D 1)) - P 1] 
using 

A u (B - C) = [A u B] - [(B n C) - A] 

(6) = P1 u (P2 - A1) . 
using 
((P2 - At) n (P1 - D1)) - P1 = ( }, 

.because 

(P2 - A1) n (P1 - Dt) !:: (P1 - D1) !:: P1 
The equation (4) for D1,2 can be simplified as follows: 

= [(D1 u D2) - A2] - -,Pl •2 
by assumption, D1 n At = ( }, 
so D1 - A1 = D1 

(J) = (D 1 u D2) - (A2 u -,P 1,2) 
using (A - B) - C = A - (B u C). 

Finally, the value of Q1,2 can be determined using (1) once 
P1,2, D1,2 and A1,2 are known. 
Note that although a description can be "computed" for a 
macro, the macro is not necessarily executable. This is the 
case, for instance, when Op1 removes literals from P1,2 that 
are in P2. To guarantee the executability of the macro, the 
following verifications must be made: 

(a) none of P1,2, A 1,2, D 1,2 and Q1,2 contains 
both a literal and its negation 

(b) P1 !:: P1,2 (this is always true, according to (6)) 

(c) P2 !:: (P 1,2 - D 1) u At 
(i.e., the precondition of Op2 is true after the 

execution of Opl under P1,V· 

3 Computing a Macro Description: 
an Example 

This section illustrates the equations derived in the previous 
section with an example drawn from the blocks world ([Rich 
1983], p.255), where predicates with variables have been 
replaced with propositions. Three primitive operators are 
presented: 

Op1 = pick_ up_ A, 
Op2 = put_down_ A, 
Op3 = stack_ A_ B, 

and are then used to form two macros of length two: M 1 = 
(Op1,0pi) and M2 = (Op1,0p3). 

For each of the three operators, the precondition and 
DEL/ADD lists are given, and the postcondition is 
computed from the latter: 

Op1 = pick_up_ A 
P1 = ( clear_A, on_table_A, arm_empty} 
D1 = ( on_table_A, arm_empty} 
A1 = (holding_A} 

Q 1 = (P 1 - D 1) u A 1 
= (clear_A, holding_A} 
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Op2 = put_down_A 
P2 = {holding_A} 
D2 = {holding_A} 
A2 = { on_table_A, arm_empty} 
Q2 = (P2 - D2) u A2 

= { on_table_A, arm_empty} 

Op3 = stack_A_B 
P3 = {holding_A, clear_B} 
D3 = { holding_A, clear_B} 
A3 = {on_A_B, arm_empty} 
Q3 = (P3 - D3) u A3 

= { on_A_B, arm_empty}. 
Using equation (6), we have: 

P1,2 = P 1 u (Pz - A 1) 
= { clear_A, on_table_A, arm_empty} 

and using (7) and (3) , respectively: 
D1,2 = (D1 u Dz) - (Az u -.P1,2) 

= {on_table_A, arm_empty, holding_A} 
- { on_table_A, arm_empty} 

= { holding_A} 
A1,2 = [(A1 - Dz) u Az] - P1 ,2 

= [ { } u { on_table_A, arm_empty}] 
- { clear_A, on_table_A, arm_empty} 

= { } . 
Here, we expected to obtain empty lists because the macro 
leaves the model in its initial state. The question is then: 
why the literal "holding_A" is present in D1,2? 
"We" know that in the blocks world, if "arm_empty" is true, 
then "holding_A" is false. So, "we" can conclude that 
"holding_A" is always false before the execution of Op1 or 
of (OP1,0P2), so it does not have to be deleted (i.e., to be 
present in D1,2), 
"We" know this by the implicit use of the constraint 

-,holding_A <= arm_empty. 
The equations developed previously do not take into account 
such constraints and axioms, and thus are not expected to 
produce correct results when they are present in the theory. 
However, we can rewrite the semantics of previous tasks by 
compiling this axiomatic knowledge into preconditions, 
DEL/ADD lists and postconditions, thus removing the 
implicit reference, and by doing so, ensuring the coherence 
of the state 1. In the worst case, lists are two times longer, 
due to the explicit handling of the closed-world assumption: 

1 There are two ways to obtain properties of the states 
which take into account knowledge represented by the 
axioms. One way is to infer properties using axioms in the 
inference process. The other way is to compile the axiomatic 
knowledge into DEL and ADD lists as described above (and 
presented in more details in Section 4). 

Op1 = pick_up_A 
P1 = (clear_A, on_table_A, arm_empty, -.holding_A} 
D1 = {on_table_A, arm_empty, -,holding_A} 
A1 = {-,on_table_A, -.arm_empty, holding_A} 

Q 1 = (P 1 - D 1) u A 1 
= { clear_A,-,on_table_A,-,arm_empty ,holding_A} 

Op2 = put_down_A 
P2 = {holding_A, -,arm_empty, -,on_table_A} 
Dz= {holding_A, -,arm_empty, -,on_table_A } 
A2 = {-,holding_A,arm_empty,on_table_A} 

Q2 = (P2 - D2) u A2 
= {-.holding_A, arm_empty, on_table_A} 

Op3 = stack_A_B 
P3 = {holding_A, clear_B, -,arm_empty} 
D3 = {holding_A, clear_B, -,arm_empty} 
A3 = {-,holding_A, -,clear_B, arm_empty, on_A_B } 

Q3 = (P3 - D3) u A3 
= {-,holding_A, -,clear_B, arm_empty, on_A_B } 

With this new representation, we obtain for M1 = 
(Op1 ,0pz): 

P1,2 = P1 u (P2 - A1) 
= { clear_A, on_table_A, 

arm_empty, -,holding_A} u { } 
= { clear_A, on_table_A, 

arm_empty, -,holding_A} 
D1,2 = (D1 u Dz) - (Az u -,Pl ,2) 

= {on_table_A, arm_empty, -,holding_A, 
holding_A, -,arm_empty, -,on_table_A} 

- {-,holding_A, arm_empty, on_table_A, 
-,clear_A, -,on_table_A, -,arm_empty, 
holding_A } 

= { } 
A1,2 = [(A1 - Dz) u A2] - P1 •2 

= [({-.on_table_A, -,arm_empty, holding_A} 
- {holding_A, -,arm_empty, 

-,on_table_A}) u A2] - P1 ,2 
= [ { } 

u {-,holding_A, arm_empty, on_table_A)] 
- P1,2 

= {-.holding_A, arm_empty, on_table_A} 
- { clear_A, on_table_A, 

arm_empty, -.holding_A } 
= { } 

Q1 ,2 = (P1,2 - D1,2J u A1 •2 = P1,2· 
Similarly, omitting detailed calculations, we obtain for M2 

= (Op1,0P3): 
P1,3 = {clear_A, on_table_A, 

arm_empty, -.holding_A, clear_B } 
D1,3 = { on_table_A, clear_B} 
A1,3 = {-,on_table_A, -,clear_B, on_A_B } 
Q1,3 = {clear_A, arm_empty, -,holding_A, 

-.on_table_A,-,clear_B, on_A_B }. 



4 Extending the TWEAK+ Formalism 

The main advantage of TWEAK+, as well as in STRIPS, is 
the STRIPS assumption avoiding the specification of frame 
axioms, i.e., the requirement that the DEL and ADD lists of 
an operator specify everything about the initiating state that 
is altered by the execution of the operator. For domains 
more complex than the one in Section 3, such an 
enumeration can be tedious, or even impossible. For 
instance, if B is a consequence of A, then every operator 
having A in its ADD list must also have B in it 

One way to overcome the problem ([Fahlman 1974; 
Fikes 1975]) consists of separating the literals into two (not 
necessarily disjoint) classes, the primitive (or primary) and 
the inferential (or secondary) literals. Only the effects on the 
primitive literals are specified inside the DEL/ADD lists, 
and an axiomatic theory describing how the inferential 
literals are defined in terms of primitive ones is provided. As 
[Waldinger 1977) pointed out, doing so makes easier the 
description of operators, allows more efficient updates of the 
states, and makes possible the introduction of new 
relationships between literals without modifying the 
operators' descriptions. 

This is the kind of extensions we will consider here. As 
we will see, having axiomatic theory makes invalid the bit 
vectors equations in certain situations. We will characterize 
these situations and propose methods (although less efficient 
that the bit vector equations) to compute a description for a 
macro. 

Even if an axiomatic theory is used, it may be 
impossible to satisfy the STRIPS assumption, because an 
operator may have effects that cannot be fully determined 
from its precondition and its DEL/ADD lists. We call such 
an operator non-deterministic; in the present context, we 
consider two related sources of non-determinism: 

(1) the operator has effects not fully described by 
its definition (called side effects); 

(2) the operator can be executed in several ways 
(i.e., it can be expanded into more than one 
sequence (called expansion or linearization) of 
primitive operators). 

Typically, the first source of non-determinism comes 
from the impossibility of providing all the effects via 
DEL/ADD lists, due to the non-determinism of the domain. 

The second source of non-determinism arises when a 
macro is allowed to contain not only operators (and possibly 
other macros) but also goals, and when more than one macro 
can be executed to achieve one of these goals. In such a case, 
the macro has more than one expansion and the description 
(i.e., the precondition and the DEL/ADD lists) may differ for 
each expansion, thus making the macro non-deterministic. 

To take into account these two types of non­
determinism in the description of operators, and to guarantee 
that the description is "conservative" (in the sense that all 
that is specified happens), the following definitions are 
proposed: 

wk-precond(Op) = 
the weakest condition guaranteeing the complete 
execution of Op 

st-postcond(Op) = 
the strongest condition obtained for all 
expansions of Op when executed under 
precond(Op ). 

In this context, "to be conservative" means to prefer 
having an eventually too stx:ong precondition or too weak 
postcondition rather than having an incorrect operator 
description. One can look at data-flow analysis as an 
analogy, where useful properties of a sequence of statements 
are computed [Aho et al. 1986), and where to be 
"conservative" means to prefer missing optimization 
opportunities to guarantee no changes in what the program 
computes. 

Now, consider that TWEAK+ is augmented with an 
axiomatic theory where axioms are implication formulas in 
the disjunctive normal form "c <= p1 v P2 v ... v Pn"· where 
Pi's are products (conjunctions) of literals, c is a consequent 
literal, and where all literals are separated into two disjoint 
classes: primitive literals (those appearing only in the 
antecedent part of axioms) and inferential literals (those 
appearing in the consequent part of at least one axiom). 

Using a reduction procedure (as the one described in 
[Ginsberg 1988)), such an axiomatic theory can be reduced 
to a logically equivalent theory in disjunctive normal form 
where only primitive literals appear in the antecedent part. 
Then, each inferential literal appearing in the description of 
an operator can be replaced with its "reduction" containing 
only primitive literals. At this point, the axiomatic theory 
can be eliminated, and what remains is a set of operator 
descriptions logically equivalent to the initial set of 
descriptions, and containing only primitive literals. 

There are two disjoint possibilities: (1 ) the new 
operator descriptions contain only conjunctions, (2) at least 
one operator description contains a disjunction. 

In the first case, the new operator descriptions conform 
with the TWEAK+ formalism, and the bit vector equations 
can be applied. In the second case, at least one of the new 
operators cannot be represented in TWEAK+ because the 
latter formalism does not support disjunctions, and the 
equations cannot be used. 

The disjunction may originate from two sources: (1) the 
disjunction was present in the axiomatic theory and was 
transferred into the operator description, (2) the disjunction 
comes from the negation, in the operator description, of a 
inferential literal whose reduction contains a conjunction. As 
these two sources are independent, restrictions on both the 
theory and the operator descriptions must be made to ensure 
that no disjunctions will be present in the reduced operator 
descriptions. These restrictions are the following: 

(1) disjunctions are not allowed in the axiomatic 
theory 

(2) negations of inferential literals are not allowed 
inside operator descriptions. 

With these restrictions, the descriptions of macros can 
be determined using the bit vector equations presented in 
Section 2. Unfortunately, these constraints are too limiting 
for most of the interesting domains, and alternative 
approaches must be taken to derive the description of 
macros. For instance, the following approach can be taken 
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to handle disjunctions (or any arbitrary formulas for the 
preconditions): 

1. identify an initial condition C where a macro Op 
is executable; 

2. use EBG to identify a precondition C' = wk­
precond(Op) of the macro, detennined by the 
condition C specified in 1; 

3. obtain the postcondition C" = st-postcond(Op) of 
the macro for C by executing the macro on C' 

4. do 1, 2, 3 for several examples with the same 
macro on different initial conditions C; obtain 
several general macro descriptions that differ 
only by their conditions C' and C" (not their 
opermors). 

As an illustration, given the operator descriptions 

precond(Op1) = {p} 
precond(Opz) = { q,r} 

postcond(Op1) = {p,q} 
postcond(Op:z) = { q,r,s} 

and the macro Op = (Op1 ,Op2), the step 1 identifies that C 
must contain p in order to make Op1 executable, and must 
also contain r to make Op2 executable (the condition q 
needed by precond(Op2) is already provided by 
postcond(Op 1) and does not have to be present in 
precond(Op)). The result of step 1 is thus C = {p,r}. In the 
present example, step 2 produces C' = C = {p,r} (no 
generalization), and step 3, by executing Op under {p,r}, 
produces the condition {p,q,r,s}. Because step 4 (repeating 
steps 1-2-3) produces no new conditions in the present case, 
the description computed for the macro Op is: 

wk-precond(Op) = {p,r} st-postcond(Op) = {p,q,r,s}. 
The above approach computes a "sufficient" 

precondition (not always "necessary") for a macro. Note that 
the description of more complex macros using the macro 
obtained with this method cannot be computed using bit 
vector equations; however, the same approach can be used to 
compute a sufficient condition of such complex macros. 

Other approaches can be used to compute a description 
of a macro in non-detenninistic domains using an axiomatic 
theory. For instance, [Pelletier 1992] describes a non­
deterministic method for detennining the precondition wk­
precond(Op) of a macro, and from it, its postcondition st­
postcond(Op). The precondition of a macro is found by 
cumulating the parts of the precondition of the operators that 
fail to be satisfied. The postcondition is found by applying 
in sequence the operators constituting the macro. 

5 Conclusion 

We have presented TWEAK+, a STRIPS-like fonnalism for 
the description of operators and macros constructed by 
chaining operators. The essential extension of the STRIPS 
fonnalism consists of allowing negative literals in the DEL 

and ADD lists. Consequently, in TWEAK+, each operator 
or macro is described by four lists of positive or negative 
literals: a precondition, a DEL list, an ADD list and a 

postcondition. In TWEAK+ it becomes possible to specify 
that a given literal becomes false under the application of 
some operator. Such an extension, conveniently allowing us 

to bypass the "frame problem" that restricts and complicates 
the use of the traditional STRIPS representation, presents 
certain problems in building macros. We have shown how 
the description of macros can be efficiently computed, in 
some situations, using bit vector equations (in linear, or 
even sub-linear time [Aho et al. 1974], and linear space, 
with respect to the number of operators contained in the 
macro). These situations are characterized by detenninistic 
domains; if the domain also uses an axiomatic theory, the 
equivalent reduced operator descriptions must not contain 
disjunctions. 

For the other situations, the bit vector equations cannot 
be used, and heuristical methods to compute sufficient 
precondition and postcondition for macros were proposed. 

In future work, we will try to clarify part of our 
motivation, i.e. under what circumstances is one interested 
in building macros, as opposed to applying derivational 
analogy or using search control knowledge. Suppose that a 
domain, a planner and a library of existing plans are given. 
We will attempt to obtain criteria which can be applied to 
the domain in order to select, for the planner, the "best" mix 
of methods of re-using plans from the library. The notion of 
"best" includes several possible criteria, e.g., the amount of 
search necessary to build the plan, or the memory retrieval 
effort necessary to locate plans for potential reuse in the 
library. The problem is described in more detail in [Langley 
et al. 1992]. 

Acknowledgements 

The work described here has been supported by the Natural 
Sciences and Engineering Research Council of Canada, the 
Government of Ontario (URIF and OTF Programs), the 
Deparunent of Systems and Computer Engineering of 
Carleton University, Cognos Inc, and the Canada Centre for 
Remote Sensing. 

References 

[Aho et al. 1974] Alfred V. Aho, J.E. Hopcroft and Jeffrey 
D. Ullman. The Design and Analysis of Computer 
Algorithms. Addison-Wesley Publishing Company, 
1974. 

[Aho et al. 1986] Alfred V. Aho, Ravi Sethi and Jeffrey D. 
Ullman. Compilers: Principles, Techniques, and Tools. 
Addison-Wesley Publishing Company, 1986. 

[Chapman 1987] David Chapman. Planning for Conjunctive 
Goals. Artificial Intelligence, 32:333-377, 1987. 

[Fahlman 1974] S. E. Fahlman. A Planning System for 
Robot Construction Tasks. Artificial Intelligence, (5):1-
49, 1974. 

[Fikes 1975] Richard E. Fikes. Deductive Retrieval 
Mechanisms for State Description Models. In 
Proceedings of the Fourth Internationale Joint 
Conference on Artificial Intelligence, pages 99-106, 
Tbilisi, Georgia, USSR, 1975. 



[Fikes et al. 1972] Richard E. Fikes, Peter E. Hart and Nils 
J. Nilsson. Learning and Executing Generalized Robot 
Plans. Artificial Intelligence, 3(4):251-288, 1972. 

[Fikes and Nilsson 1971] Richard E. Fikes and Nils J. 
Nilsson. STRIPS: A New Approach to the Application 
of Theorem Proving to Problem Solving. Artificial 
Intelligence, (2): 198-208, 1971. 

[Genesereth and Nilsson 1987] Michael R. Genesereth and 
Nils J. Nilsson. Logical Foundations of Artificial 
Intelligence. Morgan Kaufmann Publishers, Inc, Los 
Alto, California, 1987. 

[Georgeff 1987] Michael P. Georgeff. Planning. Annual 
Review of Computer Science, 2:359-400, 1987. 

[Ginsberg 1988] Allen Ginsberg. Knowledge Base 
Reduction: A New Approach to Checking Knowledge 
Bases for Inconsistency and Redundancy. In Proceedings 
of the Seventh National Conference on Artificial 
Intelligence, pages 585-589, Mineapolis, 1988. 

[Kambhampati and Hendler 1990] Subbarao Kambhampati 
and James A. Hendler. A Validation Structure Based 
Theory of Plan Modification and Reuse. Artificial 
Intelligence, (to appear). 

[Korf 1985] R. Korf. Macro-operators: A Weak Method for 
Leaming. Artificial Intelligence , (26):35-77, 1985. 

[Langley et al. 1992] Pat Langley, Stan Matwin and J. A. 
Allen. Knowledge and Regularity in Planning. In 
Proceedings of the 1992 AAA! Spring Symposium on 
Computational Considerations in Supporting 
Incremental Modification, (to appear). 

[Mitchell et al. 1986] Tom M. Mitchell, R. M. Keller and 
S. T. Kedar-Cabelli. Explanation-Based Generalization: 
A Unifying View. Machine Learning, 1(1):47-80, 1986. 

[Pelletier 1992] Bertrand Pelletier. Unsupervised Learning 
From a Goal-Driven Agent. Ph. D. Thesis (in 
preparation), Department of Systems and Computer 
Engineering, Carleton University, 1992. 

[Prieditis 1990] Armand E. Prieditis. Discovering 
Algorithms from Weak Methods. In Machine Learning, 
vol. III, pages 351-359, 1990. 

[Rich 1983] Elaine Rich. Artificial Intelligence. Series in 
Artificial Intelligence. McGraw-Hill, 1983. 

[Tadepalli 1991] Prasad Tadepalli. Leaming with Inscrutable 
Theories. In Proceedings of the Eighth International 
Workshop on Machine Learning, pages 544-548, 
Evanston, California, 1991. Morgan Kaufmann. 

[Waldinger 1977] Richard J. Waldinger. Achieving Several 
Goals Simultaneously. In Machine Intelligence 8: 
Machine Representations of Knowledge, pages 94-136. 
Ellis Horwood, Chichester, UK, 1977. 

21 



22 

. I 

.. 
. 1· 

ARTIFICIAL INTELLIGENCE IN THE REAL WORLD: 
A CRITICAL PERSPECTIVE 

Richard S. Rosenberg 
Department of Computer Science 

University of British Columbia 
Vancouver, B. C. V6T 122 

rosen@cs.ubc.ca· 

Abstract 

This paperpresentsanintroduction toa number 
of social issues which may arise as a result of 
the diffusion of Artificial Intelligence (AI) ap­
p li cations from the laboratory into the 
workplace and marketplace. Such applica­
tions include expert systems (ES), image 
processing, robotics, and natural language un­
derstanding. Of the many social issues of 
concern, four are selected for treatment here as 
representative of other potential problems 
likely to follow such a powerful technology as 
AI. These four are work (how much and of 
what kind), privacy (on which the assault con­
tinues), decision-making (by whom and for 
whose benefit), and social organization (how 
in a society in which intelligent systems per­
form so many functions). Finally it is argued 
that both a major programme of study in this 
field be launched and that practitioners as­
sume the responsibility to inform the public 
about their work. 

Keywords 

artificial intelligence, applications, social issues, work, 
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1. Introduction 

A few years ago, the question, 'What is Artificial Intel­
ligence?" was frequently heard. Clearly that situation 
does not obtain today. From a somewhat esoteric sub­
discipline of Computer Science, AI has emerged as a 
major force in the universities, the marketplace, and the 
United States defense establishment. Many professors 
have formed companies to market products emerging 
from their research. Such corporations as Texas Instru-

ments, Xerox, General Motors, Hewlett-Packard, 
Schlumberger, and IBM have launched major research 
and development programs. Industry and the popular 
media are rife with such terms as expert systems (ES), 
natural language interfaces (NLI), knowledge engineer­
ing, image understanding, and intelligent robots. AI has 
well and truly arrived. 1 

Note that even from its earliest days, some thirty-five 
years ago, two paths have characterized research in Al. 
One represented the research aim of trying to under­
stand thenatureofintelligent behaviour-simply put, the 
scientific approach. The other is motivated by the at­
tempt to design and build working systems which per­
form useful tasks normally said to require intelligence -
the engineering approach. However, the importance of 
this distinction should not be overstated. Usually the 
scientific and engineeringapproachesco-exist, with some 
tension, as researchers of both persuasions confront 
similar problems and influence directions in the field. 
Nevertheless, in the haste to deliver marketable prod­
ucts, the danger is that science will suffer. For one thing, 
the effort necessary to solve a wide range of fundamental 
problems will be diverted to the more immediate needs 
of commercial enterprises. Of course, the reputation of 
the field as whole will suffer if exaggerated claims are not 
realized. 

AI is a vital and exciting field and it has attracted many 
scientists. Research at universities, private laboratories, 
and government installations is proceeding across many 
fronts including knowledge representation, reasoning, 
problem solving, natural language understanding, im­
age processing, expert systems, logic programming and 
heuristic search, among others. A public discussion of 
these and other areas was stimulated by an international 
conference held in Tokyo, in October of 1981, to which 
about 90 distinguished foreign scientists were invited. 
At that time Japan announced the initiation of its Fifth 
Generation Project, an ambitious program to develop 
useful and powerful intelligent computers. Other na­
tions were invited to co-operate, but mindful of Japan's 
worldwide lead in consumer electronics, they decided to 
launch their own national and regional projects. The 
response of the United States, the present world leader in 
computers in general and AI in particular, is obviously of 
prime importance. One significant action by the U.S. 
Department of Defense was the Strategic Computing 
Initiative (not Star Wars) launched in 1983, which has 



had, and continues to have, serious implications for AI 
research and researchers, given the massive amounts of 
funds to be spent. 

All the foregoing represents a prologue (no pun in­
tended) for a preliminary assessment of the implications 
of successful AI research on society. It should be noted, 
however, that even partially realized AI systems will 
have considerable impact. Among the dimensions of 
this investigation are such issues as how achievements in 
AI will affect human self-worth especially if one result of 
the diffusion of intelligent computers is a net reduction 
in employment. Such a reduction could come about 
through advanced industrial automation including ro­
bots and, in the office, through the realization of a true 
Office of the Future. How will the workplace itself be 
altered as humans cope with 'intelligent', non-human 
co-workers? What about the role of such systems in 
medical treatment, education, financial services, and 
many other areas of human experience. Other serious 
issues relate to their use in military decision-making, law 
enforcement and surveillance, and to the more general 
concerns of privacy itself. 

Any treatment of the impact of AI on society must be 
situated in the more general concerns of the impact of 
technology itself. However the nature of AI suggests 
that as a new technology, its influence may not be merely 
quantitative, not just more of the same, not just the latest 
improvement in the continuous progress of the indus­
trial revolution. If its potential is realized, AI may usher 
in a new age, and it will truly be a qualitative break with 
the past. In what follows, a number of issues will be 
presented which form the basis of a proposed research 
programme. Some possible social concerns are elabo­
rated in the following section under the categories work, 
privacy, decision-making, and social organization. The 
paper concludes with a call to AI researchers to speak 
openly and forcefully about their work and its potential 
for good or ill. 

2. An Overview of Some Issues 

As discussed above, the term AI has now entered the 
public consciousness. Articles describing computers 
which "think" appear regularly in major magazines. In 
popular computer magazines, AI is a regular feature as 
languages (Lisp, Pro log), expert system shells (Ml,KEE), 
speech recognition, vision, and natural language under­
standing are evaluated. Does this imply that AI, as 
manifested in working computer programs has been 
fully realized? Of course not. Certainly the mystique of 
AI, the idea of steady progress towards computers able 
to perform a wide range of human-like behaviour has 
been established in the public psyche. 

The publicity and the hype are definitely upbeat and 
expansive and herald a golden age of leisure. All work 

is to be done by machines, enabling people to realize 
their potential, free from worry about jobs, rent, and 
food. Many questions naturally arise, aside from the 
obvious one about whether or not intelligent computers 
are really possible. 2 Winner [1986] calls for the develop­
ment of a philosophy of technology, "to examine criti­
cally the nature and significance of artificial aids to 
human activity'' (p. 4). If those artificial aids purport to 
be intelligent, how much more the urgency of the enter­
prise. Of course, Winner himself is quite skeptical about 
both the achievements of, and the claims for, AI. He 
notes that, " .. children have always fantasized that their 
dolls were alive and talking" (p. 14). 

Clearly there are many applications of intelligent sys­
tems of direct and unequivocal benefit to society at large 
and workers in particular. For example dangerous ac­
tivities in mines, under the sea, in nuclear plants, in the 
chemical industry, and elsewhere are prime candidates 
for robots. Less dangerous, but obviously unpleasant, 
jobs should in the near future also be phased out as 
exclusively human preserves. There are many ways that 
this process can take place but if history has anything to 
teach in this area it is that the protection of workers is not 
usually the major reason that change takes place. Les­
sons drawn from the introduction of computer technol­
ogy into the workplace by Noble [1984], Shaiken [1984], 
Kraft [1977], Garson [1988], and others point out the 
existence of alternative strategies and the motives of 
managers in constraining them. 

Of the many issues to consider in this context let me 
suggest the following ones, not all of which will be 
discussed here: 
1. A realistic evaluation must be attempted of current 
and near-future prospects for AI applications at home, in 
the workplace, and in the government. 
2. A similar evaluation is necessary of the impact of 
computer-related technology in the workplace, balanc­
ing benefits against perceived problems, including 
deskilling, monitoring, job loss, restricted promotion 
paths, breakdown of traditional social organizations in 
the office, limited entry level opportunities, and health­
related concerns. 
3. The implications of partially realized intelligent sys­
tems in terms of the requirements placed on humans to 
accommodate to their, the systems', inadequacies must 
be considered. In the haste to introduce AI into the 
workplace, pressures may be placed on people to work 
with systems, which, while advertised as intelligent, are 
seriously deficient in many areas. 
4. Of particular interest is the role of AI in decision­
making, whether in financial institutions, in the execu­
tive suite, or in diverse military situations such as au­
tonomous land vehicles, pilots' aid, aircraft carrier battle 
management (all of which are components of the Strate­
gic Computer Initiative launched in 1983) or in the 
evaluation of possible nuclear attack (either in or out of 
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the context of SDI, the Strategic Defense Initiative). 
5. Intelligent systems may find ready application in 
intelligence activities such as automatic interpretation of 
tape recordings and the cross-correlation of electronic 
files. Added to currentthreats to privacy, the availability 
of such powerful mechanisms could increase real and 
anticipated assaults on individual privacy. 
6. Futuristic projections of a society without poverty 
brought about by the extensive diffusion of AI applica­
tions have been considered by science fiction writers and 
futurologists and more recently by AI researchers them­
selves, including Albus[ 1976; 1983) and Nilsson [1984). 
Even Wassily Leontief [Leontieff and Duchin, 1986], a 
Noble winner in Economics, has been concerned about 
such a future. 

Speculation is interesting but the assumptions under­
lying the forecasts must be carefully analyzed. Ques­
tions to be considered include the following: 

What replaces regular work as a necessary part of 
life? 
How is wealth to be distributed if a wage system is 
no longer operative? 
How will the political structure respond? 
How will human dignity and self-worth be affected 
if we are no longer defined in great part by what we 
do? 

It should be kept in mind that these questions are 
obviously so difficult to answer, or even to characterize, 
that only a beginning is made here. However, it is 
important that they be raised and that a serious discus­
sion be initiated. 

3. Artificial Intelligence and Society 

Obviously space does not permit a detailed exposition of 
the many issues associated with the explosive growth of 
computers but given the revolutionary possibilities of 
Al, it is worthwhile to suggest those areas, in society, 
most likely to be affected. The following will focus on 
work, privacy, decision-making, and social organiza­
tion. 

Work 

Of particular concern is the impact of computers on work 
- both the nature of the job itself and the number of jobs. 
The relation between technology and work is compli­
cated and operates on many dimensions. The economic 
imperative to increase productivity by the introduction 
of new technology is alive and well today, as it has been 
since the onset of the Industrial Revolution and even 
before. However, the emergence of AI will bring to the 
fore the question: Will there be a massive loss of jobs and 
if so, what kinds of jobs will be available? Various 

writers, including more recently AI researchers, such as 
Nilsson [1984), have speculated about a future in which 
intelligent machines produce the goods and provide 
many of our services. Of course this is also a theme 
explored by many science fiction writers from both a 
utopian and dystopian point of view. It is clear that 
serious issues of income distribution, self worth, and the 
basic political organization of society are involved. If the 
means of production gradually move from human hands 
to robotic ones, then the distribution of wealth may 
indeed become an urgent social concern rather than an 
accepted, intrinsic and automatic process. 
If the foregoing appears to be too speculative and far­

fetched then perhaps more immediate concerns of the 
changing nature of work itself might be considered. The 
introduction of robots (or more general forms of indus­
trial automation) into the factory or computer networks 
and associated equipment into the office, has already 
had, and will most certainly have, a wide impact on 
workers. Among the problems already identified are 
deskilling, monitoring, health effects, psychological 
stress, and the issues of self-worth and dignity. Others 
are · restriction of promotion paths, the breakdown of 
existing workplace social organization, and a limitation 
on entry-level jobs. These are discussed in Rosenberg 
[1986; 1992) as well as in many other sources. The 
incorporation of AI technology into robots and office 
automation can only exacerbate these problems, in most 
cases, but there are clear benefits in others. Weitz [1990, 
p. 50) argues that at worst ES will have little impact on 
work and it is more likely that they will contribute to "the 
evolution of the lean, flexible, knowledge-intensive, 
postindustrial organization." 
Surely intelligent machines can perform tasks undesir­

able for people, for example, both underground and 
undersea mining, dealing with hazardous wastes, weld­
ing and spray painting, and handling noxious gases. Of 
greater significance is the intellectual benefit of intelli­
gent systems for improving efficiency in every aspect of 
human endeavour. Systems which never forget, are 
repositories of up-to-date knowledge, and which are 
responsive in a variety of ways to human abilities and 
needs, should improve quality, reduce errors, alleviate 
stress, and contribute to an efficient and productive 
economy, in which it may be hoped that the benefits will 
be more equitably distributed. Intelligent aids to infor­
mation retrieval, decision-making, planning, and prob­
lem-solving are appearing and will continue to improve. 
For those holding jobs which require, at their core, the 
ability to make decisions, AI augmented systems offer 
both hope and despair. Hope exists in the potential 
power of the new systems to "amplify intelligence," to 
offer to the mind what motors have offered to muscles. 
Despair lurks in the threat to human autonomy, to the 
very essence of what makes us human - our ability to 
reason about the world and control our own destiny. 



Even unrealized AI may project such a threat. 
Schefe [1990) warns that the negative work-related 

effects of automation may be exaggerated by ES espe­
cially if little attention is paid to them by the leading 
developers. It is important that those who will be work­
ing with ES be educated and made aware of the abilities 
and limitations of the technology and not be treated as 
passive agents soon to go the way of their one-time 
fellow employees. 

Privacy 

The growing threat to individual privacy represented by 
the increasing use of computer databases has long been 
recognized by civil libertarians as well as the general 
public. The existence of private databases containing 
employment, credit, cable, and medical records, among 
others, and public databases storing tax, census, educa­
tion, and voters' records, creates the possibility for abuse 
because of the ease of accessing these records under a 
variety of search conditions. Such terms as computer 
profiling and computer matching have become quite 
common recently, as well as controversial. The former 
relates to the attempt to predict behaviour, of a poten­
tially criminal kind, by defining a profile which can then 
be searched for in existing files, thus identifying indi­
viduals "likely'' to exhibit such behaviour. Computer 
matching has already been employed in many situations 
to cross index files in order to determine whether or not 
individuals have committed crimes as revealed by in­
consistencies in their records. For example, an examina­
tion of property records might reveal that Mr. X has 
received considerable income on the sale of a piece of 
land while at the same time collecting unemployment 
insurance, as determined from an examination of pay­
ments listed in the files . 

Both of these practices have aroused considerable de­
bate as they tend to presume a priori guilt for some 
individuals, who are to be identified through a search for 
confirming evidence in the computer matching case and 
subsequently placed under surveillance in the profile 
case. Such actions seem to be a violation of presumed 
innocence and may place individuals under jeopardy. 
The use of AI can only encourage wider applications of 
such procedures and even the development of new 
techniques of investigation. ES and AI are being used by 
police forces in . investigations, including surveillance, 
and is also being used in the business world for similar 
purposes. 

Currently, computer monitoring or surveillance, in the 
workplace, has become a growing concern with respect 
to the rights of workers. It is a trivial task for operating 
systems to record keystroke counts and thereby deter­
mine if a worker's output has deviated from pre-estab­
lished norms. Such computer monitoring is only one 
weapon in management's arsenal for measuring, testing, 

and monitoring employees. Others include the use of TV 
cameras, telephone eavesdropping, drug testing, genetic 
screening,and polygraph testing[Supervisor, 1987]. Alis 
beginning to play a role in more sophisticated monitor­
ing systems that can be used to detect unusual comput­
ing behaviour. Ostensibly such "intrusion detection 
systems" are intended to employ AI techniques to com­
pare individual activities with pre-stored histories, in 
order to identify possible illegal users or actions. Marc 
Rotenberg, director of the Washington office of Compu­
ter Professionals for Social Responsibility, has pointed 
out two crucial issues: "whether the monitoring required 
by such systems violates employees' rights and whether 
such security efforts have a deleterious effect on work 
[Kerr, 1990]. Note that the role of AI is to create user 
profiles from records of past behaviour and then to 
monitor deviations from these profiles. 

But it must be remembered that personal privacy has 
been under assault ever since records have been kept. 
This assault has intensified since the computer and asso­
ciated databases have become readily available. We live 
in age in which information about individuals has be­
come a valuable commodity. The capture and use of this 
information by direct marketing companies has emerged 
as a serious threat to individual privacy. Governments 
in many countries and at many levels have enacted laws 
to deal with the most egregious abuses but various 
threats remain and the potential problems posed by 
advances in AI have created new challenges to those 
concerned with civil liberties in general and privacy in 
particular. 

Decision-Making 

This term will be used here in an all-encompassing sense 
to cover activities regularly carried out by individuals, 
companies, institutions, and governments, involving the 
assimilation of information, its organization, and finally 
its employment based on experience, special knowl­
edge, theory, and perhaps, even intuition. It hardly 
needs remarking that every aspect of life involves deci­
sions, whether made by the individual or made for him, 
or her, by others. As such, decision-making represents a 
fundamental component of human existence and threats 
to human autonomy, however couched in friendly terms, 
are of serious concern. In any discussion of ES, the 
question of the dogmatic aspect of formalized expertise 
can be raised. By their very nature, ES purport to 
capture, formalize, and disseminate expertise. From a 
negative point of view, the effects of this process may 
include, standardization, homogenization, centraliza­
tion, legitimization, and a definite sense of authority and 
control. Part of the concern is that the formalization of 
knowledge as an ES for some restricted domain can be 
taken as the representation of the knowledge. An anal­
ogy might be the legal code, where crime is defined by 
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the existing relevant statutes. 

Of the many applications of ES, those in financial 
planning including stock market interventions are in­
creasingly critical. Many will recall Black Monday and 
the crash of 1987, October 19 and 20 when the greatest 
plunge in market prices in history occurred. The blame 
was immediately assigned to computers in their role as 
automatic initiators of stock transactions. (See Rosenberg 
[1992, 278-280).) Subsequent analysis demonstrated that 
the situation was far more complicated and that comput­
ers were only one factor, however important. Neverthe­
less, computers, or rather the strategies implemented on 
them, did bear a major responsibility. (See Lucas and 
Schwartz [1989).) The implications of such a memorable 
event are obvious, at least to government and market 
regulators, at least - computer trading may introduce 
unpredictable instabilities into the volatile operations of 
the stock market. What of the future? As stock market 
ES compete against one another, who will be the winners 
and who will be the losers? 

In many areas of life there is no consensus, no received 
view and in the opinion of many, there will never be. 
Thus the threat posed by the rapid diffusion of ES is the 
limitation of diversity and the imposition of the equiva­
lent of a state religion, with its fixed, dogmatic world 
view. Further, the objectification of knowledge and 
experience brings apparent certainty to uncertainty, rules 
to govern feelings, and regularity where it is unwar­
ranted and perhaps impossible. Some of these fears may 
seem extreme but underlying them are serious philo­
sophical and social concerns. For example, the by now 
traditional use of computers to reinforce bureaucratic 
decisions by appeal to an infallible computer can only be 
extended by the adoption of even more powerful sys­
tems, namely ES. Of course in the opinion of some critics 
[Dreyfus and Dreyfus, 1986) ES are fundamentally lim­
ited in the degree to which they can actually capture 
expertise. As such their use will impose false and possi­
bly harmful constraints in many aspects of human expe­
rience. 

The science fiction version of computer decision mak­
ing has become a popular theme, with the negative 
aspects explored by such authors as Jack Williamson 
[1963; 1981) andJackChalker[1986). Briefly, the premise 
is that massive computer systems have been given, or 
even take powers, in order to prevent humans from 
destroying themselves. Unfortunately, for humans, the 
system interprets its mission so literally with the result 
that people find their lives without challenge or purpose. 
It becomes impossible to exercise even a modicum of 
meaningful independent behaviour. That such a future 
fascinates science writers does not make it in any way 
inevitable, of course, but it does raise some interesting 
questions. Indeed, the increasing use of computers may 
result in a decrease in human decision making and the 
role of AI will be to accelerate this trend, especially in 

more critical situations. 
In this respect, the debate over the Strategic Defense 

Initiative (SDI, or more commonly, Star Wars) has fre­
quently turned on the question of whetheror not the very 
large software component could perform as required. 
This system, expected to be an order of magnitude larger 
than Unix, will monitor information gathering devices, 
assimilate the information, decide on a response, coor­
dinate the response, and continue with these activities 
until theend. Aliscertainlyexpected toplayarolein this 
system as one of its harshest critics, Parnas [1985), has 
noted in a dissenting commentary. Note that the issue of 
computer decision making does not begin with AI but 
rather that the reliance on AI may exacerbate the poten­
tial problem in a fundamental way. 

This reliance on AI is being pursued in other areas as 
well including the development of the autonomous land 
vehicle and the battleship management system. The 
former can be thought of as an armoured, autonomous 
vehicle able to navigate the battlefield, avoid obstacles, 
and report on conditions. Its successful development 
requires advanced image understanding, problem solv­
ing, and decision making. The battleship system is seen 
as an intelligent aid to a naval commander, under en­
gagement, who must deal with many simultaneous 
events. Here is a system, upon which a commander will 
rely in dangerous situations, perhaps putting his men in 
some jeopardy. But then would they be better off with­
out the benefits possibly available from sophisticated 
software? A chilling, partial answer to this question 
occurred in July 1988 when an Iranian passenger airplane 
was shot down in the Gulf of Arabia by the U.S.S. 
Vincennes, a cruiser boasting the most sophisticated 
electronicsequipmentavailable(includingcomputersof 
course), yet unable to distinguish this plane from a much 
smaller fighter aircraft. 

For further discussion of the role of AI in military 
applications see Andriole and Hopple [1988) and Din 
[1987). The latter also provides a number of papers on 
arms control analysis, not a very urgent issue in 1992 -
fortunately. 

Social Organization 

How will society, or better its political institutions, re­
spond to a future in which basic needs, both goods and 
services, are met by machines? Robots and advanced 
industrial automation are gradually reducing the blue 
collar workforce and this is taking place largely without 
AI. Changes are occurring much more slowly within the 
office but as we have noted above, the impact of success­
ful developments in Al, especially in speech understand­
ing, can result in many fewer jobs. Thus the issue, for the 
future may be what will replace work in most people's 
lives both as a means to acquire money and as a major 
component in the definition of self worth. However 



desirable the anticipated high-tech future is, and this 
may itself be debatable, the means for achieving it are 
rarely spelled out, as most visions of utopia neglect to 
describe how society will make the torturous trip from 
the current world to the promised land. 

Since the most important way to distribute the real 
wealth in society is through wages or salary (ignoring 
stocks, bonds, real estate, etc.) and the envisioned future 
includes a considerably reduced workforce, two ques­
tions emerge: How do people acquire goods and services 
beyond immediate basic needs and what replaces work, 
with all its trappings, in most people's lives? Nilsson 
[1984], Albus [1976; 1983], and Leontieff [1986] suggest 
partial answers to these questions. For Leontieff one 
response is that the average work week will have to be 
reduced so that people will work less but not at lower 
salaries, thus maintaining their earning power by shar­
ing in the increased wealth produced by the advanced 
technology. For Albus, the new technology, represented 
by robots, will, by some undefined process, be owned, in 
part, by the very workers that they displace thereby 
providing for these workers a share of the wealth that the 
robots earn. Albus has referred to his vision as People's 
Capitalism [Albus, 1976], which others may refer to as 
socialism, or even communism. 

Nilsson [1984], a major figure in the AI community, 
paints an enticing vision of a future free from drudgery, 
made possible by AI. Removing the need to work as the 
primary means to satisfy wants will permit people to 
realize their potential by doing what they really want to 
do. Thus the apparent psychological need to work will 
prove illusory as technology liberates society from such 
a mundane requirement. Nilsson offers answers to the 
question of how wealth is to be distributed by quoting 
several authors, including Albus but does not see it as a 
serious problem. Except for some temporary problems 
during the transition period, the benefits will far out­
weigh the difficulties. The vision is almost purely uto­
pian. 

I would argue that crucial problems have been swept 
aside in the enthusiasm of describing the wonders to be 
brought about by AI. It is not clear that any of the 
proposed schemes for distributing the wealth resulting 
from AI will indeed work given that the current political 
system in operation in the most technically advanced 
countries is capitalism, unfettered free enterprise. How 
societies are supposed to move from such an economic 
system to a system in which accumulated wealth is 
distributed to individuals independent of their direct 
responsibility for earning this wealth remains a mystery. 
Up to now the earnings from natural resources such as 
minerals, oil, coal, lumber, fish, and the land itself, accrue 
only to those who extract it, fish for it, or farm it, with a 
rather small portion returning to the state in the form of 
license fees and royalties. In fact if the state received a 
greater portion, entrepreneurs would be discouraged 

from searching for new resources. Based on this experi­
ence, what reason is there to believe that new forms of 
wealth achieved by the use of new technologies, such as 
Al, will be made universally available? 

It is not at all obvious how the technologically-induced 
utopia will come about or even that it will. Massive 
changes in political systems as well as social organiza­
tions will be necessary. Work and money are just part of 
the equation. Autonomy, self respect, and civil liberties 
are others. None of these are gifts bestowed by a benevo­
lent state, especially one which is the product of major 
technological innovations. It is for this reason that the 
process involved in moving towards a new society is so 
crucial and that an awareness and realistic understand­
ing of how technology operates, perhaps the philosophy 
of technology, referred to earlier, is so important. 

In a letter to IEEE Expert with the provocative title, "Do 
Expert Systems Threaten Democracy?" Yuval Lirov 
[1991] defends the goals of, and justification for, the 
development of such self-sufficient global information 
systems as Lenat's Cyc [Lenat and Guha, 1990]. Al­
though recognizing that in the early stages such expert 
systems may be "antidemocratic," he goes on to say, 
"Fear of this phase is pathetic and its denial is dangerous. 
Our moral obligation is to develop tools to control our 
intelligentgolemduringthisexcitingphase." [Lirov, p.9] 
This position is a fairly typical expression of technologi­
cal optimism and the belief that ultimately we (citizens, 
professionals, society?) are in control of our technology. 
Many counterexamples abound, including nuclear en­
ergy (and weapons), environmental devastation, genetic 
engineering, and reproductive technology abuses. The 
impact of technology, especially such a potentially revo­
lutionary one as Al, on society is not predictable, nor is 
its conscious shaping and control particularly likely. 

4. Conclusions 

This paper represents one small step, among others, in an 
attempt to explore the social impact of such far-reaching 
technologies as AI and genetic engineering. If this effort 
were to be classified under the rubric of futurology, the 
major point would be lost. Itisimportantto keep in mind 
that the relations among economics, politics, social or­
ganization, and technology are deep and intricate and it 
would be foolish to trivialize them by predicting a future 
based on unfettered technology. If AI is seen as a natural 
and expected continuation of the historical evolution of 
technology, then there is no reason to expect its effect to 
be substantially discontinuous with the past. For exam­
ple, some two hundred years since the onset of the 
Industrial Revolution, we find that unemployment rates 
are still relatively low. The contribution of AI would 
have to be revolutionary, in the true meaning of this 
word, to transform the world in a way which would 
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result in a major decrease in real employment. 
Concern with the impact of a given form of technology 

should not be left, in general, to "outsiders." I do not 
mean, of course, that practitioners should be regularly 
involved in the criticism business but rather that as part 
of their professional responsibility, both to themselves 
and to society, they should be prepared to speak out 
about their work and to inform the public about possible 
implications. An excellent review of many important 
social issues related to AI can be found in Athanasiou 
[1987) and Yazdani and Narayanan [1984). Croy [1989) 
raises some important ethical issues with respect to the 
use ofES in education. I also recoro..mend Weizenbaum' s 
[1986) impassioned call to the computer science commu­
nity, in general, and to the AI sub-community, in particu­
lar, to recognize its responsibility by considering care­
fully the outcome of its work. Furthermore he argues 
that computer professionals must be aware of how de­
pendent society is on their expertise for future develop­
ments, especially military applications. 

For those who would respond that the duty of profes­
sionals is to themselves, their discipline, their institution, 
and their clients and that their personal views should be 
kept private, I would point out that the potentially 
significant implications of AI demand that its research­
ers take an active role in initiating an ongoing public 
debate on the issues, in order to educate society at large. 
Such a demand is not unique to computer science; note 
that at many law schools, in the U.S., there is currently a 
movement afoot, called Critical Legal Studies (CLS), 
which seeks to instill social responsibility within the 
educational process. For example, in a brief statement, 
describing the goals of the movement, we read, "Al­
though CLS advocates are clearer about what they op­
pose than propose, they favour manipulating existing 
law to guarantee economic equality and to eliminate 
distinctions based on class, race, and sex. In short they'd 
dispense with most legal precedents." 3 

Surely, a relatively new discipline, such as computer 
science, can establish for itself the practice of encourag­
ing its practitioners to speak openly and forcefully about 
their work. · 

Notes 
1. See Andrew Pollack, "Setbacks for Artificial Intelli­
gence," The New YorkTimes,March4, 1988,First Business 
Page, p. 32. Pollack reports that a number of leading 
companies in ES development tools, Lisp machines, and 
ES applications lost money and instituted layoffs in 1987. 
Although he notes that AI has failed to live up to its 
promise, the major reason for these difficulties is poor 
financial management rather than poor products. 
2. This important question will not be answered here (or 
anywhere else for that matter) for the issue at hand is to 
try to understand how the gradual diffusion of this most 
advanced of all technologies will affect society. On the 

other hand if the critics, Dreyfus (1972) and Dreyfus and 
Dreyfus (1986), are to be believed, computers will never 
be intelligent and all questions revert to the traditional 
study of the impact of technology in general on society. 
3. See Leslie Helm and Lawrence J. Tell, "The Radical 
Rumblings Shaking Up Law Schools," Business Week, 
June 6, 1988, pp. 116. 
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Abstract 
This paper describes the role of visual thinking 
in the development of the atomic theory of the 
constitution of gases that John Dalton con­
structed around 1805. After briefly reviewing 
the psychological evidence for the existence of 
visual thinking, we identify several stages in 
Dalton's thought processes where visual think­
ing was important. Dalton used diagrams to 
work out the consequences of hypotheses he 
was developing and he employed diagrams to 
explain his hypotheses to others, sometimes 
using visual analogies based on mental images. 
In addition, we conjecture that images may also 
have played a role in forming his hypotheses. A 
knowledge representation scheme for computa­
tional imagery developed by Janice Glasgow 
and her colleagues can be used to help under­
stand some of the structures and processes 
underlying Dalton's thinking. 

1 Introduction 
Imagine the letter 'B '. Rotate it 90 degrees to the left. 

Put a triangle below it having the same width and pointing 
down. Remove the horizontal line [Finke, Pinker and Farah 
1989, p. 62). 

Most people recognize the resulting emergent pattern 
as a heart. Such visual thinking is common in everyday life 
and also plays a role in scientific thinking, if we can believe 
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the reports and notebooks of such scientists as Einstein. 
Yet, with a few exceptions listed below, visual thinking has 
been little studied by researchers in artificial intelligence. 
The normal tools of AI such as list processing languages are 
on the surface not well suited to describe the structures and 
processes of thinking with pictorial representations. Such 
representations can be external to the thinker as diagrams 
are, or can be internal to the thinker's imagination. In either 
case, the use of pictorial representations can facilitate 
processes that would be difficult to duplicate using proposi­
tional representations. 

Numerous psychological experiments have been con­
ducted that suggest that visual imagery can contribute to 
human cognition. Paivio [1986) showed that recall of 
words can be affected by imagery instructions. Shepard and 
his collaborators found that mental rotation of imaged 
objects behaves as one would expect if visual images were 
actually being rotated [Shepard and Cooper 1982]. Kosslyn 
and his colleagues systematically showed that people scan 
images in ways that suggest they are using pictorial 
representations [Kosslyn 1980]. All these results are open 
to challenges that people do not really use picture-like men­
tal images, but instead merely use tacit propositional 
knowledge to mimic the use of visual imagery [Pylyshyn 
1984]. But impressive evidence that visual imagery is 
closely related to visual perception comes from neuro­
psychological studies involving brain activity and selective 
effects of brain damage [Farah 1988). Sloman (1978] and 
Larkin and Simon (1987) have provided compelling argu­
ments for the computational power of pictorial representa­
tions. Substantial anecdotal evidence for the importance of 
visual thinking in science has been compiled by historians, 
philosophers, and psychologists who have noted the role of 
imagistic and diagrammatic cognition in such scientists as 
Bohr, Boltzmann, Einstein, Faraday, Heisenberg, 
Helmholtz, Herschel, Kekule, Maxwell, Poincare, Tesla, 
Watson, and Watt [Miller 1984; Nersessian 1992; Shepard 
1988). 



2 Dalton's Atomic Theory 
The use of visual thinking by John Dalton does not, 

however, seem to have been noted or analyzed. 1 Dalton, 
who was the first to publish a table of atomic weights, is 
viewed as one of the founders of modern chemistry. In 
1793 he proposed that atmospheric air was a mixture of 
gases rather than a compound, and a series of experimental 
and theoretical investigations led him by around 1803 to 
realize that gases consist of atoms and that elements such as 
hydrogen and oxygen combine in multiple proportions. 
Early biographers of Dalton maintained that he first induc­
tively discovered the law of multiple proportions and then 
formed the hypothesis of atomic structure to explain it. 
More careful examination of Dalton's papers before they 
were destroyed in a World War II air raid on Manchester 
uncovered, however, that Dalton's thought was more 
theory-driven. Reflection on the physical properties of the 
atmosphere and other gases led to a crude atomic theory 
which guided him to the discovery of regularities in chemi­
cal combination [Roscoe and Harden 1896, pp. 50-51]. 

Dalton himself gave a historical sketch of the 
development of his views on chemical elements in a lecture 
given in 1810; this lecture was preserved by Roscoe and 
Harden [1896, pp. 13-18]. Dalton says that his meteorologi­
cal observations and speculations about the nature of the 
atmosphere led him to wonder how an atmosphere consist­
ing of different elastic fluids (gases) could constitute a 
homogeneous mass. He took from Newton's Principia the 
idea that gases consist of small particles which repel each 
other, but could not make this consistent with the 
knowledge that the atmosphere contains at least three gases 
(oxygen, water, and azote, i.e. nitrogen) with different 
specific gravities. He began working with a theory of 
chemical affinity according to which the atmosphere did not 
subside into strata with heavier gases at the bottom because 
of a slight affinity between particles of gases of different 
kinds. But visual reasoning showed this view to be flawed: 

In order to reconcile or rather adapt this chemi­
cal theory of the atmosphere to the Newtonian 
doctrine of repulsive atoms or particles, I set to 
work to combine my atoms upon paper. I took 
an atom of water, another of oxygen, and 
another of azote, brought them together, and 
threw around them an atmosphere of heat, as 
per diagram; I repeated the operation, but soon 
found that the water particles were exhausted 

Langley, Simon, Zytkow and Bradshaw [1987) describe 
a program called DALTON that infers the structure of chemi­
cal compounds from reactions involving them. DALTON 
models the application of a version of Dalton's atomic 
theory, not its development, and it ignores visual thinking. 

(for they make but a small part of the atmo­
sphere). I next combined my atoms of oxygen 
and azote, one to one; but I found in time my 
oxygen failed; I then threw out all the remain­
ing particles of azote into the mixture, and 
began to consider how the general equilibrium 
was to be obtained. [Roscoe and Harden 1896, 
pp. 14-15] 

What Dalton was doing here is hard to follow, largely 
because the diagram he refers to has not survived. But it is 
clear that Dalton found great utility in using a diagram to 
work out the consequences of the chemical affinity view, 
finding spatial reasons for the incoherence of that view with 
Newtonian ideas about particles:2 

My triple compounds of water, oxygen, and 
azote were wonderfully inclined, by their supe­
rior gravity, to descend and take the lowest 
place; the double compounds of oxygen and 
azote affected to take a middle station, and the 
azote was inclined to swim at the top. I 
remedied this defect by lengthening the wings 
of my heavy particles, that is, by throwing more 
heat around them, by means of which I could 
make them float in any part of the vessel, but 
this change unfortunately made the whole mix­
ture of the same specific gravity as azotic gas -­
this circumstance could not for a moment be 
tolerated. In short, I was obliged to abandon 
the hypothesis of the chemical constitution of 
the atmosphere altogether, as irreconcilable to 
the phenomena [Roscoe and Harden 1896, p. 
15] 

Here we see Dalton altering his diagram to attempt to recon­
cile chemical and Newtonian views, modifying the relation 
of particles and heat, but finding that the reconciliation fails. 
The visual representation seems to be playing a role in 
hypothesis formation when he talks of "lengthening the 
wings" of some of the particles rather than of conjecturing 
that the particles had longer wings. We will provide a com­
putational interpretation of Dalton's visual reasoning below. 

Dalton reported that in 1801 he hit upon a new 
hypothesis, that the atoms of one kind repel only atoms of 
their own kind, which explained why gases diffused through 
each other, but this contradicted the finding that diffusion is 
a slow process. Then came his big breakthrough: 

Upon reconsidering this subject, it occurred to 
me that I had never contemplated the effect of 
difference of size in the particles of elastic 

2 Thagard (1992) categorizes scientific discoveries as 
data-driven, explanation-driven, and coherence-driven; Dal­
ton here evidently falls into the third category. 
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fluids. By size I mean the hard particle at the 
centre and the atmosphere of heat taken 
together. If, for instance, there be not exactly 
the same number of atoms of oxygen in a given 
volume of airs, as of azote in the same volume, 
then the sizes of the particles of oxygen must be 
different from those of azote. And if the sizes 
be different. then on the supposition that the 
repulsive power is heat, no equilibrium can be 
established by particles of unequal sizes press­
ing against each other. (See Diagram.) [Ros­
coe and Harden 1896, p. 16) 

Unfortunately, the diagram referred to in this passage is also 
lost. But Dalton's reference to it suggests the pictorial char­
acter of his hypothesis that atoms of different kinds have 
different sizes. This hypothesis initiated according to Dal­
ton a train of investigation for determining the number and 
weight of all chemical elements that enter into combination 
with each other. 

In 1808, Dalton published a treatise, A New System of 
Chemical Philosophy, presenting his new theory and related 
material. This book included several plates that help enor­
mously to convey how Dalton conceived of the structure of 
gases. In our figure 1 we reproduce Dalton's Plate 7 [Dal­
ton 1808, vol. 1, p. 565). His explanation of the plate is as 
follows: 

PLAIB 7. Fig. 1, 2, and 3 represent profile 
views of the disposition and arrangement of 
particles constituting elastic fluids, both simple 
and compound but not mixed; it would be 
difficult to convey an adequate idea of the last 
case, agreeable to the principles maintained, 
page 190. - The principle may, however, be 
elucidated by the succeeding figures. 

Fig. 4 is the representation of 4 particles of 
azote with their elastic atmospheres, marked by 
rays (of heat) emanating from the solid central 
atom; these rays being exactly alike in all the 4 
particles, can meet each other, and maintain an 
equilibrium. 

Fig. 5 represents 2 atoms of hydrogen drawn in 
due proportion to those of azote, and coming in 
contact with them; it is obvious that the atoms 
of hydrogen can apply one to the other with 
facility, but can not apply to those of azote, by 
reason of the rays not meeting each other in like 
circumstances; hence, the cause of the intestine 
motion which takes place on the mixture of 
elastic fluids, till the exterior particles come to 
press on something solid. [Dalton 1808, vol. 1, 
p. 548). 

Here we see Dalton naturally presenting his ideas using 
diagrams, crude versions of which can be found in 

manuscripts written earlier [Roscoe and Harden 1896, plates 
5 and 6). The combination of Dalton's Fig. 4 and Fig. 5 
provide much of his explanation of why gases stay mixed: 
the heat lines of atoms of the same kind meet. but the heat 
lines of azote atoms do not meet the heat lines of hydrogen 
atoms. Drawing these pictures and seeing how atom-heat 
combinations of different sizes do not have rays meeting 
could well have been the main source of Dalton's 
hypothesis. 3 

Not all of Dalton's visual thinking involved diagrams. 
He also used visual analogies to convey the spatial struc­
tures he was hypothesizing. He wrote that "every atom has 
an atmosphere of heat around it, in the same manner as the 
earth or any other planet has its atmosphere of air surround­
ing it, which cannot certainly be said to be held by chemical 
affinity, but by a species of attraction of a very different 
kind." [Roscoe and Harden 1896, p. 71] Here he maps an 
atom to the planet earth and the heat surrounding the atom 
to the earth's atmosphere, generating understanding of his 
proposed structure by comparison to something familiar. 
Similarly, he conveys the three-dimensional spatial organi­
zation of particles with a visual analogy: 

When we contemplate upon the disposition of 
the globular particles in a volume of pure elas­
tic fluid, we perceive it must be analogous to 
that of a square pile of shot; the particles must 
be disposed into horizontal strata, each four 
particles forming a square: in a superior stra­
tum each particle rests upon four particles 
below. [Dalton 1808, vol. 1, p. 189). 

Our claim that these analogies are inherently visual will be 
defended in the course of our computational analysis of 
them. 

3 A Knowledge Representation Scheme 
Dalton's use of visual thinking can in part be under­

stood using the knowledge representation scheme for com­
putational imagery that Glasgow and her colleagues have 
been developing [Glasgow 1990; Glasgow and Papadias in 
press; Papadias and Glasgow 1991).4 After summarizing 
that approach, we will apply it to analyze aspects of 
Dalton's work. 

3 In modem chemistry, explanation of why gases stay 
mixed is provided by the kinetic theory of gases which was 
developed several decades after Dalton. Dalton, like La­
voisier and other predecessors, thought heat was a substance 
rather than a form of energy. 

4 A terminological note: Glasgow follows Kosslyn in dis­
tinguishing visual information about what an object looks 
like from spatial information about where it is located in rela­
tion to other objects. Our use of the term "visual" involves 
both sorts of information. 



Figure 1. Dalton's diagrams. 

In the earlier computational model of Kosslyn [1980], 
quasi-pictorial images were represented by a configuration 
of points in a matrix; an image is displayed by selectively 
filling in cells of the matrix. An image, then, is construed as 
a two-dimensional array, with each entry like a pixel that is 
either on or off. Glasgow's scheme is more complex in two 
key respects. First, it takes images to be inherently three­
dimensional, although two-dimensional projects can also be 
handled as a special case. Greater dimensionality obviously 
makes possible representation of more complex images such 
as those required for mental rotation, as well as for some of 
Dalton's thinking as we will see below. Second, the entries 
in the three-dimensional arrays can be encoded hierarchi­
cally, in that each entry is represented symbolically by a 
entry that can have a subimage. For example, a house could 
be represented by the array shown in Figure 2, with each 
symbolic entry such as "window" providing a pointer to 
another array. In sum, Glasgow's representational scheme 
takes images to be three-dimensional symbolic hierarchical 
arrays. Numerous important visual operations can be 
defined on Glasgow's arrays, including constructing sym­
bolic arrays from propositional representations, comparing 
images using array information, and moving and rotating 
images. 

roof roof roof 

windov. 

door 

Figure 2: Array representation of a house. 
Other researchers have developed models of visual 

thinking. Punt's [1980] model of diagrammatic problem 
solving used two-dimensional arrays with simple entries, 
like Kosslyn's. Shrager [1990] has constructed a system for 
simulating the perceived operation of a laser using two­
dimensional arrays whose entries are label lists. His entries 
thus seem to be more complex than Kosslyn' s, although 
from his description they do not seem to have the hierarchi­
cal character of Glasgow's scheme, nor are they three­
dimensional. Chandrasekaran and Narayanan [1990] 
present a scheme that is similar to Glasgow's in allowing a 
hierarchy of descriptions, but no array organization is used. 
We shall see that the three-dimensional and hierarchical 
character of Glasgow's representations are both useful for 
understanding Dalton's visual thinking. 

4 Computational Analysis of Dalton 
We saw in figure 1 (Dalton's figures 4 and 5) that 

Dalton used rays to represent how atoms are surrounded by 
heat. In Glasgow's scheme, this corresponds to having an 
entry for each atom surrounded in three dimensions by 
entries for heat, as in our figure 3a, which shows only the 
two dimensional projection. We have added to Glasgow's 
primitive operations the operation SURROUND, which 
places a new entry in every place adjacent in all three 
dimensions to the place occupied by a given entry.5 

Dalton's attempt to "lengthen the wings" of heavy particles 
by adding more heat can be modelled using another applica­
tion of SURROUND, to produce the result shown in two 
dimensions in figure 3b. When Dalton undertakes the task 
of combining these atom + heat clusters on paper, the 
hierarchical nature of Glasgow's representational scheme 
becomes useful, since the clusters can be manipulated as 
wholes. We thus gain the advantage found in object­
oriented drawing programs such as MacDraw, in contrast to 
bitmap-oriented programs such as MacPaint. Figure 3c 
shows how a picture can be drawn of the constitution of the 
atmosphere using higher-level symbolic elements, each of 
which represents an array of the sort shown in figures 3a 
and 3b. The frequencies of the different entries roughly 
represent Dalton's knowledge that the atmosphere contains 
more nitrogen than oxygen, and more oxygen than water 
vapor. 

S Glasgow and her colleagues have elegantly implement-
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HEAT HEAT HEAT 

HEAT ATOM HEAT 

HEAT HEAT HEAT 

Figure 3a 

HEAT HEAT HEAT 

HEAT HEAT HEAT 

HEAT HEAT ATOM 

HEAT HEAT HEAT 

HEAT HEAT HEAT 

Figure 3b 

HEAT HEAT 

HEAT HEAT 

HEAT HEAT 

HEAT HEAT 

HEAT HEAT 

OXYGEN+HEAT AZOTE+HEAT 

AZOTE+HEAT OXYGEN+HEAT 

AZOTE+HEAT AZOTE+HEAT 

Figure 3c 

AZOTE+HEAT 

AZOTE+HEAT 

WATER+HEAT 

Figure 3. Array representations for Dalton. 

Dalton's big breakthrough came by his realization 
that atoms can have different sizes. Presumably this can be 
represented in the Glasgow scheme by having entries spread 
over more than one array location. There is a possible 
ambiguity here, however, if we want to distinguish between 
BALL BALL BALL, which is three balls in a row, and 
ROOF ROOF ROOF, which is one continuous roof. Simi­
larly, we want OXYGEN OXYGEN to represent a large 
oxygen atom, not two. We could then use something like 
figure 3c to convey the overall structure of a gas, but have 
sub-images of different sizes, so that oxygen clusters are 
bigger than nitrogen clusters. 

In section 2, we quoted Dalton's use of two analogies 
that are naturally understood using visual representations. 
The simplest is that an atom is surrounded by an atmosphere 
of heat just as the earth is surrounded by an atmosphere of 

ed her scheme in the array processing language Nial. We 
have developed a Common LISP implementation of the spa­
tial part of her scheme, encoding three-dimensional arrays as 
lists of lists of lists. 

air. Current AI programs for analogical mapping such as 
ACME [Holyoak and Thagard 1989; Thagard, Cohen , and 
Holyoak 1989) and SME [Falkenhainer, Forbus, and 
Gentner 1989) take as input predicate calculus representa­
tion. Thus ACME might be given the input: 

Source: (PLANET (EARTH)) 
(ATMOSPHERE (AIR)) 
(SURROUND (AIR EARTH)) 

Target (ATOM (ATOM-OBJ)) 
(HEAT (HEAT-OBJ)) 
(SURROUND (HEAT-OBJ ATOM-OBJ)) 

ACME would easily map the source to the target by pairing 
up SURROUND in the source with SURROUND in the tar­
get and sorting out all the other relations needed to maintain 
isomorphism, such as mapping EARTH to ATOM-OBJ. If, 
however, spatial structure is represented by three dimen­
sional arrays, the mapping process is very different The 
relation su"ound is not explicitly represented at all, but 
only implicitly by the fact that the array location for the 
entry EARTH has the entry AIR in all adjacent locations. 
Similarly, the array location for ATOM-OBJ has the the 
entry HEAT-OBJ in all adjacent locations. The mapping of 
EARTH to ATOM-OBJ is virtually immediate once the two 
arrays are compared with each other. Unlike ACME, which 
at least considers the mapping of AIR to ATOM-OBJ before 
eventually rejecting it as inferior, the visual mapping could 
line things up much more directly, with mapping coming 
automatically from superimposition of one array onto the 
other. Of course, this presupposes that the two three­
dimensional arrays are the same size. 

Visual representations are also very useful for creat­
ing analogies, as in Dalton's comparison of the structure of 
the atmosphere with a pile of shot. It is easy to construct a 
mental image of a pile of cannon balls with one ball nesting 
on four below which nest on nine below, and then transform 
this into a picture of the atmosphere consisting of atoms sur­
rounded by heat similarly nesting. Figure 4 shows several 
views of the pile of balls, the first from the front and the 
other three considering each layer only. To the right of the 
pictures of balls is a diagram that shows how the picture can 
be represented in layers of a three-dimensional array. The 
representation of the pile of balls is not just the various 
slices shown, but the whole array which encapsulates a very 
large amount of spatial information. This encapsulation 
makes creating a visual analog trivial: all we have to do to 
produce a representation of the structure of the atmosphere 
is to replace each entry of BALL with an entry of 
ATOM+HEAT. Once again, the hierarchical nature of the 
representation scheme is useful, since it allows us to substi­
tute a complex of atom and heat rather than just atom. 

Contrast what would be involved in representing and 
transferring this information using ACME or SME. First, 
we would need a large number of propositions to capture 
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BALL 

BALL BALL 

BALL BALL BALL 

BALL BALL BALL 

BALL BALL BALL 

BALL BALL BALL 

BALL BALL 

BALL BALL 

~ BALL 

Figure 4. Array representation of a pile of balls . 
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the structure of the pile of balls, enumerating the balls from 
the bottom up and front to back and left to right: 

(BALL (BALLI)) (BALL (BALL2) (BALL (BALL3)) 
(BALL (BALI.A)) (BALL (BALLS))(BALL (BALL6)) 
(BALL (BALL7) (BALL (BALL8)) (BALL (BALL9)) 
(BALL (BALLlO)) (BALL (BALLI I)) 
(BALL (BALLI2)) (BALL (BALLI3)) 
(FRONT-OF (BALLI BALL2)) (FRONT-OF (BALL2 BALL3)) 
(FRONT-OF (BALI.A BALLS)) (FRONT-OF (BALLS BALL6)) 
(FRONT-OF (BALL7 BALLS)) (FRONT-OF (BALLS BALL9)) 
(FRONT-OF (BALLlO BALLI I)) (FRONT-OF (BALL12 BALLI3)) 
(LEFf-OF (BALLI BALI.A)) (LEFf-OF (BALI.A BALL7)) 
(LEFf-OF (BALL2 BALLS)) (LEFf-OF (BALLS BALL8)) 
(LEFf-OF (BALL3 BALL6)) (LEFf-OF (BALL6 BALL9)) 
(LEFf-OF (BALLlO BALLI2)) (LEFf-OF (BALLll BALLI3)) 
(TOP-OF (BALL14 BALLlO BALLI I BALLI2 BALLI3)) 
(TOP-OF (BALLlO BALLI BALL2 BALI.A BALLS)) 
(TOP-OF (BALLI I BALL2 BALL3 BALLS BALL6)) 
(TOP-OF (BALLI2 BALI.A BALLS BALL7 BALLS)) 
(TOP-OF (BALLI3 BALLS BALL6 BALL8 BALL9)) 

Constructing this encoding would be very difficult without 
first making a diagram! Moreover, the process of mapping 
it to an isomorphic structure with atoms or atom-heat clus­
ters substituted for balls will be computationally expensive, 
whereas a visual analogical mapper that presupposes primi­
tive operations on three-dimensional arrays makes the com­
parison trivial. The implementation of these operations in a 
list or array processing languages is not so trivial, but if one 
assumes that the human information processing system 
comes already with an evolved massively parallel apparatus 
for visual comparisons that can be taken over and applied 
without additional calculations, then the advantages of 
doing at least some analogical mapping visually are 
apparent It would be useful to reinterpret as visual many of 
the standard examples that have been used in discussions of 
analogical mapping, for example the comparison of the 
Bohr model of the atom with the solar system [Gentner 
1983], the solving of Duncker's ray problem using a mili­
tary analogy [Gick and Holyoak 1980], and the use of an 
analogy with water waves to discover the wave theory of 
sound [Thagard 1988]. Visual representations may also be 
useful in providing a new approach to analog retrieval [Tha­
gard, Holyoak, Nelson, and Gochfeld 1990]. 

We have therefore extended our Common LISP 
implementation of parts of Glasgow's scheme to constitute 
a program called VAMP.I, for Visual Analogical Mapping 
Program, version 1.6 Given two arrays, VAMP.I can do 
simple analogical mapping, putting the elements of the two 
arrays in correspondence with each other. V AMP.1 first 
checks to see if the arrays are the same size. If not, it scales 
them up to the size of the least common multiple of their 
sizes. For example, to compare a 4x4x4 array and a 6x6x6 
array, VAMP.I converts both arrays to 12x12x12 arrays. 
When both arrays are equal in size, VAMP. I superimposes 

them and gives a list of all parts which are in corresponding 
cells. Thus VAMP.I can quickly map a 3-dimensional 
representation of an atmosphere consisting of Dalton atoms 
onto a pile of shot and infer the appropriate correspondence 
between particular atoms and particular balls. In contrast, 
when ACME is given the same information expressed in 
predicate calculus, it creates a constraint network of more 
than 3500 units and exhausts the memory on our Sparcsta­
tion 2. 

Thus several aspects of the use of diagrams and visual 
analogies by Dalton can be understood in terms of 
Glasgow's representational scheme for computational 
imagery. Of course, that scheme does not tell the whole 
story. More finely tuned methods are needed to represent 
such structural relations as the angles at which the cannon 
balls touch each other. We would not want, however, to go 
right down to the pixel level, because then we would lose 
the ability to manipulate objects and different levels of 
detail that is so natural in Glasgow's scheme. We have seen 
that visual thinking was clearly important in the develop­
ment and exposition of Dalton's atomic theory, and that 
aspects of this development can fruitfully be understood in 
terms of three-dimensional hierarchical symbolic arrays. 
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Abstract 

This paper describes efficient methods for exact 
and approximate implementation of the MIN­
FEATURES bias, which prefers consistent hy­
potheses definable over as few features as pos­
sible. This bias is useful for learning domains 
where many irrelevant features are present in 
the training data. 
We first introduce FOCUS-2, a new al­
gorithm that exactly implements the MIN­
FEATURES bias. This algorithm is empir­
ically shown to be substantially faster than 
the FOCUS algorithm previously given in [Al­
muallim and Dietterich, 1991). We then intro­
duce the Mutual-Information-Greedy, Simple­
Greedy and Weighted-Greedy algorithms, 
which apply efficient heuristics for approximat­
ing the MIN-FEATURES bias. These algo­
rithms employ greedy heuristics that trade op­
timality for computational efficiency. Experi­
mental studies show that the learning perfor­
mance of ID3 is greatly improved when these 
algorithms are used to preprocess the train­
ing data by eliminating the irrelevant features 
from ID3's consideration. In particular, the 
Weighted-Greedy algorithm provides an excel­
lent and efficient approximation of the MIN­
FEATURES bias. 

1 Introduction 

In many inductive learning applications, one has to deal 
with training data that contain many features that are ir­
relevant to the target concept being learned. In these do­
mains, an appropriate bias is the MIN-FEATURES bias, 
which prefers any consistent hypothesis definable over as 
few features as 1;;>0ssible. Previous work [Almuallim and 
Dietterich, 1991J showed that this simple bias is strong 
enough to yield polynomial sample complexity. The 
same study showed that-contrary to expectations­
the performance of conventional inductive learning algo-
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rithms such as ID3 [Quinlan, 1986) and FRINGE [Pa­
gallo and Haussler, 1990) is seriously reduced by the 
presence of irrelevant features. These results suggested 
that one should not rely on these algorithms to filter out 
irrelevant features. Instead, some technique should be 
employed to eliminate irrelevant features and focus the 
learning algorithm on the relevant ones. 

Given a set of training examples of an unknown tar­
get concept, the task for any algorithm implementing the 
MIN-FEATURES bias is to find the smallest subset of 
the given features that permits a consistent hypothesis to 
be defined. In previous work [Almuallim and Dietterich 
91), an algorithm called FOCUS was presented that ex­
actly implements the MIN-FEATURES bias. However, 
the worst-case running time of this algorithm is expo­
nential in the number of relevant features . The goal 
of this paper is to describe more efficient algorithms 
for exact and approximate implementation of the MIN­
FEATURES bias. 

Specifically, the paper first introduces FOCUS-2, 
a new algorithm that exactly implements the MIN­
FEATURES bias. This algorithm is empirically shown 
to be substantially faster than FOCUS. We then in­
troduce the Mutual-Information-Greedy, Simple-Greedy 
and Weighted-Greedy algorithms, which apply efficient 
heuristics for approximating the MIN-FEATURES bias. 
Unlike FOCUS-2, these algorithms employ greedy heuris­
tics that trade optimality for computational efficiency. 
Experimental studies show that the learning perfor-
mance of ID3 [Quinlan, 1986) is greatly improved when 
these algorithms are used to preprocess the training data 
by eliminating the irrelevant features from ID3's consid­
eration. In particular, the Weighted-Greedy algorithm 
provides an excellent and efficient approximation of the 
MIN-FEATURES bias. 

The task of selecting a subset of the available features 
that meets a given criterion has long been known in the 
field of pattern recognition as the problem of "feature se­
lection" or "dimensionality reduction." However, most 
of the work in this area seeks to enhance the compu­
tational efficiency of particular classifiers while leaving 
their accuracy unaffected, whereas the goal of this paper 
is to improve the accuracy of the classifier by selecting 
the minimal number of features. 

The typical case studied in pattern recognition in­
volves a classifier that is capable of performing quite 



well without feature selection (i .e., using all of the avail­
able features) . However, for ease of hardware imple­
mentation and speed of processing, it is necessary to re­
duce the number of features considered by the classifier. 
Generally, the classifiers studied in pattern recognition 
have the so-called monotonicity property ([Narendra and 
Fukunaga, 1977]) that as the number of features is re­
duced, the accuracy decreases. The goal of feature selec­
tion is to eliminate as many features as possible without 
significantly degrading performance. 

Most feature selection criteria in pattern recognition 
are defined with respect to a specific classifier or group 
of classifiers. For example, [Kittler, 1980] show meth­
ods for selecting a small subset of features that opti­
mizes the expected error of the nearest neighbor clas­
sifier . Similar work has addressed feature selection 
for the Box classifier [Ichino and Sklansky, 1984a], the 
linear classifier [Ichino and Sklansky, 1984b] and the 
Bayes classifier [Queiros and Gelsma, 1984] . Other 
work ( aimed at removing feature redundancy when fea­
tures are highly correlated) is based on performing a 
principal components analysis to find a reduced set 
of new uncorrelated features defined by combining the 
original features using the eigenvectors [Morgera, 1986; 
Mucciardi and Gose, 1971] . To our knowledge, the prob­
lem of finding the smallest subset of Boolean features 
that is sufficient to construct a consistent hypothesis (re­
gardless of the form of the hypothesis )-which is the 
topic of this paper-has not been addressed. 

2 Preliminaries 

Let { x1, x2, · · · Xn} be a set of n Boolean features, and 
let Un denote the set of all possible assignments to these 
features . A concept c is a subset of Un (i.e., all positive 
instances of c) . An example for a concept c is a pair 
(X, class) , where X E Un and class is + if X E c and 
- otherwise. A sample is a set of examples drawn at 
random from Un , 

Given a training sample and a set of features Q, a suf­
ficiency test is a procedure for checking whether Q is suf­
ficient to form a consistent hypothesis. The sufficiency 
test can be implemented ~imply by checking whether the 
sample contains a pair (Xi,+) and (X2, - ) of positive 
and negative examples such that Xi and X 2 have the 
same values for all the features in Q. If such a pair 
appears, then Q cannot discriminate all of the positive 
examples from all of the negative examples. In general, 
Q is a sufficient set if and only if no such a pair appears 
in the training sample. 

For a pair of examples (Xi,+) and (X2, - ), we define 
a conflict generated from this pair as an n-bit vector a = 
(aia2 ··· an) where a; = 1 if Xi and X2 have different 
values for the feature x; and O otherwise. We will say 
that a is explained by x; if and only if a; = 1. Using this 
terminology, a set Q of features is sufficient to construct 
a hypothesis consistent with a given training sample if 
and only if every conflict generated from the sample is 
explained by some feature in Q. 

Example: Let the training sample be 

(010100, +) (011000, - ) 

Algorithm FOCUS-2(Sample) 
1. If all the examples in Sample have the same class, 

then return </J. 
2. Let G be the set of all conflicts generated from 

Sample. 
3. Queue= {M,p,,p} , 

/* This is a first-in-first-out data structure. * / 
4. Repeat 

4.1. Pop the first element in Qu eue. Call it MA B. 
4.2 . Let OUT = A. ' 
4.3. Let a be the conflict in G not explained by any 

of the features in A such that 
IZa - Bl is minimized , where Za is the set of 
features explaining a. 

4.4. For each x E Za - B 
4.4.1. If Sufficient(A LJ{ x} ), return (A LJ{ x} ). 
4.4.2. Insert MALJ{x},OUT at the tail of Qu eue. 
4.4.3. OUT = OUTLJ{x}. 

end FOCUS-2. 

Figure 1: The FOCUS-2 learning algorithm. 

(110010, +) 
(101111, +) 

(101001 , - ) 
(100101 , - ) 

Then, the set of all conflicts generated from this sam-
ple is 

a1 = (001100) 
a2 = (111101) 
a3 = (110001) 

a4 = (101010) 
as = (011011) 
a5 = (010111) 

a 1 = (110111) 
as = (000110) 
ag = (001010) 

The reader can check that the subset {xi , X3, x4 } is 
sufficient to form a consistent hypothesis ( e.g., ii:i:3 V 
( X3 EB x4)) , and that all subsets of cardinality less than 
3 are insufficient. D. 

Given a sufficient subset of features, it is easy to con­
struct a consistent hypothesis. For example, the algo­
rithm ID3 [Quinlan, 1986] can be applied to the training 
sample but restricted to consider only the features in the 
given subset . Hence, in the rest of this paper, finding a 
solution will be taken to mean identifying a subset of 
features sufficient to form a consistent hypothesis. 

3 Improving the FOCUS Algorithm 

The FOCUS algorithm given in [Almuallim and Diet­
terich, 1991] works by trying all the subsets of features 
of increasing size until a sufficient set is encountered. In 
the example of the previous section, FOCUS tests the m + (1) + m = 22 subsets of features of size 0, 1 and 2, 
and some of the (!) = 20 subsets of size 3 before return­
ing a solution. By doing so, FOCUS is not exploiting all 
the information given in the training sample. Consider, 
for instance, the conflict ai = (001100) . This conflict 
tells us that any sufficient set of features must contain x 3 

or x4 in order to explain the conflict . Hence, none of the 
sets {xi}, {x2} , {xs}, {x5}, {xi , x2}, {xi , xs}, {xi, XG}, 
{x2 , xs}, {x2, x5}, {xs, x5} can be solutions. Therefore, 
all of these sets can immediately be ruled out of the 
algorithm's consideration. Many other subsets can be 
similarly ruled out based on the other conflicts. 
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Figure 2: An example of FOCUS-2. Rectangles indicate where the sufficiency tests occurred. 

Figure 1 shows the FOCUS-2 algorithm, which takes 
advantage of this observation. In this algorithm, we use 
a first-in-first-out queue in which each element denotes a 
subspace of the space of all feature subsets. Each element 
has the form MA,B, which denotes the space of all feature 
subsets that include all of the features in the set A and 
none of the features in the set B . Formally, 

For example, the set M4>,4> denotes all possible feature 
subsets, the set MA,</> denotes all feature subsets that 
contain at least the features in A, and the set M4>,B de­
notes all feature subsets that do not contain any features 
inB. 

The main idea of FOCUS-2 is to keep in the queue only 
the promising portions of the space of feature subsets­
i.e. those that may contain a solution. Initially, the 
queue contains only the element M4>,4> which represents 
the whole power set. In each iteration in Step 4, the 
space represented by the head of the queue is partitioned 
into disjoint subspaces, and those subspaces that cannot 
contain solutions are pruned from the search. 

Consider again t!J.e conflict a1 = (001100). Suppose 
the current space of possible feature subsets is M<f>,4>· 
We know that any sufficient feature subset must con­
tain either x 3 or x4 . We can incorporate this knowl­
edge into the search by refining M4>,4> into the two sub­
spaces M{:r:3},4> ( all feature subsets that contain x3) and 
M{:r: 4 },{:r:3} (all feature subsets that contain x4 and do 
not contain x3 ). Note that the second subscript of M 
is used to keep the various subspaces disjoint. Clearly, 
conflicts with fewer l's in them provide more constraint 
for the search than conflicts with more l's. Hence, if the 
head of the queue is MA,B, then the algorithm (Step 4.3) 
searches for a conflict a such that 

• a is not explained by any of the features in A, and 

• the number of l's corresponding to features that are 
not in B is minimized. 

The algorithm then incorporates a into the search. 
In detail, here is how FOCUS-2 behaves on the exam­

ple given in the previous section. As shown in Figure 2, 
the algorithm starts by processing M<f> ,4>· The conflict 
a1 = {001100) is selected in Step 4.3 and M4>,4> is re­
placed by M{:r:s},4> and M{:r:.},{:r:3} · Next, for M{:r:3},<f>, 
the conflict as = (000110) is selected, and M{:r: 3 ,:r: 4 },4> 

and M{:r:3,:r: 5 },{:r:.} are added to the queue. M{:r: 4 },{:r:3} 

is then processed with ag = {001010) and M{:r:4,:r: 5 },{:r:3} 
is inserted. Finally, when M{:r:3,:r:4},4> is processed with 
a3 = 110001, the algorithm terminates in Step 4.4.1 be­
fore adding M{:r: 1 ,:r:3,:r:4},4> to the queue, since {x1, x3, X4} 
is a solution. 

Using FOCUS-2, the number of sufficiency tests is only 
7. By comparison, FOCUS must perform at least 23 suf­
ficiency tests (to test each of the 22 subsets of size up to 
2, and at least one of the 20 subsets of size 3). Because 
FOCUS-2 only prunes subspaces that cannot possibly 
explain all of the conflicts, it is sound and complete-it 
will not miss any sufficient feature subsets. Furthermore, 
because it considers the subspaces MA,B in order of in­
creasing size of A, it is guaranteed to find a sufficient 
subset with the smallest possible size. Finally, of course, 
the number of sufficiency tests performed by FOCUS-2 
will typically be much less ( and certainly never more) 
than the number of tests performed by FOCUS. 

4 Heuristics for the MIN-FEATURES 
bias 

Exact implementation of the MIN-FEATURES bias in 
domains with large numbers of features can be compu­
tationally infeasible1 . In such cases, one may be willing 

1 The reader may have already noticed the connection 
between the MIN-FEATURES bias and the Minimum-Set-



to employ efficient heuristics that provide good but not 
necessarily optimal solutions. In this section, we describe 
three such algorithms. Each of these algorithms imple­
ments an iterative procedure where in each iteration the 
feature that seems most promising is added to the partial 
solution. This continues until a sufficient set of features 
is found . The only difference between the three algo­
rithms is the criterion used in selecting the best feature 
in each iteration. 

In Figure 3, we give a sketch of each of our algorithms. 
More detailed and computationally efficient implemen­
tations can be found in lAlmuallim, 1992]. In the follow­
ing, we describe the selection criteria implemented by 
each algorithm. 

The Mutual-Information-Greedy (MIG) Algo­
rithm: For a given set of features Q, imagine that the 
training sample is partitioned into 2IQI groups such that 
the examples in each group have the same truth assign­
ment to the features in Q. (One can think of this as a 
completely balanced decision tree with 2IQI leaves.) Let 
Pi and ni denote the number of positive and negative 
examples in the i-th group, respectively. The entropy of 
Q is defined as 

Entropy( Q) = -

ni 1 ni ] og2 ---
Pi + ni Pi+ ni 

with the convention that a log2 a = 0 when a = 0. 
In the Mutual-Information-Greedy algorithm, the fea­

ture that leads to the minimum entropy when added to 
the current partial solution is selected as the best fea­
ture. 

The Simple-Greedy (SG) Algorithm: This algo­
rithm chooses each time the feature that explains the 
largest number of conflicts that are not yet explained. 
The conflicts that are explained by this feature are then 
removed from the set of conflicts. The process is re­
peated until all conflicts are removed. 

The Weighted-Greedy (WG) Algorithm: In th~ 
Simple-Greedy algorithm, every conflict contributes a 
unit increment to the score of each feature that explains 
it. In the Weighted-Greedy algorithm, the increment 
instead depends on the total number of features that 
explain the conflict. The intuition is that if a feature 
uniquely explains a conflict, then that feature must be 
part of the solution set of features. If A.,, is the set of 
conflicts explained by a feature Xi, then the score of Xi 

is computed as 

score.,,= L 
aEA.,, 

1 
# of features explaining a - 1 

Cover problem, which is known to be NP-hard [Garey and 
Johnson, 1979] . However, note that we assume here the ex­
istence of a small set of features that forms a solution. This 
corresponds to restricting the Minimum-Set-Cover problem 
to instances that have small covers. 

Algorithm: Mutual-Information-Greedy(Samp/e) 
l. Q = ¢, . 
2. Repeat until Entropy(Q) = 0: 

2.1. For each feature Xi, 

let score.,, =Entropy(QLJ{xi}) . 
2.2. Let best be the feature with the lowest score. 
2.3. Q = Q U{ best}. 

end Mutual-Information-Greedy 

Algorithm: Simple-Greedy(Samp/e) 
l. Q = ¢,. 
2. Let A be the set of all conflicts generated from 

Sample. 
3. Repeat until A is empty: 

3.1. For each feature x;, let score.,, = the number of 
conflicts explained by x; . 

3.2 . Let best be the feature with the highest score. 
3.3. Q = Q LJ{ best} . 
3.4. Remove from A all the conflicts explained by 

best. 
end Simple-Greedy. 

Algorithm: Weighted-Greedy(Samp/e) 
l. Q = ¢,. 
2. Let A be the set of all conflicts generated from 

Sample. 
3. Repeat until A is empty: 

3.1. For each feature Xi: 

3.1.1. A.,, = the set of conflicts explained by x; . 
3.1.2 score., . = ~ EA 1 . . • L.Ja :.:; # of features expla.mmg a - 1 · 

3.2. Let best be the feature with the highest score. 
3.3. Q = Q LJ{ best}. 
3.4. Remove from A all the conflicts explained by 

best. 
end Weighted-Greedy. 

Figure 3: Three heuristics for approximating the MIN­
FEATURES bias. 

Under this heuristic, when a feature Xi explains a conflict 
a, the contribution of a to the score of Xi is inversely 
proportional to the number of other features that explain 
a. If only a few other conflicts explain a then x; receives 
high credit for explaining a. In the extreme case where 
a is exclusively explained by x;, the score of x; becomes 
oo . This causes the feature to be included in the solution 
with certainty. 

5 Experimental Results 

5.1 Sample Complexity and Accuracy 

In this subsection, we test the value of each of the heuris­
tics of Section 4 for learning tasks where many irrelevant 
features are present. Note that these heuristics are not 
complete learning algorithms- rather they are prepro­
cessors that provide us only with a set of features suffi­
cient to construct a consistent hypothesis . To construct 
an actual hypothesis, we first filter the training examples 
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Figure 4: The number of examples needed for learning all the concepts with 3 relevant features out of 8, 10, and 12 
available features . ID3 requires 2236 examples when the total number of features is 12. 

to remove all features not selected during preprocessing. 
Then we give the filtered examples to ID3 to construct 
a decision tree. We will refer to the three algorithms as 
MIG+ID3, SG+ID3 and WG+ID3. Likewise, using FO­
CUS instead of these heuristics to find a sufficient subset 
of features will be denoted FOCUS+ID3. 

For comparison, our experiments also include ID3 with 
no preprocessing in addition to FRINGE [Pagallo and 
Haussler, 1990]. Our version of ID3 performs no win­
dowing or forward pruning and employs the information 
gain (mutual information) criterion to select features. 
FRINGE is terminated after at most 10 iterations. 

The algorithms are evaluated through a set of experi­
ments similar to those reported in [Almuallim and Diet­
terich, 1991]. Details of the experiments can be found in 
[Almuallim, 1992]. We report here two kinds of experi­
ments. In the first experiment, we are interested in the 
worst-case performance over a class of concepts, where 
each concept is definable over at most p out of n features 
(and hence, the MIN-FEATURES bias is appropriate). 
As our measure of performance, we employ the sample 
complexity-the minimum number of training examples 
needed to ensure that every concept in the class can be 
learned in the PAC sense [Blumer et al., 1987]. We esti­
mate the sample complexity with respect to fixed learn­
ing parameters p, n, c, and 8 and with training samples 
drawn according to the uniform distribution. 

In the second experiment, we are interested in the 
average-case performance of the algorithms. We ran­
domly generated a collection of concepts that involve 
only a few features among many available ones. We then 
measured the accuracy rate of each algorithm while pro­
gressively increasing the size of the training sample--i.e. 
by plotting the learning curve for each of the concepts 
under consideration. 

EXPERIMENT 1: Sample Complexity. The goal 
of this experiment is to estimate the minimum number 
of examples that enables each algorithm to PAC learn all 
the concepts of at most 3 relevant features out of n avail­
able features for n = 8, 10 and 12. To decide whether 
an algorithm L learns a concept c for sample size m, we 
generate 100,000 random samples of c of size m. We con­
clude that c is learned by L if and only if for at least 90% 
of these samples L returns a hypothesis that is at least 
90% correct. Thus, the quantity measured here can be 
viewed as an empirical estimate of the sample complexity 
of each algorithm [Blumer et al., 1987] for c = 8 = 0.1. 
To reduce the computational costs involved in this ex­
periment, we exploited the fact that the algorithms are 
symmetric with respect to the permutation and nega­
tion of any subset of the features of the target concept 
[Almuallim, 1991]. 

The results of this experiment for n = 8, 10 and 12 are 
shown in Figure 4. 

EXPERIMENT 2: Learning Curve. The purpose 
of this experiment is to perform a kind of "average-case" 
comparison between the algorithms. The experiment is 
conducted as follows. First, we randomly choose a con­
cept such that it has only a few relevant features among 
many available ones. We then run each of the algorithms 
on randomly-drawn training samples of this concept and 
plot the accuracy of the hypothesis (i.e., the percentage 
of the examples correctly classified by the hypothesis) 
returned by each algorithm against the training sample 
size. This is repeated for various sample sizes for the 
same concept . 

The above procedure was applied on 100 randomly 
selected concepts each having at most 5 relevant features 
out of 16 available features . For each of these concepts, 
the sample size m was varied from 20 to 120 examples. 
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For each value of m, the accuracy rate was averaged over 
100 randomly drawn training samples. 

Figure 5 shows a pattern typical of all learning curves 
that we observed. 

As a way to combine the results of the 100 concepts, 
we have measured the difference in accuracy between 
FOCUS and each of the other algorithms for each sample 
size, and averaged that over all the 100 target concepts. 
The result is shown in Figure 6. 

DISCUSSION: The performance of the algorithms 
tested in the above experiments can be summarized as 
follows : 

1. Each of the three heuristics improved the perfor­
mance of ID3 when learning in the presence of irrel­
evant features. 

2. Weighted-Greedy gave the overall best approxima­
tion to the MIN-FEATURES bias. The perfor­
mance of this algorithm was quite close to that of 
FOCUS both in the worst and average cases. 

3. Mutual-Information-Greedy and Simple-Greedy are 
very much alike. These algorithms maintained a 
reasonable average-case performance, but exhibited 
a rather bad worst-case performance. 

4. Finally, FRINGE showed poor average-case perfor­
mance, but its worst-case performance is almost 
as good as Weighted-Greedy and substantially bet­
ter than Mutual-Information-Greedy and Simple­
Greedy. In terms of the computational costs, how­
ever, FRINGE is much more expensive than any of 
the three heuristics considered here. 

5.2 Execution Time Comparisons 

In this subsection, we compare the computational costs 
of FOCUS, FOCUS-2 and WG measured as the the num­
ber of sufficiency tests and the amount of CPU-time re­
quired by each algorithm to return a solution. The three 
algorithms were implemented in C. Special attention was 
given to optimizing the implementation of FOCUS. 

The experiments were conducted using target concepts 
that have only a few relevant features out of many avail­
able. The relative performance of the algorithms was 
greatly affected by the problem size measured as the 
number of the available features and the ratio of the 
relevant features to that number. However, when the 
problem size was reasonably large, the relative perfor­
mance followed a consistent trend. This trend is illus­
trated by Table 1 where we give the result for a target 
concept with 9 relevant features out of 25 available fea­
tures. Training examples were drawn with replacement 
under the uniform distribution and the training sample 
size was varied from 100 to 500. The numbers in this 
table are averaged over 10 runs for each training sample . . 
size. 

Overall, we found that FOCUS-2 was several times 
faster than FOCUS and that Weighted-Greedy was fur­
ther many times faster than FOCUS-2. It is interesting 
to note that the number of sufficiency tests done by FO­
CUS remains steady as the training sample size grows, 
since it blindly follows the same steps for any training 
sample. FOCUS-2, on the other hand, does a progres­
sively smaller number of sufficiency tests as the number 
of training examples increases. This is because with a 
larger sample there is a greater chance of getting con­
flicts that are explained by only few features, and conse­
quently, a better chance for significant reduction in the 
number of sufficiency tests needed by FOCUS-2. 
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Figure 6: The difference between the accuracy of FOCUS+ID3 and the accuracy of the other algorithms averaged 
over all the randomly chosen 100 target concepts. 

6 Conclusions and Future Research 

This paper dealt with the problem of reducing the com­
putational costs involved in implementing the MIN­
FEATURES bias. Section 3 introduced the FOCUS-2 
algorithm, which provides an implementation of this bias 
that is substantially faster than the FOCUS algorithm 
previously given in [Almuallim and Dietterich, 1991]. 
Section 4 introduced three efficient heuristics for approx­
imating the MIN-FEATURES bias. Experimental stud­
ies were reported in which each of these algorithms was 
used to preprocess the training data to remove the irrel­
evant features. All of these algorithms were found to be 
helpful in improving the performance of ID3 in learning 
tasks where many irrelevant features are present. In par­
ticular, the Weighted-Greedy algorithm exhibited excel­
lent performance that closely matches what is obtained 
by the exact MIN-FEATURES bias. We recommend 
that, in applications where the MIN-FEATURES bias is 
appropriate, the Weighted-Greedy algorithm should be 
applied to preprocess the training sample before invok­
ing a decision-tree algorithm, such as ID3. 

All of the approximation algorithms we give can be 
shown to be polynomial time algorithms. A challenging 
goal for future research is to prove formal results on the 
sample complexity of these and similar approximation 
algorithms. 

The work reported in this paper assumes noise-free 
training data. A direct way to deal with classification 
noise is to modify the given algorithms by relaxing the 
requirement of explaining all the conflicts generated from 
the training data. That is, we search for a small set of 
features that may leave a certain percentage of the con­
flicts unexplained, where such percentage can be deter­
mined through cross-validation. Studying this and more 
sophisticated approaches to dealing with noise and ap-

plying the resulting techniques to real-world problems 
are two important topics for future work. 
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Abstract 

Genetic Algorithms derive most of their power from the 
implicit processing of schemata. It is important to note, 
however, that schemata, as described in the literature, 
function only as theoretic constructs: they are not processed 
explicitly. This paper attempts to exploit the power of 
schemata directly, not just by using them to analyze the 
performance of a Genetic Algorithm, but by using them as 
explicit components of the representation. We describe an 
efficient schema-based representation and operators for 
solving the Traveling Salesman Problem. In this domain, 
we found that the direct use of schemata provides a much 
more natural representation and makes the application of 
genetic operators easier. For example, by using schemata 
incomplete tours are permitted, and, because operators don't 
have to form complete tours, exchange and variation of 
genetic material is simple. Empirical results show that the 
new representation and operators quickly provide good 
results, and we conjecture that explicit schema processing 
will reduce the complexity of problems in other domains as 
well. 

1 Introduction 

Genetic Algorithms (GAs) [Goldberg, 1989; Holland, 
1975; Holland et al. , 1986; Schaffer, 1989) have 
demonstrated their robustness and efficiency as search and 
learning techniques in many application domains. They 
typically start out with a randomly generated initial 
population of potential solutions encoded as fixed-length 
binary strings, i.e. strings over the alphabet { 0, 1 } . The 
current population is repeatedly, and in parallel, transformed 
into a new population by subjecting it to greatly simplified 
mechanisms of the Darwinian Theory of Evolution by 
Natural Selection: 1) fitness proportional reproduction, and, 
2) genetic operators such as crossover and mutation. 

Holland [Holland, 1975] introduced the use of 
schemata (or boolean hyperplanes) to theoretically 
characterize GAs, and, in particular, to prove the Schema 
Theorem, and to establish that GAs exhibit 'implicit 
parallelism'. 

Schemata provide a compact way to express similarities 
among strings, and are themselves strings over the alphabet 
{ *, 0, 1}. The addition of '*' - interpreted as a metalinguistic 

don't care symbol - enables schemata to denote subsets of 
strings over the alphabet {0, 1} which are similar at certain 
positions. For example, the schema *101* denotes {01010, 
01011, 11011, 11010} whose elements are identical in their 
second through fourth positions. A schema has several 
important properties, such as its fitness (as given by the 
average fitness of the strings it matches), its defining length 
(the distance between its first and last specific string 
positions, 2 in the example above), and its order (the 
number of its fixed positions, 3 in the example above). 

The Schema Theorem [Holland, 1975) states that 
highly fit, short defining length, and low order schemata are 
allocated exponentially increasing trials in successive 
generations, under fitness-proportional reproduction, 
crossover, and mutation. Holland also showed that GAs 
possess a property of implicit parallelism: while ostensibly 
processing only the binary strings in the population, they 
also process in parallel a much greater number of schemata 
represented in the population. Indeed, for a population of 
size n at least n3 schemata are usefully processed without 
computational overhead. 

From these results it is clear that GAs derive most of 
their power from the implicit processing of schemata. It is 
important to note, however, that schemata, as described in 
the literature, function only as theoretical constructs, 
i.e. GAs never actually work with strings containing the'*' 
symbol, except in classifier systems, but in these systems 
there is no direct measure of a classifier's fitness, it must be 
first tested in the environment for its strength to be 
assigned. 

In this paper we show that GAs can indeed benefit from 
processing schemata explicitly by describing an efficient 
schema-based representation and operators for solving the 
Traveling Salesman Problem (TSP). Section 2 
quickly describes GA research on the TSP. Section 3 
introduces our new genetic representation, based on a 
schema, for the TSP, and discusses how schema fitness is 
determined. Section 4 describes two genetic schema 
operators: a mutation operator, and combined inversion­
crossover operator. Section 5 discusses our empirical results, 
and section 6 concludes the paper. 

Our approach is further motivated by the often noted 
fact that a complex structure evolves much faster when it is 
assembled in hierarchical layers from stable subunits that are 



larger than their elementary partsl. We therefore conjecture 
that explicit schema processing will reduce the complexity 
of problems in other domains as well. 

2 GAs and the Traveling Salesman 
Problem 

The Traveling Salesman Problem [Lawler et al., 1985] 
is a well known NP-hard problem that can only be solved, at 
best, by heuristic techniques, because methods for finding an 
exact solution grow exponentially with the number of nodes 
in the graph. The TSP is of particular interest to the GA 
research community because of its complex ordering 
dependencies and its typically non-binary representation. 
Among many attempts to use traditional GAs on the TSP 
[Goldberg and Lingle, 1985; Liepins and Hilliard, 1987; Suh 
and Van Gucht, 1987], only Whitley [Whitley et al., 1989] 
has met with respectable success. 

The lessons learned from GA research on the TSP can 
be briefly summarized in two statements: 1) use a natural 
representation that allows easy exchange and variation of 
genetic material, and, 2) use operators that preserve as much 
genetic material from the parent strings as possible. The 
problem with these two statements is that they are in 
conflict with one another. Any successful attempt at the 
TSP must come to terms with each of these statements. 

When representations such as the path or adjacency 
representations2 [Grefenstette et al., 1985] are used, the 
classical operators of mutation and crossover may no longer 
generate valid tours. When a representation such as the 
ordinal representation3 [Grefenstette et al., 1985], that is 
closed under crossover and mutation, is used, the resulting 
tours may have little resemblance to the parent tours. These 
representational problems are often tackled by introducing 
modified crossover operators. Although these operators 
produce valid tours, they create problems of their own. 
When they swap genetic material between the crossover 
points, they generate holes - undetermined cities - in the 
resulting tours. Since they are forced to produce complete 
tours, they fill the holes, and in the process tend to increase 
the mutation rate by destroying good edges from their 
parents. The goal, on the contrary, should be to preserve the 
maximum amount of information the parents provide 
[Whitley et al., 1989]. 

3 Path Schema Representation (PSR) 

In order to prevent edge destruction resulting from an 
operator's attempt to fill in the holes of an offspring, we 
propose a schema-based representation called the path 
schema representation (PSR), which tolerates holes. 

1 [Simon, 1969, pp. 90-95], [Simon, 1973]. 
2 In the path representation, a tour is simply a list of visited 

cities. In the adjacency representation, a tour consists of a 
list of cities such that if there is an edge from city i to city 
j, then the allele in position i is j. 

3 In the ordinal representation, a tour consists of a list of N 
integers constructed from the path representation in which 
the ith element can range from 1 to N-i+l. 

The PSR is similar to the path representation except 
that holes (don't care cities, denoted '*') are permitted. For 
example, (A B * D *) represents a tour from city A to B, to 
some unknown city, to city D, to some unknown city, and 
back to city A. 

Having accepted the PSR as the representation of a tour, 
an immediate problem occurs in the calculation of a tour's 
fitness. The normal method of fitness calculation, for a 
minimization problem such as the TSP, is as follows: 

f(x) = Cmax - g(x) 

=0 
where g(x) < Cmax 

otherwise 

Cmax - the length of the largest possible tour - can be 

easily computed by multiplying the number of hops in a 
tour by the greatest distance between two cities plus 14, 
giving a hypothetical worst possible tour length. However, 
there is a problem in calculating the value of the function 
g(x) - the length of tour x. Given a tour such as (ABC D 
E), a tour length can be easily computed5. However, how 
can one compute the length of the tour (A B * D *)? What 
is the distance between city B and *? Given two similar 
tours, such as (A B C D E) and (A B * D *), are their fitness 
values similar? Should they be similar? Should a complete 
tour's fitness be given more weight? If one is to use the 
PSR, these questions must be addressed. 

After examining three different methods of computing 
g(x): one that used the maximum distance between any two 
cities to fill in the distances to unknown cities, and one that 
used the maximum distances between two cities from the set 
of unknown cities, we chose to estimate the tour length of a 
incomplete tour from the present known tour length. 

( ) (known tour distance * number of hops in tour) 
g x - (number of known hops in tour) 

For example, the tour (A B C * E) has three known 
distances: AB, BC, EA, and two unknown distances6. If the 
sum of the known distances is x, the estimated tour length 

· is~- If, from an incomplete tour, half of the distances are 

known, the estimated tour length will be twice of their total. 
This definition provided a very good estimate of the length 
of partial tours and provided the exact length of complete 
tours, however, sometimes partial tour lengths were under 
estimated, and we wanted to favor complete tours. To solve 
this problem the following modification was done to g(x): 

city Bias:= 2 
IF knownHops <= city Bias THEN 

{Few actual distances between cities are known, use 
worst estimate of tour length} 

4 The one is added to ensure a fitness value >= 1. 
5 This is provided that a distance matrix or some formula for 

computing distances between two cities is given. 
6 Trivially, distances CD and DE are the ones that remain, 

however, assume that it is not known that city D is the one 
missing. 
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g(x) := knownDistance + 

(currentWorstDistanceBetweenTwoCities * 
unknownHops) 

ELSE 
(Mostly know distances between cities, compute 

standard g(x)} 
IF knownHops >= (maxHops - cityBias) THEN 

g(x) := knownDistance * 
( maxHops / knownHops ) 

ELSE 
(Many unknown distances between cities, penalize 

g(x)} 
g(x) := knownDistance * 

( maxHops / (knownHops - city Bias)) 

If very few cities in the tour are known, the worst estimate 
method is used. If most of the cities in the tour are known, 
the standard g(x) estimate is used. If the known number of 
cities does not fall into the previous categories, g(x) is 
computed as follows: 

, (known distance * number of hops in tour) 
g(x) = (number of known hops in tour - penalty) 

By introducing a penalty (cityBias), this function slightly 
increases the length of incomplete tours compared to the 
standard function g(x)., thereby, penalizing incomplete 
tours. We found that a penalty of 2 made partial tours 
marginally longer than complete tours, but still comparable 
to them. 

Finally, we wanted new, strong tours to be accepted 
quickly into the population. This was achieved with the 
following fitness function F(x): 

F(x) = f(x)P 

We found that the best results were achieved with a p value 
of 2. 

4 Operators 

The classical TSP operators of mutation and crossover 
[Grefenstette et al., 1985) will not work with the PSR - or 
most other TSP representations. For example, simple 
mutation - the occasional, random change of a gene's allele -
cannot be performed because if a gene's allele changes - from 
one city to another - there will be two genes with the same 
city, thereby forming an illegal tour. To work properly, 
operators must contain knowledge of tour ordering and 
contents dependencies. A simple modification to the 
mutation operator solves the contents problem: two cities, 
rather than one, change their locations in the tour. Using 
this form of mutation, no city is then visited twice. The 
mutation operator is suppose to add new genetic material, so 
how does the swapping of cities add any new genetic 
material to a tour when both cities are still present in the 
tour? The answer is: by switching cities, new edges are 
formed - four in total. Edges are the genetic material that is 
altered during mutation. 

Simple crossover suffers from the same fate as simple 
mutation. The random exchange of genetic material between 
tours often results, because of the representation, in an 
invalid tour, as a result of one city occurring more than once 
in iL To combat the problem, a crossover operator must 
contain knowledge of tour ordering and contents 
dependencies if it is to produce legal tours. What genetic 
material is exchanged during crossover? When the PSR - or 
most other representations for the TSP - is used, the genetic 
material exchanged is a subtour. What is a subtour? It is an 
ordering of edges. Edges and their ordering are the genetic 
materials that are exchanged during crossover. 

One genetic operator that does work with a 
representation such as PSR is called inversion, and it always 
produces a legal tour. Inversion selects two cities in the tour 
and reverses the subtour between them. For example, 
performing inversion on the tour (A B C D E F) at cities B 
and E results in the tour (A E D C B F). Since only two 
cities are actually swapped, it is similar to the modified 
mutation operator. However, while the modified mutation 
operator adds four new edges, inversion adds only two new 
edges - edges AE and BF in the previous example. The 
inversion operator's purpose is not that of mutation, but 
rather to produces new tour orderings and as few new edges 
as possible. Edge ordering is the genetic material maintained 
during inversion. 

We propose two new genetic operators for use with the 
PSR: the Schema Mutation Operator, and the Inverted 
Schema Crossover Operator, and make the following goals 
for them. 

1) Operators should focus on the edges, not the 
cities, for the TSP. 

2) Operators should attempt to preserve as many 
of the parent's original edges in generated 
offspring. 

3) Operators should be considered for edge 
creation, edge swapping, and edge reordering. 

4) Operators should be able function with 
incomplete tours. 

At this point we remind the reader that the PSR is a 
schema-based representation. Don't care cities are permitted,. 
resulting in the possibility of incomplete tours. Our 
operators must, therefore, work with both complete and 
incomplete tours. A complete tour is valid if and only if 
each city is found once in the tour. An incomplete tour is 
valid if and only if each city is found once or it is absent 
from the tour; the don't care city, however, may occur more 
than once. 

4 .1 Schema Mutation Operator 

Our mutation operator, called the Schema Mutation 
Operator (SMO), like the classical mutation operator, works 
on one gene at time. This is made possible by the PSR. 
Two mutation rates are defined for the operator. The first 
mutation rate (Pms) represents the rate at which a tour 
(schema) is considered for mutation. The second mutation 
rate (Pmg) represents the rate at which a site in the tour is 



considered for mutation. Once a tour has been selected for 
mutation, the operator sweeps the sites one by one and 
decides which ones to mutate. Once a site is selected for 
mutation, the operator first collects all existing cities not 
currently in the tour into a list. Cities may or may not be 
part of the tour because of the PSR. To this list of cities, 
the don't care city is added. The new city for the mutation 
site is then randomly selected from the constructed list The 
resulting tour is always valid - only missing cities or the 
don't care city are added to the tour. If the tour is complete, 
the first mutation site of the tour will produce only a don't 
care city - no other cities are currently available for 
consideration. At the second mutation site of the tour, the 
don't care city and the city freed by the first mutation are the 
possible candidate cities for that site. If the tour is initially 
incomplete, the first mutation my add a 'real' city, because, 
if the tour is incomplete, there are cities that are not 
currently in the tour. In summary, any city can mutate to 
one of the cities not currently in the tour or the don't care 
city. 

There are some immediate benefits of the collaboration 
between the SMO and the PSR. First, mutation can be done 
at a single site. Simple mutation for the TSP requires the 
interaction of at least two or more cities. Secondly, 
depending on if there are real or don't care cites before and 
after the current mutation site, and if there is a real or don't 
care city at the current mutation site, the number of edges 
changed by one mutation is between zero and two, not four 
edge changes as in the 2-opt operator [Jog et al., 1989). 
Using the SMO, new genetic material is added at a slower, 
more controlled rate, and all four operator goals are met 

4 . 2 Inverted Schema Crossover Operator 

Our second operator, called the Inverted Schema 
Crossover Operator (ISCO), provides two operations in one 
operator: edge swapping, and edge reordering. The crossover 
rate (Pc) represents the rate at which two selected tours are 
crossed. After two tours are selected for manipulation, the 
first portion of the operator constructs an edge list, or graph, 
of the tours. For example, the edge list of the two tours (A 
B C D E F) and (B D * A F C) is as follows: 

A has edges to: 
B has edges to: 
C has edges to: 
D has edges to: 
E has edges to: 
F has edges to: 

BF 
ACD 
BDF 
BCE 
OF 
ACE 

It is worth mentioning that edges can be duplicated in the 
tours, e.g. edge AF; some cities can have only two, 
connecting edges, as a result of the city not being present in 
one tour, e.g. city E; and some cities have unknown, 
connecting edges, e.g. edge A *. 

After constructing the edge list, the operator then 
proceeds as follows: while one or more cities exist with 
more than two edges, it randomly select one of these cities 
and removes its longest edge from the edge list. This portion 
of the operator results in a edge list with two interesting 
properties. First, because it ensures that all cites have two or 

less edges, only paths, cycles, or disconnected tours are 
possible - this property is important for the next part of the 
operator. Secondly, it represents a crossover of the original 
two tours, were edges have only been remove, not added, and 
edge removal is biased to remove longer edges. This removal 
heuristic attempts to shorten the length of the tours created 
by the operator - an inverse, greedy heuristic. 

The final portion of the operator assembles a complete, 
or partial, tour from the constructed edge list It begins with 
an empty tour and proceeds as follows: 

start with an empty tour 
While (one or more cities exist in the edge list with one or 

more edges) do 
Begin 

randomly select a city of degree one, or, if there is no 
such city, then select a city of degree 2 
If the city selected has degree 2 Then 

randomly remove one of its edges 
Repeat 

add the city to the new tour; 
follow the other edge to the next city ( each city has 

at most degree 1). 
remove edge taken 

Until ( new city has no edge to follow) 
Erd 
If complete tour is not constructed Then 

add don't care cities to fill in the tour 

This operator provides a form of subtour chunking 
[Grefenstette et al., 1985). Paths and cycles which represent 
strong orderings of partial cities are pieced together, 
randomly, one after another. If either because the original 
tours were incomplete or the second portion of the operator 
removed edges that would have completed a tour, a 
incomplete tour may be constructed. But the operator was 
made to work with incomplete tours, so this problem is of 
little concern. 

There are some immediate benefits of the ISCO. First, 
it meets all of our operator goals. Second, the ISCO 
operates as a knowledgeable crossover operator. By using the 
heuristic of removing random, long, connecting edges from 
cities, there is a constant pressure of forming tours of 
shorter length. Third, by treating the union of edges from 
the two parent tours as a single set, rather than two separate 
sets, edge destruction is minimized because few cities are 
randomly added into the tour. This is in direct contrast with 
the PMX operator [Oliver et al., 1987), where available 
cities are used to plug the holes left by the initial crossover 
procedure. The ISCO also acts as inversion operator. Once 
an existing subpath or subcycle has been added to a tour, a 
new one is then added, and so on. Once the initial city of the 
next subpath is randomly chosen, the cities found in the 
subpath starting from it are added to the tour. If the chunk is 
a subpath, there are two possible starting points: city 1 or 
city n of the subpath. If the chunk is a cycle, there are n 
cities from which to start the subpath with. The end result is 
that subpaths can be inverted when added to the tour. 
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S Experimental Results 

This section describes the results and analysis of using 
the PSR, SMO and ISCO on four different TSPs: the Karg 
and Thompson 10 city problem [Karg and Thompson, 
1964], the Oliver 30 city problem, and the Eilon 50 and 75 
city problems [Whitley et al., 1989]. These problems, 
described in [Whitley et al., 1989], are part of a package put 
together by G. Liepins of the Oak Ridge National 
Laboratory for testing new approaches to the TSP, and we 
used them in order to make comparisons with existing 
approaches to the TSP. 

For the test runs we used roulette wheel selection; the 
probability of tour and site mutation was set to 0.1; and the 
probability of crossover was set to 0.3. The initial 
population was seeded with tours of order 1; therefore, all 
destinations in the tour, except one, were initialized to the 
don't care city. The one, real city in a tour was continually 
incremented from one tour to the next, resetting to city 1 
when the last city was reached. Therefore, at the beginning 
of the genetic process, the initial population had the 
maximum number of the smallest building blocks possible, 
for the given population size. By the end of the genetic 
process the genetic operators had taken the basic building 
blocks and constructed larger and larger blocks, finally 
building complete tours. For each problem, ten test runs 
were completed for a fixed number of generations. Tables 1 
and 2 present the results of the test runs. 

Source N Best PSR Mean 
Karg 10 378 378 408 
Oliver 30 421 445 486 
Eilon 50 428 500 511 
Eilon 75 545 622 665 

Table 1. 

Source N Po2-Size Generations Edge-Cuts 
Karg 10 20 20 86 (7.1%) 
Oliver 30 60 60 2781 (8.5%) 
Eilon 50 100 100 11531 (7.6%) 
Eilon 75 150 150 37689 !7.4%2 

Table 2. 

Source identifies the problem. N indicates the number of 
cities considered by the problem. Best indicates the best 
known results [Karg and Thompson, 1964; Whitley et al., 
1989] of the problem. PSR indicates the best tour found in 
ten test runs using the PSR, SMO and ISCO. Mean 
indicates the mean tour found in the test runs. Pop-Size 
indicates the population sized used for each test run. 
Generations indicates the number of generations permitted 
for each test run. Edge-Cuts identifies the total number of 
new edges added to the population in the best test run. The 
addition of new edges is a result of the ISCO finishing one 
subpath and starting a new one, thereby, creating a new edge 
The percentage given, estimates the effective mutation rate 
as a result of the addition of the new edges. It is calculated as 
follows: 

effective mutation rate = new edges 
estimated edges manipulated 

= new edges 
pop-size* generations*Pc* max-edges 

Figures 1 to 4 show the results of the best test run for 
each of the source problems. In each graph, the average tour 
length of the population (Average Tour), the actual tour 
length of the best individual in the population (Current 
Tour), the estimated tour length of the best individual in the 
population (Normalized Tour), and the known optimal tour 
length (Best Tour) are shown at each generation. 

Table 3 presents the corresponding results of Whitley. 
Whitley indicates the best tour found in ten test runs using 
the edge recombination operator [Whitley et al., 1989] . 
Crosses indicates the number of recombinations per run. 

Source N Whitlel'. Mean Po2-Size Crosses 
Oliver 30 421 437 250 3,200 
Eilon 50 428 439 600 25,000 
Eilon 75 545 559 11000 801000 

Table 3. 

Two factors that can greatly affect the performance of a 
GA are its population size and the number of generations it 
is permitted to run. In our tests, we have taken the extreme 
position of small population sizes and number of 
generations, which results in a small number of crossovers 7. 
This position contrasts with Whitley and others [Jog et al., 
1989; Oliver et al., 1987], who use large population sizes 
and many recombinations for good results. The reason for 
our position is that we wanted to look at how well our 
proposed GA does given limited time and computation. The 
population size and number of generations used in our test 
runs are the same linear function of the number of cities -
two times the number of cities. Test results show very 
encouraging results. Given these restrictions, the correct tour 
was found for the Karg and Thompson problem; the tour to 
the Oliver problem had a relative error of 5.7%; and the 

· tours for the Eilon 50 and 75 city problems had relative 
errors of 16.8% and 14.1 % respectively. Although the 
optimal tour for each problem was not always found, the 
graphs indicate that respectable tours are found in 
approximately 7, 22, 33, and 52 generations, respectively. 
Subsequent generations improved the tours, but it raises a 
question: is the extra effort worth the time and computation? 
As Goldberg points out [Goldberg, 1989], 'the emphasis on 
convergence is a major flaw in current thinking about search 
procedures'. Our method produces good, quick results even 
with the restriction of small population sizes. 

Our results also indicate that the ISCO achieves its goal 
of minimizing the number of new edges it creates, or, 
inversely, the number of existing edges it destroys. A 
conservative estimate shows that the effective mutation rate 
of new edges is below 10%. However, in this case, edge 

7 The number of crossovers is approximately equal to: 
population size • number of generations • crossover rate. 
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mutations are a result of the ISCO working as an inversion 
operator, not the SMO. Perhaps, the SMO should only 
mutate real cities to don't care cities, and rely on the ISCO 
to perform the edge mutations. The important point is that 
operators should maintain as many existing edges in tours 
that they work with, and to not inadvertently increase the 
edge mutation rate through their operation. We achieve these 
goals with the PSR and the ISCO. 

6 Conclusion 

Can GAs benefit from processing schemata explicitly? 
We believe that they can. There is often a conflict between 
the use of a natural representation and operators that preserve 
genetic material. Using a schema-based approach, we have 
shown that, for the TSP, this conflict can be easily over 
come. Using the PSR, operators no longer have to form 
complete tours, but rather just consistent tours. This may 
seem like a small advantage, but operators that have to form 
complete tours by randomly filling in the missing pieces of 
the tour increase the edge mutation rate. If the hypothesis: as 
many edges as possible should be maintained by an operator, 
is true, and we believe this is so, the PSR enables us to 
maintain existing strong subtours, without having them 
destroyed by the random addition of edges to form weak 
complete tours. 

Another benefit of explicitly working with schemata is 
that the important genetic material - a schema - is visible to 
an observer. For example, using the PSR, strong subtours 
can be easily identified within a tour. If you can see the 
building blocks, you can work with them. If they are hidden 
in a complete tour, they are only of immediate use to that 
tour. No outside agent can ever benefit from that knowledge. 

Although more work is required to discover the full 
potential of working with schemata, the collaboration of the 
PSR, SMO, and ISCO for the TSP provide us with the 
incentive, given the good results even with the constraints 
of time and computation. The ultimate goals of 
optimization are to seek improved performance to find some 
optimal point. However, if one can get close to an optimal 
point using only 20% of the work and time, that point may 
be sufficient. Our results indicate that we can get close to 
the optimal point, very quickly, and feel our methods are 
good for this type of problem, and we conjecture that 
explicit schema processing will reduce the complexity of 
problems in other domains as well. 

Schemata can be viewed a stable subsystems that are 
continually combined, forming larger stable subsystems. In 
our most recent work [Deugo and Oppacher, 1991] we 
propose to treat strong schemata, at each level of a 
hierarchy, as stable, nondisruptable units. These units are 
denoted by new atomic symbols and combined, in turn, into 
higher-level schemata. Using this view, Simon, then, 
provides an answer as to why the explicit processing of 
schemata produces quick results: 'the time required for a 
complex system to evolve by a process of natural selection 
is very much shorter if the system is itself comprised of one 
or more layers of stable components subsystems than if its 
elementary parts are it only stable components' [Simon, 
1973]. 
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Abstract 

Iterative-deepening-A* (IDA*) is an admissi­
ble heuristic search algorithm which is optimal 
with respect to space complexity and the cost 
of solution found over the class of admissible 
best-first tree search algorithms. However, the 
optimality of IDA* with respect to time com­
plexity is subject to a number of conditions. 
In the worst case, IDA* expands 0 ( N 2 ) nodes 
where N is the number of nodes that are surely­
expanded by A*. To redress this worst case 
phenomenon of expanding only a few additional 
nodes over several iterations, a new admissible 
search algorithm, called Binary IDA* (BIDA *), 
is presented and compared against the aver­
age case performance of IDA* on the Euclidean 
traveling salesperson problem. It is shown in a 
small empirical study that BIDA * is a signifi­
cant improvement over IDA* as both the tour 
size and the precision of the edge costs increase. 

1 Motivation 

A wide variety of difficult and often intractable problems 
in artificial intelligence, operations research and combi­
natorics are represented in terms of the solution space 
model and involve a search of that space to find an op­
timal or near-optimal solution [Ernst and Newell, 1969; 
Newell and Simon, 1972). Often, the solution space of a 
problem is abstractly defined as an implicit and locally­
finite graph G with edge costs that are greater than some 
positive constant 6 [Ni lsson, 1971; Pearl, 1984). A sin­
gle node of G is distinguished as the start node s and 
represents the initial configuration of a problem. Be­
ginning at the start node s, the selective expansion of 
nodes explicates the solution space graph G and defines 
in effect the process of search . Each expansion of a node 
n generates all immediate successors of n and the costs 
of the associated edges from n to each of its successors. 
The search continues until a goal node that satisfies the 
stated objectives of the problem definition is selected for 
expansion. Any path from the start nodes to a goal node 
is defined as a solution path and hence, many problems 
are formulated in terms of the finding the minimum cost 
or admissible path from the start node s to a goal node 

[Pohl, 1970) 
Iterative-deepening-A* (IDA*) is an admissible 

heuristic search algorithm that combines an optimal uti­
lization of heuristic knowledge with an optimal utiliza­
tion of memory space [Korf, 1985]. In order to meet 
these objectives, the IDA* algorithm: 

1. Assigns a cost to each node n that is determined by 
the evaluation function /(n) = g(n)+h(n ) where 1: 

(a) g(n) is the cost of the current path from the 
start node s to n, and 

(b) h( n) is a non-negative heuristic estimate of 
h*(n) where h*(n) is the cost of the optimal 
path from n to a goal node. If n is a goal node 
then h(n) is equal to 0. 

2. Performs successive depth-first searches, each 
rooted at the start node s, that are bounded by 
increasing values of/. 

The cost bound of the initial iteration is equal to the 
cost of the start node s, that is, /(s). The cost bound 
of each subsequent iteration is then equal to the cost 
of the minimum / -value among all generated nodes that 
exceeded the cost bound of the previous iteration. Given 
an admissible heuristic function h (i.e. h $ h* ), the 
following two properties hold for a solution space tree 
search: 

Property 1 The IDA* algorithm is admissible and the 
cost bound of the final iteration is equal to the cost of the 
optimal solution path, henceforth denoted as c• [Kor!, 
1988/. 

Property 2 The number of nodes that are expanded by 
IDA* on its penultimate iteration is equal to the number 
of nodes that are surely-expanded by A* on G [Patrick, 
1991/. By definition, a node n is surely-expanded by A* 
if and only if there exists a path from the start node s to 
n along which each node has a cost that is less than c• 
[Dechter and Pearl, 1985/. 

The latter property establishes a common measure of 
comparison between the IDA* and A* algorithms. Al­
though the optimality of IDA* with respect to space 

1The evaluation function f = g + h is historically asso­
ciated with the A* algorithm [Ha.rt et al., 1968; Ha.rt et al., 
1972] where it has been shown that f is a.n optimal discrim­
inant for additive cost measures [Dechter a.nd Pearl, 1985]. 



complexity and the cost of solution found are respec­
tively ensured by the nature of depth-first search and 
the admissibility of h, the IDA* algorithm expands in 
the worst case O(N2 ) nodes where N is the number of 
nodes that are surely-expanded by A* [Patrick et al., 
1992]. The worst case phenomenon arises under the con­
ditions of uniqueness and monotonicity when only a sin­
gle additional node is selected for expansion from one 
iteration to the next. 

The binary iterative-deepening-A* (BIDA *) algo­
rithm, described in Section 2, is an attempt to redress 
the worst case conditions of IDA* search without com­
promising either the admissibility or space optimality of 
IDA* . In a small empirical study in Section 3, the av­
erage case performance of BIDA * is compared against 
the average case performance of A* and IDA* on the 
Euclidean traveling salesperson problem (ETSP). In Sec­
tion 4, BIDA * is contrasted with the IDA* _CR algorithm 
[Sarkar et al., 1991] which was recently proposed as an al­
ternate approach toward overcoming the worst case time 
complexity of IDA*. Finally, concluding remarks are of­
fered in Section 5. 

2 Description of BIDA * 
Binary iterative-deepening-A* (BIDA *) is an admissible 
generalization of the IDA* algorithm. In light of the 
worst case scenario of IDA*, the objectives of BIDA * 
are twofold: 

1. To increase the number of additional but admissible 
nodes that are expanded on each iteration, and 

2. To reduce the total number of iterations. 

In order to meet these objectives, the cost bound of each 
iteration of BIDA * is chosen as a point between: 

1. A lower bound which is non-decreasing from one it­
eration to the next but remains less than or equal 
to the cost of the optimal solution path c•, and 

2. An upper bound which is non-increasing from one 
iteration to the next but remains greater than or 
equal to the cost of the optimal solution path c•. 

Therefore, unlike IDA*, the BIDA * algorithm uses not 
only a lower bound but also an upper bound in order to 
establish the cost bound of each successive iteration. 

The lower bound of the initial iteration, denoted Li, 
is set to the cost of the start nodes, that is, Li= f(s). 
The upper bound of the initial iteration, denoted Ui, is 
set to the cost of any solution path P from the start 
node s to a goal node q, that is, Ui = f(q). If the 
lower bound Li is equal the upper bound Ui then the 
BIDA* algorithm terminates with the solution path P. 
Otherwise, the cost bound of the initial iteration is equal 
to 

(1 - w )Li + wUi 
where O < w < 1. For the initial iteration and each suc­
cessive iteration i 2: 1, a depth-first search is performed 
until either one of two conditions is met: 

1. A goal node is selected for expansion, or 

2. The / -values of all expandable nodes is greater than 
the cost bound of iteration i, denoted C;. 

If a goal node q is selected for expansion then the upper 
bound of iteration i + 1, denoted U;+i, is set to cost of 
the solution path P from the start node s to q; otherwise, 
U,+i remains equal to U;. If, on the other hand, a goal 
node is not selected for expansion then the lower bound 
of iteration i + 1, denoted L;+i, is set to the minimum/­
value among all nodes that were generated on iteration 
i and that exceeded the cost bound C;; otherwise, L;+i 
remains equal to L;. If the upper bound U,+1 is equal to 
the lower bound L;+i, the BIDA * algorithm terminates 
with the most recent solution path P. If the lower bound 
remains less than the upper bound then a depth-first 
search of the solution space is repeated with a cost bound 
C,+1 equal to 

(1 - w )L,+i + wU;+i 

where O < w < 1. 

2.1 Admissibility of BIDA * 
Theorem 1 Given an admissible solution space tree G, 
BIDA * is admissible. 

Proof: It is sufficient to show that the lower bound of 
BIDA * will eventually equal but never exceed the cost of 
the optimal solution path c• and that the upper bound 
will eventually equal but never fall below c•. Therefore, 
the lower bound can only equal the upper bound at c• 
which implies admissibility. 

The lower bound of the initial iteration is equal to 
the cost of the start node s. Since /( s) $ r ( s) = C-, 
the lower bound is less than or equal to c•. The upper 
bound of the initial iteration is equal to the cost of any 
solution path. Since the cost of any solution path is 
greater than or equal to the cost of the optimal solution 
path, the upper bound is greater than or equal to c•. 
If the initial lower and upper bounds are equal then an 
optimal solution path is immediately found; otherwise, 
the cost bound of the initial iteration, denoted Ci, is 
chosen between the initial lower and upper bounds. If an 
optimal solution path is not found on iteration i 2: 1 then 
a bounded depth-first search is performed until either a 
goal node is selected for expansion or the /-values of all 
expandable nodes is greater than C;. If a goal node is 
selected for expansion then the upper bound is set to the 
cost of the solution path that is found. Clearly, the upper 
bound remains greater than or equal to c•. Since the 
cost bound of the subsequent iteration is less than the 
new upper bound, each solution path is found at most 
once. Hence, the cost of each solution path is less than 
the cost of the previous solution path that is found and 
the upper bound is less than the previous upper bound. 
If a goal node is not selected for expansion then the lower 
bound of the subsequent iteration is set to the minimum 
/-value among expandable nodes that exceeded the cost 
bound of iteration i. Hence, the lower bound remains 
less than or equal to c• but greater than the previous 
lower bound. In either case, the interval between the 
lower and upper bound is reduced from one iteration 
to the next. Since the cost of each directed edge in G 
is by definition greater than some positive constant 8, 
there exists a finite number of nodes whose /-values fall 
within the interval between the initial lower and upper 
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bounds. Because each new lower or upper bound is equal 
to the cost of a node whose /-value falls within the initial 
interval and because the interval between the lower and 
upper bound strictly decreases from one iteration to the 
next, the number of iterations required for either the 
lower bound or upper bound to reach c• is finite. 

If the lower bound equals c• before the upper bound 
then the cost bound of each subsequent iteration re­
mains greater than c• until an optimal solution path 
is found. At this point, the upper bound is set to the 
cost of the optimal solution path and the search termi­
nates. If the upper bound equals c• before the lower 
bound then the cost bound of each subsequent iteration 
remains iess than C* until the lower bound is equal to 
c•. At this point, the search terminates and returns the 
most recent solution path that is found. Since the cost 
of the most recent solution path is equal to the current 
upper bound, that is c•, then an optimal solution path 
is found.D 

2,2 Time Complexity of BIDA * 
Lemma 1 Given an admissible solution space tree G 
and O < w < l, BIDA * performs at most r1og r2 ... ((Ui -
Li)lOt + l)l iterations where fil is equal to min(w, 1-w) 
and 10-t is equal to the maximum precision of the edge 
costs. 

Proof: By multiplying the edge costs by 10\ the lower, 
upper and cost bounds of each iteration are treated as in­
tegral values without loss of information. By definition, 
the cost bound C; of iteration i is equal to 

(1-w)L; +wU;. 

Since either L;+i > C; or U;+l ~ C;, the interval 
between L; and U; is reduced by at least a factor of 
fil = min(w, 1 - w ) . By reducing the interval from one 
iteration to the next by at least a factor of fD until 
L; is equal to U;, the maximum number of iterations 
performed by BIDA* given an initial interval [Li, Ui] is 
equal to 

pog~((Ui - Li)lOt + 1)1,D 

Corollary 1 Given an admissible solution space tree G, 
the maximum number of iterations performed by BIDA * 
is minimized at w = 0.5. 

Corollary 2 Given an admissible solution space tree G, 
IDA* performs at most ( c• -Ci+ l)lOt iterations where 
Ci and c• are the cost bounds of the initial and final 
iterations, and 10-t is equal to the maximum precision 
of the edge costs. 

Corollary 3 If the initial upper bound of an admissible 
solution space tree is at most a polynomial function of the 
cost of the optimal solution path then BIDA * performs 
asymptotically fewer iterations than IDA* in the worst 
case. 

The lure of fewer iterations, however, does not im­
mediately imply that the time complexity of BIDA * is 
also less than the time complexity of IDA*. Because the 
cost bound of each iteration of BIDA * is selected as an 
arbitrary point between the lower and upper bounds of 
that iteration, the cost bound is not constrained to be 

less than or equal to the cost of the optimal solution 
path. With the potential of expanding several inadmis­
sible nodes on those iterations whose cost bounds are 
greater than c•, BIDA * may expand a far greate; num­
ber of nodes than IDA* notwithstanding the reduction in 
the number of iterations. However, this computational 
risk is mitigated in part by one factor: If the cost bound 
of an iteration is greater than c• then BIDA * performs 
a bounded depth-first search only until a solution path 
is found. Therefore, BIDA * does not necessarily per­
form an exhaustive search of all paths along which each 
node has an /-value that is less than or equal to the cost 
bound of the iteration. 

3 Empirical Results 

Empirical tests that compare the average case perfor­
mance between the IDA* and BIDA * algorithms are car­
ried out with respect to the Euclidean traveling salesper­
son problem (ETSP) defined below: 

Definition 1 Given a positive adjacency matrix ( c;;) 
where each element c;; represents the Euclidean distance 
from city i to city j, the Euclidean traveling salesperson 
problem (ETSP) is to find the shortest tour that begins 
at an arbitrary city, visits each other city exactly once 
and returns to the starting city. 

The ETSP was chosen primarily on the basis of the fol­
lowing observations: 

1. In [Patrick et al., 1992], a worst case example of 
IDA* has been shown on an instance of the asym­
metric traveling salesperson problem (ATSP) . Sim­
ilar results noted in lKorf, 1988] also cite the non­
optimal performance of IDA* on instances of the 
TSP. 

2. Unlike other common applications such as the 15-
Puzzle and the vertex cover problems, the edge costs 
of the TSP are not necessarily equal to one. Hence, 
the edge costs may be modeled with arbitrary pre­
cision and magnitude. 

3. The solution space Gm of an m-city TSP satisfies 
the following two properties. 

Property 3 Every terminal node in Gm is located 
at depth m from the start node s. 

Property 4 Every terminal node is a goal node. 
Therefore, every path in Gm leads to a goal node. 

Properties 3 and 4 ensure that the depth of search is 
bounded and that a goal node is returned whenever the 
maximum depth is reached. If the cost bound of an it­
eration is greater than c• then BIDA * explores a single 
path at a time until a solution path P is found. Hence, 
only those nodes on or before the solution path P are se­
lected for expansion. Since the length of each path is at 
most m and every path in Gm leads to a goal node, the 
above properties above help to mitigate the computa­
tional risk of potentially expanding several inadmissible 
nodes. 

An instance of an m-city ETSP is generated by ran­
domly selecting m points in the unit square [O, 1]2. Each 



point (xi, y;) E [O, 1]2 represents the position of city i. 
The Euclidean distance c;; between city i and city j is 
calculated straightforwardly as 

J(x; - :z:;)2 + (y; - Y;)2 

for each pair (i,j) . Therefore, an instance of the ETSP 
is characterized by two parameters ( m, t) where: 

1. m represents the number of cities in the tour, and 

2. t represents the maximum precision, evaluated as 
10-t, of the Euclidean distances between cities. 

For example, the parameters (9, 5) define a 9-city ETSP 
where 10- 5 is the maximum precision of the edge costs. 

For each m, 5 < m < 10, forty random instances of 
the m-city ETSP ;re ge;erated. Each instance is solved 
for a maximum precision of 10-t, 1 $ t $ 6, using the 
A*, IDA* and BIDA* (w = 0.5) algorithms. The time 
complexities of both IDA* and BIDA * are measured in 
terms of the total number of nodes that are selected for 
expansion on each iteration leading up to and including 
the penultimate iteration. Since the time complexity 
of A* is equal to the number of nodes that are surely­
expanded by IDA* on its penultimate iteration and since 
IDA* is nearly-equivalent2 to BIDA * for w = 0, the three 
algorithms are implemented as a single standard Pascal 
program. The average time complexity and iteration ra­
tios among A*, IDA* and BIDA * are calculated based 
on the forty random instances. The results for each pa­
rameter (m, t) are recorded in one of the following four 
tables: 

Table 1 (a): The ratio of the average time complexity 
of IDA* to the average time complexity of A*. 

Table 1 (b ): The ratio of the average number of iter­
ations performed by BIDA * to the average number 
of iterations performed by IDA*. 

Table 1 (c): The ratio of the average time complexity 
of BIDA * to the average time complexity of IDA*. 

Table 1 (d): The ratio of the average time complexity 
of BIDA * to the average time complexity of A* . 

Each entry in Table 1 represents a ratio of an average 
performance measure between, say, Algorithm A and Al­
gorithm B. As the tour size and the precision of the edge 
costs increase, three scenarios are noted: 

1. If the ratio remains constant then the performance 
of A is optimal with respect to the performance of 
B. 

2. If the ratio increases then the performance of A is 
non-optimal with respect to the performance of B. 

3. If the ratio decreases then the performance of B is 
non-optimal with respect to the performance of A. 

In Table 1 (a), the non-optimal performance of IDA* 
on the ETSP is clear. As both the tour size and the pre­
cision of the edge costs increase, the ratio of the average 

2In ordei: to draw an equivalent comparison with IDA*, 
the lower bound of BIDA * is updated after the test for equal­
ity with the upper bound. 
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Size Maximum Precision, t 
m 1 2 3 4 5 6 
5 1.89 3.71 4.06 4.06 4.06 4.06 
6 2.20 7.44 9.20 9.48 9.50 9.50 
7 2.06 9.66 16.85 18.69 18.88 18.90 
8 2.01 12.84 37.90 46.51 47.77 47.92 
9 2.02 14.42 69 .53 109.18 114.49 115.29 
10 1.98 15.12 116.13 607.52 1126.52 1209.80 

(a) Average Time Complexities of IDA* to A* 

Size Maximum Precision, t 
m 1 2 3 4 5 6 
5 0.827 0.595 0.576 0.580 0.580 0.580 
6 0.810 0.424 0.364 0.357 0.357 0.357 
7 0.840 0.353 0.273 0.261 0.260 0.261 
8 0.841 0.240 0.151 0.137 0.134 0.134 
9 0.888 0.217 0.106 0.084 0.082 0.082 
10 0.861 0.199 0.075 0.046 0.037 0.035 

(b) Average Number of Iterations of BIDA * to IDA* 

Size Maximum Precision, t 
m 1 2 3 4 5 6 
5 1.079 0.673 0.652 0.658 0.658 0.658 
6 1.022 0.454 0.369 0.358 0.357 0.357 
7 1.063 0.359 0.226 0.203 0.201 0.201 
8 1.088 0.275 0.131 0.115 0.110 0.109 
9 1.162 0.234 0.080 0.050 0.049 0.049 
10 0.959 0.218 0.049 0.013 0.008 0.007 

(c) Average Time Complexities of BIDA* to IDA* 

Size Maximum Precision, t 
m 1 2 3 4 5 6 
5 2.04 2.50 2.65 2.67 2.67 2.67 
6 2.25 3.38 3.39 3.40 3.40 3.40 
7 2.18 3.47 3.81 3.79 3.79 3.80 
8 2.19 3.53 4.98 5.33 5.24 5.24 
9 2.34 3.37 5.53 5.45 5.61 5.61 
10 1.90 3.29 5.72 8.16 8.84 8.77 

( d) Average Time Complexities of BIDA * to A* 

Table 1: Average Performance Ratios 
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time complexity of IDA* to the average time complexity 
of A* departs quite dramatically from an optimal con­
stant ratio. As expected and as shown in Table l(b), 
BIDA * performs on average fewer iterations than IDA* 
in every instance. Furthermore, the ratio of the average 
number of iterations performed by BIDA * to those per­
formed by IDA* is decreasing as both the tour size and 
the precision of the edge costs increase. Hence, the per­
formance of IDA* is non-optimal with respect to BIDA * 
in terms of the average number of iterations. The reduc­
tion in the number of iterations also yields an almost 
proportional decrease in the average time complexity 
of BIDA * as shown in Table 1 ( c). This suggests that 
the number of inadmissible nodes that are expanded by 
BIDA * does not significantly impede its performance. 
Therefore, the average time complexity of IDA* is again 
non-optimal with respect to the average time complexity 
of BIDA *. Although the average time complexity ratio 
between BIDA * and A* continues to increase as both the 
tour size and the precision of the edge costs increase, the 
ratio increase in Table 1( d) is comparatively slight. It 
is therefore encouraging that the reduction in both the 
number of iterations and the time complexity of BIDA * 
over IDA* yields a near-optimal performance by BIDA * 
with respect to A*. 

4 Comparison of BIDA * with IDA* _CR 

Recently, Sarkar et al. developed an admissible version 
of IDA*, called IDA* _CR, that also redresses the worst 
case phenomenon of an IDA* search [Sarkar et al., 1991]. 
The IDA* _CR algorithm differs from BIDA * in two key 
respects: 

1. IDA* _CR performs a depth-first branch and bound 
search on each iteration as opposed to a strictly 
depth-first search. 

2. The cost bound of each iteration of IDA* _CR is cho­
sen such that the number of additional nodes grows 
exponentially from one iteration to the next, that 
is, the heuristic branching factor bh is constant and 
greater than one [Korf, 1988]. 

To guarantee that at least b~ additional nodes are ex­
panded between the i and ( i + 1 )•t iterations, IDA* _CR 
uses a set of buckets indexed 1, 2, ... , p to group the 
/ -values which exceeded the cost bound Ci of the cur­
rent iteration. Each bucket, denoted B;, is associated 
with a mutually-exclusive range of values [r;, r;+i] where 
r; < r;+1 for all j, 1 $ j $ p-1. For each node n whose 
/ -value exceeds Ci, the index of bucket B; is increased 
by one where 

r; < f(n) $ r;+1, 

Therefore, the cost bound of iteration i + 1 is set to the 
minimum r;+1 where the sum of the indices of buckets 
B1 through B; exceeds b( 

It is important to note that an appropriate balance 
among a) the heuristic branching factor bh, b) the num­
ber of buckets and c) the range of values associated with 
each bucket must be established. For an inappropriate 
choice, only the /-values a few generated nodes may fall 
within the range of values associated with the buckets. 

A 1 

6 F 4 

Figure 1: Example of an IDA* _CR Search 

In this case, IDA* _CR may not be able to sustain the 
exponential growth rate from one iteration to the next. 
Even the choice of an inappropriate bh alone may lead 
to a poor performance as shown in Figure 1. 

Each node A through G is labeled with its /-value. 
Nodes A and G are designated as the start and goal 
nodes respectively. If a heuristic branching factor bh is 
chosen as 2 then at least 2°, 21 , 22 , ••• additional nodes 
must be expanded on iterations 1, 2, 3, . . . . There­
fore, the cost bounds of iterations 1, 2, and 3 must equal 
1, 3 and 7 respectively. On the third and final itera­
tion, IDA* _CR performs a depth-first branch and bound 
search until the optimal solution path from node A to 
node G is found. However, because the cost bound of 
the third iteration is equal to 7, IDA* _CR may expand 
an arbitrarily large number of inadmissible nodes in the 
subtree T1 rooted at node D. 

As shown above, the cost bound of the final iteration 
of IDA* _CR may exceed the cost of the optimal solution 
path. Therefore, like the BIDA * algorithm, IDA* _CR 
potentially expands several inadmissible nodes before an 
optimal solution path is found. Since both A* and IDA* 
do not expand any inadmissible nodes for h $ h*, there 
is again no common measure of time complexity among 
A*, IDA* and IDA* _CR that includes the number of 
nodes that are expanded on the final iteration. Hence, 
the following claim in [Sarkar et al., 1991, p. 213] is 
somewhat misleading: 

IDA* _CR expands 0( N) nodes where N is the 
number of nodes that are expanded by A* . 

However, because IDA* _CR does not expand any inad­
missible nodes on each iteration leading up to and in­
cluding the penultimate iteration, Theorem 2 may be 
stated directly. 

Theorem 2 Given an admissible solution space tree G 
with a constant heuristic branching factor greater than 



one, IDA *_CR is asymptotically optimal, in terms of the 
number of nodes that are surely-expanded by A*, over 
the class of admissible best-first tree search algorithms. 

Unfortunately, a similar claim cannot be made for 
BIDA *. Nonetheless, it remains to compare how the 
average time complexity of BIDA * and IDA* _CR are re­
spectively influenced by the expansion of inadmissible 
nodes. 

5 Concluding Remarks 

This paper has established two important properties of 
a BIDA * search on an admissible solution space tree G: 

1. BIDA * is admissible. 

2. If the initial upper bound of an admissible solution 
space tree is at most a polynomial function of the 
cost of the optimal solution path then BIDA * per­
forms asymptotically fewer iterations than IDA* in 
the worst case. 

Unfortunately, the reduction in the number of iterations 
comes at the expense of potentially expanding a large 
number of inadmissible nodes. Because, in part, the 
ETSP satisfies Properties 3 and 4 stated earlier, BIDA * 
is shown to be a significant improvement over IDA* as 
both the tour size and the precision of the edge costs 
increase for the ETSP. However, it remains: 

1. To expand the empirical scope to other combinato­
rial problems and to larger instances of the traveling 
salesperson problem. 

2. To support the empirical work with theoretical jus­
tification. For instance, the expected case behaviour 
of BIDA * may be derived with respect to a prob­
abilistic model of computation that distributes the 
costs (depths) of the goal nodes over a solution space 
tree. Such an analysis would help answer an impor­
tant question: What conditions must the distribu­
tion function satisfy in order to ensure the optimal 
performance of BIDA * with respect to IDA* and 
better still to A*? 

3. To generalize the above analyses for all w, 0 < w < 
1. 
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Abstract 

Many learning systems search through a space 
of possible performance elements, seeking an el­
ement with high expected utility. As the task 
of finding the globally optimal element is usu­
ally intractable, many practical learning sys­
tems use hill-climbing to find a local optimum. 
Unfortunately, even this is difficult, as it de­
pends on the distribution of problems, which 
is typically unknown. This paper addresses 
the task of approximating this hill-climbing 
search when the utility function can only be 
estimated by sampling. We present an algo­
rithm that returns an element that is, with 
provably high probability, essentially a local op­
timum. We then demonstrate the generality 
of this algorithm by sketching three meaning­
ful applications, that respectively find an ele­
ment whose efficiency, accuracy or complete­
ness is nearly optimal. These results suggest 
approaches to solving the utility problem from 
explanation-based learning, the multiple exten­
sion problem from nonmonotonic reasoning and 
the tractability/ completeness tradeoff problem 
from knowledge representation. 

1 Introduction 

Many learning tasks can be viewed as a search through 
a space of possible performance elements seeking an el­
ement that is optimal, based on some utility measure. 
As examples, many inductive systems seek a function 
whose classification is optimal, i.e., which labels correctly 
as many examples as possible; and many explanation­
based learning [DeJ88, MCK+89] and chunking [LNR87] 
systems seek a problem solving system that is opti­
mally efficient [Min88, Gre91] . In each of these cases, 

"Most of this work was performed at the University of 
Toronto, where it was supported by the Institute for Robotics 
and Intelligent Systems and by an operating grant from 
the National Science and Engineering Research Council of 
Canada. I also gratefully acknowledge receiving many help­
ful comments from William Cohen, Dale Schuurmans and the 
anonymous referees. 

the utility function used to compare the different ele­
ments is defined as the expected value of a particular 
scoring function, averaged over the distribution of sam­
ples ( or goals, queries, problems, .. . ) that will be seen 
[Hau88, OG90, G091]. 

There are two problems with implementing such a 
learning system: First, we need to know the distribution 
of samples to determine which element is optimal; un­
fortunately, this information is usually unknown. There 
are, of course, standard statistical techniques that use 
a set of observed samples to estimate the needed infor­
mation; and several classes of learning systems have in­
corporated these techniques. For example, many "PAC­
learning" systems [Val84] use these estimates to identify 
an element that is approximately a global optimum. 

This leads to the second problem: unfortunately, the 
task of identifying the globally optimal element, even 
given the correct distribution information, is intractable 
for many spaces of elements [Gre91, Hau88]. A common 
response is to build a system that hill-climbs towards 
a local optimum. Many well-known inductive learning 
systems, including BACKPROP [Hin89] and ID3 [Qui86], 
use this approach, as do many speedup learning meth­
ods; see especially [GD91]. Unfortunately, few existing 
systems guarantee that each hill-climbing step is even 
an improvement, meaning the final element is not always 
even superior to the initial one, much less an optimum in 
the space of elements. Moreover, fewer systems include 
a stopping criterion to determine when the learning has 
reached a point of diminishing returns. 

The work presented here draws ideas from both of 
these themes: In particular, it describes a general learn­
ing algorithm, PALO, that hill-climbs to a local optimum, 
using a utility metric that is estimated by sampling. 
Given any parameters t:, 6 > 0, PALO efficiently produces 
an element whose expected utility is, with probability 
greater than 1 - 6, an t:-local optimal. 1 Moreover, PALO 
can work unobtrusively [MMS85], passively gathering 
the statistics it needs by simply watching a performance 
element solve problems relevant to a user's applications. 
Here, the incremental cost of PALO's hill-climbing, over 
the cost of simply solving performance problems, can be 
very minor. 

1Theorem 1 below defines both our sense of efficiency, and 
"(-local optimality". 



Section 2 motivates the use of "expected utility" as 
a quality metric for comparing performance elements. 
Section 3 then describes a statistical tool for evaluating 
whether the result of a proposed modification is better 
(with respect to this metric) than the original perfor­
mance element PE; this tool can be viewed as a mathe­
matically rigorous version of [Min88]'s "utility analysis" . 
We use this tool to define the general PALO algorithm, 
that incrementally produces a series of performance ele­
ments PE1, ... , PEm such that each PE;+l is statisti­
cally likely to be an incremental improvement over PE; 
and, with high confidence, the performance of the fi­
nal PEm is a local optimal in the space searched by the 
learner. Section 4 demonstrates the generality of this ap­
proach by presenting three different instantiations of the 
PALO system, each using its own set of transformations 
to find a near-optimal element within various sets of per­
formance elements, where optimality is defined in terms 
of efficiency, accuracy, or completeness, respectively. 

2 Framework 
We assume as given a (possibly infinite) set of perfor­
mance elements P£ = {PE;}, where each PEEP£ is 
a system that returns an answer to each given problem 
(or query or goal, etc.) q; E Q, where Q = {q1, q2, ... } 
is the set of all possible queries. We also use the util­
ity function c: P£ x Q 1-+ !R, where c(PE, q) measures 
how well the element PE does at solving the problem q. 
(Section 4 defines c,(PE, q) ; which quantifies the time 
PE requires to solve q; ca(PE, q), the accuracy of PE's 
answer; and cc(PE, q), PE's categoricity.) 

This utility function specifies which PE; is best for 
a single problem. Our performance elements, however, 
will have to solve an entire ensemble of problems. As we 
obviously prefer the element that is best overall, we must 
therefore consider the distribution of problems that our 
performance elements will encounter. We model this us­
ing a probability function, Pr: Q 1-+ [O, 11, where Pr[ q;J 
denotes the probability that the problem q; is selected. 
We then define the expected utility of a performance el­
ement: 

[ 
def ~ 

C PE] = E[ c(PE, q)] = L.,, Pr[ q] x c(PE, q) (1) 
qEQ 

Our underlying challenge is to find the performance el­
ement whose expected utility is maximal. As mentioned 
above, there are two problems: First, the problem distri­
bution, needed to determine which element is optimal, 
is usually unknown. Second, even if we knew that distri­
bution information, the task of identifying the optimal 
element is often intractable. 

3 The PALO Algorithm 
This section presents a learning system, PALO (for 
"£.robably _Approximately ;Locally Qptimal") that side­
steps the above problems by using a set of sample queries 

2 We assume that I QI is finite for purely pedagogical rea­
sons, as it allows us to define this probability function . There 
are obvious ways of extending this analysis to handle an in­
finite set of problems. 

Algorithm PALO( PF.o, c, o) 
• i - o ;-o 

Ll: Let S +- {} Neigh+- { Tk(PE1) }k 

Amaz = max { A(PE', PE,] I PE' E Neigh } 

L2: Get query q (from the user) . 
Let S +- SU {q} i +- i + INeigh l 

• If there is some PE' E Neigh such that 

.1.(PE', PE,,S] 2:: 

A(PE', PE,h/lfl In (i~ ~,) 

then let PE,+1 +- PE', j +- j + 1. 

Return to Ll. 

• If ISi 2:: 2A;v In ( •;,,.6,) and 

VPE' E Neigh . .1.[PE', PE,, S] ~ 

then halt and return as output PE, . 

• Otherwise, return to L2. 

Figure 1: Code for PALO 

!.ill 
2 , 

(2) 

(3) 

to estimate the distribution, and by hill-climbing effi­
ciently from a given initial PE0 to one that is, with 
high probability, essentially a local optimum. This sec­
tion first states the fundamental theorem that specifies 
PALO 's functionality, then summarizes PALO 's code and 
sketches a proof of the theorem. 

In more detail, PALO takes as arguments an initial PE0 
and parameters €, 8 > 0. It uses a set of sample problems 
drawn at random from the Pr[·] distribution to climb 
from the initial PEo to a final PEm, using a particular 
set of possible transformations T = { Tj}, where each Tj 

maps one performance element to another; see Section 4. 
PALO then returns this final PEm . Theorem 1 states our 
main theoretical results.3 

Theorem 1 The PALO( PEo, €, 8) process incremen­
tally produces a series of performance elements 
PEo, PE1, ... , PEm, staying at a particular PEj for 
only a polynomial number of samples before either climb­
ing to PEj+1 or terminating. With probability at least 
1 - 8, PALO will terminate. It then returns an element 
PEm whose expected utility C[ PEm] is, with probability 
at least 1 - 8, both 

1. at least as good as the original PE0 ; i.e., 
C[ PEm] ~ C[ PEo ]; and 

2. an €-local optimum - i.e., 
\:/ri ET. C[PEm] ~ C[ Tj(PEm)] - € D. 

The basic code for PALO appears in Figure 1. In 
essence, PALO will climb from PEj to a new PEi+1 if 
PEj+l is likely to be better than PEj; i .e., if we are 
highly confident that C[PEi+i] > C[PEj ]. To deter­
mine this, define 

3 This proof, and others, appear in the expanded version 
of this paper [Gre92]. 
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to be the difference in cost between using PEa to deal 
with the problem q;, and using PE,a. As each query q; is 
selected randomly according to some fixed distribution, 
these d;s are independent, identically distributed ran­
dom variables whose common mean is µ = C[ PEa] -
C[ PE,a ]. (Notice PEa is better than PE.a ifµ> 0.) 

Let Yn di:f ~A.[PEa, PE,a, {q;}f:1 ] be the sam-
de/ 

pie mean over n samples, where A.[PEa, PE.a, SJ = 
Eqes c(PEa, q) - c(PE,a, q) for any set of queries S. 
This average tends to the true population mean µ as 
n - oo; i.e., µ = limn--..oo Yn, Chernoff bounds [Che52] 
describe the probable rate of convergence: the probabil­
ity that "Yn is more than µ + ;" goes to O exponentially 
fast as n increases; and, for a fixed n, exponentially as 1 
increases. Formally,4 

Pr[Yn >µ+,] < e- 2n(xr 
Pr[Yn < µ - 1 ] < e- 2n(f)

2 

where A is the range of possible values of c(PEa, q;) -
c(PE,a, q;) . This A = A[PEa, PE,a] is also used in both 
the specification of Amaz under Line Ll and in Equa­
tion 2. 

The PALO algorithm uses these equations and the val­
ues of A.[ PE', PE;, SJ to determine both how confident 
we should be that C[ PE'] > C[ PE;] (Equation 2) and 
whether any "T-neighbor" of PE; (i.e., any Tk(PE;)) is 
more than€ better than PE; (Equation 3). 

We close this section with some general comments on 
the PALO framework and algorithm. 

N-PALOl. The samples that PALO uses may be pro­
duced by a user of the performance system, who is 
simply asking questions relevant to his current appli­
cations; here, PALO is unobtrusively gathering statis­
tics as the user is solving his own problems [MMS85]. 
This means that the total cost of the overall system, 
that both solves performance problems and "learns" 
by hill-climbing to successive performance elements, 
can be only marginally more than the cost of only 
running the performance element to simply solve the 
performance problems. 

We are using these user-provided samples as our 
objective is to approximate the average utility values 
of the elements, over the distribution of problems that 
the performance element will actually address. This 
"average case analysis" differs from several other ap­
proaches as, for example, we do not assume that this 
distribution of problems will be uniform [Gol79], nor 
that it will necessarily correspond to any particular 
collection of "benchmark challenge problems" [Kel87] . 

N-PAL02. All three c0 (PE, q) functions discussed in 
this paper are "bounded" ; i.e., satisfy 

'v PEEP£, q E Q. Cl :5 Ca(PE, q) :5 Cl+ A 

4 See [Bol85, p. 12). N.b., these inequalities holds for essen­
tially arbitrary distributions, not just normal distributions, 
subject only to the minor constraint that the sequence {~;} 
has a. finite second moment. 

for some constants cl E ~ and A E !R+. Here, we 
can guarantee that A[PEa, PE.a] :5 A. For certain 
transformations 1"l,, we can find yet smaller values for 
A['T"A,(PE), PE]; see [GJ92]. 

N-PAL03. Although Theorem 1 bounds the number 
of samples per iteration, it is impossible to bound 
the number of iterations of the overall PALO algo­
rithm without making additional assumptions about 
the search space defined by the T transformations. 
The theorem's guarantee that PALO will terminate 
with probability at least 1 - 6 requires that the space 
of performance elements be finite; this is true in all 
three situations considered in this paper. 

N-PAL04. Notice that a "0-local optimum" corre­
sponds exactly to the standard notion of local op­
timum; hence our '\:-local optimum" generalizes lo­
cal optimality. Notice that PALO's output, PEm, will 
(probably) be a real local optimum if the difference in 
cost between every two distinct performance elements, 
PE and r(PE), is always larger thane. Thus, for suf­
ficiently small values of€, PALO will always produce a 
bona fide local optimum. 

N-PAL05. We can view PALO as a variant on anytime 
algorithms [BD88, DB88] as, at any time, PALO pro­
vides a usable result (here, the performance element 
produced at the /h iteration, PE ·), with the property 
that later systems are (probably) better than earlier 
ones; i.e., i > j means C[ PE;] > C[ PE;] with high 
probability. PALO differs from standard anytime algo­
rithms by terminating on reaching a point of dimin­
ishing returns. 

Notice finally that PALO will (probably) process 
more samples using later elements than using the ear­
lier ones, as its tests (Equations 2 and 3) are increas­
ingly more difficult to pass. This behaviour is desir­
able, as it means that the overall system is dealing 
with increasing numbers of samples using later, and 
therefore better, elements. 

4 Instantiations of the PALO Algorithm 
This section demonstrates the generality of the PALO 
algorithm by presenting three different instantiations 
of this framework. For each instantiation, we spec­
ify (1) the set of possible performance elements Pt: = 
{PE;}, (2) the set of transformations T used in the hill­
climbing process, and (3) the scoring function c( ·, ·) used 
to specify the expected utility. We will also discuss how 
to obtain the values of A[r(PE), PE] . (The instantia­
tions of these parameters are also summarized in Ta­
ble 1.) For pedagogical reasons, each subsection begins 
with a quick simplistic description of the application, and 
then provides notes that describe how to build a more 
comprehensive system. 

4 .1 Improving Efficiency 
Many derivation processes can be viewed as a satisfic­
ing search [SK75] through a given graph structure. As 
an example, notice that using the information shown in 
Figure 2 to find an answer to the hep(11:) query, for some 
ground individual 11:, corresponds naturally to a search 



Rule Set 
R1: hep X :- jaun X • 
R2: hep(X) :- badB(X). 
Ra: badB(X) ·- bt#1(X). 
Ra: badB(X) :- bt#2(X). 

.'.!!' (Allempl : jaun(1<)) 

Fact Set 
jaun(b2), jaun(b3), jaun(b6), 
bt#1(b1), bt#1(b3), bt#1(b6), 
bt#2(b6), ... 

Figure 2: "Inference Graph" GA, used by 8 0 and 8 1 

through the GA inference graph (formed from a given 
set of rules) seeking a successful database retrieval. 5 A 
strategy specifies the order in which to perform the var­
ious rule-based reductions ( e.g., the a1 arc reduces the 
No : hep(11:) goal to the Ni: jaun(11:) subgoal, based on 
the rule R 1 ) and the database retrievals (e.g., the a2 arc 
from N1 to N2 corresponds to the attempted database 
retrieval jaun(11:)) . We can express each strategy as a 
sequence of GA 's arcs; e.g., the strategy 

corresponds to the obvious depth-first left-to-right 
traversal, with the understanding that the performance 
element using this strategy will stop whenever it reaches 
a "success node" ( e.g., if the a2 retrieval succeeds, then 
8 0 reaches the success node N2 and so stops with suc­
cess), or has exhausted all of its reductions. (Fig­
ure 2 doubly-boxes GA's success nodes, N2, Ns and N1.) 
There are many other possible strategies, including 

as well as non-depth-first strategies, etc. 
Each strategy will find an answer, if one exists. As this 

is a satisficing search, all answers are equally acceptable 
[SK75], which means that all strategies are equally accu­
rate. We can therefore consider the costs of the strate­
gies, preferring the one whose expected cost is minimal. 

Letting f; E ~+ be the positive cost of traversing the 
a;, we can compute the c8 (8, q), the cost of using strat­
egy 8 to find an answer to the query q. For example, 
c.(80, hep(b2)) = /i + h, c.(eo, hep(b1)) = /i + 
h+/a+/4+/s, and c.(e1, hep(b1)) = !a+/4+/5. 
(These different strategies have different costs for a given 
query as each stops as soon as it finds an answer.) The 
expected cost, of course, depends on the distribution of 
queries; i.e., on how often the query will be hep(b1), 
versus hep(b2), etc. Moreover, the task of finding the 
globally optimal strategy is NP-hard [Gre91]. 

5 Here, hep(x) means x has hepatitis, jaun(x) means xis 
jaundiced, and badB(x) means x has "bad blood", bt#i(x) 
means x tests positive for blood test #i. 

This looks like a job for PAL0 .6 We first define the set 
of reordering transformations 7Ro = { r01 ,02}, where 
each Ta1,a2 maps one strategy to another by moving the 
subgraph under the a 1 arc to before a2 and its sub­
graph. For example, Ta 3 ,a 1 (80) = 61, and Tae,a• (80) = 
{a1, a2, aa,I a6, a1 I, a4, as) . PALO also needs to compute 
A[r(8a), 6 0 ]; these values are bounded by c(G) = Li f;, 
the sum of the costs of all of the arcs in the inference 
graph G; see Note N-Eff2 below. 

N-Effl. This class of performance elements corresponds 
to many standard problem solvers, including PROLOG 

[CM81] ; see also [GN87] . We can also use these in­
ference graphs to describe operators working in state 
spaces; here each internal arc of the inference graph 
corresponds to an operator invocation and each leaf 
arc to a general "probabilistic experiment" . Using GA, 
for example, aa could encode the "take some blood" 
operator, and as, the experiment that succeeds if the 
patient tests positive on bt#1, etc. 

N-Eff2. The companion paper [GJ92] provides more 
formal descriptions of inference graphs and strate­
gies. That article also presents an efficient ana­
lytic way of computing upper and lower bounds of 
~[r0 1,a2(6; ), 0;, S] (which can be used in Equa­
tion 2 and 3, respectively), based only on running 
8;; this provides a way of obtaining good estimates 
of ~[Ta1,a2(6; ), 0;, S] without first constructing and 
then executing each Ta1,a2(6;) over all S = {qi} 
queries. It also presents empirical evidence that a sys­
tem that uses those estimates can still work effectively. 

That paper also discusses how this instantiation 
of the PALO algorithm fits into the framework of 
"explanation-based learning" systems, and in partic­
ular, argues that it provides a mathematical basis for 
[Min88] 's "utility analysis". 

6 Of course, all of the signs in Figure 1 should be flipped, 
as we are here measuring cost rather than utility, and so 
prefer the element with minimal, rather than maximal, cost. 
Note also that we are viewing each strategy as a performance 
element. 
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4 .2 Improving Accuracy 

A nonmonotonic system can be ambiguous, in that it 
can produce many individually plausible but collectively 
incompatible solutions to certain queries [Rei87]. Un­
fortunately, only ( at most) one of these solutions is cor­
rect; the challenge then is to determine which one. This 
is the essence of the "multiple extension problem" in 
knowledge representation [Rei87, HM86, Mor87], and 
corresponds to the "bias problem" in machine learning 
[Mit80, Utg84, RG87, Hau88]. This subsection addresses 
this problem by seeking a credulous system, related to 
the given initial nonmonotonic system, that is "optimally 
correct"; i.e., which produces the correct answer most of­
ten. 

In more detail, we assume there is a correct answer to 
each query q, denoted O[ q]; hence 0[ 2 + 2 = ?x] = 
Yes[?x "'-" 4]. Each correct answer is either ''Yes" (pos­
sibly with a binding list, as shown here) or "lo". Using 
PE(q) to represent the answer returned by the credu­
lous performance element PE, we can define the utility 
function 

Ca(PE, q) { 
+~ 
-1 

if PE(q) = O[q] 
if PE(q) = IDK 
otherwise 

where IDK represents "I don't know". 

(4) 

We focus on stratified THEORIST-style performance el­
ements [PGA86] [Prz87, Bre89, vA90], where each el­
ement PE = (:F, 'Ji, 0) corresponds to a set of fac­
tual information :F, a set of allowed hypotheses 1{ (each 
a simple type of default [Rei87]) and a specific order­
ing of the hypotheses. As a specific example, consider 
PEA= (:Fo, 1to, iA), where7 

:Fo = 

is the fact set; 

{ 

Vx. E(x) & HE(x) ~ S(x, G) } 
Vx. A(x) & HA(x) ~ S(x, W) 
Vx. -.s(x, G) v -.s(x, W) 
A(Z), E(Z), 

1to = 

(5) 

is the hypothesis set, and i A = ( h1, h2) is the hypothesis 
ordering. 

To explain how PEA would process a query, imagine 
we want to know the color of Zelda - i.e., we want to 
find a binding for ?c such that u = "S(Z, ?c)" holds. 
PEA would first try to prove <T from the factual infor­
mation :Fo alone. This would fail, as we do not know 
if Zelda is a normal elephant or if she is a normal al­
bino (i.e., whether NE(Z) or NA(Z) holds, respectively). 
PEA then considers using some hypothesis - i.e., it may 
assert an instantiation of some element of 1(.0 if that 
proposition is both consistent with the known facts :F0 
and if it allows us to reach a conclusion to the query 

7 Here Z refers to Zelda, A(x) means x is an albino, E(x) 
means xis an elephant, and S(x, ¢,) means x's color is¢,. 
The first three clauses in Equation 5 state that normal ele­
phants are gray, normal albinos are white, and (in effect) that 
S is a function. 

posed. Here, PEA could consider asserting either IE(Z) 
(meaning that Zelda is a "normal" elephant and hence is 
colored Gray) or IA(Z) (meaning that Zelda is a "nor­
mal" albino and hence is colored White). Notice that 
either of these options, individually, is consistent with 
everything we know, as encoded by :F0 • Unfortunately, 
we cannot assume both options, as the resulting theory 
:Fo U { IE(Z), IA(Z)} is inconsistent. 

We must, therefore, decide amongst these options. 
PEA 's hypothesis ordering i A specifies the priority 
of the hypotheses. Here iA = (h1, h2) means that 
h1 : IE(x) takes priority over h2 : IA(x), which 
means that PEA will return the conclusion associated 
with IE(Z) - i.a., Gray, encoded by Yes[?c - G], as 
:FoU{IE(Z)} l=S(Z, G).8 

Now consider the PEB = (:Fo, 1to, iB) element, which 
differs from PEA only in terms of its ordering: As PE B's 
iB = (h2, h1) considers the hypotheses in the oppo­
site order, it will return the answer Yes[?c.....,. W] to this 
query; i.e., it would claim that Zelda is white. 

Which of these two elements is better? If we are only 
concerned with this single Zelda query, then the better 
(read "more accurate") PEi is the one with the larger 
value for ca(PEi, S(Z, ?c)); i.e., the PEi for which 
PEi(S(Z, ?c)) = O[S(Z, ?c) ]. In general, however, 
we will have to consider a less trivial distribution of 
queries. To illustrate this, imagine Equation 5's " ... " 
corresponds to { A (Z1), E(Z1), ... , A(Z100), E(Z100)}, 
stating that each Zi is an albino elephant; and that the 
queries are of the form "S(Zi, ?c)", for various Z;s. 

The best PEi now depends on the distribution 
of queries (i.e., how often each "S(Z;, ?c)" query 
is posed) and also on the correct answers (i .e., for 
which Z;s O[S(Zi, ?c) ] = Yes[?c.....,. W] as opposed to 
O[S(Zi, ?c)] = Yes[?c.....,. G], or some other answer). 
That is, it depends on the expected accuracy of each sys­
tem Ca [PE;], which is defined by plugging Equation 4's 
Ca(·, ·) function into Equation 1. We would then select 
the PE; system with the larger Ca [ ·] value. 

In general, PE= (:F, 1i, i) can include a much larger 
set of hypotheses 1t = { h1, ... hn}. As before, each 
ordering i = (h.,,.(l), .. . h.,,.(n)) is a sequence of 'Jt's 
elements. PE's uses this information when answering 
queries: Let i be the smallest index such that :F U { h;} 
is consistent and :F U { h;} I= q j'>.; for some answer >.;; 
here PE returns this >.;. If there are no such i's, then 
PE returns IDK. 

Our goal is identifying the ordering that is accurate 
most often. Unfortunately, the task of identifying this 
optimal ordering of the hypotheses is NP-complete even 
for the simplistic situation we have been considering 
(where every derivation involves exactly one hypothesis, 
etc.); see [Gre92] . 

Once again, PALO is designed to deal with this 
situation. We first define the set of transforma­
tions TA = { r;; };,;, where each T;; moves the /h 
term in the ordering to just before the i'h term 
- i.e., given any ordering i = (h1, h2, . .. , hn), 

8 This uses the instantiation S(Z, G) = 
S(Z, ?c)/Yes[?c 1-+ G]. We will also view "q/Ho" as "-.q". 
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Figure 3: Flow Diagram of PE(S, W) addressing E I= u 

Tij(Y) = {h1, ... ,h1-1,h;,h1, .. . ,h; - 1, h;+l, ···, hn) • 
We can compute the value of A[T1;(Yk), lk, S] for each 
Tij transformation and each set of queries S based on 

? 
whether :F U {ht} I= q/0[ q] for each hypothesis ht . 
(Hence, each step of the overall PALO computation is 
efficient if this test is polynomial time, e.g., if we are 
dealing with propositional Horn theories, etc.) Observe 
finally that A(PEa, PE13] ~ 2 for all PEa, PE13. 
N -Accl. In many situations, we may want to consider 

each hypothesis to be the conjunction of a set of sub­
hypotheses, which must all collectively be asserted to 
reach a conclusion. Here, we can view 1i = P[H] as 
the power set of some set of "sub-hypotheses", H . 

N -Acc2. Our descriptions have assumed that every or­
dering of hypotheses is meaningful. In some contexts, 
there may already be a meaningful partial ordering of 
the hypotheses, perhaps based on specificity or some 
other criteria [Gro91] . Here, we can still use PALO to 
complete the partial ordering, by determining the rel­
ative priorities of the initially incomparable elements. 

N -Acc3. The motivation underlying this work is similar 
to the research of [Sha89] and others, who also use 
probabilistic information to order the various default 
rules. Our work differs by providing a way of obtaining 
the relevant statistics, rather than assume that they 
are known a priori. 

4.3 Improving Categoricity 

The task of determining whether a query is entailed by a 
theory is known to be intractable if the theory is a gen­
eral propositional theory. It can, however, be performed 
efficiently if the theory contains only Horn clauses. Sel­
man and Kautz [SK91] use this observation to define 
a particular "knowledge compilation" method: Given a 
general propositional theory E, their compiler computes 
a pair of "bracketing" Horn theories S and W, with the 
property S I= E I= W. 9 The resulting "compiled sys­
tem" PE = PE(S, W) uses these bracketing theories 

9 We call each such S a "~trengthening" of the initial the­
ory, and each such W an "Weakening" . This subsection deal 
with clausal theories; each such theory is a set (conjunction) 
of clauses, where each clause is a set ( disjunction) of atomic 
literals, each either positive or negative. A theory is Horn if 

to determine whether a query u follows from E, as shown 
in Figure 3: If W I= u, PE terminates with "yes" ; oth­
erwise, if S ~ u, then PE terminates with "no". (Notice 
that these are the correct answers , in that W I= u guar­
antees that E I= u, and S ~ u guarantees that E ~ u. 
Moreover, these tests are linear in the sizes of u and S 
(respectively, u and W) [DG84].) Otherwise, if W ~ u 
and S I= u , PE returns IDK. Notice this compiled sys­
tem is usually tractable, 10 yet can deal with an arbitrary 
propositional theory. It may, however, no longer be com­
pletely categoric; hence, we have (potentially) sacrificed 
complete accuracy for tractability [SK91] . 

We of course would like to find an approximation 
(S, W) that minimizes the probability that the associ­
ated PE(S, W) system will return IDK. To state this 
more precisely: Given any approximation (S, W) and 

(( 
def 

query u , let Cc S, W), u) = d(W, u) + (1 - d(S, u)) 
where 

d(S, u) { i if s I= (7 

otherwise . 

Hence, cc((S, W), u) = 1 if u is "covered" by (S, W), 
in that either W I= u or S ~ u . Using Equation 1, 
we can then define Cc[ (S, W)] to be the expected value 
of cc((S, W), ·) . Our goal is to determine the approxi­
mation (S, W) with the largest Cc[ · ] value. As before, 
this task is NP-hard (see [Gre92]) and depends on the 
distribution, suggesting yet again that we use the PALO 

system. 
Observe that the set of queries covered by a strength­

ening and a weakening are disjoint - i.e., for any ap­
proximation (S, W), there is no query u such that both 
W I= u and S ~ u. This means an approximation 
(S1, W;) is, with probability at least 1 - 6, within € of a 
local optimum if S1 (resp ., W;) is within £/2 of a locally 
optimal strengthening (resp., weakening) with probabil­
ity at least 1 - 6 /2 . We can therefore decouple the task 
of finding a good strengthening from that of finding a 
good weakening, and handle each separately. This pa­
per discusses only how to finding a good strengthening; 
[Gre92] merges this with the algorithm that computes a 
good weakening. 

We are seeking a strengthening Sopt whose D[ Sopt] 
value is minimal, where D[S0pt] = E[d(S, ·)] is the 
expected value of d(S, ·). (Recall we want Sopt I= u to 
fail for as many queries as possible.) It is easy to see 
that this Sopt should be a weakest strengthening; i.e., 
satisfy OptS(E, Sopt) where 

OptS(E, S) -<==> SI= E & Horn(S) & 
[-i3 T. [S I= T I= E & Horn(S) & S ~ T] 

To compute these OptSs: Define a "horn-strengthening" 
of the clause 1 = { a1, .. . , ak, -ib1, ... , -ibt} to be any 
maximal clause that is a subset of I and is Horn -
i.e., each horn-strengthening is formed by simply dis­
carding all but one of , 's positive literals. Here, there 
are k horn-strengthenings of 1 , each of the form 'Yi = 
{a;, -ib1, .. . , -ibt} . 

each clause includes at most one positive literal. 
10 Note N-Cat2 below explains this caveat. 
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Efficiency Accuracy Categoricity 

Performance Elements 'PE satisficing strategies hypothesis orderings Horn-strengthenings 

PE(q) b O[q] 
? 

Utility function c(·, ·) computation time s I= q 
Tranformations T reorder arcs reorder priority change 1 clause 

Range A[r(PE), PE] $ c(G) $2 $1 

Table 1: Summary of Applications 

Now write E = EH U EN, where EH is the subset 
of E that are Horn and EN = {'yi}f;1 is its non-Horn 
subset. (SK91] proves that each optimal strengthening 
is of the form S0 = EH U E'.v, where each 1

1 E E'.v is a 
horn-strengthening of some 'Y E EN. By identifying each 
Horn-strengthened theory with the "index" of the posi­
tive literal used (i.e., ,i; = { aj, -,b{, . .. , -,bi(i)} ), we can 
consider any Horn-strengthened theory to be a set of the 
form S(j(l),j(2), .. . ,j(m)) = EH U { ,](1)• 'Yj(2)• • · ·, 'Yj(m)} . 

We can navigate about this space of Horn­
strengthened theories by incrementing or decrement­
ing the index of a specific non-Horn clause: That 
is, define the set of 2m transformations T 1D = 
{rt, r; }k=l where each rt (resp., r;) is a func­
tion that maps one strengthening to another, by in­
crementing (resp., decrementing) the "index" of k'h 
clause - e.g., rt(s(3, 9, ... ,ik,· ·-,5)) = s (3, 9, .. . ,ik+l, .. . ,5) , 

and r;-(S(3,9, ... ,i., .. . ,s)) = S (a,9, ... ,i.-1, ... ,5) · (Of course, 
the addition and subtraction operations wrap around.) 

This instantiation of the PALO process starts with any 
given Horn-strengthened theory (perhaps 8(1, 1, ... , 1)) 
and hill-climbs in the space of Horn-strengthened the­
ories, using this set of T 1 D transformations. As 
~[rf(Si), S;, u] depends only on whether r;=(S;) F O' 

and S; Fu, it can be answered efficiently, as S; and all 
r;(Si) are Horn. (In fact, this process can also use the 
support of O' from S; to further improve its efficiency.) 
Notice finally that A[r; (S; ), Si ] ~ 1 for all strengthen­
ings Si and all r;= E T ID . 

N -Catl. The PE(Si, W;) systems discussed here each 
return IDK if W ~ O' and S F O' . [Gre92] proposes 
several other options for this situation - e.g., perhaps 
the PE should "guess" at an answer here, or perhaps 

? 
spend as long as necessary to compute whether E F O', 

etc. - and discusses their relative advantages. 

N-Cat2. [Gre92] also presents an algorithm that finds 
a good weakening. For subtle reasons, that process is 
slightly different from PALO, and computes a Wg that 
is close to the global optimal, with high probability. 

(Unfortunately, the size of the optimal weakening 
can be exponential in the size of the initial theory, 
meaning the linear bounds mentioned above are not 
meaningful. [Gre92] considers ways of finding weak­
enings that are good with respect to a utility metric 
that combines both categoricity and efficiency [GE91], 
to produce a polynomially-sized weakening.) 

5 Conclusion 
This paper first poses two of the problems that can 
arise in learning systems that seek a performance ele­
ment whose expected utility is optimal [Hau90, Vap82]: 
viz., that the distribution information (which is required 
to determine which element is optimal) is usually un­
known, and that finding a globally optimal performance 
element can be intractable. It then presents the PALO 
algorithm that side-steps these shortcomings by using 
statistical techniques to approximate the distribution, 
and by hill-climbing to produce a near locally optimal 
element. After defining this algorithm and specifying 
its behaviour, we demonstrate its generality by showing 
how it can be used to find a near-optimal element in 
three very different settings, based on different spaces of 
performance elements and different criteria for optimal­
ity: efficiency, accuracy and categoricity. (See Table 1.) 
These results suggest approaches to solving the utility 
problem from explanation-based learning, the multiple 
extension problem from nonmonotonic reasoning and the 
tractability/ completeness tradeoff problem from knowl­
edge representation. 
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Abstract 
In design, inferring structure from function is a combi­
natorial generate-and-test problem. Existing methods 
use pre-stored domain-specific partial configurations to 
constrain the generator. We have found that for cer­
tain types of economic and physical systems consisting 
of two-terminal components connected in parallel, it is 
fruitful to specify function in terms of desired behavior, 
and to identify sets of structurally connected compo­
nents whose combined behavior under specific operating 
conditions matches that desired behavior. In this pa­
per, we present a qualitative synthesis technique which 
constructs all system configurations with a given de­
sired behavior. It uses two synthesis operators called 
stretch and steepen that operate on qualitatively speci­
fied piecewise linear functions that characterize the be­
havior of components. Our technique is domain inde­
pendent. We are currently applying it in the domain of 
financial hedging, where behaviors of the components 
(stocks, bonds, options, etc.) are specified in terms of 
two-dimensional piecewise linear relationships, and the 
goal is to synthesize these to produce a constrained be­
havior in response to uncontrollable economic events. 
We are also investigating the use of our technique in 
physical domains through the configuration of analog 
computers. 

1 Introduction 
Many design problems can be formulated as a process 
of search in which design parameters are constrained to 
produce system configurations with some desired func­
tionality fMittal and Araya, 1986]. When the search 
space of a ternative configurations is immense, it is more 
reasonable to construct configurations rather than pre­
store them for selection. In such cases, the design prob­
lem entails synthesis of configurations. 

Synthesis of configurations involves searching the 
space of permutations of elementary components in a 
domain. This search problem is combinatorial, and can 
be shown to be NP-complete. To solve this problem one 
must therefore use a search process which makes use of 
good heuristics . 

This paper presents a qualitative synthesis technique 
that we have developed to solve a synthesis problem 
that is similar to the one above. This problem involves 
only systems that are configured from two-terminal 
components (i.e., one input and one output nodes) con­
nected in parallel, where each component has associated 
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·with it a number of two-dimensional piecewise linear 
relationships that characterize its behavior in specified 
regions. Such relationships are used commonly in eco­
nomics to model financial instruments, such as bonds, 
options, etc. More importantly, these relationships are 
used as a basis for evaluating and managing the risk 
associated with uncontrollable factors such as interest 
rates, currency exchange, and so on. Specifically, if 
the problem goal and constraints are specified in terms 
of two-dimensional piecewise linear relationships, the 
search problem is one of permuting these piecewise lin­
ear functions in order to satisfy the constraints. Con­
ceptually, the problem could be formulated as a lin­
ear programming problem although such a formulation 
would be difficult to solve. For this reason, heuristics 
based on the structure of constraints are important for 
achieving good solutions. 

Our qualitative synthesis technique searches a space 
of two-dimensional piecewise linear functions, each 
modeling the behavior of one elementary component 
under its operational regions. The technique constructs 
configurations by permuting such piecewise linear func­
tions and comparing them against another piecewise 
linear function that specifies the desired behavior of a 
system we seek to synthesize . 

Our technique uses two means to constrain the search 
process. One is a qualitative abstraction over the piece­
wise linear functions modeling the behavior of compo­
nents with similar functionality. This reduces signifi­
cantly the number of piecewise linear functions to be 
permuted. The other means is knowledge about al­
gebraic operations on two-dimensional piecewise linear 
functions that are used to create permutations of such 
functions, and about stretching and/ or steepening such 
a function over one of its definitional regions. This 
knowledge is used to eliminate many permutations asso­
ciated with configurations that do not satisfy the prob­
lem goal. 

The paper is organized as follows. Section 2 reviews 
the complexity of configuration problems, and intro­
duces the reader to the domain of financial hedging 
which involves a configuration problem similar to the 
one discussed here. Section 3 explains our solution ap­
proach to the problem of configuration based on desired 
behavior. Section 4 extends Kuipers' [1986] notion of 
qualitative behavior to define the qualitative functional 
behavior, the qi-function, and the qualitative configura­
tion of a two-terminal system. Section 5 presents our 



synthesis algorithm and defines heuristic operators on 
qi-functions, which constrain the sea~ch. pr?cess used 
by our algorithm. Section 6 discusses hrmtat10ns of our 
technique and directions for future work. 

2 Background 
2.1 Analysis & Design of Physical Systems 

Much of the work on qualitative reasoning about 
physical systems is based on modeling the relationships 
between: structure - a collection of components con­
nected as a system; behavior - a sequ<':nce ?f states of a 
system and its components over some t!me-mterv:al; and 
function - the purpose of struct~re 1~ producmg the 
behavior of a system. These relat10nsh1ps can be sum­
marized as follows. The behavior of a system results 
from interactions between the behavior of its compo­
nents. The effects of a change in the state of a compo­
nent propagates locally through structural connections 
causing a change in the state of other components and 
of the system as a whole. The function of a system, 
on the other hand, explains in terms of causality why 
and how structure of a system determines its behavior 
[De Kleer and Brown, 1984]. From now on, the paper 
uses the term configuration to refer to the structure of 
a system. · 

The goal of analysis techniques ( e.g., qualitativ:e sim­
ulation) is to infe~ behavior from stru~tu~e .. . Given a 
structural descript10n of a system and its m1t1al state, 
these techniques predict the qualitative transitions that 
a system makes over time. Some techniques describ~ the 
transitions of a system from one state to another usmg a 
number of two-dimensional piecewise linear plots (e.g., 
[Kuipers, 1986]). . . . . 

The primary goal of design techmques 1s to mfer the 
structure of a system from its function. Inferring struc­
ture from function is a generate-and-test search prob­
lem. In order to constrain the generator, many design 
techniques use pre-stored kno~ledge about cOI_ifigura­
tions of systems that are specific to one domam. For 
example, to generate configurations in the domain ~f 
paper transportation, Mittal and Araya [1986] use hi­
erarchical decompositions of top-level functional goals 
(e.g., "design a driver role") into subgoals th'.'-t are each 
associated with pre-stored partial configurat1o~s. H~w­
ever, in the lack of such contextual knowledge, mferrmg 
structure from function is an overwhelmingly complex 
task . 

For some design sit~ations it makes sense to specify 
function in terms of the desired behavior of a system 
over some operational regions, that is, in terms of input 
values that a system can accept and corresponding out­
put values it should produce. For example, the desired 
behavior of a hydraulic servo valve is "If the applied 
electrical signal is null the valve should be closed. Oth­
erwise the valve opening should be proportional to the 
applied electrical signal." Note t~at t~is kin~ of ~e­
havior can be expressed as a two-d1mens1onal p1ecew1se 
linear function. 

This suggests that in some situations it may be pos­
sible to eliminate the need to pre-store design configu­
rations by looking at the problem of inferring structure 
from behavior. Given the desired behavior of a sys­
tem, the goal is to identify elementary components in 
the domain which can be connected in such a way that 

the overall behavior resulting from interactions between 
their behaviors according to causality laws is identical 
to the desired behavior. However, since the number 
of configurations (i .e., permutations of compon~nts) is 
infinite, it is necessary to construct configurat10ns by 
means of synthesis, rather than select them by means 
of classification. 

2.2 Hedge Design 
In the domain of financial hedging functionality is de­

scribed qualitatively in terms of desired behavior, and 
the structure and behavior of domain components -
instruments (e.g., stocks, bonds, options) - is modeled 
very much like that of physical systems [Elton and Gru­
ber, 1987; Hart et al. , 1986]. Hedging is conc~rned with 
the design of vehicles that can protect agamst losses, 
or generate profits, under future uncertain events. The 
primary design goal of hedging is to configure all hedge 
vehicles that provide a certain payoff-profile [Benaroch 
and Dhar, 1991]. A payoff-profile specifies qualitatively 
what a trader is willing to pay and risk based on his 
predictions of how the behavior of a certain economic 
factor is likely to change over some period, and his as­
sessments of how this change will effect the behavior 
(i.e., market price) of instruments. To derive a payoff 
from such assessments, a trader looks for hedge vehicles 
that provide a payoff-profile that takes into account his 
predictions. 

For example, if a trader believes that over the next 
three months the price of stock S will increase above 
h1 but not above h2 , s/he can define the "ratio-spread" 
payoff-profile in Figure 1. This payoff-profile states that 
in case of a price increase of S above h1 , but not above 
h2 , the trader would like to make a pr?fit,. a.nd in case 
of a price increase above h2 , the trader 1s w1llmg to take 
a loss. One vehicle that provides that payoff-profile in­
volves buying a call option and selling two call option 
with exercise prices h1 and h2 , respectively.1 Buying a 
call with exercise price h1 ensures that the trader will 
not lose money if the price of S moves below h1, and en­
sures that the trader will make money by buying stocks 
for h1 when stock price is actually between h1 and h2. 
As long as the price of S is not above h2, the trader 
profits from the sale of two calls to another party which 
believes otherwise. 2 

We consider a hedge vehicle to be a two-terminal sys­
tem whose behavior is described by a qualitative piece­
wise linear function (i .e., payoff-profile).3 A generic ve­
hicle involves selling or buying instruments of one type. 
A compounded vehicle involves selling and/ or buying 
instruments of more than one type. In effect, a com-

lThe buyer of a call option on a stock with exercise price s 
has the right, but not the obligation, to buy from the call seller 
that stock at the exercise price s at some future expiration date. 

2The amount of profit/loss is determined by the exact calls 
the trader buys/sells and their quantities. These are selected 
based on the trader's risk tolerance and the degree of belief in her 
predictions. 

3 Although a hedge vehicle is actually a multi-terminal system, 
hedging traders are only interested in the behavior of its value 
as a function of the parameter being hedged ( e.g., interest rate, 
stock price). Since this behavior changes across market situations, 
we use qualitative simulation [Kuipers, 1986] to derive it in each 
market situation by perturbing only the parameter being hedged. 
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Figure 1: A "ratio-spread" payoff-profile 

pounded vehicle is a linear combination of two or more 
generic vehicles, and its payoff-profile is a linear com­
bination of payoff-profiles provided by generic vehicles. 
At any moment, a trader can construct thousands of 
generic vehicles, each with a different payoff-profile, and 
virtually an infinite number of compounded vehicles, 
some of which have the same payoff-profile. 

The problem facing traders in the configuration 
phase is similar to the one faced in many other design 
situations. Given the payoff-profile (behavior) of every 
generic vehicle ( elementary component), synthesize the 
configuration of all compounded vehicles whose payoff­
profile matches some goal payoff-profile. 

3 Solution Approach 
One can construct system configurations by applying al­
gebraic operations on the transfer functions of elemen­
tary domain components [Saucedo and Schiring, 1968). 
Given the transfer functions of two components, their 
algebraic sum produces the transfer function of a system 
made from the two components connected in parallel, 
and their product produces the function of a system 
made from the two components connected in series. 

Since the input to the configuration problem dis­
cussed here is in terms of desired behavior, the above 
concept can be applied on the two-dimensional piece­
wise linear functions describing the behavior of two 
components over their operational regions. Given that 
the desired behavior of a prospective system, and the 
actual behavior of every elementary component over its 
operational regions is expressed as a two-dimensional 
piecewise linear function (hereafter, pl-function), sys­
tem configurations can be synthesized by searching the 
space of all permutations of elementary pl-functions. 
The goal of this search is to find all linear combina­
tions of elementary pl-functions that produce the goal 
pl-function. Although this problem can be formulated 
using linear programming, it would be difficult to for­
mulate and solve it when the number of elementary pl­
functions is large (50 or more). 

As the goal behavior is described qualitatively, one 
may suggest that the number of elementary pl-functions 
can be reduced by replacing all pl-functions with sim­
ilar shape by one qualitative pl-function (hereafter, ql­
function). This is equivalent to the grouping of all 
components with similar functionality into one class. 
One possible representation of a ql-function for a two­
terminal system that is characterized by parameters p1 

{ 

qdir1 Pi E qval1 
and P2 is: sign(~) = . .. . , where 

qdirn Pl E qvaln 

qdir E {-1, 0, 1} is the qualitative direction-of-change 
of p2 , and qval is a value bounding a qualitative range 
on the real-line. However, by describing behavior qual­
itatively the specifity of behavior of each elementary 
component of the same class is lost. Thus, the use of 
linear programming is no longer feasible. It will not be 
able, for example, to find configurations involving com­
binations of two or more different pl-functions that are 
represented by the same ql-function. 

We have developed a technique that solves this syn­
thesis problem symbolically. Our technique uses a quali­
tative abstraction over the behavior of components with 
similar functionality. It also uses two heuristic synthe­
sis operators which enables rediscovering much of the 
information lost by the abstraction of similar detailed 
behaviors into one qualitative behavior. These opera­
tors are used to stretch and steepen a ql-function over its 
definitional regions. In Figure 1, for example, the goal 
ql-function is synthesized by stretching the qi-function 
for a "sell call" over the region (0, h2), and steepening 
it over the region ( h2, oo). 

4 Qualitative Behavior & Configuration 
This section uses the notion of a qualitative behavior 
rKuipers, 1986) to define the a qualitative functional be­
havior, a qi-function, and a qualitative configuration of 
a two-terminal physical system. The reader is referred 
to Kuipers [1986) for a discussion of Definitions 4.1 -
4.5. 
4.1 Qualitative Behavior 

A physical system is characterized by multiple real­
valued continuously time-varying parameters. A pa­
rameter is a reasonable function, f : [a, b] -> !R*, !R* = 
[-00,00) is the extended real-line4. A reasonable func­
tion, f, has a finite totally ordered set of landmark 
values, Li = {/1 < 12 < ... < l.t}, which must in­
clude 0, f(a), f(b), the value of f(t) at every critical 
point, and may mclude additional values. It also has 
a finite totally ordered set of distinguished time-points, 
Ti ={a= to< ti < ... < tn = b}, each designating a 
point where something important happens to the value 
off, such as passing a landmark value or reaching an 
extremum. All functions mentioned from now on should 
be presumed reasonable. 

Definition 4.1 Let /1 < ... < lk be the landmark values 
of f :[a,b] -> !R* . For every tE ra,b] the qualitative state 
off at t, QS(f,t), is a pair (qdir,qval), where qdir is 1, 
0, or -1 for f'(t)>O, f'(t) = O, or f'(t)<O, respectively, 
and qval is a landmark value, l;. The qualitative state 
off on an interval between two adjacent distinguished 
time-points, QS(f, t;, t;+1 ), is the qualitative state off 
at any tE(t;,t;+1). 

Definition 4.2 The qualitative behavior off on [a, b], 
QB(!, [a, bl), is the sequence of qualitative states 
QS(f, to),QS(f, to, t1), ... ,QS(f, tn), alternating between 
states at distinguished time-points and on intervals be­
tween adjacent distinguished time-points. 

4 f is continuous on (a, b], continuously differentiable on (a, b), 
has a finite nwnber of critical values in any interval (i .e., f does 
not behave pathologically in any interval), and has J'(a) and J'(b) 
as the left and right limits of J'(t) at a and b, respectively. 



Definition 4.3 A two-terminal system, S = {pi, P2}, is 
a pair of functions, each with its set of landmark values, 
Lp,, and its set of distinguished time-points, Tp,. The 
set of distinguished time-points of S, Ts, is the union 
Tp 1 UTp, . The qualitative state of Sat t; or on (t;, t;+1 ), 
t; E Ts, is respectively the 2-tuple of states 

QS(S, t;) = [QS(p1, t;),QS(p2, t;)], or 
· QS(S, t;, t;+1) = [QS(p1, t;, t;+i ),QS(p2, t;, t;+1 )). 

Definition 4.4 Let I; and lj be landmarks of P1, P2 : 
[a, b] -,. ~·, respectively. I; and Ii are corresponding 
values, if 3t E [a, b) such that p1 (t) = I; and P2(t) = Ii , 
where t is called a corresponding time-point of Pi and 
P2-

Definition 4.5 The qualitative behavior of a two­
terminal system S on interval [a, b], QB(S, [a, b]) , is the 
sequence QS(S, to),QS(S, to, t1),QS(S, ti), .. . ,QS(S, tn), 
fort; ETs. 

Definition 4.6 Let S = {p1, p2} be a system with a set 
of distinguished time-points Ts . The totally ordered set 
of corresponding time-points of S, Ts., is the intersec­
tion Tp 1 nTp,. It contains the time-.points to, tn, and 
every corresponding distinguished time-point of P1 and 
P2· 

4.2 Qualitative Functional Behavior 
Given that a two-terminal system in isolation is 

at some equilibrium state, the qualitative behavior it 
will exhibit depends on how the input parameter, Pl, 
will be perturbed. For example, if Pl is at its land­
mark I; (1 < i < k) and it is perturbed to increase 
( decline), it will go through landrr.iarks /;+1, /i+2, ... , lk 
{l;-1,/;_2, ... ,/1). In other words, 1f we let the system 
behave only over a subset of its operational regions, it 
will exhibit only part of the behavior it is capable of. 
However, if p1 is at its landmark /1 and is perturbed 
to increase, the system will exhibit its behavior over all 
of its operational regions.5We call such a behavior the 
qualitative functional behavior of a two-terminal system. 

Definition 4 .7 Let S = {p1,P2} be a two-terminal 
system and let /1, /2, ... , lk be the landmark val­
ues of Pl. The qualitative functional behavior 
of S, QFB(S, [a, bl), is the sequence of states 
QS(S, to),QS(S, to, t1), ... ,QS(S, tn-1, tn),QS(S, tn), 
where to, ti, ... , tn are the distin,.uished corresponding 
time-points of Pl and P2, P1(to = /1, p1(too) = lk, 
and qdir(p1, t) = 1 (i.e., inc) or every t E [to, tn] . 
Ts P = {to, t 1, ... , tn} is called the set of functional time­
point of S . 

The qualitative functional behavior of a two-terminal 
system can be graphically plotted as a two-dimensional 
piecewise linear function (see Figure 2). Notice that the 
exclusion of qualitative states at functional time-points 
from a qualitative functional behavior does not change 
the shape of such a function. This leads us to define the 
term qi-function . 

5 p1 will continue to increase to time-point t00 because there is 
no feedback loop that will cause it to change its behavior. 

Definition 4.8 Let the qualitative functional behav­
ior of a two-terminal system S be QFB(S, [a, bl) = 
QS(S, to),QS(S, to, t1), ... ,QS(S, tn-1, tn),QS(S, tn)-
The qualitative piecewise linear function or qi-function 
of S, QF ~, is the sequence of qualitative states 
QS(S, to, t1J, QS(S, ti, t2), .. . , QS(S, tn-1, tn) - QF s [i] 
is the i-th element in QF s. 

4.3 Qualitative Configuration 
A physical system is a collection of disjoint compo­

nents that are structurally connected in parallel (and/or 
series). We define one configuration constraint called 
PARALLEL to represent a parallel connection of com­
ponents. Accordingly, we represent a configuration of a 
two-terminal system made from components connected 
in parallel as a collection of PARALLEL constraints on 
two-terminal components. 

Definition 4.9 Let S1 = {p1, P2} and S2 = {pi, P2}, 
P1,P2: [a,b)-,. ~·, be a pair of two-terminal systems 
that when connected in parallel they produce a new two­
terminal system S3 = {pi, P2}. PARALLEL(S1, S2, S3) 
is a three-place predicate on two-terminal systems which 
holds iff pf 1 (t) +pf2 (t) = p~3 (t) for every t E [a, b]. 

Since a qi-function is simply a short representation 
of the qualitative functional behavior of a two-terminal 
component, we can identify conditions under which a 
PARALLEL constraint can be mapped onto algebraic 
operations on qi-functions. Before doing so, we define 
conditions under which two qi-functions are equivalent. 

Definition 4.10 Let S1 = {p1 ,P2}, S2 = {p1,P2}, S3 = 
{P1, p2} be two-terminal systems, all with a set of func­
tional time-points, Tsp = {to, ... ,tn}- QFs, +QFs, = 
QF s

3 
iff QF s, [i}+QF s, [i) = QF s

3 
[i) for every i, 1::; i::; n. 

QFs
1
[i)+QFs

2
[i)::QFsJi) ifffor adjacent time-points 

t;-1 and t; in Tsp: 

1. qdir(QS(p~3
, t;-1, t;)) = qdir(QS(p~1

, t;-1, t;)) + 
qdir(QS(p:2

, t;-1, t;)), and 

2. qval(QS(pf3, t;-1, t;)) = qval(QS(pf1, t;-1, t;)) = 
qval(QS(pf2

, t;-1, t;)). 

It follows from definitions 4.8, 4.9, and 4.10 that the 
qi-function of a system S, QF s, that is configured from 
two components connected in parallel, S1 and S2, is the 
algebraic sum QF s 1+QF s2 of the qi-functions of com­
ponents S1 and S2. 

Proposition 4.1 Let S1 = {pi, P2}, S2 = {pi, P2}, S3 = 
{p1,P2} be two-terminal systems that all have the same 
set of functional time-points. PARALLEL(S1,S2,S3 ) 

holds iff QF s, + QF s, = QF s
3

• 

5 Qualitative Synthesis 
This section presents our qualitative synthesis technique 
and algorithm QSYN which implements it. Given a 
goal qi-function for the desired behavior of some sys­
tem, QSYN constructs all linear combinations of ele­
mentary qi-functions that are equivalent to that goal 
qi-function. Each linear combination is mapped onto a 
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p2(t) 
QF(S)z(((tO,tl) (pl 1 ( O,hl) ) (p2 0 [vl] )) 

((t1,t2) (pl 1 (h1,h2) ) (p2 1 (v1,v2) )) 

((t2,t3) (pl 1 (h2,inf)) (p2 -1 (v2, - inf)))) 

h1 h2 
Figure 2: ql-function representation of a qualitative functional behavior 

set of PARALLEL configuration constraints. Each ele­
mentary qi-function in a linear combination is mapped 
onto the component whose qualitative functional behav­
ior it represents. 

Constructing a linear combination of elementary ql­
function by comparing the algebraic sum of a linear 
combination of such ql-functions against a goal qi­
function is not always feasible. The elementary and the 
goal ql-functions often do not have the same set of func­
tional time-points. Thus, one cannot use Definition 4.10 
to test for equivalence of the linear combination of ele­
mentary ql-functions to the goal ql-function. It is there­
fore necessary to define heuristic synthesis operators on 
qi-function which enable handling such cases. 
5.1 Synthesis Operators on a qi-function 

We shall first iliustrate the need for such operators, 
before we define them. Consider the problem of con­
figuring hedge vehicles. The large number of generic 
vehicles ( elementary components) can be grouped into 
seven classes, denoted S1,S2, ... ,fh, based on similarity 
of functionality. Accordingly, when the large number 
of payoff-profiles of generic vehicles is described quali­
tatively, all generic payoff-profiles can be described by 
seven qi-functions, denoted QFs

1 
to QFs7 in Figure 3. 6 

Suppose we try to synthesize the "ratio-spread" 
payoff-profile, denoted QF G in Figure 4, from QF Sa 

and QFs4 (as indicated by the example in Section 2.1). 
These three qi-function look as follows: 

QF(G) = (((tO,tl) (pl 1 ( O,h1) ) (p2 0 [v1] )) 

((t1,t2) (pl 1 (h1,h2) ) (p2 1 (vl, v2) )) 

CCt2, t3) (pl 1 (h2,inf)) (p2 -1 (v2 ,-iJd)))) 
QF(3) = (((t0,t1) (pl 1 (0 ,ht )) (p2 0 [vl] )) 

CCtt, t2) (pl 1 (h1,inf)) (p2 1 (vl,in:f )))) 
QF(4) = (( (tO, tl) (pl 1 (0 ,h2 )) (p2 0 [v2] )) 

((tt,t2) (pl 1 (h2, inf)) (p2 -2 (minf,v2)))) 

Yet, QFs -tQFs. tQFG because the assumption that S3 , 

S4, and SG have the same set of functional time-points is 
violated (see Definition 3.10). Recall that Si, S2, ... , S7 
are each representing a whole class of components with 
the same qi-function. That is, QF s., for example, rep­
resents a whole class of qualitative functional behav­
iors whose first element is over an arbitrary Pi-qval, 
(0 , hi) E (0, oo ), and whose second element's slope is in 
(- oo, 0). It is therefore necessary to identify a subclass 
of components in S3 and a subclass in S4 which can 
be used to configure a class of systems with qi-function 

6 QF s1 , QF s2 , and QF s7 are for the class of non option based 
vehicles, QF Sa and QF s4 for the class of call option based ve­
hicles, and QF s5 and QF s6 for the class of put option based 
vehicles. 

h1 h2 
Pl 

Figure 4: Synthesizing a "ratio-spread" payoff-profile 

QF G. In effect, this translates into a problem of discov­
ering the right ordering of landmark values of QF Sa in 
relation to those of QF s 4 • 

5.1.1 Operator STRETCH 

Suppose we attempt to synthesize QF G from QF s 
and QF s 4 (_see Figure 5a) . QF Sa [l}+QF s4 [1] =QF G [lf, 
but QF Sa [2}+QF s. [2] =¢QF G [2] because the p2-qdir in 
QF G [2] is not equal to the sum of P2-qdirs in QF Sa r2] 
and QFs.[2] (see Definition 4.10) . The fact that the 
P2-qdir in QF G [2] is equal to the sum of p2-qdirs in 
QF Sa [2) ancl QF s. [l], however, suggests that a modified 
version of QF s., denoted QF~. in Figure 5 b, in which 
the first element is stretched over the pi-qval (0, h2), is 
more likely to contribute to the successful synthesis of 
QF G . We can stretch a qi-function element in such a 
way using operator STRETCH. 

Definition 5.1 Let S; = {p1, P2}, S; = {p1, P2}, and 
SG = {p1, P2} be three two-terminal systems with ql­
functions QF S;, QF S;, and QF G, respectively, and let 
k be an integer (l<k~n) such that : 

1. QFG[k] =¢QFs, [k}+QFs; [k] because the prqdir in 
QF G lk] is not equal to the sum of p2-qdirs in 
QFs,[kl and QFs;[k]; 

2. QFG[k-l]=QFs,[k - l}+QFs;[k - 1]; 

3. P2-qdir in QFG[k] is equal to the sum of p2-qdirs 
in QFs, [k-1] and QFs; [k]. 

Operator STRETCH(QFs,, k) is used to stretch 
QF s, [k - 1] over a p1-qval which is the union of the 
P1 -qvals in QFG[k-1] and QFG[k] . 

Operator STRETCH actually creates a copy of 
QF s, [k-1], changes the P1-qval in that copy to be the 
pi-qval in QF G [k], and inserts. that copy after QF s, [k- 1] 
m QF s, . In the case of a "ratio-spread" qi-function, for 
example, STRETCH(QFs4 , 1) inserts the new element 
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Figure 3: Generic payoff-profiles 

(a) Before stretch.ing (b) After stretching 

Figure 5: Applying operator STRETCH on QFs.[1] 

C Cp1 1 (h1 ,h2)) Cp2 o [v2])) right after the first element 
in QFs. to create QF'.s. (see Figure 5b). By doing so 
we achieve QF Sa [2}+QF'.s. [2] =QF G [2]. 

5.1.2 Operator STEEPEN 

Suppose we continue the synthesize of QF G from QF Sa 

and QF'.s. (see Figure 6a). QFa[3] ,tQFs3 [2}+QF'.s.[3] 
because p2-qdir in QFa[3] (i.e., -1) is not equal to 
the sum of p2-qdirs in QFsa[2] and QF'.s.(3] (i .e., 0). 
However, if we could modify the P2-qdir in QF'.s. (3] 
from -1 to -2 to create a new version of QF'.s., de­
noted QFs. in Figure 6b, we will be able to conclude 
that QF G [3] =QF Sa [2}+QF1. [3]. We can modify the qdir 
of a ql-function element in such a way using operator 
STEEPEN. 

Definition 5.2 Let S; = {P1, P2}, Si = {P1, P2}, and 
Sa= {p1,p2 } be three two-terminal systems with ql­
functions QFs;, QFs;, and QFa, respectively, and let 
k be an integer (l ~k~n) such that: 

1. QFa[k] ,tQFs; [k}+QFs;[k] because the Prqdir in 
QFa[k] is not equal to the sum of p2-qdirs in 
QFs;[k] and QFs;[k]; 

2. p2-qdir in QFs;[k] is not zero; and 
3. the difference, s, between p2-qdir in QFa[k] and 

p2-qdir in QF s; [k] is not zero. 

Operator STEEPEN(QFs;, k, s) is used to increment 
the prqdir of QF S; [k] by s. . 

In the case of a "ratio-spread" ql-function, for exam­
ple, STEEPEN(QF'.s., 3, -1) changes QF'.s. [3] to be CCp1 

1 (h2,in:f))(p2 - 2 (min:f,v2))) to create QFs, (see Fig­
ure 6b). By doing so we achieve QF Sa [2}+QFs, [3] = 
QFa[3]. 

5.2 Algorithm QSYN 
Algorithm QSYN is used to synthesize system con­

figurations based on desired behavior. It assumes we 
know how to check for equivalence of the algebraic 
sum of two qi-functions to that of another qi-function 
(see Definition 4.10). It also assumes that we know 
when it is worthwhile applying operators STRETCH 
and STEEPEN (see Definitions 5.1 and 5.2), 

QSYN receives as input: (1) two reasonable func­
tions p1 and p2 , each with its totally ordered set of 
landmarks; (2) a ql-function, QF a, describing the qual­
itative functional behavior desired from a prospective 
system G = {P1, P2}; and (3) a set Q:F of n qi-functions, 
each describmg the qualitative functional behavior of a 
class of elementary components S1 = {p1 , P2}, 1 ~ / ~ n . 

QSYN's output is all possible configurations of sys­
tem G. A configuration is a set of PARALLEL con­
straints on components from classes S1 , S2 , ••• ,Sn, where 
each component is associated with its possibly modified 
ql-function. A modified ql-function is one on which op­
erator STRETCH and/or STEEPEN was applied. It 
provides information that characterizes better the com­
ponents in a specific PARALLEL constraint. 

Algorithm QSYN can be summarized as follows: 
Step 1: If there is a pair of qfunctions, QF s; and QF s; 

(i#j), in Q:F that has not yet been selected, select 
it . Otherwise, stop. 

Step 2: Check for equivalence of QF s;+QF s; =QF S;; 

to QF a. If necessary and appropriate apply oper­
ator STRETCH on QF s; and/ or QF s; to discover 
the right ordering of the Pl landmarks in QF S; in 
relation to p1 landmarks in QF S;, and apply op­
erator STEEPEN on QFs; and/ or QFs; to force 
consistency of p2-qdirs. 

Step 3: If QFs;; matches part of QFa, add QFs;; 
to Q:F, create and store a configuration con­
straint C;i =PARALLEL(S;, Si, S;i) and the pos­
sibly modified QF s; and QF s; along it. Go to step 
5. 
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(a) Before steepening (b) After steepening 

Figure 6: Applying operator STEEP EN on QF5• (3] 

Step 4: If QF S;; matches all of QF G, print the config­
uration(s) of SG you have just synthesized, that is, 
print: (a} constraint Ci; and the possibly modi­
fied QFs; and QFs; for Ci;; and (b) if Si (and/or 
S;) was itself synthesized from other components 
by an already stored constraint C; (and/or C;), do 
(a) for C; (and/or C;). 

Step 5: Go to step 1. 

5.3 Output Interpretation 
To demonstrate how the output of QSYN is to be 

interpreted, let us go back to the example from hedg­
ing . Suppose QSYN receives as input the goal "ratio­
spread" qi-function denoted QF G in Figure 4, and the 
qi-functions QF s,, QF s~ , ... ,QF s7 in Figure 3. Af­
ter checking for equivalence of QF s.+QF s. to QF G 
and applying operators STRETCH and STEEPEN 
on QF s., as illustrated in section 5.1 and sec­
tion 5.2, QSYN produces one configuration constraint 
PARALLEL(S3, S4 , G) and stores along it qi-functions 
QF s 3 and QF~ • . These qi-functions look as follows: 

QF3 = (((pt t (0 ,ht)) (p2 0 [vt] )) 
((pt t (ht,in:f)) (p2 t (vt,inf )))) 

QF4" = (( (pt t (0 ,h1 )) (p2 0 [v2] )) 
((p1 1 (h1,h2 )) (p2 0 [v2] )) 
((p1 1 (h2,in:f)) (p2 -2 (min:f,v2)))) 

The constraint and these qi-functions tell us that a 
ratio-spread hedge vehicle can be constructed as fol­
lows. QF s~ indicates the purchase of a call option with 
exercise price h1 (a generic hedge vehicle from class S3J, 
whereas QFt indicates the sale of a call option with ex­
ercise price h2 (a generic hedge vehicle from class S4), 

where h1 < h2. Moreover, the absolute value of p2-qdir 
in QFt (3] indicates the sale of two call options with 
exercise price h2 . 

7 

5.4 Performance Analysis 
Algorithm QSYN is computationally tractable, al­

though it searches exhaustively the space of linear com­
binations of qi-functions to find every combination that 
produces the goal qi-function . Overall, if n is the 
number of elementary qi-functions QSYN receives as 
input, the expected search time of QSYN is O(n2). 
However, the qualitative abstraction over the behavior 
of components with similar functionality usually ren­
ders n significantly small. In addition, QSYN's search 

7 Which specific call options should be purchased/ sold is a mat­
ter that is discovered in later design phases not discussed here. 

space is greatly narrowed down by the use of opera­
tors STRETCH and STEEPEN. For example, Figure 7 
shows part of the search tree for linear combinations 
of one pair of qi-functions . The emphasized branches 
in the tree are the ones QSYN chooses to explore. All 
other branches are pruned by operators STRETCH and 
STEEPEN . 

Our experience indicates that QSYN performs effec­
tively and efficiently. We have implemented QSYN in 
c++ on a 386-processor IBM-PC. In the case of a goal 
qi-function with six elements and the elementary qi­
functions in Figure 4, for example, QSYN produces all 
possible configurations of the goal qi-function in less 
than a second. 

6 Scope of Application & Future Work 
We have presented a qualitative synthesis technique 
for the configuration of systems based on some de­
sired behavior. The technique constructs all configura­
tions of a system from two-terminal elementary compo­
nents connected in parallel. This technique is domain­
independent. It requires domain-specific knowledge 
only for the interpretation of its output . 

We are currently applying qualitative synthesis in 
a prototype expert system called INTELLIGENT­
HEDGER, which is used for the design of hedge vehicles 
(Benaroch, 1992]. We found our technique to be useful 
for two reasons. One is that it solves the problem for 
which it is intended well, and the other is that it does 
not require any pre-stored contextual knowledge such 
as partial configurations. 

Many physical systems, however, involve two com­
plexities which our technique cannot handle. One is 
that they use components that are connected in series 
and in parallel to create feedback loops, where some 
components are not uniform on their input/ output pa­
rameters. To deal with this complexity, we are now 
working on the definition of additional configuration 
constraints to represent structural connections other 
than parallel ones. We are also modifying QSYN to 
handle algebraic operations on qi-functions other than 
addition . 

The other complexity is that some physical systems 
also use multi-terminal components. We are currently 
exploring one solution approach which looks at the do­
main of analog computers. Given that the behavior 
of elementary components in this domain (e.g., dead­
zone and limit computing components) can be charac­
terized by a qi-function - a qualitative two-dimensional 
piecewise linear function - (Chorafa, 1965], and that 
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Figure 7: Part of QSYN's search tree for a "ratio-spread" payoff-profile 

the desired behavior of some physical system, say a 
hydraulic servo valve, is also characterized by a ql­
function, QSYN can construct analog computer config­
urations that can simulate that valve's behavior. How­
ever, the problem remaining is how to map an ana­
log computer configuration onto a configuration which 
uses domain-specific components that construct a real 
hydraulic servo valve. It is not yet clear to us what 
and how much domain-specific knowledge is needed to 
carry out such a mapping successfully. In order to be 
able to answer these questions, we are trying to iden­
tify what domain-specific knowledge about the struc­
ture of a physical system is being lost when that system 
is mapped onto an analog computer that can simulate 
its behavior. 
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Abstract 

A novel use of constraint propagation within 
an expert system for music composition is de­
scribed. The task of composing contrapuntal 
music is modelled as a constraint satisfaction · 
problem, and consistency techniques are uti­
lized to present the user - as each note is cho- . 
sen - with a graphical projection of the relaxed 
constraint graph. The expert system's role is 
to prevent the user from. violating any rule 
of counterpoint composition. This system il­
lustrates the potential of separating generative 
( search strategy) from restrictive (constraints) 
knowledge in interactive expert systems. 

1 Introduction 
This paper describes an interactive tool for generating 
first species counterpoint of note against note, a highly 
structured historical style of music. The tool is essen­
tially a graphical interface to a counterpoint expert sys­
tem, and would be useful to a beginning student of coun­
terpoint. Our approach is to formulate the task as a con­
straint satisfaction problem (CSP), and the composition 
process as the navigation of a constrained search-space. 
A CSP is the problem of assigning discrete values to a 
finite set of variables such that a set of constraints is 
satisfied. The project described here is a natural exten­
sion to our earlier . work on viewing music composition 
as a CSP [Ovans, 1990]. We view the composition pro­
cess as the selection of note attributes (pitch, duration, 
etc.), from finite and discrete domains, such that a set of 
constraints is satisfied. In this context, the constraints 
impose acceptable structure, coherence, and aesthetic on 
a composition. 

The user's task is to compose a counterpoint for a 
given melody. The user, as composer, is responsible for 
generating a musical solution whereas the expert system 
is responsible for policing the constraints. 

•The finai:icial support of PRECARN Associates, Toronto, 
is gratefully acknowledged. E-mail: ovans@cs.sfu.ca. 

tThe financial support of the Science Council of B.C. is 
gratefully acknowledged. Author's present address: Vertigo 
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We begin in Section 2 of this paper with a description 
of the tool from the user's perspective. The underlying 
theory of CSPs and a description of how the composi­
tion task is formulated as one is found in Section 3. In 
Section 4 we provide some detail about the actual im­
plementation, and conclude in Section 5 with a short 
discussion. 

2 Expert-Assisted Counterpoint 
Composition 

Counterpoint is a style of music composition that pre­
dates our modern notion of harmony. Whereas harmony 
is concerned mainly with vertical relationships among 
notes, chords in succession, and supporting a dominant 
melodic theme, counterpoint is polyphonic composition: 
the combination of several independent and equally in­
teresting melodies into a coherent whole. The rules of 
counterpoint, which constrain the allowable note com­
binations occurring in a composition, were codified in 
1725 by Johann Fux, a translation of which appears in 
[Mann, 1965]. The normal manner of composition in 
counterpoint is to craft additional melodic lines ( called 
counterpoints) to be sung, or played, along with a previ­
ously composed given melody, usually taken from a book 
of chorales. The new voices are said to be in counter­
point to the given melody. 

The program interface is presented in Figure 1. The 
window is titled "Fux Composition Tutor" in deference 
to Johann Fux. The user has a choice of composing a 
counterpoint of four, seven, or twelve bars in length. In 
the example, 12 Bar has been chosen and a given melody 
automatically generated. The rules of counterpoint are 
such that a given melody completely defines a search­
space of permissible counterpoints. The corresponding 
counterpoint choices are presented as in the figure: the 
whole notes in each bar of the counterpoint represent al­
lowable choices, not chords. The user's task is to make 
choices within the counterpoint search-space until a sin­
gle note remains in each bar. 

There are 5,930 "correct" counterpoints for the given 
melody presented in Figure 1 [Ovans, 1992]. The expert 
system's role is to insure the user finds one; that is, that 
he or she does not violate any of the rules of counter­
point. The task is made interesting by the simple fact 
that not every option is consistent with every other: user 
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Figure 1: A 12-bar given melody and its resulting counterpoint search-space. 

choices result in a narrowing of the search-space. 
The search-space is navigated by selecting - with a 

mouse - a series of notes, which need not be done in the 
conventional and sequential left-to-right manner. With 
each selection. the expert system propagates constraints 
and filters the remaining consistent choices in the other 
bars. Figure 2 . reveals the resulting search-space after 
the user has selected a G in the fifth bar. Because con­
sistency is maintained as each variable is instantiated, 
the user can make a choice for a pitch value and see 
the ramifications in the form of the resulting constraint 
propagation (e.g., " ... if I choose a fifth for the interval 
in this bar, I see that it rules out the A in the previous 
bar."). 

User choices can be undone by selecting a note a sec­
ond time. Figure 3 is the state of the composition after 
two subsequent choices are made and the original choice 
of Figure 2 is repealed. 

As well, the user need not finish the task: at any time 
the expert system can be asked to solve the problem. 
It does so without overriding the user: previous choices 
must appear in the solution (see Figure 4). 

3 The Underlying Theory 

Our approach is unique in its recognition that composing 
counterpoint can be represented as a constraint satisfac­
tion problem: a user of this tutoring system is interact­
ing with a constraint graph. In this section we present 
a short summary of the topic of CSPs and show how 
the task of composing first species counterpoint can be 
formulated as a CSP. 

3.1 Constraint Satisfaction Problems 

A ubiquitous problem in artificial intelligence is the 
constraint satisfaction problem, which can be suc­
cinctly stated as follows: given a finite set of variables 
X = {xi,x2, ... ,xn} whose elements range respectively 
over the finite ( and not necessarily numeric) domains 
Di, D2, ... , Dn, find a value for each variable such that 
a finite set of constraints is satisfied. The role of the 
constraints is to reduce the cartesian solution space 

'D = Di x D2 X • • • x Dn. Each constraint is a relation 
on a subset of X that states which values are consistent 
with each other. CSPs are solved by finding one (all) 
point(s) in the finite discrete space 'D that simultane­
ously satisfies the constraints. A good survey of CSPs is 
found in [Mackworth, 1992]. 

CSPs are conveniently represented by constraint 
graphs [Mackworth, 1977]. In a constraint graph, each 
node is a variable to be assigned a value. Adjacent nodes 
must satisfy the constraint denoted by the arc connect­
ing them. Unary constraints are expressed with loops. 
The constraint graph for a corresponding graph colour­
ing problem is in fact the graph to be coloured. To rep­
resent k-ary constraints, k > 2, hyperarcs (arcs that 
connect more than two nodes) are required. 

Depth-first chronological backtracking search is a gen­
eral purpose algorithm for solving CSPs. Despite the 
elimination of subspaces from the solution space 'D with 
each failed instantiation, in the worst case backtracking 
is exponential in the number of variables. Attempts at 
improving the performance of backtracking algorithms 
led to the incorporation of consistency techniques. Con­
sistency techniques prune the search-space before failure 
occurs thus improving the efficiency of tree search by 
reducing the number of backtrack points. The search­
space is reduced by decreasing the tree's branching fac­
tor; values from a variable's domain that cannot possi­
bly participate in any solution to the problem are elimi­
nated, thus avoiding a possibly costly failure later on in 
the search tree. 

Consistency techniques are weak inference methods: 
they always work, but will not always solve a CSP. Arc 
consistency [Mackworth, 1977] is a technique applicable 
to connected nodes in a constraint graph. Assuming a 
binary constraint Pis acting on variables Xi and Xj, the 
arc is consistent if! 

(Va E Di)(3b E Dj)P(a,b) 

(Vb E Dj}{3a E Di)P(a,b) 

Note that arc consistency is generalizable to hyperarcs 
as well, in which case we call it k-ary arc consistency. 
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A constraint graph is said to be arc consistent if! all 
adjacent nodes are consistent with each other. Arc con­
sistency may occur fortuitously, but is assured when a 
graph is subjected to a full arc consistency algorithm, 
which in any of its forms essentially controls the propa­
gation of constraints until quiescence. Many polynomial­
time arc consistency algorithms have been reported, 
for example Waltz's procedure [Waltz, 1975] and AC3 
[Mackworth, 1977]. A unified survey of many of the 
CSP-solving algorithms in terms of tree search and arc 
consistency is given in [Nadel, 1989]. 

3.2 Counterpoint as a CSP 

The problem of making a good piece of music 
is a problem of finding a structure that satisfies 
a lot of different constraints. Marvin Minsky 
[Roads, 1980] 

This section describes how the problem of generating 
contrapuntal music can be formulated as a CSP. Specifi­
cally, compositions of first species counterpoint that ad­
here to a fairly complete set of rules taken from [Mann, 
1965] are modelled. The first species is counterpoint of 
the simplest form: two or more voices comprised of notes 
of equal length. This restriction to first species elimi­
nates the myriad of representation problems concerned 
with rhythm and allows us to focus solely on the con­
straint relationships. The only attribute of a note that 
requires representation is its pitch. Any representation 
scheme that facilitates the definition of constraints on 
pitch values would be acceptable. We have chosen the 
Musical Instrument Digital Interface (MIDI) standard: 
pitch is an integer from 1 to 127 corresponding to an 
ordering of the semi-tones with middle-C equal to 60. 

A first species counterpoint composition in two voices 
n bars in length is thus comprised of n counterpoint vari­
ables { c1, ... , Cn} and n melody variables { m1, ... , mn}. 
It is convenient to think of the notes of the given melody 
as instantiated variables rather than constants. Using 
this notation, the ith bar of a composition is comprised 
of note mi in the melody and Ci in the counterpoint. The 
task is thus to assign values to { c1, ... , Cn} that satisfy 
the rules of first species counterpoint given an instanti­
ation for each of {m1, ... , mn}• 

First species counterpoint, as codified in [Mann, 1965], 
is defined by nine rules restricting allowable note com­
binations. Each of these rules can be represented as a 
set of local constraints enforced by the same predicate 
[Ovans, 1992]; in other words, each rule is comprised of 
many constraints. A sample rule is the following: be­
cause they are difficult to sing, melodic intervals greater 
than a minor sixth or equal to a tritone are forbidden. 
A constraint defining allowable melodic intervals is thus: 

melodic( Ci, Ci+l) <=> I Ci - Ci+1 I ~ 8 /1. I Ci - Ci+1 I -:/:- 6 

This constraint is applied to successive neighbouring 
pairs of counterpoint variables. Note that this constraint 
would normally also apply to the melody variables, but 
given that our system works only with supplied (and 
correct) melodies, constraints acting solely on melody 
variables are superfluous. 

A constraint graph that enforces the nine rules of note 
against note first species counterpoint is presented in 
Figure 5. This graph is for compositions oJ length four 
- the shortest compositions to include all the rules of 
first species counterpoint - and can easily be extended 
for compositions of greater length. It is in actuality a 
hypergraph: the skip-step constraints are ternary, while 
the quaternary constraints embody both the forbidden 
parallel motion to a perfect consonance and forbidden 
progressions to an octave by a skip rules. 

For clarity, unary constraints are not included in the 
graph of Figure 5. The unary constraints restrict the 
pitch values for the notes of the counterpoint to those of 
the Aeolian mode since given melodies are assumed to be 
in the Aeolian mode. This provides a convenient mecha­
nism for prohibiting a change of key. Since counterpoint 
is generally written for voice, we impose an arbitrary 
two-octave range: 

mode(ci) <=> Ci E {45,47,48,50,52,53,55, 
57,59,60,62,64,65,67,69} 

The mode constraint is applied to each counterpoint 
variable, save the second to last. To facilitate the forma­
tion of the proper cadence, the unary predicate cadence 
is applied to the second to last counterpoint variable: 

cadence(cn-i) <=> Cn-1 E {56,68} 

With an instantiated set of melody variables and the 
domains of the counterpoint variables initialized to re­
flect these unary constraints, a full arc consistency algo­
rithm applied to the constraint graph results in a dras­
tically reduced branching factor for the search tree of 
permissible counterpoints [Ovans, 1992]. It is a projec­
tion of this resulting relaxed constraint graph that is 
presented to the user in Figure 1. 

4 The Implementation 
The interface is a C++ program that utilizes the Inter­
Views user interface toolkit. The expert system is an 
Echidna knowledge-base. Echidna is a new constraint 
logic programming language - strongly influenced by 
CHIP [Van Hentenryck, 1989] - suitable for model-based 
expert systems applications. Echidna improves on exist­
ing expert system shells by combining facets of object­
oriented programming, dataflow dependency backtrack­
ing, and constraint logic programming [Havens et al., 
1990]. 

The Echidna knowledge-base consists of a set of 
schema ( object class) declarations, including those for 
composition, counterpointNote, and melodyNote classes. 
The constraints of counterpoint are realized as methods 
(Horn clauses) within these schema declarations. Bi­
directional constraints between schema instances ( ob­
jects) are created via message passing. The Echidna rea­
soning engine maintains k-ary arc consistency on all dis­
crete constraints. Echidna's dependency-directed back­
tracking provides efficient means for undoing user selec­
tions. 

The graphical interface and Echidna interpreter are 
separate processes. The two processes communicate 
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Figure 5: A constraint graph for first species counterpoint, n = 4. 

throu~h a Unix pipe, and need not reside on the same 
CPU. The protocol governing their communication is 
defined by Echidna's external object protocol. For a 
process external to Echidna, this protocol provides the 
ability to issue goals to the knowledge-base and "share" 
logic variables. In our composition system, the pitch 
value for each counterpointNote instance is shared with 
the interface process. Any change to the domain of a 
shared variable is communicated from the interface to 
Echidna (in the case of a user choice), and vice-versa (in 
the case of constraint propagation). 

5 Discussion 

Rule-based automated music composition systems (like 
that of [Ebcioglu, 1984; Thomas, 1985]) typically con­
tain a set of constraints that eliminate unmusical com­
positions. The problem with these systems is two-fold. 
First, passive constraints are computationally expensive. 
The incorporation of consistency techniques can help to 
ameliorate inefficient generation of compositions due to 
excessive backtracking [Ovans, 1992], but they are by no 
means a panacea. 

Second, composition is not paint-by-numbers. In 
other words, the satisfaction of constraints alone is not 
sufficient for musical results [Ebcioglu, 1984]. The com­
poser's skill is in how he or she prunes and navigates 
the constrained, but still very large, search-space of pos­
sibilities. How to represent this skill in a declarative 
knowledge base is not well understood and indeed might 
be impossible for deep humanistic domains like music 
[Loy, 1991]. 

The problem, as it also appears in other expert sys­
tems, is as follows. Knowledge of how to generate a 
"good" solution is difficult to represent. Conversely, 
constraints that restrict allowable solutions are often 
easy to represent. This dichotomy is reinforced by 
the experiences of others who, in an attempt to de-

1 We normally run the Echidna process on a N eXTstation 
and the interface under Open Windows on a SPARCstation. 

vise rules for finding good solutions, have ended up 
with systems that contain hundreds of rules yet gen­
erate mediocre compositions ( e.g., [Schottstaedt, 1984; 
Ebcioglu, 1984]). The design of our composition tutor 
is influenced by the belief that, in this case, the user 
best provides the generative knowledge. Let the expert 
system represent and propagate constraints; this it can 
do well and efficiently. Let the user search for the good 
solutions for this he or she (currently) does better than 
the expert system. The constraint-based approach is 
useful in this domain and others like it ( e.g., interactive 
scheduling) where it is more important for the computer 
to prevent mistakes than to generate solutions. 
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Abstract 

Expert Systems have become one of the key 
innovative technologies applied to network 
surveillance. The most important part of the expert 
system is the knowledge base that it uses to detect 
network faults and generate troubleshooting advice. It 
is very difficult to provide a generic knowledge base 
that covers all the requirements of end users, hence 
customization becomes important. This paper 
describes the Expert Advisorl customization 
environment that provides a rich, symbolic knowledge 
encoding environment for the expert system. Firstly, 
an overview of the network surveillance system is 
presented. It is followed by an overview of the 
knowledge representation that is used as the encoding 
mechanism for network problems. The editing, 
compilation and off-line verification cycles are 
explained. The verification methods at three 
verification levels are introduced. The paper concludes 
with a description of the benefits of customization in 
the context of network surveillance expert systems. 

1. Introduction 

The Expert Advisor is an expert system designed to 
monitor and diagnose faults that can occur in a packet 
switching network. See [White, Bieszczad 1992] for a 
detailed description of the Expert Advisor. It introduces the 
concept of a problem. 

1 Copyright Northern Telecom 

The knowledge representation used in the Expert Advisor 
is a hybrid of model [Kahn, Kepner and Pepper 1987] and 
rule [Laffey, et al 1988] based approaches. The knowledge 
base supports a fault model that consists of a number of 
problem descriptions that are maintained in ASCII files. 
The problem scripts are written in an English-like language 
called the Problem Description Language (PDL). Users 
modify or create problem scripts with the help of a 
customization environment. These files are compiled into 
record structures that are subsequently used by the expert 
system. 

The knowledge base can be altered on-line without 
interrupting the monitoring of the network. This implies 
that the expert system can work with multiple knowledge 
bases and can switch from one to another on-line. 
Additionally, the modularity of the knowledge base allows 
the system administrator to alter only selected problem 
scripts in the active knowledge base. 

2. Knowledge Representation Overview 

Each problem description is a frame that has several slots 
containing filters that define the network events that signal 
the start of the problem, the events that are part of the 
problem once activated and a data base query used to 
retrieve relevant events from the event archive. These 
filters are applied to all the events that are generated by the 
corresponding network component. All events passed by 
the filters are added to the set of events that constitute the 
problem. The dynamic behaviour of the problem is 



encoded in a set of forward chaining rules. Rules have the 
form H conditions Then actions, where conditions test 
various aspects of the network event data and actions are 
taken from a set of system defined functions. The defined 
functions provide for assignment, data base query, 
interaction with other processes and numerous other 
facilities. The rules, in effect, specify which events change 
the state of the problem. 

In addition to an event set associated with a problem, a set 
of facts (or states) may be associated with each problem. A 
fact can be created or deleted by the actions of rules. 

Facts can be used, for example, to store the current state of 
the component or historical information such as the 
number of times it has failed. 

Problems can be related to other problems and information 
can flow from one to another via bi-directional 
communication channels. These channels are created 
dynamically as new problem instances are created, or 
existing ones destroyed. The exchange of information via 
these communication (or message) channels has allowed us 
to generate a very large, modular knowledge base (10,000 
rules) which has proven to be maintainable. 

2.1 Knowledge Base Maintenance Overview 

As a result of the dynamic nature of modem day networks, 
it is almost a certainty that new problems will arise, some 
problems will need to be corrected and the nature of others 
will change. Over time, the network surveillance 
knowledge base may degrade and the advisory capabilities 
of the expert system may also degrade if left unchanged. 
The end user must be provided with a method of 
maintaining the knowledge base - the need for a 
customization environment becomes evident. 
Customization thus ensures an improving level of expertise 
will be demonstrated by the expert system as the network 
evolves. 

Such an environment should be symbolic in nature, 
providing a what-you-see-is-what-you-get interface and 
should provide a revision control capability in order that a 
historical record of knowledge base modifications can be 
maintained. The customization environment should 
provide a mechanism for verifying changes to the 
knowledge base before the changes are introduced into the 
live network. Hence, it should operate off-line and on the 
same workstation as the live expert system. Figure 1 
demonstrates this point graphically - a single workstation 
can be used to run both the off line simulation and the 
online real time environments. In the former, the event 
source is a file, in the latter the source is the network itself. 

Customization 

F1gure 1. 

2.2 Functionality of the Customization 
Environment 

There .are two main loops involved in the knowledge 
extraction process: the knowledge encoding and simulation 
cycles. These two cycles are shown in figure 2. In the 
knowledge encoding cycle, the user may modify the 
knowledge base using the editing capabilities of the 
customization environment. Any of the problem scripts 
already in the knowledge base can be modified and new 
problem descriptions can be added. The changes to the 
knowledge base are recorded by the script revision control 
system. Using the PDL compiler, the user ensures that a 
new or modified script is syntactically correct. If a script 
proves to be syntactically incorrect, the compiler stops and 
the appropriate script is reloaded in the customization 
environment, highlighted at the offending line. The error 
messages reported by the compiler are then used as a guide 
by the user on how to encode knowledge in the script 
correctly. 

Functionality of the Customization Environment 

Knowledge Base 
Access and 

Revision Control 

Editing 11--...i 

Cornnunicating 
Errors 

bww/edg< mcoding cycle 

simulalion cle 

Figure 2. 

Event Selection 
Tracing event Processing 
Tracing Script Execution 
Setting break Points 
Data Access 

Semantic 
Verification 

In the simulation cycle, the compiled scripts may be loaded 
into the simulator and be verified against a set of network 
events collected in a file by the on-line expert system. 
Subsets of the stored events may be chosen for processing. 
The analysis of the stream of events can be traced using the 
control capabilities of the simulator. The state of problem 
instances may be observed using the data tracing features. 
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Figure 3. 
At any time, the user may make further modifications to 
the script to fix syntax errors (knowledge encoding cycle) 
or to fix any semantic errors (simulation cycle). Semantic 
errors may take the form of incorrect messages being 
displayed, events being incorrectly associated with a given 
problem or the hierarchy of problems being incorrectly 
calculated. 

2.3 Architecture of the Customization 
Environment 

There are several components to the customization 
environment. They are shown in figure 3. 

• The simulator behaves like the real time expert 
system, but reads events from a file and can be 
suspended at a particular event, rule, action or state 
change. The state of the suspended simulator can be 
interrogated, so that the processing of network events 
can be observed. 

• The debugger provides the user with an integrated 
knowledge base customization environment including 
problem script management, editing and compiling 
capabilities as well as a user interface used to control 
the simulator. 

• The PDL script compiler is the task that ensures the 
syntactic integrity of the script and translates the script 
into a concise internal format understood by the 
simulator (or real time) systems. A number of 
optimizations are performed during the compilation 
process that significantly reduces the number of rules 

and filters that are evaluated when a network event is 
processed. 

• The problem viewer is the tool primarily used on-line 
to access the data base of network problems. It can be 
used with the simulator in order to test the results of 
the simulated event analysis and ensure that the 
ultimate user - the network operator - is presented with 
correct information. 

The customization tool provides a what-you-see-is-what­
you-get environment. All tools that interact with the 
simulator behave in the same way as they do when actually 
monitoring the network. Hence the changes made to a 
knowledge base when exercised during a simulation will 
cause the problem viewer displays to react in the same way 
as would occur when executing in real time. 

2.4 Knowledge Base Verification Methodology 

There are three levels of verification that a problem script 
must pass. These are: event processing, rule evaluation and 
inter-problem communication verification levels. These 
levels are described in the next three sub sections. 

Event processing 

The event processing phase ensures that all relevant 
network events are handled and that the expected problem 
instances are being correctly reported in the problem 
viewer and associated surveillance tools. If the results are 
satisfactory, the next two verification phases can be 



skipped as, to a large extent, they are encapsulated in this 
one. During this phase a number of things are exercised: 

• Selecting events for a simulation. Including and 
excluding network events can be performed. 

• Testing whether a specific event or event sequence 
generates the desired network problem. 

• Use of the problem viewer to detect whether the 
problem instance is correctly displayed and that 
message and network event browsers contain the 
correct information. 

Rule evaluation 

The user may set watch points or break points within a 
specific script in order to determine whether particular 
execution paths are being exercised. The system reports all 
visited watch points without suspending the processing of 
network events. At a break point, the simulation is 
suspended and the current state of the simulation can be 
interrogated or modified using specialized debugger 
browsers. The state of the simulation can subsequently be 
restored, if required, and the remaining events processed. 
During this phase a number of things are exercised: 

• Observing that the correct rules are evaluated upon 
reception of a state change from a problem instance or 
network event. 

• Verifying that the actions of the firing rules are 
executing properly. 

• Verifying that problem instances behave properly and 
the browsers in the problem viewer present correct 
information. 

• Using watch and break points along with simulation 
stepping features to follow network event evaluation. 

Inter-problem communication 

Problem instances communicate with each other by 
sending and receiving state change information. The user 
can manually change, or create, state changes by 
modifying the value of a fact. In this way, state changes 
propagate through the communication channels between 
problem instances to other problem instances. Watch and 
break points may be used to verify the correctness of the 
propagation process. During this phase a number of things 
are exercised: 
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• Observing that communication between problem 
instances can take place by stepping through the rules 
processed during the evaluation of a network event. 

• Verifying that the fact values, when changed, are 
correctly propagated to other problem instances. 

• Using the problem viewer to observe that the correct 
problem hierarchy is generated and maintained. 

Frequently, the channels between different problem scripts 
will be disabled while debugging of the rules that relate 
directly to the network event occurs. In these cases, state 
changes are manually propagated to the appropriate 
problem instances. Hence the knowledge base can be tested 
in a modular way. The dynamic behaviour of individual 
problem scripts can be tested, the events associated with 
problem scripts can be tested, and finally the interfaces 
between problems can be tested. Also, all browsers 
available in the real-time system can be used to ensure that 
the correct displays are generated (for example, correct 
state information is reported). 

3. Debugger User Interface 

The debugger part of the customization environment has 
been designed to provide a state of the art, intuitive, 

symbolic debugging environment. An intuitive user 
interface is the key to the effective use of the knowledge 
base customization tool. Figure 4 shows the Main Display 
of the debugger tool. The debugger provides the following 
features: 

• Knowledge base maintenance facilities. The debugger 
uses a revision control system in order to log all 
changes that take place to the knowledge base being 
customized. Being directory based, changing from one 
knowledge base to another during the simulation 
process is simply accomplished. Multiple knowledge 
bases can be tested during a single simulation session. 

• Save and restore the state of the simulator. The 
instantaneous state of the simulator can be stored on 
disk, and recovered for further analysis. In this way, 
knowledge base changes can be made, the effects 
evaluated and subsequently discarded before 
proceeding with a previous session. 

• Script editing. A full screen editor, with search and 
replace capabilities, is provided. An interface to the 
PDL compiler is also provided. 

• Simulation control facilities. The simulation event file 
can be selected, or changed. Events can be included or 
excluded from the simulation. The simulation speed 
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can be chosen. It is possible to intenupt event 
processing, step to the next rule or rule action or to 
resume event processing. 

• Specialized browsers are provided in order to display 
the state of a problem instance, the state variables that 
are defined for the problem instance, and the values of 
internal parameters used by the problem instance. 

• Watch and break point maintenance. Intelligent cut 
and paste between debugger browsers is provided in 
order to fill certain data entry fields automatically. For 
example, creating a break point on a certain problem 
instance requires a knowledge of the problem instance 
identifier, a number. This information is displayed in a 
browser that displays a summary of all problem 
instances in the system and thus can be copied from 
this browser to the browser where break points are 
defined and maintained. 

The main display of the customization tool consists of six 
distinct areas. The Script Display Area is used for display 
and editing of the source version of a problem script. It is 
also used to highlight locations of errors in a script during 
the compilation process. During simulation while stepping 

through the evaluation of a network event, this area is 
again used to display the active script and is again 
highlighted in order to display the current line being 
evaluated. The System Message Area contains a history of 
the system behaviour and user session progress. For 
example, this area would contain compilation error 
messages, diagnostic output from the simulator, knowledge 
base changes such as loading a new problem script and 
watch or break point information messages. The Edit 
Control Area consists of two buttons, Edit and Save, and a 
data entry field named File. This area is used to control the 
saving of the script displayed in the Script Display Area to 
disk using the revision control system. The Script Control 
Area contains two buttons - Compile and Load. The 
Compile button invokes the PDL compiler against the 
displayed problem script. The Load button causes the 
displayed compiled script to become part of the knowledge 
base active within the simulator. 

The Simulation Control Areaconsists of several buttons 
that are used to control the progress of a simulation. The 
Simulation... button causes an Event Processing Control 
browser to be displayed which allows selection of event 
file and event filtering . See figure 5 for an example of an 
Event Processing Control browser. The Start/Suspend 
button allows a simulation to be intenupted. The Next rule 
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button allows the simulation to proceed to the next rule, 
then stop. The Next step allows the simulation to proceed 
to the next rule or rule action, then stop. The Points ... 
button displays a browser that is used for watch and break 
point management. The Tracker ... button is used to display 
a browser that contains summary information on the 
problem instances currently monitored by the simulator. 
Finally, the Knowledge Base Area contains a button that 
displays a browser containing information on the current 
state of the · knowledge base. This browser gives 
information on whether a given script has been compiled, 
where it is loaded and whether it is currently active for the 
simulation. 

Selective Processing of events 

The simulator processes network events collected in an 
event file. The format of the events is the same as 
generated by the real world network. The stream of events 
coming from the network can be captured in a file using 
the real-time expert system or created using a text editor. 

Events in the file can be processed selectively, using the 
features available in the Event Processing Control browser. 
The user may skip a number of events or discard all events 
until a specific event is reached. In addition, the user is 
able to process events in steps with one or more events in 

each step. The interval between events being processed 
may be selected in order to provide a slide show capability. 
Events may be included or excluded (as indicated by I or X 
next to the event displayed). When the simulation is 
suspended, the last processed event is highlighted, so that 
the progress of the simulation can be observed. 

Tracing Problem Script Execution 

An event is analyzed using the information encoded in a 
problem script's rules. A problem script might be executed 
when a relevant event arrives or a fact changes in value. 
By following the execution of a problem script we identify 
the process of evaluation of the rules in the script. 

The execution of a problem script can be traced or 
interrupted by setting debugging break points at rules, 
actions or on fact changes. Watch points can also be 
defined which allow reporting to take place whenever a 
rule, rule action or fact change occurs. When a watch point 
is reached, a message is generated in the System Message 
Area of the Main Display. 

Rule and action debugging points, either watch type or 
break type, can be set directly from the problem script 
displayed in the Script Display Area of the Main Display 
with no typing. All types of debug points can be created 
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using the Debug Points browser. Figure 6 shows an 
example of a Debug Points browser. Intelligent cut and 
paste of information from other b~owsers within the 
customization environment (such as fact identifier, rule 
line number or rule action line number) is supported in 
order to reduce the typing required to define a debug point. 

When the simulator is suspended at a break point, the 
Script Display Area of the main display of the 
customization environment contains the source version of 
the appropriate problem script and the specific break point 
is highlighted in the Debug Points browser. A message is 
also added to the System Message Area of the main 
display. The user can control the progress of the simulation 
using buttons in the Simulation Control Buttons region of 
the main display. It is possible to step through the 
execution of a problem script, stopping only at the rules 
being evaluated or also at the rule actions that are 
evaluated for firing rules. 

Reviewing Problem Instance Data 

The instantaneous state of a problem instance can be 
reviewed using a Problem Instance State browser. This 
browser, shown in figure 7, allows a user to review all facts 
(or states) currently defined for a problem instance and to 
modify, or delete them. This browser is used primarily to 
test the interfaces between problem scripts in the 
knowledge base, although it can be used to rectify faults in 
. the experimental knowledge base while continuing with a 
simulation. It may be used to simulate changes in the 
condition of a problem by changing a fact, which would 
normally change as a result of a network event. 

Summary 

In this paper we have described the Expert Advisor 
Customization Environment, an easy to learn user interface 
used in the modification and extension of a network 
surveillance knowledge base. The customization 
environment was built in order to allow end users of the 
Expert Advisor to modify their own knowledge base to suit 
their specific needs. The knowledge base verification 
mechanism has been described and the value of the 
modularity in the knowledge base indicated. The 
environment is used extensively internally both as a 
training tool and as a way of verifying changes to the 
knowledge base and underlying software. 

By providing a Customization Environment, several 
benefits have become evident. Firstly, the Customization 
Environment is a valuable training tool that allows novice 
network operators to learn at their own pace. This, we 
believe, will lead to a new generation of network operators 
with a consistent level of training and knowledge of the 

network. We have reviewed the PDL with such operators 
in order to make the language as readable as possible in 
order that the knowledge base provides a valuable training 
document in its own right. The what-you-see-is-what-you­
get environment allows new operators to become familiar 
with the problem viewer and its various specialized 
browsers, in a controlled environment. 

The Customization Environment, by allowing the 
verification of knowledge base changes off-line, ensures 
that only proven improvements to the knowledge base will 
be introduced to the operational network surveillance 
system. Also, allowing on-line changes to the knowledge 
base to take place, availability of the network surveillance 
expert system is unaffected. 

In conclusion, we believe that this environment provides a 
significant move forward in operational knowledge based 
systems. Our current exploratory work with this 
environment is in the area of visual programming -
attempting to remove the dependence on a text-based 
language. 
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Abstract 

This article reports on heuristic guidance in open 
learning environments. In such environments, when 
the problem-solving task becomes complex, the 
number of operations needed to construct interesting 
results grows exponentially, sometimes discouraging 
the learner or leading designers and teachers to guide 
the learner tightly. To prevent the consequent 
impoverishment of the learner's construction activity, 
more specific tools must be designed to help him 
achieve by himself difficult tasks like rule 
construction, taxonomy definition or quantitative law 
induction. This last generic task is here analyzed in 
some detail. First a task model is described, showing 
the importance of combinatorial metaknowledge. 
Then, such metaknowledge is represented in a new set 
of tools for law induction and implemented in the 
LOUTI development system. Finally, this "generic 
metaknowledge in tools" paradigm is discussed in the 
framework oflntelligent Tutoring System research. 

1. Introduction 

Since 1986, our work has progressed in three main phases. 
First, commercial generic software - spreadsheets, 
hypermedia and expert system shells - have been used as 
development tools to design a first set of learning 
environments, to experiment them in classrooms and to 
define a pedagogic strategy [Paquette 88a, Bordier 90] . 

In a second phase, we have constructed LOUTI, a 
development system facilitating the design of knowledge­
based learning environments [Paquette 88b, Bergeron 90]. 
Using this workbench, a new set of knowledge-based 
learning environments has been built. Finally, in the last 
phase, we have constructed generic problem solving tools 
and designed counseling agents to guide the learner in his 
knowledge building activity [Paquette 91]. 

This paper summarizes this last phase of development in 
the LOUTI system, focussing on what we call the "generic 
metaknowledge in tools" paradigm. 

1. About Metaknowledge 

Many fundamental articles or books have been published on 
metaknowledge, using various terminologies drawn from 
domains in cognitive science such as mathematical logic, 
scientific discovery methods [Popper 61], problem solving 
and its teaching [Polya 67], computer aided learning [Papert 
80], cognitive psychology [Anderson 80] and, of course, 
artificial intelligence [Minsky 87, Langley 87, Holland 87] . 

Recently, a broad synthesis has been published [Pitrat 
90] drawing from these different domains and viewpoints. 

· Defining metaknowledge as "knowledge about knowledge", 
Pitrat makes a distinction between passive and active 
metaknowledge, subdividing the later into five categories: 
storage and retrieval, communication, evaluation, 
production, and creation-discovery metaknowledge. 

The three last categories play an important role in a 
constructivist pedagogic strategy. Evaluation 
metaknowledge is involved when a learner is looking at 
new information and must verify its validity, measure its 
utility, check if he already has similar information and 
determine if the information is complete. Production 
metaknowledge is used whenever someone tries to achieve a 
task or solve a particular problem. Data-driven methods lead 
to plans where one start with given facts and tries to build 
new ones until the goal is reached, while Goal-driven 
methods start from the goal, going backwards to sub-goals 
until given facts are obtained. 

Finally, Creation and Discovery metaknowledge is 
directly involve in any production of new concepts, new 
rules, new models, or new metaknowledge. For example, 
Combinatorial metaknowledge create new knowledge by 
applying a set of operators to known knowledge. 
Analogical metaknowledge construct new knowledge by 



transfonning known knowledge drawn from a similar 
situation. Generalization and Specialization metaknow/edge 
create new knowledge by replacing constants with variables 
in expressions or restricting/enlarging concept domain 
definitions or rule conditions. 

Metaknowledge can be viewed as a set of cognitive tools 
for knowledge acquisition in a specific domain. Domain­
specific knowledge will be understood and retained to the 
extent it is evaluated, used or constructed by the learner 
using some metaknow ledge. 

On the other end, metaknowledge is a fonn of knowledge 
that is more and more valuable in our society invaded by 
masses of unstructured infonnation. To help learner gain 
metacognitive skills should be an important goal of 
computer aided learning systems. 

2. General metaknowledge in LOUTI 

It has been our main preoccupation to favor metaknowledge 
acquisition and use in learning environments designed using 
the LOUTI development system. We will now briefly 
describe some of the concepts behind LOUT!, identify where 
metaknowledge is introduced, and underline some limitations 
in the first version of the system. 

Figure 1 

LOUT! is used by a designer to assemble a learning 
environment. In a first step the designer chooses knowledge 
representation structures to represent the domain of study -
classes, sets, relations or rules, thus selecting a library of 
possible tools associated with each representation structure. 
Figure 1 shows structures and their associated libraries, 
appearing in LOUTI's basic version, completed in April 
1990. In the selected libraries, the designer chooses tools 
that will appear in the learning environment, grouping them 
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in menus. When he is finished. the application thus defined 
can be assembled automatically. Opening the application, 
the designer can construct one or more knowledge bases 
using selected structures and tools. These will be explored 
by the learner and used to solve problems or achieve tasks. 
In the process, the learner will often extends the initial 
knowledge base or constructs an entirely new one. 

We will now consider a typical LOUT! application 
where representation structures are classes, sets and rules. It 
is intended that the learner analyses classes of experimental 
observations, define interesting subsets and use rule 
definition to express relations between certain class 
attributes. Different knowledge bases can be built and 
analyzed in this application. Here is a sample interaction 
with a knowledge base on ideal gas experiment results 
involving Temperature, Pressure, Volume and Moles. 

LEARNER: Reads the task definition: "Open the 
KB on ideal gases, examine the data using the table 
tool, and try to find relations between the gases 
attributes holding for all given observations. If no 
relation is obvious, try to define a subset of 
observations where the task will be easier." 
LEARNER: Selects the set of all observations, 
displays a table presentation, use the sorting sub­
tool for different attributes and finds not obvious 
relation. 
LEARNER: Using the hint in the task definition, 
the learner defines a subset of observations where 
"Temperature= 300 and Moles= 1 ". 
LEARNER: Now looking at the reduced table for 
this subset, sorting the data for Pressure yield an 
inverse relation, that can be seen very clearly on the 
Cartesian graph presentation. 
LEARNER: Defines a product attribute Pressure * 
Volume that seems constant(= 2494.26) 
LEARNER: Defines a first rule (law): 

"If Temperature= 300 and Moles = 1 Then 
Pressure* Volume= 2494.26" 

(Using the examples and counter-examples tool 
gives a clear verification of this law) 
LEARNER: Having done the same for other 
constant values of Temperature and Moles, defines a 
more general subset of observation where 
"Temperature= 300". 
LEARNER: Now looking at the two attributes 
Pressure*Volume and Moles, sorting the data for 
Moles yield a direct relation, that can also be seen 
on a Cartesian graph presentation of these two 
attributes. 
LEARNER: Defines a quotient attribute 
(Pressure*Volume)/Moles that is constant (= 
2494.26) 
LEARNER: Defines another rule (law): 

"If Temperature= 300 Then 
(Pressure*Volume)/Moles = 2494.26" 

LEARNER: Selects the initial set of observations, 
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displays a table presentation of the last defined 
attribute and Temperature; sorting on Temperature 
yields another direct relation. 

LEARNER: Defines a rule (law) holding for all the 
observations given initially in the KB: 
"Ift Then (Pressure*Volume)/(Moles*Temperature) = 

8.3142 
The striking thing in the preceding example is that it is a 

monologue, not a dialogue. This is characteristic of open 
learning environments. The learner directs the action, 
sometimes aided by a human teacher who suggests methods 
and tools, getting ideas for future action from the system's 
reaction. The system's role is to table, to sort, to graph, to 
accept set and rule definition, to adapt its presentation tools 
to newly selected set or rule, to give a clear presentation of a 
rule's examples and counter-examples for verification by the 
learner. 

This is possible in the basic version of LOUT!, because 
tools embody general metaknowledge about knowledge 
processing in the same way a text editor embodies general 
metaknowledge about text processing. A text editor knows 
that reordering sentences or paragraphs, searching and 
replacing words, indenting paragraphs or changing character 
style, are important to good communication in any 
particular knowledge domain. In a similar way, a LOUT! 
application adjusts its subsets inclusion network after set 
definition (figure 2A), adjusts tables and graphs to set 
selection (figure 2B), facilitate sorting operations and rule 
counter-examples display (figure 2C). 
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There are however, problems in using tools that are as 
general as these. It is not certain at all that the average 
student will be able to achieve anything near the ideal 
method presented above. In fact, in the first implementation 
of this learning environment, the designer has been forced to 
write a detailed activity guide to make sure that the learner 
proceeds in the right direction. 

Decomposing the learning process in a "guided tour" way 
is contradictory to the very idea of a constructivist learning 

strategy. It leads to impoverishment of the problem-solving 
process, preventing the learner to plan the use of induction 
tools and methods by himself 

The problem here is this: in a complex learning task, the 
number of necessary operations using general tools grows 
exponentially. To prevent this without guiding closely the 
learner, the LOUT! workbench must be enriched with new 
tools that are concrete representation of more specific 
metaknowledge. 

A first set of such tools have been developed with the 
SONODOSE project, a physiotherapy training environment 
on ultra-sound treatment [Paquette 90). Specialized tools 
have been constructed to help the learner build a consistent, 
complete and non-redundant set of rule for ultra-sound 
treatment identification. Evaluation metaknowledge has been 
embedded in tools to help uncover contradictions between 
rules, compare the extension of two rules and assess a rule­
group's completeness. These tools are not as general as 
LOUTI's base version tools, but they are useful whenever 
the generic task of rule construction must be undertaken. 

To generalize this approach, we have since then 
developed new set of tools for two other generic tasks: 
taxonomy definition and quantitative law induction. The 
later will now be discussed in some detail, keeping in mind 
to help a learner solve similar induction problems to the 
Ideal Gas law. 

3. Law induction metaknowledge 

In law induction tasks, fundamental AI machine learning 
research [Langley 87) has demonstrated the importance of 
combinatorial metaknowledge. In the work of Langley and 
al. on scientific discovery, induction of quantitative laws is 
seen as a problem-solving process in a state-operator space. 
The initial state is a list of expressions that are variables 
over some domain. Operators can restrict, enlarge the 
domain or construct more complex expressions. They are 
applied until a final state is reached where an expression is a 
constant or a linear expression over a sufficiently large 
domain, or no more operators can be applied. 

The search through the induction problem space is 
guided by combinatorial metaknowledge. Based on our 
observation of human problem solvers, using part of 
Langley's BACON programs heuristics, we have retained the 
following operators or metaknowledge: 

TO INDUCE: 
(1) Restrict the domain so that all variables 

are kept constant, except two called X and Y, 
and make a first expression list X, Y on this 
domain. 

(2) If X and Y are inversely proportional, add 
the expression X*Y to the list. 

(3) If X and Y are directly proportional, add 
the expression X/Y to the list 

(4) If the last expression F(X,Y) is constant 



or a linear function of X and Y, remove X and Y 
from the expression list 

(5) If the last expression F(X,Y) is constant 
or a linear function of X and Y, stop or enlarge 
the domain by freeing one variable not in 
F(X,Y). 

Using these operators, the direct induction path to the 
Ideal Gas law presented in the preceding section, can be 
summarized as follows: 
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Figure 3 

Metaknowledge in these operators is generic. With 
similar heuristics, the BACON programs are able to discover 
most quantitative laws of elementary physic and chemistry 
such as Snell's refraction law, Ohm's electricity law or 
Kepler's third gravitational law. Furthermore, these 
heuristics were derived from close study of the writings of 
scientists involved in these laws' first discovery. So it 
seems a sound pedagogical idea to include them in some way 
in a new set of LOUTI tools. 

4. Law induction metaknowledge in tools 

Our implementation of the above operators has led to four 
new LOUTI tools: 
• Variable Selection displays, for any selected set, a list 

of attribute couples, each being in inverse or direct 
proportional relation, to help the learner apply operators 
(1) & (5). (see Figure 4 A, B) 

• Construction displays a sorted table of the selected set, 
with a column for the two initial variables and 
subsequent expressions constructed using operators; as 
shown on figure 4C, operators (2) Product, (3) Quotient 
and (4) Reduce can be applied to the current expression 
list using options of the private menu. 

• Operation Selection counsels the learner on the 
operation to use on two attributes he selects. 

• Constant and Linear Testing computes if an 
expression is a constant or linear relation, considering an 
error factor specified by the learner. 
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Figure 4 

Using these new tools, the Ideal Gas law induction is 
more easily achieved, the learner proceeding as follows: 

LEARNER: Reads the task definition: "Open the 
KB on ideal gases, examine the data using the table 
tool, and try to find relations between the gases 
attributes holding for all given gases". 
LEARNER: Calls the Variable Selection tool with 
the set of all observations selected. 
SYSTEM: Suggest the definition of a restricted 
subset (Figure 4A). 
LEARNER: Defines the Temp=300&Moles= 1 
subset and calls again the Variable Selection tool. 
SYSTEM: Suggest a relation between the variables 
Pressure and Volume (Figure4B). 
LEARNER: Calls the Construction tool; the sorted 
table and the associate Cartesian graph clearly show 
an inverse proportional relationship (Figure 4C). 
LEARNER: Calls the Operation Selection tool 
SYSTEM: Suggest to consider a product of the two 
variables. 
LEARNER: Selects the product option in the 
Expression Construction tool; the table and graphics 
adjust, showing a constant product expression (= 
2494.26), verified to a very low precision interval 
using the Constant Testing tool. 
LEARNER: Uses the "Reduce" option of the 
Construction tool, keeping expression T, Mand P*V 
LEARNER: Defines a more general subset of 
observation where ''Temperature = 300" and call the 
Variable Selection tool. 
SYSTEM: Suggest to consider a relation between 
the variables Moles and P*V. 
LEARNER: Calls the Construction tool; the sorted 
table for the subset and the associate Cartesian graph 
clearly show a direct proportional relationship 
between Moles and P*V. 
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LEARNER: Selects the quotient option in the 
Construction tool; the table and graphic adjust, 
showing a constant P*V/M expression (= 2494.26) 
that can be verified using the Constant testing tool. 
LEARNER: Uses the "Reduce" option in the 
Construction tool, keeping expression T and P*V /M 
for future constructions. 
LEARNER: Select the initial "Real Gases" 
observation set. 
LEARNER: Calls the Construction tool; the sorted 
table and the associate Cartesian graph clearly show a 
direct proportional relationship between T and 
P*V/M. 
LEARNER: Selects the quotient option in the 
Construction tool; the table and graphic adjust, 
showing a constant P*V/M*T expression(= 8.3142), 
yielding the Ideal Gas Law definition. 
LEARNER: Defines a rule (law) holding for all the 
observations given initially in the KB: 
"If t Then (Pressure*Volume)/(Moles*Temperature) = 

8.3142 

Comparing this procedure and the one in section 2, one 
can see that the new set of tool reflects more directly 
induction heuristics. The learner is freed from most technical 
operations so he can concentrate on finding a solution path. 
Further more, such tools are constant reminders of 
productive induction methods. 

Though the learner retains initiative, the system is more 
active, giving advice at the student request on interesting 
variable, adequate operations and constancy or linear 
relationships. While using the tools, the learner has to ask 
himself good questions about the method. 

The end of the preceding dialog suggests that the learner 
has come to associate "inverse proportional relation" with a 
product operation, and "direct proportional relation" wi~ a 
quotient operation, so doesn't need to use the Operauon 
Selection tool. When the learner comes to find some tool 
useless, and yet use its effect to choose other actions, we can 
suppose he has internalize the corresponding 
metaknowledge. Then, a very important didactic goal has 
been achieved. 

S. Implementing Generic Tools in the 
LOUTI system 

In the LOUTI system, tools are PRISME1 objects inheriting 
attributes and methods from parent tools or basic interface 
objects. To add a new tool, it is useful to start with one or 
more general tools already in the system and to modify their 
methods. 

1 PRISME [Bergeron 88, Nadeau 91] is a programming 
system of the LISP family with object-oriented and logic 
programming extensions, fully integrated with one another 
and with the Macintosh graphic user interface. 

Operational tools 

We define tools as operational, when they participate in a 
learner's constructive action. They facilitate action, in our 
case, applying operators in the problem-space. 

For example, the Construction tool is implemented as a 
descendant of both the Table Tool and the Cartesian Graph 
Tool, but almost every method had to be rewritten. 
Activation and deactivation methods needed to be redefine, to 
achieve coordinate appearance or disappearance of the sorted 
table and its associated graphs. 

The tool's private menu has been profoundly modified to 
make the Product, Quotient and Reduce options available. 
These three options achieve several knowledge base 
operations in a single step: 
- call attribute definition or destruction operations, 
- specificy attribute type and computation mode, 
- construct new product or quotient attribute, 
- add a column in the sorted table and draw new graphs. 

Counseling tools 

Unlike operational tools, counseling tools give 
methodological advice to the learner. They are implemented 
as descendants of a parent tool having two basic methods: 

• evaluating a set of conditions based on indicators to 
be computed by each counseling tool; 
• displaying a message based on the conditions met by 
the learner's knowledge base in its present state. 

A particular counseling tool like Variable Selection will 
compute indicators for direct or inverse proportional 
relationship for each pair of attributes, for all elements in 
the selected set of observations. It will display a message 
accordingly. If there is no such relationship, it will suggest 
the learner to apply operator (1). If, on the contrary there is 
one, it will list couples of interesting attributes to consider. 

Such counseling tools do not take action on behalf of 
the learner. Like any other tool in the environment, a 
counseling tool is used by the learner whenever he feels he 
needs it Getting an advice leaves a lot of work to do. There 
are still many paths the learner can take. If fact, counseling 
tools act like a first-line specialized teaching agent The 
learner mentally raises his hand and gets a specialized 
counsel from the agent. 

Generic tools 

Both operational and counseling tools are domain 
independent. This opens the possibility to add them to 
LOUTI' s libraries. They then become available to build any 
application in which they can be useful. These. ~e 
knowledge domains where there is at least a class contrumng 
a certain number of numeric attributes on which subsets, 
can be defined and numerical relations searched for. 

The law induction tools are domain independent but they 
display messages, tables, graphs or other presentations using 
domain specific terms. For example, figure 5 shows displays 



from the Variable Selection tool and the Construction tool, 
in a completely different domain from the Ideal Gas law: 
solar astronomy. Thirty-nine celestial objects are includes in 
the knowledge base and described by more than thirty 
attributes, most of which are numeric. It is then possible to 
use the Law induction tools to induce, for example, Kepler's 
third gravitational law. 
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This induction problem-space is quite different from the 
ideal gas law problem. Kepler's third law contains only two 
variables instead of four, but the relation between them is 
more complex. To construct the expression D3/R2 = est, 
one does not need to restrict or enlarge the observation set, 
but to apply the product and quotient operators many times 
on expressions obtained by previous application of the same 
operators. 

The fact that a law such as this one can also be derived 
using the same induction tools shows their generic character. 
But certainly they are not general tools, useful in any 
induction problem. Adding new operators would enable 
induction of more complex quantitative laws, but for ill­
structured problem domains such as quasi-laws in economics 
or foreign policy, combinatorial metaknowledge such as the 
one presented here would prove its limit. For such domains, 
rule construction metaknowledge such as we have embedded 
in the physiotherapy environment might provide a better 
start. 

This discussion underlines our general approach: to find 
classes of similar problems where useful metaknowledge can 
be identify, to embed this metaknowledge both in 
operational tools and counseling tools, and to make these 
tools available to the learner in the learning environment 

6. Learner Guidance in Open Learning 
Environments 

We have presented an approach to the problem of guidance 
in open learning environments. Especially when problems 
are difficult, it is necessary for the system to provide some 
sort of advice, without restraining the necessary liberty 
involved in real problem-solving activities. We will now 
discuss this approach more in detail, within the framework 

of Intelligent Tutoring Systems (ITS) research. 

The learner as a knowledge engineer 

The following quotation from John Self expresses well the 
foundation of our approach: 

"An ITS philosophy (of Knowledge transmission) 
runs counter to almost everything of significance in 
twentieth century educational philosophy. All the 
major figures (Dewey, Montessori, Piaget, Rodgers, 
even Skinner) have rejected the "education as 
transmission" model, which had dominated the 
previous three centuries in favor of an "education as 
growth" model. Knowledge is not the kind of 
commodity which can be transmitted. It cannot be 
simply received by students but must be constructed 
anew by them. While most ITS researchers declare 
such a view, it is belied by the systems we build." 
[Self90] 

We hope we are not! In fact, in our learning 
environments, the student's activity is essentially knowledge 
construction. The learner's explores the knowledge freely 
using presentation tools in the application. Then, a task or a 
problem makes him explore knowledge in a more structured 
way. Finally he will write down a conjecture, test it and 
modify it if necessary to increase its predictive power. 

Many works in ITS have considered the analogy between 
the learner's construction activity and knowledge 
engineering. For example, William Clancey proposes the 
following approach: 

"by studying and modeling the work of the 
knowledge engineer, we should be able to build 
models of the learning process that can be 
integrated in the design of an Intelligent Tutoring 
System." [Clancey 88] 

While Clancey here looks at the knowledge engineer as a 
learner to model, we essentially see the learner as a 
knowledge engineer. In both cases, the study of knowledge 
engineering is interesting because it helps identify more 
clearly useful metaknowledge. Since knowledge engineering 
by the student is not and easy task we seek to make 
metaknowledge available in the form of interactive tools 
included in the learning environment. 

Metaknowledge in tools and heuristic guidance 

We are certainly not the first to investigate the use of 
metaknowledge in learning environments. Clancey has used 
metaknowledge classified as support, structural and strategic 
knowledge and used in his systems for medical training 
[Clancey 83]. Vivet has integrated the mathematician 
metaknowledge in an expert-system solving symbolic 
integration problems, that can be used for tutoring a student 
on those tasks [Vivet 84]. 

In open environments, Papert's microworld approach 
[Papert 80] puts great emphasis on the use of problem­
solving metaknowledge through LOGO programming. 
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9 6 Learning environments such as SMITHTOWN [Shute 86), 
REFRACT [Reimann 88] and VOLTAVILLE [Glaser 88], 
built at Pittsburgh's LRDC have a strong metacognition 
emphasis. 

In our view, metaknowledge should be introduced 
explicitly in learning environments to help the student gain 
and use domain independent methodological knowledge. This 
idea is supported by a systematic study of the use of LOGO 
problem-solving in classrooms [Swan 89). This study 
shows that LOGO programming, though having an effect on 
problem-solving skills, is not significantly better without 
explicit teaching of problem-solving methods such as 
problem decomposition, forward-chaining or analogy. Both 
are necessary for metaknowledge use and acquisition. 

In a similar way, we hypothesize that the use by the 
learner of operational tools embedding metaknowledge, and 
the use of counseling tools, also based on metaknow ledge, 
are both necessary to help the student achieve knowledge 
construction tasks. 

Operational tools enable activity similar to LOGO 
program construction, with its programming-evaluating­
debugging cycle. Using operators on the knowledge base, 
the learner construct a problem solution by a similar 
"knowledge debugging" process. 

On the other hand, counseling tools are a constant 
reminder of evaluation, utiliz.ation and creation 
metaknowledge, in other words: problem-solving methods. 
They provide an interactive initiation to problem-solving 
methods, a form of heuristic teaching first proposed by 
George Polya [Polya 57, 67) . In this way, in a very open 
learning environment and task, it is possible to offer 
methodological guidance that should constrain the leranrer's 
construction process towards productive results. 

Generic metaknowledge 

A last aspect of the question is the generality or scope of 
metaknowledge. In their synthesis on induction, Holland and 
al. underline: 

"General methods such as means-ends analysis are 
not sufficient to explain problem-solving skills. 
Human expertise lies, in a critical way, on 
specialized methods and a good representation of 
knowledge in the considered domain" [Holland 87] 

In their work on scientific discovery, Langley and al., 
also consider a hierarchy of heuristics ( or metaknowledge) 
from general weak methods, to more specialized strong 
methods: 

"We can picture a hierarchy of heuristics, with the 
top levels consisting of very general algorithms 
that require little information about the task 
domain to which they are applied and are 
correspondingly applicable to a great many 
domains. As we proceed downward in the 
hierarchy of heuristics, we make more and more 
demands on information about the task domain, 

and there are correspondingly fewer domains to 
which the heuristics apply ( ... ). Since the more 
general heuristics operate on the basis of less 
information, we may expect them to be less 
selective, and hence less powerful, than heuristics 
that make more use of information about the task 
structure. Hence, general heuristics are weak 
methods, while task-specific heuristics, such as 
our procedure for solving algebra equations, may 
be strong methods. The less structured a problem­
solving task is, the less information one can draw 
upon construct strong heuristics." [Langley 87) 

Reviewing recent ITS literature shows that the vast 
majority of projects have concentrated on strong, domain­
specific methods, consistent with a guided discovery 
approach. Metaknowledge has been used mainly in the 
tutorial module to achieve close domain-dependant learner's 
guidance. At the opposite, micro-world and learning 
environment projects are characterized by the use of weak 
methods, most of the time without any guidance from the 
system. 

Our work is an attempt to reconcile these approaches. 
We have first represented weak methods in quite general 
tools, in the basic version of the LOUTI system, in a 
typical "micro-world spirit". Then, we have concentrated on 
the introduction of more specific metaknowledge and 
stronger methods for generic tasks like rule construction, and 
law induction. 

We can define our research program as this: to seek 
structured tasks where powerful, while largely domain­
independent methods can be represented in tools to support a 
learner-centered construction activity. 

It is hoped that with these tools, a learner can 
experiment fruitful knowledge construction activities across 
different fields of knowledge. 
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Abstract 
When making a decision under uncertainty, we 
often impose a threshold on the expected util­
ity. Such a threshold dictates a lower bound 
for the posterior probablity of the compos­
ite hypothesis on which the decision is based. 
This paper introduces the concept of Lower 
Bounded Composite Hypothesis (LBCH) . A 
LBCH is also a Most Likely Composite Hypoth­
esis (MLCH) if the lower bound is greater than 
0.5. 
The paper presents a threshold method for 
computing LBCHs by belief updating (the com­
putation of Posterior Marginal Distributions 
(PMDs)) in Bayesian networks. There has 
been no known algorithm computing MLCHs 
in clique tree based secondary structures of 
Bayesian networks. The method presented al­
lows the computation of LBCHs in such struc­
tures using existing belief updating algorithms. 
The method is practical only for computing 
LBCHs over a small number of (about 20) 
variables. However, the networks can contain 
an arbitrarily large number of variables. It 
is argued that restricting the computation of 
LBCHs to a small number of variables can often 
be desirable. An example is given to illustrate 
the method. 

1 Introduction 
Bayesian belief networks combine graphic representation 
of causal domain models and probability theory. Over 
the last decade, they have gained increasing popularity 
as a natural, efficient knowledge representation method 
and a consistent inference formalism for building knowl­
edge based systems which require reasoning under un­
certainty. 

Bayesian networks have been termed in the literature 
belief networks, causal networks, or causal probabilistic 
networks. Formally a Bayesian network [Pearl 88] is a 
triplet (N, E, P). 

• The domain N is a set of nodes each of which is la­
beled with a random variable. Each variable has a 
set of mutually exclusive and exhaustive outcomes 

which forms its space. 'Node' and 'variable' are used 
interchangeably in the context of Bayesian nets. A 
joint assignment of outcomes for a set of variables 
X = { A1, ... , An} ~ N is denoted by the concate­
nation of corresponding outcomes x = a1 ••• an, 

• E is a set of arcs such that (N, E) is a directed 
acyclic graph. The arcs signify the existence of 
direct causal influences between the linked vari­
ables. Causality is directed along the directed 
arcs. The basic dependency assumption embedded 
in Bayesian nets is that a variable is independent of 
its non-descendants given its parents. 

• Pis a joint probability distribution quantifying the 
strengths of the causal influences signified by the 
arcs. P specifies for each Ai E N the distribution 
of the random variable labeled at Ai conditioned 
by the values of Ai's parents 11'i in the form of a 
conditional probability table p(A;l1ri)· p(A; j1ri) is 
a normalized function mapping the joint space of 
{Ai} U 11'i to (0, 1]. The joint probability distribu­
tion P can be represented as P = p( A1, ... , Aa) = 
Ilf=1 p(Ai j1r;). 

Inference in Bayesian networks can provide answers 
to essentially two types of queries. The first type asks 
the PMDs in the form: p(Ale) where A is a single vari­
able and e stands for all the evidence acquired so far. 
Computing PMDs is termed belief updating (Pearl 88]. 
A PMD allows one to rank the set of possible outcomes 
for variable A according to their credibility given e, for 
example, whether a patient has a particular disease or 
not; or whether a component in a machine is faulty. 

The second type asks the MLCH. Let X ~ N be a 
set of variables. One computes a joint assignment x of 
outcomes to all variables in X such that 

('v'x')p( x le) > p(x' le). 

A joint assignment x ' is called an instantiation of X, 
or a composite hypothesis, or a configuration, or an ex­
planation. Computing the MLCH is termed belief revi­
sion (Pearl 88]. The MLCH is needed when one tries to 
determine the exact state of the world (when X = N ) 
(Poole and Provan 90], for example, to give a description 
of the overall status of a patient. 

In the literature, the two types of inference have been 
considered distinct. Consider two variables A and B. 



The computation for PMDs may indicate that a1 is the 
most likely outcome of A and b1 is the most likely out­
come of B. While the MLCH for X = {A,B} may turn 
out to be a1 b2 (Pearl 88, Poole and Provan 90]. 
This paper shows when this is not the case. Based on the 
distinct nature of the two inference types, separate algo­
rithms have been developed for each type of inference. 
For computation of exact PMDs, there are A - 1r mes­
sage passing in trees (Pearl 86], arc-reversal and node­
removal [Shachter 86, Shachter 88], directed clique tree 
message passing (Lauritzen and Spiegelhalter 88], junc­
tion trees of cliques (Jensen, Lauritzen and Olesen 90a, 
Jensen, Olesen and Andersen 90b], multiply sectioned 
Bayesian networks and junction forests of cliques 
[Xiang, Poole and Beddoes 91]. For computation of ap­
proximate PMDs, there are logic sampling (Henrion 88], 
and clamped logical sampling (Pearl 88]. For compu­
tation of the MLCH, there are message passing, cutset 
conditioning, clustering [Pearl 88] as exact methods; and 
TopN [Henrion 91] as an approximate method. 

This paper studies the relation between the two types 
of inference. In particular, the paper presents the fol­
lowing. (1) The notion of Lower bounded Composite Hy­
pothesis (LBCH) is introduced from a decision theoretic 
context. LBCHs are MLCHs when the lower bound is 
greater than 0.5. (2) It is shown that LBCHs can be 
obtained by belief updating. (3) Although computation 
of LBCHs by belief updating is directly applicable to 
hypothesis sets of less than about 20 variables, it is ar­
gued that not only this is often sufficient with respect to 
one's current attention, but this is often desirable com­
pared to computing a MLCH over all domain variables. 
(4) There is no known algorithm computing MLCHs in 
clique tree based secondary structures of Bayesian net­
works. By establishing the relation between belief up­
dating and revision, one can extract extra information 
(LBCHs) beyond PMDs from the secondary structures 
in a straightforward way. 

Section 2 introduces the LBCH notion from maxi­
mum expected utility principle of decision theory. Sec­
tion 3 and 4 presents the threshold method for com­
puting LBCHs by belief updating. Section 6 discusses 
the application of the method for inference in secondary 
structures. Section 7 demonstrates the method by an 
example. Section 8 summarizes the main results of the 
paper. 

2 Lower Bounded Composite 
Hypotheses 

Decision theory argues a rational decision maker 
should act according to Maximum Expected Utility 
(MEU) principle (von Neumann and Morgenstern 47]. 
Following the formulation in (Andreassen et al. 89], the 
decision maker's preference can be represented by a util­
ity function U(x; lxi) where x; and Xj are both composite 
hypothesis on a set X of variables. The function spec­
ifies the utility of action based on Xi given that xi is 
true. We consider reward/ penalty type of utility func­
tions. The utility of a correct decision (i = j) is pos­
itive (reward). The utility of at least one wrong deci-

sion (i # j) is negative (penalty) . Utility functions in 
many applications belong to this type. Military actions 
on battlefields are such examples. In medical diagnoses, 
treatments ( medication, surgery) based on wrong diag­
noses can cause side effects and inappropriate follow-ups, 
can prolong and worsen the patients' suffering due to 
the untreated real disease. There has been argument 
[Huchlenbroich 91] that medical expert systems should 
base their conclusion on "conclusive" evidence to avoid 
incorrect diagnosis as much as possible. 

The MEU principle says that given evidence e, and 
utility function U, one should choose the action indicated 
by Xi which has maximal expected utility: 

Denote the reward/ penalty type utility as the follow­
ing. 

i = j 
i#j 

where min(wj) = - W, and V, W are positive. The 
expected utility for Xi is 

> Vp(x; le) - W(l - p(x; le)) 
= W(l + r)(p(x; le) - p') (1) 

where r = V/ W (reward/penalty ratio) and p' = 1/ (1 + 
r ). 

When making a decision under uncertainty, we often 
impose a threshold U0 on the expected utility. If MEU 
is less than U0 , we would delay the decision and try to 
gather more information until MEU is greater than U0 • 

The following definition gives one such threshold. 

Definition 1 With a reward/penalty type utility, a com­
posite hypothesis xis profitable if and only if U(x) > 0. 

By equation 1, if p(xi le) > p' , then x; is profitable. 
Consider an extreme case of the reward/ penalty ratio 
in equation 1. If V < < W , then p' -+ 1. A profitable 
composite hypothesis Xi has to satisfy p(x;le) -+ 1. In 
this case, trying to find the profitable composite hypoth­
esis means trying to avoid heavy penalty. For instance, 
when a medication can cure a patient if he has the disease 
but can kill him if the diagnosis is wrong, the physician 
should be very careful to ascertain the diagnosis. We 
see that p' is a belief threshold which results from the 
expected utility threshold 0. 

Zero is not the only possible utility threshold. Con­
sider another extreme case of the reward/ penalty ratio 
in equation 1. if V >> W , then p' -+ 0 and the right 
side of the equation is approximately Vp(xi le). In such 
case, many composite hypotheses are profitable but the 
reward associated may be very low compared to V. If 
one sets minimum expected reward Vo, then one should 
try to find Xi such that p(xi le) > Vo / V . Again we see a 
belief threshold Vo / V. 
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To summarize, when making a decision under uncer­

tainty, one often has a utility dependent lower bound po 
such that one needs to find the composite hypothsis Xi 

which satisfies p(xile) > Po, In the about two extreme 
cases, Po takes the values of p' and Vo/V respectively. 
We call such Xi Lower Bounded Composite Hypothesis 
(LBCH). 

LBCHs may not be unique if p0 ~ 0.5. 

Definition 2 A composite hypothesis x is dominant if 
and only if p(xle) > 0.5. 

Proposition 1 A LECH is a MLCH and is unique if it 
is dominant. 

Since dominant LBCHs are profitable, unique and most 
likely, they are more useful than non-dominant LBCHs. 

Given a state of knowledge, there may not exist any 
LBCH relative to a particular po. One can, however, 
strive for LBCHs lly collecting more evidence to increase 
the amplitude of p(xile).1 

3 Computing LBCHs with Belief 
Updating 

This section derives the condition under which belief up­
dating can be used to compute LBCHs. 

Consider a set X = A1 ••• An of binary ( this restric­
tion will be eliminated latter) variables and an instanti­
ation x of X. The following lemma provides a sufficient 
condition for computing LBCHs. 

Lemma 1 Let x = a1 .. . an be an instantiation of a set 
X of n binary variables. x is a LECH relative to po if 
p(a; ie) > (n - 1 + Po)/n (i = 1 ... n). 

Proof: 
To simplify the notation, write p(a1 . .. an le) as P1...n, 

and p(a1a2 . . . an le) as PI. .. n where the bar means 'not' . 
Let T = ( n - l + Po) / n. 

n 

L Pi = (P1.. .n + P12...n + • • • + P12 ... n + 
i=l ct 

n-1 

P123 .. . n + ·' ' + P1...n-ln + · '· + P12 .. . n) -...._.., 

+ ... + 
cn-1 

n - 1 

(P1...n + PI ... n + · · · + P1...n-ln + 

· · · + P2 .. . n-1n) ...___ 
c::: 

= n(p1 ... n) + 

ci 
n-1 

(n - l)(Pr ... n +.,. + P1...n) + 
Ct n 

(n - 2)(Pu ... n + ... ) + ..._____. 
c~ 

1 For simplicity of presentation, we assume the cost of col­
lecting evidence is much smaller than V + W . 

l(P1...n-ln + • • •) ________.. 
c:-1 

> nT 

Since the terms in the parentheses in the second equa­
tion are all different, the above implies 

P1.. .n > nT - ( n - l) = Po 

0 

A variable A of multiple values can be transformed 
into a binary variable A', with the outcome a of A in 
which one is interested as one outcome of A', and with 
other outcomes of A congregated as the other outcome 
of A'. Since such transformation is always possible, 
Lemma 1 can be generalized to variables other than bi­
nary ones. 

Lemma 1 establishes a threshold for each p(aile). 
Once each variable in X has one outcome passing the 
threshold, the conjunction of this set of outcomes forms 
a LBCH on X. It can be seen from the above proof that 
the threshold for each outcome is not necessary. Replac­
ing such threshold by a threshold for the sum of p( ai le), 
one has the slightly stronger result ( (2) in the following 
theorem). 

Theorem 1 Let x = a1 ... an be an instantiation of a 
set X of n variables. x is a LECH relative to Po if 

1. (individual threshold) p(ade) > (n - 1 + p0 )/n (i = 
1 .. . n) or 

2. (sum threshold) I:7=1 p(a; le) > n - l + Po, 

Table 1 shows the threshold for ( 1) in theorem 1 in 
relation with n when Po = 0.5. 

I (n-0~5)/n I 0.~5 
3 5 10 20 

0.83 0.90 0.95 0.975 

Table 1: Threshold for marginal probabilities 

4 How Restrictive is the Threshold 
Method? 

Table 1 shows that the computation of LBCH (with 
Po = 0.5) of more than about 20 variables by belief up­
dating requires above 0.975 posterior probability for each 
outcome involved. This seems to be too tight a restric­
tion on the size of the application domain. Fortunately, 
although the number of variables of an application do­
main can easily exceed 20, computation of LBCHs over 
less than about 20 variables can often be justified and 
can even be desirable. Since dominant LBCHs are also 
MLCHs (Proposition 1) and are more useful than non­
dominant LBCHs, the following discussion refers ma­
jorly to MLCHs to match the concept used in the ref­
erenced literature. We specify the conclusion applicable 
to LBCHs whenever possible. 



Figure 1: Illustration of problems with belief revision 

4.1 Belief revision. over all variables is not 
always desirable 

The difficulties associated with belief revision 
over all variables have been identified in [Pearl 88, 
Poole and Provan 90]. First of all, there is the compu­
tational problem. If the MLCH is to cover the entire 
domain, every piece of evidence must be propagated to 
the entire network. Unobserved consequence variables 
no longer block the propagation as is the case in belief 
updating. For example (Figure 1), if variable C is un­
confirmed, the subnetwork NA is independent of NB if 
PMDs are to be computed. However, in the case of belief 
revision over all variables, when evidence is available in 
NA, it has to be propagated to NB in order to find the 
MLCH. This would impose heavy computational over­
head in larger applications. 

Secondly, there is the conceptual problem. In belief 
revision, changing the space where MLCH is computed 
will change the outcome for each variable. For exam­
ple (Figure 1), assuming all evidence is contained in NA, 
and A, Care uncertain, computing the MLCH in NA or 
in N may end up with different assignments for variable 
A. When a diagnosis problem is coupled with a holiday 
planning, the imagination of the uncertainty of trips can 
render a highly likely normal diagnosis to become posi­
tive (with the disease) as pointed out by Pearl [1988]. 

It should be emphasized that this conceptual problem 
is not unique to belief revision in Bayesian networks. 
Belief revision can be viewed as an optimazation task. 
Optimization is, in general, sensitive to the space over 
which some target function is optimized. Belief updat­
ing does not suffer from the above conceptual problem 
because it is not a optimazation task. 

The above problems suggest that computation of the 
MLCH over all variables of the domain is not always 
desirable. 

4.2 Variables which should be covered by a 
MLCH 

In order to overcome the problems associated with be­
lief revision over all variables, Pearl [1988] proposed to 
circumscribe a domain into a set of variables called ex­
planation corpus, and to compute the MLCH only over 
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the corpus. According to Pearl, the corpus includes ev­
idence and ancestors of evidence variables which have 
a significant impact on pending decisions. Restricting 
computation of the MLCH on the corpus will eliminate 
a substantial number of variables in the domain. In this 
subsection, we take a closer look at the variables included 
in the corpus. The purpose is to examine the possibility 
of focusing the computation to an even smaller set of 
variables. 

Typically a known evidence variable takes one of its 
outcomes. Therefore, within the corpus, one can fur­
ther eliminate the evidence variables from computation 
of the MLCH. The remaining variables are the ancestors 
of the evidence variables. These variables can be orga­
nized in different levels of abstractions. For example, 
in medical applications, a Bayesian net can have symp­
tom variables as leaves. The successive next higher levels 
can be biological state level, disease or syndrome level, 
and disease groups level ( representing diseases with some 
common characteristics). Not all of them are of a physi­
cian's current interest. Usually, only variables at certain 
level of abstraction is of physician's utmost interest. The 
number of such variables will be much smaller than the 
number of variables within the explanation corpus. 

When the number of variables in the abstrac­
tion level of current attention is large, an im­
portant strategy can be applied as suggested in 
[Patil, Szolovits and Schwartz 82] . One can move up an 
abstraction level where the important differences are rep­
resented by a smaller set of higher level hypotheses. Af­
ter gathering further evidence such that the differentia­
tion at the higher level is resolved, one can move down 
to the lower level to differentiate in greater detail. Fo­
cusing one's attention in this fashion, one needs only to 
compute the MLCH on a small number of variables. 

The existence of a LBCH over a set of variables is rela­
tive to an adequate amount of evidence. Thus it is often 
useful to know there is no LBCH over a set of variables 
given the current state of knowledge. The following the­
orem gives one condition. Its proof is trivial. 

Theorem 2 Let X be a set of n variables. Let A E X 
have m possible outcomes { a1, ... , am}. If p( a;je) < Po 
( i = 1 ... m), then none of the instantiations of X is a 
LECH relative to Po, 

Theorem 2 asserts that there is no LBCH if A is in­
volved in the composite hypothesis. That is, given the 
available evidence, one can not make any strong com­
mitment on any composite hypothesis which involves A. 
Perhaps, one could choose to collect more evidence in 
order to sharpen the distribution and to make a better 
informed decision or to make a decision with A ignored. 
Both can be seen in medical diagnosis. When a doc­
tor does not have adequate evidence to give a positive 
diagnosis on a disease, he/she may either perform more 
tests on the patient or give no treatment until the disease 
further manifests. 

5 Computation of LBCHs 

Computationally, we specify the abstraction level of cur­
rent interest in the explanation corpus. To compute 
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dominant LBCHs, we uses Theorem 2 to exclude the 
variables at the current level which do not lead to a 
LBCH. Suppose a set X of M variables remains after 
the exclusion. Using the threshold in theorem 1, we can 
find all dominant LBCHs covering a subset of 2 variables 
in X, 3 variables, ... , up to n ~ M variables, where n 
increases as more evidence is gathered. The following 
Algorithm formally presents this method. It can easily 
be extended to cover the non-dominant LBCH case. 

Algorithm 1 Let X be the set of variables in the ex­
planation corpus and X' ~ X. X' corresponds to the 
restricted corpus after the application of Theorem 2. Let 
p(A;le) be the PMD for variable A; E X. Let Po be 
the lower bound of the posterior probability on dominant 
LBCHs. Let xi be a composite hypothesis over a sub­
set of j variables of X '. Let Y be the set of dominant 
LBCHs ( over different subsets of X' ). 

begin 

end. 

Set X ' = X. 
For each i, remove A; from X' if, for every 

outcome a;k of A;, p(a;kle) < po. 
Set index j = 1. Set FLAG on. Set Y = {}. 
While FLAG is on, do the following: 

Set FLAG off. 
Increase j by 1. 
For each xi, insert xi to Y and set FLAG 
on if the threshold in Theorem 1 is satisfied. 

6 Computation of Dominant LBCHs in 
Secondary Structures 

Inference in Bayesian nets can be performed in original 
networks [Pearl 86, Shachter 88, Henrion 88, Pearl 88, 
Henrion 91] or be performed in clique tree based 
secondary structures [Lauritzen and Spiegelhalter 88, 
Jensen, Lauritzen and Olesen 90a, 
Xiang, Poole and Beddoes 91]. The above threshold 
method for computing LBCHs can be used in conjunc­
tion with algorithms of belief updating in both struc­
tures. Evidential reasoning in secondary structures have 
advantages when the domain knowledge is acquired once 
and is used for multiple cases ( e.g. expert systems); and 
when the net topology is multiply connected. To the 
author's knowledge, however, there has been no gen­
eral algorithm which computes MLCHs in clique tree 
based secondary structures. All known algorithms for 
secondary structures perform belief updating and com­
pute PMDs. The threshold method of Theorem 1 allows 
one to obtain the LBCHs in secondary structures using 
existing belief updating algorithms. 

An alternative for computing MLCHs ( or dominant 
LBCHs) using belief updating is to introduce auxiliary 
nodes [Pearl 88]. For a set X of variables, an auxiliary 
node A with all the possible joint assignments xs as its 
outcomes is added to the original net. The method com­
pute both the MLCH and the corresponding probability 
value. However, it is difficult to integrate this method 
with clique tree based secondary structures. For each 
different X and the corresponding auxiliary node, a re­
compilation of the original net into a secondary structure 

is required. Since an auxiliary node introduces possibly 
several additional loops, the addition can also complicate 
the secondary structure and increase the computational 
complexity. 

Compared with the auxiliary node method, the thresh­
old method computes only LBCHs and not their prob­
ability values. But the method does not require any 
recompilation of the secondary structure and supports 
dynamic change of the set of variables on which LBCHs 
are to be computed. The extra computation beyond that 
is required by belief updating is trivial. 

7 An Example 

A3 
{ 1,2 

{good.bad} 

G-- 02 
{ 1,2,3} 

Figure 2: three gates circuit example 

This section provides a simple circuit diagnosis exam­
ple to illustrate the threshold method. 

The circuit consists of three gates: G--, G++, and 
G+ (Figure 2). G-- decreases its input A2 by one. 
G++ increases its input A3 by one. G+ adds the output 
02, 03 of G-- and G++ to produce 01. The domains 
of input and output of each gate is illustrated in Fig­
ure 2. Each gate has a prior probability of being faulty 
(0.03, 0.02 and 0.01 for G+, G--, and G++, respec­
tively). When G-- and G++ are faulty, their outputs 
are clamped to their inputs with 98% of chance, and can 
be any other values in their output domain with 1 % of 
chance for each value. When G+ is faulty, its output is 
clamped, with 95% of chance, to one of the two inputs 
which has a greater value, and can be any other values in 
its output domain with 1 % chance for each value. Sup­
pose one has no access to 02, 03, but can observe an 
indicator light for each gate (L1 for G+, L2 for G- - , 
and L3 for G++ ). Each light monitors the status of the 
corresponding gate with 'red' indicating a faulty state, 
and 'green' a normal state. The lights are not totally re­
liable though. When the gate is faulty, only 70% of time, 
the light turns red. When the gate is normal, there is 
still 10% of chance the light gives false alarm (red). 

The circuit is represented by a Bayesian net in Fig­
ure 3. The probabilistic assumptions are summarized 
below. Histograms show the PMDs with the bottom 
level being O and the top level being 1. Figure 3 to 6 are 
produced using the WEB WEA VR expert system shell 
[Xiang et al. 91] . 



p(G+ = bad) 
p(G- - = bad) 

p(G ++=bad) 

p(A2 = 2) 

p(A3 = 1) 

p(02 = A2 -1 IA2, G - - = good) 

p( 02 = A2IA2, G - - = bad) 
p(02 ::j:. A2 IA2, G - - = bad) 

p(03 = A3 + 1IA3, G ++=good) 

p(03 = A3IA3, G ++=bad) 

p(03 ::j:. A3IA3, G ++=bad) 

= 0.03 
= 0.02 

= 0.01 

= 0.5 

= 0.5 

= 
= 
= 
= 

1 

0.98 

0.01 

1 

= 0.98 

= 0.01 

p( 01 = A2 + A3IA2, A3, G+ = good) = 1 

p(Ol = max(A2,A3) IA2,A3,G+ = bad) 

p( 02 ::j:. max(A2, A3)IA2, A3, G+ = bad) 

p(L = redlG = good) 

p(L = redlG = bad) 

lnlo A3 

= 0.95 
= 0.01 
= 0.1 
= 0.7 

Figure 3: Expected behavior of three gates circuit after 
inputs A2, A3 are specified. 

Suppose one knows that the inputs are A2 = A3 = 2. 
Figure 3 shows sharp distributions for all gates, which 
represents one's belief that, without any evidence, every­
thing is expected to be normal. The expected output of 
the circuit is 4. 

Unfortunately, the output is measured as 6. Entering 
this evidence into the network, PMDs of both G-- and 
G+ show the possibilities of fault ( the outcome 'bad' (b) 
in both gates has a probability value greater than 0.4 in 
Figure 4). With the understanding of the circuit, one 
can tell that only two cases are quite likely. One is that 
G-- is faulty and G+ and G++ are normal. In this 
case G- - produces output 3 which explains the error. 
The other is that G+ is faulty and G-- and G++ are 
normal. In this case G-- produces the expected value 
1 and G+ generates the error. Other combinations are 
quite unlikely. However, without assuming this global 

Figure 4: Output 0 1 = 6 rather than expected 4 is ob­
served. 

Figure 5: The indicator light L2 is found to be red (sig­
naling faulty). 

knowledge, it is not obvious from the PMDs whether 
both gates are faulty, or only one of them. Let the lower 
bound Po = 0.5. Since none of the outcomes of either 
gate is greater than 0. 75, the threshold by theorem 1, 
one can not determine the LBCH for this pair of gates. 
Additional evidence has to be gathered. 

After checking the indicator light L2 and entering the 
value 'red' (signaling faulty), Figure 5 shows p(G- - = 
badle) = 0.82, p(G+ = goodle) = 0.80, p(G + + = 
goodle) = 0.99. To determine the LBCH over two vari­
ables G-- and G+, this result is sufficient according 
to the individual threshold of theorem 1. The result is 
also sufficient for the LBCH over three gate variables ac­
cording to the sum threshold of theorem 1 ( the thresh­
old is 2.5). But it is not sufficient for the LBCH over 
three gate variables if the individual threshold of theo­
rem 1 is adopted (0.83). Suppose this threshold is used 
and one gathers another piece of evidence L1 = green 
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(Figure 6). One finally has p(G - - = bad!e) = 0 .93 , 
p( G+ = goodle) = 0.92, and p( G + + = good le) = 0.99, 
which give the LBCH over three gate variables by any 
of the two thresholds. Using auxiliary node method for 
three gates, the LBCH has the probability value 0.92. 

Info A3 

Figure 6: The indicator light L1 is found to be green 
( signaling normal). 

8 Conclusion 

This paper presents a straightforward threshold method 
of computing the LBCH via belief updating. The con­
cept of LBCH is introduced in a decision theoretic con­
text where the decision maker imposes a threshold on 
the expected utility. Dominant LBCHs are also MLCHs. 
The concept can equally well be introduced in the con­
text where utility functions are non-negative. The se­
lected context is felt to be closer to many practical situ­
ations. 

Although the threshold method is practical only if the 
number of variables over which the LBCH is computed is 
small, it is argued that computing the LBCH over small 
number of variables can often be justified and is often 
desirable. 

The method can be used in conjunction with any belief 
updating algorithm either based on original networks or 
based on secondary structures. There has been no known 
algorithm performing belief revision in clique tree based 
secondary structures. Such secondary structures have 
advantages when domain knowledge is acquired once and 
is used for multiple cases ( e.g. expert systems), and when 
the net topology is multiply connected. Therefore, the 
threshold method provides secondary structure based al­
gorithms with additional capability of obtaining LBCHs. 
The extra computation required is trivial. 

Some features of the method are worth pointing out. 
First, the method does not provide probability values 
of LBCHs. In most cases, the actual probabilities of 
LBCHs are much larger than lower bounds such that 
high expected utility are associated with the correspond­
ing decisions. Second, before the adequate evidence is 

gathered such that a LBCH can be warranted, no LBCH 
can be given. When users have the option to collect more 
evidence, this feature prompts users not to stop with 
premature judgments. However when users are bounded 
with limited resource (time or information sources), it 
is possible that no LBCH is provided even if the actual 
MLCH has a probability greater than the lower bound. 
This is because the method is based on a sufficient con­
dition of LBCHs (Theorem 1) which is not a necessary 
condition. It seems this is not a major problem since 
users can always rely on PMDs for rough guidance. 
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Abstract 

We identify an abstract situation in which one can 
strongly argue for the rationality of being surprised 
no matter whether some particular proposition is 
true, and we show that we cannot use probability 
theory to capture the kind of intuitions that we 
want to formalize. A belief-function solution is 
de~ribed. 

1 Introduction 

Let us assume that we, as humans, are capable of being 
surprised, and that our intuitive degrees of surprise can also 
be measured in some way .1 Having made these two 
assumptions, we are interested in the following questions. 

1. Are there situations in which a rational agent 
would be surprised no matter what? 

2. If there are such situations, how can we formalize 
it? 

Here, by "a rational agent," we mean an agent who tries to 
be 1lS objective as it/he/she can in making subjective 
judgments. And by "being surprised no matter what," we 
mean the situation is such that the agent would be surprised 
upon realizing that some proposition A is true, and the 
agent would also be surprised upon realizing that A is false. 

The first question is actually the subject of a long time 
debate. G. L. S. Shackle, for example, wrote [Shackle 61, 
p. 75]: 

To assign greater than zero degrees of potential 
surprise to both the hypothesis and its contradictory 
would ... betray an unresolved mental confusion. 

• This work was supported in part by the DRUMS project funded 
by the Commission of the European Communities under the 
ESPRIT II-Program, Basic Research Project 3085. 

lThe author has proposed a standard for measuring our degrees 
of surprise in [Hsia 91a]. The proposed standard (called a 
canonical measurement device) is not as easy to use as we would 
like it to be, but it seems to be acceptable in theory. This 
measurement is now described in the appendix. 

Glenn Shafer [76, pp. 225-6] disputes Shackle's contention, 
arguing that "the occurrence of outright conflict in our 
evidence" may nevertheless result in mental states in which 
we assign greater than zero degrees of potential surprise to 
both a hypothesis and its contradictory. Isaac Levi [84; pp. 
223-7] disagrees with Shafer, and wrote [p. 226]: 

My contention is that ... it is not to be found in 
recommending that rational men believe both 
hypotheses to a positive degree. 

Our own perspective is this. Though we perfectly agree 
that, in general, we are not (and possibly should not be) 
surprised no matter what, there may nevertheless be 
circumstances in which we would be surprised no matter 
whether some particular proposition is true. The purpose of 
this paper, then, is to identify one such circumstance along 
with its associated rationality. Once we have done so, it is 
then desirable that we answer the second question as well. 
In fact, this second question is interesting in its own right, 
because the prevailing view seems to be that we SHOULD 
BE ABLE TO use probability theory to capture the kind of 
intuitions that we want to formalize. As it turns out, 
probability theory will not work. Nor does possibility 
theory in the sense of Shackle [49, 61] or Zadeh [78]. 

This paper is organized as follows. First we identify one 
circumstance under which a rational agent would be surprised 
no matter what (Section 2). We then show that probability 
theory cannot be used to formalize the kind of intuitions that 
we want to capture, and we show how we can use belief 
functions to do it (Section 3). Section 4 concludes. 

2 Permissibility of being surprised no 
matter what 

We consider the following framework. Let 'f' be a finite, 
non-empty set of propositional primitives, 0 be the set of 
all (total) valuations of 'f' , and ~ p be the least set of 
formulas containing 'f', closed under -,, /\, Call any subset 
of 0 a proposition, and for every formula P in ~ p, we let 
[Pl be the set of models of P (valuations under which P is 
true). We assume that the actual situation or the actual state 
of affairs is uniquely represented by an element of 8. That 
is to say, if we are able to find out about everything that we 
need to know about the actual situation, then we can 



ALWAYS identify exactly one element of 8 as THE 
representation of the actual situation. And thus, by saying 
that we would be surprised that a proposition A is true (or a 
formula f3 is true, or the proposition [f3] is true), it just 
means that we EXPECT to find the representation of the 
actual situation in 8\A (or [-,f3]). As a convention, we use 
S(A), where O:::;; S(A) :::;; I, to denote our degree of potential 
surprise that A is true; S(A) = 0 means "I would not be 
surprised upon realizing that A is true," and S(A) = I means 
"I would be totally surprised upon realizing that A is true." 
We also accept a notion of conditio"'1 potential surprise 
here, and we use S(. I B) to denote our degree of potential 
surprise GIVEN that B is true. This makes S(A) an 
abbreviation of S(A I 8). 

The question we are asking, then, is this. Can we 
identify a certain situation such that, when formulated in the 
above framework, it is rational to have O < S([f3]), S([-,f3]) < 
I for some formula f3? To give a positive answer to this 
question, we need to describe what this situation is, what f3 
is, and even more importantly, why it is rational to have 0 
< S([f3]), S([-,f3]) < 1. This is what we do in this section. 
Below, we first describe what we consider to be a basic 
rationality of surprise. Then, we motivate the thought that 
we can be rational while being surprised no matter what. 
This is followed by an abstract description of a particular 
situation, along with two real-life examples. 

We offer the following rationality of surprise. 
We would be surprised that f3 is true WHENEVER we have 

a reason for expecting f3 to be false. 
Here, the notion of "reason" (for expecting f3 to be false) is 
deliberately left undefined; it is something that is subject to 

-our judgments, and this judgment is based on two things: 
· (1) our general understanding of how things work (i.e., 
background knowledge), and (2) our information at hand 
about the actual situation (i.e., the context). To illustrate 
what we mean by "a reason for expecting something," 
consider the following examples. Suppose there is a random 
device that generates event- I with .9999999 chance and 
event-2 with .0000001 chance. Then we might say there is 
a good reason for expecting the random device to generate 
event-I, since there is almost a sure chance that event-I will 
occur.2 However, if the random device is such that it 
generates event-I with .5 chance and event-2 with .5 chance, 
then (so it seems) there is no reason why we should expect 
the random device to generate event-I (or event-2), since the 
two events are equally likely to occur. Finally, suppose we 
only know that the device generates either event- I or event-2 
but we have no idea whether the device is random (not to 
mention about "the" chance set up). Then there does not 
seem to be any reason why we should expect the device to 
generate event-I (or event-2), since we are equally uncertain 
about both events. 

Now that we have established a link between surprise 
(that something is true) and reason (for expecting the 
contrary), the question we want to answer just amounts to 

2But note that it is entirely up to one's OWN judgment as to 
whether something constitutes a reason for expecting some 
proposition to be true. 
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the following. Are there situations in which we have a 
legitimate reason for expecting some f3 to be true and we 
also have a legitimate reason for expecting f3 to be false? In 
the very least, the answer to this question does not seem to 
be very straightforward. Consider, for example, the now 
famous Nixon story. We are faced with the following 
situation. Given (the only information) that Nixon is a 
republican, we would be surprised that he is a pacifist. And 
given that Nixon is a quaker, we would be surprised that he 
is not a pacifist. Now we are given the information that 
Nixon is both a republican and a quaker, would we be 
surprised that he is a pacifist (as he is a republican), and 
would we be surprised that he is a non-pacifist (as he is a 
quaker)? But even more importantly, SHOULD we consider 
ourselves irrational IF we would be surprised no matter 
whether Nixon is a pacifist? This, of course, depends on 
whether we consider being a republican (alternatively, a 
quaker) a "legitimate reason" for expecting him to be a non­
pacifist (alternatively, a pacifist), despite the fact that he is 
also a quaker (alternatively, a republican). We do not think 
there is a clear cut answer here. As a second example, 
consider cases in which we have two credible witnesses 
testifying under oath, and they are contradicting each other. 
We know one of them is not telling the truth. But the 
question is: should we ALWAYS completely suppress our 
faith in at least one of the two witnesses? Clearly, if we do 
not do so, then we would be (and are certainly entitled to be) 
surprised no matter whether witness- I is telling the truth. 3 
But why should we always completely suppress our 
confidence in at least one witness? 

By now, we hope to have raised some interest in the 
issue of being surprised no matter what. Next, let us try to 
identify a situation in which one could strongly argue for the 
rationality of being surprised no matter what. The basic idea 
is as follows. Suppose there are two primitives X and Y ('f 
= {X, Y} ). We have a reason (call it RI for convenience) for 
expecting X to be false, i.e., S([X]) > 0. We also have a 
reason R2 for expecting Y to be false, i.e., S([YJ) > 0. 
These two reasons are intuitively independent in the 
following sense : whatever we learn about X (alternatively 
Y), it will have no effect on our judgments that RI 
(alternatively, R2) constitutes a legitimate reason for 
expecting Y (alternatively, X) to be false. Thus, for 
example, X can be "friend-I has spoken out against you," Y 
can be "friend-2 has spoken out against you," while RI is 
that friend- I has been a good friend of yours since high 
school, and R2 is that friend-2 has been a good friend of 
yours ever since you worked together in the same company. 
Say that you consider RI and R2 to be independent in 
having an impact on your judgment; that is, whether or not 
friend-I (alternatively, friend-2) has spoken out against you, 
it will have no effect on your judgment that R2 
(alternatively, RI) constitutes a reason for expecting Y 
(alternatively, X) to be false. Now suppose you learn that X 
v Y is true. That is, you realize that at least one of friend- I 
and friend-2 has spoken out against you. We argue that, at 

3If witness-1 is not telling the truth, then it would be somewhat 
surprising. But if witness-I is telling the truth, then witness-2 
must be telling a lie. This would be somewhat surprising also. 
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this point, RI (alternatively, R2) still constitutes a reason 
for expecting X (alternatively, Y) to be false, even though 
its impact on our judgments is now somewhat weakened by 
the revelation that X v Y is true. In other words, we are 
saying that we should still have S([X] I [X v Y]) > 0 
(because of RI) and S([Y] I [Xv Y]) > 0 (because of R2), 
though we also think that S([X] I [X v Y]) and S([Y] I [X v 
Y]) should be strictly less than S([X]) and S([Y]), 
respectively. After all, RI and R2 are STILL there in our 
background considerations, despite the fact that X v Y is 
true. As we consider them to be independent in having an 
impact on our judgments, we do not see how we can 
"disqualify" any one of them upon realizing that X v Y is 
true. Because the information that X v Y is true is 
absolutely NON-INFORMATIVE in this respect; i.e., it 
does not tell us anything about the "illegitimacy" of RI, nor 
does it say anything about the illegitimacy of R2. As a 
result, we have no choice but to enter an epistemic state of 
confusions.4 

A more complete example may help to illustrate the 
point. 

Example 1. (Chemical plant) The three-member city 
council is now meeting behind closed doors to decide about 
the fate of a proposed plan for building a chemical plant. 
Council member A comes from District- I where 
unemployment rate is extremely high (say, 50 %), and has 
announced that he/she will vote "yes". Council member B 
comes from District-2 where unemployment rate is also 
extremely high, and has also announced that he/she will vote 
"yes". Council member C, however, comes from District-3 
where unemployment rate is low, and has announced that 
he/she will vote "no" for fear of pollution, despite the fact 
that there is a fairly reasonable effort in the plan to prevent 
possible contaminations. YOU are the president of the 
group called "Citizens for the plant". Members of this 
group reside mainly in District- I and District-2, and are all 
friends or relatives of yours. You have lobbied very hard for 
the approval of the plan, and have got written promises from 
both A and B to vote "yes". 

Now the waiting is over, and C comes out and happily 
announces that the vote is two against and one for 
(surprise!); the plan is now officially dead. But when asked 
who else voted against the proposal, C just says "you have 
to ask them yourselves," and leaves. While waiting very 
eagerly for A and B to come out from behind the door (where 
they are obviously quarreling; but you cannot hear a word), a 
being by the name of RATIONALITY approaches you and 
asks: would you be surprised if it is A who voted "no"? 
And would you be surprised if it is B who voted "no"? 

To analyze this example, we first identify its components 
as follows. 

X : A voted "no" 
Y : B voted "no" 

4 A related question, then, is how we can be confused while 
being rational at the same time. We think our subsequent 
treatment of this X-Y problem could shed some light on this 
point. 

Reason for expecting -,X (i.e., Rl): Unemployment rate 
in District- I is extremely high. Besides, A has given 
his/her promise, in writing, to vote "yes". 

Reason for expecting-, Y (i.e., R2) : Unemployment rate 
in District-2 is extremely high. Besides, B has given 
his/her promise, in writing, to vote "yes". 

We contend that it is perfectly rational that we be surprised 
no matter whether X is true (if X is false, then Y must be 
true), even though we know very well that X v Y is true. 
Because, despite the fact that X v Y is true, RI still 
constitutes a reason (a very good one, in fact) for expecting 
X to be false, and R2 still constitutes a reason for expecting 
Y to be false. We simply do not think we should 
COMPLETELY IGNORE the impact of these two 
background reasons in making our judgments. 

Below, we give one other such example along with its 
associated rationalities. As the reasoning with this example 
is essentially the same, we will not go through it in detail. 
Instead, we just identify what X, Y, RI, and R2 are in this 
example. 

Example 2. (UFO) You have heard about UFO 
(Un-identified Flying Object) sightings. However, you 
simply do not believe that space aliens exist and are 
visiting earth. "I would be surprised if space aliens do 
exist and are visiting earth, and I would not be surprised 
if there are no such things," you said. On the other 
hand, you also believe that the alleged UFO sightings 
are actually images of something else, e.g., a balloon or 
a reflection of the moon. "Nature can play incredible 
tricks with our eyes. However, I would be surprised if 
nature is also capable of displaying a realistic, high-tech 
phenomenon of a UFO," you said. Now you are 
looking at it - a thing that clearly looks like a flying 
saucer with three lights on it, and the situation (place, 
weather, time of the day, etc.) is such that you do not 
consider your "balloon theory" or "moon image theory" 
(or whatever other theory you have come up with) 
applicable in explaining what it is. Now the question 
is : would you be surprised if UFOs do exist? And 
would you be surprised if nature is indeed capable of 
displaying a realistic, high-tech UFO phenomenon? 

Analysis of the UFO example. 
X : UFOs do exist 
Y : Nature is capable of displaying a realistic, high-tech 

UFO phenomenon. 
Reason for expecting -,X : "There are no such things as 

space aliens visiting earth!" 
Reason for expecting -, Y : Our understanding of how 

nature works in displaying illusions. 

3 Formalizing the intuition of being 
surprised no matter what 

Having identified an abstract situation in which we can 
strongly argue for the rationality of being surprised no 
matter what, we now want to see how we might formalize 
it. In essence, what is required is as follows. We need to 
find some measure m. on the space 9x:Y = (TxTy, TxFy, 



FxTy, FxFy} such that 1n. formalizes the idea that S([X] I 
[Xv Y]) = S( {TxTy, TxFy} I {TxTy, TxFy, FxTy}) > 0, 
and m also formalizes the idea that S([-,X] I [Xv Y]) = 
S({FxTy, FxFy} I {TxTy, TxFy, FxTy}) = S({FxTy} I 
{TxTy, TxFy, FxTy}) > 0. 

We consider three contenders : (Bayesian) probability 
theory, possibility theory, and belief functions. Clearly, we 
can use belief functions in the sense of [Hsia 9Ia] to do it, 
because Hsia directly interprets Bel([-,X] I [Xv Y]) as S([X] 
I [Xv Y]), and it is possible to have both Bel([-,X] I [Xv 
Y]) > O and Bel([X] I [X v Y]) > 0. Later, we will give a 
more detailed account of how this is done. We cannot use 
possibility theory, however, as long as we interpret N([-,X] 
I [X v Y]) - the necessity measure - as S([X] I [X v Y]). 
This is because with possibility theory, we must have 
N([-,X] I [Xv Y]) = 0 or N([X] I [Xv Y]) = 0. But how 
about probability theory? We now show that THERE IS 
NO PROBABILITY DISTRIBUTION PON 8XY THAT IS 
CAP ABLE OF FORMALIZING THE IDEA THAT S([X] I 
[X v Y]) > 0 and S([-,X] I [X v Y]) > 0. 

We consider the following set up. Suppose there is a 
random device (e.g., an urn containing black balls and white 
balls) that generates event-I with chance c and event-2 with 

:, chance I -c. Of course we can assess our degree of belief that 
the device will generate event-I (alternatively, event-2), and 

·we submit that it is perfectly rational to assess our degrees 
of belief as the following probability P : P( event-I) = c and 
P(event-2) = I -c.5 We also submit that whatever value c 
talces, we ought NOT be surprised in both cases. In other 
words, we claim that, as far as this random device is 
concerned, we should have S(event-I) = 0 or S(event-2) = 0. 

'The reason is very simple : either c ;?; .5, in which case we 
· have NO reason for expecting event-2 to occur (and we leave 
!the issue of whether there IS a reason for expecting event-1 
'to occur to the individual agent), or c < .5, in which case we 
have NO reason for expecting event-1 to occur. In more 
formal terms, let X be the proposition that "the random 
device will generate event-I." What we claim, then, is that 
we SHOULD have S([X]) = 0 or S([-,X]) = 0, WHATEVER 
C is. 

Now we are in a very delicate situation. We just made 
the tacit assumption that our subjective probability CAN 
BE used as a way of representing our intuitive notion of 
surprise. But no matter how we use subjective probability 
to represent surprise (see, for example, the proposals of 
Bartlett (52], Gru-denfors (88, p. 168], Good (56], Pearl (88, 
p. 33] and Weaver (481), we certainly do NOT mean that we 
should also talce the DOMAIN on which we assess our 
subjective probability and degrees of potential surprise into 
account. In other words, by saying that probabilities can 
represent surprise, we are committed to saying that 
probabilities ALONE will do the job. To put it another 
way, given ANY probability distribution Pon a variable (a 

5This is, in effect, an instance of the so-called Hacking 
principle [Hacking 75] . Essentially, what it says is the 
following. If there is an underlying objective probability 
which is known to us and we know of nothing else, then our 
belief should be the same as the objective probability. 

propositional primitive) X, we should always be able to 
compute S([X]) and S([-,X]) without having to know 
WHAT X intuitively means and WHY we assess P. But 
clearly, X may well be the above proposition that "the 
random device will generate event-1," and P may well be the 
same as the underlying chance set up. Thus, we are led to 
the following observation. IF we admit there is something 
called a random device (that works according to some 
objective probability), and IF our subjective belief is the 
same as the objective probability when the latter exists and 
is known to us, and IF we consider it to be irrational to be 
surprised no matter what in the case of a two-event random 
device with known probability, THEN we have no choice 
but to compute a probability-induced measure of surprise S', 
where S'([X]) = 0 or S'([-,X]) = 0, whenever we are given a 
probability P on a binary variable X. In other words, unless 
we reject any of the three premises we listed above, we 
cannot say there is a subjective probability P(. I [Xv Y]) on 
8xy that is capable of formalizing the idea that S([X] I [X 
v Y]) > 0 and S([-,X] I [X v Y]) > 0. 

Next, we show how we can use belief functions [Shafer 
76; Smets 88] in the sense of [Hsia 91a] to formalize our 
intuitions that S([X] I [X v Y]) > 0 and S([-,X] I [X v Y]) > 
O. 6 The basic idea here is NOT to interpret Bel(A) - the 
belief-value of A - as our "degree of belief that A is true", 
but to interpret it as our "degree of confidence in having the 
belief/expectation that A is true" [Hsia 91a; Hsia 92]. To 
see what the difference is, consider the following example. 
Someone tosses a fair coin, and we are interested in what the 
outcome is. From the perspective of "degree of belief," it is 
perfectly rational to give a .5 degree of belief to the 
proposition that Head is true and a .5 degree of belief !O the 
proposition that Head is false. But from the perspecuve of 
"degree of confidence in having a belief/expectation," 
however, the rational thing to do here is NOT to have the 
expectation (and thus the belief) that Head is true (or false) . 
After all, both head and tail have the same chance of being 
true. Therefore there is no reason for expecting Head to be 
true (or false). For more discussions on the difference 
between these two views of belief, see [Hsia 92]. 

Having adopted the above interpretation of Bel(A), we 
can now view Bel(8\A) as S(A), as long as we accept the 
postulate that our potential degree of surprise is 
PROPORTIONAL to our degree of confidence in expecting 
the contrary [Hsia 91a]. This gives rise to the following 
formalization of our intuitions. First, we expect X to be 
false with confidence ex, and we also expect Y to be false 
with confidence 13. This amounts to the following two 
marginal belief functions Belx (defined on 8x = {Tx, Fx}) 
and Bely (defined on 8y = {Ty, Fy}), where mx({Fx}) = ex, 
mx({Tx, Fx}) = I - ex, my({Fy}) = 13 and my({Ty, Fy}) = 
I - p (0 < ex < I and O < p < 1). And as we consider our 
two expectations to be independent of each other, we also 
have the following constraints that must be satisfied by the 
underlying joint belief function Bel on the 8xy space : 
Bel([-,X]) = Bel([-,X] I [Y]) = Bel([-,X] I [-, Y]) = ex; 
Bel([X]) = Bel([X] I [Y]) = Bel([X] I [-, Y]) = O; Bel([-, Y]) = 

6see the appendix for a short introduction of belief functions. 
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Bel([-, Y] I [X]) = Bel([-, Y] I [-,X]) = ~; Bel([Y]) = Bel([Y] I 
[X]) = Bel([YJU-,XD = 0. By¥: theorem in [Hsi\91b], Bel 
must be Belx Y EBxy Bely XY, where Belx XY is the 
cylindrical extension of Belx to 8xY (e.g., mx(fFf}) = a 
leads to mxfxY((FxTy, FxFy}) = a), Bely x is the 
cylindrical extension of Bely to 8xy, and EBxy is 
Dempster's combination on the 8xy space. Having 
obtained Bel, our joint belief on 8 x y, we just use 
Dempster's rule of conditioning for making inferences, and 
this is what we do when we learn that X v Y is true. As a 
result, Bel([X] I [Xv Y]) = ~(1-a) / (1 - a~) and Bel([-,X] I 
[Xv Y]) = a{l-~) / (1 - ~); that is, we would be surprised 
no matter whether X is true. 7 

4 Conclusion 

One aspect of the existing notion of potential surprise, as 
was introduced by Shackle [49, 61] and reinforced by Levi 
[84], is that a rational agent should NOT be surprised no 
matter whether a proposition is true. In general, this does 
seem to conform to our intuitions. However, the purpose of 
this paper is to make the following point. It is POSSIBLE 
that we find ourselves in a situation in which we would be 
surprised no matter whether some particular proposition is 
true; moreover, there can be a clear-cut rationality in that 

We also showed that Bayesian probability theory cannot 
be used to formalize the idea of being surprised no matter 
what. This result has an interesting consequence. That is, 
if our argument is acceptable, then it means that a Bayesian 
MUST never contemplate on the idea that a rational agent 
can be surprised no matter what 

Finally, by showing that belief functions may be used to 
capture the idea of being surprised no matter whether some 
particular proposition is true. We hope to have 
demonstrated an important difference between belief 
functions and Bayesian probability theory. 
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Appendix A A canonical way of 
measuring our degrees of surprise 

The basic idea is that we first provide the user with a simple 
statistic of how a lottery machine containing an unspecified 
number of black/white balls "behaves" (e.g., for 10426 trial 
runs, the outcome is a black one, and for 10576 trial runs, a 

7Note that S([X] I [Xv Y]) = a(l-~) / (1 - a~)< a= S([X)), and 
S([Y) I [Xv Y]) = ~(1-a) / (1 - a~)<~ = S([Y)). That is, our 
confidence in expecting -,X or -, Y has been reduced, as it ought 
to be the case. 

white one), and then we ask the user to assess his/her 
intuitive degree of surprise upon realizing that the actual 
ratio between the number of black balls and the number of 
white balls is M versus N, where M > N and there is no 
common deviser. We also ask that the user specify his/her 
intuitive degree of surprise as a number between O and 1, 
where O is defined as the user's intuitive degree of surprise 
upon realizing that the actual ratio is 1 versus 1 (i.e., the 
lottery machine contains N black ones and N white ones), 
and 1 is defined as the user's intuitive degree of surprise 
upon realizing that the actual ratio is one billion versus 1. 

This, theoretically speaking, would allow us to 
"calibrate" anyone's intuitive degrees of surprise. Once we 
have made this calibration, we can then use it to measure 
this very same person's degrees of surprise in any domain. 
For example, given the only information that the entity we 
are interested in is a bird, the extent to which we will be 
surprised by the new information that the entity does not fly 
may be Gudged by us to be) the same as the extent to which 
we are surprised by the "canonical answer" that the actual 
ratio is "51 versus 43." If, in calibrating our intuitions, we 
recorded the extent of our surprise associated with "51 versus 
43" as .4, then the extent to which we will be surprised by 
the new information that the entity does not fly (given the 
only information that it is a bird) is measured .4. This 
measurement scheme is clearly subjective, as the extent of 
surprise associated with "x versus y" (or "not-fly given is­
bird") is, in general, different for different people. 

Appendix B - A gentle introduction to 
belief functions 

To formalize the notion of having a belief with a certain 
degree of confidence, we propose the use of the following 
definition. 

Definition. (Belief function) Given a finite non­
empty set f> of propositional primitives. 8, the 
frame of discernment, is the set of all (total) 
valuations of f>. A belief function on 8 is a 
function Bel: 28 -+ [0, l] which is characterized by 
an m-valuefunction mBel (written as "m" whenever 
confusions can be avoided; m is also called "the m­
values of Bel"), where m: 28-+ [0, l] satisfies two 
conditions 

(1) m(0) = 0, and 

(2) 2.A: A~9m(A) = 1; 

and for every subset B of 8, Bel(B) is defined as 

2.A: A~Bm(A).8 A subset S of 8 is called a focal 
element of Bel if m(S) > 0. When Bel is such that 
m(8) = 1, Bel is called the vacuous belief function. 

8This definition is consistent with [Shafer 76). Smets [88] has 
a slightly more general definition called an "open world" 
definition. In this definition, m(0) may or may not be 0, as e 
is not assumed to be exhaustive, and Bel(A) is defined as the sum 
of the m-values of those non-empty subsets of A. 



The idea is this. Let us say that the reason that we are 
surprised to various extents in various circumstances (and 
that sometimes we are not surprised at all) is because we 
intuitively decompose our overall confidence in some way 
and commit the various portions of confidence to various 
propositions. Given this idea of decomposing and 
committing confidence, the definition above just pushes it 
to the extreme, admitting any possible decomposition of our 
overall confidence. For historical reasons, we call this 
possible decomposition "them-values." 

Next, we need a concept of conditioning. 

Definition. (Dempster's rule of conditioning) Let 
Bel be a belief function on 8 and m be its associated 
m-values. Let B be a non-empty subset of 8 such 
that Bel(8\B) *" 1. m(. I B), the m-values of Bel(. I 
B) (read as Bel conditioned by B), is defined as 
follows: 
V C !:: 8, if C !:: B 

then m(C I B) = Lo: ~ e\B m(CuD) / K 

else m(C I B) = 0, 
where K = 1 - Bel(8\B) is the normaliution constant. 

(Note that for every subset S of 8, Bel(S n BIB)= 
Bel(S I B), whereas in general, m(S n B I B) *" m(S 
I B).) 

The intuition behind this rule is as follows. Let m (i.e., an 
m-value function) be how we intuitively decompose our 
overall confidence. Suppose we now receive some 
information about the actual situation, saying that the truth 
is in the set B (B !:: 8). Given that the truth is in B, 

. rationality requires that we expect the truth to be in B with 
·total confidence, and that we do not expect the truth to be 
outside of B. This means that we must cancel any portion 
of confidence that was originally committed to a subset of 
8\B, and that we redistribute these portions (Bel(8\B), in 
fact) in some way. What Dempster's rule does then is to 
redistribute Bel(8\B) in a way that is similar to how Bayes' 
rule does it - by proportions. But what about the portion of 
confidence that was originally committed to a set A that has 
a non-empty intersection with B? As it just happens that 
zero or more elements of A are ruled out in this particular 
instance, we let the ones that are not ruled out "inherit" the 
portion of confidence that was originally committed to A. 

Next, Dempster's rule of combination (EBh) - a purely 
syntactical operation in our framework. 

Let h be a non-empty subset of f'. Let Bel 1 and Belz be 
two belief functions on 8h (and let m1 and mz be their 
respective m-values). Bel1 EBh Belz is defined to be the 
following belief function Bel on 9b: 
V S !:: 8h, mBe1(S) = 

LA,B: AnB=sm1(A)mz(B) / K, 

where K = L A,B: AnB:it0m 1 (A)mz(B). 

Finally, we need the notion of belief projection and 
extension. Let h and g be two subsets of f' such that h !:: g 
(g is f' by default). 

The projection of an element x of 8 8 (e.g., g = (X1, Xz, 
X3, X5, X7) and x = <al, a2, a3, a5, a7>) to 8b, denoted 
as i\ is simply this element with the fhxtra coordinates 
dropped (e.g., h = {X1, X3, X5) and x = <al, a3, a5>). 

The P,rojection of a subset A of 8 8 to 8b, denoted as A .J.\ 
is ( ih : X E A). 

Let Bel be a belief function on 8 8 (and let m be its 
associated m-values), t~ projection ( or marginalization) 
of m to h, denoted as m \ is defined as 

m.J.\A) = ~: B.J.h=A m(B). 

BelJ.h .J.~he projection of Bel to h) is, as usual, characterized 
by m . 
The extension of S (S !:: 8h) to 8g, denoted as S ts, is the 
set (x: x e 8g and ih e SJ. 

Let Bel be a belief function on 8b (and let m be its 
as~iated m-values), the extension ofm tog, denoted as 
m 8, is defined as 
V A~ 9b, m tg(A tg) = m(A), and m t 8(B) = 0 for all 
otherB ~ 8 8. 

Bel tg phe extension of Bel tog) is, as usual, characterized 
by m 8• 
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Abstract 

A unified framework for evidential reasoning 
is proposed, in which the belief function of a 
piece of evidence is represented as a probabil­
ity density function which can be in a contin­
uous or discrete form. A vector form of mu­
tual dependency relationship of the evidence is 
considered and a dependency propagation the­
orem is proved. An interpretation of belief con­
junction from a geometrical view is proposed. 
This method can resolve the conflict result­
ing from either the mutual dependency among 
two pieces of evidence or the structural depen­
dency in an inference network due to the evi­
dence combination order. Belief conjunction, 
belief combination, belief propagation proce­
dures, and AND/OR operations of an infer­
ence network based on the proposed framework 
are all presented, followed by some examples 
demonstrating the advantages of this method 
over the conventional methods. 

1 Introduction 

Evidential reasoning, which has been an essential 
part of many computational systems, is the task of as­
sessing a certain hypothesis when certain pieces of evi­
dence are given. The hypothesis is assessed by inferring 
its belief value from the belief values of different pieces 
of evidence. The belief value can be taken from a cer­
tain belief region, e.g., a unit interval [O, 1), which can be 
discrete or continuous, or from a set of linguistic quan­
tifiers, e.g., [very unlikely, unlikely, likely, very likely], 
etc. Regardless of the type of representation, the belief 
value of an evidence indicates the belief strength of that 
evidence. In describing the relationship between differ­
ent pieces of evidence, dependency has been employed 
to describe the degree of truth of one piece of evidence 
implied by a second piece of evidence. If a hypothesis 
is supported by many pieces of evidence, then the com­
bined belief strength of the hypothesis is not only dom­
inated by the belief value of the individual evidence but 
also affected by the mutual dependencies among these 
evidence. 

Because of the obscure and inexact nature of informa­
tion, each piece of evidence is associated with some un­
certainty. Reasoning with uncertainties in an inference 
network [3] includes three types of uncertainty aggrega­
tions: belief conjunction, belief combination, and belief 
propagation. There are three major frameworks of ev­
idential reasoning in the literature, i.e., the Dempster­
Shafer theory of evidence, the fuzzy set theory, and the 
Bayesian probability theory [7], [12]. The advantages 
and disadvantages of these three frameworks have been 
discussed in [1], [2], [14), [15], and [16]. The ability of 
Shafer's belief function to manage uncertainty of infor­
mation in a rule-based system has attracted lots of at­
tention [4], [5], [7], [9], [10), [13), [16), [19). However, 
even with its strong popularity, the Shafer's model has 
drawbacks. Shafer's belief function model uses numer­
ical values in the interval [O, 1) to represent the degree 
of belief of information, which can also be interpreted as 
an index of inexactness of that information. The non­
robustness of this model has been discussed by Hau [5], 
Zaheh [19), and Wang [17), [18). Hau also has illustrated 
an example which shows the counter-intuitive result of 
Demspter's rule. Secondly, the basic probability assign­
ment (BPA) of a belief function is in a form of discrete 
type function which can not always provide a precise 
description of an evidence for all the situations. It is 
often not appropriate to assign a discrete basic proba­
bility assignment over [O, 1) by thresholding the interval 
into several regions, since the thresholds themselves can 
not describe the exact nature of a piece of evidence. The 
possible quantization problem caused by thresholding a 
continuous region for the weight of evidence has been dis­
cussed by Cheng [1], who provided an example showing 
that a quantized version of an associative belief combi­
nation may not necessarily be an associative one. The 
continuous form of a belief function, which is a more gen­
eral representation, is needed to approximately express 
the vagueness of an evidence. The merit of a continuous 
form corresponds to the introduction of the membership 
function of fuzzy sets theory. Several other belief func­
tion approaches are included in [4] and [8], which have 
focused on handling the belief combination problem by 
using Dempster's rule to deal with belief propagation. 
However, these approaches didn't provide a formal proof 
of their respective methods. Although Hau [5] proposed 
an interpolative method to employ a factor to indicate 
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the degree of dependency between the independent case 
and maximally dependent case. It turns out to be in­
complete, because the dependency could be bilateral in­
stead of unilateral. In a rule-based intelligent system, the 
inconsistency of evidential reasoning resulting from the 
mutual dependency among different pieces of evidence 
and the structural dependency caused by the improper 
arrangement of an inference network has not been fully 
solved. 

Although lots of efforts have been spent on belief com­
bination, the uncertainty management of continuous be­
lief function and the resolution of conflict due to the de­
pendency of evidence are still not fully solved. The fol­
lowing is a proposed method which focuses on achieving 
conflict resolution of belief combination resulting from 
mutual dependency of evidence in an inference network. 
In addition, this method can also handle the information 
aggregation· based upon the continuous belief functions. 
The nature of a belief function associated with an evi­
dence is a probabilistic function, which could be discrete 
or continuous. We will discuss the belief conjunction 
first, since the belief combination and the belief propa­
gation are both based on the belief conjunction. 

2 Framework of The Continuous Belief 
Function Model 

2.1 Representation of Evidence and Rule 

The first step in the simulation of human reasoning 
with uncertainty is to find a proper way to represent that 
uncertainty and then build up the inference procedure. 
In the belief function introduced by Shafer [12] and Hau 
[5], two parameters, i.e., lower bound and upper bound, 
are employed to indicate credibility and plausibility. For 
the sake of clarity, the belief function is borrowed to rep­
resent the probability density function associated with 
a piece of evidence in the followin~ text, and the belief 
function proposed by Shafer, [11], l12], [13] is named as 
Shafer's belief function. But, as discussed earlier, the 
probability assignment strategy for Shafer's belief func­
tion has its inherent flaw . For example, if a piece of 
evidence A is to emphasize that the closer it is to the 
truth, the stronger it is, then that evidence can be con­
veniently modeled by a continuous function, which is a 
probability density function, 

Be/A(B) = k · B, (1) 

where B is in the interval [O, l] indicating the degree of 
truth of the evidence, and k is a constant. We can hardly 
find any significant thresholds to quantize the associated 
belief function into a discrete form which can be handled 
by either Dempster-Shafer theory [12] or Hau's modified 
Demsper's rule [5] . Therefore, a more general represen­
tation of evidence is needed to represent such kind of 
uncertainty. In the following, we present our representa­
tion of the evidence and the inference rules. 

Definition 1 : A piece of evidence in a rule-based system 
is represented by a subset A of the frame of discernment 
0, and a belief function associated with A is represented 
by a probability density function PA(B), where () is a 

variable indicating the degree of truth for the evidence. 
A denotes the complement of A. 1 is used to denote the 
truth of the evidence and O is used to denote the falsity 
of the evidence. () is a numerical value in the interval 
[O, 1]. 

Note that the belief function is a probability density 
function in nature, the following property must hold, 

(2) 

This type of belief function can be transformed into a 
Shafer's belief function by assigning two bounds to the 
interval. For instance, if the above continuous belief 
function, Eqn. (1), is going to be transformed into the 
conventional belief function by choosing two thresholds 
in the beliefregion [O, 1] and compute the respective area 
of each part so that the numerical values of the credibility 
and the plausibility of this belief function are obtained. 
If two thresholds, say ! and j, are chosen and k is 2 de­
rived from Eqn. (2), the following results are obtained, 

fl 5 
Cr A= Ji 2BdB = 9, 

3 
11 8 

PIA = 2BdB = -
- 9 
3 

On the other hand, given a Shafer's belief function by 
BPA method, e.g., a belief function with credibility ! 
and plausibility ~, it can not precisely express the char­
acteristics of the linear continuous belief function shown 
by Eqn. (1). 

Definition 2 : A rule R in a rule-based system conveying 
uncertainty is represented as 

R : E-H with PE-+H(B) 

where E is an evidence, H is a hypothesis implied by 
E, and PE-H(B) is a probability density function to de­
scribe the degree of the truth of the rule. E is called 
antecedent, and H is called consequent of rule R. 

In the above definition, the rule R: E - H is inter­
preted as logic implication. In Section 1, we mentioned 
the inconsistency of evidential reasoning resulting from 
the mutual dependency among different pieces of evi­
dence and the structural dependency caused by the vari­
ous arrangements of an inference network. One example 
showing such inconsistency will be given in Section 2.3. 
The following definition of degree of mutual dependency 
is given to describe the relationship between two pieces 
of evidence. 

Definition 3 : The degree of one evidence A depending 
on another evidence B is represented by PAB, where by 
0 :S PAB :S 1. 

Note that PAB is not necessarily equal to PBA , which 
means a dependency relationship is a directed link. If 
PAB equals 1, then it indicates A is totally dependent on 
B; if PAB is 0, then A won't be affected by B at all. In 
the following, PA~B is used to denote the belief function 
of evidence A depending on evidence B, and PAB is used 
to denote the coefficient of A depending on B . 



2.2 Belief Conjunction 

By definition, belief conjunction refers to the deduc­
tion of the belief associated with (An B) from the belief 
associated with evidence A and B, respectively. That 
is, given two frames of discernment GA and 0B, a com­
patibility relation between e A and e B is the Cartesian 
product of them, which is represented as 

0A X GB --> 0AnB (3) 

There are three possible dependency relationships be­
tween two pieces of evidence A and B, which are 

(i) A and B are independent; 

(ii) A depends on B; and 

(iii) B depends on A. 

The relationship between two pieces of evidence can not 
be explicitly expressed by only one of the above rela­
tionships due to the vagueness and incompleteness of 
the evidence. In the following, we will develop a general 
formulation to cope with such a situation. Let 

and 

PAnB(B) 

Conj(A, B) = An B 

PI · Pindep(B) + PAB · PA::}B(B) 

+PBA · PB'*A(B) 

[ 
Pindep ( B) l 

[ PI PAB PEA ] · PA::}B(B) 
PB'*A(B) 

(4) 

The p's are dependency coefficients, which represent the 
degree of dependencies and PI+ PAB + PBA = 1. The a 
is called dependency vector, and the P is called the belief 
function vector. There are three terms in (2), repre­
senting three different types of belief conjunction. Their 
meanings and how they can be computed are discussed 
in the following. 

Case 1 : Independent 
Referring to Fig. 1, since the two pieces of evidence 

A and B are independent, we assume that they can be 
located, respectively, on the two axes µ and v of the 
Cartesian coordinates. The probability density function 
of the A x B is the multiplication of the probability den­
sity functions associated with individual evidence. That 
IS, 

Pindep(µ, v) =PA(µ)· Ps(v) (5) 
The above expression is a 2-D function forming a 2-D 
surface which should be reduced to 1-D form for the be­
lief function of the conjunction result. Since these two 
pieces of evidence are independent with each other, they 
are considered to be equally important to the desired be­
lief conjunction, Conjindep, i.e., their contribution to the 
final result is the same. Therefore, for aw, all of the den­
sity products PA(µ)· Ps(v), whereµ+ v = w, should be 
attributed to Pindep(w). The lineµ= vis called conjunc­
tion line, and the resulted Pindep(w) can be considered 
to reside on this line by the following calculations, 

Pindep(w) = Pindep(µ, v) lw=µ+v= 

{ 

J; PA(µ) · PB(W - µ)dµ 

t_1 PA(µ)· Ps(w - µ)dµ 
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= J; PB(v) · PA(w - v)dv 
if O < w < 1 

= J~-- 1 p~(v) · PA(w - v)dv 
if 1 :S w :S 2 

where w = µ+v . Obviously, the range ofw is [O, 2]. Also · 
note that µ + v = w is a line perpendicular to the line 
µ = v. The following propability conservation property 
can be easily proved. 

Lemma 1: 12

Pindep(w)dw = l (7) 

However, we are aware of the assumed range of a 
belief function is [O, 1). Therefore, normalization of the 
conjuncted belief function is necessary. This can be done 
by the following equation. 

Pindep(B) = 2Pindep(w) lw=28 (8) 

Case 2 : Totally Dependent 
This case includes two cases which are either A is to­

tally dependent on B or B on A. Here we only discuss 
the former case, because the other is the same. Refer­
ring to Fig. 1, if A is totally dependent on B, then 
the resulted conjunction belief function should be the 
same as the belief function of B. This indicates that the 
ConjA::}B(A, B) is exactly the B, that is, the conjunc­
tion line is rotated to overlap the v-axis and the range of 
w, which is the variable of the ConjA'*B(A, B), is [O, 1). 
On the other hand, in the case of B depending on A, 
we will have the conjunction line overlapping the µ-axis, 
and the Confo'*A (A, B) is exactly the A. Therefore, we 
have the following 

PA'*B(B) = Ps(B) 

PB'*A(B) = PA(B) 

(9) 

( 10) 

The above Case 1 and 2 represent the extreme cases. 
The general case will lie in between these extreme cases 
and can be computed as an interpolation of these ex­
treme cases according to the mutual dependency coef­
ficients pr, PAB and PBA. The result has been given in 
Eqn. ( 4). The following conservation result can be easily 
proved. 

Lemma 2 : 

fo
1 

Pconj(A,B)(B)dB = 1 

2.3 Belief Combination 

Belief combination refers to the belief conjunction 
of several pieces of evidence supporting the same goal 
hypothesis. Hau discussed in [5) a fact that the basic 
probability assignment method will introduce a conflict 
(A n A) in belief combination because of the conjunc­
tion of evidence supporting the same hypothesis with 
different degree of belief. Therefore, a conflict resolution 
approach is needed to achieve the consistency of belief 
combination. By the theory of previous subsection, if 

(6) 
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both A and B are supporting hypothesis C, then the 
probability density function shown on the conjunction 
line is the belief function of C. Therefore, equations ( 4) 
to (10) can also be applied to the combination of the two 
pieces of evidence, except that the two pieces of evidence 
must support the same hypothesis. The deficiency and 
nonrobustness of Dempster's rule have been detailedly 
discussed in Hau's work [5]. However, both Hau and 
Shafer ignored the vagueness of the dependency rela­
tionship between the two pieces of evidence. The mutual 
dependency relationship of pieces of evidence always in­
troduces significant conflict in the reasoning result of an 
inference network. This conflict is shown in Fig. 2 and 
3. Referring to Fig. 2, if there are three pieces of evi­
dence, M, N, and K., supporting a hypothesis L, then 
in a sequential rule-based system, two of them have to 
be combined first, and then the result is combined with 
the third evidence. These two cases are shown in Fig. 3. 

Example 1. Considering the two cases in Fig. 3, which 
have different structures. Assume 

Cr(M) = 0.98, 
Cr(N) = 0.01, 
Cr(!<) = 0.01, 

Pl(M) = 0.99, 
Pl(N) = 0.02, 

Pl(K) = 0.99, 

PNK =PKN= 0.5, 
PNM= 0.1, 

PKM = 0.9. 

The inconsistent results of these two cases by Hau's 
method are tabulated in Table 1. 

CrL 6L 1-Ph 
Case 1 0.006903 0.012857 0.980239 
Case 2 0.003064 0.033357 0.963579 

Table 1: The results of Hau's approach applied to cases 
of Fig. 3. 

When compared with human's reasoning process, this 
kind of inconsistency is unimaginable. From the assump­
tion, evidence M is the strongest one to support the hy­
pothesis L, the other two pieces of evidence N and K. 
are less important than M . According to Table 1, the 
resulted credibility of case 1 is more than twice of that 
of case 2. On the contrary, the plausibility of case 1 is 
only half of that of case 2. These results indicate that 
Hau's method is easily subject to the combination order 
of the evidence, which is not consistent with the intu­
ition of human reasoning. To a human, if these three 
pieces of evidence are given, a belief function associated 
with L should be dominated by M, since the relative 
dependency ratios of N and ]{ indicate their less influ­
ence on L, and because K. has a stronger dependency on 
M than N, M should have the dominant impact on L. 
Therefore, we conclude that the results given by Hau's 
method are not consistent with human reasoning. 

The reason why the conflict appears in Example 1 
is the mutual dependency relationship will propagate 
through the inference network by current belief combina­
tion and then influence the following belief combination. 
Therefore, let's consider if the evidence is arranged in 
a latticed-structure inference network, as shown in Fig. 
4, two pieces of evidence E 1 and E 2 are combined with 
each other so as to form an intermediate evidence E3 , 

and then E3 and E4 are combined to support the hy­
pothesis H. Intermediate evidence means one piece of 
evidence synthesized by other evidence, and has all the 
properties that one piece of real evidence has. What 
have been given are the mutual relationships among E1, 
E2, and E 4 . Therefore, before E3 E4 are combined, the 
relationship between E3 and E 4 has to be determined . 
The following information is assumed to be known before 
the belief combination is performed. 

P12 + P21 + PI12 = 1 
P14 + P41 + PI, 4 = 1 

P24 + P42 + PI.2 = 1 

where all p's are known, and p['s denote the indepen­
dency coefficients. The following result can be proved. 

Interpolative Dependency Propagation Theorem : For 
the inference network shown in Fig. 4 and the above 
given information, the mutual relationships of E3 and 
E4 can be determined by the following equations 

P12 P21 
p34 = · P24 + · Pt4 

P12 + P21 P12 + P21 

p43 
P12 

P12 + P21 
· P42 + P21 

P12 + P21 
· P41 (11) 

P12 P21 
PIJ• 

P12 + P21 
· PI.2 + · PI,. 

P12 + P21 

Proof : Using the vector notation of Section 2.2, let de­
pendency vectors a14, a24, a34 denotes the mutual de­
pendency relationships between E1 and E4, E2 and E4, 

E3 and E 4 , respectively, 

a14 = [pI14 Pt4 p41] 

a24 = [ph. P24 p42] 

a34 = [PIJ. p34 p43J 

Since E 3 is the combination result of E 1 and E2, the 
following equation holds, 

- P12 - P21 -
a34 = · a24 + · a14 

P12 + P21 P12 + P21 

which proves the theorem. 

Example 2. Given the same data as in Example 1, we 
use our method, i.e., equations (4) to (11), to process 
each combination in the two cases in Fig. 3. The final 
results are listed in Table 2. 

CrL 6L l - PIL 
Case 1 0.106148 0.879853 0.013998 
Case 2 0.105937 0.868451 0.025612 

Table 2: The results of proposed model applied to 
either case of Fig. 3. 

In Table 2, it is obvious that both cases have almost 
the same credibility CrL and plausibility CrL + e L, 
which means our model will not be seriously influenced 
by the order of the belief combination compared with 
the result derived by Hau's modified Dempster's rule , 
and meets the intuition of human reasoning. The con­
flict appearing in Example 1 has been resolved by our 



model. Here we have introduced a vector form for mu­
tual dependency shown in ( 4) and the above dependency 
propagation theorem, which turns out to be superior to 
the conventional scalar form for the dependency between 
different pieces of evidence in resolving conflict caused by 
the dependency problem. 

2.4 Belief Propagation 

Belief propagation refers to the aggregation of the 
uncertainty associated with the evidence or fact to fire a 
rule and the uncertainty of the rule itself so as to deduce 
the uncertainty of the goal hypothesis of the rule. Refer­
ring to Fig. 5, given a rule R : P --+ Q and an evidence 
P, then we are interested in exploring the belief function 
of the conclusion Q supported by the evidence P, which 
is defined as the belief propagation result of the evidence 
P and the rule R. Because it is impossible to obtain the 
exact belief function of the consequent Q from the given 
evidence and rule, what we cari expect is an assessment 
of the maximum bound and minimum bound of the belief 
function associated with Q. If an evidence A is covered 
by another evidence B, i.e., the information of A is con­
tained in that of B, then we denote their relationship by 
A~ B . Using this notation, the relationship among the 
maximum bound Qmax, the minimum bound Qmin, and 
Q can be expressed as 

Qmin ~ Q ~ Qmax • 

Let PP-Q(B) be the belief function associated with 
the rule R and pp(B) be the belief function associated 
with the evidence P. The conjunction of the rule and 
the evidence is 

(P _,. Q) n P =(Pu Q) n P = (Q n P) 

The conjunction result ( Q n P) means the consequent 
Q holds when it is supported by the antecedent P. 
Therefore, the belief function of this conjunction pro­
vides the minimum bound of the belief function of Q, i.e., 
Qmin = (Q n P). This result meets the definition which 
we have explored for the belief propagation. Therefore, 
by applying the conjunction procedure of Section 2.2 to 
a piece of evidence and a rule, we will get the result 
of belief propagation . In other words, the belief function 
obtained by the conjunction of the belief functions of the 
antecedent and the rule is actually the minimum bound 
of the belief function of the consequent. 

However, we are also interested in assessing the max­
imum bound of the belief function of the consequent Q. 
Referring to [4] and [5], the smallest range ofQ is (PnQ) 
which can also be derived from basic logic operations. 
Hence, we conclude that 

Qmax = (P n Q) = P--> Q, 

which implies the maximum bound of the belief func­
tion of Q is exactly the same as the belief function of the 
given rule despite what the belief function of P is. In 
other words, if the maximum bound is employed as the 
belief propagation result, then the uncertainty of the an­
tecedent will not have any impact on the belief propaga­
tion. This is not true at all. Note that many researchers 

have proposed various approaches to recover and assess 
the belief function of the consequent and provided many 
explanations to their methods, e.g., [4] and [5]. However, 
we are only interested in the impact provided by the an­
tecedent to the consequent which shows the degree of 
the antecedent supporting the consequent. Henceforth, 
we adopt only the minimum bound of the belief function 
of the consequent in a belief propagation procedure to 
assess the uncertainty aggregation of belief propagation. 

In propositional logic, the logic implication, A --> C , 
can be synthesized by the conjunction of other logic im­
plications, for example, the rules A--> B and B --> C . It 
is easy to derive the following "chaining syllogism". 

Lemma 3 : Given two rules 

R1 : A --> B, R2 : B --> C, 

with the belief functions p Ri ( B) and p R 2 ( B), respectively. 
The belief function PRa ( B) associated with the new rule, 
R3 : A --> C, is the conjunction of the two belief func­
tions, PR1 (B) and PR2 (B). 

2.5 AND/OR operations 

In an inference network, the function of each node 
is either AND or OR operation. In order to analyze 
the uncertainty aggregation of an inference network, it 
is necessary to consider these two operations for belief 
function. In Section 2.2, we mentioned that the con­
junction of two pieces of evidence are deemed as the 
AND operation of the two pieces of evidence, which is 
described as Conj(A, B) =An B. Therefore, all of the 
theory of the belief conjunction given in Section 2.2 can 
be applied to the AND operation. 

An OR operation for two pieces of evidence can be de­
fined as Union(A, B) =AU B . From basic logic theory, 
we know 

AUB=A+B-AnB, 

which means the following equation holds, 

PUnion(A,B)(B) = PA(B) + PB(B) - Pconj(A,B)(B) (12) 

where Pconj(A,B)(B) can be derived according to the 
model introduced in Section 2.2. 

Since an inference network can be viewed as an 
AND /OR graph, if all of the evidence, rules, and the mu­
tual dependency relationships are given, the belief func­
tion of the hypothesis can be derived by the proposed 
model. The procedure is first to perform the operations 
of low-level nodes and then gradually propagate towards 
the root where the hypothesis resides. 

3 Simulation Examples 

In this section, we use some examples to illustrate 
the theory and procedures of the proposed evidential rea­
soning model presented in the previous sections. 

Example 3. There are two pieces of evidence A and B 
supporting a hypothesis C. Assume the property of A 
supporting C is the more A is true, then the more C 
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is also true. However, if B has an opposite property to 
that of A, and B is partially dependent upon A with an 
degree 0.4, then what is the belief that A and B support 
C? 

We know that the properties of two evidence A and B 
given in the above can not be easily modeled by the basic 
probability assignment (BPA) method to be processed 
by Shafer-Dempter's rule. However, it can be handled 
by the proposed model. First, we can assign a belief 
function to the evidence A based on its property, 

PA(/J) = 28 

On the other hand, we can assign a belief function to the 
evidence B, 

PB(/J) = 2 - 2/J 
Following the procedure discussed in Sections 2.2, and 
2.3, first, three dependency coefficients must be com­
puted. Since there is no information to indicate there is 
a possibility that A depends upon B either partially or 
totally, we can assume that 

PB-:>A = 0.4, PA-:>B = 0.0, Phs = 0.6 

Secondly, we calculate the Pindep(B), which can be de­
duced by equations (3), (4), (5), and (6) . 

{ 
161]2 - 321]3 0 < /} < l 

Pindep ( /J) = .!§. _ 15J2 +' 321]3 l < /} < 1 
3 3 ' 2- -

Then, since A and B support the same hypothesis, we 
can apply (2) to get the overall belief function of hypoth­
esis C, which is 

Pc( IJ) 
0 ::; /} ::; ! 
!::;B::;1 

The graphs of belief functions, PA(/J), PB(/J), and 
Pindep(/J) are shown, respectively, in Fig. 6, 7, and 8. 
The graph of the belief function pc (/J) associated with 
the hypothesis C is plotted in Fig. 9. Referring to Fig. 
6-9, the curve of the belief function pc (/J) is dominated 
by the independent case of belief conjunction of the two 
given evidence, which is in Fig. 8, and the right hand side 
of the graph indicates the perturbation provided by the 
B depending on A case, which is in Fig . 6. Therefore, 
the probability density distribution of the belieffunction 
Pc meets what the intuition of human reasoning expects. 

Example 4. Given an inference rule R and evidence A 
and B, which are shown as an inference network in Fig. 
10, we are going to assess the belief function of the con­
sequent supported by the two given evidence. Suppose 
that the node combining A and B is an OR node, which 
will constitute an intermediate evidence. The rule is 

R :i f (A ORB) then C, 

where the belief functions of evidence A and B, and the 
mutual dependency relationships between the evidence 
are the same as those given in Example 3, and the belief 
function of the rule R is 

which is shown in Fig. 11. We also assume that the rule 
R is independent of its antecedent . In the following, we 
will derive the belief function of the consequent C by our 
model. 

By the result of the previous example, we can draw 
a conclusion that the belief function of the intermediate 
evidence D, which is an OR node, is 

PD ( IJ) PA(/J) + PB(/J) - PAnB(/J) 

{ 

2-1/}_48/}2+321]3 
5 5 5 ' 

-6 _ 1/} + 481]2 _ 321]3 
5 5 5 5 ' 

0 ::; /J ::; i 
i ::; /} ::; 1 

which is shown in Fig. 12. Since the rule R is inde­
pendent on any antecedent, the dependency relationship 
between D and R must be 

PDR = 0, PRD = 0, Pindep = 1 

Here, for the sake of simplicity, we rewrite the belief 
function PD as the following 

PD(/J) PA(/J) + PB(/J) - PAnB(/J) 

{ 
Fi ( /J) , 0 ::; /J ::; ! 
F2(/J) , i ::; /J::; 1 

Then, according the theory of belief conjunction given 
in Section 2.2, we can get the following equations, 

Pc(/J) 

2
15(1024/}6 

- 1536/J5 - 160/J4 + 800/J3
), 

0 ::; /} ::; i 
4~0 (9600B2 

- 1128/J + 112) - A (1024/J6 

- 15361}5 + 1601}4 + 480/J3 ), i ::; I}::; ! 
4~0 (9600/}2 

- 1728/} + 112) - 2
15 (10241}6 

-15361}5 - 160/J4 - 1760/J:r + 48001} 2 

-2360/J + 280), ! ::; /J::; i 
A (1024/J6 - 15361}5 + 160/J4 - 2080B3+ 

48001}2 
- 2824/J + 456), i ::; /J ::; 1 

which is shown in Fig. 13. 
The overall propagation result has been derived and 

the property of propability conservation holds. The ca­
pability of the proposed model in managing the uncer­
tainty aggregation of complicated continuous belief func­
tions of evidence and inference rules in an inference net­
work is illustrated in above Example 4. If the conven­
tional BPA approach is adopted in this example, no mat­
ter what thresholds are chosen to quantize the belief re­
gion, the fiedility of the original belief function will be 
seriously distorted or even totally lost . In turn, regard­
less of what kind of belief combination and belief propag­
tion method is employed, it will mislead to an unfaithful 
resulted belief function of the final hypothesis . 

4 Conclusion 

The conflict caused by the Dempster's rule [12] or 
Hau's approach [5] can not be satisfactorily resolved. In 
contrast, the proposed framework solve this conflict res­
olution problem. The result of belief propagation must 
also depend on the mutual dependency relationship of 
the antecedent of the rule and the rule itself, which has 



long been ignored in the literature, in addition to the 
interpretations of the rule. The proposed model also 
embodies the inference in a lattice-structured inference 
network. Since an inference network can be treated as 
an AND/OR graph, the operation of any individual node 
(i.e., AND or OR) can reach the final result by applying 
the proposed model. If the node is AND, then it is con­
sidered to be a Conj operation in the proposed model, 
while an OR node, then Union operation. 

The new model offers several advantages over prior 
attempts. First, the conflict in the dependencies among 
the evidence in an inference network has been solved. 
Secondly, the discrete belief functions and the arbitrary 
continuous belief functions can be processed, which has 
not been researched to date. A continuous belief func­
tion is extremely advantageous because it can represent 
the vagueness of a human concept more accurately than 
conventional means (i .e., BPA). Thirdly, the problem de­
pendency propagation of an intermediate evidence has 
been resolved. Finally, the conflict of belief propaga­
tion caused by the mutual dependency relationship of 
the antecedent of the rule and the rule itself has also 
been solved. This newly proposed strategy is intuitively 
closer to the intuitive reasoning process than is Demp­
ster's consensus seeking strategy [11] [12] or Hau's com­
promise seeking strategy [5], thus making this new model 
more successful and appealing than earlier attempts. 
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Abstract 

A number of exact algorithms have been devel­
oped to perform probabilistic inference in be­
lief nets in recent years. In general these al­
gorithms have been developed from a graph­
theoretic perspective. In this paper we con­
sider probabilistic inference in a belief net from 
the combinatorial optimization point of view. 
Efficient probabilistic inference in a belief net 
can be seen as the problem of finding an opti­
mal factoring given a set of probability distribu­
tions to be combined. From this viewpoint , pre­
viously developed algorithms are just different 
factoring strategies. We begin by defining the 
optimal factoring problem. We then present 
evidence for the utility of this perspective in 
the form of a very simple heuristic algorithm 
for factoring in multiply-connected networks. 
We show experimental evidence that this sim­
ple greedy heuristic is more efficient than pre­
viously developed exact probabilistic inference 
algorithms. 

1 Introduction 

A number of exact algorithms have been developed to 
perform probabilistic inference with belief nets in re­
cent years. In general these algorithms have been de­
veloped from a graph-theoretic perspective1 . Among 
the algorithms that have been developed are the propa­
gation algorithms based on the original directed graph, 
such as the poly-tree propagation algorithm [Pearl, 1988; 
Pearl, 1986; Peot and Shachter, 1991), on a related di­
rected graph, such as Symbolic Probabilistic Inference 
[D'Ambrosia, 1989; D'Ambrosia and Shachter, 1990) 
and Shachter's reduction algorithms [Shachter, 1986; 
Shachter, 1989; Shachter, 1988), or on a related undi­
rected graph, such as Pearl's clustering and conditioning 

*The authors gratefully acknowledge the support by NSF 
91-00530 . 

1 Shenoy's work [Shenoy, 1991) is very similar in spirit to 
ours. He studies inference under uncertainty from an al­
gebraic perspective. However, he emphasizes mathematical 
foundations, whereas we emphasize algorithm development. 

algorithms [Pearl, 1988) and Lauritzen and Spegielhal­
ter's clustering algorithm [Lauritzen and Spiegelhalter, 
1988). 

The time complexity of probabilistic inference in a be­
lief net is exponential in the number of nodes in the 
graph in the worst case. However, practical belief nets 
are usually only sparsely connected and we can take the 
advantage of conditional independence represented by 
sparseness of the graph to reduce the complexity of com­
putation; that is, we may perform some non-numerical 
computation to reduce numeric computation. So, prob­
abilistic inference in a belief net can generally be con­
sidered as consisting of two components: numeric com­
putation of the requested distributions and non-numeric 
computation or symbolic reasoning. For the above exact 
algorithms, the non-numeric computation of each algo­
rithm is heuristic and is performed in polynomial time 
in the number of nodes of a belief net; but the time cost 
of numeric computation is exponential with respect to 
the maximum number of variables of two distributions 
to be combined in a query [Li, 1990). Therefore, the key 
point for speeding up a probabilistic inference algorithm 
is to reduce its numeric computation time. There are 
two ways to reduce the numeric computation time. One 
is to reduce the maximum dimensionality in the compu­
tation by optimal arrangement of the computations to 
be performed. The second is to reduce the size of the 
computation by pre-computation or the re-structuring 
of the graph off-line. Pre-computation is not always ap­
plicable. In this paper we will restrict our attention to 
finding more efficient factorings . Unfortunately, finding 
an optimal factoring is a hard problem. 

Previous algorithms for inference in belief nets can 
be viewed as various heuristic strategies for factoring a 
product of a set of distributions. However, these strate­
gies do not explicitly address the fundamental combina­
torial optimization problem, and so may miss opportuni­
ties for optimization. We begin by defining a combinato­
rial optimization problem: Optimal Factoring. Then, we 
present a heuristic factoring algorithm. Finally, we show 
experimental results of the algorithm on randomly gen­
erated belief nets and compare these results with those 
obtained by using the symbolic probabilistic inference 
(SPI) algorithm [D' Ambrosio, 1989], one of the most ef­
ficient exact algorithms [Li, 1990). 

The remainder of the paper is organized as follows. 
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Section 2 introduces a combinatorial optimization prob-
lem - optimal factoring. Section 3 describes a heuristic 
factoring strategy we developed for multiply connected 
belief nets. Section 4 -shows experimental tests of the 
algorithm. Section 5 discusses the test results. Finally, 
section 6 discusses conclusions of the research. 

2 Optimal factoring 
An optimal factoring problem (OFP) with n expressions 
can be considered as a combinatorial optimization prob­
lem. Without loss of generality we assume that the do­
main size of each variable is 2. The problem can be 
described as follows. 

Definition 1 (FP) Given 

1. a set of m variables V, 
2. a set of n subsets of V: S = {S{1}, S{2} , ... , S{n}}, 

and 
3. Q <; V is a set of target variables 

define operations: 

1. combination of two subsets S1 and SJ : 

SwJ = S1 U SJ - {v : v (/. SK for K n J = ¢,, 

K n J = ¢,, and v (/. Q}, 

I,J <; {1,2, .. . ,n}, InJ = ¢,; 
2. the cost function of combining the two subsets: 

µ(S{i}) = 0 for l $ i $ n, and 

µ(SwJ ) = µ(S1) +µ(SJ)+ 2IS1uSJ I. 

µ(S1 ) is not unique if II I > 2. In general, it depends 
on how we combine the subsets. We indicate these al­
ternative combinations by subscripting µ. µa(S1) = µ 
shows the cost of combining result of S1 with respect 
to a specific tree structured combination of I, labeled a . 
We call this combination a factoring. 

Definition 2 (OFP) An optimal factoring problem 
is to find a factoring a such that µa(S{i,2, ... ,n}) is min­
imal. 

In above definitions, Q is a set of target variables af­
ter combining all subsets of S together; the set { v} in 
the formula SwJ is the variables which do not appear in 
the remaining subsets of S after combination of S1 with 
SJ . µa (SwJ ) is the total cost of combining all set S; ( 
i E J, J ) in a given factoring order, and is determined 
by the cardinalities of sets to be combined and affected 
by the size of { v} in previous combinations. If the do­
main size of each variable is not limited to 2, the value 
2l8 rUSJ I in above formula should be replaced with the 
multiplication of domain size of the variables in S1 U SJ . 
All possible factorings are equivalent to the results of 
permuting the n variables and then putting parenthe­
ses in all possible ways in the permutation to form all 
S{i, 2 , ... ,n} 2 . It should be clear that determining the low­
est cost way to combine distributions in a belief net is 
an OFP. The initial set of subsets is the set of sets each 
containing one variable ( or node) and its parents. The 

2 The parentheses show the preference of combination. 

reason that we do not restrict the appearance of variables 
in each subset S; is that some intermediate combination 
results or distributions still meet the definitions. 

OFP generally is a hard problem. We suspect that 
OFP is an NP-hard problem, although do not yet have 
a proof-for this conjecture. Despite this, some restricted 
instances of OFP may have polynomial time algorithms. 
For example, given a domain of variables, if each pair of 
sets Si and Si is disjoint and the set Q is the union of 
all the sets Si; then the optimal ordering of a(S{i, , ... ,i,.}) 
could be obtained in linear time. Our specific interest is 
in the application of OFP to probabilistic inference. 

One direct use of OFP is to find an optimal evaluation 
tree for computing queries in a belief net. Given a belief 
net with m nodes and some observations in it, a query 
involves identification of a subset n of the nodes relevant 
to the query, and computation of the conformal prod­
uct [Shachter et al., 1990] of marginal and conditional 
probabilities of the n nodes. The n nodes with their re­
lations can be mapped to the symbols in the definition 
of OFP: the n nodes with their immediate antecedent 
nodes are mapped to the n subsets of m variables; the 
queried nodes correspond to the variables in the sub­
set Q; SwJ denotes the intermediate result of conformal 
product of distributions I and J; and µ gives the number 
of multiplications needed for the computation. Finding 
an optimal factoring minimizes the number of multipli­
cations needed for this computation3 • 

From the OFP point of view, we can see that previ­
ously developed exact probabilistic inference algorithms 
are just different factoring strategies. However, these 
strategies didn't consider probabilistic inference as a fac­
toring problem. We have proved [Li and D'Ambrosio, 
1991] that there exists an optimal factoring algorithm 
which runs in polynomial time in the number of nodes 
for a poly-tree. However, finding an optimal factoring 
for an arbitrary belief net is a hard problem. In the next 
section we will present a heuristic algorithm for factor­
ing an arbitrary belief net and show experimentally that 
this simple algorithm performs extremely well by testing 
it on randomly generated belief nets and comparing its 
results with those from SPI. 

3 A heuristic factoring Algorithm 

We now present an efficient heuristic algorithm, called 
set-factoring, we have developed for finding good fac­
torings for probability computation. In a belief net with 
nodes {x1,x2, .. ,xn} connected by arcs, the general form 
of query is P(XJ IXK,XE), where XJ is a set of nodes 
being queried, XK is a set of conditioning nodes and XE 
is a set of observed nodes. P (XJ IXK, XE) can be com­
puted from P(XJ,XKIXE) . For simplicity, we will only 
consider the case P(XJIXE) in the algorithm. This ig­
nores several potential simplifications noted in [Shachter 
et al., 1990], but simplifies the presentation. 

Given a query P(XJIXE) in a belief net, often only a 
sub-set of the nodes is involved in the probability com­
putation. The involved nodes can be chosen from the 

3 For proofs of the properties of probabilistic models which 
enable this a.lgebra.ic approach, see [Shachter et al., 1990]. 



original belief net by an algorithm which runs in time 
linear in the number of nodes and arcs in the belief net 
[Geiger et al., 1989]. Once we have obtained the nodes 
needed for the query, we have all the factors to be com­
bined. In accordance with the definition 1, we have n 
sub-sets of n nodes and set Q. We use the following al­
gorithm to combine these factors . 

l. Construct a factor set A which contains all factors 
to be chosen for the next combination. Each fac­
tor in set A consists of a set of nodes. Initialize a 
combination candidate set B empty. 

2. Add any pairwise combination of factors of the fac­
tor set A to B if the combination is not in set B, 
except the combination of two factors in which each 
factor is a marginal node and they have no com­
mon child; and compute the u = (xUy) and sum(u) 
of each pair. Where x and y are factors in the set 
A, sum(u) is the number of nodes in u which can 
be summed over when the probability computation 
corresponding to the two factors is carried out. 

3. Choose elements from set B such that C = { uiu : 
minimumB(lul - sum(u))}, here lul is the size of 
u excluding observed nodes. If ICI = 1, x and 
y are the factors for the next combination; other­
wise, choose elements from C such that D = { ulu: 
maximumc(lxl+IYI), x, y Eu}. If IDI = 1, x and y 
are the terms for the next multiplication, otherwise, 
choose any one of D. 

4. Generate a new factor by combining the candidate 
pair chosen from above steps and modify the factor 
set A by deleting two factors of the candidate pair 
from the factor set and putting the new factor in 
the set. 

5. Delete any pair of set B which has non-empty inter­
section with the candidate pair. 

6. Repeat step 2 to 5 until only one element is left in 
the factor set A which is the final combination. 

Following is an example to illustrate the algorithm by 
using the net shown in figure l. Suppose that we want 
to compute the query p( 4) for the belief net and assume 
that there are 2 possible values of each variable. The 
nodes relevant to the query are {1, 2, 3, 4}. We use the 
set-factoring algorithm to get their combination. 

Loopl : factor set A is {1,2,3,4}; The set B is {(1,2) 
(1,3) (1,4) (2,3) (2,4) (3,4)} after step 2; the current 
combination is (1,2), i.e. p(2ll) * p(l) after step 3 (there 
was more than one candidate in this step, we chose one 
arbitrarily); the set A is {(1,2), 3, 4} after step 4; and 
the set B is {(3,4)} after step 5. 

Loop2: factor set A is {(1,2),3,4}; The set B is 
{((1,2),3) ((1,2),4)) (3,4)} after step 2; the current com­
bination is ((1,2),3) after step 3; the set A is {(1,2,3), 4} 
after step 4; and the set B is empty after step 5. 

Loop3: factor set A is {(1,2,3),4}; The set B is 
{((1,2,3),4)} after step 2; the current combination is 
((1,2,3),4) after step 3; the set A is {(1,2,3,4)} after step 
4; and the set B is empty after step 5. The factoring 

result is 

p(4) = 1:(p(412,3H1:(p(3 ll)(p(211)p(1mn. 
2,3 1 

Figure 1: A simple belief net . 

There are several things that should be noticed in the 
algorithm. First, queried nodes should not be deleted 
from any terms in the expression, and if a node is a 
queried node and it has no parents then the node will be 
combined after all other nodes are combined. Second, 
we assume that the number of the values of all nodes 
is same in the algorithm. If the numbers of values of 
the nodes in a belief net are different, we can consider 
the product of the number of values of all nodes related 
in each step instead of the number of nodes. Third, a 
caching strategy can be used in the algorithm. A caching 
table is generated before any query. Before combining 
any two factors, we check the caching table to see if 
there is a cached result for the combination. If there is 
a cached result, we can use the cached result at a cost of 
0 instead of doing the real probability computation. If 
there is no such a cached result, then real computation 
will be carried out . This caching strategy will save some 
computation time. 

The heuristic strategy in the algorithm can be ex­
plained as follows: In step 2, (x Uy) shows the number 
of multiplications needed for combining the pair x and 
y4 • The elements in the set B are the candidates for the 
next combination. We don 't consider pairs consisting of 
two unrelated marginal nodes if they don't have common 
children since a combination of the two marginal nodes 
will usually increase dimensionality. In step 3, we choose 
the pairs which have the lowest result dimensionality as 
candidates since the best result of the current combina­
tion may need less multiplications than those of the other 
combinations for subsequent combinations. The effect of 
summation is considered here; it always decreases the di­
mensionality of the result. If more than one candidate 
is generated here, we choose the maximum (lxl + IYI) in 
step 4 as a criterion because this choice maximizes the 
number of variables being summed over. Usually, it is 
better to sum over variables as early as possible. Steps 
4 and 5 are just preparations for the next loop . 

The time complexity of the algorithm is dominated by 
the number of nodes related to the current query. Step 

4 The number of multiplications should be 2lzuy l. 
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1 is linear in the number of nodes. In step 2, there are 
n * (n - 1)/2 pairs to be computed for the set B at the 
first loop, and (n- k) new pairs are added in the set at 
the end of the kth loop . There is a total of (n * (n -
1)/ 2) + Z:k(n - k) = (n2 - 3n + 3) pairs are computed. 
For each pair, the union operation is O(m), here mis the 
maximum size of x; and sum(u) can be computed at the 
same time as computing ( x Uy). So the time complexity 
in step 2 is O(n3

) at most . The time cost of step 3 is 
linear in the number of pairs left in the set B and set 
C respectively, it is at most O(n2 ) including (n-1) loops 
needed for the two steps. Modifying the factor set in 
step 4 is linear in the number of factors, it has at most 
n eiements. Deleting some eiements from the set B in 
step 5 is linear in the number elements in the set. The 
time complexity is O(n2 ) in step 4 and O(n3 ) in step 5 
including (n-1) loops for the algorithm. Therefore, the 
time complexity of the algorithm is O(n3 ) in the number 
of nodes. 

4 Experimental tests 

Time complexity of some currently used exact probabilis­
tic inference algorithms, conditioning, clustering, reduc­
tion and SPI, have been analyzed, and their efficiency 
has been experimentally tested [Li, 1990] with the im­
plementation of IDEAL system [Srinivas and Breese, 
1989] for conditioning, clustering and reduction algo­
rithms and the implementation of SPI [D'Ambrosio, 
1989]. Since SPI had better performance in that study 
than the others, we just experimentally compare set­
factoring with SPI in this section. 

Three sets of test cases were generated for time com­
plexity experiments. We used J. Suermondt 's random 
net generator to generate all test cases. This generator 
starts with a fully connected belief net of size n, and re­
moves arcs selected at random until the number of the 
remaining arcs is equal to a selected value. In each test 
case, we randomly5

, (ranging from 1 to the number of 
nodes in the belief net), determined the number of obser­
vations to be inserted in that test case; then we randomly 
chose each observation from all unobserved variables in 
the belief net and finally we chose at random a set of 
variables as queries from remaining variables after each 
observation. The number of multiplications needed for 
each test case was recorded. 

The first set of test cases is randomly generated with 
from 1.0 to 3.0 arcs per node and 8 to 13 nodes. The 
reason for choosing a set of small belief nets for testing is 
because we want to compare the results of set-factoring 
with those of an optimal algorithm, which is limited to 
run small belief nets because of time complexity6 • Ta­
ble 1 shows the characteristics of the 10 test cases and the 
computational results of different algorithms measured 
in the number of multiplications: nodes is the number 
of nodes in each belief net; arcs/node is the average arcs 
per node; obs is the number of observations inserted in 

5 Unless noted otherwise, all random selections are from 
uniform distributions over the indicated range. 

6The optimal algorithm is a dynamic programming algo­
rithm with exponential cost. 

the belief net; and query is the total number of queries. 
The last three columns give the results of the generalized 
SPI [D'Ambrosio and Shachter, 1990], the set-factoring 
algorithm and the optimal algorithm respectively. From 
the table we see that the set-factoring has a better fac­
toring result than the generalized SPI" but is not optimal 
in two test cases. 

The second set of test cases is tree-structured belief 
nets. They are randomly generated with from 10 to 30 
nodes. Table 2 shows the 10 belief nets and the test 
results. The columns 2 to 4 show the number of nodes, 
the number of observations and the number of queries 
for each test case. The columns 5 to 7 show the test 
results for each algorithm as in table l. From the table 
we see that the set-factoring has an optimal result for 
each tree structured belief net. The generalized SPI did 
not get optimal results for some test cases. 

The third set of test cases is that used in testing SPI 
and Generalized SPI [D'Ambrosio, 1989; D'Ambrosio 
and Shachter, 1990; Shachter et al., 1990]. They are 
randomly generated from 1.0 to 5.0 arcs per node, and 
10 to 30 nodes. In table 3, node shows the number 
of nodes and arc shows the number of arcs in each be­
lief net; the columns obs and query give the the num­
ber of observations and total queries in each test case 
respectively; and the rest of columns shows the num­
ber of multiplications for each test case. A new version 
of SPI is used for comparison. SPI( cache) and set­
fact (cache) show the results with intermediate result 
caching for both algorithms7• 

From the above experimental results we see that the 
factoring strategy of set-factoring has better factoring re­
sults than those of SPI in every case, particularly when 
a belief net is large. The number of multiplications in 
set-factoring is about half of those in SPI on average. 
Set-factoring is more consistent with respect to tasks 
and different kinds belief nets. As shown in table 3, 
set-factoring is better than SPI with caching for a large 
belief net, taking net 16 as an example. Since dimension 
in a factor will become large after some combinations, 
any bad combination order will cause many more multi­
plications than a good combination does. 

The time complexity of factoring for set-factoring and 
the time complexity of symbolic reasoning for SPI are 
only slightly different . In set-factoring, the time com­
plexity is O(n3 ) in the number of nodes concerned in 

· the current query at most; in SPI the time complexity 
is O(n3 ) at most in the number of nodes of the belief 
net . There should be no big difference. The time cost 
for symbolic reasoning in both algorithms is trivial com­
pared to probability computation. 

5 Discussion 

While these results are preliminary, they seem a strong 
indication that the set-factoring algorithm is able to find 
better factoring for many problems, particularly in find­
ing optimal factoring for all tree test cases. Also the 
set-factoring algorithm can be used as a suitable ana-

1 * denotes that corresponding algorithm is too slow to run 
the test case. 



net nodes arcs/node obs query G.SPI set-factormg opt-alg 
1 12 2 3 7 287 52 52 
2 11 2.5 3 7 328 196 196 
3 9 2.5 4 12 301 252 252 
4 11 2 4 4 58 26 26 
5 9 2.2 1 3 140 102 102 
6 8 2.6 2 4 200 194 186 
7 13 1 3 7 109 38 38 
8 13 2.5 3 8 2760 1818 1716 
9 13 2.4 3 8 144 94 94 

10 10 1.7 3 7 237 174 174 

Table 1: Ten small test cases and the test results by algorithms: the generalized SPI, the set-factoring and the 
optimal algorithm. 

net nodes obs query G.SPI set-factormg opt-alg 
1 23 6 68 728 646 646 
2 19 19 89 1881 630 630 
3 28 1 4 36 36 36 
4 22 16 104 2959 1246 1246 
5 17 7 34 809 404 404 
6 12 9 27 335 148 148 
7 24 17 128 1469 68 68 
8 25 1 10 222 178 178 
9 24 5 58 1478 1010 1010 

10 22 5 46 1427 642 642 

Table 2: Tree structured test cases and test results by algorithms: the generalized SPI, the set-factoring and the 
optimal algorithm. 

net node arc obs query SPI set-factoring SPl(cache) set-fct (cache) 
1 23 28 10 13 164 98 140 60 
2 13 62 7 6 832 718 368 310 
3 13 61 10 4 62 44 32 28 
4 18 85 10 8 624 558 422 418 
5 16 54 8 9 2,370 1,512 866 898 
6 17 34 8 9 2,616 890 1,176 502 
7 23 60 10 12 37,514 5,272 10,078 2,978 
8 10 15 5 5 286 182 222 92 
9 27 35 13 14 1,122 644 800 244 

10 12 26 5 7 780 386 452 194 
11 23 87 10 12 183,296 73,804 65,216 26,540 
12 11 36 5 6 1,896 1,126 668 598 
13 14 15 7 6 454 228 264 92 
14 16 40 8 8 8,416 3,112 2,204 1,940 
15 19 76 9 10 81,696 23,590 13,380 10,462 
16 29 131 1 28 "' 6,569,756 16,146,192 3,196,900 
17 29 90 14 14 1,489,040 143,334 254,292 73,146 
18 16 35 9 6 2,480 898 816 450 
19 15 53 7 8 15,986 4,168 3,068 1,896 
20 26 101 13 13 717,552 124,734 113,248 63,834 
21 28 34 14 13 2,052 847 1,384 330 

Table 3: The experimental results of 21 test cases between SPI and set-factoring. 
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lytical tool for evaluating other probabilistic inference 
algorithms. The most important conclusion from the 
experimental results is that OFP is a useful way of effi­
ciently solving probabilistic inference problems in a belief 
net. From the OFP point of view, not only can we get 
a better algorithm than previously those developed, but 
also the algorithm is easy to understand and implement. 

The main idea behind the set-factoring algorithm is, at 
each step, to find a pair with the best combination result . 
We tried the strategy of finding the pair with minimum 
multiplication as a candidate for combination; the re­
sults are not as good as those obtained by set-factoring. 
The set-factoring algorithm only considers information 
iocaily for choosing each pair, so it can be implemented 
efficiently. It is this characteristic that prevents the al­
gorithm from guaranteeing an optimal result for some 
multiply connected belief nets, because optimal results 
are related to all nodes concerned. It also tells us why 
the algorithm is good in tree structured belief nets: the 
factoring information for the tree is locally determined. 
Due to the locality of its heuristic strategy, set-factoring 
can work as a local factoring strategy in other proba­
bilistic inference algorithms. 

Since the last several combinations in factoring usu­
ally have large dimensionality, combinations of the last 
few factors are critical in getting nearly optimal result 
for some belief nets. Considering this, we combined the 
set-factoring and the optimal algorithm together to get a 
new algorithm in which we used set-factoring to generate 
a partial result first and then used the optimal algorithm 
to complete the last several combinations. Since the op­
timal algorithm can run efficiently for about 8 factors, 
the combined algorithm should run efficiently as well. 
The results of the combined algorithm are better than 
the set-factoring algorithm, particularly for large belief 
nets8 • This lead us to think of another factoring strategy 
of using the optimal algorithm. That is, if a belief net 
can be divided into several connected parts, we might 
use optimal algorithm within each part and then among 
all parts. We have not tested this idea yet. 

The test result of the net 3 in table 3 for set-factoring 
(without caching) is optimal for each query, but both 
algorithms with caching give better results for the same 
queries. This indicates that a best probabilistic inference 
algorithm may not only depend on an optimal factoring 
strategy, but also depend on a good caching method for 
some tasks and some belief nets. There is a trade off 
between using a good factoring strategy and using an 
effective caching method in an inference algorithm, since 
a good factoring strategy flexible across many belief nets 
and tasks may be hard to combine with any caching 
method. 

We have also studied the opportunities for parallelism 
in belief net inference. Set-factoring has shown good 
factoring results for parallel probability computation 
[D'Ambrosio et al., 1992]. 

8 Take the net 16 in table 3 as an example, the number of 
multiplications needed by the combined algorithm is about 
75% of those by set-factoring. 

6 Conclusions 

In this paper we have presented a combinatorial opti­
mization problem, optimal factoring. We have proposed 
that efficient probabilistic inference in a belief net can 
be considered as an optimal factoring problem. We be­
lieve that it is a proper way to study the problem. From 
this point of view, finding an efficient exact probabilistic 
inference algorithm is the problem of finding an optimal 
factoring algorithm. Unfortunately, finding an optimal 
factoring in general is a hard problem. Currently de­
veloped algorithms rely on structural properties of the 
graph to guide factoring . However, it is not clear this 
is the most direct way to find efficient factorings. We 
presented a heuristic factoring algorithm for multiply 
connected nets which makes no reference to graphical 
structure and yet outperforms current graph based algo­
rithms. 

References 

[Srinivas and Breese, 1989] Sampath Srinivas and Jack 
Breese. IDEAL: Inference Diagram Evaluation and 
Analysis in Lisp, Documentation and Users Guide. 
Rockwell International Science Center, Palo Alto 
Laboratory, May 1989 

[D'Ambrosio, 1989] Bruce D'Ambrosio. Symbolic Prob­
abilistic Inference in Belief Networks. OSU technical 
report. December 1989. 

[D'Ambrosio et al. , 1992] Bruce D'Ambrosio, Tony 
Fountain and Zhaoyu Li. Parallelizing Probabilistic 
Inference - Some Early Explorations. Submitted to 
the Eighth Conference on Uncertainty in Artificial 
Intelligence. 

[D'Ambrosio and Shachter, 1990) Bruce D'Ambrosio 
and R. Shachter. Factoring Heuristics for General­
ized SPI. OSU technical report. March 1990. 

[Geiger et al., 1989] D. Geiger, T. Verma and J . Pearl. 
d-separation: From Theorems to Algorithms. Pro­
ceedings of the fifth Workshop on Uncertainty in Ar­
tificial Intelligence, pages 118-125. Windsor, Ontario, 
1989. 

[Lauritzen and Spiegelhalter, 1988] S. L. Lauritzen and 
D. J . Spiegelhalter. Local computations with Prob­
abilities on Graphical Structures and Their Appli­
cation to Expert Systems. Royal Statistical Society, 
pages 157-224. January 1988. 

[Li, 1990] Zhaoyu Li. Complexity of Probabilistic Infer­
ence in Belief Nets - an Experimental Study. MS the­
sis, OSU. November 1990. 

[Li and D'Ambrosio, 1991] Zhaoyu Li and Bruce 
D' Ambrosio. Probabilistic Inference in Belief Nets -
A Combinatorial Optimization Problem. OSU, Oct, 
1991. 

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelli­
gent Systems. Morgan Kaufmann, San Mateo, 1988. 

[Pearl, 1986] J . Pearl. Fusion, Propagation, and Struc­
turing in Belief Networks. Artificial Intelligence, 
29(3): 241-288, 1986. 



[Pearl, 1990] J. Pearl. Reasoning with Belief Functions: 
An Analysis of Compatibility. International Jour­
nal of Approximate Reasoning, vol 4, pages, 263-289. 
September/November 1990. 

[Peot and Shachter, 1991] Mark A. Peot and Ross D. 
Shachter, Fusion and Propagation with Multiple Ob­
servations in Belief Networks. Artificial Intelligence, 
48: 299-318, 1991. 

[Shachter, 1986] R. D. Shachter. Evaluating Influence 
Diagrams. Operation Research, vol 34, pages 871-882, 
November 1986. 

[Shachter, 1989] R. D. Shachter. Evidence Absorption 
and Propagation Through Evidence Reversal. Pro­
ceedings of the Fifth Workshop on Uncertainty in Ar­
tificial Intelligence, pages 303-310, 1989. 

[Shachter, 1988] R. D. Shachter. Probabilistic Inference 
and Influence diagrams. Operations Research, Vol. 
36, pages 589-604, July-August, 1988. 

[Shachter et al., 1990] R. D. Shachter, Stig K. Ander­
son and Kim L.Poh. Directed Reduction Algorithms 
and Decomposable graphs. Proceedings of the Sixth 
Conference on Uncertainty in Artificial Intelligence, 
pages 237-244, 1990. 

[Shachter et al. , 1990] R. D. Shachter, B. D'Ambrosio, 
and B. D. Favero. Symbolic Probabilistic Inference in 
Belief Networks. Proceedings, Eighth National Con­
ference on AI, pages 126-131, 1990. 

[Shenoy, 1991] Prakash 
Shenoy. Independence In Valuation-based Systems, 
School of Business, University of Kansas, Nov. 1991. 

127 



!?8 

.1 

Definite Integral Information 

Scott D. Goodwin 
Dept. of Computer Science 

University of Regina. 

Eric Neufeld Andre Trudel 

Regina., Saskatchewan, 
Canada., S4S OA2 

Dept. of Computational Science 
University of Saskatchewan 
Saskatoon, Saskatchewan, 

Canada., S7N OWO 

Jodrey School of Computer Science 
Acadia. University 

Wolfville, Nova. Scotia., 
Canada., BOP lXO 

( 306) 585-4 700 
goodwin@cs.uregina..ca. 

(306) 966-4887 
eric@USask.ca. 

(902) 542-2201 
trudel@Aca.dia.U .ca. 

Abstract 
Given vague temporal information about an 
interval, we wish to draw reasonable infer­
ences about interior points and subintervals. 
Within the deductive framework of probability, 
such queries are sufficiently underconstrained 
as to result in degenerate answers. We show 
that when vague temporal information is rep­
resented in the form of definite integral infor­
mation, we can nonmonotonically infer answers 
to such queries that are both more interesting 
and useful. The inductive inference is achieved 
by identifying temporal intervals with reference 
classes and choosing the most specific. We also 
consider the effect of other knowledge- for in­
stance, the knowledge that temporal informa­
tion is true throughout some subinterval. 

1 Introduction 
We study a previously undefined yet important class of 
temporal interval based information we call definite in­
tegral information. An example of a problem involving 
such information is: 

Over the year, it rains 40% of the time. Dur­
ing winter (December 21- March 20), it rains 
75% of the time. Over the summer (June 21 -
September 20), it rains 20% of the time. What 
percentage of rainfall occurs during December? 
What is the chance of rain at midnight on De­
cember 24th? 

To obtain useful answers to these questions, it is neces­
sary to go beyond what deductively follows from proba­
bility theory. 

The non-deductive reasoning we wish to do with defi­
nite integral information requires nonmonotonic "jump­
ing to conclusions" about subintervals and points based 
on interval information . In the absence of "other infor­
mation," we assume that every point has an equal chance 
of having some property. We usually do have "other in­
formation" and want to consider each point with respect 
to its most specific reference class, the narrowest class to 
which it belongs and for which we have "adequate" in­
formation [Reichenbach, 1949; Kyburg, 1983]. Our view 
of what constitutes the narrowest reference class differs 

from the commonly held view. We adopt recent ideas 
about inheritance of statistical information where infor­
mation about a class of individuals has (the usual) down­
ward influence on subclasses and has (a previously un­
considered) upward influence on superclasses [Goodwin, 
1991]. This lets us deal with conflicting sources of statis­
tical knowledge by averaging the influences (i .e., a sort 
of "maximum entropy weighted average"). 

Such inferences require reasonable inductive assump­
tions. Here we develop a probabilistic framework in 
which subinterval and point information is nonmono­
tonically inferred directly from definite integral infor­
mation . This direct inference hinges on an assump­
tion of epistemological randomness, that is , if accord­
ing to our current knowledge a particular point is in­
terchangeable with any other point in some interval for 
which we have definite integral information, then the 
probabilistic properties of the point can be reasonably 
assumed to correspond to statistical properties of the 
interval. In a similar fashion, particular subintervals 
can reasonably be assumed to inherit statistical prop­
erties from the interval. The problem of applying def­
inite integral information to subintervals and points is 
related to the idea of direct inference in statistical rea­
soning [Pollock, 1984]. Direct inference is the applica­
tion of statistical information about a reference class to 
a member of the class. When there are multiple appli­
cable reference classes, we must choose between them­
this is the reference class problem [Reichenbach, 1949; 
Kyburg, 1983]-here we adopt the reference class selec­
tion policy proposed in [Goodwin, 1991]. 

We also consider the effect of information such as con­
tinuity. If we know the percentage of rainfall during an 
interval, the additional knowledge that the rain fell con­
tinuously constrains the assumptions we can make about 
the distribution. In Section 5, we discuss how to reason 
in this case. 

2 Definite integral information 

The first order temporal logic we use is a variant of GCH 
[Trudel, 1990]. Point based information is represented 
with a function (J(t) which equals unity if (J is true at 
time point t, and equals zero otherwise. For example, 
"walking at time 3" is represented as walking(3) = 1. 
Our unorthodox representation of point-based informa-
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Figure 1: Rainfall Summary 

tion facilitates the representation of interval based infor­
mation. Since the function /3(t) is a 0-1 valued function, 
we can integrate it over an interval to get the duration 
of truth of /3 over the interval. For example, if John is 
walking continuously between times O and 7, then : 

Vt. 0 S t S 7 - walking(t) = l. 
We integrate to get the length of time (in this case 7 
time units) that John is walking over the interval (0,7] : 

17 

walking(t)dt = 7. (1) 

The value of the integral need not equal the length of the 
interval. For example, walked for 6 hours during some 
10 hour period is represented as: 

1
to+lO 

walking(t)dt = 6. 
to 

(2) 

Note that walking may not have occurred for 6 consecu­
tive hours. It may have been interrupted many times. 

Interval based information /3 is defined to be definite 
integral information if it can be represented in terms of 
a definite integral: 

where O S a S (t2 - ti). For example, formulas (1- 2) 
describe definite integral information. 

The rainfall example from Section 1 (summarized in 
Figure 1) is another example involving definite integral 
information. The GCH representation is given in Fig­
ure 2. Here janl.s and janl.e refer to the start and end 
of January 1st respectively. 

3 Examples 

Using the rainfall example of Figure 1, we present dif­
ferent examples of reasoning with definite integral infor­
mation. 

3.1 Interior point inferences 

How likely is it to be raining at midnight on De­
cember 24th? That is, what is the chance that 
raining(dec24.e) = 1: Notice that dec24 .e falls within 
the following reference classes ( refer to Figure 1) : 

R1 = (janl.s, dec31.e], 
R 2 = (janl.s, mar20 .e] + (dec21.s, dec31.e], 
R3 = (decl.s, dec3I.e] . 
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1
dec31.e 

raining(t)dt = 0.4 x (dec31.e - janl.s) 
J anl.• 

1
dec31 .e 

raining(t)dt = 0.75 x (dec31.e - dec21.s) 
dec2 l.• 

1
mar20.e 

raining(t)dt = 0.75 x (mar20.e - janl.s) 
;anl .• 

r,ep20.e 

}; raining(t)dt = 0.2 x (sep20.e - jun2I.s) 
jun21.• 

janl.s = 0 I\ janl.e = l /\ .. . /\ dec31.e = 365 

Figure 2: Rainfall Formulas 

R3 is not useful because we cannot deduce any useful 
statistics about it from the axioms of Figure 2 ( and the 
axioms of probability) . We also choose to ignore R1 since 
R2 is a narrower (more specific, more relevant) reference 
class. We base our inferences about dec24.e on the ref­
erence class R2 . According to our current knowledge, all 
the points within R2 are indistinguishable with respect 
to rain/ all so we assume every point in R 2 has the same 
chance of rain and conclude a 75% chance of rain at time 
dec24 .e. 

3.2 Subinterval inferences 

What percentage of rainfall occurs in December? The 
actual percentage of rainfall in December is: 

rdec31 .e . , (t)dt 
Jdecl.• raining 

(dec31.e - decl .s) 

where the value of the numerator is unknown. To 
compute the amount of rainfall in December we divide 
the month (region R3 from Figure 1) into subregions 
R3a = (decl.s, dec20 .e] and R3b = (dec21.s, dec31.e] . 

The narrowest reference class that contains R3a is 

Rs = ( mar21.s , jun20 .e] + (sep21.s, dec20 .e] 
= R1 - R2 - R4 . 

The statistic for Rs can be computed from the statistics 
for R1, R2 , and R4 , and from the relative sizes of these 
intervals . We compute the actual percentage of rain Ps 
over Rs to be: 

p, - 0.4 X IR1I - 0.75 X IR2I - 0.2 X IR41 
5 

- IRsl 
_ 0.4 X 365-0.75 X (79+ 11] - 0.2 X 92 

365 - (79 + 11] - 92 

~ 33%. 

By assuming every subset of Rs has the same expected 
percentage of rain, we conclude the expected percentage 
of rain over R3a is Ps. 

The narrowest reference class (for which we have or 
can compute the actual percentage of rainfall) that con­
tains R 3 b is R2. By assuming every subset of R 2 has 
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the same expected percentage of rain, we conclude the 
expected percentage of rain over Rab is 75%. 

The expected percentage of rain over Ra equals a 
weighted average based on Raa and Rab: 

P 
_ Ps x JRaa l + 0.75 x JRab l 

a - JRa J 

0.33 X 20 + 0.75 X 11 
~ 

31 

~ 48%. 

The answer to the original question is that it rams 
roughly half the time during December. 

4 Direct inference rules 

Let us now provide a formal characterization of the plau­
sible inferences described in the previous section. 

Definite integral information corresponds to a set of 
probabilistic constraints which determine a set of possi­
ble interpretations. In general, we can only deduce weak 
constraints on subintervals and points from definite inte­
gral information . For instance, from the rainfall example 
of Figure 2, the definite integral information that tells us 
that it rains 75% of the time in the winter, deductively 
implies that it rains between 50% and 100% of the time 
in the first half of winter . As for the individual points, 
we can only deduce that it may or may not be raining. 

The plausible inferences we wish to make go beyond 
those deductively entailed by the definite integral infor­
mation. They hinge on an assumption of epistemological 
randomness (or , roughly, a principle of indifference); that 
is, taking all we know into account, each possible inter­
pretation is assumed to be interchangeable (i.e., equally 
expected). From this we can infer an expected value for 
the function /3 at a particular point. We can compute 
this value from the given definite integral information 
by first determining an interval of points, all of which 
have the same expected value for /3, and using definite 
integral information about the interval to determine the 
expected value at the particular point. This interval of 
points having the same expected value for /3 is a maxi­
mally specific reference interval. 

Definition 1 (MAX. SPECIFIC REF. INTERVAL) 

The (possibly non-convex) interval R is a max­
imally specific reference interval for f3 (t 0 ) if 

l. to ER, and 
2. /3 has the same expected value at every 

point in R. 

We do not need to know the expected value of /3 at ev­
ery point in an interval to determine if it is maximally 
specific-we only need to know the expected values are 
the same. If the information we have concerning two 
points is identical ( with respect to /3), then the expected 
value of /3 at the points is the same. So all we need do is 
verify that we have the same information for every point 
in the interval. 

Definition 2 (INTERCHANGEABLE POINTS) 

Suppose the only definite integral information 

our knowledge base contains concerning /3 is for 
the intervals: R1, R2, ... , Rn (we refer to these 
as explicit reference intervals for /3). We say 
two points t 1 and t 2 are interchangeable with 
respect to /3, by which we mean that /3 has the 
same expected value at t 1 and t2, if for every 
explicit reference interval R; for /3, we have t 1 E 
R; iff t2 ER;. 

This says if the points fall within the same explicit refer­
ence intervals, then the expected values are ( defined to 
be) the same. 

Proposition 3 (FINDING MAX. SPEC. REF. !NT.) 

If J is the intersection of the explicit reference 
intervals for /3 that contain the point t0 , and U 
is the union of the explicit reference intervals 
for /3 that do not contain the point t0 , then a 
maximally specific reference interval for /3( t0 ) 

is R = I - U. 

Once we have identified a maximally specific reference 
interval for /3(to), we can relate the expected value of 
/3(to) to the definite integral information concerning the 
reference interval. To do this, we use the following prop­
erty of mathematical expectation: 

Proposition 4 (EXPECTATION OF SUMS) 

For any interval I 

E (1 /J(t)dt ) = 1 E((J(t))dt. 

Interval I need not be convex. For example, if I = 
(x, y) U (u, v) and (x, y) and (u, v) are disjoint, then 

f1 = J; +I:· 
Another useful property of mathematical expectation 

is that the expected value of a constant is the constant. 

Proposition 5 (PROPERTIES OF EXPECTATIONS) 

For any interval I, expressions X, Y, and con­
stant c 

E(c) = c 

E(cX) = cE(X) 
E(X + Y) = E(X) + E(Y). 

We use Proposition 4 and the fact that the points of 
the reference interval have the same expected value for 
/3 to derive the following direct inference rule: 

Proposition 6 ( DIRECT INFERENCE RULE 1) 
If R is a maximally specific reference interval 
for /3( to) then 

E(/3(t0)) = E ( JR r~?dt) . 

The expected value of /3 at to is equal to the average value 
of /3 over the interval R . Note that this follows trivially 
from the fact that /3 has the same value at every point 
in R since R is a maximally specific reference interval. 

In the rainfall example (Figures 1 and 2), we com­
pute the expected value for raining( dec24.e) as follows. 



First, we identify a maximally specific reference interval 
for raining(dec24.e) using Proposition 3. Here we have 
R1 and R 2 as the explicit reference intervals for raining 
that contain dec24- e and R4 is the only explicit reference 
interval not containing dec24.e. So R = (R1nR2)-R4 = 
R2 is a maximally specific reference interval. The result 
E( raining( dec24.e)) = 75% now follows from Direct In­
ference Rule 1, our definite integral information about 
R2 , and Proposition 5: 

E( raining( dec24.e)) 

_ (JR1 raining(t)dt) 
- E IR2I 

_ E (JR
1 

raining(t)dt) 

IR2I 

= 
E (0 . 75 x IR21) 

IR2I 
0.75 X IR2I 

IR2I 
= 75% 

Prop . 6 

Prop . 5 

Prop. 5 

Another example is the computation of the expected 
value of raining(dec7.e): 

E( 1·aining( dec7 .e)) 

= (JR, raining(t)dt) 
E IRsl 

Prop. 6 

E (JR, raining(t)dt) 

IRsl 
Prop . 5 

where R5 = R1 - ( R2 + R4 ) is a maximally specific refer­
ence interval for raining(dec7.e) (by Proposition 3). We 
compute the numerator as follows: 

E (l. raining(t)dt) 

= E ( / raining(t)dt ) 
JR, - R1 - R• 

= E (l, raining(t)dt 

- [ raining(t)dt 
jR1 

-l
4 

raining(t)dt) 

= E(0.4 x 365 - 0.75 x 90 - 0.2 x 92) 

= 60.1. 

The value of the denominator is: IRs l = 365 - 90 - 92 = 
183. So therefore: E(raining(dec7.e)) = 60.1/183 ::::::: 
33%. 

The following property is useful in relating subinter­
vals to intervals: 

Proposition 7 (DIRECT INFERENCE RuLE 2) 

If S is a (possibly non-convex) subinterval of 

Q, , 60% I 
I . I I 
0 5 10 15 

Figure 3: Overlapping reference intervals. 

a maximally specific reference interval R for /3 
then 

(
fs /3(t )dt) = (fR /3(t)dt) 

E ISi E IRI . 
An example which uses Proposition 7 is the computa­
tion of the expected value of raining over December. 
As in Section 3.2, we divide December into two subin­
tervals Raa and Rab· By Proposition 3, we identify 
Rs = R1 - R2 - R4 as a maximally specific reference 
interval containing Raa and R2 as a maximally specific 
reference interval containing Rab· We then use Direct In­
ference Rule 2 to relate the subintervals to the reference 
intervals . The computation of the expected values from 
the definite integral information about the reference in­
tervals is then straightforward (see Appendix A) . 

As a final example, suppose we know (see Figure 3) : 

110 

/3(t)dt = 6 I\ 115 

/3(t)dt = 9. 

Notice the explicit reference intervals Q1 = (0, 10] and 
Q 2 = [5, 15] overlap . For /3(7), we have Qa = Q1 n 
Q2 = [5, 10] is a maximally specific reference interval. 
We derive from the definite integral information that 

fs 10 

/3(t)dt E [4, 5] 

and then by Direct Inference Rule 1, we have that 

E (/3(7)) = E ( fs10 ~(t)dt ) E [l, 1]. 

5 Continuous definite integral 
information 

If in addition to 

110 

walking(t)dt = 7, 

we know that walking is uninterrupted (i .e., once the 
person starts walking, he walks for 7 consecutive time 
units), then this type of temporal information is called 
continuous definite integral information. Interval based 
information /3 is defined to be continuous definite integral 
information over some interval (t 1 , t 2 ) if: 

1. J/
1

2 
f3(t)dt = a where O ~a~ (t 2 - ti), and 

2. there exists a subinterval (ta, t4) of (t 1 , t2) such that 

J/
3
• /3(t)dt = t4 - ta = a. 
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The direct inference rules from Section 4 are not ap­

plicable to continuous definite integral information . In­
stead, we use the formulas presented below. 

5.1 Interior point inferences 

Given that walking is continuous definite inte­
gral information over the interval (0,10) and that 
f0

10 walking(t)dt = 7, what is the chance that walking 
is true at times 0, 1, or 5? Intuition suggests that walk­
ing is false at time O (there are an infinite number of 
subintervals of (0,10) of length 7 and only one of these 
subintervals contains the element 0) and true at time 5 
(5 is an element of each subinterval of (0,10) of length 
7) . 

Formally, suppose we have continuous definite integral 
information about /3 over R = (Ra, Rb) where R is an 
interval of interchangeable points (see Definition 2) and 
JR /3(t)dt = L. To compute the expected value of /3 at 
a point t 0 in R, we use the proportion of subintervals of 
length L in R that contain ta: 

E(f3(to)) = min(to, Rb ~bL2 ~ :a;,~Ra, to - L) . (3) 

The term min( to, Rb - L) is the latest time and 
max( Ra, to - L) is the earliest time that a subinterval of 
length L that includes to could start. The denominator 
represents all the possible start times . 

Returning to the walking example, the probability of 
walking at to = 0 is (0 - 0)/3 = 0. The probability at 
t 0 = 5 is (3 - 0) / 3 = 1 and the probability at t 0 = l is 
(1 - 0)/3 = 1/ 3. 

5.2 Subinterval inferences 

Once again , given that walking is continuous definite 
integral information over the interval (0,10) and that 
f

0
10 walking(t)dt = 7, what proportion of points in (0, 1) 

is walking true? 
More generally, if (to, ti) is a subinterval of R = 

(Ra, Rb), where R is defined as in Section 5.1 and letting 
I< = Rb - L - Ra, then : 

E (1:• /3(t)dt) = 1:• E(/3(t))dt 

Using equation 3, we substitute the integrand and obtain 

JC 1 lti min(Rb - L, t) - max(Ra, t - L)dt 
to 

= K - 1 (1:· min(Rb - L, t)dt 

-1:· max(Ra,t - L)dt) 

(1
min(t1,R.+L) 

- Radt 
min(to,R.+L) 

rmax(R.+L,ti) )] +j (t - L)dt . 
max(R0 +L,to) 

Returning to the walking example, we expect walking 
to be true at all points in (5, 6), at 1/6 of the points in 
(0, 1) and at 0.958333 of the points in (2.5 , 3.5) . As ex­
pected, walking is true at greater proportions of intervals 
near the middle. 

5.3 Continuous subinterval inferences 

We now consider a variation of the problem dealt with 
in Section 5.2. Given that walking is continuous def­
inite integral information over the interval (0,10) and 
that f0

10 
walking( t )dt = 7, what is the probability that 

walking is true throughout the interval (0.5, 1.5)? Note 
this is different from asking what proportion of points in 
(0 .5, 1.5) is walking true. 

If R and L are defined as in Section 5 .1, then the 
probability /3 is true throughout (to, ti) ~ R is: 

p (1:· /3(t)dt = ti - to) 

= max 0, . ( 
L - (ti - to) ) 

IR I - (ti - to) 
This is a deductive consequence and requires no induc­
tive assumption about probabilities at points. 

Returning to the walking example, the probability 
that walking is true throughout (0, 1) is zero, throughout 
(5, 6) is 1.0, and throughout (0 .5, 1.5) is 0.05 . 

6 Comparison with other work 

The only previous attempt at representing a subset of 
definite integral information is Allen's processes [Allen , 
1984]. Examples of processes are 'I am walking' and 
'ran a while' over some interval. Questions have been 
raised about the correctness of Allen's representation 
(see [Trudel, 1992] for a discussion). Also, Allen does 
not consider the types of reasoning we are interested in. 

Eberbach et. al. [Eberbach and Trudel, 1992] con­
sider a problem which can be viewed as the opposite of 
that dealt with here. Instead of deriving probabilities 
at points based on interval based information, they be­
gin with the probabilities at the points and then derive 
probabilities for the interval based information. 

7 Conclusion 

We have shown how to represent and reason with definite 
int,egral information-approximate knowledge about the 
duration of temporal information. Although very little 
can be said that is categorically true about any subinter­
val or any specific point, many interesting results can be 
derived from the axioms of probability given the notion 
of inference from a maximally specific reference class. 
For example, given a set of temporal statistics, we have 
shown how to compute the probability that temporal in­
formation is true at an interior point, the probability 
the information persists throughout a subinterval and 
the expected proportion of points at which temporal in­
formation is true in a subinterval. 
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Appendix A 

The computation of the expected value of raining over 
December from the given definite integral information 
(see Figure 2) involves dividing December into two subin­
tervals R3a and R3b· We then use Direct Inference Rule 
2 in conjunction with the maximally specific reference 
intervals R5 = R1 - R2 - R4 and R2 as follows: 

By Proposition 5, 

( 
fR

3 
raining(t)dt) _ E ( f R 3 raining(t)dt) 

E IR3I - IR3I , 
Considering just the numerator, 

E (l
3 

raining(t)dt) = 

E (l
3

• raining(t)dt) + E (l
3

b raining(t)dt). 

By rewriting Proposition 7 as 

E (1 f3(t)dt) = E (fl;~t)dt) · ISi, 

we can then write 

E (1 raining(t)dt) 
R3a 

and 

E (l
3

b raining(t)dt) 

E (IR
2 

raining (t)dt) 

IR2I · IR3bl , 
From previous computations, we substitute to obtain 

E (1 raining(t)dt) :::::: 0.33. 20 
R3a 

and 

E (l
3

b raining(t)dt) = 0.75 · 11. 

Then 

E (l
3 

raining(t)dt) :::::: 0.33 · 20 + 0.75. 11 

and 

( 
f R raining(t)dt) 

E 3 IR3I :::::: 48% . 
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Abstract 

A formalism for default reasoning introduced 
by Reiter [Reiter 1978a, 1978b, 1980, 1981, 
1982], which provides a formal framework for 
an important part of human reasoning, ap­
pears to be the most stable one of the ap­
proaches to non-monotonic inference [Ginsbery, 
1987]. However, Reiter and his followers have 
been placing a heavy emphasis on a class of 
so-called normal defaults since then, the rea­
son why they do so seems to be that a general 
class of defaults is mathematically intractable 
[Reiter and Cirscuolo, 1981]. So up to now, 
the main point about general default theories 
remain unclear. In this paper a characteri­
zation of extensions of general default theo­
ries is given. Basded on this, several results 
on the existence of extensions are shown .All 
these essentially develop Reiter's theory and 
provide for introducing another class of de­
faults, so-called Auto-compatible Default The­
ory, which is more general than Normal Default 
Theory and enjoys very nice feature of the lat­
ter [Mingyi, 1991a, 1991b]. 

Key Words : Default Theory, Extension 
of Default Theories, Compatible Subset of De­
faults , Auto-compatible Default. 

1. Introduction 

Default reasoning is foundmental in Artificial Intelli­
gence( AI) because it appears to be the only tractable 
method to deal with the problem of incomplete informa­
tion and it is specifically concerned with common sense 
reasoning, which has recently been recognized in the AI 
literature to be foundamental importance for knowledge 
representation[Besnard, 1989]. 

A formalism for default resoning introduced by Re­
iter[Reiter, 1978a], Default Logic, which puts forward 
the idea of using it as a knowledge represetation scheme 

for an important part of human reasoning in AI, ap­
pears to be the most stable: ahnost without exception, 
the articles that have appeared after Reiter's original 
one focus on applying Reiter's idea as opposed to modi­
fying them. The single exception is Lukaszewicz's mod­
ification[Lukaszewicz, 1984a, 1984b, 1985]. A number 
of people feel unconfortable with the face that not all 
theories of default logic have extension and that there is 
no proof theory worthy of this name of the whole logic. 
Lukaszewicz (1984b) has proposed an alternative view 
of the nation of extensions, one by which extensions ex­
ist for any default theory. However, knowledge repre­
sentation problems involving default reasoning need not 
be given solutions more conforming to everybody's intu­
itions by Lukaszewicz's modified formalization of deriv­
ability using default than by Reiter's original one. No 
Logic can be expected to be perfect for all cases for which 
it has been devised. to handle. There are always examples 
that can be given conterintutive or paradoxical inter­
pretations. So default Logic cannot be attacked on the 
grounds that no particular approach to it deserves to be 
preferred over all others. In fact, Reiter's formalism al­
lows for extending variations as well as for convervative 
variations ( e.g.Rychlik, 1985; Saint-Dizier, 1986, 1988; 
Etherigton, 1987; Froidevaux and Kagser, 1988; Mercer, 
1987). 

However, Reiter and his followers have been placed 
a heavy emphasis on the class of so-called normal de­
faults and less concerned about the general class of de­
faults since general default theories are mathematically 
intractable [Reiter and Cirscuolo, 1981]. Though it is so, 
Reiter et al. noticed that normal defaults can interact 
with each other in ways that lead to counterintutive re­
sults and had to introduce a general class of so-called 
semi-normal defaults . Unfortunately, the semi-normal 
class lacks many nice features which are enjoyed by the 
normal class. Up to now, we little know intersting inves­
tigation in this topic and main point about general de­
fault theories remains unclear. In paticular, the problem 
on the existence of extensions of general default theories, 
which is complex and difficult to deal with, has been not 
explored. 



Following a differet approach from one of [Reiter, 
1980], this paper will explore the above mentioned prob­
lem on the existence of extensions. Though Reiter gave 
a characterization of extensions (Theorem 2.1 [Reiter, 
19801), it is faced with trouble testing an enormous col­
lection of sets of closed wffs to determine if a default the­
ory has an extension and such a testing is computation­
ally intractable and inconvenient to investigation. So, 
we give a characterization of extensions , which depends 
only on the given information and default rules. Accord­
ing to this, the sufficient c0nditions of [Mingyi, 1991a] 
becomes a direct result of the condition given by intro­
ducing the notions of compatible subsets of defaults and 
auto-compatible defaults in the paper. All this provides 
for introducing another class of defaults, so-called Auto­
compatible Defaults Theory [Mingyi, 1991b], which is 
more general than Normal Default Theory and enjoys 
very nice feature of the latter. It ' is worth noticing that 
the sufficient condition on the existence and unique­
ness of extension for general default theories given in 
[Besnard, 1989](As far as we know, it is one of a few 
results on the existence of extesions expect Reiter's re­
sult ) is just a corollary of our result, and Theorem 3 of 
[Wu, 1991] is only a particular example of the result of 
[Besnard, 1989]. Hence, our work is an essential devel­
opment of Reiter's theory. 

Following [Reiter, 1980], we use the following con­
cepts and notations. 

By a default 5 we mean any configuration of the 
form 

a(x) : M[3i(x), ... Mf3n(x)!,(x) 

where a (x), f3i(x), .. ,f3n(x), ,(x) are wffs whose free vari­
ables are occur in x = x1 , ... , Xm· a (x) is called the 
prerequisite of the default, f3i( x), ... , f3n ( x) is called the 
consistency condition of the default 5, ,(x) is called the 
consequent of the default 5. 

For simplicity, the form of a default 5 is usually 
abbreviated as a : M /31, ... , M f3nh provided it does not 
sacrifice clarity. 

A default is closed iff none of a, /3 1 , .. . , /3n, , con­
tains a free variable. 

A default theory I:::. is a pair (D, W) where Dis a set 
of defaults and W is a set of closed wffs. If every element 
of D is closed, then ( D, W) is 01.lled a closed default 
theory. As in [Reiter, 1980], the technical results on 
closed default theories can be generalized to the case of 
open defaults by Skolemizing W as well as all of defaults 
of D. So there is clearly no ioss of generality by requiring 
wffs of Wand CON (D) to be closed. According to this, 
this paper only disscusses the closed default theories. 

Given a closed default theory 6 = (D, W) and any 
D' ~ D, define 

PRE(D') = {al(a : M/31, ... , M/3nh) E D'} 

CON(D') = bl(a: M/31, ... , M/3n/,) ED'} 
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CCS (D') = {/3;l(a : M/31, ... , M/3n/,) E D'andl ~ i ~ 
n} 

2. Existence of Extensions 

In [Reiter, 1980] a characterization of extension by 
means of a sequence of sets of closed wffs(Theorem 2.l)is 
given by which we can determine if a set E of closed wffs 
is an extension of a closed default theory. Based on this, 
a few properties of default theories and a complete the­
ory on the class of normal defaults are obtained.However, 
it is very difficult to decide whether a set of closed wff is 
an extension of a closed default theory by the condition 
since it needs to test an enormous collection of sets. So 
this obstructs further study on the general class of de­
fault. In this section, it starts immidiately from a default 
theory's self to explore the problem on the existence of 
extensions. Unquestionably our result depending only 
given information W and the sets D of defaults is more 
simple and natural. 

Definition 2.1: Let E be a set of closed wffs and 
6 = (D, W) a closed default theory. Let us define 

Eo(A) = W 
E;+i(l:::.) = Th(E;(t:::.))u{,l(a: M/31, ... , Mf3n/,) E 

D 
where a E E;(!:::.)and-,/31, ... , -,f3n ¢ E} 

Let 

e(E, A)= LJ E;(A) 
O:Si<oo 

For i > 0, define GD(E;(A)) = {(a : M/31, ... Mf3n/,) E 
Dia E E;-i(A)and-,/31, ... , -,f3n ¢ E} 

and GD (Eo(A) ) = 0. Let 
GD(e(E, A), A) = Uo<i<oo GD(E;(A)). 
Usually, the symbol A in the notation E;(A) (i ~ O) 

will be omitted if it does not make confusion. 
Definition 2.2: For any closed default theory 

6 = (D, W), define Do(A) = {(a: M/31, ... , Mf3n/,) E 
DIW f- a} 

and for i > 0, D;+i(A) = {(a 
M/31, ... , Mf3nh)IW u CON(D;(A)) f- a} 

>.(D, A) = LJ D;(A) 
O'.Si <co 

As the above, the symbol A in D;(A)(i ~ 0) and 
)..(D, A) will be omitted. 

Notation: -,/31, ... , -,f3n ¢ E and S If -,{31, ... , -,f3n is 
an abbreviation for 

-,/31 ¢ E , ... , -,f3n ¢ E and S If -,{31, ... , S If -,f3n , 
respectively. 

It is easy to show that the following theorem is 
equivalent to Theorem 2.1 of [Reiter, 1980]. · 

Theorem 2.1.Let Ebe a set of closed wffs and A= 
(D, W) a closed default theory, then E is an extension 
of A iff E = e(E, A). 
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Corollary. Given a closed default theory A = 
( D, W) and a set of closed wff s, then 

e(E, A)= Th(W u CON(GD(e(E, A}, A}}). 

Especially, if E is an extension of A then 

E = Th(W u CON(GD(E, !:::..)). 

Throughout the paper , GD(e(E, A), A}}) is re­
placed by GD(E, A} when Eis an extension of A. 

Definition 2.3. Let!:::..= (D, W) be a dosed default 
theory. D' ~ D is an incompatible subset of defaults 
with respect to!:::.. iff their is S = (a : M/31, ... , M f3nh) E 
D' such that WUCON(D'} I- -.f3i for some i, 1 :5 i :5 n. 
If D' is not incompatible then call it a compatible subset 
of defaults with respect to !:::... A compatible subset D* 
of defaults is maximally compatible subset of defaults 
iff' D* ~ D' implies D' = D*, where D' ~ D is any 
compatible subset of defaults. 

Corollary 2.3.[Reiter, 1980] Any closed default 
theory has a maximally co:.apatible subset of defaults. 

Proof: It is sufficient to notice that SD = { D' ~ 
D ID' is compatible} is not empty since efi E SD. The 
corollary is proved by Zorn's Lemma. 

Defl..nition 2.4. Let 6. = (D, W) be a closed de­
fault theory. A default 

S = (a: M/31, ... , M/3nh) ED 

is auto-incompatible with respect to A iff there exists a 
compatible subset D' of defaults such that 

WuCON(D'} 'rj-.f31, ... ,-.f3n 

and 
Wu CON(D' U {S}) I- ...,13 

for some f3 E CCS(D' U {S}) . Here D' is said to be 
an associated auto-incomp;.tible subset of defaults with 
respect to S. And if S is not auto-incompatible then it 
is auto-compatible. 

Corollary 2.4. Any closed default theory 6. = 
(D, W) with compatible subset D of defaults does not 
contain any auto-incompatible defaults . 

Proof. It is clear from Definition 2.3 and 2.4. 
Lemma 2.5. Let E be an extension of a default 

theory 6. = (D, W} then >.(GD(E, A}}= GD(E, A}. 
Proof. From Definitions 2.1 and 2.2 we have 

>.(GD(E, A})= LJ (GD(E, A}}i 
O~i<oo 

GD(E, !:::..} = LJ GD(Ei, A} 
O~i<oo 

First, we prove by induction 0n i that (GD(E, A)), 
~ GD(E2H2, !:::..). 

Base: HS= (a: M/31, ... , M/3nh) E (GD(E, A))o 
then W I- a and -.{31, ... , -.f3n ~ E which implies 

that a E E 1. So S E GD(E2, !:::..), that is, we proved 
(GD(E, !:::..))o ~ GD(E2, !:::..). 

Step: Assume that (GD(E, !:::..))i ~ GD(E2i+2, !:::..). 
For any 
S = (a : M/31, ... , Mf3nh) E (GD(E, A))i+i then 
WLJCON(GD(E,!:::..)i) I- a and -.f31, ... ,-.f3n ~ E. By 
the induction assumption, WU CON(GD(E2i+2, A)) l­
a . Therefore a E E2i+3.Hence SE GD(E2i+4, !:::..). 

The result implies that >.(GD(E, !:::..)) ~ GD(E, !:::..). 
Similarly, we can prove by induction that 

GD(Ei, !:::..) ~ GD(E, !:::..)i-1 for all i > 0. 
Base: It is clear that GD(E1, !:::..) ~ GD(E, !:::..)o, 
Step: Assume that GD(E,, A) ~ GD(E, A),-1 

For any S = (a : M/31, ... , Mf3nh) E GD(EH1, !:::..), we 
have a EE, and -./31, ... -.f3n ~ E .So, a E Th(E,-d U 
CON(GD(Ei, !:::..)). Theorefore WuCON(GD(E,, !:::..)) l­
a. By the induction assumption, 

Wu CON((GD(E, 6.)),_i) I- a 

which yields SE (GD(E, 6.)), 
The result implies GD(E, 6.) ~).. (GD(E, 6.)). And 

all this complete the proof of the lemma. 
Theorem 2.6. Any closed default has an extension 

iff there exists a compatible subset D· of defaults such 
that 

Pl. >.(D*) = D* ~ D . 
P2. For any S = (a : M/31, ... ,M/Jnh) E D-D*, 

either Wu CON(D*) 'r/ a or Wu CON(D*) I- -.(3, for 
some i, 1 :5 i :5 n. 

Proof. The case where W is inconsistent is not con­
sidered, as it makes the theorem trivial. In fact, 6. has 
a.n inconsistent extension iff W is inconsistent by corol­
lary 2.2 of [Reiter, 1980]. At the same time, D* in the 
theorem is just empty. 

(Only if part) ff 6. has a consistent extension E. 
First we show that GD(E, 6.) is compatible. Assume the 
contrary holds: there is S' = ( a' : M /3L ... , M f3'mh') E 
GD(E, 6.) such that W u CON(GD(E, 6.)) I- -.f3! 
for some i, 1 :5 i :5 m. Since E = Th(W U 
CON(GD(E, 6.))) it follows that -.f3f E E and this is 
a contradiction. So GD(E, 6.) satisfies Pl by Lemma 
2.5. 

Next , if there is S = (a : M/31, ... , Mf3mh) ED -
GD(E, 6.) such that 

Wu CON(GD(E, 6.)) I- a 

and W u CON(GD(E, 6.)) 'r/ -./31, ... , -.f3n then 
o: E E,-.(31, ... , -.f3n ¢ E. Hence SE GD(E,6.). a con­
tradition.That is, GD(E, 6.) satisfies P2. 

(If part) Assume that D* is the compatible sub­
set of defaults satisfing Pl an P2. Let E = Th(W U 

CON(D*)). First we show by induction on i that 
e(E,!:::..) ~ E. 



Base: Obviously, Eo s;;; E. 
Step: Assume that Ei s;;; E. Then Th(Ei) s;;; 

E and Q E E, 1/31, ... , 1 /3n fl_ E for any 6 = 
(a : M/31, ... ,M/Jnh) E GD(E,+1,A) since Ei+i = 
Th(E,) u CON(GD(E,+1, A)). So 5 E D* (otherwise 
it would contradict P2). This implies E,+1 s;;; E. 

Next we show E s;;; Ei(E, A). To prove this it is 
sufficient to show 

D* s;;; GD(8(E, A), A) since E = Th(W u 
CON(D*)), W s;;; e(E, A) and 

e(E, A) = Th(W u CON(GD(e(E, A), A))). In 
this similitude of the proof of Lemma 2.5, we show by 
induction on i that D*. s;;; GD(E2,+2, A). 

Base: For any S = (a: M/31, ... ,M/3nh) E D*o, 
then WU CON(D*) If -,/31, ... ,-,f3n in view of the com­
patibility of D* and a E E1 since WI- a. So 5 E E2, 

Step: Assume (D* ), s;;; GD(Ezi+z, A) . Then for 
any 5 = (a : M/31, ... , Mf3nh) E (D*).+1, we have WU 
CON((D*).) I- a. By the induction assumption, 

Wu CON(GD(E.+1, A)) I- a. So a E E2i+3· 
Hence WU CON(D*) If -i/31, ... , -i/3n by the compati­
bility of D*. This gives 5 E GD(E2,+4, A) which yields 
(D*),+1 s;;; GD(Ez,H, A). 

The result implies that D* s;;; GD(8(E, A), A) since 
D* = >.(D*) = Uo<,<oo(D*),. Therefore Es;;; e(E, A) . 
So, E = 8(E, A) and-Eis an extension of A by Theorem 
2.1. 

Theorem 2.1. Any closed default theory has 
exactly an extension iff there is a compatible sub­
set of defaults satisfing Pl and P2 in Theorem 2.6 
and for any such subsets of defaults D*, D**, W 1-
1\CO N (D* ) <=> I\CON(D**) always holds, where the 
notation I\S means the conjunction of elements of any 
set S of wff, i.e. Aaes a . 

Proof. It is sufficient to note that E 1 = E2 iff W 1-
1\CO N (D* ) <=> I\CON(D**) . Where E 1 = Th(W u 
CON(D*)), E2 = Th(WuCON(D**)) . The remains of 
the proof is easy by Theorem 2.6. 

Lemma 2.8. Given a closed default theory A = 
(D, W) and D', D" s;;; D. If D' s;;; D" then >.(D') s;;; 
>.(D"). As a result >.(>.(D')) = >.(D') for any D' s;;; D. 

proof. The first part of the lemma is easily obtained 
by induction. For the seco1iJ part, it is easy to show that 
>.(>.(D')) s;;; >.(D') by Defii·. ition 2.2. Now we prove by 
induction on i that (D'), s;;; (>.(D')).. 

Base: It is clear that (D')o s;;; (>.(D'))o, 
Step: Assume (D') i s;;; (>.(D')).. Then 5 E 

>.(D') and W U CON((D').) I- a for any 5 = (a : 
M/31, ... , M/3nh) E (D') i+l· By the induction assump­
tion, 

Wu CON((>.(D'))i) I- a 

which implies that 5 E (>.(D')) i+l· So, (D')i+i s;;; 
(>.(D')) .+1· 

All of the above shows that >.(>.(D')) = >.(D') . 
The following consequence comes immidiately from 

Lemma 2.8. 
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Corollary. Let D' be a maximally compatible 

subset of defaults with respect to A = (D, W). Then 
>.(>.(D')) = >.(D') and >.(D') is also compatible. 

Lemma 2.10. If a closed default theory A = 
(D, W) has an extension E, then there is a maximally 
compatible subset D* of defaults with respect to A such 
that GD(E, A)= >.(D*) . 

Proof. The case where E is inconsistent is not con­
sidered, as it makes the lemma trivial. By the proof 
of Theorem 2.6 we know that GD(E, A) is compat­
ible and GD(E, A) = >.(GD(E, A)). So there is a 
maximally compatible subset D* of defaults such that 
GD(E, A) s;;; D* . By Lemma 2.8, GD(E, A) s;;; >.(D*). 
Let E* = Th(W u CON(D* )) . Clearly, E s;;; E* .Now 
we show by induction on i that (D* )i s;;; (GD(E,A)) ,, 
which implies that >.(D*) s;;; >.(GD(E, A ))) = GD(E, A) 
and that >.(D*) = GD(E, A). 

Base: Clearly, (D* )o s;;; (GD(E, A))o. 

Step: Assume (D*), s;;; (GD(E, A)),, then WU 
CON((D*).) I- a for any S = (a : M/31, ... , M/3nh) E 
(D*),+1· By the induction assumption, W U 

CON((GD(E, A)),) I- a . Since -,/31, ... ,-,f3n ¢Eby the 
compatibility of D *. It follows that SE (GD(E,A))i+l · 
Therefore (D*).+1 s;;; (GD(E, A)).+1· 

Theorem 2.11. Any closed default theory A = 
(D, W) has an extension iff there is a maximally com­
patible subset D* of defaults with respect to A such 
that for any 5 = (a: M/31, ... , Mf3nh) ED - D*, either 
Wu CON(>.(D*)) If a or Wu CON(>.(D*)) I- -i/3, for 
some i, 1 ::::; i ::::; n. 

The proof simply consists of an application of The­
orem 2.6 and Lemma 2.10. 

Remark. Theorem 2.11 provides for more simple 
and helpful schema to construct extensions of a closed 
default theory than Theorem 2.1 of [Reiter, 1980] does 
because it does not depend on any set E of closed wffs 
like one in Theorem 2.1 of [Reiter, 1980]. Assume that 
we can decide whether W U CON(D') I- a, -,13 hold 
for a given closed default theory A = (D, W) and any 
a, /3 E P RE(D) U CCS(D). To determine if A has an 
extension we need only to test every maximally com­
patible subset of defaults with respect to A. In other 
words, for a given maximally compatible subset D * if 
there exists 5 = (a : M/31, ... , M/3nh) E D - D* such 
that Wu CON(>.(D* )) I- a and Wu CON(>.(D* )) If 
-i/31, ... , -if3n, then reject the D * and continue to test an­
other maximally compatible subset of default. This test­
ing will proceed till one of the following cases occurs: 

C;:u;e 1. If all maximally compatible subsets of de­
faults are rejected, then A has not any extension. 

Case 2. If some maximally compatible subset D * of 
defaults is not rejected, then E = Th(WUCON(>.(D* ))) 
is one extension of A. 

Clearly, This schema is more direct and helpful to 
finding extensions than one in [Reiter, 1980]. 
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3. Several Important Consequences 

By using the nercessary and sufficient condition for 
the existence of extensions we obtain the following suffi­
cient conditions which seems more important than those 
we know up to now. 

Theorem 3.1. If a closed default theory A = 
(D, W) does not contain any auto-incompatible default 
then it has an extension. 

Proof: In the case where Wis inconsistent, it is clear 
that D does not contain any auto-incompatible default 
and A has an inconsistent extension. So the theorem is 
true. 

Now assume that W is consistent.First, if 0 is a max­
imally compatible subset of defaults with respect to D... 
then 0 satisfies Pl and P2 m Theorem 2.6 since A does 
not contain any auto-incompatible default. Therefore D... 
has an extension E = Th(W) by Theorem 2.6. Next, 
suppose that A has a non-empty maximally compatible 
subset D* of defaults. For every D*, there are two cases 
to be considered. 

Case 1. >.(D*) = D*. For any S = (a : 
M/31, ... M/3nh) E D - D*, WU CON(D* u S) f- -,13 
for some /3 E CCS(D* U {S}) because of the max­
imally compatibility of D*. If W U CON(D*) f- a 
and W U CON(D*) If -i/31, ... , -if3n then S is auto­
incompatible, which results in a contradiction.Hence the 
conditions of Theorem 2.11 are satified and A has an 
extension. 

Case 2. >. ( D*) C D*. If there is another maximally 
compatible subset D** of defauh3 such that >.(D*) ~ 
D** then 

1). D... has an extensi0n as same as in the case 1, 
when >.(D** ) = D**. 

2). In the case where >.(D** ) -:j; D**, consider third 
maximally compatible D*** such that >.(D** ) ~ D***. 
In this way we obtain a sequence of D*, D**, ... such that 
>.(D*) ~ >.(D**) ~ >.(D***) ~ ... let D = Uo<i >.(Di* ), 
where the notation i* represents i *'s and we have 
>.(Di*) CD'* . Of course it is possible that D = >.(Di*), 
that is , there is not any maximally compatible subset of 
defaults containing >.(D'*) except D*, but this does not 
change the following discussion. 

It is easy to show that >.(D) = D.ln fact, if S = (a: 
M/31, ... Mf3nh) ED then there is some i > 0 such that 
S E (Di*). Since >. ( D'*) ~ D it follows that ). (Di* ) ~ 
>.(D) by lemma 2.8. So S E >.(D), which implies D ~ 
>.(D). On the other hand, it is clear that >.(D) ~ D. 
Hence >.(D) = (D). 

Next, we show that D is comtatible. Assume it is 
not true, that is, there is 5 = (a : M/31, .. ,Mf3nh) ED 
such that W U CON(D) f- -i/3i for some i, 1 5 i 5 
n. Then there exists j ~ 0 such that 5 E >.(Di*) and 
WU CON(>.(D3*)) f- -i/3i by Theorem 8.9(ii) of [Monk, 
1976]. This contradicts the compatibility of >.(Di*). 

Finally, given any 5 = (a : M/31, ... M/3nh) E 

D - D, if Wu CON(D) r a and Wu CON(D) If 
-i/31 , ... , -if3n, then WU CON(D U {S}) f- -i/3 for some 
/3 E CCS(Du5) (if not, DUS would be compatible and 
SE >.(D) would hold since WUCON(D) r a, this gives 
a contradication).The above statement shows that S is 
auto-incompatible, which contradicts the hypothesis of 
the theorem. 

All this shows that D satisfies the conditions of The­
orem 2.6. So A has an extension. 

Notice that the following result is used in the above 
proof. 

Lemma 3.2. Let A = (D, W) be a closed default 
theory and D' ~ D any subset of defaults. Then S = 
(a: M/31, ... M/3n/,) E >.(D') iff Wu CON(>.(D')) r a. 

Proof. The only if part is trivial and for the if part 
it is only needed to point out that there is some i ~ 0 
such that WU CON((D'),) f- a by Theorem 8.9(ii) of 
[Monk, 1976] and that S E (D').+ 1 follows. 

Theorem 3.3. Let A = (D, W) be a closed de­
fault theory with the compatible subset D of defaults. 
Then A has a unique extension. In particullary, if 
>.(D) = D, then A has exactly one extension E = 
TH(W u CON(D)). 

The proof follows immediately from Corolary 2.4 
and Theorem 3.1. 

Corollary 3.4 [Besnard, 1989]. A closed default 
theory A = (D, W) has exactly one extension if {/31 /\ 

... I\ f3n I\ "f l(a: M/31, ... Mf3nh) ED} is consistent with 
respect to A. 

Proof. It is sufficient to notice that the consistency 
of WU {/,i /\ ... /\ /3n I\ "fl(a : M/31, ... M/3nh) E D} 
implies the compatibility of D. So, the corollary is true 
by Theorem 3.3. 

Generally, there are examples satisfing the condi­
tions of Theorem 3.3 but not satisfing the condition of 
Corollary 3.4, e.g. D... = ( { =:, ,..,/ }, 0) has a unique ex­
tension E = Th(B I\ C) since { =:, =-/} is compatible, 
but WU {A I\ B, -iA I\ C} is inconsistent. It is worth 
mentioning that Theorem 3 of [Wu, 1991] is simply a 
special case of Proposition 6.2.23 of [Besnard, 1989] (it 
is also Corollary 3.4 here). And other theorems of [Wu, 
1991] are some only trivial facts. So our results are more 
general than ones of [Besnard, 1989] and [Wu, 1991]. 

Based on Theorem 3.1, we will develop a class of de­
faults , so-called auto-compatible theories, which is more 
general than one of normal defaults and which maintains 
very nice features enjoyed by the latter, such as semi­
monotonicity and reasonably clean proof theory. Our 
another paper [Mingyi, 1991b] is devoted to the class of 
auto-compatible defaults. 
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Abstract 

The notion of default priority has played a cen­
tral role in default reasoning research. We 
show that Pearl's Z-ranking of default rules 
need not always correspond to priorities. Sys­
tem Z can still be used for priorities, but per­
haps not in the obvious manner. Rather than 
the Z-ranking of rules, we show that the Z­
rankings of the negations of the material coun­
terparts of rules correspond naturally to priori­
ties. We also show that the priorities of default 
rules can be explained in terms of belief revi­
sion by appeal to the epistemic entrenchment 
of the material counterpart of a rule in a the­
ory of expectations in the Theorist sense. Fur­
thermore, Brewka's notion of preferred sub the­
ories provides a means of improving on Pearl's 
1-entailment, given this connection. These re­
sults are demonstrated within the modal logic 
CO*, a unifying framework for various types of 
default reasoning and belief revision. 

1 Introduction 

The notion of default priority has played a central role 
in default reasoning research. Default rules can lead to 
conflicting conclusions based on certain evidence, but 
some rules seem to naturally take priority over others. 
Thus, conflicts are resolved by permitting the violation 
of lower priority rules in order to satisfy higher priority 
rules, those that are deemed more important or seen as 
somehow providing more information. 

Many mechanisms have been proposed for represent­
ing priorities in systems like default logic and circum­
scription. The use of semi-normal defaults has been pro­
posed for asserting priorities in default logic (Reiter and 
Criscuolo 1981). McCarthy's (1986) simple abnormality 
theories also embody this notion through the introduc­
tion of cancellation of inheritance axioms, while prior­
itized circumscription allows the explicit expression of 
priorities (McCarthy 1986; Lifschitz 1985). 

While these systems allow users to express priorities, 
nothing about these systems explains what a priority is, 
or why certain rules should have higher priority. In de­
fault logic and circumscription, one merely asserts the 

priorities of rules, and nothing constrains these rankings 
to respect any intuitions. Neither of these systems pro­
vides an account of naturally occurring priorities. 

Various explanations of priorities rely on the notion 
of specificity (Poole 1985). Suppose we have two default 
rules "birds fly" and "penguins don't." If something is 
known to be both a bird and a penguin, the conclu­
sions sanctioned by these rules conflict. Most accounts 
claim that the rule "penguins don't fly" should be ap­
plied (or has a higher priority) because penguins are a 
specific subclass of birds and we prefer conclusions based 
on more specific information. In a probabilistic setting, 
this corresponds to making inferences based on the nar­
rowest reference class (Bacchus 1990) .1 

While specificity seems to be an appropriate criterion 
for deciding priority, it wasn't until conditional theo­
ries of default reasoning were developed that specificity 
was put on a firm semantic basis. In particular, Pearl's 
(1990) System Z is a natural and compelling method of 
assigning "priorities" to default rules, possible worlds, 
and arbitrary formulae . It has commonly been under­
stood that the Z-ranking of rules corresponds to the pri­
orities of those rules. In this paper, we will show that 
this is not always the case. Rather, the priorities of rules 
are the Z-rankings of certain formulae, the negations of 
the material counterparts of these rules. 

We can explain default priorities in terms of belief re­
vision as well. When revising a theory or set of beliefs to 
include some new fact (say, some new information that 
has been learned), we are often forced to give up some 
of these original beliefs if the new information is incon­
sistent with the theory. The epistemic entrenchment of 
beliefs in a theory determines which of these should be 
given up and which should be kept when conflict arises 
(Gardenfors 1988). We prefer to hold on to more en­
trenched beliefs. Default reasoning can be viewed as 
the revision of a theory of expectations to accommo­
date the known facts (Gardenfors and Makinson 1991; 
Boutilier 1992d). Adopting this perspective, we show 
that a default priority, as defined above, is nothing more 
than the degree of entrenchment of the material coun­
terpart of a rule in the theory of expectations. We use 
the correspondence between defaults and expectations to 

1 However, other considerations may be involved in choos­
ing the appropriate reference class (Kyburg 1983). 



propose an extension of Pearl's notion of !-entailment, 
based on Brewka's (1989) preferred subtheories, that cor­
rects certain deficiencies in its behavior with inheritance 
and independent conditionals. This approximates the· 
idea of counting "weighted rule violations" prescribed 
by the maximum entropy principle (Goldszmidt, Mor­
ris and Pearl 1990), and is very similar to conditional 
entailment (Geffner and Pearl 1992). 

In this paper, we will develop these connections within 
the unifying framework of the bimodal logic CO*. In 
(Boutilier 1991) this logic was shown to have the power 
to express normative conditionals, statements much like 
default rules, and capture solutions to the problem of ir­
relevance. In (Boutilier 1992c) we show that CO* is the 
first "classical" logic of AGM belief revision (Ga.rdenfors 
1988). The results of this paper indicate that default rea­
soning can be viewed as a form of belief revision, a con­
nection developed much further in (Boutilier 1992d). In 
Section 2 we very briefly review the logic CO* and define 
the normative conditional::}, reading A::} B as "A nor­
mally implies B ." In Section 3, we discuss belief revision 
and epistemic entrenchment, recall some results showing 
how CO* can represent these concepts, and show how it 
is related to default reasoning. In Section 4, we discuss 
System Z and some results showing that Pearl's system 
of c-semantics is equivalent to a fragment of CO*. In 
Section 5, we demonstrate that the Z-ranking of a de­
fault rule is not always equivalent to its priority, but that 
the Z-ranking of a certain formula is. This turns out to 
be precisely the degree of entrenchment of this formula 
in a theory of expectations. This allows us to relate !­
entailment, a form of inference based on Z-ranking, to 
revision. In Section 6 we again use Z-ranking to de­
termine priorities, but use these priorities in Brewka's 
(1989) model of Theorist to determine a more reason­
able notion of consequence extending !-entailment. 

2 The Logic CO* 

In (Boutilier 1990; Boutilier 1991), we presented modal 
logics in which we defined a conditional connective ::}, 
reading A ::} B as "A normally implies B ." While the 
original logics are standard modal systems, the logics 
CO and CO* of (Boutilier 1991) are bimodal logics with 
considerable expressive power. They can be used to ax­
iomatize solutions to the problem of irrelevance that have 
typically required extra-logical machinery. These logics 
can also be used to characterize the classic AG M model 
of revision (Boutilier 1992c) described in the next sec­
tion. We recall several definitions here, but refer the 
reader to these papers for further motivation and details. 

We now review the Kripkean possible worlds semantics 
for logics of normality. The bimodal logic CO is based 
on a standard propositional modal language ( over vari­
ables P) augmented with an additional modal operator 

l5. The sentence Dais read "a is true at all inaccessible 
worlds" (in contrast to the usual Da that refers to truth 
at accessible worlds). 

Definition 1 A CO-model is a triple M = (W, R, i,o), 
where Wis a set (of possible worlds), Risa transi-

tive, connected2 binary relation on W (the accessi-14 1 
bility relation), and 'P maps P into 2w (',O(A) is the 
set of worlds where A is true) . 

Satisfaction is defined in the usual way, with the truth 
of a modal formula at a world defined as: 

1. M l=w Da iff for each v such that wRv, M 1=11 a. 

2. M l=w Da iff for each v s.t. not wRv, M 1=11 a. 

We define several new connectives as follows: Oa =df 

-,D-,a; Oa =dr -,0-,a; Da =df Da /\ Ba; and Oa =df 

Oa V Oa. It is easy to verify that these connectives have 
the following truth conditions: Oa (Oa) is true at a 
world if a holds at some accessible (inaccessible) world; 
Da (Oa) holds iff a holds at all (some) worlds. The logic 
CO is based on the following axioms and inference rules, 
and is complete for the class of CO-models: 

K D(A ::, B) ::, (DA ::, DB) 

K' D(A ::, B) ::, (DA ::, DB) 

T DA::, A 

4 CIA ::, CIDA 

S A::, DOA 

H O(DA /\ DB) ::, D(A VB) 

Nes From A infer DA. 

MP From A ::, B and A infer B . 

We often want to insist that all logically possible 
worlds be contained in our set of worlds W . This gives 
us the extension of CO called CO*. 

Definition 2 A CO*-modelis any M = (W, R, 'P), such 
that M is a CO-model and 
{!: f maps Pinto {O, 1}} ~ {w* : w E W}.3 

This class of models is characterized by the logic CO*, 
the smallest extension of CO containing the following: 

LP Oa for all satisfiable propositional a. 

In order to define a normative conditional, we impose 
the following interpretation on the accessibility relation 
R: world v is accessible to w ( wRv) iff v is at least as 
normal as w. Thus, R is an ordering of situations re­
specting the degree to which an agent judges them to 
be "normal" or unexceptional. The truth conditions for 
A ::} B can be stated as "In the most normal situations 
in which A holds, B holds as well." 4 This condition can 
be expressed as 

A=? B =de 0-,A V O(A /\ D(A::, B)) 

2 R is (totally) connected if wRv or vRw for any v, w E W 
(this implies reflexivity). 

3 For all w E W, w• is defined as the map from P into 
{O, l} such that w0 (A) = 1 if£ w E <,:i(A); in other words, w• 
is the valuation associated with w. 

'This is only a. rough formulation, for it presupposes the 
Limit Assumption, which is not a. property required by our 
definition. There need not be a. set of most normal worlds 
satisfying A. The conditional A => B is still meaningful in 
this circumstance (Boutilier 1991; Boutilier 1992c). 



14 2 3 Revision and Entrenchment 

In this section we give a sparse description of the 
main ideas behind belief revision, referring readers to 
Gardenfors (1988) for a comprehensive presentation of 
and motivation for, work in the area. ' 

Most work on belief revision models belief sets as de­
ductively closed sets of sentences. We will use K to de­
no~e arbitrary belief sets, and if K = Cn(KB) for some 
fimte set KB, we will usually refer to the revision of K as 
the revision of its base set KB. Revising a belief set K is 
required when new information is learned and must be 
ac~ommo.dated with these beliefs. If K i== -,A, learning 
A is relatively unproblematic. More troublesome is revi­
sion when K I= -iA as some beliefs in K must be given 
up. The problem is in determining which part of K to 
give up, as there are a multitude of choices. Choosing 
which of these alternative revisions is acceptable depends 
largely on context. Fortunately, there are some logical 
criteria for reducing this set of possibilities. 

The main criterion for discarding some revisions in 
deference to others is that of minimal change. lnforma,­
tional economy dictates that as few beliefs as possible 
from K be discarded in order to facilitate belief in A 
(Gii.rdenfors 1988). While pragmatic considerations will 
often enter into these deliberations, the main emphasis 
of the work of Alchourr6n, Gardenfors and Makinson 
(1985) is in logically delimiting the scope of acceptable 
revisions. They propose a set of eight postulates main­
tained to hold for any reasonable notion of revision (see 
e.g. (Gardenfors 1988)). A revision function * maps a 
belief set K and a proposition A to another belief set 
KA, the result of revising K by A. 

While these postulates describe logical constraints on 
revision, it is often the case when revising K we are more 
willing to give up certain sentences than others. This is 
referred to as epistemic entrenchment, and we say A is 
no more entrenched than B (A :5E B) if we are at least 
as willing to give up A as B when revising theory K. In 
(Gardenfors 1988) postulates for guiding the revision of 
K are presented that any reasonable notion of epistemic 
entrenchment should satisfy. He also shows that a re­
vision operator satisfies the eight AGM postulates iff it 
respects the following postulates for entrenchment: 

(El) If A $E B and B $E C then A $E C. 

(E2) If A I- B then A $EB. 

(E3) If A,B EK then A $E AI\B or B $E AI\B. 

(E4) If K # Cn(J.) then A(/. K iff A $E B for all B. 

(E5) If B :5E A for all B then I- A. 

The revision operator * and the entrenchment ordering 
are related by the identity 

B E KA iff A ::, -,B <E A ::, B 

Gardenfors and Makinson (1991) have also shown how 
belief revision can determine a nonmonotonic conse­
quence relation. We describe a specific instance of this 
construction applied to a default theory. We can think of 
default rules as corresponding to expectations about the 
world. This view is adopted in Poole's (1988) Theorist 

f~am~work, ~here default inference is effected by con­
sidermg maximal subsets of such expectations ( or "hy­
potheses") that are consistent with the known facts. Let 
T be a set of default rules or expectations; for instance, 

T = {penguin ::> bird, bird ::> tly, penguin ::> -itly}. 

If we took this theory at face value, we could never add 
penguin on threat of inconsistency. However, revising 
T by penguin allows us to give up some of the "default 
rules", which allow exceptions by their very nature. In 
general! we say that B is a nonmonotonic consequence 
of A (given default theory T) if B E T..4.. This is shown 
to be a meaningful notion (Makinson and Gardenfors 
1990), and bears a close relationship to Theorist. Unfor­
tunately, no notion of priority or specificity is sanctioned 
by these considerations alone. We examine this idea that 

· default reasoning is the process of revising such a theory 
of "expectations" in Section 5, and how priorities can be 
determined naturally. 

CO* can also be used to represent AGM revision as 
discussed in (Boutilier 1992c). We omit details here, 
but note that we can define a subjunctive conditional 
in CO* that captures precisely the AGM revision postu­
lates. The connection to revision is made via the Ramsey 
test, whereby a subjunctive A > B is true with respect 
to a given state of belief K just when revising K by A 
results in a belief in B. Not surprisingly, the subjunctive 
and normative conditionals are identical in CO* and in 
(Boutilier 1992d) we pursue this connection, further es­
tablishing the correlation between default reasoning and 
belief revision that is our concern here. 5 

Naturally, we can also capture the entrenchment of 
beliefs in CO*. Assuming a particular theory K is de­
ter~ined by a CO*-model M (see (Boutilier 1992c) for 
details), we can define $EM, the entrenchment ordering 
determined by M, as 

B $EM A iff M t= 0(-iA ::, ()-iB). 

In (Boutilier 1992b) we show this ordering respects the 
postulates (El) through (E5), and that any entrench­
ment ordering is representable in a CO*-model. 

4 System Z 

One problem that has plagued default reasoning is that 
of priorities, as manifested in the above example. Revis­
ing T by P (using P, B, and Fas the obvious abbrevia­
tions) provides no guidance as to which of the two pos­
sible resulting theories should be preferred. Intuitively, 
we ought to give up B :::, F, since P is logically stronger, 
or more specific than B. That is, default B :::, F has 
lower priority, or is more readily violated, than the oth­
ers. Priorities have a long tradition in default reasoning 
(e.g., (McCarthy 1986)), but the most natural account 
seems to be that of Pearl. 

Pearl (1990) describes a natural ordering on default 
rules named the Z-ordering, and uses this to define a non­
monotonic entailment relation, !-entailment, put forth 
as an extension of €-semantics (Pearl 1988). The default 

5 For the interested reader, we also describe how the 
Ga.rdenfors triviality result is avoided in (Boutilier 1992d). 



rules r of (Pearl 1990) have the form a --+ (3, where a and 
/3 are propositional. We say a valuation (possible world) 
w verifies the rule a - (3 iff w I= a I\ (3, falsifies the rule 
iff w I= a I\ -./3, and satisfies the rule iff w I= a :) (3. 
For any rule r = a --+ (3, we define r* to be its material 
counterpart a :) /3. We assume that T is a finite set of 
such rules (and when the context is clear, we take T to 
refer also to the set of material counterparts). 

Definition 3 (Pearl 1990) T tolerates a --+ /3 iff there 
is some world that verifies a --+ (3, and falsifies no 
rule in T; that is, {a I\ ,B} U {-y:) 6: 'Y - 6 ET} is 
satisfiable. 

Toleration can be used to define a natural ordering on 
default rules by partitioning T as follows: 

Definition 4 (Pearl 1990) For all i ~ 0 we define 
71 = {r: r is tolerated by T-To -Ti - · · ·71-1} 

Assuming T is e-consistent (see below), this results in 
an ordered partition T = To U T1 U · · · Tn. Now to each 
rule r E T we assign a rank (the Z-ranking), Z(r) = i 
whenever re 71. Roughly, but not precisely (see below), 
the idea is that lower ranked rules are more general, or 
have lower priority. Given this ranking, we can rank 
worlds according to the highest ranked rule they falsify: 

Z(w) = min{n : w satisfies r , for all r E 
T such that Z(r) ~ n} . 

Again, lower ranked worlds are to be considered more 
normal. Now any propositional a can be ranked accord­
ing to the lowest ranked world that satisfies it; that is 

Z(a) = min{Z(w): w I= a}. 
Given that lower ranked worlds are considered more nor­
mal, we can say that a default rule a --+ /3 should hold 
iff the rank of a I\ (3 is lower than that of a I\ -.(3. This 
leads to the following definition: 

Definition 5 (Pearl 1990) Formula (3 is 1-entailed by a 
with respect to T (written a 1-i /3) iff Z(a I\ /3) < 
Z(a I\ -./3) (where Z is determined by T). 

We will see some examples of the types of conclusions 
sanctioned by !-entailment in Section 6, but refer to 
(Pearl 1990) for further details. 

The default rules ordered by Z-ranking are usually 
assumed to be statements of high probability, based 
on Pearl's (1988) e-semantics. A set of rules T is €­

consistent if each rule can be consistently assigned a 
conditional probability no less than 1 - e for arbitrary e 
approaching 0. The theory T e-entails a rule a --+ /3 if 
the conditional probability of /3 given a can be made ar­
bitrarily high merely by making the probabilities of each 
rule in T achieve some threshold. We can show that this 
logic of default rules, based on arbitrarily high probabili­
ties, corresponds exactly to the fragment of CO* consist­
ing of simple conditional sentences of the form a ::} /3. 
Assume Tis a finite set of simple default rules .6 

6 We take a rule to be either a -+ /3 or a => /3, depending 
on context. We also assume each antecedent a is satisfiable, 
for simplicity, but these results can be restated for the more 
general case (Boutilier 1992a). Proofs may also be found in 
(Boutilier 1992a). 

Theorem 1 Tis CO*-consistent iff Tise-consistent. 143 
Theorem 2 T l=co. A=} B iffT e-entails A - B. 
Semantically, the equivalence of normative conditional 
inference in CO* and e-semantics can be seen by exam­
ining Pearl's (1990) construction used to determine the 
e-consistency of a set of rules (see also Adams (1975)) 
and equating more probable worlds with more normal 
worlds in the sense of CO*. 

As shown in (Boutilier 1991), the notion of !­
entailment can be axiomatized in CO*. As discussed 
there, for any theory T there exists a unique CO*-model 
ZT corresponding precisely to the Z-ranking of worlds 
according to T (ZT is defined by the identity vRw iff 
Z(v) ~ Z(w)). We recall that ZT I= A=} B iff A 1-i B, 
for any given T. Thus, any semantic or syntactic results 
regarding Z-ranking and !-entailment can be applied to 
simple conditional theories in CO*. In what follows, we 
take default rules to be normative conditionals in CO*. 

5 Priorities as Entrenchment 
We saw that revision in its simplest form could not ac­
count for priorities on conflicting defaults. However, 
it seems clear that some notion of epistemic entrench­
ment could characterize this feature. Let T be a set 
of expectations. As in the Theorist framework, or the 
Gardenfors-Makinson revision model of nonmonotonic 
logic, facts (nonmonotonically) derivable from premise A 
are those sentences (classically) derivable from {A} UT', 
where T' ~ T is some maximal subset of T consistent 
with A. This corresponds to having an initial belief set 
K = Cn(T) and revising K with new facts A, keeping 
as much of K ( or more precisely, T) as possible. As 
we saw earlier, there can be several choices for T', but 
some are preferable to others. In default reasoning, these 
preferences are expressed as priorities on default rules: 
certain rules should not be applied in deference to others 
in the case of conflict. In revision, preferences are repre­
sented by epistemic entrenchment: certain sentences (in 
this case defaults) are more likely to be given up when 
revising than others. 

Given this parallel, the question remains: do prior­
ities correspond to entrenchments? The most obvious 
proposal is to associate priorities of default rules with 
their Z-rankings. In most naturally occurring sets of de­
faults (or rather, most naturally occurring "examples") 
this proposal is adequate. However, the following ex­
ample quickly shows that the Z-ranking of rules, Z(r), 
cannot be viewed as entrenchment of the corresponding 
material conditionals r* in a default theory. 
Theorem 3 Let T be a default theory with r1, r2 E T . 
Let ri ~E r2 iff Z(ri) ~ Z(r2), Then ~E will not, in 

general, satisfy {E1} -{E5). 

Proof As a counterexample, consider T consisting of 
the following four rules: 

r1 (p I\ q) ::} X 

r2 c ::} (-,p V -,q V X) 
r3 p => (-,cv q) 
r4 p =} -,x 

It is easy to show that all rules have rank 0, ex­
cept r1, which has rank 1. A verifying assignment 



144 for r3,r4 is {p,-,q,-,~,-,c}, and for r2 is {-,p,c}, 
while any assignment verifying r1. must falsify r4. 
On this definition of entrenchment, r2 <E ri. How­
ever, ri I- r2, violating postulate (E2). a 

While Z-ranking of rules is not a coherent notion of 
entrenchment for our theory of expectations, we observe 
that the Z-ranking of formulae does in fact satisfy pos­
tulates corresponding to the notion of plausibility, the 
dual of entrenchment (Grove 1988; Gardenfors 1988), 
and leads us to the following definition. We assume a 
background set of rules T and propositional A, B. 
Definition 6 Let T be a default theory. We say A is no 

more entrenched (with respect to T) than B (writ­
ten A $ET B) iff z(-,A) $ Z(-,B). 

Recall that ZT is the unique CO*-model respecting the 
Z-ranking of worlds determined by T. 
Theorem 4 Let 5:EM be the entrenchment ordering de­
termined by ZT. Then $ET is identical to 5:EM. 

Corollary 5 The relation 5:ET satisfies {E1)-{E5). 
What does this say about priorities on default rules? 

Clearly a formula is less entrenched than another if the Z­
ranking of its negation is less than that of the other. This 
means we are prepared to violate default rules according 
to the following definition of priorities: 
Definition 7 Let T be a default theory, r1, r2 E T. We 

say r1 has no priority overr2 (r1:; r2) iff z(-,ri) 5: 
Z(-,r;). If r1 :; r2 and not r2 ~ r1, then r1 has 
lower priority than r2 (r1 -< r2), 

This · notion of priority is consistent with the view that 
we will satisfy defaults with higher priorities in the case 
of conflict when determining the consequence relation of 
1-entailment, as substantiated by the following theorem. 
Theorem 6 Let T be a default theory and let * be the 
revision function determined by the ordering of entrench­
ment 5:ET· Then Ah B iff BE T,4, 

Corollary 7 B E T,4 iff A ::> -,B <ET A ::> B 

Example Let T contain the following conditionals: 

P => B, B => F, P => -,p, B => W 

where we read P, B, F, W and G as "penguin," 
"bird," ''fly," "has-wings," and "green" respectively. 
Using CO* alone we can derive 

B I\ P => -,p, F => -,p, B => -,p, 

Using 1-entailment we can derive further: 

-,B => -,p, -,p => -,B, GI\ B => F, PI\ -,W => B. 

In our theory of expectations we have, for instance, 
both P :) F and P :) -,p (since -,p is also an 
expectation). Since P :) -,F is more entrenched 
(under Z-ranking) than P ::> F, the latter is given 
up when revising our expectations to include P, or 
equivalently, asking for the default consequences of 
P. Hence, P 1-i -,F. 
Unfortunately, certain intuitively desirable conclu­
sions cannot be reached through 1-entailment, in 
particular P => W . We turn to such difficulties in 
the next section. 

Figure 1: "Common" example. 
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Figure 2: "Uncommon" example. 

Thus, we see that I-entailment can be modeled using a 
revision function that satisfies entrenchment of formulae 
respecting the Z-ordering. · That the Z-ordering of the 
negations of material counterparts of rules determines 
natural priorities ( as specified by the definition given 
above), rather than the Z-ranking of the rules them­
selves, should be obvious given the following corollary. 
Corollary 8 For any i, if {A} U {r• : Z(r*) ~ i} is 
consistent, then A 1-i r• for each r• such that Z(r*) ~ i. 
This shows that if the set of rules above a certain pri­
ority threshold is consistent with some set of premises 
A, each of these rules is "applied" when I-entailment is 
used. Thus rules are satisfied according to the priority 
determined by the Z-ranking of their negated material 
counterparts; in other words, the priority determined by 
the degree of entrenchment of their counterparts in the 
theory of expectations 

{ A ::> B : A => B E T} 

To the extent that these priorities are representative 
of default priorities in general, we can state that de­
fault priorities correspond accurately to the epistemic 
entrenchment of the corresponding material condition­
als within a default theory. Why the Z-ranking of rules 
doesn't correspond to priorities is demonstrated, using 
our previous examples, in Figures 1 and 2. In the first, 
we see that "common" examples of sets of rules often sat­
isfy the property Z(r) = z(-,r*) - 1. Whenever we ask 
for the consequences of a using I-entailment, we must in­
spect the set of minimal (in Z-rank) a-worlds. Given this 
relationship between Z(r) and z(-,r*) we notice that de­
fault rules are "given up" in the order of their Z-ranking. 
However, this connection does not always hold, as evi­
denced by Figure 2. Using the example from Theorem 3 
we see that Z(r2) = z(-,r2) - 2; so, while rule r1 has a 
higher Z-ranking than r 2 , r2 cannot have lower priority 
than r 1 , since it cannot be given up (i.e., falsified) with­
out giving up r1. Whenever we apply r1, rule r2 auto­
matically "follows". W~ have determined that while the 
Z-ranking of default rules is a natural ordering, it can­
not, in general, be viewed as a priority ranking. Instead, 
it induces priorities, by associating ranks with formulae, 
priorities corresponding to the Z-ranking of the negation 
of the material counterparts of rules. This view of prior­
ities is also in concordance with the notion of epistemic 
entrenchment of rules within a default theory, or theory 
of expectations. 



6 Preferred Subtheories 

The Z-ranking of rules provides a very natural and com­
pelling method of determining default priorities. The 
preference for more specific default rules is put on a firm 
semantic basis in a conditional framework and Z-ranking 
reflects this. To take our standard set of three default 
rules (P => B, B => F, P => -iF), given the knowl­
edge PI\ B, we could potentially choose to use either 
the second rule or the third, but not both. In CO* (in­
deed, in most conditional logics for default reasoning) 
P I\ B => -,F is derivable from this rule set, indicating 
a preference for the third rule. This can be explained as 
follows: at the most normal P -worlds, B and -iF must 
both hold. Since the most normal P AB-worlds cannot be 
more normal than these P-worlds, this set is also the set 
of most normal PI\ B-worlds. Since -iF holds at each of 
these, the conditional holds. Of course, these cannot be 
the most normal B-worlds due to the constraint B => F . 
Thus, the most normal B-worlds must be strictly more 
normal than these P-worlds (hence B => -,p is derivable 
as well). The Z-ranking of a rule indicates the degree of 
normality of the most normal worlds that can confirm 
that rule. The rules with P in the antecedent necessar­
ily have a higher ranking ( are confirmed by less normal 
worlds) than those with B as a head. 

The notion of !-entailment is determined by the Z­
ranking of rules, and is based on the intuition that worlds 
should be considered as normal as possible subject to 
the constraints imposed by the rules. The Z-ranking of 
rules induces a ranking of worlds ( or ordering of normal­
ity) through the definition of Z(w). While this seems to 
determine a reasonable notion of consequence, certain 
classes of examples are not treated appropriately using 
! -entailment. This problem has been identified in (Gold­
szmidt, Morris and Pearl 1990; Geffner and Pearl 1992). 
One problem is with the default inheritance of properties 
from superclasses. The example in the last section illus­
trates this phenomenon. The conclusion W (wings) is 
not derivable given P (penguin) even though we should 
expect (default) transitivity through the class B (bird). 
This can be explained by observing that the most normal 
P -worlds must violate the rule B => F and must be given 
a Z-rank of 1 rather than O (most normal). However, any 
world w1 satisfying PI\ BI\ -,FI\ -iW is given the same 
rank as a world w2 satisfying PI\ BI\ -iF I\ W . While w1 

violates both B => F and B => W, the Z-ranking of w1 

is determined by the maximum rank of the set of rules it 
violates. Once the rank 1 rule B => F is violated ( as in 
w2), violation of a further rank 1 rule B => W (as in w1) 
incurs no additional penalty. In terms of entrenchment 
in the induced default theory T, the expectations P:::, W 
and P ::> -,w are equally entrenched. A related class of 
examples are those containing independent conditionals. 

Example Consider two independent defaults R => W 
(if it's raining I walk to school) and F => M (if 
it's Friday I have a meeting). From the knowledge 
R I\ -, W I\ F one cannot conclude via !-entailment 
that M is true, even though the violation of the 
first default, RI\ -,w, should not prevent applica­
tion of the second. Since both rules have rank 0, 1-

entailment assumes that violating both rules makes l 4 5 
a world no less normal than violating one rule. 

The counterintuitive results provided by !-entailment 
in each of these examples is due to its insistence on mak­
ing worlds as normal as possible. This ensures that 
a world violating many rules of a certain rank is no 
less normal than a world violating a single rule of that 
rank, as reflected in the definition of Z(w). Forcing such 
worlds to be as normal as their less objectionable coun­
terparts ( those violating single rules) will not effect the 
satisfaction of each default rule: violating one rule al­
ready ensures that a world is considered abnormal and 
cannot be used to confirm rules of that rank. While 
!-entailment considers only the "quality" of violated de­
fault rules in its ranking of worlds, it seems natural to 
consider also the number of violated rules. This has 
been suggested by Goldszmidt, Morris and Pearl (1990) 
in their maximum entropy proposal, and in Pearl and 
Geffner's (1992) conditional entailment. 

In a priority-free setting Poole's (1988) Theorist 
framework can be viewed as counting rule violations. 
Given a set of default expectations D, the default conclu­
sions based on a set of facts F are determined by adding 
to F some maximal subset S of D where FUS is consis­
tent . As described earlier, this can seen as the revision 
of D to include F, but unfortunately does not allow for 
priorities on default rules, or the entrenchment of ex­
pectations in D. Brewka (1989) has presented a simple 
generalization of Theorist in which the set of defaults D 
is partitioned to reflect priorities. Specifically 

D = Do U D1 U · · · Dn 

where each Di is a set of propositional formulae ( default 
expectations) such that the defaults in Di are preferred 
to, or have priority over, those in Dj just when i < 
j . In particular, we take Do to be a consistent set of 
premises which will not be violated.7 Just as Theorist 
takes maximal consistent subsets of D, Brewka proposes 
preferred subtheories of D: 

S = Do U S1 U · · · Sn 

is a preferred subtheory of D iff D = Do U S1 U · · · S-,. is 
a maximal consistent subset of D = Do U D1 U · · · D-,. for 
1 :5 k $ n. In other words, we add to Do as many for­
mulae from D1 as possible without forcing inconsistency, 
then add to these defaults from D2, and so on. 

The problematic aspect of Brewka's theory is that lit­
tle indication of the source of these priorities (the parti­
tioning of D) is given ( although he does provide a syntac­
tic mechanism for determining specificity). In general, 
any partitioning in permitted even though some of these 
are effectively useless. For instance, placing B :) F in D1 
and B/1.P ::> -,Fin D2 will ensure that the second default 
is never applied to derive -iF. System Z provides a natu­
ral ranking of rules that would seem to determine just the 

7 Brewka. "prohibits" Do, maintaining that by allowing the 
most reliable set of formulae (premises) to be inconsistent 
Theorist is generalized. However, if consistent premises are 
not required, this is easily captured by postulating an empty 
set Do ( or F in the case of Theorist). 



14 6 "priorities" needed for Brewka's partitioning. However, 
Brewka's notion of preferred subtheory automatically ac­
counts for the intuitive preference that as many default 
rules as possible of a certain priority level be applied. 
This is due to the maximality condition on the subsets 
Si, and stands in sharp contrast with !-entailment. It 
should be a simple exercise to combine the two notions. 

Let T be a consistent set of default rules or con­
ditionals in CO*, such that T is partitioned as T = 
To U T1 U · · · Tn. Thus, the highest ranked rules have 
a rank of n. Roughly, these rules should have higher pri­
ority than the others, followed by rank n - 1 rules, and 
so on. The corresponding set of expectations D (the ma­
terial counterparts of T) should be partitioned similarly. 

Definition 8 Let T be a consistent set of simpie condi-
tionals in CO* with a maximum Z-rank of n. The 
Brewka theory Ds of expectations corresponding to 
T is given by Ds = D1 U · · · U Dn+l where 

Di = {a :J (3: a=> (3 E Tn+1-i} 

So, e.g., D1 consists of the counterparts of the rank 
n rules, while Dn+l corresponds to rank O rules. 

We can also define a skeptical consequence relation, 
called B-entailment, using the Brewka theory deter­
mined by T simply by considering what holds in all pre­
ferred subtheories of DB. If a is a premise, it should be 
added to Ds in the role of Do. 

Definition 9 Let T be a set of conditionals and Ds = 
D1 U · · · U Dn+l the corresponding Brewka theory. 
We say a B-entails (3 with respect to T (written 
a I-B (3) iff (3 is entailed by all preferred subtheories 
of (setting Do = {a}) 

Ds+a = {a} U D1 U · · · U Dn+l• 

It should be clear that asking for the consequences of 
the theory DB will not correspond to 1-entailment. 

Example Consider theory T from our earlier example. 
We saw that P 1-i Wis not sanctioned by T . The 
Brewka theory Ds contains two partitions: D1 = 
{P :J B, P :J -iF} and D2 = {B :J F, B :J W}. 
The unique preferred subtheory of Ds+a where 
a = P will contain all expectations except B :J F. 
In particular, even though the expectations in D1 
cause the violation of B ::) F, the other expecta­
tion in D2 is consistent and will be satisfied, unlike 
!-entailment. Hence, P 1-s Wis sanctioned by T. 

A similar analysis shows that B-entailment provides 
more intuitive results on our example containing inde­
pendent conditionals. 

The Z-ranking of rules can be used to determine an 
ordering on possible worlds that captures !-entailment. 
The definition of Z(w) induced by the ranking of rules 
is characterized by the unique CO*-model ZT, which in 
turn satisfies a conditional a => /3 just when a 1-i (3. 
However, it is not an intrinsic property of the Z-ranking 
of rules that causes the problems in I-entailment we 
examined above. Rather it is the induced ranking of 
worlds and the model ZT, Indeed, Z-ranking can be used 
to determine different orderings on worlds, or different 

CO*-models. In particular, we can define a ranking of 
worlds, or CO*-model, that satisfies the conditionals cor­
responding to B-entailment, thus capturing some notion 
of counting rule violations in CO*. We must first intro­
duce some terminology. We assume a fixed consistent 
set of conditionals T throughout, partitioned as usual. 

Definition 10 For any valuation (world) w, the set of 
rules of rank i falsified by w is denoted 

vi = { r E '.I'. : w falsifies r} 

Definition 11 For valuations w, v, let 

max(v, w) = max{i : vi C Vj or V;i C vi} 
If the set above is empty, we let max( v, w) = -1. 

Thus, max( v, w) denotes the highest rule ranking such 
that the set of rules of this rank violated by w and v 
are such that one set is strictly contained in the other. 
We will use this quantity to rank worlds. If a world v 
violates a rule ranked higher than any rule violated by 
v, then v will be considered more normal. However, if 
this highest rank is the same for each world, v can be 
considered more normal is it violates fewer (with respect 
to set inclusion) rules of that rank than w. 

Definition 12 The Brewka model of T, denoted z,¥ = 
(W, R, <p), is defined as follows: we let W and <p be 
as usual, capturing the set of valuations appropriate 
for the our propositional language; we define R as 

1. Ifmax(v,w) = -1 then vRw and wRv 

2. If V~ax(v,w) c Vvmax(v,w), vRw but not wRv 

Proposition 9 Zj is a CO*-model. 

Theorem 10 Zj F a => (3 if! a 1-B (3. 

Thus, the Z-ranking of rules can be used to deter­
mine a notion of entailment in CO* that differs from 
!-entailment and captures the idea that as many de­
faults as possible should be applied within a given pri­
ority threshold, even if certain rules cannot be applied. 
Naturally, the results of Section 5 can be applied directly 
to B-entailment as they were to !-entailment. In particu­
lar, we can define an entrenchment ordering and revision 
function that corresponds to the notion of revising our 
expectations to effect default prediction. 
Definition 13 Let T be a default theory. The entrench­

ment ordering for the purposes of B-entailment 5:EB 
is the entrenchment ordering 5:EM determined by 
the CO*-model z,¥. 

Proposition 11 The relation 5:EB satisfies {El} - {E5) . 

Theorem 12 Let * be the revision function induced by 
$EB , and let D be the expectation set determined by 
conditionals T. Then A 1-B B iff B E DA iff A :) 
-iB <EB A :J B . 

Naturally, the priorities of default rules reflect the en­
trenchment of the corresponding material counterparts 
or expectations. Just as Theorem 3 shows that the 
Z-ranking of rules does not capture priorities precisely 
within the context of !-entailment, the counterexample 
there also shows this to be the case for B-entailment. So 



while the "priority levels" of Brewka seem compelling, 
they do not provide a guarantee that rules ( or more pre­
cisely, expectations) will be given up in the order speci­
fied by the partition. In particular, the ordering specified 
by the partition D1 U · · · Dn will not, in general, be an 
entrenchment ordering; but the adopting the view that 
priorities correspond to entrenchment of expectations is 
justified, as it is quite easy to show that the analog of 
Corollary 8 holds for B-entailment (where Z-ranking of 
formulae is replaced by entrenchment using 5:EB ). 

7 Concluding Remarks 
We have shown that Z-ranking is a useful way of rank­
ing rules, but that these ranks cannot generally be inter­
preted as priorities. Rather these induce entrenchment 
orderings on a theory of expectations, and revision of 
this theory corresponds to default prediction. Further­
more, Z-ranking need not be tied to I-entailment, but 
can be used to induce priorities for other forms of en­
tailment. We have presented one such notion, appealing 
to Brewka's preferred subtheories, and demonstrating its 
applicability on certain examples on which I-entailment 
fails to behave appropriately. Brewka's model reflects 
many of the same intuitions as prioritized circumscrip­
tion (McCarthy 1986) and our B-entailment bears a re­
markable similarity to Geffner and Pearl's (1992) condi­
tional entailment. In particular, both ·of these notions 
of consequence have the goal of minimizing violations of 
defaults, but prefer to satisfy any higher priority default 
at the expense of lower priority defaults. In circumscrip­
tion, however, priorities must be specified independently. 

Although we have not done so here, it should be 
easy to see how the Brewka model Zj can be axiom­
atized in CO*, just as the model ZT is axiomatized in 
(Boutilier 1991). However, the Theorist-style formula­
tion suggests a straightforward conceptual and compu­
tational approach to B-entailment. While the notion of 
counting rule violations within a priority level is cap­
tured by B-entailment, this notion is somewhat different 
from the implicit "sum of weighted rule violations" of the 
maximum entropy formalism (Goldszmidt, Morris and 
Pearl 1990). Both maximum entropy and conditional 
entailment address certain difficulties with the priorities 
induced by System Z. An investigation of the differences 
with B-entailment should prove enlightening. The re­
vision model of defaults might also be applied to these 
systems as well, !-entailment and B-entailment simply 
being two examples of the use of priorities as entrench­
ment. This may illuminate important similarities and 
distinctions among these systems. 
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Abstract 

In this paper we introduce a uniform semanti­
cal framework of various default logics in terms 
of Kripke structures. The approach provides 
a simple but meaningful instrument for com­
paring existing default logics in a clear setting. 
Our possible worlds semantics is motivated by 
means of constrained default logic. It is then 
extended to Reiter's original default logic as 
well as Lukaszewicz' variant - whereas it easily 
deals with Brewka's cumulative default logic. 
Since the presentation is put into the perspec­
tive of "commitment to assumptions" we obtain 
also a very natural modal interpretation on the 
notion of commitment. 

1 Motivation 

Recent research on default logic [Reiter, 1980] has pro­
duced many derivatives of Reiter's original formalism 
[Lukaszewicz, 1988; Brewka, 1991; Delgrande and Jack­
son, 1991; Schaub, 1991b]. Among them, all variants 
of default logic dealing with the notion of "commitment 
to assumptions" [Poole, 1989] employed constraints, ei­
ther on formulas [Brewka, 1991] or on sets of formulas 
[Delgrande and Jackson, 1991; Schaub, 1991b]. Extend­
ing the semantics for classical default logic1 introduced 
in [Etherington, 1987], a semantics for those variants 
was given in [Schaub, 1991a] which was based on a two­
folded semantical structure: A pair of classes of models 
(II, II) . A deductively closed set E (called extension) of 
possibly nonmonotonic conclusions with underlying con­
straints C could then be captured by such a pair (II, II). 
The first class, II, characterizes E and the second class, 
fr, characterizes C. 

Although the elements of those semantical structures 
were (classical) first order interpretations, splitting the 
semantical characterizations of the extension and its un­
derlying constraints might appear to be artificial. On 
the other hand, Kripke structures provide means to es­
tablish relations between first order interpretations: A 
Kripke structure has a distinguished world, the "actual" 

1 For the sake of clarity, we will refer to Reiter's default 
logic as cla&.sical default logic. 

world, and a set of worlds accessible from it ( each world 
is a first order interpretation). 

At first, we present a semantical characterization of 
constrained extensions [Delgrande and Jackson, 1991; 
.Schaub, 1991b] in terms of Kripke structures, thereby 
avoiding two-folded semantical structures. Given a con­
strained extension ( E, C) and a Kripke structure m, we 
demand the actual world to be a model of the exten­
sion, · E, and demand each world accessible from the ac­
tual world to be a model of the constraints, C. That is, 
ml=E/\DC.2 

The intuition behind our construction is very natural 
and easy to understand: The actual world of a Kripke 
structure exhibits what we believe and the accessible 
worlds exhibit what commitments we have allowed to 
adopt our beliefs. Hence, the actual world is our en­
visioning of how things are, whereas the surrounding 
worlds represent the context in which that envisioning 
takes place. 

We thus obtain a very natural semantical characteri­
zation of the notion of commitment in the context of de­
fault logics. The idea is roughly as follows. Our beliefs 
consist of the conclusions given by the applying default 
rules and the constraints ( or commitments) on our be­
liefs stem from the justifications provided by the same 
default rules. Discussing the notion of cumulativity, we 
can moreover analyze the concept of nonmonotonic lem­
mata in default logics. 

Also, we show how our possible worlds semantics cap­
tures classical default logic and Lukaszewicz' variant. 
We can then easily compare default logics and charac­
terize the differences between them, especially in terms 
of commitment to assumptions as indicated above. In 
particular, the semantics reveals that all of the various 
default logics employ constraints (induced by the con­
sequents and justifications of applied default rules) but 
differ basically in the extent to which the constraints are 
taken into account. 

The rest of the paper is organized as follows. In Sec­
tion 2 we reproduce the basic definition of classical and 
constrained default logic. In Section 3 we introduce our 
possible worlds semantics for constrained default logic 
and show how it characterizes the notion of commitment. 
Furthermore, we show that the semantics is able to cap-

2 Given a set of formulas S let OS stand for AaesDa. 



ture cumulative default logic, too. Eventually, in Sec­
tion 4 and 5 we demonstrate that our semantics applies 
to Reiter's and Lukaszewicz' versions of default logic as 
well. 

2 From classical to constrained 
extensions 

Classical default logic was defined by Reiter in [1980] 
as a formal account of reasoning in the absence of com­
plete information. It is based on first order logic, whose 
sentences are hereafter simply referred to as formulas 
(instead of closed formulas). A default theory (D, W) 
consists of a set of formulas Wand a set of default rules 
D. A default rule is any expression of the form ¥ 
where a:, {3 and -r are formulas. a: is called the prereq­
uisite, {3 the justification, and -r the consequent of the 
default rule. 

Default knowledge is incorporated into the framework 
by means of default rules as nonmonotonic inference 
rules . They sanction inferences that rely upon given 
as well as absent knowledge. Such inferences therefore 
could not be made in a classical framework . A default 
rule is applicable, if its prerequisite holds and its jus­
tification is consistent, ie. adding its negation does not 
yield a contradiction. 

Informally, an extension of the initial set of facts W is 
defined as all formulas derivable from W using classical 
inference rules and all specified default rules: 

Definition 2.1 Let (D, W) be a default theory. For 
any set of formulas S let r(S) be the smallest set of 
formulas S' such that 

1. W ~ S ' , 
2. Th(S') = S', 

3. For any"'/ ED, ifa: ES' and-.{3 ff. S then-r ES' . 

A set of formulas E is a classical extension of (D, W) 
iff r(E) = E. 

Classical default logic does not enjoy the desirable fea­
tures known as "commitment" and "cumulativity". The 
case of cumulativity is postponed to a later part. First, 
we concentrate on the notion of commitment. 

Example 2.1 (non-commitment) The default the­
ory ( { ~, ~ } , 0) has only one classical extension, 
Th( { C, D}). Both default rules have been applied, al­
though they have contradicting justifications. Informally, 
there has . been no commitment to the assumption B nor 
-.B [Poole , 1989]. 

Brewka [1991] restored commitment (and cumulativity) 
in default logic by strengthening the applicability con­
dition for default rules and making the reasons for be­
lieving something explicit . In order to keep track of the 
assumptions, he introduced assertions, ie. formulas la­
belled with the set of justifications and consequents of 
the default rules that have been applied. In [Delgrande 
and Jackson, 1991; Schaub, 1991b], it is shown how to 
retain commitment (and cumulativity) while dropping 
the change of formulas to assertions. For the formal 
presentation, we focus on constrained default logic as 
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introduced in [Schaub, 199lb]3. The approach taken by 
constrained default logic relies basically on dealing with 
two sets of formulas of the form (E,C) . A default rule 
is applicable if its prerequisite holds in E and its justi­
fication is consistent wrt C ( compare with the case of 
classical default logic). 

Since constrained default logic does not alter the lan­
guage the notion of a default theory stays the same. 

Definition 2.2 Let (D, W) be a default theory. For 
any set of formulas T let T(T) be the pair of smallest 
sets of formulas ( S', T') such that 

1. W ~ S' ~ T', 
2. S' = Th( S') and T' = Th(T'), 

3. For any "'/ E D, if a: E S' and TU {/3} U {-r} If .l 
then -r ES' and {3, '"f ET'. 

A pair of sets of formulas ( E, C) is a constrained exten­
sion of (D, W) iff T( C) = (E, C). 

Clearly, constrained extensions commit to their as­
sumptions as constrained default logic employs a much 
stronger consistency check than classical default logic. 

Example 2.2 (commitment ) The default 
theory ( { 'J, ' 7:JB} , 0) has two constrained extensions, 
(Th({C}), Th({C, B})) and (Th( {D}), Th({D, -.B})). 

It turns out that the semantics proposed in [Schaub, 
1991a] is appropriate to characterize constrained exten­
sions. A preference relation wrt to a set of default rules 
was defined - similar to [Etherington, 1987]. Simply, 
pairs of classes of first order interpretations like (II, II) 
- called focused model structures - were considered in­
stead of classes of first order interpretations. The idea is 
that, for a default rule "'~ /3 to "apply" wrt a pair (II, II), 
its prerequisite a: must be valid in II whereas the con­
junction /3 I\ -r of its justification and consequent must be 
satisfiable in II. Taking into account all default rules, a 
maximal focused model structure (II, II) is constructed 
that corresponds to a constrained extension, whose con­
straints correspond to the focused models II. 
Definition 2 .3 Let 6 = !!.:/- and II be a class of first 

order interpretations. The order ~ 6 on 2n x 2n is de­
fined as follows. For all (II1, II1), (II2, II 2) E 2n x 2n we 

have (II1,II1) ~ 6 (II2,II2) iff 

1. •hr E II2.11' I= a:, 

2. 37!'EII2,11'1=/3A-r, 
3. II1 ={7rEII2 l71'F'"f}, 
4, II1 = {11' E II2 171' I= f3 /\7}. 

Given a set of default rules D, we define ~ D to be the 
partial order obtained by unioning all orders ~6 such 
that 6 E D. Clearly, constrained default logic is di­
rectly induced by this semantics. A constrained exten­
sion (E, C) is determined as E is formed by all formulas 
that are valid in the class II of a ~ v-maximal focused 

3 As constrained extensions are equivalent to [Delgrande 
and Jackson, 1991]'s extensions of J- default logic, all results 
carry over to their J- and P J- default logic. 



. ' 

150 

. I 

model structure (II, II) whereas the constraints C consist 
of all formulas valid in the class II ( the so-called focused 
models) .. 

3 A modal characterization of 
constrained default logic 

The focused model structures suggest that the order­
ing induced by a default rule has a modal nature with 
the corresponding semantical approach being based on 
Kripke structures. Intuitively, a pair (II, II) is to be ren­
dered into a class 9J1 of Kripke structures such that II is 
captured by the actual worlds in 9J1 and II by the acces­
sible worlds in 9J1. le . consider a non- modal formula a: 
it is valid in II iff a is valid in 9J1 and it is valid in IT iff 
Da is valid in 9J1. 

Correspondingly, the counterpart to a maximal fo­
cused model structure happens to be a class 9J1 of Kripke 
structures such that 

( { a non-modal I 9J1 I= a}, { a non-modal I 9J1 I= Da}) 
forms a constrained extension of the default theory un­
der consideration. As always, the first set establishes 
the extension whereas the second set characterizes its 
constraints. 

We follow the definitions in [Bowen, 1979] of a Kripke 
structure ( called K-model in the sequel) as a quadruple 
(wo, O, 'R,I), where fl is a non-empty set (also called a 
set of worlds), w 0 E fl a distinguished world, 'R a binary 
relation on O (also called the accessibility relation) and 
I is a function that defines a first order interpretation 
Iw for each w E 0 . As usual, a K-model (wo, fl, 'R,I) is 
such that the domain of Iw is a subset of the domain of 
Iw, whenever (w, w') E 'R. 

Formulas in K-models are interpreted using a lan­
guage enriched in the following way: in a K-model 
(w0 , 0, 'R, I), for each w E fl, the first order inter­
pretation Iw is extended so that for each e E Dw 
( the domain of Iw), a constant e is introduced, let­
ting Iw (e) = e. In every world w, each term is mapped 
into an element of D., as follows: Iw(f(t1, ... , t,.)) = 
(Iw(f)) (Iw(t1),,,, ,Iw(t,.)), n ~ 0. 

Given a K-model m = (w 0 , 0, 'R., I), the modal entail­
ment relation w I= a (in m) is defined by recursion on 
the structure of a: 

W F P(t1, .. . 1 tn) iff (Iw(ti), .. , ,Iw(tn)) E Iw (P) 
w I= -iQ iff w ~ Q 

w I= a v /3 iff w I= a or w I= /3 
w I= Vz a(z] iff w I= a(e] for all e E Dw 
w I= Da iff w' I= a whenever (w, w') E 'R. 

We write m I= a if w 0 I= a (in m). This means that m 
is a model of a. We denote classes of K-models by 9J1. 
We extend the modal entailment relation I= to classes 
of K-models 9J1 and write 9J1 I= a to mean that each 
element in 9J1 (that is, a K-model) entails a. 

In order to characterize constrained extensions seman­
tically, we now define a family of orders on classes of 
K-models. Analogously to [Etherington, 1987; Schaub, 
1991a], given a default rule 6, its application conditions 
and the result of applying it are captured by an order 
>- 5 as follows. 

Definition 3.1 Let 6 = ~. Let 9J1 and 9)1' be distinct 
'Y 

classes of K - models. We define 9J1 >-6 9J1' iff 

9J1 = {m E 9J1' Im I= 'Y /\ D('Y /\ /3)} 

and 

1. 9J1' I= Q 

2. 9)1' ~ D-i( 'Y /\ /3) 

The partial order >- D is defined analogously to that in 
Section 2. Moreover, we define the class of K- models 
associated with W as 9Jlw = { 'Y /\ D"f I 'Y E W} and refer 
to >-v-maximal classes of K-models above 9Jlw as the 
preferred classes of K-models wrt (D, W). 

As for modal logic, observe that the K-models .define 
the modal system K. It makes sense because the only 
property needed is distributivity for the modal operator 
D to ensure that the constraints are deductively closed. 

As a reminder, we give below the axiom schema (K) 
and inference rule (NEC) that must be added to a clas­
sical first order system in order to obtain K: 

(K) D(a--+ /3) --+ (Da--+ D/3) 

(NEC) 
Q 

Da 

The choice of condition 2 in Definition 3.1 is also worth 
discussing. At first glance, it seems more adequate to 
require 9)1' ~ -iD('Y /\/3) since we want to add D('Y /\{3) 
and the condition 9)1' ~ D-i('Y /\ /3) does not a priori ex­
clude 9)1' I= -iD ('Y /\ {3). We illustrate why this is needed 
by means of the next example. 

Example 3.1 Consider the default 
theory ( { } } , {-,A}) . With 9Jlw I= -iA, we also have 
9Jlw I= D-iA. But using the condition 9)1' ~ -iDA would 
not prevent the "application" of the only default rule. 

In the following examples, we show how preferred classes 
of K-models can characterize constrained extensions. At 
first, we give a detailed example that illustrates the main 
idea. 

Example 3.2 Consider the 
default theory ( { A~ B } , {A}) that yields the constrained 
eztension (Th( {A, C} ), Th( {A, B, C}) ). 

In order to characterize this semantically, we start 
with 9Jlw I= A /\ DA. Since 9Jlw I= A it remains 
to ensure that 9Jlw ~ D-i( C /\ B) - which is obvi­
ous. Hence, we obtain a class of K-models 9J1 such that 
9J1 I= A /\ DA /\ C /\ D( C /\ B). Thus, the actual worlds 
of our K-models satisfy the formulas of the eztension 
Th( { A, C}) whereas the surrounding worlds additionally 
fulfill the constraints, ie. Th( { A, B, C}). 

In order to have a comprehensive example throughout 
the text, we extend the above commitment example as 
follows. 

Example 3.3 (commitment) The default theory 
({ : B : -,B : -,DA-,C} 0) has three constrained ezten-c> -ir-1 E ' 
sions: (Th( { C} ), Th( {B, C}) ), (Th( {D} ), Th( { ...,B, D}) ), 
and (Th({E}), Th({-iD /\ ...,c, E})). 

9Jlw is the class of all K-models and clearly, we have 
9Jlw ~ 0-i(C /\ B), 9Jlw ~ D-i(D /\ -iB), and 9Jlw ~ 



0-i(E /\-,DI\ -iC). Therefore, all of the default rules are 
potentially "applicable 11

• 

Let us detail the case of the first constrained e:z:tension. 
We obtain a >- { 7!} - greater class 

9Jl F CI\ D(C I\ B) . 

In order to show that there is a>-{ , s , ~s } - greater class, -r:r, -r,-
we would have to show that 9Jl ~ 0 -i(D /\ -iB) . But since 
D(C I\ B) F DB, we have 9Jl F D(B V -iD) that pre­
vents us from "applying" the second default rule. Analo­
gously, we do not obtain a >- { , s , ~D,.~o }-greater class. c:r ,-r-
The above example is illustrated by means of some 
canonical K- models in Figure 1. 

D -iB E -,c -,fl 

~ D -i B _ \_ E -,c; -.D 
D~ E-i~ 

D E 

Figure 1: Commitment in constrained default logic. 

The last example shows how our construction copes 
with self- incoherent default theories. 

Example 3.4 Consider the default theory ( { 9'}, 0) 
whose o~ly constrained e:z:tension is (Th(0), Th(0)). 9Jlw 
is the class of all K - models. But since 9Jlw F 
0 -i (A /\ -iA) condition 2 of Definition 3.1 is falsified 
and, therefore, 9Jlw is the only preferred class. 

An interesting point concerning Definition 3.1 is that 
finding a non- empty 9Jl ~ 9Jl' such that 9Jl F D(-y /\ /3) 
whenever 9}1' ~ 0-i('Y /\ /3) might appear to be impossi­
ble, hence the next proposition. 

P roposition 3.1 The empty class of K - models is 
never preferred wrt ( D, W) whenever W is consistent. 

As a corollary we obtain that the existence of constrained 
extensions is guaranteed. 

The notion of a preferred class of K- models illustrated 
above is put into a precise correspondence with con­
strained extensions in the following theorem. 

Theorem 3 .2 (Correctness & Completeness) Let 
(D, W) be a default theory. Let 9Jl be a class of K ­
models and E, C deductively closed sets of formulas such 
that 9Jl = { m I m F EI\ DC}. Then, 

( E, C) is a constrained e:z:tension of ( D , W) iff 
9Jl is a >- D - ma:z:imal class above 9Jlw. 

Then our possible· worlds approach amounts to the fo­
cused model semantics [Schaub, 1991a] presented above: 
the fi rst order interpretations associated with the acces­
sible worlds take over the role of the focused models. 

1 5 1 
Corollary 3 .3 Let (D, W) be a default theory, (II, II) 
a ~ D - ma:z:imal focused model structure above ( { 11' 111' F 
W}, { 11' j 71' F W}) and 9Jl a preferred class of K - models 
wrt (D, W) . Then, for a, /3 non- modal 

II F a: if] 9Jl F a: and IT F /3 iff 9Jl F D/3. 
In the face of the above corollary, observe that a pre­
ferred class of K- models contains "more" different ac­
tual worlds than accessible ones. The reason is that fo­
cused model structures (II, II) have the inclusion prop-
erty II ~ II. 

How does our semantics reflect the notion of commit­
ment? As already pointed out, the intuition behind our 
construction is very natural and easy to understand: The 
actual world of a K-model captures what we believe and 
the surrounding worlds capture what commitments we 
have allowed to adopt our beliefs. Therefore, our seman­
tics reflects the notion of commitment through modal ne­
cessity: the commitments correspond to formulas whose 
necessity holds. 

Since it is proved in [Schaub, 1991a] that the fo­
cused model semantics captures cumulative default logic 
[Brewka, 1991], Theorem 3.2 and Corollary 3.3 estab­
lish a possible worlds semantics for cumulative default 
logic as is shown next . First, recall that an assertion is 
a pair (a:, {a:1, .. . , a:m}), where a:, a:1, . .. , O:m are formu­
las. Applied to an assertion e, Form(e) gives the formula 
whereas Supp(e) gives its label (called support). An as­
sertional default theory is a pair (D, W), where D is a 
set of default rules and W is a set of assertions. 

Definition 3.2 Let (D, W) be an assertional default 
theory. For any set of assertions S let O(S) be the small­
est set of assertions S 1 such that4 

1. w~s', 
2. Th(S') = S', 

3. For any ¥ E D, if (a:, Supp(a)) 

and Form( S) U Supp( S) U {/3} U { 'Y} If 
('Y, Supp(a) U {/3} U {'y}) E S'. 

E S' 
J. then 

A set of assertions e is an assertional e:z:tension for 
(D, W) iff O(e) = e. 
Now, [Schaub, 1992] shows that if (E,C) is a con­
strained extension of ( D, W) then there is an asser­
tional extension £ of (D, {(a:, 0) I a: E W}) such that 
E = Form(£) and C = Th( Form(£) U Supp(£)) and 
conversely, if£ is an assertional extension of ( D, { (a:, 0) I 
a: E W}) then (Form(&), Th(Form(e) U Supp(&))) is a 
constrained extension of(D, W) . Consequently, our pos­
sible worlds semantics also characterizes cumulative de­
fault logic: 

Theorem 3 .4 Let (D, W) be an assertional default the­
ory. Let 9Jlw be the class of all K - models of { v I\ 077 I 
v E Form(W), 17 E Supp(W)}. Then, there e:z:ists a set of 
assertions£ which is an assertional eztension of (D, W) 
such that 9Jl = {m I m F Form(&) I\ DSupp(e)} iff 9Jl is 
a preferred class of K - models above 9Jlw . 

4 Th denotes the asser tional theory operator such that if 
e1, .. , ,en E Th(S) and Form(e1), .. . ,Form(en) I- "Y then 

("Y, Supp(6) U .. . u Supp(e,.)) E Th(S). 
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In the context of cumulative default logic, naturally the 
question arises how the notion of cumuiativity can be 
characterized by our possible worlds semantics. Intu­
itively, cumulativity demands that th:e addition of a the­
orem to the premises should not alter the set of conclu­
sions. Apart from its theoretical interest, cumulativity 
is of great practical importance. Once a theory operator 
is cumulative, it allows for the generation of lemmata 
which often leads to the reduction of computational ef­
forts. 

First, let us look at the failure of cumulativity in clas­
sical default logic: 

Example 3 .5 (non-cumulativity5 ) The default the­
ory ( { 'f , A v !l-,A} , 0) has one classical e:i:tension, 
Th( {A}). This e:i:tension inevitably contains A V B. 

Adding this nonmonotonic theorem to the premises 
yields the default theory ( { 'f , Av!~ -,A } , { A V B}) that 
has now two e:i:tensions: Th{ {A}) and Th( {-iA, B}). Re­
gardless of whether or not we employ a skeptical or a 
credulous notion of theory formation - in both ca,es we 
are changing the set of conclusions . 

How assertional default theories restore cumulativity is 
shown below. 

Example 3.6 ( cumulativity) The assertional default 
theory ( { 'f, Av!~ -,A}, 0) has also one e:i:tension which 
contains the assertions (A, {A}) and (AV B, {A}). 

Adding the assertion 
(A V B, {A}) to the premises yields the assertional de­
fault theory ({';,Av!l-,A},{ (AVB,{A})}) that has 
still the same assertional e:i:tension and no other. 

In the case of constrained default logic, cumulativity was 
preserved in [Schaub, 1991b] by means of lemma default 
rules which are prerequisite- free default rules whose jus­
tification consists of the assumptions underlying the ac­
tual lemma which is given in the consequent. The major 
difference between the addition of assertions to the facts 
and the addition of lemma default rules to the set of 
default rules is that once we have added an assertion 
to the premises it is not retractable any more whenever 
an inconsistency arises. Thus, the addition of assertions 
is stronger than that of lemma default rules. Adding an 
assertion to the premises eliminates all extensions incon­
sistent with the asserted formula or even its support. On 
the contrary, lemma default rules preserve all extensions 
and, therefore their purpose is more an abbreviation of 
default proofs. 

How can those differences be envisioned by our 
semantics? Assume we have a constrained exten­
sion ( E, C ) and the corresponding assertional exten­
sion £ . Whenever we have a theorem f. E E 
and a minimal set of default rules Dl ~ GDbE, C) 

( = { ¥ / a E E, CU {,B} U {w} ff .L}) which has 

been used to derive f., there exists as well an assertion6 

el = (l, UceD, {Jus(c5), Con(c5)}) E £ . Fora complement, 

5 This example is originally due to David Makinson (1989). 
6 Applied to a default rule 6, Jus(6) yields its justification 

whereas Con( 6) returns its consequent . 

the corresponding lemma default rule is 

: /\ 6eD Jus( 6) I\ Con( 6) 
6 - t t - l . 

Take a default theory (D, W) and its assertional coun­
terpart (D, W), where W = {(a, 0) I a E W}. Looking 
at cumulative default logic, we enforce (by adding the 
assertion el to W) that all preferred classes of K- models 
entail the formula 

l I\ D(l /\ l\6eD, Jus(c5) /\ Con(c5)) . (1 ) 

In constrained default logic the addition of the lemma de­
fault rule 8l to the set of default rules only demands the 
expression ( 1) to be entailed by those preferred classes of 
K- models, to which generation the lemma default rule 
has contributed. That is, we enforce the entailment of 
(1) only for all preferred classes of K- models 9J1 for which 
9J1 >-GD~·c>u{ct} 9Jtw holds. 

4 A modal characterization of classical 
default logic 

Th~ possible worlds approach to default logic presented 
above turns out to be very general. The first evidence 
of this arises from the fact that the above semantical 
characterization carries over easily to classical default lo­
gic. Indeed, the analogue to Definition 3.1 can be defined 
as follows. 7 

Definition 4.1 Let 8 = ~- Let 9J1 and 9)1' be distinct .., . 

classes of K-models . We define 9J1 >c 9Jt' iff 

9J1 = {m E 9Jt' I m I= 'YI\ D'Y /\ 0,6} 

and 

1. 9Jt' I= a 
2. 9Jt' ~ o-,,e 

The partial order > D is defined analogously to that in 
Section 2. 

Even though classical default logic does not employ 
explicit constraints, there is a natural counterpart given 
by the justifications of the generating default rules over 
a set of formulas E : 

CE = {,e / 0 / ED, a E E, -,,e (/. E } 8 

We obtain a semantical characterization that yields a 
one-to-one correspondence between consistent exten­
sions and non- empty > D- preferred classes of K- models 
( an inconsistent extension trivially corresponds to 9Jtw 
being preferred while being empty) . 

Theorem 4.1 (Correctness & Completeness) Let 
(D, W) be a default theory. Let 9J1 be a class of K - models 
and E be a deductively closed set of formulas such that 
9J1 = {m I m I= EI\ DE I\ OGE}· Then, 

E is a consistent classical e:i:tension of (D , W) iff 
9J1 is a > D - ma:i:imal non- empty class above 9Jtw. 
7 Given a set of formulas S let <>S stand for /\aes <>a . 
8 0bserve that the membership qualifying property is ex-

actly the third condition in the definition of a classical ex­
tension. 



Comparing Definition 4.1 with Definition 3.1, we observe 
two basic differences, reflecting the fact that constrained 
default logic employs a stronger consistency check than 
classical default logic. For one thing, the second condi­
tion on 9:n' is weakened such that only /3 instead of,/\ /3 
is required to be satisfied by some accessible world of 
SO!Jle K-model in 9:n'. Notice that dropping the require­
ment on, /\/3 makes default logic losing the property of 
existence of extensions. For another thing, Definition 4.1 
requires <>/3 to be valid in £m whereas Definition 3.1 re­
quires 0/3 to be valid in 9:n. Stated otherwise, the pos­
sible worlds semantics for classical extensions requires 
only some accessible world satisfying the justification /3 
whereas the semantics for constrained default logic re­
quires all accessible worlds to satisfy /3. 

The conclusion is that from the perspective of com­
mitment, constrained extensions adopt their beliefs by 
committing to all consequents and all justifications of 
applied default rules whereas classical default logic co.m­
mits to consequents taken together but only to justifica­
tions taken separately. 

Example 4.1 (non-commitment ) The default the­
ory ( { l, '7/, ' .... n; .... c} , 0) has only one classical ez­
tension: Th( { C, D}) . 

9:n w is the class of all K -models and clearly, we 
have 9:nw ~ D,B, 9:nw ~ D,(,B), and 9:nw ~ 
D,( ,D I\ ,C). That is, all of the default rules are po­
tentially "applicable". 

From 9:nw we can construct a class of K-models 9:n 
such that 9:n > { ~} 9:nw and 

9:nl=C/\DC/\OB. 

Accordingly, we can also construct a class of k-models 
9:n' such that 9:n' > { , s , .... s} 9:nw and 

-rr •--r:r-

9:n' I= CI\ DC/\ OB I\ DI\ DD I\ O,B. 

But it is impossible to obtain a class 9:n" such 
that 9:n" >{,s , .... s , .... o" .... o} 9:nw since 9:n' I= c:r . --r:r- . -g--
0,( ,DI\ ,C). 

From 9:nw, selecting first the third default rule leads 
to a > {~}-greater class 

9Jl I= EI\ DE I\<>( ,DI\ ,C). 

From 9Jl we can construct a class of K -models mt such 
that ~l > { .... o" .... o.~} 9:nw and 

~ I= EI\ DE I\ <>(,D I\ ,C) I\ CI\ DC/\ OB. 

So, ~ is the empty set of K-models because 
<> (,DI\ ,C) I= O,C and DC/\ O,C I= .L 

The last example is illustrated by means of some canon­
ical K-models in Figure 2. 

In contrast to Proposition 3.1, the possible worlds se­
mantics for classical default logic admits the empty set 
of K-models above some non-empty 9:nw . This is the 
case whenever a default rule is applied whose consequent 
contradicts the justification of some default rule which 
is itself applied. In particular, this reflects the failure 
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Figure 2: Commitment in classical default logic. 

of semi-monotonicity in classical default logic whereas 
constrained default logic enjoys semi-monotonicity (A 
default logic is said to be semi-monotonic iff enlarging 
the set of default rules of a default theory can only pre­
serve or enlarge the existing extensions.). 

In addition, characterizing extensions in default logic 
strictly by non-empty> n-maximal elements above 9:nw 
avoids post-filtering mechanisms such as the stability 
criterion introduced in [Etherington, 1987]. Whenever 
an incoherent default theory arises, our characterization 
yields an empty set of K-models. 

Examfle 4.2 The incoherent default theory 
( { 4}, 0) of Ezample 3.4 has no classical eztension. 
9:nw is the class of all K-models. Clearly, 9:nw ~ DA 
but the resulting class {m E 9:nw / m I= A I\ DA I\ 0,A} 
is obviously empty. 

Finally, let us examine the failure of cumulativity in clas­
sical default logic. In Section 3 we have characterized 
by means of a modal expression the solutions preserv­
ing cumulativity. Taking the expression given in (1) but 
dropping the requirement of joint consistency yields the 
following modal expression for classical default logic: 

l I\ o (t /\ A6EDt Con(o)) I\ <>Jus(DL) (2) 

where l is an element of an e;x;tension E of a default 
theory (D, W) and Dt ~ GD~,E) is a set of default 
rules used to derive £. 

Let us look at the canonical cumulativity example. 

Example 4.3 (non-cumulativity) Consider the de­
fault theory ( { '.f , Av!i ...,A }, {AV B}) obtained from 
Ezample 3.5 after adding A V B (so that we are con­
sidering l = A V B). In addition to the eztension 
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Th( {A}), we have obtained a second one: Th( {-,A, B}). 
The semantical characterization of the classical ezten­
sion Th( { -,A, B}) yields a class of K-models 9J1 that is 
> {Av ~;i ~A} -greater than 9J1w such that 

9J1 I= (AV B) /\ D(A VB)/\ -,A I\ 0-,A 

Since Dt = { 4} , 9J1 obviously does not entail our above 
modal ezpression (2): 

9J1 ~ (AV B) I\ D((A VB) I\ A) I\ OA. 

The entailment of the expression (2) in all preferred 
classes of K~models 9J1 such that 9J1 >GDba,s>u{(t} 9J1w 
can be enforced through the corresponding lemma de­
fault rule for classical default logic ( cf. [Schaub, 1992]): 
Given £ and Dt = {81 , ... , 8,.} ~ ad£1·E) as described 
above, we obtain 

: Jus(.51) /\ /\ 6EDt Con(.5), ... , Jus(.5.,) /\ /\ 6EDt Con(.5) 
Ct= l 

5 A modal characterization of justified 
default logic 

Further evidence for the generality of our approach is 
that it can easily capture a variant of default logic due 
to [Lukaszewicz, 1988], which we refer to as justified de­
fault logic. Indeed, the analogue to Definition 3.1 and 4.1 
can be defined as follows. 

Definition 5.1 Let 8 = a/. Let 9J1 and 9)1' be distinct 

classes of K-models. We define 9J1 C>6 9J1' iff 

9J1 = {m E 9J1' Im I= 1 I\ o, /\ 0,6} 

and 

1. 9J1' I= a 
2. 9)1' ~ 0-,,B V 0-,, 

The partial order C> D is defined analogously to that in 
Section 2. 

Compared to the order >6 given for classical default 
logic, the only difference is that the condition 9)1' ~ 0-,,B 
has become 911' ~ o-,,evo-,,, that is, 9)1' ~ -,(01 /\0,B). 
Indeed, the definition reveals the fact that the same 
constraints implicitly used in classical default logic (in 
the form of CE) are explicitly attached to justified 
extensions9 (in the form of J, see below) and, moreover, 
considered when checking consistency. That is, semanti­
cally classical and justified default logic account for the 
justifications of the applied default rules in form of the 
modal propositions 0,6. However, in classical default 
logic they are discarded when checking consistency. 

Formally, a justified extension is defined as follows. 

Definition 5.2 Let (D, W) be a default theory. For 
any pair of sets of formulas (S, T) let \Jl(S, T) be the 
pair of smallest sets of formulas S', T' such that 

1. W~S', 

9 Originally, Lukaszewicz called his extensions modified 
extensions . 

2. Th(S') = S', 

3. For any a/ E D, if a E S' and VT/ E TU {,B}. SU 
{,} U {Tl} If .l then I ES' and f3 ET'. 

A set of formulas E is a justified extension of (D, W) 
wrt to a set of formulas J iff 'I!(E, J) = (E, J) . 

Lukaszewicz has shown in [1988) that justified default lo­
gic guarantees the existence of extensions. Semantically, 
requiring 9J1' ~ -,(01 I\ 0,6) and adding those K- models 
entailing 0 1 /\0,B makes it obviously impossible to obtain 
the empty set of K-models (hence the analogue to Propo­
sition 3.1 trivially holds). Lukaszewicz has also shown· 
that his variant enjoys semi-monotonicity. In fact, "ap­
plying" a defau.lt rule a~ /3 enforces all C> D-greater classes 

of K-models 9J1 to entail 0 1 /\ 0/3. Therefore, a later 
~ "application" of a default rule a;, whose consequent 

1
1 contradicts f3 ( eg. 1

1 = -,{3) is prohibited since its 
"application" requires 9Jl ~ 0-,13' V 0-,1 '. 

Analogously to classical default logic, Definition 5.1 
only requires 0/3 to be valid in 9J1 which is not enough 
for justified default logic to commit to its assumptions. 

Example 5.1 (non-comm.itment) The default the­
ory ( { } , '··;/, '-.D;-.c}, 0) has two justified exten­
sions, Th( { C, D}) wrt { B, -,B} and Th( { E}) wrt {-,DI\ 
-,c}. 

The first one is obtained analogously to that in Exam­
ple 4 .1. That is, we obtain a preferred class 

9J1' I= CI\ DC/\ OB I\ DI\ DD I\ 0-,B. 

Also, selecting first the third default rule leads to a 
class 9Jl C> { ~} 9J1w such that 

9Jl I= EI\ DE I\ 0(-,D I\ -,C). 

Since we have 9Jl I= 0-,C and 9Jl I= 0-,D none of the 
other default rules is "applicable". Therefore, 9Jl is a 
(non-empty) preferred class. 

Again, the last example is illustrated by means of canon­
ical K-models in Figure 3. 

Similarly to the case of classical default logic, there 
is a natural account of constraints attached to a set of 
formulas E justified by J : the justifications of the gen­
erating default rules over E, as determined by J, which 
are simplylO C(E,J) = 

{/3 I a/ E D, a EE, VT/ E JU {/3}. EU{,} U {Tl} If .l} 
Then, correctness and completeness hold as in the former 
sections. 

Theorem 5.1 ( Correctness & Completeness) Let 
(D, W) be a default theory. Let 9J1 be a class of K ­
models, E a deductively closed set of formulas, and J a 
set of formulas such that J = C(E,J) and 9J1 = {m I m I= 
EI\ DE I\ OC(E,J)}. Then, 

10 Observe that the membership qualifying property is ex­
actly the third condition in the definition of a justified 
extension. 
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Figure 3: Commitment in justified default logic. 

E is a justified extension of (D, W) wrt J iff 
9J1 is a I> D - maximal class above !mw . 

The equality J = C(E,J) simply states that the implicit 
constraints C(E,J) and the explicit constraints J coin­
cide. 

Notably, our possible worlds semantics is the first se­
mantical characterization of justified default logic which 
is purely model-theoretic. In (1988], Lukaszewicz had to 
characterize justified extension by means of pairs (II, J), 
where II is a class of first order interpretations and J is 
a set of formulas. The reason why Lukaszewicz did so is 
that justified default logic allows for inconsistent sets of 
individually consistent constraints (so that the focussed 
models semantics cannot be adapted there). 

6 Conclusion 

We have presented a uniform semantical framework of 
various default logics in terms of Kripke structures. That 
is, we have first introduced a possible worlds semantics 
for constrained default logic and we have proved that it 
also captures cumulative default logic. Then, we have 
provided a simple modification for that possible worlds 
semantics in order to characterize classical default logic 
and in turn Lukaszewicz' variant. 

Via adopting the perspective of commitment we have 
not only gained a clear criterion on that notion itself but, 
furthermore, provided a very natural modal interpreta­
tion by which existing default logics can be compared 
in a simple but deeply meaningful manner. In partic­
ular, the semantics has revealed that all of the various 
default logics employ constraints but differ in the extent 
to which the constraints are considered when checking 
consistency. Notably, in terms of modalities we have to 
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switch from <> to D whenever we want to preserve "com­
mitment to assumptions". 
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Abstract 

We present a fast solution algorithm for quali­
tative interval constraint problems that returns 
solutions to randomly generated problems in 
less than half a second on the average, with 
the hardest problems taking only half a minute 
on a RISC workstation. The fast solution time 
in these cases is attributed to the extraordinary 
pruning power of the path-consistency compu­
tation, and to the fact that all our randomly 
generated interval networks of size 2: 14 were 
found to be inconsistent. 
While inconsistency is relatively easy to prove, 
our algorithm also solves large consistent net­
works with 100 vertices within reasonable 
time limits. This is possible, because path­
consistency reduces the solution search to an 
almost linear selection of atomic labels. \Ve con­
clude that large interval constraint problems 
can be solved on a serial machine in cubic time 
in practice, whether the given network is con­
sistent or not. 

1 Introduction 

Synopsis. In this paper, we present an empirical study 
on solving qualitative interval constraint networks of the 
sort first introduced by Allen [All83]. The problem is NP­
complete [ViKa VB89]. Our algorithm first employs the 
relational-matrix composition algorithm of [LadMad88] 
to check the initial path-consistency and then uses path­
consistency further as a pruning technique to reduce the 
size of the solution space. 

In a first set of large-scale experiments, we gener­
ated more than 200,000 random networks of various sizes 
3 :S n :S 20. Our algorithm solved all problems in an ex­
pected time of less than half a second on a SUN Spare­
Station 1, with the hardest problem taking only half a 
minute [LadRei91]. The fast solution time is attributed 
to the following facts: 

• The initial path-consistency computation effectively 
reduces the number of atoms per label, so that the 
subsequent search for an atomic labeling becomes 
an almost linear selection. 

Peter Ladkin 
Universitat Bern 

Langgasstraf3e 51 

CH-301 2 Bern 

• Networks of size n > 14 are inconsistent with more 
than 99 .99% certaiirty, which is usually detected in 
the initial path-consistency computation. 

• Small networks are usually consistent . But the so­
lution nodes are dense, and so there is little back­
tracking in the search. 

The results were obtained on networks , where the labels 
are independent, identically distributed random vari­
ables drawn from a discrete probability distribution. 
·while such networks are clearly "random" in a mathe­
matical sense, their features may seldom be met in prac­
tical applications. In practice, two intervals more likely 
precede, overlap or contain each other, than that they 
start or end exactly at the same time point 1 . The exact 
properties of "realistic" large networks are not known, 
since to our knowledge there exists no temporal reason­
ing system that builds large consistent networks (- pos­
sibly as a consequence of believing that the solution of 
large networks is infeasible) . 

For our second set of experiments, we devised a 
method to synthetically generate large consistent net­
works with dependent interval relations. Our results in­
dicate that networks of 200 vertices can be solved with 
a reasonable amount of computing time. The maximal 
problem size is mainly restricted by the available mem­
ory space to hold the reduced network matrices in the 
depth-first search tree. In practice ( eg. the technical di­
agnosis system of [Nok91]) , large application problems 
are unlikely to exhibit the characteristics of random net­
works, and often domain specific knowledge can be ex­
ploited to aid in the solution process . Hence we believe 
our experiments exhibit behavior worse than can be ex­
pected in real applications. 

Scope of Experiments and Results. This paper 
gives answers to the following questions: 

• How dense are solutions of randomly generated in­
terval constraint networks? 

1 In planning systems, exact time scales can often be more 
precise than is needed, in which case Allen's qualitative tem­
poral calculus can suffice for temporal reasoning. For details 
of the conversion from metric to qualitative reasoning sys­
tems (and vice versa) see (KauLad91) . 



• Is there a difference in path-consistency behaviour 
between consistent and inconsistent interval net­
works? 

• How good is path-consistency pruning for searching 
the solution tree? 

• How effectively can large consistent networks be 
solved? 

• What size networks can be solved using these meth­
ods? 

Section 2 briefly introduces the notion of interval con­
straint networks and presents algorithms for checking 
path-consistency and for deriving a solution. In Section 
3, we summarise the properties of random interval con­
straint networks of size 3::; n::; 20 from [LadRei91], and 
extend our investigation to include also solution density 
calculations. In Section 4, we concentrate on the solu­
tion of large consistent networks. We present methods 
to speed up the solution search and show statistics ob­
tained in consistent networks of sizes up ton = 100. The 
largest networks we ran were of size 200. 

2 Interval Constraint Networks 

Interval constraint problems of n intervals can be rep­
resented as labelled digraphs, called networks, with up 
to n · (n - 1)/2 edges. Constraint relations, the la­
bels of the graph, are formally sets (of interval pairs), 
which are sums (set-unions) of atomic constraint rela­
tions. The atoms contain interval pairs ((x,y), (x' ,y' )) , 
where x, y, x', y' are points on the real line [All83] . We 
use the seven possible atomic relations between two in­
tervals: 

Equals: 
Precedes: 
During: 
Overlaps: 
Meets: 
Starts: 
Finishes: 

1' = {((x,y), (x',y')): x = x ' < y = y' ES} 
P = {((x,y), (x',y')): x < y < x' < y 1 ES} 
D = {((x,y), (x',y')): x' < x < y < y' ES} 
0 = {((x,y), (x',y')): x < x' < y < y' ES} 

M = {((x,y), (x',y' )) : x < y = x ' < y' ES} 
S = {((x,y), (x',y')): x = x' < y < y' ES} 
F = {((x,y), (x',y' )) : x' < x < y = y' ES} 

Taken together with the converse relations p~, D~, 
o~, M~, s~ and F~, this gives a total of 13 atomic 
relations, which generate a total of 213 possible different 
edge labels. 

2.1 Path-Consistency 

Path-consistency is a necessary condition for consis­
tency but does not imply consistency. Properties of path­
consistency were investigated in [Mac77, MohHen86, 
LadMad88]. The following is summarised from [Lad­
Mad88]. 

Let intersection of relations be denoted by '·', and 
composition of relations by 'o' . Let P;i be the relational 
constraint between variables x; and Xj. Then a path­
consistency computation may be regarded as computing 
the greatest fixed point of the following sets of equations 
(i.e. the collection of largest possible relations r;i satis­
fying them): 

function PC (var M: matrix): boolean; 
repeat 

M <- M ·M2 ; 

until M = M 2 ; 

return (M # O); 
end; 

Figure 1: Path-Consistency Algorithm 

r;j = rij · IT(rik o rkj) 
k 
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where the symbol [Ik denotes the product taken over 
all k < n. The fixed point is the most-general path­
consis~nt reduction of the original network. This obser­
vation leads to the representation of binary constraint 
networks by ( n x n) matrices of relation symbols M;j, 
which correspond to the constraints P;j. We call such 
a matrix a· relational matrix. By its nature, the matrix 
has to represent a complete graph, so it contains an en­
try of 1 (the universal relation, i.e. the union of all 13 
atoms) wherever no constraint edge appears in the orig­
inal problem. 

Product and composition for relational matrices are 
defined by the following schemes, which use intersection 
and composition defined on relations: 

( M · M');i = M;i · ( 1v! 1);i 

(M O M')ij = II M;k O (M')ki 
k~n 

Define also the power Mn by the usual induction, 

M 1 =M, 

Mn+i = (Jvr) o M 

So, for example, M 2 = (Jvl o 1v!), as we use in our 
path-consistency algorithm in Figure 1. Algorithms in 
the literature differ mainly in the details of the iterations 
over the triangles. Note that our PC-function reduces 
the relational matrix M by side effect. If any zero edge 
is detected in M, PC returns false, indicating that the 
relation matrix M is not path-consistent. 

We say that a network fails if a path-consistency com­
putation detects inconsistency, and that it succeeds if 
it stabilises without detecting inconsistency. Succeeding 
networks are usually consistent, as shown in Figure 3, 
but this can not be always the case since the problem is 
NP-complete and path-consistency is cubic time. 

2.2 Consistency 

A network is consistent, if there exists a consistent 
atomic labeling . Our solution algorithm works as follows : 

Perform a path-consistency computation until 
stability. If the network succeeds, randomly se­
lect one edge and an atom from the label on 
that edge. Then run again the path-consistency 
algorithm and fix an atom on another edge un­
til all labels are atomic. If the network does not 
succeed at some point, backtrack and choose an­
other atom on that label. 
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function CC (var M: matrix; i, j : integer): boolean; 
{ Consistency Computation, starting with edge Mij} 

M' ,- M; {save matrix M} 
for each atom ak E Mii do begin 

Mii ,_ ak; 
if PC(M) then 

if i, j are last edges 
or CC(M, nexLi, nexLj) then 

return (true); 
M ,_ M'; {restore M} 

end; 
return (false); {no consistent labeling} 

end; 

begin {main} 
if PC(M) then 

if CC(M, 1, 2) 
then writeln ("consistent"); 
else writeln ("inconsistent"); 

else wri teln (" not path-consistent"); 
end. 

Figure 2: Consistency Computation Algorithm 

Figure 2 describes the solution algorithm in a Pascal­
like pseudo code. The main routine first invokes PC (Fig­
ure 1) to check the path-consistency of the given network 
matrix M. If the network succeeds, the consistency com­
putation CC is started. CC fixes an arbitrary atomic la­
bel ak on the first edge M12. If the reduced network Mis 
still path-consistent, CC recursively deepens on the next 
edge, where it again selects an arbitrary atomic label. 
When all selected atomic labels form a path-consistent 
network, the whole network is consistent [LadMad88] . 

Note that each PC-computation reduces the number 
of labels in the network matrix M as a side effect. Hence 
the size of the search space constantly reduces. The re­
sulting search tree is bushy near the root and gets thinner 
in deeper levels. In practice, the solution process turns 
out to be essentially a linear selection of atoms. Very 
little backtracking occurs, because path-consistency is a 
very effective pruning technique. 

3 Results for Random Networks 

In a first set of experiments, we generated interval 
constraint networks where the labels are independent, 
identically distributed random variables drawn from a 
discrete probability distribution . The networks have the 
following properties: 

• Each atom within a label occurs with the same prob­
ability. 

• Each label within the network occurs with the same 
probability. 

We excluded networks with zero-labels, since they are 
known to be inconsistent . We generated 10,000 networks 
of sizes 3 to 20, and also 10,000 networks with pointisable 

labels2 for the same range of sizes. Figure 3 shows the 
percentage of networks of each size that succeeded in the 
first path-consistency computation, and also those that 
were later found to be consistent by the solution search . 
For pointisable networks, path-consistency implies con­
sistency [LadMad88], hence Figure 3 depicts only one 
graph with pointisable networks. 

The graphs show a sharp jump in failure rate from net­
works of size 8 (roughly 20% fail) to networks of size 11 
(roughly 80% fail). The networks in this range (we call 
it the transition range) took particularly long to search, 
in comparison with networks outside the range. Even so, 
the average solution time required within the transition 
range was less than half a second of CPU time on a 
Sun SparcStation 1. Amongst the 200,000 problems gen­
erated, we saw no case that needed longer than half a 
minute to solve. 

Moreover, we found that all general networks that 
we randomly generated with more than 13 variables are 
inconsistent, as are all pointisable networks with more 
than 11 variables. While at sizes 14 to 17, some small 
number (~ 1 % ) of these inconsistent networks succeed , 
inconsistency of large networks is usually detected right 
in the initial path-consistency computation . But even in 
the rare cases when a large network succeeds , the ini­
tial path-consistency computation has not been done in 
vain. It then serves to reduce the size of the labels (and 
therefore the branching degree of the search tree), which 
speeds up the subsequent solution search. 

3.1 Time to Solve 
The CPU time needed to solve a randomly generated 
interval constraint network depends on the size of the 
network, the average label size, and the number of solu­
tions in the search space. 

Network Size. The larger the network, the less likely 
it is to be consistent, see Figure 3. All 70,000 random 
networks of size > 13 are inconsistent. Moreover, incon­
sistency is easy to prove, since only one zero-label must 
be found. Zero-labels are usually detected early in the 
initial path-consistency computation, so that no search 
is required. 

Our detailed statistical results (not shown here) indi­
cate, that the large consistent networks need less iter­
ations to stabilise in the path-consistency computation 
than the consistent ones. Inconsistent networks of size 
n > 14 usually stabilise in the first iteration of the initial 
path-consistency computation. The two bottom graphs 
in Figure 4 give the number of iterations averaged over 
all ( consistent and inconsistent) problems. In the worst 
case, at the size 9-networks of the random general net­
works, an average of 3.3 iterations are needed to stabilise . 
On both sides, the graph quickly levels off to less than 
2 iterations. Only the large consistent networks of size 

2 Pointisable networks are those in which every 2-subnet­
work may be represented by a point network, and therefore 
the whole network may be represented by a single, larger, 
point network. They were defined in (LadMad88], and in 
[vBeCoh89]. As a practical application, Nokel's technical di­
agnosis system (Nok91] uses a subclass of pointisable net­
works. 
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Figure 4: Iterations in Initial Path-Consistency Compu­
tation, 10,000 Problems 

> 7 (shown in the top graph) need more always than 4 
iterations to stabilize. 

Average Label Size. Figure 5 illustrates the pruning 
power of the path-consistency computation. Here, the 
average number of atoms per label is plotted for networks 
of size 3 to 20. The 10,000 randomly generated problem 
instances are split into two groups: the ones succeeding 
in the initial path-consistency computation (see the two 

graphs at the top), and the ones that fail (the bottom 
graph). We plotted only data points that are supported 
by a sufficiently large number of samples (well above 100 
problem instances) . 

Initially, the average number of atoms per label is 
13/2 = 6.5 for all network sizes, see the straight line at 
the top. For the failed networks (bottom graph), the first 
iteration of the path-consistency computation almost 
halves the label sizes, especially in the very small and 
the very large networks. The following iterations then 
reduce the remaining atoms further, until a zero-label is 
found, indicating that the network is inconsistent . Note 
that path-consistency is least effective in achieving re­
ductions in networks of sizes 9 to 11. These are also the 
networks where the most iterations are needed to sta­
bilise ( see Figure 4). 

For succeeding networks the reduction is not as big. 
But again, half of the work is done with the first iteration 
of the initial path-consistency computation. Maximal re­
ductions are achieved in networks of size 10 . 

In general, one can predict right after the first iteration 
of the path-consistency computation whether a network 
will eventually succeed or not : If the first iteration leaves 
more than an average of 5 atoms per label, the network 
will very likely succeed, otherwise it will probably fail. 
The discrimination is more dramatic in the very small 
and very large networks than in those in the transition 
range. 



160 7 

6 

5 

Atoms 
4 

per 
Label 

3 

2 

1 

initial label size 

failed 
networks 

4 6 8 

after 1. iter. of PC 
after complete PC 

after 1. iter. of PC 

10 12 14 16 18 20 

Network Size 
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Solution Density. For succeeding networks, the ini­
tial path-consistency computation leaves a number of 
atoms per label, which must be further reduced by means 
of search until a consistent atomic labeling is found (if 
there is one). The effort needed to solve the problem de­
pends on the density of the solution nodes in the search 
space. We investigated how many of the initial atoms 
(after the initial path-conistency computation) are actu­
ally part of a solution. This gives us a measure of the 
pruning power of the path-consistency computation . 

For this purpose, we modified our algorithm to ex­
amine the whole search space and return all solutions, 
rather than only one. We used the method described 
above to generate as many random problems as needed 
to obtain exactly 100 consistent networks of each size. 
All data is averaged over these 100 consistent networks. 

After Initial PG Consistency ~earch 
n b bn s(n) b" I I 

,7n1 ~ 
3 6.33 254 10 25 22 2.20 
4 6.17 1,149 114 13 262 2.30 
5 6.00 7,776 744 10 1,817 2.44 
6 5.87 40,910 4,272 10 10,756 2.52 
7 5.62 177,074 10,446 17 26,636 2.55 
8 5.46 789,844 14,814 53 38,967 2.63 
9 5.31 3,356,222 16,899 198 44,780 2.65 

10 4.91 8,143,572 87,730 93 230,703 2.63 

Table 1: Solution Density in 100 Consistent Problems 

Table 1 shows the results of the networks of sizes 
3 ::; n :=; 10. The second column shows the branching 
factor of the brute force search tree b. It is given by 
the average number of atoms per label after the initial 
path-consistency computation. The 3rd column, bn, is 
the number of bottom positions in the search tree, equiv-

alently, the number of paths through the tree, when no 
pruning technique (like path-consistency) is used . It in­
cludes inconsistent as well as all consistent paths in the 
original constraint problem. Hence, bn is the size of the 
search space of a brute force search. Dividing bn by the 
average solution number, s( n), gives the proportion of 
paths to solution paths of a simple brute force search 
without path-consistency pruning (see 5th column)3

. For 
network sizes n < 8 this number lies between 10 and 
25, that is, every 10th to 25th leaf node (path) is a 
solution . In the larger networks, more nodes must be 
searched to find a solution, with the peak lying at size 
9-networks. But even in this worst case the solutions 
are quite dense, considering the enormous size of the 
search space. vVe conjecture, that in some cases a simple 
brute force search strategy (possibly mixed with occa­
sional consistency checks on every i-th tree level) should 
suffice to quickly obtain a solution. 

When path-consistency pruning is applied in every in­
terior node of the search tree, even fewer nodes are ex­
panded. The second-to-last column shows the total num­
ber of (interior) nodes I visited in the search process. 
Dividing I by the total number of solutions, s(n), gives 
the reciprocal of the pruned solution density, i.e . when 
path-consistency is used throughout the search . On the 
whole range of network sizes, this number lies between 
2.2 and 2.7, that is, the probability that a path is a solu­
tion path is 0.4. This constancy over the whole range of 
network sizes indicates that the pruned solution search 
is likely to be equally effective for all sizes of network4

• 

From this it follows that the path-consistency compu­
tation dominates other aspects of the search algorithm 
as the network size increases, and there are an expected 
constant number of path-consistency computations per 
problem. It further follows from [Mac77, MacFre85] that 
we can expect to obtain solutions in practice in cubic 
time for serial computations. 

4 Large Consistent Networks 

The larger the network, the more critical is the or­
der of node expansions in the solution process. On one 
hand, path-consistency requires cubic time, which may 
be impractical for solving large problems. On the other 
hand, the program might run out of storage space, be­
cause the solution process builds a search tree of depth 
d = n · (n - 1)/2, and even a simple depth-first search 
needs d2 words to store the intermediate (possibly re­
duced) networks on a stack. For size 100-networks, a 
maximum of 24 million words are needed. In this sec­
tion, we investigate these two features of large-problem 
solving. 

We first describe methods to speed up the path­
consistency computation and then enhancements to the 

3 The reciprocal of this number is the brute-force solution 
density. We find the results tabulated in this form easier to 
read. 

4 But one cannot conclude from this that the density of 
solutions at each interior search node is constant. In fact, we 
found that the structure of the search tree is highly unbal­
anced, with solution nodes clustering in certain subtrees. 



solution search. At the end of this Section, we present 
results obtained in large consistent networks of sizes up 
ton= 100. 

4.1 Complexity of Path-Consistency 

Path-consistency computations are known to be serial 
cubic time [Mac77], or parallel O(n2 log n) time, and it­
erative algorithms take B(n2 ) time [LadMad88]. A com­
plete network of size n has n · ( n - 1) /2 edges. For every 
edge, the compositions of all n - 2 alternative length-2-
paths (=triangles) must be intersected with the original 
edge, giving a total of 

n · (n-1) · (n -2) 
2 

compositions and intersections. Computing the converse 
relations (the other triangular matrix) requires another 
n · (n - 1)/2 operations. For size 10 networks, only 405 
operations are needed, but for size 50, we get 60,025 
and for size 100 even 490,050 operations. To make things 
worse , path-consistency is an iterative process, that usu­
ally needs more than one iteration to stabilize. While in 
theory, a maximum of 

13
. (n - l) · (n-2) 

2 

iterations are required [All83], path-consistency sta­
bilises much faster in praxis . Large random networks sta­
bilise earlier than small ones, as is evident from Figure 4. 
This convenient property is due to the larger number of 
intersections, which effectively reduces the size of the 
labels. 

4.2 Improved Path-Consistency Algorithm 

The path-consistency algorithm of Section 2.1 simply 
recomputes all labels in every iteration . In practice , it 
suffices to recompute only the triangles of edges P;j 

whose labels changed in the previous iteration. Some au­
thors [Mac77,All83] proposed a queue data structure for 
maintaining the triangles that must be recomputed . The 
path-consistency computation then simply proceeds un­
til the queue is empty. For our implementation, it turned 
out to be faster to flip a bit in the network matrix, de­
noting that this element must be recomputed next time. 
This has the advantage that the evaluation order will be 
preserved in the next iteration. 

4.3 Improved Solution Algorithm 

We improved the solution process of our implementation 
along the same lines. Each time the consistency compu­
tation function, CC, selects a certain atom on an edge 
P;j, the bits P;k and Pkj for 1 ::; k ::; n are flipped to 
tell the path-consistency procedure PC that only these 
edges must be recomputed. This saves computing time, 
especially in the large networks. 

Our program spends roughly 98% of the total CPU 
time in path-consistency computations, with more than 
3/4 being spent in path-consistency checks invoked by 
the solution search . In the following, we present meth­
ods to speed up the solution algorithm by reducing the 
number of path-consistency computations. 
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Skip atomic edges. In the search process, skip all 
edges with atomic labels . Due to the previous path­
consistency computation, atomic labels are known to be 
consistent to the other labels and hence do not further 
restrict the search space. This does not only save com­
puting time, but - more important - it saves memory 
space. For the network sizes we investigated, skipping 
atomic edges turns out to be absolutely necessary. 

Select l'-atoms first. If an edge of the network con­
tains an equals-relation, reduce the dimension of the net­
work matrix by joining the two vertices and intersecting 
the labels of all adjacent edges. Formally: Let P;j con­
tain al ' (possibly among other atoms). Then select the 
l'-relation first and do for all k ::; n : P;k +- P;k n Pjk 

and Pik +- Pjk n P;k, 
If 11 is the only atom of P;j, delete the i-th row and 

the i-th column from the network matrix. The label in­
tersection has already been done in the preceeding path­
consistency computation. 

Select point-meeting-relations first. Select labels 
first, that have only few entries in the composition table. 
This applies for intervals starting or ending at exact ly 
the same time instance: equals, meets, starts, finishes 
and their converses. The motivation is, to cut the search 
space by reducing the amount of atoms remaining in the 
network. 

4.4 Empirical Results on Large Consistent 
Networks 

vVith the random-generation method we did not obtain 
any consistent network of size n 2: 14. All 70 ,000 net­
works of size 14 to 20 were found to be inconsistent. This 
is because in the larger networks, more label composi­
tions are intersected, which reduces the number of pos-
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sible relations between two intervals. Hence, the proba­
bility of two relations being consistent is low. 

Since we do not know of any method to generate truly 
random large consistent networks, we generated consis­
tent networks with dependent interval relations in the 
following way: 

Pick a number .of intervals lying on a metric 
scale t 1 , ... , tm of discrete time instances and 
compute the relations that hold between each in­
terval pair. This gives a set of initial relations 
that, taken together, form an initial solution. 
Then produce a final network by taking the sum 
of the initial relations and some other randomly 
chosen labels. 

While the generated networks are clearly not random, 
they are consistent with at least one solution: the initial 
solution. The larger the time scale, the less likely it is 
for two intervals to have one or two end points in com­
mon. In our case - we chose a scale of 100 discrete time 
instances - the labels before, overlaps, during and their 
converses occur with 16% probability, while meets, starts 
and finishes have only a 0.6% probability. We generated 
a total of 1000 consistent networks for sizes between 10 
and 100. Figure 6 shows our experimental results: The 
topmost graph shows the initial label sizes, the middle 
graph shows the label sizes after the first iteration of the 
initial path-computation, and the bottom graph shows 
the label sizes at the end of the first path-consistency 
computation. Similar to the results obtained in random 
networks (Figure 5), these graphs show that most of the 
work is done after the very first iteration of the initial 
path-consistency computation. When the initial path­
consistency computation is completely finished, even less 
atoms per label remain. In networks of size 80, eg., an av­
erage of only 1.1 atoms per label remain to be examined 
in the solution search. 

Our detailed statistical data (not presented here) in­
dicates that the larger networks need fewer iterations to 
stabilise. The peak ( of about 7 iterations) is reached at 
the size 20-networks. In the larger networks, about 4 it­
erations are required . Path-consistency is more effective 
for pruning in the larger networks. 

5 Conclusions 

According to our experience, large interval constraint 
networks can be solved with a reasonable amount of com­
puting resources, no matter whether they are consistent 
or not . The initial path-consistency computation effec­
tively eliminates inconsistent atomic relations from the 
network. Inconsistency is usually detected in the initial 
path-consistency computation. For the consistent net­
works, most of the atoms that remain after the first path­
consistency computation are part of a solution. Very lit­
tle backtracking is necessary in the solution search. 

The largest consistent networks we checked were of 
size 200 . Our experiments were limited by the main 
memory space of our workstation (8 Mbytes). Our so­
lution algorithm stores the whole relation matrix in ev­
ery interior node of the search tree. In the worst case, 
[n ·(n-1)/2]2 memory words are needed. This follows be-

cause the search tree has depth n · ( n - 1) /2, and for each 
level one a triangular relation matrix of size n·(n - 1)/2 is 
stored. If some labels in the network are already atomic 
(which is usually the case), less space is needed . 

Solution time is dominated by the time needed to 
check the path-consistency, an expected constant num­
ber of times. Solution is thus serial expected cubic time, 
even for large networks. We conclude that the search for 
better search techniques can be halted. Instead it seems 
more important to speed up the path-consistency com­
putation. Our future research therefore includes imple­
mentation of effective parallel path-consistency compu­
tation schemes on a Transputer network . 
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Abstract 

Arc consistency algorithms are used in solving 
constraint satisfaction problems and are 
important in constraint logic programming 
languages. Search order heuristics for arc 
consistency algorithms significantly enhance 
the efficiency of their implementation. In this 
paper we propose and evaluate several ordering 
heuristics. Care is taken with experimental 
design, involving random problems, and 
statistical evaluation of results. A heuristic is 
identified which yields about 50% savings on 
average, using the standard measure of 
consistency pair checks, with reasonable 
heuristic. computation cost. 

1 Introduction 

Arc consistency insures that any two mutually constraining 
problem variables are mutually consistent: given a value for 
one, we can find a value for the other which satisfies the 
constraint between them. The constraint specifies which 
pairs of values can be simultaneously assumed by the pair of 
variables. 

Arc consistency is a fundamental concept in constraint­
based reasoning [Mackworth, 1987] and has played a 
significant role in constraint logic programming [Dincbas et 
al., 1988; Van Hentenryck, 1989]. Arc consistency can also 
be used to answer temporal reasoning questions [Meiri, 
1992]. Various forms of arc consistency have been utilized 
in various roles to solve constraint satisfaction problems 
(CSPs), i.e. to find values, for a set of variables, that satisfy 
a set of constraints. Many artificial intelligence problems, 
from scene analysis to scheduling, have been viewed as 
CSPs. 
For some classes of problems arc consistency processing 
alone essentially finds a solution [Freuder, 1982; Deville and 
Van Hentenryck, 1991]. Some algorithms repeatedly employ 

*This work was supported by the National Science 
Foundation under Grant No. IRI-8913040. The government 
has certain rights to this material. Some of this work was 
done while the second author was a Visiting Scientist at the 
MIT Artificial Intelligence Laboratory. 

generalized forms of arc consistency to find solutions to 
arbitrary problems [Mackworth, 1977a; Freuder, 1978]. Arc 
consistency can be used for "preprocessing" before further 
search, and may simplify a problem to the point where little 
if any subsequent search effort is needed, especially 
wheninitial "boundary conditions" are known [Waltz, 1975]. 
Full or partial arc consistency can be combined with 
backtrack search in "hybrid" algorithms [Nadel, 1989]. 

While there has been some indication in the literature 
that ordering heuristics can improve the performance of the 
relaxation (constraint propagation) algorithms that achieve 
arc consistency [Waltz, 1975], these heuristics have not 
received systematic study. (This is to be contrasted with the 
considerable attention devoted to ordering heuristics for 
constraint satisfaction backtrack search.) 

This paper initiates such a systematic study. We identify 
factors that determine the efficiency of constraint 
propagation. Probabilistic arguments suggest the 
relationship between these factors and certain easily 
measurable problem characteristics. Several ordering 
heuristics are proposed based on these problem 
characteristics. Careful testing on random problems verifies 
our expectations of increased efficiency. 

Our best heuristics halve the number of constraint checks 
(a standard measure of performance). The worst-case 
complexity of the overhead involved in computing the 
ordering is linear in the number of constraints, and does not 
add to the overall worst-case complexity of the arc 
consistency algorithm. Computation time data confirms the 
efficacy of the heuristic. 

Most of our experiments are based on the standard AC-3 
arc consistency algorithm [Mackworth, 1977b]. AC-4 [Mohr 
and Henderson, 1986] has a better worst-case bound than 
AC-3 (indeed its worst-case bound is optimal), but incurs 
the time/space costs of building and maintaining more 
elaborate data structures. AC-4 is also subject to ordering 
improvement, and we demonstrate this experimentally as 
well; however, in our tests AC-4 was very much less 
efficient than AC-3. 

We would expect ordering heuristics to improve some 
partial arc consistency algorithms [Haralick and Elliott, 
1980; Dechter and Pearl, 1988; Nadel, 1989; Freuder and 
Wallace, 1991]. The ideas should be generalizable to higher 
level consistency algorithms [Montanari, 1974; Mackworth. 
1977b; Freuder, 1978; Cooper, 1989]. 
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Section 2 reviews basic concepts. Section 3 discusses 
factors that determine efficiency of relaxation for any 
problem and Section 4 discusses why some orderings would 
be expected to enhance performance a priori. Sections 5 and 
6"describe methods and results, respectively, of experiments 
with random constraint satisfaction problems designed to 
assess the effectiveness of orderings based on these 
heuristics. Section 7 considers the effort required to obtain 
good orderings with specific heuristics. Section 8 
summarizes the conclusions. 

2 Basic Concepts 

A constraint satisfaction problem (CSP) involves a set of n 
variables, v;, each having a domain of values, d; that it can 
assume. In addition, the problem is subject to some number 
of binary constraints, C;j, each of which is a subset of the 
Cartesian product of two domains, d; X dj. A binary 
constraint specifies which pairs of values can be 
simultaneously assumed by the pair of variables. (Only 
binary constraints are considered here; higher-order CSPs can 
also be represented by binary CSPs [Rossi et al., 1989].) A 
CSP is associated with a constraint graph, where nodes 
represent variables and arcs represent constraints (Figure 2). 

AC-3 involves a sequence of tests between pairs of 
constrained variables, v; and Vf we say that v; is relaxed 
against Vj. Specifically, values in v; are checked against the 
constraint between v; and Vj to see if they are supported, i.e. 
are consistent with at · 1east one value in the domain of Vj; 
unsupported values are deleted. The AC-3 algorithm is 
shown in Figure 1. All ordered pairs of constrained variables 
are first put in list L. Each pair, (v;, Vj), is removed and v; 
is relaxed against Vj. When values are deleted, pairs may 
need to be added to L to determine if these deletions lead to 
further deletions. 

Initialize L to { (vi, vj) I 
a constraint exists between vi and vj}. 

While L is not empty 
Select and remove (vi, vj) from L. 
Relax vi against vj. 
If relaxation removes any values from vi, 

add to L any pairs (vk, vi), lmj, such that 
there is a constraint between vk and vi and 
(vk, vi) is not already present in L. 

Figure 1. The AC-3 algorithm. 

The order in which pairs are selected for relaxation 
reduces to a question of how L is ordered, where the first pair 
in L is always selected. Specifically, how should L be 
ordered in the initialization phase and how should we insert 
additions to L during the relaxation phase? Ordinarily the 
initialization order is simply derived from the order in which 
the problem is described, and L is maintained as a queue 
[Mackworth and Freuder, 1985; Nadel, 1989]. We are 
concerned with heuristics for ordering L which result in 
more efficient processing. 

3 Factors That Determine Efficiency 
of Relaxation 

Differences in the efficiency of relaxation that depend on 
ordering can be ascribed to two factors: (i) if a value is 
deleted from d; when v; is relaxed against Vj, less work is 
performed if other constraints that include v; are tested after 
this restriction rather than before (minimizing the number of 
tests before deletion), (ii) work is reduced if pairs with nodes 
adjacent to the node relaxed are already on the list 
(minimizing the number of list additions, or relaxations). 
Both factors are consistent with the principle that, in good 
orderings, domain values are removed as quickly as possible 
(the "ASAP principle"). This idea was first stated by [Waltz, 
1975] in his discussion of filtering descriptions of line 
drawings, viz, "The basic heuristic for speeding up the 
program is to eliminate as many possibilities as early as 
possible" (p. 60). However, it is not so much a heuristic as 
a characteristic of efficient performance, since conformity to 
this principle cannot be determined in advance. 

{ (cd) (ce) (cf) } 

1 

(O 1) 

(0 2) 

0 

a. constraint graph 

b. restriction diagram 
Figure 2. CSP illustrating relaxation principles. 

2 

One aspect of CSP structure that can affect efficiency via 
the order of relaxation is the presence of sequential 
dependencies in the pattern of domain support. For example, 
suppose the values within domain dj that support a value in 
d; are not supported by values in another domain, dk. In this 
case, relaxing Vj against Vk removes the values in dj that 
supported the values in d;, and, if v; is then relaxed against 
Vj, the latter values are removed the first time this variable 
pair is tested. On the other hand, if v; is relaxed against Vj 
before the latter is relaxed against vk, these values cannot be 
removed, and more values are retained that will eventually be 
eliminated. Since failure to observe such dependencies will 
result in pairs being put back on the list after they have been 
examined, this is a special case of minimizing additions to 
the list of variable pairs. (A specific reference to sequential 
dependencies is made in [Gaschnig, 1974].) 



These principles are illustrated with a simple example 
(Figures 2-3). The CSP in this case has three variables and 
two constraints, so its constraint graph is a tree. Domains 
have the same number of values and constraints the same 
number of acceptable pairs. Figure 2 also includes a 
restriction diagram, showing all values that could possibly 
be deleted by relaxation and any dependencies between them. 
Variable pairs with at least one domain subject to restriction 
are shown on the left, and each column to the right includes 
all values with the same depth of dependency (subscripted 
with variable names). The diagram, therefore, gives a 
'parallel view' of relaxation. Dependency relations between 
specific values are shown by arrows. 

start (abc) (def) (ghi) 

good ordering (conforms to ASAP rule) 
0 ag 1 remove a,b 7 cks (c) (def) (ghi) 
2 ag 0 remove g 3 (c) (def) (hi) 
0 ag 2 1 
1 ag 0 3 

fails to minimize pair checks (no list additions) 
1 ag 0 9 cks 
0 ag 1 remove a,b 7 (c) (def) (ghi) 
2 ag 0 remove g 3 (c) (def) (hi) 
0 ag 2 1 

fails to minimize additions (no sequent depend. violations) 
1 ag O 9 cks 
0 ag 2 remove a 6 
0 ag 1 remove b 4 
2 ag O remove g 3 
1 ag O 3 

fails to respect sequential dependency 
2 ag O 8 cks 

(be) 
(c) 
(c) 

(def) 
(def) 
(def) 

(ghi) 
(ghi) 
(hi) 

0 ag 1 remove a,b 7 (c) (def) (ghi) 
0 ag 2 2 
1 ag O 3 
2 ag O remove g 3 (c) (def) (hi) 

Figure 3. Relaxation with different orderings. 

The course of relaxation of this problem for different 
AC-3 list orderings is shown in Figure 3. Constraint checks 
are shown on successive rows, including the variable relaxed 
(i ag j indicates that v; is relaxed against Vj), the values (of 
di) removed, the number of value pairs that were checked 
(assuming a lexicographic order), and the current domains 
after each instance of domain restriction. The first example 
shows an ordering consistent with the ASAP principle: 
when vo is relaxed against v1, the pair, (0 2), which 
includes an adjacent node is still on the list, the dependency 
between b in do and g in d2 is respected, and vo is relaxed 
against v2 and v1 against vo after their domains have been 
reduced. In the second example v1 is relaxed against vo at 
the beginning, when their domains have their original sizes, 
so more pair checks are required In the third example, vo is 
relaxed against v2 when the pair (1 0) has already been 
removed from the list; since a value is deleted from the 
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domain of vo, (1 0) must be put back on. In the fourth 
example, the sequential dependency between b in do and g in 
d2 is violated; nothing is deleted from d2 when v2 is first 
relaxed against vo, and the lack of support for g in the 
former domain must be discovered in a second test 

4 Rationale for Order Heuristics 

Many ordering heuristics can be devised, based on three 
major features of constraint satisfaction problems: (i) the 
number of acceptable pairs in each constraint (the constraint 
size or satisfiability [Nadel, 1988)), (ii) the number of 
values in each domain, (iii) the number of binary constraints 
that each variable participates in, equal to the degree of the 
node of that variable in the constraint graph. Simple 
examples of heuristics that might be expected to improve 
the efficiency of relaxation are: (i) ordering the list of 
variable pairs by increaing relative satisfiability, i.e. the 
proportion of possible pairs that are acceptable, (ii) ordering 
by increasing size of the domain of the variable relaxed 
against, (iii) ordering by descending degree of node of the 
variable relaxed 

However, it is important to note that the principles of 
efficient relaxation described in Section 3 do not depend on 
differences in such features. Thus, in the example given 
there, domain size and satisfiability are both constant. (It is 
easy to construct similar examples where degree of node does 
not vary.) Conversely, variation in these features does not 
guarantee that a particular heuristic will enhance efficiency. 
For example, a smaller domain size does not itself imply 
that relaxation is more likely, since the acceptable pairs can 
include all domain values. This means that the case for 
ordering heuristics depends on probabilistic arguments. In 
other words, we must show that a given ordering can be 
expected to enhance efficiency, if we can make some 
assumptions about expected failure of domain support. 

For any binary constraint, the range of possible 
satisfiabilities, from O to the product of the participating 
domains, can be divided into three parts, in which relaxation 
is inevitable, possible, or impossible, respectively. These 
subranges are: 

(inevitable) 0 to dmax - 1 
(possible) dmax to [(4-*4,;,.) - dmi,J 
(impossible) [(4-*'4.) - dmin + 1) to 4-*4.., 

The basis for this division is not hard to see: (i) if the 
constraint size is less than the size of the largest domain, 
not all values can be supported, (ii) if at least one value of 
the larger domain is not supported, the largest possible 
constraint size cannot be larger than the product of the 
smaller domain size and one less than the larger one. If v; is 
relaxed against Vj, an alternative description of these 
intervals is: 

(inevitable) 0 to d; - 1 
(possible) d; to [(d;*dj) - dj] 
(impossible) [(d;*dj) - di+ 1) to d;*di 

In accordance with the ASAP rule, an ideal ordering 
heuristic would insure that any pairs for which relaxation is 
more likely would be put at the beginning of the list. In 
particular, those pairs for which relaxation is inevitable 
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would be tested first. Any reordering after a domain 
restriction should also have this property. 

Since, for any domain pair, relaxation is at least as likely 
if the satisfiability is smaller, ordering based on increasing 
satisfiability is an obvious candidate heuristic. Two variants 
on this idea are ordering by relative satisfiability and by 
satisfiability per se, which does not discount the effects of 
domain size. A third heuristic of this type is suggested by 
the following argument Suppose that associated with each 
pair of values is a probability, p, that it will be included in 
the set of acceptable pairs. Then the following relation holds 
between the sizes of the domains, di and dj and the expected 
size of the set of constraint pairs based on these domains, 
IC;jl: 

ICjjl = ldjl * ldjl * p. 

In this case, if Vi is to be r~laxed against Vj, some 
domain restriction would be expected on average when ldjl * 
pis less than 1, because in this case the expected size of the 
constraint set is smaller than the domain size. Hence, 
ordering by ldjl * p, or equivalently, by ICjjl / ldjl, may be an 
effective heuristic. 

Using the partitioning of satisfiabilities, an argument 
can also be made for the potential usefulness of heuristics 
based on domain size. Suppose that domains of size k are to 
be relaxed against domains of size 1, 2, and 4. For these 
cases, the relative number of possible values for the 
satisfiability that are in the "inevitable" range is k-1 /k, k­
l/2k or k-l /4k, respectively; in general, this number is 
approximately 1/ ldjl. Similarly, the relative numbers of 
possible satisfiability values within the possible and 
impossible ranges are approximately 1 - 1/ldjl - 1/ld;I and 
1/ld;I, respectively. Thus, with larger ldjl, the relative 
number of values in the impossible range is smaller, and, by 
the symmetry of the binomial expansion, so is the relative 
number of possible constraints that fall within this range. 
This suggests that ordering by increasing ldjl can be an 
effective heuristic. Another possibility is to order the pairs 
by decreasing difference in size between the domain of the 
variable relaxed and the domain of the variable relaxed 
against, with signs of the differences considered. 

With other factors equal, if a variable is associated with 
more constraints, it is more likely that a given value in its 
domain will not be supported in one of these constraints. 
This suggests that variables with more constraints should be 
tested first, i.e. that ordering by decreasing degree of the node 
in the constraint graph of the problem would be an effective 
heuristic. 

5 An Example 

The effect of some of these heuristics is illustrated with a 
variation of the four queens problem. In the basic problem, 
four queens must be placed on a 4 X 4 board so that no two 
can attack each other. One way to represent this as a CSP is 
to define the rows, from top to bottom, as variables and the 
columns, from left to right, as domain values. In the present 
variant, the first domain has only one value, associated with 
a queen in column 2. Relaxation reduces this problem to the 
solution, ((2) (4) (1) (3)), i.e., column 2 for variable 1, 
column 4 for of variable 2, etc. 

Table 1 shows the number of additions to the list and the 
total number of value pairs checked, for some of the 
heuristics introduced in the last section. (Variable pairs that 
are equivalent under a heuristic are placed on the list in 
lexicographic order, e.g., (1 2), (2, 4), (3, 1).). Results for 
two reference orderings are also included: (i) the 
lexicographic ordering maintained as a queue was used 
explicitly by [Nadel 89], while queue ordering appears to be 
the method generally used, as indicated above, (ii) an 
alternative baseline is provided by the mean of ten random 
orderings (whose derivation is described below). Results for 
reversed orderings are also introduced here; this is a more 
sensitive method for detecting the influence of a heuristic, 
even when it does not yield results that are appreciably 
different from the reference orders. 

For this problem, the effect of ordering is apparent and 
sometimes dramatic. Orderings that might be expected to 
yield good performance, viz, increasing satisfiability and 
increasing size of the domain relaxed against, yield lower 
values for the measures of work in comparison with the 
standards. By the same token, an excessive amount of work 
is required for relaxation when the ordering reverses one of 
the 'good' orders. It should also be noted that treating the list 
as a stack rather than a queue does not improve efficiency. 
This was the typical finding for all problems, when these or 
other, more elaborate, placement strategies were tested. 

Table 1 
Efficiency of AC-3 with Different Ordering Heuristics 

(Four Queens Problem with Domain 1 Restricted) 

Ordering 
Random Order (Mn.) 
Lexicogr./Queue 
Lexicogr./Stack 
Increas. Satisfiab 
Decreas. Satisfiab 
Iner. Rel. Satisif. 
Deer. Rel. Satisif 
Increas. Domain J 
Decreas. Domain J 

Additions 
7 
5 
8 

.2 
13 
5 
9 
0 

12 

Pair Checks 
60 
35 
40 

.29 
110 
52 
65 
25 
87 

6 Experiments with Random Problems 

6.1 Methods 

6.1.1 Problem Generation 
Evidence concerning the efficiency of ordering heuristics 

was obtained experimentally with random CSPs. The main 
problem sets had six or 12 variables, with a maximum 
domain size of ten or 12, respectively. The number of binary 
constraints, the specific variable pairs subject to constraint, 
the size of each domain, the number of acceptable pairs in 
each constraint, and the specific value pairs in that constraint 
were chosen in this order using random methods. This 
procedure samples from the entire set of possible CSPs 
within the specified limits, producing problems that are 
heterogeneous in the features used to order the AC-3 list: 



satisfiability, domain size, and degree of constraint graph 
node. To examine the behavior of heuristics for CSPs with 
graphs of different density, the factor of constraint number 
was "blocked" by dividing the range of possible values for 
each problem size into quarter-ranges. Samples of ten 
problems with at least one solution and five without 
solutions were generated for each quarter-range for six­
variable problems, and for the lowest two quarter-ranges for 
12-variable problems. (This method rarely generates 12-
variable problems with solutions from the higher 
subranges.) CSPs with and without solutions were treated 
separately because relaxation stops immediately after all 
values of a domain or constraint have been eliminated. 
Limits for the number of solutions were set at 200 and 1000 
for six- and 12-variable problems, respectively, to balance 
representativeness and tractibility. (Ten 12-variable problems 
from the first quarter-range with more than 1000 solutions 
gave qualitatively similar results, with somewhat smaller 
differences.) 

6.1.2 Evaluation of Performance 
Relaxation performance was evaluated using the basic 

measure of number of value pairs checked for inclusion in a 
constraint. Other measures were used to identify factors 
underlying improvement in performance that could be related 
to the principles described in Section 3: (i) number of list 
additions, (ii) mean size of domain restriction, (iii) mean 
location of value deletions in the sequence of constraint 
checks (the sum of the products of location and number of 
deletions divided by the total number of deletions). It was 
also necessary to assess the work required to sort the list 
initially and to keep it in order after successive relaxations. 
This is discussed below (Section 7) in connection with the 
issue of efficient sorting methods for specific heuristics. 

For each problem, a baseline for perfomance was 
obtained by running AC-3 with randomly ordered lists. In 
these tests, the original list was produced by placing each 
variable pair in one of the initial set of positions (equal to 
twice the number of constraints), specified by a 
pseudorandom number. During relaxation, execution orders 
were produced by placing each added pair at random in one of 
q+ 1 possible positions in a q-element list. 

An ordering heuristic partitions the set of variable pairs 
according to some feature of the problem. Therefore, unless 
each equivalence class is a singleton, there are many orders 
consistent with the heuristic at each major step of the 
procedure, i.e. with the choice of the next variable pair to 
check. A complete assessment of a heuristic would consider 
the range of efficiency possible for all such orderings. Since 
this is not feasible in most cases, it is necessary to rely on 
random samples, i.e. random orderings of equivalent pairs in 
the initial list and random insertion into a set of equivalent 
pairs during execution. For both random lists and lists 
ordered by heuristics, samples of size ten were used, since 
preliminary tests showed that these gave sufficiently stable 
means, compared with samples of 15 or 30. 

Differences among orderings were evaluated statistically, 
using repeated measures analysis of variance (ANOV A) 
followed by nonorthogonal contrasts for comparisons of 
individual means. (Here the "mean" refers to a specific 
problem set, i.e. six- or 12-variable problems; in addition, 

the number of pair checks for each problem was a mean of 
ten runs, as just described.) Separate analyses were carried 
out for six- and 12-variable problems with range of 
constraints and heuristics as factors. Paired comparison t 
tests were used to evaluate differences in mean performance 
(across all constraint ranges) between orderings based on a 
heuristic and those based on the reversed ordering. 

6.2 Results 

For all sets of random CSPs, there were marked differences 
due to ordering the list of variable pairs. For all problem 
sets, the best orderings reduced the number of pair checks by 
about 50% in comparison with either reference ordering. 
(For illustration, Figure 4 gives results for problem sets in 
the second subrange of constraints.) The main ANOV As 
included the two reference orderings: random (RAND) and a 
lexicographic ordering maintained as a queue {LEX/Q). Three 
heuristic orderings were also included, based on increasing 
satisfiability (SAT UP), increasing size of the domain 
relaxed against (DOM J UP), and decreasing degree of node 
(DEG DOWN). For both six- and 12-variable problems, the 
effects of range and heuristic were statistically significant (p 
< .001). Contrasts between the two reference orderings and 
each heuristic were statistically significant for SAT UP and 
DOM J UP but not for DEG DOWN. A second ANOV A 
based on the three satisfiability heuristics, increasing 
satisfiability, relative satisfiability and increasing value of 
C;jld;, yielded significant effects for range (p < .05) and 
heuristic (p < .001). Contrasts between relatively 
satisfiability and the other two heuristics were statistically 
significant (p < .001); the contrast between the latter was 
not. The effectiveness of simple satisfiability therefore 
depends on more than satisfiability per se; another factor 
may be the size of the domains, which tend to be small for 
low satisfiabilities. 
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statistically significant differences in favor of the original 
heuristic (p < .001). This shows that each heuristic had 
som!! effect on efficiency, even when it could not be 
distinguished statistically from the reference orderings. 

That good heuristics are consistent with the principles of 
efficient relaxation described in Section 3 is indicated by the 
analyses of list additions and domain restrictions during 
relaxation. An ANOV A for list additions based on the same 
five orderings as the one for pair checks yielded statistically 
significant effects for both range and heuristic (p < .001), 
and the orthogonal contrasts showed the same pattern of 
statistically significant results. In fact, the best orderings 
required only 1/4 and 1/5 of the additions required by the 
reference orderings for six- and 12-variable problems, 
respectively. The major part of the improvement in 
performance was, therefore, due to reduction in list additions. 
However, small but highly consistent differences (p < .001) 
were found for average size of domain restriction, with 
largest values associated with the best orderings and smallest 
values with the reverse orderings. This, together with the 
finding of more rapid relaxation, reflected in lower mean 
values for location of deletions (p < .001; with a ratio of 2: 1 
for mean values of the reference orderings versus the best 
heuristics), suggests that good heuristics also minimized the 
number of value comparisons. The finding of more rapid 
relaxation is, of course, a direct demonstration of the ASAP 
principle. 

The above results pertain to problems with solutions. 
For problems without solutions, the number of pair checks 
required to remove all elements from a domain or constraint 
showed the same differences between orderings as for 
problems with solutions. In the present case, the size of 
these differences was actually greater. mean performance 
ratios were 3-4:1 for six-variable problems and 5-10:1 for 
12-variable problems. Statistical analysis yielded the same 
pattern of statistically significant differences as for problems 
with solutions. 

Since Phase 1 of AC-4 uses a list of variable pairs, this 
part of the algorithm was tested for amenability to ordering 
heuristics, using the 12-variable problems. The list was 
ordered lexically or with the DOM J UP heuristic. With the 
ordering heuristic, fewer pair checks were performed during 
Phase 1 for both samples of ten problems and more values 
were deleted (p < 0.001 for both effects). Mean pair checks 
for problems in the second constraint subrange were 1454 
for lexical ordering and 1017 for DOM J UP. This far 
exceeds the numbers required for the entire AC-3 algorithm 
with these orderings (cf. Figure 4; similar differences 
between AC-3 and -4 were found for the first subrange) and 
is due to the need to check each value against all values in 
adjacent domains, to find the total support for that value. 
For this reason, no further analysis of AC-4 is presented 
here, although more extensive examination with respect to 
average time complexity and effects of ordering would be 
useful. 

7 Effort Required to Keep List Ordered 

Although ordering heuristics can have a significant effect on 
the efficiency of relaxation, costs are incurred in sorting the 
original set of pairs (initial ordering) and in maintaining the 

proper order as domains are restricted and pairs added during 
relaxation (execution ordering). The latter can affect the 
overall time complexity of relaxation, because adjustments 
may be necessary at each step of the procedure. It is therefore 
worth considering heuristics that order the list initially and 
then use a placement strategy, such as stacking or queueing, 
during relaxation, as well as efficient methods for 
maintaining list order in each phase of the process. 

Evidence bearing on the efficiency of initial ordering 
followed by stacking or queueing was collected for the six­
and 12-variable problems of the main experiments. 
Discussion of these results is limited to SAT UP and DOM 
J UP, since these were the most promising heuristics 
overall. For six-variable problems the mean increase in 
value pair checks for initial ordering alone, compared to 
initial and execution ordering, was 15% for SAT UP and for 
DOM J UP. For 12-variable problems the corresponding 
increases were 50% and 45%. This indicates that execution 
ordering can have a significant effect on performance, and 
should be carried out if it can be made efficient. 

For initial ordering, O(e) performance can be achieved 
with a pigeonhole sort. For DOM J UP, this is likely to be 
sufficient, since the number of pigeonholes equals the 
maximum domain size, which should not be large. For SAT 
UP, the number of holes must equal the largest product of 
two domain sizes, so longer times may be required to scan 
the list, with useless steps due to empty holes. In the 
present tests, therefore, the number of pigeonholes was set 
at 1/5 the maximum. The list was partially sorted in this 
way, and then each hole was sorted with an insertion sort, 
which is very fast when no pairs are very out-of-order. For 
both heuristics O(e) performance was approximated for the 
two sets of experimental problems. 

For DOM J UP, execution ordering is also 
straightforward and efficient After each domain restriction, 
the affected pairs are collected from one pigeonhole in at 
most O(e) steps and transferred in one further step. Since 
this is the complexity involved in collecting adjacent pairs 
and checking that they are not already on the list, the overall 
complexity of the algorithm can be maintained while 
keeping the list in order. For SAT UP, the process is 
complicated by the need to update the representation of 
constraints, which can take up to O(ed2) steps. Affected 
pairs must be rearranged in the list, in addition to adding 
adjacent pairs, which may require O(e)O(sort) steps. Since 
relaxation based on DOM J UP appears to be only slightly 
less efficient than SAT UP in terms of the number of pair 
checks, the overall efficiency of the former is therefore 
greater. 

That DOM J UP is appreciably faster than LEX/Q 
overall was confirmed by timing tests on the 12-variable 
problems. Average CPU time per problem was 3.1 and 4.0 
seconds, respectively, and for every problem the difference 
was in favor of the ordering heuristic. 

8 Conclusions 

Ordering heuristics can increase the efficiency of relaxation, 
reducing the number of value pair checks by a factor of two, 
on average, in comparison with reference orderings. These 
heuristics order the list of variable pairs so it conforms to 



the principles of efficient relaxation discussed in Section 3; 
the major effect is to minimize list additions. For some 
heuristics, it is also possible to limit the work involved in 
establishing and maintaining an effective ordering, so this 
factor does not outweigh the benefit gained during 
relaxation. We conclude that ordering by increasing size of 
the domain relaxed against is an effective general strategy for 
enhancing performance of algorithms that establish full arc 
consistency. 
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Abstract 

We present an extension of the PATR-11 unification 
based grammar formalism, called PATTERN. 
PATR-11 uses path equations to constrain 
information contained in feature structures. 
PATTERN adds a generalization of regular 
expressions to path equations and path length 
constraints, effectively incorporating an extension 
of "functional uncertainty" into PATR-11. We 
describe in some detail how PATTERN can be 
implemented in Prolog and compare our 
implementation with another similar extension to 
PATR-11. We also give some examples to show 
that PATTERN can elegantly and declaratively 
describe some linguistic phenomena. 

1 Introduction 

Numerous formalisms have been proposed to help linguists 
formulate their theories for automatic language processing. 
In recent years, unification based grammar formalisms 
[Pereira and Warren, 1980; Shieber, 1986] have become 
popular because they allow linguists to form~late th_eir 
theories more declaratively than other formalisms, like 
augmented transition networks (A TNs) [Woods, 1970]. 
However, the expressive power of these formalisms is 
restricted in order to make computer processing of theories 
expressed in them more efficient. As a result, linguistic 
theories must often be transformed and redundancies must be 
introduced to be expressed in unification formalisms. 
Consequently, ad hoc extensions to grammar formalisms are 
often used i!l practice to avoid transformations and 
redundancies. For instance, Prolog predicates are often used 
in definite clause grammars (DCGs) [Pereira and Warren, 
1980] and extensions of DCGs [Johnson and Klein, 1986]. 
Alternatively, more expressive unification formalisms are 
needed [Johnson and Rosner, 1989; Balari et. al, 1990; 
Schatz and Lehner, 1990]. Recent work in Constraint Logic 
Programming (CLP) [Cohen, 1990] promises to efficiently 
increase the expressive power of unification based grammar 
formalisms without ad hoc extensions. 

This paper describes how to increase the expressive power 
of the PATR-11 (henceforth referred to simply as PATR) 
formalism [Shieber et al., 1983; Karttunen, 1986; Gazdar 
and Mellish, 1989]. The main information structures used 
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in the PATR formalism, called feature structures (FSs), are 
record like structures which are a generalization of terms in 
standard first order logic. Information in FSs can be 
accessed by following paths of features, much like 
components of records are accessed in conventional 
programming languages. These sequences of feature n~es 
leading to information in a FS are called path expressions. 
FSs can also be unified in a way similar to term unification 
in logic programming [Lloyd, 1984]. 

The PA TR formalism was developed as a general purpose 
formalism for implementing other formalisms. In practical 
terms, PA TR is too weak for this since there are other 
formalisms which often have, as primitive operations, the 
ability to select an element of a list or access an arbitrarily 
deeply nested structure. The new formalism described here, 
called PATTERN, augments PATR with patterns and 
constraints for path expressions, so it addresses many of the 
practical weaknesses of PA TR in a well founded way. 
PATTERN path expressions may contain regular 
expressions, repetition expressions and length constraints, 
all of which have well defined meanings in formal language 
theory [Hopcroft and Ullman, 1979]. Moreover, recent work 
in CLP [Walinsky, 1989] provides some criteria which must 
be satisfied to ensure that constraints on regular expressions 
are implemented in a way that coincides with their 
declarative interpretation. 

PATTERN uses a CLP approach to processing constraints 
on paths by treating them as strings. Constraint processing 
and CLP have been applied in other logic and unification 
based approaches to natural language processing. For 
instance, Tuda et. al. [1989] use constraint logic 
programming to help construct interpretations for sentences 
containing ambiguous words. Maruyama [1990] uses 
constraint processing techniques to deal with structural 
ambiguity. Balari et al. [1990] talk about constraint logic 
grammars. Schatz and Lehner [1990] ~se Pro log I~I' s 
[Colmerauer, 1990] Boolean constramt processmg 
capabilities to implement negation and disjunctio_n for f~ite 
feature domains in a unification based formalism. Like 
other methods for expressing sets of FSs disjunctively 
[Dawar and Vijay-Shanker, 1990; Kasper, 1987; Schatz and 
Lehner, 1990], PATTERN can be used to elegantly describe 
alternative structures. 

Kaplan and Maxwell [1988] showed the utility of regular 
path expressions in characterizing linguistic phenomena. 
However, except for REGDPATR [Carlson, 1988], they 
have not been incorporated into the latest generation of 
general purpose unification formalism implementations 
(such as [Hirsh, 1988; Kilbury, 1990; Yampol and 



Karttunen, 1990]). They have been incorporated into 
REGDPA1R by extending FSs so that they allow cyclicity. 
Our approach does not require a wholesale change to FSs. 

The organization of the remainder of the paper is as 
follows: Section 2 describes how PATTERN augments 
PA TR with path patterns and constraints. Section 3 
describes an experimental Prolog implementation of 
PATTERN. Section 4 gives several example applications 
of the PATTERN formalism, and section 5 closes with 
some discussion. 

2 PATR with Path Patterns and 
Constraints 

2.1 PATR 

The PA TR formalism is based on the context free grammar 
formalism, except instead of atomic non-terminal and 
terminal symbols, PA1R uses FSs. As mentioned earlier, a 
FS is a kind of generalized record structure which can be 
unified with other feature structures. Feature structures are 
often represented in a kind of matrix notation. For instance, 

consider the followinrn~~joe ~ 
F jobffinn:aane J 

Ltitle:supervisor 

age:A • 

The variable F preceding this FS simply serves to give it a 
name. Atomic symbols are also considered feature 
structures. Variables may also occur with no following FS, 
as the variable A does. These variables name a feature 
structure which can be anything. The set offeaJures defined 
in a feature structure are the set of atomic symbols which are 
followed by colons. For instance, the features defined in F 
are name, job, firm, title, and age. In PA 1R, feature 
structures are specified using path equations. A path is a 
sequence of features separated by colons. A feature structure 
is considered a function from paths to other feature 
structures. For instance, using the FS above, F(name) = joe 
and F(job:title) = supervisor. Note that F(job) is a non­
atomic feature structure, and F(job)(title) is a synonym for 
F(job:title). In general, path equations can be of the form 

[1] F(f1:f2: ... :f,i) = G(g1:g2: ... :gm) 

where n, m ~ O; F and Gare FSs; f1, f2, ... , fn and g1, g2, 
... , gm are features. In this case, the FSs denoted by 
F(f1:f2: ... :fn) and G(g1:g2: ... :gm) are unified. Unification 
succeeds on two FSs F and G if there is no path 1t such that 
F(1t) and G(1t) are incompatible. Two FS are incompatible 
if they are different atomic FSs or one is atomic and one is 
not. Unifying FSs may instantiate variables and add paths 
to them. Note that [1] is an equality, not an assignment. If 
the two sides were swapped, it would have the same 
meaning. 

FSs are often used to represent lists. For instance, in this 
paper, a list with elements X, Y, and Z, is represented using 
the features first and rest, and the atomic FS D, as follows: 

[::[~st:Y . ]~ 
[2] rest:[first.Z 

rest:[] 

A theory in our version of the PA 1R formalism is a set of 
rules of the form 

[3] Fo-+ F1, F2, ... , Fn, {C1, C2, ... , Cm} 

where Fi (0 ~ i ~ n) are variables denoting feature structures 
and Cj (1 ~j ~ m) are path equations. The order in which 
the path equations appear does not matter, but to use the 
rule, they all must be true. Rules can be used to describe 
both the lexical information associated with words, and the 
syntactic and semantic structure of phrases. For instance, 
the rule: 

Word-.+ {Word(lex)=he, Word(nurn)=sing, Word(cat)=pro} 

defines a lexical entry for the word 'he'. The rule: 

S-.+ NP, VP, {S(cat)=s, NP(cat)=np, VP(cat)=vp, 
S(sub)=NP(ref), NP(num)=VP(num)} 

defines some of the syntactic and semantic relationships 
between the constituents of simple sentences composed of a 
noun phrase followed by a verb phrase. Specifically, the 
subject of the sentence (S) is determined from the referent of 
the noun phrase (NP), and the NP and verb phrase (VP) 
exhibit number agreement. 

2. 2 The Extension 
PA TIERN generalizes the paths used in path equations and 
allows constraints other than path equations in rules. 
Specifically, the following two extensions are made: 

1. any of the features fi or gj in [1] above can be 
replaced by a pattern expression, and 

2. any Cj in [3] can be a path equation, set membership, 
or length constraint. 

The remainder of this section defines pattern expressions, set 
membership constraints, and length constraints. 

Pattern expressions are a generalization of regular 
expressions. As usual, regular expressions are used to 
denote regular sets; E is the empty string; regular 
expressions are constructed from a set r. of symbols using 
the alternation(+), concatenation(·), and Kleene closure(*) 
operators; !al is the length of CJ e r.*; and L(e) is the set of 
strings denoted by an expression e. We also use the 
notation e+ where L(e+) = L(e·e*) and en (non-negative 
integer n) where L(e°) = {E} and L(ei+l) = L(e·ei) for i > 0. 

The constraints in PA TIERN are based on those used in 
CLP(l:.*) [Walinsky, 1989] which provides membership 
constraints on regular sets over a finite set r.. An important 
feature of CLP(l:.*) is that logic variables can be used to 
represent a named element of r.* in expressions. For 
instance, L(S·S) = { CJ·CJ I CJ e r.*}. The power of this 
feature becomes apparent when variables are used in more 
than one constraint. For instance, the pair of constraints 

[4] {Xe A,x,Wl, Ye W2·x·A} 

force X and Y to denote strings containing a distinguished 
'x', where X's prefix before the 'x' is the same as Y's suffix 
after the 'x'. 

Like Kaplan and Maxwell (1988], we interpret path 
equations of the form F(1t:e:p) = G('t) where 1t, p, and 'tare 
paths and e is a pattern expression, as the disjunction of 
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F(1t:cr:p) = G('t)l for each cr e L(e). The possibility of 
using variables as in (4) above gives PATIERN more 
power than Kaplan and Maxwell's formalism or 
REGDPATR [Carlson, 1988). 

PATTERN extends CLP{l:*) constraints in four ways. 
First, since PA TIERN uses components of strings in path 
expressions, the set l: over which strings range is the 
infinite set of all possible feature names. However, the 
complete set of features used in any particular PA~ 
description is finite, so we will assume later that l: 1s a 
finite set. Second, PA TIERN has the complement ~perator 
' -', where L(e1 - e2) = L(el) \L(e2) and L(-e) = l: \L(e). 
Third, PA TIERN has repetition expressions of the form el, 
where J is a non-negative integer. Fourth, PA TIERN has 
relational constraints (=, :;t, <, ~) on integer expressions 
which may involve string length expressions. 

The list constraints in Prolog III [Colmerauer, 1990) 
provide some functionality similar to the expressi?n 
constraints in PATIERN. Prolog III allows hst 
concatenation constraints and list length constraints. The 
main difference is that Prolog III uses equality and 
disequality constraints on list expressions directly (eg. X·Y 
= Z), instead of set membership constraints. 

Path patterns make it possible to represent disjunctive 
constraints on FSs. For instance, if X is a FS representing 
a list using the same scheme as in (2) above, the path 
equation (X(rest*:first) = Y} selects an e!ement out of ~e 
list and unifies it with Y. A more comphcated example IS 

( I ~ ISi ~ 4, S e rest*, X(S:first) = Y}, which unifies Y 
with the one of the second, third, fourth or fifth elements of 
X. When path patterns and constraints are used in 
conjunction with rules, fairly complicated data structure 
accesses and transformations can be succinctly described. 

1 . W e E +- in(E, W, 0). 

2 . in(E) ~ {var(E), !),prefix(E). 
3 . in(X) ~ {inl:(X)), [X]. 

4 . in(O) ~ []. 

5 . in([XIL]) ~ [X], in(L). 

6. in(El·E2) ~ in(El), in(E2). 
7. in(El+E2) ~ in(El) I in(E2). 
8. in(E*) ~ in([]) I in(E·E*). 
9. in(E+) ~ in(E·E*). 

10. in(EO) ~ []. 
11. in(EN) ~ {N > 0, M is N - 1}, in(E), in(EM). 

12. prefix([]) ~ [] . 
13. prefix([XIW]) ~ [X], prefix(W). 

Figure 1 Prolog code for PATIERN's membership constraints 

1 We use paths and strings of symbols interchangably. 

3 • An Experimental Implementation in 
Prolog 

The Pro log source code for PA TIERN' s set membership 
constraints is given in figure 12. The complement operator 
has not been implemented. However, negation of set 
membership constraints can be used in many instances 
where the complement operator is needed. 

Strings are represented by lists of terms, with [] 
representing the empty string E. For clarity, we have used 
the common mathematical notation as much as possible. 
To actually execute this program in a Prolog system, minor 
modifications would have to be made to remove special 
symbols and superscripts. 

The first line of the program is a clause which defines the 
set membership predicate ( e /2) in terms of the definite 
clause grammar (DCG) given in the remaining lines. Most 
Prolog systems automatically convert DCGs to Prolog; see 
[Sterling and Shapiro, 1986) for more details. 

The DCG defines how to parse a string according to an 
expression. The production on line 2 takes care of the case 
where the expression E is a variable. It binds E to some 
prefix of the string being parsed using the predicate prefi.x/3, 
defined by the productions given in lines 12 and 13. The cut 
is used in line 2 because variables are intended to have only 
the meaning defined by line 2, but would match all the other 
productions for in/3. The production on line 3 takes care of 
the case where the expression X is a constant in the set l: of 
terminal symbols. The predicate call inl:{X) simply tests 
that X is some non-variable term which is not a list and 
whose functor is not any of the ones · used to construct 
expressions (eg. not ·/2, +/2, *11 or +11). Lines 4 and 5 
cover the case where the expression is a string (represented 
by a list, as mentioned earlier) and ensure that the input 
string matches the expression. Lines 6 and 7 take care of 
the concatenation and alternation operators in the obvious 
way. Line 8 defines the Kleene closure operator in the usual 
recursive fashion and line 9 defines +11 in the standard way. 
Finally, lines 10 and 11 define repetition patterns 
recursively. 

String length constraints are implemented in a straight 
forward way by generating lists of variables with appropriate 
lengths. Then, these lists are matched with the strings to be 
constrained. 

Clearly, the power of PA TIERN constraints is far greater 
than that of regular constraints such as those in CLP(l:*) . 
Given an order on l:, the set of solutions for the variables in 
a set of constraints can be enumerated. However, this 
enumeration process is not guaranteed to terminate since 
many constraints have an infinite number of solutions. 

Walinsky (1989) proves for regular expression constraints 
over a finite set l: that constraints of the fonn O' e e have a 
finite number of solutions when either O' is a ground string 
or e contains no variables or closure operators. Still 
assuming l: is finite, this result can be generalized to where 
lcrl has a finite upper bound or e contains no variables, 

2we are indebted to Cliff Walinsky for making available a 
Prolog regular set membership constraint system on which this 
code is based. 



closure operators, or complement operators. For constraints 
with a finite set of solutions, it is safe to implement the 
complement operator using negation as failure [Lloyd, 
1984]. 

One way to implement PA TIERN constraints in a logic 
programming language like Prolog is to find a computation 
rule which delays evaluating constraints when they have an 
infinite number of solutions. As the previous discussion 
shows, this is possible for the kinds of constraints used in 
PATIERN system, though some programs may flounder in 
a manner similar to a safe implementation of negation as 
failure [Naish, 1985]. 

It is often possible avoid the floundering problem by 
setting bounds on the length of the strings generated by 
pattern expressions. In many cases, bound setting can be 
automated by analyzing PA TIERN rules and the input 
sentence. For instance, most PATTERN grammars which 
use lists represented by the scheme in [2] above will often 
only generate lists whose lengths are bounded by the size of 
the input sentence. These bounds can be used to constrain 
the length of strings generated by patterns such as rest*. We 
conjecture that this kind of analysis is sufficient for the 
effective use of most PATTERN grammars. 

PA TIERN is implemented by a simple modification to 
the left corner parser from [Gazdar and Mellish, 1989]. All 
that is necessary is to modify the third clause of the 
denotes/2 predicate to expand regular expressions embedded 
in paths using the in/3 predicate defined in figure 1. We 
have not implemented the specialized computation rule or 
automatic bound setting. For now, we use a global bound 
to limit the length of strings generated by all patterns. 

The computational complexity of analyzing sentences 
with PATTERN grammars is very high. Since PATR is 
Turing complete, the problem is undecidable in general. 
The problem of unifying disjunctive feature structures, 
which is subsumed by the problem of solving PATfERN 
constraints, is NP -complete [Kasper and Rounds, 1986]. 
However, in our experience, the time to analyze sentences 
using PATTERN grammars is similar to that of using plain 
PATR grammars. 

4 . Applications 

4 . 1 Anaphoric Dependency in Discourse 
Johnson and Klein [1986] show how a DCG formalism 
extended with FSs can be used to implement the theory of 
inter- and intra-sentence anaphoric dependency from 

W ~ { W:!ex = she, 
W:cat = np, 
W:sem:in:rest•: first = Space, 
W:syn:index = Space:rest•:first, 
W:syn:index:type = fem, 
W:sem:scope:in = W:sem:in, 
W:sem:out = W:sem:scope:out} . 

(a)PATTERN 
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Discourse Representation Theory. Figure 2 compares the 
PATTERN and DCG rules for the lexical entry for the word 
'she' . Johnson and Klein use both Prolog lists and FSs in 
their implementation, as well as calls to the Prolog predicate 
member/2. The calls to member/2 are used to select 
arbitrary appropriate referents for pronouns· in a list of 
enclosing spaces. In PATTERN, we formulate lists using 
the scheme of [3] and use constraints involving the pattern 
rest* to achieve the same effect as the calls to member. It 
should be noted that the third and fourth constraints in the 
PATTERN rule can be combined into one constraint: 

W:syn:index = W:sem:in:rest*:first:rest'" :first. 

Two constraints are used to correspond exactly with Johnson 
and Klein's rule, where two calls to member/2 are required. 

The remainder of the grammar given by Johnson and 
Klein is translated to PATTERN in a straight forward way, 
though some transformations are awkward. However, where 
PATTERN is awkward, Johnson and Klein use Prolog. We 
feel it is to PATTERN' s credit that Discourse 
Representation Theory can be expressed within it. Both 
grammars can be used to analyze discourses such as "A 
woman chased every donkey. Every boy saw her." to 
discover that 'her' refers to 'a woman' . They can also be 
used to discover that "A woman chased every donkey. Every 
boy saw it" is meaningless because 'it ' has no referent. 

4 . 2 Free Word Order 

In [Carlson, 1988], a REGDPATR description, called RUG, 
is given which can be used to analyze free word order 
languages. The rules in RUG set up a doubly linked list 
whose elements represent the words in the sentence. The 
list is constructed using the features 'left' and 'right' to 
indicate, respectively, the word to the left and right of the 
current word. Of particular interest in RUG is the use of 
regular path expressions to let verbs select their 
complements from an arbitrary length list. The list is stored 
an arbitrary number of list elements to the left or right of 
the list element for the verb. The key patterns used in paths 
are named AnyVComp, GrmFn and Domain. PATTERN 
can be used to elegantly implement RUG. AnyVComp, 
which is used to select an element out of a list, is the same 
as 'vcomp*• in PATTERN. GrmFn (for grammatical 
function) is the same as 'compl + comp2'. Domain, which 
is used to look one or more list elements to the left or right 
of the verb, is the same as 'left+ + right+•. 

w(W) ~ { W :lex = she, 
W:cat = np, 
member(Space, W:sem:in), 
member(NP:syn:index, Space), 
W:syn:index:type = fem, 
W:sem:scope:in = W:sem:in, 
W:sem:out = W:sem:scope:out}. 

(b) DCG with FSs 

Figure 2 Comparison of PA TIERN with DCG extended with FS 



174 

. · 1 

. I 

4. 3 Functional Uncertainty 
Kaplan and Maxwell [1988] give examples in Lexical 
Functional Grammar [Kaplan and Bresnan, 1982] which 
show how regular feature sets (under the name of"functional 
uncertainty") can be used to elegantly describe long distance 
dependencies. Here, we put these ideas into the more general 
PATTERN framework. A difficult problem in handling 
topicalized sentences is that there can be an unbounded 
number of nested clauses. For instance, Kaplan and 
Maxwell [1988] use examples of the form (Mary, John 
claimed that Bill said that ... that Henry telephoned 
yesterday). In PATTERN, the solution to this problem uses 
constraints of the form: (F(topic) = F(comp*:GF), GF e 
subj + obj + obj2 + xcomp}. The expression 'comp*' 
accesses an arbitrary embedded clause and the constraint 'GF 
e subj + obj + obj2 + xcomp' forces the variable GF to 
denote one of the primitive grammatical functions. We note 
in this context that our current PA1TERN implementation's 
global bound on string lengths seems physiologically 
plausible, since people can only keep track of a bounded 
number of dependencies. 

5. Discussion 

5.1 Comparison with REGDPATR 
There are two fundamental differences between PATTERN 
and REGDPATR. First, PATTERN as with most FS 
formalisms, uses only atomic symbols for features while 
REGDPATR allows FSs to act as features. We will call 
these FSs which act as features feature structured features 
(FSFs). In REG DP A TR, FSFs are interpreted as 
disjunctions of paths. Second, REGDPATR requires cyclic 
feature structures to implement the Kleene closure and 
iteration operators. For instance, the expression 'a*' in 
PATTERN is equivalent to the cyclic FSF 

.,{final:t] 
·1a:x 

in REGDPATR. When encountering this FSF during 
unification, REG DP A TR must transform it into a path. To 
do this, REGDPATR either takes the 'final' or the 'a' 
feature. Taking the former terminates the path and taking 
the latter adds an 'a' to the path and loops. 

From the description given in [Carlson, 1988], it appears 
that PATTERN can direct! y represent the pattern expressions 
available in REGDPATR. REGDPATR has patterns of the 
form (anyof A B), which are expressed by 'A + B' in 
PATTERN. REGDPATR patterns of the form (noneof A 
B), which require A and B to be atomic FSs, are generated 
by Sin (not Se A+B}. REGDPATR also has something 
described as "iteration of paths," which apparently means 
patterns of the form 'EN' or something like those generated 
by S in (2$;JSJ~. S in a*} in PATTERN. 

In conjunction with unification, REGDPATR uses "unit 
path unification" to search for alternative FSs which contain 
no FSFs. It should be noted that the unification/unit path 
resolution algorithm is incomplete in the sense that it may 
fail to detect that two feature structures are not unifiable. 
This is similar to the fact that our implementation of 
PA TIE RN, when augmented with a termination safe 

computation rule, may terminate with floundered constraints 
which may be inconsistent 

5.2 Conclusion 
The PATTERN formalism can be used to elegantly describe 
a variety of linguistic phenomena. Its pattern expressions 
and string constraints make it especially suited for describing 
disjunctive sets of FSs and access and transformation 
operations on data structures. PA 1TERN' s basis in formal 
language theory gives its constructs a well defined 
declarative semantics and a concise understandable 
mathematical notation. Though the formalism is so 
expressive that its implementation may have termination 
and efficiency problems, we argued that it can be 
implemented to perform reasonably well for practical 
purposes. Our initial experience with an experimental 
implementation of PATTERN supports this conjecture. 
Thus, we conclude that the PATTERN formalism is worthy 
of further study. 
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Abstract 

This paper presents several investigations into 
the prospects of identifying meaningful stru~­
tures in empirical data, structures that permit 
effective organization of the data to meet re­
quirements of future queries. We propose a 
general framework whereby the notion of .i~en­
tifiability is given a precise formal definition, 
similar to that of learnability. Using this frame­
work, we then address the problem of express­
ing a given relation as a k-Horn theory and, 
if this is impossible, finding a best k-Horn ap­
proximation to the given relation. 

1 Introduction 
Discovering meaningful structures in empirical data has 
long been regarded as the hallmark of s~ientific ac~ivity. 
Yet despite the mystical aura surroundmg such discov­
erie~ we often find that computational considerations of 
efficiency and economy play a major role in determining 
what structures are considered meaningful by scientists. 
Along this vein, we address the task of finding a com~u­
tationally attractive description of the data, a descrip­
tion that, both, is economical in storage, and permits 
future queries to be answered in a tractable way. 

Invariably, the existence of such a desirable descrip­
tion rests on whether the dependencies among the data 
items are decomposable into local, more basic depen­
dencies, possessing some desirable features. A. classi~al 
example would be to find a finite state machme (with 
the least number of states) that accounts for observed 
dependencies among successive symbols in a very long 
string. In more elaborate settings the dependencies can 
form a graph ( as in the analysis of Markov fields) or a 
hypergraph (as in relational databases), and the task is 
to find the topology of these structures. Structure iden­
tification includes such tasks as finding effective repre­
sentations for probability distributions, finding econom­
ical decompositions of database schema, finding simple 
Boolean expressions for truth tables, or finding logical 
theories that render subsequent processing tractable. 

·This work was supported in part by the Air Force Office 
of Scientific Research, AFOSR 900136 and by NSF grant IRI-
9157936. 

Judea Pearl 
Cognitive Systems Laboratory 
Computer Science Department 
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judea@cs. ucla. edu 

Despite the generality of the task at hand, very few 
formal results have been established, and these were pri­
marily confined to probabilistic analysis [Chow and Liu, 
1968· Pearl and Verma, 1991]. In this paper we focus 
on c~tegorical data and categorical descripti~n.s ~f ~he 
data. Given a relation p in the form of an explicit hstmg 
of the tuples of p, we ask whether we can find a more 
desirable description of p, say a constraint network pos­
sessing desirable topological features, or a logical theory 
possessing desirable syntactic features ( e.g., Horn theo­
ries) . The former is treated in a recent report [Dechter 
and Pearl 1991] and the latter in section 3. In both 
cases the clesirable features would be such that facilitate 
efficient query processing routines. 

We view this task as an exercise in automatic iden­
tification, because our main concern will be_ to recog­
nize cases for which desirable descriptions exist and to 
identify the parameters of at least one such d~scrip_tion . 
Thus, we explore the existence of a tractable identifica­
tion procedure that takes data as input, returns a theory 
and works in time polynomial in the size of the input . 
Given that the data was generated from a theory that 
has a desirable structure, our procedure should identify 
the underlying structure if it is unique, or an equivalent 
structure in case it is not unique. Conversely, if the data 
does not lend itself to effective organization, we wish our 
procedure to acknowledge this fact, so as to save further 
explorations. An additional requirement is sometimes 
imposed on the procedure, to identify a " best" approxi­
mated theory, in case an exact desirable theory does not 
exist . We call this latter requirement "strong identifia­
bility" . 

Our analysis bears close relationships to that of Sel­
man and Kautz [Selman and Kautz, 1991], where theory 
formation is treated as a task of "knowledge compila­
tion". The main difference between the two approaches 
is that Selman and Kautz begin with a preformed theory 
in the form of a (reasonably sized) set of clauses, while we 
start with the bare observations, namely, a (reasonably 
sized) set of tuples which represent the models of the 
desired theory. This enables us to easily project the re­
lation onto subsets of variables and solve subtasks which 
would be intractable had we started with a clausal the­
ory. Another difference is that we require definite de­
termination of whether the theory approximates or de­
scribes the data. 



This paper is organized as follows : Section 2 intro­
duces a general framework of the identification task . We 
define weak and strong notions of identifiability and com­
pare them to Valiant's [Valiant, 1984] notion of learn­
ability using familiar examples. Section 3 focuses on 
identifying Horn theories and shows that k-Horn theo­
ries (in which every clause contain at most k literals) can 
be identified and updated in polynomial time, when k is 
bounded. All theorems will be stated without proofs, 
which can be found in [Dechter and Pearl, 1991]. 

2 Preliminaries and Basic Definitions 

2.1 Theories: Networks and Formulas 

We denote propositional symbols, also called variables, 
by upper case letters P, Q, R, X, Y, Z, ... , propositional 
literals (i.e . P, -iP) by lower case letters p, q, r, x, y, z, ... 
and disjunctions of literals, or clauses, by a, /3 .... The 
complement operator "' over literals is defined as usual: 
If p = -,Q, then - p = Q, If p = Q then - p = -,Q. 
A formula in conjunctive normal form (CNF) is a set of 
clauses, <p = {a1, ... , C¥t} and it denotes their conjunc­
tion. The models of a formula <p, M(cp), is the set of all 
satisfying truth assignments to all its symbols. A clause 
a is entailed by <p, written <p F a, iff a is true in all 
models of <p. A clause a is a prime implicant of <p iff 
<p F a and /3/3 ~ a s.t. <p F /3. A Horn formula is a 
CNF formula whose clauses all have at most one posi­
tive literal. A k-CNF formula is one in which clauses are 
all of length k or less, and a k-Horn formula is defined 
accordingly. 

Given a clause a we denote by base(a) the set of all 
propositional symbols on which a is defined. For in­
stance, if a= {P V -iQ V R} then base(a) = {P, Q, R}. 
To characterize the structure of a formula <p we define 
its scheme to be the set of variables on which clauses are 
defined . Formally: 

Definition 1 (Scheme) 
Let <p = cp(x1, ... ,xn) = {a1, .. ,,ar}, then 

scheme(cp) = {base(ai)ll S j Sr}. (1) 

Example 1 Consider the formula 

<p = {(-iPV Q V R), (PV S), (-iPV-iS), (-iPV R)} . (2) 

In this case, 

scheme(cp) = {{P, Q, R}, {P, S}, {P, R}}, (3) 

We next define the notions of constraint networks and 
relations which parallel the notions of formulas and their 
satisfying models for the case of multi-valued variables. 
A relation associates multi-valued variables with a set of 
tuples specifying their allowed combinations of values. A 
constraint network is a set of such relations, each defined 
on a subset of the variables and, together, are taken as 
conjunction of constraints, namely, they restrict value 
assignments to comply with each and every constituent 
relation. The theory of relations was studied extensively 
in the database literature [Maier, 1983]. 

Definition 2 (Relations and Networks) 
Given a set of multi-valued variables X = {X1 , ... , Xn}, 
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each associated with a domain of discrete values, 
D1, ... , Dn, respectively, a relation or a constraint 
p = p(X1, ... , Xn) is a subset of value assignments to 
the variables in X, 

p= {(x1, .. ,,xn)l(x1, .. ,,xn) E {D1xD2x ... xDn}}. (4) 

A constraint network over X, N(X), consists of a 
set of such relations Pl, ~ .. , Pt each defined on a subset 
of variables S1, .. 1 St,Si ~ X. The set S = {S1 , .. ,St} 
is called the scheme of the constraint network, denoted 
scheme(N). The network N represents a unique relation 
rel( N) defined on X, which stands for all consistent as­
signments, namely: 

rel(N) = {x =(xi, ... , Xn) I VS; ES, Ils,(x) E pi}. (5) 

where Ils, (x) denotes the projection of x onto S; ~ X. 
If rel(N) = p we say that N describes p. 

Clearly, any CNF formula can be viewed as a spe­
cial kind of constraint network, where the domains 
are bi-valued, and where the models of each clause 
specify a constraint on the variables contained in that 
clause. Accordingly, we say that a bi-valued relation 
p = p(X1, ... , Xn) is described ( or represented) by a 
formula <p = cp(x1, ... , Xn) iff M(cp) = p. We will use the 
term theory to denote either a network or a formula and, 
correspondingly, use scheme(T) and M(T) (or rel(T)). 

When considering ways of approximating a relation p 
by a theory T we will examine primarily upper bound 
approximations, namely, theories T such that p ~ M(T). 

Definition 3 A theory T E C is said to be a tightest 
approximation of p relative to a class C of theories if p ~ 
M(T), and there is no T' E C such that p ~ M(T' ) C 
M(T). 

Example 2 The following relation: 

P1 Q1 R1S 
1 0 1 0 
1 1 1 0 
0 1 0 1 
0 0 1 1 
0 1 1 1 
0 0 0 1 

can be defined by the network: 

P,Q,R 
T7fT 
1 1 1 
0 1 0 
0 0 1 
0 1 1 
0 0 0 

P,S 
01 
1 0 

P,R 
IT 
0 1 
1 1 

Being bi-valued, this relation can also be described by the 
formula: 

<p = {(-, P V Q V R) , ( P V S) , (-, P V -, S), (-, P V R)} . ( 6) 

2.2 Identifiability 

We are now ready to give a formal definition of iden­
tifiability - a property intrinsic to any class of theories 
and which governs our ability to decide whether a given 
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l 7 ~elation p has a description within the class or not. As 
a preliminary and trivial example, we will then show 
(in subsection 2.4) that the class of k-CNF formulas is 
identifiable only for k = 2, namely, there is no tractable 
way of deciding whether an arbitrary relation p has a 
description as a k-CNF formula, unless k = 2. The class 
of 2-CNF theories, however, will turn out to be strongly 
identifiable, namely, not only can we decide the existence 
of a 2-CNF description, but we can also produce such a 
description if it exists, or, produce the tightest 2-CNF 
theory if a precise description does not exists (hence the 
term "strong" . ) 

To motivate the definition below we should notice that 
the decisions above depend on what we know apriori 
about the observed relation p. For example, were we 
given assurance that p has a description in k-CNF, it 
would be easy to produce one such a description. Thus, 
it is necessary to define the notion of identifiability rela­
tive to a background class C' of theories from which p is 
chosen. We will adopt the convention that unless stated 
otherwise, C' is presumed to be the class of all theories, 
namely, p is arbitrary. 

Definition 4 : (Identifiability) 
A class of theories C is said to be identifiable relative 
to a background class C', iff: 

1. (Recognition) For every relation p that is describ­
able by some theory T in C', there is an algorithm 
A, polynomial in IPI, that determines if p has a de­
scription in C, and 

2. (Description) If the answer to {1} is positive, A 
finds one theory of T E C that describes p, (i, e., 
p = M(T)) 
C is said to be strongly identifiable if, in addition 
to (1) and (2) above: 

3. (Tightness) A always finds a theory To in C that is 
a tightest approximation of p. 

By convention, a class in which the recognition or 
description tasks are NP-hard will be defined as non­
identifiable. Note however that the complexity of A is 
measured relative to the size of p, and not relative to 
the size of its description T. Thus, the notion of identi­
fiability will be applicable to highly constrained theories 
where the number of distinct observations grows polyno­
mially with the number of variables. 

2.3 An example: Identifiability of k-CNF 
theories. 

Let C' be the set of all theories defined on n binary vari­
ables. Consider whether the class C-1c C C' of relations 
expressible by k-CNF theories is identifiable relative to 
C'. Although we have algorithms for meeting require­
ment (3) ( and hence (2)) of constructing a tightest k­
CNF approximation for any given relation p, we do not 
have an effective way of testing whether this approxi­
mation represents the relation p exactly, or a superset 
thereof. Even generating a single model of a tightest k­
CNF theory is an NP-hard problem for k > 2. We thus 
conclude that C1; is not identifiable1 . 

1 The non-existence of a tractable procedure for testing 
exact match with p is based on an unpublished theorem con-

Now consider the case where the background class 
C' is known in advance to consist of k-CNF theories, 
namely, p has a k-CNF description . It is easy then to 
identify one k-CNF theory which describes p. We sim­
ply project p onto every subset of k or less variables 
and, for every r-tuple t, (r::; k) that is not found in the 
projection of p on X 1 , X 2 , ... , X r we introduce the clause 
(x1 V x2 V ... xr), with x; being a positive literal iff Xi is 
false int. This can be accomplished in time proportional 
to IPl(2n)k. 

The theory found can be shown (see section 3) to be 
a tightest approximation of p relative to C1; and, since p 
is assured to have a description in Ck, this theory must 
be a precise description of p. We thus conclude that C1o 
is strongly identifiable relative to itself. 

As a final variant of this example, consider the class 
of 2-CNF theories. This class is identifiable relative to 
any arbitrary C', and the reason is as follows: Given an 
arbitrary relation p, we can find a tightest 2-CNF ap­
proximation r of p by the projection method described 
above. There remains to determine whether r represents 
p precisely. This last task can be accomplished by sim­
ply comparing the size of M ( r) to that of p. If the two 
sizes are equal, r is obviously a description of p, because 
M(r) contains p. The distinct feature that renders 2-
CNF theories identifiable ( unlike k-CNF, k > 2) is the 
tractability of the size-comparison task. A recent result 
[Dechter and Itai, 1991] states that for every theory T 
satisfiable in time t, deciding whether IM(T) I > c takes 
time O(ct). Now , since 2-SAT is satisfiable in polyno­
mial time, testing M( r) > IPI can also be accomplished 
in polynomial time. 

2.4 Identifiability vs. Learnability 

There is a strong resemblance between the notion of iden­
tifiability and that of learnability [Valiant, 1984]. If we 
associate theories with concepts ( or functions) and the 
models of a theory with the learning examples, we see 
that in both cases we seek a polynomial algorithm that 
will take in a polynomial number of examples and will 
produce a concept ( or a function) consistent with those 
examples, from some family of concepts C. Moreover, it 
is known that in order for a family C to be learnable 
(with one-sided errors) it must be closed under intersec­
tion, and the algorithm must produce the tightest con­
cept in C consistent with the observations [N atarajan, 
1987]. This is identical to condition (3) of strong identi­
fiability. 

The main difference between the problems described 
in this paper and those addressed by Valiant's model of 
learning is that in the latter we are given the concept 
class C and our task is to identify an individual mem­
ber of C that is (probably) responsible for the observed 
instances (in the sense of assuming a small probability 
of error on the next instance). By contrast, in struc­
ture identification we are not given the concept class C. 
Rather, our objective is to decide whether a fully ob­
served concept p, taken from some broad class C' (e.g., 
all relations) is also a member of a narrower class C 

veyed to us by J. Ullman. 



of concepts, one that possesses desirable syntactical fea­
tures (e.g., 2-CNF, a constraint-tree, or a Horn theory). 
Thus, the task is not to infer the semantic extension of a 
concept from a subset of its examples (the entire exten­
sion is assumed to be directly observed), but to decide 
if the concept admits a given syntactical description. 

It turns out that deciding whether the tightest approx­
imation exactly describes a given concept, even when the 
concept is of small size, might require insurmountable 
computation; a problem not normally addressed in the 
literature on PAC learning. 

The differences between learnability and identifiabil­
ity can be well demonstrated using our previous example 
of the class Ck of k-CNF theories. We have established 
earlier that while Ck is not identifiable relative to the 
class C' of all relations, it is nevertheless strongly identi­
fiable relative to C' = Ck. By comparison the class Ck is 
known to be polynomially learnable [Valiant, 1984] since, 
given a collection of instances I of M ( <p), one can find 
in polynomial time the tightest k-CNF expression that 
contains I (see section 3.1). The fact that Ck is not iden­
tifiable is not too disturbing in PAC learning tasks, be­
cause there we assume that the examples must be drawn 

. from some k-CNF theory, so in the long run, the tight­
est k-CNF approximation to <p will eventually coincide 

· with the theory from which <pis drawn. However, non­
identifiability could be very disturbing if the possibility 
exists that the examples are taken from a theory outside 
Ck. In this case the tightest k-CNF theory consistent 
with the examples might lead to substantial ( one-sided) 
errors. 

In general, if we set C' = C, then, if C is learnable, it 
must also be strongly identifiable, because condition (1) 
is satisfied automatically, and the learnability require­
ment of zero error on negative examples is equivalent to 

, (3). (Note that since the learner is entitled to observe 
the entire concept, the PAC requirement of limited er­
ror plays no role in identifiability tasks.) However, there 
are concept classes that are identifiable but not learn­
able under the condition C' = C, a simple example of 
which is the class of constraint trees. This class is not 
learnable because it is not closed under intersection, still, 
it has been shown to be identifiable [Meiri et al., 1990; 
Dechter, 1990; Dechter and Pearl, 1991] . The same ap­
plies to star-structured networks. On the other hand, 
chains and k-trees are not identifiable [Dechter and 
Pearl, 1991]. 

3 Identifying Horn theories 

In general , determining whether a given query formula 
follows from a given CNF formula is intractable. How­
ever, when the latter contains only Horn clauses the 
problem can be solved in linear time [Dowling and Gal­
lier, 1984]. Moreover, experience with logic program­
ming and databases suggests that humans find it natural 
to communicate knowledge in terms of Horn expressions. 
Thus, it would be useful to determine whether a given 
set of observations (the data p) can be described as a 
Horn theory. 

The tractability of Horn theories stems not from the 
topology of the interactions among their clauses but, 

rather, from the syntactic restriction imposed on each 
individual clause. However, there are several impedi­
ments to the prospects of identifying general Horn the­
ories. First, Selman and Kautz have shown that finding 
a tightest Horn approximation to a given CNF formula 
is NP-hard [Selman and Kautz, 1991]. All indications 
are that starting with a given relation does not make 
this task any easier. Second, Selman and Kautz also 
observed that some CNF theories can be converted into 
Horn expressions only after invoking exponentially many 
clauses (in the size of the source theory). In such cases 
it will be futile to use the Horn theory instead of the 
observations themselves. The more practical question to 
ask then is whether a given relation can be described as 
a Horn theory of a reasonable size. To that end, we first 
analyze the identifiability of k-Horn formulas, namely, 
Horn formulas in which every clause contains at most k 
literals , and then extend the results to Horn theories of 
limited overall size. We start by analyzing general CNF 
formulas parameterized by their scheme. 

3.1 Canonical and Maximal Formulas 

Paralleling the multi-valued case, we will first extend 
the auxiliary notions of projection network and minimal 
network to those of projection formula and maximal for­
mula. 

Definition 5 Let p be a bi-valued relation over X = 
X1, ... , Xn, We define 
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canonical(p) = {(- X1 V"' x2V .. . V"' Xn)l(x1, X2, ... , Xn) (/. p} 
(7) 

Example 3 Let p(P, Q, R) = {(100), (010), (001)} . 
Then, canonical(p) = {(-iP V -,Q V R), (P V -,Q V 
-iR), (-iP V Q V -iR), (P V Q V R), (-iP V-iQ V -iR}. 

Similarly, 

Definition 6 Given a constraint network N 
{pi, .. ,,Pt }, we define canonical(N) as the formula gen­
erated by collecting the canonical formulas of every con­
stituent relation in N. Namely, 

canonical(N) = U{canonical(p;)lp; EN}. (8) 

Clearly, M(canonical(p)) = p, and M(canonical(N)) = 
rel(N) . 

We are now ready to extend the notion of projection 
network to a projection formula: 

Definition 7 Given a relation p and a scheme S, the 
projection formula of p w.r.t S, denoted fs(p), is 
given by: 

fs(p) = canonical(ITs(p)). (9) 
Theorem 1 Let Fs be the class of CNF formulas having 
scheme S. The formula rs (p) is a tightest approxima­
tion of p relative to Fs. 

Paralleling the notion of minimal networks in multi­
valued relations, we will now show that among all formu­
las <pin Fs that are equivalent to fs(p), fs(p) is max­
imal w.r .t . the partial order ~ defined by set inclusion 
(of clauses). Clearly the class Fs is closed under union. 
The next theorem proves that among all equivalent for­
mulas in Fs, fs(p) is the unique maximal formula. 



.1 

180 
Theorem 2 Let <p, r E Fs and let p = M(<p), then 

1. <p~r~<pUr~<p 

2. There exists a unique maximal (w. r. t c; ) formula 
µs representing p given by µs = rs (p) . 

A clause that contains another is clearly redundant, 
hence we prefer to consider formulas in reduced form : 

Definition 8 A formula <p is reduced if none of its 
clauses contains another. The formula obtained af­
ter eliminating clause subsumption from <p is denoted 
reduced( <p) . 

Theorem 3 Let µs be a maximal formula of some rela­
tion, then reduced(µs) contains all and only the prime­
implicants of µs that are restricted to the subsets in s. 

3.2 k-Horn formulas 

We now restrict our attention to k-Horn formulas and 
their identifiability. We will first present a tractable al­
gorithm for generating the maximal tightest k-Horn ap­
proximation to a given relation, followed by a tractable 
test for exactness. 

Let s•k denote the set of all subsets of X of size k or 
less. Our algorithm can be stated as follows: Given a 
relation p on n variables and a constant k, generate the 
formula r s•k (p) and throw away all non-Horn clauses. 
We claim that the resulting Horn theory is a tightest k­
Horn approximation of p. Since, as we will show, this is 
also the longest form of the tightest approximation, we 
then generate its equivalent reduced version . To test if 
the resulting Horn theory represents p exactly, we enu­
merate its models and test that no one lies outside p. A 
formal justification to this process is given in the follow­
ing paragraphs. 

Given a formula <p, we denote by Horn( <p) the formula 
resulting from eliminating all non-Horn clauses from <p. 

Theorem 4 Let p be an n-ary bi-valued relation, k a 
constant, 1r = fs•k(p) and "1 = Horn(1r). Let Hk be the 
family of k-Horn formulas, then, 

1. "1 is a tightest k-Horn approximation of 1r. 
2. "1 is maximal w.r.t. Hk . 

3. Both "1 and reduced(ry) are tightest k-Horn approx­
imations of p . 

4. if M(ry) :J p, no k -Horn formula describes p. 

5. reduced(ry) equals the set of all k-Horn prime­
implicants of "1 · 

Theorem 4 implies that the algorithm given below 
which generates the formula reduced( H orn(f s•k (p))), is 
guaranteed to return a tightest k-Horn approximation of 
p. The algorithm also returns a statement as to whether 
the formula found is an exact representation of p. 

Algorithm Horn-generation(p, k) 
Input: a relation p(X1, ... , Xn) and an integer k. 
Output: A k-Horn formula describing p or a k-Horn tightest 
approximation of p. 

1. begin 

2. generate 71' ¢= r s•k (p) (by projecting p on all subsets 
and performing the canonical transformation) 

3. Letµ.¢= Horn(11') (by eliminating all non-Horn clauses 
from 11') . 

4. r, ¢= reduced(µ.) . (by eliminating subsumptions) 

5. Sequentially enumerate the models of r,, { m1, m2, ... }, 
using the method in [Dechter and Itai, 1991], and 

• If for some i :5 jpl, m; (j p, or if M(r,) contains 
more than !Pl elements, then return: "r, is a tightest 
k-Horn approximation." else, return: "r, describes 
p" . 

6. end. 

In [Dechter and Itai, 1991] we showed that the models of 
a Horn formula can be enumerated in time iinear in the 
number of models and the size of the formula. However , 
in the above algorithm we do not need to compute more 
then !Pl models, thus this computation is bounded by 
IPI, 

To summarize: 

Theorem 5 Algorithm Horn-generation provides a 
tightest k -H orn approximation of an arbitrary relation p . 
Moreover, this approximation equals the k -Horn prime­
implicants of p. D 

Example 4 Consider again the relation 

and let k = 2. We have 

PQR 
1 0 0 
0 1 0 
0 0 1 

PQ 
To 

ITs• l (p) =O 1 
0 0 

PR 
1 0 
0 1 
0 0 

RQ 
To 
0 1 
0 0 

and P = {O, 1}, Q = {O, 1}, R = {O, 1} . When applying 
the canonical transformation to each of these relations 
we get the ( already reduced) formula : 

fs• l (p) = {(-.P V -.Q), (-.P V -.R), ((-.RV -.Q)} . 

Since this is a Horn formula we do not throw clauses 
away. Computing the number of models of this theory 
yields 4 models (there is an additional (0,0,0) tuple), thus 
we conclude that the formula is a tightest 2-H orn approx­
imation of p, and that pis not 2-Horn identifiable. If we 
generate the 3-Horn approximation for p we get the same 
formula . (The reason being that in this case, the 2-H orn 
approximation already contains all its Horn-prime im­
plicants.) Going through the Horn-generation algorithm, 
step 2 yields: 

fs.a(p) = {(-.P V -.Q V R), (P V -.Q V -.R), (-.P V Q V . 

(P V Q V R), (-.P V -.Q-.R), (-.P V -.Q), (-.P V -.R), -.R V -

Step 3 eliminates the only non-Horn clause: (P V Q V R) 
and the result of further eliminating subsumptions is the 
same formula: 

Horn(reduced(fs•a(p))) = {( -.Pv-.Q), (-.Pv-.R) , -.Rv-.Q: 
(10) 



This suggests an anytime variation of our algorithm. 
Instead of applying the algorithm to all subsets of size k, 
we first apply the algorithm to subsets of size 2, then add 
the result of processing subsets of size 3, and so on, until 
we get a satisfying approximation. The next theorem 
assesses the complexity of our transformation and the 
size of its resulting Horn theory. 

Theorem 6 (complexity) 

1. The length (number of clauses) of 
reduced(Horn(I's•k(p))) is O(knk+ 1

). 

2. The complexity of Horn-generation(p, k) is 
O(nk((k + l)jpj + 2k)). 

Another important variant of the method described 
above is its on-line version, which is useful for stream 
processing. Assume the tuples of p are not available all 
at once, but are obtained sequentially as a stream of 
observations, normally containing many repetitions. In 
this case it might be advantageous to store a parsimo­
nious theory of past data, rather than the data itself, 
and to update the theory incrementally whenever an ob­
servation arrives that contradicts the theory. 

Assume we are given a theory h which is a tightest 
k-Horn approximation of all past data, p, and a new tu­
ple t arrives that contradicts h . In principle, updating 
h requires finding a tightest k-Horn theory that agrees 
with p U { t} . but, since p is no longer available, the best 
we can do is to find a tightest k-Horn approximation of 
M(h) U {t}. Fortunately, since Hk is closed under inter­
section, we are guranteed that the two approximations 
are equivalent, namely, no information is lost by storing 
h instead of the exact stream of past observations. 

The next theorem states that updating h can be done 
in polynomial time. Although each update may, in the 
worst case require as many as 0( nk+l) steps, it is nev­
ertheless polynomial, and is more efficient than approx­
imating p U { t} from scratch when the size of p is expo­
nential in n . 

Theorem 7 Incremental updating of best k-Horn ap­
proximations takes 0( nk+1) steps per update. 

Clearly, the facility for incremental on-line updating 
would be useful only when the size of p is the main factor 
that limits our ability to find a useful description of the 
data. 

3.3 Extensions to general Horn formulas 

A recent algorithm by [Angluin et al., 1990) permits us to 
extend the results of the last section to the identification 
of Horn theories of size q( n), for any fixed polynomial q. 2 

The algorithm of Angluin et al. exactly learns Horn the­
ories from equivalence queries and membership queries. 
An equivalence query is a conjectured Horn theory, and 
the response by the teacher is a counterexample to the 
correctness of the conjectured Horn theory (i .e. an as­
signment that satisfies the correct theory but not the 
conjectured theory, or vice versa). In the case that there 
are no counterexamples, then the learning algorithm has 
succeeded in identifying the correct theory. Membership 

2This possibility was brought to our attention by an 
anonymous reviewer of (Dechter and Pearl, 1991]. 

queries allow the algorithm to ask if a given assignment 
satisfies the target (i.e., correct) Horn theory, and it is 
answered yes or no by the teacher. 

To be able to answer equivalence queries in polynomial 
time , Angluin et al. assumed that the target theory is 
Horn (in general, testing equivalence of two given theo­
ries is intractable) . If we are given a relation p, then 
we can answer equivalence queries and provide coun­
terexamples in polynomial time even when p is non­
Horn. Given a conjectured Horn theory H, we first 
check that every tuple of p satisfies H . If not, we return 
the unsatisfying tuple as a counterexample. Otherwise , 
M(H) contains p, and we then determine whether or 
not M(H) = p by the polynomial enumeration method 
of [Dechter and Itai, 1991). 

Thus, since we can polynomially answer the two basic 
queries of Angluin's learning algorithm, the algorithm 
must output an exact Horn representation of p if one 
exists. To determine whether or not one exists of size at 
most q(n), we can run the algorithm for t(n, q(n) time, 
where t(n, k) is the time needed by the algorithm to ex­
actly learn a Horn theory of size k over n variables. If the 
algorithm succeeds in exactly learning p within t ( n, q ( n)) 
time, then there clearly is a Horn theory for p of size at 
most q(n). Otherwise, there is not. Of course, in this 
case the algorithm does not supply a tightest Horn ap­
proximation, and the strong identifiability of q(n)-Horn 
theories remains an open problem. 

4 Conclusions 

This paper summarizes several investigations into the 
prospects of identifying meaningful structures in empiri­
cal data. The central theme is to identify a computation­
ally attractive description, in cases where the observed 
data possess such a description and a best approximate 
description otherwise. This feasibility of performing this 
task in reasonable time has been given a formal definition 
through the notion of identifiability, which is normally 
weaker (if C' = C) than that of learnability. 

In a related paper [Dechter and Pearl, 1991) we have 
explored more generally the decomposition of data into 
a given scheme of smaller relations, as illustrated in Sec­
tion 2.3. It can be shown that, whereas a best ap­
proximation can be found, it is only in cases where 
the scheme is intrinsically tractable (e.g., 2-CFN) that 
we can (tractably) decide if the resulting approximation 
constitutes an exact representation of the data. The de­
composition of data into a structure taken from a class 
of schemes turned out to be a harder task, intractable 
even in cases where each individual member of the class 
is tractable. The class of tree-structured schemes is an 
exception. Here it was shown that an effective procedure 
exists for determining whether a given relation is decom­
posable into a tree of binary relations and, if the answer 
is positive, identifying the topology of such a tree. The 
procedure runs in time proportional to the size of the 
relation, but it is still an open question whether it pro­
vides the best tree-structured approximation in case the 
answer is negative. 

Focusing on bi-valued data, this paper has explored 
the identification of descriptions whose tractability stems 
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from syntactical rather than structural features. In par­
ticular, we showed that k-Horn theories can be identified 
in polynomial time, when k is bounded. Finally, the pa­
per presents both any-time and on-line algorithms for 
identifying Horn theories. 

An important issue that was not dealt in this paper is 
assessing the goodness of the approximations provided 
by k-Horn theories. Another question is the feasibility 
of constructing both an upper bound and a lower bound 
approximations of p, in the manner discussed in [Selman 
and Kautz, 1991] and also in [Dechter, 1990]. Finally, 
we should mention that the methods presented in this 
paper will also handle partial observations, namely, ob­
servations of truncated tuples of p. 
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Abstract 

This paper focuses on network default theo­
ries. Etherington [Etherington, 1987] has es­
tablished a correspondence between inheritance 
networks with exceptions and a subset of Re­
iter's default logic called network default the­
ories, thus providing a formal semantics and a 
notion of correct inference for such networks. 
We show that any such propositional network 
default theory can be compiled in polynomial 
time into a classical propositional theory such 
that the set of models of the latter coincides 
with the set of extensions of the former. We 
then show how constraint satisfaction tech­
niques can be used to compute extensions and 
to identify tractable network default theories. 
For any propositional network theory, our algo­
rithms compute all its extensions and verifies if 
a given conclusion is in one or all extensions. 

1 Introduction 

Research in multiple inheritance networks has focused 
on two main issues: developing fast algorithms that will 
operate on the network links to produce conclusions that 
match our intuition, and providing formal semantics for 
such networks. Clearly, the second is crucially important 
for adequate evaluation of the correctness of the first. 

Etherington [Etherington, 1987] had approached the 
semantic issue by formalizing inheritance networks, 
called network default theories, within Reiter's default 
logic. While his framework has been criticized for de­
manding all exceptions be listed explicitly, his approach 
is still valuable in that it embeds the notion of inheri­
tance within this general and widely studied framework 
of default logic. 

Our paper focuses on the computational aspects of 
such network theories. We first present a necessary and 
sufficient condition for their coherence, namely, for de­
ciding whether or not they have an extension. Then, 
using constraint satisfaction techniques, we present effec­
tive schemes for computing the extensions for any such 
network. In contrast, Etherington's procedure is only 
applicable to a subclass of networks theories called "or­
dered network theories". Moreover, the complexity of 
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our schemes is related to the sparseness of the networks, 
as captured by the parameter of induced width. 

The approach leading to these results has already been 
applied to the subclass of propositional disjunction-free 
semi-normal default theories [Ben-Eliyahu and Dechter, 
1991a]. We have shown there that any such default the­
ory can be compiled in polynomial time into a proposi­
tional theory, such that each of its models corresponds 
to an extension of the default theory. Constraint net­
work techniques are then applied to compute extensions 
and to identify, analyze and solve tractable subclasses of 
this default logic. A generalization of this approach to 
network theories requires allowing size-two disjunctions 
in the default theory. 

Our results pave the way for applying constraint net­
works techniques to logic programming as well since it 
has been shown that there is a one-to-one correspon­
dence between stable models of logic programs and ex­
tensions of each of their default interpretations [Gelfond 
and Lifschitz, 1990]. Elkan [Elkan, 1990] has also shown 
that stable models of a logic program with no classical 
negation can be represented as models of propositional 
logic. 

The paper is organized as follows: in section 2 we 
briefly introduce default logic and inheritance networks. 
In section 3 we describe how tasks of default theories are 
mapped into equivalent tasks in propositional logic. This 
mapping is exploited in section 4 where we present new 
procedures for query processing and identify tractable 
classes using constraint networks techniques. Section 5 
provides concluding remarks. Due to space considera­
tions all proofs are omitted. For more details see [Ben­
Eliyahu and Dechter, 1991b]. 

2 Default logic and inheritance 
networks 

2.1 Reiter's default logic 

Following is a brief introduction to Reiter's default logic 
[Reiter, 1980]. Let .C be a first order language. A default 
theory is a pair 6. = (D, W), where Dis a set of defaults 
and W is a set of closed wffs ( well formed formulas) in 
.C. A default is a rule of the form a : /31 , ... , f3n/'Y , where 
a, /31 , .. . f3n and, are formulas in .C. The intuition behind 
a default can be: if I believe a, and I have no reason to 
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believe that one of the (3; is false, then I can beheve ,. 
A default a: (3/, is normal if,= (3. A default is semi­
normal if it is in the form a : (3 I\ 1 h . A default theory 
is closed if all the first order formulas in D and W are 
closed. 

The set of defaults D induces an extension on W. In­
tuitively, an extension is a maximal set of formulas that 
can be deduced from W using the defaults in D. Let 
Th(E) denote the logical closure of E in .C. We use the 
following definition of an extension: 
Definition 2.1 {[Reiter, 1980],theorem 2.1) Let E ~ .C 
be a set of closed wffs, and let b. = (D, W) be a closed 
default theory. Define1 

• Eo = W 
• For i ~ 0 E;+1 = Th(E; ) LJ {'r la: f31, ... , f3nh ED 

where a E E; and -,(31, ... -,f3n t E}. 
E is an extension for b. iff for some ordering E = 
LJ:0E; D 

Most tasks on a default theory b. can be formulated 
using one of the following queries: 
Coherence: Does b. have an extension ? If so, find one. 
Set-Membership: Given a set of formulas S, Is S con-

tained in some extension of b.? 

Set-Entailment: Given a set of formulas S, Is S con­
tained in every extension of b.? 

In this paper we show how, for a subclass called "net­
work default theories", the above queries can be reduced 
to propositional satisfiability. 

2.2 Inheritance networks and network default 
theories 

The following brief introduction is adopted from [Ether­
ington, 1987] and [Touretzky, 1984]. 

Inheritance networks are a knowledge representation 
scheme in which the knowledge is organized in a tax­
onomic hierarchy, thus allowing representational com­
pactness. If many individuals share a group of common 
properties, an abstraction of those properties is created, 
and all those individuals can "inherit" from that abstrac­
tion. Inheritance from multiple classes is also allowed. 

Usually, the inheritance network is a directed graph 
whose nodes represent individuals and abstractions 
("classes"), and whose arcs denote relations between 
those nodes. The most common relations are "IS-A" 
and "ISN'T-A". 

Consider the following information: 
• Mammals are warm-blooded. 
• Dolphins are mammals. 
• Flipper is a dolphin. 

This information can be encoded in the inheritance net­
work shown in figure 1 (where a solid arrow represents 
an "IS-A" relation) . A reasonable conclusion would be 
that Flipper is warm-blooded. 

When exceptions to inheritance are allowed, the infer­
ence in those systems becomes non-monotonic, namely, 
conclusions might change in light of new evidence. Sup­
pose we start with the following set of axioms: 

1 Note the appearance of E in the formula for E;+1 · 

Flipper 

T Mammal, 
0---0---0 

Dolphins Warm-blooded 

Figure 1: An inheritance network with no exceptions 

Dolphins ~ Li~-on-land 

Warm-blooded 

Figure 2: An inheritance network with exceptions 

• Mammals are warm-blooded. 

• Mammals live on land. 

• Dolphins are mammals. 

• Dolphins do not live on land. 
This is an example of an inheritance network with ex­

ception: dolphins are mammals who live in the water . 
The network in figure 2 represents this knowledge ( "can­
celed" arrows denote "ISN'T-A" relation). Given the in­
formation that Flipper is a mammal, we will conclude 
that he lives on land, but the additional evidence that 
he is a dolphin will force us to retract that conclusion 
and adopt the belief that he does not live on land2 . 

Etherington [Etherington, 1987] proposed a subclass 
of default theories called "network default theories" (in 
short, "network theories") as suitable to provide formal 
semantics and a notion of sound inference for those net­
works: 

Definition 2.2 (Network default theory) [Etherington, 
1987] A default theory b. is a network default theory iff 
it satisfies the following conditions: 

• W contains only: 
literals (i . e atomic formulae or their nega­
tions), and 
disjuncts of the form ( a V (3) where a and (3 are 
literals. 

• D contains only normal and seminormal defaults of 
the form : a : (3 / (3 or a : (3 I\ ,1 /\ ... /1. 'Yn/ (3 where a, 
(3 and 1; are literals. D 

2 This conclusion is supported by the convention that fea­
tures of a subclass override those of a super-class. 



Etherington suggests a way to formalize inheritance 
relations in network theories. His translation is as fol­
lows: 

Strict IS-A: "A's are always B's". Etherington sug­
gests translating this to the first-order formula 
'v'x.A(x)--+B(x). Since we restrict our treatment 
to propositional theories, we will translate this link 
to the propositional rule schema A(x)--+B(x). 

Membership: "The individual a belongs to the class 
A". This is represented by the fact A(a) (which 
denotes here a propositional literal). 

Strict ISN'T-A: "A's are never B's" . Ethering-
ton translates this to the first-order formula 
'v'x.A(x)--+-,B(x). We will translate this link to 
the propositional rule schema A(x) --+-,B(x). 

Nonmembership: "The individual a does not belong 
to the class A". This is represented by the fact 
-,A(a) . 

Default IS-A: "A's are normally B's, but exceptions 
are allowed". This can be represented by the default 
rule schema A(x): B(x)/ B(x) . 

Default ISN'T-A: "Normally A's are not B's, but ex­
ceptions are allowed" . This can be represented by 
the default rule schema A(x): -,B(x)j-,B(x) . 

Exception: "Normally A's are (not) B's, unless they 
have at least one of the properties C1, ... , Cn". This 
translates to the default rule schema A(x) : B(x) I\ 
-,C1(x) /\ .. . /\ -,Cn(x)/ B(x) 
(A(x): -,B(x) I\ -,C1(x) I\ ... I\ -,Cn(x) j -,B(x) ) 

Example 2.3 The inheritance network in figure 2 will 
be translated to the following network theory: 
D = { Mammal x :Lives-on-land x 11-.Dolphine x 

Lives-on-land x) ' 
Dolphine x :-. Lives-on-land x } 

-.Lives-on-land x) 
W = { Dolphine{x)--+Mammal(x), 
Mammal(x)--+ Warm-blooded{x) } D 

An extension of a network theory then corresponds to 
a set of coherent conclusions one could draw from the in­
heritance network it represents. Thus all the queries de­
fined above (coherence, set-membership, set-entailment) 
are still very relevant when dealing with network theo­
ries. Etherington has a nondeterministic procedure to 
compute an extension of a default theory. If the the­
ory is what he calls an ordered network theory, then his 
procedure is guaranteed to produce an extension. 

In the sequel we will show a procedure that computes 
all extensions for any propositional network theory. In 
fact, we deal with a superclass in which the prerequisite 
of a default is a conjunction of literals rather than just 
a single literal. We will assume, w .l.g ., that W is con­
sistent, since when W is inconsistent, the extension is 
the inconsistent one. We also assume w .l.g. that each 
default has a single literal as a consequent. 

3 Definitions and preliminaries 
We denote propositional symbols by upper case letters 
P, Q, R ... , propositional literals (i.e. P, -,p) by lower case 

letters p, q, r ... , clauses by c1, c2, .... The number of lit­
erals in the clause c is denoted by lc l. 

The operator ,..., over literals is defined as follows: If 
p = -,Q, "'P = Q, If p = Q then "'P = -,Q. If fJ = a : 
/3/; is a default, we define pre(6) = a, just(6) = /3 and 
concl(6) = ; . 

Given a set of formulas S and a formula w, Sl-w means 
that w is provable from premises S, and SFw means that. 
S entails w - i.e. that every model of S satisfies w as well. 
For propositional formulas, Sl-w iff SFw, hence we will 
use these notations interchangeably. 

The logical closure of a set of formulas S is the set 
{wlS1-w }. We denote by Th(S) the logical closnrt of a 
set of formulas S. 

An extension of a default theory is a logically closed 
set of formulas. How do we compute the logical closure 
of a set of clauses? Since the logical closure is an infinite 
set, we will not be able to compute the closure in a finite 
time. However, if the initial set of clauses is finite, we 
can compute a set which will represent the logical clo­
sure using the notion of prime implicants as presented 
by Reiter and de Kleer [Reiter and de Kleer, 1987]: 

Definition 3.1 A prime implicant of a set S of rlauses 
is a clause c such that 

1. Sf=c, and 
2. there is no proper subset c' of c such that Sf=c1

. 

Given a set of formulas S, s+ will denote the set of its 
prime implicants. As Reiter and de Kleer note, a brute 
force method of computing s+ is to repeatedly resolve 
pairs of clauses of S, add the resolvents to S, and delete 
subsumed clauses, until a fixed point is reached3 . There 
are some improvements to that method, but it is clear 
that the general problem is NP-Hard since it also solves 
satisfiability. Nevertheless, for size-2 clauses the prime 
implicants can be computed in polynomial time since a 
resolvent of two clauses of size :::; 2 is also of size :::; 2. 

The following proposition suggests that for network 
theories it is enough to consider extensions of a network 
theory containing clauses of size one or two only: 

Proposition 3.2 Let E* be an extension of a network 
theory, and let E ' = {c lc E E*,lc l :::; 2}. Then E' 
contains all prime implicants of E* . D 

We say that a set of clauses E satisfies the precondi­
tions of 6 if pre(6) E Th(E) and the negation of just(6) 
is not in Th(E). We say that E satisfies a default 6 if it. 
does not satisfy the preconditions of 8 or else, it satisfies 
its preconditions and Th(E) contains its conclusion. 

A proof of a clause c w.r.t. a given set of clauses E and 
a given network theory~= (D, W) is a sequence of rules 
81, ... , On, n ~ 0, such that the following three conditions 
hold : 

1. c E Th(WLJ{concl(61), ... , concl(bn)} ). 

2. For all 1 :::; i :::; n, the negation of just( 8;) is not in 
Th(E). 

3. For all 1 :::; i :::; n, pre(b;) is a subset of 
Th(WLJ{ con cl( 81), ... , con cl( 8;_ i)}) . 

3 It is clear that this method will not generate all the tau­
tologies, but it is easy to handle this exception. 
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The following lemma is instrumental throughout the pa­
per: 

Lemma 3.3 Th(E) is an extension of a network theory 
A iff Th(E)is a logical closure of a set of clauses E that 
satisfies: 

1. W~E 
2. E satisfies each rule in D. 
3. For each clause c E E, there is a proof of c in E. 

D 

We define the dependency graph G(D,W) of a network 
theory A to be a directed graph constructed as follows: 
Each literal p appearing in D or in W is associated with 
a node, and an edge is directed from p to r iff there is 
a default rule where p appears in its prerequisite and r 
is its consequent or there is a clause p-r in W. An 
acyclic network theory is one whose dependency graph is 
acyclic, a property that can be tested linearly. 

4 Compiling a network theory into a 
propositional theory 

In this section we show how we can compile a given net­
work theory A into a propositional theory PA such that 
PA has a model iff A has an extension, and vice-versa, 
every model of PA has a corresponding extension for A. 

The common approach for building an extension, 
(used by Etherington [Etherington, 1987], Kautz and 
Selman [Kautz and Selman, 1991], and others), is to in­
crement W using rules from D. We make a declarative 
account of this process by formulating the conditions of 
lemma 3.3 as a set of constraints that the default theory 
impose on the set of its extensions. This frees us from 
worrying about ordering, however, it requires adding a 
constraint guaranteeing that if a formula is in the exten­
sion, then it has a non-circular proof. To enforce this 
restriction, we associate an index variable with each lit­
eral in the transformed language, and require that p is in 
the extension only if it is the consequent of a rule whose 
prerequisite's indexes are smaller. Elkan [Elkan, 1990] 
used the same technique to insure that the justifications 
supporting a node in a TMS are noncircular. 

Let #p stand for the "index associated with p", and 
let k be its number of values. These "multi-valued vari­
ables" (as opposed to propositional variables which are 
bi-valued) can be expressed in propositional logic using 
additional O(k2) clauses and literals (see [Ben-Eliyahu 
and Dechter, 1991b]). For simplicity, however, we will 
use the multi-variable notations, viewing them as abbre­
viations to their propositional counterparts. 

Let £ be the underlying propositional language of A . 
For each propositional symbol in £, we define two propo­
sitional symbols, lp and l..,p. For each pair of literals p 
and q in £ , we define the symbol Ipvq . We get a new 
set of symbols:£'= {Ip,l..,p lP E .C }LJ {Ipvq lp,q E £}. 
Intuitively, Jp stands for "P is in the extension", l..,p 
stands for "-,pis in the extension", and lpvq means that 
"p V q is in the extension" . For notational convenience 
Ip and lpvp will stand for the same propositional letter 
(same for J,._,pvq and Ip-- 9 ). 

I Procedure translate-l(A) 

1. Compute w+, the set of prime implicants of W . 

2. For each c E w+ put le into PA. 

3. For each p-q in W add Ip--+I9 into PA . 

4. For each a: /3/p ED, add in(a) I\ cons(/3 )--ll' to 
PA· 

5. For each p <t w+ do the following : 
Let Gp = {[in(q1 I\ q2 ... I\ qn) I\ cons(/3 )] 
A[#q1 < #p] I\ ... I\ [#qn < #p] 
I 38 E D such that c5 = q1 /\ q2 ... /\ qn : /3/ p } . 

Let Lp = {[in(q) I\ [#q < #p]] lq--p E ~v+}. 
Let Sp= CpLJLp. 
If Sp is not empty then add to PA the formula 
Ip - [Vaespa]. 
Else, if Sp = 0 add -,JP to PA. 

6. For each p V q <t w+, p "# q, add -,fpvq into PA . 

Figure 3: Algorithm to compile a network theory into a 
propositional theory 

To further simplify the notation we use the notions of 
in(w) and cons(w) that stand for "w is in the extension''. 
and "w is consistent with the extension", respertively. 
Formally, in(w) and cons(w) are defined as follows: 

• if w = p then in(w) = Ip, cons(w) = -,J,....,p. 

• if w = p V q then in(w) = lpvq · 

• ifw = p11\p21\ . .. l\pn, then in(w) = in(pi)l\in(p2)/\ 
... I\ in(pn) , cons(w ) = /\i,jE{l, . . ,n }-,J"'p;V"'p1 · 

(Note that Pl I\ ... I\ Pn is "consistent with the ex­
tension" iff -,[p1 /\ ... /\ Pn] is not in the extension iff 
(since all prime implicants are of size :S 2) for all 
i,j, "'Pi V "'Pi is not in the extension.) 

Procedure translate-! in figure 3 compiles any net­
work theory over £ into a propositional theory over £". 
This translation requires adding n index variables, n be­
ing the number of literals in £, each having at. most 
n values. Since expressing an inequality in proposi­
tional logic requires 0( n2) clauses, and since there are 
at most n possible inequalities per default , the result­
ing size of this transformation is bounded by O( ID ln3 ) 

propositional sentences. Note also that the complexity 
of generating w+ is at most 0( n3 ). 

The following theorems summarize the properties of 
our transformation . In all of them, PA is the set of sen­
tences resulting from translating a given network theory 
A using translate-! . 

Theorem 4.1 Let A be a network theory. Suppos e PA 
is satisfiable and 8 is a model for PA , and let £ = 
{c l8(Ic) = true}. 
Then: 

1. E contains all its prime implicants. 

2. Th(E) is an extension of A. D 



Theorem 4.2 Let Th(E)be an extension for A. Then 
there is a model 8 for PA such that O(Jc) = true iff 
c E Th(E) and jcj $ 2. D 

The above two theorems suggest a necessary and suffi­
cient condition for the coherence of a network theory: 

Corollary 4.3 A network theory A has an extension iff 
PA is satisfiable. D 

For the next corollaries, we define for each clause c a 
formula prime( c) as follows: if c = P1 V P2 V ... V Pn 
prime(c) = [Vi,iE{l ... n}lp,vp;] 

Corollary 4.4 A set of clauses, C, is contained in an 
extension of A iff there is a model for PA which satisfies 
the set {prime(c)jc EC}. 

Corollary 4.5 A clause c is in every extension of a net­
work theory A iff Pt:,J=prime(c). D 

These theorems suggest that we can first translate 
a given network theory A to PA and then answer 
queries as follows: to test if A has an extension, we 
test satisfiability of PA; to see if a set S of clauses 
is a member in some extension, we test satisfiability 
of P ALJ{prime(c) lc E S}; and to see if S is included 
in every extension, we test if PA entails the formula 
[Acesprime(c)]. 

Example 4.6 

Consider again the network theory from example 2.3 to­
gether with the evidence that Flipper is a mammal (pred­
icates are abbreviated by their initials; parameters are 
omitted since Flipper is the only individual): 

D = {M : L/\-iD/ L, D: -,£/ -,£} 
W= {D-M,M-Wb,M} 

This is an acyclic network theory, thus no indices are 
required. When translating A to PA we get : 

w+ = WLJ{Wb, D-Wb} 
PA= { 

following step 2: 
Iv-M, lM-wb, lwb, IM, Iv-wb 

following step 3: 
Iv-IM, IM-lwb, Iv-Iwb 

following step 4: 
IM A -,f-.L 1\-ilv A -,f-.Lvv-h, 
Iv A -ih-1-.L 

following step 5: 
h-IM·A -,J-,L 1\-iln A -,f-.LvD, 
1-.L-ID (\-,JL, -,J-.M, -,JD, -,J-,n, -,J_,wb 

following step 6: 
{-,fx-ylx-y (/; {D-M,M-Wb, 
D- Wb}} 

This set of sentences has only one model in which all and 
only the following literals are true: 

IM, lwb, IL, In-M, lM-->Wb, In-->Wb 

which correspond to the extension 

Th( {M, Wb, L, D-->M, M -->Wb}) 

Example 4.7 

Suppose we add the information that Flipper is a dolphin 
to what we knew in the previous example. This amounts 
to adding the proposition D to W. So we have to take 
-:Iv out of PA and add Iv to PA. The model for PA 
IS: 

In, IM, lwb, 1-.L, In-->M, IM-wb, In-, Wh 

which corresponds to the extension 

Th({D,M, Wb,-,£,D-M,M-Wb}) 

which is the only extension. 

4.1 An improved translation 

Procedure translate-I can be improved. If a prerequi­
site of a rule is not on a cycle with its consequent, we 
do not need to index them, nor enforce the partial or­
der among their indices. Thus, we need indices only for 
literals which reside on cycles in the dependency graph. 
Furthermore, since we will never have to solve cyclicity 
between two literals that do not share a cycle, the range 
of the index variables is bounded by the maximum num­
ber of literals that share a common cycle. In fact, we 
show that the index variable's range can be bounded 
by the maximal length of an acyclic path in any strongly 
connected component in G(D, W) . The strongly-connected 
components of a directed graph are a partition of its set 
of nodes such that for each subset C in the partition, 
and for each x, y EC, there are directed paths from x to 
y and from y to x in G. This improvement is discussed 
in detail in [Ben-Eliyahu and Dechter, 1991b]. 

5 Tractable network default theories 
Processing the network theory using our approach re­
quires two steps: first, compile the default theory into 
a propositional theory, and then solve satisfiability. We 
have shown that the first step is tractable . The second 
step, however, is known to be NP-complete in general. 
In this section we show how propositional satisfiability 
can be regarded as a constraint satisfaction problem, and 
how techniques borrowed from that field can be used to 
solve satisfiability and to identify tractable subsets of 
propositional and network theories. 

In general, constraint satisfaction techniques exploit 
the structure of the problem through the notion of a 
"constraint graph". For a propositional theory, the con­
straint graph ( also called a "primal constraint graph") 
associates a node with each propositional letter and con­
nects any two nodes whose associated letters appear in 
the same clause. Various graph parameters have been 
shown as crucially related to solving the satisfiability 
problem. These include the induced width, w·, the size 
of the cycle-cutset, the depth of a depth-first-search span­
ning tree of this graph and the size of the non-separabfr 
components. It can be shown that the worse-case com­
plexity of deciding consistency is polynomially bounded 
by any one of these parameters. 

Since these parameters can be bounded easily by sim­
ple processing of the given graph, they can be used 
for assessing tractability ahead of time. For instance . 
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Figure 4: Interaction graph for the theory presented in 
example 4.6 

when the constraint graph is a tree, satisfiability can 
be determined in linear time. In [Ben-Eliyahu and 
Dechter, 1991a] we have demonstrated the potential of 
this approach using one specific technique called Tree­
Clustering [Dechter and Pearl, 1989], customized for 
solving propositional satisfiability, and emphasized its ef­
fectiveness for maintaining a default database. We have 
also characterized the tractability of the default theories 
as a function of the induced width4 5 , w•, of their interac­
tion graph. We next generalize those results for network 
theories: 

The interaction graph of a network theory is an undi­
rected graph where each literal in the theory is associated 
with a node, and for each p and for every fl= a : /3/ p in 
D, every q E a and every -r such that r E /3, there are 
arcs connecting all of them into one clique with p. Also, 
for each p- q in W, there is an arc between p and q. 

Theorem 5.1 A network theory whose interaction 
graph has an induced width w• can decide existence, 
membership and entailment in O(n * 2w• +1 ) when the 
theory is acyclic and 0( n w• +2 ) when the theory is cyclic. 
0 

Example 5.2 

Consider the set P ~ generated in example 4.6. The in­
teraction graph is as shown in figure 4 (isolated nodes 
are omitted) . This graph is already chordal, and if we 
take the ordering -,D,-,L ,L,M,D,W we see that w• $ 3, 
and so this network theory belongs to a class of networks 
for which the queries we posed can be answered in time 
bounded by exp(4). According to Stillman's classifica­
tion [Stillman, 1990) this network theory belongs to a 
class whose membership problem is NP-complete. D 

6 Summary and conclusions 

We have presented a necessary and sufficient condition 
for coherence of propositional inheritance theories , pro-

4The width of a node in an ordered graph is the number 
of edges connecting it to nodes lower in the ordering. The 
width of an ordering is the maximum width of nodes in that 
ordering, and the width of a graph is the minimal width of 
all its orderings. The induced width is the width of the graph 
after it was completed to be a chordal graph. 

5 A graph is chordal if every cycle of length at least four 
has a chord. 

vided a procedure that computes an extension, and iden­
tified tractable subsets of network default theories. The 
algorithm handles membership and entailment 4ueries 
as well . Specifically, we have shown that network theo­
ries whose topologies have bounded induced width can 
be processed in polynomial time w .r. t . this parameter. 

Our approach is to compile a network theory into a 
propositional theory such that the set of models of the 
latter coincides with the set of extensions of the for­
mer. Consequently, questions of coherence, member­
ship and entailment on the network theory are equiva­
lent to propositional satisfiability. This brings problems 
in non-monotonic reasoning into the familiar arenas of 
both propositional satisfiability and constraint satisfac­
tion problems. Although we use here a two-step transla­
tion (from inheritance networks to default theories and 
then to propositional theories), it is easy to see that. 
we can translate the inheritance network directly into 
a propositional theory. 

Our work adds to previous research on network the­
ories and inheritance reasoning. Etherington [Ethering­
ton, 1987) has shown a sufficient condition for coherence 
and presented a procedure that computes an extension of 
ordered network theories only. Stillman [Stillman, 1990] 
has shown that the membership problem for proposi­
tional network theories is NP-Complete and claimed to 
have polynomial algorithms for solving membership of a 
single literal in restricted subsets of network theories . 

In the future we intend to extend our approach to han­
dle preferred extensions, as formulated by Etherington 
and Touretzky [Touretzky, 1984], namely, to use only 
normal default rules, and define a partial order on the 
proof sequences. Using constraint network techniques, 
we hope to show that a most preferred extension can be 
obtained with the same complexity as those for findin15 
an arbitrary one. In [Ben-Eliyahu and Dechter, l991bJ 
we show how this approach can be app lied to any defau lt. 
theory. 
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Abstract 

This paper considers defaults as summaries of 
decision-theoretic deliberations. We investigate 
the idea that the default e -+ a means that a is 
the optimal action based on all we know ( con­
tingently) being e. It is shown how this notion 
of'a default is nonmonotonic and has a prefer­
ence for more specific defaults. It has the ad­
vantage of defaults can, in principle, be derived 
from lower level concepts. We thus have a ra­
tional basis for determining whether a default 
is correct or not. One special case considered 
is where the action is whether to accept some 
proposition as true, accept it as false or nei­
ther. This is needed to allow for conclusions 
to be used as premises in other defaults. It 
is shown that when the gain in utility of ac­
cepting a proposition depends only only on the 
truth of the proposition, then the acceptance of 
q based on evidence e depends only on whether 
P(qje) exceeds a threshold that is a function 
of the utilities for accepting q. We also give a 
bound on the loss (in utility terms) of using an 
accepted proposition in another derivation. 

1 Introduction 

In AI, formal default reasoning started off as a spin 
off from logic [Reiter, 1980; McCarthy, 1980; McDer­
mott and Doyle, 1980]. Logic is a normative theory 
of correct reasoning; the hope was that by adding in a 
" t . " . nonmono omc component, a normative theory of rea-
soning where we jump to conclusions could be derived. 
Probability theory on the other hand started off as a 
normative theory of reasoning under uncertainty [Jef­
freys, 1961], but is very quantitative in nature. Recently 
qualitative versions of probability theory have been pro­
posed for default reasoning [Pearl, 1989; Neufeld, 1989; 
Bacchus, 1989]. One problem with all of these pro­
posals (with some notable exceptions [Neufeld 1989· 
Bacchus, 1989]) is that we cannot "take the se~antic~ 
seriously"; there is no way to use the semantics to de­
cide whether some default is correct or not. When we do 
take the semantics seriously it is not so obvious that the 
default statements say what we actually want to say. 

1.1 Defaults and utilities 

What one is prepared to say "yes" to depends on both 
utility and probabilistic information (Doyle [1989] argues 
this most strongly; see section 6.1). 

If one is playing a game like "trivial pursuit" (where 
there is no penalty for saying something wrong over the 
penalty for saying nothing), it is better to have a wild 
guess at something than to say nothing. If one is in court 
acting as an expert witness, then one should only say 
what one is sure of; witnesses don't want to be caught 
out and have their credibility ruined. What one assents 
to, and so what defaults one uses, is very dependent on 
the situation and the utilities involved. 

If one is in a closed room full of mixes of birds and 
someone opens up some windows high up in the room, 
then what one believes about the prototypical bird in 
~he room changes as the proportion of the flying birds 
m the room changes1. At the start we may believe that 
the prototypical default bird in the room flies, but as the 
po~ulation of the birds change, after half an hour we may 
beheve that the prototypical bird in the room does not 
fly. Thus probabilistic information (information about 
proportions of populations with certain properties) does 
affect the defaults we make. 

In this paper we consider a formulation of defaults 
that takes probability and utility into consideration. 

1.2 The Proposal 

Other people have observed that utilities have something 
to do with default reasoning [Shoham, 1987; Loui, 1990; 
Doyle, 1989; Kadie, 1988]. In this paper we take this re­
lationship seriously and treat defaults as decision theory 
summaries. 

A default e-+ A a means that a is the best decision out 
of those decisions in A if all you know is e. Note that the 
conclusion of a default is an action, and not a proposition 
as in most default frameworks (but see section 4). 

The default "if you are in Vancouver in November 
' carry an umbrella" , is of this type of a default that has 

an action as a conclusion and propositions as premises. 
This is represented as 

in_Vancouver A is..November-+ carry_umbrella 

1 This example is due to Alan Mackworth (personal 
communication) 



The main feature of this framework are: 
• We develop a meaning for defaults and inherit a 

calculus (albeit very weak) for reasoning with these 
defaults that is sound with respect to the semantics. 

• We can take the semantics seriously, and argue 
whether or not some default is true or not. More­
over, it can be argued that these default statements 
are the sort of statements that correspond to every­
day defaults. 

• This is useful in its own right as a summary of what 
actions should be taken based on certain evidence. 
For example, in some implementations of influence 
diagrams (those that evaluate the diagram inde­
pendently of any particular observations) [Shachter, 
1986], the output is a contingency table of the out­
put for all tuples of possible observations. One of 
the motivations for this paper was to allow for a 
more compact representation of the decisions based 
on different combinations of observations. 

• Building on a decision theoretic base, we develop 
the notion of approximate reasoning, where we can 
have a measure on the cost of making a mistake. 
This is useful when we want to develop a theory of 
fast, but approximate reasoning. 

In section 4 we consider the special case of where the 
actions are to accept some proposition, to accept its 
negation or to accept neither. This is special as it allows 
us to use the conclusion of the default as a premise for 
more inference. We analyse the possible costs of making 
this unsound but often reasonable rule. 

2 Background 
2.1 Probability 
We use a standard definition of conditional Bayesian 
probability (e.g., [Jeffreys, 1961]), where P(al/3) is a 
function from two propositions into the interval (0, 1], 
where f3 'I. false. We use the formulation based on the 
three axioms: 

1. P(x lx) = 1 

2. P(--.x ly) = 1 - P(x jy) 
3. P(x /\ yjz) = P(x jy /\ z ) x P(y lz) 
The following lemma can be easily proven from the 

axioms and is used in this paper: 

Lemma 2.1 P(x lz) = P(x ly /1. z) x P(yj z ) + P(xj--.y /1. 
z) x P(--.y jz ) 

We use the symbol ::} for normal logical (material) 
implication. 
Lemma 2.2 if y =} z then P(x jy /\ z) = P(xly). 

2.2 Classical decision theory 

Under classical Bayesian decision theory ( e.g., [Raiffa, 
1968]), we assume that there is a subjective utility func­
tion, µ( a, w) of the utility of action a if the world is w. 

The expected utility of action a given evidence e, 
t' (a,e) is given by 

t'(a,e) = L µ(a,w) x P(wle) 
w 

This is the utility of a averaged over all possible worlds, 
weighted by their probability. 

3 Decision-theoretic defaults 
If e is a formula in the propositional calculus, and 
A = { a1 , a2 , ... } is a set of possible alternate actions ( the 
possible actions being primitive), and a E A, we write 

if 
t'(a,e) = max£(a;,e). 

a;EA 

In other words, e -+ A a if, &iven all that we know 
( contingently - see [Poole, 1991]) is e, a is the action in 
A that maximises expected utility. 

3.1 Nonmonotonicity 

The following example shows how the meaning of de­
faults can allow us to derive defaults from lower level 
constructs. Note that, in general the user would not 
provide the probability and utility, but only provide the 
default. Because we have a formal definition of the truth 
of a default, we can argue about whether some default 
is reasonable (based on whether the underlying proba­
bilities and defaults are reasonable). This example also 
shows the notion of defaults is nonmonotonic and shows 
how we have a preference for more specific defaults. 

Example 3.1 Suppose we have the possible actions 

A = { say.flies, say.not.flies, say.nothing} 

and the following underlying utility and probability in­
formation: 

µ( say. / lies, flies) = 100 
µ( say.flies, --.J lies) = - 200 

µ( say.not./ lies, flies) = - 200 

µ( say.not./ lies, --.J lies) = 100 
µ( say.nothing, flies) = 0 

µ( say.nothing, --.J lies) = 0 

P(f lies lbird) = 0.9 

P(flieslemu) = 0.001 
P(bird jemu) = 1 

Given bird we can derive the following expected utili­
ties 

£( say. / lies, bird) 
= µ(say . flies, flies) x P(flies lbird) 

+µ( say./ lies, --.J lies) x P(--.J lieslbird) 
= 100 X 0.9 - 200 X 0.1 

= 70 
£( say.not./ lies, bird) 

= µ( say.not. / lies, flies) x P(f lies lbird) 
+µ( say.not./ lies, --.J lies) x P(--.J liesjbird) 

= - 200 X 0.9 + 100 X 0.1 

= - 170 
£( say.nothing, bird) 
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-1 

= µ( say_nothing, flies) x P(f lies lbird) 

+µ( say_nothing, -.J lies) x P(-.J lies lbird) 

= 0 

Thus we can derive the default 

bird - A say_/ lies 

Similarly if we were given emu, we can compute the ex­
pected utility as: 

£( say_/ lies, emu ) = -199.9 
£ (say_not_flies, emu ) = 99.7 

£( say_nothing, emu ) = 0 

Thus we can derive the default 

emu - A say_not_f lies 

If we are given bird I\ emu we can use lemma 2.2 to 
show that the same deviation works as when we are given 
just emu and so we have: 

bird I\ emu - A say_not_f lies 

There are two things that can be derived from this 
example 

nonmonotonicity When we learnt new information, 
namely that the individual was an emu as well as a 
bird, we no longer derived the conclusion say_flies, 
but rather derived the conclusion say_not_f lies. We 
thus change our minds when presented with differ­
ent information. 

specificity If we know that emus are birds, when we 
have both emu and bird, we make the same conclu­
sion that we would using just emu. This preference 
for more specific defaults is true in general (section 
3.2). 

3.2 Specificity 

One of the features of defaults that is important is the 
fact that more specific defaults should over-ride more 
general defaults. If we have x => y, then knowing x 
is more specific knowledge than knowing y. When we 
have the defaults x - A a and y - A b, then when given 
x I\ y we should conclude, by specificity, a. The following 
proposition establishes this: 

Proposition 3.2 If x => y and x -A a then x /\ y -A a. 

The proof of this and other propositions appears in 
Appendix A. 

This result should not be too surprising, as the prefer­
ence for more specific knowledge is common to the P.rob­
abilistic formulations of defaults (see [Pearl, 19891) , as 
opposed to the logical formulations of defaults. 

3.3 Ignoring Irrelevance 
If we have some condition c such that we make the same 
decision whether or not c is true, then we will make that 
decision even if we did not know the truth of c. 

Proposition 3.3 The following is valid inference: 

e/\c-Aa 
e I\ -.c -A a 

e-A a 

Thus if would make the same decision if c is true or 
false, then we can ignore the value of c in our defaults. 
What is important here is that we can derive conse­
quences of our defaults based on the underlying defi­
nition. 

3.4 Disjunction 

We cannot do arbitrary reasoning by cases. For example 
the disjunction rule of Pearl [1989] 

e1 V e2 -A a 

is not valid in general. It is however valid when e1 and 
e2 either imply each other or are inconsistent. Accepting 
this rule would lead us to Simpson's paradox [Neufeld 
and Horton, 1990]. 

3.5 Restricting the choices 

Sometimes we may have fewer choices to make than at 
other times. The following proposition shows that if 
we do not eliminate the best choice, we can restrict the 
choices available without affecting the default. 

Proposition 3.4 If e - A a and B ~ A such that a E B 
then e -Ba. 

We can use the following lemma to split the set of 
possible alternatives. 

Proposition 3.5 If e - A a and e - B b then either 
e - AUB a or e - AUB b 

In the rest of the paper we assume that the set of 
choices of actions is fixed, and omit the subscript to -. 

4 Acceptance Assumption 

The preceding section considered the case when the con­
clusion of a default was an action. Often in default rea­
soning, we want to use a default to conclude that some 
proposition is true, and then use that proposition in fur­
ther reasoning. 

Jon Doyle has previously propounded the idea that we 
expand on: 

"... we wish to use rationality as a standard 
for adopting assumptions by saying that an as­
sumption should be adopted if the expected 
utility of holding it exceeds the expected utility 
of not holding it." [Doyle, 1989, p. 5] 

In this section we show how to relate the action that is 
a conclusion of a default to the acceptance of the truth of 
a proposition. We consider the acceptance of a proposi­
tion as a decision like another decision. For a proposition 
z there are three alternate decisions that could be made: 

• zt is the decision to accept proposition z as true. 

• zl is the decision to accept z as false. 

• zu is the decision to neither accept z nor -,z. 

For each proposition we make the decision of whether 
to accept it as true, to accept it as false or to make no 
commitment. 



Example 4.1 We write the decision to accept flies as 
true if the individual under consideration is a bird as 

bird - f lies1 

This would correspond to the default in example 3.1, but 
the action is to accept the proposition flies, rather than 
the action to say something. Similarly the default that 
injured birds do not fly, can be written: 

bird A injured -+ f lie sf 

This says that if all you know about some individual is 
that the individual is an injured bird, that it is better 
to assume that it does not fly, than being uncommitted 
about the flying ability of the individual or assuming 
that it does fly. 

We also allow for a default to conclude that we should 
not assume anything about the flying ability of young 
birds: 

bird A young -+ f liesu 

Note that we only have a two valued logic ( classical 
probability theory is based on every proposition being 
true or false in each possible world [Jeffreys, 1961]), but 
we have three possible actions that we can do with re­
spect to a proposition. We assume here that it is never 
a good policy to assume a proposition and its negation. 

Assumption 4.2 We assume the following inequalities: 

µ(zllz) < µ(zulz) < µ(ztlz) 

µ(ztl-,z) < µ(zul-,z) < µ(zll-,z) 
That is it is better to guess correctly than to be non­
committal. And it is better to be non-committal than 
guessing wrongly2 • 

The second assumption that we make is that the util­
ities of different propositions are in some sense indepen­
dent. We can treat the gain in accepting proposition z 
as not affected by the truth of other propositions. 

Assumption 4.3 The change in utility of accepting z 
or accepting -,z or accepting neither in a world w de­
pends only on the truth of z in w. 

That is, if w1 and w2 are two worlds that agree on the 
truth of z then 

µ( zr,w1)- µ( z8,w1) = µ( zr,w2)- µ( z8 ,w2) 

where {r,s} C {t,u,f}. 
This assumption means that we only have to consider 

the gain in making the correct decision and the loss in 
making an incorrect decision. 

Definition 4.4 If p is an atomic proposition we use the 
following notational schema where r and s denote differ­
ent elements of { t, f, u }, and <T is a sign ( one of+ or -i) 
such that <Tp is p if <T is + and <Tp is -ip is <T is -i. We 
define 

rAs(<Tp) = µ(p8,w) - µ(pr,w) 
where w is a world in which <Tp is true. This schema, 
representing 12 different formulae, denotes the change 
in utility made what changing our action from r to s. 

2 Analogous results to the ones below hold when the above 
constraints are violated - the arithmetic is slightly changed. 

For example, f At(z) is µ(zt, w) - µ(zl, w), where z is 
true in w, which is the utility gained when we decide to 
commit to z over committing to -,z given that z is true. 

uAf(-, z) is µ( zl,w) - µ( zu,w), where z is false in w, 
which is the utility gained when we decide to commit to 
-, z over not committing to the truth of z given that z is 
false. 

Under assumption 4.2, f At(z), f Au(z) and uAt(z) are 
all positive. These all consist of the gain made by making 
a better guess given that z is true. Note also that 

f At(z) = f Au(z) + uAt(z). 

Thus 1.!lf(-,z), uAf(-,z) and 1Au(-,z) are all positive. 
All of the others are negative, using the equality 

rA8 (<Tz ) = - 8 Ar(<Tz) 

Lemma 4.5 Fors and reach being one oft, u or f, the 
following holds: 

£( z8,x) - £(zr,x) = rA 8 (z)xP(zlx)+rAs(-,z)xP(-,zlx) 

4.1 Characterization of defaults 

In this section we analyse when we can conclude a default 
based on the assumptions in the previous section. We 
first consider when one decision should be made over 
another decision. 
Lemma 4.6 

t'(zt,x) ~ t'( zl,x) 

if and only if 

Lemma 4.7 

if and only if 

1.!lf(-,z) 
P( zlx) ~ f At(z ) + t.!lf(-,z) 

tAu(-,z) 
P( zlx) > ----------­- uAt(z) + tAu(-,z) 

The following theorem is a direct corollary of lemmata 
4.6 and 4.7. 

Theorem 4.8 x -+ zt if and only if 

What is important to notice here is that the decision 
to accept z based on x is determined completely by a 
threshold on the probability P(zlx) and that the thresh­
old is a function of the utilities of the acceptance of z. 

We can carry out a similar analysis of 
Lemma 4.9 

t'( zU,x) ~ t'( zl,x) 

if and only if 
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The following theorem is a direct corollary of lemmata 
4.6, 4.7 and 4.9. 

Theorem 4.10 x -+ zt iff 

( 
tAf(-,z) tAu(-,z) ) 

P(zlx) ~ max f At(z) + tAf(-,z)' uAt(z) + tAu(-,z) 

X-+ zf iff 

P z x < mm 
. ( tAf(-,z) uAf(-,z) ) 

( I ) - f At(z) + tAf(-,z)' f Au(z) + uAf(-,z) 

x-+ zu iff P(zlx) is between these two values . 

Example 4.11 Suppose we have the following utilities 

µ(pu,p) = µ(pu, ..,p) = 0 

µ(pt, p) = µ(pf, -.p) = a 

µ(pt,-.p) = µ(pf,p) = - b 

a is the prize we get for guessing right. b is the price we 
pay if we are wrong; both a and b are positive. 

We have: 

tAf(-,z) 
= 0.5 

f At(z) + tAf(-,z) 
tAu(-,z) b 

= uAt(z) + tAu(-,z) a+b 
uAf(-,z) a 

f A u(z) + uAf (-.z) = a+b 

We have the following cases of acceptance: 

a>b 

q -+ pt if P(plq) ~ ~ 
1 

q -+ pf 1'f P( I ) < p q - 2 

Here we would never decide on pu. We would expect 
to lose by being noncommittal. 

a=b 

q-+ pt if 
1 

P(plq) ~ 2 
q-+ Pu 

1 
if P(plq) = -

2 

q-+ pf if 
1 

P(plq) ~ 2 

Here, when P(plq) = k, it doesn't matter which 
decision we make. They all have the same expected 
utility. 

a<b 

q-+ l if 
b 

P(plq) ~ a+ b 

q-+ pf if 
a 

P(plq) ~ a+ b 

q-+ Pu if a < P( I ) < b 
a+b- pq_a+b 

If we are very conservative we would expect that b ~ 
a. In this case we have 

b 
--:::::1 
a+b 

The algebra of thresholding probability here is the 
same as the system of Bacchus [1989], but where the 
actual value of the threshold depends on the utilities 
associated with the acceptance of the conclusion of the 
default. 

5 Approximate Reasoning 

One of the features of utility-based approach to default 
reasoning is the ability to have a notion of the cost of get­
ting a wrong answer. We can thus talk precisely about 
a tradeoff of accuracy, and consider the cost of making 
assumptions. Consider the following rule ( called "con­
traction" [Pearl, 1989]): 

X-+ yt 
XI\ y-+ zt 

X-+ Z 

This rule says that if we can conclude y, and use y 
to conclude z then we can conclude z without using y. 
This rule says that we can use derived conclusions as 
lemmata for other conclusions. This is not a valid rule 
of inference in the decision-theoretic defaults [Bacchus, 
1989]. This is because we do not know that y is true we 
have only decided that we should make it true. 

Pearl [1989] argues that €-semantics (in which con­
traction is a valid rule) is an idealisation. One of the 
main advantages of the decision-theoretic defaults is that 
we can measure the cost of our idealisation. With the 
decision-theoretic defaults we can consider how much we 
can lose by applying the above rule. 

Proposition 5.1 The maximum that we can lose by fol­
lowing the above rule is 

(1 - th(y1)) x tAf(-,z) 

where th(y1) is the threshold for accepting y, which is 

· ( 
1Af(-,z) tAu(-,z) ) 

th(y
1

) = max f At(z) + tAf(-,z)' uA1(z) + tAu(-,z) 

Example 5.2 Using the utilities of example 4.11, we 
find that the maximum we can lose is 

= 
(1 - th(y1

)) x 1Af(-,z) 
a 

-bx (a+b) 
a+ 

= a 

Even if we are extremely conservative and have a large 
b value, the conservatism in the acceptance of y means 
that we cannot lose much when we accept z. 

6 Comparison with other proposals 

6.1 Doyle 
Doyle has also considered the role of utility and probabil­
ity in default reasoning [Doyle, 1989]. This paper can be 
seen as following in the pioneering steps of [Doyle, 1989] 



in incorporating rationality into reasoning. We go into 
much more detail in one case of the general framework 
outlined by Doyle. 

Doyle [1990] motivates his rational belief revision in 
economic terms. However, unlike the defaults in this 
paper, the object level statements are not statements of 
preference in a utility sense. The utility is to suggest 
alternate definitions of belief revision. I would argue 
that the notion of utility of beliefs should be logically 
prior to the notion of rational belief revision. Once we 
have a notion of the utility of belief, we should be able 
to use this to develop a notion of rational belief revision. 

Other work of Doyle [1985; 1989] has considered the 
problem of default reasoning as a problem of group de­
cision making, and used the theory of group decision 
making for default reasoning. The group decision mak­
ing and the individual decision making used in this pa­
per are not incompatible ( unless we want to claim they 
are the same [Doyle and Wellman, 19891), and so these 
approaches should be seen as complementary to the ap­
proach propounded here. 

6.2 Shoham 

Shoham [1987] has argued that we should take probabili­
ties and utilities into account when considering defaults. 
Here we take this suggestion seriously and consider the 
normative theory of decision making as a starting point. 
He instead develops a general framework of nonmono­
tonic reasoning based on ordering of interpretations. The 
system propounded here cannot be simply put into the 
framework developed by Shoham ( one of the reasons is 
that we have automatic specificity, which one can show 
cannot be in any system that treats all logically equiva­
lent formulae as equivalent [Poole, 1991]). 

6.3 Loui 

Loui [1990] has also proposed a mix between decision 
theory and defeasible reasoning. He has, however, sug­
gested the opposite mix, namely using a form of defea­
sible reasoning for decision making. His motivation is 
very different to the motivation of this paper; it is an 
intriguing idea to consider whether the default system 
propounded here could be used as the basis for the ar­
gument system in Loui's proposal. 

6.4 Bacchus 

Bacchus [1989] has investigated the logic of thresholding 
conditional probability. All of the results of his theory 
can be transferred to the system in this paper. We com­
plement Bacchus' work in that we show how straight­
forward decision-theoretic concerns lead us to threshold­
ing probability. 

Rather than having a constant threshold for accep­
tance, we have a different threshold for each proposition. 
While this is not inconsistent with Bacchus's results, it 
is interesting that we can determine exactly what the 
threshold should depend on. This is because we can an­
swer the question of where the thresholds come from. 

In Bacchus's system, all one can say about such rules 
as contraction ( section 5) is that they are unsound with 
respect to the thresholding semantics. In the system 

outlined in this paper we can answer the question of 
how much we can lose by using these idealised rules of 
inference. and look at the utility of using conclusions, 
even if they may be mistaken. 

7 Conclusion 

In this paper we considered a simple idea; namely that 
defaults provide summaries of possible decisions that has 
already taken utilities and probabilities into considera­
tions. This allows for a definition of default for which 
we can take the meaning seriously. I would argue that 
the default "birds fly" really means that if all you know 
about some individual is a bird, then it is good policy 
to assume that the individual can fly. Rather than us­
ing decision theory directly for nonmonotonic reasoning 
[Kadie, 1988], this paper has explored only having the 
summaries of good decisions as defaults. 

The main result was to show that under the assump­
tion that the utility of the choice of whether to accept 
a proposition depends only on the truth of the proposi­
tion ( assumption 4.3), the acceptance depends on thresh­
olds of conditional probability. Thus we get to the same 
system that Bacchus [1989] proposed. We have the ad­
vantage that we can derive the threshold for acceptance 
from utility considerations. This is one of the few pro­
posals that can use the idea of the cost of an incorrect 
conclusion. 

The resulting calculus is very weak. Further work can 
be carried out in incorporating independence assump­
tions, and in making assumption 4.3 more realistic. As­
sumption 4.3 is interesting as an idealisation, but is not 
practical. In practice the importance of a piece of infor­
mation critically depends on what other information is 
true. 

A Proofs 

Proposition 3.2 If x ~ y and x ..... a then x /\ y ..... a. 

Proof: If x ~ y then P(y lx) = 1. 

&(a;,x/\y) 

= Lµ(a;,w)xP(w lx/\y) 
w 

= L µ(a;, w) x P(wlx) (by lemma 2.2) 
w 

= &(a;,x) 

The result follows immediately. D 

Proposition 3.3 The following is valid inference: 

e/\c ..... Aa 

e /\ -,c ..... A a 
e ..... A a 

Proof: Using lemma 2.1, we have 

P(wle) 
= P(wle /\ c) x P(cle) 

+P(wle /\ -,c) x P(-,cle) 
£(a;, e) 

19 5 
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w 

= P (cle) Lµ (ai, w) x P(wle I\ c) 
w 

+P{-icle) Lµ (ai, w) x P(wle I\ -ic) 
w 

= P (cle)£ (ai,e I\ c) + P (-icle)£ (ai,e /\ -ic) 

We know e I\ c -+ a and e I\ -ic -+ a, so for each ai E A, 

given£(a,e /\ c) ~ £ (a;,e /\ c) 

and£{a,e /\ -ic) ~ £ (ai,e /\ -ic) 
then P(cle)£(a, e ,\ c) + 

P (-icle)£ {a,e/\-ic) ~ P(cle)£(a;,e /\ c) + 
P (-,cle)£(a;,e /\ -ic) 

so £(a,e ) ~ £(ai,e ) 

D 

Lemma 4.5 For s and r each being one of t, u or f, 
the following holds: 

£(z8, x )-£(zr, x ) = r L~.8 (z) xP(zlx)+r A 8 (-iz ) xP(-,zlx ) 

Proof: 

D 

£(z8,x ) - £(zr,x ) 

= Lµ (z8,w) x P(wlx ) - Lµ (zr,w) x P(wlx ) 

= 
w w 

w:z true in w 

(µ(z8,w) - µ(zr,w)) x P(wlx ) 

(µ(z",w) - µ(zr,w)) x P(wlx ) + 
w:z false in w 

w:z true in w 

P (wlx) 

P (wlx ) 
w:z false in w 

= r A 8 (z) X P(zlx ) + r A 8 (z) X P(-,z lx ) 

Lemma 4.6 
£(z',x) ~ £(zl,x ) 

if and only if 

tAf (-,z) 
P (zlx ) ~ f At (z) + tAf (-,z ) 

Proof: The following sequence of inequalities are all 
equivalent: 

D 

£(z',x ) ~ £(zl,x ) 

£(z',x)-£(zl,x) ~ 0 

f At (z) x P(zlx ) - tAf (-,z ) x P(-,zlx ) ~ 0 

f At (z) x P(zlx ) ~ tAf (-,z ) x {1- P(zlx )) 
(f At (z) + tAf (-,z )) x P(zlx ) ~ tAf (-,z ) 

tAf(-,z) 
P(zlx ) ~ f At (z) + tAf (-,z) 

The proofs of lemmata 4. 7 and 4.9 are analogous to 
the proof of lemma 4.6, and are omitted. 

Proposition 5.1 The maximum that we can lose by 
following the rule of contraction is 

{1- th(yt )) x tAf (-,z ) 

where th(yt ) is the threshold for accepting y, which is 

t _ ( tAf (-,z ) tAu (-,z) ) 
th(y ) - max f At (z) + tAf (-,z )' uAt (z ) + tAu (-,z) 

Proof: Suppose we have x -+ yt and x I\ y -+ zt. The 
maximum we can lose by using the rule x -+ zt is given 
by how much we would gain by doing one of the other 
two actions. This is 

max (£(zU,x ) -£(z',x ),£(zl,x ) - £(z',x )) 

For s being either of u or f, we can derive 

£(z8,x) - £(zt,x) 
= - 8 A'{z) X P(z lx) + tAs(-,z) X (1- P(z lx)) 
= tA8 (-,z ) - (8 At (z) + tAs (-,z)) X P (zlx ) 

P (zlx ) 
= P(zlx I\ y) x P(ylx ) + P (zlx I\ -iy ) x P (-,y lx) 
> P(zlx I\ y) x P(ylx ) 

( 
tAs (-,z) ) 

~ sAt (z ) + tAs (-,z ) X th(yt ) 

£(z8,x ) -£(z',x ) 
~ tA 8 (-iz) - (8 At (z) + tAs (..,z)) X 

( 
tA" (-,z) ) 

sAt (z) + tAs (-,z) X th(yt ) 

= tA 8 (-iz)- tAs (-,z) X th(yt) 
= tAs{-,z) X {1- th(yt )) 

So that maximum that we can lose is 

max (' Af (-,z) x (1- th(yt )) , tAu (-,z) x (1- th(yt ))) 

which, under assumption 4.2 is tAf (-,z ) x (1- th(y1) ) . 

D 
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Abstract 

MultiLanguage systems (ML systems) are for­
mal systems allowing the use of multiple dis­
tinct logical languages. In this paper we intro­
duce a class of ML systems which use a hierar­
chy of metatheories, each with a first order lan­
guage containing names for the language below, 
and propose them as an alternative to modal 
logics. 
The motivations of our proposal are technical 
and epistemological. From a technical point of 
view, we prove, among other things, that modal 
logics can be embedded in the corresponding 
ML systems. Moreover, we show that ML sys­
tems have properties not holding for modal log­
ics and argue that these properties are justi­
fied by our intuitions. We motivate our claim 
by studying how they can be used in the rep­
resentation of beliefs (more generally, propo­
sitional attitudes) and provability, two areas 
where modal logics have been extensively used. 

1 Introduction and motivations 

It has been argued that knowledge should be struc­
tured into sets of facts or theories ( often called "con­
texts"); some of the many examples are [Giunchiglia 
and Weyhrauch, 1988; Giunchiglia, 1992a; Weyhrauch, 
1980; McCarthy, 1990; Kim and Kowalski, 1990]. In 
[Giunchiglia, 1991; Giunchiglia and Serafini, 1991a] the 
authors take a further step and introduce a new gen­
eral kind of formal systems allowing multiple distinct 
languages and call them Multi-Language systems (ML 
systems). In [Giunchiglia, 1991] it is argued, in fact, 
that providing each theory with its own language allows 
us to give a natural and elegant proof theoretic account 
of multi-contextual reasoning and, also, extra flexibility 
which can be exploited in the representation of many 
phenomena. 

In this paper we focus on a particular class of ML sys­
tems which allow a hierarchy of metatheories, each using 
a first order language containing names for the language 

•This work has been done as part of the project "MAIA", 
Advanced Model of Artificial Intelligence, under development 
at IRST. 

below and propose them as an alternative to modal log­
ics. We show how modal systems can be embedded in the 
corresponding ML systems by providing an equivalence 
result between their provability relations. Moreover, we 
prove that the ML systems we consider have further 
properties, not holding in modal logic, and argue that 
these properties are grounded into our intuitions. To 
justify our claim WP study how ML systems can be use_d 
in the representation of beliefs (more generally, proposi­
tional attitudes) and provability, two areas where modal 
logics have been extensively used; [J .Y. Halpern, 1985] 
and [Boolos, 1979] are some of the many references on 
the use of modal logics respectively on the first and the 
second topic. 

One of our main interests is to provide foundations 
to the implementation of "intelligent" reasoning sys­
tems. The issue of mechanizibility and of naturalness 
of the interaction with the implemented system plays a 
central role in our research. The ideas described here 
have been incorporated into a system, called GETFOL, 
which gives the user the ability to define arbitrary ML 
systems (GETFOL is a total re-implementation/extension 
of the FOL system [Weyhrauch, 1980; Giunchiglia and 
Weyhrauch, 1991]). 

The paper is strnctured as follows. Section 2 gives a 
short description of some basic notions concerning ML 
systems (but see [Giunchiglia, 1991] for a much longer 
presentation) . Section 3 introduces the class Mn, the 
Mn system MBK for the representation of propositio~al 
attitudes and the Mn system MK for the representat1011 
of provability. Section 4 proves and discusses the main 
technical results about MBK and MK. Finally section 5 
shows how Mn systems can be extended to capture var­
ious modal logics. Proofs are skipped, for a complete 
treatment of the t,!chnical issues see [Giunchiglia and 
Serafini, 1991b]. 

2 ML systems 

The goal of this section is to give a formalizatio!' of t!1e 
idea of system with multiple languages. A detailed dis­
cussion about the d,!finitions concerning ML systems can 
be found in [Giunchiglia, 1991]. 

An axiomatic formal system S is usually described 
as a triple consisting of a language L, a set of axioms 
n~L and a set of inference rules Ll, i.e., S = (L, n, Ll). 



The generalization we consider here is to take many lan­
guages and many sets of axioms while keeping one set of 
inference rules. We thus have the following definition of 
multi-language system: 

Definition 2.1 (Multi-Language System) Let I be 
a set of indices, { L1 her, a family of languages and 
{D1her a family of sets of wffs such that D;<;L;. A 
Multi-Language Formal System (ML system) MS is a 
triple ({L;}ier,{D;}ier,~) where {L;};er is the Family 
of Languages, {D;}iEI is the Family of sets of Axioms 
and ~ is the Deductive machinery of MS. 

If A is a wff of a language L, we say that A is an L­
wff. Each language L 1 is associated with its theory ( de­
fined as the set of L;-wffs which can be proved by apply­
ing the deduction machinery to the axioms). What can 
be derived is bound by language: certain formulas (like 
the conjunction of two theorems in two distinct theories) 
cannot be derived simply because there is no language 
in which they can be expressed . 

Even if definition 2.1 is more general, allowing arbi­
trary formal languages and deductive machinery, in this 
paper ( and in most of the work done so far), we con­
centrate on first order languages and adopt a suitable 
modification of the natural deduction formalism, nota­
tion and terminology defined in [Prawitz, 1965]. More­
over, as we want to make effective use of the multiple 
languages, we define the inference rules in a way to take 
into account the language the wffs are extracted from. 
We write (A, i) to mean A and that A is a L;-wff. The 
deduction machinery ~' is therefore defined as a set of 
inference rules, written as: 

(Ai , i1) (An , in ) 
---------- l (A, i) 

(1) 

or as : 

[(Bi, ii)] [(Bm, Jm)] 
(An+l, in+1), , .(An+m, in+m) 
(A , i) 

8 

(2) 
Picture (2) represents a rule 8 discharging the assump­
tions (B1, }1), . . . , (Bm , Jm) [Prawitz, 1965] . Notice 
that in general, inference rules have premises and conclu­
sions belonging to different languages. The rules whose 
premises and conclusions belong to the same language L; 
are called L;-rules, the others bridge rules [Giunchiglia, 
1991]. L;-rules allow to draw consequences inside a the­
ory while bridge rules allow to export results from one 
theory to another. One example of L;-rule for a theory 
i is modus ponens 

(A-B, i) (A, i) 

(B, i) 

one example of bridge rule between the theories i, j 
and the theory k is multicontextual modus ponens 
[Giunchiglia, 1992a] 

(A-B, i) (A, j) 
(B, k) 

The meaning of the two rules is very different. The first 
allows us to derive B inside the theory i just because we 
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•("A") •("A'') 

_____ ---- -----! n'"'-- -----f n.,., _____ _ 
A A 

Figure 1: The family Mn 

have derived A - B and A in the same theory. Thus, 
for instance, if we take the theory i to represent the 
beliefs of an agent a;, this means providing the agent a; 
with the ability of using modus ponens. Multicontextual 
modus ponens allows us to derive B in the theory k just 
because we have derived A - B in the theory i and A in 
the theory j. If we take the theories i, j, k to represent 
the beliefs of the ag•mts a1 , ai, ak, this means that ak will 
be able to take B as known, not because he has derived 
it, but because this is the result of the interaction of 
the results derived by a; and ai . The assertion of B in 
k is not the result of a deduction in k but, rather the 
result of the "propagation" of reasoning from i, j into 
k. ( [ Giunchiglia, 1992a] describes these issues in more 
detail.) 

Deductions are trees of wffs built starting from a finite 
number of assumptions and axioms, possibly belonging 
to distinct languages, and applying a finite number of in­
ference rules. Any deduction can be seen as composed of 
subdeductions in di8tinct languages, obtained by repeated 
applications of L;-rnles, any two or more subdeductions 
being concatenated hy one or more applications of bridge 
rules. 

3 The class J'vt'R.. 

Informally, Mn systems have the following properties: 

(i) the languages are ordered in a hierarchy; 

(ii) each language in the hierarchy has names for the 
wffs of the levd below; 

(iii) any two adjacent languages in the hierarchy, say M 
and O, are linked only by two bridge rules which are 
variations of the multi-language version of reflection 
up and reflection down ( as described in [Giunchiglia 
and Smaill, 19x9]) . In other words the bridge rules 
are of the form: 

____.:.( A.....;,,_O-"-) _ 

(•("A"), AI) 
nup. 

(•( "A") , M) 

(A, 0) 

where "•" is a unary predicate. 

Figure 1 gives a graphical representation of the basic 
structure of the elements of Mn. 

Each Mn system is a hierarchical meta-logic, in the 
sense that each pa ir of connected theories, 0 and M , 
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satisfies the following conditions: 

~ A if and only if ~ •("A") (3) 
. ~ • ("A-+B")-+(•("A" )-•("B")) (4) 

which are the weakest conditions that guarantee the ob­
ject/ meta relation between two theories. 

In this section we present and discuss two important 
instances of Mn systems, that is MBK for the represen­
tation of propositional attitudes and MK for the repre­
sentation of metatheoretic theorem proving. 

3.1 MBK: reasoning about propositional 
attitudes 

MBK is the basic system for the representation of propo­
sitional attitudes. To keep things simple we consider the 
single agent case. The generalization to the multi-agent 
case is straightforward. 

The idea underlying the formalization of propositional 
attitudes is that there is an agent, let us call him a, 
who is acting in a world, and has both beliefs about this 
world, and beliefs about his own beliefs . For a proposi­
tion A about the state of the world, Bl( "A") means that 
A itself is believed by a or, in other words, that A holds 
in a's view of the world; similarly Bl("Bl("A")") means 
that Bl("A") is believed by a, i.e. A holds in a's view 
of his beliefs of the world, and so on. In other words, a 
"sits on top" of his beliefs and is able to reason on the 
reification of his belief A, that is Bl( "A"), in a sort of 
"metaview" ofa believing A. 

This process of reification can be iterated through a 
chain a metaviews; a's beliefs are thus the facts derived 
in a top theory which has a metaview, a metametaview, 
a meta .. . metaview of a's own beliefs. 

To formalize the notion of belief in a multi-language 
framework we have a chain of theories, called views, 
where the theory above "sees" the theory below via re­
flection principles which allow the derivation of Bl( "A") 
from A and viceversa (see figure 2). This chain has a top 
theory which is a's beliefs, that is, its basic beliefs about 
the world and his view of all the possible nestings of the 
belief predicate. In the case of the ideal reasoner, which 
we consider in the following, we need to have an infinitely 
descending chain and thus no bottom theory ( one more 
level of nesting of the belief predicate corresponds to one 
more theory in the chain, see figure 2). 

As each theory is "above" an infinite chain and each 
level corresponds to a level of nesting of the belief pred­
icate, all the languages in MBK must have the same 
expressibility, i.e. they must have the same notion of 
wellformedness. 

To define MBK we need a way to index theories in 
the infinitely descending chain. We index the top theory 
with 0, the one below with 1 and so on. 

In MBK the languages L(BO, are thus obtained from 
a propositional language L as follows: 

Lo= L 

Ln+l = Ln U {Bl("A"): A is an Li-wff} 

L(BO = Unew Ln 

Here L is the language used to express the basic facts 
about the world. 

Bl("A") Bl( "A" ) 

_____ ---------}- n.,., -----{-- n'"·' __ _ 

A A 

I 

-----~------------------------------ --1 
I 
I I ----------------------~ 

Figure 2: The system MBK 

Definition 3.1 (MBK) Let L be a propositional lan­
guage. Then MBK= ({Li}iew, {rli}iew, ~), is such that, 
for every i E w , L; = L(Bl), fii = 0 and il contains th e 
following rules: 

((A, i)] 
(B, i) 

...,.....----,- - [j 
{A-+B, i) 

[(-,A, i)] 
( .L, i) 
(A, i) .Li 

(A, i + 1) 
(Bl("A"), i ) Rup i 

(A, i) {A-+B, i) 
(B, i) 

-+E; 

(Bl("A" ),i} R. 
{A, i + 1) an .i 

Restrictions: the Rup.i-rule can be app lied only if the 
index of every undischarged assumption (A, i) depends 
on, is lower than 01 · equal to i . .Li can be applied if A -is 
not of the fo rm .L. 

The idea underlying the definition of MBK is that the 
only bridge rules arf' reflection up and down between any 
two adjacent theories and that any theory i has a set of 
inference rules which is complete for classical proposi­
tional logic (this ensures that the i-th theory contains 
all the tautologies). 

A lot of people in the AI and cognitive science commu­
nity have argued in favour of this kind of "distributed" 
representation of bdiefs and deductions. ( Notice that in 
the multiagent case. instead of a hierarchy, we have a tree 
of theories. In this tree, each theory is above n theories, 
one for each agent; Pach of these n theories represents the 
beliefs of an agent as "seen" by the theory above them) . 
For instance Wilks [Wilks and Biem, 1979], in his work 
on belief ascription, speech acts and so on, advocates 
the use of distinct sPts of beliefs; Fauconnier [Fauconnier, 
1985] has a mental space theory which uses environment­
like entities; Dinsmore in [Dinsmore, 1991] formalizes 



Th("A") Th("A") 

_____ -----------l n.,.1 _________ ! n,., __ 

A A 

Figure 3: The system MK 

agents' beliefs by belief spaces, each of which .can con­
tain further belief spaces for the formalization of the 
agents' nested beliefs. Konolige formalizes agents' nested 
beliefs using introspective machines [Konolige, 1984; 
Konolige, 1985], which are very similar to theories. Kim 
and Kowalski in [Kim and Kowalski, 1990] propose a 
very similar approach in the area of logic programming. 

Notice that Perlis [Perlis, 1985] argues explicitly 
against the use of multiple hierarchical theories, the main 
argument being one of quantification. He argues, rightly, 
that we do not want to quantify over all the different lev­
els. His point does not apply here as we are dealing with 
the propositional case; on the other hand, we argue that, 
even in the first order case, his observation does not rule 
out the use of multiple levels and, more generally, of 
multiple contexts. Even in the first order case we do not 
need to quantify over theories unless this is exactly the 
kind of reasoning we want to do. The basic intuition, 
underlying all our work, is that reasoning is always con­
textual and that, therefore, all the arguments are im­
plicitly bounded to the current context and to the con­
texts it implicitly refers to (see also [Giunchiglia, 1992a; 
McCarthy, 1991]). We never quantify explicitly over con­
texts unless we want to make the contextuality of rea­
soning explicit. 

3.2 MK: reasoning with metatheories 

In metatheoretic reasoning, one usually starts with 
the object theory and then defines its metatheory, its 
metametatheory and so on. Analogously, in MK, the 
bottom theory is any object theory, the theory at 
level 1 is its metatheory, the theory at level 2 is its 
metametatheory and so on. Thus, if L is the propo­
sitional language of the object theory, for any natural 
number i (i E w), Li is inductively defined as follows : 

Lo = L 
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Li+t = Li U { Th( "A") : A is an Li-wff} 

where: Th is an unary predicate and "A" is an individual 
constant (which acts as the name of A). 

Definition 3.2 (MK) Let L be a propositional lan­
guage. Then MK= ({Li}iEw, {Q}iew, ~), is such that, 
for every i E w, n, = 0 and ~ contains the following 
rules: 

[(A, i)] 
(B, i) _.;...__.;,_ -+ I; 

(A-+ B, i) 

[ (-,A, i)] 
( .l, i) 
(A, i) .li 

(A, i) (A- B, i) 

(B, i) 
-E; 

(A, i) 
(Th("A"), i + 1) 'Rup.i 

(Th("A"), i + 1) 
(A, i) Rdn.i 

Restrictions: the 'Rup.i-rule can be applied only if the 
index of every undischarged assumption (A, i) depends 
on, is strictly greater than i. .li can be applied if A is 
not of the form .l. 

Figure 3 gives a graphical representation of the struc­
ture of MK. 

Analogously to l\lBK, in MK reflection up and down 
between any two adjacent theories are the only two 
bridge rules and any theory i can prove all the tautolo­
gies. Most of the in tuitions underlying MK are reported 
in [Giunchiglia and Serafini, 1991b]. 

3.3 Some notes about MK and MBK 

MBK and MK are similar but different. Not least, they 
use different hierarchies of languages. The differences be­
tween MBK and MK can be best summarized by point­
ing out that in MK we have only one object theory and 
an infinite number of metatheories while in MBK we 
have one meta ... metatheory and an infinite number of 
object theories. These differences, which are substantial 
and seem motivated by our intuitions, do not seem for­
malizable in modal logics. Our explanation of this fact 
is that, in modal logics, collapsing all the languages in 
one, one loses track of how, depending on the applica­
tion, language is used in the hierarchy of nestings of the 
proof/belief predicate. Note that the union of all the 
languages in MK is the same as the union of all the lan­
guages in MBK modulo the substitution of Th with Bl. 
Having a unique language has caused a certain degree 
of confusion between provability and belief; for instance 
in [Konolige, 1984] belief has been modeled as provabil­
ity. 

Some basic theorems in MBK and proofs are listed 
below. The proofs are examples of how deductions are 
constructed in MBK. 

Proposition 3.1 For any wff A and B and any i E w, 
(i)-(iii) are theorems of MBK. 

(i) (Bl("A-+B")-+(Bl("A") -+ Bl("B")) , i) 
(ii) (Bl(".l")-+Bl("A''), i) 
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f,. 

{iii} (-.Bl("..L")-.(Bl("A") -.-.Bl("-.A")) , i) 

Proof 
(i) 

( ii) 

(iii) 

(Bl( "A-B"), i) 
(A -B, i+l) ndn.i 

(Bl("A"), i) 

( 
ndn.i 

A, i + 1) 
-E;+1 

(B, i + 1) 
Rup.i 

(Bl( "B" ), i) 
(Bl("A") - Bl("B"), i) -I; ___ ...;.......;..._..;.__....;..._..;._...;... ___ - I; 

(Bl( " A-B")- (Bl(" A")- Bl("B")), i) 

(Bl( ".L" ), i) 
Rd -

( .L, i + 1) . n. I 

(A, i + 1) 1;,+1 
. 

(Bl("A"), i) up., 

(Bl( " .L")- Bl("A"), i) -I; 

(Bl( "A"), i) (Bl( "-.A"), i) 
(A, i + 1) Rdn.i (-.A, i + 1) Rdn., ..;._ __ ...;... ____ .;..._ __ .....;.. -E,+1 

(.L, i + 1) 
-'------'- 'llup.i 

(-.Bl(".L"), i) (Bl(".L") , i) 
--'--__;..---'-------'-...;...-"--..;.. -E; 

(.L, i) 
(-.Bl("-.A"), i) .L; 

-I; 
(Bl("A")--.Bl("-.A"), i) 

--------------- -+I; 
(-.Bl(" .L" ) - ( Bl( "A")-+ -.Bl( "-.A" )), i) 

Q .E.D. 
Under the obvious interpretation (read Bl("A") as 

DA) the three theorems above hold also for modal K. In 
particular the translation of the first theorem is the ax­
iom characterizing modal K (that is D(A-.B)-.(DA-. 
DB). 

The wffs obtained by replacing Bl with Th in ( i), ( ii) 
and ( iii) of proposition 3.1 are theorems of MK as well . 
Their proofs can be obtained by replacing i with i + 
2 ( and leaving i + 1 as it occurs) in the proof of the 
corresponding MBK theorems. 

4 The main results about MBK 

This and the following section describe the main tech­
nical results for MBK. Unless explicitly stated the con­
trary, all the theorems hold also for MK, modulo some 
obvious syntactic modifications. 

Let L be a propositional language. We define the 
modal language L(D) as the minimal set of wffs built 
with the usual rules for the logical connectives plus the 
following rule: if A is a L(D)-wff then DA is a L(D)­
wff. The modal system K is characterized by the axiom 
schema D(A-. B)-. (DA -. DB) and by the necessita­
tion rule: if~ A then ~ DA. To carry out the proofs 
of the theorems listed in these pages, we have used Bull 
and Segerberg's version of modal K, as described in [Bull 
and Segerberg, 1984]. 

The mapping( .)* from L(D)-wffs to L(B0-wffs is then 
defined as follows: 

(i) If A is a propositional constant then A• = A; 

(ii) (. )* distributes over the propositional connectives; 

(iii) (DA)*= Bl("A*") . 

(.)* is an isomorphism with inverse, which we write(.)+. 
The first result i:;; a form of syntactic equivalence be­

tween provability in K and in MK. 

Theorem 4.1 If A is an L(B0-wff then for any i E w , · 
f;,, 8 K (A, i), if and only if~ A+. 

Corollary 4.1 (Consistency) For every i E w, ( ..L , i) 
is not a theorem in MBK. 

Notice that in [Rivieres and Levesque, 1986], Des Riv­
ieres and Levesque show how Montague and Thomason 's 
negative results [Montague, 1974; Thoma.son , 1980] can 
be avoided with a careful translation of modal logics into 
first order logics. Besides the differences in the motiva­
tions, the main technical difference between the results 
stated by theorem 4.1 and corollary 4.1 and those de­
scribed in [Rivieres and Levesque, 1986] is that they keep 
a unique language while we propose a hierarchy of dis­
tinct, possibly different (as in MK) languages. [Attardi 
and Simi, 1991] describes another approach where reflec­
tion rules are used still keeping consistency; the main 
technical difference with our work is, again , that they 
use a unique (amalgamated) language. 

Theorem 4.1 does not mean that Kand MBK 's prov­
ability and, more important, derivability relations can 
be put into a one-to-one mapping. There are further _ 
properties which hold specifically for MBK and MK but 
not for K. Some of these properties, described in the 
following, involve the multilanguage structure of MBK 
and concern the propagation of inconsistency through · 
the hierarchy of theories . 

Theorem 4.2 If [ f;,, 8 K (..L, i) then r ~taK (..L, j) for 
any j 2: i . 

Equivalently : if r l:laK (..L, i) then f li1BK (..L , j) for 
any j ::; i. 

Note that the converse of theorem 4.2 does not hold ; 
deriving ..L in one theory does not yield the derivation of 
..L in the theories above it. Because of the locality of de­
ductions (inside a theory) and the filtering performed by 
reflection up, it is impossible to propagate the inconsis­
tency upwards . Local inconsistency (inconsistency inside 
a theory) does not imply global inconsistency (inconsis­
tency everywhere, in our case in all the theories), as it 
does happen in human reasoning and does not happen in 
the "usual" logical systems. 

This property is highlighted by the following result. 

Theorem 4.3 (..L , i + 1) l:laK (..L , i) . 

As far as propositional attitudes are concerned, the 
localization of reasoning in general and that of inconsis­
tency in particular has often been argued to be a prop­
erty of common sense reasoning (see for instance [Fagin 
and Halpern, 1988]). The intuition behind this result is 
that we can have c1 believer which reasons consistently 
about inconsistent beliefs and, more generally, that it is 
possible to have consistent beliefs about inconsistent be­
liefs . Analogously, in meta.theoretic theorem proving, a 
consistent meta.theory to an inconsistent theory can be 
used to reason (inside the system, not only in its informal 
meta.theory or in the code implementing it) consistently 



about inconsistency. One goal could, for instance, to 
identify the set of assumptions/ axioms generating the 
inconsistency. 

A stronger result can be stated for MK. 

Theorem 4.4 For every finite set of wffs r, there exists 
a wff (A, i) such that r 'irK (A, i). 

Theorem 4.4 says that, as long as we add finitely many 
(possibly contradictory) assumptions to it, MK cannot 
get into inconsistency. This result can actually be gen­
eralized to axioms. Thus, as long as we allow only finite 
sets of axioms, there will always be a way to "get out" 
of an inconsistent situation simply by going high enough 
in the hierarchy of theories. The property described by 
theorem 4.4 does not hold in MBK, as in MBK there ex­
ists a top theory. This, agrees with the intuition that an 
inconsistent believer, by definition, cannot reason con­
sistently about his own beliefs. 

5 ML systems for the other modal 
logics 

In modal logic one usually extends K to obtain stronger 
logics, for instance T, K4, S5, by adding appropriate 
axioms. With ML systems, an analogous result can be 
obtained by adding suitable bridge rules. For instance 
ML systems which are equivalent to T, K4, K45, S4 and 
S5 can be elegantly obtained by adding bridge rules to 
MBK or to MK. 

Definition 5.1 For any i ~ 0, let T;, S4i and S5i be 
the following bridge rules: 

(A, i + 1) T. 
(A, i) ' 

(Th( "A"), i) 
(Th( "A"), i + 1) 

(-,Th("A"), i) 
(-,Th("A" ), i + 1) 

S4; 

S5i 

Restrictions: T; has the same restriction as ntip.i . 

Then MBT, MBK4, MBK45, MBS4 and MBS5 are 
the ML systems obtained from MBK by adding, for any 
i the bridge rules T;, S4i, S4; plus S5i, T; plus S4; and 
T; plus S5;, respectively. 

Let us write MBX to mean one among MBT, MBK4, 
MBK45, MBS4 and MBS5 and X to mean the corre­
sponding modal system (T, K4, K45, S4 and S5 respec­
tively). We can thus prove the following theorem. 

Theorem 5.1 For any wff A and any i E w, ~Bx 

(A, i), if and only if~ A+. 

Table 1 shows how the translation of the axioms of a 
modal system X are theorems in the corresponding ML 
system MBX. 

MBX systems give a first positive feedback on the 
conjecture, discussed in [Giunchiglia, 1991; Giunchiglia, 
1992a; Giunchiglia and Serafini, 1991a], that we can con­
centrate a lot of the "interesting research" on ML sys­
tems on the search for "sU:itable" bridge rules. This cor-

responds to the in tuition that many reasoning phenori.-0 3 
ena can be modelled as contextual reasoning by contro l­
ling the propagatio11 of consequences among theories. 

6 Conclusion 

The main goal of this paper has been to propose mul­
tilanguage systems which can be used, at least in some 
problem domains, in place of modal logics. This project 
has been carried out from two perspectives. 

From a technical point of view, we have given various 
equivalence results with the most common modal logics. 
From a representational point of view, we have shown 
that multilanguage systems have properties not holding 
in modal logics and have argued that these properties are 
motivated by our intuitions. For instance we have intro­
duced two ML syst,~ms, MBK and MK, both equivalent 
to modal K but with different characteristics. In partic­
ular MK is constructed by starting from an object theory 
and by progressively adding metatheories in an infinitely 
ascending chain; this corresponds to the intuition that 
we build a metatlwory starting from the object theory 
it describes . MBK, on the other hand, is constructed 
by starting from the top meta ... metatheory and by pro­
gressively adding an infinitely descending chain of object 
theories; this corresponds to the intution that a believer 
has a meta ... metaview of the world and of his beliefs. 
Each new view is a new object theory for the believer 
to reason about. Moreover, we have shown that ML 
systems have other interesting properties; for instance 
local inconsistency (inconsistency of a theory) does not 
imply global inconsistency (inconsistency of all the theo­
ries) and a finite set of axioms cannot make MK globally 
inconsistent. 

Notice that it is our deeper belief that multilanguage 
systems can be used to provide a unifying and founda­
tional framework for the representation of knowledge and 
common sense reasoning. The idea is that reasoning is 
mainly contextual and that multilanguage systems pro­
vide a framework for the formalization of context-based 
reasoning. The work on modal logics is only one of the 
many examples which are being studied inside the Mech­
anized Reasoning Group; some other examples are : ab­
stract reasoning, metatheoretic reasoning, reasoning by 
analogy, reasoning about time, reasoning about distinct 
subject matters. 
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translation of X axioms 

(Bl( "A" ) -+ A, i) 

(Bl(" A")-+ Bl(" Bl( "A")"), i) 

(-,Bl("A") -+ Bl("-,Bl("A")" ), i) 

MBX 

(Bl( "A"), i) 1l 
(A, i + l) dn., 

(A, i) T; 

(Bl("A") ...... . 4, i) -+I, 

(Bl( "A") , i) 

(Bl( "A" ), i + 1) S~ . 
(Bl( "Bl("A")" ), i) up., 

----------- -I · 
(Bl( " A")-+ Bl( " Bl( "A")"), i) I 

(-,Bl( "A" ). i) 

(-,Bl("A" ), I+ 1) 
54

' 
-------1lp; 
(Bl( "-,Bl( "A'')" ), i) u . 

- I · 
(-,Bl( "A")-+Bl(" -,Bl( "A" )"), i) I 

Table 1: Proofs of the translation of the modal axioms 
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Abstract 

A new approach to tractable deduction from 
an expressive knowledge base is presented that 
approximates formulae by automatically map­
ping them to some restricted language. Various 
mappings and their properties are discussed, 
and an anytime algorithm to compute approx­
imations is presented. Several published ap­
proaches prove to be special instances of ours. 
To illustrate this, our formalism is used to for­
malize hierarchical knowledge bases, and to ex­
tend them by allowing negation and mutual ex­
clusion. We believe this to be the first compre­
hensive theoretical framework for approximate 
reasoning. 

1 Introduction 

It is well known that reasoning with a knowledge repre­
sentation system becomes more difficult as the represen­
tation language becomes more expressive [Levesque and 
Brachman 1985]. Reasoning is apparently intractable 
even for the very weak representation language of propo­
sitional logic [Cook 1971]. Since practical knowledge rep­
resentation systems need more expressive representation 
languages [Doyle and Patil 1991], this intractability of 
reasoning is a serious problem. 

Previous approaches to this problem have used 
tractable, but incomplete reasoning mechanisms. These 
mechanisms are often specified either algorithmically 
( c.f. [Allen 1983]), or by using a non-standard model 
theory (c.f. [Levesque 1984a]) , or by using an incomplete 
set of inference rules ( c.f. [Konolige 1986]) . We present 
a new framework for obtaining efficient and expressive 
knowledge representation systems. Rather than restrict­
ing the language in which assertions and/ or queries are 
framed, our approach restricts the internal representa­
tion to a certain subset, called the vocabulary, of the 
formulae of the original language. Every formula in the 
original language is then suitably mapped to one or more 
formulae in the vocabulary. This mapping is used to 
translate all the information told to, and the queries 
asked of, the system. We show that powerful and effi­
cient representation and reasoning can be obtained with 
a variety of different vocabularies. 

David W. Etherington 
AT&T Bell Laboratories 

AI Principles Research Department 
Murray Hill, NJ 07974 
ether@research.att.com 

Mapping formulae into restricted vocabularies can 
produce formulae that are either stronger or weaker 
than the original. Consequently, our approach leads to 
two special kinds of approximations - those that are 
unsound but complete, where all, but not only, true 
facts are inferred; and those that are incomplete but 
sound, where only, but not all, true facts are inferred. 
These two, taken together, can provide approximate, 
but tractable, upper and lower bounds on the results of 
exact, but intractable, sound and complete reasoning.1 

Furthermore, these bounds can be refined by changing 
the vocabulary. 

We present an anytime algorithm [Boddy and Dean 
1988] that computes upper and lower bound approxi­
mations. The algorithm successively refines approxima­
tions, and can be stopped prematurely and yet yield 
meaningful answers. We show that it is guaranteed 
to provide better approximations after each refinement 
step. 

Our approach is motivated by the Hierarchical Knowl­
edge Bases (HKB) framework lBorgida and Etherington 
1989], where the representation of input knowledge (ex­
pressed in a restricted subset of first-order logic) is re­
stricted to instances of elements of a pre-specified hi­
erarchy of so-called "natural" disjunctions. One such 
hierarchy, of pets, is shown in Figure 1, where the nodes 
abbreviate the natural disjunctions. 2 For instance, the 
natural disjunction mouse(x) V gerbil(x) V hamster(x) 
is abbreviated as rodent(x). Less natural disjunctions 
- for instance, turtle(x) V dog(x) - are not directly 
represented in the hierarchy. 

Any formula of the input language told to the sys­
tem is approximated by the strongest natural dis­
junction( s) equivalent to or weaker than it. For 
instance, turtle(joe) V dog(joe) is approximated as 
carnivore(joe). Queries to the system are similarly ap­
proximated before being answered. If the hierarchy used 
to obtain such approximations is sparse (relative to the 

1 Our approach ca.n also provide other a.pproxima.tions that 
a.re neither sound nor complete, but a.pplica.tions of such a.p­
proxima.tions a.re less-readily a.ppa.rent. 

2 The designation of some disjunctions a.s "na.tura.l" is 
ma.de by the designer of the hierarchy a.s a.ppropria.te 
for pa.rticula.r a.pplica.tions; the term ha.s no meta.physical 
significance. 



pet 

goldfish guppy 

Figure 1: A simple hierarchy of pets 

complete lattice of possible disjunctions), it is possible 
to improve the time complexity of representation and 
query-answering from linear to logarithmic in the size of 
the knowledge base [Borgida and Etherington 1989]. 

Our framework generalizes HKB and some other previ­
ous approaches and provides a theoretical basis for them. 
Results about specific formalisms then fall out as corol­
laries to theorems derived in the general framework. The 
framework can also be used to generate new mechanisms 
for approximate reasoning. We illustrate this by pre­
senting instances of the framework that eliminate three 
of the major limitations of HKB, while maintaining its 
asymptotic tractability. 

The rest of the paper is organized as follows. In the 
next section, we define the notion of vocabul.aries and 
their use in approximating formulae. In Section 3, we 
extend the notion of approximation to theories. Next, 
we define various kinds of approximate entailment and 
use them to obtain approximate answers to queries posed 
to a knowledge base. In Section 5, we present an any­
time algorithm to compute approximations. We show 
an application of our framework, extending the expres­
siveness of HKBs, in Section 6. Finally, we discuss some 
other related research. Given the limited space avail­
able here, we rele~ate detailed discussion and proofs of 
various results to [Dalal and Etherington 1992]. 

2 Vocabularies and Approximations 

Let .C be any language that has a notion of formula3, 

and a notion of entailment, I=, which is a relation be­
tween theories and formulae. The entailment relation is 
required to be monotonic, i.e., for any two theories r 
and r' and any formula 1/J, if r I= 1P and r ~ r' then 
r' I=¢. Most common logical languages - for instance, 
classical propositional logic and first-order predicate cal­
culus - have monotonic entailment relations. For any 
theories rand E and any formula¢, we writer l=:r: ¢ iff 
r U E I=¢, and write r I= E iff for each formula 1/J E E, 
r I= 1/J . We often abbreviate the singleton theory {¢} 

3 In this paper, we assume that all formulae are closed, i.e., 
all variables in a formula are bound. A theory is a (possibly 
infinite) set of formulae. 

by 1/J . Given this notation, we can turn to the definition 
of vocabularies and approximations. 

Definition 1 A vocabulary, V, is any (possibly infinite) 
subset of .C. • 

Intuitively, the vocabulary consists of those for~ulae 
that are represented accurately. Other formulae m the 
language are approximated to formulae in the vocab­
ulary, perhaps with some loss or gain of infor~ation. 
For example, in the HKB case [Borgida and ~thermgton 
1989], the vocabulary is the set of all atomic formulae 
whose predicates are included in the hierarchy. 

Any formula ¢ splits the vocabulary into three parts 
- the formulae that entail ¢, the formulae entailed by 
¢, and the others. Intuitively, the set of formulae in 
the vocabulary that entail ¢ provides an upper-bound 
(stronger) approximation of¢. Similarly, the set of for­
mulae in the vocabulary entailed by 1/J provides a lower­
bound (weaker) approximation of ¢ . '.I'hese two appr?xi­
mations of¢ are called its strengthenmg and weakenmg, 
respectively. 

Definition 2 Let V be a vocabulary, and let E be a set 
of formulae. For any formula ¢ in .C, its weakening 
l t/J J v,:r: is the set { a E V I t/J l=:r: a}"; it: strengthening 
r1/Jlv,:r: is the set {a EV I a l=:r: 1/J}v,. 

The set E can be thought of as containing definitions 
(see [Brachman and Schmolze 1985]) - a set of formulae 
that define the terms used in the system. For example, 
a "parent" can be defined as "a person who has at least 
one child" . 

The subscript "v" on strengthenings prefigures the 
way they will be used in determining approximate en­
tailment (Section 4). Since a formula's strengthening 
contains every formula that entails it, we treat strength­
enings as limited disjunctions (the disjuncts do not inter­
act). This captures the weakest strengthening possible 
given the vocabulary. Similarly, weakenings are treated 
as limited conjunctions (subscripted by ",._"), to capture 
the strongest possible weakening. 

A weakening may be more concisely represented by a 
smaller set of formulae, by removing all those formulae 

4 We omit the subscripts V and E when they are obvious 
from the context. 
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that are strictly weaker than some other formula in it. A 
strengthening may similarly be made concise by remov­
ing strictly stronger formulae. The complete weakening 
or strengthening can be easily regenerated from this con­
cise representation. 

As an example, consider the propositional language 
over the alphabet { a, b, c}. Let the vocabulary be the 
set { a, b, a I\ b I\ c, a V b V c}, and the set of definitions 
be empty. The formula a's weakening is { a, a Vb V c} "; 
its strengthening is { a, a I\ b I\ c }v - both of which can 
be concisely represented as {a} . a V b's weakening is 
{aVbVc}". Its strengthening is {a,b,a/1.b/l.c}v, which 
can be concisely represented as { a, b }v. 

Interactions among formulae are not considered while 
generating the approximations. Thus, given the previous 
vocabulary, neither a nor b belong to the strengthening 
of a I\ b, since neither individually entails a I\ b. Since 
formulae in an approximation do not interact, the weak­
ening {a, b}" is different from the weakening { a I\ b}". 

In this paper, we assume that any tests of the form 
1/J l=:r: o:? and o: l=:r: 1/J?, where 1/J E C and o: E V, 
are tractable. This assumption is satisfied when the vo­
cabulary and the definitions are not very rich, and no 
individual formula, 1/J, in the language C is very com­
plex. This does not necessarily limit the expressiveness 
of C, since theories may contain many such formulae. 
Our framework can be extended to the case when this 
assumption does not hold [Dalal and Etherington 1992]. 

3 Approximating Theories 

The notion of approximation can be extended to theo­
ries. As in the case of formulae, the strengthening of a 
theory should contain exactly those formulae of the vo­
cabulary that entail the theory. Recall that a formula 
entails a theory iff it entails each formula in the the­
ory. Thus, the strengthening of a theory is obtained by 
,intersecting the strengthenings of the formulae in it . 

The corresponding extension of the notion of weak­
ening to theories should contain all formulae of the vo­
cabulary that are entailed by the theory. We call this 
the direct weakening of the theory. However, determin­
ing whether any particular formula in the vocabulary is 
entailed by a theory may be intractable, or even unde­
cidable. 

Another approach to weakening a theory is to suitably 
combine the weakenings of its individual formulae . Since 
individual formulae are usually simpler than the entire 
theory, this is likely to be more efficient. Since the theory 
entails every formula that is entailed by some formula 
in the theory, such a weakening of the theory can be 
obtained by taking the union of the weakenings of the 
formulae in it . This is called the parallel weakening. 

Constructing the parallel weakening of a theory ne­
glects the interactions among the formulae in the theory. 
Allowing for limited interaction among formulae yields 
a more accurate weakening of the theory (i.e., a tighter 
lower bound). Formulae can still be weakened individu­
ally, but in some sequential order. The theory is weak­
ened one formula at a time, with the weakening obtained 
at each stage used in the generation of the weakening of 
the next formula. Formally, the weakening at any stage 

can be treated as part of the set of definitions used to 
obtain the weakening of the next formula. This is called 
a sequential weakening of the theory. 

Sequential weakening depends on the sequence in 
which the formulae of the theory are weakened. This de­
pendency can be removed by iterating over the sequence 
of formulae until a fixed point is reached. This is called 
the iterative weakening of the theory. 

Definition 3 For any vocabulary V, any set of defini­
tions E, and any theory r of formulae in C: 

J. the strengthening rri V,I: is the set 
{1P E V 11/J l=:r: r}v; 

2. the direct weakening Lr J '{, I: is the set 

{'I/JEV l fl=:r:1/J}"; , 
3. the parallel weakening Lr Jf I: is the set 

U1ped'I/JJv,:r:; ' 
4. the sequential weakening Lr J t, :r: is defined 

recursively by: ' 

LOJt-,:r: = LOJv,:r: 

L{'I/J I O}Jt-,:r: = Lnn,I:ULl/!Jv,i:: 
where the formulae in the theory are assumed to be 
sequentially ordered, and { 1/J I O} denotes the se­
quence obtained by adding '1/J at the beginning of the 
sequence n. 

5. the iterative weakening Lr J t I: is defined to be 

L f* J t, :r:, where f* is the infinite sequence obtained 

by repeating f. 5 a 

Lemma 1 shows that iterative weakening is indepen­
dent of the particular sequence of formulae in the theory. 
In [Dalal and Etherington 1992], we show that the itera­
tive weakening of a finite theory can be obtained in only 
a finite number of iterations. 

Lemma 1 For any vocabulary V, and any set of defi­
nitions E, if f1 and f2 are two theories in C contain­
ing the same formulae, possibly ordered differently, then 

triJt,:r: = Lr2Jt.:r:- • 
The following example shows that the various weaken­

ings defined above are distinct. Consider a propositional 
language. Let the vocabulary be the set of all atoms, and 
let the theory r be {a-+ b, a, a-+ c, dVe, d -+ f, e-+ /}. 
The parallel weakening of r is {a}"' its sequential weak­
ening (assuming the above sequence) is {a,c}"' its iter­
ative weakening is { a, b, c} "' and its direct weakening is 
{ a, b, c, /}"" For this restricted vocabulary, the strength­
ening of r is { }v, which amounts to an empty disjunc­
tion, and hence is logically unsatisfiable. 6 

Consider another theory, { a I\ ( b -+ c), b I\ ( a -+ d)}. It 
can be verified that for any sequence of formulae in this 

5 r * should satisfy a.n ordering property similar to diago­
na.liza.tion - for a.ny formula. t/J E r, a.nd a.ny number k E N, 
the kth occurrence of t/J in r* should fall within a. finite initial 
segment. 

6 Simila.rly, some theories will be wea.kened to { }", which 
a.mounts to a.n empty conjunction, the trivia.Uy sa.tisfia.ble 
wea.kening. 



theory, the sequential weakening is different from the it­
erative weakening. Theorem 1 shows that the four types 
of weakenings are strictly ordered in terms of strength. 

Theorem 1 For any vocabulary V , any set of defini­
tions E, and any theory r in .c, LrJf,E ~ LrJi,E ~ 

. d LfJv,E ~ LfJv,E . • 
Though direct weakening is the most accurate, it is 

also the most expensive to construct. Constructing other 
weakenings is likely to be more tractable, since it only re­
quires considering interactions between formulae in the 
vocabulary and definitions, rather than the entire lan­
guage .C . However, for sequential and iterative weaken­
ing to be tractable, reasoning within the vocabulary and 
the definitions must be tr.actable. 

4 Approximate Entailment 

We have seen several ways to approximate formulae 
and theories. These notions can be used to determine 
whether a theory approximately entails a given formula. 
The basic idea is to reduce the question to one involv­
ing approximations of the theory and the formula, rather 
than using the theory or the formula directly. Depend­
ing on which types of approximation are used, various 
approximate entailment relations can be defined: 

Definition 4 For any vocabulary V, any set of defini­
tions E, any theory r, any formula '1/J in the language .C, 
and any x in {d,p, q, i} : 

1. r ~V~E 1P iff \/o: E L'I/JJv,E 3(3 E LfJv,E ((31= o:); 

2. r ~v:E 1P iff 3o: E r'I/Jlv,E 3(3 E LfJv,E ((31= o:); 

9. f ~V,E 'Ip iff \/(3 E rrlv,E 3o: E r'I/Jlv,E ((31= o:); 

4. r ~V~E '1/J iff \/o: E L'I/JJv,E \/(3 E rrlv,E ((31= o:). • 

The first and second superscripts denote the type of 
approximation used on the theory and the formula, re­
spectively. Nc:>te that the formulae in the two approxi­
mations are compared pairwise, and that the formulae 
within an approximation do not interact. Theorem 2 
shows that some of these approximate entailment rela­
tions are related to exact entailment . 

Theorem 2 For any vocabulary V, any set of definitions 
E, any theory r, and any formula '1/J in the language 
.C, if r approximately entails '1/J using any entailment in 
the SOUND column of the table given in Figure 2 then 
r I= '1/J; if r I= '1/J then r approximately entails '1/J using 
any entailment in the COMPLETE column. • 

In other words, the approximate entailments in the 
fi rst column are weaker than I=, while those in second 
column are stronger than I=- The other three entail­
ments, ~V~E for x in {p, q, i}, are neither stronger nor 
weaker than !=, 

Various approximate entailments can also be com­
bined to obtain more accurate approximations. For in­
stance, the entailment defined as: f ~ 'Ip iff f ~f E 'Ip 

and r ~i~E VJ, is complete and is more accurate (i .e., 
weaker) than either of the two entailments used to de­
fine it. 

MPLETE 

~J.E ~,w V,E 

~q, 
V,E ~" V,E 

~i, V,E ~dw V,E 

~d, V,E 

Figure 2: Distinguished approximate entailments 

At first, it may appear odd that the soundness and 
completeness of the various entailment relations are in­
dependent of the vocabulary chosen. Considering the 
case of the trivial (empty) vocabulary may clarify the 
intuitions involved. If V is empty, then the strengthen­
ing of any theory is { }v, while all of its weakenings are 
{ }A. Thus, none of the approximate entailments in the 
SOUND column hold, while all the other approximate 
entailments do. On the other hand, if V = .C, then the 
strengthening and direct weakening of any theory ( or 
formula) are equivalent to the theory (formula) itself, so 

~V~E , ~V,1: , ~tE , and ~i;:E all reduce to I=- Intu­
itively, the entailments ~V,1: and ~i~E are complete 
for any vo.cabulary, since any gain or loss of information 
in r and '1/J compensate for each other. 

It can easily be seen from this discussion how the rich­
ness of the vocabulary is directly related to the cost of 
approximate reasoning, and inversely related to its ac­
curacy. 

4.1 Approximating Answers to Queries 

Consider a know ledge base KB ( a set of formulae) and 
a query Q (a formula). Viewing the knowledge base 
functionally [Levesque 1984a], Ask(K B, Q) should re­
turn "yes" if KB I= Q; and "unknown" otherwise. 

The classical entailment relation I= is generally used 
to determine the correct answer to a query. However, ap­
proximate answers can be obtained by using the approx­
imate forms of entailment defined above. If the approx­
imate entailment relation used is sound, then all the ap­
proximate "yes" answers are correct. On the other hand, 
all the approximate "unknown" answers are correct if 
the chosen approximate entailment relation is complete. 
Thus, depending on the requirements that the answers 
need to satisfy, an appropriate notion of approximate 
entailment may be selected for query answering. 

In general, the approximation of KB can be computed 
in advance, so the cost of approximation can be amor­
tized over many queries. Furthermore, when new facts 
are told to KB, the old weakening can continue to be 
used while the new approximations are being computed, 
since any fact entailed by the old weakening will continue 
to hold under the updated version. Similarly, when facts 
are deleted every fact entailed by the new strengthening 
will hold under the old version. Hence, existing approx­
imations can sometimes continue to be used while up-
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dates are processed, although the bounds they provide 
may not be optimally tight. Another encouraging re­
sult is that, for either insertions or deletions, both the 
revised strengthening and weakening can be computed 
incrementally, starting from the existing approximations 
[Dalal and Etherington 1992]. 

5 Computing Approximations 
We now turn to the question of computing approxima­
tions. For the purpose of this section, we assume that 
the vocabulary V is fixed and finite. The definitions E 
are also assumed to be fixed. We show that a formula 
VJ can be approximated by appropriately combining the 
answers to questions of the form "does VJ FI: o:?", where 
o: is some formula in the vocabulary. Depending on the 
structure of the vocabulary V, the number of such ques­
tions may vary from logarithmic to linear in the size of 
V. 

We recall a well-known result from Algebra that allows 
us to represent the vocabulary in a more ordered way, 
such that some form of binary search can be applied. A 
poset (partially ordered set) (A, :::5) is called a chain if 
each element of A is related to every other element. A 
subset B ~ A is called an antichain if no two elements 
of B are related to each other. 

Theorem 3 (Dilworth) Any poset can be expressed as 
a union of I B I disjoint chains, where B is a longest 
antichain in the poset. • 

Consider the relation :::5 on V defined so that o: :::5 /3 iff 
/3 FI: o:. Notice that (V, :::5) is a poset, and let k be the 
size of any largest antichain in V. By Dilworth's theorem, 
V can be expressed as a union of k disjoint chains. Let 
[Vi, . .. , Vi:] be a sequence of chains obtained by some 
such decomposition . We add two special formulae - t 
(true) and f (false) - to each of the otherwise disjoint 
chains; and extend :::5 so that t :::5 o: :::5 f for every formula 
o: in the vocabulary. Note that t and f are not required 
to be in the vocabulary, V. 

Definition 5 A frontier, o:, is a sequence [o:1 , ... , o:t] 
of formulae such that for each i = 1 ... k, O:i E V;. O:i is 
called the ith component of the frontier. • 

Approximations can be concisely represented using 
frontiers . A frontier o: represents the weakening of a 
formula VJ iff for all i, O:i is the (logically) strongest for­
mula in the chain V; such that VJ FI: O:i. Similarly, o: 
represents the strengthening of a formula VJ iff for all i, 
O:i is the (logically) weakest formula in the chain V; such 
that O:i FI: VJ. In such a representation, approximations 
of any formula contain exactly k formulae of V U { t, f}. 

The frontier representing an approximation of a for­
mula can be computed by doing k binary searches. For 
any i, the ith component of the frontier is obtained by 
doing a binary search on the chain V;. This provides an 
algorithm to compute approximations of any formula. 

Theorem 4 Given a finite vocabulary and a set of defi­
nitions, the algorithm sketched above correctly computes 
the approximations of any formula. • 

Binary search among n items can be done using 
O(log n) pairwise comparisons. Each comparison here 

corresponds to a call of the form VJ Filo:? (or o: FI: VJ?) . 
Assume that each such call takes time m ( a function 
of the particular VJ and E). Thus, obtaining the result 
from a chain V; requires time 0( m log I V; I) . Since we 
need results from all chains, computing an approxima-
tion takes time O(m I::=1 log I V; I) . In the worst case, 
when all the chains are of the same size, it takes time 
O(mk log( I V I / k)) to compute either a weakening or 
a strengthening. Recall our assumption from Section 2 
that any test of the form VJ FI: o:? and o: FI: VJ?, where 
VJ E .C, and o: E V, is tractable. 

5.1 Anytime Guarantees 

The algorithm described above has an interesting prop­
erty - it can be stopped at any time before comple­
tion to obtain a "reasonable" approximation of the ex­
act frontier. Moreover, certain guarantees can be made 
about the quality of the approximation. For this, we 
need to define a metric to describe the quality of a par­
tial answer. 

Definition 6 The distance between two elements of a 
chain is the number of elements (strictly) stronger than 
one but weaker than the other. The distance between 
two frontiers is the sum of the distances between their 
corresponding components. • 

Intuitively, the distance between two frontiers mea­
sures how much latitude or "slack" the vocabulary al­
lows for expression of concepts between them. Thus, 
the larger the distance between two frontiers, the less 
tightly they constrain what lies between them, and the 
more room for error. 

Let us assume that d calls to the recursive binary 
search procedure have been made before the algorithm 
is prematurely stopped. We assume that these calls 
have been made greedily (i .e., make the call that has 
the longest chain left to search) . Let (o:x,, ... , o:y.) be 
the subchain given to the last (incomplete) call for each 
chain V;. We claim that the frontiers X = [o::i: 11 ••• , O:x1r ] 
and Y = [o:y1 , ••• , O:y1r] are good partial answers for the 
weakening and strengthening, respectively. Thus, the 
quality of the approximate answer is guaranteed to im­
prove if the algorithm is allowed to run longer. Lemma 
2 makes this more precise. 

Lemma 2 If the algorithm to compute the weakening 
(or strengthening) of a formula is stopped after d recur­
sive calls of binary search, then the distance of X and Y 
from the weakening or strengthening, respectively, is at 
most 0(1 V 12-d/ A:) . • 

6 An application: Extending HKBs 
Our framework can be used to generate new mechanisms 
for approximate reasoning. We illustrate this by present­
ing instances of this framework that eliminate three ma­
jor limitations of HKB [Borgida and Etherington 1989], 
while maintaining its tractability. Other mechanisms for 
approximate reasoning can be similarly obtained by in­
stantiating the framework . 

Recall that HKB represents information using a hi­
erarchy of naturally-occurring disjunctions, such as that 



shown in Figure 1. When a positive formula is told to the 
HKB system, the clauses in the hierarchy that are sub­
sumed (i.e., logically entailed) by the formula are made 
true. When a positive formula is asked as a query, there 
are two types of answers. Lower-bound answers are ob­
tained by querying each maximal node in the hierarchy 
subsumed by the query, in turn - the answer is true 
iff any of them is true. Upper-bound answers are ob­
tained by querying each minimal node in the hierarchy 
that subsumes the query - the answer is true iff all of 
them are true. 7 

We first show that the HKB framework is a special 
case of the framework presented here. Let H be the set 
of predicates in the hierarchy. The language £ contains 
a restricted subset of positive formulae built from the 
predicates in H . The vocabulary V consists of all for:.. 
mulae of the form P( x), where P is a predicate in H and 
x is an individual. The definitions E consist of all for­
mulae of the form 'vx(P(x)-. Pi(x)V ... V Pn(x)), where 
Pi, . . . , Pn are all the immediate children of a node Pin 
the hierarchy. 

Theorem 5 Any formula tp in C told to the HKB sys­
tem is represented by its weakening l t/J J v.~ . For any 
theory in £, the four kinds of weakening are identical. 
Given any positive query t/J to a knowledge base r, the 
upper-bound answer is true ifff ~tw~ tp. Given a clausal 
query t/J to a knowledge base r, the' lower-bound answer 
is true iff r ~v~ tp.8 

• 
' 

Since all four kinds of weakening are identical, a the­
ory can be weakened by weakening its formulae inde­
pendently. In [Dalal and Etherington 1992], we show 
that certain special properties of the vocabulary allow 
tractable weakening of individual formulae. Since ~V,~ 
is always sound, it follows that lower-bound answers are 
sound. Also, since ~tw~ is always complete, it follows 
that upeer-bound ans~ers are complete. Thus, the re­
sults in lBorgida and Etherington 1989] are special cases 
of our results. 

In [Dalal and Etherington 1992], we show new in­
stances of our framework that avoid three major lim­
itations of HKB, while maintaining its asymptotic 
tractability: 

Negation: We allow representation of, and reasoning 
with, limited forms of negative information. For in­
stance, if all fish-eaters are assumed to be either tur­
tles or cats, then the system can be told fish-eater(joe) 
and -.turtle(joe), leading it to infer cat(joe). Formally, 
the language £ is extended to include conjunctions of 
negative literals using the predicates in H; and the vo­
cabulary V is extended to include -.P(x), where P is a 
predicate in H and x is an individual. In this case, the 
iterative weakening of any theory is identical to its direct 

7 Borgida a.nd Etherington also use a form of the general­
ized closed-world assumption [Minker 1982] to obtain "no" 
answer in certain cases. We ignore this aspect. 

8 For queries containing both /\ a.nd V, the lower-bound 
a.nswer is determined by applying the following recursive rules 
until a clausal query is obtained: VJ I\ w is true iff VJ is true 
a.nd w is true, and VJ V w is true iff VJ is true or w is true. 

weakening. Also, if all the negative formulae are ordered 
before all the positive formulae then the sequential weak­
ening is also identical to the iterative weakening. How­
ever, if the vocabulary is extended to also allow some 
negative clauses, like -.mouse(stan) V -.cat(stan), then 
computing the sequential weakening becomes CoNP­
hard. Thus, the above extension appears to be the best 
that can be done without losing tractability. 

Mutual Exclusion: We allow certain nodes in the hi­
erarchy to be declared to be mutually exclusive, i.e., hav­
ing no common instances. For example, all the leaves 
in the pet hierarchy could be declared to be mutu­
ally exclusive, making it possible to infer cat(joe) from 
fish-eater(joe) and rodent-eater(joe). Formally, two 
types of mutual exclusion can be allowed. In one form, 
all the children of a node can be declared to be (pair­
wise) mutually exclusive; in the other form, all the leaf­
descendants of a node can be declared to be mutually 
exclusive. Both forms are represented by adding more 
formulae to the set of definitions E of HKB. In the latter 
case, if P is the node in question, then the definitions 
include formulae of the form 'vx(C(x) -+- -.D(x)), for 
each pair C and D of distinct leaf nodes under P. In the 
former case, the definitions include formulae of the form 
'vx(C(x) -+- -.D(x)), for each pair C and D of distinct 
children of P. 

Tighter Bounds: Given the hierarchy of Figure 1 and 
the information cat(joe), the original HKB theory would 
simplistically specify "yes" as the upper-bound answer to 
the query cat(joe)t\(turtle(joe)Vdog(joe)). We can get 
better upper-bound answers by extending the hierarchy 
to include some conjunctive formulae. We then use the 
entailment relation obtained by intersecting ~dw and 
~u : since both of these are complete, their intersection 

is also complete. Moreover, this yields an answer that 
is more accurate than the upper-bound answer provided 
by the original HKB, which uses ~dw alone. 

7 Related Research 

Building on the intuitions in [Hobbs 1985], Imielinski 
[1987] proposes two mechanisms to abstract a knowl­
edge base to obtain a potentially-simpler knowledge base 
that can be used to answer queries posed to the origi­
nal knowledge base. In [Dalal and Etherington 1992], 
we show that both abstractions are special cases of our 
framework. Moreover, a new notion of abstraction can 
be developed using the ideas we have outlined. 

Fagin and Halpern [1985] define a logic of general 
awareness, in which the beliefs of an agent are restricted 
to a pre-specified subset of formulae. This "awareness 
set" is closely related to the concept of vocabulary intro­
duced above, and the limited beliefs entailed by a theory 
correspond to the direct weakening of the theory. How­
ever, there are no notions corresponding to the other 
kinds of weakening nor to strengthening. 

Selman and Kautz [1991] present a system in which 
formulae are compiled into a restricted language that 
allows efficient inference. Though their motivation is 
very similar to ours, the techniques differ. They approx­
imate each theory by an upper- and a lower-bound in 
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a tractable target language. Their upper bound corre­
sponds to the direct weakening in our framework. How­
ever, they have no notions corresponding to the other 
more tractable types of weakening, and their notion of 
strengthening is substantially different . Furthermore, 
they do not approximate queries. 

There have been other approaches to the problem of 
the intractability of reasoning, in various other contexts. 
Some of them (lLevesque 1984b], [Allen 1983], etc.) are 
special cases of the generalization of this framework pre­
sented in [Dalal and Etherington 1992]. 

8 Conclusions 
We presented a framework for approximate reasoning us­
ing a limited vocabulary, and showed that it improves on 
many previous approaches, as well as facilitating the de­
velopment of specific tractable reasoning techniques. We 
believe this is the first comprehensive theoretical frame­
work for approximate reasoning. 

We presented an anytime algorithm that, for finite vo­
cabularies, computes weakenings and strengthenings of 
formulae. These approximations can be used to deter­
mine whether a theory approximately-entails a formula. 
In [Dalal and Etherington 1992], we extend our treat­
ment to infinite vocabularies, where approximate entail­
ment is determined without explicitly computing entire 
approximations. 

One limitation of this framework is the assumption 
that the F tests between pairs of individual formulae, 
taken one from the language and the other from the vo­
cabulary, are tractable. In general, these tests may be 
intractable for complex formulae. We have generalized 
the framework presented here [Dalal and Etherington 
1992]. In the generalized version, the approximation of 
a formula is obtained by combining the approximations 
of its sub-formulae, which can reduce the complexity sig­
nificantly. 
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Abstract 

Many inference management systems store and 
maintain the conclusions found during a deriva­
tion process in a form that allows these conclu­
sions to be used during subsequent derivations. 
As this approach, called "solution caching", al­
lows the system to avoid repeating these deriva­
tions, it can reduce the system's overall cost for 
answering queries. Unfortunately, as there is a 
cost for storing these conclusions, it is not al­
ways desirable to cache every solution found -
this depends on whether the savings achieved 
by performing fewer inference steps for these 
future queries exceeds the storage overhead in­
curred. This paper formally characterizes this 
tradeoff and presents an efficient algorithm, 
FOCL, that produces an optimal caching strat­
egy: i.e., given an inference graph of a knowl­
edge base, anticipated frequencies of queries 
and updates of each node in this graph, and 
various implementation-dependent cost param­
eters, FOCL determines which of these nodes 
should cache their solutions to produce a sys­
tem whose overall cost is minimal. The pa­
per also presents empirical results that indicate 
that a system based on FOCL can significantly 
outperform one based on any of the standard 
approaches to solution caching . 

1 Introduction 

A "solution caching" 1 system will store and maintain 
the conclusions found during a derivation process, in a 
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form that allows the system to simply retrieve and re­
use these stored solutions to answer subsequent queries. 
As this avoids the cost of repeating these derivations, it 
can significantly improve the response time for repeated 
queries. These savings are especially important in very 
large and complex knowledge bases and in applications 
where the response time is critical, such as real time 
process control. As caching does incur the cost of storing 
the derived conclusions, it may not be useful when the 
storage cost is very high or when the queries are not 
repeated a large number of times. 

As an example, consider the knowledge base, J( B1 , 

shown in Figure 1.2 If we ask for all living objects 
(i .e., find all X satisfying the living(X ) query), the in­
ference engine will backward chain , traversing the infer­
ence graph down to the ground facts. Here, the solutions 
are: 

{ 

living(slime2) living(george) living(john) } 
~ = living(fred) living(fido) living(roxy) 

living( applel) living( orange3) living(bean 7) 
(1) 

An inference management system IMS3 that can cache 
its answers could then store these derived solutions, in 
effect forming a larger knowledge base J( Bt +- J( B 1 U ~ 
that includes all of J( B1 as well as these nine proposi­
tions, ~- If the same query living(X ) is posed again, 
this IMS will find these solutions by a single lookup 
rather than by re-deriving them by backward chaining. 
Notice the IMS is spending additional time in process­
ing the initial query to store this information, in the 
hope that it will save time later when addressing this 
same query for the second and subsequent times. Notice, 
however, that these cached entries can become "dirty" 
if the fact set is changed - e.g., if we delete the literal 
man(john), or add a new fact dog(shep). Hence, we 
must consider how often each type of fact is updated 
and the cost of propagating this change to insure the 
cached information remains accurate. 

technique of moving information from secondary to primary 
storage. 

2 Following PROLOO conventions, names that begin with 
a capital letter (e.g., "X") are variables . Unbound variables 
that appear in assertions are assumed universally quantified; 
those in queries, existentially quantified. 

3 This IMS can be a knowledge representation system, a 
deductive database, a logic programming system, an object­
oriented system, etc. 
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c dog man fruit car ) 

Rule Base Fact Set 
thing(X) :- living(X). thing(X) 
living(X) :- mammal(X). living(X) 

:- inanimate(X). 
:- plant(X). 

living(slime2) 
man(john) 
dog(fido) 
fruit(apple1) 
fruit(orange3) 

mammal(george) 
man(fred) 
dog(roxy) 
vegetable(bean7) 
airplane(p17) 

mammal(X) :- dog(X). mammal(X) :- man(X) . 
plant(X) : - vegetable(X). plant(X) 
inanimate(X) :- vehicle(X). inanimate(X) 

:- vegetable(X) . 
:- airplane(X) . 

sports_car(X) :- car(X), fast(X). 

Figure 1: Knowledge Base I< B1 - Ground facts + Rules 

• Structure of the inference graph 
• Distribution of queries and updates 
• Costs of each inference step, fact-set retrieval, . . . 
• Incremental cost of additional storage 
• Number of solutions to be cached (at each node) 

Table 1: Factors Affecting Caching Performance 

Our goal is 'to use solution caching as a way of pro­
ducing an efficient IMS - one that requires a minimal 
amount of time to deal with the anticipated distribution 
of queries and updates. 

There are two standard ways of dealing with solu­
tion caching. Many systems, including PROLOG (CM81], 
never cache any solutions. Others (e.g., (Mos83]) will 
cache every solution found - e.g., at every node in the 
graph shown in Figure 1. This paper shows that neither 
of these two simple approaches leads to an optimally 
efficient system, and so proposes a third approach: of 
selectively caching only at certain nodes. Section 2 first 
develops a quantitative model that formalizes the inter­
action amongst the different factors affecting the caching 
performance, summarized in Table 1. Section 3 then uses 
this model to define an algorithm, FOCL (for ".Eind 
Qptimal Qache 1,abel") that determines which literals 
should cache their solutions. Section 4 then presents 
a set of performance experiments to demonstrate that 
the optimal caching scheme produced by FOCL can sig­
nificantly outperform the systems that use either obvi­
ous approach, of caching everywhere or not caching any­
where. 

Due to space restrictions, this short article cannot pro­
vide a comprehensive survey of the related research; in­
stead, we refer the interested reader to our extended 
paper [CG92]. That paper also discusses how our re­
sults can be used by a wide variety of systems, includ­
ing knowledge representation, deductive databases, logic 
programming and object-oriented systems; and presents 

both the relevant proofs and a more comprehensive dis­
cussion of the FOCL algorithm. 

2 Framework and Cost Model 

This work deals with definite clause knowledge bases 
(i.e., a set of clauses, where each clause has exactly 
one positive literal); we call each ground atomic lit­
eral a "fact" , and each non-atomic clause, a "rule" . 
We can arrange the rules into an inference graph g = 
(N, A), where each node n E N corresponds to an 
atomic literal, and each hyper-arc a E A corresponds 
to a rule, leading from (the nodes representing) its set 
of antecedents to (the node representing) its conclu­
sion; see, e.g., Figure 1.4 As discussed above, given a 
query (e.g., "living(Y)"), the IMS will search through 
the graph seeking all solutions, both those correspond­
ing to an immediate database retrieval ( which finds 
living(slime2)) as well as the solutions found by back­
ward chaining - i.e., following the various rules to their 
subgoals, to obtain the other eight solutions shown in 
Equation 1. The IMS will then return all of these an­
swers. 

The IMS may also decide to "cache" these solu­
tions - e.g., store all of the ~ set associated with 
the living(X) node. It may also store the solutions 
found at any intermediate node - e.g., store the facts 
{ mammal(george), mammal(john), mammal(fred), 
mammal(fido), mammal(roxy)} associated with 
the mammal(X) node, or the facts {plant(bean7), 
plant(apple1), plant(orange3)} associated with the 
plant(X) node, etc. 

Our IMS has the option of caching at any of the nodes 
in the graph - if so, it will store all of the derived solu­
tions associated with each selected node. As an example, 
the first time the IMS encounters the living(X) query 

•we will often identify each node n E /1/ with its associ­
ated literal. 



(perhaps as a subquery of the "higher" thing(X) query) 
it will compute the bindings shown in Equation l. If it 
has decided to cache at this node, it will then store the 
subset of these solutions that are not already explicitly 
present - that is, all but living(slime2). The second, 
and subsequent times IMS encounters this living(X) 
query, it will simply retrieve all nine solutions (the eight 
newly stored values, and the one originally stored) and 
so will not need to backward chain. 

The retrieval time required to find these answers is 
clearly much less when these answer have been cached. 
There is, however, a cost to storing these solutions ini­
tially, and there is also an additional cost each time 
there is an update to any of the relations used in any 
of living(X) 's "children" - i.e., if we add dog(shep), 
etc. Hence, it is not obvious whether we should cache at 
any of the nodes. 

We can formally define our task in terms of the fol­
lowing definition: 

Defn#l. A Caching Label of an inference graph is a 
function which assigns a label of either "C+" or "C-" 
to each node in the graph. The label "C+" (resp ., 
"C-") means that solutions should (resp ., should not) 
be cached at this node. 
We let .C.C(g) refer to the set of all labels for the in­
ference graph g = (N, A) - i.e., 

.C.C((N, A)) d~ { .Ce I .Ce: N - {c+ , c - } }; 

and let .Ce[nk] refer to the value the labelling .Ce E 
.C.C(g) assigns to the node nk EN. 

The Overall Cost of a caching label .Ct, written E[.Ce], 
is the total cost required to perform all anticipated 
queries at all nodes, assuming the IMS uses the la­
belling .Ce. This value is the sum of the costs asso­
ciated with each node in the graph, and includes the 
costs of performing all retrieving inferencing, storing 
and updating steps. (The particular formula for these 
costs will depend on the type of inference graph and 
cost model involved; see the next subsection, espe­
cially Equation 3.) 

Optimal Cache Labelling Task: 
Instance: An inference graph g = (N, A) with its 
space of cache labellings C.C((}), and cost function 
E: .C.C(g) 1--+ ~. 

Problem: Identify a cache labelling .C. E .CC(g) whose 
cost is minimal over all labellings - i.e., such that 

'v .CE .C.C(g) E[.C.] ~ E[.C]. D 

The rest of this subsection sketchs a particular con­
crete cost model (i.e., a specific E[·] function) for a par­
ticular class of inference graphs; [CG92] provides a more 
exact specification. 5 

5This pa.per uses a. very simple model for purely peda.gogi­
ca.l rea.sons; we a.re a.wa.re tha.t sophisticated PROLOG systems 
require a. much more ela.bora.te model (Debra.y, persona.I com­
munication]. The a.na.lysis in this pa.per does a.pply to those 
models a.s well; see (CG92]. 

We assume that the total cost of a database retrieval 
varies linearly with the number of solutions obtained 
- e.g., the cost of retrieving the 2 facts matching 
man(Y) is twice the cost of retrieving the 1 fact match­
ing vegetable(Z) (viz., vegetable(bean7)). In gen­
eral, it will cost "nL" to retrieve the n facts matching a 
proposition, where L is a constant that is independent of 
the particular proposition considered; i.e. , independent 
of whether the query was man(Y) or vegetable(Z) . 

We assume a uniform cost for caching any proposi­
tion; i.e., it costs the same to cache dog(:fido) as to 
store between Ca P b); call this value "S''. It will also 
cost this same amount to perform any update to a cache 
- whether by adding or deleting a literal. We like­
wise assume a uniform cost "R" for reducing any goal 
along any one rule, to that rule's ( appropriately instan­
tiated) antecedents. For example, it costs R to reduce 
thing(X) to living(X); and costs the same R to reduce 
sports_car(X) to car(X) and :fast (X). 

We assume, as given, the values of these parameters: 

L - Cost of any one lookup, per unit fact found 
R - Cost of reducing any one goal (along any one rule) 
S - Cost of caching/ adding/ deleting any one fact 

In addition, for each node n; in the inference graph, we 
must know 

Defn#2. s(n;) is the current number of propositions 
explicitly in the fact set that match the goal associ­
ated with this node. As an example based on the 
graph in Figure 2 ( taken from the far left side of 
Figure l 's KB1), s(n4 ) is the number of proposi­
tions in the fact set that match dog(X) . Assuming 
the associated fact set contains ( all and only) the 
facts { dog(:fido) , dog(roxy), mammal(lulu) }, then 
s(n4) = 2, s(n3) = 1 and s(n1) = s(n2) = 0. 

Defn#3. d(n;) is the number of direct queries posed at 
the node n; . E.g., we will ask the question mammal(X) 
a total of d( n3) times. 

Defn#4. u( n;) is the rate of updates to the node n;, 
where each update is either adding or deleting a literal 
to the extension of the node n;. As an example, if we 
plan to add in two new literals - e.g., dog(shep) and 
dog(phydeau) - and delete one literal dog(:fido) 
over a period of time during which the number of 
queries was 100, then u(n4 ) = (2 + 1)/100 = 0.03 . 

(The values of d( ·) and u( ·) are with respect to some 
interval of time; see Subsection 3.4. That subsection 
also discusses how to estimate the values of these pa­
rameters.) 

Given the values of these implementation-dependent 
parameters, we can compute the cost E[.Ct] of any given 
.Ce E .C.C(g). We need the following terms: 

Defn#5. Given any node n EN, let 
Ch(n) = {n; I (n, n;) E A} refer to n's immediate 
children; and 
U ( n) refer to the set of nodes in the graph strictly 
strictly "under" n , at any depth : i.e., 

U(n) = Ch(n) U LJ U(n;). 
n;ECh(n) 
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# Direct Queries 
thing(X) :- living(X). 
living(X) :- mammal(X). 
mammal(X) :- dog(X). 

# Matching Literals in Fact Set 

J # Updjtes to Node 

n1: thing(X) d(n1) = 100 s(n1) = 10 u(n1) = 10 

n2: living(X) 

na: mammal(X) d(n3 ) = 30 s(na) = 15 u(na) = 10 

Figure 2: Knowledge Base I( B2; and Parameters 

(Notice n fJ. U(n); and if n is a leaf, then Ch(n) = 
U(n) = {} .) 

Defn#6. The Number of Indirect Queries at the node 
nk with respect to a labelling Ct, designated "lt(n1c)", 
is the total number of queries that the user can ask 
at any of n1c 's ancestor nodes and that will cause the 
inference process to retrieve values at n1c. Notice this 
value depends on the cache labelling. 

If we cache at the parent node nk, then the child nk+1 
receives only one indirect query - only for the first 
derivation. (E.g., ifwe cache at living(.), then its child 
mammal ( · ) will receive only a single indirect query.) If we 
do not cache, the number of indirect queries that nk+1 
receives is the sum of direct and indirect queries at the 
parent. Hence, 

if .Ct[n1c] = c­
if .Ct[n1c] = c+ (2) 

As the root node n 1 does not have any parents, we have 
lt(n1) = 0 for every Ct, 

To illustrate this: using Figure 2, let C (- - - - ) de­
note the labelling that does not cache at any node, and 
.C(-+--) , the labelling that caches only at the node n2 
and nowhere else. Then the number of indirect queries at 
n3 is l (- -- - )(na) = d(n1)+d(n2); and I(-+-- )(na) = 1. 

For any node n E N, define E[Ct, n] to be the cost 
of using the label .Ct to deal with the nodes including 
and below n - i.e., with the nodes {n} UU(n). Notice 
E[.Ct] = E[.Ct, (root)], where (root ) is the root node 
(here n 1). The incremental cost of dealing with the node 
n , above the cost of its children, involves the expense of 
retrieving n's complete extension a total of d(n) + lt(n) 
times. If we cache, then we must add in the cost of 
caching the additional It ( n) answers after answering the 
query for the first time, and also the cost of returning 
these cached solutions during each subsequent retrieval. 
We also have the additional cost of the processing the 

subsequent updates. Hence, 

E[.Ct, n] = Ln,eCh(n) E[.Ct, n;] + 

{ 

[(L · s(n))+(R · ICh(n)l)](lt(n)+d(n)) if.Ct[n]=C­

[(L. s(n)) + (R · ICh(n)I)] if .Ct[n] = c+ 
+ [d(n) + lt(n) - 1) · (L · (s(n) + s(U(n))]) 
+ S · s(U(n)) + S · u(U(n)) 

(3) 

where s(U(n)) = Ln,EU(n)s(ni) and u(U(n)) 
Ln;EU(n) u(ni) , Notice the value of E[.Ct, n] depends 
on both the labels of the nodes below n (as it involves 
E[.Ct, ni] for each ni E Ch(n)), and the labels of the 
nodes above n (as it involves lt(n)). 

The precise characterization of the cost, shown in 
Equation 3, is one of the important contributions of 
our work. Notice it extends previous work ( e.g., [Sel89, 
SJGP90]) which assumes that this cost is given and is 
independent of the structure of the knowledge base. 

3 Optimal Labelling Algorithm 
For pedagogical reasons, Subsection 3.1 first describes 
the FOCL algorithm for a simple class of inference 
graphs; Subsections 3.2 and 3.3 then discuss how FOCL 
generalizes to cover other classes, enabling FOCL to 
handle any "tree structured" inference graph; i .e., any 
graph that includes at most one directed path between 
any pair of nodes. (Figure 1 is an example.) FOCL de­
pends on various input values; Subsection 3.4 discusses 
ways of obtaining or estimating these values. 

3.1 Using FOCL for Linear KBs 

This subsection deals only with the particular class of 
"linear knowledge bases", where each clause can have at 
most one negative literal and the conclusion of at most 
one rule can match any given proposition. (Hence, each 
"rule" can have only one antecedent, meaning there are 
no conjunctions; and any goal can be reduced to at most 
one subgoal, so jCh(n) I :'.S 1 for all nodes n.) The graph 
in Figure 2 suggests such a knowledge base. 



P(n4, 0) = 
P(n•, 1) = 
P(n4, 2) = 
P(n4, 3) = 

{ Ct I Ct[ni] = c- & Ct[n2] = c- & Ct(n3) = c- } 
{ Ct I Ct[ni] = c+ & Ct[n2] = c- & Ct(n3) = c- } 

( --- ?) 
(+ -- ?) 
(? + - ?) 
(??+?) 

{ Ct I Ct[n2] = c+ & Ct(n3) = c - } 
{ Ct I Ct(n3) = c+ } 

Figure 3: Values of P(n;, j) 

One naive way to find the optimal labelling is to enu­
merate all of the possible labellings, compute the cost of 
each and select the one that is minimum. This approach 
is not computationally feasible even for this simple class 
of knowledge bases, as there are 21.N'I labellings. 

Another approach is to label each node one at a time, 
by traversing the entire inference graph in one direction 
- either top down or bottom up . Unfortunately, the 
decision of whether to cache at a node depends on the 
cost of answering all queries at that node, which in turn 
depends on the labels of both the ancestor and the de­
scendant nodes: the total number of queries that reach 
a node depend on which of its ancestors are cached, and 
the cost of obtaining the complete extension of a node 
will depend on which of its descendants are cached. This 
rules out a single traversal in either direction, as either 
requires quantities that would not be available. For­
tunately, however, we can capture this interdependence 
using a dynamic programming technique to obtain a so­
lution that is provably optimal [Nem66] . 

The basic idea involves two traversals of the inference 
graph; see Figure 4. Equation 3 shows that the value of 
E[.Ce, nk] depends on E[.CL, nk+1J. lct(nk) and various 
input parameters. Fortunately, the values of E[.Ct, nk+1l 
and Ie(nk) can be decoupled: given any class of labellings 
that share a common It(nk) value, the best labelling will 
be the one with the smallest E[.Ce, nk+d value. 

FOCL's first pass [Figure 4's Line 1] works from the 
root down to the leaf node (here from n1 to n4 ), par­
titioning the set of possible labellings into equivalence 
classes that share a common value of It(nk). That is, 
define 

P( nk, 0) = { Ct E CC(g) I 'v' o < j < k. Ct[nj] = c - } 
P(nk,i) = { CtECC(g)l'v'i<j<k.C,[nj] = C- & (4) 

C,[n;] = c+} for i = 1..(k - 1) 

Notice P( n;, j) is a set of labels. As an example, 
P( n1 , 0) = .C.C(()) is the set of all labellings. 

Figure 3 describes the values of P( n4 , j) for the al­
lowed values of j . Its right side encodes each P(n;,j) as 
a sequence of the form (±1, ± 2, . .. ±k) where, for each 
.Ce E P(n;,j), ±m = +means .Ce[nm] = c+, ±m = -
means .Ce[nm] = c- , and ±m = ? means .Ce[nm] is arbi­
trary. In general, 

P(n;,j) 
1 

( ? ? . .. ? + 
irrele va nt 

? ? ... ? ) 
irrelevant 

for i = 1..(j - 1). Notice P( n; , j) does not restrict labels 
on the basis of their values for nodes nm where m < i or 
m ~ j . 

The k sets {P(n1:, i)};;a1 partition the set of all la­
bellings. By construction, the value of ft(nk) is the same 

Algorithm FOCL( g, {d(n;), s(n;), u(n;)};, R, L, S) 

1. For each nk := (root) .. (leaf) 
Compute {V(nk, i)}t;;;~ based on Equation 4, ... 

2. For each nk := (leaf) .. (root) 
Compute {M(nk, i)}t;01 based on Equation 5, .. . 

3. Return the optimal labelling, based on the decisions 
i:nade in determining M( (root), 0) .. . 

Figure 4: Code for FOCL 

for each label .Ct E P(nk, i); call this value V(nk, i). 
(Here, V(n1, 0) = 1, V(n2, 0) = 100, V(n2, 1) = 1, ... , 
V(n3, 0) = 180, V(n3, 1) = 81, V(n3, 2) = 180, etc.) Ob­
serve that FOCL can compute these values efficiently 
using a single top-down pass as the values of V(n1:, i) 
can be computed based on the values of {V(nk - 1 ,j)}i. 
N.b., FOCL will only deal with these V(n;,j) values; it 
never needs to explicitly construct the P( nk, j) sets. 

FOCL's second pass [Figure 4's Line 2] works from 
the bottom up (here from n4 up to n 1 ). At each stage, 
when dealing with nk, FOCL determines the labellings 
in each equivalence class that are best from "here down": 
that is, it computes M(nk, i), defined to be the smallest 
value of E[.CL, nk] over all labelling .Ce E P(nk,i); i.e., 

min{ E[.Ce, nk] I .Ce E P(nk, i) } (5) 

Working bottom up, FOCL will know the values of 
{M(nk+1,j)}j when dealing with nk, It can use 
the appropriate value from this set in the role of 
"E[.Ct, nk+1J", together with the value V(nk,i) for 
"It(nk)" in Equation 3, and then compute the two can­
didate values for M[ .Ct, nk]: one based on mapping nk 
to c+, and the other to c- . FOCL sets M ( nk, j) 
to be the smaller of these two values. It can then 
use this information to compute M(nk - I, i), and so 
on. On reaching the root node, FOCL explicitly has 
the value of M((root), 0), which by construction is the 
minimal value of E[.Ce] = E[.Ce, (root)] value over all 
.Ce E P((root),O) = .C.C(()), as desired. 

At each stage, FOCL also records whether the pre­
ferred label within each P(nk, i) mapped nk to c+ or 
c- ; it can assemble these mappings to form the optimal 
labelling. Notice the runtime of the FOCL process is 
O(INl 2

).
6 

6 Given the graph and values shown in Figure 2 and the 
parameters R = 2, L = 1 and S = 10, the optimal labelling is 
C(- +--)· Its cost is 29% (resp., 45%) better than the alter­
native approach of not caching at all , (resp., indiscriminately 
caching everywhere) . Section 4 provides a more comprehen­
sive set of examples. 
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Figure 5: Multiple rules matching a goal 

3.2 Multiple Rules matching a (Sub)Goal 

This subsection deals with the situation where multi­
ple rules can match a goal. Consider Figure 5, taken 
from the left side of Figure l 's inference graph), and 
let na (resp., nd, nm) represent the node whose literal 
is mammal(X) (resp., dog(X), man(X)). In this case the 
nodes in each of the two diverging branches will receive 
the same number of indirect queries: 

I( ) -I( )-{It(na)+d(na) t nm - t nd - l 
if .Ct[na] = c­
if .Ct[na] = c+ 

As each of these two branches, separately, is a linear 
knowledge base, we can use the analysis from the pre­
vious section. During the upward traversal, notice that 
Equation 3 continues to hold, even though Ch(na) = 
{ nd, nm} is not a singleton. (As the first term of Equa­
tion 3 is a summation over all the node's children, it will 
incorporate the cost of both the branches.) Thus the 
cost equation easily generalizes to the case of trees. The 
other computations remain the same as in the simple 
linear knowledge base case. 

3.3 Conjunctions in Rules 

Each rule with a conjunctive antecedent (i.e., each clause 
with more than one negative literal) corresponds to 
a more complicated hyper-arc in the inference graph. 
While computing the cost function for such nodes, we 
must deal with the extra overhead of finding solutions 
that satisfy all literals. This process is equivalent to eval­
uating a join in the relational database [Ull88). There 
are various methods of evaluating joins, including selec­
tion on an attribute, sort join, multiway merge-sort, join 
using index, etc. [Ull89) . As sort join seems to work well 
in general, we will base our discussion on this approach . 

To explain the working of the sort join, consider the in­
ference graph shown in Figure 6 ( taken from the far right 
side of Figure 1) . To answer the query sports_car(X), 
we first find all the solutions to car(X) and fast(X) 
individually, and then sort each of them independently. 
Then, in a single traversal of the sorted lists, we find the 
values that are common to both car and fast, giving 
the set of answers to the sports_car query. 

Now does this affect our formulation? For each query 
at sports _car, there will be one query at each of car and 
fast. Thus the expressions for the basic terms remain 
similar to the previous subsection. The cost for sorting a 
list of length mis O(mlogm) [AHU87), and of a simple 
traversal, is 0( m) . Thus, in the above example if there 
are m1 solutions to fast and m2 solutions to car, the 
asymptotic cost of evaluating the conjunction is bounded 
by K(m1 log m1 + m2 log m2 + m1 + m2) where J{ is a 

( car ) 
Figure 6: Conjunction in the Inference Graph 

constant dependent on the implementation. This value 
needs to be added to the cost expression Equation 3. 

When there are more than two subgoals in a conjunc­
tion, we need to use multi-way joins [Ull89]. The basic 
process, however, remains the same. 

3.4 Computing the Parameters 

In any given environment, these values of the three im­
plementation dependent parameters, L, R and S, are 
standard and should be known from the supplier's data. 
The three functions, u(nk), d(nk) and s(nk), are specific 
to an application and have to be obtained by the user of 
the FOCL algorithm. 

Fortunately, we can estimate these values based on 
the statistics that are maintained by several commer­
cial database systems [SAC+79). We can periodically 
collect these statistics (e.g., each time the system is 
"re-compiled"), and use these values as ( estimates of) 
s(nk), u(nk) and d(nk) when computing the appropriate 
caching label. We can also use statistical measures to 
bound our confidence in these estimates; see [Gre92) . 

Notice that both d(n;) and u(n;) are with respect to 
some interval of time - either the "lifetime" of the over­
all system, or the time during which this caching strategy 
is "in effect", which can be the interval of time between 
a pair of re-compilations. 

4 Empirical Results 

This section compares the performance of three IMS sys­
tems: IMSopt that uses the optimal caching scheme ob­
tained by FOCL, IMSv that uses the cache everywhere 
scheme of [SM91], and IMS.., that uses the no cache 
scheme. 

Experimental Setup: We determined the values of 
E[IMSoptl, E[IMSv) and E[IMS..,) in 54 different con­
texts. Each context is defined in terms of a particular 
knowledge base and specific distribution of queries, spec­
ified below. All simulations use the same cost parameters 
R = 2, L = 1 and S = 10, obtained from experimental 
data [Deb90). The depth of each knowledge base is set 
at 6, which is considered typical for real applications. 
Furthermore, the only atomic database facts that match 
a node are at the leaves; i.e., s( n;) = 0 for all internal 
nodes n; . We also specify that each node n E .N is up­
dated at the rate of u(n) = 0.01, i.e., once every one 
hundred queries. 

We considered three clusters of experiments, which 
differ in terms of the number of ground instances that 
match each leaf predicate. Figure 7 (resp., Figure 8, Fig-



ure 9) describes 18 contexts in which each leaf predicate 
matches exactly 1 (resp ., 5, 10) database literals. 

Each cluster of 18 = 6 x 3 contexts is formed as the 
cross-product of 6 different knowledge bases, depend­
ing on whether the branching factor from goal to sub­
goals was 1..6,7 and three different query distributions : 
In distribution Dist1, the root receives 10 queries (i.e., 
d( (root)) = 10), each node at the next level receives 20, 
then 30 for each node at level 3, etc. In Dist2, this is 
reversed - each leaf node receives 10 queries, and the 
root, 60, as there are 6 levels. In Dist3, every node 
at every level receives same number of queries. ((CG92] 
specifies this data more precisely.) 

Each graph plots E[ IMS,.. J-E( IMS.,, l and 
E[IMSop<] 

E[ IMS~ J-E( IMS.,,) versus the branching factor for 
E( IMS.p,] , , 

each of its 18 contexts. Notice that better IMS systems 

have smaller E( I~~ iM§~~S.,, l values. As the optimal 

IMSopt system has the uniform value 0, we did not plot 
values for the IMSopt system in these graphs. 

Experiment Cluster 1: 1 Ground Instance per 
Leaf node: These results appear in Figure 7. For 
small values of ground instances (i .e., for branching 
factor:::::: 1), the best scheme is to cache everywhere and 
therefore the cost obtained by IMSv is the same as the 
cost of IMS opt. This does not hold for larger branch­
ing factors, however; for branching factor is 6, IMSopt 's 
cost is 55% better than IMSv. The opposite is true for 
IMS.., as the degradation in cost is more pronounced for 
low values of the branching factor . (It is 700% when the 
branching factor is 1. This actual value is too high to be 
shown in Figure 7.) While the actual improvements vary 
with the specific query distribution, the improvements 
are significant in all cases - an average of 30%. How­
ever, it seems that Dist2, with more queries at "higher" 
nodes, favours IMSv, which makes sense as there can be 
more saving in the inference cost, regardless of the query 
distribution. 

Experiment Cluster 2: 5 Ground Instances per 
Leaf node: As shown in Figure 8, IMSv's cost is far 
worse than IMSopt 's in most of these cases. In fact, 
IMS.., is closer to optimum, even though it can be 
worse by as much as 50%. IMSv performs well only 
when the size of knowledge base is small (five rules, one 
ground instance) or when the query distribution is uni­
form (Dist3). Since IMSv caches everywhere, it fails to 
respond to the variations in query distribution. This ef­
fect was less pronounced when the number of instances 
was lower, as in the previous experiment . 

Experiment Cluster 3: 10 Ground Instances per 
Leaf node: As shown in Figure 9, IMS.., seems to be 

7Hence, the knowledge bases ranged from 5 rules and 1 
ground instance (in Figure 7's framework, when the branch­
ing factor is 1) to about 10,000 rules and approximately 
100,000 ground instances (in Figure 9's framework, when the 
branching factor is 6) . Note that these are precisely the kind 
of knowledge bases envisaged to be required in the future 
applications (MCPT91] . 
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almost optimal here; in most cases within 10%. IMSv 
does worse in general, especially with larger branching 
factors. 

Summary of Experiments: These experiments sug­
gest that IMSv.is appropriate only for small number of 
ground instances; this explains the results obtained by 
[SM91] . However, this approach does not hold for larger 
knowledge bases. Given a large number of ground in­
stances, it may be better to use IMS., rather than IMSv. 
Of course, neither of these can be better than IMS opt, 

which is guaranteed to have the best performance in all 
cases. 

5 Conclusions 

This work can be extended in a few directions: To deal 
with inference graphs that are not tree-shaped (e.g., re­
dundant [Gre91], recursive [SGG86], etc.); to estimate 
the number of solutions that can be cached at each node 
without actually running the inference process; to use 
sampling to approximate the distribution of queries and 
updates [LN90, Gre92]; and to deal with different cost 
models - e.g., to include the storage cost of maintain­
ing cached values, or to allow the values of the various 
parameters ( e.g., R, L, S) to vary with the size of knowl­
edge base, or the number of variables involved, etc. 

To recap: this paper first presents a formal defini­
tion of caching and a quantitative model that formalizes 
the interactions among the various parameters that af­
fect caching performance. We use this model to design 
FOCL, an efficient algorithm that computes the optimal 
cache labelling for any "tree shaped" knowledge base; 
i.e., FOCL determines which literals should cache their 
solutions to obtain an IMS system whose overall cost 
(for answering a given distribution of queries, given a 
specific distribution of updates, etc.) is minimal. The 
paper also presents a set of experiments to illustrate that 
the FOCL-based IMSopt can outperform systems based 
on either of the standard caching strategies (no caching 
or universal caching), across a broad range of contexts. 
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ABSTRACT: The main contribution of this 
paper is a method of axiomatizing actions and 
their effects in standard first-order logic in a 
way that solves the frame problem. It has 
long been thought that the frame problem 
makes monotonic logics inadequate for reason­
ing about action; this paper shows how to 
achieve the benefits of a nonmonotonic logic 
using a monotonic logic. The use of first­
order logic permits considerable simplicity and 
a frame axiom that is explicit, fixed, and intu­
itive. Moreover, complex worlds of actions can 
be axiomatized: fluents can be momentary or 
dynamic, the preconditions of actions need not 
be fully known, and the ramifications of actions 
can be stated unambiguously. 

1 Introduction 
This paper discusses reasoning about actions and their 
effects using the ontology of states, actions, and fluents, 
known as the situation calculus. The main positive con­
tribution of the paper is a method of axiomatizing ac­
tions in standard first-order logic that solves the frame 
problem. It has long been thought that this problem 
makes monotonic logics inadequate for reasoning about 
action. This paper sp.ows that the introduction of a can­
cels predicate, in addition to the more usual holds and 
causes predicate, and the use of bidirectional implication 
as a minimization operator, effectively allows nonmono­
tonic reasoning about actions to be performed using first­
order logic. 

Section 2 below introduces the situation calculus and 
the frame problem using the Yale shooting problem as 
an example. Section 3 discusses criteria for evaluating 
candidate solutions to the frame problem, and Section 
4 then presents our solution, which satisfies the criteria 
advanced previously. Section 5 explains extensions to 
the method to accommodate transient properties of the 
world, to solve the (representational) qualification prob­
lem, and to solve the ramification problem: how to state 
the indirect effects of actions in a modular fashion . Fi­
nally, Section 6 compares the methods of this paper to 

•The preparation of this pa.per was supported by a. grant 
from the Powell Foundation a.nd by Grant No. IRI-9110813 
from the N a.tiona.l Science Foundation. 

related work. 

2 The situation calculus and the frame 
problem 

The most complex theories of action that have been 
treated formally in AI research involve multiple agents 
with differing beliefs and agents. in some of these the­
ories the temporal properties of actions are also con­
sidered: they take time, they may be concurrent or 
overlap. Substantial epistemic and temporal reasoning 
requires a logic with a theory of time and knowledge 
built into its structure [Moore, 1985; Konolige, 1986; 
Cohen et al., 1990]. Solving the frame problem inside 
such logics, which are typically modal, is beyond the 
scope of this paper. 

This work reported here is directed towards reasoning 
about the actions of a single agent. At this level of detail, 
the traditional ontology is called the situation calculus 
[McCarthy and Hayes, 1969]. The categories of this on­
tology are states, objects, fluents, and actions. Briefly, a 
state is a snapshot of the world, an object is something 
whose identity is preserved across states, a fluent is a 
relationship between objects that holds in some states, 
and an action is an event that changes one state into 
another. 

States, objects, fluents, and actions can all be repre­
sented as terms in a first-order language. For example, 
if a and b are constants designating two child's build­
ing blocks, then stack( a, b) can designate the action of 
placing a on b, where stack(·,·) is a function symbol. 
Further, if so is a constant designating an an initial 
state, then do( so, stack( a, b)) designates the state result­
ing from performing the action stack(a, b). 1 An exam­
ple of a term representing a fluent is on(a, b), which 
presumably means that block a is on top of block b. 
The standard approach to encoding the situation cal­
culus in first-order logic uses a special holds predicate. 
The arguments of holds are a fluent and a state, as in 
holds(on(a, b), do(s0 , stack(a, b))) . 

1 The function symbol do(·,·) is sometimes named 
result(·,·). Contrary to the usual convention, the first ar­
gument of do(·, ·) is a. state, a.nd the second argument is a.n 
action. This convention allows the state resulting from a. se­
quence of actions a1, a2, ... a,. to be written perspicuously as 
do( · · · do(do(so,a1),a2),· ·· ,a1c) . 
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In the world of the Yale shooting problem [Hanks and 
McDermott, 1986]2 there are two objects, a person Fred 
and a gun, three fluents, loaded, alive, and dead, and 
three actions, load, wait, and shoot. The fluents and 
actions have their obvious meanings and the person and 
the gun are left unnamed because they are fixed. 

Only the load and shoot actions have significant ef­
fects . Using the holds predicate these can be specified 
by the following axioms: 

Vs holds(loaded, do(s, load)) 
Vs holds(loaded, s ) -+ holds(dead, do(s, shoot) ) 
Vs holds(loaded, s) -+ -,holds(alive, do(s, shoot )) 
Vs holds(loaded, s ) -+ -,holds(loaded, do(s, shoot )). 

It should be possible to solve inference problems of 
various types using an axiomatization of a world of ac­
tions and their effects. Two general classes of problems 
are those involving reasoning forward in time, and those 
requiring reasoning backwards. These can be called pro­
jection and retrojection problems respectively. More pre­
cisely, a projection problem is one where it is known 
what holds in an initial state, and the task is to draw 
conclusions about what holds after a certain sequence of 
actions. Retrojection problems are also loosely called ex­
planation problems [Hanks and McDermott, 1987]. They 
require inferring what held before a given sequence of ac­
tions, given observations of what holds afterwards. 

The original paper on the Yale shooting world dis­
cussed only a projection problem: given that Fred is 
alive to start with, is he dead in the state after loading 
the gun, then waiting, then shooting? Formally, given 

holds(alive, so). 

the task is to prove 

holds(dead, do(do(do(s0 , load), wait), shoot)). 

One's innocent hope is that the four axioms above 
about the effects of the shoot and load action!J are suffi­
cient. Unfortunately, simply stating the effects of actions 
is not enough. To reach the desired conclusion at least 
the extra axiom 

Vs holds(loaded, s) -+ holds(loaded, do(s, wait)). 

is needed. To answer other projection and retrojection 
questions, many further axioms are necessary: 

Vs holds(alive, s) -+ holds(alive, do(s, load)) 
Vs holds(alive, s) -+ holds(alive, do(s, wait) ) 
Vs holds(alive, s) I\ -,holds(loaded, s) 

-+ holds(alive, do(s, shoot)) 

and so on. 
In general, if the world consists of a different actions 

and e potential effects (that is, fluents), it seems that 

2It is worth stressing that the contribution of this paper 
is not yet another "solution" to the Yale shooting problem. 
The contribution is a general method for axiomatizing the 
effects of actions. The Yale shooting problem is used as an 
expository example simply because it is well-known. Note 
also that there is no attempt here to state all claims with the 
maximum degree of generality. 

on the order of ae axioms are needed. Almost all these 
axioms seem redundant: they express the typical case 
where an action does not influence a property of the 
world. These axioms, of the form 

Vs holds(p, s) I\ II(s) -+ holds(p, do(s, a)), 

where II(s) is a conjunction of holds conditions all refer­
ring to the same state s , are called frame axioms. The 
frame problem is to escape the predicament of having to 
state so many axioms that should somehow be true by 
default . 

3 Judging candidate solutions to the 
frame problem 

The general issue behind the frame problem is to find 
a good way to state the relationships between actions 
and fluents in the situation calculus ontology. Papers 
on the frame problem generally propose a new logic and 
present examples of using that logic to express actions 
and effects. Most papers, however, do not discuss how 
to evaluate the candidate solutions to the frame problem 
that they advance. This section identifies three dimen­
sions of adequacy along which these proposed solutions 
can be judged. For a more detailed and general discus­
sion of these criteria, see [Elkan, 1991]. 

To constitute a successful general solution of the prob­
lem of axiomatizing worlds of actions and their effects, 
a logic and a methodology for using the logic should 
give rise to axiomatizations that are declarative, par­
simonious, and localist. These criteria seem more or 
less independent and exhaustive, but we shall not de­
fend that claim. Rather, the remainder of this section is 
an attempt to give each of the criteria a definition that 
can be tested as objectively as possible. 

Declarative. A declarative method of axiomatizing 
actions is one that uses a logic with a well-defined se­
mantics specified independently of the rules of inference 
of the logic. Methods for representing actions that rely 
on a procedural definition of entailment, such as the 
STRIPS formalism and its variants [Lifschitz, 1986], do 
not satisfy this criterion. The main reason that a well­
defined semantics is desirable is that it allows one to 
obtain high confidence in the correctness of a set of ax­
ioms, by working out its consequences in two indepen­
dent ways, model-theoretically and proof-theoretically, 
and checking that these correspond. 

Parsimonious. Parsimony is relatively easy to de­
fine. Suppose there are a different relevant actions, and 
e different relevant effects. An axiomatization that uses 
O(ae) space is not parsimonious. If each action influ­
ences at most d properties of the world, then a parsimo­
nious axiomatization should use at most O(ad) space.3 

Localist . Ideally, each action-effect combination 
should be specified by a separate axiom, or by no axiom 
at all if it is a special case of some general frame axiom. 
However, it is somewhat arbitrary what is considered a 
separate axiom. In classical logics, two assertions can be 
viewed as separate axioms if the logical connective that 

3 A criterion of parsimony is implicit in [Shoham, 1986]. 



links them implicitly is 'and'; one can imagine privileg­
ing a different connective. Moreover, nonclassical logics 
often have a semantics that is entirely formal, but not 
compositional: the meaning of a set of axioms cannot 
be defined in terms of independent meanings for each 
axiom in the set . Any type of closed world assump­
tion, for example, destroys compositionality. Without 
compositionality it is not clear why separate axioms are 
desirable. In addition, there is no necessary correlation 
between separate axioms and efficient inference. Many 
inference procedures preprocess input sets of axioms, and 
represent seemingly modular sets of axioms in unmodu­
lar ways. In view of the considerations just outlined, we 
shall admit as "localist" any axiomatization that only 
has to be changed in a fixed, small· number of places 
when a new action is taken into account. 

4 The general method of axiomatizing 
actions 

Our approach to solving the frame problem uses three 
basic predicates: holds, causes, and cancels. The 
arguments of holds are a fluent and a state, as in 
holds(on(a, b), do(so, stack(a, b))). The arguments of 
causes and cancels are an action, a state, and a fluent, 
asm 

causes( stack( a, b ), so, on( a, b )) . 
The single, fixed, general frame axiom is 

Va,s,p holds(p,do(s,a)) +-+ (1) 
causes(a, s,p) V (holds(p, s) I\ -,cancels(a, s,p)). 

This axiom has a common sense interpretation. It states 
that a fluent holds in the state resulting from an action 
if and only if the action "causes" the fluent, or the fluent 
held before the action, and the action does not "cancel" 
it. Note that both the causes and cancels predicates 
have state arguments, so whether or not an action in­
fluences a fluent can depend on the state in which the 
action is taken. 

Using the three basic predicates, the relationships of 
these fluents and actions can be specified by the following 
axioms:4 

Va, s,p causes(a, s,p) - (2) 
( a = load I\ p = loaded) V 

(a = shoot /\p = dead I\ ho/ds(loaded, s)) 

Va, s, p cancels( a, s, p) - (3) 
( a = shoot I\ p = alive I\ holds( loaded, s)) V 

(a = shoot /\p = loaded I\ holds(loaded, s)). 
Axioms (1)- (3) describe the Yale shooting world . They 
can be used to solve many different inference problems, 
always using the standard semantics of first-order pred­
icate calculus. For example, in all models of sentences 
(1)- (3) and holds(alive, s0 ), it is the case that 

holds(dead, do(do(do(s0 , load), wait), shoot)) 

4 Almost every paper on the Yale shooting problem uses 
a slightly different set of fluents. The three used here are 
from the original circumscriptive attempt to solve the prob­
lem [Hanks and McDermott, 1986]. Our solution does not 
depend on this choice of fluents. 

is true. The shooting problem is thus solved. 22 3 

The so-called murder mystery is a retrojection prob­
lem, introduced in [Baker, 1989], The scenario is that 
Fred is alive initially but not after shooting the gun and 
then waiting: 

holds(alive, s0 ) I\ 

-,holds( alive, do( do( s0 , shoot), wait)) . 

The question is to discover when Fred died, and whether 
the gun was initially loaded. Axioms (1)-(3) and the 
sentence immediately above entail 

holds(loaded, s0 ) I\ cancels(shoot, s0 , alive). 

The mystery is solved. 
A natural question is whether all axiomatizations of 

the type described above allow all projection problems 
to be solved. The following theorem states this question 
precisely, and affirms that the answer is yes. 

Theorem: Let the theory T consist of the frame ax­
iom (1), a causes axiom of the form 

Va, s,p causes(a, s,p) -

a = a I\ p = 7r /\ IIa,,r 

a cancels axiom of the form 

"la,s,p cancels(a,s,p) -

a = Q' /\ p = 7r /\ na,,r 

and an initial state axiom of the form 

Vp holds(p, so) -

. . . V p = 1r1c V .. . 

In these axioms each subformula 11 0 ,.. and n0 ,.. is a con­
junction of preconditions that may i~volve lo~al existen­
tial quantification. That is, each 110 ,,.. and n0 ,,.. is of the 
form 

3x holds(f1 ( x), s) /\ · · · holds(f1c ( x), s) 

where each /, is a fluent and x allows fluents to be 
parametrized. Then Tis consistent, and for all fluents p 
and action sequences a1, a2, . .. a1c, either 

T t= holds(p, do(· · · do(do(so, ai), a2), · · ·, a1c)) 

or 

T t= -,holds(p, do(, · -do(do(so, a1), a2), · · · , a1c)) . 

P roof: Induction over the length of the action sequence 
a1,a2, , . . a1c . • 

A planning problem is a projection problem where the 
action sequence is unknown. Given a goal fluent p, the 
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task is to find an action sequence 01, 02, ... Ok for some 
k such that 

T p= holds(p, do(··· do(do(sQJ oi), 02), · · ·, 0,1:)). 

A corollary of the theorem above is that planning is semi­
decidable: for any set of goal fluents, if a plan exists that 
achieves them simultaneously, it can be found. Planning 
should in fact be efficiently decidable using axioms of 
the form proposed here, since these axioms correspond 
to the completion [Clark, 1978] of logic program clauses. 
For the particular axioms given as an example above, 
the corresponding logic program is 

causes(A, S, P)-+ holds(P, do(S, A)) 

holds(P, S) A -,cancels(A, S, P ) -+ holds(P, do(S, A)) 
causes(load, S, loaded) 

holds(loaded, S) -+ causes(shoot, S, dead) 

holds(loaded, S) -+ cancels(shoot, S, alive) 

holds(loaded, S) -+ cancels(shoot, S, loaded). 

I Projection and planning problems can be reduced to 
query-answering against this pure PROLOG program. 
The state of the art in PROLOG implementation is about 
nine RISC cycles per logical inference [Mills, 1989]. One 
could in principle obtain a specialized reasoner running 
at a comparable speed for any world of actions and flu­
ents axiomatized following our guidelines. 

5 Solving further problems in 
axiomatizing actions 

Incomplete· knowledge. The qualification problem is 
that any formalization of a fragment of common sense 
knowledge is always incomplete. However many pre­
conditions have been taken into account in the formal 
statement of a rule, further preconditions exist whose 
truth influences the truth of the consequent of the rule, 
so the formal rule should have even more antecedents. 
Given that one can never be sure that all relevant pre­
conditions for an action have been mentioned, the issue 
from a knowledge representation perspective is to axiom­
atize actions and their effects in such a way that when 
new preconditions are discovered, they can be stated eas­
ily [McCarthy, 1977]. For example in the Yale shooting 
world, one should be able to add the condition that the 
gun cannot be loaded if it is locked away. 

In our framework, the preconditions of actions can 
be stated in a modular way using a new predicate 
prevented. Here is an example: 

'r/a,s,p causes(a,s,p) +-+ -,prevented(a,s)A 

(a = load A p = loaded) V 

Va, s prevented(a, s) +-+ 

(a = load A holds(lockedaway, s) ) 

When a new precondition for an action is discovered, the 
use of the prevented predicate allows it to be taken into 
account by changing an axiomatization in just one place. 

Using a prevented predicate in the way just described 
allows an axiomatization that is discovered to be incom­
plete to be updated in a straightforward way. A second 
issue of incomplete knowledge is how to assert in an ax­
iomatization that the preconditions of an action are only 
partially stated. Intuitively, the +-+ connective in 
the axiom defining prevented says that prevented is fully 
defined: there are no a and s such that the truth or 
falsity of prevented(a , s ) is unknown. Conditionally re­
placing the +-+ connective with a unidirectional 
~ connective permits the truth of prevented( a, s) 
to be partially unspecified. The following axioms say 
that prevented( a, s) is true if prevents( a, s) is true, and if · 
determined( a, s) is true, then prevented( a, s) is true only 
if prevents( a, s) is true. That is, prevented is fully speci­
fied for those a and s for which determined is true, and 
partially specified for all other a and s. 

Va, s prevented(a, s) - prevents(a, s) 

Va, s (prevented(a, s ) -+ prevents(a, s)) 

- determined(a, s)) 

Va, s prevents(a, s) +-+ 

(a = load A holds(lockedaway, s )) 

Va, s determined(a, s) +-+ 

a = load 

Momentary and dynamic fluents. Once they start 
to hold, most properties of the world tend to continue to 
hold. The frame axiom (1) formalizes this observation. 
However some properties of the world tend to change by 
themselves. Fluents of this nature are called momentary 
[Lifschitz and Rabinov, 1989], and a flexible logic for 
reasoning about action must allow them to be decoupled 
from any frame axioms. The following modified axiom 
achieves this in our approach: 

Va, s,p holds(p, do(s, a)) +-+ 

causes(a, s,p) V 

(holds(p, s) f\ -,momentary(p) f\ -,cancels(a, s,p)) . 

This axiom is identical to (1), except a fluent p holding 
in a state s may cease to hold because it is momentary 
as well as because it is canceled. For an example of how 
to use this axiom, consider the loud noise presumably 
caused by a shoot action. This fluent can be named 
bang and axiomatized by adding a description of what 
induces it to the causes axiom: 

Va, s, p causes( a, s, p) +-+ 



(a = shoot I\ p = bang I\ holds(loaded, s)) V 

and stating that it is momentary: 

Vp momentary(p) +-+ p = bang. 

A dynamic fluent is a property of the world whose na­
ture is to change spontaneously [Lifschitz and Rabinov, 
1989]. For example, the level of water in a swimming 
pool that is being filled changes even after unrelated ac­
tions. Dynamic properties of the world are difficult to 
axiomatize in any logic that uses the situation calculus 
ontology, because they are typically time-dependent, and 
time is deliberately excluded from the situation calculus, 
in a tradeoff of tractability for expressiveness [Levesque, 
1988]. However if one assumes that all actions take the 
same amount of time, for example, then dynamic fluents 
can be accommodated. One can write 

Va,s,p causes(a,s,p) +-+ 

3k p = level(pool, k) I\ 

holds(level(pool, k - 1), s) I\ holds(filling(pool), s) 

Va, s,p cancels(a, s,p) +-+ 

3k p = level(pool, k) /\ 

holds(level(pool, k), s) I\ holds(filling(pool), s) 

The ramification problem. This problem is to ax­
iomatize actions in such a way that their indirect effects 
can be stated independently. For example, suppose that 
the world of interest is a living room with two air vents. 
If both vents are blocked the room will be stuffy. One 
does not want to state this repeatedly as a potential ef­
fect of every action that may block a vent. The standard 
solution in the literature lGinsberg and Smith, 1988; 
Baker and Ginsberg, 1989] to the· ramification problem 
is to use so-called domain constraints that state relation­
ships between fluents without mentioning actions at all. 
Following this approach one would write 

holds(stuffy, s) = (4) 
holds(blocked(venti), s) I\ holds(blocked(vent2), s). 

Axioms of this sort are acausal: they are silent as to what 
events in the world have the power actually to induce 
other events. Unfortunately they often lead to unwanted 
ambiguity. Suppose that 

holds(blocked(vent1), so) I\ -.holds(blocked(vent2), so) 

is true. This entails -.holds(stuffy, so). What can 
one conclude is true after an action a given the fact 
causes(a, so, blocked(vent2))? All that can be deduced 
using (4) is 

cancels(a, so, blocked( vent1)) V causes(a, so, stuffy) . 
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Intuitively, there should be no ambiguity: insufficient 
ventilation cannot normally cause a vent to become un­
blocked .. We want to conclude 

causes(a, so, stuffy). 

This ambiguity problem is discussed in [Ginsberg and 
Smith, 1988], but no satisfactory solution is presented . 
The ambiguity can be resolved in our approach, because 
we have a theory of causation that, however limited, is 
explicit. We can state that if certain fluents are caused or 
canceled, then other fluents are also caused or canceled, 
given perhaps that various preconditions hold . In the 
present example, we can write 

Va, s,p causes(a, s,p) +-+ 

(p = stuffy I\ holds(blocked(vent1), s) 

I\ causes(a, s, blocked(vent2))) V 

(p = stuffy I\ holds( blocked( vent 2 ), s) 

I\ causes(a, s, blocked(vent1))) V 

This axiom captures reality better: it entails 
causes(a, s0 , stuffy) as wanted. 

The real issue is that if the vents are blocked, that 
brings about stuffiness causally, whereas in the other 
direction, stuffiness only suggests that the vents are 
blocked evidentially. Causal and evidential implications 
have different logical behaviours [Pearl, 1988]. It does 
not work to use the same -+ connective to encode both, 
whether the connective is understood inside a monotonic 
or a nonmonotonic logic. 

One could still object that stating causal relationships 
explicitly is less parsimonious . However this difference is 
unimportant: computationally an undirected axiom such 
as (6) has to be indexed to make it usable whenever an 
instance of any of its left- or right-hand-side conjuncts 
becomes true or false. If anything, inference is more 
efficient with a causal description of indirect effects. 

6 Discussion 
The simplicity of the ideas for reasoning about action 
introduced in this paper should not be misconstrued. 
Basing a solution to the frame problem on a weak, but 
explicit, theory of causality has been suggested before, 
notably in [Lifschitz, 1987]. The general idea is to specify 
what actions induce what effects, and to use the mini­
mization machinery of a nonmonotonic logic to say that 
actions induce no other effects. There are two principal 
new ideas here: the introduction of a cancels predicate 
dual to the causes predicate, and the observation that 
bidirectional implication is a powerful minimization op­
erator that can be used to obtain nonmonotonic effects . 

Given any fixed information about a world of actions 
and their effects, all valid conclusions about that world 
can be obtained by monotonic inference using first-order 
logic. If new information about an action or an effect 
must be taken into account, then the truth of some con­
clusions may change. New information can therefore not 
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be taken into account just by adding new axioms to the 
prior axiomatization. However, with an axiomatization 
constructed according to the method laid out above, new 
information can be taken into account by modifying the 
prior axiomatization in a straightforward, precisely spec­
ified, computationally easy way. Some nonmonotonic 
logics appear to allow new information to be taken into 
account just by adding new axioms, but in those logics, 
after new axioms are added, the overall minimization 
called for in the semantics of the logic must be performed 
again. This process is analogous to inserting new dis­
juncts in the right hand side of an +-+ sentence, which 
is how new facts are included in the axiomatizations ad­
vocated in this paper. 

An alternative approach to axiomatizing the effects of 
actions in first-order logic has recently been published by 
Reiter [Reiter, 1991], building on work by Pednault [Ped­
nault, 1989] and Schubert [Schubert, 1989]. The meth­
ods of this paper are considerably simpler, for two main 
reasons. First, Reiter uses multiple frame axioms, each 
one involving quantification over actions and states. A 
single frame axiom is sufficient above, because it involves 
quantification over fluents in addition. Second, no dis­
tinction is made in this paper between the preconditions 
under which an action is possible and the preconditions 
which must hold for it to have a particular effect. The 
absence of this distinction makes the theorem of Section 
4 much simpler than the corresponding theorem in [Re­
iter, 1991]. 

Some further contrasts between the techniques of this 
paper and alternative approaches to formalizing the ef­
fects of actions are worth mentioning. The TWEAK 
calculus of [Chapman, 1987] is inherently incapable of 
solving the ramification problem. Approaches based 
on a separate logical theory or model for each state 
of the world [Ginsberg and Smith, 1988; Rao and 
Foo, 1989], with actions corresponding to database up­
dates, do not have clear frame axioms. Approaches 
based on circumscription [Lifschitz and Rabinov, 1989; 
Baker and Ginsberg, 1989] do not have practical proof 
procedures. 

Acknowledgement: Many of the ideas here first 
arose in discussions with Ray Reiter. 
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Abstract 

It is well-recognized that in practical inductive 
learning systems the search for a concept must 
be heavily biased. In addition the bias must 
be dynamic, adapting to the current learn­
ing problem. Another important requirement 
is sustained learning, allowing transfer from 
known tasks to new ones. Previous work on dy­
namic bias has not explicitly addressed learn­
ing transfer, while previous case-based learn­
ing research suffers from a variety of problems. 
This paper presents a method of Case-Based 
Meta Learning (CBML), in which the cases are 
concepts, rather than instances, and retrieved 
similar concepts are used as a skeletal version 
space to speed up learning. CBML is indepen­
dent of the concept representation language. 
The CBML-Clerk system, which learns repet­
itive operating system tasks, is presented as a 
demonstration. 

1 Introduction 

Autonomous agents must be able to learn the classifi­
cations of objects by induction. For example, an au­
tonomous robot must learn concepts such as "sidewalk" 
and "cliff," so it can behave safely. An intelligent agent 
in the operating system domain must be able to learn 
concepts such as a user-specific class of backup files. 
This could include file names such as file. BAK, file. CKP, 
file-, file . -n - , and #file#, as well as more specific formats 
(e.g. file.save_21_June_1991 and archived files) . Some 
researchers even argue that learning by induction is the 
main attribute of an intelligent process [Goldfarb, 1991]. 

In general, the learning problem is to search the space 
of all possible concept descriptions for a concept consis­
tent with known examples. As well as the traditional 
resources measures of time and space complexity, de­
signers of induction algorithms must deal with "sample 
complexity." The number of examples required to learn 
a concept, which is related to the user effort in teaching, 
must be minimized so that the user is not over-burdened 
[MacDonald, 1991]. 

In practical systems it is important to make learn­
ing manageable by dynamically biasing the concept 

search in response to the particular examples avail­
able, and the learner's current environment [Heise, 1989; 
Heise and MacDonald, 1991]. 

This paper argues that case-based meta learning 
(CBML) provides a powerful and intuitive framework 
for the implementation of a dynamic bias, and presents 
the CBML-Clerk, which learns repetitive operating sys­
tems tasks from examples. As well as using examples to 
bias the formation of a concept description, previously 
learned concepts strongly bias the search. It is this lat­
ter bias that effectively reduces the sample complexity in 
terms of the questions a user must answer during learn­
ing. As the system learns knowledge about concepts 
and their descriptions (meta knowledge), it avoids some 
of the problems associated with case-based learning sys­
tems. 

After a review of learning in version spaces, inductive 
bias, and the importance of dynamic bias, the paper in­
troduces CBML, and presents a case study with exper­
imental results that show a decrease in the number of 
questions required. 

1.1 Learning in Version Spaces 

A version space is the set of all concepts consistent with 
the given examples and counterexamples [Genesereth 
and Nilsson, 1987]. If there is a partial ordering on the 
set of concepts by generality (forming a version graph) 
then the space can be represented efficiently by its upper 
or general (G) and lower or specific (S) boundary. The 
Candidate Elimination Algorithm [Mitchell, 1977] is a 
bi-directional search through a version graph. A posi­
tive example forces the S set to be generalized to include 
it, and removes members of the G set that do not cover 
it. A negative example forces the G set to be specialized 
to exclude it, and removes members of the S set that 
do cover it. The two sets may converge to one "correct" 
concept. If the boundaries overlap, the version space 
collapses. This is the result of incorrect example classifi­
cation or a representation language that is not powerful 
enough to describe the appropriate concept . 

2 Inductive Bias 

Both empirical observation and the complexity of induc­
tive learning show that the success of a learning algo­
rithm depends on the method used to restrict the hy-



pothesis space (i.e. the inductive bias) [Mitchell, 1980; 
Michalski, 1983; Haussler, 1986; Heise and MacDonald, 
1991]. Version spaces are an appropriate framework in 
which to examine bias, particularly dynamic biases, since 
the candidate elimination algorithm maintains all con­
sistent hypotheses, and the result is independent of the 
order in which examples are presented. Once the ver­
sion graph is defined, there is no further bias imposed 
( although the two boundaries move closer as more ex­
amples are seen). 

Informally, an inductive bias can be defined as any 
method that prefers one hypothesis over others. Three 
different categories can be distinguished, based on the 
implementation mechanism. 

• An absolute bias is a restriction in the representa­
tion language. Certain concepts are not expressible, 
as they are not in the hypothesis space. A popular 
absolute bias is the restriction to conjunctive con­
cepts; conjunctions of feature-value pairs. 

• A relative bias selects one hypothesis over another 
if both of them are consistent with the example set. 

• A random bias would select a consistent hypothesis 
at random. 

This paper concentrates on relative biases since they 
do not prevent the system from learning any concept. 
Commonly used relative biases are based on the com­
plexity of the concept description or the number of rele­
vant features. For example, given 1, 3, and 8 as positive 
examples, a learner may prefer the concept "any digit" 
over "any odd digit or 8." Later if 4 is given as a neg­
ative example, the learner must reconsider. However, it 
is important to note that a fixed relative bias improves 
the learning only for the initially preferred hypotheses. 

Two other dimensions for the comparison of biases are 
strength and correctness. A weak absolute bias does not 
rule out many hypotheses, whereas a strong bias signif­
icantly reduces the hypothesis space. A weak relative 
bias has a minimal effect on the search order, while a 
strong one reduces the effective search space markedly. 
A correct bias does not rule out the correct concept to be 
learned, while an incorrect one does. Strength is inde­
pendent of any particular concept, whereas correctness 
must be defined relative to a concept. A learning system 
should have a strong bias that meets a certain measure 
of correctness for the concepts it must learn. 

However, a static bias is not generally useful. Heise 
[Heise, 1989; Heise and MacDonald, 1991] has proposed 
that the dynamic nature of bias is the primary consider­
ation in the design of real world inductive learners, and 
shown its usefulness in the ETAR robot system. For 
example, if a system is trying to learn concepts of file 
names, it is reasonable to prefer prefixes test* and suf­
fixes *. c over concepts based on occurrences of single 
characters such as •e• . Many users organize their files 
by a prefix related to the content of the file (project 1, 
test, . .. ) and a suffix indicating its type (. c, . tex, 
. txt, ... ) . However, if the same system is to learn con-
cepts in other operating system domains, such as string 
manipulation in a text editor, it may need to learn con­
cepts such as "punctuation symbol," or "any word with 
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the letter Z in it" (*Z*). Here the prefix/ suffix pref-
erences are inappropriate, although the learner should 
not discard them; it may need to read in files using the 
file name concepts it knows. Furthermore, it is conceiv­
able that some users organize their files in a different 
way, for example placing different file types in differ-
ent directories, so that preferred concepts might include 
project/•/test or project/•/a.out. Therefore, the 
bias must be dynamic so that the learner can adapt to 
both the user preferences and the current context . 

3 Systems that use Dynamic Bias 

STABB Ut&off argues that there are three steps m 
bias adaption lUtgoff, 1986]. 

• Recommend new concept descriptions that should 
be added to the hypothesis space. 

• Translate the recommendations into expressions of 
the concept description language. 

• Assimilate newly formed concepts into the original 
hypothesis space. 

STABB represents the concept space as a version 
graph. An overly strong bias may remove the required 
concept, and this is detected when the version space col­
lapses (i.e. there are no more hypotheses that are consis­
tent with all examples) . STABB then adds extra nodes 
to the version graph. One heuristic for new node selec­
tion is to add the least disjunction required, as depicted 
in figure 1 where the concept sin V cos is added. 

Assimilating the new concept is not straightforward 
for STABB because adding nodes to a version graph may 
change the boundaries. 

Predictor Gordon's system uses a feature value rep­
resentation for instances [Gordon, 1990]. An example 
object in the domain can be represented as 

object = (mat=wood,size=large,shape=sphere). 
The Predictor system uses three assumptions to adapt 
the bias. 

• Irrelevance is used to mask features from the con­
cept description ( e.g. ignore the material of an ob­
ject) . 

• Cohesion determines when to climb a generalization 
hierarchy of a feature. For example, in the version 
space of figure 1, if sin is the only example, cohesion 
will try to generate the concept description trig. 

• Independence is used to mask feature-value pairs 
from the representation language. Two features are 
independent if and only if you can independently 
change one of the feature values and the resulting 
object is also a member of the concept. If 

obj1 =(red, block, wood) and 
obj2=(green, sphere, wood) 

are positive examples, then color and shape are 
independent if and only if 

obj3=(green, block, wood) and 
obj4=(red, sphere, wood) 

are positive examples as well . 
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A Example: cos, positive 
S-set:cos 

cos sin tan 
G-set: trig 

+ 

A Example: sin, pos~ive 
S-set: trig 

cos sin tan 
G-set: trig 

+ + 

A Example: tan, negative 
S-set: n/a 

cos sin tan 
G-set: n/a VS collapses 

+ + 

Example: 

"" S-set: sin v cos 
G-set: sin v cos Add node to VS 

(sin v cos) tan 

A 
cos sin 

+ + 

Figure 1: Dynamic Bias in the STABB System. A least disjunction is added when the space collapses. 

Predictor tests whether any of the biasing assump­
tions can be applied and then actively tries to verify 
this assumption. Although it is an incremental learn­
ing system, it can take advantage of the set of examples 
supplied. For example, if some objects satisfy the irrel­
evance criteria for a given feature, the Predictor system 
searches the set of examples for instances that verify or 
invalidate this assumption. If the assumption is veri­
fied for the current example set, the bias is adjusted and 
the hypothesis space reduced by masking the irrelevant 
feature. If in the future other examples show that the 
feature is not irrelevant, it will be unmasked. 

ETAR Heise's system uses dynamic bias to learn robot 
procedures from examples [Heise, 1989; Heise and Mac­
Donald, 1989]. In contrast to STABB, ETAR strength­
ens the bias by focusing on aspects of a task trace that 
meet a relevance criterion. The criterion is spatial lo­
cality relative to the robot hand. This enables a raw 
numeric sequence of. teacher guided robot positions to 
be partitioned into a chain of symbolic action nodes. 
The bias also enables action nodes to be merged when 
there are similar nodes within and between example task 
sequences, thus enabling the determination of branches 
and loops in the task . Throughout, the bias is driven by 
the example, or task trace, and dominates the search for 
an appropriate procedure. Example tasks include block­
ing stacking, and sorting objects from a conveyor. 

4 Issues in Dynamic Biasing 

The common approach in the STABB and the Predic­
tor systems is to use heuristics to adapt the represen­
tation language and thus the hypothesis space. ETAR 
on the other hand uses its bias to modify the input ex­
ample information, and the search process. All three 
address the problem of learning a single concept, not 
taking advantage of previous learning in a new learning 

episode. 1 This has two limitations. In an autonomous 
agent, rather than defining different representation lan­
guages and different biases for each concept, we would 
like to implement a general purpose learning algorithm 
that supports transfer of concepts. Second, the choice of 
initial bias has been ignored. The STABB system starts 
out with a strong bias and weakens this bias if forced 
to. Predictor uses a weak bias and tries to strengthen 
it. This means that both systems require extra work to 
achieve a successful bias. A system should use previous 
experience to approximate the initial bias. 

The systems' biases operate directly on particu­
lar representation languages. If the · language is 
changed, for example from DNF to CNF, then the dy­
namic biasing algorithm must be updated. In addi­
tion, since transformations of the representation lan­
guage are made explicitly in STABB and Predictor, 
these approaches require explicit adaption rules. Such 
rules may be hard to find and to compute for non­
trivial representation languages. For example, the 
Predictor's independence biasing assumption is hard 
to represent in DNF; the concept for independent 
color and shape in the description above would be: 

(red and block) or (red and sphere) or 
(green and block) or (green and sphere). 

The representation is simpler in CNF : (red or green) 
and (block or sphere). 

CBML enables task transfer, and is not specific to 
particular representation languages. 

5 Case-based Meta Learning 

In case-based learning (CBL) classified examples (cases) 
are stored and used to help in classifying new, unknown 
examples [Aha, 1991]. The focus is on different issues 
than other case-based reasoning methods. The case 

1 Although Heise's current work addresses this (personal 
communication) . 



representation is restricted to feature-value pairs and 
cases are not adapted to fit a new situation. A sim­
ple indexing scheme uses a similarity assessment of the 
new and previous cases. Approaches range from encod­
ing a large amount of domain knowledge ( e.g. Protos 
[Bareiss, 1989]) to computing similarities dynamically 
(e.g. MBRtalk [Stanfill and Waltz, 1988]). 

Breiman et al. (1984] argue that simple CBL algo­
rithms are computationally expensive (because similari­
ties between all cases and the current concept must be 
computed), intolerant to noise and irrelevant features, 
sensitive to the similarity function, give no simple way 
to define similarity functions for symbolic-valued fea­
tures, and provide little information about the structure 
of the data. Aha (1991] proposes methods to overcome 
the first two, and notes that CBL must be sensitive to 
the current context. GCM-ISW [Aha and Goldstone, 
1990] uses context as well as goal features in the similar­
ity assessment of new cases. 

A major criticism of CBL is the large amount of 
storage required. Recent research has alleviated this 
problem by storing only instances that can discriminate 
among different classifications [Aha, 1991]. In this pa­
per cases do not represent single instances, but concepts 
learned in previous tasks. The case memory grows only 
linearly with the number of tasks that the system learns. 
The justification of this approach is analogous to Ham­
mond's justification for case-based planning [Hammond, 
1989]. Learning is an expensive operation so the results 
of the learning procedure should be stored and reused in 
the future . 

In CBML previous cases are used as a skeleton of 
the hypothesis space, to guide the search. The skele­
tal hypothesis space consists of concepts that have been 
successfully used in the past on a similar task. Once 
the most appropriate known concept is found, ordinary 
learning algorithms are used to find the correct node. 

CBML implements a bias relating a new concept with 
previous learning experiences and tries to maintain the 
partitioning of the current instance set that would be 
imposed by previously know concepts. The bias is to 
maintain sets of instances that were learned . by previ­
ous similar cases. For example, if each previous case 
generates one consistent classification (positive or nega­
tive) for all elements of the current instance set matching 
*. txt, then the preferred hypotheses are those that as­
sign one particular classification to all strings ending in 
.txt. 

One distinction between previous dynamic biasing sys­
tems and CBML systems is that CBML bias is ad­
justed only when learning a concept in a similar task. 
It cannot yield better performance if the system is 
used only to learn one specific task. However, CBML 
and other dynamic biasing algorithms can complement 
each other since CBML is independent of the specific 
learner/ classifier algorithm. Furthermore, 

1. CBML supports context dependent biases. Previous 
concepts that were useful in executing similar tasks 
are retrieved. Different tasks can use a common 
representation language. 

2. CBML can provide an initial bias. If all similar pre-
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vious concepts assign the same classification to all 
strings matching *. txt, then the important feature 
of this task may be suffixes. 

3. CBML does not change the representation language 
explicitly, is independent of the language and the 
concept learner/ classifier, and needs no knowledge 
of how to change the bias to focus on, say, suffixes. 

4. Since transformations are made only implicitly, 
transformation rules are not necessary. 

CBML also does not suffer from the problems usually 
associated with CBL. The computational complexity is 
reduced since only concepts and not instances of con­
cepts are stored. Noise in a CBML system is equiva­
lent to retrieving a case that uses a different bias than 
the concept to be learned . This affects the efficiency 
but not the correctness of the learning procedure. In­
stead of retrieving one similar case, CBML systems re­
trieve all similar cases. Therefore, a CBML system is 
more robust with respect to irrelevant features and the 
choice of the similarity function. A CBML system uses a 
learner/classifier routine for learning and thus does not 
need to represent symbolic-valued features or structured 
data at an instance level. 

6 Implementation of the CBML-Clerk 

To show the operation of CBML in a realistic learning 
setting, Baltes implemented a CBML system on top of 
the Shell-Clerk [Baltes, 1991], which is an instructable 
system (see [MacDonald, 1991]) that learns repetitive 
operating system tasks by example, such as copying files, 
arranging mail messages, or reading news articles. File 
names are represented as strings and the representa­
tion language is a subset of regular expressions, lim­
ited to at most three terms in a disjunction. Never­
theless, it can learn concepts such as all backup files 
(•-or#*# or •.CKP),allCsourcefiles(•.c or •.h), 
and all test files (•test* or •Test* or •TEST•) . The 
Shell- CLERK uses a "symmetric version space" (SVS) 
approach to learning string concepts, but requires a few 
too many questions ( 19 for 96 files) to learn common con­
cepts such as *.*or •-. Based on the argument given in 
the previous section, CBML-Clerk was designed as an 
extension. 

Instead of using a dynamic bias to select concept de­
scriptions and use these concepts, constraints imposed 
by the domain require that the learning algorithm must 
not over-generalize (mistaken file erasure is unaccept­
able). The CBML-Clerk uses the instance set partitions 
generated by previous tasks as a way to reduce the num­
ber of questions to the user. It will ask for the classifi­
cation of one of these sets, rather than that of a single 
example. Although there is no decrease in the number of 
instance classifications required from the user, less work 
is required to provide these classifications. 

The Shell- Clerk requires the user to begin learning by 
listing a set of files that contains the target ones, then 
inputing a command and a prototype file name on which 
this command is to be executed . The original version 
then proceeded to question the user about individual 
file names. The CBML-Clerk begins the same way, then 
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proceeds to ask questions about possibly relevant sets of 
file names. 

6.1 Case Representation 
A case records the prototype file name, the command, 
and the concept description produced by the SVS algo­
rithm. The candidate elimination algorithm can not be 
used directly because the G set is possibly infinite for a 
representation language with limited disjunctions in an 
infinite domain. 2 Concepts are described by a positive 
cover set - the most specific description of all positive 
instances - and a negative cover set - the most specific 
description of all negative instances - plus other infor­
mation. For example, a concept matching strings a, b, 
and c but not any digits or other lower case characters, 
is represented by the following structure3 

Pos-Cover: (a orb or c) 
Neg-Cover: (<digit> or <lovercase>) 

6.2 Case Indexing 
The CBML system retrieves all similar cases when try­
ing to learn a new concept. These concepts define the 
abstract hypothesis space. A case is considered similar 
to the current situation if at least one of the following 
conditions holds: 

1. The concept uses the same prototype string. The 
SVS algorithm uses the first example string as a 
prototype to determine the number of independent 
disjunctions in a concept. 

2. The user executed the same command on the strings 
matching the concepts. For example, let us assume 
that the user taught the system a task where all 
strings matching the concept had to be copied to a 
different directory. In a new task, the user tells the 
CLERK to copy all files matching a new concept, so 
the original concept will be retrieved. 

6.3 Case Adaption 

CBML provides the opportunity to adapt old cases to 
new situations, because cases are concept descriptions 
that may be used to partition the instance set. For ex­
ample, if the concept to be learned (say •. txt, although 
the learner does not know this yet) and a retrieved con­
cept (say •. tex) are determined to be inconsistent, an 
adaption rule can be fired to change the recalled con­
cept description. In CBML-Clerk, if a similar case is 
inconsistent then the learner examines the complement 
of the concept, and if this is also inconsistent, then that 
retrieved concept is removed from consideration. 

6.4 Case Storage 

One major criticism of case-based learning systems is the 
large amount of storage required to store all instances. 
Recent research has alleviated this problem by only stor­
ing instances that can discriminate among different clas­
sifications. Only instances that were wrongly classified 
are added to the case memory [Aha, 1991]. 

2 See [Baltes, 1991] for details of the SVS algorithm. 
3The SVS algorithm requires two extra cover sets. These 

can be safely ignored for the discussion. 

Since CBML stores only concepts and not instances in 
its case memory, this problem does not arise. It stores 
only one new concept for each new task that it learned. 
Therefore, the size of the case memory grows only lin­
early with the number of tasks that the system can per­
form. 

6.5 Learning using CBML 

The input to CBML-Clerk is the current command­
prototype pair, a set of instances that must be clas­
sified to perform the given task, a memory of previ­
ous concepts, and a learner/ classifier algorithm. The 
learner/ classifier routine classifies instances as positive, 
negaiive, or unknown. if provided with the correct cias­
sification (positive or negative) of an unknown instance, 
it returns an updated concept that is able to classify the 
previously unknown instance in the future. 

Table 1 describes the CBML algorithm for the Clerk. 
After retrieving all similar cases from the concept mem­
ory (Step 1), the classification of all instances as well as 
all similar cases is computed (:for-each beginning Step 
2). If none of the instances in the instance set are un­
known, then there is no need to learn. The algorithm 
simply returns after adding the concept to the case mem­
ory (Step 4). Similar cases are removed if inconsistent 
with the current instance set (Step 3) . 

In the next stage, similar cases are updated with the 
information from the current instance. For example, if 
case c is unable to classify instance i, but the current 
concept classifies i as either positive or negative, case c 
is updated to include the classification of i. Note that 
this update is temporary and is not reflected in the case 
memory (Step 5). 

The algorithm next removes decision equivalent con­
cepts (Step 6). In the example of table 2 the concepts 
•. c and •. c or •. cc will be combined because they are 
decision equivalent for the given set of new instances. 

In the next step, the system is trying to find a subset of 
the instance set that allows it to discriminate best among 
all similar cases. For this purpose, a two-dimensional 
array is constructed, called the Min-Max-Table (Step 
7) . The rows of the Min-Max-Table consist of sets of 
instances that have the same classification under all sim­
ilar cases and are now classified as unknown. If there is 
only one element in the instance set for a given row, the 
row is deleted from the Min-Max-Table because it will 
only require one question to the user ( at a later stage) 
to find the classification of this instance. The columns 
consist of the similar concepts. The entry at row i and 
column j is the classification of instances in set i under 
the concept j. An example of a Min-Max-Table is given 
in table 2. 

All instances belonging to the set with the best Min- . 
Max-Value are then presented to the user with the re­
quest to classify all of the instances as positive, negative, 
or neither. If the answer is positive or negative, the con­
cept to be learned is updated with the new classification 
for all elements of the set. If the user answered neither, 
these instances are removed from the instance set (Step 
8). The user will be asked about the correct classification 
for all these instances later (Step 11). 



CBML(command,prototype-string,instance-set,memory,learner/classifier) 
(returns an updated case memory) 

1. similar-cases:= find-similar((command,prototype-string), memory) 
new-concept:= nil-concept 
unknown-instances:= nil 

while (similar-cases not empty) 
2. for-each case in similar-cases 
3. if inconsistent(instance-set, case) then 

remove (case, similar-cases) 
case' := make-case(command,prototype-string,concept(case)) 
(_, class) := learner/classifier(case', instance-set) 

4. if all-instances-classified(class) then return(update-memory(case')) 
5 . replace(similar-cases,case,update(concept(case),class)) 
6. remove-equivalent(similar-cases) 
7. bmm := best-min-max(similar-cases) 
8 . if ask-user(instances(bmm)) = TRUE or FALSE 
9. then new-concept:= update(new-concept,instances(bmm)) 
10 . else unknown-instances:= 

append(unknown-instances, 
remove(instances(best-min-max), instance-set)) 

11. (new-concept,_) : = learner/classifier( 
new-concept, 
append(unclassifiable-instances(instance-set), 

unknown-instances)) 
return(update-memory(new-concept )) 

learner/classifier returns a new concept and the c' c;;ification partition made by it. concept(case) returns the 
string concept of the case. A case includes a command, , prototype string and a string concept . 

Table 1: The CBML Algorithm 

The heuristic used to select the best Min-Max-Value 
is based on the assumption that the response of the user 
will often be positive or negative, so that a large number 
of similar cases will be removed. Let us assume that a 
set of instances is classified as positive by two similar 
cases, as negative by three cases, and as unknown by 
one case. Let us further assume that the size of the 
set of instances associated with this row in the Min­
Max-Table is three. If the user's classification is positive, 
three cases can be removed from the Min-Max-Table, 
because they are inconsistent with this information. On 
the other hand, if the classification is negative only two 
cases can be removed. If the user answers neither, no 
concept can be removed and the user must be asked for 
the classification of these instances separately. 

Min-Values and Max-Values are calculated for each 
row. The CBML algorithm selects the next instance set 
according to these rules: 

• Choose the maximum of the Min-Values of all rows. 
The Min-Value of a row is the minimum of the num­
ber of positive classifications and negative classifica­
tions in a row. 

• If there is a Min- Value tie among rows, select the 
instance set (row) with the highest Max-Value. The 
Max-Value is the maximum of positive and negative 
classifications. 

For example, in table 2, instance set test. o, test. dat, 
a.out will be selected. The set test .h has a Min- Max­
Value of (1,1) 4 while each other set has a Min-Max­
Value of (1,2) . So the largest set is selected. 

If there is more than one similar case left, the algo­
rithm loops back to Step 2. 

7 Results 

The CBML-Clerk was tested on a sequence of different 
tasks in the operating system domain. Common con­
cepts such as *. *, *. c, *. tex, *- were learned after 
only a few example tasks. The example concept in ta­
ble 2 is learned after only three questions. Table 3 shows 
the results for the first five concepts in the original SVS 
paper [Baltes, 1991]. Here the concepts are not learned 
in any particular order and are not that well related to 
a particular task, so that CBML is not particularly ef­
fective. Table 4 shows a more significant improvement 
when concepts are related, and are taught in a reason­
able order. In both tests the command was the same for 
all concepts. 

4 As above, this row will be deleted since the instance set 
includes only one concept. 

2 3 3 
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Learned concepts 
New Concept 
New Instances 

test.c 
test1. c 
test.c· 
test.bak 
test.h 
test.o 
test.dat 
a.out 

*·* •.c (•· or •.bak) (• .c or •.cc) 
•.c or •.h 
test.c test.c· test.bak test1.c 
test.h test.o test.data.out 

new * . * * . c * · or * . bak 
? t t f 
? t t f 
? t f t 
? t f t 
? t f ? 
? t f f 
? t f f 
? t f f 

Table 2: Example of the CBML-Clerk Min- Max-Table. 

Concept Prototype I CBML Q I SYS Q I Comments 
test• or #test• test . ss 32 32 identical to SYS 

* generic.c 2 19 optimal case for CBML 
•(file-io or built-in) built-in_amiga.ss 38 38 does not match previous 

(_amiga or _sun)• prototype; not adapted 
•(amiga or sun)• built-in_amiga.ss 34 42 
•e• test.as 39 41 

Table 3: Results for the first five concepts reported in [Baltes, 1991]. There are 96 files and the third and fourth 
columns give the number of questions asked by CBML and the original SVS algorithm. 

Concept Prototype I CBML Q I SVS Q ! Comments 
•.c test.c 8 8 For perfect learning it must ask about all 

••• test.c 2 8 an optimal case 
a.out a.out 2 8 
•· or •.bak test.bak 6 8 
•.c or •.h test.c 6 8 

There were eight files: 
a.out test.c test.h test.c test.bak test1.c test.o test.dat. 

Table 4: Results for some related concepts, again comparing CBML and the original SVS algorithm. 



8 Conclusion 

This paper argues that skeletal, case-based hypothesis 
spaces can be used to reduce the sample complexity of 
learning algorithms. CBML is an simple, efficient, and 
intuitive way to construct hypothesis spaces from pre­
vious experience. By using a case-based approach, the 
constructed spaces are context dependent and can there­
fore be used as a dynamic bias. 

CBML overcomes difficulties associated with dynamic 
biasing and case-based learning. An advantage is its ro­
bustness, which is gained by retrieving all similar cases. 
Furthermore, CBML does not require an explicit set of 
transformation rules for adapting bias. CBML is in­
dependent of the concept representation language. Al­
though we have yet to devise sophisticated case adap­
tion rules, CBML enables learning without case adap­
tion . Improvements could also be made to the simple 
indexing scheme. Furthermore, at the moment only a 
single skeletal version space is generated. It seems rea­
sonable that a hierarchy of spaces could further reduce 
the search through the hypothesis space, just as abstrac­
tion hierarchies do in planning. The algorithm could also 
be extended to combine similar cases in the case memory, 
if many are found. This would reduce the computational 
complexity as well as the storage requirements. 

CBML promises to be an appropriate trade-off be­
tween the detail of case-based learning, and the gen­
erality of inductive inference. 
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Abstract 
For very difficult games, like Go, it is increasingly 
clear that the most competitive programs will be 
those whose expertise is developed through learning 
during competition. This paper explores how the 
nature of the opposition during training affects the 
quality of learned behavior in two-person, perfect 
information board games. It considers different 
kinds of competitive training, the impact of trainer 
error, appropriate metrics for post-training 
performance measurement, and the ways those 
metrics can be applied. Variations in the playing 
skill learned from many kinds of opposition are 
described here for three different games. The results 
argue for a broad variety of training experience with 
play at many levels. This variety can either be 
driven by inherent elements of chance in the game 
or be introduced deliberately into the training. A 
case is made for extensive, thoughtful training of 
systems that learn, and for cautious reliance upon 
them. 

1. Introduction 

Educators promulgate many philosophies about what makes 
a good learning situation for humans, but it is difficult to 
compare how the same individual learns the same skill in 
more than one environment; prior learning experiences are to 
some extent ineradicable. With a computer program, 
however, it is possible to learn from the beginning as often 
as one likes, to compare and contrast learning environments 
in a variety of situations, and to test the resultant skill 
extensively without permitting further learning. In 
particular, with machines instead of people, one can ask how 
the nature of the opposition determines what, and how 
quickly, a game player learns. 

The thesis of this paper is that the acquisition of absolute 
expertise in a competitive domain demands a broad variety of 
challenging experience as well as more thorough testing 
than traditionally anticipated. The contribution of this paper 
is its analysis of the impact of the training environment on 

*This work was supported in part by NSF 9001936 and PSC­
CUNY 668287. 

learning to play games. It includes the formulation of 
appropriate performance metrics and recommendations for 
training a program to play games. 

2. Competitive Learning and Expertise 

'Iraditional AI game playing programs, like Deep Thought 
and HiTech, use fast, deep search to identify relevant future 
positions and evaluate their strength [Anantharaman et al., 
1990; Berliner & Ebeling, 1989]. These programs rely on 
special-purpose hardware, clever storage and retrieval tactics, 
a few well-known search heuristics, and raw computing 
power to search deeply and quickly. There is a growing 
consensus in the AI game-playing community, however, 
that a game like Go cannot be played as well as chess is 
with such techniques, because Go's search space is so much 
larger than that of chess, and because Go offers so many 
more possibilities at each choice point. 

As a result, there has been substantial recent interest in 
programs that learn to play games. Samuel's Checker Player 
was an early effort that learned an evaluation function based 
on input features of the checkers board [Samuel, 1963, 
1967]. TD-gammon learns to play backgammon with a 
neural net that, after much practice, holds its own against a 
world master (Tosauro, 1992]. Morph learns to play chess 
with a pattern cache that is gradually improving against a 
strong commercial chess program [Levinson and Snyder, 
1991J. Hoyle learns to play many simpler two-person 
perfect information board games extremely well against a 
variety of experts [Epstein, 1992]. TD-gammon learns the 
weights for its neural net, Morph learns patterns, and Hoyle 
learns useful knowledge about each game, knowledge that is 
probably correct and possibly applicable in a variety of 
contexts. 

Do game-learning programs learn to play perfectly, or 
only as well as people? Against what kind of opposition do 
they learn to play best? Does the nature of the opposition 
affect their learning speed or long-term memory 
requirements? How does learning differ when the 
opposition's errors are due to lack of foresight, to lack of 
knowledge, or to random decisions? This paper describes a 
recent experiment with Hoyle to address these issues. 
Because Hoyle learns a broad variety of games against any 
specified opposition, it can be used to explore whether the 
answers to these questions are game-dependent. 



3. Experimental Design 

Each trial for this experiment has Hoyle learn a game while 
playing against another program, called a trainer, and then 
tests Hoyle's post-learning playing skill against four kinds 
of opposition. 

3.1 The learning program 

Hoyle is based upon FORR, a general architecture for a 
learning and problem solving expert, one that postulates and 
capitalizes upon regularities (Epstein, 1991). Hoyle's 
domain is two-person, perfect information board games. 
Given the definition of a new game, Hoyle begins as a rule­
abiding novice that plays against an external, presumably 
expert, model. This model is only observed, never queried. 
As Hoyle plays it gradually improves, often becoming 
expert or even perfect at a game. 

Each game Hoyle can play is an instantiation, a pre­
specified, input instance, of a game frame . The only specific 
knowledge Hoyle has about a new game before playing is 
the values associated with these slots. Some slots hold 
constants: the name of the game, the markers assigned to 
each participant, the initial state of the board before play, 
whether the board is two-dimensional or three-dimensional, 
how often to scroll the screen during play, which places on 
the board are considered adjacent in games where pieces may 
slide, which lines on the board are considered wins if the 
game is won that way. Other slots hold the names of LISP 
functions: they display the current game on the screen, read 
and filter input moves, generate and effect legal moves, 
detect the end of a contest and who has won, and transform 
the board back and forth between a list and a visual 
representation. These functions are very brief, typically a 
total of less than 100 lines of code per game. 

Hoyle's game-playing algorithm is a script that provides 
pre-defined, uniform, procedural direction to the program. 
The game-playing algorithm enables Hoyle to perform as if 
it were experienced in game playing, without expertise at 
any particular game. This script detects when it is the 
program's tum to move, ensures that the participants 
alternately make legal moves, and announces the end of each 
contest, along with any winner. Given a valid game 
definition and the game-playing algorithm, Hoyle simulates 
a rule-abiding novice, one that makes legal, if not astute, 
moves. 

The game-playing algorithm also triggers Hoyle's 
Leamer. The Leamer is a set of algorithms for the discovery 
of useful knowledge, knowledge that is expected to be 
relevant and may be correct. Based on its playing experience, 
Hoyle computes and stores game-dependent useful 
knowledge. The Leamer has a uniform, heuristic, game­
independent learning procedure for each item of useful 
knowledge. If the Leamer were to retain everything Hoyle 
experiences, useful knowledge for an interesting game could 
quickly become unmanageably large. Therefore the learning 
algorithms generalize and are highly selective about what 
they retain. There are useful knowledge slots to record 
average contest length, applicable two-dimensional 
symmetries, good openings, moves that expert opposition 
appears to have found valuable, relevant forks, important 
contest histories, whether going first or second is an 

advantage, and significant states, situations that will 
inevitably be won or lost when both participants play 
expertly. 

The application of learned useful knowledge is the task of 
Hoyle 's Advisors. An Advisor is a heuristic that makes 
comments about legal moves when it is the program's turn 
to make one. A comment is the Advisor's name, a move, 
and a weight, an integer from O to 10, indicating an opinion 
somewhere in the spectrum from strong aversion (0) to 
enthusiastic support (10). Each Advisor constructs its 
comments based upon the current state and the useful 
knowledge for the current game. For example, Victory 
compares useful knowledge with the current legal moves, 
and recommends with a weight of 10 each legal move that 
results in an immediate win. 

Whenever it is Hoyle's tum to move, the game-playing 
algorithm provides the Advisors with the current game state, 
the legal moves, and any useful knowledge about the game 
already acquired. (If Hoyle has had little or no experience at 
this particular game, there may be no useful knowledge.) 
From the Advisors' comments, a simple arithmetic 
calculation selects a move that is forwarded to the game­
playing algorithm for execution. 

3.2 The trainers 

There are five kinds of trainers in this experiment: self, 
random, perfect, fallible, and informed. The self trainer is the 
learning program itself, which takes both sides in every 
contest. The random trainer makes randomly-chosen legal 
moves, has no knowledge, and treats every possibility as 
equally likely. The perfect trainer plays as if it had 
exhaustively searched the tree and minimaxed the result back 
up to the current state to select its next move [Nilsson, 
1980]. If there is more than one equally good move, the 
perfect trainer will make a random choice from among them. 
A perfect trainer for tic-tac-toe, for example, opens half the 
time in the center and half the time in a randomly-chosen 
comer. A perfect trainer is designed to provide a variety of 
high-quality expert play without mistakes. The fallible 
trainer is a variation on the perfect trainer, a variation that 
periodically has the opportunity to make a mistake. The 
fallible trainer with an error rate of e% makes the perfect 
trainer's move 100 - e% of the time, and makes a 
randomly-chosen, legal, not necessarily imperfect move e% 
of the time. There is a spectrum of fallible trainers in this 
experiment withe values in multiples of 10, from 10 to 90. 
Although a 10% chance of error may seem high, in many 
games the branch factor (number of legal alternative moves) 
decreases as play progresses, so that the likelihood of an 
error diminishes towards the end of a contest. For example, 
if there are three legal moves left in a contest, only one of 
which is correct, a random selection still has a 33% chance 
of making the right one. Thus there is only a .1(.67) = .067 
chance of making a mistake at that point even though 
e = 10. The informed trainer applies an input, game­
dependent evaluation function in an alpha-beta search to a 
fixed depth [Nilsson, 1980]. With a depth of d, the informed 
trainer uses the evaluation function to examine all the 
relevant nodes d moves after the current state, and 
minimaxes the result back up to the current state to select 
its next move. When an informed trainer makes a mistake, it 
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is because the evaluation function is an approximation of 
the knowledge inherent in the game tree, not because the 
trainer has made a randomly chosen move. Informed training 
is flawed by lack of foresight and lack o'f knowledge; fallible 
training is flawed by random error. Each evaluation function 
is absolutely correct at the end of a contest and reasonable 
but imperfect elsewhere, as if the trainer had good but 
incomplete understanding of the game. The informed trainers 
in this experiment, each with its own trial, have d values 
from 2 through 8. 

3.3 The challengers 

Post-learning playing skill is thoroughly tested against 
varied opposition caiied challengers: a perfect challenger, an 
expert challenger, a novice challenger, and a random 
challenger. The four offer a broad variety of competitive 
experience. Theperfectchallenger uses the same algorithm 
as the perfect trainer. The expert challenger simulates an 
expert equivalent to a fallible trainer with a 10% error rate; 
90% of the time it plays flawlessly, 10% of the time it may 
err. The novice challenger simulates an expert equivalent to 
a fallible trainer with a 70% error rate; only 30% of the time 
is it guaranteed to play perfectly. Error rates for both the 
expert and the novice were selected from laboratory 
observation of their resultant play quality. Finally, the 
random challenger makes random legal moves. 

•••• 
~ 
0000 

Figure 1. The initial state for achi. 

3.4 The games 

The three games in this experiment are tic-tac-toe, lose tic­
tac-toe, and an African game called achi. Tic-tac-toe is played 
on a three-by-three grid. One participant has five X's, and 
the other has four O's. Initially the board is empty, and X 
moves first. A tum is placing one of your markers in any 
empty square. The first one to place three of the same 
markers in a row, vertically, horizontally, or diagonally, 
wins. There are eight such winning lines; play ends in a 
draw when there are no more empty squares. Lose tic-tac-toe 
is played the same way as tic-tac-toe, except that the first 
one to place three of the same markers in a row, vertically, 
horizontally, or diagonally, loses. Aclzi is played on the 
board in Figure 1. The first participant has four black 
markers; the second has four white ones. Initially the board 
is empty, black moves first, and a tum is placing one of 
your markers on the intersection of two or more lines; there 
are nine such positions. Once all four of your markers are on 
the board, a tum is moving one of your markers to the 
single empty position. The first one to place three of the 

same markers in a row, vertically, horizontally, or 
diagonally, wins. There are eight such winning lines. Play 
ends in a draw when it cycles through the same state for the 
fourth time. 

The construction of a perfect trainer and fallible trainers 
requires a complete and correct perfect play theory for a 
game, a real-time algorithm that identifies the best possible 
move from every possible game state. The construction of a 
thoughtful but partially flawed evaluation function requires 
good human understanding of the features of a game. The 
games for which people have both a perfect play theory and 
such understanding are fairly simple. One way to make the 
learning task more difficult is to select games where the 
perfect play theory known to humans is noi naturally 
expressible in the learning program 's representation. Lose 
tic-tac-toe was chosen because Hoyle cannot represent its 
perfect play theory explicitly, although it can eventually 
acquire enough useful knowledge to play it perfectly. Lose 
tic-tac-toe was also selected because a randomly chosen 
move is likely to be a fatal error, and because the object is 
to avoid achieving a pattern, unlike the other two games. 
Achi was chosen because of the contrasts it offers to the 
other two: it has two stages with different move types, it is 
cyclic, and its branch factor remains four throughout the 
second stage of every contest. All these games have certain 
commonalities that make comparison appropriate: their 
boards are isomorphic and each is known to be a draw game 
(when played by perfect participants a contest always ends in 
a draw). 

3. 5 The learning and testing cycle 

A trial in this experiment consists of a learning experience 
followed by a testing experience. At the beginning of a trial, 
Hoyle has no specific knowledge about any of the games. A 
learningexperience is determined by the choice of a game 
and a trainer. Since there are three possible games and, with 
the values fore and d, 19 trainers, there are 57 trials . Once 
the game and the trainer for a trial are specified, Hoyle plays 
a tournament of contests at the specified game with its 
designated trainer. After the program is judged to have 
learned to play, learning is turned off, and Hoyle's skill is 
evaluated in a testing experience, a 20-contest tournament 
against each of the challengers. In both training and testing 
tournaments, Hoyle and its opposition alternate playing 
first. 

This design makes several assumptions. The learner is not 
required to discover any role advantage inherent in the tree; 
the program is told that these are draw games. The program 
is instructed to stop learning when it meets a behavioral 
standard, i.e., when it draws or wins 10 consecutive 
contests; it evaluates its playing performance based on this 
externally specified standard. Finally, the program is 
expected to perform well against any competition. It should 
be able to exploit its opposition 's errors and to deal well 
with foolish moves. 

Every learning experience is non-deterministic because the 
trainer or Hoyle can make random legal move choices from 
time to time. A single run for a trial may therefore not be 
representative of the trainer's impact on learning 
performance. To compensate for this uncertainty, each trial 
is run five times, and the results averaged. 



3. 6 The evaluation criteria 

Measuring whether or not a program plays perfectly requires 
either exhaustive testing (the play of all possible contests) 
or a perfect play theory for the game. For most interesting 
games neither of these is an option. An alternative standard 
is to require that the program achieve the best possible 
outcome (win, loss, or draw) the game tree offers, from any 
game state, against any opposition. Evaluation of learning 
based on contest outcome seeks effective play, rather than 
perfect play. It still demands, however, that the participant 
take full advantage of the opposition's mistakes, and 
identification of those mistakes is, once again, difficult to 
measure. 

A more workable standard is role perfonnance. In a draw 
game, role performance requires a draw whether one moves 
first or second in the contest, even against a perfect player. 
Since losses in a draw game are always avoidable, a loss by 
the learner indicates imperfect performance. A win by the 
learner in a draw game, however, only indicates · the 
successful exploitation of a fatal error made by the 
opposition. This experiment uses role performance as the 
learning criterion: for a draw game and a challenger, 
reliability (the ability to withstand the competition) is 
measured by the percentage of wins and draws, and power 
(the ability to exploit the opposition's errors) is measured 
by the percentage of wins. A perfect player would be 100% 
reliable against all challengers and maximize its power as 
circumstances permitted. In a draw game, power against the 
expert challenger is always 0%. 

To compare training behaviors across trainer type, con­
struct a similarity metric for post-learning playing behaviors 
as follows. Let a trial of the experiment be represented as 
~ = I b ij I, a 4x3 matrix where bij is the average of the 
J.th outcome (number of wins, losses, or draws) against the 
1th challenger (perfect, expert, novice, or random). Define 
the challenger difference measure of two trials B and B' for 
the ith challenger to be the sum of the squares of the corre­
sponding differences in their relevant rows 

3 I (bij - b' ij) 2 

j = 1 
and define the difference of two testing behaviors as the sum 

of their four challenger differences, 

;t, (t, (~;- 17;;)2} 

Identical testing behaviors have a zero difference in each row 
and a zero difference overall. The testing behavior among 
{Bl, B2, .. . , Bk} most similar to behavior B is the one 
whose difference from B is a minimum . 
. Finally, a le~rning program with an imperfect trainer may 

fmd that leammg takes longer, or that it is burdened by 
many unimportant recollections. For each trial learning time 
is measured by the number of contests to meet the 
behavioral standard, in this experiment a minimum of 10. 
Learning space is measured by the additional memory 
allocated to Hoyle's associated useful knowledge cache, a 
heuristically restricted set of game states, moves, and contest 
histories recorded from playing experience. 

4. Results and Discussion 

The results of the 57 trials are summarized here. An 
important idea is that learning during training is often 
incomplete, that is, that a program can meet the behavioral 
standard (appear to have learned to draw consistently) 
without knowing how to play perfectly, or even very well. 
For example, after drawing 10 consecutive contests of lose 
tic-tac-toe against a perfect trainer, Hoyle then lost 12% of 
its contests against the expert challenger. This indicates that 
leamin~ was incomplete, i.e., that training against a perfect 
pla~er madequately prepared the program for competition 
against a strong player that makes occasional mistakes. In 
t~e dis.cussion that follows, Cox and Stuart's non-parametric 
bmomial test for trend is used to calculate whether or not 
there is a correlation between two sequences of numbers 
[Conover, 1980]. All correlations cited are 93.75% or better 
unless otherwise indicated. When one of the sequences is e 
values, data from the perfect trainer (e = 0) and the random 
trainer (e = 100) are also included. 

4 .1 Individual games 

4.1.1 Tic-tac-toe 
~oyle's Advisors are immediately able to support a fairly 
h1~h level of play at tic-tac-toe. Against any informed 
tramer, for example, they never lose a contest. There is, 
however, a game state involving a simple fork from a comer 
?pening, where Hoyle, before learning, will always make an 
mcorrect move and lose the contest. The perfect trainer 
periodically presents this game state; Hoyle fails, learns 
from its loss, and never makes a mistake in that state again. 
During training, however, there is no guarantee when or if 
th~t state will arise, particularly with a less than perfect 
tramer. Hoyle can learn many other things from less high­
quality mistakes during training, but this particular piece of 
useful knowledge is essential for perfect reliability. 

Only when e = 10 was perfect reliability at tic-tac-toe 
achieved consistently, i.e., against all the challengers in 
every run. In every other trial, even in perfect training, 
Hoyle lost a contest to some challenger in at least one run. 
These losses ranged from 2% to 5.5% in trials where some 
other run achieved perfect reliability. This suggests that at 
best e = 10 can be trusted to develop reliability. Reliability 
against the perfect challenger, the expert challenger, and the 
?ovice challenger were negatively correlated with e value, 
1.e., the more fallible the tic-tac-toe trainer, the less reliably 
Hoyle perfonned 

Hoyle 's power in tic-tac-toe ranged from 12% to 23% 
against the expert, from 72% to 85% against the novice, and 
85~ to 98% against the random challenger. Maximal power 
a~a1nst the rand~m challenger was developed from training . 
withe= 60, against the novice with d = 6, and against the 
expert with random training. 

Leaming time averaged roughly 12 contests fore s 70 and 
for perfect training; in all the other trials it was an 
overconfident 10. Learning time was negatively correlated 
with e value; the more fallible the trainer, the faster the 
behavioral standard was met. Learning space ranged from 1 
unit, for self training and all informed training, to 24.6 for e 
= 70. Leaming space was positively correlated with e value; 
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the more fallible the trainer the more, presumably useful, 
knowledge was acquired. The self-trained program lost 30% 
of its contests to the perfect challenger and 2% to the novice 
challenger, but also managed to win 14% against the expert, 
72% against the novice, and 93% against the random 
challenger. 

4.1.2 Lose tic-tac-toe 
Lose tic-tac-toe is a game where relatively few moves are 
optimal, and even a single suboptimal move usually costs 
one the contest [Cohen, 1972]. For X there is typically 
exactly one correct move, including the single correct 
opening. As a result, the perfect play algorithm must be 
quite rigid and offers little opportunity to acquire po,ver 
during training. 

Only after perfect training was Hoyle always perfectly 
reliable, and then only against the perfect challenger. After 
perfect training Hoyle still lost 12% of its contests to the 
expert, 18% to the novice, and 19% to the random 
challenger. Clearly, learning had been incomplete. 
(Inspection revealed that during training Hoyle usually met 
the behavioral standard by the endgame skill it had acquired.) 
For any other training, reliability was dramatically worse; 
losses to the perfect challenger averaged from 40% to 61 %, 
to the expert from 4% to 46%, to the novice from 14% to 
29%, and to the random challenger from 7% to 23%. The 
program sporadically achieved perfect reliability against the 
perfect or the expert challenger on a single run for several 
low e values, but still went on to lose at least four testing 
contests against the other challengers in the same run. The 
most consistently reliable performance against the expert 
was achieved bye = 20, against the novice by e = 20 and d = 
2, and against the random challenger by d = 5. Reliability 
against the perfect, expert, and novice challengers decreased 
with the error rate, i.e., the trainer's lack of skill appears to 
have misguided the learner. Reliability against the random 
challenger, however, increased with the error rate. 

Hoyle's power at lose tic-tac-toe ranged from 14% to 41 % 
against the expert, from 54% to 72% against the novice, and 
from 60% to 80% against the random challenger. Maximal 
power against the random challenger was developed from 
training with d = 5, against the novice with e = 80, and 
against the expert in three trials, with e = 80, with random 
training, and with d = 4. Power against the expert challenger 
and against the random challenger increases with the error 
rate of the trainer. Presumably the lack of errors during 
training made the program less able to maneuver in the 
search space when the testers erred. 

Learning time ranged from 10 contests, during two runs 
for e = 80, to 156 for a run when e = 70. Learning space 
ranged from 56.8 units ford= 7 to 340.8 ford= 3. Leaming 
space increased with learning time for fallible training. The 
self-trained program lost 61 % of its contests to the perfect 
challenger, 46% to the expert, 23% to the novice, and 22% 
to the random challenger, but also managed to win 14% 
against the expert, 66% against the novice, and 69% against 
the random challenger. 

4.1.3 Achi 
Achi is a game where most serious errors occur early, in the 
stage when markers are first placed on the board. Contests 

average 68 moves, offering ample opportunity for careless 
error while play cycles to a draw. 

When e = 20, 30, 80, 90 and when d = 2, 4, 5, 6, 8 
perfect reliability was achieved consistently, i.e., against all 
the challengers in every run. For other training, losses were 
rare (about .03%) and never to the expert challenger. Hoyle's 
power in achi ranged from 58% to 77% against the expert, 
from 97% to 100% against the novice, and 99% to 100% 
against the random challenger. Maximal power against the 
expert was achieved withe = 20. 

Leaming time ranged from 10 to 13 contests, but was 
greater than 10 in only 3 runs. Leaming space ranged from 1 
unit, for self training, all informed training, and perfect 
training, to 52.4 for e = 90. Leaming space is positively 
correlated with learning time for fallible training. Inspection 
of the useful knowledge cache revealed that, against a fallible 
trainer, the program always learns some accurate and quite 
sophisticated achi strategy that it does not acquire during 
perfect training. The resultant increase in its learning space 
from fallible training does not, however, improve the 
program's reliability or make a statistically significant 
change in its power. Although the knowledge was correct 
and clever, it had no visible impact on the evaluation criteria 
posited here, i.e., the fallible achi trainer induced learning 
that was a waste of resources. The self-trained program loses 
1 % of its contests to the random challenger, but also 
manages to win 72% against the expert, 100% against the 
novice, and 99% against the random challenger. 

4. 2 The impact of trainer error 

Although it is possible to train a program to be at least 
fairly reliable for each of the three games, imperfect training 
offers better preparation for the occasional opportunities that 
arise across a broad range of competition. In lose tic-tac-toe, 
the most difficult of the three games for Hoyle to learn, the 
e value is correlated with the number of wins against the 
expert challenger; the more fallible the trainer, the more 
powerful the program. Wizen learning is incomplete, 
Hoyle's best preparation for imperfect play is a fallible 
trainer. After perfect training the program was 100% reliable 
against the perfect challenger, but only 88% against the 
expert challenger, 82% against the novice challenger, and 
81 % against the random challenger. 

When self training is compared to the entire range of e 
values for fallible training under the similarity metric of 
Section 3, there is a dramatic and distinctive similarity 
between self testing and e = 60% for tic-tac-toe, e = 50% and 
80% for achi (where the difference from self training is 
almost 0), and e = 70% for lose tic-tac-toe, i.e., self training 
is like learning against a fallible player many of whose 
moves may be errors. At tic-tac-toe, self training produced 
the lowest power against the novice and near the lowest 
against the expert; it was also only 70% reliable against the 
perfect challenger. At lose tic-tac-toe, self training produced 
the lowest power against the expert and the lowest or near 
the lowest reliability against every challenger. Only at achi, 
the game where useful knowledge had the least impact, was 
self training moderately reliable and powerful. 

The difference between learned behavior after informed 
trainer error and after random trainer error appears strongly 
related to both the nature of the evaluation function and the 



game. For tic-tac-toe and achi, informed training relied upon 
the number of potential winning and losing lines (up to 8) 
on the board. This greedy approach always opens in the 
center, regardless of depth. As a result, no informed training 

· offers Hoyle the opportunity to learn the simple fork from a 
comer opening that made the learner so reliable after perfect 
training at tic-tac-toe. Hoyle learns a minimum during 
informed training at any depth in these two games, so its 
resultant testing behavior is simply the luck of the draw 
against its challengers. 

For lose tic-tac-toe, however, unless the trainer makes a 
lot of mistakes, a program that meets the behavioral standard 
is going to have to learn to open in the center. This is a 
move most people, and therefore the evaluation function we 
used, find highly counterintuitive. An informed trainer, 
regardless of depth, will never open in the center: either it 
will not search deeply enough or it will exercise its left-to­
right bias. For Hoyle to learn the correct opening against an 
informed trainer, it must observe both a comer and a side 
opening, and then prove that those openings, rather than any 
later move, were responsible for the subsequent losses. Even 
then, the program must learn how to play after the correct 
qpening. Against a fallible trainer, there will be more 
opportunity for this to happen; against an informed trainer 
only half the contests (where Hoyle goes first) even offer the 
opportunity to learn to play X perfectly. As a result, 
informed training in lose tic-tac-toe is often slower than 
fallible training, and the resultant quality of play can be 
weaker. 

5. Related Work 

This research differs from prior work by educators and 
psychologists because it is able to start each learning 
experience with a machine that offers a tabula rasa, a clean 
slate. Because people cannot clear their minds of all prior 
experience, and because they may learn differently, the 
results may not be analogous to people. Hoyle's learning 
speed and output results, however, do simulate an 
experienced game player encountering an unfamiliar game 
[Epstein, 1992]. 

Neurogammon, an earlier version of TD-gammon, was a 
neural net program that learned to play backgammon 
[Tesauro and Sejnowski, 1989]. The program was trained to 
select the moves made in 400 contests where Tosauro, a 
strong but not world-class player, had played both sides. At 
the First Computer Olympiad in London in 1989, 
Neurogammon was clearly the strongest non-human 
competitor. When Neurogammon plays TD-gammon, 
however, it only wins 40% of the time. There are several 
obvious explanations for TD-gammon's improved strength. 
First, TD-gammon had much more extensive training; it 
learned on approximately 200,000 contests. Second, TD­
gammon uses the TD(A.) algorithm instead of 
Neurogammon's standard back-propagation [Sutton, 1988; 
Rumelhart etal., 1986]. Finally, TD-gammon trains against 
itself, probably with a more varied set of experiences. 

An alternative kind of training attempts to prime the 
learner, to provide it with a head start by first observing two 
perfect players in competition before making any moves 
itself. Experiments with a simple pattern-learner and 

reinforcement training for several games on a three-by-three 
grid have indicated that priming slows learning [Painter, 
1992]. One possible explanation for this is that the initial 
bias so developed is irrelevant, or even wrong, for many of 
the game states that the novice learning program soon faces. 
The head start must thus be partially unlearned before useful 
learning can take place. Painter also found that a random 
trainer produced a less reliable player. N-N{free, a hybrid 
learning program with a neural net, was also found to suffer 
from priming [Flax et al., 1990]. N-N{free also learned to 
play far better against a fallib le player with e = 5 than 
against a perfect player. 

6. Conclusions 

The role of the trainer in a competitive machine learning 
experience has usually been a matter of convenience. Input 
book games require the tedious assembly of databases. 
Human opposition of any caliber plays too slowly, tires too 
quickly, and may be fairly rigid in approach. That leaves 
only opposition from another machine. 

One way to see training for a competitive domain is as a 
set of paths through a game tree. If the trainer always plays 
perfectly, the learner will have no experience with large 
portions of the problem space. After such an overly narrow 
learning experience, there is no reason to believe that a 
program will have the skill to deal with errors, or even with 
suboptimal moves, let alone exploit them to its advantage. 
The data presented here confirm this, particularly in a game 
where relatively few moves are good choices. (Go is reputed 
to be such a game.) A competitive learning experience 
against a perfect player is flawed, and the resultant 
performance is disappointing. No single trainer, in any of 
the games, achieved maximum power against all the 
challengers. Training against weak opposition is inadequate 
preparation for a stronger opponent, but training against 
strong opposition also turns out to be less adequate for a 
weaker opponent when learning is incomplete. 

A somewhat less than perfect training experience 
introduces some variety into the paths through the game 
tree. Whether this variety is engendered by random noise or 
by lack of foresight and knowledge was not significant in 
the three games considered here. This experiment sugges ts 
that a trainer informed by an evaluation function but 
hampered by lack of exhaustive search not only has the 
narrowness of the perfect trainer, but is also no more 
valuable as its depth increases. One might expect, however, 
that in a game with a larger branching factor the probability 
of making a suboptimal choice, rather than a terrible one, 
would decrease, so that lack of foresight and knowledge in a 
trainer would be less damaging to learning than random 
noise would be. The potential tradeoff between partial 
knowledge and the ways it might lead the learner astray 
seems worth some additional explo ration. 

It is possible that the results described here are a function 
of the learning program, i.e., Hoyle, rather than of the 
trainer. For example, one facet of Hoyle is its ability (but 
by no means proclivity) to imitate expertise it has observed 
in the opposition. TD-gammon, NIN-Tree, and Morph all 
imitate the opposition too, but with different learning 
methods from Hoyle 's . A program that ignored the behavior 
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of the opposition might be less susceptible to the influence 
of its trainer, although one could argue that it was not 
particularly intelligent either. Tesauro attributes TD­
gammon's ability to learn to play so well in part to the 
variety of training situations that were forced upon it by the 
non-determinism of the dice during learning; Gelfand found 
e > 0 essential [Tesauro, 1991; Flax et al., 1990]. The 
results described here, in conjunction with theirs, suggest 
that the conclusion about the need for variety in training is a 
function of the learning task, not of the particular learning 
methods used here. 

When learning time was relatively constant, learning 
space was observed (87.5% correlation for achi, 93.75% for 
tic-tac-toe) to increase with the fallibility of the trainer. 
When learning time in fallible training varied widely (in lose 
tic-tac-toe), learning space varied with it. In both cases, this 
is because the heuristics pick up a good deal of data that 
probably does not strengthen play, simply because the 
program was exposed to so many mistakes. A neural net has 
no such difficulty. It would be interesting to see whether 
other methods also have larger long-term memory 
requirements when training against weaker opposition. 

Learning time was dependent on many factors. Hoyle 
simulates an expert game player; it has general heuristics for 
playing all games even before it learns about any specific 
game. This makes its initial level of play higher than, say, a 
neural net that randomized its initial weights. As a result, 
Hoyle could meet the behavioral standard relatively quickly 
in tic-tac-toe and achi. A fallible trainer often introduces 
peculiar situations that the program would fail on, but learn 
not to repeat, with a resultant increase in learning time. The 
more fallible the trainer, the more often this can happen. On 
the other hand, a fallible trainer also makes mistakes that the 
program can exploit. The more fallible the trainer, the more 
often this happens too, so that a highly fallible trainer may 
allow the program to meet the behavioral standard too 
quickly. All these factors visibly interacted, masking any 
correlation. 

Self training offers a natural, gradual progression from 
weaker to stronger. It should therefore prepare the program 
for any opposition as good as itself. Of course, using a 
program as its own trainer deprives it of an important 
knowledge source that people learn from, the expert model. 
Self training is also a substantially slower way to acquire 
broad expertise; TD-gammon spent the first 25% of its 
training playing "long, looping contests that seemed to go 
nowhere" [Tosauro, 1991 ]. 

One solution to the high estimated e values similar to self 
training might be to raise the behavioral standard above 10 
to lengthen the training time. In a game with a small search 
space this should augment Hoyle's useful knowledge and 
improve its performance, but there can be no guarantee of 
perfection. This was demonstrated in single runs withe from 
20 to 60 for lose tic-tac-toe, with the behavioral standard set 
at 100 instead of 10. Leaming time with this higher 
behavioral standard ranged from 297 to 505 contests, instead 
of 10 to 156, and learning space from 336 units to 809, 
instead of 56.8 to 340.8. In every run with the higher 
behavioral standard, despite the fact that Hoyle had seen 
much more of the search space, the program still lost from 
1 % to 2% of its contests and showed no significant change 

in power. It is important to note that those losses were 
only to the novice or the random challenger. A higher 
behavioral standard improved reliability but not power. A 
higher behavioral standard also substantially increased 
learning time and memory requirements. In 505 contests 
averaging 9 states with markers on the board, Hoyle 
encounters 4545 (not necessarily distinct) states out of 5478 
possible distinct states in the entire search space. Even after 
the opportunity to encounter as much as 83% of the entire 
search space, Hoyle is not perfectly reliable. What is required 
is not only more training but broader based training, i.e., 
novel experiences. 

For games without an element of chance, variety in 
training can be introduced with a broad spectrum of 
opposition. As a result of this experiment, we recommend a 
hybrid training experience for any program in a competitive 
domain, one that interleaves sessions against a perfect trainer 
with practice against itself. That is the method Hoyle now 
uses in discovery mode, to develop its own expertise 
without human guidance. When Hoyle trains this way, it 
learns to be perfectly reliable and very powerful against all 
the challengers. 

For more difficult games where no perfect trainer is 
possible, this research offers no reason to believe that self­
training can ever result in perfect play. For such games, 
these results would advocate lesson-and-practice training: 
alternating sets of a few contests against the best player 
available (the lesson) and many contests against the learning 
program itself (the practice). Whether or not a perfect player 
is available, training should be periodically spiced with 
particularly fallible opposition and a random move or two, 
to keep a novice from taking the learner by surprise. Under 
this regimen, once game-learning programs surpass people, 
they can continue to train against each other. To the extent 
that such programs develop different styles of play, 
competition among them should strengthen their abilities. 
In so imperfect an environment, however, there can be little 
guarantee that they will ever play perfectly. A program can 
meet a behavioral standard and still have much to learn. 
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ABSTRACT 

A modification of the generalized delta rule is 
described that is capable of training multi-layer 
networks of value units -- that is, units defined by 
a particular nonmonotonic activation function, the 
Gaussian. For simple problems of pattern 
classification, this new rule produces networks 
that appear to have several advantages over 
standard feedforward networks. 

Introduction 

Physiological evidence clearly indicates that the 
brain is not a network of homogenous processors. "No 
longer can neural networks be viewed as the 
interconnection of many like elements by simple excitatory 
or inhibitory synapses. Neurons not only sum synaptic 
inputs but are endowed with a diverse set of intrinsic 
properties that allow them to generate complex activity 
patterns" (Getting, 1989, p. 187). Furthermore, 
physiological evidence also indicates that some neural 
properties, such as membrane potential -- one plausible 
physiological correlate of "unit activation" -- vary 
nonmonotonically with input (for example, see Hodgkin & 
Huxley, 1952, Fig. 6 to see nonmonotonicity of sodium 
conductance). 

The relationships between simulated and real 
neural networks could be strengthened by exploring 
connectionist architectures that can include nonmonotonic 
activation functions. A processor with a simple 
nonmonotonic activation function would only generate 
strong responses if its net input fell within a particular 
range; if the net input is too small or too large, the 
processor would not respond. Such processors are called 
value units by Ballard (1986). However, value units are 
not usually found in parallel distributed processing (PDP) 
architectures. For instance, a prevailing algorithm for 
training PDP networks is the generalized delta rule 
(Rumelhart, Hinton, & Williams, 1986a, 1986b ). This rule 
was derived under the assumption that the activation of 

processing units is a continuous, monotonic function of 
their net input ( e.g., a function like the logistic, see 
Rumelhart et al, 1986b, pp. 324-325). Ballard (1986) calls 
a processor with this type of sigmoid-shaped activation 
function an integration device. Thus, a system trained by 
the generalized delta rule is a homogenous network of · 
integration devices. Unfortunately, a network that includes 
value units cannot be usefully trained by the standard 
version of the generalized delta rule (see below). 

In this paper, we describe a variation of the 
generalized delta rule that is capable of training 
feedforward neural networks that include value units. We 
also present the results of computer simulations which 
suggest that this paradigm has several advantages when 
compared to the standard generalized delta rule. First, the 
modified rule leads to faster training on a number of 
problems. Second, the modified rule allows us to train 
hybrid networks, which contain both integration devices 
and value units. Third, specific properties of the value unit 
architecture lead to networks that are easier to interpret, 
because they are simpler in structure (i.e., they contain 
fewer processing units and connections). Fourth, networks 
trained by the modified rule appear to generalize their 
performance to new instances better than standard 
networks. 

A Learning Rule For Value Unit Networks 

The generalized delta rule is a supervised learning 
procedure that uses the difference between a network's 
observed and desired output as the basis for changing the 
strengths of its connections. Rumelhart et al. (1986a, 
1986b) define the response error of a network with n 
output units to some input pattern p as: 

In this equation, Tpj represents the desired response of 
output unit j to the pattern, and O pj represents the 



observed response of the unit. Rumelhart et al. derived 
two rules for modifying the connection weights in different 
parts of the network that lead to a reduction in error as 
defined in Equation (1). The first rule specifies how the 

· weights of connections leading directly to output units are 
to be changed as a function of the response error 
calculated for the output units. The second rule specifies 
how output unit error can be used to compute the 
response error for processors in an adjacent layer of 
hidden units. Once hidden unit error is determined, 
hidden unit connections can be modified, and the error for 
the next layer of hidden units can be calculated. This 
process is repeated until all network connections have 
been modified. 

The equations for the generalized delta rule were 
derived under the assumption that all network processors 
were integration devices. We now consider a different 
network architecture, in which every output unit is a value 
unit; we call this a value unit network. One simple 
expression that can be used to model the inverted-U 
-shaped activation function of any value unit j is the 
Gaussian: 

where netpj is the net input to unit j when pattern p is 
presented to the network, and µj is the "bias" of the 
,activation function. This equation defines a normalized 
yersion of the Gaussian which achieves a maximum value 
.of 1 when netpj = µj, and rapidly decreases towards O as 
'{letpj is increased or decreased from this optimal value. 
The properties of this function are described in detail by 
Bracewell (1978, pp. 53-57). 

In principle, a value unit network can be trained 
using the generalized delta rule (i.e., by replacing the term 
f.(netpj) in Rumelhart et al.'s [1986b] Equations 13 and 14 
with the first derivative of Equation 2). In practice, 
however, this rule is not useful when the Gaussian 
activation function is used -- we have found that this type 
of training will frequently reduce system error to a local 
minimum in which the network correctly asserts that some 
property is not true of pattern p, but fails to correctly 
assert that some property is true of pattern p. 

This problem can be overcome as follows: One 
property of a perfectly trained value unit network is that, 
for any pattern p, the value of Equation (1) is 0. A second 
property is that netpj = µj for any pattern p with desired 
output Tpj = 1. In effect, this second property provides 
heuristic information that can be used to "steer" the 
network's search through the error space such that local 
minima of the type described above are avoided. This 
heuristic information can be added to the learning 

al "hmb dfi" . . 24 5 gont y re e 1D1Dg system error (1.e., Equation 1) to 
include both of these properties. 

Consider the following cost function CP as a 
measure of the response error to some pattern p for a 
value unit network with n output units: 

= _!_ ~ (T - 0 )2 
2L...J pj pj 

j=l 

1 n 

+ - L TPi ·(netPi - µ) 2 

2 j•l 

(3) 

The first component of CP measures the failure of the 
system to match the observed output with the desired 
output, and is identical to Equation (1). The second 
component measures the failure of the system to set net . 
= µj when the desired output is equal to 1. As definea! 
~ s~c~nd component require~ that Tpj be either O or 1; 
this limits the network to (ideally) generating binary 
outputs after training. By making the minimization of 
Equation (3) the goal of learning, the local minimum 
problem described above is avoided, because the second 
term in CP prevents the weights being changed such that 
all of the net inputs are drawn towards infinity. 

A learning rule for a system whose response 
errors are defined as in Equation (3) must specify how 
some change in weights ~ wij will decrease the error term 
CP for any pattern p . Because the Gaussian activation 
function is differentiable, such a rule can be defined by 
deriving a term proportional to -o Cpl S wij in a fashion 
analogous to Rumelhart et al. (1986b, pp. 325 - 326). It 
can be shown that the desired change in the weight of any 
connection terminating in some output value unit j is: 

Equation ( 4), the learning rule for a value unit 
network, is clearly an extension of the generalized delta 
rule. The opj term in Equation (4) is equal to (-T. - O ·) 
G '( ) d . . al h . Pl .Pl • netf1 , an 1s eqmv ent to t e same term m Equatton 

(11) o Rumelhart et al. (1986b), with the notable 
exception that the first derivative is not of the logistic 
function, but is instead of the Gaussian. The € . term in 
Equation ( 4) is equal to Tpi • (netpj - µj), and is ~he result 
of augmenting the to-be-mmimized error function (i.e., the 
result of converting EP to Cp). It serves to meet the 
condition that netpj - µj = 0 when T j = 1. 

The error term calculated fur some output value 
unit j (i.e., the term o Pi - € pj) can be propagated 
backwards to layers of hidden units as is done with the 
standard generalized delta rule (see Rumelhart et al. 
[1986b] Equation 14). Such hidden units can be either 
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246 al . . v ue uruts or integration devices. Error is defined for a 
hidden value unit with the Gaussian's derivative: 

II 

f)pi = G'(netp;). L wij. capj- ep} (5) 
j•l 

The error for a hidden integration device is similarly 
defined using the first derivative of the logistic equation: 

II 

op; = J1(netp;) ·"'£ wi/ (a Pi- eP) (6) 
j•l 

Results Of Computer Simulations 

To explore the utility of the learning rule for value 
unit networks, we used the following procedure: The 
starting state for a value unit network was determined by 
setting all connection strengths and all values of µ. to 

J 
random numbers selected from the range [-1, 1]. Learning 
then proceeded by running the network through a series 
of training epochs, during which the network was 
presented each to-be-learned pattern in a random order. 
A stochastic gradient approach ( e.g, Widrow & Steams, 
1985) was adopted •• that is, network components were 
updated using the equations described above after each 
pattern presentation. The learning rate ,, was equal to 0.1 
unless otherwise noted. Momentum was not used to speed 
learning, although a momentum term can be successfully 
incorporated into this learning algorithm. Training 
proceeded until a correct solution was achieved •• that is 

' until the network generated a "hit" for all of its output 
units for every presented pattern. A "hit" occurred if O . 
was greater than 0.95 when Tp· = 1, or if O . was less th: 
0.05 when Tpj = 0. This detmition of "hlt" allowed the 
target values Tpj to be equal to 1 or O; they were not equal 
to 0.9 and 0.1 as is often the case for networks of 
integration devices ( e.g., Rumelhart et al., 1986b, p. 329). 
A network was repeatedly trained on a problem until 100 
correct solutions were obtained in order to determine the 
median speed of training. If a correct solution had not 
been achieved after 30,000 training epochs, the training 
run was stopped and tabulated as a local minimum. Local 
minima were not included when median network 
performance ( e.g., speed to learn) was computed. 

In order to relate the performance of the value 
unit networks to the performance of 'standard' networks, 
networks of integration devices were also trained. In 
general, the standard procedures ( e.g., Rumelhart et al., 
1986a, 1986b) for the generalized delta rule were applied: 
network connections and bias values were started 

randomly in the range [-0.3, 03], and training proceeded 
with a learning rate of 0.5 and a momentum rate of 0.9 
(unless otherwise stated). The only departures from 
standard training procedures were that a stochastic 
gradient approach was adopted (i.e., system error was not 
accrued during an epoch), the target output values T . 
were either O or 1, and the definitions of "hit" and "correEt 
solution" used to determine the convergence of a value 
unit network were also applied here. 
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Fi~re 1 Comparison of speed of learning in value 
urut networks and networks of integration devices. 
Histograms indicate median epochs to learn over a 
set of 100 different training sessions for each 
architecture. 

Speed of Training 

The first set of simulations compared the number 
of epochs required to train the two types of networks. We 
used a number of the "toy problems" studied by Rumelhart 
et al. (1986b). The median numbers of epochs required to 
reach convergence for some of these problems are 
illustrated in Figure 1; more details are provided in 

· Dawson and Schopflocher (1992). In general the value 
unit networks learned the solutions to these problems 
faster than did the standard networks. One-tailed 
dependent t-tests indicated that this difference was 
statistically significant (t = 1.928, df = 11, p < 0.05). 
Fewer local minima were encountered by the value unit 
networks as well, although for these problems local 
minima were rare for both architectures (14 totalling 
across problems for the value unit networks, 75 for the 
standard networks). This difference was also statistically 
significant (t = 1.778, df = 11, p < 0.05). Nevertheless, 
these results do not indicate that the value unit network is 
a "better" or "more practical" architecture in general. This 
is because there are many differences between the two 
types of networks that exist as free parameters that could 
be varied in such a way that a closer match in performance 
might be obtained. The key point underlying the statistical 



tests is that when the generalized delta rule, defined with 
typical settings, is used as a benchmark ( c.f., Barnard & 
Casasent, 1989), the performance of the value unit rule is 
more than satisfactory. 

Training Hybrid Networks 

A second set of simulations was performed to 
examine the ability of the modified learning rule to train 
hybrid networks, which consisted of an output layer of 
value units, and a hidden layer of integration devices. 
Our major interest in training such networks was to take 
a small step towards increasing the biological plausibility 
of PDP networks; real neural networks are not comprised 
of homogenous processors ( e.g., Getting, 1989). 
Importantly, the ability to train such networks also permits 
a more appropriate comparison of learning speed than in 
the simulations above, because greater control can be 
achieved over artif actual differences between the two 
architectures. 

The logic of this more rigorous comparison is 
·quite straightforward: in a control condition, a 
;homogenous network is trained to perform a task, and its 
·speed to learn is measured. A test condition is then 
created by replacing parts of the control network with 
processors from the other architecture. This test network 
is trained, and its speed to learn is also measured. In this 
design, the basic patterns of connectivity (i.e., the number 
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Figure 2 Comparison of learnin~ speeds for 
homogenous network of integration devices vs. a 
hybrid network with value units in the output layer 
and integration devices in the hidden layer. 

of processing units and the number of initial connections) 
for the control and the test networks are identical. 
Furthermore, during learning the common components of 
the two networks are treated identically -- they are 

In one of our experiments, the control system was 
a homogenous network of integration devices trained with 
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a learning rate of 0.5 and a momentum of 0.9. The test 
system was a hybrid network in which the outputs were 
value units; the hidden units were still integration devices. 
A learning rate of 0.025 was used to train the µi 
parameters and the weights of the direct connections to 
the output units. All other aspects of the test system were 
the same as the control -- all connection weights and unit 
biases (including those of the value units) were selected 
randomly from the range [-0.3, 0.3], all connections and 
biases were modified using a momentum term of 0.9, and 
the learning rate for the hidden unit biases and 
connections was 0.5 as in the control system. Each 
network was given 100 different training sessions on each 
problem, and the median speed to learn was computed. 

The results of this experiment are presented in 
Figure 2. Replacing the outputs of a homogenous network 
of integration devices with value units resulted in a 
dramatic improvement in speed of processing for all three 
problems. These results raise the intriguing possibility that 
the performance of existing "standard" backpropogation 
networks could be improved by replacing their output 
integration devices with value units and by training the 
resulting hybrid network with the modified generalized 
delta rule. 

Why does a network with output value units learn 
the encoder problem so much faster than does a network 
with output integration devices, even when the internal 
components of the two networks are identical? Learning 
in a feedforward network can be described as a heuristic 
search through a parameter space (e.g., Sandon & Uhr, 
1988). From this perspective, Equations (1) and (3) can 
be viewed as evaluation functions that are being minimized 
by a gradient descent procedure, and can be compared in 
terms of their heuristic power ( e.g., Nilsson, 1980, pp. 79-
81 ). Clearly Equation (3) contains more information 
about the space being searched because it contains 
Equation (1) as its first component. The second 
component of Equation (3) introduces additional heuristic 
information about the Gaussian activation function that 
leads to more efficient search. Note that the end product 
of either gradient descent is the same, for it can be shown 
that the minimum values of Equations (1) and (3) are 
identical. 

Value Unit Networks And Interpretation 

Mozer and Smolensky (1989, p. 3) have noted that 
"one thing that connectionist networks have in common 
with brains is that if you open them up and peer inside, all 
you can see is a big pile of goo". This poses a major 
problem for connectionist research, because a trained 
network can be construed as an explanation of some 
phenomenon, and thus should be interpretable. In 
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response to this problem, some PDP researchers are 
currently concerned with discovering methods to reduce 
network size in order to increase network interpretability 
or performance ( e.g., Hagiwara, 1990; Mozer & 
Smolensky, 1989; Sietsma & Dow, 1988). With respect to 
this issue, two properties of the value unit architecture 
lead to smaller networks -- fewer processors and 
connections -· and thus may lead to more interpretable 
systems. 

First, because it possesses a nonmonotonic 
activation function, a single value unit is not restricted to 
making linearly separable discriminations (see Dawson & 
Schopflocher, 1992, Figure 2). Thus, in general, value unit 
networks should require fewer processors to make the 
same discrimination than an integration device network. 
Indeed, a single value unit can perform the same function 
as a circuit in which one integration device receives input 
from two others, as is illustrated in Figure 3 for the XOR 
problem. 

A second potential advantage of value unit 
networks was revealed as a byproduct of some research in 
which we have attempted to place stronger biological 
constraints on one aspect of the architecture, the 
parameters µj. Electrophysiological studies of neurons 
have shown that an action potential will be generated 
when the membrane potential exceeds a threshold voltage 
(the "all-or-none law", see Kandel, 1991, Figure 2-8). This 
threshold voltage is a likely physiological correlate of a 
PDP unit's bias (i.e., the term /Jj for integration devices, 
or the term µj for value units). Using standard training 
procedures for either architecture, unit biases are not 
constant, but are instead modified during learning along 

1 ·-- -----1 DO 
A B 

Figure 3 Architectures required for the XOR 
problem. (a) A standard network of integration 
devices. The crosshatched boxes and broken lines 
represents additional units and connections required 
in comparison to (b), a value unit architecture. 

with network connections. However, in neurons, the 

threshold membrane potential appears to be fixed -· it is 
not modified by learning. As a result, we have begun to 
explore the effects of training networks in which bias is a 
fixed parameter. 
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Figure 4 The proportion of "dead" connections in a 
value unit network increases when bias terms are 
fixed throughout learning. 

In one study, two control conditions were used: a 
homogenous network of integration devices, and a 
homogenous network of value units. Both of these control 
networks were trained using the standard procedures 
described previously. The experimental condition was a 
homogenous network of value units in which each µj was 
fixed at O throughout training. We compared the 
performance of these networks on three different versions 
of the encoder problem (4-2-4, 8-3-8, 16-4-16). One 
dependent measure was the percentage of "dead 
connections" at convergence -- the proportion of 
connection weights whose absolute value was less than 
0.01. As can be seen in Figure 4, for both control 
networks roughly 50% of the possible connections were 
"dead" at trainings end. In contrast, when value unit bias 
was held constant, the percentage of "dead" connections 
was raised to 60% or better. This increase in network 
simplicity was statistically significant -- for each version of 
the encoder problem, t-tests indicated that the constant 
bias networks had significantly more dead connections than 
did the standard value unit networks (t = 13.662, 12.231, 
13. 772 for the three problems respectively, df = 99, p < 
.OJ) and the standard integration device networks (t = 
28.034, 15.554, 9.271, df = 99, p < .01). Interestingly, we 
have as yet been unable to train a single network of 
integration devices to convergence on an encoder problem 
when bias is fixed, even with exploring a wide range of 
learning and momentum rates, with a variety of starting 
configurations, and with liberalizing our definition of a 
local minimum to a failure to converge after 1,000,000 
epochs. 



Performance On A Larger Problem 

The preceding computer simulations demonstrate 
certain potential advantages of the value unit architecture 
over networks of integration devices. However, these 
simulations have only examined very small problems. One 
reason for the popularity of the generalized delta rule in 
cognitive science has been its ability to train large 
networks on difficult and interesting problems ( e.g., 
Seidenberg & McClelland, 1989). Furthermore, in many 
of these problems networks of integration devices with n 
input units and m output units are taught mappings from 
m0 to mm. The preceding simulations have only examined 
Boolean mappings from {O,lt to {O,l}m. Our final set of 
results arises from part of a research programme designed 
to answer three different questions about value unit 
networks: Can a value unit network learn a mapping 
when input activations are not binary? How well does the 
learning rule train larger networks? How well does 
performance generalize to novel instances? 

The second component of Equation (3) requires 
a value unit network to generate binary outputs. As a 
result, we were interested in determining whether we 

- could train such a network a mapping from m0 to {O,l}m 
·' for a complex problem. We decided to train a network to 

identify membership in the Mandelbrot set, which is well 
known in the literature on chaotic dynamical systems ( e.g., 
Devaney, 1989, pp. 311-319). In essence, the Mandelbrot 

, set is defined in a two-dimensional plane; one dimension 
~ corresponds to real numbers, the other dimension 
:; corresponds to complex numbers. For any point in this 
. plane, a simple iterative function can be computed to 

determine if the point is in the Mandelbrot set. If the 
value of this function rapidly increases (towards infinity) 
with repeated iterations, it is said that the point is not in 
the set; otherwise, the point is said to be part of the set. 

We created one version of the Mandelbrot set 
using an algorithm described by Peitgen (1988, pp. 190ff). 
The figure that we created was a sample of 2500 equally 
spaced coordinates (a 50 by 50 display), ranging from -2.0 
to 0.6 on the real axis, and whose real component on the 
imaginary axis ranged from -1.2 to 1.2. Membership in the 
Mandelbrot set was determined after 100 applications of 
the iterative equation. Two networks, one composed of 
value units, the other of integration devices, were trained 
on 500 coordinates from this display, randomly selected 
apart from the restriction that half of the sampled 
coordinates were in the set, and half were not. The value 
unit network had two input units that registered the 
coordinates of a point in the display, two layers of hidden 
value units with 20 units per layer, and a single value unit 
for output. The network of integration devices had a 
similar structure, with the exception that there were 40 
units in each layer of hidden processors. Each network 
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was trained on the 500 instances for a specific number of 
epochs (ranging from 100 to 1000), and was then presented 
all 2500 points from the display to determine how well 
learning generalized to novel instances. Each of these 
training sessions was run 10 different times to examine 
average performance from different random starts. 
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Figure 5 The average sum of squared error per 
pattern for two networks trained on the Mandelbrot 
set. These averages are taken over 2500 pattern 
instances, and 10 separate training runs. 

The resulting data indicated that both networks 
did quite well at learning the coarse structure of the 
stimulus from the presented instances; this learning 
appeared to generalize nicely to points that had not been 
presented. In addition, the data suggested that the value 
unit network's performance was better than the network of 
integration devices; finer details of the Mandelbrot set 
seemed to appear earlier. A more objective test of this 
was performed by computing the sum of squared error of 
each network's output. These results are illustrated in 
Figure 5, which shows that the value unit network's 
response was more accurate than was the network of 
integration devices throughout training. Thus, with respect 
to our three general questions, the modified learning rule 
can usefully larger networks of value units; this training 
can incorporate continuous input values; this training also 
appears to generalize to novel instances. Furthermore, the 
advantages of the value unit architecture on the "toy 
problems" described earlier persist when more complicated 
mappings are presented to a substantially larger network. 
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Abstract 

Analogical reasoning (AR) is a process of ex­
tending similarities. In order to justify such 
a process, knowledge must be employ~d, either 
implicitly or explicitly. Therefore, AR is knowl­
edge based. This paper proposes a new form of 
knowledge, the relevancy rule, to support AR. 
It contains not only determination information, 
but also relevancy information . The determi­
nation part says some pieces of information are 
sufficient to decide some others. The relevancy 
part says certain information has to be there, 
i.e. is necessary, for deciding some other infor­
mation. The relevancy rule groups all the rele­
vant predicates together for a particular target 
predicate, so that this group of relevant predi­
cates will be able to determine the target pred­
icate and contains no irrelevant 1 information. 
The necessity requirement of the relevancy rule 
is emphasized to justify this form of knowledge, 
and this stands in contrast to Russell's deter­
mination rule . An AR system has been built 
where the learning of relevancy rules forms an 
important part. An inductive method of learn­
ing relevancy rules is addressed in this paper. 
An example of a small block world problem is 
used to demonstrate this approach. 

1 Introduction 

AR has become an active research topic within artifi­
cial intelligence and cognitive science over the past ten 
years. Kedar-Cabelli [1988a] gives a review fro~ the AI 
perspective. Vosniadou and Ortony [1989] describe work 
from the cognitive approach. 

Generally speaking, AR is similarity based. Its un­
derlying assumption is that similarity in some aspec~s of 
the problem case implies similarity in _so~e others. Sii:ce 
this is not true in all situations, restr1ct10ns must be m­
troduced on the similarity extending process. That is, 
similarity in some aspects may only imply the similarity 
of certain other aspects . Therefore, knowledge about t~e 
relationships between these aspects is important. This 

1 Irrelevancy is a relative concept. Here it means every 
element in the group is not ignorable. 

suggests that the justification of an AR argume~t de­
pends upon the underlying knowledge employed m the 
AR processes. 

The underlying knowledge used in AR has been stud­
ied from many directions. In abstraction based AR 
[Greiner 1988a;1988b], knowledge is expressed as a ~et 
of abstract formulae. It is these formulae that guide 
the AR processes. The purpose directed AR model of 
Kedar-Cabelli [1988b] employs a set of purpose struc­
tures. These structures help to explain why an AR ar­
gument is made. The determinat~on 7ule is a. gene~al 
form which represents the determmation relat10nships 
between properties. In the determination base AR model 
[Russell, 1988], AR becomes ~ justifia~le p~ocess. 

These pioneering works guide the direction of the re­
search described in this paper. The general understand­
ing is that there is a body of kn?wledge use~ by AR 
which is different from that used m a conventional de­
duction system. This body of knowledge is in a weaker 
form than the commonly used production rule formalism 
[Russell, 1988] and at an abstract level that is applicable 
to multiple domains [Greiner, 1988a; 1988b] . 

This paper proposes a new form of knowledge, the rel­
evancy rule. In some sense it is a descendant of the de­
termination rule . However, the determination rule only 
expresses sufficiency requirements. P >- Q means that 
for any two cases, similarity in P implies similarity in Q, 
where P and Q are predicates . This is a general form. of 
knowledge supporting justifiable AR. One pro~lem with 
the determination rule is that there may be irrelevant 
properties in P . This irrelevant information may inter­
fere with the comparison between a target case and a 
source case. The effect of this is that the generality of 
each rule is reduced . The flexibility of the AR system in 
dealing with new cases is thereby decreased . 

The relevancy rule, as defined in this paper, has several 
advantages over its predecessor, the determination rule . 
It conveys not only determination information, but also 
relevancy information between properties in the world 
concerned. A condition which restricts applicable cases 
enables the relevancy rule to be case dependent, and this 
is an important feature of analogy. 

This paper proceeds as follows : In section 2, the def­
inition of one form of the relevancy rule is given. The 
discussion is focused on the necessity requirement and 
case restriction aspects. Section 3 concentrates on the 
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inductive acquisition of relevancy rules. The learning 
algorithm is outlined in this section. An example of a 
small block world problem is used to demonstrate this 
approach. 

2 Relevancy Knowledge 

By relevancy knowledge we mean that knowledge which 
conveys relevant information between properties. What 
exactly is relevancy then? The following are some hints 
for defining it. Let P and Q represent properties of a 
problem domain, 

• When we say P is relevant to Q, we are implicitly 
referring to a set of other properties, Aother . P is 
relevant to Q means that there exist certain circum­
stances, if we keep values of the properties in the 
Aother fixed, where a change only in the value of P 
will be accompanied by a change in the value of Q. 
In other words, in order to decide the value of Q, 
one must inspect property P. P cannot be ignored 
under such circumstances. 

• If we say P is relevant to Q, we assert that P will be 
able to change when other properties in the Aothtr 

are fixed, at least in some circumstances. P can only 
be said to be relevant to Q with respect to Aothtr. 

• If we want to decide the value of Q, all .relevant 
properties must be considered. 

These suggestions imply that the relevancy relation­
ship can be seen as one between a set of properties, {P,} 
and a single one, Q. There exist situations where if any 
one property in the set {P.} changes its value, the single 
property Q will also change and if none of the properties 
in the set changes its value, the single one will remain 
unchanged. This set of properties will be called the rel­
evant set of a single property. 

There are two ways of representing this relevant set, 
i.e. intensional and extensional representations. The 
intensional representation describes the relevant set im­
plicitly by giving some assertions that all members of 
this set satisfy. The extensional representation gives the 
relevant set explicitly by listing all the elements of it. In 
this paper, only the extensional representation will be 
discussed. 

2.1 Relevancy Rule: Form and Meaning 

AR takes place in a world which is composed of a set of 
cases, which are described by a set of predicates. The 
term predicate is used here in a wider sense than its 
normal use in that its image may contain other values 
besides true and false. A case, for instance, can be a 
layout of blocks in a block world or a particular animal 
in an animal world (for an animal taxonomy problem). 
Analogy is a relationship between two cases. The AR 
problem is viewed as finding the proper value of a par­
ticular predicate for a particular case. This predicate 
is known as the problem, and this particular case the 
target case. 

Let S = { S, } be a set of cases and D = { P, } be a set 
of predicates. A predicate is defined as a classification 
of cases. i.e., 

P, = { U,j, j = 1, n}, where U;.j is a set of cases which, 
when the P;. is applied, will result the same value, p;. .. 

We require that ' 

(1) U;.i CS, j = l,n; 
(2) U;.i ni# U;.1:. = {}; 
(3) U'J=1 U,j = S. 

The relevancy rule is a relationship defined on D for a 
concept Q = P$. We say 

(Condition, {Pi , P2, .. , Pm} RR Q) 

iff 
Condition => Tl: ('v l )( (U1 E (P1 0 P2 0 .. 0 Pm )) 

and 
=> (( 3 j )( U$i E Q) and (U1 C U$; )) ) 

T2 : P;. ( i = 1, m ) are all relevant to Q with 
respect to {Pj I (j =/= i)and(j E [1, ml)} . 

RR stands for relevancy relationship. @ is a classifier 
operator such that 

P;.@ P; = {U1:. I (3m, n)U1:. = (U,m n Ujn)} 

Basically, this definition says that { P;} , j = 1, m, con­
tains enough unignorable (necessary) information for de­
ciding Q under the 'Condition'. The set of Pj, j = 1, m, 
is called the relevant set of Q. Clearly, there can be more 
than one relevancy rule for a given Q. 

Term Tl is a sufficiency requirement; it says that the 
values of Pj, j = 1, m, determine the value of Q. With­
out this requirement, a comparison between P; in two 
cases will be useless for deciding Q. This is basically 
Russell's idea of determination based AR. It is an im­
portant feature of the knowledge supporting analogical 
reasoning, of which Russell [1988] contains a thorough 
discussion. In the following paragraphs, another impor­
tant feature, the necessity feature ofrelevancy knowledge 
will be discussed in depth. 

2.2 Necessity Requirement of the Relevancy 
Rule 

Term T2 is a necessity requirement . It says that any 
changes in Pj j = 1, m, will imply a change in Q. The 
reason for this is simple. If changes in P; have no effect 
on Q in whatever situation, then it is irrelevant. 

2.2.1 Generality 
Generally speaking, the bigger the relevant set is, the 

more specific the relevancy rule is. In the relevancy rule 
guided AR model, it is preferable to choose the most 
general form of relevancy. Let us examine a simple case 
described by the following table 

Pi P2 Q cases 
0 0 0 case1 
1 1 1 case2 
0 1 0 casea 

Tablel 

We can see that without T2, (Null, {P1,P2} RR Q) 
and (Null, {P1} RR Q) are true for the cases above. 



Ifwe choose (Null, {Pi,P2} RR Q), when a new case, 
with P1 = 1 and P2 = 0, is examined, it will be difficult 
to decide the value of Q. (Null, {Pi,P2} RR Q) is too 
specific, and thus not flexible enough for dealing with 
new case. 

The problem with choosing a more general form of rel­
evancy is that it is usually more error prone than a more 
specific one . For example, (Null, {Pi} RR Q) is more 
error prone than (Null, {Pi,P2} RR Q). In the above 
example, when a new case (1 0 0) is examined, (Null, 
{Pi} RR Q) will become invalid, while the more specific 
rule will still hold. This problem can be solved by incre­
mental learning. i.e ., the system should always be able 
to review its knowledge in light of new cases. 

Property 1 : T2 ensures that if (Cond, P RR Q), where 
P is a set of predicates and P' is a subset of P, then 
(Cond, P' RR Q) will not hold. 

2.2.2 Redundancy 

Introducing T2 actually helps us eliminate redundancy 
in the relevant set. It is easy to see that redundancy can 
be harmful to the comparison and mapping processes. 
Comparing irrelevant properties will interfere with the 
comparison of relevant information. If the T2 require­
ment is removed, then (Cond,{Pi} RR Q) will imply 
(Cond,{Pi} U {Pj} RR Q). That is, one will be able to 
add anything to the relevant set . This is of course not in 
the spirit of relevancy and is a shortcoming of determi­
nation based AR [Russell. 1988] . Generally, eliminating 
redundancy will enhance the flexibility of the model in 
handling new cases. 

Property 2 : T2 ensures that if (Cond, P RR Q), where 
P is a set of predicates and P is a subset of P', then 
(Cond, P ' RR Q) will not hold. 

The redundancy discussed above is called global redun­
dancy. Besides the global redundancy which is prohib­
ited by the T2 requirement, there is another kind of re­
dundancy, which we will refer to as local redundancy, 
which might possibly exist in a relevancy rule . This kind 
of redundancy becomes explicit if we partition all the 
cases (examples) into groups and split the relevancy rule 
for the whole set of cases into several smaller rules for 
each group . These new relevancy rules may contain re­
dundancies, but they are local to the original relevancy 
rule . This local redundancy can be handled by the split­
ting process . 

2.3 The Condition Term and The Splitting of 
Relevancy Rules 

Having a condition term in the relevancy rule enables us 
to restrict the cases to which this relevancy rule applies. 
Normally relevancy is case and problem dependent . In­
troducing the condition term has several advantages. 

Firstly, it helps the model tackle undeterministic situ­
ations where there are two or more Q values correspond­
ing to the same set of Pi values. Given a set of cases, 
there may be no relevancy rule which holds for the whole 
set of cases, but one may exist for a subset of these cases. 
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Secondly, the partitioning of all cases into groups 
by the introduction of the condition term enhances ef­
ficiency and reduces redundancy within the relevancy 
knowledge. 

Suppose we have a relevancy rule , rk = (Cond , 
{Pi, .. ,Pn} RR Q) By partitioning the cases , thus split­
ting the rk, we can have a set of relevancy rules, rki = 
(Cond', {P{, .. ,P;} RR Q) wheres is smaller than n . The 
new condition, Cond' , is the conjunction of the old Cond 
and a (Pi op ai) term. Pi belongs to the old relevant set 
and ai is a Pi value. This new relevancy knowledge is 
applicable only to the cases which satisfy the new con­
dition . 

Since the difference between n and s, n - s , is nor­
mally bigger than 1, introducing these new relevancy 
rules eliminates some local redundancy and enhances the 
potential efficiency and ability of the AR reasoning pro­
cesses (i .e. the comparison process and mapping pro­
cess). 

Consider the following cases in Table! 

Pi P2 Pa Q cases Pi P2 Pa Q 
0 0 1 qa case1 0 0 0 0 
0 1 1 qb case2 0 0 1 0 
1 1 1 qc casea 0 1 0 0 
1 1 0 Qd case4 1 1 1 1 

Table2 Table3 

If we allow no other condition except 'Null' to appear 
in the condition term, then only (Null, {Pi,P2,Pa} RR 
Q) holds. Now, if a new case appears with Pi = 0, P2 
= 1 and Pa = 0, we will have difficulty in using the 
rule (Null, {Pi,P2,Pa} RR Q) . If we could produce a 
relevancy rule like ( Pi = 0, { P2} RR Q), then it is very 
easy to decide the Q value for this new case. 

It should be noticed that this flexibility is gained at 
the expense of the ability to generalize rules only from 
a smaller, restricted set of cases. Sometimes, there may 
not be enough evidence for a relevancy rule to be con­
structed from a small group of cases. Thus the splitting 
process will normally stop before the relevant set be­
comes empty. We can have a criterion for saying whether 
or not we have too few example cases . Table 3 illustrates 
this idea. (Null, {Pi} RR Q) is supported by all of the 
four examples, which represent half of all possible cases, 
so we can say that it is 50 percent confirmed. But if we 
split it into (Pi= O, Null Q) and (Pi = l, Null Q) , the 
first one is 75 percent confirmed, while the second one is 
only 25 percent confirmed. If we drop the second rule, 
we will not be able to deal with new cases like (1 0 1), (1 
1 0) and (1 0 0), which can be handled only if we do not 
split the (Null, {Pi} RR Q) . Huang [1991c] discusses 
this further in conjunction with the measurement of in­
ductive reliability. 

Property 3: Let s be the number of predicates in the 
description properties set ,D . Let N e be the number of 
predicates in the condition and n be the number of pred­
icates in the relevant set . Ifs = N e + n, then (Cond, 
{P} RR Q) says nothing more than the set of example 
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cases in an AR paradigm where similarity is defined by 
identity [Huang, 1991a] . That is, this rule will not help 
the system to deal with new cases. 

In other words, splitting a bigger rule into small ones 
enables generalization. It is the generalization that in­
troduces new knowledge into the system. For example, 
in table 2, (Null, {Pi,P2 ,P3 } RR Q) gives us nothing 
more than the four cases listed. But (Pi =O, {P2} RR 
Q) says more than the first two cases, and (Pi=O, {P3} 

RR Q) says more than the last two cases. 

3 Inductive Acquisition of Relevancy 
Rules 

The relevancy rule based AR system is based upon the 
availability of relevancy knowledge, therefore, the acqui­
sition of the relevancy rule becomes a critical problem. 
Conventionally, there are three ways of acquiring knowl­
edge. The first one is to ask the user to supply the 
system with a set of relevancy rules. This is an efficient 
way if there are domain experts available. A good human 
computer interface and a method for eliciting relevancy 
knowledge can be a great help but is not within the scope 
of this paper. The second method is logical deduction. 
Once the logical properties of the knowledge are found 
and expressed in the form of implication rules, the de­
duction of new rules from known ones becomes possible 
[Huang, 1991b] . The third way is the method of acquir­
ing rules by induction. Given a set of experiences, an 
inductive system will produce a set of rules. These rules 
should satisfy certain criteria. In the following subsec­
tions, only the inductive method will be addressed . 

3.1 Inductive Learning 

Traditionally, inductive learning refers to the process of 
generating descriptions or forming regularity rules from a 
set of data or facts. These generated descriptions or rules 
should account for the original data. Inductive meth­
ods have a correlational nature. Basically, they examine 
some facts or examples and form concepts or rules by 
computing the commonality and difference among these 
examples. 

The method described here is learning by searching 
and evaluating. Given a set of properties, D, and a tar­
get Q, the problem is to find those P, which are subsets 
of D, and the proper corresponding conditions so that 
(Cond, P RR Q) hold. That is it satisfies the definition 
of the relevancy relationship. In the inductive learning 
paradigm, the decision as to whether a relevancy rule is 
satisfactory or not is based upon its empirical evaluation. 

3.2 Searching Strategies 

The search proceeds through a space of all the subsets 
of D. This space has a lattice structure. The biggest 
element of this structure is the description set, D . The 
descendants of a node {P.;} are the subsets resulting from 
taking one of the P.; out of this node. At each node, con­
dition can be added to improve its evaluation. 2 Search-

2In fact, the condition part of the relevancy rule forms a 
more complicate structure. 

ing is guided by the following strategies. 

• Searching starts from the description node, D . 

• Selection is based upon the evaluation of each node .. 
The evaluation reflects the requirements of an ac­
ceptable relevancy rule. 

• If a node satisfies the requirements, then there is no 
need to search its descendant . 

• At each level of the lattice, only the best 3 node is 
selected, all others will be abandoned. 

• Only the immediate descendants of the best node · 
are generated for further evaluation. 

• The generation of condition term comes into play if 
the best node is not acceptable because of unsatis- · 
factory Tl or IR evaluations. 

• Condition term of a node is generated by a splitting 
process. The condition will partition the whole case 
space thus restrict the case space to which this node 
applies. 

• The condition is chosen so that the resulting rules -
cover the maximum amount of cases . 

3 .3 Empirical Measures 

In real world, the logical requirements described in sec­
tion 2 can hardly be met . Normally, P will not exactly 
decide Q. In order to generate a relevancy rule from a 
set of real world cases, three empirical measures are em­
ployed in the evaluation of a candidate relevancy rule, 
which correspond to Tl, T2 and inductive reliability re­
spectively. 

For Tl, an entropy function is used to measure the 
homogeneity of Q value, 

Tlcase,(rk) rcases(P, Q) 

= L prob(group.; ) x entropy(group.;) 

where entropy(groupi) = - Li prob( qi) x log(prob( qi)) 
and group.; is the ith group if we partition all exam­
ple cases according to their values on the P . The 
prob(group.;) is the proportion of group.; against all ex­
amples. This is exactly the same as the proportional 
method in Quinlan's work. [Quinlan, 1983] 

IfTlcases(rk ) <€,we say that this rk satisfies the Tl 
requirement. The€ is a threshold value for Tlcases (rk) 
to be satisfactory. 

The measure of T2 is defined by using the Tl measure. 
if rca.e(P, Q) ~ € 

T2cases(rk) 

otherwise T2 cas es ( rk) is undefined or meaningless. 
For a relevancy rule, rk, to satisfy the T2, we require 

that T2caw(rk) < 0. 
The inductive reliability (IR) measure concerns the 

proportion of the training examples to the overall space 
of cases. Generally, more evidence will lead to a stronger 
belief in the generated rule, thus a higher IR. But the 

3 Heuristics, such as restricted maximum generalization, 
are used. 



IR is also dependent on how big the potential case space 
is. 'Intuitively, given a fixed number of example cases, 
the bigger the potential case space, the smaller the IR 
measurement should be. In the system, we require that 
the IR measure for a relevancy rule must be greater than 
a certain threshold, which is termed as the E_Jevel. 

The following formula 4 is for the IR measurement, 

IRc,ues (rk) = Mc N 
Ng X 2s- . -n 

IRcaHs(rk) = 0 Ng = 0 

where Mc is the number of examples satisfying the condi­
tion. The denominator is the potential number of all pre­
dictable cases satisfying the condition. Ng is the number 
of groups, if example cases satisfying the condition are 
divided according to the relevant set Pi, .. ,P., . 5 Thesis 
the number of independent predicates in the Description 
set, and Ne is the number of predicates in the condition. 
s 2: Ne+ n. 

3.4 Splitting The Relevancy Rule: Its Affects 
U pan The Measurements 

Splitting relevancy rule has been discussed in section 2.3. 
If we have rk = (Cond, {Pi, P2, .. P.,} RR Q) Then 

rki, = (Condi, , {Pi , P2 , .. , Pi-1, Pi+1, .. , P.,} RR Q) 

are results of splitting rk by using Pi. Here the 'Condi .' 
is the conjunction of the old Condition 'Cond' and 'a 
'Pi op Pi,' term, where Pi, is a value of Pi, j E [1, n] . 

We will see that splitting an existing relevancy rule, 
because of its unsatisfactory Tl or IR measurements 
is an important method of generating new relevanc; 
rules with satisfactory measurements . In this subsection, 
properties will be presented concerning the relationship 
between the splitting of relevancy rules and its effects 
upon of the Tl and IR measurements. 

From the definition of the Tl measurement, it can be 
shown [Huang , 1991c] that If we split rk into rki , .. rki 
then 1 

_, 

Property 4: Mini=l {Tl(rki,)} ::; Tl(rk) 

rki, is a new relevancy rule for groupj, which consists of 
all cases in which Pi = Pi, . 

This means that splitting the relevancy rule is a way of 
reducing the Tl measurement, or finding a new relevancy 
rule with a smaller Tl measurement. 

From the definition of IR we can see that if a rele­
vancy rule rk is broken into some more restricted ones 
rki, thus partitioning the example cases into groups, th~ 
following unequation hold 

Property 5: IR(rk) ::; Max{IR(rki)} 

This property says splitting a relevancy rule will at least 

4This is a. simplified formula. . For deta.ils see (Hua.ng, 
1991c) 

5 Ng = 1 if n = 0 a.nd Mc =f. 0. Actually N9 = 0 implies 
Mc = 0, and vice versa. 
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increase the inductive reliabilities of some of the newly 
created relevancy rules. 

Similarly, we can use Pk, which is not in the relevant 
set, to split a relevancy rule . The above two properties 
hold for this splitting as well . 

3.5 Algorithm Outline 

Given a set of example cases S, a description set D and 
a problem Q, this learning algorithm first sets the initial 
thresholds for € and E_level, then it puts the root rele­
vancy rule, (Null, D RR Q) into the result set R . The 
R is a set of candidate relevancy rules. The evaluation 
of the rule, the splitting of the rule and the process of 
reducing redundancy then follow . 

The evaluation process decides whether a relevancy 
rule, rk, is acceptable or not . For every rule in R, it 
computes the three empirical measures, to see if 

(i) Tls(rk)::; e 
(ii) T2s(rk ) ::; 0 
(iii) IRs(rk) 2: E-1evel 

If (i), (ii) and (iii) are all satisfied, this process keeps 
this rk in R. If either (iii) or (i) are not true, it performs 
a splitting process for this rk. If (i), (iii) are true, but 
not(ii), it attempts to reduce redundancy for this rk . 

The splitting process takes a relevancy rule , rk = 
(Cond, P RR Q), split it into rki = (Cond and P1, = Pk,, 
P -{Pk} RR Q) . P1, is chosen according to the general 
acceptance of all the rki, which is a function of the num­
ber of example cases and the potential new cases these 
acceptable rki cover. 

Reducing redundancy for ark = (Cond, P RR Q) is 
simply a question of removing the Pk, where P1, is the 
predicate corresponding to the maximum operation in 
the T2 measurement formula. If there are more than 
one of such Pi the one with the least variation in its 
values will be chosen. It will enable us to achieve the 
relevancy rule with the maximum generality. 

3.6 Example 

Based upon the strategies and evaluation measures, an 
experimental system of inductive learning of relevancy 
rules has been developed. Experiments has been carried 
out in the domains of a small block world, an animal tax­
onomy problem, and a national flag description problem. 
These results have shown that relevancy rules in most 
cases have a very clear and understandable meaning. Us­
ing these relevancy rules, the AR engine can solve new 
problems . More experiences have resulted in stronger 
relevancy rules, which will enable the AR engine to han­
dle more new problems correctly. [Huang, 1991a;1991c] 

In this section, this method is illustrated in a simple 
Block Moving Problem. Our problem in this block world 
will be briefly introduced. Then the relevancy knowledge 
learned from the experience is given. We will also see 
that using this knowledge, the problem can be solved 
correctly in certain cases. 

This block world contains a three dimensional space, 
a block and a robot arm. Each dimension of the space 
has only two possible positions. The block may take one 
of two different shapes and may have one of two different 
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colours. The job of the robot arm is to move the block 
from an initial position to a target position. 

There are two tools the robot arm may use, each cor­
responding to a shape of the block. The robot arm may 
move one position in one of six direct ions if possible. 
There are no explicit rules about which tool should be 
used or which action should be taken for a given problem 
case. 

Our model is to learn the relevancy rules from the 
experiences supplied. These relevancy rules will enable 
the AR engine to guide the robot to solve a new problem 
analogically. 

Table 4 describes one set of experiences 

Initial goal Motor 
Position I I Position I I Directions 

X y z C s X y z T u L F 
P1 P2 P3 P4 Ps Ps P1 Pa Q1 Q2 Q3 Q4 
0 0 0 0 0 0 1 1 1 n r n 
0 0 1 0 0 0 1 1 1 n n f 
0 0 0 0 0 0 1 0 1 n n f 
0 0 0 0 1 0 1 1 0 n r n 
0 0 1 0 1 0 1 1 0 n n f 
0 1 0 0 0 0 0 0 1 n n b 
0 1 0 0 0 0 1 1 1 n r n 
0 0 1 1 0 0 1 1 1 n n f 

Table 4 Training Experiences 

where C = Colour; S = Shape; T = Tool; X (up-down) , Y 
(forward-backward), Z (right-left) are coordinates; U = 
Up-Down Motor; L = Left-Right Motor; F = Forward­
Backward Motor; r = right; 1 = left; f =forward; b = 
backward; u = up; d = down; n = null. 

Applying the induction process, the following relevan­
cies have been produced among others, with € = 0.1, 
and E..level = 1/6. This EJ.evel is quite small. This is 
because the examples we supply to the model represent 
a very small portion of all the possible cases. 

rk1, (P1 = 0 and Ps = 0 and P2 = 0, {Ps} RR Q1) 
rk1a, (Pi = 0 and Ps = 0 and Pa = 1, {Ps} RR Q1) 
rk2 , (Pi = 0 and P4 = 0 and Ps = 0 , Null RR Q2 ) 
rk2a, (Pi= 0 and Ps = 0 and P1 = 1, Null RR Q2 ) 
rk3, (Pi = 0 and Ps = 0, {P3,Pa} RR Q3) 
rk4, (Pi = 0 and Ps = 0, {P2,P3 1Pa} RR Q4 ) 
These relevancy rules give some useful regularities 

within certain case sub-spaces. Rules rk1 and rk1a say 
that to decide which tool to use, only the shape of the 
block is relevant. Rules rk2 and rk2a say that Q2 is a 
constant. This is because we do not have any experience 
of moving the block up and down. To decide the action of 
the left-right motor, rk3 says that we only need to con­
sider the Z coordinates of the initial and target cases. 
Rule rk4 says that in order to make a forward-backward 
move, we need to consider not only the Y coordinate of 
the initial situation, but also the Z coordinates of the 
initial and the goal situations. This can be explained by 
the fact that the right-left motor has priority over the 
forward- backward motor. 

Now let us use these relevancy rules for the testing 
cases in the Test Cases Table. Relevancy rule guided 

AR can be carried out in two directions: data directed 
or goal directed. The latter variant is described here. 

Given a goal in a target case, the relevancy rule based 
AR process is as follow. · 

(i) Find a relevancy rule with the goal as its Q part . 
and where the target case satisfies the condition part o: 
the rule. 

(ii) Find an experience case, which satisfies the 'con­
dition', and shares the same values of properties in th€ 
relevant set of the relevancy rule with the target case . 

(iii) Introduce the value of the goal in the experience 
case into the target. In complex situation, transforma­
tion is necessary. Building a tower analogically in a mul­
tiple blocks world is an example [Huang , 1991a]. I 

(iv) Verify this value in the target case. 

test ImLPos C s 
a 0 0 0 0 1 n n 
b 0 0 0 1 0 n n 
C 0 0 0 1 1 n n 
d 0 0 0 1 1 n r n 
e 0 0 0 1 0 n r n 
f 0 0 1 1 1 n n f 
g 0 1 0 0 0 n n n 
h 0 0 1 1 1 n ? f 
j 0 0 1 0 0 n ? f 
k 0 1 0 0 1 ? n b 

Table 5 Test Cases Results 

The results of applying this process and using the above 
relevancy knowledge are shown by table 5. Tests a to g 
have reached the correct conclusions. In Tests h and j, 
the model failed to generate actions for the Left-Right 
motor because of its lack of experience of moving left. 
In Test k it failed to generate the Up-Down motor ac­
tion. The reason is that the model has not experienced 
enough cases in which the P1 property takes O value and 
therefore has not generated a relevancy rule for Q2 which 
applies to new cases with P7 = 0. 

4 Conclusion 

Knowledge guided AR is a way of making AR justifi- · 
able. The knowledge used in AR is different from that of 
conventional deductive reasoning mechanisms. This pa­
per proposes the relevancy rule as a form of knowledge 
which can support the AR process. Relevancy knowl­
edge describes a kind of general relationship between 
the properties of a given world. This is in contrast with 
Greiner's abstract formula , which describes a strong the­
orem in an abstract domain applied to several different 
concrete domains. Automated acquisition of relevancy 
rules is easier than that of abstract formulae . Therefore 
the relevancy rule based AR model has a better chance 
of increasing its power. The relevancy rule considers 
the relevancy of a property for deciding another prop­
erty is important . This is an enhancement of Russell's 
determination rule, which considers only determination 
information. Because considering irrelevant information 
may interfere with the analogical comparison. Relevancy 
rules enable an AR system to deal with new cases bet-



ter than a determination rule does. However, no attempt 
has been made to empirically or experimentally compare 
the results of relevancy rule based AR with that of any 
other methods, as that is beyond the scope of this paper. 

Moreover, no comparison has been made between AR 
and conventional deductive methods. This is a field 
which lacks substantial work. So far, most authors con­
sider AR to be a compliment to deductive methods. 
Only when the latter fails to produce results then AR 
comes into play. [Holland et al., 1989] There is no justi­
fiable reason for giving deductive methods priority over 
AR in solving problems. Research on the relevancy rule 
may shed light on the study of the relationship between 
AR and deductive methods. One clue is that the conven­
tional form of production rule has only a trivial differ­
ence to a relevancy rule with a 'Null' as it relevant set. 
Can we say that deductive reasoning is a special form 
of AR? Study of the evolution of relevancy knowledge 
may provide a hint for explaining why both schemes of 
reasoning exist and how they relate to each other. This 
explanation seems more profound than simply claiming 
AR and deductive methods are completely different and 
compliment each other. 

Learning is an important field of study in AI. An intel­
ligent system need to be able to learn , i.e. be capable of 
improving its ability automatically. The relevancy rule 
based AR system is no exception since successful rea­
soning in this system is based upon the availability of 
relevancy knowledge. 

An important source of knowledge is experience . In­
ductive learning of relevancy rules is a method of ac­
quiring relevancy laws from cases from experience. This 
paper has proposed a way of searching and evaluating 
candidate relevancy rules . The nature of this method 
is to select a promising candidate rule and check if it 
accounts for its experiences according to certain criteria. 

In addition, This paper has defined three empirical 
measures for the relevancy rule . They are the sufficiency 
measure, the necessity measure and the inductive relia­
bility measure . They first two correspond to the logical 
requirements of a relevancy rule. The third concerns 
the amount of evidence or experiences that support the 
candidate rule. The criteria are set, based upon these 
measures, for accepting a candidate relevancy rule. 

The learning of relevancy rules is a new topic, conven­
tional techniques, such as heuristics of non-exhaustive 
searching and the entropy measurement method, are 
used in the experimental inductive system. However, 
some unanswered questions remain. How should the 
thresholds for accepting a relevancy rule be decided in 
the first place? How should they be adjusted accord­
ing to the performance of the system in dealing with 
new cases? At present, initial thresholds are set ac­
cording to the proportion of exceptional cases to the 
whole case (for the c) and according to a prediction 
rate (for the E_level). For instance, if we allow one ex­
ception in every ten cases on average, the c would be 
0.9log(0.9)+0.llog(0.1). Adjustment of the thresholds 
can be based upon the error rate of the analogical argu­
ments. New thresholds should result in the evolution of 
relevancy rules. Substantial work is needed in this area. 
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To conclude, this paper has shown that relevancy 
knowledge is a form of knowledge which supports jus­
tifiable AR. The inductive learning method described 
here provides a way of automatic acquisition of relevancy 
knowledge. This increases the ability of the relevancy 
rule guided AR system. The work described in this pa­
per provides a preliminary basis for further study. 
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