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Message from the General Chairman 
Message du president de la conference 

Dick Peacocke, Bell-Northern Research/ Recherches Bell-Northern 

Welcome to the Eighth Canadian Conference on 
Artificial Intelligence, which is being held on 22-
25 May 1990 at the University of Ottawa. This is 
the first time the conference has been held in Ot
tawa, although the first CSCSI/SCEIO workshop 
did take place here in 1975. 

The conference programme will consist of both 
invited and contributed papers presented in a ple
nary session format over three full days. A com
plete set of the papers appears in these proceed
ings. 

A new feature at this conference is the inclu
sion of four tutorial sessions which will be held on 
Tuesday, 22 May, 1990 on the following topics: 

• Intelligent Computer Aided Software Engi-
neering Tools 

• Machine Learning 
• Expert Database Systems 
• Robotics from an AI Perspective: Planning 

and Control 

These tutorials are organized with the view of pro
viding an overview of the state of technological de
velopments, examining current applications, and 
discussing future needs and directions. 

I wish to express my warmest thanks to the 
members of the Organizing Committee, to the 
Chairman and members of the Program Commit
tee, to Conference Services (NRC), and last but 
not least, to Ken Charbonneau for his attention to 
all the details. 

I would like to extend my invitation to you for 
the conference. Ottawa is particularly beautiful 
in the month of May. Over a million tulips are 
blooming by the Rideau Canal. Enjoy the archi
tecture, parks, restaurants, and entertainment in 
the National Capital Region, as well as the confer
ence. 

Je vous souhaite la bienvenue a la Huitieme 
Conference Canadienne sur !'Intelligence Artificielle 
qui aura lieu du 22 au 25 mars 1990 a l'Universite 
d'Ottawa. C'est la premiere fois que cette conference 
se deroule a Ottawa bien que le premier atelier de 
CSCSI/ SCEIO ait eu lieu ici en 1975. 

Le programme comprendra des communications a. 
titre de conferenciers invites et a titre de propositions 
acceptees. Ces communications seront presentecs 
dans le cadre de seances plenieres sur une periode 
de trois jours pleins. Toutes les communications 
presentees sont publiees dans ce volume. 

Une nouvelle caracteristique de cette conference 
est !'introduction de quatre cours d'instruction qui se 
tiendront le mardi 22 mai 1990 sur les sujets suivants: 

• Outils intelligents de genie logiciel assiste par 
ordinateur 

• Apprentissage automatique 
• Systemes experts et bases de donnees 
• La robotique du point de vue de l'IA: Planifica-

tion et controle. 

Ces cours sont offerts dans le but de fournir 
un apen;u de l'etat de la technologie et des 
developpements recents, d 'en analyser les applica
tions courantes et de discuter des besoins et direc
tions a venir. 

Je tiens a exprimer mes remerciements !cs plus 
chaleureux aux membres du comite organisateur 
ainsi qu'aux services de conference ( CNR) mais 
surtout a Ken Charbonneau pour son soucis de tous 
les details. 

Je vous invite a participer a la conf erencc et a prof
iter de !'occasion pour decouvrir Ottawa qui, en mai, 
est une ville particulierement belle: plus d'un million 
de tulipes fleurissent le long du canal Rideau. Venez 
aussi decouvrir !'architecture, les pares et !es restau
rants de la region de la Ca.pita.le N ationa.le. 

111 



I 

CSCSl-90 Organizing Committee 
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Erratum: 
Robert Mercer and Dick Peacocke were inadver
tently left off the listing of the program committee 
for the Seventh Biennial Conference of the Cana
dian Society for Computational Studies of Intelli
gence . 

. 
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Par inadvertance, les noms de Robert Mercer et 
de Dick Peacocke manquent sur la liste des mem
bres du comite du programme de la Septieme 
conference de la Societe canadienne pour l'etude de 
I 'intelligence par ordinateur. 



Message from the Program Chairman 
Message du president du comite du programme 

Peter F. Patel-Schneider, AT&T Bell Laboratories 

This year 112 papers were submitted to the 
conference, and received in time to be re
viewed. Seventeen papers were received too 
late to be reviewed. It is unfortunate that 
such a large number of papers had to be turned 
away, but the deadline for receipt of papers was 
made as late as possible to allow for current re
sults to be presented at the conference. This 
meant that the review period was short, and 
that late papers could not be considered for re
view. Most papers were from Canada and the 
U. S. A., but papers were also submitted from 
Australia, Bulgaria, England, the Federal Re
public of Germany, France, India, Israel, Ko
rea, the Netherlands, Northern Ireland, Japan, 
the People's Republic of China, Portugal, Scot
land, and Sweden giving the conference a de
cidedly international flavour. Of the 112 pa
pers reviewed, 37 papers were accepted, and 
appear in this volume. 

The large number of submissions received 
this year meant that many submissions were 
not accepted. This is unfortunate, as it means 
that some interesting papers will not be pre
sented at this conference. One fortunate ef
fect of the selectivity exhibited by the program 
committee is that the conference can remain in 
a single-track format. This format allows at
tendees to listen to all the talks at the confer
ence, instead of concentrating only on talks in 
their speciality, and not hearing about recent 
developments in other areas of AI. 

Cette annee 112 communications furent envoyees au 
comite du programme, et re<;ues assez tot pour etre 
soumises a !'arbitrage. Dix-sept communications furent 
re<;ues trop tard pour etre evaluees. Il est dommage 
qu'autant de communications dussent etre renvoyees, 
mais le delai de reception des communications fut fixe 
aussi tard que possible, pour permettre la presentation 
de resultats actuels lors de la conference. La periode de 
redaction des evaluations fut done breve, et il fut im
possible de tenir compte des communications en retard. 
La plupart des communications provinrent du Canada 
et des Etats-Unis, mais des communications furent aussi 
re<;ues en provenance d'Angleterre, d'Australie, de Bul
garie, de Coree, d'Ecosse, de France, d'lnde, d'lrlande du 
Nord, d'lsrael, du Japon, des Pays-Bas, du Portugal, de 
la Republique Federale d'Allema.gne, de la Republique 
Populaire de Chine, et de Suede, donnant a.insi a la 
conference une allure decidement internationale. Des 112 
communications evaluees, 37 communications furent ac
ceptees, et sont publiees dans ce volume. 

Le grand nombre de soumissions re<;ues cette annee 
veut dire que beaucoup ne furent pas acceptees. Cette 
circonstance est malheureuse, car elle signifie que 
certaines communications interessantes ne seront pas 
donnees lors de la presente conference. Un effet bien
venu du degre de selection exerce par le comite du pro
gramme est que la conference peut garder un format a 
piste unique. Ce format permet a tous les participants 
d'assister a tous les exposes donnes a la conference, au 
lieu de se concentrer sur les exposes clans leur specialite, 
sans entendre parler des developpements recents clans 
d'autres branches de l'IA. 

V 



CSCSI Executive Committee 1988-1990 
Comite executif de la SCEIO 1988- 1990 

President /President: 
Dick Peacocke 
Bell-Northern Research/Recherches Bell-Northern 

Past President/President precedent: 
Gordon I. McCalla 
Department of Computational Science 
University of Saskatchewan, Saskatoon 

Vice President /Vice-president: 
Renato De Mori 
School of Computer Science 
McGill University 

Secretary / Secretaire: 
William Havens 
School of Computing Science 
Simon Fraser University 

Treasurer /Tresorier: 

. 
VI 

Jan A. Mulder 
Department of Mathematics, Statistics, and Computing Science 
Dalhousie University 



CSCSl-90 Program Committee 
Comite du programme de la SCEI0-90 

Program Chairman/President du comite 

Peter F. Patel-Schneider, AT&T Bell Laboratories 

Program Committee/Comite du programme 

Fahiem Bacchus, Department of Computer 
Science, University of Waterloo 
Nicholas J. Cercone, Centre for Systems 
Science, Simon Fraser University 
Robin Cohen, Department of Computer 
Science, University of Waterloo 
Renato De Mori, School of Computer 
Science, McGill University 
Renee Elio, Department of Computer 
Science, University of Alberta 
Charles Elkan, Department of Computer 
Science, University of Toronto 
Brian V. Funt, School of Computing Science, 
Simon Fraser University 
William Havens, School of Computing 
Science, Simon Fraser University 
Jim Greer, Department of Computational 
Science, University of Saskatchewan, Saskatoon 

Referees/ Arbitres 

Bill Armstrong Robert F. Hadley 
Robert Bergevin Gary Hall 
Mike Dawes V. Hayward 
James P. Delgrande Diane Horton 
Marc Dymetman Xueming Huang 
David W. Etherington Pierre Isabelle 
Daniel Fass Mark A. Jones 
Randy Goebel Anthony Kusalik 
Scott Goodwin Ze-Nian Li 
Chris Groeneboer Gordon I. McCalla 

Russell Greiner, Department of Computer 
Science, University of Toronto 
Robert E. Mercer, Department of Computer 
Science, University of Western Ontario 
Jan A. Mulder, Department of Mathematics, 
Statistics, and Computing Science, Dalhousie 
University 
Eric Neufeld, Department of Computational 
Science, University of Saskatchewan, Saskatoon 
David Poole, Department of Computer 
Science, University of British Columbia 
Alberto Segre, Department of Computer 
Science, Cornell University 
Edward P. Stabler, Jr., Department of 
Linguistics, University of California, Los 
Angeles 

Carl McCrosky Fei Song 
Paul McFetridge Bruce Spencer 
Evangelos Milios Devika Subramanian 
Jeff Pelletier Jennifer S. Turney 
Fred Popowich Peter van Beek 
Robert Prager Carl Vogel 
Gerhard Roth Raymond L. Watrous 
Dale Schuurmans Patrick G. Xavier 
Bart Selman Qiang Yang 
Lingyan Shu Jia-Huai You 

Vll 



·- I • . 

.. . . ·1 

Invited Speakers 
Conferenciers invites 

Johann de Kleer, System Sciences Laboratory, Xerox Palo Alto Research Center 

Circumscribing the Artificial Engineer: Diagnosis 

Brian Funt, School of Computing Science, Simon Fraser University 

Colours from Colour Signals 

Graeme Hirst, Department of Computer Science, University of Toronto 

Planning the Future of Natural Language Research (even in Canada) 

Tom M. Mitchell, Department of Computer Science and Robotics, 
Carnegie Mellon University 

Can We Build Learning Robots? 

Best Paper A ward 
Prix de la meilleure communication 

The CSCSI best paper award is sponsored by the 
Editorial Board of Artificial Intelligence. It is 
given for the paper or papers that best combine 
significant new results with clarity of writing and 
accessibility across the conference. The sponsor
ship by the board provides both an honorarium 
and a rapid review process in the journal for an 
extended version of the conference paper( s). 
This year the CSCSI Program Committee is 
pleased to award the CSCSI best paper award to 
Rina Dechter, for "From Local to Global Consis
tency", and Andre Trudel, for "Temporal Integra
tion" . 

. . . 
VIII 

Le prix SCEIO de la meilleure communication 
est parraine par le conseil de redaction de la re
vue Artificial Intelligence. Le prix est decerne a 
la ou a les communications qui allient au mieux 
l'importance des resultats, la clarte de l'expression, 
et l'accessibilite au plus grand nombre. Le par
rainage du conseil comprend un prix en espeeces 
et une procedure d'evaluation rapide, en vue de la 
publication dans la revue de versions etendues des 
communications. 
Le comite du programme de la conference SCEIO 
1990 est heureux de decerner le prix de la. meilleure 
communication a Rina Dechter et a Andre Trudel. 
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WHICH IS MORE BELIEVABLE, 
THE PROBABLY PROVABLE OR THE PROVABLY PROBABLE?• 

Judea Pearl 
Cognitive Systems Laboratory 

UCLA Computer Science Department 
Los Angeles, CA 90024-1596 

Abstract 

This paper describes and compares two para
digms for processing incomplete specifications 
of probabilistic knowledge. The first computes 
provable probability statements by treating the 
specifications as constraints over probabilities. 
The second computes how probable it is that a 
proposition is provable, treating the 
specifications as randomly sampled assumptions 
added onto logical theories. We first examine 
the representational power of the sampled
assumptions paradigm and then we identify and 
assess two of its major shortcomings: Failing to 
represent dependencies among events with unk
nown probabilities, and failing to represent 
domain know ledge cast in the form of defeasible 
conditional sentences. 

1. Introduction 

Consider the following problem: We are given a set F of 
propositional formulas, each formula / e F is assigned a 
degree of certainty P (j ), and we are asked to determine 
how strongly one should believe in some other formula 
q (q stands for "query"). 

We pwposely phrased the problem using the vague 
terms "certainty" and "belief," since problems of this na
ture permit a variety of interpretations. Had the set of 
specified certainties S = { P (j ): / e F J been sufficient for 

• 'Irus work was supported in part by National Science 
Foundation Grant #IRI-8821444 and the Naval Research 
Laboratory Grant #N00014-89-J-2007. 

defining a coherent probability function P on the models of 
the language (by a model we mean a truth valuation of all 
literals) the answer would then be given simply by equating 
"belief in q" with P (q ). But if the input information is 
insufficient, two approaches are feasible, representing two 
complementary conceptions of partially specified 
knowledge. In one, we consider S as a set of properties that 
a probability function should satisfy or, equivalently, as a 
set of constraints over an implicit family P of coherent pro
bability functions. The answer to our problem would then 
be given in a fonn of an interval 

P.(q) !.P(q) !.P" (q) 

where P. and P • represent the lowest and highest value 
that P (q) can attain by any member of P. The second alter
native is to regard S as a policy for selecting assumptions 
(or axioms) from F and examining their logical conse
quences. Given a probability distribution over a set F of as
sumptions, our problem can be interpreted as that of assess
ing the certainty that q is provably true, namely, the proba
bility that an assumption (or a set of assumptions) be select
ed, from which a proof of q can be assembled. 

We will denote the first interpretation by P. ( q ) 
and the second by Bel (q ). Formally, 

P. (q) = min (P (q ): Pe P J = max {t: P (q) ~ t J 

and 

Bel(q)=P(f :/ =,q) 

Thus, P. measures the highest level that we can "prov
ably" attribute to P (q ), while Bel measures the probability 
that q is provable. To contrast this difference syntactically, 
we can make an unorthodox usage of the symbol F= to 
denote "it is provably true that ... ", and write: 

1 
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P.(q) = max { t: f= [P(q) ~ t]} 

Bel (q) = P ( f= q ) 

P. (q) uses probability theory as the object language and 
logic as a meta-language; Bel (q) reverses these roles. (l) 

Historically, the lower probability measure P. has 
been studied by Bayesians philosophers such as de Finetti 
[1974), Good [1950), and Smith [1961) and more recently 
introduced into the AI literature by Nilsson [1986). The 
function Bel , on the other hand, corresponds to the measure 
developed by Dempster [1967) and Shafer [1976) under the 
name "belief functions", and has recently been given an 
ATMS formulation [de Kleer 1986) by attaching probabili
ties to the ATMS assumptions [Laskey and Lehner 1989; 
Provan 1989). 

1. 

2. 

The purpose of this paper is two-fold: 

To characterize the notions of probably-provable 
vs provably-probable, illustrate their semantic 
differences and highlight their distinctive patterns 
of behavior. 

To compare the expressional power of these two 
conceptions and assess their adequacy as represen
tations of incomplete knowledge and uncertain evi
dence. 

2. An Illustration 

A natural question to ask is whether it makes a substantial 
difference how we fonnulate a problem; in tenns of as
sumptions about probabilities or probabilities about choos
ing assumptions. A second question is whether every prob
lem of incomplete knowledge can be conveniently 
represented in either one of the two fonnulations. Example 
1 illustrates these two issues. 

Example 1: The Peter, Paul and Mary Sandwich 

Mary challenges Peter to guess what kind of sandwich she hap
pened to prepare for lunch that day, ham or turkey. She also prom
ises to pay Paul 1,000 dollan if Peter guesses correctly. Peter says 

(1) J. Halpern (in conversation) has pointed out that the logics used 
in the two paradigms are not the same; the former uses the axioms 
of probabiity theory to deduce assertions about probability 
inequalities, while the latter uses propositional logic as the object 
language. Likewise, the probabilities in the two paradigms are not 
defined on the same space; in the former, probabilities are defined 
on propositions, while in the latter, probabilities are defined over 
logical theories. Note also that our notion of "provability" is 
semantical (being a logical consequence) rather than syntactical 
and is independent, therefore, of the axiomatic system used. 
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that, for lack of even the slightest clue, he is going to toss a fair 
coin and guess "ham" if it turns up heads, "turkey" if it turns up 
tails. Mary asks Paul if he is not anxious to know what sandwich 
she actually prepared, but Paul brushes her off saying that he al
ready had lunch and that it makes no difference to him; regardless 
of whether it is ham or turkey, in either case he has exactly a 50% 
chance of winning the 1,000 dollars. 

Mary retorts that Paul is behaving like an incurable Bayesian. and 
that instead of considering the chances of winning, he should be 
considering the chances that winning is ASSURED by the specific 
evidence at hand, namely, by Peter's guessing policy. She claims 
that Paul's current ''belief'' of winning is, in fact, zero, because ei
ther outcome of the coin, heads or tails, would leave him with no 
assurance of winning. However, if he would only listen to her for 
a moment, his belief would immediately jlUTlp to in., because, 
knowing what kind of sandwich it is would give him a 50% as
surance of winning. 

Paul answers that he gets enough assurance just thinking about 
Mary's sandwich: "If I have a 50% assurance assuming it is ham. 
and 50% assuming it is turkey, then I have a 50% assmance, 
period!" 

Mary does not give up: "No, Mr. Wise Guy, you can't have a 
50% assurance of winning, because it leads to a paradoxical con
clusion: If you win, you can do it in one of two ways, either match
ing heads with ham or tails with turkey, with equal chance to each 
way. Similarly if you lose, you either mismatched heads with tur
key or tails with ham, with equal chances. Thus, having a 50% as
surance of winning permits you to conclude that there is a 50% 
chance that the sandwich I made is ham while, in fact, you know 
nothing about my sandwich.'' 

The sandwich story illustrates two points. First, it 
does make a qualitative difference how we interpret "de
gree of belief," as a provable probability (P. ) or as the 
probability of provability (Bel), with each interpretation 
leading to a different action and a different infonnation 
gathering strategy. The P. interpretation proclaims Mary's 
infonnation (regarding the sandwich) useless, while the Bel 
interpretation values it as useful, capable of lifting one's be
lief from zero to 1h regardless of the outcome. 

This feature is characteristic to the probably
provable intezpretation of beliefs, because it is quite possi
ble that a proposition A is not provable from any one of the 
sampled assumptions, thus rendering Bel (A)= 0, but if we 
add either B or -,8 as an axiom, then A will be provable 
under some assumption (through not the same), thus render
ing both Bel (A I B) and Bel (A 1-,8) greater than zero. 
Whereas the value of P. (A) must be "sandwiched" some
where between P.(~IB) and P.(Al-,8), Bel(A) might 
violate this principle{ ) and satisfy 

Bel (A)< min [Bel (A IB ), Bel (A l-,8 )] . 

Consequently, decision strategies based on the magnitude of 
Bel(') might exhibit peculiar behavior, such as the chasing 

(2) The "sandwich" metaphor is due to Aleliunas [1988] and was 
termed the "Principle of the hypothetical middle" in Pearl [1988]. 



after useless information sources. 

The second feature demonstrated by the sandwich 
story is that the task of encoding partial knowledge in terms 
of randomly chosen assumptions is not as easy as it might 
seem. The assignment of probabilities to some propositions 
often induces definite probabilities on other propositions 
and one may be faced with an unresolvable dilemma of 
whether to add those other propositions to the set of as
sumptions or not If we leave them out, the analysis might 
never recover the information lost If we let them in, we 
must decide how to combine them with other assumptions, 
and any such decision might produce spurious conclusions, 
pretending to knowledge we do not in fact have. 

In our example, since Peter's coin is independent 
of Mary's sandwich, the assertion P (win)= 'h follows as a 
straight forward consequence of P (heads)= 'h. The ques
tion is how to encode these two itemJ of information as a 
procedure for sampling assumptions.< ) If we encode only 
one item, say {P (heads)= 'h, P (tail) = 'h}, the other will 
not be recovered correctly; Bel (win) computes to zero in
stead of 'h, because there is no way to prove "win" from 
either "heads" or "tail". If we try to encode both items, 
we do not know with what probability the joint assumption 
heads A win should be sampled and, whatever we assume 
for this joint probability, we find that we suddenly know 
more than we should about the third item, the sandwich. 
For example, assuming (as Mary did in the last paragraph of 
Example 1) that "win" and "heads" are to be chosen in
dependently of each other, the probability of proving 
•'ham'' calculates to 'h while in reality we have no informa
tion about Mary's sandwich. 

A mathematical basis for recognizing when partial 
knowledge is encodable as random assumptions has been 
developed in the literature on belief functions (iliough not 
from this perspective nor with this terminology) and will be 
summarized next 

3. Mathematical Summary 

Belief functions result from assigning probabilities to sets 
rather than to the individual points, with points representing 
specific worlds and sets reflecting propositions about those 
worlds. Given an initial probability assignment m (·) to a 
select set F of propositions (called focal elements), namely, 

1: m (B) = l , m (B) .!: 0 , (1) 
BeF 

every proposition in the language then acquires a pair of 
measures, Bel O and Pl(-), such that 

(3) The third variable, Mary's sandwich, does not qualify as an 
assumption because it is not given a definite probability. 

Bel(A) = l: m(B) (2) 
B :>A 

and 

Pl (A)= I - Bel(-, A) . 

Any measure Bel O constructed in such a manner is called a 
belief function, and its associated measure Pl O is called 
plausibility. 

A necessary and sufficient condition for a function 
Bel(') to be a belief function is that it satisfies: 

Bel (0) = 0, Bel (A v-, A) = 1 , and 

Bel(A 1 v ... vA,.)o!:l:Bel(A;)- l: Bel(A; "Ai)+- ... 
i i <j 

(3) 

Ai, A 2, ... , A,., being any collection of propositions. 

Given two belief functions Bel I and Bel 2, their 
orthogonal sum Bel 1 e Bel2, also known as Dempster's 
rule of combination, is defined by their associated probabili
ty assignments 

(m1 EB mi)(A)=K l: m1(A1)m2(Ai) A ~0 (4) 
A,M,=A 

where 

K-1 = l: m1(A1)m2(Ai) (5) 
A,Ma•0 

The operator e is known to be commutative and associa
tive. 

As a special case of Eq. (4), if m2 establishes the 
truth of proposition B, i.e., m2(B) = 1, the combined belief 
functions becomes 

Bel 1(A v-,B)-Bel 1(-,B) 
Bel 1(AIB)= l-Beli(-,B) (6) 

This formula is known as Dempster's conditioning. 

A belief function is called additive or Bayesian if 
each of its focal elements is a singleton, i.e., an elementary 
event or a possible world Bayesian belief functions satisfy 
Bel (A)= Pl (A)= 1 - Bel(-, A). If Bel 1 is Bayesian, then 
Bel I EB Bel 2 is also Bayesian, and Dempster's conditioning 
reduces to ordinary Bayesian conditioning [Shafer 1976] . 
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4. Belief Functions and the Sampled
Assumptions Paradigm 

The correspondence between belief functions and the 
sampled-asswnptions paradigm is made clear in Eqs. (1) 
and (2). We are given a collection of logical theories, 
T 1 , ••• , T,.; each theory is characterized by an assumption 
fonnula B e F corresponding to one focal element and 
each theory is assigned a probability P1 = m (B ), such that 
the sum of the probabilities is 1. The belief in a fonnula A 
is the sum of the probabilities of the theories from which A 
follows as a logical consequence. Note that the basic proba
bility assignment m (B) in Eq. (1) does not specify the net 
overall probability of B , since the truth of B may be implied 
by other focal elements as well. Instead, it specifies the pro
bability that the theory defined by B alone is adopted, and 
accordingly, Bel (A) represents the probability that A is 
provable in some randomly adopted theory. 

This interpretation provides a simple semantics for 
Dempster's rule, Eq. (4), which has been used extensively 
for combining independent pieces of evidence. Each piece 
of evidence, say e I and e 2, defines a probability mass over a 
collection of potentially adaptable theories, F 1 and F 2, and 
the combined evidence e 1 e e2, likewise, defines a proba
bility mass over a collection of joint theories. Each joint 
theory is characterized by the conjunction of two asswnp
tions, one sampled from F 1 and one from F 2. The mass as
signed to such conjunction is the product of the individual 
masses (thus reflecting evidence independence), while the 
mass attributed to any contradictory theory is redistributed 
among the non-contradictory theories in proportion to their 
weights. Thus, the belief function resulting from this com
bination rule is simply the conditional probability of prova
bility, given that the two pieces of evidence are noncontrad
ictory [Pearl 1988). 

S. Encoding Probabilistic Specifications 
as Sampled Assumptions 

A specification is any assertion ( <»" constraint) about pro
perties of a probability function, for example, 
P(A AB)=p,P(BIA)=q ,P(AIB AC)=P(A IB), 
P (B) > P (A), etc. Let S be a set of specifications and let 
P s be the set of all (additive) probability functions that 
satisfy S . A family P of probability distributions is said to 
be compatible with a belief function Bel , if for every propo
sition A , we have 

Bel(A)=min {P(A):P e P} ~P.(A) 

A set of specifications S is said to be SA-encodable ("SA" 
standing for "sampled-assumptions") if there exists a belief 
function that is compatible with P s . 
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It is well known [Dempster 1967) that, while every 
belief function has a compatible family of probability func
tions, the converse is not true; there are families of probabil
ity functions that have no compatible belief function. This 
means that certain types of probabilistic specifications, 
corresponding to certain types of partial knowledge, cannot 
be expressed in the language of randomly chosen assump
tions. Examples of such cases presenting common types of 
partial knowledge will be given next 

5.1 The Representation of Unknown Interac
tions 
Example 2: We have two events, E 1 and E 2• We know 
their individual probabilities, P (E 1) = P (E i} = 1h, but we 
know nothing about their interaction. The specification set 
in this case is 

S={P (E 1)=~. P(Ei)=~}. 

which pennits the probability of each of the four joint 
events {E1 AE2,E1 A-.E2, -.E 1 AE2, -.E1A-.E2} to 
range between O and~. Thus, P. = 0 and p• =~for each 
of these joint events. This specification set is not SA
encodable because any assignment of zero belief to four in
dividual points and, simultaneously, a belief of ~ to four 
pairs of these points (as required by S) would violate Eq. 
(3). 

The failure to represent ignorance about interac
tions does not present a severe limitation on the practical 
applications of the SA paradigm. Faced with such ig
norance the naive user would normally encode S as two 
separate belief functions: 

which, combined by Dempster's rule, would yield a proba
bility mass of quarter for each of the four joint events- This 
amounts to assuming that the assumptions E I and E 2 are 
sampled independently of each other (to form joint theories) 
as if E I and E 2 were known apriori to be independent 
events. The fact that independence was not really part of 
the specification set is not too disturbing because it con
fonns to the discourse convention that, unless warned other
wise, events can be presumed to be independent of each 
other. This convention underlies most work in default rea
soning and can also be traced to the maximum-entropy prin
ciple [Pearl 1989]. 

5.2 The Representation of Independent Events 

Example 3: We have two independent events, E I and E2. 
We know the unconditional probability P (E 1) = ~. but we 
know nothing about E 2, except its being independent of E 1. 



The specification set is 

S = (P (E 1) = 1h, P (E 1 IE.,)= P (E 1) } , 

which corresponds exactly to the knowledge available in the 
sandwich story of Example 1 (with E 1 = heads and 
E 2 = ham). S permits P (E.,) to range over the interval 
[0, 1), and also dictates definite probabilities on certain for
mulae involving E 2, for example, 

p [(EI A E.,) V (-, £ 1 A-, E.,)] = 1h 

and 

P[(E1 A-.E.,)v(-.E 1 AE.,)]= 1h. 

No belief function exists which is compatible with these 
equalities, while simultaneously reflecting our state of ig
norance about E2, namely, Bel(E.,) = 0. Thus, S is not SA
encodable. 

The limitation shown in Example 3 represents a 
more serious impediment to the applications of the 
sampled-assumptions approach. The sandwich story of Ex
ample 1 shows indeed that failing to represent 
Bel[(E 1 A E z) v (-. E 1 A-, E z)] = Bel (win)= 1h can lead 
to a major clash with intuition. This transcends to practical 
problems as well. Consider a circuit diagnosis system using 
the SA-TMS approach, in the spirit of Laskey and Lehner 
[1989) or Provan [1989). Imagine that we need to calculate 
the belief that the output Y of an exclusive-OR gate is ON, 
knowing that one of the inputs has a 50% chance of being 
ON, P (X 1 =ON)= 1h, while the other input, X 2, is totally 
unknown (see Figure 1). 

Unknown~ X 
Probability 2 

XOR 
GATE 

y 

Find: Belief (Y is ON) 

Figure 1 

50% chance 
of being 0 

The TMS enginea will now face the dilemma we discussed 
in the sandwich story: What propositions should be con
sidered as assumptions? The naive approach would be to 
take as assumptions only propositions that are assigned ex
plicit probabilities, namely, X 1 = ON and X 1 =OFF. Sam
pling these two assumptions with 50% probability each 
yields: 

Bel(Y =ON)= 0 
Bel(X2 =ON)= 0 

Bel(Y =OFF)= 0 
Bel(X2 =OFF)= 0 

This result ignores the information that X 1 and X 2 are in
dependent, which should yield P (Y = ON) = 1h regardless 
of the value of P (X 2 = ON). 

In case the TMS engineer becomes aware of the 
inevitability of P (Y = ON) = 1h, and wishes to include it in 
the set of sampled assumptions, the SA-TMS will produce a 
paradoxical result regarding X 2; sampling 
X 1 e {ON, OFF } and Y e ( ON , OFF} independently 
(giving 50% chance to each choice) yields 
Bel (X 2 = ON) = 1h. Moreover, regardless of the probability 
value by which we choose to sample the joint assumption 
(X 1 = ON) A (Y = ON), we always get the equality 
Bel(X2 = ON)= 1-Bel(X = OFF) =Pl(X 2 = ON). This 
corresponds to having precise knowledge of P (X 2 = ON), 
which contradicts our starting hypothesis that P (X 2 = ON) 
is totally unknown. In large circuits, where X 2 may serve as 
an input and an output of other components as well, this 
might lead to erroneous predictions and diagnoses. For ex
ample, if X 2 = ON signifies the failure of a component ( of 
which X 2 is the output), the calculation of 
Bel (X 2 = ON) = 1h may trigger an action to replace that 
component while, in reality, we possess no evidence what
soever to that effect, since X 1 and X 2 were presumed in
dependent 

5.3 The Representation of Conditional Infor
mation 
Example 4: We are given a specification of two condition
al probabilities, 

S = (P(AIB) =p ,P(AI-.B) =q }, (7) 

0<1 -q~pSq<l , 

but we are not given any of the unconditional probabilities. 
The information given in (7) induces several constraints on 
the probabilities of other propositions, including for exam
ple: 

O~P(A AB)~p 

p SP(A)Sq 

1 - q ~ P [(A AB) v (-, A A-, B )] Sp 

Again, no belief function exists that matches these upper 
and lower probabilities without violating the basic condi
tions in (3). Thus, S is not SA-encodable. 

Example 4 reveals a second limitation of the 
random-assumptions model, showing it incapable of 
representing the specification of conditional probabilities. 
This means that large fragments of empirical knowledge 
cast in the form of conditional probabilities (such as the re
lation between symptoms and diseases), or conditional sen
tences (such as, "Birds fly," "Fire causes smoke" and 
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"Smoke suggests fire.") cannot be properly encoded in the 
random-assumptions framework, until we have sufficient in
fonnation to form a complete probability model. Since con
ditional sentences make up the bulk of human knowledge, 
this limitation essentially means that domain knowledge as 
we know it is not SA-encodable. 

The prevailing practice in the design of SA-TMS 
systems (e.g., Laskey and Lehner 1989) has been to 
represent the rule "If A then B " by the material implication 
fonnula A ::, B =(-,A v B) and assign to this fonnula 
some weight w that measW'C$ the strength of the rule or its 
validity, thus converting the rule into a bona fide belief 
function satisfying m (A ::, B ) = w . This practice is not en
tirely without merit For example, combining the resulting 
belief function with the evidence A = true does give the ex
pected result Bel (BIA)= w. Moreover, if we are given a 
full specification of a joint probability, we can replace every 
conditional probability by its material implication counter
part, combine these functions using Dempster's rule, and 
the result would be equivalent to the original probability 
model. The problem begins when the probabilistic model is 
incomplete and some of the conditional probabilities (or the 
priors) are missing. In such cases, the material implication 
scheme may yield very undesirable effects, examples of 
which are shown next 

Example S (Chaining): Consider the following two rules: 

r 1: If the ground is wet, then it rained last night (m 1), 

r 2: If the sprinkler was on, then the ground is wet (mi}. 

If we find that the ground is wet, rule r I tells us that 
Bel (Rain) = m 1• Now, suppose we learn that the sprinkler 
was on. Instead of decreasing Bel (Rain) by explaining 
away the wet ground, the new evidence leaves Bel (Rain) 
the same. More seriously, suppose we first observe the 
sprinkler. Rule r 2 will correctly predict that the ground will 
get wet, and without even inspecting the ground, r I will 
conclude that it rained last night, with Bel (Rain)= m 1m 2• 

Rule chaining can be especially bothersome when 
combined with contraposition, (a -+ b) ~ (-, b -+-.a), 
another feature inherent to the material implication. 

Example 6 (Contrapollnl): Consider the rules: 

If a person is kind, then that person is popular (m ) 
If a person is fat, then that person is unpopular (m) 

Leaming that Joe is fat produces the strange result that Joe 
is believed to be unkind with strength m2• 
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The last two examples represent difficult chal
lenges to any logic that sanctions indiscriminate contraposi
tion, oblivious to the direction of causation {Hanlcs and 
McDennott 1986). In the probability bounds approach cau
sation is encoded as specifications of conditional indepen
dence relations, usually in graphical fonns [Pearl 1987, 
1988). The sampled assumptions approach cannot admit 
such specifications when rules are encoded as randomized 
material implications, because the latter are invariant to 
contraposition: Bel (A ::, B) = Bel (-, B ::, -, A). 

Example 7 (Reasoning by Cases): Suppose we are given 
the following two rules: 

If A then B , with certainty 0.8 

If -, A then B, with certainty 0.7. 

Common sense dictates that even if we do not have any in
fonnation about A we should still believe in B to a degree 
at least 0.7. The sampled-assumptions approach does not 
support this intuition. If we try to encode the rules as ma
terial implication fonnulae, sampled according to: 

m1(True) = 0.2 m2 (True) = 0.3 

and combined by Dempster's rule, we obtain Bel (B) = 0.56, 
in clear violation of common sense. 

Example 8 (Specificity): Consider the following set of 
rules: 

Rule-1: Typically penguins do not fly 
Rule-2: Penguins are birds 
Rule-3: Typically birds fly 

Suppose we know that Tweety is both a penguin and a bird, 
and we wish to assess the belief that Tweety flies. Any as
sessment method based on sampling these rules as indepen
dent Boolean assumptions will remain oblivious to the 
second rule, stating that all penguins are birds, because 
knowing that Tweety is both a penguin and a bird subsumes 
the infonnation provided by that rule. Thus, the computed 
value of Bel (Tweety flies) will be solely a function of the 
weights assigned to Rule-1 and Rule-3, regardless of wheth
er penguins are a subclass of birds or birds are a subclass of 
penguins. This stands contrary to common discourse, where 
people expect class properties to be overridden by proper
ties of more specific subclasses. By comparison, the 
probability-bound approach does yield the expected results 
(i.e., that Tweety most likely does not fly) if the rules are 
treated as conditional probability specifications, 
infinitesimally close to 1 [Pearl 1988, 1989). 



6. Conclusions 

We have described two paradigms that deal with incomplete 
specifications of probabilistic knowledge; one based on 
probability-bounds, and the other on sampled-assumptions. 
The former tteats the specifications as hard constraints over 
probabilities and computes the highest level that can prov
ably be attached to the probability of a query. The latter 
treats the specifications as instructions for sampling and 
adopting assumptions and, after examining their logical 
consequences, it computes the probability that a query is 
provable. 

We have identified and exemplified two major 
shortcomings of the sampled-assumptions approach. First, 
the failure to represent independencies among events with 
unknown probabilities. This leads to peculiar behavior in 
applications such as circuit diagnosis, where the computed 
beliefs stand contrary to the available information, and 
might lead to unreasonable decisions and test strategies. 
Second, the failure to represent domain knowledge cast in 
the form of defeasible conditional sentences. This limits the 
applications of sampled-assumptions techniques to cases 
where domain knowledge is articulated in purely categorical 
terms. These include, for example, strict taxonomic hierar
chies, terminological definitions and descriptions of deter
ministic systems (electronic circuits), but exclude domains 
in which the rules tolerate exceptions (e.g., medical diag
nosis and default reasoning). 

Future studies should determine whether there are 
restricted forms of knowledge representation that are amen
able to sampled-assumptions strategies, safe from the para
doxes uncovered in this paper. 
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Abstract 

A problem for practitioners in using proba
bilistic logic (N. Nilsson) has been the model's 
inability to deal with an inconsistent assign
ment of probability values in the valuation vec
tors. As noted by Nilsson, probabilistic logic 
is inherently monotonic - one can only reduce 
the region of consistent valuations when adding 
new information. This paper presents a solu
tion which modifies the original model. Con
ditions are provided which show when results 
can be obtained. The €-calculus for defaults 
introduced by J. Pearl is compared with an ex
tension to probabilistic logic and the results 
are found to be comparable. Computation
ally feasible solutions to problems of conflicting 
evidence and non-monotonicity in probabilistic 
logic are presented. 

1 Introduction 

In commonsense reasoning, it is often the case that one 
wishes to draw 'typically' information from a fact such 
as 'usually all A's are B's' or most A's are B's. As some 
exceptions to these rules do exist, they may be at best 
taken to be 'default' rules (Hanks and McDermott [8],Re
iter [17]) or assumptions. Under the default assumption, 
the rules are considered to be true until this belief needs 
to be revised due to the arrival of contradictory pieces 
of evidence (such as A is definitely not B, for some A.) 
Renee the inherently non-monotonic nature of default 
reasoning systems. In the original scheme proposed by 
Reiter, no use is made of multivalued logic, probability 
theory or any ( qlJasi) numeric form of uncertainty. Many 
recent papers have appeared (Ginsberg [6], Grosof [7], 
Kadie [9], Yager [18]) to name but a few discussing the 
problem in a variety of these frameworks (which should 
also include the fuzzy approach, Zadeh [19]). 

Probabilistic Logic has been discussed by Nils Nilsson 
in [15], as a way of entailing inexact sentences. It is 

*This work has been supported by NSERC operating 
grant #A4515. 
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inherently a monotonic reasoning system as inconsisten
cies are not allowed to take place as part of the nature 
of the logic (see final remarks in [15]). In practice how
ever, experts may often assign beliefs which are incon
sistent in Nilsson's framework. Sometimes attempts are 
then made to artificially adjust these values to produce 
a consistent set, but this is a very ad hoc and often im
possible task. In earlier papers by this author, the basic 
entailment scheme is examined for cases where A holds, 
A - B, but B does not necessarily hold (c.f. [11,12,13]). 
Non-monotonicity was accomplished by the addition of 
inconsistent valuation vectors which were not assigned a 
zero probability value. In other words, it was assumed 
that there was a possible 'inconsistent' world. The earlier 
papers examined the entailment results in this situation. 
In [13], a connection between Dempster-Shafer theory 
and probabilistic logic is used to derive entailment values 
for the max entropy solution which are more meaningful 
than that first found in [11] and [12]. 

J. Pearl in [16] and other papers, suggests the use of an 
epsilon calculus to capture the idea of non-monotonicity. 
In particular, if one has a set of t:-bound conditional 
probability interpretations of the form {P(f/b) 2: 1- f, 
P(f / p) ~ f and P( b / p) 2: 1-f}, one would like the 'plau
sible' conclusion of a theory with these defaults to find 
that P(f /p, b) 2: 1-0( t:), where O(t:) stands for any func
tion of epsilon whose limit as f - 0 is also zero. (Here 
the common interpretation of f, p and b are flies, pen
guin and bird). A detailed theory is developed which will 
guarantee that only 'plausible' conclusions are found. 
This paper examines how probabilistic logic deals with 
such a scenario and whether or not it can draw 'plau
sible' conclusions. Some general results are presented 
indicating when solutions can be obtained and the na,.. 
ture of the entailed values. The model which adds new 
vectors is shown to be equivalent to a method of vari
able splitting. Both models are very intuitive and lead 
to solutions compatible with those in [16] by J. Pearl. 

These new results are all easily computable and 
provide a feasible solution to the problem of non
monotonicity and conflicting evidence in proba
bilistic logic. 

Section 2 presents the necessary background informa
tion and terminology. Section 3 introduces the notion 



of extreme probabilities to probabilistic logic and com
pares the addition of inconsistent vectors to a method 
of variable splitting through the study of several exam
ples. Section 4 presents some general results (theorems) 
providing conditions for the existence of solutions in the 
presence of inconsistent belief assignments. Section 5 
concludes the paper. 

2 Probabilistic Logic and Defaults 

Notation from Probabilistic Logic and a Brief 
Discussion of the £-calculus approach 

Probabilistic Logic is essentially an extension of first
order logic in which truth values of sentences can range 
between O and 1. A short summary of the scheme is 
presented below. 

S represents a finite sequence L of sentences arranged 
in arbitrary order, e.g. S = {S1,S2, . . . ,SL} . 

V' = { v1, v2, .. . , V£} is a valuation vector for S, where 
' denotes transpose and v1 = 1 if S; has value true, = 0 
otherwise. 

V is consistent if it corresponds to a consistent valu
ation of the sentences of S. v is the set of all consistent 
valuation vectors for S and let I< = llvll (cardinality). 
(Note I< $ 2L). Each consistent V corresponds to an 
equivalence class of "possible worlds" in which the sen
tences in S are true or false according to the compo
nents of V. Let M (sentence matrix) be the L x I< 
matrix whose columns are the vectors in v. Its rows will 
be denoted by S. If P; is the i'th unit column vector, 
MP; = V;, where V; is the ith vector of v. 

Example: Let 

( t 
1 0 

[) and S= (A,A:) B,B) v = 0 1 
0 1 

M= ( ~ 
1 0 I ) 0 1 
0 1 

However, if each of the sentences' truth values are 
uncertain in some sense, a probability distribution over 
classes of possible worlds is introduced. 
P' = {P1,P2, .. . ,Pk} with O $ P; $1 and }:;Pi = l. 

Here the i'th component of P represents the proba
bility that 'our' world, is a member of the i'th class of 
worlds. Now a consistent probabilistic valuation vector 
V over the sentences in Sis computed from the equation 
V = MP. The components of V are the probabilities of 
the S; being true (or the probability that 'our' world is 
a member of one of those classes of possible worlds in 
which sentence S; is true) . 

Returning to example 1, we find that even if consistent 
valuations are known for the sentences A and A :) B, 
the probability of B is not necessarily uniquely defined. 
One can determine the bounds P(A:) B) + P(A) - 1 $ 
P(B) $ P(A :) B), which provide some restrictions. 
However, often a more precise value for P(B) needs to 

be predicted. A method using a maximum entropy ap
proach (borrowed from P. Cheeseman [4]) is used to ob
tain an exact solution for P(B). We assume P(A :> 
B) = q, P(A) = p and add the constraint, Li P; = 1 
by letting the first row of the matrix M be all l's and 
the first entry of the valuation vector be l. (see 15 for 
further details). 

The entropy function becomes 
H = -P. logP+l1(v1-S1.P)+l2(v2-S2.P)+ ... 1L(vL
S£.P), where the I; are Lagrange multipliers. Following 
Cheeseman, the solution for maximum entropy becomes 

P; = e-1 .e-l1S;1 ... e-lLSL; 

If one employs this method, at least for example 1, the 
solution for P' = {p + q - 1, 1- q, (1 - p) / 2, (1- p)/ 2}, 
when V' = {l,p, q} and thus P(B) = p/ 2 + q - !-

Another 'projection' method has been suggested by 
Nilsson [15]. This author has shown in [14] under which 
conditions these solutions are the same. It is mainly the 
maximum entropy approach that is used in this paper. 

One problem with this approach concerns the range 
of values for which the entailment scheme will work. 
Clearly p + q must be greater than or equal to 1 for the 
solution vector to be meaningful. For the entailment re
sult to be a valid one ((i .e.), in the range O $ P(B) $ 1, 
then p + 2q ?: 1. Therefore, p + q ?: 1 is a sufficient con
dition for both. However the values for p and q might be 
expert defined (obtained from expert opinions) and not 
satisfy this condition. If interpreted as conditional prob
abilities, statements like A :) B become P(B/ A). The 
frequentist interpretation of the conditional probability 
will produce values of P(A) and P(B/ A) which need not 
obey any condition like P(A) + P(B/ A)?: l. Of course 
P(A :) B) is more like P(- A)+ P(B/ A), but this is 
not correct either as this quantity could be greater than 
l. 

One should be considering P(...., A V B), although, in 
practise, it is often easier to find P(B/ A) than the prior 
of...., A V B. (See Kane [10] where a further discussion is 
made of using P(B/ A) to represent A::> B .) For exam
ple, if we are considering the chance that birds fly, it is 
easier to estimate P(flies/ bird) than P(- bird or flies) 
from a population of all living things. Thus even with 
a frequency interpretation, if these values are being es
timated (from sample populations), the results may not 
give you p+q ?: 1 ( although their true values from the to
tal population should).Thus observed values of 0.4 and 
0.5, for example would lead to an ill-defined P vector 
(the first element would have value -0.1). An entail
ment value of 0.2 for P(B) can be calculated, but it is 
questionable what this means. If p = 0.5, q = 0.2, then 
P(B) = - 0.5, again a meaningless result . 

Thus, there are two ways in which results can be in
valid: 

(i) the solution vector has a negative component, but 
a positive value for P(B) is obtained. 

(ii) both a component of the position vector and P(B) 
are negative. 
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These invalid situations arise when the probability val
ues lie outside the consistent region. The question re
mains, however, that this system cannot be used to pre
dict values for P(B), when p + q < l, which can occur 
for perfectly reasonable and possibly observed values of 
p and q. 

In the papers (12] and [13] by this author, Nilsson's 
work has been reconsidered introducing an inconsis
tent vector to his M matrix. This was done primar
ily to represent default reasoning and subsequent non
monotonicitie5 that can occur. In [13], a relationship to 
Dempster-Shafer theory is presented which helps over
come the problems of (i) and (ii). These difficulties have 
been discussed here because they also arise when con
sidering the use of probabilistic logic for very small and 
large probabilities and it is really these problems that 
again force the introduction of inconsistent vectors. 

The £-calculus formulation in [16) presents a way in 
which to capture the essence of statements like "al
most all A's are B's" by interpreting these sentences in 
the terms of extreme conditional probabilities, infinites
imally distant from O or 1. For example, the sentence al
most every bird flies becomes P(Fly(x)/Bird(x)) 2: 1-c, 
where f > 0 is a quantity that can be made infinitesi
mally small. A default theory T =< F, !:::. > contains 
factual sentences F and default statements !:::.. The no
tion of a plausible conclusion of a theory is given as fol
lows: let 6., = {P(q/p) 2: 1 - £: p-+ qf6}. Then r is a 
plausible conclusion of T if P( r / F) 2: 1-0( f) where 0( f) 
has been described in the introduction. A full theory is 
developed tying the £-theory together with the work of 
E. Adams on the Logic of Conditionals. 

Pearl examines the results of the analysis of the ex
ample of drawing a plausible conclusion from: 

!:::. {Penguin-+ Fly, Bird-+ 
Fly and Penguin -+ Bird}, 

and F = {Penguin(Tweety), Bird(Tweety)} 

If!:::.,= {P(f/b) 2: l-c,P(f/p) $£and P(b/p) 2: 1-c} 
it is shown in [16], following the usual rules of probability 
that P(f /p, b) $ O(c) or equivalently that P(- f /p , b) 2: 
1-0(c), where O(c) = 1~,. Thus, Tweety does not fly is a 
plausible conclusion of the theory. This interpretation of 
the classical example allows for bird -+ fly and penguin 
-+- fly to both hold - permitting non-monotonicity. The 
next section will show how probabilistic logic can also 
capture the same result. 

3 Probabilistic Logic and Extreme 
Probabilities 

There are several ways of representing the casuality just 
presented in probabilistic logic. The most general infor
mation is presented below. Here Vi would be 1 - f1, Vi 
is 1 - £2, Vs is fa, where f1, f2 and fa are all bounded 
above by some small quantity £. (The different f; are 
used to facilitate computations in terms of equalities in
volving the £;, instead of inequalities involving L) Now 
to be very general, Vi and Va could be taken to be less 

10 

than 1. If they are identically 1, the matrix should be 
automatically reduced, as will be discussed later. This 
matrix relation presents the consistent valuation vectors 
associated with the entailment scheme corresponding to 
the casuality sought in the example in Pearl [16] . The 
notation follows that outlined in §2. 

b 1 0 1 0 1 0 1 0 
p-+b 1 0 1 0 1 1 1 1 

p 1 1 1 1 0 0 0 0 
b-f 1 1 0 1 1 1 0 1 X 

p-+/ 1 1 0 0 1 1 1 1 
I 1 1 0 0 1 1 0 0 Ps 

Vi 

= (1) 

Since the vector of l's associated with /, S(/), is a 
subset of that for p -+ f (i.e. 31 in the jth place for 
S(/)-+ 31 in the jth place for S(p-+ /)), the probabil
ity of/ will be less than or equal to that of p-+ f. That 
is V5 $ Vs, where O $ P $ 1. 

Therefore, if Vs is known to be $ f, so will V5 be$£. 
This would seem to agree with the £-calculus result. 

However, on closer examination of the system one can 
prove that no proper solution to the resulting set of equa
tions exists. The P; 's obtained from max entropy are 
not between O and 1 and indeed a careful examination 
of the bounds on the P; imposed by the resulting system 
shows a solution giving a proper probability distribution 
for the P; to be impossible under the constraints that 
Vi 2: 1 - £ and Vs $ £. (The situation is similar to the 
problem discussed in 2.1). 

One can examine a number of different situations of 
interpretations for the values of Vi, V2, Va, but it will 
always be considered that V2 is close to 1 and so is Va 
(to represent the £-calculus example). When this is re
quired, probabilistic logic finds the system insolvable for 
the P;, assuming I: P; = 1 and O $ P; $ 1. In essence, 
it is saying there is something incompatible about the 
assignment of the V; values and, in some sense, this is 
a reasonable conclusion. That is, in its usual interpre
tation, probabilistic logic cannot deal with the inherent 
non-monotonicity of the probability ( or belief) values as
signed to the V; 's, although such an assignment might 
well occur in commonsense reasoning. 

The previous discussion can be stated more formally 
in the following theorem. 

Theorem 1 

The entailment scheme representing the sentences 
used in the example in Pearl [16] shown by the matrix 
equation 1 does not have any solution for the P; satisfy
ing 1 $ P; $ l and I: P; = l under the assumption that 
f is a small quantity. 



Proof: Under row reduction the system reduces to the 
set of equations: 

1) P3+P4 = l - ts 
2) P1 + P3 + Ps + P1 = 1 - t1 
3) P6 + Ps = ti - t2 
4) I'1 + P2 = ts - t3 
5) P4 + Ps + P6 + Ps = 1 - t4 - ts+ t3 
6) Ps + P6 + P1 + Ps = t3 

Here Vi to Vs are l - t1, . . . l - t4 and ts respectively with 
the ti's bounded above by some small quantity t. (A new 
first row of the matrix from e.g. (1) consisting of all 1 's 
has been added to the system as in the discussion in 2.1). 
Now Ps+P6+Ps ~ t3 from (6). Therefore P4 ?: l - t4- f5 
from (5). From (1), P3 ~ t4. From (4), Pi ~ ts - t3. 
Therefore P1 +P3+Ps+P1 ~ t5 - t3+t4+t3 = ts+t4 ~ 
2t. On the other hand this is supposed to equal 1 - t 1 
from equation 2. Thus, unless t ?: 1/3, no solution is 
possible. 

The same result could have been arrived at by consid
ering the smaller system obtained when p is true. The 
matrix becomes 

( 
1 ) 1 - {1 

= 1 - {2 

{3 

This system has a unique solution with P2 = t1 + t2 + 
t3 - 1, which implies some t; ?: 1/3 if O ~ P4 < 1, which 
contradicts t; being an infinitesimally small quantity. 

It is with this smaller system that a natural mecha
nism for obtaining a solution will be sought. The under
lying reason that no solution can be found stems from 
the lack of any column vector (world) which represents 
the situation evident from the given valuation vector; 
namely the world (1, 1, 1, 0) in which p is true, p -+ b is 
true, b -+ f is true but p -+ f is false . The next section 
will describe ways of viewing the addition of this vector 
in both logically consistent and inconsistent fashions and 
the results of doing this . 

Variable Splitting and the Use of Inconsistent 
Vectors 

One method of obtaining a viable solution is through 
a separation of the two opposing conclusions for /. A 
mechanism for doing this produces the following matrix 
equation, where / has been split into two variables Ji 
and '2, which are then recombined to represent finding 
the probability that Ji = '2 = true. 

Example 1 

=( 
Columns 2 and 3 can be collapsed to one ( column 3) 

as the max entropy solution will assign P 2 = P3 . (These 
values can be split apart later. See Kane [10) for a ref
erence which combines duplicate vectors in the max en
tropy solutions to probabilistic logic.) The matrix (with
out the last row) row reduces to 

Pi 

~ ~ ~ ~ ~) 
1 0 0 1 0 
1 0 1 0 0 

( 1-Y;-,, ) 

The maximum entropy solution becomes: 

Pi = t3(l - t1 - t2), P2 = t1t3, P3 = t2(l - t3), 
P4 = t2t3, Ps = t1(l - t3), P6 = (1 - t1 - t2)(l - t3). If 
we split P2, we have P2 = !..lf-, P3 = !..lf- and P; = P;+l, 
i ?: 4. Then P(/1 n '2) = t3(l - t2) or t3(l - '!' - t2) 
for the more complete solution with 7 column vectors in 
M . 

The key vector which has been added to the origi-

nal system is the ve,to, ( i ) . In the miginal system 

where / is not split into two variables, this vector would 
be inconsistent. However it is most representative of the 

given values in the valuation ve,to,. That is ( ! ) is a 

world that is likely to have the highest probability given 

the valuation ( i ~
3 

:: ) 

One may obtain an approximate solution to the orig
inal system by the addition of this inconsistent vector 
alone: (i .e.) one obtains 

Example 2 

M = ( t ~ 1 ~ t ) . As the worlds which were 

1 1 0 0 0 
included in the larger matrix where / was replaced by /i 
and '2 have small probability of occurrence, the results 
will not be very different . The max entropy solution is: 
p _ ,3(1 - ,, - , 1) p. _ .!.1.£1... p _ t P. _ ,,(1 - ,, - ,3) 

1 - 1- ,, , 2 - l - £2, 3 - 2, 4 - l-£2 , 
p. = (l - ,, - ,,)(l - ,,- , 3 ) • all the P.· obey O < P.· < 1. 

5 l - £2 ' ' - ' -
P(f) = t3 . 
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In both examples, P(!) $ €3 and is 0(€3), consistent 
with the probabilistic interpretation in Pearl [16] . In 
both cases, P5 (or P1) are 0(1), (ie) approach 1 as€; -+ 0 
and all other P; are 0( €;), where €; is a function of the 
€; and €; -+ 0 as €; -+ 0. 

In fact, one can easily find a particular solution of 
the underconstrained set of equations representing the 
system M with the addition of one inconsistent vec
tor: namely Pi = €3, P2 = 0, Pa = €2, P4 = €1, 
Ps = 1 - €1 - €2 - €3. A solution to the homoge
neous system is P(transpose) = (1, -1, 0, 1, -1). Thus 
the general solution [see 14] is (€a, 0, €2, €1, 1 - €1 - €2 -
€3) + k(l, - 1, 0, 1, -1). In order for the P; to remain 
constrained by O $ P; $ 1, k must be negative as 
P2 = 0 + k(-1). From Ps = 1 - €1 - €2 - €3 - k $ 1, let 
j = -k , (ie) lkl then j $ €1 + €2 + €3 and so !kl = 0(€'), 
€' = €1 + €2 + €3. This means that for any solution, all 
the P; will be small ( 0( €'), for some €' a function of the 
€; which goes to O as €; -+ 0), except P5 which will be 
0(1). (The value of k which gives the maximum entropy 
solution is .::.!.l.g_.) 1- ,~ 

The next section will state some general results which 
show that it is only by the addition of vectors like the 
inconsistent vector added in Example 2 to the original 
system which make a solution possible. 

4 General Results for Conflicting 
Evidence 

Theorem 2 

For any set of sentences corresponding to a valuation 
vector of the form V = { 1, 1 - € 1, ... 1 - €;, €; +i, ... € N}, 
a proper solution to the matrix equation MP = V will 
exist only if there exists at least one column vector in M 
of the form (1, 1, 1, . .. 1, 0, 0, ... , 0). 
~ 

j+l N-j 

Here it will be assumed M is an N by L matrix with a 
first row of all ones. P stands for a particular solution 
vector of P;'s. A proper solution means a solution for 
which O $ P; $ 1, Vi = 1, ... L. A lemma will first be 
proven from which the necessity of the string of 1 's will 
follow. 

Lemma 2.1: There is a unique minimal subset of the 
P;, {P;m}, such that E!: 1 P;m = 1 - 0(€) . 

Proof: 

Consider any row R of the matrix M corresponding 
to a valuation of order 1 - € . Then the inner product 
of this row with P equals Z::f=1 P;m = 1 - 0(€) where q 
is the number of non-zero entries of R. Remove all P;m 
such that O(P;m) = € and renumber the P;m 's such that 
we now have Z::!=l P;m = 1 - 0(€). Now none of these 
remaining P;m will be of order €. Suppose there exists 
another set P;k such that L~=l P;k is 1 - 0( €). If it is 
disjoint from the P;m 's then Ef=l P; will be 2 - 0(€) 
instead of 1. If the two sets intersect, suppose their 
intersection is say {P;t}, £ = 1, .. . r. Then Ef=l P; = 
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2 - 0(€) - z:=;=l P;t = 1 implies z:=;=l P;t = 1 - 0(€), 
and the two other sets were not minimal - unless one of 
them equalled { P;t}. 

Proof of Main Theorem: 

The fact that there must exist at least one column 
vector in M whose j + 1st entries are all 1 follows from 
Lemma 2.1 which ensures that each row corresponding 
to a valuation of 1 - 0(€) must contain a 1 in column 
positions im. 

To complete the proof, suppose some entry of the 
columns i1 ... it in rows j + 2 through N is non-zero. 
Then the inner product of that row with P will result 
in an non-infinitesimal value, which contradicts the val
uation value of 0(€). Another way of looking at it is 
to note that if the valuation is 0(€), then some P;m is 
0(€) which contradicts the minimality of the set { P; m}. 
Therefore there exists at least one column vector of the 
form (~, ~. The following Corollaries fol-

;+1 N-j 

low immediately from this theorem. 

Corollary 2.1: Given the equation MP = V with a 
valuation vector of the type described by Theorem 2, if 
a proper solution exists it will be of the form P; $ € for 
all j "t im, m = 1, .. . t and the P;m sum to 1 - 0(€) and 
are not infinitesimal. 

Considering the entailment examples under study, 
there will usually be only one vector of the form 
(1,1, ... 1,0,0,0, ... ) in the system and it will have a 
final value of O when the conclusion row is added. Sup
pose this is the L'th column vector. Then one may state 
the following more precise result: 

Corollary 2.2: If there is only one column vector of the 
form(~,~ in M, then any proper solution 

i+l N - j 
that exists will be of the form 

PL = 1- 0(€) and P; = 0(€)\li = 1, .. . L - 1. 

It follows immediately from this that if the Lth entry of 
the N + 1st row ( conclusion) is 0, then the probability 
of the entailed result will be 0(€) as it will equal the sum 
of a subset of the P;, where i $ L - 1. 

Corollary 2.3: If the Lth entry of the N + 1st row 
( entailment result) is 0, the probability or belief in the 
entailment will be 0(€). 

The full converse to Theorem 2 is harder to prove rig
orously without a more precise knowledge of M . How
ever, if even one vector of the form required by Theorem 
2 is present in M, say in the Lth column, usually a so
lution will be found by setting PL = 1 - /(€), for some 
function of the €; of order €, and allowing the other P; 
to be 0(€). If the system is underconstrained, solutions 
should exist for the resulting equations and thus a solu
tion with the required bounds on the P; . 

As we are primarily concerned with problems of con
flicting evidence, which might arise in a variety of ways, 
let us study a few examples of what might closely rep-



resent the final results after a chain of some unknown 
sentences. 

Example 3: Suppose we have a series of entailed sen
tences which eventually result in implications of the form 
a __. f and b __. f with opposing extreme valuations. As
sume a and b are effectively true. (Essentially the same 
results are obtained if they are taken to have truth value 
1 - O(t')). Using the method of separation of variables, 
we have (recalling that the first row of 1 's represents the 
constraint that the Pi's sum to 1): 

a -Ii 
b-'2 
Ii n '2 

( 
~ ~ ~ ~ ) ( ;~ ) ( 1 1 ) 1 0 0 1 Pa - t'i 
1 0 0 0 ~ ~ 

One can easily determine the max entropy solution: 
Pi = t'2(l - t'i), P2 = t'i ( l - t'2), Pa= (1 - t'2)(l - t'i) 
and P4 = t'i t'2. 

The entailed P(/in'2) = t'2 ( l-t'i), which is consistent 
with that found from the larger system used in example 
1. As illustrated with example 2, we could have simply 
added the inconsistent vector (1, 0, 0) to the system a__. 
f, b __. f and obtained equivalent results. (ie) 

Example 4: 

a - f 
b-f 

I 
Now there is a unique solution, Pi = t'2, P2 = t'i, Pa = 
1 - t'i - t'2 and P(/) = t'2. 

One notes that the probability of the dropped world, 
(0 1 0), in going from example 3 to example 4 is t'it'2 or 
extremely small. This was also the case in the expanded 
examples 1 and 2 where P4 = t'2t'a is the probability of 
the dropped vector. 

Another interpretation might be to consider /i U '2 
as a conclusion. However, usually one wishes to 'and' 
the two rules together. This conclusion would be more 
like taking one or the other. Of course what is desired 
depends on the problem begin modelled. In the 'Tweety' 
example, as p __. b it would seem that one really wants 
to test Ji = '2 = True, which can be represented by 1 's 
in the /i n '2 vector. 

Without considering the connection between adding 
an inconsistent vector and variable splitting, one might 
be tempted to add the inconsistent vector twice: once 
with outcome 1 and once with outcome 0. This results 
in final entailed values within some t' of 1/ 2 (more like 
what would be obtained using the MYCIN model of cer
tainty factors [2]) . However, I reject this interpretation 
as it is not consistent with the model or result of using 
the two variables Ji and '2 and has no meaning in that 
context. Only if the users of the system had some pref
erence for wishing these types of conclusion from con
flicting evidence should they be used instead of what 
has been considered in this paper. The results reflecting 
the Ji n '2 conclusion are the more natural and logical 
conclusions from probabilistic logic. 

5 Conclusions 

In order to interpret the problem of conflicting evidence 
( or rules implying conflicting results) in probabilistic 
logic, either additional variables need to be added to 
the system or else the inconsistent column vector which 
most closely represents the valuation vector V needs to 
be added to the system. It is only then that a proper 
solution can be found. The probability the world is in 
a state represented by the inconsistent vector will be 
1- O(t') and the weight on the other worlds will be O(t'). 
If the value under the added column vector in the con
clusion row is 0, ?(conclusion being true) will be O(f) . 
The examples show that adding the inconsistent vector 
is essentially equivalent to the method of variable split
ting. It should also be noted that a number of varia
tions on the representation were tried with essentially 
the same results (ie) changing the conclusion to "' f, or 
using p __.,... f now with valuation 1 - t' resulted in the 
same problems of conflict (no solution) or essentially the 
same solutions with the introduction of the appropriate 
inconsistent vector. 

Studying the examples 1 and 2, we see that the re
sults are consistent with those found by Pearl [16] for 
the non-monotonic problem. Examples 3 and 4 are rep
resentative of many entailment schemes. This paper has 
shown how to deal with these problems in the framework 
of probabilistic logic. The necessity of the addition of an 
inconsistent 'world' which closely resembles the conflict
ing evidence in the valuation vector is intuitively obvious 
and has been shown mathematically to be the only way 
to obtain a solution. 
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Abstract 
We present a probabilistic theory of causal 

explanations, which integrates probabilistic 
and causal knowledge. Unlike most other ap
proaches where a causal explanation is a hy
pothesis that one or more causative events oc
curred, we define an explanation of a set of ob
servations to be the occurrence of a chain of 
causation events. These causation events con
stitute a scenario where all the observations are 
true. The underlying causal model enables us 
to compute probabilities of the scenarios from 
the conditional probabilities of the causation 
events. 

The notion of causation event, which was 
first introduced in [Peng and Reggia, 1987] and 
was claimed to be "the crucial innovation," was 
nonetheless underspecified. We provide a more 
adequate definition here and explain its rela
tionship to co-occurrence. 

Although probabilistic causal inference is 
NP-hard in general, our algorithm exploits 
characteristics of admissible input to achieve 
efficient computation. 

1 Introduction 

Causal models have been used as a pivotal mechanism 
in many diagnostic reasoning systems. Diagnosis can be 
viewed as a process of finding the causal explanation of 
the observed faults . Since there are typically multiple 
explanations for a given set of observations, mechanisms 
must be provided to rank the causal explanations. The 
approaches to ranking explanations can be roughly cat
egorized as follows: 

Pure Bayesian Calculus: Bayes theorem provides a 
good basis for a explanation ranking scheme. How
ever, as has been repeatedly pointed out in in the 
literature [Charniak and McDermott, 1985], the im
plementations of pure Bayesian calculus suffers from 
voracious demand for data and combinatorial explo
sion of explanations to be scored before reaching a 
conclusion. 

Heuristic Scoring: Early expert systems such as CAS
NET [Weiss et al., 1978] associate weights to causal 

links and uses heuristics to rank the explanations. 
Although these systems have achieved significant re
sults, they have often been criticized for their use 
of poorly defined and unjustified weighting schemes 
and scoring heuristics as well as unreasonable as
sumptions about probability distributions. 

Occam's Razor: A heuristic principle for ranking ex
planations is Occam's Razor, which states that ev
erything else being equal, simpler explanations are 
preferred. While precise specifications of "simpler" 
are not always themselves simple, one straightfor
ward definition is this: an explanation is considered 
simpler than another if the causative events in the 
former is a subset of those in the latter. This ap
proach is taken by [Reggia et al., 1983; Reiter, 1987; 
Allemang et al., 1987]. This interpretation of sim
plicity is intuitively appealing, but it may not al
ways lead to correct results [Lin and Goebel, 1990]. 

Causal Bayesian Calculus: Recently, there is a trend 
to combine causal knowledge with probabilistic 
knowledge by means of causal networks [Cooper, 
1984; Pearl, 1988]. Instead of making independence 
assumptions about all the events, the known prob
abilistic dependencies are explicitly represented by 
the structure of the network. 

In this paper, we present a probabilistic theory of 
causal explanations, which can also be classified as a 
causal Bayesian approach. The domain knowledge is rep
resented by a causal network whose nodes denote events 
such as the presence of symptoms, disorders, or patho
logical states. Edges represent the potential causation 
events. Unlike most other approaches where a causal 
explanation is a hypothesis that one or more causative 
events occurred, we define an explanation of a set of 
observations to be the occurrence of a chain of causa
tion events. These causation events constitute a scenario 
where all the observations are true. We show that the 
probabilities of the scenarios can be computed from the 
conditional probabilities of the causation events. 

The remainder of the paper is organized as follows: 
in Section 2, we explain the notion of causation event. 
Section 3 introduces the concept of scenario. In Sec
tion 4, we show that the probability of a scenario can be 
computed from the conditional probability of causation 
events. In Section 5, we relate the problem of finding the 
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most probable explanation to that of finding the minimal 
weight tree that connects all the observed observations. 
The latter problem is known as the Steiner Problem in 
Graphs [Dreyfus and Wagner, 1972]. An algorithm for 
solving the Steiner Problem in Graphs is briefly men
tioned. The relationships between our work and other 
causal Bayesian approaches are discussed in Section 6. 
Our contributions to causal reasoning are summarized 
in Section 7. 

2 Causation Events 

The concept of causation event was first introduced by 
Peng and Reggia [Peng and Reggia, 1987] to explicitly 
represent the statement "x actually caused y." A causa
tion event e: c is true "iff both [the cause event] c and 
[the effect event] e occur and e is actually being caused 
by c [Peng and Reggia, 1987, p149]." One of the motiva
tions for causation events being a distinct type of basic 
event in a probabilistic causal world is that e : c cannot 
be expressed by a Boolean expression of the events c and 
e, because in situations where both c and e occur, e: c 
may still be false. The diagram in Figure 1 illustrates 
the relationship between c, e and e: c. 

e 

Figure 1: Relationships between the cause, effect and 
causation event 

Unfortunately, Peng and Reggia's definition of cau
sation event does not provide a way to judge whether 
a causation event occurred , because, unlike other basic 
events, causation events are usually unobservable. We 
can only observe the co-occurrence of the cause and ef
fect. 

Here we present a definition of direct causation event . 
following a suggestion from Pearl 1 . Causation can be 
modeled at different levels of details [Patil, 1987]. A 
causation event e : c is said to be direct if there are no 
intervening events at the current level of representation. 
A direct causation event may correspond to a chain of 
causation events at a more refined level of representation. 
If e : c corresponds to a chain of micro causation events 

e:i1 : ... :in:c 

then when e: C occurs, not only mu.st C and e. must OCCUr, 
but the intermediate micro events i1, ... , in must also 
occur. 

We therefore define direct causation event as follows: 

Definition 2.1 (direct causation event) A direct 
causation event, denoted by c ...__. e, is false iff there do 
not exist micro events i1 , ..• , in at a more refined level 
0 f represent.ation such that C ...__. i 1, i 1 ...__. i2, , .. in ...__. e 

1 Personal communication 
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is a chain of micro causation events and e, i1, ... , in, c 
co-occur. 

With this definition, c and e must be true if c...__.e is true. 
In Section 4.2 we derive an upper bound for the dif

ference between the conditional probability of the effect 
event P (elc) and the probability of the causation event 
P(c...__.e lc), thus identifying the conditions under which 
P(c-elc) can be approximated by P(e lc). 

3 Scenario and Explanation 

Definition 3.1 (causal network) A causal network is 
a 3-tuple: < E, DC, T > where 

• E a finite, non-empty set of events, each element in 
E is represented by a node in the network. 

• DC ~ E x E is the set of potential direct causation 
events: 

DC= {x...__.y lx, y EE}. 
The direct causation event x ...__. y is represented by 
an edge from node x to node y. 

• T is a distinguished element of E which is alway 
true. T ...__. y E DC if y does not have a cause, i.e. 
,llx EE, such that, x # T and z...__.y E DC. 

The purpose of T is to accommodate the cases where 
there are multiple independent causes. T ...__. x is true 
whenever x is true. 

T 

/ "'-... 
Metastatic ov 

incer"' /\ 
Increased Total Brain 
Serum Calcium Tumor BER 

G! Ci~ 1\ET 

I" Papilledema OD 

Figure 2: A causal network 

Example 3.2 Figure 2 is' an example of causal network 
<E,DC, T>, where 

E {T, Metastatic Cancer, OV, 
Brain Tumor, ... , QD}; 

DC = {T ...__. OV, T ...__. Metastatic Cancer, 
ov...__. Brain Tumor, ... , BER,..... QD}; 

The causal explanations for the observations are sce
narios where the observed events are true. Such a sce
nario can be regarded as a tentative reconstruction of 
the causal evolution which has led to the observations. 
Before defining the scenarios, we first introduce the fol
lowing sets : 

Let o be a set of causation events: o = {Xi...__. Yi Ii = 
1, ... , n}. We define: 



• antecedents(a) ~f {xix= x;, i = 1, ... , n} . 

• consequents(a) d~f {YIY = y;, i = 1, .. . , n }. 

t . . t ( ) def • par icipan s a = 
antecedents( a) U consequents( a); 

• cause_of(a) ~f 

antecedents( a) - consequents( a); 

Definition 3.3 (scenario) A scenario is a set of direct 
causation events and is defined recursively as follows: 

a) any direct causation event x ~ y E DC is a sce
nario. 

b) if a is a scenario, x~y E DC, x E participants(a), 
and y (/. participants(a), then a U {x ~ y} is a 
scenario. 

c) All scenarios are obtained from either a) orb). 

Intuitively, scenarios are chains of causation events. 
Each scenario a is a sub-tree of the causal network. The 
root of the sub-tree is cause_of(a). There is a directed 
path from the root to every other node in the tree. When 
there are multiple independent causes, T is the root of 
the tree. For example, the edges in the shaded area 
in Figure 3 constitute a scenario. Explanations for a 
set of observations are the scenarios which contain the 
observations. 

GU 

Metastatic 
cancer 

I 
BER 

\ 

Figure 3: A scenario 

ET 

Definition 3.4 (explanation) An explanation for the 
set of observations O is a scenario a such that O ~ 
consequents( a). 

Figure 4 shows two explanations for the observation 
{ Coma, Papilledema, QD}. 

4 Probabilities of Scenarios 
This section is concerned with computing the probabil
ities of the scenarios. Let x be an event, x ~ y be a 
causation event and a= {x;~ y; li = 1, . . . , n} be a set 
of causation events, we write P(x), P(x~y), and P(a) 
to denote their probabilities respectively. P( a) can alter
natively be written as P(x1 ~ Yi, x2~ Y2, ... , Xn ~ Yn). 
Since T is always true, we have P(T) = 1. Since T ~ y 
is equivalent toy, P(T ~ylT) = P(T ~y) = P(y); 

T 

/ ""' Metastatic 
cancer 

I 

GU ET 

Figure 4: Two explanations 

4.1 Independence Assumptions 

Most practical probabilistic diagnosis systems make the 
following simplifying assumptions about the real world 
in order to apply the probability theory [Charniak and 
McDermott, 1985]: 

l. Symptoms are independent of each other: 
P(s;,s;) = P(s;)P(s;). 

2. Symptoms are 
conditionally independent of each other given any 
disorder: P( s;, s; Id) = P( s; ld)P( s; Id) . 

unfortunately, these assumr tions are usually false in real 
applications lFryback, 1978 . It has been argued that the 
inadequacy of traditional Bayesian classification theories 
is largely due to its inability to express the causal rela
tionships among the symptoms and disorders [Cooper, 
1988]. In contrast, our explicit representation of causal 
structure enables us to make more realistic assumptions: 

Causation Independence: This assumption states 
that given the cause event c, the direct causation event 
c~ e is conditionally independent of whatever caused c 
and other effects of c. 

More formally, let c ~ e E DC be a direct causation 
event, and /3 be a scenario such that: 

a) c E participants(/3) 

b) e (/. participants(/3). 

Then we assume c~ e and /3 are conditionally indepen
dent given c: 

P(c~elc,/3) = P(c~e lc). (1) 

This assumption is similar to the axioms of Belief Net
works in [Pearl, 1988; Poole and Neufeld, 1988]. 

Non-causation independence: This assumption 
states that causal influence is the only influence between 
a cause c and its effece e. I.e., the influence of c on e is 
insulated once c~ e is known to be false: 

P(c, elc~e) = P(cic~e) x P(e l~ ). (2) 
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4.2 Causation vs. Co-occurrence 
The probability of co-occurence is always no less than the 
probability of causation. The following theorem gives 
an upper bound of the difference between conditional 
probabilities of co-occurrence and causation. 

Theorem 4.1 Let c and e be two nodes in the causal 
network and c~ e be a direct causal event. Then 

P(elc)- P(c~elc) < P(e) 

C 

_ P e c e--+e X P~~) 
- pe::::;e C 

= P(e, clc~e) x ~(c)) 
= P(elc~e) x P(clc~e) x P~(c)) 

(by independence assumption (2)) 
= P(elc~e) x P(~lc) 
< P(elc~e) 
- P(t~) - p~ 
< P( e,e--+e )+P( e--+e) 

P(e-.+e )+P( e-.+e) 
- !:ill 
- 1 
= P(e) I 

Therefore, given that P( e) is significantly smaller than 
P(elc), which is usually the case, P(c~elc) can be ap
proximated by P(elc). 

4.3 Probabilities of Scenarios 

Given the context-freeness of causation events, the prob
abilities of scenarios can be obtained through the follow
ing theorem: 

Theorem 4.2 Let a= {xi~ Yili = 1, ... , n} be a sce
nario. Then 

n 

P(a) = P(cause....of(a)) x IT P(xi~Yilxi) 
i=l 

Proof: This theorem is proved by induction on the 
structure of scenarios. 
Base Case: Let a= x~y. Then 

P(a) P(x~y) 
P(x~y,x) 
P(x~ylx) x P(x) 
P(x~ylx) x P(cause_of(a)). 

Induction Step: Let a = {3 U { x ~ y} where y ff. 
consequents(/3), x E participants(/3). We assume the 
theorem is true for {3. Then, 
P(a) = P(/3, x~y) 
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P( x~ yj/3) x P(/3) 
P(x~yjx,/3) x P(/3) 

( ." x E participants(/3)) 
P(x~yjx) x P(/3) 

(by independence assumption (1)) 
P(x~ylx) x P(cause_of(/3)) 

X [l.,'-"!/'E,8 P(x'~y'lx') 
(by the induction assumption) 

P(cause_of(a)) X [l.,'-"!/'Ea P(x'~y'lx') 

(." cause_of(a) = cause_of(/3)) I 

Corollary 4.3 Let a = {Xi~ Yi Ii = l, ... , n} be a sce
nario. Then 
log(P(a)- 1) = log(P(cause_of(a)) - 1 ) 

+ I:7=1 log(P(xi~Yilxi) - 1
) 

We now quantify the causal link from node x to node 
y by a weip,ht l?g(P(x~ylx)- 1 ).and associate a weight 
log(P(x)- ) with each node x m the causal network. 
Log( P( a )- 1) then becomes the total weight of all the 
links in a plus the weight of the root. 

Since maximizing P( a) is equivalent to minimizing 
log(P(a)- 1), we have the following theorem: 

Theorem 4.4 The most probable explanation for a set 
of observations O is a sub-tree T of the weighted causal 
network< E, DC, T > such that: 

a) T connects all the nodes in 0. 
b) The total weight of the links in T plus the weight of 

the root of T is minimal. 

5 Finding the most Probable 
Explanation 

Following from Theorem 4.4 in the last section, the prob
lem of finding the most probable causal explanation is 
a variation of a graph-theoretic problem known as the 
Steiner Problem in Graphs, which can be formally stated 
as follows: 

Definition 5.1 (Steiner Problem in Graphs) 
Let G =< N, E > be a weighted graph, where N is the 
set of nodes and E is the set of edges. Each edge e E E 
is associated with a non-negative weight w( e). Given a 
set of nodes S ~ N, the Steiner Problem in Graphs is to 
find a sub-tree T ~ E, such that, 

a) all nodes in S are connected together by T; 

b) LeeT w( e) is minimal. 

The minimal tree is called the Steiner Tree {connecting 
SJ. 

It is well known that the Steiner Problem in Graphs is 
NP-Complete [Garey and Johnson, 1979, p.208]. This, 
however, does not imply that our model is computa
tionally intractable. The admissible inputs must also 
be taken into consideration [Levesque, 1989]. A crucial 
observation here is that the number of observations to be 
explained in a single case is usually small, much smaller 
than the number of nodes in the network . Dreyfus and 
Wagner [Dreyfus and Wagner, 1972] presented an algo
rithm to solve the Steiner Problem in undirected Graphs 
with complexity 0(3"n + 2"n2), where n is the number 
of nodes in the network, and k is the number of nodes 
to be connected. 

Our aliorithm is a variation of [Dreyfus and Wag
ner, 1972J, which solves the Steiner Problem in directed 
graphs. The algorithm simulates a set of processes dis
tributed over the nodes of the graph. Each process per
forms the same local algorithm, which consists of receiv
ing, processing and sending messages that are transmit
ted across the edges. The average complexity is further 
reduced in our algorithm by exploiting the locality of the 
nodes to be connected. The nodes that are unrelated to 
the observations will not be involved in the computation 



at all . The worst case complexity is also 0 (3.1:n + 2.1:n2). 

Details of the algorithm can be found in [Lin and Goebel, 
1990]. 

6 Relationship to Other Causal 
Bayesian Approaches 

In this section, we compare our approach with three 
other causal Baysian approaches. 

6.1 Generalized Set Covering 

In the Generalized Set Covering (GSC) model [Peng and 
Reggia, 1987], causal knowledge is represented by a bi
partite graph where links represent causal associations 
between disorders and manifestations. An explanation 
for a set of manifestations M+ is a set of disorders D1 
that are able to cause the manifestations. The explana
tion also implicitly assumes that disorders not in D1 are 
absent. Peng and Reggia present a procedure for com
puting P(D1 jM+) from the conditional probabilities of 
causation events P(m; : d; jd;) where m; is a manifes
tation and d; is a disorder. They then argue that the 
most probable D1 is likely to be a irredundant one, i.e. 
a D1 for which any proper subset of D1 is unable to 
cause all the manifestations in M+ . The notion of cau
sation event, which is claimed to be "the crucial innova
tion [Peng and Reggia, 1987, pl59]" is nonetheless un
derspecified. We have given a more adequate definition 
here and showed that P(c"-+ ejc) may be approximated 
by P(elc). 

The main limitation of GSC is that the representation 
is not expressive enough to capture chaining in reason
ing (e.g. "a causes b," and "b causes c," so "a causes c" 
indirectly where bis an intermediate event). This is too 
prohibitive for most real applications. The limitation to 
a two layer representation also results in unreasonable 
probability independence assumptions. First, causal re
lationships exist not only between disorders and symp
toms, but also sometimes between a disorder and another 
disorder. These two disorders will then generally be de
pendent of each other, therefore violating the disorder 
independence assumption in [Peng and Reggia, 1987]. 
Second, when a disorder di cause two symptoms si, s2 
via a common intermediate state, GSC will wrongly as
sumes that the causation events si: di and s2: di are con
ditionally independent given di. For example, in Figure 
5, GSC will incorrectly assume that appendicitis caus
ing anorexia is conditionally independent of appendicitis 
causing nausea given appendicitis is known. 

6.2 Belief Network 

Belief networks [Pearl, 1988] are directed acyclic graphs 
in which each node represents a random variable, or un
certain quantity, which can take on two or more possible 
values. Causal explanations, which are instantiations of 
the variables of the causal network , are obtained by a 
distributed message propagation. The propagation al
gorithm, however, is designed for singly connected net
works, (i.e. networks with no undirected loops). Al
though he also proposed two extensions to multiply 
connected networks ( conditioning and clustering), both 

appendicitis 

anorexia nausea 

1. without intennediate event 

-rw 
giAre 

anorexia nausea 

2. with intennediate event 

Figure 5: Indirect Causation Events may not be Condi
tionally Independent 

methods are liable to exponential complexity [Henrion, 
1987]. 

Another problem with the belief revision procedure is 
that an explanation consists of instantiations for all the 
variables in the network. This implies that every piece 
of evidence must be propagated to the entire network, 
even to the totally irrelevant sections of the knowledge 
base [Pearl, 1988, p.259]. As has been shown in [Lin and 
Goebel, 1990], our message passing algorithm is able to 
exploit the locality of the observations to be explained. 
The nodes that are unrelated to the observations are not 
activated during the message passing process. 

6.3 NESTOR 

NESTOR [Cooper, 1984] combines causal and statistical 
knowledge. Any observations believed to be independent 
are unaffected. Observations with known causal or as
sociational links are modeled by causal trees that rep
resent interactions between these dependent variables. 
NESTOR is unique in its use of bounded probabilities 
as opposed to point probabilities. Bounded probabilities 
do not force the expert to commit to a single value with 
little confidence. However, NESTOR cannot scale up be
cause of the complexity of its scoring algorithm. Scoring 
a single hypothesis in NESTOR takes O(n2n-k) time (n 
is the number nodes in the causal network, k is the num
ber of observations to be explained) [Cooper, 1988] and 
there are potentially exponentially many hypotheses to 
be scored before reaching a conclusion . 

In both Pearl and Cooper's network, nodes are vari
ables, which are more general than the events repre
sented in our theory. 

7 Conclusion 

We note the following as major limitations of our model: 

• Explanations have to be consistent with facts and 
observations. Our model, however, does not provide 
any mechanism for consistency checking. 

• We have implicitly made an assumption that the 
multicausal interactions are noisy OR-gates [Pearl, 
1988, p.181], which cannot deal with complications 
resulted from multiple interacting disorders . 
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• The nodes in our model are propositions. It is not 
clear what we must do when variables or predicates 
have to be represented. 

We summarize our contributions to causal reasoning as 
follows: 

• The combination of causal and probabilistic knowl
edge defeats the straightforward application of 
Bayes' theorem. The probabilities we use are sta
tistically meaningful and could potentially be deter
mined from real-world data. 

• We have given a more adequate definition of cau
sation event and identified its relationship with co
occurrence. 

• Causal chaining is captured more naturally by the 
connection in our approach than the covering in 
GSC. 

• Explanations are defined to be scenarios rather than 
sets of causative events. This results in a more prin
cipled treatment of multiple simultaneous disorders. 

• Although probabilistic inference using belief net
works is NP-hard in general [Cooper, 1988], our al
gorithm is polynomial to the number of nodes in 
the networks and is exponential only to the number 
of observations to be explained, which, in any sin
gle case, is usually small. Moreover, the algorithm 
lends itself to distributed parallel processing. 
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Abstract 

The Bayesian network is a powerful knowl
edge representation formalism; it is also capa
ble of improving its precision through experi
ence. Spiegelhalter et al. [1989] proposed a pro
cedure for sequential updating forward condi
tional probabilities (FCP) in Bayesian networks 
of diameter 1 with a single parent node. The 
procedure assumes certainty for each diagnosis 
which is not practical for many applications. In 
this paper we present a new algorithm (ALPP) 
that allows refinement of FCPs based on ex
pert estimates of posterior probability. ALPP 
applies to any DAG of diameter 1. Fast conver
gence is achieved. Simulation results compare 
ALPP with Spiegelhalter's method. 

1 Introduction 

Much recent research is dedicated to Bayesian be
lief networks as an inference formalism building ex
pert systems [Pearl 88] [Lauritzen and Spiegelhalter 88] 
[Heckerman et al. 89] [Andersen et al. 89] . A 
Bayesian network is a pair (D, P). Dis a directed acyclic 
graph (DAG) in which the nodes represent generally un
certain variables, and the arcs signify the existence of di
rect causal influences between the linked variables. P is 
a probability distribution which quantifies the strengths 
of these causal influences. P is distributively stored in 
the network, in the form of FCPs [Pearl 88]. 

A knowledge based system QUALICON is currently 
under development, based on Bayesian networks, which 
can be used in assisting an E.M.G. technician in 
test quality control during conduction velocity studies 
[Xiang et al. 90]. The system takes qualitative features 
of recorded compound muscle action potentials as evi
dences and tries to diagnose the problems in electrode 
set-up. 

Building the system involves two parts. The first is 
generating the DAG D. This task is easy and natural for 
the experienced medical staff. The second phase, namely 
the elicitation of many FCPs, they found much more 
difficult (and the results were quite imprecise) because, 
among other causes, the task seems artificial to them. 
They claim that it would be easier for them to supply a 

posterior probability (PP) distribution for the possible 
hypotheses in particular cases. What they give in that 
case would be more precise since the task is closer to 
their daily practice. A methodology allowing the system 
to improve itself through expert's PPs is badly needed. 

Spiegelhalter et al. [1989] present a procedure for se
quential updating conditional probabilities in Bayesian 
networks decomposed into DAGs of diameter one with 
a single parent node. The procedure consists of two 
stages. In the first stage, the FCPs for each link are 
elicited from the expert. The expert is asked to esti
mate these probabilities in form of intervals to express 
the imprecision of the estimation. Then each interval 
probability is interpreted as an imaginary sample ratio: 
p(symptomAldiseaseB) = a/ b, where b is an imaginary 
patient population with disease B and among these pa
tients a of them show symptom A. In the second stage, 
updating stage, whenever a new patient with disease B 
comes in, the corresponding sample size b is increased 
by 1, and the sample size a is increased either by 1 or 
0. depending on if the patient shows symptom A. This 
updating stage is the main concern of this paper. 

A major problem of this updating approach is the un
derlying assumption that when updating the link FCP 
p(symptomA ldiseaseB), the system user knows for sure 
whether the disease B is true or false (thus we will call 
the procedure {O, 1} distribution learning) . The assump
tion is not realistic in many applications. A doctor would 
not always be 100% confident about a diagnosis he made 
of a patient. 

In this paper, a Algorithm of Learning by Posterior 
Probability (ALPP) is presented which is more general 
than the {O, 1} distribution learning. ALPP applies to 
any DAG with diameter one. The DAG can itself be the 
whole network or be a subnet of a more sophisticated 
network as long as the following DAG-completeness con
dition holds: it contains all the incoming links to its 
child nodes as in the original net. ALPP does not as
sume 100% accurate posterior judgment. Instead, it uti
lizes the PPs of each fresh case supplied by the expert 
to update the FCPs of the network . We show the al
gorithm converges to the expert's behavior under ideal 
condition. When ALPP does not converge to the human 
consultant's posterior judgments, it is an indication of 
either inadequate network structure or inadequate PPs. 
The algorithm converges quicker than the {O, 1} distri-
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bution learning equipped with 100% accurate posterior 
judgment. 

The philosophy which guided this work is described 
in section 2. Section 3 presents ALPP and section 4 
proves its convergence. The performance of the ALPP 
is demonstrated by simulations given in section 5. 

2 Learning from Posterior Distributions 

The spirit of {O, 1} distribution learning is to improve 
the precision of probability elicited from the human ex
pert by learning from available data. Now the question is 
what do we really have in medical practice in addition to 
patients' symptoms? It may be possible, in some medical 
domain, that diagnoses can be confirmed with certainty. 
But this is not commonplace. A successful treatment is 
not always an indication of correct diagnosis. A disease 
can be cured by a patient's internal immunity or by a 
drug with wide disease spectrum. One subtlety of med
ical diagnosis comes from the unconfirmability for each 
individual patient case. 

For most medical domains, the available data beside 
patients' symptoms are physician's subjective PPs of 
possible diseases. They are not distributions with values 
from {O, 1}, but rather distributions from [O, 1]1. The di
agnoses appearing in patients' files are typically not the 
diagnoses that have been concluded definitely; they are 
only the top ranking diseases with physician's subjective 
PP omitted. The assumption of {O, 1} posterior disease 
distribution may, naively, be interpreted as an approxi
mation to [O, 1] distribution with 1 substituting top rank
ing PP, and O substituting the rest. This approximation 
loses useful information. Thus a way of learning directly 
from [O, 1] posterior distribution seems more natural and 
anticipates better performance. 

In dealing with learning problem in a Bayesian net
work setting, three "agents" are concerned: the real 
world (Dr, Pr), the human expert (De, Pe), and our ar
tificial system (D8 , P8 ). It is assumed that all 3 can be 
modeled by Bayesian networks. As the building of an 
expert system involves specifying both the topology of 
D and probability distribution P, the improvement can 
also be separated into the two aspects. For the purpose 
of this paper, Dr, De, and D8 are assumed identical 
leaving to be improved only the accuracy of quantitativ~ 
assignment of P6 • 

An expert system based on Bayesian networks usually 
directs its arcs from disease (hypothesis) nodes to symp
tom (evidence) nodes, encoding quantitative knowledge 
with priors of diseases and FCPs of symptoms given dis
eases [Shachter and Heckerman 87, Henrion 88] . These 
probabilities are usually elicited from human experts. 

A question which arises is whether PP is any better 
in quality compared to priors and FCPs also supplied by 
the human expert. In our cooperation with medical staff . . ' 1t 1s found that the causal network is a natural model to 
view the domain, however, the task of estimating FCPs is 
more artificial than natural to them. Forming posterior 

1 Note that {O, 1} denotes a set containing only elements 0 
and 1, and [O, 1) is a domain of real numbers between O and 
I inclusive. 
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Vi 

Figure 1: An example of D(l) 

judgments is their daily practice. An expert is an expert 
~n that he/she is skilled at making diagnosis (posterior 
Judgement), not necessarily skilled at estimating FCPs. 
It is the expert's posterior judgment that is the behavior 
we want our expert system to simulate2. 

If we believe that the human expert carries a men
tal Bayesian network and PPs are produced by the net
work, it is postulated that the FCPs the expert artic
ulates, which consists of P8 of our system could be 
a distorted version of those in Pe. Also, Pe may dif
fer from Pr in general. Thus, 4 categories of probabil
ities are distinguished: Pr, Pe, P8 , and the PPs pro
duced by Pe (written as Pe) . Our access to only P8 and 
Pe( hypotheses ievidence) is assumed. We want to use the 
latter to improve P8 such that the system's behavior will 
approach that of expert . 

How can PP be utilized in our updating? The basic 
idea is: instead of updating imaginary sample sizes by 
1 or 0, increase them by the measure of certainty of the 
corresponding diseases. The expert's PP is just such 
a m_easure. Formal treatment is given in the following 
section. 

3 The Algorithm for Learning by 
Posterior Probability (ALPP) 

The following notation is used: 

D(l) DA Gs of diameter 1 (The diameter is the length of 
the longest directed path in the DAG. An example 
of D(l) is given in Figure l.); 

(D(l), P) Bayesian net with diameter 1 and underlying 
distribution P; 

H; E { h;1, . .. , h;n;} the ith parent variable in D(l) with 
possible values h;1 through hin;; 

V; E { Vj 1, ... , Vjm;} the jth child variable in D(l) with 
possible values Vjl through Vjm;; 

Vj/ value conjunction of all the children variables in 
D(l) with V; 's value being vi 1; 

b1c 1 1c 2 • .. kn the imaginary sample size for joint event 
h11c, &h21c2& ... &hnkn being true; 

a1;k 1 k 2 . . . kn the imaginary sample size for joint event 
Vj/;&h11;. 1 & . . . &hnkn being true; 

2 We are not arguing against the usual way of encoding 
numerical knowledge from diseases to symptoms. The ad
vantages of it, like simplicity in network structure, clarity of 
underlying causal dependency, etc. are well known. 



61; impulse function which equals 1 if for the cth fresh 
case V; equals Vj/;, and equals O otherwise (super
scripts denote the orders of fresh cases); 

Pr(), Pe(), Pa() probabilities contained or generated by 
(Dr(l),Pr), (De(l) ,Pe) and (Da(l),Pa) respec
tively. 

A Bayesian net (D(l), P) 3 is considered where the un
derlying distribution is composed via 

p(ha,& .. . &hNJ,N&v11. & ... &VM/M) 
N M 

= Ilp(h;k;) IJp(v;1;lh;) 
i=l j=l 

where h; is the conjunction of those values h;k, such that 
H; is a parent variable of V; and h;k, E { ha 11 •• • , hNkN}. 

Each of the FCPs is internally represented in the sys
tem as a ratio of 2 imaginary sample sizes. For child 
node Vi having its parent nodes H1 , ... , HQ (Q ~ 1), a 
corresponding FCP is 

p~( v111 lha1 & ... &hQkq) = a'f,k, ... kq/b'f... .. kq 

where the superscript c signifies the cth updating. Only 
the real numbers a'f,k, ... kq and bL .. . kq are stored. The 
prior probabilities for Vi's parents can be derived as 

E be e(h· ) _ k,, ... ,k,_, ,k,+1 , ••• ,kq k1 • • • kq 
Pa ,k, - '°' be 

L...Jk,, ... ,kq k, ... kq 

For a (D(l), P) with M children and with all variables 
binary, the number of numbers to be stored in this way 
is upper bounded by 

i=l 

where /3; is the number of incoming arcs to child node 
i. Storage saving can be achieved when different child 
nodes share a common set of parents. 

Updating P is done one child node at a time through 
updating as and bs associated with the node as illus
trated above. Once the as and bs are updated, the up
dated FCPs and priors can be derived . The order in 
which child nodes are selected for updating is irrelevant. 

Without losing generality, we describe the updat
ing with respect to above mentioned child node Vi. 
For the cth fresh case where ve is the symptoms 
observed, the expert provides the PP distribution 
Pe(ha, & ... &hNkN Ive). This is transformed into 

Pe( ha, & .. . &hQkq Ive) 

L Pe(ha, & · · · &hNkN Ive) 
hq+t,· ·· ,hN 

The sample sizes are updated by 

ae 1,k, ... kq 

= at1L.kq + 6f.pe(ha. & ... &hQkq Ive) 

bL ... kq = b~~-~.kq + Pe(ha, & ... &hQkq Ive). 

3 Whether it is a subnet or a net by itself is irrelevant. 

4 Convergence of the algorithm 

An expert is called perfect if (De(l), Pe) is identical to 
(Dr(l),Pr). 

Theorem 1 Let a Bayesian network (Da(l), Pa) be sup
ported by a perfect expert equipped with (De(l), Pe)- No 
matter what initial state Pa is in, it will converge to Pe 
by ALPP. 

The proof is given in figure 2. 
A perfect expert is never available. We need to know 

the behavior of ALPP when supported by an imperfect 
expert . This leads to the following theorem. 

Theorem 2 Let p; be any resultant probability in 
(Da(l), Pa) after c updating by ALPP. p; converges to 
a continuous function of Pe. 4 

Proof: 
(1) Continuity of priors. 
Following the proof of theorem 1, the prior p;(h;k;) 

converges to 

!= I:: 
k1 , . .. ,k, _1 ,k1+1, .. . ,kq 

where Pe(ha, & ... &hQkq lv(t)) is an elementary func
tion of Pe, and so does /. Therefore, p;(hik.) converges 
to a continuous function of Pe . 

(2) Continuity of FCP. 
From theorem 1, p;(v11,lhlk 1 & . .. &hQkq) converges 

to 

f = LtPe(ha,& ... &hQkq lv11 1 (t))~ 

Lz Pe(ha, & ... &hQkq lv(z)) usz) 

where Pe ( ha, & ... &hQkq Iv( z)) is an elementary func
tion of Pe. 

D 

Theorem 2, together with Theorem 1, says that when 
the discrepancy between Pe and Pr is small, the discrep
ancy between Pa and Pr (Pe as well) will be small after 
enough learning trials. The specific form of the discrep
ancy is left open . 

The absolute value of PPs is not really important in 
many applications but the posterior ordering of diseases 
be. A set of PPs defines such a posterior ordering. We 
say a 100% behavior match between (D, Pi) and (D, P2 ) 

if for any possible set of symptoms the two give the 
same ordering. The minimum difference between suc
cessive PPs of (D, P1) defines a threshold. Unless the 
maximum difference between corresponding PPs from 2 
(D, P)s exceeds the threshold, 100% behavior match is 
guaranteed. Thus as long as the discrepancy between Pe 
and Pr is within some (Dr(l), Pr) dependent threshold, 
a 100% match between the behavior of Pa and that of 
Pe is anticipated. 

4 By 'Xis a function of Pe', we mean that X takes prob
ability variables in Pe as its independent variables which in 
turn themselves have [0,1) as their domain. 
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Without losing generality, consider the updating with respect to Vi described in last section. 
(1) Priors. Let {v(l), v(2), .. . } be the set of all possible conjuncts of evidence. Let u(t) be the number of times at 
which event v(t) is true in c cases; and I:, u(t) = c. From the prior updating formula of ALPP, 

lim (I:k,, ... ,k;_, ,k;+1, ... ,kq bt. .. kq + I:1: 1 , . . . ,k; _ 1 ,k;+ 1 , . . . ,kq I::=1 Pe(ha, & ... &hQkq lvz)) 
C-+00 C + I: bO ) k, , ... ,kq k, ... kq 

,1!_~ ~ C.. J,}1,.,, .•o ~ p,(ha, & .. . &hq,0 lv(t))u(t)) 

= L LPe(ha,& . .. &hQkq lv(t))pr(v(t)) 
k,, ... ,k; _,,k;+1, ... ,kq t 

L Pe(ha, & ... &hQkq jv(t))pe(v(t)) (perfect expert) 

= 
k,, ... ,k;_,,k;+1, ... ,kq 

(2) FCPs. Let uu, (t) be the number of times at which event vu, (t) is true in c cases. Following ALPP, we have 

1
. a?,k, ... kq + I::=l 61iPe(h11: 1 & ... &hQkq lvz) 

Iimp~(vu,lha,& . .. &hQkq) = 1m O I:c ( & & I ) 
c -+ oo c-+oo bk, ... kq + y=l Pe ha, . . . hQkq vY 

}" i I::=1 D1iPe(ha, & ·. · &hQkq Iv,:) 
= c~~ i I:;=1 Pe(ha, & · · · &hQkq jvY) 

limc-+oo i I:, Pe(ha, & .. . &hQkq !vu, (t))uu, (t) 

limc-oo i I:z Pe(ha, & ... &hQkq lv(z))u(z) 

I:, Pe(ha, & . . . &hQkq !vu, (t))Pr (vu, (t)) 
= I:z Pe(ha, & . . . &hQkq jv(z))Pr(v(z)) 

I:, Pe(ha, & .. . &hQkq lvu, (t))pe(vu, (t)) 
= (perfect expert) I:z Pe(ha, & ... &hQkq lv(z))Pe(v(z)) 

Pe(ha1& ... &hQ1:q&vu.) ( I ) 
(h & &h ) = Pe vu, ha, & ... &hQkq 

Pe tk, ··· Qkq 

Figure 2: Proof of Theorem 1 

tampering(T) fire(F) {Tr,Fr} 
(Dc(l), Pc) 

{Te, Fe} 

I I 
' (Dr(l),Pr) {Hr, Sr, Rr} l (De(l), Pe) 

(D.(1), P.) I 
Pe(T&F IH.&S.&R 

heat alarm(H) smoke alarm(S) report(R) 

Figure 3: Fire alarm example 

Figure 4: Simulation set-up 

5 Simulation results 

r) 

Several simulations were run using the example in Fig
ure 3. It is a revised version of the smoke-alarm exam
ple in [Poole and Neufeld 88] . Here heat alarm, smoke 
alarm and report are used as evidences for estimating the 
likelihood of tampering and fire . Each variable, denoted 
by uppercase letters, takes binary values. For example, 
F has value/ or 7 which signify the event fire being true 
or false . 

Logical sampling [Henrion 88] was used in the 
real world model (Dr(l), Pr) to generate scenar
ios {Tr,Fr,Hr,Sr,Rr}. The observed evidences 
{Hr, Sr, Rr} were feed into (De(l), Pe) - Posterior dis
tributions Pe(T&F IHr&Sr&Rr) was made by the ex
pert model and were forwarded to update system model 

The simulation set-up is illustrated in Figure 4. 
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(D.(1), P.) . 
To compare the performance between ALPP and 

{O, 1} distribution learning, a Control model (Dc(l), Pc) 



was constructed in the set-up. It had the same 
DAG structure and initial probability distribution as 
(D.(l), P.) but was updated by {O, 1} distribution 
learning. 5 Two different sets of diagnoses were utilized in 
different simulation runs by (Dc(l), Pc) for the purpose 
of comparison. In simulation 1, 2 and 3 to be described 
below, the top diagnosis {Te, Fe} made by (De(l), Pe) 
was used. In simulation 4, the scenario {Tr, Fr} was 
used. The former simulated the situation where poste
rior judgments could not be fully justified. The latter 
simulated the case where such justification was indeed 
available. 

For all the simulations let Pr be the following distri
bution 

p(hlf &t) 0.50 p(s lf &t) 0.60 
p(hlf&t) 0.90 p(slf &t) 0.92 
p(hlf&t) 0.85 p(sJJ&t) 0.75 
p(h J]&t) 0.11 p(sJ]&t) 0.09 

p(r J/) 0.70 p(f) 0.25 
p(r J/) 0.06 p(t) 0.20 

and let P. and Pc be an identical distribution with max
imal error relative to Pr being 0.3. The initial imaginary 
sample size for each joint event F &T is set to 1. Such 
setting is mainly for the purpose of demonstrating the 
convergence of ALPP under poor initial condition. The 
distribution error should generally be smaller and initial 
sample sizes be much larger in case of practical appli
cation where the convergence will be a slowly evolving 
process. 

diag. err. err. 
trial No. rate rate S-E rate C-E 
0 0.30 0.30 
1-25 0.14 0.21 
26-50 0.10 0.25 
51 ..... 100 0.06 0.27 
101-200 0.03 0.28 

Table 1: Simulation 1 summary 

Simulation 1 was run with Pe being the same as Pr 
which assumed a perfect expert. The results are de
picted in Table 1. The diagnostic rate of (De(l), Pe) 
is defined as A/ N where N is the base number of tri
als and A is the number of trials where the top di
agnosis agrees with {Tr,Fr} simulated by (Dr(l),Pr). 
The behavior matching rate of (D.(1), P.) relative to 
(De(l), Pe) is defined as B/N where Bis the number of 
trials in which (D.(1), P.)'s diagnoses give the same or
dering as (De(l), Pe)'s do. The behavior matching rate 
of (Dc(l), Pc) to (De(l), Pe) is similarly defined. 

The results show convergence of probability values 
in P. to those in Pe (maximum error(S-E) -+ 0). 
The behavior matching rate of (D.(1), P.) increases 
along with the convergence of probabilities and finally 
(D.(1), P.) achieved exactly the same behavior as that 

5 Here we have extended {O, 1} distribution learning to 
D(l). 

of (De(l), Pe). An interesting phenomenon is that, de
spite Pe = Pr, the diagnostic rate of (De(l), Pe) was 
only 76% in the total 200 trials. Though the rate is de
pendent of the particular (D, P), it is expected to be 
less than 100% in general. In terms of medical diagno
sis, this is because some disease may manifest through 
unlikely symptoms, making other diseases more likely. 
In an uncertain world with limited evidence, mistakes in 
diagnoses are unavoidable. More importantly, P. con
verged to Pe under the guidance of this 76% correct di
agnoses while Pc did not . The maximum error of Pc 
remained about the same throughout the 200 trials and 
the behavior matching rate of (Dc(l), Pc) was low. Sim
ilar performance of (Dc(l), Pc) was seen in the next 2 
simulations. This shows that under the circumstances 
where good experts are available but confirmations to 
diagnoses are not available, ALPP is robust while {0,1} 
distribution learning will be misled by the errors in di
agnoses. This is not surprising since the assumption un
derlying {0,1} distribution learning is violated. We will 
gain more insight into this from the results of simulation 
4 below. 

An imperfect expert was assumed in simulation 2 (Ta
ble 2). The distribution Pe differed from Pr up to 0.05. 
Because of this error, P. converges to neither Pe ( as 
shown in Table 2) nor Pr. But the error between P. 
and Pe approached a small value (about 0.07) such that 
after 200 trials the behavior of P. matched that of Pe 
perfectly. 

diag. err. err. 
trial No. rate rate S-E rate C-E 
0 .300 .300 
1-100 .058 .272 
101-200 .122 .287 
201-300 .067 .290 
301-400 .076 .292 

Table 2: Simulation 2 summary 

If the discrepancy between P. and Pr is further in
creased so that the threshold discussed in last sec
tion is crossed, ( D • ( 1), P.) will no longer converge to 
(De(l), Pe) . This is the case in simulation 3 (Table 3) 
where the maximum error and root mean square error 
(rms) between Pe and Pr were 0.15 and 0.098 respec
tively. The rms error was calculated over all the priors 
and conditional probabilities of Pe and Pr. We intro
duced rms error for interpretation of simulation 3 be
cause maximum error itself, when not approaching to 0, 
did not give good indication of the distance between the 
two. 

The simulation shows that the behavior matching rate 
of P. and Pe is quite low ( 43% after 475 trials). Since 
the diagnostic rate of Pe is also lower (77%), one could 
ask which one is better. One way of viewing this is to 
compare the diagnostic rates . It is observed that, among 
Ps, Pc and Pe, no one is superior than others if only top 
diagnosis is concerned. More careful examination can be 
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(Del 1 ), l'e) (D.(l), P.) 
behv. rms rms max. 

diag. diag. mat. err. err. err. 
trial No. rate rate rate S-E S-R S-E 
0 .170 .169 .39 
lrv25 80% 84% 20% .086 .079 .17 
26rv75 74% 74% 40% .071 .068 .11 
76rv 175 73% 73% 53% .050 .083 . 087 
176-375 79% 79% 46% .059 .072 .095 
376-475 78% 78% 43% .061 .071 .119 

W ei 1 ), Pe) (Lc(l),I'c) 
behv. rms rms max. 

diag. diag. mat. err. err. err. 
trial No. rate rate rate C-E C-R C-E 
0 .170 .169 .39 
l rv25 80% 80% 32% .110 .091 .20 
26rv75 74% 74% 38% .110 .092 .16 
76rv 175 73% 73% 38% .098 .092 .15 
176rv375 79% 79% 23% .100 .090 .15 
376-475 78% 78% 26% .096 .084 .15 

Table 3: Simulation 3 summary 

obtained by comparison of distances among models. It 
turns out that the distance (S-E) and distance (S-R) are 
smaller than the distance (E-R) with corresponding rms 
errors 0.061, 0.071 and 0.098 respectively. 

The above 3 simulation assumed that only the subjec
tive posterior judgments were available. In simulation 4, 
it was assumed that the correct diagnosis was also ac
cessible. This time, (Dc(l), Pc) was supplied with the 
scenario generated by ( Dr ( 1), Pr) . Pe was the same as 
Pr. 

The results (Table 4) showed that ALPP converged 
much quicker than {0,1} distribution learning even the 
latter had access to "true" answers to the diagnostic 
problem. After 1100 trials, (D,(1), P,) reduced its max
imum error from (De(l), Pe) to 0.041 and matched the 
latter's behavior perfectly, while (Dc(l), Pc) was still on 
its way of convergence with its error about 2 times larger 
and its behavior matching rate 80%. 

diag. err. err. 
trial No. rate rate S-E rate C-E 
0 .300 .300 
1-100 .130 .375 
101-600 .048 .045 
60lrvl100 .052 .o75 
llOlrv 1500 .041 .079 
150lrvl 700 .025 .093 

Table 4: Simulation 4 summary 

Real world scenarios could be distinguished as being 
common or exceptional. An expert with knowledge about 
the real world tends to catch the common and to ig
nore the exceptional. Thus the diagnostic rate will never 
be 100%. This is the best one could do given the lim
ited evidence. The PPs provided by the expert contain 
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the information about the entire domain, while a sce
nario contains only the information about this particular 
scene. Thus, although both (D,(1), P,) and (Dc(l), Pc) 
converged, the former converged quicker. This difference 
in convergence speed is expected to emerge wherever the 
diagnosis is difficult and the diagnostic rate of the expert 
is low . 

6 Remarks 

An algorithm of learning by PP distribution (ALPP) for 
sequential updating probability in Bayesian networks is 
presented. ALPP is based on any DAGs of diameter 
1. After a network is constructed through elicitation of 
expert knowledge ( qualitatively the dependency in the 
domain and quantitatively the FCPs), ALPP can be ap
plied to improve it towards the expert's behavior. Sev
eral features of ALPP can be appreciated through the 
theoretical analysis and simulation results given in the 
paper. 

• ALPP does not assume 100% posterior knowl
edge about the "true" answer to a diagnostic 
problem as does the {0,1} distribution learning 
[Spiegelhalter et al. 89]. When only expert's pos
terior judgments are available , ALPP converges to 
expert's behavior while {0,1} distribution learning 
will be misled by unavoidable error made in expert's 
diagnoses due to the violation of its underlying as
sumption. 

• When both expert's posterior judgments and "true" 
answers are accessible, ALPP converges faster than 
{0,1} distribution learning due to the richer infor
mation contained in expert's posterior judgments. 

• ALPP is tolerant to human consultants who are 
good but imperfect. When ALPP can not converge 
after many learning trials, it is an indication of inad
equate DAG structure or inadequate posterior judg
ments. 

• Computation of ALPP is simple. 

• ALPP offers the possibility of combining the exper
tise from multiple experts, although this requires 
further research. 
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Abstract 

There is no doubt that the most influential rep
resentation of action in artificial intelligence has 
been the situation calculus. Nevertheless, in re
cent years it has had many detractors who ar
gue that the situation calculus is epistemologi
cally inadequate to represent many action sce
narios, in particular those with multiple agents 
performing concurrent actions. The main re
sult of this paper is that the situation calcu
lus can represent many of these scenarios, and 
it is in fact as epistemologically adequate as a 
discrete temporal logic with instantaneous ac
tions. However, the point of this paper is not to 
promote the situation calculus, but to demon
strate how intuitive arguments about represen
tational power can be subtly wrong, obscur
ing more important considerations of simplicity 
and understandability. 

1 Introduction 

The situation calculus [McCarthy, 1968] was the first 
general, formal representation of action and effects. Its 
fundamental ontology of situations and operators formed 
the basis for seminal work on planning [Fikes and Nils
son, 1971; Sacerdoti, 1977; Fikes et al. , 1972], and it 
continues to influence formal and algorithmic theories of 
action reasoning [Lifschitz, 1987; Wilkins, 1982]. Yet we 
have seen many arguments against this representation. 
The most common and significant objection has been 
that " ... it is impossible to represent concurrent actions 
in [the] situation calculus" [Pelavin and Allen, 1986]. 
Other researchers are equally blunt: " ... in the situa
tion calculus, concurrent actions aren't allowed" [Mor
genstern and Stein, 1988]. The argument is also expli
cated in the following quote: 
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Most early work in action planning assumed 
the presence of a single agent acting in a static 
world. In the formulation of these problems, 
the world was considered to be in one of a po
tentially infinite number of states and actions 
were viewed as mappings between these states. 
However, the formalisms developed did not al
low for simultaneous action, and as such are in-

adequate for dealing effectively with most real
world problems that involve other a~ents and 
dynamically changing environments lGeorgeff, 
1987]. 

This paper takes a conciliatory view of the relation
ship between the representation of concurrent, non
interfering actions and the ontology of the situation cal
culus. The principal result herein is that despite state
ments in the above quotes, the situation calculus ontol
ogy is as capable of representing concurrent actions as 
discrete temporal calculi, which are often used because 
of their ability to represent concurrent actions. This 
comparison takes the form of a straightforward syntax 
translation function on sentences in the two approaches. 
The apparent lack of support for concurrent actions in 
the situation calculus stems from how the formalism is 
generally used, where action constants completely deter
mine resulting situations. 

2 The Situation Calculus 

The situation calculus is based on three ontological con
cepts: the situation, the propositional fluent, and the 
situational fluent. A situation is an instantaneous state 
or "snapshot" of the domain being modeled . A propo
sitional fluent is a set of situations, i.e. the strongest 
property that is true of the members of that set. A situ
ational fluent is a mapping from situations to situations, 
i.e. how the application of an action transforms each 
situation into a new situation. 

These concepts can be represented as first-order logic 
objects, predicates, and functions, respectively, as is 
done in dynamic logic; however, fluents are usually rei
fied by representing them as objects and relating them 
to situations by a special holds predicate and a special 
result function. This paper uses the notation presented 
by Lifschitz [Lifschitz, 1987], which is as follows: 

• holds(p, s) denotes whether the propositional flu
ent denoted by p contains (is true of) the situation 
denoted bys. 

• result(a, s) denotes the resulting situation from 
applying the situational fluent denoted by a to the 
situation denoted by s. 

Arguments against this representation, as mentioned in 
the introduction, revolve around the fact that only a 



single situational fluent is allowed as an argument to the 
result function. Since a given situational fluent com
pletely determines the situation mapping, there is no 
room for the influences of additional actions. Neverthe
less, the next section shows how a straightforward use 
of the situation calculus ontology can represent the class 
of concurrent actions with cumulative effects, i.e. non
interfering [Georgeff, 1987] actions. 

3 Causal Rules and Action Types 

Traditionally, a causal rule in the situation calculus has 
the following form: 1 

holds(p1 , s) I\ ... I\ holds(pn, s) 
_. holds( e, result(a, s)), 

where p1 , . . . , Pn are sufficient preconditions for the per
formance of action a to imply the effect e in the re
sulting situation. Representations based on this form of 
causal rule, of which there have been many [Hayes, 1971; 
Fikes and Nilsson, 1971; Lifschitz, 1987, .. . ], are subject 
to the criticisms of the previous section. The situational 
fluent on the right-hand side of this rule is called an "ac
tion", performed by a single force in an otherwise static 
world. Concurrent actions are indeed incompatible with 
this interpretation of action. 

However, a slightly different version of this causal rule 
does allow concurrent actions. First, replace the situa
tional fluent constant on the right-hand side with a con
strained variable, in the following way: 

holds(p1 , s) I\ ... I\ holds(pn, s) I\ type( a, A) 
_. holds( e, result(a, s)) . 

This rule says that when the preconditions p1 , . • . , Pn 
hold and a situational fluent of type A is applied to a 
situation, the effect e will hold in the result. An example 
rule of this form would be: 

holds(loaded(g), s) I\ type(a, trigger(g)) 
_. holds(not(loaded(g)), result(a, s)). 

This rule asserts that when a loaded gun's trigger is 
pulled, it will become unloaded. However, it does not 
make assertions about other dynamic properties; the rule 
may be applied without completely determining the re
sulting situation. This is because the situational fluent 
on the right-hand side is not completely determined. 

If the situational fluent argument to the result func
tion is called an action, as it typically is when using 
the situation calculus, then the second argument to the 
type relation would be an action type. However, an ac
tion type like trigger(g) plays a role that is commonly 
called simply an action. These two notions of action 
present in the above formula correspond to the situation 
calculus and explicit temporal logic notions of action, 
thus illuminating the major semantic difference between 
the two formalisms. As the above formula shows, the 
explicit temporal logic notion of action is relatively easy 
to capture in the situation calculus; this point will be 
elaborated in the next section. 

1In this and other logical sentences in this paper, italicized 
letters are implicitly universally quantified over the entire 
sentence. 

Now that we can express partial resulting situations, 
it becomes a simple matter to combine the partial map
pings of concurrent actions by asserting two situational 
fluent types. For example, suppose that concurrent with 
pulling a gun's trigger, a fragile object is dropped, even 
by some other agent somewhere else. If we have a rule 
that says that object will become broken, i.e.: 

holds(fragile(o), s) I\ type(a, drop(o)) 
_. holds(broken(o), result(a, s)) 

and we assert that some situational fluent is both the 
drop and pull trigger types, plus that the right precon
ditions hold in some situation, i.e. : 

type(fs, trigger(g3 )) /\ type(fs, drop( 04)) 

holds(loaded(g3 ), s7) /\ holds(fragile( 04), s1 ), 

then both of the above causal rules may be invoked, re
sulting in the following conclusions about effects: 

holds(broken(o4), result(fs, s1)) 

holds(not(loaded(g3)), result( fs, s7 )) . 

Note that although the above example illustrates how 
concurrent actions may be represented, it requires that 
they be non-interfering, i.e. that their joint effects are 
( at least) the union of their individual effects. The diffi
culty with representing interfering actions is not unique 
to this use of the situation calculus; indeed it is a diffi
culty with any causal reasoning system that performs 
local inferences about effects, because the reasoning 
takes on a nonmonotonic character ( although there have 
been knowledge-intensive monotonic solutions [Georgeff, 
1987; Weber, 1989]). Remedying this, in fact, involves 
a solution to the infamous qualification problem [Mc
Carthy, 1977]. Similarly, the qualification problem is the 
most important issue in the representation of overlap
ping actions, which are also not supported by the above 
approach. 

Cooperating actions are easy to represent by stipulat
ing multiple situational fluent types in a single causal 
rule. For example, if the gun is aimed at the same time 
as the trigger is pulled, then the target will be hit: 

holds(loaded, s) I\ type(a, trigger)/\ type(a, aim) 
_. holds(target-hit, result(a, s)). 

Therefore, the tandem effects of these concurrent actions 
are properly stronger than their individual effects. 

A reasonable argument can be made that the above 
forms of causal rules are not properly part of the sit
uation calculus, since the typical explications and ap
plications of the situation calculus provide causal rules 
that do not involve action types. Nearly every exam
ple that I have seen places situational fluent constants 
in the causal rules, which completely determine the re
sulting situation, and therefore suffers from the standard 
criticisms. The point should at least be taken that the 
situation calculus requires far less of an overhaul than 
is typically called for in order to support concurrent ac
tions and the related concepts of partial predictions and 
external events. 

This point is also made, quite masterfully, by Schubert 
[Schubert, 1989] . In fact, he also presents a technique for 
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representing and reasoning about concurrent actions in 
the situation calculus. His approach differs from mine in 
that he employs a composition function costart(a1, a2) 
that produces the action object of performing action ob
jects a1 and a2 concurrently. Such terms can be used as 
the action argument of the result function, and com
bined effects proven about the resulting state. The key 
is that these actions do not alone determine resulting 
states; assertions (or lack thereof) about the result 
function itself (on any action) support reasoning about 
external influences, implicit effects, and ambiguous out
comes. This paper's action types approach also supports 
this reasoning, but with the following advantages: 

1. type assertions are simpler than costart definitions 
and terms; 

2. type assertions can be given incrementally, whereas 
actions in costart terms are the only ones carried 
out by the agents of interest;2 

3. assertions about action types are analogous to as
sertions about action occurrences in popular explicit 
temporal logics. 

The analogy between action type and occurrence asser
tions is in fact strong enough to construct a translation, 
which the next section does to demonstrate the expres
siveness of the situation calculus using action types. 

4 Explicit Time in the Situation 
Calculus 

One of the more popular temporal formalisms is the 
discrete, explicit time-line temporal calculus [Shoham, 
1988; Georgeff, 1987; Morgenstern and Stein, 1988; 
Goodwin, 1988, . .. ]. This formalism starts with a par
titioning of a global time-line into a countable number 
of what I call moments ( avoiding a commitment to ei
ther points or non-overlapping intervals). Since moments 
are countable in number, moment constants are usually 
taken to be the integer constants, thereby inheriting in
teger operations like addition and a total ordering. Also 
like the integers, the time line is typically unbounded 
both from above and below. 

Reified propositions are asserted to be true over mo
ments using the relation "T" (many different relation 
names have been used here, including "holds", which 
I have avoided here to distinguish it from the situation 
calculus relation). For example, we could write that the 
reasoning agent is grasping a particular block at time 5 
in the following way: 

T(grasping(b2), 5). 

Actions are also reified objects, and asserted to occur 
over moments using the relation "occurs", as in the fol-

2The completeness of action objects can be used to make 
inferences about non-actions, e.g. if an agent performs a 
costart(valk, talk) then it doesn't perform a think. Cer
tainly there are domains where this sort of inference is useful, 
such as when interpreting stories, but in general the com
pleteness property is unnecessary or even unreasonable. Thus 
an approach where one must explicitly assert completeness, 
like when using action types, is more appropriate. 
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lowing example: 

occurs(pickup(b2), 4) . 

Causal rules are often addressed in a generation form, 
where the truth of appropriate preconditions, together 
with the occurrence of an action, imply that an effect is 
true over the succeeding moment, e.g . 

T( clear(b), m) /1. occurs(pickup(b), m) 
-+ T(grasping(b), succ(m)), 

where succ produces the succeeding moment, usually 
defined to be m + 1. lncidently, the existence of this 
function and its convenience in causal rules is the reason 
why temporal logics are usually discrete. 

In the last section, I said that explicit temporal logic 
actions correspond to action types in the situation cal
culus. Here I make that correspondence more precise by 
defining a translation function ~ from the above tempo
ral logic to the situation calculus. The definition starts 
with a translation from moments to distinguished situ
ations, i.e. for all moments m, ~('"m,) = ,..sm, , where 
a total ordering is imposed on these situations via the 
ax10m: 

Ssucc(m) = r esult(fm, Sm), 

Thus there is both a situation Sm and a situational flu
ent fm defined for each moment m (although since they 
are defined in terms of each other, these extra objects 
exist only for notational convenience). Assertions about 
the truth of properties are translated to the holding of 
propositional fluents in the obvious way: 

~('l'(p, mf) = 'nolds(p, smf, 

and the occurrence of actions are translated to type as
sertions by: 

~('"occurs(a, mf) = ,..type(fm, af. 

Applying ~ to the literals of a sentence extends ~'s do
main to causal rules, i.e. : 

~('"Vm[T(p, m) /1. occurs(a, m) -+ T(e, succ(m))r) = 
'"Vm[holds(p, sm) /1. type( fm, a) 
-+ holds(e, result(fm, sm))r. 

The translation can be extended to theories composed 
of causal rules and assertions about particular scenarios. 
Thus the popular temporal logic given above can be ex
pressed as a notational variant of the situation calculus. 
Not only does this refute the expressibility argument for 
discrete temporal formalisms over the situation calculus, 
but the translation ~ is so straightforward that it can be 
done in linear time and space - giving algorithms similar 
computational properties as well. 

5 Frame Axioms for Action Types 
It should be obvious that traditional frame axioms [Mc
Carthy and Hayes, 1969] do not make sense for action 
types. Such explicit statements that all properties not 
directly affected by an action do not change could be 
written for the action objects that actually do the map
pings between states, but since we do not make asser
tions about the identity of these objects (only that they 



belong to types), these frame axioms have no motivation 
nor use. 

Interestingly enough, McCarthy's approach of mini
mizing abnormality [McCarthy, 1984] applies directly to 
causal rules using action types. This approach adds the 
persistence axiom: 

-,ab(p, a, s) I\ holds(p, s)-+ holds(p, result(a, s)), 

and then minimizes (applies the closed-world assumption 
to) the ab predicate, i.e. action objects only affect "ab
normal" propositions, which are relatively rare. When 
we assert the type of an action object, causal rules imply 
that some propositions do change, overriding the default 
and asserting abnormality. However, this approach does 
not resolve ambiguities when abnormality assumptions 
conflict [Hanks and McDermott, 1986], which is gener
ally considered undesirable. 

Lifschitz's approach of minimizing causes [Lifschitz, 
1987] can also be applied to causal rules with action 
types. Essentially, this approach supplies the persistence 
axiom (law of inertia): 

((precond(q, a) /\-,holds(q, s)) V -,causes(a,p, false)) 
/\holds(p, s)-+ holds(p, result(a, s)), 

and then minimizes the causes and precond predicates, 
i.e. if the reasoner does not know that the action causes 
a proposition to change, or the reasoner knows that the 
action has a false precondition, then the proposition will 
not change. This differs from the minimizing disabil
ity approach in that the extensions of the causes and 
precond predicates are not sensitive to the changes that 
are actually observed, like ab. In Lifschitz's use of the 
situation calculus, this means two things: l. minimiz
ing causes does not infer ramifications lLifschitz, 1987; 
Weber, 1988], and 2. it resolves the ambiguity discovered 
by Hanks and McDermott. However, when used with 
action types, Lifschitz's approach takes on the follow
ing properties instead: l. ramifications can be inferred, 
and 2. the Hanks and McDermott problem comes back! 
Since type assertions do not exactly determine the action 
objects, there exist unique action objects for every situa
tion transition. Thus situations are implicitly part of the 
action objects themselves, and are therefore considered 
in the minimization. This produces properties more like 
minimizing abnormality than minimizing causes. 

The question remains as to how the frame problem 
can be adequately addressed in a situation calculus rep
resentation using action types. Not surprisingly, given 
the comparisons in this paper, this question is similar to 
one faced by engineers of time-line representations. One 
answer has been to define exactly what actions could 
cause a proposition to become false, and then mini
mize action occurrences [Morienstern and Stein, 1988; 
Sandewall, 1988; Weber, 1988]. In other words, one can 
assume that a proposition is unchanged if all actions that 
could cause it to change can be assumed to not occur. 
Essentially, this is implemented by merely circumscrib
ing the occurs predicate in the presence of a complete 
causal theory. 

This solution can be applied to action types in an 
analogous way, by providing explanation closure axioms 

[Schubert, 1989] and then minimizing membership of ac
tion objects in types. For example, suppose we know 
that an object must be dropped or hit to become bro
ken, i.e. 

-,holds(broken(o), s) I\ holds(broken(o), result(a, s)) 
-+ type(a, drop(o)) V type(a, hit(o)), 

(1) 
and that 

-,holds(broken(vase1), s) /\ type(a5, sleep). 

Then after circumscribing the type predicate, we 
can infer -,type(a5,drop), -,type(a5,hit), and when 
combined with the contrapositive of (1), we infer 
-,holds(broken(vase1), result(a5, s)). This approach 
of minimizing types is interesting in how it parallels ap
proaches to default membership in more general taxo
nomic reasoning. 

Minimizing occurrences, whether they are expressed 
using type or occurs, can produce unreasonable conclu
sions when actions generate other actions [Weber, 1989]. 
For example, consider the generation rule: 

T(loaded(g), m) /\ occurs(trigger(g), m) 
-+ occurs(fire(g), m), 

which says that if the trigger is pulled on a loaded gun it 
will fire. If it is known that the trigger is pulled yet not 
known whether the gun is loaded, then the circumscrip
tive conclusion that the gun was not fired implies that 
the gun must not have been loaded - pulling this fact 
seemingly out of thin air. The problem is the default as
sumptions about nonoccurrences are insensitive to other 
facts unless they contradict the assumption. In the above 
example, the occurrence of a trigger should block as
sumptions about the occurrence of a fire. Morgenstern 
and Stein [Morgenstern and Stein, 1988] accomplish this 
by excluding from the minimization any action occur
rence that is implied by an antecedent with at least one 
true conjunct. Since this solution is syntactic, however, 
it is easily to construct counterexamples to its intent (in
significant or tautological conjuncts, for instance). 

A more robust solution to the frame problem, and this 
extends beyond the situation calculus, lies in more com
plex models of defeasible arguments for the persistence 
of facts, where bodies of evidence are identified that jus
tify default conclusions or numeric beliefs [Nute, 1986; 
Loui, 1987; Pearl, 1988; Weber, 1989]. 

6 Conclusions 

In this paper, I have shown how to represent concurrent, 
non-interfering, non-overlapping actions using a simple 
version of the situation calculus. The conclusion to be 
drawn from this result is not that the causal reasoning 
field should return to the use of the situation calculus; 
the fact that the situation calculus is ordinarily used 
in a restrictive way (with situational fluent constants in 
result terms) is an indication that perhaps a more in
tuitive notational variation is in order. The <I> trans
lation to the situation calculus presented here involves 
two distinct interpretations of action in one representa
tion, which is certainly more confusing than the single 
interpretation in an explicit-time version. 
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The appropriate conclusion is that the central issue 
in choosing a causal representation, at least as far as 
concurrent actions are concerned, is not expressibility 
but how easily and reliably a representation can be used 
to express adequate axioms for the reasoning task. To 
that end, other representations such as frames and causal 
graphs may be more adequate than the sentential ap
proaches described here. 
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Abstract 

The paper presents briefly a network modeling 
environment, called Net-clause language. The 
language is designed for describing distributed 
computation schemes without centralized con
trol and using unification as a basic processing 
paradigm. The language is capable to imple
ment a data-driven inference, combined with a 
kind of default mechanism. The authors' atten
tion is focused mainly on the logical interpreta
tion of the data-driven inference as a resolution 
procedure, working on Horn clauses. The 
default mechanism is illustrated by examples in 
the framework of default reasoning. 

1 Introduction 

Most of the network models used in AI are just notations 
(e.g. semantic networks). The real working network sys
tems are mainly connected with parallel distributed 
processing (PDP), well developed in the field of numeric 
computation. Even modern connectionism, which at
tempts to generalize the PDP is also based on numeric 
computation. Opposed to numeric computation are the 
symbolic approaches in AI - the methods for problem 
solving, including automatic ·deduction. Here we present 
an on-going research project aimed at employing net
work approaches in symbolic computation. 

We propose a language for describing network models, 
based on symbolic processing. The basis of the language 
is the network formalism presented in [Markov,1989], 
where it was considered as an extension of Prolog. Its 
applications in the field of graphical object representa
tion and as a connectionist modeling tool are shown 
there. In the present paper the formalism (here called 
Net-clause langu.age) is further elaborated and its inter
pretation as a reasoning scheme is shown. 

The Net-clause language is an extension of the stan
dard Prolog. It uses the syntax of Prolog terms and its 
semantics is aimed at modeling graph like structures 

(networks), consisting of nodes and links. The nodes 
specify procedures unifying terms, and the links are 
channels along which the terms are propagated. The lan
guage is designed for describing distributed computation 
schemes, without centralized control and using unification 
as a basic processing mechanism. 

2 Net-clause Programming 

The net-clause programs describe networks. The basic 
constructors of net-clause programs are the net-clauses. 
A net-clause is a sequence of nodes, syntactically repre
sented as structures (complex terms), separated by the 
special functor ":". The network links are implicitly 
defined by specifying variables in the nodes. Specifying 
one and the same variable in several nodes defines an 
explicit link between them. The variables in the Net
clause language are called net-variables. Their basic fea
ture is that the scope of their binding and sharing is the 
whole net-clause. This is achieved by abandoning the 
mechanism of variable copying, required by the standard 
Prolog. Links in the network can be established also 
dynamically by unifying (sharing) net-variables. As the 
net-clauses are not copied when they are accessed (like 
Prolog clauses), the dynamically established links are 
valid globally among all net-clauses until the network is 
active. Dynamic links are the only way to organize the 
communication between different net-clauses, since the 
variables in each net-clause are local. 

The language provide means for fixing the created by 
sharing net-variables dynamic links. Thus the structure 
of the network could be also built in a data-driven man
ner. Actually these means are learning procedures, based 
on generalization of ground instances. However this 
aspect of the language if out the scope of the present 
paper. 

Net-clauses are constructed of three types of nodes: 
1. Free nodes. These are structures used to access net

variables, inside and outside the net-clause. 
2. Spreading activation nodes. They have the following 

syntax: 
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node(Xl, ... ,Xn,M, < procedure>) 

The purpose of the node procedure is to unify terms, 
particularly to bind variables, which in turn could 
propagate both data (terms) and control (activation) fur
ther among other nodes in the network. M is an integer 
number and its semantics is to define a threshold, deter
mining the amount of data required to activate the pro
cedure. Xi are net-variables which serve as channels for 
term propagating. They can be viewed as excitatory links 
and as inhibitory links for the activation of the procedure. 
The excitatory links are represented as simple (ordinary) 
variables and the inhibitory links are represented as 
negated variables (written as - Xi). The procedure is ac
tivated if the difference between the number of the 
bound simple variables and the number of the bound 
negated ones is equal to M. When defining a spreading 
activation node the condition M > 0 is required. This en
sures that the procedure can not be activated "by 
definition", i.e. at least one variable binding is needed for 
that purpose. Actually binding a simple variable decre
ments M, and binding a negated one increments it, thus 
the procedure is activated when M = 0. In such a way M 
can be used to indicate dynamically the number of bind
ings of Xi. 

The activation condition conforms to one general prin
ciple - it should depend only on the net-variable unifica
tion. This principle is adopted to ensure that the network 
realizes distributed computation without centralized con
trol. This means that the unification is not only the basic 
data processing mechanism, but also a mechanism for 
specifying data-driven control in the network. 

The procedures have associated truth values, i.e. then 
may succeed or fail. They can be specified in one of the 
following forms: 

* Terml = Term2. This is an explicit unification of 
net-variables. It succeeds ifTerml is unified with Term2; 
* <functor> ( < sequence of terms>). A procedure in 

this form succeeds if this structure is unified with an ex
isting free node in the network. 
* External Procedure. This is a Prolog goal, activating 

some Prolog predicate defined outside the network. 
* Sequence of Procedures. This is a conjunction or dis

junction of several simple procedures ( each having one 
of the above three forms). 

Procedures can be also activated outside the proce
dural nodes to initiate the network. Initiating the net
work means unifying some net-variables. This is done 
through the free nodes, called as Prolog goals. In the 
presence of proper conditions some of the spreading ac
tivation nodes activate procedures, which in turn unify 
more variables and activate new procedures. 

3. Default nodes. These nodes are specified by the fol
lowing syntax (the procedure is optional): 
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default(X,Term, <procedure>), or 
default(X,Term) 

The activation condition for the optionally specified pro
cedure is connected with net-variable sharing (unifying 
two net variables). When an attempt to unify X with 
another variable Y is made the procedure is activated (if 
any). If the procedure terminates successfully or uncon
ditionally (if it is not present) Y is unified with Term. If 
the procedure fails the variable Y becomes free and the 
original unification ( the unification between X and Y) 
succeeds. 

As it is seen by the definition a net-variable can 
propagate a term not being bound to it. This means that 
one and the same variable can be used both as a spread
ing activation channel and activation by-need channel. 
Moreover, the term being bound to a net-variable has a 
greater priority than the needed (shared) one, since once 
bound the variable can not be shared later. This is a very 
important feature of the language, because it ensures the 
implementation of a non-monotonic inference scheme 
which is discussed later. 

To illustrate the features of the Net-clause language we 
shall briefly discuss a simple example ( described in detail 
in [Markov,1989], for a different activation scheme). Let 
us consider the following net-clause program: 

/* Free Nodes · Network Inputs */ 
edge(A,B,Sl,Ll): 
edge(B,C,S2,Ll): 
edge(C,D,Sl,Ll): 
edge(D,A,S2,Ll): 
edge(B,E,S2,L2): 
edge(E,F ,Sl,Ll): 
edge(F ,A,S2,L2): 
edge(E,G,S3,L3): 
edge(G,A,S4,IA): 

/* General case of a four-side figure */ 
node(A,B,E,G,4,fig(four _ side _figure)): 

/* Hidden node checking perpendicularity */ 
node(Sl,S2,2,p(Sl,S2,P) ): 

/* Non-perpendicular figures */ 
node(A,B,E,F, - P,4,fig(parallelogram)): 
node(A,B,C,D, - P,4,fig(rhombus)): 

/* Perpendicular figures*/ 
node(A,B,E,F ,P ,5,fig(rectangular) ): 
node(A,B,C,D,P ,5,fig(square) ): 

/* Free Node • Network Output */ 
fig(Fig). 

/* 1 */ 

I* 2 */ 

/* 3 */ 
/*4 */ 

I* 5 *I 
/* 6 */ 



/* Procedure calculating perpendicularity */ 
p(X,Y,true):-0 is (X-Y) mod 90,!. 
p(_,_,__). 

The program describes a network for recognition of 
planar four-side geometric figures. The figures are rep
resented as a collection of edges with parameters - writ
ten as free nodes. The shared variables in these nodes 
represent the common vertices and the geometric con
straints (parallel and same-length edges). The shared 
variables, grouped in the spreading activation nodes, 
represent a "part-of' hierarchy. Thus, unifying the free 
nodes with the nodes of a particular instance, the bound 
net-variables activate the corresponding class of figures. 

The example shows a way of using hidden nodes (an in
termediate layer between input and output nodes) in 
such networks. Node 2 is activated when the net
variables Sl and S2 (representing the slopes of the cor
responding edges) are bound. If the condition for per
pendicularity is present, then the procedure "p" binds the 
net-variable P to "true", thus activating the 
"perpendicular" classes and suppressing the "non
perpendicular" ones (because of the inhibitory link - P). 

The network is activated by specifying the edges of 
sample figures as net-clause goals. The corresponding 
class is obtained by the free node "fig", playing the role of 
a network output. Some examples of the network activa
tion are shown below. 

?- edge(l,2,0,20) ,edge(2,3,45,30) ,edge(3,4,0,20), 
edge(4,1,45,30),fig(X). 

X = parallelogram 

yes 
?- edge(l,2,0)0),edge(2,3,90,20),edge(3,4,0,20), 

edge(4,1,90,20),fig(square). 

yes 
?- edge(l,2,0,20),edge(2,3,S0,20),edge(3,4,0,20), 

edge(4,1,50,20),fig(X). 
X=rhombus 

yes 
?- edge(a,b,0,20),edge(c,d,45,30),edge(d,e,10,40), 

edge(e,a,50,60),fig(X). 
X =four_ side_ figure 

3 Logic and Net-clause Programming 

The logic interpretation of the net-clauses is discussed in 
the framework of the spreading activation scheme, con
sidered as a kind of data-driven inference. We define a 
correspondence between the Hom clause language 
[Lloyd, 1984] and the Net-clause one. A Horn clause 
program is translated into a network described by 

several net-clauses. Each program clause is translated 
into a net-clause, where the clause head is represented 
by a spreading activation node and the clause body - by a 
collection of free nodes. The shared variables in the 
clause head and body are translated into shared net
variables in the net clause. The goal clause is repre
sented as a net-clause built out of free nodes, which can 
share variables, thus introducing the means to share vari
ables in the original Horn clause goal. Finally, the unit 
clauses are represented as a net-clause goal, which ac
tivates the net-clause program. All different net-clauses 
communicate through the procedure calls to the free 
nodes, and the whole process is governed by the spread
ing activation scheme. 

To illustrate the above correspondence we discuss an 
example of how a Horn clause program can be trans
formed into a net-clause one. Consider the Horn Clause 
program: 

1. p(a,b) <--
2. p(c,b) <--
3. p(X,Z) < -- p(X,Y),p(Y,Z) 
4. p(X,Y) < •• p(Y,X) 
S. < -- p(a,c) 

(1) 

This program is transformed to the following net-clause 
program ( the Horn clauses and net-clauses are num
bered correspondingly). 

1,2. ?- p(a,b),p(c,b). 
3. node(X,Y,Z,3,p(X,Z)): 

p(X,Y): 
p(Y,Z). 

4. node(X,Y,2,p(X,Y)): 
p(Y,X). 

5. p(a,c):[]. 

(2) 

The program (1) has clear declarative meaning, however 
there is no Prolog system, which is able to find a refuta
tion for it ( most of the Prolog systems will go into an in
finite loop). This is because of the fixed computation and 
search rules used in the practical implementations of the 
SLD-resolution. The program (2) runs successfully on 
the net-clause interpreter. It realizes an inference 
process directed from the unit clauses to the goal clause. 

To activate the net-clauses (2) we specify the goal 
(1,2): 

?- p(a,b),p(c,b). 

The inference process in terms of resolution refutation 
initiated by the above goal is illustrated in Fig. 1. The 
proof procedure shown in the figure is based on resolu
tion where the refutation procedure is initiated by the 
unit clause resolution. In fact the Net-clause goal, which 
represents a set of unit positive clauses is the input for 
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the resolution process. So, the data-driven inference 
might be interpreted in terms of set of support strategy 
[Chang and Lee,1973; Stickel,1986]. Let us denote all 
net-clauses representing the program clauses (net
clauses 3 and 4 in the example) by S. The net-clause goal 
(unit positive clauses) can be viewed as a set of support 
T. Then the left net-clauses in the program comprise 
S-T. All derived clauses are ancestors of the input data 
and the derivation of the empty clause is a result of 
resolving any derived or input clause with a goal clause. 

p(a,b) lpCX, Y) V lpCY ,Z) V p(X,Z) 

p(c, b) lp(Y ,X) V p(X, Y) 

lpCb,Z) V p(a,Z) p(b,c) 

p(a,c) lp(a,c) 

D 

Figure 1 

Using the clauses 1-4 of the program (1) non-ground 
goals could be proved too. For example we can ask with 
the goal 

<--p(X,Y) 

and obtain all solutions. To do that we change the free 
node 5 with the following one: 

p(X,Y): node(X,Y,2,write(p(X,Y))). 

In such a way we define a node which can indicate the 
satisfaction of the goal, printing the answer substitutions. 
Hence we can obtain all possible solutions by the follow
ing question: 
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?- p(a,b) ,p(c,b) ,nl,fail. 
p(a,c) 
p(b,c) 
p(c,b) 
p(c,a) 
p(b,a) 
p(a,b) 

The example considered in the present section outlines 
the general scheme of using the Net-clause language for 
data-driven inference. The program discussed is quite 
simple - the number of positive and negative literals are 
equal. Therefore the hard problems of handling the 
non-determinism when resolving the complementary 
literals are avoided. However the non-determinism is an 
important feature of the Hom clause programs. There
fore we try to extend the semantics of the Net-clause lan
guage in order to cover the whole class of Hom clause 
programs. 

The underlying idea to solve the problem of non
determinism is introducing a kind of lazy evaluation of 
the net-variables. The lazy evaluation in our computa
tional model is performed under decentralized control of 
the inference process. This is a way to avoid the back
tracking, which is the bottle-neck of the classical in
ference algorithms and an undesirable feature in the 
framework of the decentralized computational paradigm 
of the Net-clause language. 

The lazy evaluation can be described in terms of 
producers and consumers [Reddy,1986]. In our inference 
scheme the producers bind net-variables and the con
sumers check the consistency of the these bindings. The 
need of lazy evaluation arise when a conjunction of two 
goals Gi and Gj (two free nodes) that share variables 
have to be evaluated. Since there is no explicitly defined 
producer-consumer relationship between the goals Gi 
and Gj, either of them can produce bindings of their 
shared variables. However if the bindings are inconsis
tent any of the goals Gi and Gj become consumers wait
ing for new bindings to be produced. Each shared vari
able is instantiated only after a consistent binding is 
produced. The spreading activation node in a net-clause 
has no access to the net-variables before they are instan
tiated. This ensures that inconsistent solutions in local 
sense (the solutions that do not satisfy all conditions of a 
given net-clause) will never be produced. 

To implement the lazy evaluation scheme we extend 
the semantics of the net-clause attaching to it a kind of a 
local memory. The local memory stores solutions in
ferred currently by the spreading activation node. The 
new solutions obtained during the inference process are 
added to the old ones. By introducing lazy evaluation the 
net-clauses become more independent in the overall in
ference process. Thus we abandon completely the 
centralized control of the inference process. 

The concept of the local memory is realized in the 



framework of the net-variables. Each net~variable is 
provided with a space for storing all terms which have 
been instantiated to it. We call this set of instantiations of 
the variable. When two variables are shared their set of 
instantiations are used to achieve consistency of the vari
able bindings. To prevent the propagation of inconsistent 
bindings the spreading activation node is activated only 
after checking the consistency of the accumulated in
stantiations. The consistency check of two shared vari
ables is a procedure searching for elements in both sets 
of instantiations satisfying both constraints. The activa
tion of the node is delayed until the consistency checking 
procedure terminates with positive result for all shared 
variables. When this procedure fails the net clause waits 
for new solutions. In addition if a net-clause does not 
contain any shared variables it could be activated when 
any of its free nodes is unified independently. 

The lazy evaluation with decentralized control fits well 
to the data-driven inference adopted here. The 
producer-consumer constraints are applied and new 
data are generated only when "enough" input data are 
available. In such a way the size of the output data 
(locally generated solutions) is reduced to the necessary 
minimum. 

Summarizing, the data-driven inference process is 
divided into two independent processes: 

1. Local inference of solutions (new data) and 
propagating them among the net-clauses in the program. 
This process is governed locally by the spreading activa
tion nodes. 

2. Supplying the net-clause program with data and 
keeping a track of the currently inf erred solutions. This 
process can be organized in a stepwise manner. At each 
step a data item is supplied to the network and the solu
tion (if any) is checked whether it satisfies the defined 
goal. 

4 Default Reasoning in Net-clauses 

The activation-by-need mechanism exhibits some inter
esting properties, which can be viewed in the framework 
of default reasoning. 

Default reasoning is a quite general concept in AI, 
which shares the features of a paradigm and an im
plementational principle. Generally it is based on the 
natural commonsense idea: "In the absence of any infor
mation to the contrary assume that ... ". Our discussion fol
lows the Reiter's interpretation of that principle 
[Reiter,1980) and further explores it in the framework of 
the net-clause language. 

One of the defaults commonly used in knowledge rep
resentation and frame-based languages is the default as
signment to variables. The general form of this default 
rule is the following (the variable types are omitted for 
simplicity): 

1-,CEyP(xl, ... ,xn,y) 
(1) 

P(xl, ... ,xn, < default value for y >) 

This rule is applied in the process of some deductive in
ference, when the attempt to fmd a value for y, satisfying 
the predicate P has failed. It postulates that in such cases 
the default value for y should be assumed. 

The default node in the net-clause language can be 
used to defme a similar rule, which is applied during the 
process of spreading activation. As we have seen the 
spreading activation control mechanism discussed in the 
previous section, supports a kind of data-driven in
ference. At each inference step a unification is per
formed, i.e. a procedure is activated. The procedure has 
the form of the predicate Pin rule (1) and its arguments 
are net-variables. If the unification is successful some of 
the net-variables might be bound and some - shared. The 
values binding the net-variables are deduced from previ
ous unifications (activation of previous procedures). 
Sharing a net variable can be seen as an unsuccessful at
tempt to deduce its value and that is the point to use a 
default value. These considerations lead to a defmition 
of a net-clause version of rule (1): 

Ir (bound Y) p(Xl, ... ,Xn,Y) 
(2) 

p(Xl, ... ,xn, < default value for Y>) 

The semantic of rule (2) is that "if we fail to bind the vari
able Y, then assume the default value for it". This rule is 
defined by the following net-clause ( a free node and a 
default node): 

p(Xl, ... ,Xn,Y):default(Y, < default value for Y> ). 

The actual default value could be an arbitrary term. 
Specific features of the described default scheme are: 
1. The default value for a net-variable could be another 

net-variable. In such a way we define a default link in the 
network. The underlying idea is the following: "if data 
can not be obtained through a particular channel, use 
another one". 

2. An immediate consequence of the above feature is 
that the defaults can be organized in a hierarchy. This 
can be used for implementing a property-inheritance 
mechanism within a frame-like knowledge representa
tion scheme. 

3. The default value is attached to a net-variable, but 
not to a predicate, which should be deduced. This means 
that the scope of the default is the whole network. 

4. The procedure in the default node allows for draw
ing alternative default conclusions. 

Default reasoning is non-monotonic in nature since 
new evidence may invalidate previously made default 
conclusions. To accomplish non-monotonicity it is neces-
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sary to provide means for overriding a default assign
ment by currently available data. In the presented 
reasoning scheme non-monotonic behavior is achieved 
by not binding the variables to their comsponding default 
values. The default value of a variable is propagated 
along the network upon request, but it is not bound to 
the variable itself. If new data arrive these data are as
sociated to the corresponding variables and further 
propagated along the network, thus overriding the as
sumed defaults. This mechanism allows also for distin
guishing ordinary conclusions from default ones, which 
may be useful for estimating the plausibility of the 
derived conclusions. 

The possibility to organize the default nodes in a 
hierarchy allows for drawing default conclusions on the 
basis of previously made default assumptions, which in 
our view is very natural for the common-sense reasoning. 
If default hierarchies are used it is possible that one and 
the same variable is subsequently associated to different 
default terms depending on the order of data input and 
the defined default hierarchies. The non-monotonic be
havior of the default reasoning mechanism is illustrated 
by the example given bellow. 

/* A net-clause with free nodes and default nodes */ 

a(X):b(Y):c(X,Y): 
default(X,Y): 
default(Y,default_ value). 

/* Examples of the net-clause activation. Comments are 
given in italics */ 

?- a(Default),c(X,Y). 

Default= default_ value a simple example of deducing 
X = default_ value default values 
Y = default_ value 

yes 

?- a(Default),b(hard_factl),a(hard_fact2),c(X,Y). 

Default= default_ value 
X =hard_ fact2 
Y =hard_ factl 

yes 

non-monotonic assignment: 
input data overrides the initial 
default value 

?- a(Default_1),b(hard_fact),a(Default_2). 

Default_l = default_ value non-monotonic assignment: 
Default_ 2 =hard_ fact "hard Jact" overrides the initial 
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def a ult value and specifies a 
new default value for the node 

"a(X)" 

The next example illustrates a way of organizing a 
default hierarchy: 

a(X):b(Y):c(Z): 
default(X,Y,pl(Y)): 
default(Y ,Z,p2 (Z)): 
default(Z,defZ). 

p1(X):-write('(p1,Y) = '),read((t,X)). 
p2(X):-write('(p2,Z) = '),read((t,X)). 

In this program the input-output variables X,Y and Z can 
obtain their values form three sources: 

(a) by binding the default value, specified in the cor
responding default node; 

?- b(val_Y),a(X). 
X=val_Y 

(b) after a successful execution of the procedure in the 
corresponding default node (in absence of the conditions 
in item a). The procedure pl succeeds and binds Y to 
val_X; 

?-a(X). 
(pl,Y) = t,val_X. 
X=val_X 

(c) using the default value of the default value. This is 
an example of using the default hierarchy. (Specifying 
"fail" on read means fail of the default procedure). 

?- a(X). 
(pl,Y) = fail. 
(p2,Z) = t,val_Y. 
X=val_Y 

?- a(X). 
(pl,Y) = fail. 
(p2,Z) = fail. 
X=defZ 

The above examples show the priority of the different 
sources of the default values - decreasing from cases (a) 
to (c). 

5 Conclusion 

The net-clause language described in the present paper 
was inspired by some practical problems, such as repre
sentation of visual objects ( discussed in [Markov,1989]), 
natural language understanding, semantic networks and 
modeling default reasoning. In [Markov,1989) the ideas 
behind the language have been discussed in the 
framework of connectionism. 



In the present paper we have attempted to clarify the 
semantics of the net-clause language, discussing its rela
tion to logic. However our goal was not to implement 
data-driven inference on Horn-clauses, but to create a 
language for network modeling. Later it appeared that 
the net-clauses are similar to Horn clauses and in the 
same time offer more complex semantics. 

We have only outlined the default reasoning scheme in 
the net-clause language. Currently considerable efforts 
are directed toward the application of the language in 
Natural Language parsing. We see this as a promising 
application area, mainly because the proposed default 
rules are not only a theoretical framework, but a real 
programming environment. 

Another important issue focusing currently our atten
tion is how to program in the net-clause language. Since 
the language falls in the class of distributed processing 
ones, programming is considered mostly as learning. We 
see the learning procedures to be implemented at the 
basic processing level of the language ( the unification al
gorithm) by using the "learning by example" paradigm 
(e.g. generalization of ground terms). 

Despite the distributed nature of the computational 
process of the Net-clauses, the procedures are activated 
sequentially. However it is important to note that the or
der of their activation is not explicitly specified by con
trol structures of the language ( as in Prolog) but entirely 
depends on the data which are processed by the network 
(the result of the term unification). Actually this is one of 
the basic paradigms of the Net-clause language - the 
data-driven control. 

An important aspect of PDP schemes is parallelism. 
Though we implement the Net-clause language in a 
purely sequential environment ( extending sequential 
Prolog) it has the basic features to be implemented on a 
parallel architecture. We think that having in hand a dis
tributed computational scheme the transition to parallel 
processing is only an implementational step. For this 
purpose it is necessary to organize the execution of the 
node procedures as separate parallel processes. In this 
scheme the activation conditions in the language can 
serve as synchronization conditions for the processes. 
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Abstract 

A first order logic suitable for representing a 
world which changes over time must deal with 
two types of temporal information. The first 
is information which is true or false at a point. 
For example, 'the book is on the table at 3pm'. 
A standard method of representing such infor
mation is to associate the temporal informa
tion with the time point via a relation, say 
true. For example, we could write true(Spm, 
on(book, table)). The second type of temporal 
information that needs to be represented is in
formation that is true or false over an inter
val. For example, 'the book was on the ta
ble between 3 and 4pm'. The usual method of 
representing such information is to extend the 
approach used for representing point based in
formation. The interval based information is 
directly associated with a time interval via a 
relation, say true. For example, we could write 
true{Spm,,lpm, on(book, table)). 
In this paper, we present a different approach 
for representing information associated with an 
interval. We do not directly associate these 
assertions with intervals. The representation 
of these assertions is based on the assumption 
that what is true at every point in an interval 
completely determines what is true over the in
terval. We use the Riemann integral to relate 
an interval with its internal points. 

1 Introduction 
Every aspect of the world around us changes with time. 
Therefore if we are to use a computer to represent and 
reason about the real world, we must take time into ac
count. There are two types of temporal information that 
need to be represented. The first is information which is 
true or false at a point. Examples are: 

The book is on the table at 3pm. 
John is running at time t. 

A standard AI technique for representing information 
that is true or false at a point is to use a relation, say 
true, to associate information with a time point. For 
example, the above examples can be represented as: 
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true(3pm, on(book,table)). 
true(t, running(John)) . 

The second type of temporal information that needs 
to be represented is information that is true or false over 
an interval. Examples are: 

The book was on the table between 3 and 4 
pm. 
John ran without stopping between times tl 
and t2. 
John ran a while between times tl and t2. 

We consider the above information to be of a qualitative 
nature . There is also quantitative information that can 
be true or false over an interval. For example: 

John ran a kilometer between 3 and 4 pm. 
John ran without stopping at a velocity v(t) 
between times t1 and t2. 

The traditional AI approach for representing informa
tion associated with an interval is to extend the method 
used for representing point based information . A rela
tion, say true, is used to directly associate interval based 
information with a time interval. For example, 

The book was on the table between 3 and 4 pm. 
could be represented as 

true(3pm, 4pm, on(book,table)). 
Allen [1984), McDermott [1982), and Shoham [1988] use 
a variant of this approach in their logics. 

In this paper, we present a different approach for rep
resenting information associated with an interval. We 
define a first order logic called GCH suitable for rep
resenting information which changes over time. GCH 
uses the true relation described above to represent point 
based information. GCH differs from previous temporal 
logics in the way it represents interval based informa
tion. We do not directly associate these assertions with 
intervals. The representation of these assertions is based 
on the assumption that what is true at every point in 
an interval completely determines what is true over the 
interval. We use the Riemann integral to relate an in
terval with its internal points. The Riemann integral is 
used for representing both quantitative and qualitative 
interval based information. 

Below we show how GCH uses the Riemann integral to 
represent qualitative and quantitative information. We 
then outline GCH's syntax and semantics. We conclude 
with examples. 



2 Qualitative information 
Qualitative information associated with an interval is 
represented by integrating over the truth values at each 
point in the interval. We use the example "the house 
is red over the interval (ti, t2)" to illustrate the use of 
the Riemann integral. We treat "house is red" as a 0-1 
function as follows. The function house(red)(t) equals 1 
at the time point t if "house is red" is true at t, and 0 
otherwise. The following integral 

1'
2 

house(red)(t) dt = ta 
f 1 

gives the length of time (i.e., ta) that house(red) is true 
during the interval (ti, t 2). The above is written as 

integral(ti, t 2, house(red), ta) 

in GCH. For example, "the house is red over the interval 
(0,10)" is written as 

integral(O, 10, house(red), 10). 
The above specifies that the house is red at each point 
in the interval (0,10). It is important to note that it is 
not associating house(red) with the interval (0,10). 

We now show how the qualitative examples presented 
earlier are represented in GCH. The example 

The book was on the table between 3 and 4 pm. 

is similar to the red house example and is represented as 

integral(3, 4, on(book, table), 1) 

in GCH. 
The second example 

John ran without stopping between times ti 
and t2. 

is represented as 

integral(ti, t2, running, t2 - ti). 

GCH's representation of the above example is signifi
cantly different from traditional approaches. For exam
ple, in Shoham's logic the above is written as 

T RU E(ti, t2, mn-without-stopping) . 

The above directly associates "ran without stopping" 
with the interval (ti,t 2). 

The third example 

John ran a while between times ti and t2. 

is true if and only if the integral of running over the 
interval (ti,t 2) is non-zero: 

integral(ti, t 2, running, ta) I\ ta > 0. 

3 Quantitative information 
We use the Riemann integral in the standard fashion 
to represent quantitative information associated with an 
interval. For example, we integrate the velocity function 
associated with "running" to get the displacement due 
to "running'' over an interval. 

To represent quantitative information associated with 
an interval, we use the true and integral relations plus 
the following relations: 

velocity(B, Pi, P2), 

displacement(P1, P2, B, Pa), 

and 

acceleration(B, Pi, P2) . 

The relation velocity( B, P1 , P2 ) is true if and only if the 
velocity of B at time point Pi is P2 • For example, 

velocity(running, ti, 5) 

specifies that the velocity of "running" at time point ti 
is 5. The relation 

displacement(Pi, P2, B, Pa) 

is true if and only if the displacement due to B over the 
interval (Pi, P2) is Pa. For example, ran a kilometer over 
the interval (ti, t2 ) is written as: 

displacement(ti, t 2, running, 1). 
The relation acceleration(B, Pi, P2) is true if and only if 
the acceleration of Bat time point Pi is P2 • For example, 
the following 

acceleration(running, ti, 2) 
specifies that the acceleration of "running" at time ti is 
2. 

4 GCH's syntax and semantics 

4.1 Syntax 
GCH's syntax is defined in terms of two first order logics 
called T and W. To represent time we use T, an ordinary 
first order logic suitable for describing simple arithmetic 
operations and equality over the reals. T's constants are 

{ti,t2, ... } um 
its variables are 

{Ti, T2, .. . } 

its functions are 

{+,-,x} 
and its predicates are 

{<,~,>.~,=}. 
Terms and formulas are defined in the normal way. The 
following is an example of a formula: 

'iTi . 1 X Ti = Ti. 

W is an ordinary non-temporal first order logic suit
able for describing a world at a single point in time. 
Therefore the relations in W are ones that can be true 
or false at a point in time. For example "red(blockl)" is 
acceptable but not "run-a-mile(John)" because it cannot 
be true at a point. Note that the relations of W have no 
temporal arguments. For example, "red(2pm,blockl)" is 
not acceptable. For the sake of exposition, assume that 
the variables of the language Ware {Wi, W2, . . . }. For 
example, 

'iWi. red(Wi)---. above(Wi,blockl). 

W varies from domain to domain and therefore it is 
impossible to specify particular predicate and function 
symbols a priori . 

GCH has two sorts of terms: temporal and non
temporal. The temporal terms consist of the terms from 
T. Non-temporal terms are defined inductively as follows 
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• The atoms of W are non-temporal terms. 

• Each member of V = {Vi, Vi, ... } is a non-temporal 
term. 

• If /3 is a non-temporal term, then -i/3 is a non-
temporal term. 

The formulas of GCH are defined inductively as follows 

• The atoms of T are formulas. 

• If 1r is a temporal term and /3 is a non-temporal term 
then true( 1r, /3) is a formula. 

• If 1r1, 1r2, 1r3 are temporal terms and /3 is a non
temporal term then 

integral( 1r1, 1r2, /3, 1r3) 

is a formula. 

• If /3 is a non-temporal term and 1r1 , 1r2, 1r3 are tem
poral terms, then 

velocity(/3, 1r1, 1r2), 

displacement(1r1, 1r2,/3, 1r3), 

and 

acceleration(/3, 1r1, 1r2) 

are formulas of GCH . 

• If </>1, </>2 are formulas of GCH, then ( </>1 /\ </>2), ( </>1 V 
</>2), (</>1-+ </>2), (-i</,i) are formulas of GCH. 

• If</, is a formula of GCH, and z is a variable from 
T or a variable from W or an element of V, then 
(Vz . </,), (3z . </,) are formulas of GCH. 

4.2 Semantics 
A formal semantics for GCH appears in [Trudel 1989; 
Trudel 1990]. They are not included here because of 
space limitations. 

4.3 Axiomatization of the true and 
integral relations 

The axioms for the true and integral relations are pre
sented in figure l. 

The first axiom in figure 1 captures the property that 
the value of the integral at a point is zero. 

The second axiom captures the following additive 
property of the Riemann integral: 

f 2 

f(x)dx + [T
3 

f(x)dx 
}Ti jT2 

The third axiom places bounds on the value of the 
integral. Note that the consequent also captures the re
striction that T1 $ T2. 

The fourth axiom captures the property that a non
temporal term is true throughout an interval iff the 
value of its integral equals the length of the interval. 
Note that the left hand side of the fourth axiom makes 
no commitment at the endpoints. The truth value of 
integral(Ti, T2, Vi, T2 -Ti) is independent of the truth 
values of true(T1, Vi) and true(T2, Vi). This is a useful 
property. For example, if we have: 
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integral(t1, t 2, running, t2 - ti) I\ 

integral(t2, t3, -irunning,t3 - t2) 

then the fourth axiom cannot be used to determine the 
truth value of 

true(t2, running) . 

The last four axioms in figure 1 deal with negation 
inside the true and integral relations. The fifth and sixth 
axioms capture the fact that double negation inside the 
true and integral relations cancels. 

The last two axioms are for removing single negation 
from inside the true and integral relations. Note there 
is not an integral version of the seventh axiom, i.e., 

VT1,T2,T3, Vi . integral(T1,T2,-,Vi 1 T3) +-+ 

-iintegral(T1, T2, Vi, T3) 

is not an axiom. A counterexample to the above is the 
fact that the following is consistent: 

integral(O, 1, -irunning, 0.5) /\ 

integral(O, 1, running, 0.5) . 

Using the last four axioms, we can eliminate negation 
from inside the true and integral relations . For example, 
an equivalent form of 

18 

true(l, -ip) I\ true(l, -,-,q) I\ 

integral(!, 10, -ia, 5) /\ 

integral(!, 10, -,-,b, 5) 

-itrue(l,p) I\ true(l, q) I\ 

integral(!, 10, a, 10 - 1 - 5) /\ 

integral(!, 10, b, 5). 

5 Examples 
In this section we present various examples using GCH. 

5.1 Swimming 
Anybody that has taken a swimming lesson knows that 
we must wait at least two hours after eating, before 
swimming: 

VT1 . true(T1, swimming) -+ 

integral(T1 - 2, T1, -ieating, 2) . 

The above says that if swimming is true at some point 
in time T1 then -ieating is true at each point in the two 
hour interval which ends at T1 . 

5.2 Running 
Assume the velocity of running is 2 miles per time unit: 

VT1 . velocity(running, T1 , 2) 

Ran a mile over the interval (t 1 ,t2) is written as: 

displacement(t1, t2, running, 1). 

Note that in this example, the truth value of running 
and the displacement due to running are related as fol
lows: 



1. VTi, Vi . integral(Ti, Ti, Vi, 0). 

Figure 1: Axioms for the true and integral relations 

VTi, T2, Ta . displacement(Ti, T2, running, 2 x Ta) 

+-+ integral(Ti, T2, running, Ta) . 

We can also represent ran a mile over some interval, 
say (5,40), if the velocity of running is unknown. In this 
case we simply write 

displacement(5, 40, running, 1) 
and do not specify the velocity relation. 

5.3 Table lifting 
There is a table resting on the floor with one agent at 
each end. An agent can lift his end of the table indepen
dently of the other. On the table is a full cup of coffee. If 
the difference in height between the left and right sides 
of the table is > t4 , then the coffee spills. The problem 
is to represent the following situation: the agents lift the 
table a height ta in the interval (ti,t2) without spilling 
any coffee. The solution is shown in figure 2. The first 
two formulas specify that the right and left ends of the 
table are lifted a height ta in the interval (ti, t2). The 
third formula specifies that the table must remain within 
t4 units of level. This formula says that for each point 
Ts in the interval (ti, t2), the difference in height at the 
point Ts is ::; t4 . 

5 .4 Ball in air 
Assume we throw a ball in the air at time O and it doesn't 
hit the ground until time 6. The ball reaches the apex of 
its trajectory at time ti where O < ti < 6. The vertical 
velocity of the ball is zero at time ti and non-zero every
where else in the interval (0,6) . The GCH representation 
of the example is shown in figure 3. Note that we repre
sented the above example without any knowledge of the 
velocity function associated with the ball. 

5.5 Road runner and coyote 
In [1989], Sandewall presents an example of a ball rolling 
a short distance and then falling in a shaft. Here we sim
plify and modify the example slightly. In every "Road 

Runner" cartoon, the coyote ends up jumping off a cliff. 
Such a leap is shown in figure 4. At time 0, the healthy 
coyote is at location (0,100) and begins running towards 
the cliff at a constant velocity of 40 units per time unit. 
A universal property of cartoon characters is that they 
can run past the edge of a cliff quite some distance be
fore starting their downward descent. The coyote makes 
it to the point (160,100) before falling. At the point 
(160,100), he begins falling with an acceleration of - 9.8. 

The coyote reaches the point (160, 100) at time 4, and 
splatters on the ground at time ti (at which time a cloud 
of dust rises). ti is specified by the following: 

displacement( 4, ti, falling, 100). 

The coyote example is represented as follows in GCH. 
Before time 4: 

integral(O, 4, running, 4). 
integral(O, 4, falling, 0). 
VTi . 0 < Ti < 4-+ velocity(running, Ti, 40). 
VTi. 0 <Ti< 4-+ velocity(falling,Ti,O). 

After time 4: 

integral( 4, ti, running, 0) . 
integral( 4, ti ,falling, ti - 4). 
VTi. 4 <Ti< ti -+ velocity(running,Ti,O). 
VTi . 4 < Ti < ti -+ 

velocity(falling, Ti, -9.8 x (Ti - 4)). 

6 Conclusions 
In this paper we presented a first order logic for repre
senting temporal domains called GCH . GCH uses a new 
approach for representing interval based information. In
stead of directly associating this type of information with 
an interval, we use the Riemann integral. Capturing the 
Riemann integral in the logic gives us an intuitive, sim
ple, and precise method of representing interval based 
information. Also, this approach easily deals with both 
qualitative and quantitative interval hased information. 
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displacement(t1, t2, lift_right_side, ta). 

displacement(t1, t2, lifUeft_side, ta). 

VTs, T6, T1 . t1 $ Ts $ t2 I\ displacement(t1, Ts, lift_right_side, T5) I\ 
displacement(t1, Ts, lifUeft..side, T1) -+ -t4 $ (n -T1) $ t4. 

integral(O, 6, ba/Un_air, 6). 

0 < t1 < 6. 

velocity(ba/Un..air, t1, 0). 

100 

Healthy Coyote 
at tiae 0 

1 

Figure 2: Table lifting solution 

Figure 3: Ball in air solution 

Starts falling 
at tiae 4 

! --, 
I 

I 

I 
150 160 

t 
Splattered Coyote 

at time t1 

Figure 4: Coyote example 
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Abstract 

We present strategies for explaining decision
theoretic choices, and we describe the role of these 
strategies in Interpretive Value Analysis, our 
broader framework for building expert systems that 
choose among alternatives. We demonstrate the · 
explanation strategies with implemented examples 
in the domains of marketing, process control, and 
medicine. Although previous approaches to mod
eling choices in expert systems generally have sac
rificed formal specification for transparent 
operation, our approach suggests that knowledge 
engineers can retain the benefits of a formal foun
dation without compromising intuitive explana
tion. 

1 Introduction 

Choices among competing alternatives arise in diverse 
expert-system domains, from medicine (e.g., choosing 
among alternative treatments) to process control (e.g., 
choosing among alternative control actions). A model 
for choosing among alternatives generally accepts as in
put a set of objective data and subjective judgments that 
characterizes a choice, and produces as output a re
commended alternative. Such a model can be the sole 
reasoning machinery of an expert system that assists 
users with decisions, or can be integrated with other 
reasoning modules (e.g., conflict resolution in rule
based systems). 

Previous approaches to modeling choices in expert 
systems often have sacrificed general, formal specifica
tion for transparent operation: Clancey [1984], in his 
description of MYCIN's thera.py-planning model, for 
example, recounts that, "to formulate judgments that 
could be provided by physicians and would appear fa
miliar to them, we decided not to use mathematical 

Edward H. Shortliffe 
Section on Medical Informatics 

Stanford University School of Medicine 
Stanford, CA 94305 

U.S.A. 

methods such as evaluation polynomials," but that, 
"relating decisions is difficult because they require some 
representation of what the heuristics mean." Similarly, 
Rennels et al. [1987] note that a formal decision
theoretic model "may obscure the salient features of the 
problem, trading off an ability to explain a choice in 
intuitive terms in favor of achieving a more powerful, 
generalized characterization of the problem." 

In this paper, we present strategies for explaining 
decision-theoretic choices, and we describe the role of 
these strategies in Interpretive Value Analysis (IV A), a 
general framework for modeling choices in expert sys
tems that is at once formal and transparent. We dem
onstrate the explanation strategies with implemented 
examples in the domains of marketing, process control, 
and medicine. In contrast with previous approaches to 
modeling choices in expert systems, our methodology 
suggests that knowledge engineers can retain the benefits 
of a formal foundation without compromising intuitive 
explanation. 

The paper is organized as follows. Section 2 provides 
an overview of Multiattribute Value Theory, the disci
pline of decision theory on which IV A is based. Section 
3 outlines the structure of IV A to provide a context for 
describing the explanation strategies reported in Section 
4. Section 5 provides examples of IVA-based explana
tion facilities that draw on the strategies of Section 4. 
We elucidate the pragmatic advantages of IVA's 
decision-theoretic model in Section 6, and we evaluate 
IV A's explanations in the context of previous ap
proaches in Al. Section 7 provides a summary of the 
paper, and reviews our conclusions. 

2 Background: Multiattribute Value Theory 

Multiattribute Value Theory addresses the problem of 
modeling multiattribute choices under certainty, in 
which multiple, often mutually competitive objectives 

' This work was supported in part by the IBM Corporation, Grant LMOS208 from the National Library of Medicine, the IBM Graduate Fel
lowship Program, and the NASA Graduate Student Researcher's Program. 
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underlie a choice among alternatives, and the outcomes 
of alternatives are known with virtual certainty. Con
sider, for example, a computer-complex manager's 
choice among competing actions for purging a dataset 
that is awaiting service on a disabled printer, and is 
overloading the system queue. The manager can re
move the dataset from the queue by executing any of 
several actions, such as deleting the dataset (DELETE), 
or transferring the dataset to the user's private disk 
space (DASD). The manager's choice among such 
actions involves tradeoffs among competing objectives: 
Executing DELETE, for example, clears the queue 
more quickly than many alternative actions, but causes 
the dataset' s owner greater inconvenience than do these 
other actions. The outcomes of dataset-purging actions 
are known with virtual certainty: Executing DELETE 
almost always results in the instantaneous deletion of a 
dataset, for example. The models of Multiattribute 
Value Theory potentially are useful for reasoning about 
multiattribute choices under certainty in expert systems, 
because these models are supported by a formal theory 
and by a well-developed methodology.1 

The problem of modeling multiattribute choices un
der certainty can be stated more formally as follows.2 

Let a designate a feasible alternative, such as an action 
for purging a dataset, and let A denote the set of all such 
alternatives. With each act a e A, we associate n indices 
of value, X1(a), ... , X,.(a), that reflect our objectives; an 
objective is a reason to care about the selection of one 
alternative rather than another, such as the desire to 
minimize the time it takes to remove a dataset from the 
queue. We describe the degree to which our objectives 
are satisfied in the context of attributes of alternatives, 
such as minutes elapsed in purging a dataset. Roughly, 
the decision maker's problem is to choose a e A such 
that he will be happiest with the payoff X1(a), ... , X,.(a). 
Thus, we need a mechanism v that combines 
X1(a), ... , X,.(a) into a scalar index of preferability or 
value. We refer to the function v as the value function. 
Given v, we choose a e A such that vis maximized. 

The appropriate form for the value function depends 
on the relationship among the decision maker's objec
tives; the form employed in most practical applications 
1s the Additive Multiattribute Value Function 
(AMVF):3 

n 

v(a) = v(x1, ... , Xn) = Lw1viCx1) 
i= l 

1. Each a e A is represented by a vector of attribute 
values (x1, ... , x,.). The vector representing DE
LETE, for example, includes the value $0.00 for 
attribute additional cost, because deleting a dataset 
creates no additional material cost beyond the us
cr' s original print request. 

2. V; is the component value function for attribute i, 
with v;(worst x;) = 0, v;(best x;) = 1, and 
0 ~ v;(x;) ~ 1 for all X;, The component value 
functions express the relative desirability of various 
levels of their respective attributes; for example, the 
component value function for attribute additional 
cost assigns Oto the action(s) of greatest additional 
cost and assigns 1 to the action(s) of least addi
tional cost. 

3. W; is the weight for attribute i, 0 < W; < 1 and 
LW; = l. The weights indicate the relative impor
tance of each attribute as it changes from its best 
to its worst value: A model of the preferences of a 
relatively cost-conscious manager, for example, 
would include a relatively high weight for attribute 
additional cost. 

The construction of a value function can be facilitated 
by the employment of a value tree, which represents 
explicitly the decomposition of the user's overall objec
tive (the root of the tree) into a hierarchically structured 
set of more detailed objectives. Figure 1 depicts a sim
ple value tree for managing queue space. 

Figure I: A simple value tree for managing queue space. 
The satisfaction of a nonleaf objective, such as maximize 
user satisfaction (node 3), depends on the satisfaction 
of its children. Leaf objectives, such as minimize 
additional turnaround time (6), are associated with 
attributes in the value function; the satisfaction of a leaf 
objective is represented by its associated component 
value function, as we described. Local weights on 
sibling objectives sum to 1 in every subtree. The weight 
for an attribute can be calculated by taking the product 
of the local weight of the associated leaf objective and 
the weights of its ancestors: The weight for minimize 
additional turnaround time (6), for example, is given by 
W6W3, 

We shall elaborate these advantages in Section 6. Langlotz [1989] describes related advantages in the context of modeling single-attribute 
choices under uncertainty in expert systems. 

2 

3 
Portions of this description are adapted from [Keeney and Raiffa, 1976]. 
Loosely speaking, the use of this form requires that the decision maker be able to express his preferences in each attribute independe.ntly 
of other attributes. Authors such as Keeney and Raiffa [1976] provide detailed specifications for constructing decision-theoretic models 
that reflect a variety of assumptions, and for verifying the satisfaction of such assumptions in practice. 
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The root of the tree (node 1) represents the overall ob
jective to maximize queue-space-management effective
ness. This objective is an abstract representation of its 
children -- minimize additional operator time (2), maxi
mize user satisfaction (3), minimize additional cost (4), 
and minimize prob/em-resolution time (5). Maximize 
user satisfaction (3) is, in tum, an abstraction of objec
tives minimize additional turnaround time ( 6) and max
imize form similarity (7). 

3 Interpretive Value Analysis 

Interpretive Value Analysis (IV A) [Klein, 1989] is a 
framework for explaining and refining the AMVF. The 
design of IVA reflects empirical observations; interviews 
with both decision analysts and nonanalysts suggest an 
interpretation for the AMVF that provides a formal 
vocabulary of approximately 100 terms, or interpreta
tion concepts, for talking about choices. The expression 
w;(v;(al;) - v;(a2;)), for example, can be interpreted intu
itively as a measure of the strength or 
COMPELLINGNESS4 of a reason or objective i for 
choosing alternative al = (al 1, ... , alJ rather than 
a2 = (a21, ... , a2J, as in the statement, "Additional cost 
is a compelling reason to prefer DELETE to 
EXPENSIVE.PRINTING." We show in [Klein, 
1989] that w;(v;(al;) - v;(a2;)) is a well-formed expression 
with respect to the particular value-measurement scale 
on which IVA is based.5 We provide analogous formal 
links between this version of value theory and interpre
tation concepts such as NOTABLY-IMPORTANT? ("Is 
additional operator time notably important in managing 
queue space?") . Such formal descriptions guarantee the 
consistency of explanations, because we restrict the 
content of explanations to interpretation concepts, all 
of which are defined with respect to the same value
theoretic model. 

The interpretation concepts are the primitives of 
IVA's explanation strategies, which are designed to 
provide the user with sufficient insight into an AMVF's 
operation either ( 1) to become convinced that the cho
sen alternative is indeed preferred, or (2) to identify for 
correction a model parameter that deviates from his true 
preferences; IVA's refinement strategies [Klein and 
Shortliffe, 1990] facilitate such corrections, building on 
the explanation strategies. 

Klein [ 1989] provides a detailed exposition of inter
pretation, explanation, and refinement under IV A. This 
paper focuses on IVA's explanation strategies. 

4 Explanation Strategies 

We provide in IV A explanation strategies that allow 
users to pose detailed queries about choices, to generate 
summary comparisons of choices, to observe the com
putation of choices in a step-by-step fashion, and to 
generate abstract descriptions of how choices are com
puted. We demonstrate selected strategies in the fol
lowing sections, employing examples generated by 
VIRTUS,6 an IVA-based shell that has been tested in 
the domains of marketing, process control, and medi
cme. 

4.1 Generation of Responses to Detailed Queries 

IV A's interpretation concepts provide a space of queries 
that can be made available to the user directly: 
VIRTUS, for example, includes an interpretation
concept invocation facility that permits users to view 
interpretation-concept results by specifying interpreta
tion concepts and their operands (alternatives and ob
jectives). In the following example, generated by a 
VIR TUS application for evaluating expert-system 
shells, VIRTUS paraphrases the user's mouse-and
menu query (bold-face type) and displays a textual re
sponse (italics):1 

What is the relative quality of SHELL.B and SHELL.C 
with regard to development environment support? 

SHELL.B provides somewhat better development envi
ronment support than SHELL.C. 

In this simple example, the user requests the result re
turned by ABSTRACT-RELATIVE-QUALITY, an interpre
tation concept that maps the quantitative result 
[v(SHELL.B) - v(SHELL.C)] (with respect to objec
tive maximize development environment support) to the 
qualitative value somewhat better. The user can invoke 
such interpretation concepts arbitrarily to conduct an 
intuitive interactive dialog with VIRTUS: 

Which alternative is best with regard to overall value? 

SHELL.Bis the best with regard to overall value. 

What is the relative quality of SHELL.B and SHELL.C 
with regard to overall value? 

SHELL.B provides substantially better overall value 
than SHELL.C. 

What are notably compelling reasons in the choice be
tween SHELL.B and SHELL.C with regard to overall 
value? 

Price provides the most compelling reason/or the choice. 

4 

s 
Throughout the paper, we display interpretation concepts in HYPHENATED-SMALL-CAPITAL-TYPEFACE. 
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IVA is based on the theory of Measurable Multiattribute Value Functions [Dyer and Sarin, 1979], which employs an interval scale of 
measurement for value. This scale lends meaning to statements such as "al is much better than a2 ," whereas classical utility theory 
[von Neumann and Morgenstern, 1947], for example, supports only ordinal statements, such as "al is better than a2." 
VIRTUS is Latin for value, as in the value of an alternative in a choice among alternatives. 
In formatting selected VIRTUS examples, we have made cosmetic corrections, such as capitalization and pluralization. 



What is the relative quality of SHELL.B and SHELL.C 
with regard to development environment support? 

SHELL.B provides somewhat better development envi
ronment support than SHELL.C. 

What are the reasons for and against SHELL.B vs. 
SHELL.C with regard to development environment sup
port? 

Quality of documentation and quality of front end are 
reasons to prefer SHELL.B over SHELL.C with regard 
to development environment support. Reliability, inter
active development facilities, and syntactic familiarity to 
data processing programmers are reasons to prefer 
SHELL.Cover SHELL.B. 

What factors are notably important in the determination 
of development environment support? 

Quality of documentation is notably important in the 
determination of development environment support. 

{And so on} 

Although useful for exploring the details of a choice 
in an unrestricted fashion, interpretation-concept invo
cation burdens the user with coordinating VIRTUS's 
responses to achieve an understanding of a choice. The 
following explanation strategy imposes organization on 
such responses. 

4.2 Generation of Summary Comparisons 

Value-tree pruning and presentation strategies generate 
summary-level comparisons of particular pairs of alter
natives. Generating a summary comparison involves 
pruning objectives from an explanation by (1) limiting 
the depth and breadth of the value tree in accordance 
with the alternatives of interest, and (2) generating an 
explanation that reflects the remains of the tree. 

Vertical-pruning strategies determine a desirable level 
of abstraction for talking about objectives (in the con
text of comparing a particular pair of alternatives) by 
pruning detailed objectives that can be summarized by 
a higher-level objective; these strategies limit the depth 
of the value tree by eliminating uninteresting subtrees. 
The following algorithm accepts as input a value tree 
of arbitrary depth with root root, and two alternatives 
al and a2, and produces as output a population of in
teresting objectives, if any exist, and root otherwise. 

1. Leto = PARENT(deepest leaf) 

2. If CARDINAL-TRADEOFFS?(al a2 CHILDREN(o)), 
then mark o as deleted 
otherwise, mark CHILDREN(o) as deleted 

3. If o = root, then return the remains of the tree; 
otherwise, go to 1. 

The interpretation concept CARDINAL-TRADEOFFS? is 
employed in the algorithm to identify interesting sub
trees, returning T only when al is strictly better than 
a2 with respect to at least one objective, and is strictly 
worse with respect to at least one objective. On each 

iteration, the algorithm prunes either the current node 
in the tree (if the node's children are interesting), or the 
current node's children (if the children are uninterest
ing). For example, whenever al and a2 are EQUIV

ALENT? with respect to all the objectives in a subtree 
(one instance of CARDINAL-TRADEOFFS? = NIL), the 
algorithm prunes these objectives from the explanation 
and retains their parent, because the effects of these 
objectives can be summarized intuitively by their par
ent. Figure 2 shows a vertically-pruned value tree from 
a VIR TUS application that evaluates randomized clin
ical trials ( RCTs) -- studies that compare the relative 
effectiveness of treatments by randomly assigning alter
nate therapies to subjects and observing the effects. 

Figure 2: Vertical pruning. Comparing two particular 
alternatives RCT.l and RCT.2, vertical pruning retains 
the following objectives (shaded in the figure), which 
vary in abstraction: adjustments due to subgroups (31), 
subgroup analysis plan (32), stopping appropriateness 
(16), P-value (7), statistical techniques (8), distance of 
assigner from patient (33), quality of actual treatment 
assignment (34), blinded assignment design (18), 
equivalence at study outset (10), equivalence of care (4), 
and endpoint assessment (S). Other objectives are 
pruned from the associated explanation. 

This vertically pruned tree provides the basis for the 
following explanation: 

Equivalence of care, equivalence at study outset, 
endpoint assessment, distance of assigner from patient, 
and adjustments due to subgroups are reasons to prefer 
RCT.1 over RCT.2 with regard to credibility. Quality 
of actual treatment assignment, blinded assignment de
sign, stopping appropriateness, and subgroup analysis 
plan are reasons to prefer RCT.2 over RCT.l. P-value 
and statistical techniques do not at all impact the choice 
between RCT.l and RCT.2. 

Although more terse than an exhaustive display of 
value-tree leaves, this explanation is somewhat verbose, 
because limiting only the depth of the value tree still 
allows for arbitrary breadth. 

The breadth of the value tree can be reduced by 
horizontal-pruning strategies, which eliminate objec
tives at a particular level. IV A includes several 
horizontal-pruning strategies, which vary in computa
tional complexity and effectiveness. One inexpensive 
strategy, for example, simply selects the n most com
pelling objectives arguing for and against the preference 
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of one alternative over another; this strategy is some
what arbitrary, however, because we lack intuitive jus
tification for omitting objective n + 1 in the 
COMPELLINGNESS ranking whenever that objective dif
fers only infinitesimally in COMPELLINGNESS from the 
nth. A more effective (but expensive) IV A strategy se
lects clusters of objectives for inclusion in explanations, 
based on a statistical interpretation concept that identi
fies outlying COMPELLINGNESS values in a population. 

Combining vertical pruning with horizontal pruning 
yields a powerful capability for generating summary 
comparisons: Vertical pruning produces an appropri
ately abstract population of objectives, which is reduced 
further by horizontal pruning, as shown in Figure 3. 

Figure 3: Combined vertical and horizontal pruning. A 
horizontal pruning strategy selects the notably 
compelling objectives (shaded) from the vertically 
pruned tree of Figure 2, retaining only quality of actual 
treatment assignment (34), equivalence at study outset 
(10), and equivalence of care (4). 

The population of objectives retained in Figure 3, 
embellished with ABSTRACT-RELATIVE-QUALITY (Sec
tion 4.1), provides the basis for generating the following 
summary: 

RCT.1 is somewhat better than RCT.2. Compelling 
reasons to prefer RCT.2, such as quality of actual 
treatment assignment, are outweighed by considerations 
of equivalence of care and equivalence at study outset, 
along with less compelling reasons that recommend 
RCT.1. 

Such explanations capture the most compelling reasons 
for preferring a particular alternative to another, at an 
appropriate level of abstraction. Whenever a user finds 
a summary-level comparison of two alternatives un
convincing, however, he may require a more detailed 
comparison: In the following section, we present strat
egies that demonstrate intuitively the detailed relation
ships between the user's primitive inputs (parameter 
values) and the model's results . 

4.3 Generation of Detailed Comparisons 

IV A's difference-function-traversal strategies generate 
intuitive detailed comparisons of alternatives. These 
comparisons demonstrate the relationships between a 
model's results and parameter values by explaining the 
step-by-step computation of [v(al) - v(a2)], the overall 

50 

RELATIVE-QUALITY of two particular alternatives al 
and a2. Difference-function-traversal strategies reflect a 
decompositional approach to explanation that involves 
( 1) representing explicitly the precedence of operations 
that combine parameters, (2) providing an intuitive ex
planation for each such operation, and (3) designing 
control procedures that concatenate these explanations 
according to the operation-precedence representation. 
An analogous approach has been employed to support 
explanation in systems that model the behavior of 
physical devices [De Kleer and Brown, 1984]. 

Under IVA, generating a step-by-step comparison of 
a specified pair of alternatives involves traversing a dif
ference function h, which we developed to reflect ele
ments of our subjects' explanations (Section 3). More 
specifically, a difference function captures interactions 
among AMVF parameters (Section 2) for a pair of al
ternatives (al,a2), and reflects the hierarchical structure 
of the value tree: The difference function corresponding 
to the tree of Figure 1, for example, is 

h(al,a2) = [w2(vi(al 2) - v2(a22))] 

+ w3[w6(vial 6) - v6(a26)) + W7(v7(al 7) - v7(a27))] 
+ [w4(v4(al4) - v4(a24))] 
+ [w5(v5(al 5) - v5(a25))] 

The step-by-step execution of this function is repres
ented explicitly in the topology shown in Figure 4. 

Figure 4: The topology for the value tree of Figure 1. 
The subtopologies framed by boxes correspond to 
objectives in the value tree, as labeled. For uniformity, 
parameters are represented as operations that return 
(user-specified) constants. 

We associate each arithmetic operation in the 
topology with an operation explainer that generates an 
intuitive explanation of the relationship between its op
erands and its result. Addition in the difference func
tion, for example, accepts as input a set of 
COMPELLINGNESS values for objectives that argue "for 
and against a choice between two particular alternatives, 



and produces as output the RELATIVE-QUALITY of these 
alternatives; VIRTUS's addition explainer provides an 
intuitive summary of this operation, such as the fol
lowing explanation (from our VIR TUS application for 
managing queue space): 

DASD provides infinitesimally better overall queue space 
management effectiveness than EXPENSIVE.PRINT
ING. While overall user satisfaction provides a com
pelling reason to prefer EXPENSIVE.PRINTING, this 
is outweighed by considerations of additional cost, along 
with other less compelling reasons, that provide moti
vation for preferring DASD. 

Control strategies generate explanations by traversing 
a topology and concatenating the explanations gener
ated by operation explainers. Backward chaining over a 
topology provides an account of how the final result is 
derived from intermediate results, and of how interme
diate results are, in turn, derived from primitive inputs. 
The following explanation fragment, for example, is 
produced by backward chaining over a multiplication 
explainer and its connected subtraction explainer for leaf 
objective minimize additional cost (box ( 4) in Figure 4) 
in a comparison of alternatives DASO and 
EXPENSIVE.PRINTING: 

Additional cost is a compelling factor favoring 
DASD over EXPENSIVE.PRINTING. 
While additional cost is not notably important 
in determining overall queue space manage
ment effectiveness, DASD provides sufficiently 
different additional cost from EXPENSIVE. 
PRINTING, relative to other factors, to make 
additional cost a notably compelling factor in 
this particular decision. 

DASD provides substantially better additional 
cost than EXPENSIVE.PRINTING. DASD 
provides notably good additional cost in the 
context of all available alternatives. 
EXPENSIVE.PRINTING provides notably 
poor additional cost in the context of all 
available alternatives. 

In this example, the subtraction explainer clarifies the 
explanation produced by the multiplication explainer, 
providing additional detail regarding the meaning of 
"sufficiently different." 

In a similar fashion, forward chaining provides an 
account of how a particular parameter participates in 
the determination of an intermediate result, which in 
turn ultimately affects the final result. Interactive 
chaining permits the user to forward and backward 
chain over a topology in an incremental, interactive 
fashion . Klein [ 1989] provides a more detailed exposi
tion of strategies for difference-function traversal. 

5 Construction of Explanation Facilities 

The modularity of IV A's explanation strategies permits 
flexibility in designing explanation facilities. The im
plementation of such facilities might vary, for example, 
with the designs of operation explainers, with the par
ticular horizontal-pruning strategies that are employed, 
and more generally, with the classes of strategies that 
are included. 

In addition, knowledge engineers can integrate IVA's 
explanation strategies to implement common explana
tion commands, such as WHY. For example, an engi
neer can provide an explanation module that generates 
a particular response to WHY (e.g., the summary com
parison of Section 4.2); alternatively, the engineer might 
implement a menu-driven facility that permits the user 
to select among multiple interpretations of WHY, as in 
the following dialog: 

DASD is the best with regard to overall queue space 
management effectiveness. 

> WHY 

By WHY, which of the following interpretations do you 
mean? 

1. What is notably good about DASD? 
2. How does DASD compare with the next best al

ternative, EXPENSIVE.PRINTING? 
3. What are DAS D's close contenders? 
4. How does DASD .compare with its close 

contenders? 
5. List the alternatives that are not as good as DASD. 
6. 

> I 

DASD provides notably good additional cost and prob
lem resolution time. 

Questions such as (1), (3), and (5) can be answered di
rectly by interpretation concepts, whereas responses to 
questions such as (2) and (4) might employ value-tree 
pruning and presentation or difference-function trav
ersal. 

IV A's explanation strategies also can be integrated to 
generate intuitive reports about decisions. VIRTUS, for 
example, generates reports that are organized as follows: 

l. Problem Statement 

2. Solution Summary 

3. The Decision-Making Process 

4. Brief Analysis of the Decision 

5. Brief Analysis of Close Contenders 

6. Detailed Analysis of Close Contenders 

These reports draw on a variety of IV A's interpretation 
concepts and explanation strategies: The "Solution 
Summary," for example, includes a reference to the 
concept SIMILAR-ALTERNATIVES to identify the best 
alternative's close contenders; these contenders are 
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compared with the best alternative by value-tree prun
ing and presentation (in "Brief Analysis of the Deci
sion") . The alternatives are compared again by a 
backward-chaining, difference-function-traversal strat
egy that prunes uninteresting operation-explainer out
puts (in "Brief Analysis of Close Contenders"), and once 
again by exhaustive, backward-chaining difference
function traversal (in "Detailed Analysis of Close 
Contenders") . [Klein, 1989] provides a complete exam
ple of such a report. 8 

6 Relationship to Previous Approaches in AI 

IV A provides potential advantages over previous AI 
systems that model multiattribute choices under cer
tainty, with respect to formal specification and to 
transparent operation.9 The following analytical obser
vations derive additional support from informal evalu
ations of VIR TUS by experts in our three domains, 
although these evaluations naturally lack the 
persuasiveness of more formal, statistically significant 
studies. 

First, IV A's value-theoretic foundation permits the 
knowledge engineer to avoid some of the reasoning
related pitfalls of previous AI systems, such as reliance 
on case-specific machinery. QBKG [Berliner and 
Ackley, 1982], for example, a backgammon-playing 
system, employs a value-tree-like structure that allows 
multiple parents, an AMVF-like sum for computing 
some evaluations, and special expressions for comput
ing other evaluations. QBKG's designers may have in
cluded these special expressions to offset the effects of 
objectives with multiple parents, which violate the in
dependence constraints of the AMVF; the same strategy 
was implemented using special rules by the architects 
of REFEREE [Haggerty, 1984], the original EMYCIN 
implementation of our medical VIR TUS application. 
Reliance on such special expressions or rules to com
pensate for preferential dependence can result in a sys
tem that produces inconsistent choices. Because IV A 
is based on value theory, which specifies explicitly the 
required relationships among objectives, knowledge en
gineers are provided with guidelines for avoiding · the 
inclusion of such case-specific machinery .10 More gen -
erally, IV A's value-theoretic foundation provides confi
dence in the results of applications whenever the 
knowledge engineer agrees with the axioms of value 
theory and observes that these axioms are not violated 
systematically during problem structuring. 

Second, IV A provides potential transparency-related 
advantages over previous AI systems for modeling 
multiattribute choices under certainty. Previous expla
nation systems generally have reflected domain-specific 
assumptions about the volume of objectives that 
underlie choices: BLAH [Weiner, 1980], for example, 
displays exhaustively the objectives that a user specifies, 
whereas IVA's combined vertical- and horizontal
pruning algorithms yield succinct summaries for value 
trees of arbitrary size. IV A also explains richer value
based relationships than do some previous systems; 
MYCIN's therapy-selection algorithm [Clancey, 1984], 
for instance, does not represent (or explain) tradeoffs 
among objectives explicitly, whereas this information is 
available for explanation under IV A. 

These advantages are tempered, of course, by the 
significant cost of constructing a value function. 

7 Summary and Conclusions 

We presented strategies for explaining decision-theoretic 
choices, and we described the role of these strategies in 
IV A, a formal and transparent framework for modeling 
choices in expert systems. IVA's interpretation con
cepts provide an internally r:onsistent vocabulary, based 
on value theory, for talking about choices. These in
terpretation concepts play the role of primitives in 
IVA's explanation strategies, which support detailed 
queries about choices, summary comparisons of alter
natives, detailed comparisons of alternatives, and ab
stract descriptions of the computation of choices. 
Although previous approaches to modeling choices in 
expert systems generally have sacrificed formal specifi
cation for transparent operation, our approach suggests 
that knowledge engineers can retain the benefits of a 
formal foundation without compromising intuitive ex
planation. 
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Abstract 

A difficulty with virtually all general theories 
of default reasoning is that they are undecid
able or, in the propositional case, intractable. 
Research in tractable defeasible reasoning has 
centred around inheritance reasoning; however 
the majority of these approaches lack any firm 
semantic justification. This paper attempts to 
bridge this gap by presenting a formally justi
fied, tractable, approach to inheritance reason
ing. This is accomplished by basing inheritance 
reasoning on an extant system of default rea
soning, that of default reasoning in the logic N 
[Del88]. A set of syntactically-restricted strict 
and defeasible conditional assertions, expressed 
in N, is translated into a mathematical struc
ture, called the canonical structure. This struc
ture provably represents the set of all models of 
these sentences in the logic N. It is shown that 
inheritance reasoning may be defined and effi
ciently carried out in this structure. Moreover 
the inheritance inferencing is correct, in that 
it is sound with respect to default reasoning in 
[Del88]. We obtain then a tractable inheritance 
reasoner, with semantic justification furnished 
by default reasoning in N. In the terminology 
of [THT87] we effectively obtain a credulous, 
downward inheritance system, wherein defeasi
ble and strict links may be mixed arbitrarily; 
hence this work provides a semantics for such 
systems. Lastly we argue that the work pre
sented here points out a fundamental limitation 
with the inheritance diagrams used to motivate 
and justify prior systems of defeasible reason
ing. 

1 Introduction 

This paper continues work in a specific approach to 
default reasoning by presenting a formally justified] 
tractable, system of inheritance reasoning. In [Del87 
an extension to classical first-order logic is developed for 
reasoning about default statements such as "ravens are 
black" and "birds fly". This work is extended in [Del88] 
so that one can make inferences of default properties by 
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means of meta-theoretic considerations. This allows us 
to conclude for example that if Opus is an albino raven 
then by default Opus is not black. The logic then pro
vides a formal system for reasoning about statements 
of defaults, while the extension to this work provides a 
means of concluding default properties of individuals. A 
difficulty with the approach, as with many similar ap
proaches, is that it is not obvious how it may be reason
ably implemented. 

In this paper I consider how the approach may be 
extended to deal with a restricted form of defeasible rea
soning, that of inheritance reasoning. We begin with a 
set of strict and defeasible conditional assertions; these 
assertions are translated into a particular mathematical 
structure which, in a precise and intuitive sense, repre
sents the set of all models of these sentences in the logic 
of [Del87]. It is shown that inheritance reasoning may be 
efficiently carried out in this structure. Since the defeasi
ble inferencing is correct, in that it is shown to be sound 
with respect to the approach of [Del88], the approach 
provides a principled apf roach to such reasoning. In the 
terminology of [THT87 we obtain a credulous, down
ward inheritance system, wherein defeasible and strict 
links (negated or not) may be mixed arbitrarily; hence 
this work also provides a semantics for such systems. 
The key point then is that the semantic theory is used 
to sanction a particular approach to inheritance of prop
erties. Alternatively, the approach may be viewed as 
formalising one of the set of "intuitions" referred to in 
[THT87]. 

In the next section the underlying formal system is 
described and related work is discussed. The section 3 
informally describes the approach for inheritance reason
ing while section 4 provides the formal details. Section 5 
discusses some examples and points out a limitation with 
diagrams for inheritance networks. The last section gives 
a brief conclusion. 

2 Background and Related Work 

In [De187] a conditional logic, N, for representing and 
reasoning about default statements is presented. This 
logic consists of first-order logic augmented with a vari
able conditional operator, =>, for representing default 
statements. The statement A => B is read as "if A 
then normally B". Thus "birds fly" is represented as 



Vx(Bird(x) => Fly(x)). This approach is intended to 
capture the notion of defeasibility found in naive scien
tific theories. That is, in the same way that "CO2 freezes 
at -40°" states that a quantity of CO2 would freeze at 
-40° if it were pure, if the measuring equipment didn't 
affect the substance, etc., so too would a bird fly if we 
allowed for exceptional circumstances such as having a 
broken wing, being a penguin, etc. 

Truth in the resulting logic is based on a possi
ble worlds semantics: the accessibility relation between 
worlds is defined so that from a particular world w 
one "sees" a sequence of successively "less exceptional" 
sets of worlds. Two worlds in the same set are mutu
ally accessible and, for two worlds appearing in differ
ent sets, one is accessible from the other but not vice 
versa. A => B is true just when B is true in the least 
exceptional worlds in which A is true. Thus for exam
ple, "birds normally fly" is true if, in the least excep
tional worlds in which there are birds, birds fly. Thus, 
intuitively, we factor out exceptional circumstances such 
as being a penguin, having a broken wing, being tied 
down, etc., and then say that birds fly if they fly in such 
"unexceptional" circumstances. In [Del87] a proof the
ory and semantic theory is provided and soundness and 
completeness results are obtained. 

However, the conditional operator in this logic cannot 
support modus ponens. This is because if birds normally 
fly and Opus is a bird, then it may not be the case that 
Opus flies: perhaps Opus is a penguin. On the other 
hand, if we know only that Opus is a bird, then it seems 
reasonable to draw the default conclusion that Opus flies. 
This problem is addressed in [Del88], where two formu
lations of default-inferencing are developed. Both formu
lations rely on meta-theoretic considerations to sanction 
default inferences. These approaches are proven to be 
equivalent with respect to their respective set of default 
inferences; hence here I will refer to the second approach 
only. 

This second approach is based on the observation that 
default reasoning generally requires some sort of ( explicit 
or implicit) simplicity assumption, stating that unless 
exceptional conditions are known to hold, they are pre
sumed to not hold. This provides us with a justified 
means for changing the conditional operator => in some 
of the defaults to the material conditional :). Thus for 
example, consider where we know only that R is ( con
tingently) true in the world being modeled, and that the 
default R => Bl is true. If the world being modelled 
is as simple (or unexceptional) as consistently possible 
then this world is among the least exceptional worlds in 
which R is true; from the semantic theory R :) Bl is 
true at such worlds also, and so we can conclude Bl by 
default. 

There may be more than one way that one can justi
fiably make such transformations. Any single such way 
yields a maximal contingent extension; a property follows 
by default in this approach if it is true in all such exten
sions. With respect to the complexity of this procedure, 
the propositional case is exponential and the first-order 
case is undecidable. Thus while the system arguably pro
vides a principled characterisation of defeasible reason-

ing, it appears to be not amenable to direct implemen
tation on a computer. This problem is addressed here 
for the case of inheritance reasoning: that is, where we 
have a set of defaults, necessary implications, and nega
tions of defaults, where the antecedent and consequent 
of the conditionals are restricted to be conjunctions of 
(possibly-negated) primitive propositions. In [Del90] the 
problem of arbitrary conditionals is addressed. 

There has of course been extensive work in AI con
cerning default and defeasible inference. We can di
vide this work into two broad areas. First there are 
the approaches where a formal system is developed to 
characterise some particular approach to default rea
soning. This work includes [Rei80; MD80; Moo83; 
Del88J. A general difficulty with these approaches is that 
while they may adequately characterise a particular phe
nomenon, they are not obviously realisable in a computer 
program, or not obviously efficiently realisable. 

More recently there has been a good deal of interest 
in inheritance networks of defeasible properties, arguably 
beginning with [ER83] and including [HTT87; THT87; 
HT88; Hau88; Gef88; Bou89]. A difficulty with many 
of these approaches is that they lack any semantic basis, 
and so appeal simply to intuitions for their justification.1 

Geffner lGef88] provides a probabilistic account of inher
itance, and so appeals to intuitions differing from those 
here. Boutilier lBou89] presents an approach superfi
cially similar to that presented here; indeed the underly
ing formal system he employs is, with respect to inher
itance, essentially that used here. However strict links 
are not employed, nor are negated defaults. More impor
tantly, defeasibility rests on the extra-theoretic notion of 
preferred models [Sho88]. In contrast, we incorporate the 
semantic theory of the underlying logic directly in order 
to justify defeasible inference. 

3 The Approach: Intuitions 

From the semantic theory of N we have that the accessi
bility relation between possible worlds yields a sequence 
of successively "less exceptional" sets of possible worlds. 
Any two worlds in one of these sets are mutually accessi
ble, and so these sets represent equivalence classes with 
respect to accessibility. The conditional A => B is true if 
in the least set of worlds where there is a world in which 
A is true, B is true at these worlds also. I will use the 
notation s A to denote the simplest set of worlds in which 
A is true at some world in this set.2 This means that 
A => B is true if A :) B is true at every world in SA. 

We know then that in the simplest world(s) in which A 
is true, B must also be true; however B could also be 
true at yet simpler worlds. I will write this last result as 
SB ~ SA. 

Consider what this means for default reasoning. I will 
use the example "ravens are normally black" and "albino 
ravens are normally not black"; these statements are rep
resented propositionally, as R => Bl and RI\ Al=> -,B/. 

1 This point is particularly well developed in [THT87]. 
2 This of course assumes that there is a world where A is 

true. I will be making such an existence assumption through
out this paper with any mention of entities such as SA. 
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We know also from classical logic that RI\ Al :::) R. Thus 
from the preceding paragraph we have that SBf $ sn, 
s-.Bl $ SRAAI, and sn $ snAAI· However we can glean 
more information from these sentences. The semantic 
theory of N specifies that in the least exceptional, or 
simplest, worlds in which R is true, R :::) Bl must also 
be true. {That is, in the simplest worlds in which there 
are ravens, these ravens are black.) Also in the simplest 
worlds in which R I\ Al is true, R I\ Al :::) -iBl must 
also be true. Thus, R :::) Bl is true at every world in 
sn, and RI\ Al :) -iBl is true at every world in snAAI· 
But this requires that sn and snAAI are disjoint, and so 
sn < SR/\Al· 

For reasoning by default, if all that is known is R, 
and we assume that the world being modelled, w, is as 
simple as possible, then it must be that w E sn. Since 
R :) Bl is true at every world of sn we can conclude 
that Bl is true also. If on the other hand we know that 
RI\ Al is true at w, then assuming that the world is as 
simple as possible lets us conclude that w E snAAI; since 
RI\ Al :) -iBl is true at all worlds in SRAAI we would 
conclude -iBl. 

Informally, the information implicit in a set of defaults 
and necessary statements N imposes constraints on any 
model of this set of statements. The idea is to first 
make this information explicit in a structure, called the 
canonical structure. The canonical structure St{N) can 
be regarded as a "proto-model", that is, as a structure 
that in some sense represents the set of models of N, 
yet isn't itself a model. This structure consists of a set 
of "points", in some partial order. An individual point 
is denoted Si, where i is some arbitrary index or, as we 
shall use for notation, SA where A is some formula of 
classical logic. A point may be regarded as representing 
a set of mutually accessible worlds, and the partial order 
relation between points represents accessibility between 
two such sets. Sets of formulae are associated with each 
point; for example, R :::) Bl must be true at sn. The 
notion of truth is defined in this structure, and for condi
tional and necessary statements, is shown to correspond 
to that of validity in the logic N. Default reasoning is 
easily defined in this structure. Basically, for given con
tingent information C about a domain, we locate a set 
of points, Sw , corresponding to the sets of least excep
tional worlds consistent with this information. This set 
of points has a direct correspondence with an extension, 
or reasonable set of beliefs that may be held by default. 
If a property follows in one of these extensions then it 
can be shown to follow in one of the maximal contingent 
extensions in the approach of [Del88]. If a property fol
lows in all of these extensions then it follows by default 
in the approach of [Del88] . 

A key point is that the conditional operator => does 
not appear in the canonical structure; thus, the complex
ity of default inferencing is that of reasoning at a point, 
together with the overhead of manipulating the canon
ical structure. In the case of an inheritance hierarchy, 
both the constituents of the conditionals and the world 
knowledge are given by conjunctions of possibly-negated 
primitive propositions; hence (it will prove to be the case 
that) inheritance reasoning is efficient. 
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4 The Approach: Formal Details 

An inheritance network is a set N where if a E N then 
a is of the form D{A ::> B), A => B, or -i{A => B).3 

Each antecedent and consequent in a conditional are 
conjunctions of possibly-negated primitive propositions. 
D( A :) B) is interpreted as "if A then necessarily B"; 
A => B is interpreted as "if A then, in the normal course 
of events, B"; -i(A => B) denies a default without as
serting a default conditional between the antecedent and 
the negation of the consequent. An example of an in
heritance network is {US => A, D(A ::> P), A => E, 
and -i(US => E)}. That is, informally, university stu
dents are normally adults; adults are necessarily persons; 
adults are normally employed; and it is not the case that 
university students are normally employed. The negated 
default -i(U S => E) simply blocks the transitivity in the 
first and third conditionals. If we wanted to conclude 
that university students normally were not employed, 
we would use US => -,E in place of the last default. 

In addition, we are given a set of possibly-negated 
primitive propositions C which represents known facts. 
C then represents the known contingent information 
that is true at the domain (or world) being modelled; 
N in contrast contains statements whose truth is deter
mined by reference to other (less exceptional) possible 
worlds. The goal is to specify precisely what follows by 
default from C and N. The approach then is somewhat 
more general than most other approaches to inheritance 
hierarchies: we allow mixed strict and default condition
als; we allow negated defaults; and we allow negated 
primitive propositions.4 

The general approach is as follows. First we construct 
the canonical structure St(N). Truth is defined for state
ments of the form A => B, -i(A => B) or D{A ::> B) in 
this structure and is shown to correspond to the defini
tion of truth in all models of N (and so validity in N). 
Default inferencing in St(N}, appropriately defined, cor
responds to the approach of [Del88] . Thus there are three 
steps in the process: 

1. Construct the canonical structure St{N) from N. 

2. Determine a set of "relevant" points in St(N), ac
cording to C. These points yield the least excep
tional worlds which may be the case, given C and 
assuming that the world being modelled is as unex
ceptional as possible. 

3. Determine default properties by means of (non-
default) reasoning at these points. 

4.1 The Canonical Structure 

The canonical structure St(N) of N is the poset [S; $] 
resulting from the construction given below. The ele
ments Si of S are called points of the canonical structure. 
Each Si E S is an ordered pair < Si (3), Si (v') > of sets of 
formulae. If points are interpreted as standing for sets of 

3 We could allow negations of necessary entailments but 
they would have no effect on the algorithm. 

4 However, as will be seen, we do not allow unrestricted 
reasoning with negation . 



mutually accessible worlds, then s; ('v') is the set of for
mulae that must be true at every such world; s;(3) is a 
set of formulae where each formula must (individually) 
be true at some world in s; . Consider for example where 
Sj IS 

<{A,B},{A:::>C}>. 

This point represents some set of possible worlds, where 
the only constraints on this set of worlds are, first, that 
there is some world where A is true and and another 
(possibly the same world) where B is true and, second, 
that A :::> C is true at every world in this set. 

Since we will frequently be talking about the least set 
of worlds ( or point) that contains a world in which some 
formula is true, it will prove convenient to index points 
by formulae also. The notation SA then is intended to 
stand for the least set of worlds ( represented by a point) 
in which there is a world where A is true. We can do 
this formally as follows. 

Definition 4.1 SA is the element s; E S {if it exists) 
where for some B, A = B and BE s;(3). 

That is, if B E s; (3) then s; represents the set of worlds 
in which there is a world where B is true and, further
more, B is not true at any world known to be simpler 
( or strictly less exceptional) than those in s;. If A = B 
then these same considerations apply to A. Thus SA 
represents the set of worlds containing the least world in 
which A is true. 

In the construction given below we will on occasion 
assert that s; $ s; : that the set of worlds represented 
by i is no more exceptional than the set represented by 
j . Ifwe discover .that both s; $ s; ands;$ s; then this 
means that s; and s; represent the same set of worlds. 
We write this last result as s; = s; . In this case, we 
can merge the points s; and s; into a single point. That 
is, the points s; and s; are replaced by the single point 
< s;(3) U s;(3), s;('v') U s;('v') >. Thus for example if we 
have the (rather cumbersome) assertion that birds are 
normally flying birds, B => B I\ F, then it proves to be 
the case that SB = SBAF· 5 Thus the least set of worlds 
in which there are birds is the same as the least set in 
which there are ·flying birds. Note that this means that 
for some points; we would have that both BE s;(3) and 
BI\ FE s;(3). I will use the notation s; Us; to denote 
the result of merging s; and s;. 

For the canonical structure, I begin by defining the 
set of primitive propositions known to be true at some 
world at a point: 

Definition 4.2 If A is a conjunction of (possibly
negated) primitive propositions, then Atoms(A) is the 
set of (possibly-negated) primitive propositions in A . 

Thus Atoms(A I\ BI\ -iC) is {A, B, -iC}. 

Definition 4.3 Cl(s;) is defined by: 

1. if A E s;(3) then if p E Atoms(A) then p E Cl(s;); 

2. if A :::> B E s;('v') and Atoms(A) ~ Cl(s;) then if 
p E Atoms(B) then p E Cl(s;). 

5Since B I\ F =} B is a theorem of N, we obtain that 
BI\ F #Bin this example. 

Cl(s;) is the set (mnemonically, closure) of primitive 
propositions known to be true at some world in s;. Thus 
ifs; is < {A/\ -iB, C}, {A:::, P, C:::, Q} > then Cl(s;) 
is {A, -iB, C, P, Q}. It proves to be the case in the con
struction below that ifN is consistent then if A E Cl(s;) 
then -,A¢ Cl(s;) 

Construction 4.1 1. Initialise the structure by: 

(a) There is one designated point Sw where Sw is 
< {/\(p;) for all Pi E C}, 0 >. 

(b) For (A=> B) EN, s; -< {A}, {A:::> B} > for 
distinct s;. 

(c) For -i(A => B) E N, s; <-< {A, A I\ -iB}, 0 > 
for distinct s;. 

{d) For D(A :::> B) EN, s;('v') <- s;('v') U {A:::> B} 
for every s; E S . 

2. If A E s;(3), BE s;(3) and BE Cl(s;) then assert 
Sj $ Sj . 

3. Ifs; $ s; and there is A E Cl(s;) and -iA E Cl(s;) 
then assert s; < s;. 

The point Sw represents the set of worlds containing the 
world corresponding to the domain being modelled. Step 
lb specifies that in the set of simplest worlds in which 
A is true at some world, A :::> B is true at every world 
in the set. Step le represents negated defaults in the 
canonical structure: if -i(A => B) is true, then at the 
simplest worlds in which A is true, it is not the case 
that B is necessarily true; hence at one of the simplest 
worlds in which A is true -iB is also true. The point 
< {A, A I\ -iB}, 0 > then contains the information that 
the set of simplest worlds containing a world where A is 
true is the same as the set of simplest worlds containing a 
world where Al\-iB is true. This can also be expressed as 
SA = SAA-.B. Step 2 is used primarily to assert SB $ SA 
when A => B is a default and B occurs as the antecedent 
of another default. That is, if B is true at some world 
in s; then if s; contains the least world in which B is 
true then s; $ s; Note that if A E s;(3) and BE s;(3), 
and A E Cl(s;) and B E Cl(s;) then we obtain s; = 
s; and so merge s; and s; . This step also serves to 
locate Sw in the structure, and so serves to account for 
the assumption that the world modelled by C, w, is as 
unexceptional as possible. For example, if we have that 
N is {R => Bl, RI\ Al => -iBl} and C is {R, Al} then 
in the construction we obtain that Sw = SRAAI· Step 
3 deals with the case where s; and s; are known to be 
non-equal. 

The notion of truth of conditionals (I=') can be defined 
in this structure and shown to correspond to truth in the 
logic N (I=): 
Definition 4.4 St(N) I=' A :::> B iff 

1. sA('v') I= A:::> B if SA exists, 

2. Sw ('v') I= A :::> B otherwise. 

Theorem 4.1 If St(N) I=' A :::> B then N I= A=> 
B.6 

6 In [Del90] the theorem is generalised to an "if and only 
if". 
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4 .2 Default Reasoning 

Given St(N), the next step is to define default reasoning 
with respect to this structure. The general approach is 
as follows. The canonical structure provides a number of 
points, representing sets of possible worlds, which con
tain sets of formulae that must be true at one, or at all, 
worlds represented by a point. The ordering $ between 
points corresponds to the "less exceptional than" acces
sibility relation. We also have some world knowledge 
C; the world modelled by C, w, is located somewhere 
in this structure. This locating of Sw corresponds to 
the assumption that w is as unexceptional as possible. 
Default reasoning then, as a first approximation, corre
sponds to what may be derived at the point Sw. Thus if 
N is {R => Bl, RI\ Al => -,Bl} and' C is {R, Al} then 
we obtain that Sw = SRAAI· Since RI\AI :::> -,Bl at every 
world in SRAAI it follows that -,Bl must (by default) be 
true. 

There is however a bit more to it than this. For exam
ple we may have that SA $ Sw and SB $ Sw. Since we 
want to make the maximal set of "reasonable" default 
inferences, I assume that equality holds between Sw and 
these other points (whenever consistent). Note that it 
is only by making such an assumption that we can con
clude from A and A => B and B => C that C follows by 
default. Hence given SA $ Sw and SB $ Sw we would 
want to assume, if we could, that SA = SB = Sw. How
ever it could be that SA together with Sw is consistent 
and that SB together with Sw is consistent, but that the 
three points taken together are inconsistent. Thus we 
must allow for the possibility that there is more than 
one such maximal set. This leads to two possibilities 
with respect to default inferencing: if something follows 
by default in one such maximal set, then we have a no
tion of "credulous" default inference; for something that 
follows by default in all such sets, we have a much more 
conservative notion of default inference. These possibil
ities are covered below; the next section provides some 
examples. 

Given the canonical structure St(N) and contingent 
information C, default inferencing is defined as follows. 
We define a set of points Sw that gives the maximal set 
of points that the domain being modelled may be a mem
ber of. As mentioned, this "extension" of Sw, represented 
by Sw accounts for default transitivities (that is, tran
sitivities among defaults such as A=> B and B => C). 

Definition 4.5 Sw C S is a maximal set of points in 
St(N), such that: -

1. Sw E Sw; 
2. ifs; E Sw then s; $ Sw; 

3. ifs; E Sw and s; $ Sj $ Sw then Sj E Sw; 
4. Sw is consistent ( i. e there is no A such that 

A, -,A E Cl(LJ{ s; Is; E Sw} )). 

Recall that the operator U applied to points s; and Sj 

signifies the merging of the points,< s;(3)Usj(3), s;(V)U 
Sj (V) >. 
Definition 4.6 For Sw defined above, 

1. A follows as a credulous default inference if 
Atoms(A) <; Cl(LJ{s; ls; E Sw }). 
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2. A follows as a (general) default inference if 
Atoms(A) <; Cl(LJ{s; ls; E Sw}) for every such 
Sw. 

We also obtain: 

Theorem 4.2 1. If A follows as a credulous default 
inference then A follows by default in some maximal 
contingent extension in the approach of [De/88}. 

2. If A follows as a general default according to the 
above conditions, then A follows by default in the 
approach of [Del88}. 

Thus the examples of default inferences in [Del88] pro
vide examples for the present approach. The following 
section discusses additional examples. 

4.3 Complexity Considerations 

The procedure consists of two parts: constructing the 
canonical model and reasoning within the structure. 
Both parts however are essentially the same with re
spect to complexity considerations. In both cases the 
complexity hinges on two facts: first that there are no 
more points in St(N) than there are elements of N, and 
second that the complexity of reasoning at a point is de
termined by the form of the formulae in N where the=> 
operator is replaced by ::::>. 

To begin with, constructing or searching the canonical 
structure is O(n2), where n = IN I- This is because the 
construction of St(N) depends only on the set of con
ditionals in N: the number of points is 0( n) and the 
number of connections between points is O(n2) in the 
worst case. (Note too that while in the worst case ma
nipulating the structure is O(n2), in practice it appears 
to be roughly linear.) 

The additional overhead of reasoning with elements of 
N in the construction of the canonical structure is 0( m) 
where m is the total length of the formulae in N. That 
is, the antecedents and consequents of the elements of N 
are conjunctions of primitive propositions. In the con
struction, => in these formulae is replaced with ::::>. By 
the definition of Cl and the construction of the canonical 
structure, we effectively ignore negated primitive propo
sitions and only "apply" defaults in a "forward" direc
tion. Hence the complexity of reasoning with formulae 
at a point is proportional to the total length of formu
lae at a point, m [Ull82], and so the whole procedure 
is O(n2m). Alternatively the issue of reasoning with 
formulae at a point is equivalent to the satisfiability of 
propositional Horn clauses [DG84], since we ignore nega
tion, and conjunctions in the consequences have no effect 
on the algorithm. 

5 Examples 

Consider first the defaults P => Q and Q => R. We 
obtain that sp is < {P}, {P ::::> Q} > and sq is < 
{Q}, {Q ::::> R} >. In addition, from step 2 of the con
struction, SQ$ sp. Ifin addition we have that C = {P} 
then Sw = sp (again by step 2 of the construction). Sw 
is {sp, sQ}; Cl(sp U sQ) is {P, Q, R}; and so R follows 
as both a credulous and general default inference. 

For a second example, consider the following asser
tions: 



1. Quakers are normally pacifists; 

2. republicans are normally not pacifists; 

3. pacifists are normally anti-military; 

4. non-pacifists are normally not anti-military; 

5. Quakers normally have strongly-held beliefs; 

6. republicans normally have strongly-held beliefs; 

7. RN is a Quaker; 

8. RN is a republican. 

Hence N = { Q => P, R => ..,p, P => AM, ..,p => 
-iAM, Q => SHB, R => SHB, D(RN :::> Q), D(RN ::> 
R)}. From steps la-le of the construction St(N) has 
the points: 

SQ is< {Q}, {Q ::> P, Q :::> SHB} > 
SR is< {R}, {R ::> -,p, R :::> SHB} > 
sp is< {P}, {P ::>AM}> 
s.,p is< {-iP}, {-iP ::> -iAM} >. 

In addition we obtain (step ld of the construction) that 
the formulae RN :::> Q and RN :::> R are true at ev
ery point. From step 2 we obtain that sp ~ SQ and 
S-,p < SR, 

If;e have that C = {RN} then Sw is< {RN}, {RN:::> 
Q, RN :::> R} > and from step 2 we also obtain that SQ ~ 
sw and SR < Sw. For default reasoning, we can assume 
that Sw = -;Q or Sw = SR, However, assuming Sw = 
SQ = SR leads to an inconsistency, since both P . and 
-,p follow in this case. Hence there are two extensions, 
corresponding to the case where Sw is Sw U SQ and Sw 
is Sw U SR, In the first extension P, AM, and SHB are 
true and in the second -,p, -iAM, and SHB are true. 
In both extensions of course RN, Q, and R are true. If 
we intersect the extensions, we obtain the "firm" default 
conclusion that SHB is true. Note that if we had that 
RN => Q, RN => R then we would obtain the same set 
of inferences except that Q and R would now follow as 
default conclusions in both extensions. 

For a final example, consider where N = {A => 
B, B => C, B => D, C => E, D => -iE}. This example is 
the same as Figure 4 in [THT87] . From steps la-le of 
the construction St(N) has the points: 

SA is< {A}, {A::> B} > 
SB is< {B},{B ::> C,B :::> D} > 
sc is < { C}, { C :::> E} > 
sv is< {D}, {D ::> -iE} >. 

Step 2 yields sc ~ SB ~ SA and sv ~ SB ~ SA , 

If we have that C = {A} then Sw is simply < 
{A}, 0 > and from step 2 we obtain tha~ Sw = s1'. 
For default reasoning, there are two extens10ns, one m 
which {A, B, C, D, E} are true and another in which 
{A B C D -iE} are true. If we intersect the exten-' , ' , 
sions, then we obtain the "firm" default concl?sions 
{A, B, C, D}. If C was {B} then we would obtam the 
same extensions, except of course A would no longer be 
concluded. 

Consider now where C = {A} as before, and N has 
in addition A => -,D (Figure 5 in [THT87]). Thus the 
transitivity A => B, B => D is explicitly blocked . We 
obtain now that 

sA is< {A}, {A::> B, A :::> -iD} >. 

Crucially, from step 3 of the construction, we also ob
tain that s B < s A. That is, the simplest worlds where 
A is true must have both B and -iD true; the simplest 
worlds where B is true must also have D true; hence SA 

and SB must be disjoint. This means then that for de
fault reasoning we obtain now only one extension, where 
{A, B, -iD} are true. 

This last result is interesting in that the conclusion of 
C from A => B and B => C is also blocked. From the 
point of view of inheritance diagrams, such as those em
ployed in [THT87], this seems quite unreasonable: there 
is after all a path from A to C with nothing obviously 
blocking it. However I would suggest that this exam
ple instead points out a limitation with inheritance di
agrams as a means of justifying defeasible inheritance. 
The approach presented here provably rests on a logic 
of defaults together with an approach for defeasible rea
soning. If we assume that the logic does indeed fairly 
formalise a reasonable approach to representing default 
properties for naturally occurring kinds, and that the 
approach for default reasoning does indeed capture a 
reasonable approach to default inference, then it nec
essarily follows that C not be a default conclusion in 
this case. Moreover the rationale for this falls out from 
the semantic theory: the simplest worlds in which A is 
true are distinct from the simplest worlds in which B 
is true. Thus we can conclude B by default from A 
but we cannot subsequently conclude C from B.7 We 
cannot conclude C from B in this case since this would 
rely on the assumption, in our notation, that SA = sB; 

however in the above example we have SA ~ SB, This 
distinction is certainly not apparent in the correspond
ing inheritance diagram; in addition there seems to be 
no way this distinction could reasonably be made. 

6 Discussion 

This paper has presented an algorithm for inheritance 
reasoning based on the model theory of a logic of de
faults. The overall approach is to begin with an exist
ing semantic theory underlying an approach to default 
reasoning, and to derive the corresponding system of in
heritance reasoning. A set of strict and defeasible con
ditional assertions is translated into a particular math
ematical structure called the canonical structure. This 
structure in a precise sense represents the set of all mod
els of these assertions. The structure then directly re
flects intuitions explicitly or implicitly contained in the 
set of defaults. Defeasible inferencing is correct, in that 
it is shown to be sound with respect to the approach 
of [Del88]. Thus the semantic theory sanctions this ap
proach to the inheritance of properties. 

In the terminology of [THT87] the system is credulous 
in that initially we try to conclude as much as possible; 
something of a skeptical reasoner is obtained by consid
ering conclusions that occur is all credulous extensions. 
The system is downward in that properties are seen as 
"flowing" from classes to their subclasses, unless blocked 
by an exception. Hence the system is also coupled in that 

7 0f course if C = {B} we could conclude both C and D; 
moreover in the full logic we could also conclude ,A. 
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a subclass is always in agreement with a superclass, with 
respect to inheritance, unless explicitly blocked by an ex
ception. In addition defeasible and strict links (negated 
or not) may be mixed arbitrarily. Thus this work pro
vides a semantics for this class of systems. Finally, this 
approach arguably shows that inheritance diagrams may 
be simply too limited as a notational or heuristic device 
to adequately capture even simple inheritance networks. 

It is shown that inheritance reasoning may be effi
ciently carried out in this structure. This is because, 
first, the size of the canonical structure is bounded by 
the size of N, and second because the complexity of rea
soning at a point is determined by the form of the for
mulae in N where the=> operator is replaced by::::>. The 
complexity intrinsic in constructing and manipulating 
the canonical structure itself is O(n2

), where n =I N j. 
Since the formulae that we deal with are restricted to be 
conditionals involving conjunctions of primitive proposi
tions, and since conditionals are "applied" in a forward 
direction only, the complexity of reasoning with a set of 
formulae at a point is proportional to the total length of 
all formulae, m. Hence the overall complexity is O(n2m). 
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Abstract 
One problem with existing methods of formalizing 
nonmonotonic reasoning such as Non-Monotonic 
Logics I and II, Default Logic and Autoepistemic 
Logic, is that apparently a different notion of con
sistency is being employed in each of the formal
isms. In an attempt to provide a common semantic 
basis for these formalisms, we develop a logic of 
consistency and use it to reconstruct each of the 
above nonmonotonic logics. We are successful in 
providing a common underlying partial semantics 
for the nonmonotonic systems, but our result indi
cates that the use of consistency plays only a minor 
part in these systems' behaviour. 

1 Introduction 

Many attempts to formalize nonmonotonic reasoning are 
based on inferring nonmonotonic conclusions if they are 
'consistent' with what is known or believed. McDermott 
and Doyle's [1980] Non-Monotonic Logic I and 
McDermott's [1982] Nonmonotonic Logic II include formu
lae of the form Mcj>, which they explicitly recommend be 
read as 'cj> is consistent'. A theory in such a language is 
intended to encode all the information about which formulae 
are consistent with it. Reiter's [1980] Default Logic uses the 
notation M cj> in a meta-logical way as a shorthand for cj> 
being consistent with a first-order theory currently under 
consideration. Moore's [1985] Autoepistemic Logic, 
although based on the beliefs of an ideally rational agent, 
can be formulated as being based on a notion of consistency 
- an agent believes cj> iff -cj> is not consistent with its beliefs. 

One problem with these methods of formalizing non
monotonic reasoning is that on the face of it, a different 
notion of consistency is being employed in each of the for
malisms. Thus the question arises as to whether the notions 
really are distinct or whether they are variations of the same 
underlying notion of consistency. This motivates the work 
described in this paper, in which we present a logic of con
sistency and use it to reconstruct each of the above non
monotonic logics. Our semantics is based on our possible
worlds version of situation semantics, [Wobcke, 1988], and 
in particular, on a hierarchy of situations (partial states of 
affairs). We prove soundness and completeness results for 
our logic. We are successful only to a limited extent in pro
viding a common underlying partial semantics for the non
monotonic systems, because the use of consistency plays 

only a minor part in the systems' behaviour. In particular, 
other aspects such as the construction of extensions in 
Default Logic and the groundedness of beliefs in Autoep
istemic Logic, are more important in sanctioning inferences. 
We conclude, therefore, that nonmonotonic logics based 
purely on consistency are too weak to warrant drawing even 
the most intuitive of nonmonotonic conclusions. 

2 The Consistency Logic SE 

In this section, we define the syntax and semantics of our 
logic of consistency. The basic formulae of our logic are of 
the form c : cj>, where c denotes an information state and <I> a 
fact; such a formula means that <I> holds in the state [c ]. 
Information states are formally reconstructed as sets of pos
sible worlds: cj> holds in a state cr if <I> holds in all worlds in 
the set. The formulae <I> denoting facts can be constructed 
from the propositional calculus connectives and the modal 
operator 'M '. The formula c: Mcj> may be interpreted as '<I> 

is consistent with what facts hold in the state [c ]'. To for
mally define the truth conditions for our logic, we adapt the 
standard modal logic semantics for possibility: M <I> holds at 
a state cr if cj> holds in some information state accessible to cr. 
We will define matters such that the states accessible to an 
information state satisfy just those atomic facts that are con
sistent (with respect to the logic) with the atomic facts hold
ing at cr. Such an accessible state we call an extension of the 
original state. We now define a logic for consistent exten
sions which we call SE, for situated extensions. 

2.1 Situated Extensions: Syntax 

In stating some of the axioms for SE, we need to distin
guish modal from non-modal formulae. One reason for this 
is that disjunction distribution fails for atomic formulae 
(<I> V 'I' can hold in an information state without either dis
junct in particular holding), but if <I> (say) is an atomic modal 
formula, it must be determinately true or false, hence if <I> is 
false, the only way for the disjunction to hold is for 'I' to 
hold: thus a limited form of disjunction distribution holds in 
SE. 

Definition. A modal literal is a formula of the form M cj> or 
- M cj>, where <I> is a proposition. 

Definition. A literal is a PC formula or a modal literal. 

The following scheme defines the axioms of the logic 
SE: 
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(Pl) all the PC axioms written with formulae c: <I>, 
(P2) c : <I>, for all c and all PC axioms <I>, 
(P3) C: (<I> ~ 'If) ~ (c: <I>~ C: 'If), 
(P4) c: -<I>~ -c: <I>, 
(El) c: M(<I> ~'I')~ (M<I> ~ M'lf), 
(E2) c: MM<!>~ M<I>, 
(E3) c: M-<I> H M-M<I>, 
(E4) c: -<I>~ c: -M<I>, for <I> a non-modal literal, 
(ES) -c : <I> ~ C : M-<I>, 
(E6) c: M (<I> V 'I') ~ (M<I> V M'lf), for <I> a modal literal, 
(E7) c: -M(<I> & M-<I>), 

The only inference rule in SE is modus ponens, i.e. 

(MP) From a and a ~ ~ infer ~. 

Axiom schema (Pl) (which generates formulae like 
(c: p & c: q) ~ c: q) encodes the fact that the proposi
tional connectives apply to facts holding in information 
states in the same way as for classical propositions. Axiom 
schema (P3) ensures that the set of facts holding in each 
state is deductively closed. Axiom schema (P2) in conjunc
tion with (P3) ensures that every PC theorem is true in every 
state. Axiom schema (P4) captures a notion of consistency 
of states: if -<I> holds in some state, then <I> doesn't hold. 

It will be useful in what follows to refer to sets of formu
lae that can hold at a single information state. These are SE 
formulae stripped of their context symbols: 

Definition. Let E be that system consisting of the PC 
axioms and (MP), plus (El) to (E7) (without e's), but 
without (E4) and (ES). 

2.2 Situated Extensions: Semantics 

SE interpretations (like standard S4 interpretations) consist 
of a set of info:nnation states together with a reflexive and 
transitive accessibility relation on that set. The interpretation 
of a context symbol c is a state, which is a set of possible 
worlds. A formula c : <I> where <I> is an atomic proposition 
(i.e. contains no modal operator) is true just if <I> holds in all 
worlds in the set [c] (we write [c] I= <I>), This truth condition 
is identical to van Fraassen's [1966] supervaluation seman
tics. Now each SE interpretation specifies a hierarchy of 
states, with M <I> holding at CJ just if <I> holds at some state 
accessible to CJ. We further stipulate that the set of atomic 
facts holding at any state accessible to a given state CJ must 
contain the set of atomic facts holding at CJ - one way to do 
this is to make the hierarchy of information states 
correspond to the set inclusion ordering on sets of possible 
worlds (i.e. the more worlds in the set, the fewer facts hold 
in the state). Thus the set of facts holding at an information 
state CJ completely determines the hierarchy of information 
states below it 
Definition. Given a set of atomic E sentences r, the hierar
chy of consistent extensions for r is the hierarchy of infor
mation states each of which corresponds to a set of atomic 
sentences containing r, with the accessibility relation 
defined on this hierarchy by inclusion on the sets of worlds 
comprising each state. 

Formally, the truth conditions for SE formulae are 
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defined as follows. Let l be an SE interpretation. Then we 
define the truth conditions for formulae with respect to l in 
two stages; first for the atomic SE formulae, then for the 
complex SE formulae. Truth conditions for modal formu
lae are defined only for formulae in conjunctive normal 
form (the truth value of a non-CNF formula is defined as the 
truth value of the unique equivalent CNF formula). Let [c] 
be the information state that is the interpretation of c and 
consider the hierarchy of states le rooted at [c ]. Then, for 
the atomic SE formulae c: <1>: 

le I= <I> if [c] I= <I>, for all atomic propositions <I>, 
le I= -<I> if le l;t: <I>, for <I> non-atomic, 
le I= <I> V 'I' if le I= <I> or le I= 'I', for <I> or 'I' non-atomic, 
le I= <I> & 'I' if le I= <I> and le I= 'I', for <I> or 'I' non-atomic, 
le I= M <I> if some state accessible to [c] satisfies <I>, 

The truth conditions for complex SE formulae are as fol
lows: 

l I= c: <I> 
1 I= -c: <I> 
ll=c:<1>Vc':'1' 
1 I= c: <I>& c': 'I' 

ifle I= <I>, 
ifle l;t: <I>, 
ifle I= <I> or le· I= 'I', 
ifle I= <I> and le· I= '1'· 

Proposition. SE is a sound and complete inference system. 

Proof. (Sketch) Soundness is relatively straightforward. 
Completeness is proven using the standard Henkin method 
to construct a model for any maximal consistent set of SE 
sentences. But where, in the standard proof, maximal con
sistent sets of propositions are used to define possible 
worlds in the model, our information states are partial and 
correspond to sets of E sentences with the following proper
ties: 

Definition. A set re of E formulae is coherent if whenever 
re contains-<!> for <I> a non-modal literal, re contains -M<I>, 

Definition. A set re of E formulae is complete if whenever 
re does not contain <I>, re contains M-<1>. 
A coherent set of sentences that is consistent cannot contain 
both a non-modal literal - <I> and the statement that <I> is con
sistent with it. A complete set of E sentences contains full 
information about which sentences are consistent with it. 

Lemma. (Correspondence Lemma) Deductively closed, 
consistent, coherent and complete sets of E formulae con
taining all the E axioms are in one-one correspondence with 
the hierarchies of consistent extensions. 
The proof of the lemma is the heart of the completeness 
proof: it involves constructing, in the manner of [Hughes 
and Cresswell, 1968], a hierarchy of information states 
corresponding to such a set of sentences. The key fact is the 
following: 

Lemma. If re containing M<I> is a deductively closed, con
sistent, coherent and complete set of E formulae, then there 
is a deductively closed, consistent, coherent and complete 
extension of re containing <I>, 

Note that there is an inductive element in constructing the 
desired extension because <I> may itself be a modal formula. 
It is then not difficult to show that the hierarchy of 



information states so constructed satisfies exactly those for
mulae in the maximal consistent set of SE sentences. 

The full proof may be found in the extended version of this 
paper,['Vobcke, 1989].[] 

What justifies our thinking of M as consistency with the 
facts holding at [c] is the following consequence of the 
second lemma above, which relates the M operator to con
sistency in E: 

Corollary. A deductively closed, consistent, coherent and 
complete set I: of E formulae containing all the E axioms 
contains the formula M cl> iff cl> is consistent with I:. 

3 A Look at Some Nonmonotonic Logics 

The motivation for developing our logic of consistency is to 
enable us to define a formal semantics for nonmonotonic 
logics where our M operator can be interpreted as con
sistency with the facts. In this section, we consider in more 
detail these nonmonotonic logics, and examine the extent to 
which it is possible to do the reconstruction (restricting our
selves to the propositional case only). We consider, in turn, 
Nonmonotonic Logics I and II, Default Logic and Autoeps 
istemic Logic, including a short summary of each. Reiter 
[1987] and Bell [1989] provide more complete surveys. 

3.1 Non-Monotonic Logic I 

McDermott and Doyle (1980] introduce Non-Monotonic 
Logic I (NMLI). The language of NMLI includes a senten
tial operator M (which should not be confused with our M) 
and allows sentences to be formed using all the PC connec
tives. An NMLI theory is a set of NMLI sentences. So, for 
example, the following is an NMLI theory: 

(noon & Msun-shining ~ sun-shining, noon, 
eclipse~ -sun-shining) 

From this theory, it is possible to prove sun-shining. 

Provability in NMLI is defined in terms of fixed points. 
Let Th(A) be the deductive closure in PC of a set of NMLI 
formulae A. Define an operator NMA on sets of NMLI for
mulae by: 

NMA(S) =Th(A u AsA(S)), 

where As A is the set of assumptions from S, given by 

AsA(S) = (Mq, I -cl> e: SJ -Th(A) 

A set Sis a fixed point of NMA if NMA(S) = S. McDermott 
and Doyle then define provability, denoted I-, from a base 
set A as follows: A I- q, iff cl> is contained in all fixed points 
ofNMA. 

NMLI models of theories A are pairs <V, S> where Vis 
a PC model of the atomic sentences in A, and S is a fixed 
point of NMA. McDermott and Doyle give a very sketchy 
'proof' that NMLI is sound and complete, i.e. A I- cl> iff ci, 
holds in all models of A. The definition of 'model' is how
ever, suspect, as noted by Davis (1980], in particular in 
defining the truth condition for M q,. If, however, we take it 
that a model satisfies M cl> if M cl> E S, then completeness 
fails, as the following example shows. Take A = (-p, 
q V Mp), where p and q are atomic. Now Mp cannot be in 

any AsA(S) because -p EA. So Mp cannot be in a fixed 
point S of NMA because otherwise there would be a proof in 
PC of Mp from Au AsA(S): this is impossible because 
-Mp must be consistent with AsA(S) and hence must be 
consistent in PC with Au AsA(S) since -q e: AsA(S). 
Hence every model of A is a model of q. But A V,q, because 
q is not necessarily contained in all fixed points of NMA: it 
won't be contained in the fixed point consisting of all the 
Mei, except for those cl> that are consequences of p. The diag
nosis of the problem here is easy: we are not forced to have 
- M cl> provable from A if M cl> is inconsistent with A. This 
provides some motivation for reconstructing NMLI in SE, 
where this property does hold. 

Now we ask whether M can in fact be interpreted as 
consistency with what is believed. Put more precisely, the 
property being sought is that A I- M cl> iff cl> is consistent with 
A. Unfortunately, both halves of this purported equivalence 
fail, as can be seen from the following examples. First, 
clearly Mp is contained in all fixed points of A= (-p, Mp), 
and as McDermott and Doyle note, such fixed points exist. 
But it is equally clear that p is not consistent with A. 
Second, take A= (Mq ~ -p, Mp~ -q}, which has two 
fixed points, one containing (Mq, -p} but not Mp and one 
containing ( Mp, -q) but not M q. Thus Mp is not contained 
in all fixed points of NM A, but A u (p) is not inconsistent, 
because it has a fixed point containing (p, Mp, -q). So 
McDermott and Doyle's logic, as they say, 'fails to capture 
a coherent notion of consistency' (p. 69). This is the primary 
motivation for reconstructing NMLI in SE. 

To carry out this reconstruction, we need to consider just 
what McDermott and Doyle intend in stating that M should 
represent 'consistency with what is believed'. By their 
definition of of NMA, any fixed point S contains only those 
sentences that follow from A and the assumption set of S. 
But it would seem that if sentences in S are to be counted as 
be~efs, we should require only a much weaker property: that 
belief sets be those sets of sentences that include all the 
consequences of their assumptions. We can make this pre
cise with the following definition of an operator NM: 

NM(S) = Th(S u As(S)), 

where As(S) is, by analogy to the above, the set of assump
tions from S, given by 

As(S) = (Mq, I -cl> e: S) 

Belief sets will now be taken as the fixed points of NM, but 
in defining provability from A, we will restrict attention to 
those fixed points of NM that contain A. 

To define a translation from NMLI to SE, the idea is to 
have each NMLI theory A as the set of formulae holding at 
an information state. If we can set up a correspondence 
between fixed points and SE models, then by the complete
ness of SE, the consequences of A will include those formu
lae c : cl> such that cl> holds at all fixed points. Indeed, with 
our revised definition of the fixed point operator and the fol
lowing definition, we can show that models of SE(A) 
correspond to fixed points of NM: 

Definition. Given an NMLI theory A, the SE theory 
corresponding to A is the set SE(A) = ( c: ci, I ci, E A). 
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Proposition. The set of formulae satisfied in a model of 
SE(A) is a fixed point of NM that contains A. 

Proof. Let S be the set of formulae holding at [c] in our SE 
model. Obviously S contains A. Now S is clearly deduc
tively closed and is contained in Th(S u As(S)) . To show 
the converse, since S contains (ES), S contains M q, when
ever S does not contain -q,. Hence As(S) is contained in S 
and so S !:: Th(S u As(S)) ~ S. Hence S = NM(S). 0 

Proposition. If S is a fixed point of NM that contains A and 
is coherent, then S is a set of formulae satisfied in some 
model of SE(A). 

Proof. S is complete because if S does not contain q,, 
M-q, e S by the definition of NM. The result then follows 
from the correspondence lemma. 0 

Corollary. A formula is derivable in the SE theory 
corresponding to an NMLI theory A only if it is contained in 
all coherent and complete fixed points of NM that contain A. 

Now that we have been able, to a certain extent, to 
reconstruct NMLI in SE, in which M can be interpreted as 
'consistency with what facts hold', there remains the ques
tion of where this leaves us in relation to the original prob
lems of nonmonotonic reasoning. Unfortunately, it seems 
we are in a worse position than before. Consider the NMLI 
theory consisting of the single sentence { M q, ~ q,} , similar 
to the 'sun-shining' example above. In the reconstructed for
mulation, it is now not possible to infer q, from this theory, 
because although there is a fixed point containing { q,, M q,} 
as before, there is also another fixed point containing {-q,, 
- M q,} . One diagnosis of this problem is that under the 
revised definition of the fixed point operator, it seems that 
spurious beliefs q, can be introduced, beliefs whose support 
does not depend on making any nonmonotonic assumptions 
of the form M'lf. But it is more serious than that, because 
what does follow from c : M q, ~ q, according to the rules of 
SE is c: M-q,~-q,! So when M is interpreted as con
sistency, simple rules like this are not even sufficient to 
ensure a system will prefer q, over its negation. The 
appropriate conclusion to draw is that in order to properly 
handle nonmonotonic reasoning, it is insufficient to rely on 
mere consistency with beliefs as modelled in SE: much 
stronger conditions are needed. 

3.2 Nonmonotonic Logic II 

McDermott [1982] motivates his development of Non
monotonic Logic II (NMLII) by noting that in NMLI, there 
are no axioms whatever that relate specifically to M. 
Accordingly, there are too many fixed points of NMA, and 
hence by restricting the behaviour of M by including such 
axioms, some extraneous fixed points might be ruled out. 
McDermott considers using the axioms from the well
known modal logics T, S4 and S5, i.e. Lq, ~ q,, Lq, ~ LLq, 
and M q, ~ L M q,, where L is the dual of M. 

McDermott defines the provability operator I- based on 
fixed points of the operator NMA, as above. That is, A I- q, if 
q, is contained in all fixed points of the operator NMA, 
where, repeating the definitions, we have: 
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NMA(S) = Th(A u AsA(S)), 

and 

AsA(S) = {Mq, I -q, e: S} -Th(A) 

The difference between this and NMLI is that 'Th' now 
refers to deduction in a modal system (such as T, S4, S5) 
with all the instances of the relevant axiom schemata con
tained in all fixed points of NMA. It is also important to real
ize that in defining provability, McDermott modifies the 
definition of the rule of necessitation in these modal systems 
S from 'if S I- q,, infer Lq,' to 'from q,, infer Lq,'. 

The semantics of NMLII is given in terms of noncom
mittal modal models. A noncommittal modal model of a 
theory A is a (T, S4, S5) model M of A such that M I= Mq, 
for all those q, such that -q, is not satisfied in some model of 
Auacc(M,A), where acc(M,A), the set of 
'accidentally-holding' formulae of M, is the set of M'lf satis
fied in M that are not satisfied in all models of A. So the 
noncommittal models are those that attempt to reflect the 
fact that q, is not ruled out as a belief (by satisfying M q,) 
whenever q, is not in fact ruled out as a belief (if - q, doesn't 
hold in all models). McDermott then proves that M is a 
model of a fixed point of NMA iff M is a noncommittal 
model of A, from which it follows that A I- q, iff q, is true in 
all noncommittal models of A. 

One point of note is that McDermott shows that the non
monotonic system based on S5 'collapses' to monotonic S5 
(with modified rule of necessitation). That is, with S5 as a 
basis, A I- q, iff A I- q,, so no nonmonotonic conclusions can 
be drawn in nonmonotonic theories based on S5. Hence 
McDermott recommends basing nonmonotonic theories on 
S4 orT. 

Can M be interpreted as consistency with what is 
believed in (any of) the revised nonmonotonic logics? That 
is, is it true that A I- M q, iff q, is consistent with A? First 
note that the counterexample to the 'if' half in the NMLI 
case has been countered: { - p, Mp} is now inconsistent 
(because L-p ~ -Mp is a theorem of all the logics). But 
the counterexample can easily be modified as follows (the 
same one works for each of T, S4 and S5). Take A = 
{Mp, M-p}. Clearly A is consistent, and Mp holds in all 
fixed points of NM A. But A u {p} is inconsistent, because it 
is inconsistent in each of the modal systems (it contains Lp, 
hence -M-p). So the 'if half of the equivalence fails. Our 
counterexample above for the 'only if half still works for 
each of the nonmonotonic systems based on T, S4 and S5. 
So NMLII, although an improvement on NMLI, still does 
not completely capture a notion of consistency. 

Our reconstruction of NMLI in SE was motivated pri
marily in order to interpret M as consistency, but it also 
achieves the effect that motivated McDermott in designing 
NMLII, namely, by strengthening the logic of M, some 
spurious fixed points have been ruled out. As we indicated 
above, coherence and completeness are desirable properties 
of fixed points, which we obtain using SE's logic of M. 
However, as shown above, our reconstruction suffers a fate 
similar to that of nonmonotonic S5, in that the logic is too 
strong for a nonmonotonic theory { M q, ~ q,} to decide 



between <I> and -cp. The conclusion, as above, is that condi
tions stronger than consistency with the facts are required 
for nonmonotonic reasoning. 

3.3 Default Logic 

Reiter [1980] presents Default Logic. The main differ
ence between Default Logic and McDermott and Doyle's 
nonmonotonic logics is that in Default Logic, the operator 
M is not part of an underlying logical language. Rather; it 
assumes a meta-logical status, although it is still to be read 
as 'consistency with the facts'. A default theory <D, W> 
consists of a set W of first-order formulae representing the 
known facts, and a set D of inference rules, called defaults, 
which we will write as a, M lh, · · · , M l311 I- w. A default 
states roughly that some formula w can be inferred in the 
presence of a provided {l31, · · ·, l311 } is consistent with 
what is known. If a default rule is used to infer w, we will 
say that w is a default conclusion of the theory. 

Of special interest are the extensions of a default theory. 
Intuitively, a (consistent) extension of a default theory <D, 
W> is a set of first-order formulae that includes W and as 
many default conclusions as possible (retaining consistency) 
and which includes no extraneous formulae that are not 
either in W to begin with or derived from W using the 
defaults. More precisely: 

Definition. An extension E of a default theory <D, W> is a 
fixed point of the operator r. where for any set of first-order 
formulae S, r(S) is the smallest deductively closed set con
taining W such that if a, M 131 , · · · , M l311 I- w is a default 
rule, then if ex e r(S) and -P1, · · · , -p,. fE S, w e r(S). 

This definition suggests a way of characterizing exten
sions: as those sets that can be constructed by starting with 
Wand repeatedly adding default conclusions until the addi
tion of any more would result in an inconsistency. That is, 
Reiter show! that E is an extension of a default theory <D, 

W> iff E = uE;, where 
i=O 

E0 =W, 
E;+1 = Th(E;) u {w: a, MP1, · · ·, Ml311 1-w e D, 

a E E; and -131 , • • • , -l311 fE E}. 

Note, however, that the definition is not constructive due to 
the occurrence of E in the definition of E;+t · 

Just as with McDermott and Doyle's nonmonotonic log
ics, a default theory can have multiple extensions. For 
example, the default theory {Mq 1--p, Mp 1--q} has two 
extensions, one containing -p and one containing -q, just 
as the corresponding nonmonotonic theory has two fixed 
points. Note, however, that in general, there is no exact 
correspondence between extensions and fixed points. 

It is clear that, in a limited sense, M can be read as 'con
sistent with the facts' in that for the atomic case only, Mcp 
could be said to hold of an extension E whenever -<I> fE E, 
i.e. <I> is consistent with E. But of course M <I> can never be 
contained in an extension, so can never be a belief. This 
provides one motivation for reconstructing Default Logic in 
SE, because in this system, M is interpreted as consistency 
and we can have beliefs of the form M cp. 

But perhaps the primary motivation for reconstructing 
Default Logic in SE stems from the fact that Reiter pro
vided no semantics for Default Logic, although this has 
since been rectified to some extent by Etherington [1987] 
and Konolige [1987]. The aim is to tighten the connection 
between M and consistency. Our reconstruction proceeds by 
using the defaults as inference rules in E (recall that E is the 
system of SE formulae without their context symbols). This 
generalizes Default Logic in that it allows the consequents w 
of defaults to be arbitrary E formulae. Our definition of an 
extension simply replaces Reiter's condition -13 fE Eby the 
condition M 13 e E: 

Definition. An extension E of an SE default theory is a 
fixed point of the operator r, where for any set of E formu
lae S, r(S) is the smallest deductively closed set containing 
W such that if a & MP I- y is a default rule, then if ex e f'(S) 
and Ml3 e S, then ye r(S). 

Then, by analogy with Reiter, we have: 

Proposition.:. Eis an extension of an SE default theory <IJ, 

W> iff E = uE;, where 
i=O 

E 0 =W, 
E;+i = Tb(E; u {y: a & Ml3 I-ye D, a e E;, MP e E}). 

where Tb of a set S of E formulae is the set l:c (l: stripped 
of its context symbols) where l: = Thse(c: S), where c: S 
is the set { c: 'I' I 'I' e S}. That is, Tb(S) is calculated by 
adding the context symbol c in front of all formulae in S, 
taking the SE deductive closure, then stripping the context 
symbols off again. 

-Proof. Following Reiter. First, let E* = uE;. Then E* con-
;=0 

tains W, is deductively closed and if a & M 13 1-y is a default 
rule with ex e E* and M 13 e E, then ye E*. Hence 
f'(E) c.E*. 

We first show that an extension E = E*. Since E = r(E), we 
have E <;;. E* by the above result. Now to show E* <;;, E, we 
show that each E;<;;,E. Clearly E 0 <;;,E. Suppose E;<;;,E 
and let ye E;+t · If ye E;, then clearly ye E;+t · Otherwise 
there is a default ex & M 13 1-y such that a e E; and Mp e E. 
Hence (l & Ml3 E E, and SO y E r(E) = E. So E;+1 <;;. E. 

For the converse, we can suppose that E = E • and we must 
show that E is an extension of the default theory <IJ, W>. 
We show that each E; <;;. r(E) , so that then E <;;. f'(E), and 
since f'(E) <;;. E by the above result, we will have r(E) = E 
and so E will be an extension. Clearly E O ~ f'(E). Suppose 
E; ~;r(E). and let ye E;+t · If ye E;, then since E; ~ r(E), 
we have,y e r(E). Otherwise there is a default ex & M 13 1-y 
such that ex e E; and M 13 e E. Now since E; ~ f'(E), 
Cl E r (E). so ye r (E). So E;+I ~ r (E). D 

An extension is a set of formulae in E (which is 
coherent). To relate extensions to SE models, we thus need 
to convert the E sets into SE sets. By doing this, we will 
gain completeness of the set of SE formulae. Then we can 
show that the consistent extensions correspond to SE 
models. 
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Definition. The completion of an extension E is the set of 
SE sentences: 

SE(E)=ThsE({c:cj> I cj>E £} u {-c:cj> I cj>t £}). 

Proposition. The SE models for the completion of E are in 
one-one correspondence with the consistent extensions E of 
a default theory. 

Proof. SE(E) is coherent because if -cl> e £, -Mel> e Eby 
SE deductive closure. Similarly, if cl> t E, c: M-cj> e 
SE(£). The result then follows from the correspondence 
lemma. D 

As noted above, our reconstruction enables us to have 
beliefs of the fonn M cl>, since consequents of defaults can be 
arbitrary E fonnulae. As an example of the use of such 
defaults, suppose we wish to remain agnostic about 'I', given 
infonnation cj>. We would have the default cl> f- M'lf & M-'lf. 
So (in the absence of any other defaults) any extension con
taining cl> would contain both M'lf and M-'I', so could con
tain neither 'I' nor -'If. However, our method has the severe 
limitation that proofs in SE now have no natural relation to 
entailment over a class of SE models. That is, the only 
meaningful deduction is that carried out within a single 
extension of an SE default theory. This deficiency is also a 
weakness of Reiter' s Default Logic. 

3.4 Autoepistemic Logic 

Finally, we look at Moore's [1985) Autoepistemic 
Logic, which appeared much later than the above systems, 
and attempted to diagnose and correct some of the problems 
with McDennott's [1982) nonmonotonic logics: perhaps the 
main problem that Moore addressed was the collapse of 
nonmonotonic S5 to ordinary S5. He also proposes an 
interpretation of nonmonotonic reasoning interesting in its 
own right: nonmonotonic reasoning is the reasoning of an 
ideally rational agent about its own beliefs. For the belief 
operator, Moore uses L, the dual of M: Lcj> means 'the agent 
believes cl>', or '-cl> is not consistent with the agent's beliefs'. 
Thus fonnulae such as Mfly ~ fly that generate nonmono
tonic conclusions are written as -L-fly ~ fly, and inter
preted as 'it is possible to infer fly from the fact that -fly is 
not believed'. 

The semantics of Autoepistemic Logic is given in tenns 
of ordinary propositional calculus interpretations. Moore 
defines an autoepistemic interpretation of a theory T to con
sist of a PC interpretation for the language of T where for
mulae of the fonn L cl> are counted as separate propositions. 
There is one further condition: Lcj> must be true iff cl> is in T. 
Thus the autoepistemic theory itself detennines the interpre
tation of all the fonnulae of the fonn Lcj>, and the only varia
tion amongst interpretations is in the truth value assigned to 
the atomic formulae. An autoepistemic interpretation of Tis 
an autoepistemic model of T if all the formulae of T are 
satisfied. 

Moore defines soundness with respect to a set of prem
ises: a theory T is said to be sound with respect to premises 
A iff every autoepistemic interpretation of T that satisfies A 
is an autoepistemic model of T. Thus sound theories are 
those such that an agent's beliefs are true whenever all its 
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premises are true. A theory is complete if it includes all the 
formulae that are satisfied in all of its models. Two impor
tant notions are those of stability and groundedness of 
theories. A stable autoepistemic theory is one that is deduc
tively closed with respect to PC, contains Lcj> whenever it 
contains cj>, and contains -Lei> whenever it does not contain 
cj>. An autoepistemic theory T is grounded in premises A iff 
every formula of T is included in the deductive closure of 
the set Au {Lcj> I cl> E T} u {-Lcj> I cl> t TJ. Moore then 
shows (i) that the stable autoepistemic theories are exactly 
those that are complete, and (ii) that the autoepistemic 
theories grounded in their premises are exactly those that are 
sound with respect to their premises. 

We now reconstruct Autoepistemic Logic in SE, the 
aim being to have SE models corresponding to autoep
istemic models. For convenience, we add the formulae Lcj> 
to the language of SE, with Lcj> = -M-cj>, so that the beliefs 
of an agent represented in a hierarchy of states are those for
mulae cl> such that -cl> is not satisfied in any of the states in 
the hierarchy. Thus we immediately have that Lcj> is satisfied 
at a state iff cl> is. Our reconstruction will be successful if the 
only consistent sets of SE sentences are those that are stable 
and grounded in their premises. Stability is guaranteed by 
making a slight modification to the SE axioms; the ground
edness condition is built in as a constraint on theories. 

To guarantee stability, we must modify the definition of 
coherence and its counterpart, the SE axiom (E4). The rea
son for this is, as Moore (1985) notes, that in McDermott 
and Doyle's (1980) and McDennott's (1982) nonmonotonic 
logics it is impossible to infer Lcj> from cl> - whereas this 
seems an intuitively reasonable property of the set of beliefs 
of an ideally rational agent. But since in SE, M is inter
preted as consistency, this property does not hold in SE 
either. Indeed in SE, we do not want to infer-M-cj> from cj>: 
consider the example of cl>= Mp, where p is atomic. Mp 
says thatp is consistent; -M-Mp says that-Mp is not con
sistent. But clearly -Mp is consistent. because -p is con
sistent. More precisely, with respect to an information state 
agnostic about p, both p and-pare consistent. so Mp holds, 
but in the accessible infonnation state satisfying -p, -Mp 
holds, so M -Mp holds in the original state - in direct con
tradiction of the desired inference. This example shows that 
the fonnula M cl> ~ - M - M cj>, i.e. M cl> ~ L M cl>, i.e. the (S5) 
axiom, is not valid in E. But the inference of Lcj> from cl> 
must hold if we are to reconstruct Autoepistemic Logic. 

To support our reconstruction, we modify the system 
SE as follows. The only change is to the SE axiom (E4) 
and its counterpart, the definition of coherence: the restric
tion that cl> be non-modal has been dropped. The revised 
definitions are written below, with the changes in bold. 

(E4) c: -cl>~ c: -M cl>, for cl> an arbitrary E formula. 

Definition. A set re of E fonnulae is coherent if whenever 
re contains -cl> for cl> an arbitrary E formula, re contains 
-Mcj>. 

Now we have the following result, where from now on 
we use SE and E to mean those systems with the revised 
definitions of (E4) and coherence. 



Proposition. r is a consistent set of SE sentences iff re (the 
set of 'I' such that C : 'I' E r) is Stable. 

Proof. The modifications to (E4) and the definition of 
coherence give us a new version of the correspondence 
lemma By this lemma, if r is consistent, re is deductively 
closed, coherent and complete. Coherence says that if 
cj> Ere, then -M-cj> E re, i.e. Lcj> Ere. Completeness says 
that if cj> E re, M-cj> E re, i.e. -Lcj> e re. Thus re is stable. 
Conversely, let re be stable. Then clearly re is coherent 
and complete since our definitions are equivalent to that of 
stability. D. 
Definition. An SE theory r is grounded in A if r is the set 
of SE consequences of c:A u (c:Lre} u (c:-Lf'cl, 
where ['e is the set of 'I' SUCh that 'I' i!: re• The notation C: S 
is used for the set of c: 'I' such that 'I' E S. 

Definition. An SE theory r is sound with respect to prem
ises A if every SE interpretation of r that is a model of c : A 
is a model of r. 
Proposition. r is sound with respect to premises A iff r is 
grounded in A. 

Proof. Identical to Moore's: the change from propositional 
models to SE models has no effect. D 

We now have a reconstruction of Autoepistemic Logic, 
and by looking at the fonnulae that hold at all infonnation 
states, have a logic of belief. Recall that Moore [1985) 
recommends using 'weak S5' (S5 without T, otherwise 
known as K45) as the basis of his logic. Weak S5 consists 
of: 

(K) L(cj>-> 'I') -> (Lcj>-> L'I'), 
(4) Lcj>-> Llcj>, 
(5) -Lcj>-> L-Lcj>, 
(N) If I- cj>, infer L cj>. 

Bell [1989] observes that consistency of beliefs is a reason
able requirement, so suggests that the belief logic underly
ing Autoepistemic Logic is KD45: 

(D) Lcj>-> -L-cj>. 

Now because our reconstruction of Autoepistemic Logic 
is based on hierarchies of information states where M is 
interpreted as consistency, we do not have the (S5) axiom 
holding in all infonnation states. Indeed, the (S5) axiom is 
inconsistent with our definition of completeness, as can be 
seen from the example above that motivated our modifying 
SE in the first place. But the system E (our logic of belief) 
satisfies all of (K), (D), (4) and (N), and also some addi
tional postulates concerning belief which are consequences 
of the axioms (E3), (E6) and (E7). (E3) is M-cj> H M-Mcj>, 
i.e. Mcj> H Mlcj> or Lcj> H LMcj>. The easiest way to make 
sense of these formulae is to read L as 'believes' and M as 
'is consistent'. Thus (E3) says that (i) and (ii) are beliefs of 
the agent, where we have (i) cj> is consistent (with the agent's 
beliefs) iff the fact that the agent believes cj> is also con
sistent (with its current beliefs), and (ii) the agent believes cj> 
iff it believes that cj> is consistent (with its own beliefs). Both 
these postulates concerning belief and consistency seem 
intuitively reasonable. (E6) says that if cj> is a modal fonnula, 
cj> V 'I' cannot be a belief unless either cj> or 'I' is a belief. As a 

concrete example, let cj> be Lp and 'I' be q. Then Lp V q can 
only be a belief if p or q is a belief (because Lp is a belief iff 
p is a belief); hence if Lp is a belief or q is a belief. (E7) 
written with the belief operator is L(cj>-> Lcj>), which says 
that it is a belief that cj>-> Lcj>, or, it is a belief that if cj> is a 
belief of the agent, the agent believes cj>. This asserts nothing 
more than the fact that it is a belief of the agent that an 
autoepistemic theory contains Lcj> if it contains cj>. So E is 
strictly stronger than KD4, while it omits the (S5) axiom. 

We can also see on the basis of our reconstruction of 
Autoepistemic Logic, that our earlier reconstruction of 
NMLI was misguided precisely because we had no ground
edness condition. For example, with the theory M cj> -> cj>, 
we had two fixed points ( cj>, M cj>} and (-cj>, -M cj>}. But the 
second of these theories is not grounded in its premises, so 
with our reconstruction of Autoepistemic Logic, we have, 
using the definition proposed by Moore, overcome this diffi
culty with reinterpreting NMLI. Unfortunately, by introduc
ing this constraint on theories, we can no longer interpret 
deduction in SE as entailment over autoepistemic models, 
because this constraint is not representable in SE. We also 
note that by simply replacing groundedness by Konolige's 
[1987] strong groundedness, we have, using Konolige's 
correspondence between Default Logic and Autoepistemic 
Logic, that the SE models of a default theory are exactly the 
autoepistemic models of the corresponding theory. 

4 Conclusion 

We have defined a logic of consistency, SE, and recon
structed some well-known nonmonotonic logics in it. The 
initial motivation was that these logics all employed some 
notion of consistency, yet in each case, a different notion 
was being employed. In summary, our reconstructions of 
the nonmonotonic logics have the following properties. In 
the cases of Non-Monotonic Logics I and II, we can inter
pret deduction in SE as entailment over classes of models, 
but as we have seen, the logic SE is by itself too weak to 
generate intuitively correct conclusions. With Default Logic 
and Autoepistemic Logic, we have had to sacrifice the 
aspect of deduction corresponding to entailment: in Default 
Logic because all reasoning is carried out within an exten
sion, and in Autoepistemic Logic because of a constraint 
imposed on theories that is not representable in SE. The 
overall conclusion is that all of these methods are too weak 
to capture nonmonotonic reasoning as deduction in a logical 
system. From NMLI and NMLII, we learn that conditions 
stronger than pure consistency with beliefs are required. 
Both Reiter and Moore use non-logical constraints to 
enforce such conditions: Reiter using inference rules instead 
of logical implications, Moore using an appeal to soundness 
with respect to a set of premises. Furthermore, because M 
can no longer be interpreted strictly as consistency, we have 
lost the intuition about the sorts of default or autoepistemic 
rules that are appropriate for nonmonotonic reasoning. But 
our reconstructions have clarified the nature of consistency 
being employed in the various nonmonotonic logics, and in 
the case of Autoepistemic Logic, enables us to provide a 
new logic of belief incorporating a notion of consistency. 
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Abstract 

In this paper we start with defaults as possible hy
potheses and prediction as membership in all exten
sions. It is argued that this is too conservative and 
does not allow many intuitive answers. We show how 
viewing membership in all extensions as a form of di
alectic, and adding a notion of conditioning can pro
duce more intuitive answers. Defaults are possible hy
potheses for a logical argument that contain a prag
matic component that is a context in which we know 
the default is applicable. This context is used to ig
nore counter arguments that follow from the context 
of the default. The conditioning that is presented is 
very close to the irrelevance that Geffner added to €

semantics, and the resulting solutions turn out to be 
very similar. 

1 Introduction 

When considering default knowledge, there is a very 
strong notion that we should prefer more specific 
knowledge over more general knowledge [Touretzky, 
1986, Poole, 1985, Loui, 1987, Geffner, 1988) . In 
probability theory this is accomplished by condition
ing [Pearl, 1988). In this paper, we show how a form of 
conditioning can be added to a logic-based hypotheti
cal reasoning system. The resulting system is simple, 
can be easily implemented and solves many problems 
in a natural, straight-forward manner. 

This work uses the first order predicate calculus; 
default reasoning is accomplished by allowing the as
sumption and criticism of premises in logical argu
ments. The use of conditioning has been inspired 
by probability, particularly the work of [Pearl, 1988, 
Geffner, 1988, Neufeld and Poole, 1988) . 

1.1 Logic-based Hypothetical Reasoning 

Monotonicity has often been cited as a problem with 
using logic as a basis for commonsense reasoning. In 
[Poole, 1988, Poole, 1989b] it was argued that instead 
of deduction from our knowledge, reasoning should be 
viewed as a process of theory formation. In [Poole, 
1988) it was shown how default reasoning can be 

viewed in this way by treating defaults as possible hy
potheses that can be used in an explanation. In [Poole, 
1989b] it was shown how membership in all extensions 
can form the basis for prediction and can be imple
mented as a process of dialectics. 

1.2 Dialectics 

The idea behind dialectics [Loui, 1990) is that a con
clusion is reached by a process of argumentation. One 
agent comes up with an argument for a proposition; 
another agent can criticise the argument by coming 
up with a counter argument . In the Theorist frame
work all of the arguments are valid deductions; the 
premises are background knowledge, knowledge of the 
case at hand and assumptions. 

One particularly appealing framework [Poole, 
1989b] is where there are two agents. One agent finds 
arguments for a proposition. The other agent tries to 
either dismiss the argument out of hand (by showing 
it is inconsistent), or create an argument against the 
premises of the first agent's arguments . This idea is 
developed in more detail in section 2.2 . 

This implements membership in all extensions which 
is (propositionally, at least) equivalent to circumscrip
tion [Etherington, 1988) . This dialectical implementa
tion [Poole, 1989b] provides an abstract specification 
of recent implementations of circumscription [Przy
musinski, 1989, Ginsberg, 1989, Inoue and Helft, 1990) . 
In this paper it is argued that this notion of predic
tion is too restrictive, but is a good starting point for 
different argument forms. 

1.3 Background and Contingent Knowledge 

Consider the following example: 

Example 1.1 Suppose we have as defaults "birds 
fly" , "emus don't fly" , and as facts "emus are birds" 
and "Tweety is an emu" . There is a very strong pref
erence for concluding "Tweety doesn't fly" based on 
specificity [Touretzky, 1986, Poole, 1985, Loui, 1987, 
Thomason and Horty, 1988). We prefer to use the more 
specific knowledge about emus over the more general 
knowledge about birds. 
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The instances of the facts that are relevant to the 
conclusion are 

emu(tweety) I\ (emu(tweety):::} bird(tweety)) (1) 
Using the same defaults, if we change the facts by 

swapping the role of emu and bird the answer should 
be, by symmetry, that Tweety does fly (i.e., the oppo
site of the previous conclusion). The instance of the 
facts used would be · 

bird(tweety) I\ (bird(tweety) :::} emu(tweety )) (2) 

It is important to notice that formulae (1) and (2) 
are logically equivalent. Notice also that we have only 
talked about the facts and not about the defaults . 

This seems to indicate that defining specificity, with 
logically equivalent instances of facts treated identi
cally, is impossible. The first reaction is that these 
are different because the implication is an instance of 
a fact, and the equivalence does not hold between the 
facts, only between the instances of the facts. There 
are , however, good reasons why this is more than a 
syntactic distinction [Poole, 1990). 

There seems to be a qualitative difference between 
the facts "emus are birds" and "tweety is an emu". 
The first is a fact that we would not like to consider 
being false (we would not consider the question "what 
if emus were not birds"), the second is one we may 
consider being false (e.g., we could conceive of the sit
uation where Tweety was a sparrow). 

This indicates that we should partition the facts into 
background facts and the contingent facts [Poole, 1985, 
Delgrande, 1988, Geffner, 1988). This distinction is 
similar to the distinction between the network and 
markers in marker passing systems such as NETL 
[Fahlman, 1979), to the difference between the prob
abilistic knowledge (such as p(AIB) = 0.345) and the 
conditioning knowledge (the B in the preceding equa
tion) in probability theory [Pearl, 1988), and to the 
difference between background knowledge and obser
vations in abduction [Popl, 1973, Poole, 1989b]. 

1.4 Conditioning and Contexts 
The final piece of the jigsaw is the notion of condition
ing. If all we know about Tweety is that Tweety is an 
emu (given that we do not also have "emus do fly"), 
there is a very strong tendency to want to conclude 
that Tweety doesn't fly from the default "emus don't 
fly". 

The intuition behind conditioning that will be used 
is that if "p's are q's" is a default and if we know p( c), 
then all of the objections that could be raised about 
q( c) that follow from p( c) have already been taken into 
account when building the knowledge base. We only 
consider arguments against the conclusion q(c) that do 
not already follow from p( c). 

This conditioning is accomplished by associating a 
context with each default, in which we know the de
fault is applicable. Arguments against a default can be 
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ignored if they are also arguments against the default 
given only the context of the default. 

The notion of "context" is used, rather than, for 
example making a default into a pair, for a number of 
reasons. The first is the reluctance to invent any new 
connectives; part of the Theorist research is to see how 
far we can get inventing as little as possible. It may 
be the case that the appropriate context for a default 
is not the same as the precondition for the default (see 
section 5) . Contexts seem to reflect a natural intuition. 

The use of contexts is similar to an automatic pri
oritisation or cancelling of defaults, but, we will see 
that it has considerable advantages. One important 
advantage is that the sort of knowledge required to 
build the knowledge base is local, and so the knowl
edge base should be able to be built incrementally. 

2 Formal Framework 

2.1 Theorist Framework 

Theorist is a simple framework for hypothetical rea
soning. 

We assume we are given a standard first order lan
guage over a countable alphabet. By a formula we 
mean a well formed formula in this language. By an 
instance of a formula we mean a substitution of terms 
in this language for free variables in the formula. In 
this paper the Prolog convention of variables starting 
with an upper case letter is used. 

The basic definitions of Theorist are in terms of a set 
of closed formulae A (given as true) and a set of (pos
sibly open) formulae H (the "possible hypotheses"). 
A scenario of (A, H) is a set D of ground instances 
of elements of H such that D U A is consistent. If g 
is a closed formula, an explanation of g from (A, H) 
is a scenario of (A, H) which, together with A, implies 
g. An extension of (A, H) is the set of logical con
sequences of A together with a maximal (with respect 
to set inclusion) scenario of (A, H). 

In [Poole, 1988) it was shown how to avoid hav
ing complex formulae as defaults by "naming" compli
cated defaults (similar to the use of abnormality[Mc
Carthy, 1986)), using the name as the default and have 
the name implying the formula as a fact. This is done 
in the examples in this paper. 

2.2 Membership in all extensions 

It can be argued [Poole, 1989b] that predicting what 
is in all extensions (i.e. , can be explained even if an 
adversary chooses the defaults) provides more satis
factory results than, for example, predicting what is 
in one extension. Etherington [1988) has shown that 
this notion of prediction corresponds (propositionally 
at least) to circumscription [McCarthy, 1986). 

The following theorem was proved in [Poole, 1989b, 
theorem 2.6): 



Theorem 2.1 g is in every extension of (A, H) if and 
only if there is a set £ of (finite) explanations of g 
from (A, H) such that there is no scenario S of (A, H) 
inconsistent with every element of£. 

Theorem 2.1 leads to the following dialectical view 
of membership in every extension1[Poole, 1989b]. 

There are two processes Y and N that are having an 
argument as to whether g should be predicted. Pro
cess Y tries to find explanations of g. Process N tries 
to find a scenario inconsistent with all of Y's explana
tions. 

In general Y has a set of explanations I) (initially I) 
is empty). N tries to find a scenario S which is incon
sistent with all members of I) (i.e., explains the con
junction of the negation of the elements of I)) . When 
N finds such a scenario S, Y must find an explanation 
of g from (S, H). Whichever process, using a complete 
proof procedure, gives up first loses: 

• If Y cannot come up with an explanation based 
on N's scenario S, then g is not in all extensions 
(in particular g is not in any extension of S). 

• If N cannot come up with a scenario inconsistent 
with all of Y's arguments, every extension con
tains at least one of Y's arguments , and so g is in 
every extension. 

One further refinement of theorem 2.1 can be eas
ily proven. This corollary says that N only needs to 
choose one default from each of Y's explanations. 

Corollary 2.2 g is in all extensions of (A, H) if and 
only if there is a set£ of explanations of g from (A, H) 
such that there does not exist a counter argument. 
Scenario S of (A, H) is a counter argument if "I</> E 
£ 3d E </> such that 

1. A I\ d F -,s. 
The following example shows how restricted this no

tion of prediction is. 

ExllIIlple 2 .3 Suppose we have the fact that emus are 
birds, and the defaults "birds fly", "emu's don't fly", 
and "if something looks like an emu, it is an emu". 

This can be represented as2 : 

K = { VX emu(X) => bird(X), 
"IX 11-emu(X) I\ mbe(X) => emu(X), 
"IX bird(X) I\ bf(X) => flies(X), 
"IX emu(X) I\ enf(X) => -iflies(X) 

H = {bf(X), 
enf(X), 
mbe(X)} 

1 This algorithm corresponds to an abstract specifica
tion of algorithms for computing circumscription [Gins
berg, 1989, Przymusinski, 1989]. These algorithms find all 
of Y's arguments and then fail on N's counter arguments 
[Inoue and Helft, 1990]. 

2 11-emu(X) is intended to mean "X looks like an emu". 

Using membership in all extensions as a basis for 
prediction, we do not predict -iflies(tweety) from 

(KU {emu(tweety)}, H). 

This is because of the counter argument {bf(tweety)}. 
This seems like a peculiar objection to enf(tweety) 

as it is a counter argument for any emu. 
Similarly we do not predict emu(tweety) from (KU 

{11-emu(tweety)}, H), due to the counter argument 

{bf(tweety), enf(tweety)} 

which again, always holds whenever the default is ap
plicable. 

The objection to the conclusion of -,Jlies(tweety) 
from (KU{ll_emu(tweety)}, H), namely {bf(tweety)}, 
is also a peculiar objection. 

The proposed "solutions" to such problems, namely 
using cancellation axioms [McCarthy, 1986, Poole, 
1988J and providing global priorities [McCarthy, 1986], 
are unsatisfactory for a number of reasons (see section 
6). In this paper an alternate solution is advanced. 

3 Forcing Conditioning 
If we have "emus don't fly" as a default, we want it to 
be used if all we know about an object is that it is an 
emu. Although there may be counter arguments (e.g., 
because it is a bird, it flies), we have taken these into 
account when building the knowledge base. The idea 
is to ignore counter arguments to "emu's don't fly" 
that follow just from the object being an emu. We 
still take into account other arguments as to why the 
emu should fly. 

We assume that we are given the following sets 

K a set of closed formulae; the "background knowl
edge". The knowledge that we know is always 
true . 

G a set of closed formulae; the given knowledge about 
the situation being considered. 

H a set of open formulae; the "possible hypotheses" . 

We associate with each possible hypothesis a con
text . The intention is that given just the context as
sociated with a hypothesis we know the hypothesis is 
applicable (if consistent). A counter argument can be 
ignored if it is a counter argument when given only the 
context of the default. 

The context of possible hypothesis h, written C(h) is 
a formula with free variables amongst the free variables 
of h. 

The basic idea that we exploit is that some counter
arguments will be over-ridden by specificity. If S is an 
argument against d, i,e, 

K I\ G I\ d F -,s 
then S can be ignored due to specificity if 

KI\ C(d) I\ d F -,s 
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Figure 1: A diagram of the knowledge in example 3.2. 
Thick lines are facts, thin lines are (named) defaults. 

Definition 3.1 We predict1 g if there is a set e of 
explanations of g from (KUG, H) such that there does 
not exist a counter argument. Scenario S of (KUG, H) 
is a counter argument if 'r:/¢ E e 3d E ¢ such that 

1. K I\ G I\ d I= -,s and 
2. KI\ C(d) I\ d ~ -,s. 
Note that prediction in this definition is a strict su

perset of membership in all extensions. If some for
mula is in all extensions, then it is predicted. 

Example 3.2 Consider the following "knowledge" 
about birds (see figure 1): 
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K = { VX emu(X) => bird(X) 
'<IX ostrich(X) => bird(X) 
'<IX -,(emu(X) I\ ostrich(X)) 
'<IX 11..emu(X) I\ mbe(X) => emu(X) 
'<IX 11..ostrich(X) I\ mbo(X) => ostrich(X) 
'<IX bird(X) I\ bf(X) => flies(X) 
'<IX in_cage(X) I\ llb(X) => bird(X) 
'<IX emu(X) I\ enf(X) => -,J/ies(X) 
'<IX ostrich(X) I\ onf(X) => -,J/ies(X) 
'<IX flies(X) I\ nf(X) => in..air(X)} 

H = { bf(X), enf(X), onf(X), mbe(X), mbo(X), 
llb(X), nf(X)} 

The context information can be represented as 

C(bf(X)) 
C(enf(X)) 
C(onf(X)) 

bird(X) 
emu(X) 

= ostrich(X) 

C(mbe(X)) 
C(mbo(X)) 

C(llb(X)) 
C(nf(X)) 

ll..emu(X) 
= ll_ostrich(X) 
= in_bird_cage(X) 

f lies(X) 

Example 3.3 Suppose we are given 

G = { emu(tweety), 
in_bird_cage( tweety ), 
bird(polly), 
in_bird_cage(polly)} 

We predict1 that tweety does not fly, as there is an 
explanation of-,J lies(tweety), namely {enf(tweety)} . 
The only potential counter argument (i.e. , explanation 
of-,enf(tweety)) is {bf(tweety)}. This explanation is 
ignored due to specificity as 

KI\ enf(tweety) I\ C(enf(tweety)) I= -,bJ(tweety) 

We do not predict1 that tweety flies. There is an ex
planation off lies(tweety), namely {b/(tweety)}, how
ever the explanation of-,bf(tweety), ( {enf(tweety)}) 
is not an explanation of -,bJ(tweety) from the context 
of bf(tweety), namely bird(tweety). 

The knowledge in_bird_cage(tweety) provided no 
evidence for the flying ability of Tweety. It could be 
safely ignored as it was irrelevant to the conclusion. 

We predict that Polly flies, as there is an argument 
for the flying of Polly, and no reason, to doubt that 
argument. There is no argument for Polly not flying. 

Example 3.4 Consider how example 2.3 is handled. 
Suppose we have the knowledge base of example 3.2, 
and are given 

G = {11-emu(tweety)}. 

There is an explanation for emu(tweety), namely 
mbe(tweety). There is one counter-argument for this, 
namely 

{bf(tweety), enf(tweety)} 
however, this argument follows from C(mbe(tweety)), 
and so can be ignored. Thus we predict emu(tweety). 

We predict1 -,J/ies(tweety). There is an explana,. 
tion, namely 

{mbe(tweety), enf(tweety)} 

The same counter argument exists for mbe(tweety), 
and can be ignored for the same reason as above. 
There is one explanation of -,enf(tweety), namely 

{mbe(tweety), bf(tweety)} 

This can be ignored as bf(tweety) is an argument 
against enf(tweety) given C(enf(tweety)). 

We do not predict1 flies(tweety). There is an ex
planation for f lies(tweety), namely 

{mbe(tweety), bf(tweety).} 



There is a counter argument ( an explanation of 
-.bf(tweety) ): 

{mbe(tweety), enf(tweety)} 

which cannot be ignored as it does not follow from 
C(bf(tweety)). 

Example 3.5 Suppose we have the knowledge baae 
of example 3.2 and are given that Tweety looks like 
an emu and also looks like an ostrich ( they do look 
similar): 

G = {lLemu(tweety) I\ ll..ostrich(tweety)} 

There are two explanations of bird(tweety), namely: 

{ mbe( tweety)} 

{ mbo( tweety)}. 

There is a counter argument to each of these expla
nations (they are, in fact, counter arguments to each 
other), but there is only one potential counter argu
ment to both explanations, namely 

{bf(tweety), enf(tweety), onf(tweety)} 

This, however is also a counter in the contexts of each 
default and so can be ignored. 

We thus predict bird(tweety). We also predict 
-.Jlies(tweety) . 

Example 3.6 As an interesting variation to the pre
vious example, suppose we are given that Tweety ei
ther looks like an emu or looks like an ostrich: 

G = {lLemu(tweety) V ll..ostrich(tweety)} 

There is one explanation of bird(tweety), namely: 

{mbe(tweety), mbo(tweety)}. 

There are potential counter arguments to this expla
nation, namely 

{bf ( tweety), en/ ( tweety)} 

{bf(tweety), onf(tweety)} 

These, however can be ignored due to specificity. 
We thus predict bird(tweety). We also predict 
-.flies(tweety). 

These examples show the robustness of the defini
tion of specificity. 

It is interesting to consider how this definition han
dles the qualitative lottery paradox [Poole, 1989a] that 
is problematic for many systems. In [Poole, 1989a] it 
waa shown that there is a conflict between the "one 
step default property" (conditioning inthis paper) and 
conjunctive closure. It waa argued that conjunctive 
closure waa the less intuitive property. 

Example 3. 7 The general form of the qualitative lot
tery paradox given in [Poole, 1989a] can be expressed 
as: 

K = { VX b(X) I\ d,(X) => c,(X), for i = l..n, 
VX -.(c1(X) /\ ... /\ cn(X))} 

H = { d,(X), for i = l..n} 

C(d,(X)) = b(X), for i = l..n 

Given b(t), we can predict1 d,(t) (and so c,(t)) for 
any i. We predict the conjunctions of these conclusions 
while they are consistent. For example, we predict1 

C1 (t) I\ ... I\ Cj-1 (t) I\ Cj+l (t) I\ ... I\ Cn(t) 

for each j. The reason is that the only argument 
against each d,(t) is 

{d1(t), ... , d,-i(t), d,+i(t), ... , dn(t) 

and this is an argument against d, given only the con
text of the default. 

We do not however predict the conjunction of all of 
the c.(t), as this is inconsistent and so cannot even be 
explained. 

4 Refinement of Conditioning 

Example 4.1 Consider the following facts and de
faults: 

K = { uni_student(X) I\ usa(X) => adult(X), 
uni_student(X) I\ usne(X) => -.employed(X), 
adult(X) I\ ae(X) => employed(X)} 

H = { usa(X), usne(X), ae(X)} 

C( usa(X)) = uni_student(X) 
C(usne(X)) = uni_student(X) 

C(ae(X)) = adult(X) 

Using the previous definition of prediction, given 
uni_student(fred), we predict 

adult(fred) I\ -.employed(f red) 

However, given 

uni_student(f red) I\ adult(f red) 

we do not predict -.employed(fred). The counter ar
gument, ae(fred) cannot be ignored. While we cannot 
prove -.ae(f red) from any default and its context, we 
can predict -.ae(f red) from the context of either de
fault. 

Example 4.2 Suppose we are given the background 
knowledge of example 3.2, and the contingent knowl
edge, 

G = lLemu(tweety) I\ -.in_air(tweety) 
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There is an explanation of emu(tweety), namely by 
assuming 

{ mbe(tweety)} 

There is an explanation of-,emu(tweety), by assuming 

{bf(tweety), nf(tweety)} 

The negation of this counter argument is not proven 
from the context of any default and that default, 
but -ibf(tweety) is predicted from the context of 
mbe(tweety). 

This leads us to the next definition of prediction 
which allows us to predict even more. The idea is 
to extend the definition so that a counter argument 
needs to just predict the negation of the defaults. This 
is defined recursively to ensure that the definition is 
well-grounded. 

Definition 4.3 We predicti g given G if there is a 
set£ of explanations of g from (KI\ G, H) such that 
there does not exist a counter argument. Scenario S 
of (KI\ G, H) is a counter argument if V</> E £ 3d E ¢ 
such that 

1. K I\ G I\ d I= -,s and 
2. we do not predicti-i -,s given C(d) I\ d. 

We predict a g given A if K I\ A I= g. 

Definition 4.4 We predict g given G if there is some 
i such that we predicti g given G. 

In this definition predicti is the same as the previ
ous definition; each higher integer allows us to predict 
more. 

In example 4.1 we predict2 -iemployed(f red) given 

uni_student(f red) I\ adult(f red) 

In example 4.2 we predict2 emu(tweety) given 

11-emu(tweety) I\ -,in_air(tweety) 

5 Pragmatics 

Contexts are intended to be the cases under which we 
know the assumption is applicable. The "normal case" 
is where the default "p's are q's" is represented as the 
fact 

VX p(X) I\ d(X) =? q(X) 

with the default d(X) and the context information 

C(d(X)) = p(X) 

There is nothing in the theory to force this use of 
contexts. There are two extremes of contexts that are 
interesting. If C(d) is uniformly false, prediction be
comes equivalent to membership in one extension (as 
all counter arguments are ignored). If C( d) is uniformly 
true, prediction is equivalent to membership in all ex
tensions. 
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Contexts can be used in order to carry out a power
ful form of preference for defaults, of which specificity 
is only one ( albeit natural) instance. 

One pragmatic idea is that if "a's are e's" and "b's 
are not e's", then we have a conflict if we know some
thing is both an a and ab. If we prefer the first default 
over the second, we want to say that the first default 
is applicable even if b were true. This is done by: 

K = { a I\ di =} c 
b I\ d2 =} -ic} 

H = { di,d2} 
C(di) = a/\b 

C(d2) b 

If we are given a, we predict c. If we are given b, we 
predict -ic. If we are given a I\ b we predict c, using 
assumption di; the counter argument to di, namely d2 
is always a counter argument to d1 given the context 
of di . 

One more thing needs to be done if the implication 
is of a causal type. If we are given a, we don't want to 
use d1 to say that c is true and then use d2 to say that 
b was not true. Such counter-intuitive reasoning can 
be prevented by adding the reasonable fact that the 
defaults should not both be used, that is, -i(d1 /\ d2). 
This is a simplistic way to handle causal reasoning (see 
[Geffner, 1989] for a more sophisticated theory), but 
is good enough, with specificity, to han~le some tricky 
examples: 

Example 5.1 (Geffner, 1989) Suppose we get up 
in the morning and find that we have left the lights 
on in the car and want to determine whether the car 
will start. We are given that the car normally starts 
if we turn the key, and normally does not start if the 
battery was flat (even if we turn the key), and that 
the battery is flat, by default if the lights were on. 
Following the above methodology, this can be stated 
as 

K = { turn_key I\ key_starts =} starts 

batt_f lat I\ batLprevents =} -,starts 

-i( batLprevents I\ key..starts) 

lights_were_on I\ drained=} batLflat} 

H = { key..starts, batLprevents, drained} 

C( key..starts) 

C(batLprevents) 

C(drained) 

turn..key 

batLf lat I\ turn.key 

lights_were_on 

Notice that the use of context allows us to say that the 
batLprevents default is applicable even if we turn the 
key. 

If we are given just turn_key, we predict starts, as 
the only counter argument can be ignored by speci
ficity. 



If we were given 

turnJcey I\ lights_were_on 

we predict batt_f lat and -,starts. There are no counter 
arguments to drained, and the counter argument to 
batt_prevents is ignored by specificity. 

Example 5.2 (Hanks and McDermott, 1986) 
Consider the celebrated ''Yale Shooting Problem" 3 • 

We will follow the methodology given above and make 
one slight change to make it only a default that Fred 
dies if shot with the gun loaded ( as she may be wearing 
a bullet proof vest). 

K = { loaded(l) I\ lp(l)::} loaded(2), 
alive(2) I\ ap(2) ::} alive(3), 
shoot(2) I\ loaded(2) I\ sk(2)::} -,a/ive(3), 
-,(ap(2) I\ sk(2))} 

H ={ lp(l),ap(2),sk(2)} 

C(/p(l)) 
C(ap(2)) 
C(sk(2)) 

G 

loaded(l) 
= alive(2) 
= shoot(2) I\ loaded(2) I\ alive(2) 
= loaded(l) I\ alive(2) I\ shoot(2) 

The only thing "tricky" thing here is to include 
alive(2) in the context of the default sk(2), and to 
make it so that the two contradictory defaults are not 
both used. 

To consider. why -,a/ive(3) is predicted, there is one 
explanation for it, namely 

{/p(l), sk(2)} 

There are no counter arguments to /p(l), and the only 
counter argument to sk(2) is {ap(2),/p(l)}, which can 
be ignored due to specificity as -,ap(2) follows from 
sk(2) I\ C(sk(2)) 

6 Comparison with other systems 

One of the main goals of this research is to draw a 
bridge between those systems that treat defaults as 
statements of conditionals [Geffner, 1988, Delgrande, 
1988], and those that treat defaults as propositional 
assumptions [McCarthy, 1986, Poole, 1988). The for
mer have nice properties with respect to specificity, 
but need a form of irrelevance to allow chaining and 
ignoring irrelevant properties. The latter ignore irrel
evant details and allow chaining, but do not handle 
specificity well. This paper is an attempt to consider 
what needs to be added to the assumption based sys
tems to allow the natural specification of specificity. 
The solution to the problems of specificity is also much 

3The notation is changed slightly here in order to 
keep the example simple, but still exhibit the anomalous 
behaviour. 

more natural than the solution of using global prior
ities, particularly as no one is prepared to say where 
such global priorities come from or what they mean. 
This sort of conditioning knowledge seems like the sort 
of knowledge one would have about a default. 

The most interesting comparison of this work is with 
the addition of irrelevance to €-semantics. The defini
tion of ignoring in predict1 is almost identical to the 
definition of irrelevance in [Geffner, 1988). Both of the
ses systems fail for example 4.2, and the ignoring for 
the general definition of prediction in this paper is al
most identical to the irrelevance of [Geffner and Pearl, 
1989). The resulting systems are, however, different. 
For example, because we are using normal logical con
nectives, we can use the contrapositive of defaults. The 
two systems get the same result on Geffner's examples 
(for example the "solution" to the Yale shooting prob
lem in example 5.2 follows a similar idea to the solution 
presented in [Geffner, 1988)). It seems as though there 
is something important about the irrelevance that is 
independent of the underlying probability theory. 

The use of conditioning can be motivated in a sim
ilar manner to the notion of "all I know" of Levesque 
[Levesque, 1990). They are, however very different. 
Levesque makes no distinction between background 
and contingent knowledge. If someone just tells us 
that "Tweety is an emu" we can use that as our contin
gent knowledge and say that this is all we know ( con
tingently) about Tweety. As part of what Levesque 
"only knows" about Tweety includes all tautologies 
about Tweety, instances of general information (such 
as "square(tweety) ::} rectangle(tweety)") and de
rived information (such as bird(tweety)). Levesque 
makes no attempt to automatically use specificity. 

This work should also be contrasted to the work in 
inheritance systems [Touretzky, 1986, Thomason and 
Horty, 1988, Stein, 1989). We are trying to add a no
tion of specificity to a general logic system, and want 
the non-defeasible statement "emus are birds" to be 
exactly the logical statement VX emu(X) ::} bird(X). 
This work is most closely related to the sceptical in
heritance of [Stein, 1989); both allow for membership 
in all extensions with a notion of specificity. This work 
allows for a much more expressive language than the 
networks used for the inheritance theory. 

This work has many similarities and differences to 
[Poole, 1985). In that work the important context was 
the context of the more general default, whereas, in 
this paper the important context is the one of the more 
specific default. The main problem with that paper 
was in the underlying reasoning paradigm in which 
the specificity was added; this problem has recently 
been addressed [Simari and Loui, 1990). In [Poole, 
1985), the user was not required to specify the context 
of the defaults, as they are in the system described in 
this paper. It seems to be an advantage rather than a 
disadvantage to be able to specify a context in which 
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a default is known to be applicable. As shown in the 
previous section, this extra pragmatic knowledge can 
be used to advantage in many cases. 

7 Conclusion 

In this paper we analysed some problems that arise 
from prediction based on membership in all exten
sions. This problem was diagnosed as being due to 
peculiar counter arguments. A solution was proposed 
that is based on a very simple idea of conditioning. 
This is particularly nice, as the conditioning knowl
edge required is local to a default, and seems to be 
very natural ( as opposed to other solutions based on 
cancellation or global priorities) . 
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Abstract 

A model of how a computer user reasons is im
portant for effective human/computer commu
nication. This paper develops tools for reason
ing about reasoning. For accuracy and flexibil
ity, each level of reasoning incorporates reason
ing by default as well as by deduction. 
Nested Theorist (NT) is a simple tool based 
on Theorist that allows default reasoning on 
arbitrarily-many levels. Prioritized Nested 
Theorist (PNT) uses defaults of different pri
ority to give the system's defaults more power 
and to remove multiple explanations. Compar
isons with related work regarding speech act 
theory and user modeling reveal the advantages 
obtained by tools with defaults on distinct lev
els. 

1 Motivation 

A model of how a computer user reasons is important 
for effective human/computer communication. Rather 
than modeling a user as a fixed set of beliefs, this paper 
shows how to model a user as a reasoning procedure. 
Modeling inferences that a user might make can provide 
a more accurate model of how a user's beliefs change and 
whether a user is able to solve particular problems. 

Default reasoning is useful for both the system rea
soning about the user, and for the model of the user's 
reasoning. Defaults can be used by the system to build 
and maintain a user model. The system often must deal 
with incomplete knowledge about the user. Defaults pro
vide a way to make assumptions about the user when 
necessary. For example, stereotypical reasonin~ [Rich, 
1979] and belief ascription [Kass and Finin, 1987] can be 
implemented via default reasoning. 

The user deals with incomplete knowledge about the 
domain of discourse. Hence defaults are useful to the 
user . When modeling a user, the system should repre
sent the user's defaults [Joshi et al. , 1984]. For exam
ple, reasoning about user defaults enables the system to 
avoid misleading the user . The system can reason about 

*Thanks to the Universities of Waterloo, British 
Columbia, and Western Ontario for financial support. 

assumptions that a user might make based on what the 
system tells the user, and then block those assumptions 
that are false. 

This paper shows how to build tools to reason by de
fault about users who reason by default. These tools 
are based on Theorist, in which explanations are formed 
from facts and defaults. The tools incorporate distinct 
levels of reasoning by having the system form explana
tions that define how a user forms explanations. Beliefs 
are viewed as formulae that are in an explanation. 

2 Theorist 

Theorist [Poole et al., 1987; Poole, 1988] is a simple 
framework for default reasoning. Its input is two sets of 
formulae, called facts and defaults. Theorist uses facts 
and consistent defaults as premises in a logical argument. 
If Theorist determines that a formula g is a logical conse
quence of the facts and consistent defaults, we say The
orist can explain g with the given facts and defaults . If 
new facts are added later, it may be that a goal g can 
no longer be explained because the defaults used are in
consistent with the new facts. 

Explanations in Theorist are defined in terms of two 
sets of formulae input by the knowledge designer: 

:F a set of facts: closed formulae taken as true 
in the domain; 

A a set of defaults: (possibly open) formulae 
taken as the "possible hypotheses" in the 
domain. 

Definition 2.1 [Poole, et. al., 1987] An explanation 
from a default theory (:F, A) of a closed formula g is a 
set :FU D where 

1.:FuDt=g, 
2. :FUD is consistent, and 
3. D is a subset of ground instances of elements of A 

We say that g can be explained from (:F, A) assum-
ing D if :FU D is an explanation of g. 

Our notation is similar to Prolog syntax: variables be
gin with an upper case letter, and functions, predicates, 
and constants begin with a lower case letter. We use 
the universal quantifier (V), and four logical connectives: 
implication ( +-), conjunction (A), disjunction (V), and 
negation (-,) . 
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Example 2.2 Using a Default 
It is a fact that David has a flu virus, and it is a default 

that a flu results in nausea. 

:F = { flu(david) } 
Ll = { nausea(X) +- flu(X) } 

From these statements there is an explanation of 
nausea( david) with D = { nausea( david)+- flu( david)}. 

Example 2.3 An Inconsistent Default 
It is a fact that Eric has the flu . However, it is also a 

fact that Eric has been drugged, and that being drugged 
prevents nausea. 

:F = { flu(eric) 
drugged( eric) 
VX -inausea(X)+-drugged(X) } 

Ll = { nausea(X)+-Jlu(X) } 

There is no explanation of nausea(eric) because 
nausea(eric) in inconsistent with the facts . There is 
an explanation of -inausea(eric) with D = {}, since 
-inausea( eric) is implied by the facts. 

3 Nested Theorist 

Nested Theorist (NT) is a simple tool based on The
orist that allows default reasoning on arbitrarily-many 
levels. Suppose a system, s, is modeling a user, u . On 
the metalevel, Theorist is used to build and maintain a 
model. This corresponds to s reasoning about u. On 
the object level, Theorist is used as a model of how u 
reasons. This corresponds to s's model of u's reasoning 
about the world. 

3.1 Metalanguage and Object Language 

To define NT, we define a language for each level of rea
soning. For two levels, we define two languages: an ob
ject language (OL) to express u's facts and defaults, and 
a metalanguage (ML) to express s's facts and defaults 
[Konolige, 1982]. The OL is part of the object of study 
of the ML, since the ML is able to refer to u's facts and 
defaults that are expressed by the OL. 

Both the ML and OL are first-order languages. That 
is, they consist of constants, functions, predicates, vari
ables, connectives, and quantifiers, combined to form 
formulae, and given a Tarskian semantics. 1 To refer to 
statements in the OL, the ML has terms that denote 
these sentences. For each OL constant and variable, the 
ML has a corresponding constant. For each OL func
tion, predicate, connective, and quantifier, the ML has 
a corresponding function. This is summarized in table 1 
using examples. 

To refer to u's facts, defaults, and explanations, the 
ML has constants :F,, and Llu, and a function E.,(D), 
where D is a set of defaults used in an explanation. The 
ML can express that a statement is in the facts of the 
user using the predicate E. For example, 

p'(a') E :F,, 

1See [van Arragon, 1990) for details, such as how to allow 
statements in which the the ML and OL share a variable, and 
how to deal with quantifying into a default. 
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OL sentences 
r 
p+-q 
pl\.q 
pVq 
-ip 
VX r(X) 

ML terms 
r a 
if(p'' q') 
and(p', q') 
or(p', q') 
not(p') 
fora II( x', r' ( x') 

Table 1: Representing OL in ML 

is a ML statement expressing that p( a) is a fact of u. We 
purposefully use the predicate E rather than stating 

:F,, = {p'(a')} 
because we want to allows to have incomplete knowledge 
of u. It may be that s does not know the complete 
contents of :Fu or Ll,,. 

If we want to represent more levels, we can define new 
languages. For example, for a third level, we can define 
an object-object language (OOL) . The OL must have 
terms that denote symbols of the OOL, and the ML must 
have terms that denote the symbols of the OL that de
note symbols of the 001. 

Notation For ease of notation, we do not use the E 
predicate, but instead treat :Fu as a predicate. For ex
ample, we replace p'ba') E :F,, with :Fu (p'(a')). Similarly, 
we treat Ll., and E., as ML predicates in our notation. 
For example, Ll,,(p') means that pis in the <lefaults of u, 
and E!p'} ( q') means that q is explained by u, assuming 
p. 

Furthermore, instead of using the ML with all of its 
complexity, we replace ML terms with the corresponding 
01 sentence. For example, rather than stating 

:F,,(Jorall(x', and(p'(x'), q'))) 

to say that VX p(X)A.q is in the facts of u, we use the 
following simpler notation: 

:F,,(VX p(X)A.q) 

We use the symbol :F, and Ll, to refer to the set of 
s's defaults .2 

3.2 Assuming Defaults are Consistent 

Ifs builds a model of u's reasoning where u makes as
sumptions to explain some formula g, there are two con
ditions this model should satisfy (see definition 2.1): 

Condition 1: the assumptions (together with the 
facts) of u imply g, and 

Condition 2: the assumptions of u must be consistent 
with the facts of u. 

To show that condition 1 holds, s must show that a 
subset of :F,, together with the defaults u assumes imply 
g. It suffices to show that a subset of :Fu implies g be
cause such deductive conclusions are monotonic. That 

2 :F, and t:,. , are not part of the ML described above. They 
are used for convenience in the examples, just as :F and t:,. 
are used in examples 2.2 and 2.3. 



is, given that .r~ is a subset of .r.,, and that D is the set 
of assumptions of u, if .r~ U D F g then .r., U D F g . 

To show that condition 2 holds is more difficult . It 
requires knowledge of the complete set .r.,. If s discov
ers a new element of .r.,, then u's assumptions may no 
longer be consistent since default conclusions are non
monotonic. That is, given that .r~ is a subset of .r.,, 
and that D is the set of assumptions of u, if .1'~ U D is 
consistent, it does not necessarily follow that .r., U D is 
consistent. 

Example 3.4 Unsatisfied Condition 2 
s has two facts, that u has a fact /, and that u has a 

default n+-/:3 

.r, = { .r.,(f) 

tl.,(n+-1) } 
(1) 
(2) 

s cannot explain that u explains n, because s cannot 
show that n+- f is consistent with u 's facts. ( 1) does not 
say that / is the only fact of u. There may be other 
unknown facts of u that are inconsistent with n+-f. For 
example, u may have the fact ...,n , 

The inability to satisfy condition 2 stems from incom
plete knowledge regarding the facts of u. One way to 
solve this problem is to always specify that s knows all 
of u's facts. However, the usefulness of NT would be 
restricted since we rarely (if ever) can obtain such com
plete knowledge. NT should allow s to draw conclusions 
despite having incomplete knowledge. 

Defaults are a useful tool for reasoning with incom
plete knowledge. For s to reason that u is able to use a 
consistent default, s can assume that that .r., U D is con
sistent, for some set of u's defaults D. This assumption 
of s is blocked ifs can show that .r., U D is inconsistent. 
With this assumption, it is possible that u has other 
facts that s does not know about, so s is not assuming 
complete knowledge. This assumption is just sufficient 
to enable s to conclude that u can consistently assume 
D. 

Reconsider example 3.4. Assuming that .r., is con
sistent with default (2) enables s to satisfy condition 2. 
Hence, s can show that u explains n, as desired, and it 
is still possible that u has facts other than /, as long as 
they do not conflict with (2). For example, the assump
tion of consistency precludes that u has a fact --,n, but 
u may have other facts, unrelated to n and /. 

3.3 Stating Object-level Facts Consistent 

Theorist is intended to be used by specifying a set of facts 
and defaults. The facts must be consistent, or else no ex
planations exist. The following example shows that, for 
nested reasoning, it is useful to specify that the object
level facts are consistent. 

Example 3.5 Facts Explicitly Consistent 
s has two facts: 

.r, = { .r.,(p) V .r.,(q) 

.r.,(...,p) } 

3 This is a. propositional nested version of example 2.2 . 

(3) 
(4) 

From (3) and ( 4), s cannot explain that u can explain q. 
However, ifs also knows that u's facts are consistent, s 
can explain that pis not in .1"., (since --,pis in .1".,), and 
therefore s can explain that q is in .r.,, and hence that 
u can explain q. 

3.4 Definition of NT 
Definition 3.6 An NT explanation from (.1', ~ ) is a 
Theorist explanation with the following four constraints.A 

1. The language of .r and~ is a ML that refers to an 
OL ( as described in section 3.1 ); 

2. The metalevel, s, has a fact that each agent also 
forms explanations according to the definition of 
Theorist: 

VAVDVo: Ef (ex) +- .r AUD F o: (5) 
I\ .r A U D ~ false 

I\ D ~ ~A 

3. s has a default that a subset of each agent's defaults 
are consistent. That is, for each agent A, and each 
set D of OL formula, s has a default: 

(.r AUD~ false) +- (D ~ ~A) (6) 

4. s has a fact that each agent's facts are consistent. 
That is, s has a fact: 

VA .r A ~ false 

3.5 Capabilities of NT 
Example 3. 7 Defaults on Two Levels 

s has two facts: 

.r, = { p 

~.,(r+-q) 

and a default: 

} 

(7) 

(8) 

(9) 

~. = { .r.,(q)+-p } (10) 

scan consistently assume (10), so together with (8), sex

plains .r.,(q). Using (9), scan also explain E[{r +-q})(r), 
by assuming that u can consistently assume r+-q. 

These assumptions of sand u can be made inconsistent 
independently. Adding that s has a fact 

.r u ( --,q) ( 11) 

makes s's assumption (10) inconsistent, since (7), (8), 
and (11) together conflict with (10). Adding that s has 
a fact · 

.1'.,(...,r) (12) 

makes u's assumption (9) inconsistent, since (8), (10), 
and (12) together conflict with (9). 

The following example shows that it is also possible 
to state negative knowledge in NT. Negative statements 
are useful for reasoning about the ignorance of a user . 

4 [van Arragon, 1990] shows how this definition can be 
nested to allow reasoning about how the object-level agent 
reasons about other reasoning agents. 
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Example 3.8 Negative Knowledge 
We can state that s has a fact that u cannot explain 

p: 

VD -iE;;(p) (13) 
If s also has a fact that u has a fact p or a fact q, 

Tu(P) V Tu(q) (14) 

it follows thats can explain E£l(q) . 

4 Prioritized Nested Theorist 
4.1 Conflict Between Levels 
A technical problem with NT as defined above is that 
defaults on the metalevel are weak. Ifs has afact that t1 
has a default p(X), then scan explain that ti can explain 
p(a) for an arbitrary object a. Now ifs assumes that t1 
has a fact that -ip(a) is an exception to the default p(X), 
then s can explain that t1 can explain -ip(a). However, 
it also still follows that s can explain that ti can explain 
p(a). 

Example 4.9 Multiple Explanations 
s has a fact that t1 has a default p(X): 

T, = { ~u(p(X)) } (15) 

ands has a default that u has a fact -ip(a) : 

~, = { Tu(-ip(a)) } (16) 

Two mutually inconsistent explanations exist. In one, 
s assumes (16); hences can explain E!}(-,p(a)). In the 
other, s assumes t1's default (15) is consistent; hence s 
can explain E!p( a)} (p( a)) . 

In example 4.9, statement (15) itself does not contra
dict statement (16). The internal default (6), which s 

uses to assume that t1's defaults are consistent, is in di
rect conflict with (15). 

Let CA(D) be an abbreviation for (6). That is, Cu(D) 
means that D, a subset of ~u can be consistently as
sumed by ti. In example 4.9, for s to explain that u 
explains p(a), s assumes 

Cu({p(a)}) (17) 

(17) and (16) are in direct conflict. Because of this con
flict, s can never block an assumption of t1 by assuming 
that u has specific knowledge of an exception. 

4.2 Prioritized Defaults 
Brewka [1989] has expanded Theorist to include defaults 
of different priority levels so that a default of higher pri
ority can block a default of lower priority. This idea is 
more powerful than methods of removing multiple ex
planations [Poole, 1988] that do not allow one default to 
block another. 

Example 4.10 Priority Levels 
Let Di be the set of defaults of priority i, where a 

smaller i indicates higher priority. (1 is the highest pri
ority level.) 

~ 1 = { -ip( a) } 

~2 = { p(X) } 
(18) 

(19) 

Given (18) and (19), defaults of different priority, -ip(a) 
can be explained, but p(a) cannot. 
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We can use this idea to solve our multiple-explanations 
problem. By defining (16) to have priority over (17), it 
is possible for (16) to block (17) so that only the desired 
explanation exists. We outline the definition of Priori
tized Nested Theorist here. 

The Need for Many Priority Levels In exam
ple 4.9, s needs two levels of priority: (16) is of high 
priority, and (17) is of low priority. The same holds for 
other levels of reasoning. For example, if u is reasoning 
about some agent al, u needs two levels of priority. 

This means s must reason about u who now has two 
levels of priority. This causes a new problem: s must 
assume that t1's defaults satisfy the priority constraints. 
In Prioritized Theorist, a low-priority default cannot be 
used if a high-priority default contradicts it. But recall 
thats has incomplete knowledge about u. In particular, 
s does not know the complete set of u's high-priority 
defaults . Therefore, an assumption that u's low-priority 
defaults satisfy priority constraints is necessary. 

We show in [van Arragon, 1990] that this assumption 
of s that priority constraints are satisfied for u may con
flict with the assumption of s that t1's defaults are con
sistent . For this reason, s needs at least three levels of 
priority to reason about u if u has two levels of priority. 

Similarly, if we add a fourth level of reasoning (say 
agent al is reasoning about some agent a2), s needs 
at least four levels of priority to reason about u's three 
levels of priority. For this reason, we define Prioritized 
Nested Theorist (PNT) so that s has at least as many 
priority levels of defaults as there are nested levels of 
agents. 

Metalanguage and Object Language To define 
PNT, we must augment the ML so that it can refer to 
the priority levels of defaults of ti . We add to the ML 
constants ~~ for each i to refer to the t1's defaults of 
priority i. As before, we use ~~ as a predicate. For 
example, ~~(p(X)) means that p(X) is in the set of u's 
defaults of priority 3. 

Definition of PNT A PNT explanation from 
(T,Ll1

, ... ,Lln) is a Prioritized Theorist explanation 
with constraints similar to those in the definition 3.6 
of NT. The most interesting difference is that s must 
not only assume that t1's facts are consistent, but s must 
also assume that t1's defaults satisfy priority constraints. 
The priority of these defaults depends on the number of 
nested levels of reasoning. 

Since priority levels allow a single level to be more 
expressive, PNT also allows more priority levels on each 
reasoning level than are needed to deal with the multiple 
explanation problem discussed above. 

4 .3 Capabilities of PNT 

We can now modify example 4.9 to avoid multiple ex
planations. 

Example 4.11 Meta/eve/ Prioritized Defaults 
s has a fact that ti has a default p(X): 

~u(P(X)) } (20) 



ands has a high-priority default that u has a fact -.p(a): 

~! = { Fu(-.p(a)) } (21) 

By the definition of PNT, s has a low priority default to 
assume that a subset of u's defaults are consistent : 

Cu(D) } (22) 

An instance of (22) is Cu ( {p( a)}) ( an assumption that 
D = {p(a)} is consistent). However, this instance con-
flicts with (21). Therefore, s can explain E!}(-.p(a)), 
buts cannot explain E{?(p(a)) for any D. 

5 Applications 

NT provides a general tool for user modeling. Metalevel 
defaults enable building and maintaining a user model 
by assuming things about a user . Object level facts and 
defaults enable modeling a user's reasoning in a flexi
ble way. In particular, object-level defaults are useful 
for reasonin~ about how a user ascribes beliefs to an
other agent lWilks and Ballim, 1987], how a user's be
liefs change when an utterance occurs (as in speech-act 
theory[Perrault, 1987]), and how utterances may mislead 
a user [Joshi et al., 1984]. We consider these examples 
briefly. 

Example 5.12 Belief Ascription 
s can ascribe facts to u by assuming that if X is a 

typical fact, then X is a fact of u. For example, if s 
can explain that a typical fact is that the world is round 
(23), s can assume (24) that u has a fact that the world 
is round . Let the following be a fact of s: 

typical(round(world)) (23) 

and the following be a default of s: 

Fu(X)+-typical(X) (24) 

Belief ascription can be nested by stating that u also 
has a default like (24). Let the following be a fact of s: 

~u(Fa(X)+-typica/(X)) (25) 

Now, ifs can explain that, for u, a typical fact is that 
the world is round, s can assume that u has a fact that 
the world is round, and s can explain that u assumes 
that agent a has a fact that the world is round. 

The belief ascription assumption can be contradicted 
at any level by specific knowledge. For example, the 
following fact of s prevents u from assuming that a has 
a fact that the world is round: 

F u(F a(-.round( world)) (26) 

Note that, just as in [Wilks and Ballim, 1987], we do not 
have to predefine the facts and defaults on all levels, but 
can assume facts and defaults as necessary. 

Example 5.13 Speech Acts 
A theory of speech acts specifies how utterances affect 

the beliefs of the hearer. An approach that can be im
plemented with PNT is to have the hearer u to assume 
that what the speaker s says is true: 

~~(X +-declares, (X)) (27) 

If we add to (27) that u has a fact that s declares p: 

Fu ( declares, (p)) (28) 

then u assumes that pis true. However, this assumption 
may be contradicted if u has a higher priority default 
that contradicts p: 

(29) 

PNT provides a flexible language for stating the relative 
strengths of various defaults of u based on whether u 
believes s to be lying, or to be an authority, and so on . 
For example, u may assume at high priority that if agent 
A declares X, and X is within A's area of expertise, then 
Xis true: 

~t (X +-declares A (X)t\expertise(A, X)) (30) 

The theory of belief revision of u is built into PNT. It 
is based directly on Prioritized Theorist, because PNT 
defines explanations of u to be Prioritized Theorist ex
planations. 

Example 5.14 Preventing False Assumptions 
This theory of u's belief revision is useful for predicting 

what u will believe based on s's utterances. scan use this 
theory to avoid misleading u. For example, s may model 
that u assumes that people with the flu have nausea: 

~t (nausea(X) +- f lu(X)) (31) 

If s tells u that Eric has the flu, s can predict that 
u will assume Eric has nausea. If s knows that Eric is 
drugged to prevent nausea, s can warn u that Eric is an 
exception. Note that a theory of u's defaults is crucial 
to deciding what u should be told . 

6 Related Work 

Although other research studies reasoning about agents 
that use defaults [Joshi et al., 1984; Perrault, 1987; 
Appelt and Konolige, 1988], the level distinction is not 
fully made elsewhere. An advantage of making a clear 
level distinction is that NT has more expressive power. 
In NT, we can state explicitly that an agent makes a 
default assumption. 

Each of these other systems lacks the ability to ex
press user defaults explicitly. For example, rather than 
expressing that q+-p is a default of the user, each of 
these system's expresses a sort of approximation of this 
statement. Each can state something like, "it is a de
fault of the system that, if the user believes p, then the 
user believes q." Default reasoning regarding the revi
sion of a user's beliefs takes place solely on the metalevel, 
since the object level models only deduction, but lacks 
defaults. Not only is this a conceptual disadvantage, but 
also it does not work for cases where the distinction be
tween defaults on different levels is important. By con
trast, in NT, reasoning about belief revision is a natural 
result of viewing a user as a default reasoner. We do not 
have to specify metalevel axioms to express how a user's 
beliefs are revised. 

81 



.· _·i 

Example 6.15 Metalevel Versus Object Level 
Given the following in PNT, 

:F. = { 
t1! = { 

(32) 

(33) 

s explains that u can explain -,p but cannot explain p. 

It is difficult to translate example 6.15 so that defaults 
are on a single level. For example, it is not equivalent to 
state that s has the following two defaults: 

A! = { 
A!= { 

(34) 

(35) 

(34) and (35) conflict, so neither is preferred over the 
other. In contrast, (33) is preferred over assuming that 
u's default in (32) is consistent. 

A more accurate translation retains the relative prior
ity: 

(36) 

(37) 

In general, the translation made is to replace an object
level default of priority X with a metalevel default of 
priority X + 1. This is because, for s to reason that u 
uses a default of priority X, s must assume with priority 
X + 1 that u's default is consistent (according to the 
definition of PNT). 

Interestingly, work in Speech Act theory by Ap
pelt and Konolige [1988) uses RAEL (Hierarchic
autoepistemic Logic), which has a kind of prioritized 
default. However, RAEL defaults are on the metalevel 
only. There is no facility for specifying user defaults . 
Hence, RAEL is less expressive than PNT. 

For example, the following two-level default 

(38) 

for some X and Y, cannot be translated to a metalevel 
default of the form 

(39) 

The difficulty is to decide what value Z should be. If 
Z > Y, then (39) is contradicted by a default of the 
form 

(40) 

although (38) would not be contradicted. But if Z < 
X - 1, then (39) is not contradicted by a default of the 
form 

( 41) 

although assuming that the object level default pin (38) 
is consistent would be contradicted. Intuitively, Z can
not store the information of two priority levels using only 
a single number. 

Apart from these technical considerations, it is useful 
for conceptual reasons to distinguish between assump
tions on different levels. The above translations do not 
permit explicit specification of object-level defaults. 
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7 Conclusions 

The problem of user modeling can be solved by address
ing four subproblems: 

1. formally defining the system's reasoning about the 
user's reasoning, 

2. implementing this formal definition, 

3. outlining a strategy for applying the definition to 
particular problems, 

4. compiling a knowledge base according to this strat-
egy. 

This paper focusses on subproblem 1. NT and PNT 
are tools that deal with incomplete knowledge on mul
tiple levels of reasoning. [van Arragon, 1990) presents 
an implementation of NT and PNT (subproblem 2).5 In 
section 5, we showed briefly three strategies for applying 
NT (subproblem 3). Subproblem 4 encompasses the is
sue of knowledge acquisition, which is beyond the scope 
of this paper. 

The main issue that arose with subproblem 1 were how 
a system can conclude that a user is able to use a de
fault despite the system's incomplete knowledge about 
the user . To deal with this incomplete knowledge, the 
system can assume that a set of the user's defaults are 
consistent. This gives rise to a multiple extension prob
lem that can be solved using prioritized defaults. 

Since NT is a flexible tool , it provides a framework 
in which a wide range of user modeling strategies can 
be accommodated. User modeling strategies that were 
developed using varying underlying formalisms can be 
joined in one system so that they can function together. 
If a strategy does not fit into the NT framework, it may 
be possible to further augment NT. By doing so, the 
defining of formal tools and the applied study of user 
modeling strategies can benefit each other. 

One way that we have augmented NT is to enable 
NT to reason about agents who have limited reason
ing resources [van Arragon, 1990]. Many formal def
initions of limited reasoning have been proposed [Fa
gin and Halpern, 1988; Hadley, 1988; Konolige, 1985; 
Levesque, 1984) . However, none of these are easy to ap
ply to user modeling, because the limitations are inflexi
ble compared to the demands of user modeling where the 
model of each individual user may vary greatly. Limited 
Nested Theorist (LNT) is based on the idea that reason
ing limitations can be defined by having s assume that u 
is able to make each inference. Conflicting evidence may 
block such an assumption ifs knows that u's reasoning 
resources prevent making the inference. With LNT, the 
knowledge designer is free to tailor the type of reasoning 
resources in a flexible way. 

5 0ur approach is to use metaprogramming. Each agent's 
reasoning process corresponds to a Theorist interpreter. To 
model s reasoning about u, we have a Theorist interpreter 
reasoning about a Theorist interpreter. A problem with this 
general approach is the computational overhead that arises 
because each step of inference on the object level takes several 
steps on the metalevel. Fortunately, this overhead can be 
removed using program transformation techniques. 
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Abstract 
Default systems based on the notion of "model
preference" have recently been proposed by Sel
man and Kautz to give a semantic account of 
the phenomena involved in default reasoning 
and to provide a formal justification for the lim
ited cognitive load that default reasoning seems 
to require of human beings. In this paper we 
argue that the way these formal systems have 
been defined makes them inadequate for the 
task of reasoning in the presence of both certain 
information and defeasible information. We 
propose a modification to the original frame
work and argue that it formalizes correctly 
the interaction between these two fundamen
tally different kinds of information. We then 
show that the proposed modification has also 
a positive effect on the complexity of model
preference default reasoning. 

1 Introduction 
Default reasoning plays an important role in everyday 
practical reasoning. Agents, be they natural or artificial, 
typically face situations in which they have to act an.d 
take decisions on the basis of a body of knowledge that 1s 
far from being an exhaustive description of the domain of 
discourse; this is a direct consequence both of the limited 
capacity of their physical repositories of knowledge, and 
of the fact that the processes involved in the acquisition 
of knowledge (both from external sources-e.g. books
and internal ones-e.g. speculative reasoning) are com
putationally demanding and time consuming. 

Nevertheless, action and decision-making often require 
more knowledge than our agents actually possess, thus 
forcing them to make up with the limited coverage of 
their knowledge bases by means of "default" assump
tions. As the name implies, "assumptions" have an epis
temic status that is far from being solid, as they can 
actually be invalidated by further reasoning or by the 
future acquisition of empirical data. These pheno~ena 
are well-known in cognitive science, and have sometimes 

•current address: Department of Computer Science, Uni
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been taken to imply that a great deal of human rea
soning does not conform to the canons of "logic" and 
hence escapes attempts at formalization [Johnson-Laird, 
1983]. Doubtless, the overall effectiveness of human rea
soning testifies to the effectiveness of this modality of 
reasoning too: humans are much quicker at finding. s~r
rogates of missing knowledge than at actually acqumng 
this knowledge, either through reasoning or empirical in
vestigation. And, above all, once these surrogates have 
been found, humans are much quicker at reasoning on 
the resulting complete, albeit epistemically shakier, de
scription of the domain of discourse than they would be 
had they to rely on the smaller part of this description 
that they trust as being accurate tout court. This ob
servation is at the heart of the recent interest that the 
knowledge representation community has shown in vivid 
knowledge bases [Levesque, 1986, 1988; Etherington et 
al., 1989], i.e. exhaustive descriptions of the domain of 
discourse consisting of collections of atomic formulae1. 

Reasoning on these KBs, which may be considered as 
"analogues" of the domain being represented, is easily 
shown to be efficient. 

It is precisely in the face of such empirical considera
tions that the bad computational properties of current 
formalisms that attempt to formalize default reasoning 
(such as the ones based on Circumscription [McCarthy, 
1980; 1986] or on Autoepistemic Logic [Moore, 1985; 
Konolige, 1987]) are particularly disturbing: arguably, a 
formalism for default reasoning not only should account 
for the conclusions that agents draw in the presence of 
incomplete information, but it also should possess rad
ically better computational properties than formalisms 
aimed at reasoning tasks at which humans are notori
ously inefficient (such as e.g. first order logic in the case 
of deductive reasoning). Moreover, it is certainly not 
plausible that, in order to arrive at knowledge bases upon 

1 In formally introducing vivid KBs Levesque [1988] actu
ally situates his discussion in the framework of the first order 
predicate calculus; hence, for him a vivid KB is "a collec
tion of ground function-free atomic sentences, inequalities 
between all different constants ( .. . ), universally quantified 
sentences expressing closed world assumptions ( .. . ) over the 
domain and over each predicate, and the axioms of equal
ity". As our discussion will be situated in the framework of 
the propositional calculus, we will take this definition of vivid 
KB instead . 



which fast reasoning can be carried out, humans use a 
dramatically inefficient reasoning method. 

These considerations lead us to look with special inter
est at formalizations of default reasoning that emphasize 
computational tractability. In their recent paper "The 
complexity of model-preference default theories" (here
after [MPD]), Selman and Kautz [1988] describe V'Jit, a 
tractable system for performing inferences on theories of 
Acyclic Horn Defaults. Their framework has the added 
appeal of possessing a strong model-theoretic flavour2 

which allows thorough investigations in the mechanis~ 
underlying the inference processes. It is by means of 
such investigations, however, that one can discover that 
the systems of [MPD] have an odd behaviour when con
fronted with know ledge bases that consist of both certain 
information and default information. This is especially 
disturbing, as we surely would like to account for the fact 
that agents, although making heavy use of default rea
soning, normally do also possess information upon which 
they rely with special confidence. Accordingly, a reason
ing system should enforce a correct interaction between 
certain knowledge and default knowledge, and account 
for the different impact that the two kinds of knowledge 
have on the overall reasoning process. It is these con
siderations which inform the attempt, described in this 
paper, to tune model-preference default systems in such 
a way as to make them behave correctly with respect to 
the distinction between certain knowledge and defeasible 
knowledge. 

In order to make this paper self-contained, in Section 2 
we give a brief overview of v+, the most general system 
described in [MPD], of which V'Jit is a tractable subset3 . 

In Section 3 we argue that the two methods proposed in 
[MPD] for dealing with the co-presence of certain infor
mation and defeasible information in v+ are, for differ
ent reasons, both inadequate, and characterize two in
teresting classes of reasoning tasks that are mishandled 
by both methods; we proceed to spell out our modifica
tions to v+ and to argue that the system so obtained 
handles well the interaction between certain knowledge 
and defeasible knowledge (including the two classes of 
reasoning tasks that had revealed problematic for the 
original version of v+). In Section 4 we examine the 
effects of our modifications on the computational com
plexity of model-preference default reasoning; such mod
ifications allow us to establish new results for reasoning 
in the presence of both certain knowledge and defeasible 
knowledge, and to discover that the presence of certain 
knowledge has a beneficial effect on the efficiency of the 
reasoning process. Section 5 concludes. 

2 A semantics for Selman and Kautz's model-preference 
default systems that fully embraces the model-theoretic credo 
is described in [Sebastiani, 1990a]. 

31n this paper we will implicitly rule out from considera
tion the system V, as its lack of commitment to any specificity 
ordering between defaults (see below) makes it less interest
ing than the other systems of [MPD]. The other systems dis
cussed in [MPD], v1t+ and V1l!, are restrictions of v+ to 
the Horn case and to the Horn Acyclic case, respectively; all 
modifications that are described in this paper apply straight
forwardly to these more restricted systems. 

2 An overview of Selman and Kautz's 
system v+ 

Roughly speaking, the idea around which the systems of 
~MPD] revolve is that the import of a default d = a -+ q 
1s to make a model ( that is, a complete specification of 
what the domain of discourse is like) where both a and 
q are true be pref erred to another model where a is true 
but q is not . By combining the effects of the preferences 
due to the single defaults, a set of defaults identifies a 
set of "maximally preferred" models; these models, iso
morphic as they are to vivid knowledge bases, are meant 
to represent possible ways in which the agent may ''flesh 
out" his body of certain knowledge by the addition of 
defeasible knowledge. For instance, according to a set 
of defaults such as { a -+ b, b -+ c}, the model where 
a, b and c are all true would be a maximally preferred 
model. However, the systems in [MPD] also account for 
the fact that a more specific default should override a 
less specific one, and they do so by "inhibiting", where 
a contradiction would occur, the preference induced by 
the less specific default; this is meant to prevent a set of 
defaults such as { a -+ b, b -+ c, ab -+ -.c, a-.b -+ -.c} to 
generate maximally preferred models where a and c are 
both true. 

The first thing we need to do in order to introduce v+ 
in detail is to describe what the language for representing 
knowledge in v+ is . Let P = {p1,P2, . . . ,pn} be a finite 
set of propositional letters, and L be the language of 
formulae built from P and the connectives -. /\ and V 
. ' m the standard way. We define a default d to be an 
expression of the form a-+ q, where q is a literal (i.e. a 
propositional letter p in P or its negation -.p) and a is a 
set of literals4 . We will also use the standard definition 
of a m?delfor P ~ a function M : P 1-+ {True, False}; 
accordmgly, we will say that M satisfies a theory T of L 
(written as M FT) iff M assigns True to each formula 
in T, formulae in T being evaluated with respect to M 
in the standard manner. 

The above-mentioned specificity ordering between de
faults is captured by stipulating that, given a set of de
faults (or default theory) D, a default d = a -+ q in 
D is blocked at a model M iff there exists a default d' 
in D such that d' = a U (3 -+ -.q and M F a U (3 . A 
default d = a -+ q is then said to be applicable to a 
model M iff M F a and d is not blocked at M. If d is 
applicable at M, the model d( M) is defined as the model 
which is identical to M with the possible exception of the 
truth assignment to the propositional letter occurring in 
q, which is assigned a truth value such that d(M) F q. 

Naturally enough, a preference ordering induced on 
models by a set of defaults D may at this point be de
fined. Given a set of defaults D, the relation "<+" is 
defined to hold between models M and M ' (written M 
~+ M ') iff there exists d in D such that d is applica
ble at M and such that d(M) = M'. The relation "<" 
is defined as the transitive closure of "~+" 5

• Finally, 

4 For notational convenience we will omit to draw braces 
in antecedents of defaults. Hence we will write e.g. ab -+ -,c 
instead of { a, b} -+ -,c. 

·~[MPD] defines "~" to be the reflexive transitive closu re 
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we will say that a model M is maximally preferred ( or 
maximaQ with respect to a set of defaults D iff for all 
models M' either M' < M is the case or M < M' is 
not the case. We und;stand the task of reas;ning in 
v+ as that of finding an arbitrary model which is max
imal with respect to a given propositional theory T and 
a given default theory D. 

We will illustrate the way v+ works by means of an 
example6 • Let P = {a, b, c}, D = {a--+ b, b--+ c, ab--+ 
...,c, a-,b--+ -,c}. -,abc, -,a-,bc, ab-,c and -,a-,b-,c are all 
and the only maximal models. Note that if b--+ c had 
not been blocked at ab-,c, then abc would have been 
maximal too, contrary to intuitions. The example is 
represented graphically in Figure 1. 

B 

8 

Figure 1: A simple example 

3 Dealing with heterogeneous theories 

In the preceding section we have described the process 
by which the set of maximal models is singled out from 
the set of all models of P through the application of 
a set of defaults D. It is natural, however, to require 
that a method be also enforced that allows a theory T 
of certain facts to be brought to bear in the process of 
maximal model selection. For instance, we might want 
to represent the situation in which, beside knowing that 
a --+ b, b --+ c, ab --+ -,c and a-,b --+ -,c, the agent also 
knows for sure that a is the case. In this case -iabc, 
-ia-ibc and -ia-ib-,c should no longer be maximal mod
els, and ab-,c only should be endorsed. There are two 
methods that are described in [MPD] for bringing to 
bear certain knowledge in the process of maximal model 
selection, and their adequacy to implement a correct in
teraction between certain and defeasible knowledge will 
be a central concern of this paper. But in order to do 

of "::;+"; that this is redundant may be seen by inspecting 
the way "::;" is used in the definition of maximal model. 

6 In the drawings of the following examples, rectangles will 
denote models represented in the obvious way (e.g. a-.bc will 
represent the function that assigns True to a and c and False 
to b). Arrows will represent "::;+" relationships. A slashed 
arrow will represent what would have been a "::;+" relation
ship unless a blocking had not occurred. Also, we will omit 
drawing arrows corresponding to self-loops (i.e. arrows start
ing and ending in the same model) as they do not contribute 
in supporting the maximality or non- of a model. 
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so, we will first need to make a short digression on what 
we consider an "adequate" method of implementing it. 

Until now we have largely proceeded on a formal level 
only, and are thus in need of providing some empirical 
justification for the formalism we have chosen. Although 
identifying the task of generating a vivid KB with that of 
finding a maximally preferred model sounds fairly intu
itive, it is by no means clear why the notion of preference 
we have formalized should be "the right notion of prefer
ence" at all. What we need is a criterion of empirical ad
equacy which is independent of the formalization itself, 
a criterion that allows us to judge if our systems actually 
capture the relevant intuitions behind default reasoning 
as generation of a vivid KB. Different theorists might 
obviously have different intuitions concerning this issue; 
nevertheless, we will lay down our cards and describe the 
two minimal conditions which we think reasonable for a 
model M to be maximal with respect to a theory T and 
a default theory D: 

l. M satisfies the theory T; 

2. if M satisfies the antecedent a of a default d = o --+ 
q in D, then it also satisfies its consequent q, unless 
it also satisfies the antecedent o U (3 of a default 
d' = a U (3 --+ -,q in D. 

Someone might object that there is a lot of "tester's bias" 
in this criterion, and that it seems to have been laid out 
in order to acritically grant a stamp of adequacy to the 
formal definition we have presented in Section 2. We 
will see that this is not so, and that this criterion is de
manding enough to rule out the definition of maximality 
enforced by v+. Quite immodestly, we will call a model 
satisfying conditions 1 and 2 an intended model; we will 
thus consider a model-preference default system empir
ically satisfactory iff for every set of defaults D every 
intended model is also a maximal model and viceversa. 
For instance, it is easy to check that this is indeed the 
case in the example of Section 2. 

We may now switch back to the description of the two 
methods that are proposed in [MPD] in order to account 
for the interaction between certain and defeasible knowl
edge. The first of them consists in encoding certain facts 
by means of defaults with an empty antecedent; this style 
of encoding relies on the fact that the ability to reach 
a conclusion starting from an empty set of premises is 
usually taken as meaning that the conclusion is a true 
fact. The situation described above would then be repre
sented by P = {a, b, c}, D = {4> --+ a, a--+ b, b--+ c, ab--+ 
-ic, a-ib --+ -,c}; in this case ab-, c is in fact the only 
maximal model, as shown in Figure 2. 

But we feel that this is an unsatisfactory solution, 
as encoding certain facts as defaults with empty an
tecedents exposes them to blockage by more specific de
faults, i.e. by items of knowledge that, although being 
more specific, have a weaker epistemic status than any 
item of certain knowledge. That this solution licenses 
undesired conclusions is shown by the following example. 
Let P = {a,b,c},D ={a--+ b,b--+ c,ab--+ -ic,a-,b--+ 
-ic, ¢, --+ a,¢, --+ -,b}, where the intended interpretation 
of the last two defaults is "a is certainly the case" and 
"-,b is certainly the case". The only intended model is 



Figure 2: Defaults with empty antecedents 

a-.b-.c but , as shown in Figure 3, it is not a maximal 
model. On the contrary, ab-.c is maximal ( actually, it 
is the only maximal model) but is not intended. Ba
sically, this happens because a -+ b is allowed to block 
¢-+-.bat models where a is true. Instead, we think that 
an item of defeasible knowledge should never be allowed 
to invalidate an item of certain knowledge; rather, the 
opposite view should be enforced, with certain knowl
edge inhibiting the effect of defeasible knowledge when a 
contradiction would otherwise occur. The preceding ex
ample shows that, so to speak, this semantics (or, better, 
this semantics together with the style of encoding cer
tain knowledge that it encourages) is neither sound nor 
complete with respect to the intuitive, pre-theoretical se
mantics of default reasoning supposedly embodied by our 
adequacy criterion. 

Figure 3: Improper behaviour 

Let us then consider the second solution to the integra
tion of certain and defeasible knowledge that is described 
in [MPD]. This solution relies on a different definition 
of maximality, according to which a model is maximal 
with respect to what we will call a heterogeneous theory 
(D, T ) (where Dis a default theory and Tis a theory) iff 
M I= T and for all models M' such that M' I= T either 
M' $ M is the case, or M $ M' is not the case. In 
other words in order to be maximal a model must first 
of all satisf/ T, and its would-be maximality can only be 
prevented by another model which itself satisfies T . We 
can see that the modified system handles the preceding 

example correctly: let P = {a, b, c} , D = {a -+ b, b -+ 
c, ab -+ -.c , a-.b -+ -.c} , T = { a, -.b}. As remarked above 
a-.b-.c is the only intended model; as shown in Figure 
4, it is now also the only maximal modeI7. 

8 

8 

Figure 4: Maximality wrt heterogeneous theories 

But we feel that this solution too is unsatisfactory, and 
again we feel that the reason lies in an overestimation of 
the role of defeasible knowledge in its interaction with 
certain knowledge. To see what the problems involved 
are, let us introduce two new definitions. We will say 
that there is an internal path between two models M 
and M' (written M $ i M') iff there exist models M1, 
... , Mn (with M = M1 and M' = Mn) such that Mi $ 
+Mi+l for all i = 1, ... , n - 1 and such that Mi I= T for 
all i = 1, .. . , n. Conversely, we will say that there is an 
external path between two models M and M' such that 
M I= T and M' I= T (written M ::;e M') iff there exist 
models M1, .. . , Mn (with M = M1 and M' = Mn) such 
that for all i = 1, ... , n - 1 Mi $ +Mi+t and for some 
j = 2, ... , n -1 Mi ~ T. Intuitively, an external path is 
a path which goes through at least one model that does 
not satisfy T . 

Our qualms with the (second) definition of maximal
ity described in [MDP] have to do with the fact that 
it still allows defeasible knowledge to override certain 
knowledge that contradicts it, and accomplishes this by 
allowing external paths to support either the maximality 
or non- of a model. We therefore proceed to give a new 
definition of maximality, one where external paths are 
ruled out from consideration, and argue that in all cases 
in which the original definition differs from the new one, 
the former yields unintuitive results while the latter does 
not. 

The basic step of this new definition is actually the 
relativization of the preference ordering "$+" with re
spect to a theory T. We hereby define the relation "$+" 
wrt a heterogeneous theory (D, T) as the relation which 
holds between models M and M' iff M I= T, M' I= T 
and there exists d in D such that d is applicable to M 
and such that d(M) = M' . As in the original version, 
"<" is defined as the transitive closure of"$+", and M 
is-maximal wrt (D, T ) iff for all M' such that M' I= T 
either M ' $ M is the case or M $ M' is not the case. 

7 In the drawings of this section grey areas represent the 
set of models that satisfy T . 
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• 1 

It is simple to check that defining maximality this way 
is equivalent to substituting "$i" for "$" in the origi
nal definition. In order to distinguish between the two 
notions of maximality we will henceforth speak of $i
maximality and $-maximality, respectively. 

In what cases $i-maximality and $-maximality yield 
different results may be checked by truth table analysis. 
This analysis, although straightforward, is fairly tedious, 
and is then confined to Appendix A.. The basic result 
is that there are two cases in which ~/-maximality and 
$-maximality differ: we will call instances of the former 
case type-1 theories and instances of the latter type-2 
theories. Let us analyze them orderly. 

In type-1 theories we have a model M that is not in
tended and is not <i·maximal but is <-maximal. This is 
caused by the pre;nce of an external path leading from 
M' to M and supporting the $-maximality of M, and 
by the absence of a similar but internal path to support 
its $i-maximality. The following example is a type-1 
theory. Let P = {a,b,c},D = {ab-+ c,c -+ -.a, -.ab -+ 
-.c, b-.c-+ a}, T = { a, b} . abc is the only intended model 
and, as shown in Figure 5, is also the only $i-maximal 
model. abc is also $-maximal; note, however, that also 
ab-.c is $ -maximal, although it is not intended. 

···· ··········· · ·· ···· ·········· ····· ··········· 

·············· ·· ······ ···· ······ ················ ················ 

B 

EJ 

G 

8 

Figure 5: Improper behaviour. A type-1 theory 

In type-2 theories we have quite the opposite situa
tion, i.e. there is a model M that is intended and is $i
maximal but is not $-maximal. This is caused by the 
presence of an external path leading from M to a model 
M' which prevents the $ -maximality of M, and by the 
absence of a similar but internal path to prevent its $i
maximality. The following example is a type-2 theory. 
Let P = {a, b, c }, D = {b-.c -+ -.a, -.ab -+ c, be -+ 
a}, T = { a, b}. abc and ab-.c are the only intended 
models and, as shown in Figure 6, are also the only $i
maximal models; abc is also $-maximal but ab-.c is not, 
although it is intended. 

These examples show that also the second solution de
scribed in [MPD] to the problem of model-preference rea
soning in heterogeneous default theories is, so to speak, 
neither sound (as shown by type-1 theories) nor com
plete (as shown by type-2 theories) with respect to the 
intuitive, pre-theoretical semantics of default reasoning. 
Quite apart from this, they also show that the problem 
lies in paths involving models that do not satisfy the the-
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ory T, and that $i-maximality, by excluding these paths 
from consideration, actually implements the correct be
haviour. 

From an empirical standpoint, the idea that these 
paths and models should be neglected is informed by the 
general principle according to which the co-presence of 
knowledge endowed with a higher epistemic status (or, 
according to the terminology of [Gii.rdenfors & Makin
son, 1988], knowledge that is more "epistemically en
trenched") should have the reasoning process disregard 
knowledge endowed with a lower epistemic status that 
contradicts it . In our case, this means that the applica
tion of a default to a state of affairs which is inconsistent 
with the certain knowledge is deemed not only irrelevant 
but actually misleading, and so is the application of a 
default that yields such a state of affairs. 

It might be legitimate, at this point, to ask ourselves 
whether $i-maximality is sufficient in itself to make 1)+ 

and the other [MPD] systems comply with the adequacy 
criterion in Section 3. Somehow surprisingly, the answer 
is no. This is due to the fact that the adequacy criterion 
we have laid out can be met only by formalisms that 
make "-+" enjoy contraposition, the property of some 
conditional notions "=>" ( e.g. material implication in 
classical logic, strict implication in modal logic) accord
ing to which a => b entails -.b => -.a. We indeed think 
that the pre-theoretical notion of default implication (if 
only there exists such a thing) does enjoy contraposi
tion, and this is why we did not yield to the temptation 
of adding " ... or unless -.q belongs to T' to clause 2 of 
the criterion, an addition that would have exempted a 
formalism from endorsing contraposition. Neither the 
systems of [MPD] nor their modifications as resulting 
from $i-maximality endorse it. Nevertheless, modify
ing them to this effect would be an easy matter ( essen
tially, this would involve redefining d(M) to be a set of 
models rather than a single model). More importantly, 
contraposition is not an issue which is specific to the 
interrelation of certain and defeasible knowledge (it is 
surely pertinent also to defeasible knowledge alone), and 
therefore falls outside the scope of this paper. We may 
then legitimately consider $i-maximality as having suc
cessfully accomplished the goal of meeting the adequacy 
criterion . 



4 Complexity issues 

As one of the most important contributions of [MPD] is 
the establishment of complexity results for reasoning in 
model-preference default theories, it would be useful to 
understand whether these results carry over to systems 
where $'-maximality is used, and whether new results 
can be established for such systems. As $-maximality 
and $'-maximality coincide when the theory Tis empty, 
we will be interested in results concerning the case when 
T is non-empty. These two cases, that we will dub the 
"homogeneous" and the "heterogeneous" case, respec
tively, have been shown in [MPD] to have, in general, 
different complexity. For example, the problem of rea
soning in 1)1{ is linear in the homogeneous case, while 
in the heterogeneous case it is polynomial if T is a set 
of literals and NP-hard if T is a set of Horn clauses. 
Also, for some of these systems results are known for the 
homogeneous case but not for the heterogeneous case; 
in particular, for the homogeneous case NP-hardness re
sults for 1) and 1)1{+ and a polynomial result for V1lt 
are reported in [MPD], but the corresponding results for 
the heterogeneous case are still unknown. 

As remarked in [MPD], the problem offinding a model 
which is maximal wrt a pair (D, T} is best viewed as a 
search problem [Garey & Johnson, 1979]. The main re
sult of this paper is that, for any model-preference de
fault system considered in [MPD] and variations thereof, 
if T is a set of literals and $'-maximality is used, the 
search problem in the heterogeneous case is no harder 
than the homogeneous case. The result is based on the 
key observation that, in both cases, only internal paths 
are allowed (internal to the set of all models of the lan
guage P in the former case, and to the set of all mod
els satisfying Tin the latter), whereas, according to $
maximality, external paths are allowed in the heteroge
neous case but not in the homogeneous case. 

Theorem. The search problem for S' with HD-theories 
(D, T) (with T a set of literals) belongs to the same 
complexity class of the search problem for S with empty 
T, where S is any model-preference default system dis
cussed in [MPD] and S' is the version of S relying on 
$'-maximality. D 

In [Sebastiani, 1990b] we prove this theorem by giving 
an algorithm that, given an HD-theory (D, T) (where T 
is a set of literals) defined on some alphabet P, builds 
a default theory D' defined on P-PT (where PT is the 
set of propositional letters in P that occur in T) such 
that, whenever a model M is $-maximal wrt D', the 
model MU T is $'-maximal wrt (D, T )8 . This algo
rithm is linear in the number of occurrences of literals 
in D. Essentially, what the algorithm does is inspect
ing the set D, eliminating from it any defa1:1lt that does 
not contribute to the determination of $'-maximality 
(either because its consequent is in T, or because its an
tecedent or its consequent are inconsistent with T) and 
eliminating from the antecedents of the remaining de-

8 For better convenience we here think of a model a5 the 
largest set of literals that is satisfied by it. 

faults all literals that already appear in T. The models 
of P that satisfy T and the preference relations between 
them that are induced by D' form a graph that is isomor
phic to the one formed by the models of P-PT and by the 
preference relations between them that are induced by 
D'. Due to the isomorphism, there is a one-to-one corre
spondence between $'-maximal models endorsed by the 
former graph and $-maximal models endorsed by the 
latter. 

The following table summarizes complexity results in 
the heterogeneous case (with Ta set of literals) for the 
main model-preference default systems. 

1) 1)1{ 1)1{+ 1)1{.'t 

< ? p ? 'f 

$' NP-hard linear NP-hard p 

Also, note that although the homogeneous and hetero
geneous case have the same theoretical complexity, the 
heterogeneous case is in practice much simpler (some
how in contrast with what happens for $-maximality). 
For example, the search problem for the homogeneous 
case of 1)1{ is O(n), where n is the number of occur
rences of literals in D. Although the heterogeneous case 
(with $'-maximality) of 1)1{ is still O(n), n is now the 
the number of occurrences of literals in IY, a subset of 
D. That by adopting $'-maximality the heterogeneous 
case should be simpler is also apparent from the fact 
that the presence of a theory T consisting of a set of k 
literals transforms the problem of searching the set of 
all models of the propositional language P into the one 
of searching only the set of those models that satisfy T: 
the latter graph has 2k times less nodes than the for
mer. This accounts for the rather intuitive fact that, as 
the amount of certain information increases, the amount 
of computational resources required to "flesh out" the 
knowledge base should proportionally decrease. 

5 Conclusion 

We have shown how two methods proposed in [MPD] 
fail, for different reasons, to capture what we think the 
correct interaction between certain and defeasible infor
mation should be. The modified definition of maximality 
("$'-maximality") we have provided has been shown to 
be the notion of maximality that better represents our 
intuitions of how default reasoning should accommodate 
the interaction between these two fundamentally differ
ent types of information. When this notion of maximal
ity is plugged in, not only reasoning in the presence of 
a theory T consisting of a set of literals is provably no 
harder than reasoning with an empty T, but is likely to 
be, in practice, much more efficient. 
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A Comparing $'-maximality and 
$-maximality 

The truth table that establishes type-1 and type-2 the
ories as all and the only types of theories in which <i
maximality ~d $-maximality differ is spelled out in Ta
ble 1. The $'-maximality(column v) and $-maximality 
( column vi) of a model M satisfying a propositional 
theory T is represented as a function of the simple 
conditions 'r(M'.(M' $i M) (column i), 3M'.(-,Af' $i 
MI\ M $' M') (column ii), VM'.(M' $ M) (column 
iii) and 3M'.(-,Af' $ MI\ M $ M') (column iv); all 
models considered in this Appendix satisfy T . Condition 
5 is the conjunction of 1 and the negation of 2, while 6 
is the conjunction of 3 and the negation of 4. 

Note that 9 of the 16 rows are not even taken into 
consideration as, for different reasons, they depict im
possible situations. For instance, rows 1 through 4 are 
ruled out on the grounds that the conditions correspond
ing to columns i and ii cannot be true at the same time, 
unlike the simultaneous presence of True in the first two 
columns of these rows would imply. Similarly, the simul
taneous presence of True in columns iii and iv rules out 
rows 1, 5, 9 and 13; the simultaneous presence of True in 
columns i and iv rules out rows 1, 3, 5 and 7, and the si
multaneous presence of True in column i and of False in 
column iii rules out rows 3, 4, 7 and 8. In all these cases, 
the incompatibility of the two conditions corresponding 
to the two columns at issue is easy to check. 

Among the 7 rows that are left, rows 6, 11, 14 and 16 
agree on the values assigned to Si-maximality and $
maximality. Instead, rows 10, 12 and 15 assign different 
values to the two notions. 

However, a closer analysis shows that the truth con
ditions corresponding to rows 10 and 12 actually come 
down to representing the same situation, as far as the 
motivations for the dissimilarity between Si-maximality 
and $-maximality are concerned. In fact, row 10 cor
respo_nds to the situation in which 3M' .(-,Af' $i M I\ 
M $' M')) I\ 'r/M'.(M' $ M) while row 12 corresponds 
to the situation in which 3M'.(-,Af' $i MI\ M $i M')A 
3M".(-,M" $ M) I\ VM"'.(M"' $ MI\ -,Af $ M"')); 
the only difference is that in row 10 the existence of an 
"isolated model" (i .e. one which has no relation of prefer
ence whatsoever, either outgoing or incoming, with M) 
is stated, while the existence of such a model is ruled 
out in row 10. Since the mere existence of such a model 
does not have any influence in supporting the truth or 
falsity of the conditions corresponding to columns v and 
vi, we may consider the situations corresponding to rows 
10 and 12 to be actually the same situation. 

Row 10 and 12 correspond then to what we have called 
type-1 theories, while row 15 corresponds to type-2 the
ones. 
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A.1 Table 1 

i ii iii iv V vi 
1 True True True True 
2 True True True False 
3 True True False True 
4 True True False False 
5 True False True True 
6 True False True False True True 
7 True False False True 
8 True False False False 
9 False True True True 
10 False True True False False True 
11 False True False True False False 
12 False True False False False True 
13 False False True True 
14 False False True False True True 
15 False False False True True False 
16 False False False False True True 
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Abstract 

We solve an open problem stated in [Kautz and 
Selman, 1989], showing that although fast al
gorithms exist for determining whether a literal 
holds in a propositional default theory in which 
the propositional theory consists solely of liter
als and tl\e default rules are Horn (see [Kautz 
and Selman, 1989]), and exist for deciding sat
isfiability of propositional Horn theories, the 
two cannot be combined without introducing 
intractability. In particular, we show that when 
the propositional theory of a default theory al
lows Horn clauses, the membership problem be
comes intractable even when the default rules 
in the theory are restricted to being proposi
tional normal unary default rules, a strong re
striction of propositional Horn default rules. 
We also present several related results, show
ing that the entailment problem, the enumera
tion problem, and the problem of determining 
whether there exists an extension that "satis
fies" some specified number of the default rules 
are all intractable for these restricted default 
theories. 

1 Introduction 

One of the central concerns of artificial intelligence re
search involves developing useful models of how one 
might emulate on computers the 'common-sense' rea
soning in the presence of incomplete information that 
people do as a matter of course. Traditional predicate 
logics, developed for reasoning about mathematics, are 
inadequate as a formal framework for such research in 
that they are inherently monotonic: if one can derive a 
conclusion from a set of formulae then that same conclu
sion can also be derived from every superset of those for
mulae. It is argued that people simply don't reason this 
way: we are constantly making assumptions about the 
world and revisin_g those assumptions as we obtain more 
information (see lMcCarthy, 1977] or [Minsky, 1975], for 
instance). 

Many researchers have proposed modifications of tra
ditional logic to model the ability to revise conclusions in 
the presence of additional information (see, for instance, 
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[McCarthy, 1986], [Moore, 1983], [Poole, 1986]). Such 
logics are called nonmonotonic. Informally, the common 
idea in all these approaches is that one may want to 
be able to "jump to conclusions" that might have to be 
retracted later. While a detailed discussion of nonmono
tonic logics is outside the scope of this paper, a good 
introduction to the topic can be found in [Etherington, 
1988], and a number of the most important papers in the 
field have been collected in [Ginsberg, 1987]. 

One of the most prominent of the formal approaches 
to nonmonotonic reasoning, developed by Reiter ([Re
iter, 1980]), is based on default rules, which are used 
to model decisions made in prototypical situations when 
specific or complete information is lacking. Reiter's de
fault logic is an extension of first order logic that allows 
the specification of default rules, which we will summa
rize shortly. Unfortunately, the decision problem for Re
iter's default logic is highly intractable in that it relies 
heavily on consistency checking for processing default 
rules, and is thus not even semi-decidable (this is not a 
weakness of Reiter's logic alone; it is common to most 
nonmonotonic logics) . This precludes the practical use 
of Reiter's default logic in most situations. 

The motivation for searching for computationally 
tractable inference mechanisms for subclasses of propo
sitional default reasoning is based on the need to reason 
about relatively large propositional knowledge bases in 
which the default structures may be quite simple. Re
cent research involving inheritance networks with excep
tions is particularly relevant, and is explored in depth 
in [Touretzky, 1986] and in Chapter 4 of [Etherington, 
1988], where the close relationship between default logic 
and inheritance networks with exceptions is explored. 

In order to gain computational tractability of reason
ing in default logic, one must restrict expressiveness con
siderably. If one simply restricts the logic to reasoning 
about arbitrary propositions, the resulting decision prob
lems are at least as hard as deciding standard proposi
tional logic, regardless of any restrictions on the types 
of default rules allowed. Since the satisfiability problem 
is intractable for propositional logic, one must consider 
further restrictions. 

Recently, Kautz and Selman ([Kautz and Selman, 
1989]) investigated a number of restricted default logics 
defined over subsets of propositional calculus with var
ious restrictions on the syntactic form of default rules 



allowed. They described a partial order of such restric
tions, and analyzed the complexity of several problems 
over this partial order when the propositional theory is 
restricted to a set of literals. Several restrictions on 
the syntactic form of default rules were shown to re
sult in polynomial-time tests for determining whether 
certain properties hold given such a restricted proposi
tional theory. In particular, it was shown that one can 
decide in polynomial time whether there exists an ex
tension that contains a given literal when the default 
rules are restricted to a class they called Horn default 
rules. They suggested that the ability to combine such 
default theories with non-default propositional Horn the
ories would be particularly useful, but left open the ques
tion of whether the membership problem (i .e., determin
ing whether there exists an extension of a given default 
theory containing a specified literal) for such a combina
tion of theories is tractable. One of the main theorems of 
this paper shows that a strong restriction of this problem 
is NP-complete. 

The remainder of this paper is organized as follows : 
we begin with a brief description ofReiter's default logic, 
followed by a short overview of NP-completeness, and a 
presentation of the restrictions considered by Kautz and 
Selman. In Section 3 we prove that it is NP-complete 
to determine whether a default theory consisting of non
default propositional Horn clauses together with normal 
unary default rules contains a given literal. In Section 
4, we discuss several related results. Finally, we summa
rize the results presented and discuss areas for further 
research. 

2 Preliminaries 
2.1 Reiter's Default Logic 
For a detailed discussion of Reiter's default logic the 
interested reader is referred to [Reiter, 1980]. In this 
section we will simply review some of the immediately 
pertinent ideas. 

A default theory is a pair (D, W), where W is a set 
of closed well-formed formulae (wffs) in a first order lan
guage and D is a set of default rules. A default rule 
consists of a triple < a, /3, 'Y >, where 

a is a formula called the prerequisite, 

/3 is a set of formulae called the justifications, and 

'Y is a formula called the conclusion. 

Informally, a default rule denotes the statement "if the 
prerequisite is true, and the justifications are consistent 
with what is believed, then one may infer the conclu
sion." 

Default rules are written 
Cl' : /3 

'Y 
If the conclusion of a default rule occurs in the justifica
tions, the default rule is said to be semi-normal; if the 
conclusion is identical to the justifications the rule is said 
to be normal. 

A default rule is closed if it does not have any free 
occurrences of variables, and a default theory is closed if 
all of its rules are closed. 

The maximally consistent sets that can follow from a 
default theory are called extensions. An extension can 
be thought of informally as one way of "filling in the 
gaps about the world." 

Formally, an extension E of a closed set of wffs T is 
defined as the fixpoint of an operator r, where f(T) is 
the smallest set satisfying: 

W ~ f(T), 
f(T) is deductively closed, 

for each default rule d E D, if the prerequisite is in 
f(T), and T does not contain the negations of any 
of the justifications, then the conclusion is in f(T) . 

Since the operator r is not necessarily monotonic, a de
fault theory may not have any extensions. Normal de
fault theories do not suffer from this, however (see [Re
iter, 1980]), and always have at least one extension. 

There are several important properties that may hold 
for a default theory. Given a default theory (D, W), 
perhaps together with a literal q, one might want to de
termine the following about its extensions: 

Existence Does there exist any extension of (D, W)? 

Membership Does there exist an extension of (D, W) 
that contains q? (This is called goal-directed rea
soning by Kautz and Selman.) 

Entailment Does every extension of (D, W) contain q? 
(This is closely related to skeptical reasoning, where 
a literal is believed if and only if it is included in all 
extensions.) 

2.2 NP-complete Problems 
NP is defined to be the class of languages accepted by 
a nondeterministic Turing machine in time polynomial 
in the size of the input string. An important subset of 
NP is the class P, the class of languages accepted by a 
deterministic Turing machine in polynomial time. These 
problems• comprise those we usually consider tractable, 
in that the time needed to solve them is polynomially 
related to the problem size. 

The "hardest" languages in NP are called NP
complete: NP-complete languages share the property 
that all languages in NP can be transformed into them 
via some polynomial time transformation. To show that 
a problem in NP is NP-complete one must demonstrate 
a polynomial-time transformation of an instance of a 
known NP-complete problem to an instance of the prob
lem under consideration in such a way that a solution 
to one indicates a solution to the other. The known 
NP-complete problem we will use in this paper is called 
3SAT, and is stated formally as follows: 

3-SATISFIABILITY (3SAT) 

Instance: A finite set C = {c1, . .. , cm} of propositional 
clauses, each of which consists of exactly 3 literals 
(propositional variables or their negations). 

Question: Does there exist a truth assignment that sat
isfies C? 

·NP-completeness is often discussed in terms of deci
sion problems rather than languages, although the two are 
interchangeable. 
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The theory of NP-completeness is relatively well
understood; for a thorough and readable discussion of 
the topic the interested reader is referred to [Garey and 
Johnson, 1979]. The fastest known deterministic algo
rithms for NP-complete problems take time exponential 
in the problem size. It is not known whether this is 
necessary: one of the central open problems in computer 
science is whether P = NP. Most researchers believe that 
P # NP, and that NP-complete problems really do need 
exponential time to solve. Thus these problems are con
sidered intractable, since if P # NP, we cannot hope to 
solve instances of them with inputs of nontrivial size. 

Demonstrating the NP-completeness of a problem 
does not necessarily imply that it it cannot be solved in 
practice: sometimes (e.g., the Traveling Salesman Prob
lem) good polynomial approximation algorithms have 
been devised. Unfortunately, it is not clear what might 
comprise a reasonable approximation to an extension in a 
default theory. Even when approximation algorithms do 
not apply, there are often important subclasses of hard 
problems that can be solved efficiently ( deciding satisfi
ability of propositional Horn clauses is a good example 
of such a situation). Alternatively, perhaps many of the 
instances that may arise in practice will have structural 
properties that can be used to gain tractability. Knowing 
that a problem is NP-complete is important, however, in 
that it suggests that exact solutions are unlikely to be 
obtainable for nontrivial instances, and that some addi
tional restrictions may need to be made on the structure 
of the problem being considered. 

2.3 A Taxonomy of Default Theories 

In [Kautz and Selman, 1989], Kautz and Selman pre
sented a taxonomy of propositional default theories. 
They restricted W to contain only propositional literals 
(i.e., propositional variables and their negations), and 
restricted default rules to be semi-normal rules in which 
the precondition, justifications, and conclusions of each 
default rule consisted of conjunctions of literals (this 
restriction makes consistency checking a simple task) . . 
They also considered the following further restrictions 
on the default rules allowed. 

Unary The prerequisite of each default rule must be a 
positive literal, and the conclusion must be a literal. 
If the consequence is positive, the justification must 
be the conjunction of the consequence and a single 
negative literal; otherwise, the justification must be 
the consequence. 

Disjunction-Free Ordered The reader is referred to 
[Etherington, 1988] for a formal definition of ordered 
theories; intuitively, in ordered theories the literals 
can be ordered in such a way that potentially unre
solvable circular dependencies cannot occur. 

Ordered Unary These combine the restrictions of the 
first two theories described above. Kautz and Sel
man remark that these theories appear to be the 
simplest necessary to represent inheritance hierar
chies with exceptions ([Touretzky, 1986]). 
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Disjunction-Free Normal These are disjunction-free 
ordered theories in which the consequence of each 
default rule is identical to the justification. 

Horn The prerequisite literals in these default rules 
must each be positive, and the justification and con
sequence are identical, each consisting of a single 
literal. 

Normal Unary The prerequisite in each of these de
fault rules consists of a single positive literal, the 
conclusion must be a literal, and the justification 
must be identical to the consequence. These form 
the most simple class of default rule that is consid
ered in [Kautz and Selman, 1989]. 

These restricted theories are related in a partial order as 
shown in Figure 1 below. 

Disjunction-free 

OF-Ordered Unary 

DF-+m•~ HovedUnary 
Normal Unary 

Figure 1: Kautz and Selman's hierarchy of restricted 
default theories. 

3 Main Results 

Quite often, a default theory will have multiple exten
sions, and one may want to restrict examination to a 
limited number of them. One important measure of 
which extensions to consider may be the inclusion of 
some particular propositions. As mentioned above, this 
is variously referred to as goal-directed reasoning and 
the membership problem. Figure 2 summarizes Kautz 
and Selman's results with regard to the taxonomy they 
described. In particular, it is shown that for the class 
of Horn default theories, goal-directed reasoning can 
be done in linear time when the propositional theory 
consists of propositional literals. They suggest that al
though this is somewhat useful, it would be much more 
interesting if one could combine such default rules with 
propositional Horn theories efficiently. More formally, 
one would like to solve the following problem: 



Disjunction-free 

DF-Ordered Unary 

OF-Jonna~ 

Normal Unary 

Figure 2: The complexity of goal-directed reasoning in 
the restricted default theories considered by Kautz and 
Selman. 

HORN CLAUSES WITH NORMAL UNARY DEFAULTS 

Instance: A finite set H of propositional Horn clauses, 
together with a finite set D of normal, unary, propo
sitional default rules, and a distinguished literal q. 

Question: Does there exist an extension of ( D, H) that 
contains the literal q ? 

In this section we show that this problem is intractable, 
proving: 
Theorem 1 HORN CLAUSES WITH NORMAL UNARY 
DEFAULTS is NP-complete. 
Proof: It is not difficult to demonstrate membership in 
NP: although the extension may be too large to describe 
explicitly, it suffices to provide the original set of Horn 
clauses, together with those default rules that were_ ap
plied, and verify that the default rules form a maximal 
set that can actually be applied consistently. Since these 
are disjunction-free, this can be done efficiently. 

To demonstrate NP-hardness we transform an in
stance of 3SAT to one of HORN CLAUSES WITH NOR
MAL UNARY DEFAULTS as follows. Given an instance 
I of 3SAT, we begin by converting I into a new set of 
clauses consisting of a set H of Horn clauses together 
with a set P of clauses each of which contain exactly two 
literals, each occurring positively. To do this we simply 
place each clause in / that contains at most one positive 
literal into H; the remaining clauses contain either two or 
three positive literals. For each of the remaining clauses, 
choose one of the positive literals ( call it x ), introduce a 
new variable x and the clauses 

(-,x V -,£), 

which is a Horn clause and is placed into H, and 

(x V x), 
which is placed into P. These two clauses taken together 
are the clausal form of the formula 

(x <=> -,£). 

Finally, replace the occurrence of x in the original clause 
with-,£. The resulting clause has one less positive literal 
than the original; if it is now a Horn clause, place it in 
H. Otherwise repeat the replacement process to remove 
one of the remaining positive literals. Note that since 
equivalence of each literal x and the new corresponding 
literal-,£ is enforced by the added clauses, every satisfy
ing assignment for the original formula can be extended 
easily to a satisfying assignment for the new formula, 
and vice versa. The transformation has the property, 
however, that there are more falsifying assignments for 
the new formula than for the original. Note also that 
this transformation only results in a linear increase in 
the size of the problem. 

At this point, we have a set H of Horn clauses, which, 
together with one more clause we will add later, will 
comprise the propositional part of the default theory we 
are constructing. Since the clauses in P are non-Horn, 
they cannot be included in the propositional part of the 
theory. Thus, we must construct a set of normal unary 
default rules D to model the clauses in P. This is done 
as follows. 

For each variable a that appears in some clause in P, 
we introduce the default rule 

: a -a 

into D. Let us assume that P contains m clauses, i.e., 
P = { c1, ... , Cm} . Each of these is of the form Ci = 
(a Vb), where a and bare positive literals. For each such 
clause, introduce a new propositional variable qi, and 
introduce the following default rules into D: 

. a : qi . b : Qi . : -,Qi 
i1. q; i2, q; i3. -,Qi 

Once this is done for each of the clauses in P, we intro
duce one additional new variable and a final Horn clause 
into H to complete the construction: 

Hq = (-,Q1 V -,Q2 V .. . V -,qm V q) 

This phase of the transformation also results in at most 
linear growth in problem size. We now show that there 
exists an extension of (D, H) that contains q if and only 
if the original formula F is satisfiable. 

( ~ ). Suppose F is satisfiable. Since we replaced the 
clauses in P with a set of default rules, we must show 
that we can, given a satisfying assignment a for F, con
struct an extension of (D, H) that contains Q. It is easy 
to see that a can be extended to an assignment a' in 
which those new variables introduced in transforming F 
to the sets H and P are assigned truth values so that all 
the clauses in HU P are satisfied, and in fact, that the 
assignment of values to the new variables is completely 
determined by a. We use this assignment as the basis 
for the extension we will construct. We proceed as fol
lows. Each of the clauses in P must have had one of its 
variables assigned the value true by a' . For each of these 
clauses Ci = ( a V b) we observe that if a is assigned the 
value true by a', we can apply the default rules 

: a a : Qi 

a Qi 
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We can proceed similarly if b is assigned the value true. 
Note that since there are no propositional constraints 
on the variables q; other than the single Horn clause we 
added, we can always consistently add these. When this 
has been done for each of the clauses, it follows from the 
Horn clause H q that the set we have specified also con
tains q. It is a straightforward matter to confirm that 
this set can be augmented via deductive closure to form 
an extension of (D, H) that includes q, since no other de
fault rules can be applied, and the only new Horn clause 
added (Hq) is also satisfied. 

( ¢:). Suppose that there exists an extension of (D, H) 
that includes q. Since H contains only non-unit Horn 
clauses, it is easily seen to be consistent, thus it has 
only consistent extensions (see [Reiter, 1980]). Thus we 
need only show that each formula from P can be satis
fied consistently with H. Since we are given that q is 
contained in the extension, we can infer from the clause 
H q that each of the { q; I 1 ~ i ~ m} are also in the exten
sion ( otherwise the extension would contain q; for some 
1 ~ i ~ m, and the clause Hq would be satisfied without 
forcing q to be true). For an arbitrary clause c; = (a Vb) 
from P, the default rules 

a : q; b : q; 
q; q; 

are the only default rules that could have admitted q; 
into the extension. The prerequisites of these default 
rules ensure that at least one of a, b is also in the ex
tension (they may have been included using the default 
rules 

: a : b 
a -,; 

or as a consequence of including other literals). Thus, 
for each of the clauses in P at least one of its literals is in 
the extension. Since this extension is consistent with H, 
the set PUH is also consistent, and the theorem follows. 
D 

4 Related Results 

In this section we present several results that can be 
obtained by making minor modifications to the proof 
presented above. 

Theorem 2 It is co-NP-complete to determine whether 
a specified literal q holds in every extension of a default 
theory (D, H), where H is a finite set of propositional 
Horn clauses, and D is a finite set of normal, unary, 
propositional default rules. 

Proof (sketch): The transformation above is modified 
by adding a default rule 

: -iq 
-iq 

to D, causing the literal -iq to be included explicitly in 
every extension if and only if the original instance of 
3SAT is unsatisfiable, and the result follows . D 
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Theorem 3 It is # -P-comp/ete to count those exten
sions of a default theory (D, H) containing a specified 
literal q, where H is a finite set of propositional Horn 
clauses, and D is a finite set of normal, unary, proposi
tional default rules. 

Proof (sketch): We modify the original transformation 
by adding default rules corresponding to each of the orig
inal variables and their negations, rather than just those 
in P, thus eliminating "don't care" situations that might 
otherwise arise in extensions, in which for some propo
sitional variables neither the variable or its negation are 
in the extension. This modified transformation induces 
a situation in which each extension containing the spec
ified literal q corresponds to a unique satisfying truth 
assignment for the original formula, and vice versa. The 
result follows immediately. D 

The problems addressed in Theorem 2 and Theorem 3 
are closely related to skeptical reasoning discussed in 
[Touretzky, 1986]. A skeptical reasoning system accepts 
a proposition only if it is included in every extension. 
It was shown in [Kautz and Selman, 1989] that normal 
unary default theories have an 0( n3 ) algorithm for de
termining whether a proposition holds in all extensions. 
Theorem 2 demonstrates that if one extends the theory 
to allow Horn clauses in the non-default part, such skep
tical reasoning becomes intractable. Theorem 3 shows 
that for such default theories it is also intractable to de
termine whether a proposition holds in most extensions. 
As a result, even approaches approximating skeptical 
reasoning by accepting propositions that are included 
in most extensions are intractable in these theories. 

It is also interesting to note that the construction we 
describe has the property that for each clause appearing 
in P, exactly one of the literals in that clause will be 
true in a given satisfying assignment. The next theorem 
shows that even determining whether there is an exten
sion that "satisfies" a given number of one's default rules 
is NP-complete. Since default rules are often used to 
express descriptions of "preferred interpretations," such 
queries provide an indication of how close one might be 
able to get to one's preferences. 

Theorem 4 It is NP-complete to determine, given a de
fault theory (D, H), where H is a finite set of proposi
tional Horn clauses, and D is a finite set of normal, 
unary, propositional default rules with empty prerequi
sites and with positive justifications and conclusionst and 
a positive number k, whether there is an extension of 
(D, H) that contains the consequences of at least k of 
the default rules in D. 

Proof: The construction of H and P is exactly as in 
the proof of Theorem 1 above. Note that for each clause 
( a V b) in P there is a corresponding clause ( -ia V -ib) in 
H. This forces exactly one of a and b to be true in any 
satisfying assignment for H U P . In order to make sure 
that applying a default rule corresponds to satisfying ex
actly one clause from P, we must ensure that no variable 

fThese form the most simple possible type of default rule, 
expressing the desire to believe some propositional variable 
whenever it is consistent to do so. 



appears in more than one clause in P. To do this, we 
proceed as follows. If a variable a appears in two clauses 
in P, introduce a new variable a', Horn clauses 

(-iaVa') 

and 
(-ia' Va), 

and replace one occurrence of a in P by a'. When this 
process is completed, each variable appearing in P ap
pears exactly once in P. Next, for each literal a appear
ing in P add the default rule 

:a 
a 

Let m be the number of clauses in P. If the original 
formula is satisfiable then we can easily extend this to 
an extension in which exactly m of the default rules were 
applied, since exactly one of the variables in each clause 
from P can be true. Similarly, since it is inconsistent for 
an extension to contain both variables from any clause 
in P, if there is an extension in which exactly m default 
rules were applied, exactly one variable from each clause 
in P is true. Since the clauses in H are consistent, the 
entire formula is satisfiable. D 

5 Discussion 

We have shown that several problems associated with 
restricted propositional default theories are intractable, 
despite the fact that there exist tractable algorithms for 
their component parts. These default theories are quite 
simple, and our results show that unless P = NP, in order 
to effectively reason in default theories one must live 
with constraints that are quite limiting, some of which 
are described in [Kautz and Selman, 1989]. 

The most promising area for further study involves 
identifying different restrictions that yield tractable rea
soning methods without sacrificing expressibility to the 
point where only trivial default theories can be reasoned 
about. We are currently investigating several possibil
ities, and will present a number of new results related 
to the problem of reasoning in restricted propositional 
default theories in a forthcoming paper. 
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Abstract 
To build a long-tenn, individual student model, two 
difficult issues must be dealt with: belief revision and 
reasoning with incomplete knowledge. This paper 
presents a Student Model Maintenance System 
(SMMS) which allows two types of revision in a 
student model: evolutionary revision and 
revolutionary revision. It also ties the two types of 
revision together by allowing an evolutionary 
revision to trigger a revolutionary revision. In the 
SMMS, a Default Package Network (DPN) is 
constructed to represent student knowledge assumed 
by the tutor in the absence of full infonnation. These 
research results apply not only to student models, but 
also to other user models. 

1. Introduction 
Intelligent systems that interact with people need knowledge 
about the user. This kind of knowledge is usually referred to 
as the system's user model. Student models are the user 
models of intelligent tutoring systems (ITS's) [Sleeman and 
Brown, 1982] [Wenger, 87] [Clancey, 1986]. User models 
can be categorized in three dimensions [Rich, 1979]: 
canonical or individual models; short-term or long-tenn 
models; explicitly told (by the user) or implicitly abstracted 
(by the system) models. This paper concerns individual, 
long-tenn student models. 

One prominent property of student models is their non
monotonicity, that is, some infonnation in the model may 
be retracted after interaction with the student. Retraction is 
essential for a student model because students are constantly 
updating their beliefs. Moreover, the tutoring system might 
misunderstand a student. Misunderstandings should be 
corrected after the system obtains more infonnation about 
the student. Existing student models can be generally 
classified into two groups: bug-rule models and overlay 
models [Self, 1988]. A bug-rule model is usually a short
term model which results from analysis of the student's 
responses in a single interaction. While most overlay 
models are intended to be long-term, they are usually 
incremental. Retraction in overlay models is difficult and not 
well studied [Huang, 1990a]. One of the two main goals of 
this paper is to characterize non-monotonic revision in a 
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student model. 
The other main goal of the paper is to describe a 

representation for default knowledge in student models (and 
in user models in general). Infonnation about a user that an 
intelligent system can obtain from observations is usually 
far from complete. One possible way to handle incomplete 
knowledge in user models is to use default knowledge. 
Several systems have been developed using this approach. 
Among them, Nested Theorist (NT) provides a formal 
representation for default knowledge in a nested belief 
system [van Arragon, 1989). Since a user model is actually 
a set of a user's beliefs nested in the system's beliefs, NT 
provides a tool to formalize user modelling systems. 
Another system, GRUNDY, develops a representation called 
stereotypes for knowledge packages [Rich, 1979). In 
GRUNDY, different sets of stereotypes are activated for 
different users. Information in the active stereotypes is 
assumed true even if it is not directly observed. Thus, it 
provides a default user model. GUMS 1 goes further in the 
direction of using stereotypes in user modelling, allowing 
revision of a user model [Finin and Drager, 1986]. In 
GUMS I user knowledge is organized in a stereotype tree in 
which each node represents a class of users. The user model 
is revised when the application system observes new facts 
that conflict with the active stereotype. This is done by 
changing the active stereotype to the parent of the currently 
activated one. This treatment is often not appropriate, since 
after several interactions, even the root may conflict with the 
observed facts. Then the active stereotype becomes an empty 
set which is no longer useful. Also, a user model usually 
doesn't fit a single knowledge package in the knowledge 
base, but a combination of several knowledge packages. An 
alternative is that each combination is also stored as a 
package, but then the user model may contain thousands of 
packages. In the Student Model Maintenance System 
(SMMS) presented in this paper, a knowledge partitioning 
hierarchy, instead of a class hierarchy, called the Default 
Package Network (DPN), is used to represent default 
knowledge of a student model. 

The SMMS is built as a component of an overall student 
modelling system whose architecture is shown in Figure 1. 
As is mentioned above, the student model contains two 
kinds of knowledge about a student: confirmed knowledge 
and default knowledge. Confinned knowledge is the tutor's 



beliefs about the student's knowledge obtained from analyses 
of the student's responses during interactions and inferences 
on these analysis results. These analyses and inferences are 
made by a student knowledge analysing system1 in the 
student modelling system. Default knowledge is information 
about the student assumed by the system when some 
necessary evidence is absent The Default Package Network 
(DPN) contains stereotypical information about knowledge 
of different types of students. Note that the SMMS is 
general and not restricted to work with any particular student 
knowledge analysing system or in any particular domain, 
although in the discussion of this paper it is assumed to 
work with the one in the SCENT-3 programming advisor 
[McCalla, et al., 1989]. 

Student's - Student Knowledge 
Responses - Analysing System 
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Default Confirmed 
Knowledge Body - Knowledge Body 

(0KB) (CKB) 

Student Model 

Student Model Maintenance System (SMMS) 

Figure 1. Architecture of the Student Modelling System 

The SMMS deals with two types of revision in a student 
model: evolutionary revision and revolutionary revision. 
Evolutionary revision is made to the Confirmed Knowledge 
Body (CKB) of the student model. An evolutionary revision 
occurs when the student knowledge analysing system 
obtains new information about the student's knowledge. In 
particular, if the new information conflicts with the old 
beliefs in the CKB, some beliefs must be removed in order 
to maintain consistency of the student model. This type of 
revision is accomplished by an Evolutionary Belief Revision 
System (EBRS) which combines techniques of truth 
maintenance systems [Doyle, 1979] [de Kleer, 1986] with 
diagnostic systems [Reiter, 1987] [de Kleer and Williams, 
1987]. The EBRS is briefly described in Section 2. Its full 
details can be found in [Huang, et al., 1989]. 

1 Student knowledge analysing systems are usually referred to 
as diagnostic systems in ITS. We use a new name here because 
these systems usually take more responsibility than and use 
different techniques from normal diagnostic systems in the 
artificial intelligence area such as those described in [Reiter, 1987] 
and [de Kleer and Williams, 1987]. The architecture of student 
knowledge analysing systems is another fundamental research 
topic in the ITS area (see [Clancey, 1986] and [Wenger, 1987]) 
which is not in the scope of the research in this paper. 

Revolutionary revision occurs in the Default Knowledge 
Body (DKB) of the student model. It is triggered by an 
evolutionary revision in the CKB when it becomes obvious 
that a radical change in beliefs about the student's knowledge 
must be made. The system starts with an assumption about 
the student's knowledge status at each knowledge package 
(node) in the DPN. When the CKB is revised, the student 
model may no longer be consistent with some assumptions. 
These assumptions must be revised, which results in a new 
DKB. The DPN and revolutionary revision is discussed in 
Section 3. Section 4 of the paper presents a working 
example of the SMMS to show how these two types of 
revision are carried out. Finally, Section 5 summarizes the 
research results and proposes future research directions. 

2. Revising Confirmed Student 
Knowledge: an Evolutionary Process 

A student model is not a fixed knowledge body. A student 
constantly acquires new knowledge during learning. Also, 
the tutoring system knows more and more about the student 
as it interacts with the student. The student's new knowledge 
may conflict with old beliefs. The system may also obtain 
new information about the student which conflicts with its 
student model. Thus, re-establishing consistency of 
confirmed knowledge in the student model is necessary each 
time after new information is obtained. At first this might 
appear to require a truth maintenance system (TMS) such as 
developed in [Doyle, 1979] [de Kleer, 1986] and others. 
However, TMS's are designed to maintain consistency of 
working hypotheses. Confirmed knowledge of a long-term 
student model is a set of beliefs that have been accepted by 
the tutoring system. A working hypothesis and an accepted 
belief differ in that the former will be abandoned after the 
current problem is solved unless it is proved to be true and 
thus is accepted as a belief by the system, while the latter 
will not be abandoned until it is shown to be false or 
obsolete in the future. To revise the accepted beliefs of a 
system, simply maintaining consistency is not sufficient. 
What is also needed is that at any time after a change in 
beliefs, the set of new beliefs does not radically differ from 
the set of old beliefs, according to the principle of 
conservatism of accepted beliefs [Harman, 1986]. A TMS is 
not suitable here since it provides very little information 
about how to minimally modify the old beliefs to 
accommodate the new beliefs. 

The SMMS uses the Evolutionary Belief Revision 
System (EBRS) described in [Huang, et al., 1989) for 
revision of the confirmed knowledge body (CKB) of the 
student model. The EBRS combines TMS techniques and 
diagnostic techniques. It modifies the ATMS [de Kleer, 86) 
by identifying one of the consistent belief sets as the 
system's belief set. A diagnostic system is used in the 
EBRS to identify a set of minimal changes that remove all 
discovered conflicts from the belief set 

The EBRS records the system's confirmed beliefs about 
the student's knowledge, as well as data dependencies among 
the confirmed beliefs drawn from inferences. (In this section, 
we simply call a confirmed belief a belief, if no confusion is 
caused.) There are two kinds of beliefs: premises and inferred 
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beliefs. Premises are beliefs that are considered true by the 
system without depending on other beliefs, but they are not 
immutable, that is, they subject to remove if they 
subsequently encounter conflicts. A premises is a belief 
directly extracted from the student's response or a rule 
employed to infer other beliefs. An inferred belief is a belief 
thus inferred. 

Similar to the ATMS, a belief and its data dependencies 
in the EBRS are recorded in a data structure called an EBRS 
node which is of the form: 

[datum, label, justifications]. 
The datum is a propositional sentence that represents the 
belief. A justification is a list of EBRS nodes that are used 
in an inference in which the belief is generated. The label is 
the set of minimal consistent environments in which the 
belief is eventually grounded, by tracing back via the 
justification links. An environment is a set of premises. In 
particular, a premise has itself as a justification. Its label 
contains a singleton which contains only itself. For 
example, assume that the student knowledge analysing 
system first obtains a belief, "knows(car/cdr-recursion)", 
from analysis of a student's response. Next it applies a rule, 
"knows(car/cdr-recursion) ---> knows(cdr-recursion)", to 
conclude another belief about the student, "knows(cdr
recursion)". We may use the logical symbols A and B to 
represent "knows(car/cdr-recursion)" and "knows(cdr
recursion)", respectively. Then the three sentences can be 
represented by the following EBRS nodes: 

1. [A,{{l}},{(l)}] 2. [A--->B,{{2}},{(2)}] 
3. [B, {{l,2}}, {(1,2)}]. 

The EBRS keeps track of the system's belief set by 
identifying the set of premises from which the current belief 
set is inferred. This set of premises is called the current 
environment. A subset of the current environment is called 
an active environment. A propositional sentence in the 
knowledge base is currently believed by the system (thus is 
in the belief set) if and only if the label of its EBRS node 
contains an active environment. 

An analysis of a student's response or an inference on the 
existing beliefs is called an event. The EBRS obtains a set 
of beliefs from the student knowledge analysing system after 
each event. A single event may generate many new -beliefs. 
The EBRS puts these new beliefs into its knowledge base. 
Note that a new belief may not be brand-new, that is, it may 
have been generated in some previous events. The EBRS 
creates a new node for a new belief only if it is brand-new, 
but it always adds a new justification to a node that 
represents a new belief, unless the justification already 
exists. After a justification is added, label updating described 
in [de Kleer, 1986] propagates the effects of the new 
information, generating an updated label for each EBRS node 
in the knowledge base. 

A new node may also be created when a contradiction 
between the new beliefs obtained in the event and the old 
beliefs in the knowledge base is detected. A node used to 
record a contradiction is called a contradiction node. In a 
contradiction node, the datum entry is "false" (noted by J. ). 
Environments in the label of a contradiction node are thus 
inconsistent environments. To remove a contradiction, 
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simply deleting a justificant (a node in a justification) of the 
contradiction node is not sufficient, since the justificant may 
be supported by other nodes. Eventually, at least one 
premise in each active environment in the label of the 
contradiction node must be removed from the current 
environment, which causes the premise and some other 
beliefs directly or indirectly supported by the premise to be 
retracted from the belief set. If a contradiction node holds in 
several active environments or if many contradictions are 
detected after an event, the system may need to remove 
several premises from the current environment. These active 
environments may not be disjoint. Thus, retracting a 
premise may deactivate several inconsistent environments. 
According to the principle of conservatism, the set of 
retracted premises should be minimal, which means that if 
retraction of a set S can remove all contradictions, then no 
proper superset of S should be retracted instead. 

Finding the collection of minimal sets of premises to 
retract in order to remove all contradictions is actually a 
diagnosis problem. In fact, the EBRS uses a modified 
version of Reiter's diagnostic algorithm [Reiter, 1987] to 
compute this collection. (The algorithm of the EBRS is 
described in [Huang, et al., 1989].) Using the diagnostic 
algorithm, the EBRS quickly filters out unlikely alternatives 
of the set of retracted beliefs. However, identifying the most 
plausible candidate from these minimal sets usually requires 
domain knowledge, that is, educational knowledge in a 
tutoring system. The EBRS is a domain-independent 
knowledge base management system. It has to rely on the 
student knowledge analysing system, which has domain 
knowledge, to finally choose the set of retracted premises 
from the minimal sets. 

Note that the rules used by the student knowledge 
analysing system to infer student knowledge (e.g., node 2 
above) belong to a tutor's educational knowledge. They are 
meta-knowledge which is distinct from the student model 
itself. Thus, the CKB of the student model is the belief set 
of the EBRS with the meta-rules removed. 

3. Revising Default Student Knowledge: a 
Revolutionary Process 

The tutoring system's default knowledge about students is 
represented in a Default Package Network (DPN). A DPN is 
a directed acyclic graph. A node in a DPN represents a 
default knowledge package. Links are part-of relations, that 
is, the sub-graph of a node represents a part of the 
knowledge that the sub-graph of each of its parents 
represents. Figure 2 shows a segment of a DPN that 
represents default knowledge of Lisp programming. 

Small circles attached to a node represent propositional 
sentences contained in the knowledge package that the node 
represents. Such a propositional sentence is called a d
sentence. In Figure 2, for example, the d-sentence "knows(S
expression-evaluation)" is labeled "S-expr evaluation" and 
denoted by bo, 1 (for it is the first d-sentence of V 0). A d
sentence is attached to the node representing the most 
general knowledge category relevant to it in order to 
minimize duplicate information. Thus, the d-sentence 
"knows(function-body)" (i.e, b2,3) is attached to the "user-



defined functions" node but not the "recursive functions" 
node. If a ct-sentence is currently in the default knowledge 
body (DKB) of the student model, then it is ad-belief 

Corresponding to an estimate of the tutoring system 
about a student's knowledge status with respect to a package, 
a node in a DPN can be assigned a node value (also called 
value below if no confusion could be caused) in a designated 
value range (e.g., <NV, AV, EX> for "novice", "average" 
and "expert"). The value determines the d-belief set of the 
node. For example, if we assign the value EX to the node 
V 3, then all three ct-sentences of it might be in the student 
model by default. If we assign AV to V 3, however, then 
only b3,2 and b3,3 might be d-beliefs. Thus, the DKB is 
determined by the current value assignment of the nodes of 
the DPN. To account for the case that the system has no 
idea about or no interest to the student's knowledge status in 
some package, a distinguished value "unknown" (denoted by 
UN) is defined. If a node has an "unknown" value, then nod
sentence of it would be ad-belief. 

bo,1: S-expr evaluation 

bo,3: nested functions 

b1,2: cdr 
b2,1: function name 

b2,3: function body 

b3,2: data structure 

b4,1: loops 

b5,1: recursive case 

b5,3: reduction 

b6,1: search key 

ho,2: calling functions 

b1,1: car 

b1,3: cons 

b2,2: parameters 

hJ,1: algorithms 

b3,3: efficiency 

b4,2: local variables 

b5,2: base case 

b5,4: action 

b6,2: exploration 

Figure 2. A Sample DPN for a Fragment of Lisp 
Programming Knowledge 

An estimate (node value) for a student at a specific 
knowledge level may be made according to an estimate at a 
more general level. Thus, the value of a node may determine 

the value of a child of it by default. For example, if the 
student has an EX value in V 3, it might be reasonable to 
assign AV to V 5 and EX to V 6 (its two children) by default. 
On the other hand, the revised student model after an 
evolutionary revision (recall the discussions in Section 2) 
may not be consistent with the tutor's estimate of the 
student's knowledge status in a package. In this case, the 
tutor must change the estimate. Of course, the tutor might 
not have to change the estimate if the evolutionary revision 
does not cross the thresholds of the estimate. Thus, there is 
a set of constraints (i.e., thresholds) associated with each 
value of a node in the DPN. The value may be assigned to 
the node only if the student model satisfies this set of 
constraints. If the student model satisfies the constraint sets 
of several values of a node, then the value closest to the 
previous one should be chosen (which also implies that the 
value is only changed when necessary). The value of a node 
is not only constrained by the student model, but also by the 
values of its children. For example, we would not estimate a 
student to be an expert Lisp programmer if we believe that 
she/he has little knowledge of Lisp built-in functions. Of 
course, a value of a node need not have a constraint on the d
belief set and on every child of the node. In the case that the 
constraint is absent, the d-belief set can be any subset of the 
d-sentences of the node, while a child can have any value. 

A list of a possible set of defaults and a set of constraints 
corresponding to each value of each node of the DPN in 
Figure 2 (except those for V 1 and V 6 which are not relevant 
in the following discussion) is shown in Table 1. In the 
table, we use the notions ~ , = and ~ to express constraints 
among the nodes. This is based on a designated total order 
among these values: NV < AV < EX. Also, SM, Bi and bij 
denotes the student model, the d-belief set of Vi and the jth 
d-sentence of Vi, respectively. Although constructing the set 
of defaults and constraints for a DPN is a knowledge 
engineering problem which depends on the domain of the 
application, some general principles could be useful. First, 
if S c SM is a constraint and B the d-belief set for the 
same value of a node, then S should be a subset of B. 
Intuitively, one's defaults should not violate the constraints 
of one's estimate. Second, if x and y are two node values and 
x < y, then in each node the constraints of x should be 
strictly weaker (i.e., require less knowledge in the student 
model) than the constraints of y. That is, the requirement to 
be a less advanced student should be weaker than the 
requirement to be a more advanced student. 

Changing the value of a node may cause the value of a 
child to be changed if the child's current value is "unknown" 
or was determined by the previous value of the node. For 
example, if Vis AV value was determined by V 2's previous 
value AV and now V 2·s value is changed to EX, then V 4°s 
value would be changed to EX because of the default 
assignment of v2·s new EX value. Thus, value assignment 
in a DPN may propagate downwards. This process is called 
default propagation. On the other hand, if a node is forced to 
change its value since a constraint of its current value is 
violated (by the revised student model generated in an 
evolutionary revision or by a new value of its children), its 
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new value may violate the value of its parents. Thus, value 
change may also propagate upwards. This process is called 
constraint satisfaction. For example, assume Vo = EX, V 3 = 
AV, V 6 =AV.Now V 6 is forced to change its value to NV. 
This violates a constraint of V 3 's AV value. Thus, V 3 is 
changed to NV as well, which in turn forces VO to change to 
AV. Note that when a value resulting from constraint 
satisfaction conflicts with a value resulted from default 
propagation, the result of constraint satisfaction has a higher 
priority since it comes from a more concrete information 
source (confirmed knowledge about the student). 

Therefore, an evolutionary revision of a student model 
that occurs in its CKB may force value changes in some 
nodes of the DPN, causing changes of the default sets in the 
corresponding packages. This is a local revolutionary 
revision of the student model. In addition, value changes in 
some nodes may trigger the bottom-up constraint 
satisfaction process, followed by the top-down default 
propagation process, changing values of many nodes. Then, 
the DKB (and thus also the student model) undergoes a 
global revolutionary revision. The ratio of revolutionary 
revisions to evolutionary revisions depends on the tolerance 
of the constraint sets designed for the DPN. 

Even if the constraint sets are designed carefully, there 
may be cases in which the student model doesn't satisfy the 
constraint set of any value of a node. This usually happens 
when a node, say Vi, is forced to change value during 
constraint satisfaction, while the new value to be assigned 
also has some constraint not satisfied (called a second 
violation). If the second violation comes from a child whose 
current value was determined by the previous value of Vi• 
then the second violation would be removed in the next 
default propagation, and thus ignored, so the new value is 
still assigned. Otherwise, Vi is assigned the "unknown" 
value. Here the "unknown" value means "unclassifiable", 
which may be slightly different from its original intuition 
"having no idea", but the same- semantics applies. An 
important property of the "unknown" value is that it is a 
"wild card" value which can satisfy any constraints and that 
itself has no constraint. Thus, the value of a node is not 
changed when one of its parents or its children becomes 
"unknown". This has the advantage that failure of the 
system can be restricted to the local level, similar to what 
has been achieved in using a granularity hierarchy for 
recognition [Greer and McCalla, 1989). 

Another use of the "unknown" value is to avoid 
circularity. During default propagation, a parent, Va• of an 
"unknown" node, V c• may propagate a value to V c• while 
this new value of V c may violate a constraint of another 
parent of V c· This may generate a revision circle (see 
[Huang, 1990b] for details). To avoid this revision circle, we 
block the default propagation at V c by letting it remain 
"unknown". 
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Vo: 
EX: defaults: B0=(bo,i, b0,2, b0,3}, V1=AV, V2=EX, 

V3=EX; 

constraints: ((bo,1• bo,2} C SM) V ((bo,1• bo,3} C SM), 

vl ~AV, Vz=EX, V3 ~AV; 
AV: defaults: B0=(b0,i, b0.z}, V1=AV, V2=EX, 

V3=AV; 

constraints: (bo,1}CSM, Vz~AV, V3S.AV; 
NV: defaults: Bo=lbo,1}, V1=UN, Vz=NV, V3=AV; 

constraints: {b0,3} ~SM, V2 S.AV, V3=NV; 

V2: 
EX: defaults: Bz={b2,l' bz,2}, V4=EX, V5=EX; 

constraints: {b2,1, b2,2} !:: SM, V4 ~AV, V5 ~AV; 
AV: defaults: Bz={b2,1• bz,2}, V4=AV, V5=AV; 

constraints: ({bz,1} C SM) A ({bz,3} ~ SM, 

V4 S.AV, V5 S.AV; 
NV: defaults: B2={}, V4=NV, V5=NV; 

constraints: ((bz,2} ~ SM) A ((bz,3} ~ SM), V4=NV, 

V5S. AV; 

V3: 
EX: defaults: B3={b3,1, b3,2, b3,3}, V5=EX, V6=EX; 

constraints: (b3.z, b3,3} CSM, V5 ~AV, V6=EX; 
AV: defaults: B3=(b3,2, b3,3}, V5=AV, V6=EX; 

constraints: ({b3,1} ~ SM) A ({b3.z} C SM), 

V6 ~AV; 
NV: defaults: B3=( }, V5=NV, V6=AV; 

constraints: ({b3,1} ~ SM) A ({b3.z} ~ SM), 

V5 S.AV, V6 S.AV; 

V4: 
EX: defaults: B4={b4,i, b4,2}; 

constraints: {b4,1} C SM; 
AV: defaults: B4={b4,1}; 

constraints: ({b4,1} !:: SM) A ({b4.z} ~ SM); 
NV: defaults: B4=(}; 

constraints: ((b4,1} ~ SM) A ({b4.z} ~ SM); 

V5: 
EX: defaults: B5={bs,1• bs,2• b5,4}; 

constraints: {bs,2• bs,4} C SM; 
AV: defaults: B5=(bs,1• b5,2}; 

constraints: ((bs,2} C SM) A ({b5,3} ~ SM); 
NV: defaults: B5={b5,2}; 

constraints: ((b5,1} ~ SM) A ((b5,3} ~ SM). 

Table 1. Defaults and Constraints of the DPN in Figure 2 



Based on the above discussion, now we can summarize 
the algorithm of the student model revision process described 
in last and this sections: 

Algorithm SMMS: 
-- Compute the updated CKB (using the EBRS) 
-- Compute the student model (from the updated CKB and 

the current DKB) 
-- Satisfy the constraints in the DPN (bottom-up) 
-- Propagate value changes along with the DPN according to 

the defaults (top-down) 
-- If any change in the DPN is made, then 

* Compute the updated DKB (according to the updated 
DPN) 

* Compute the student model again (from the updated 
CKB and the updated DKB) 

End. { of the SMMS algorithm} 

Each step of the algorithm is a procedure. The procedure 
for updating the CKB has been presented and discussed in 
detail in [Huang, et al., 1989]. The DKB is the union of the 
d-belief sets of the nodes in the DPN. The student model is 
the union of the CKB and the DKB with the removal of 
every default belief in the DKB which directly contradicts a 
confirmed belief in the CKB (i.e., if p is in the DKB while 
-, p is in the CKB, then p is removed). Constraint 
satisfaction works upwards while default propagation goes 
downwards. In fact, the nodes in the DPN are numbered in a 
total order. Both procedures work according to this order. 
Constraint satisfaction starts at the node of largest number (a 
leaf) and ends at the node of smallest number (the root), 
while default propagation goes in the reverse direction. 

Like other truth maintenance systems and diagnosis 
systems, the EBRS called at the first step requires 
exponential time. The remainder of the algorithm, however, 
requires only O(N log N) time for most student modelling 
systems and O(M2 + L log L) for any kind of student/user 
modelling systems, where Lis the size of the CKB, M the 
size of the DPN, and N = L + M. Details of the algorithm 
and a complexity analysis can be found in [Huang, 1990b]. 

4. An Example 
This section integrates all that has been discussed in the 
paper in an example to show how the SMMS carries out an 
evolutionary revision in response to new information, how 
the evolutionary revision triggers a revolutionary revision, 
and how the revolutionary revision is realized in a DPN. 
The DPN used in the example is the one displayed in Figure 
2. Its defaults and constraints are defined in Table 1. Now 
first assume at time to, before the revision happens, the 
knowledge base in the EBRS is as follows: 
1. [bo,1, {{l}}, {(1)}] 2. lbi,1, {{2)}, {(2)}] 

3. [-, b:3,2, { {3) }, {(3)}] 4. [b5,2, { {4)), {(4))] 

5. [bo,1 ---> b3,1, {{5)), {(5)}1 

6. [b:3,1, { {l, 5) }, {(l, 5)}]; 

and the current environment is { 1, 2, 3, 4, 5}. Thus, all 
sentences in the knowledge base are believed (in the belief 
set). Since the CKB equals the belief set with the meta-rules 
removed (i.e. metarule: "bo,l ---> b3,1 "), we have 

CKB(to) = {bo,1, b2,1, b3,1, -, b3,2, b5,2} · 

We also assume that the value assignment to the DPN at 
time to is: 

Vo=AV, 

V4=UN, 

V1 =UN, 

V5=AV, 

The DKB is the union of the d-belief sets of the nodes 
determined by the defaults of this value assignment. Thus, 
we have 

DKB(to) = {bo.1, bo,2, b2,1, b2,2, b5,1, b5,2}, 

The student model is the union of the CKB and the DKB 
with removal of each d-belief of the DKB that directly 
contradicts a confirmed belief in the CKB. Therefore, 

SM(to) = {bo,1, bo,2, b2,1, b2,2, b3,1, -, b3,2, bs,1, 

b5,2}, 

At this moment, two new confirmed beliefs about the 
student's knowledge, b5,3 and b5,4, are obtained. Among the 
new beliefs, b5,4 is obtained by applying a meta-rule, "b3,1 , 
b5,3 ---> b5,4". Thus, three new EBRS nodes are created: 

7. [b5,3, { {7}}' { (7)}] 

8. Cb3,1, bs,3 ---> b5,4, { {8} }, {(8)Jl 

9. [b5,4, { {l, 5, 7, 8}}, {(6, 7, 8)}]. 

This triggers a student model revision process. Assume 
that the system immediately detects a contradiction between 
the new belief b5,4 and the old belief -, b3,2, (Note that a 
contradiction is not necessarily a logical contradiction. It 
may be derived from any set of sentences that the system 
believes to be conflicting. The SMMS does not force the 
semantics of contradictions. The application system is free 
to define this.) Thus, a contradiction node is created: 

cont-1. [ l., { {l, 3, 5, 7, 8}}, {(3, 9)}]. 
To remove the contradiction, at least one of the elements 

of the premise set { 1, 3, 5, 7, 8) must be retracted. Assume 
that the node 3 (i.e., -, b3,2) is retracted (see [10] for how 
to choose the premises to be retracted). Then the new belief 
set in the EBRS is {l, 2, 4, 5, 6, 7, 8, 9} . By removing the 
meta-rules recorded in the nodes 5 and 8, now the CKB is 

CKB(t1) = {bo,1, b2,1, b3,1, bs,2, b5,3, b5,4}: 

and the student model from CKB(t1) and DKB(t1) (which is 
the same as DKB(to)) is 

SM(t1) = {bo,1, bo,2, b2,1, b2,2, b3,1, bs,1, bs,2, b5,3, 

b5,4}. 

This shows an evolutionary revision of the student model. 
Next, revision of the DKB starts. By checking Table 1, 

one can find that a constraint for assigning AV to V 5 is 
violated since SM contains b5,3 now. Thus, V 5 is upgraded 
and assigned an EX value. The constraint satisfaction 
propagates from V 5 to V 2 and V 3. The value of V 2 changes 
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from AV to EX as well, since a constraint for V 2 to keep its 
AV value, "V 5 ~ AV", is violated. For v3, a constraint of 
its NV value, "V 5 ~ AV", is also violated. However, an 
AV value cannot be assigned to it (nor can an EX value, of 
course), since SM does not contain b3,2, which also violates 
a constraint for V 3 to have an AV value. Thus, V 3 is 
assigned UN, which means that the system cannot classify 
the student's knowledge status in this package. Although 
two children of VO have their values changed, no constraint 
for its AV value is violated. Thus, Vo keeps the value 
unchanged. 

Then the SMMS runs its default propagation procedure. 
Since V 2·s first child V 4 has an UN value at this time, it is 
assigned an EX value according to the default of V 2's EX 
value. Thus, at time t2 when the revision is completed, the 
value assignment to the DPN is 

Vo=AV, V1 =UN, V2=EX, V3=UN, 

V4=EX, V5=EX, V6=UN. 

By taking the union of corresponding d-belief sets of the 
nodes, 

DKB(t2) = (bo,1, bo,2, b2,1, b2,2, b4,1, b4,2, bs,1, bs,2, 

b5,4}. 
Finally, since CKB(t2) = CKB(t1), the updated student 
model is 

SM(t2) = (bo,1, bo,2, b2,1, b2,2, b3,1, b4,1, b4,2, bs,1, 

b5,2, b5,3, b5,4} · 
Thus, the default beliefs are automatically revised in 
correspondence with the revision in the confirmed beliefs. 
This results in a new student model which is drastically 
different from the old one (see the difference between SM(ti) 
and SM(to) ). In other words, a revolutionary revision has 
occurred in the student model. Note that although in the 
example each confinned belief in the EBRS corresponds to a 
d-sentence in the DPN, this is not necessarily always so. 
The EBRS can obtain beliefs from the student knowledge 
analysing system that are not stored in the DPN, which 
means that the tutoring system can know more about an 
individual student than what it predicts for normal students, 
by direct observations and use of its knowledge to make 
inferences. 

5. Conclusions 
We have dealt with the revision problem in a long-term 
student/user model. We have shown how to use techniques 
of truth maintenance and techniques of formal diagnosis to 
accomplish revision of the tutor's beliefs about the student's 
knowledge. The DPN has been developed to account for the 
tutor's incomplete knowledge about the student. Revision of 
the tutor's default beliefs can be naturally and efficiently 
accomplished in the DPN. We have also shown how the 
new information that triggers an evolutionary revision in the 
confirmed beliefs may also cause a revolutionary revision in 
the default beliefs, resulting in a desirable updated student 
model. The SMMS we have developed is domain-
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independent. In fact, the research results in this paper can 
apply to a variety of student models and other user models. 

The next stage of our research will focus on revision in 
the student's beliefs nested in the tutor's beliefs (called the 
student's beliefs for short). A student's beliefs are usually 
not entirely consistent. It is desirable for a student model to 
capture the property of limited consistency in the student's 
beliefs. We expect that a student model maintenance system 
which fulfils the three types of belief revision (revision in 
the student's beliefs, revision in the tutor's confirmed beliefs 
and revision in the tutor's default beliefs) will be very useful 
for intelligent tutoring systems [Huang, 1990a]. 
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Abstract 

This paper presents a computational strategy for 
reasoning on a multifaceted user model to generate 
definitions tailored to the user's needs in a task
oriented dialogue. The strategy takes into account 
the user's current focus of attention in his partially 
constructed plan, his domain knowledge, and his 
receptivity to different kinds of information. A 
system that uses this strategy will generate defi
nitions that appear natural and that represent co
operative, intelligent behavior. 

1 Introduction 

Analysis of naturally occurring information
seeking dialogues indicates that the information-pro
vider's responses are influenced by his perceptions about 
the information-seeker and the goals and plans motivat
ing the information-seeker's queries. If an expert consul
tation system's responses are to be viewed as cooperative 
and natural, then it must exhibit the same kind of be
havior. The system will be most effective if its responses 
contain exactly the information that will be most helpful 
to the user in the given situation. 

This paper presents a computational strategy for 
reasoning on a multifaceted user model to generate defi
nitions tailored to the user's needs in a task-oriented dia
logue. The user model is a dynamically constructed rep
resentation of the user's domain knowledge, task-related 
goals and plans, and receptivity to different kinds of in
formation. The system constructs a definition by weight
ing both the strategic predicates that might be used to 
construct a definition and the propositions that might fill 
them. These weights are used to construct a definition 
that includes the information deemed most useful, using 
information of lesser importance as necessary to adhere 
to common rhetorical practices. This strategy reflects 
our overall hypothesis that beliefs about the appropriate 
content of a definition should guide selection of a rhetori
cal strategy, instead of the choice of a rhetorical strategy 
determining content. 
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2 Definition Content 

In task-oriented expert-consultation dialogues, 
an information-seeker interacts with an expert to con
struct a plan for accomplishing a task. In naturally 
occurring task-oriented dialogues the expert often pro
duces definitions, either in response to requests by the 
information-seeker or spontaneously. The examples be
low, which are taken from transcripts of a radio financial 
advice program, illustrate requests for definitions by di
rect question and by an elliptical phrase which is inter
preted as a request . 

(1) U: "Can you tell me what the money market is?" 

(2) E: "I'd like to see you put that into two different 
Southern utilities." 

U: "Southern utilities?" 

Our goal has been to design a definition module that can 
produce intelligent answers to such requests as part of 
an expert consultation system. 

We use the word "definition" in a broad sense as 
the explanation of a term. There are many ways in which 
the content of a definition can vary. It may, for exam
ple, identify the entity being defined as a member of a 
superclass, list some of its attributes, give examples of 
it, or say how it works. Our analysis of naturally occur
ring dialogues has identified over a dozen types of verbal 
components (Figure 1) that typically appear in defini
tions. We will use the term strategic predicate to refer 
to a type of component. Each strategic predicate corre
sponds to the relationship of an aspect of the entity being 
defined to the entity itself. Although strategic predicates 
are conceptually similar to rhetorical predicates [Gri75; 
McK85], we prefer the term strategic to place the em
phasis on giving information in a way that will be useful 
rather than on rhetorical style. 

Our transcript analysis suggests that the content 
of definitions depends on several factors, including the 
entity being defined, the information-provider's beliefs 
about the person receiving the definition, and the sit
uation in which the definition is given. Salient char
acteristics of the information-seeker include his general 
knowledge, expertise in the area, and personal prefer-



Strategic 
Predicate 

Identification 
Property 
Component 

Substance 
Procedure 

Generation 
Prerequisite 

Effect 

Necessity 
Equivalence 

Negative 
Example 
Contrast 
Analogy 
Background 

Description 

An entity's generic class. 
Properties of an entity. 
Separate parts or components of the 
entity. 
What the entity is made of. 
Temporal sequence of steps for per
forming an action involving the entity. 
Cause-effect trace involving the entity. 
Enabling condition for an entity or 
process involving it. 
The effect of an entity or process in
volving it. 
Why an entity must exist in a process. 
Another, perhaps more familiar, name 
for the entity. 
Something that the entity is NOT. 
An illustration, instance, or example. 
A comparison with a weaker case. 
Something analogous to the entity. 
Historical background of the entity. 

Figure 1: Components of Definitions 

ences. Salient characteristics of the situation include 
the information-seeker's partially constructed plan for 
achieving his domain goals and his current focus of at
tention in the plan. Human experts appear to consider 
all of these factors when making a decision about what 
to say. The information-provider's beliefs about the 
information-seeker's knowledge, goals, plans, and atti
tudes enable him to avoid giving information that is 
already known, to use terms that are familiar to the 
information-seeker, to construct explanations that ad
dress the information-seeker's needs in the given situa
tion, and to provide information in a form compatible 
with the information-seeker's style of learning. If a com
puter system is to produce cooperative, intelligent re
sponses that address the user's perceived needs, it should 
similarly reason on a multifaceted model of the user. 

3 Generating Tailored Definitions 

In the course of ongoing task-oriented expert
consultation dialogues, many occasions arise in which 
the expert must provide a definition . Analysis of nat
urally occurring dialogue indicates that the definitions 
generated by human information-providers vary accord
ing to the situation in which the definition occurs. This 
appears to be the result of three factors: 

1. In task-oriented dialogues, the information-provider 
knows something about what the information-seeker 
is trying to accomplish and will generate definitions 
that help the information-seeker achieve his goals. 

2. Whereas static definitions or responses to one-shot 
requests for definitions must assume a generic model 
for the information-seeker, responses to definition 
requests during an ongoing dialogue can take into 
account acquired beliefs about the information
seeker's specific domain knowledge. 

3. Whereas static definitions and responses to one
shot requests for definitions must be generated all 
at once, dialogue allows the information-provider to 
produce what he thinks will be an acceptable defini
tion and analyze the information-seeker's response 
to determine whether to elaborate on the definition. 

If an expert consultation system is to be viewed as coop
erative, intelligent, and natural, it must take the above 
factors into account. Otherwise it will not appear to 
be directed toward the user's goals (uncooperative), will 
not appear to make use of what the user already knows 
(unintelligent), and will not appear to take advantage of 
the fact that the interaction is ongoing, as opposed to 
one-shot (unnatural). 

This section presents a new strategy for gener
ating tailored definitions in an expert consultation sys
tem. The strategy relies on a dynamically inferred model 
of the user's underlying task-related plan and focus of 
attention in that plan, along with information about 
the user's domain knowledge and receptivity to differ
ent kinds of information. 

4 The Multifaceted Model 

The knowledge base of our system contains a 
generalization hierarchy, a plan library, and a lexicon. 
The generalization hierarchy is built using a knowledge 
representation system based on KL-ONE [Bra79]. The 
plan library contains a set of domain goals and plans for 
accomplishing them. These plans are hierarchical since 
they can contain subgoals and subactions that also have 
associated plans in the plan library. Figure 7 illustrates 
a sample domain plan. The plan library is used by the 
TRACK plan inference system [Car87] to build a model 
of the user's underlying task-related plan incrementally 
from an ongoing dialogue; the resultant beliefs are rep
resented in a tree structure called a context model. Each 
node in this tree represents a goal or action that the 
user has considered. Except for the root, each of these 
goals and actions appears in the domain plan for ac
complishing its parent action in the context tree. The 
context model can be expanded to arbitrarily many lev
els of detail by repeatedly replacing non-primitive goals 
and actions with associated plans which themselves con
tain constituent goals and actions. Figure 5 illustrates 
a sample context model. While the knowledge base of 
our definition system is domain-specific, the reasoning 
strategies are independent of the domain . 

Our multifaceted user model has three parts . The 
first component, a model of the user's domain knowledge, 
can be used to construct definitions that will be under
stood by the user. The second, a model of the user's 
task-related goals and plans, can be used to generate def-
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initions that will be useful in the given situation and are 
relevant to the user's perspective on the domain. The 
third, a model of the user's preferences in explanation 
types, can be used to include the kind of information, 
such as examples or analogies, that the user assimilates 
most readily. 

The first component of the user model is a copy 
of the knowledge base with each node and link in the 
generalization hierarchy and each component of plans in 
the plan library marked with a value on a scale from 0 
to 1 indicating how certain the expert is that the user 
is familiar with the entity. We are assuming that this 
component of the user model is maintained by a variant 
of the user modeling system described in [Kas87], and 
that markings are altered as the dialogue progresses and 
the system's beliefs about the user's knowledge change. 

The second part of the user model is a context 
tree representing the system's beliefs about the user's 
partially constructed task-related plan and focus of at
tention in that plan. The context tree and focus of at
tention are maintained by TRACK. 

The third component is a model of the user's re
ceptivity to the various strategic predicates. Some peo
ple respond well to examples, whereas others learn better 
from explanations of how things work. A human expert 
can observe these differences and make use of his obser
vations in giving explanations; an expert consultation 
system should be able to act in the same manner. We 
are assuming that the user modeling system will be able 
to determine receptivity and will represent it as weight
ings associated with the strategic predicates. There are 
several clues to the user's receptivity to different predi
cates. For example, if the user responds favorably to a 
definition, the weights on the predicates used in that def
inition might be increased; conversely, if the user finds 
a definition unsatisfactory, weights on the predicates in
volved might be decreased. 

5 Reasoning on the User Model to 
Generate Tailored Definitions 

When a need for a definition of a term is rec
ognized in the course of an expert-user dialogue, the 
definition module is activated. The strategy it uses for 
constructing a definition has four steps: 

l. The predicates representing the kinds of informa
tion that might comprise a definition are weighted 
according to a model of the user's receptivity. 

2. The knowledge base is searched for propositions 
that can be used to fill the predicates. Each propo
sition is evaluated according to the significance of 
its information at this point in the dialogue. 

3. The propositions are divided into categories accord
ing to their estimated usefulness to the user, mea
sured as a combination of predicate weight and 
proposition significance. 

4. The definition is constructed to include the informa
tion deemed most important, using information of 
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lesser importance as necessary to adhere to common 
rhetorical practices. 

The first two steps will be described more fully in the 
rest of this section. 

When a definition occasion arises, a local pred
icate receptivity model is created. The predicates are 
initially assigned weights that reflect the user's receptiv
ity to different kinds of information as represented in the 
user model. These weights are adjusted by other factors, 
such as the type of question and the user's level of local 
domain knowledge. This latter weighting is suggested by 
Paris' findings that naive and expert users respond best 
to different kinds of explanations [Par88]. 

Semantics associated with each strategic predi
cate indicate where to look in the knowledge base for 
propositions that can be used to instantiate the predi
cate. Propositions that fill some predicates are found in 
the generalization hierarchy; for other predicates, candi
date propositions come from the plan library. 

At the same time as the candidate propositions 
are identified, a measure of significance is computed for 
each proposition. Significance is a function of two pa
rameters: familiarity, which estimates how likely the user 
is to understand the information and is a function of the 
belief factors associated with entities in the proposition, 
and relevance, which estimates how useful the informa
tion is in the particular situation and is based on close
ness to the current focus of attention in the context tree. 

Familiarity for an entity is a function of the be
lief factor attached to its node in the user model. If the 
expert believes strongly that the user knows about the 
entity represented by the node, the belief factor is close 
to 1 and the familiarity component of the significance 
equation is high. Since the dialogue is ongoing and there 
will be an opportunity for the expert to make clarifica
tions, nodes can be treated as if they are familiar even 
if the belief factors associated with them are only close 
to l. As the expert's confidence diminishes, however, 
the value of the familiarity component decreases rapidly, 
since the motivation for considering the familiarity of the 
entity is to satisfy the criterion of making definitions in 
terms that are understandable to the user. This behav
ior is described by the curve shown in Figure 2. The 

f e6b(2-b) 1 h ·1· . . formula = e6 _ 1 - where fist e fam1 1anty rating 
and bis the belief factor, exhibits an appropriate amount 
of curvature to reflect the rapid drop-off in usefulness as 
the belief factor decreases. This equation has been for
mulated to capture the information in the curve so that 
the familiarity component for a given belief factor can 
be easily estimated. 

Relevance of an entity is a function of the relation
ship of the entity to the existing dialogue context. The 
context model is a hierarchical tree structure of goals 
and actions representing the system's beliefs about the 
user's task-related plan. One of the actions in the con
text model, along with its associated domain subplan, 
is marked as the aspect of the task on which the user's 
attention is currently focused. The components of this 
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Figure 2: Familiarity Curve 

domain subplan, including the entities referenced in it, 
are of very high relevance. However, a focus shift oc
curs when attention is shifted either to more detailed 
actions that are part of its expanded subplan or back 
to higher-level actions whose performance includes the 
current focused action. Information in a subplan for an 
action that is one shift of focus away from the current 
focused action is still of high relevance. If the subplan is 
several focus shifts away, its relevance value and that of 
its parts is somewhat smaller, but as long as a plan has 
been activated, the information found in it is of some 
relevance. This situation, in which relevance remains 
high close to the focus of attention but drops off as the 
distance increases, is modeled by the curve shown in Fig-

ure 3. The equation r = e-(f)
2 

where r is the relevance 
rating and d is the number of shifts from the current 
focus of attention, captures the desired features . This 
equation allows us to estimate relevance given the num
ber of focus shifts between the current focus of attention 
and the appearance of the entity in an expansion of the 
context model. Some nodes in the generalization hierar
chy may represent entities not mentioned explicitly in a 
plan. Relevance values for these nodes can be assigned 
using linear interpolation on the relevance values of other 
nodes on the isa chain. 

.8 

.8 

r 

.4 

.2 

0 
d = focus shifts 0 2 3 4 6 
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Figure 3: Relevance Curve 

Familiarity and relevance for a proposition are 
based on the familiarity and relevance values for infor
mation contained in the proposition. Both the metrics 
for estimating the familiarity and relevance of proposi
tions and the methods for combining these metrics to 
compute the significance of a proposition depend on the 
strategic predicate being filled. Familiarity is weighted 
more heavily for predicates that describe the entity be
ing defined in terms of something else, such as its parent 
in the generalization hierarchy, since the principal use 
of these components is to locate the entity with respect 
to something in the user's own knowledge base. Rele
vance is weighted more heavily if the predicate is used 
to tell something about the entity being defined, such as 
its properties, since aspects of the entity useful to the 
user will be those that are relevant to the plan that the 
user is constructing. 

A closer look at the semantics for two of the 
strategic predicates will help illustrate how the selection 
and weighting of propositions is accomplished. 

5.1 The Identification Predicate 

The Identification predicate is used to identify an 
entity as a member of a particular class. For example, 
"Baking soda is an antacid" is an Identification defini
tion. 

The semantics for the Identification predicate in
dicate that propositions of this type should relate the 
entity being defined to one of its ancestors in the gener
alization hierarchy. A portion of the generalization hi
erarchy that includes baking soda is shown in Figure 4. 
The isa links between nodes are used to connect classes 
to superclasses. An isa chain is a chain of nodes con
nected by isa links, such as Antacid, Medicinal Remedy, 
Substance, Thing. A relevant isa chain is an isa chain 
that includes all relevant ancestor nodes - that is, nodes 
above the entity being defined that have at least some 
minimum relevance to the current focus of attention in 
the dialogue. A candidate Identification proposition is 
produced for every node in the relevant isa chain. 

Note that a node can have more than one par
ent; for example, baking soda is a leavening agent, an 
antacid, and a deodorizer . Since it is quite possible that 
not all ancestor nodes will be relevant to the perspective 
from which the entity is being discussed, it is necessary 
to select the ones that are appropriate to use. If there is 
a branch point, then a decision must be made as to which 
ancestor belongs on the relevant isa chain . Our context 
model, representing the system's beliefs about the user's 
underlying task-related plan, captures how the user is 
viewing the domain. For example, if the user is con
structing a domain plan for relieving indigestion, then 
baking soda should be viewed as an antacid, since an 
entity of type antacid can play a role in such a plan and 
baking soda can serve as that entity. On the other hand, 
if the user is constructing a domain plan for baking a 
cake, then baking soda should be viewed as a leavening 
agent. Therefore, the plan in which an entity plays a role 
<lelermines the perspective from which the entity should 
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Figure 4: Portion of a Generalization Hierarchy 

be viewed. We annotate the arguments of subactions in 
the body of plans in the plan library so that they con
tain type information specifying the relevant ancestors 
in the generalization hierarchy. This type information 
can be used to determine relevant isa chains for entities 
that appear in an expansion of the context model. Our 
selection of relevant isa chains is more limited in scope 
than McCoy's perspectives [McC88] which partition the 
knowledge base into overlapping segments to represent 
information salient to a particular viewpoint. Selecting 
a relevant isa chain for an entity only identifies the an
cestor classes that are relevant to the user's perspective 
but does not identify salient properties of the entity. The 
latter is done by reasoning on expansions of the system's 
context model. 

The familiarity and relevance values for an Iden
tification proposition are the familiarity and relevance 
of the ancestor node selected from the generalization hi
erarchy. The significance calculation for Identification 
propositions is 

significance = (2 x familiarity+ relevance)+ 3 

Familiarity is weighted more heavily than relevance, 
since an identification is given in an at tempt to tie the 
entity being defined to something the user already un
derstands. 

5.2 The Effect Predicate 

An Effect definition describes the results of an 
action involving the entity being defined . In contrast 
with Generation, which provides a cause-effect chain of 
events leading to some state, the Effect strategic predi
cate describes a single effect or a conjunction of effects. 
"Baking soda makes the cake rise " defines baking soda 
in terms of an effect. 
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The semantics for the Effect predicate indicate 
that propositions are formed from effects of plans whose 
actions involve the entity. If actions involving the entity 
appear in several subplans relevant to the current dia
logue context, the Effect predicate will be filled multiple 
times. 

Sometimes it is more appropriate to give the defi
nition in terms of indirect effects. Consider the example 
outlined below. 

Plan-1: Body-1: 
Effect-I: 

Plan-2: Body-2: 
Effect-2: 

Add baking soda 
Release CO2 

Release CO2 
Make cake rise 

Two Effect definitions of baking soda could be derived 
from this set of plans. The definition based on the direct 
effect of adding baking soda (Planl) would be "Baking 
soda releases CO2." Alternatively, an indirect effect (the 
effect of releasing CO2 shown in Plan2) would lead to the 
definition "Baking soda makes the cake rise." 

Choices between direct and indirect effects are 
made according to a set of rules: 

Rule 1. If all effects at one depth in a chain of effects 
have higher significance than effects at any other 
depth, choose those effects. 

Rule 2. If all effects at one depth in a chain of effects are 
of greater or equal significance compared to effects 
at any other depth, with at least one effect having 
greater significance, choose those effects. 

Rule 3. If there is a tie for greatest significance, select 
the effects from the plan that is closest to the plan 
containing the entity being defined, since these ef
fects are more directly associated with the entity. 

The purpose of these rules is to make choices between 
possible Effect propositions based on their appropriate
ness to the current situation. If multiple candidates re
main after the rules are applied , the choice will be made 
later according to rhetorical considerations. 

The familiarity of each entity involved in a propo
sition filling the Effect strategic predicate is based on 
its belief factor, as described earlier. Familiarity of the 
proposition is computed as the average of the familiar
ities of the entities comprising the proposition . Rele
vance is a function of how close the subplan containing 
the proposition is to the current focus of attention in 
the context model. Significance for Effect propositions 
is computed as 

significance =(familiarity+ 2 x relevance ) + 3 

Significance is based more heavily on relevance than on 
familiarity, since the appropriateness of the propositions 
filling the Effect predicate is tied to the user's plans. 

6 Examples 

The examples in this section will illustrate how 
definitions constructed by our system will vary depend-



ing on the system's beliefs about the user and the current 
situation as captured in its multifaceted user model. 

Consider the following short dialogue segment be
tween the system (S) and a naive traveler (U) who is 
unfamiliar with travelers checks: 

U: "I am going to visit Paris. What must I have to 
pay for my hotel?" 

S: "You will need to have a major credit card, trav
elers checks, or French currency." 

U: "Travelers checks?" 

Figure 5 illustrates part of the user's partially con
structed plan inferred by the TRACK system. The focus 
of attention when the definition module is invoked is rep
resented by the node preceded by an asterisk, with the 
most recently considered subgoal in the plan preceded by 
a bullet. The portion of the belief model that contains 
the concept of travelers checks is shown in Figure 6. The 
numbers indicate the belief factors attached to the nodes 
and links. For simplicity, we have limited the markings 
to O ( definitely believed unfamiliar to the user) and 1 
(definitely believed known by the user). 

Instrument Payable To Order, Money Instru
ment, Financial Thing, and Thing form a relevant isa 
chain because they are ancestors in the generalization 
hierarchy of Travelers Check, which is part of the current 
focused plan in the context tree. Thus, the Identification 
predicate has several possible fillers. Money Instrument 
is familiar to the user and close to the concept of travelers 
checks which is part of the plan for the current focused 
action in the context model. Therefore, the significance 
value for the associated proposition, which is based on 
the familiarity and relevance of this node, is also high. 

Another candidate proposition comes from the 
Prerequisite predicate. A domain plan for purchasing 
travelers checks (not shown), whose effect is to have trav
elers checks, has a precondition of being at a bank. Since 
this domain plan achieves the most recently considered 
subgoal (have travelers checks) in the user's current fo
cused plan and since the system believes the concept of 
being at a bank is familiar to the user, the Prerequisite 
predicate filled with this proposition ( and the name of 
the action, purchase travelers checks, associated with the 
domain plan) would also receive a high rating. These two 
predicates would produce the response "Travelers checks 
are money instruments which you purchase at a bank." 

On the other hand, suppose that the dialogue seg
ment were 

U: "I am going to visit Paris. I am afraid of carrying 
a lot of cash." 

S: "You can carry a major credit card or travelers 
checks." 

U: "Travelers checks?" 

As a result of the user's first utterance, the ex
pert introduces plans that are relevant to visiting 
Paris and whose applicability conditions include want-

ing to avoid carrying a lot of cash. When the def
inition module is invoked, the focus of attention in 
the context model is on the action whose domain 
plan is shown in (Figure 7). The Effect predicate 
can be filled with the propositions Have-Convertible
Funds( _a:&TRAVELER, ..amt:&AMOUNT) and Have
Safe-Funds(_a:&TRAVELER, _amt:&AMOUNT) along 
with the action, carry travelers checks, that generates 
these effects. Both of these propositions will be assigned 
high significance values since they consist of concepts 
that the system believes the user is familiar with and 
are part of the subplan in the context model on which 
the user's attention is currently focused. The two propo
sitions filling the Effect predicate would be represented 
in the response "Carrying travelers checks lets you have 
convertible funds in a safe form." 

In both of the above examples, the information 
that might be included in a response is evaluated ac
cording to its usefulness to the user in the given situ
ation. Consequently, the definition that results will be 
tailored to the user's inferred plans and goals and the 
user's familiarity with domain concepts. 

7 Categorizing Candidate Propositions 

Once weights have been assigned to the candidate 
propositions, they are ranked according to weight and 
put into categories. There are four categories: 

Must Say 
Say if Convenient 
Say if Needed for Coherence 
Do Not Say 

The higher wieght categories receive the higher-weighted 
propositions; the lower-weighted propositions go into the 
lower weight categories. Some categories may be empty. 

When all category assignments have been made, 
the resulting four groups of propositions are passed to 
an answer generator which attempts to find a way to 
say all of the Must Say propositions and as many as 
possible of the Say if Convenient propositions, using Say 
if Needed for Coherence propositions whenever they help 
the construction of the response. We propose to do this 
task using rules of combination developed to produce an 
utterance that adheres to common rhetorical practices 
that people appear to follow. Since we are emphasizing 
saying the things that are most important to say and 
since it will happen that there are more important things 
to say about some subjects than about others, it will 
follow that some responses will be longer than others. 
This situation is consistent with definitions that occur 
in natural dialogues. 

8 Related Work 

Several researchers [Chi88; PM87] have concen
trated on modeling the user's domain knowledge or ex
pertise with the aim of giving the user information ap
propriate to his level of expertise or simply avoiding giv
ing redundant information . Hovy [Hov87] used a model 
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Visit(U, PARIS) 

I 
Stay-In(U, _h :&HOTEL) 

where 
Located-In( .h:&HOTEL, PARIS) 

I 
Pay-For-Hotel(U, -<!:&DAYS, .h:&HOTEL) 

where 
Stays(U , -<!:&DAYS, .h:&HOTEL) 

- f -Charge(U, ..b:&BILL, .x:&CRED-CARD) 
where 

Bill-For(-<l:&DAYS, .h:&HOTEL, ..b:&BILL) 
Is-Major-Credit-Card( .x:&CRED-CARD) 

•Pay-TC(U, ..b:&BILL, _y:&TRAV-CHECK) 
where 

Bill-For(-<l:&DAYS , .h:&HOTEL, ..b:&BILL) 

Pay-Cash(U, ..b:&BILL, _z:&CURRENCY) 
where 

Bill-For( -<l:&DAYS , .h:&HOTEL, ..b:&BILL) 
C urrency-Of(_z:&CU,RENCY, FRANCE) 

I l 
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Figure 5: The System's Context Model 
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Figure 6: Portion of a Belief Model 

of multiple characteristics of the user to select rhetorical 
strategies likely to achieve desired effects, and Bateman 
and Paris [BP89] developed a strategy for varying the 
phrasing of a proposition to make it appropriate for dif
ferent types of users. Moore [Moo89] investigated a re
active model of explanations that enabled the system to 
reason about its own responses in addressing user mis
understandings. 

In addition, van Beek and Cohen [v B87] explore 
appropriate responses for situations in which the user's 
plan would fail to achieve his goal or was not the most ef
fective means for achieving it. McKeown [MWM85] used 
domain goals to index into a pre-built set of perspectives 
from which to answer can and should questions, and Co
hen et al. [CJS*89] developed a strategy that took into 
account both a user's background knowledge and goals 
in generating answers to queries in an educational diag
nosis system. 

Although our research has a flavor similar to the 
above efforts, it differs from them in several ways. We are 
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not concerned with generating answers to specific ques
tions about the task at hand or the plan that the user is 
trying to construct. Instead, we are addressing the prob
lem of generating definitions tailored to the user's needs 
in a task-oriented dialogue. Our strategy takes into ac
count many different facets of the user, including his 
domain knowledge, level of expertise, task-related plans 
and goals, and receptivity to different kinds of informa
tion. It reasons directly on the system's beliefs about the 
user and the situation, without using pre-built perspec
tives, to propose and evaluate information that might 
be included in a response; an effective and coherent def
inition will then be constructed by taking into account 
both the significance of individual pieces of information 
and rhetorical considerations. 

9 Conclusions 

A subset of the predicates for the tailored defi
nition system have been implemented. We are currently 



Name: Carry-Convertible-Funds(_a:&TRAVELER, ..amt:&AMOUNT) 
Applicability Conditions: 

-, Want[..a:&TRAVELER, 
Carry(_:&TRAVELE;R, ..amt:&AMOUNT, _c:&CASH) . 

· where · 
Is-Large(.:amt:&AMOlTNT)] 

Preconditions: None 
Body: ,e'· . . , 

Carry(_a:&TRAVELER, __ amt:&AMOlTNT, _t:&TRAV-CHECK) 
Effects: · · 

Have-Convertible-Funds( _a:&TRAVELER, ..arrit:&AMOUNT) 
Have-Safe-Funds(_a:&TRAVELER, :..amt:&AMOUNT) 

Figure 7: A Domain Plan for Carrying Convertible Funds 

working on implementing the remaining predicates, de
signing the answer generator that produces the final def
inition, and building a sufficiently large knowledge base 
to test the system. This definition module is being devel
oped as part of the Delaware Intelligent Advisory Lan
guage System (DIALS). 

The motivation for this work has been the hy
pothesis that responses should be tailored to the partic
ular user and the current situation. We have presented 
a strategy for generating tailored definitions that takes 
into account the user's current focus of attention in his 
partially constructed plan, his domain knowledge, and 
his receptivity to different kinds of information . A sys
tem that uses this strategy and reasons on a multifaceted 
user model will generate definitions that appear natural 
and that represent cooperative, intelligent behavior. 
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Abstract 
The application of Default Logic to the gener
ation of natural language presuppositions for 
the particular class of natural language sen
tences called complex conditionals is demon
strated. Complex conditionals are condition
als which have embedded structure (for ex
ample, 'If A or B then C' or 'If A then if 
B then C'). A critical element in the gener
ation of natural language presuppositions us
ing Default Logic is the clausal quantity im
plicature ([Gazdar, 1979]). In order that this 
method can be applied to c9mplex condition
als, the notion of clausal quantity implica
ture needs to be strengthened. The method 
to generate the natural langua_ge presupposi
tions previously described in lMercer, 1987; 
Mercer, 1988b] remains unchanged. 

1 Introduction 

In this paper I describe the application of Default Logic 
to the generation of natural language presuppositions 
(henceforth presuppositions). In particular I focus on 
a problem, first described in [Soames, 1982], that con
cerns a class of sentences called complex conditionals. 
Complex conditionals are conditionals ('If A then B') 
which have embedded structure (for example, 'If A or 
B then C' or 'If A then if B then C'). Whereas pre
viously I have concentrated on the motivation, success, 
and power of applying Default Logic to the generation 
of presuppositions [Mercer, 1987; Mercer, 1988b], what 
follows is an important modification of some inputs to 
this aforementioned theory. 

Although the ideas first presented in [Mercer and 
Reiter, 1982], and later expanded in [Mercer, 1987; 
Mercer, 1988b] are basically sound, our understanding 
of subsidiary issues has needed refinement (for example, 
[Mercer, 1988a] improves our representation of sentential 
adverbs). A critical element in the generation of pre
suppositions using Default Logic is the clausal quantity 
implicature [Gazdar, 1979]. Here, the major contribu
tion is that the notion of clausal quantity implicature is 
strengthened in order to deal with complex conditionals. 

0 This research was supported by NSERC grant 0036853. 
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Sections 2, 3, and 4 describe presuppositions, clausal 
quantity implicatures, and the problem of complex con
ditionals, respectively. Section 5 is a short description of 
the use of Default Logic to capture the class of linguis
tic inferences called presuppositions. Section 6 describes 
the generation of clausal quantity implicatures that are 
stronger than Gazdar's. 

2 Presuppositions 

In its linguistic sense, presuppositions are those infer
ences, generated from a number of linguistic situations, 
which pass a negation test, that is, being implied by 
a natural language sentence and the natural ( or pre
ferred) interpretation of its simple negation. Presuppo
sitions are generated from lexical and syntactic contexts. 
Those contexts which pass the negation test can be 
termed presuppositional environments. Sentences (1)
(5) demonstrate some prototypical examples of presup
positions produced by the following presuppositional en
vironments, respectively: noun phrases, possessives, fac
tive verbs, certain aspectuals, and definitions of words. 
In each of these examples the truth of the affirmative a
sentence always implies the truth of the c-sentence, and 
the truth of the negative b-sentence normally implies the 
truth of the c-sentence. 

(1) a. The present king of Buganda is bald. 
b. The present king of Buganda is not bald. 
c. There exists a present king of Buganda. 

(2) a. Jack's children are bald . 
b. Jack's children are not bald. 
c. Jack has children. 

(3) a. Mary is surprised that Fred left. 
b. Mary is not surprised that Fred left . 
c. Fred left . 

( 4) a. ( At time t), John stopped beating the rug. 
b. (At time t), John did not stop beating the rug. 
c. (Prior to time t), John had been beating the rug. 

(5) a. My cousin is a bachelor. 
b. My cousin is not a bachelor. 
c. My cousin is a male adult. 

For many years the topic of debate has been what 
happens when presuppositional environments are found 



in compound1 sentences. Since the main concern here 
is with complex conditionals, the discussion that fol
lows concentrates only on compound sentences which are 
composed of sentences combined with logical functors. 

Sentences combined with or and if . .. then, sometimes 
display the presuppositions associated with the presup
positional environments found in both clauses, for ex
ample (6), and sometimes do not. For example, the pre
supposition associated with the presuppositional envi
ronment found in the consequent is not a presupposition 
of (7). 

(6) Mary stopped beating the rug or John stopped beat
ing the egg. 

(7) If John was beating the egg then he has stopped 
(beating the egg). 

The class of sentences on which this paper focusses is 
the complex conditional. (8) and (9) are examples from 
this class. (8) presupposes (among other things2) that 
'my cousin is adult and male' and that 'my teacher is 
adult and female'. (9) presupposes that 'my cousin is 
adult' and presupposes neither 'my cousin is male' nor 
'my cousin is female'. 

(8) lfmy cousin is a bachelor or my teacher is a spinster, 
someone at my party is unmarried. 

(9) If my cousin is a bachelor or (my cousin is) a spin
ster, then my cousin will be the life of the party. 

Most of the debate has centred around the appropri
ate system for producing the correct presuppositions for 
these sentences. [Mercer, 1987] contains a discussion of 
this debate and a system based on Default Logic which 
addresses the issue. For present purposes what follows 
focusses on two issues: the importance of clausal quan
tity implicatures in generating the correct presupposi
tions, and the role that these implicatures play in the 
Default Logic system itself. 

3 Clausal Quantity lmplicatures 

Gazdar [1979] argues that if a speaker were to ut
ter a compound sentence having a constituent which 
is not itself ( or its negation) entailed or potentially 
presupposed,3 then the speaker would be in breach of 
Grice's maxim of quantity if he knew that sentence to 
be true or false, but did not indicate to the listener 
that it was so, since the speaker could have been more 
informative by producing a compound sentence having 
the constituent concerned ( or its negation) as an entail
ment or a presupposition. It follows that uttering such 

1 Sentences having more than one verb in their underly
ing semantic structure. In the surface form this situation is 
normally exhibited as relative clauses or sentences combined 
with logical functors ( or, and, if ... then). 

2In all of the examples only those presuppositions of im
portance to the discussion are mentioned. 

3 I am using Gazdar's terminology here because his defini
tion is given in these terms. In the Default Logic setting there 
are no potential presuppositions. Instead the implicatures are 
used to provide the contexts in which the presuppositions are 
computed. 

a compound sentence potentially implicates4 that both 
the constituent sentence and its negation are compatible 
with what the speaker knows. 

It follows from this argument ( and the formal def
inition of clausal quantity implicature (see [Gazdar, 
1979]:61) that the sentences 'A or B' and 'If A then 
B', where 'A' and 'B' are not compound, have the po
tential clausal quantity implicatures PsA, Ps-,A, PsB, 
and Ps-,B. 

Clausal quantity implicatures are very important in 
both Gazdar's and the Default Logic theories of presup
position. For Gazdar they are used to cancel unwanted 
potential presuppositions. For the Default Logic theory 
they define the default theories in which the presupposi
tions are generated. That these clausal quantity implica
tures, as described above, are not sufficient for complex 
conditionals has been previously noticed ([Soames, 1982) 
for Gazdar's system; [Mercer, 1987] for the Default Logic 
method). A discussion of this situation follows immedi
ately and a more detailed account as it pertains to the 
Default Logic method is provided in section 5.2. 

4 The Problem 
The first indication of the shortcomings of the method 
proposed in [Gazdar, 1979], the inability of Gazdar's 
method to generate the appropriate presuppositions 
from conditionals containing sentential adverbs, appears 
in [Soames, 1979]. [Landman, 1981] suggests an ill-fated 
strengthening of the clausal quantity implicatures used 
in Gazdar's method ( discussed briefly below) to over
come this problem. 5 As well as providing methodolog
ical arguments, [Soames, 1982] provides complex con
ditionals as the set of counterexamples to Landman's 
proposed modification. Soames' examples include (10). 
(8) and (9) display a similar structure. Complex con
ditionals are counterexamples to Gazdar's method, as 
well . Because the Default Logic method uses Gazdar's 
clausal quantity implicatures, the complex conditionals 
are counterexamples to this method, too. 

(10) If the dress Mary bought is powder blue and the 
dress Susan bought is, too, then Mary will regret 
having bought a dress that is the same colour as 
Susan's. 

Gazdar's method sometimes requires clausal quantity 
implicatures to cancel unwanted potential presupposi
tions. (7) is a good example. The implicature from 
the first clause ('It is possible that John was not beating 
the egg.') cancels the potential presupposition from the 
second clause (' John had been beating the egg.'). How
ever, appealing to individual clauses for the implicatures 
is what introduces the problem. In sentences such as 
(10) no clause in the antecedent generates an implicature 
which is sufficient to cancel the potential presupposition 
produced by the consequent ('Mary bought a dress that 
is the same colour as Susan's.'). 

4 In Gazdar's theory these potential implicatures become 
implicatures if they are not cancelled by the context in which 
they are generated. 

5 How this problem is successfully overcome in the Default 
Logic method is found in [Mercer, 1988a]. 
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The Default Logic method also requires stronger 
clausal quantity implicatures than those generated from 
Gazdar's definition. A detailed description of this prob
lem is given in section 6. 

[Landman, 1981) attempts to overcome the deficien
cies in Gazdar's method by strengthening the clausal 
quantity implicatures that are generated. The new def
inition generates not only P st/J and P s.,1/J from every 
non-entailed clause 1P found in the sentence, but also p se 
and Ps-,e for every entailment, e, of the 1/J's. Soames' 
[1982] argues that not only does this new definition gen
erate implicatures for a sentence which are not justifi
able, but also there are cases in which desired presuppo
sitions are cancelled and there are cases ( complex con
ditionals) in which the needed implicatures are still not 
produced. Soames' solution similarly attempts to repair 
a Gazdar-like method by increasing the procedure's can
cellation abilities. Rather than increasing the strength 
of the clausal quantity implicatures, he opts instead for a 
conversational cancellation method based on [Karttunen 
and Peters, 1979]. In [Mercer, 1987) I argue at some 
length against this method . 

Like [Landman, 1981), I propose that a stronger ver
sion of clausal quantity implicatures is needed. In 
marked contrast to both [Landman, 1981) and [Soames, 
1982], the Default Logic approach does not propose a 
stronger cancellation method that is better able to can
cel over-produced potential presuppositions. Rather its 
production of presuppositions is more conservative. The 
implicatures help define the contexts in which presup
positions are generated. So, the definition provides the 
full set of contexts in which the generation process is 
to take place. The remainder of this paper focusses on 
the details of the Default Logic method for computing 
the presuppositions of complex conditionals with special 
emphasis on the new definition of clausal quantity con
ditionals. The reader familiar with [Mercer, 1987] can 
safely proceed to section 6. 

5 Using Default Logic to Generate 
Presuppositions 

The Default Logic approach for generating presuppo
sitions is presented in this section with special atten
tion paid to the importance of clausal quantity implica
tures and multiple cases. I provide only a brief intro
duction to this theory of presuppositions, the founda
tion of which is Default Logic. This theory is partially 
based upon the ideas of [Wilson, 1975; Kempson, 1975; 
Gazdar, 1979]. It differs from this previous work at least 
in its including Default Logic as the fundamental notion 
in the definition of presupposition. 

The discussion that threads itself through the remain
der of this paper uses definitions of bachelor and spinster. 
A bachelor is· an unmarried male adult, and a spinster is 
an unmarried female adult. In normal contexts it is said 
that the use of the term bachelor presupposes that the 
individual being referred to is a male adult. Similarly, 
the use of the term spinster presupposes that the indi
vidual being referred to is a female adult. There exist 
contexts in which the use of these terms does not carry 
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all of these presuppositions. 
Using default rules provides a context-sensitive 

method to generate the appropriate presuppositions. 
Since the generation process is context-sensitive, there 
are various ways to cancel a presupposition. Firstly, 
the context can provide information that directly con
tradicts what would be presupposed by the sentence if 
the context did not contain the contradictory informa
tion. For example 'That person is not a bachelor - he's 
only five years old.' is an instance of this form of cancel
lation. Secondly, given Grice's Maxims for Cooperative 
Conversation [Grice, 1975], inferences can be generated 
from certain utterances that indicate that some presup
position normally generated by a presuppositional envi
ronment found in the utterance is to be cancelled. For 
example, 'My cousin is a bachelor or a spinster.' pre
supposes neither 'My cousin is male.' nor 'My cousin is 
female.' Grice's maxims indicate that the speaker must 
be allowing for the possibility of both bachelor-hood and 
spinster-hood for his cousin. If the sentence presupposes 
that 'My cousin is male.' then it would be impossible 
that my cousin could be a spinster. Similarly, for fe
male. Thus the sentence does not commit the speaker 
to either of the inferences that would be licensed if the 
sentence were 'My cousin is a bachelor.' or 'My cousin 
is a spinster.'. Lastly, for technical reasons ( such as the 
uncancelability of entailments by future discourse) en
tailments are not considered to be presuppositions. 

5.1 Model of Communication 

A basic model of communication is the transference of 
information from a knowledge base, which I call the 
speaker and denote KBs, to a knowledge base I call 
the hearer and denote KBH. Although the model must 
be quite complex to capture the range of communica
tive acts possessed by humans, I make some simplify
ing assumptions for this paper. Firstly, I assume that 
only true declarative sentences are communicated and 
that they are asserted, that is, the intent of the speaker 
is to communicate facts. Secondly, only additions to 
KBH will be considered. So, in this restricted setting 
the speaker intends that the KBH is to be updated with 
the logical form of the sentence just uttered. What is 
the logical form is not completely understood. For the 
present purpose I use some of Gazdar's proposals. The 
semantic portion of the meaning of the sentence is repre
sented in some semantic representation language (here I 
use a standard first order language) as a, say. Since the 
speaker must know6 that a is true, this part of the prag-

6 Some may disagree that a speaker can (cooperatively) 
communicate only those propositions that he knows to be 
true. I have presented this part of the cooperative commu
nication act exactly as stated in [Gazdar, 1979]. Gazdar 
takes a strong view of cooperative communication, that is, 
the speaker cannot communicate falsehoods . So, the strong 
view would require that if the speaker is only communicating 
beliefs, then the sentence uttered should be "I believe that 
a." rather than "a.". For those who take a weak view of 
cooperative conversation, that is, the speaker cannot know
ingly communicate falsehoods, then beliefs can be communi
cated without the requirement that they be prepended with 
"I believe that ... ". Whether the strong or weak view of 



matic portion of the meaning of the utterance is captured 
as Kso, where Ks means 'the speaker knows that'.7 Oc
casionally, the utterance also indicates that some parts 
of the utterance, although not entailed by Kso, must be 
possible, as far as the speaker is concerned, otherwise 
the speaker would have generated a different utterance. 
Details of these clausal quantity implicatures are given in 
Section 5.2. If u is the sentence uttered and a is its se
mantic representation, then I will use the notation Q(u) 
to represent Kso and the clausal quantity implicatures 
generated from u. Thirdly, Grice's maxims are further 
captured by taking the logical closure of the KBH after 
the proposition has been added. Here, logical closure 
allows logical relations other than semantic entailment. 

If Default Logic proof theory is used as the logical clo
sure method, certain technical problems arise, including 
generating the complete range of presuppositions from 
disjunctive representations and the inclusion of modal 
operators in KBH. The method to derive the non-modal 
cases of KBH is given in Section 5.2. A more com
plete discussion, including the motivation and justifica
tion of this procedure can be found in [Mercer, 1987; 
Mercer, 1988b]. 

5.2 Importance of Clausal lmplicatures 

Because Default Logic proof theory does not display any 
analogue to the law of the excluded middle (the an
tecedents of the default rules must be provable and there 
is no equivalent to the deduction theorem) and because 
presuppositions do arise from the clauses of complex sen
tences, some form of analysis by cases is required. Since a 
statement is provable in a case analysis only if it is prov
able in all cases representing the statement, the genera
tion of the cases is critical. As in the case of a first order 
theory, too few cases would allow incorrect statements to 
be proved. In addition because of the context-sensitive 
nature of default logic, having too many cases or having 
inappropriately defined cases could prevent the desired 
statements being proved. 

In general the choice of cases must reflect two princi
ples. Since the case analysis is a proof theoretic analogue 
of the model theoretic law of the excluded middle, each 
case must completely determine the truth values of each 
of the disjuncts found in the statement to which case 
analysis is being applied. Also, since the case analysis is 
justified solely on linguistic grounds (see [Mercer, 1987; 
Mercer, 1988b]) for further discussion), the cases must 
reflect this linguistic situation. To justify a case, the 
possibility of the statement that distinguishes the case 

cooperative conversation is adopted, the logical machinery is 
basically unchanged. Instead of interpreting Ks in its strong 
sense, it can be interpreted weakly as 'the speaker knows that 
he believes that'. It is noteworthy that this interpretation is 
similar to but not exactly like "explicit belief" ([Lakemeyer, 
1987]). That only explicit beliefs can be intentionally com
municated seems a reasonable assumption. So, the only dif
ference between the strong and the weak view of coopera
tive conversation from a logical/truth perspective is that the 
strong view requires a to be true in the world whereas the 
weak view requires a to be true in the speaker's explicit belief 
space. 

7 Ps means 'for all the speaker knows it is possible that' . 

must be provable from the original default theory. Since 
none of the modal statements take part in the proofs, 
they are left out of the cases. An example should clarify 
these ideas. 

5.3 Example 

Suppose the sentence 'A or B' is uttered. The updated 
hearer's knowledge base 

KBH U {Q('A or B')} 

would be 

{Ks(A VB), PsA, Ps-,A, PsB, Ps-,B, 
01, ., ,, On, 61,, , ,, On} 

where o 1 , .. . , On and 61 , ... , 6n are first order statements 
and default rules, respectively, representing the hearer's 
knowledge before the utterance, PsA, Ps-,A, PsB, 
Ps-,B are the clausal quantity implicatures, and Ks(A V 
B) is the pragmatic information about the semantic rep
resentation of the uttered sentence. (Details concerning 
how these implicatures are generated is given in Section 
6.1.) Since A I\ -,B and -,A I\ B completely determine 
(that is, determine the truth values of both) A and B, 
and since the statements Ps(A I\ -,B) and Ps(-,A I\ B) 
can be derived, A I\ -,B and -,A I\ B distinguish the two 
cases. Note that although PsA, Ps-,A, PsB, Ps-,B are 
all derivable, none of A, -,A, B, -,B are candidates for 
distinguishing a case because, individually, none of them 
completely determine the truth values of both A and B. 

Hence the two cases of the original theory, KBH U 
{Q('A or B'}, are 

!1A or Bcasel ={A/\ -,B, 01, ··,,On, 61, ... , On} 

t1AorB = {-,A/\B,01, . . . ,on,61, . .. ,6n} 
Case2 

As an example of this situation, the sentence 'My 
cousin is a bachelor or my teacher is a spinster.' would 
generate a case in which 'my cousin is a bachelor' and 
'my teacher is not a spinster' are true and a case in 
which 'my cousin is not a bachelor' and 'my teacher is 
a spinster' are true. Both cases would contain first or
der statements providing the definitions of bachelor and 
spinster as well as the default rules that generate male 
and adult for bachelor and female and adult for spinster. 

5.4 A Proof-Theoretic Definition of 
Presupposition 

Definition 1 Let u be a sentence uttered by a speaker, 
S, in accordance with Grice 's Maxims of Cooperative 
Conversation. Let KBH be the hearer's knowledge 
base before the utterance, and let the default theories 
f1ucasel, ... , f1ucasen 8 be the first order cases of the 
theory KBH U {Q(u)}. A sentence a is a presupposition 
of u with respect to KBH if and only if 

(i) f1uQase f-a. a and a E Th(CONSEQUENTS{D}), 
fori = l, ... ,n, 

(ii) KBH U {Q(u)} If a, 

8 For purposes of this definition, the only defaults in KB H 

are the presupposition-generating defaults . f-a. is default 
derivation, and Th(CONSEQUENTS{D}) is the deductive 
closure of the default consequents in KBH, (Reiter (1980)) 
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(iii) KBy If.a a, 
(iv) ~ucasei If.a -,a, for i = 1, ... , n. 

This definition can be loosely paraphrased as: if a is 
in the deductive closure of the default consequents and 
is default-provable but not first-order provable from the 
utterance, if a is not default-provable from the theory 
with the utterance removed, and in the case of multiple 
extension default theories if -,a is not default-provable 
(since extensions of normal default theories are orthogo
nal then a is in all extensions) , then a is a presupposition 
of the utterance. 

6 Complex Conditionals 

Gazdar [1979] provides a method for generating the 
clausal quantity implicatures of a sentence u. Basi
cally, for every subsentence, tf;, of the semantic repre
sentation a of u, such that tf; and -,,p are not entailed 
(or potentially presupposed) by a, Pst/; and Ps-,tf; are 
generated, if consistent with the background knowledge. 
The example given in Section 5.2 has demonstrated that -
PsA, Ps-,A, PsB, Ps-,B are the clausal quantity impli
catures generated from 'A or B', given that they are con
sistent with the background knowledge. The same four 
implicatures are generated from 'if A then B'. For the 
presupposition generation procedure presented in sec
tion 5, this method for generating the clausal quantity 
implicatures is fine for these simple sentences. Having 
Ks(A VB) and Ks(A :::> B), respectively, is critical for 
this method. In each of these instances the possibil
ity of the appropriate first order cases (Ps(A I\ -,B) and 
Ps(-,A/\B) for 'A or B' and Ps(A/\B) and Ps(-,A/\-,B) 
for 'if A then B') can be proved.9 However, in the 
complex conditionals, 'if A or B then C' for instance, 
Ks(A VB) is lacking, thereby preventing the generation 
of all of the appropriate cases. What is required is a 
method for generating the appropriate implicatures in 
all situations, including the complex conditionals. 

The phenomenon that Gazdar has captured as the 
clausal quantity implicature naturally divides into two 
subgroups. The subgroup which deals with verbs such 
as believe, say, etc. connect a subject and a proposition . 
The clausal quantity implicature that Gazdar suggests 
for these verbs ('for all the speaker knows the proposi
tion is true' and 'for all the speaker knows the proposition 
is false') is adequate. The second subgroup deals with 
implicatures generated by or, if ... then . .. , and (sur
prisingly) and. The natural difference between the two 
subgroups is that the second deals with two propositions 
whereas the first is concerned with only one. I believe 
that the weakness displayed by Gazdar's clausal quan
tity implicatures in this second group is that he focusses 
on individual propositions and not on the connections 
between them. 

In order to strengthen the implicatures generated by 
this second group I am forced to give up the common def
inition for clausal quantity implicatures. However, this 
split is justified by the naturalness of the two groups dis
playing this phenomena and by the realization that the 

9 (Ks(A VB)!\ Ps-,A) :::> Ps(-,A AB) and (Ks(A VB)!\ 
P s-,B) :::> P s (A !\ -,B) are theorems (see [Chellas, 1980):123) . 
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stronger implicatures emerge as a result of the involve
ment of two propositions. 

6.1 Strengthening Gazdar's Clausal 
Implicatures 

I give two differently motivated methods for generating 
the desired clausal implicatures for complex condition
als. The outputs for the two methods are the same. The 
positive aspect of the first method is the uniformity of 
the clausal implicatures for all three of the logical binary 
relationships that arise in natural language. The weak
ness of the first method is that it relies on the use of 
a scalar quantity implicature to change the 'if .. . then' 
into an 'if and only if' (see [Gazdar, 1979] for details). 
Since I have been attempting in related research to show 
that the scalar implicatures arise from the clausal im
plicatures, the need of a scalar implicature to derive the 
clausal implicatures is definitely an undesirable feature. 
The second method serves two purposes. Firstly, it in
dicates that the clausal implicatures found in the first 
method survive embedding in (at least) the antecedents 
of complex conditionals. Secondly, it demonstrates a 
methodology which does not depend on the use of a 
scalar implicature. It is, however, a non-general method 
relying solely on the particular structure at hand, that 
is, the embedding of conjuncts and disjuncts in the an
tecedent of conditionals. 

Method 1. The logical connectives produce the fol
lowing potential clausal quantity implicatures: 

A and B -,Ks(A :::> B) 
-,Ks(B :::> A) 

A or B -,Ks(A :::> B) 
-,Ks(B :::> A) 

if A then B -,Ks(-,A :::> B) 
-,Ks(-,B :::> A) 

Of special interest are the following three points: Firstly, 
the potential clausal quantity implicatures for unembed
ded and's do not survive because the sentence itself gen
erates the pragmatic information, Ks(A I\ B). Secondly, 
I am equivocal about whether a third implicature is gen
erated for each connective. Also, the implicature for if A 
then B includes negated elements. This I have justified 
by appealing to the underlying semantic representations 
of or and if . .. then (see footnote 10). Thirdly, the form 
of the implicatures that I use below are the equivalent 
Ps(A/\ -,B) and Ps(-,A /\ B) for and and or and Ps(AAB) 
and Ps(-,A t\ -,B) for if ... then. 

The cases used in the presupposition analysis in sec
tions 6.2 and 6.3 are generated according to the following 
procedure: As in Gazdar's system, each logical connec
tive generates its potential clausal quantity implicatures. 
The derivability of the cases is as follows: 

If A or B then C: Renaming the antecedent P, the 
if .. . then connective generates the implicature 
Ps(-,P t\ -,C) which is equivalent to Ps(-,At\-,B t\ 
-,C). The embedded or produces the two implica
tures Ps(A t\ -,B) and Ps(-,A t\ B). These two im
plicatures, together with the representation of the 
sentence, Ks(A VB) :::> C), generate the other two 
cases: Ps(-,A t\ B t\ C) and Ps(A t\ -,B t\ C) . 



If A and B then C: Renaming the antecedent P, the if 
... then connective generates the implicature P s (P /1. 
C ) which is equivalent to Ps(A /1. B /1. C). The 
other two cases require the use of a scalar impli
cature that changes the if ... then into an if and 
only if This change results in the addition of the 
representation Ks (-,(A /1. B) :::> -,C) to the senten
tial representation Ks ((A /1. B) :::> C). The embed
ded and produces the two implicatures P s ( A /1. -,B) 
and Ps(-,A /1. B). These two implicatures, to
gether with the added representation for the sen
tence, Ks(-,(A /1. B) :::> -,C), generate the other two 
cases: Ps(-,A /1. B /1. -,C) and Ps(A /1. -,B /1. -,C). 

Similar derivations can be given if the embedded con
nective is in the consequent of the if . .. then. 

Method 2. In the case of complex conditionals of the 
form 'if A or B then C' the following argument can be 
made: If the speaker knows that A and B are "logically 
connected", that is, A :::> B or B :::> A then he would have 
generated a different sentence. For example, 'If Fido is a 
dog or a mammal then .. . 'seems rather strange, whereas 
'If Fido is a dog or some other kind of mammal then . . . ' 
seems more acceptable. Another argument exists based 
on the semantic representation for 'if A or B then C': 
(AV B) :::> C. This representation is equivalent to the 
two sentences A :::> C and B :::> C. If the speaker knows 
that the two antecedents are logically connected he can 
simplify his statement . Hence, the hearer can infer that 
the speaker does not know that the two antecedents are 
logically connected, that is, -,(Ks(A :::> B)VKs(B :::> A)). 
This is of course equivalent to P s(A /1. -,B) /1. P s(-,A/1. B). 
Given this result and the representation of the utterance, 
Ks((AV B) :::> C), Ps(A11.-,B 11. C) and Ps(-,A/1.B/I.C) can 
be derived. Renaming the antecedent P, the hearer can 
infer that -,Ks(-,P :::> C) otherwise Ks (( P V -,p) :::> C) 
which would mean that the speaker could have said 'C.'. 
-,Ks(-,P :::> C) is equivalent to the third case Ps(-,A /1. 
-,B /1. -,C). 

Similar arguments can be made for complex condition
als of the form 'if A then if B then C' (or the equiva
lent 'if A and B then C') . Specifically, the hearer can 
infer that the speaker does not know that one of the an
tecedents alone implies the consequent. The representa
tion of this inference is -,Ks( (A/1.-,B) :::> C) 11. -,Ks((-,A /I. 
B) :::> C)10 which is equivalent to the cases Ps(A/I.B/1.C) 
and Ps(-,A /1. B /1. -,C) . Renaming the antecedent P, 
the hearer can infer that -,Ks(C :::> -,p) otherwise the 
speaker could have said 'not P.' . -,Ks( C :::> -,p) is equiv
alent to the third case Ps(A /1. B /1. C) . 

10It also seems reasonable to include here -.Ks((-.A I\ 

-.B) :) C). I have relegated this particular item to this foot
note since it does not match what was suggested in Method 
1. I have not included it there for two reasons. Firstly, it 
would take the form -.Ks(-.A :) B). Note that it contains 
a negated clause where the semantic representation contains 
an unnegated one. I have not convinced myself whether this 
is justified (unlike the situation for 'i/ A then B'). Secondly, 
inclusion of this particular item has repercussions for gener
ating the scalar implicature from the clausal implicature. 

6.2 Example - 'if A or B then C' 

Given the results discussed in section 6.1, a natural lan
guage sentence with the appropriate structure can be 
examined. Suppose that a speaker utters (11). 
(11) If my cousin is a bachelor or my teacher is a spin-

ster then someone at my party is unmarried. 
Here, the three first order cases generated by the method 
discussed in Section 6.1 are: 
Case 1: my cousin is a bachelor, my teacher is not a 

spinster, and someone at my party is unmarried 

Case 2: my cousin is not a bachelor, my teacher is a 
spinster, and someone at my party is unmarried 

Case 3: my cousin is not a bachelor, my teacher is not 
a spinster, and no one at my party is unmarried 

Following the Default Logic method for generating pre
suppositions and entailments, 'my cousin is male and 
adult' and 'my teacher is female and adult' are provable 
in all cases and since they require the use of a default 
rule in at least one of the cases, they are considered pre
suppositions of (11) . A different set of cases could have 
resulted in missing some of these inferences (for instance, 
if 'my teacher is not a spinster' is not in Case 1 then the 
second presupposition would not have been · derived) or 
wrongly labelling them as entailments (for instance, if 
Case 2 and 3 were not considered, the first presupposi
tion would have been labelled an entailment) . 

Suppose that (12) is uttered. 
(12) If my cousin is a bachelor or (my cousin is) a spin-

ster, then my cousin will be the life of the party. 
Here, the three first order cases generated by the method 
discussed in Section 6.1 are: 
Case 1: my cousin is a bachelor, my cousin is not a 

spinster, and my cousin will be the life of the party 

Case 2: my cousin is not a bachelor, my cousin is a 
spinster, and my cousin will be the life of the party 

Case 3: my cousin is not a bachelor, my cousin is not 
a spinster, and my cousin will not be the life of the 
party 

Following the Default Logic method for generating pre
suppositions and entailments, 'my cousin is adult' is 
provable in all cases and since it requires the use of a 
default rule in at least one of the cases, it is considered 
a presupposition of (12), but neither 'my cousin is male' 
nor 'my cousin is female' is an inference. Since Case 3 
produces two extensions, one containing 'my cousin is 
male' and one containing 'my cousin is female', the defi
nition of presupposition as given in section 5.4 considers 
neither of them as presuppositions. As well , Cases 1 and 
2 differ on the sex of 'my cousin' which would disallow 
either sex as a presupposition of the sentence. 

6.3 Example - 'if A then if B then C' 

Given the results from section 6.1, a natural language 
sentence with the appropriate structure can be exam
ined . Suppose that a speaker utters (13) . 
(13) If my cousin is a bachelor then if my teacher is a 

spinster then the village matchmaker will be de
lighted . 
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Here, the four first order cases generated by the method 
discussed in Section 6.1 are: 
Case 1: my cousin is a bachelor, my teacher is a spin

ster, and the village matchmaker will be delighted 

Case 2: my cousin is not a bachelor, my teacher is a 
spinster, and the village matchmaker will not be de
lighted 

Case 3: my cousin is a bachelor, my teacher is not a 
spinster, and the village matchmaker will not be de
lighted 

Case 4: my cousin is not a bachelor, my teacher is not 
a spinster, and the village matchmaker will not be 
delighted 

Following the Default Logic method for generating pre
suppositions and entailments, 'my cousin is male and 
adult' and 'my teacher is female and adult' are provable 
in all cases and since they require the use of a default 
rule in at least one of the cases, they are considered pre
suppositions of (13). 

Suppose (14) is uttered. 

(14) If my cousin is a bachelor and my teacher is a spin-
ster then the village matchmaker will be delighted. 

(14) is considered to be semantically and pragmatically 
equivalent (at least as the clausal quantity implicatures 
and presuppositions are concerned) to (13). Refer to 
the discussion following (13) for the case analysis and 
presupposition analysis. 

6.4 A Generalization of Gazdar's Clausal 
Quantity lmplicature Definition 

It is of some interest to note that not only does the 
new definition of clausal quantity implicatures generate 
stronger implicatures, but also Gazdar's original defini
tion is a logical consequence of this new definition. It is 
quite easy to see this generalization: In the case of' A or 
B.' the new implicatures are -,Ks(A :::> B) which is equiv
alent to Ps(AA-,B) and -,Ks(B::) A) which is equivalent 
to Ps(B A -,A), from which PsA and Ps-,B, and PsB 
and Ps-,A can be derived, respectively. Likewise, for 
'if A then B .' the new implicatures are -,Ks(-,A ::) B) 
which is equivalent to Ps (-,A f\-,B) and -,Ks(B :::> -,A) 
which is equivalent to Ps(BA-iA), from which Ps-,A and 
Ps-,B, and PsB and PsA can be derived, respectively. 

7 Conclusions 

In this paper I demonstrate the application of Default 
Logic to the generation of natural language presup
positions for the particular class of natural language 
sentences called complex conditionals. In order that 
this method for generating natural language presupposi
tions can be applied to complex conditionals, the notion 
of clausal quantity implicature requires strengthening. 
Gazdar [1979] provides a simple method for generating 
clausal quantity implicatures from a broad class of situ
ations. [Soames, 1982] points out that this version is too 
weak to obtain the appropriate presuppositions in com
plex conditionals. The strengthened version proposed 
here trades the simplicity for a broader scope of appli
cability. The Default Logic method for computing the 
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presuppositions , previously described in [Mercer, 1987; 
Mercer, 1988b], remains unchanged. 
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Abstract 

A reversible grammar has been implemented 
based on an algorithm for automated inversion 
of a unification parser for natural language into 
an efficient unification generator. The formal
ism which we have adopted is Definite Clause 
Grammar. The inversion algorithm uses an au
tomated goal ordering technique to realize the 
reversible procedure for parsing and generation. 

1 Introduction 

In current natural language processing systems, two sep
arate grammars are used for language parsing and lan
guage generation. However, researchers have a long 
standing interest in designing a single grammar to per
form language parsing and language synthesis tasks, for 
computational efficiency and integrity, as well as linguis
tic elegance and perspicuity. From the linguistic point of 
view, the same linguistic information as well as knowl
edge representation and inference can be shared by lan
guage understanding and language generation. Most 
work in both understanding and generation assumes a 
taxonomy of basic word classes and shares descriptions 
for the types of constructions that are available in a spe
cific language. This provides the possibility of designing 
a dictionary and a grammar to serve both understanding 
and generation. From the computational point of view, 
the direction of parsing is the opposite of the direction of 
synthesizing. The process of parsing differs from the pro
cess of synthesizing in its control focus. It is not trivial to 
implement a natural language processing system with a 
reversible grammar for efficient understanding and gen
eration. 

A method to obtain a reversible logic grammar has 
recently been proposed by Dymetman and Isabelle 
[Dymetman and Isabelle, 1988). The grammar, how
ever, is compiled into a PROLOG parser and a PROLOG 
generator semi-automatically, since it requires that non
terminals be manually annotated for the order in which 
they will be expanded during parsing and generation. 

*This paper is based upon work supported by the Defense 
Advanced Research Projects Agency under Contract N00014-
85-K-0163 from the Office of Naval Research and grant IRI-
8902304 from the National Science Foundation. 

We have implemented a reversible grammar which uses 
the inversion algorithm described in [Strzalkowski, 1989) 
to derive a unification generator from a unification parser 
automatically. 

2 Grammar Formalism 

The overall approach embodied in the reversible gram
mar rules is based on linguistic string grammar [Sager, 
1981) and the operator-argument framework [Kosaka et 
al., 1988). It provides a well-developed, broad coverage 
of grammatical constructions, exposes the semantic in
formation structure of the domain, and retains the trans
formational derivation produced by analyzing the struc
ture of a sentence, such as nominalization, passive, rel
ative clauses, etc. in operator-argument trees produced 
by the grammar. This information is very significant in 
helping to synthesize target surface sentences. Linguisti
cally, operator-argument grammar can be used for both 
language understanding and generation. 

Logic programming provides a possible environ
ment for reversible computation [Sterling and Shapiro, 
1986). For example in PROLOG, the predicate 
concatenate(X, Y ,Z) serves not only to concatenate two 
lists X and Y together into Z, but also to take a list Z 
apart into two sublists X and Y. To capture the idea 
of which arguments are being computed on the basis of 
which others, the notion of a mode for a PRO LOG pred
icate can be defined [Shoham and McDermott, 1984). 
A mode tells which arguments are used as inputs and 
which as outputs. In other words, it specifies which ar
guments on execution of the predicate are non-variables 
and which are variables. By reversibility of a PROLOG 
program, we mean that the same program can be used in 
different rriodes. Obviously, there are restrictions on the 
reversibility of PROLOG programs. We discuss them 
later in this paper. 

In a PROLOG program for a language grammar sys
tem, we are interested in its parsing mode and synthesis 
mode. To program a PROLOG parser, we axiomatize the 
context free grammar rules and language restriction rules 
of operator-argument grammar in definite clauses [Gr
ishman, 1986), [Pereira and Shieber, 1987) & [Shieber, 
1986). The PROLOG proof procedure, in conventional 
parsing mode, gives a top-down, depth-first, left-to-right 
parsing mechanism. It takes an instantiated natural Ian-
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guage string as an input and produces a parse tree struc
ture as output. In the synthesis mode, the PROLOG 
proof procedure works as a generator under the same 
axiomatization of grammar rules and restriction rules. 
Given an instantiated parse tree structure, it produces a 
corresponding natural language surface string. 

The following is a grammar rule which defines the 
declarative sentence: 

assertion(S) -- > 
sa(S1), 
subject(Subj), 
sa(S2), 
verb(V), 
{Subj:np:number .. V:number} 
sa(S3), 
object(O,V,Vp,Subj,Sp), 
sa(S4), 
{S:verb:head :: Vp:head}, 
{S:verb:number :: V:number}, 
{S:tense :: [V:tense, 0:tense]}, 
{S:subject :: Sp}, 
{S:object :: O:core}, 
{S:sa :: [S1:sa, S2:sa, S3:sa, O:sa, S4:sa]}. 

Here, :: is a user defined infix operator which suc
ceeds whenever its two arguments can be unified. Usu
ally, one of them is bound in execution. The notation 
Var: attr, where : is another infix operator, should be 
read as the value of attribute attr of structure Var . Each 
literal not surrounded by braces in the above clause rep
resents a context free component in the ASSERTIOH rule 
in the grammar. The literal {Subj :np:number: :V:number} 
states the number agreement restriction . The rest of the 
literals surrounded by braces are used to construct the 
regularized parse tree. 

Each predicate symbol in a definite clause stands for 
some linguistic object. Its arguments contain informa
tion of different types such as syntactic structures, se
mantic structures and language restrictions, etc. The 
syntactic and semantic structures of a linguistic object 
are built from the syntactic and semantic structures of its 
children in the derivation tree. The syntax and semantics 
compositionality supports the grammar reversibility. In 
parsing mode, a linguistic object is decomposed into the 
syntactic substructures of its children and its semantics 
is composed from semantics of its children. In synthesis 
mode, the semantics of a linguistic object is decomposed 
into smaller semantic structures of its children, and its 
syntax is build up from the syntax of its children. 

The definite clause grammar is first translated into its 
equivalent PROLOG program. The grammar rule for 
assertion is translated into the following clause. 
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assertion(S,L1,L2) :
sa(S1,L1,L3), 
subject(Subj,L3,L4), 
sa(S2,L4,L5), 
verb(V,L5,L6), 
Subj:np:number .• V:number, 
sa(S3,L6,L7), 
object(O,V,Vp,Subj,Sp,L7,L8), 
sa(S4,L8,L9), 
S:verb:head :: Vp:head, 
S:verb:number :: V:number, 
S:tense :: [V:tense, 0:tense], 

S:subject :: Sp, 
S:object .• O:core , 
S:sa . . [S1:sa, S2:sa, S3:sa, O:sa, S4:sa]. 

In parsing mode, the argument L1 which is the in
put language string is instantiated. An invocation 
of the goal assertion(S, L1 ,L2), if it is successful, re
sults in the argument S being bound to the regular
ized operator-argument structure of the parsed lan
guage string. One would expect that the invocation of 
the goal assertion(S ,L1 ,L2) with the instantiated ar
gument S will return L1 bound to a language string 
corresponding to the regularized syntactic tree in the 
synthesis mode. However, the program is most likely 
to go into infinite loop and be aborted. The problem 
is that the goals subject(Subj ,L3,L4), verb(V ,LS,L6), 
and object(O, V, Vp,Subj ,Sp,L7 ,LB), etc. on the right 
hand side of the clause are invoked with unbound ar
guments. 

The PROLOG program, which consists of a list of 
definite clauses and a goal, defines an AND-OR compu
tation tree. In the parsing mode, the PROLOG inter
preter traverses this tree depth-first from left to right. 
The related structures and features are passed along the 
tree traversal top-down from left to right. In its syn
thesis mode, the related structures and features need to 
be passed bottom-up, and often from right to left, while 
the PROLOG interpreter preserves the depth-first and 
left-to-right strategy. Thus expanding some nodes with 
unbound arguments in the tree can create infinite paths, 
even though these arguments could be bound to features 
passed from their right siblings. If we adjust the tree 
traversal strategy to the direction of feature passing in 
synthesis mode so that each node in the tree is fired with 
all necessary arguments instantiated, the infinite paths 
can be eliminated. For a PROLOG program, to change 
the traversal strategy in its computation is to rearrange 
the order of goals in the right hand sides of its clauses 1• 

3 An inversion algorithm 

One idea for capturing the goal ordering is to use the 
concept of essential arguments [Strzalkowski, 1989]. Es
sential arguments create a subset of arguments of every 
literal such that the literal cannot be executed success
fully unless all of them are bound, at least partially, at 
the time of execution of the literal. A minimal set of 
essential arguments for a literal is defined as a subset of 
its arguments which are essential and no proper subset 
of these arguments is essential. The minimal set of es
sential arguments for a literal varies depending upon the 
direction of the computation. An active minimal set of 
essential arguments of a head literal of a clause is defined 
as its minimal set of essential arguments which need to 
be bound when this clause is fired under its present com
putation mode. On the other hand, because of the spe
cific control structure of a PROLOG program, a clause 
can be executed successfully only if all the literals on 

1 In some situations it may be necessary to move certain 
literals from one clause to another. We do not discuss this 
problem in the present paper. 



its right hand side are executed successfully in the or
der they occur, from left to right. If we know the active 
minimal sets of essential arguments of all right hand side 
literals for a required computation mode of a clause, we 
can manage to reorder the literals on the right hand side 
to execute the clause successfully. 

3.1 Essential arguments 

In our system, we are interested in the parsing mode and 
the synthesis mode of a set of PRO LOG clauses created 
for our natural language grammar. For example, con
sider the following grammar rule for a present participle 
and an object following the verb be in a progressive tense 
construction: 

object(O,V, Vp,S,Sp) -- > 
{V :root :: be}, 
vingo(01,S,Sp), 
{O:tense : : [progressive, 01:tense]}, 
{O:core :: 01:core} , 
{O:sa :: 01:sa}, 
{Vp:head : : 01:head} . 

When this rule is translated into a PROLOG clause 
by an ordinary DCG interpreter, the PROLOG clause 
preserves the order of literals in the grammar rule: 

object(O,V,Vp,S,Sp,L1,L2) : 
V:root :: be, 
vingo(01,S,Sp,L1,L2), 
0:tense : : [progressive, 01:tense], 
O:core :: 01:core, 
O:sa : : 01:sa, 
Vp:head :: 01:head. 

In the parsing mode, the active minimal set of essential 
arguments of object (O, V, Vp,S ,Sp,L1 ,L2) is {S , L1}; here 
L1 is the current input string for parsing, and arguments 
V and S are passed from the clause that invoked object. 
V is a structured component in the parse tree for the verb 
which precedes the object string in the input sentence. It 
is passed down to object for two purposes. The first pur
pose is to check the subcategorization of the verb which 
precedes the object. The second purpose is to extract 
the predicate of the sentence to build a regularized parse 
tree. s is a structured component in the parse tree rep
resenting the subject of the sentence. It is passed down 
to object to facilitate handling of passive and embedded 
sentences. The active minimal set of essential arguments 
of V: root: : be is an empty set. be is a constant. When V is 
bound, the predicate checks the equality of the two sides. 
When V is not bound, V: root will be bound by the con
stant be. The active minimal set of essential arguments 
ofvingo(01,S,Sp,L1,L2) is {S,L1}, where L1 is the input 
string for parsing, and S is the structured component 
as described above. The active minimal sets of essen
tial arguments of 0: tense :: [progressive, 01 :tense], 
O:core : :01:core, O:sa: :01:sa, and Vp:head : :01:head 
are {01} and {O} . But only {01} is bound in pars
ing mode. 01 is the structured component built in 
vingo (01,S ,Sp,L1 ,L2). It will become a part of the struc
tured component 0. Having these active minimal sets of 

essential arguments for each literal in the clause, we ex
amine the execution of the clause for parsing. To com
plete the execution of object(O,V,Vp,S,Sp,L1,L2), the 
left most literal on the right hand side is fired first. The 
active minimal set of essential arguments of the first 
goal V:root: :be is an empty set, thus it can be executed 
successfully. The literal vingo(01,S,Sp,L1,L2) is fired 
next. The essential arguments S and L1 are bound by 
features passed by object, thus it too can be executed 
successfully and return 01 bound. Then 01, as the es
sential argument for the rest of the literals, is used to 
execute those literals successfully. This completes the 
execution of object(O,V,Vp,S,Sp,L1,L2), which returns 
O,Sp, Vp and L2 bound to its caller. 

In its synthesis mode, the active minimal set of 
essential arguments of object (0, V, Vp,S ,Sp,L1 ,L2) is 
{ o, Vp, Sp} . o, Vp and Sp are the regularized syntac
tic structures for the object, predicate and subject of 
the synthesized sentence, respectively. They are used 
for producing a corresponding sentence string. The ac
tive minimal set of essential arguments of V: root : : be 
is again an empty set. This literal generates a sur
face verb be, which precedes the predicate of the sen
tence in its progressive tense. The active minimal set 
of essential arguments of vingo(01,S,Sp) is {01,Sp}. 
The literal vingo (01, S ,Sp) generates a surface object 
string following the verb be. The active minimal 
sets of essential arguments of O: tense : : [progressive, 
01:tense], O:core::01:core, and O:sa :: 01:sa are {D} 
and {01} as before, but only {O} is bound in the syn
thesis mode. These goals decompose the regularized 
syntactic structure of the object into several substruc
tures. The active minimal sets of essential arguments 
of Vp:head: :01:head are {Vp} and {01}. The argument 
Vp passes the root structure of the sentence predicate 
down to its children to generate an appropriate surface 
verb in the sentence string. If we attempt to generate 
an object string from its semantic structure by firing 
the clause object(O,V,Vp,S,Sp,L1,L2) with the same se
quence of execution of right hand side literals as that 
in parsing, we run into trouble in executing the literal 
vingo(D1,S,Sp,L1,L2). This is because 01 is an essen
tial argument to the predicate vingo, but it is not bound 
when vingo is fired and the procedure goes into an infi
nite loop. 

If the order of right hand side literals is rearranged 
such that vingo (01, S ,Sp, L1 ,L2) is fired after 01 is bound, 
the goal vingo can be executed successfully. The ad
justed right hand side of the clause may take the follow
ing order: 

object(O,V,Vp,S,Sp,L1,L2) : 
V:root :: be, 
O:tense :: [progressive, 01:tense], 
O:core :: 01:core, 
O:sa : : 01:sa, 
Vp:head :: 01:head, 
vingo(01,S,Sp,L1,L2). 

3.2 Goal reordering algorithm 

When attempting to expand a literal on the rhs of any 
clause the following basic rule should be observed : never 
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expand a literal before at least one its active set of essen
tial arguments has all its elements bound. The follow
ing procedure INVERSE uses this simple principle to re
order rhs of parser clauses for reversed use in generation. 
This procedure uses the information about input and 
o_utput arguments (denoted as "in" and "out", respec
tively), and essential arguments for predicates, which 
are computed by separate procedures. The arguments 
of INVERSE are: clause which has the form of head 
:- old-rhs, ins which is the set of these variables in head 
that are known to be bound whenever clause is executed 
and outs which is the set of arguments in head that ar; 
required to be bound after the clause execution is com
pleted. The procedure is slightly simplified here, but see 
lStrzalkowski, 1989] for more details. 

INVERSE(" head :- old-rhs" ,ins.outs); 
begin 

compute M the set of all sets of essential arguments for 
head; 
for every m E M do begin 

OUT:= 0; 
if m is active and m ~ ins then begin 

compute and mark "out" arguments in head; 
add them to OUT; 
if outs ~ OUT then DONE(" head:-old-rhs") 

end 
else if m is non-active and m C ins then 

begin -
new-rhs := 0; old-rhs-1 := old-rhs ; QUIT := false; 
repeat 

mark "in" those arguments in old-rhs-1 which are 
either "in" in head, 
or "in" or "out" in new-rhs; 

select a literal L in old-rhs-1 with a bound active 
set mL of ess. args.; 

set up a backtracking point with the remaining 
alternatives to select L; 

if L exists then begin 
if mL is non-active in L then 

forevery clause " L1 :- rhsL1 " in the program 
such that L1 has the same predicate as L do 

begin 
INVERSE(" L1 :- rhsL1", ML, 0); 
if GIVEUP returned 
then backup to the latest backtracking point 
end; 

compute and mark "in" and "out" arguments in L; 
add "out" arguments to OUT; 
riew-rhs := APPEND-AT-THE-END(new-rhs,L); 
old-rhs-1 := REMOVE(old-rhs-1,L) 

end if 
else begin 

backup to the latest backtracking point; 
if no such backtracking point exists 
then QUIT := true 

end else 
until old-rhs-1 = 0 or QUIT; 
if outs ~ OUT and not QUIT 
then DONE(" head:-new- rhs") 

end elseif 
end; for 
GIVE UP(" program cannot be inverted as specified") 

end; 
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4 The Implementation 

Using the concept of the active minimal set of essen
tial arguments in a certain computation mode and the 
algorithm for ordering literals on the right hand side 
of a clause, we have implemented an interpreter, which 
translates Definite Clause Grammar dually into a PRO
LOG parser and a PROLOG generator. The interpreter 
first translates Definite Clause Grammar rules into their 
equivalent PROLOG clauses, which work as a natural 
language parser. The parser takes a natural language 
sentence as its input and produces a regularized parse 
trees. Then the interpreter rearranges the order of lit
erals on the right hand sides of parser clauses and thus 
inverts the parser into a generator. The generator takes 
a regularized parse tree as an input and produces a nat
ural language string. 

For example, we have the following grammar rule: 

assertion(S) -- > 
sa(S1), 
subject(subj), 
sa(S2), 
verb(V), 
{Subj:np:nUJ1ber . . V:number}, 
sa(S3), 
object(O,V,Vp,Subj,Sp), 
sa(S4), 
{S:verb:head :: Vp:head}, 
{S:verb:number :: V:number}, 
{S:tense : : [V:tense, O:tense]}, 
{S:subject :: Sp}, 
{S:object .. O:core}, 
{S:sa : : [S1:sa, S2:sa, S3:sa, O:sa, S4:sa]}. 

When translated into its PROLOG equivalent, it 
yields the following clause in the parser: 

assertion(S,L1,L2) :
sa(S1,L1,L3), 
subject(Subj,L3,L4), 
sa(S2,L4,L5), 
verb(V,L5,L6), 
Subj:np:number .. V:nuaber, 
sa(S3,L6,L7), 
object(O,V,Vp,Subj,Sp,L7,L8), 
sa(S4,L8,L9), 
S:verb:head :: Vp:head, 
S:verb:number :: V:number, 
S:tense :: [V:tense, O:tense], 
S:subject :: Sp, 
S:object .. O:core, 
S:sa : : [S1:sa, S2:sa, S3:sa, O:sa, S4:sa], 

The inverted assertion predicate as it appears in the 
generator is shown below. The prefix g_ is added to each 
inverted predicate in the generator to distinguish them 
from their non-inverted version used in the parser. 

g..assertion(S,L1,L2) :
S:verb:head :: Vp:head, 
S:verb:number :: V:number, 
S:tense :: [V:tense, 0:tense], 
S:subject :: Sp, 
S:object .. O:core, 
S:sa : : [S1:sa, S2:sa, S3:sa, O:sa, S4:sa], 



g..sa(S4,L3,L2), 
g_object(O,V,Vp,Subj,Sp,L4,L3), 
g..sa(S3,L5,L4), 
Subj:np:nU111ber :: V:nU111ber, 
g_verb(V,L6,L5), 
g..sa(S2,L7 ,L6), 
g..Bubject(Subj,L8,L7), 
g..sa(S1 ,L1 ,LS). 

4.1 Overall organization 

In the process of reversing, we first compute the active 
minimal sets of essential arguments in the generation 
mode for each clause. Then we rearrange the order of 
the right hand side literals for each clause based on the 
obtained active minimal sets of essential arguments of 
each literal within the clause. To implement the algo
rithm efficiently, we actually process the computation 
of the minimal sets of essential arguments and the re
ordering of the right hand size literals in one pass in the 
process that interprets the DCG grammar. 

We consider each clause in the grammar as an ordered 
tree. The head of the clause is placed at the root of its 
ordered tree and the right hand side literals are placed 
at the leaves of the tree. For each clause tree the mini
mal set of essential arguments of the root is determined 
from the minimal sets of essential arguments of all its 
leaves and the way they are ordered. The terminals in 
a grammar are connected directly to dictionary entries. 
Initially, we assume that the minimal sets of essential 
arguments of these dictionary access and other primi
tives are known. A queue is maintained to keep all liter
als which have their minimal sets of essential arguments 
known. For each literal in the queue, its parent root is 
found and informed about the available minimal set of 
essential arguments of the child. As soon as the minimal 
sets of essential arguments of all the leaves in a clause 
tree are known, the minimal set of essential argument 
of the root is computed. If it conforms to the require
ments of the synthesis mode, the goals on the right hand 
side are reordered accordingly. Since the head of a clause 
can appear on the right hand sides of other clauses in the 
grammar, the minimal set of essential arguments of the 
root of one clause can serve as the minimal set of essen
tial arguments of a leaf of another clause. The minimal 
sets of essential arguments of all clauses are obtained in 
the same way. If a grammar consists of all productions 
that derive strings of terminals and are derivable from 
the start symbol, the computation is complete [Cai and 
Paige, 1988/89] and the sets of essential arguments for 
all clauses are obtained. 

The following is one of the grammar rules cited earlier: 

object(O,V,Vp,S,Sp) -- > 
{V:root :: be}, 
vingo(01,S,Sp), 
{0:tense :: [progressive, 01:tense]}, 
{O:core :: 01:core}, 
{0:sa :: 01 :sa}, 
{Vp:head :: 01:head}. 

The equivalent PROLOG clause is: 

object(O,V,Vp,S,Sp,L1,L2) :-

V:root :: be, 
vingo(01,S,Sp,L1,L2), 
0:tense :: [progressive, 01:tense], 
0:core :: 01:core, 
O:sa : : 01:sa, 
Vp:head :: 01:head. 

The head of this clause is object . It is placed at the 
root of the clause tree. Its children are all the literals 
on the right hand side of the clause. The children are 
placed at the leaves of the tree. Suppose we know the 
minimal sets of essential arguments of all the children 
of the ordered clause tree at this point, we want to find 
the minimal set of essential arguments of the root. The 
literal leaves are examined from left to right. The predi
cate V: root: : be is examined first. This is a predicate to 
assign values from the argument on one side to the other. 
In this case, one side is a constant. The predicate can 
be executed successfully at any time. We put it into the 
output queue. The literal vingo(01,S,Sp) is examined 
next. {01,Sp} is its minimal set of essential arguments 
in the synthesis mode. Since it is not a subset of the set 
of variables occurring at the root, it may not be fully 
bound for the execution. Therefore it is put into the 
waiting stack. Following vingo(01,S,Sp,L1,L2) there is 
a literal O:tense:: [progressive,01:tense], wh:re {O} is 
the minimal set of essential arguments. It is also a sub
set of the set of variables at the root. We also find that 
O is not an output variable of any other literals to its 
right. The variable O at the root is therefore added to 
the minimal set of essential arguments for object. The 
literal O:tense:: [progressive,01:tense] is put into out
put queue, right after V: root: : be which is already in the 
queue. A similar analysis is applied to the rest of the 
literals. This procedure is subsequently repeated for all 
the literals in the waiting stack until all the literals are 
output. As a result, the object clause above is inverted 
into a generator clause by rearranging the order of the 
literals on its right hand side as shown below: 

g_object(O,V,Vp,S,Sp,L1,L2) :
V:root :: be, 
0:tense :: [progressive, 01:tense], 
O:core :: 01:core, 
O:sa : : 01:sa, 
Vp:head :: 01:head, 
g_vingo(01,S,Sp,L1,L2). 

When there is more than one clause having the same 
predicate at its head literal, the minimal set of essential 
arguments for the predicate is computed as the union 
of the minimal sets of essential arguments obtained for 
each instance. 

4.2 Recursive clauses 

In the process of grammar inversion, we may encounter 
deadlock-like situations when recursive goals are in
volved. For example, consider the grammar rules for 
object and vingo shown below: 

object(O,V,Vp,S,Sp) -- > 
{V:root :: be}, 
vingo(01,S,Sp), 
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{D:tense :: [progressive, 01:tense]}, 
{D:core :: 01:core}, 
{D:sa :: 01:sa}, 
{Vp:head :: 01:head}. 

vingo(O,S,Sp) -- > 
ving(V), 
sa(S1), 
object(D1,V,Vp,S,Sp), 
sa(S2), 
{D:head : : Vp:head}, 
{D:tense :: 01:tense}, 
{D:core :: 01:core}, 
{D:sa : : [S1:sa, 01:sa, S2:sa]}, 

To compute the minimal set of essential arguments for 
object, it is necessary to know the minimal set of essen
tial arguments for vingo. On the other hand, to com
pute the minimal set of essential arguments for vingo, 
the minimal set of essential arguments for object has to 
be known first. We can break this deadlock by using a 
partially computed minimal set of essential arguments 
of one of these to compute the partial minimal set of 
essential arguments of the other. In the above example, 
the partial minimal set of essential arguments for object 
is obtained from its non-recursive clauses. This set is 
used for computing the partial minimal set of essential 
arguments for vingo . The partial minimal set of essential 
arguments for vingo is further used for completing the 
computation of minimal set of essential arguments for 
object. If the complete minimal set of essential argu
ments for object is a super-set of the partial minimal set 
of essential arguments for object, the computation of the 
minimal set of essential arguments for vingo has to be 
redone by replacing the partial minimal set of essential 
arguments for object with the complete minimal set of 
essential arguments for object in the process. This step 
is repeated for each recursive clauses until all minimal 
sets of essential arguments need no further expansion. 

4.3 An example 

A single grammar is loaded and translated into a PRO
LOG parser and PROLOG generator through our in
terpreter. We define the predicate parse..generate(S ,P) 
to show the reversible computation. Either the parser 
or the generator is invoked depending upon the bind
ing status of its arguments. If s is bound, the parser is 
invoked. If P is bound the generator is invoked. 

I ?- load..grammar(grammar). 

yes 
I ?- parse..generate([the,students,are,taught,by,joe], 
I P). 

P = [ [catlassertion], 
[tense,present,passive], 
[verb I teach], 
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[subject, [np, [headljoe], 
[numberlsingular], 
[classlnstudent], 
[tpos], 

no 

[apos], 
[modifier,null]]], 

[object,[np, [headlstudent], 
[numberlplural], 
[classlnstudent], 
[ tpos I the] , 
[apos], 
[modifier,null]]], 

[sa]]; 

?- parse..generate(S, 
[[cat(assertion], 
[tense,present,passive], 
[ verb I teach] , 
[subject, [np, [head( joe], 

[number(singular], 
[class(nstudent], 
[tpos], 
[apos], 
[modifier,null]]], 

[object , [np,[headlstudent], 
[numberlplural], 
[class(nstudent], 
[ tpos I the] , 
[apos], 
[modifier,null]]], 

[sa]]). 
= [the,students,are,taught,by,joe] 

yes 

5 Conclusions 

We have implemented a reversible grammar based on the 
algorithm for automated inversion of a unification parser 
for natural language into an efficient unification gener
ator. The declarative content of the grammar is shared 
by both the parser and the generator. The grammar 
is compiled dually into a parser and the corresponding 
generator automatically. We presented a procedure for 
reversing a grammar based on the operator-argument 
syntactic structure level. The grammar inversion proce
dure described here can be further augmented to allow 
for inter-clausal ordering of goals [Strzalkowski, 1990], 
that will allow for static inversion of a wider class of 
grammars. 
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Modelling semantic flexibility with a structured connectionist 
implementatation of functional category organization* 

Susan Hollbach Weber 
International Computer Science Institute, Berkeley CA, USA 

Abstract 

This paper describes a neurally inspired model 
of semantic flexibility. According to the princi
ple of semantic flexibility, only contextually rel
evant semantic features are activated in noun 
comprehension. This position is not inconsis
tent with models of parallel semantic priming 
at lexical access. The variant presented here 
combines eventual contextual selectivity with 
initially prototypical (non-contextual) priming 
at lexical access. 
The proposed model is part of a structured con
nectionist knowledge representation and infer
encing system known as DIFICIL. The concep
tual representation of concrete nouns in DIFI
CIL is structured internally as a complex of 
distinct functionally motivated aspects, each of 
which is a cluster of mutually excitatory feature 
values. The default aspects form the central or 
context independent core of the representation, 
giving rise to direct inferences in discourse un
derstanding and prototype effects at lexical ac
cess and in categorization tasks, among other 
things. Contextual priming of an aspect in
hibits retrieval of all features associated with 
competing aspects, resulting in the delayed re
sponse effects predicted by semantic flexibility. 
At the same time it facilitates retrieval of fea
tures both in the primed aspect and in related 
aspects, giving rise to distinct prototype effects 
for modified categories. 

1 Introduction 

A wide variety of documented psychological effects, in
cluding direct inferences, adjective-noun modification, 
and semantic flexibility, can be modeled by assuming 
that categories are structured internally as a complex of 
interrelated aspects, each consisting of mutually reinforc
ing properties. Green apples, for example, are sour, hard 

0 Thanks to Jerry Feldman for comments on a draft. This 
work was supported by ONR research contract no. N00014-
82-K-0193 and U.S. Army Communication-Electronics Com
mand Grant no. DAAB 10-87-K-022, while at the Computer 
Science Department, University of Rochester, Rochester NY. 
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and dry, and each of these properties will, once estab
lished, reinforce the others. Mutual inhibition can also 
occur between the scalar values on a property scale: an 
apple cannot be both crisp and mushy at the same time. 
As incompatible values participate in distinct aspects, 
activation of one aspect may indirectly inhibit another . 
By the same token, if two aspects share one or more 
property values, they will tend to be mutually reinforc
ing. 

A crucial assumption underlying this work is that cat
egories, as mental constructs of active agents, are in
separably linked with the agent's goals. The functional 
properties of an objects supply the organizational basis 
for the aspects, creating the various perspectives from 
which the category can be viewed. That is, each func
tional property corresponds to an aspect , and there are 
explicit interrelationships between aspects dictated by 
the planning-level constraints on the functional prop
erties (implicit interrelationships arise at the property 
value level). For example, when the word 'apple' is spo
ken, a mental image is conjured up of the visual appear
ance of an apple. If the agent is hungry at the time, the 
apple's taste and texture might spring to mind. If the 
agent hopes to plant an orchard, the seeds are of greatest 
interest. If the agent disapproves of the evening's enter
tainment, its properties as a handy projectile as well as 
its softness and juiciness when rotten come to the fore 
(see Figure 1). Thus while a category appears stable 
to the agent, since the same basic set of properties and 
values is being drawn on at all times, the structure is 
actually dynamic, shaped by context. 

Aspects of a category can be established by several 
mechanisms. The direct approach is to name a prop
erty value participating in the aspect . For example, the 
phrase 'green apple' supplies evidence for the relevance 
of the unripe aspect . A similar effect is achieved by ac
tually naming the aspect (eg. 'unripe apple' ), since the 
motivating functional property value which gives the as
pect its name also participates in the coalition . Some
times one aspect will be subsumed by another, as, for 
example, when one planning goal is a subgoal of a higher 
level goal. When this happens, invocation (by whatever 
means) of the high level goal supplies activation to the 
subgoal, thus indirectly exciting the subordinate aspect . 
Property inheritance can also supply indirect activation 
to an aspect . If a subcategory names a property value 
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Figure 1: Functional aspects of the apple category; as
pects appear as pentagons, with participating property 
values listed below. 

that participates in an aspect of the given category, be 
it the organizational functional value or another, then 
when activation propagates up from the subcategory to 
the category in question, that aspect will be preferred. 
Finally, an aspect can be established by default; in the 
absence of information to the contrary, the most typical 
aspect of the category will predominate. 

Information to the contrary, that is, evidence against 
the establishment of an aspect, can also accrue from dif
ferent sources. One aspect can be explicitly stated to be 
incompatible with another, in which case mutual inhi
bition is immediate and unattenuated. A subtler form 
of inhibition occurs when the two aspects involve two 
mutually exclusive property values. As only one of the 
two values can be on at a time, the evidence supporting 
one aspect will be greater than that of the other. The 
extreme form of this occurs when one aspect system
atically names properties opposed to those in another 
aspect. The end result of such a situation is the same as 
explicitly establishing the mutual exclusion between the 
aspects, only the decision is reached with greater speed 
and confidence for explicit mutual exclusion. 

This model of conceptual representation has been im
plemented as a structured connectionist network [Feld
man and Ballard, 1982] on the Rochester Connectionist 
Simulator [Goddard et al., 1988], resulting in an infer
encing system known as DIFICIL, for Direct Inferences 
and Figurative Interpretation in a Connectionist Imple
mentation of Language [Weber, 1989b]. Statements in a 
high level language are translated into connectionist net
work fragments, permitting a user of the system to cre
ate large knowledge bases with relative ease. The subcat 
statement sets up the property inheritance or subcate
gorization hierarchy. The mutex and invokes statements 
specify the relations of mutual incompatibility and re-

inforcement that pertain between aspects. The hasslot 
statement establishes the properties and values belong
ing to a category, with syntactic variants for percep
tual, constitutive and functional properties, and optional 
scalar positioning parameters. The aspect statement cre
ates the conceptual aspects fundamental to direct infer
ences. For example, the some of the statements used to 
create the aspects of an apple sketched in Figure 1 are: 

hasPslot (apple: color; red, green, brown) 
hasFslot (apple: age; rotten(+), ripe (0), unripe(- )) 
aspect (apple: ripe [default]; crisp, juicy, red) 
aspect (apple: unripe; crunchy, dry, green) 
mutex (apple: ripe, unripe) 
invokes (apple: ripe; recognition) 

Actual details of the aspect statement appear in Figure 2; 
the connectionist structures resulting from the four given 
input statement are depicted with polygons and circles 
representing connectionist units, and lines and vectors 
for bi- and uni-directional links respectively. Inhibitory 
links show up as dots rather than arrowheads. The unit 
labelled hub in the diagram is an inertial binder, that is, 
it tends to stay lit once activated ( details of how this is 
accomplished appear in [Weber, 1989b]). It links three 
other gated binder nodes, shown as triangles in the figure, 
representing the binding between a category, property, 
and single property value, as established by a hasslot 
statement. Gated binders require input from a distin
guished site to be active before summing and broadcast
ing their input . The distinguished input comes from the 
associated category ( these links are only shown for the 
menu-role property in the figure), reflecting the intu
ition that a concept-property- value triplet should only 
be established if one is already considering the category. 
Note the mutual exclusion enforced between the calories 
value binders, as required by the scalar nature of the 
property. The default activation on the food - menu-role 
dessert triplet is established by the aspect statement . 
Thus if the category food is under consideration, acti
vation will spread from the dessert binder to the hub, 
and from there to the rich and sweet binders, establish
ing that the agent's prototypical food is a dessert. More 
interestingly, if one establishes that apples are a subcat
egory of food and that apples are sweet, thus: 

subcat (food:apple) 
hasPslot ( apple: taste; sweet) 
aspect (apple: ripe [default]; sweet, red, ... ) 

then activation will spread not only from apple to sweet, 
but also from apple to food, at which point the conjunc
tion food - taste - sweet once again establishes the dessert 
aspect of food, even if this is not a default aspect for 
food. · 

A rather interesting technical issue is raised in the 
implementation of the property inheritance hierarchy. 
Simple bidirectional links between two categories would 
create local feedback loops that rapidly raise activation 
levels of all activated nodes to saturation, thus losing 
the relative information that is crucial to a meaningful 
interpretation of the network. Thus the connections be
tween a category and its subordinates are implemented 
as pairs of mutually exclusive one way flow conduits. In 
connectionist terms, there are two mutually inhibitory 

129 



hasCslot (food: calories; low-cal(-), rich ( +)) 
hasPslot (food: taste; sour, salt, sweet) 
hasFslot (food: menu-role; main-course, dessert) 
aspect (food; dessert [default]; sweet, rich) 

menu
role 

I default 

taste 

cal
ories 

'----8 
,.___,___8 

8 

Figure 2: Connectionist structures implementing the DI
FICIL model of categories. The uni-directional links 
from the food category node to the three properties calo
ries, taste and menu-role are not shown. 
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Figure 3: Full depiction of the subcat mechanism; the 
statement used to create this fragment is: sub cat (gem : 
diamond, sapphire). · 

gating nodes, 'l' and '!', one permitting upward flow 
of activation, the other downward flow . Distinct gat
ing nodes are associated with each subnet construction, 
so although activation can flow locally in only one di
rection, global activation can flow both up and down 
the hierarchy from the point of origin. These mecha
nisms also indirectly enforce mutual exclusion amongst 
the subordinate nodes in the local structure. 

There is additional machinery (shown in Figure 3) re
quired to flip activation from ! to T and back as needed. 
The l node is activated (and ! inhibited) whenever a 
subordinate node is active but the parent category is 
not. Similarly, when the parent is active but none of 
its subordinates are, the ! node becomes active if not 
already. This behavior is achieved with two additional 
nodes, called finit and !init. Both are linked to the 
parent category at one site and to all subordinates at 
another. If only the parent input is active, !init sends 
out an excitatory signal to ! and an inhibitory one to 
f. Conversely l init activates T and inhibits ! if only the 
subordinate input is active. 

2 Direct inferences 

The DIFICIL model of conceptual representation can be 
used to account for a wide variety of psychological effects. 
One such effect is the ubiquitous and largely unconscious 
habit of inferring non-observable properties of objects 
from perceptual ones, a crucial but widely ignored fac
tor in discourse understanding. These direct inferences 
transform discourse from a string of non-sequiteurs into a 
logical sequence of ideas . For example, the conversation 
fragment " 'My apple at lunch was green' 'Here, have 
a doughnut'" involves several immediate inferences, in
cluding some cued by perceptual properties (green apples 
are sour and inedible), and some about default properties 
or prototypes ( apples are typically sweet; they are also 
the prototypical dessert in a brown bag lunch). Knowl
edge about frames [Minsky, 1986] (a meal is incomplete 
without dessert) and categorization ( anything sweet can 



serve as dessert) completes the picture. But without the 
information that although apples are normally sweet, a 
green apple is sour, the exchange makes no sense. 

Immediate inferences are the direct inferences avail
able at the level of the category under consideration. 
They are performed quickly, in a few hundred millisec
onds, and without conscious thought . These immediate 
inferences must reflect the structure of stored knowledge, 
since they are available too quickly and effortlessly to in
volve any complex form of information retrieval. Specif
ically, they suggest the use of the spreading activation 
model of semantic memory. The argument is that the 
patterns of immediate inferences reflect the structure 
of connections in the underlying spreading activation 
model, implemented here as a structured connectionist 
network. 

Mediated inferences are the second form of direct infer
ence, where knowledge about a more abstract category 
is used to supply the information necessary to under
stand the discourse. Mediated inferences take somewhat 
longer to obtain than immediate inferences, as they re
quire chaining up the subcategorization hierarchy cre
ated by subcat statements. 

The time factor in performing direct inferences in DI
FICIL is well within the limits prescribed by the psy
chological data on direct inferences [Anderson, 1983]. It 
takes 5 time steps for activation to propagate up one 
layer in the subcategorization hierarchy, and less than 
10 time steps for the activation to fully propagate to all 
relevant property values at that level, so given an inher
itance hierarchy of 10 layers, the total time to obtain all 
direct inferences is less than 100 time steps. 

3 Adjective-noun modification 

The need for immediate inferences can arise in many dif
ferent contexts. One such context is the conceptual as
pect of relevance is the adjectival modification of nouns. 
It is generally accepted [Osherson and Smith, 1982; 
Murphy, 1988; Medin et al., 1987] that the impact of 
a descriptive adjectival modification of a concrete noun 
can be too complex to model with either prototype 
of feature-based models of conceptual representation: 
green apples are sour and unripe, but green grass is cool 
and moist, while a green bottle may contain wine. 

The DIFICIL model affords an interpretation of ad
jective effects in terms of the interaction between con
ceptual aspects. Sometimes an adjective will not supply 
any connotative information about its noun, that is, the 
property value it names does not participate in any non
default aspects of the category identified by the noun 
(eg. green broccoli). In this case the only difference 
from the interpretation of an unmodified noun is an in
crease in the salience of the named property and value 
[Smith et al., 1987]. More often, however, the adjective 
will operate to select one or more alternative aspects of 
the category. 

Medin [1988] reports that adjectival modification of 
nouns produces distinct prototype effects from unmod
ified nouns. He observes that people seem to "take the 
fact that a spoon is wooden as implying something about 
the values on other dimensions, such as size and shape" 

[p. 8]. A typical spoon, for example, is metal, about six 
or seven inches long, with a flattened handle and a well
cusped bowl. A wooden spoon, however, in addition to 
being made of wood, is much longer, and typically has a 
round handle and little cusp to the bowl. 

This phenomenon is fundamental to the DIFICIL 
model of conceptual representation, and is implemented 
by using the adjective to evoke a conceptual aspect of the 
category denoted by the noun. Thus the representation 
of the category spoon would include the statement 

aspect (spoon; wooden; long, round-handled, shallow, 
thick) 

4 Semantic flexibility 

The DIFICIL model of conceptual representation can 
also be used to explain the phenomenon of semantic flex
ibility observed initially by Barclay et al. (1974] . They 
note that the musical properties of pianos are empha
sized in the sentence "The man tuned the piano", while 
their heaviness is most salient in the sentence "The man 
tried to lift the piano". Such contextual priming also 
enhances performance in a cued recall task, a fact which 
seems to indicate that unemphasized properties are not 
included in the interpretation of the sentence. They pro
pose that only the contextually relevant semantic fea
tures of a noun are activated in its interpretation. 

The degree to which unemphasized features partici
pate in a noun's interpretation has been a matter of 
some controversy. Suggestions range from the proposal 
of Tabossi (1980; 1986], that emphasized features actu
ally inhibit unemphasized features, to the observations 
of Medin [1987], that emphasis on a particular feature by 
adjectival modification of the noun can result in priming 
on otherwise atypical features, leading to a radically dif
ferent prototype for the modified concept. This apparent 
controversy can be resolved by adopting the fine-grained 
view of the internal structure of conceptual representa
tion proposed by DIFICIL. 

Tabossi finds that lexical access is fastest when primed 
with a reasonably strong biasing context, slower when in 
a neutral context, and slowest when a competing feature 
has been primed. For example, if the sentence primes 
the 'yellow' feature of gold, the fact that it is malleable 
is actually inhibited. This is modeled in DIFICIL by 
the time delay in switching aspects within a category 
[Hollbach, 1988]. If two aspects are mutually incompat
ible, it takes significantly longer for the activation in the 
aspect first primed to be overcome and eventually inhib
ited by the aspect activated later. For example, when 
the ripe aspect of apple has been primed, it takes roughly 
50 time steps longer to answer the query "are some ap
ples green?" than when the unripe aspect is dominant 
[Weber, 1989b]. If two aspects are independent of one 
another, there will be no interference, although Tabossi's 
results seem to suggest the aspectual competition is the 
norm. The context shift delay occurs at the level of the 
aspectual hub, the binder unit relaying activation within 
the aspect. 

Barsalou [1982] proposes a bipartite separation of 
properties, context independent and context dependent. 
Context independent properties of a category are acti-
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vated whenever the category is referred to, while context 
dependent properties, obviously enough, only crop up 
in certain contexts. That skunks are smelly and rat
tlesnakes are poisonous are seemingly invariant prop
erties of their respective categories; they are always 
thought of no matter what context surrounds mention 
of the category. The fact that a basketball floats, on the 
other hand, requires a strongly biasing sentence in order 
to prime it, such as "Chris used (the basketball] as a life 
preserver when the boat sank". 

The mechanism he offers to explain this behavior is 
that "properties become automatically activated by a 
word after being frequently associated with it during 
processing" [Barsalou, 1982, p. 82]. This notion is in
corporated into the DIFICIL model of conceptual rep
resentation: context independent properties belong to a 
default aspect that is compatible with all other aspects of 
the category, while context dependent properties belong 
to non-default aspects, some of which may be mutually 
exclusive. 

Greenspan (1986] corroborates Barsalou's findings, re
porting that central properties are always instantiated 
on reference to the noun, while peripheral properties re
quire explicit priming from a biasing context. He also 
suggests that "emphasized central properties may be 
more instantiated than unemphasized central properties" 
[p . 544, my italics], though cautioning that this conclu
sion is not yet supported by experimental results. These 
relative excitations are displayed in DIFICIL, since the 
activation supplied to the default features is marginal, 
while cued activation, eg. from an adjectival modifier, 
is a full order of magnitude greater in strength [Weber, 
1989b]. 

Greenspan presents further results on the interpreta
tion of an unambiguous word after it has been fully in
tegrated into a sentence context ( as opposed to the pat
terns of initial lexical access of interest to Tabossi). He 
reports that concepts related to a central property of a 
mentioned object are activated regardless of the linguis
tic context (p . 550]. That is, if the word under consider
ation is apple, activation spreads from apple to its consti
tutive property appleseed, and from there to the concept 
of appleseed, duly activating all the central properties of 
seeds. Mechanisms allowing this pattern of activation 
flow exist in DIFICIL, as direct links exist between the 
various semantic uses of a given term. Figure 4 demon
strates this capacity for the apple example: the initial 
stimulus to the network was the phrase 'green apple', 
and the size of the initial letter of each word is roughly 
proportional to the degree of activation of the connec
tionist unit representing it . The top panel shows the 
default properties of the category 'apple', available 10 
time steps after activation was initially keyed in on the 
input phrase. The center panel, at 20 time steps into 
the simulation , shows not only the rapid defeating of the 
default properties of apples, replaced with the character
istic properties of green apples (immediate inferences), 
but also the spread of activation to the recognition as
pect and all of its property values. In the bottom panel, 
the simulation has progressed to the 40th time step, by 
which time activation has spread from the property ap-
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pleseed to the category appleseed, and from there up the 
subcategorization or abstraction hierarchy to the cate
gory seed, whose default properties include size: tiny 
and growth-potential: grow. 

5 Conclusions 

As betrayed by the patterns and timing of immediate in
ferences, the conceptual representation of concrete nouns 
has an intricate fine-grained structure. Each category is 
in fact a complex of distinct functionally motivated as
pects, which can be excitatory, inhibitory or neutral with 
respect to each other. The default aspects form the cen
tral or context independent core of the representation 
posited by Barsalou (1982], giving rise to prototype ef
fects in categorization tasks, observed by Rosch[1973]. 
Priming an aspect will inhibit retrieval of all features as
sociated with competing aspects, resulting in the delayed 
response effects reported by Tabossi [1986) . It will at 
the same time facilitate retrieval of features both in the 
aspect primed and in related aspects, giving rise to dis
tinct prototype effects for modified categories, as noted 
by Medin (1987) . The functional aspect model of con
ceptual representation, originally designed to handle im
mediate inferences, serves as a predictive model for se
mantic feature retrieval patterns, and suggests a possible 
line for future experimentation. 
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Abstract 

Multiagent problem solving systems require co
ordination among their agents. Various tech
niques have been employed, ranging from game 
theory to partial global planning, to provide 
the necessary coordination while at the same 
time trying to limit communication. Our re
search focuses on the problem of conflict avoid
ance and resolution in the context of a system 
of coordinated and cooperative agents working 
on a route planning problem. Our proposed 
agents use a combination of techniques to pre
dict potential conflicts and work towards avoid
ing them while using limited communication. 

1 Introduction 
This paper deals with planning by multiple agents in an 
uncertain environment. Our agents work on a common 
task and have the same rationality but different knowl
edge of the environment. This may lead to individual 
agents making sub-optimal plans if they work on their 
own. Our aim is to formulate a coordination scheme 
that allows agents to help each other make a plan that is 
more optimal than each agent can make on its own, and 
to do this efficiently. We concentrate on coordination 
that involves reasoning about another agent 's behavior. 

Our agents are route planners given the task of plan
ning a route through specified points in the plane in the 
presence of circular obstacles. Since planning is a kind of 
search, agents usually have a choice of actions to take at 
many points during the planning process. Agents work 
on the same task, so ideally they independently decide 
on the same choice. But discrepancies in data lead to dif
ferences in choices and hence to conflict between agents' 
ideas of the best actions; this conflict must be resolved 
so that the agent network can solve the problem faster 
and more efficiently. 

2 Domain 
The domain selected was route planning for autonomous 
vehicles. This domain allows significant cooperation be
tween participating agents. It also allows obvious sources 
of discrepancies, in different agents' different knowledge 
about obstacles and other knowledge of the world. 
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Figure 1. Scene for experiments 

To simplify matters, we assume that agents already 
know the common task. This means that agents need 
not bother sending or obtaining subproblems. The com
mon goa.l is a. set of tasks that must be carried out at 
specified places ( called waypoints ). Our vehicles need to 
plan a route through all the waypoints mentioned in the 
prescribed mission. We try to plan the shortest possible 
path. We restrict ourselves to a single path to be fol
lowed by a single vehicle, so that the problem becomes 
strictly a distributed planning and cooperation problem 
without the added complication of having to make and 
maintain a multivehicle plan. 

We do not insist on an optimal plan but are content 
to have a suboptimal plan that is obtained quickly. In
sistence on an optimal plan would slow the system but 
not significantly affect the coordination related behavior 
since the only effect would be that more goals would be 
generated and tested. 

Figure 1 contains an example of a scene. In this scene, 
the start is the point (0,0) and the finish is (20,20) (not 
shown). All obstacles are circular. The text in each circle 



denotes the obstacle number and the agent which thinks 
the obstacle is where the circle shows it. The waypoints 
are laid out so as to present the planner with two almost 
equally good alternatives at each choice point. The ob
stacles are placed so as to cause a conflict at each choice 
point. 

Our formulation of the problem is based on the mul
titask planning problem discussed by B. Hayes-Roth 
[1985] and the 'mission planning' for an autonomous sub
mersible mentioned by Chappell [1987; 1988]. 

3 Planning 

We concentrate on the cooperation part of the problem; 
our planner is therefore not very sophisticated, being 
simply non-backtracking depth-first search. It begins 
with the start waypoint and finds the nearest waypoints, 
creating subgoals that consist of joining the current posi
tion to each of these. It then plans a path to the nearest 
waypoint and if this is feasible and agrees with the es
timated distance, treats that waypoint as the current 
point and proceeds as before. 

4 Coordination and conflict detection 

We assume that agents have the same rationality [Gins
berg, 1987; Rosenschein and Breese, 1988]. We also de
cide to work on the intermediate goals generated during 
the planning process; in the domain described, these con
sist of linking waypoints into successive pairs, with the 
detailed path between them to be plotted later. There 
are two problems to be solved: ( 1) choosing one of the 
alternatives at a choice point for development, and (2) 
if agents choose different alternatives, resolving the dis
crepancy. In a multiagent system, the first is a coordina
tion problem; the second requires a strategy for conflict 
resolution. 

4.1 Coordination schemes 

Various coordination and cooperation schemes are possi
ble. Some possible cooperation schemes are the contract 
net paradigm [Davis and Smith, 1983], the coordinator
coworker hierarchy [Lo and Findler, 1987] and partial 
global planning [Durfee et al., 1987; Durfee and Lesser, 
1987]. All the above are based on agents sending mes
sages to other agents regarding the ordering and dis
tribution of subtasks, the tasks themselves, and data 
transfers from one agent to another. They do not assume 
that all a.gents know everything about another agent and 
about what that agent knows, though agents have dif
fering degrees and types of knowledge about the systems 
of which they are members. This knowledge ranges from 
knowledge about the capabilities, state and tasks allot
ted each agent to a mere knowledge of their existence. 
Other coordination schemes such as game theory [Gins
berg, 1987], depend on complete knowledge about other 
agents. This scheme needs no communication, as op
posed to the first few which can be very verbose and 
may need a great deal of interaction. We try to adopt 
a. coordination scheme that falls between these two ex
tremes and can adapt itself to the dynamic situation. 

Our coordination scheme is based mainly on the 'coor
dination without communication' model of Rosenschein 
and Ginsberg [1988; 1987]. This approach is derived 
from game theory and assumes agents have a complet.e 
knowledge of each others' data. We use a slightly weaker 
assumption and try to arrive at complete knowledge ( or 
a t least, complete enough for our purposes) starting from 
incomplete or erroneous knowledge. 

The foundation of 'cooperation without communica
tion' is the computation and analysis of payoff matrices. 
These are representations of the benefit each agent de
rives from the possible combinations of moves1 available 
at any point in the planning process, each agent chosing 
one move. Ginsberg [1987] gives a more complete expla
nation of payoff matrices and their use in cooperation. 

4.2 Using payoff matrices 

Agents use payoff matrices to decide which agent should 
plan which subgoal. At each choice point, agents have 
a choice of waypoints to plan the next bit of the path. 
Each choice corresponds to a distinct move by the agent. 
All the agents working on the plan have similar sets 
of choices and can guess the choices available to other 
agents, and can therefore compute the payoffs for each 
combination of choices2 and use the results to construct 
a payoff matrix for that choice point. These payoff ma
trices help agents decide the overall best move for each 
agent, which may not be the same as the single best 
move; in multiple agent systems, it might be better for 
the system a.s a whole if some agents examine lower
worth choices rather than each agent simply choosing its 
most profitable move. 

Our agents use three factors in calculating payoff ma
trices: 

• The inherent cost of the move. In route planning, 
this is the distance between points. 

• The certainty associated with the cost calculation. 
This a llows agents to use expected utility rather 
than a fixed value which may be wrong. 

• The fact that they are working in a multiple-agent 
system. This implies that agents take into consid
eration the expected plans of other agents when se
lecting a goal for expansion. The consequences of 
this depend on the rationality of the agents; if the 
aim is to distribute load so that no task is done by 
more than one agent, the agents pick tasks no other 
agent is expected to do; if the agents are working 
in a supportive mode , with one agent checking the 
other's work, they pick the same task that the other 
is expected to pick. 

4.3 Conflict resolution using payoff matrices 

We calculate payoff matrices in much the same manner 
as Rosenschein and Breese [1988] but use the difference 

1 At some points of the planning process, the planner ma.y 
have a choice of alternatives to explore next. We call each 
such alternative a move available to the agent at that point . 
If there are n agents, the payoff matrix is a mapping from 
the cartesian product of the n sets of available moves to !Jr. 

2 Not necessarily with complete accuracy. 
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between payoffs for different agents, for the same com
bination of moves, as a guide to decide which move or 
moves should be reevaluated [Malyankar, 1989] . Thus 
after making the matrix, the agent compares payoffs cal
cu lated for itself and for the other agent and collects cells 
for which the ranking is different . The goals correspond
ing to the cell with the most difference in ranking are 
then passed to the reevaluation module which takes over 
the responsibility of finding out why the discrepancy oc
curred and what can be done about it. This approach 
has the advantage of going into reevaluation only if the 
discrepancies are large enough to warrant a change in the 
ranking of goals. One disadvantage is that rankings are 
perhaps not the best things to use if we are going to use 
differences to decide which move should be checked for 
possible disagreements; actual payoffs might be a bet
ter criterion. But since we want to restrict reevaluation 
to moves that will repay examination, we want to avoid 
reevaluating useless moves already far down the list of 
choices for both agents. 

5 Reevaluation of goals and conflict 
resolution 

Goals are reevaluated by finding potential causes for dis
crepancy and collecting the relevant data from other 
agents before re-calculating costs. The heuristics that 
guide reevaluation are ertcoded in the form of 'reevalua
tion rules' like: "if there is an object O that overlaps the 
area around the prospective path, and the other agent 
has a different idea of its location from me, then set 
up a conversation to decide the exact location of 0". It 
should be pointed out that the agent has not yet com
municated with any other agent but uses these rules on 
its own world model. Applying the rules leads to iden
tifying an agent which may be able to help in resolving 
the conflict and a interaction with this agent is carried 
out. Agents have scripts that are templates for the inter
actions whereby these conflicts can be resolved. These 
templates are used in the actual resolution interactions 
after values have been bound to the variables in the tem
plates. 

5.1 Strategies for conflict resolution 

The strategies for dealing with conflict detection and res
olution are either goal-driven, in the sense that agents 
try to detect and resolve conflicts depending on the goals 
they will work on, or conflict-driven, in the sense that 
agents interact to detect and resolve conflicts only when 
they have reason to expect a conflict. The strategies are 
described below. 

5.1..1 Immediate resolution 

This is a conflict-driven strategy. The reevaluation 
rules are applied as soon as conflicts are detected and 
transaction records made. The transaction records cre
ated by the rules are taken up and the database up
dated. After all transactions have been completed, costs 
for goals are recomputed. The main defect of this ap
proach is the necessity to recompute costs for goals after 
each resolution step, which is usually computationally 
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costly. On the other hand, the convergence to agree
ment of different a.gents is faster since the database gets 
updated more frequently. This decreases the chance of 
disagreements in the later stages. 

5.1.2 Delayed resolution 

This too is conflict-driven, and is a variation of the first 
strategy. Agents plan a few steps before any resolution 
is done. Conflicts detected during the planning of any 
single step are recorded and resolved en masse after an 
arbitrary number of cycles. The success of this strategy 
depends on the circumstances of the problem; it may 
formulate plans that are less optimal than immediate 
resolution allows. 

5.1.3 Distributed data model 

This is a goal-driven strategy. Agents evaluate their 
knowledge and that of other agents relative to the choices 
generated at every choice point . If they decide that an
other agent might know more about the data needed to 
plan any specific choice than they do, they ask that agent 
for information and use it to update their databases. 
This strategy is more 'correct' in the sense that any plan 
made is more likely to be optimal than under the other 
two strategies. 

This approach suffers from the defect of having the 
potential for a large number of messages. On the other 
hand, if the task is contained more or less in a single 
agent's area, very few messages are sent or received, 
which is generally a good thing. But since agents do not 
keep records of data, the same data might be requested 
over and over again; this is offset by the tight control 
over updates to the authoritative version maintained by 
the agent responsible for it . 

6 Implementation 

The system is implemented in UNH Prolog on a SUN 
3/50, using the Sun Windows environment to run dif
ferent agents in different windows. Message-passing is 
implemented by means of specially written built- in func
tions. Agents work in real time and the message- passing 
functions are non- blocking. Agents are differentiated 
from each other by loading a (different) single data file 
containing agent identity for the specific agent while hav
ing most other data and functions in common. Messages 
are logged and counted. Processing time is measured 
using the 'gettimeofday' system call, so that the time 
measured is real time . 

7 Experiments and evaluation 

Several factors must be considered in evaluating a plan
ning system. For the planning component, these include 
the quality of plans and the time consumed by planning. 
For a multiple agent planner, we should also consider the 
communication load, since this is often a limiting factor 
in real systems; the granularity of processing, which af
fects the time agents spend waiting for replies from other 
agents; and the overall efficiency of the system, includ
ing the amount of duplication of work and availability of 
subproblem solutions. 
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7.1 Experiments and Results 

All three strategies ( conflict-driven immediate and de
layed resolution and goal-driven resolution) were run on 
variations of the same scene, with the number of way
points and obstacles increasing from three waypoints and 
no obstacles to six waypoints and six obstacles . The way
points are laid out so as to present the planner with two 
almost equally good alternatives at each choice point. 
The obstacles are placed so as to cause a conflict at each 
choice point. The full scene is described in [Malyanka.r, 
1989]. Elapsed time was measured and the number of 
messages counted for various numbers of waypoints and 
obstacles. 

7.2 Behavior with changes in problem size and 
number of obstacles 

We plotted graphs for the variation of elapsed time and 
the number of messages with the problem size, as repre-
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sented by the number of intermediate waypoints (those 
other than the start and finish), and with the num
ber of obstacles. All these variations are presented in 
[Ma.lyanka.r, 1989]. Some sample graphs are shown in 
figures 2- 5. These graphs show: 

• Piecewise behavior, depending on the local char
acteristics of the problem, namely the presence or 
absence of conflict and the relevance of obstacles 
to planning. This is apparent in Figures 3 and 4, 
and indicates that the strategies react to changes 
in problem characteristics and can to some extent 
allow tighter or looser interaction as ' required. The 
graphs for strategy 2 ( resolution at intervals) also 
show discontinuities at the interval of resolution. 

• A linear monotonically increasing relationship be
tween time and significant obstacles3 when prob
lem size is constant; a monotonically increasing re
lationship between the time and problem size. This 
is based on the graphs in figure 2 and 5 ( and the 
corresponding graphs for the other strategies in 
[Malyankar, 1989]). 

• A similar relationship between the number of signif
icant obstacles and the number of messages, except 
for strategy 3, where the curve is descending rather 
than ascending (figure 3). 

• A distinct time advantage for the conflict-driven 
methods of cooperation ( strategies ( 1) and (2)) over 
the goal-driven strategy (3), as can be seen from fig
ure 2. 

• A switch in communication load advantage between 
the conflict-driven and plan-driven strategies (figure 
3), depending on the heuristic used in strategy (3) 
to decide whether communication should be done. 

7.3 Timings 

The most obvious result is that the goal-driven strategy 
usually takes much longer than any other method. This 
is not surprising since the agent here must make a plan 
as well as do the processing associated with obtaining 
data from other agents and integrating that data into 
its own database, for every goal generated at a choice 
point. These graphs also indicate that delayed resolution 
(strategy 2) is usually faster than immediate resolution 
(see figure 2). 

7.4 Messages 

The results for messages are the same as for time, for 
smaller problems with few obstacles. However, because 
of the heuristic used to guide requests for information 
in the goal-driven model, the number of messages actu
ally falls with an increase in the number of obstacles, 
provided the size of the problem remains the same (fig
ure 3). This is because the heuristic used is based on 
the existence of obstacles to guide coordination; the lack 
of obstacles means the heuristic cannot differentiate be
tween agents and the default action is taken, which is a 
request for information from the other. 

~Defined e.s obstacles which give rise to conflicts . 
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7.5 Quality of plans 

The immedia te method makes the best possible plan 
within the limitations of the planner. This is because 
information is available immediately. The delay method 
plans a number of steps before obtaining more up-to
date information and may lead to a deterioration in the 
quality of the plan . This is traded against solution time 
and granularity. The number of errors made depends on 
the layout of waypoints and obstacles and the resolution 
interval. The scene used allows at most two errors. 

7.6 Significance of results 

Since it is very difficult to define an 'average problem' 
in route planning with obstacles, these results cannot 
be taken as definitive measures of the behaviors of the 
strategies they correspond to for a fixed problem size. 
The actual behavior of the strategies will depend greatly 
on the actual circumstances. 

What the results presented here do is define the lim
its of behavior of the different strategies and show the 
way in which that behavior varies with changes in the 
parameters of the problem. The graphs in this chapter 
are quite regular, but this regularity arises from the arti
ficial construction of the problems on which the different 
strategies have been tested. It is quite possible to con
struct a scene that allows the strategies to exhibit one 
behavior while solving one part of the problem and a dif
ferent behavior on a different part; the piecewise nature 
of many of the graphs shows how this can happen. How
ever, since the problems span a range of possibilities
from problems without the need for any conflict resolu
tion to those where conflict resolution is needed at every 
step-we consider that these sets of graph do indeed de
fine the limits on the behavior of the strategies under 
different conditions. It should be possible to predict the 
behavior of the various strategies on more realistic non
uniform scenes from the appropriate parts of the appro
priate characteristic curves. 

As for the quality of plans made, this varies depending 
on the circumstances of the problem. The scene used 
for experiments shows only minor deterioration in the 
quality of planning for delayed resolution. 

8 Relation to other research 

This section discusses the relation to work in conflict 
resolution; work in coordination is discussed in section 
4. Much of the work in distributed artificial intelligence 
has concentrated on frameworks for distributed prob
lem solving [Davis and Smith, 1983; Durfee et al., 1987; 
Durfee and Lesser, 1987; Lo and Findler, 1987; Rosen
schein and Breese, 1988], on such matters as problem 
decomposition and distribution of subtasks. Conflict res
olution has been studied by Adler and others (1988], but 
this has so far been qualitative, in that the aim is simply 
to build a framework for conflict resolution and study 
how conflicts can be resolved. The research described 
in this paper attempts to construct a more generalized 
framework for both cooperation and conflict resolution 
in the context of route planning using a combination of 
techniques and attempts a quantitative characterization 



of the behavior of the system constructed on problems 
in its domain. 

9 Conclusion and Future Work 

We have implemented and tested methods of conflict 
avoidance and resolution in a distributed planning sys
tem. The results indicate that given the assumptions of 
independent agents and conflicting data, conflict-driven 
resolution functions better than goal-driven resolution. 
Of the two conflict-driven methods tried, the rigorous 
method of immediate resolution makes better plans than 
the potentially faulty method of delaying resolution, at 
the expense of more time and a higher communications 
load. 

Our system uses only two agents; it would be interest
ing to extend the methods to more agents and use the 
calculations of payoffs to distribute tasks among agents. 
This would free agents to take up other parallel tasks and 
should a llow strategies that distribute computation load . 
The effects of scaling to more than two agents would 
depend on the interaction strategy adopted; if multia
gent interactions are allowed one could expect different 
characteristic curves. Other questions that arise are the 
interaction of different planning models with the coordi
na tion and resolution mechanisms and the implications 
for distributed planning and problem-solving in domains 
other than route planning. 
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Abstract 

In hierarchical planning systems, a simplis
tic application of the STRIPS assumption can 
cause many computational problems. This is 
because changes to the truth value of a con
dition during hierarchical planning may only 
be available after certain actions are reduced. 
Therefore, certain control decisions based on 
the truth value of these conditions may have 
to be undone later in a planning process. To 
solve this problem, we present a set of syntac
tic restrictions on how the actions of a planner 
should be related via a set of action reduction 
schemata. When these restrictions are satis
fied, a number of decisions can be made in a 
more informed way during planning. Further
more, these restrictions are syntactic in nature, 
and they enable a set of efficient algorithms to 
be used for preprocessing the planning knowl
edge a priori. 

1 Introduction 
In most classical planning systems, the STRIPS assump
tion ([Fikes and Nilsson, 1971; Wilkins, 1988]) plays an 
important role. This assumption states that the truth 
value of a predicate is not changed after an action is exe
cuted unless the change is stated explicitly in the effects 
of th; action. It allows one to decide quickly the truth 
of a given condition, and is an elegant solution to the 
difficult frame problem. 

To achieve efficiency, a planner is often implemented 
in a hierarchical form ([Tate, 1977; Sacerdoti, 1977; 
Wilkins, 1984; Charniak and McDermott, 1985]). _In this 
form, a high-level action is associated with a few impor
tant conditions to be achieved. Planning is done in a 
top-down process, in which a plan is built with high-level 
actions first, and then refined to include more and more 
detailed information . The refinement is done accord
ing to a set of action reduction schemata, which defines 
the relationship between a high-level action and a set of 

•support for this research was provided in part NSF Pres
idential Young Investigator award DCR-83-51463 to Dana 
Nau, and in part by an interim research grant from the Fac
ulty of Mathematics at the University of Waterloo. 
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low level ones. With a hierarchical planner, a simplistic 
application of the STRIPS assumption may no longer 
be sufficient; sometimes a seemingly correct conclusion 
about the truth of a condition may turn out to be in
correct after certain actions are reduced to lower level 
ones. 

As an example, consider a plan for shopping involv~ng 
three actions: obtaining money, getting to the shoppmg 
mall, and doing the shopping, in that order. Suppose 
the third action, doing the shopping, is refined before 
the second one, getting to the shopping mall . Then the 
planner will make shopping decisions based on the be
lief that money is available. However, after the second 
action is refined , the planner may then realize that get
ting to the shopping mall may take so much money that 
many of its shopping decisions have to be undone. Thus, 
backtracking becomes necessary. 

The above problem, which will be called hierarchical 
inaccuracy, is caused by the lack of certain vital infor
mation at the higher levels of problem solving. Omission 
of certain information is a by-product of problem solving 
via abstraction. This problem solving strategy is aimed 
a.t tackling certain important parts of the problems first, 
before details are considered, and has been proved to be 
an effective means of achieving efficiency. However, if 
one is not careful in defining the abstraction hierarchy, 
serious computational problems can occur. The prob
lem of hierarchical inaccuracy occurs when a high-level 
action fails to represent the change to a condition by 
one of its subactions, when this change is considered im
portant during planning. Therefore, at a given planning 
level, a planner may make decisions based upon the cur
rently known status of that condition. This may be a 
mistake, depending on how the condition is changed by 
the subaction of the high-level action, and backtracking 
may have to be used later in the process. 

To solve the problem, several solutions have been pro
posed. One solution, given in [Wilkins, 1988], is to in
troduce a "delay operator", which delays reducing cer
tain non-primitive actions until enough information is 
available. The problem with this method is that it is 
not clear how it can be generalized to domains other 
than the one example given in [Wilkins, 1988]. In other 
words the ways to introduce this operator appear to be 
rather' domain-dependent. Another solution proposed 
by Wilkins amounts to "promoting" certain conditions 



that may cause trouble during planning, so they can be 
represented higher in the hierarchy. Unfortunately, only 
a single example of this method was provided, and no 
formal elaboration made. This approach, however, is 
similar to that which we consider in this paper. 

In [Charniak and McDermott, 1985], another solu
tion was discussed, by setting up an "assumption pro
tection interval." Such an interval makes sure that the 
expansions chosen for the non-primitive actions within 
its range will not undo the conditions being protected. 
Such a method works well in some domains, but back
trackings still occur when no good expansions are avail
able. 

Our solution to the problem of hierarchical inaccuracy 
is to preprocess the planning knowledge of a planner, ac
cording to a set of syntactic restrictions. These restric
tions further restrict the relationship between each ac
tion and its set of subactions. They enable the problems 
described to be recognized early, before the planning pro
cess begins. Thus, one can anticipate the problem in a 
number of ways during planning. 

Such a strategy is appealing for several reasons. First, 
it is domain-independent. Secondly, there are usually 
several ways of defining a hierarchical representatio°: for 
a given domain of application. It may not be o.bv~ous 
to the designer which way is better. The restrict1<.ms 
provided here can serve as a standard for how t~ design 
the planning knowledge base, as well as suggest10ns for 
how the modifications can be done when some restric
tions are not satisfied. Thirdly, they provide efficient 
control strategy during planning. In particular, they al
low a planner to make better decisions about ordering 
between actions for the purpose of handling conflicts. 
They also allow intelligent decisions regarding choice of 
reduction schema of a non-primitive action. Finally, cer
tain decisions have to be made about which actions to 
expand next in a plan, in the next planning cycle. This 
kind of decision can be called planning orders, since they 
decide which subgoal should be planned for first. Based 
on the restrictions, methods can be devised for deciding 
good planning orders. 

In this paper, we present these restrictions, algorithms 
for preprocessing the planning knowledge based ~m. the 
restrictions, as well a discussion on how the restrictions 
are used during planning. 

2 Hierarchical Planning 

As in any planning system, an important component of a 
hierarchical planner is a set of action templates A. Let a 
be an action template. Then a has a set of preconditions 
and effects, which will be denoted as preconditions(a) 
and effects(a), respectively. In this paper, we assume 
each precondition or effect is a literal. Thus, for exam
ple, one can choose to represent the action template for 
moving a block x from the top of another block y to the 
table in the blocks-world domain as 

put-block-on-table(x, y) 
comment: move x from top of y to the table. 
preconditions={Block(x), Block(y), 

Cleartop(x), On(x, y)} 

effects={Ontable(x), Cleartop(y), -,On(x, y)} 

An action template in A can be instantiated by replac
ing some of the variables in its preconditions or effects 
by constants. An action instance is also called an act~on 
in this paper. To distinguish between the two, an action 
template will be denoted in boldface. If a is an instance 
of an action template a, then the latter is called a tem
plate of the former, and template(a) = a. It is clear that 
each action has a unique template. 

Some of the effects of an action are the main effects, 
or the "purpose," of that action. If a is an action, then 
the main effects of a are denoted by main-effects(a). The 
other effects of a are called "side-effects." For example, 
among the effects of the action put-block-on-table(x, y), 
Ontable(x) is its main effect, and the others are side
effects. 

Another important component of a hierarchical plan
ner is its definition of the relationship between its ac
tions. This relationship is defined in terms of a set of 
action reduction schemata cf>. A reduction schema RE cf> 
is a function which, when applied to an action template 
in A, returns a partially ordered set of actions a;. Note 
that R is not necessarily applicable to every action tem
plate in A, and an action template can have more than 
one reduction schema applicable to it. The set of ac
tion reduction schemata applicable to a is denoted by 
o(a). a is primitive if o(a) = 0, otherwise it is non
primitive. Intuitively, a primitive action template is one 
which cannot be decomposed further into more detailed 
steps, while a non-primitive one can. 

If a is an instance of a, and R is applicable to a, then 
R(a) is defined as R(a) with the same variable insta~ti
ations as when a is obtained from a. Also, if R(a) 1s a 
reduction of a, then A(R(a)) denotes the set of actions 
in R(a). These actions are called subactions of a. 

A plan P is a partially ordered set of actions. Let a 
and b be two actions in a plan. Then a~ b denotes that 
action a is constrained to be executed before b in time. 
a j b if either a ~ b, or a and b are unordered in the 
plan. 

Let a be a non-primitive action and R(a) be a reduc
tion of a. Since R(a) is partially ordered, it may have 
more than one possible linearization. At the end of every 
linearization L, a set of conditions hold, which are as
serted by the actions in L. We use possible-effects(R(a)) 
to denote the union of these sets of conditions, for all 
the linearizations. More formally, possible-effects( R( a)) 
is defined as: {p I 3a; E A(R(a)) such thatp E 
effects(a;), anavai E A(R(a)) such that a;~ ai,.,P r/. 
effects( ai)}. 

The definition of reduction schemata above is intended 
to capture the formal aspects of action or goal expan
sions in a number of systems. In particular, a reduc
tion schema R corresponds to a "soup code" in NOAH 
([Sacerdoti, 1977]), an "opschema" or an "actsche~a''. in 
NONLIN ([Tate, 1977]), and a "plot" in SIPE ([W1lkms, 
1984; Wilkins, 1988]). Also, we make no distinction be
tween a high-level goal and an action in our formaliza
tion; all the goals are represented as action templa~es 
in A which, among others, can be reduced to a special 
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action no-op, a primitive action which means the action 
can be achieved by doing nothing. 

A hierarchical planner starts planning for a given set of 
goals by finding the appropriate actions to achieve them. 
Problem solving during planning can be considered as a 
search in a space of plans, and is usually a very compli
cated process. To capture the essence, we present a brief 
description below. Suppose G(X) is a goal, then the ac
tion selected to achieve this goal should have G(x) as one 
of its main effects. These are the actions of a plan at the 
highest level. The subsequent problem solving process is 
described by the following steps: 

1. Choose a non-primitive action, and replace it by one 
of its reductions. Let the new plan be P. 

2. Find out the set of interactions among the actions 
in P, and find ways to handle them. 

3. If all the actions in P are primitive then terminate 
planning, else go to step 1. 

After step 1 is done, certain new interactions may ap
pear. Depending on the particular domain of applica
tion, interactions can be of different types. In this pa
per, the only type of interaction considered is clobbering 
between a pair of actions. This type of interaction oc
curs when an action in a plan deletes a precondition or a 
main effect of some other action. To take care of a con
flict, several methods can be chosen, including imposing 
new orderings in the plan, imposing constraints on the 
variable instantiations in the plan, etc. 

Below, we will consider how to impose syntactic 
restrictions upon the planning hierarchies that define 
clearly the relationship between a non-primitive action 
and its set of subactions. Then a set of algorithms will be 
given for checking whether a reduction hierarchy satisfies 
the given restrictions. 

3 Imposing Syntactic Restrictions 

In hierarchical planning, a currently non-interacting part 
of a plan may become interacting after certain actions 
are reduced. This problem of hierarchical inaccuracy can 
then causes problem in several crucial decision processes 
during planning. We propose to handle this problem 
by checking pairs of action templates for a given set of 
action reduction schemata definitions. If the problem of 
hierarchical inaccuracy cannot occur between this action 
pair, then they are marked as so. In this section, we 
discuss the restrictions in detail, then we consider how 
to apply the result of the preprocessing phase to help 
planning. 

Let P be a plan containing certain non-primitive ac
tions. As is done in all existing hierarchical planners, we 
assume that when an ordering a -< b is assigned in P , 
all the subactions of action a will precede that of action 
b. Therefore, at any later stage of plan reduction, the 
effects of any of the subactions of b cannot delete the 
preconditions of the subactions of a, and the effects of 
the subactions of a cannot delete any of the effects of 
the subactions of b. However, it is possible that some 
subactions of a may delete some preconditions of b, and 
certain subactions of b may delete the effects of the ac-
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tion a which are protected. Thus, it is important to 
know when an ordering can be "safely" made. 

Now we state this property more formally. 
Definition 3.1 Let P be a plan, and a, b E A(P) ac
tions in P. The Ordering-Induced Independence Prop
erty holds for (a, b) iff the following conditions are satis
fied: for any composite reductions Q1 and Q2 of a and 
b, respectively, 

1. Vp E preconditions(b), Vq E possible-effects(Q1(a)), 
-,p and q are not unifiable, and 

2. Vq E main-effects(a), -,q is not unifiable with any 
p E possible-effects(Q2(b)). 

This definition says that if ( a, b) satisfies the Ordering
Induced Independence Property, and a -< b in a plan, 
then no subactions of a can conflict with any precondi
tions of b, and no subactions of b can conflict with any 
main effects of a, which has to persist over the reduction 
of b. Therefore, if pis an effect of a, and a -< b in a plan, 
then it is safe to assume that p is also true after any 
reductions of b. Notice that since p and q are literals, 
checking whether or not they are unifiable is straightfor
ward. 

To ensure the Ordering-Induced Independence Prop
erty for two actions, we introduce two restrictions below: 
Restriction 3.2 Let a and b be two actions. VR E a(a), 
Vp E possible-effects(R(a)), and Vq E preconditions(b), 
if p and -,q are unifiable, then p E effects (a). 
This restriction says that if any subaction a; of a can 
possibly deny a precondition of b, then this effect of a; 

should also be an effect of a. If this restriction is sat
isfied by actions a and b, then we say that a satisfies 
Restriction 3.2 with respect to b. Note that it is possible 
that pis an effect of a; and unifiable with q, but pis not 
in the set possible-effects(R(a)). This can occur when 
there is another subaction a; of b such that a; -< a; and 
q E effects(a;). In this case, we do not require that pis 
also in effects(a). 

Restriction 3.3 Let a and b be two actions. VR E a(b), 
Vq E effects(R(b)), and Vp E main-effects(a), if p and -,q 
are unifiable, q E effects( b). 
This restriction says that if a subaction b; of b can pos
sibly deny a main effect of a, then this effect of b; should 
also be an effect of b. If a and b satisfy this restriction, 
then we say that a satisfies Restriction 3.3 with respect 
to b. If actions a and b satisfy both of these restrictions, 
then we say ( a, b) satisfies the Condition-Promotion Re
striction. 

The Condition-Promotion Restriction further restricts 
the relationship between an action and its set of subac
tions in adjacent levels. Below, we prove that this en
sures the Ordering-Induced Independence Property over 
arbitrary levels of reduction. Before doing this, we first 
introduce a new notation TC(a), representing the tran
sitive closure of the action-subaction relationship. 

Now we present the main theorem: 

Theorem 3.4 
The Ordering-Induced Independence Property holds for 
(a, b) if Vai E TC(template(a)), Vbj E TC(template(b)), 
(ai, bj) satisfies the Condition-Promotion Restriction. 



The proof of the theorem is omitted. Interested readers 
can refer to [Yang, 1990]. 

There are several ways to make use of the results of 
the above theorem. First, orderings have to be frequently 
assigned in a plan, and Ordering-Induced Independence 
Property provides a good heuristic for making the order
ing decision when no other preferences are known. For 
example, if a and b are unordered in a plan, and they sat
isfy the Ordering-Induced Independence Property, then 
if a choice for ordering have to be made involving a and 
b, this choice will be preferred. 

As an example, consider a plan for achieving two goals, 
writing a letter and developing a film. An intermedi
ate hierarchical plan may contain two parallel branches, 
where the first branch is: 

get(Pen)-< write(Letter), 

and the second branch can be: 

get(Tools) -< develop(Film). 

If the robot can hold only one thing at a time, then 
these two branches cannot be interleaved. Thus, a 
choice has to be made in ordering: either write(Letter) 
has to come before get(Tools), or develop(Film) has 
to come before get(Pen). Suppose a subaction of de
velop(Film) is to turn off the light, which asserts a con
dition -,On(Light), and that this condition is not rep
resented in the effects of develop(Film) . Also suppose 
that a precondition of get(Pen) is that the light must be 
on. Then the action pair ( develop(Film), get(Pen)) does 
not satisfy the Condition-Promotion Restriction . On the 
other hand, suppose (write(Letter), get(Tools)) satisfies 
the Ordering-Induced Independence restriction. Then a 
good choice is to order write(Letter) before get(Tools). 
In this way, a potential conflict is avoided . 

If ordering decisions are made correctly, then it is pos
sible for a planner to avoid an exponential amount of 
conflict checks done in a partially ordered plan. To il
lustrate this, consider a hierarchical planning problem 
with k levels of reduction, and suppose that each non
primitive action can be reduced into m subactions at the 
level below. Suppose the levels of reduction are num
bered in ascending order from top-down, so that the 
bottom level is Level k and the top level is Level 0. Sup
pose a hierarchical nonlinear planner finishes removing 
all the goal interactions on the i'th level before it goes 
into the ( i + 1 )'' l~vel. An action at the i'th level will 
be reduced into m' actions at Level k. Therefore, each 
time-ordering arc which can be introduced at the i'th 
level avoids (mk- i)2 number of interaction checks at the 
k'th level. Thus, if the planner can add e time order
ing arcs at each level of abstraction, the total amount of 
planning time saved will be 

k- 1 
:~::)em2(k-i)) = O(em2k). 
i=O 

Secondly, decisions as to whether a condition holds 
at a certain point in a plan have to be made during 
planning. The Ordering-Induced Independence Property 
allows such decisions to be made in many cases, even 

before every action in a plan is reduced to primitive. 
Suppose an action a asserts a condition p in a plan, and 
one wishes to decide whether p holds at a later point, 
say before action c, in the same plan. If for every action 
b that can be possibly between a and c, ( a, b) satisfy 
the Ordering-Induced Independence Property, then if p 
is not deleted by b in the current plan, then p will not 
be deleted by any subactions of b either. This argument 
leads to the following lemma: 

Lemma 3.5 Let P be a plan, a and c be actions in the 
plan. Suppose that a -< c and p E main-effects(a). Also 
suppose that Vb E A(P), a j b and b j c, (a, b) satisfies 
the Ordering-Induced Independence Property. Then if p 
is true before c in plan P, then p is true before c in every 
composite reduction of P. 

One necessary decision to be made regarding the truth 
of a condition is that of which reduction R of an ac
tion a should be chosen, among the set of alternative 
reductions of a, a(a). Usually a reduction is associated 
with a type of condition called "use-when", which tells 
when the reduction is applicable to a non-primitive ac
tion. When the truth value of a use-when condition is 
decided incorrectly, or cannot be decided at a certain 
level of planning, reductions have to be arbitrarily cho
sen. This can lead to many expensive backtrackings. 
The Ordering-Induced Independence Property, where it 
holds, can help solve part of this problem by using the 
above lemma. 

Another type of decision is when there are more than 
one non-primitive actions to be reduced, which one 
should be reduced first at a certain planning level. Deci
sions like this are called "planning order," as opposed to 
the temporal orders in a plan. Suppose that a -< b -< c 
in a plan, and both b and c are non-primitive actions. 
Suppose also that an effect of a is p, and b does not deny 
this condition. Then according to the STRIPS assump
tion, p can be assumed to hold before con this planning 
level. Suppose further that a and b satisfy the Ordering
Induced Independence Property, and a reduction of c 
depends on the truth of p. Then that reduction can be 
chosen, because reducing b further will keep the validity 
of p. 

If, on the other hand, a and b do not satisfy the 
Ordering-Induced Independence Property, then it is sug
gested that the decision about reducing c should be de
ferred until b is further reduced . An appropriate time to 
reduce c may be when for every action b; between a and 
c, a and b; satisfy the Ordering-Induced Independence 
Property. This avoids many possible backtrackings, due 
to the decisions made with incomplete information in the 
original planning level. 

Consider the following simplified shopping example. 
In this simplified domain, a robot wants to shop for food. 
There is a shop, Shop, which the robot can reach by 
a bus or a bike. Initially the robot has money. The 
actions and reduction schemata are listed in Appendix 
A. Note that the action pair (goto(y), buy(x)) does not 
satisfy the Condition-Promotion Restriction, because a 
possible descendent take-bus(y) of goto(y) can delete a 
precondition of buy( x), namely, Have(Money), while this 
change is not seen in the effects of goto(y) . Thus, it is not 
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known whether these two actions satisfy the Ordering
Induced Independence Property. 

During planning, an intermediate plan for shopping 
for food is given below: 

goto(Shop)-< buy(x). 

At this stage of planning, since it is not known that 
the action pair satisfies the Ordering-Induced Inde
pendence Property, the planner cannot conclude that 
Have(Money) is still true before buy(x) is executed. 
Thus, for example, the planner may want to try to get 
more information about goto(Shop) by reducing it first, 
before reducing buy( x) to make detailed shopping deci
s10ns. 

A remaining question is how to preprocess a set 
of action reduction schemata based on the Condition
Promotion Restriction. In the following sections, we pro
vide algorithms for doing this. 

4 Preprocessing 

We have shown that if all the information regarding 
whether the actions satisfy the Ordering-Induced Inde
pendence Property is gathered before planning starts, 
then a planner can make decisions more intelligently dur
ing planning, based on this information . Specifically, 
if the Condition-Promotion Restriction is satisfied by a 
and b, then the ordering a -< b will never be undone as 
a result of the interactions between the subactions of a 
and/ orb. 

Let a and b be two action templates in A. Suppose 
the number of effects and preconditions of an action is 
constant. Also suppose that the maximum number of ac
tions in a reduction is H. The following algorithm checks 
if (a, b) satisfy the Condition-Promotion Restriction: 

Algorithm Checking 
1. Compute TC(a) and TC(b ) . This step can be done in 

time O(k x H x IAI) using depth first search, where k 
is the maximum number of reduction schemata ap
plicable to an action, and H is the maximum num
ber of subactions in the reduction of a non-primitive 
action. 

2. Check for every action template ai E TC(a), (ai, b) 
satisfies Restriction 3.2 with respect to b. To check 
the restriction for each pair ( ai, b), one can first 
compute 

E = ( LJ possible-effects(R(ai )) - effects (ai))· 
REa(ai) 

(ai, b) satisfies Restriction 3.2 if 'vp E E and 'vq E 
preconditions(b ), p and -,q are not unifiable. Notice 
that TC(a) can have at most IAI elements. Note 
also that to compute possible-effects(R(ai)) requires 
H3 in time complexity. Thus , for all the actions in 
TC(a), the total time complexity for this step is 
O(k X H3 X IAI). 

3. Check if for every action template bj E TC(b ) , 

(a, bj) satisfies Restriction 3.3. This step is simi
lar to the previous one, and has a time complexity 
of O(k x H 3 x IAI) . 

144 

The total time complexity for running this algorithm is 
O(k X H 3 X IAI) . 

If both the second and third steps of Algorithm Check
ing succeed, then the Ordering-Induced Independence 
Property holds for the pair ( a, b). In that case, the pair 
is marked as so. Thus every pair of actions which are 
instances of a and b also satisfy the property. 

As an example, consider the actions (goto(y), buy(x)) 
in Appendix A. TC(goto(y)) = {ride-bike, take-bus}. 
Note that -,Have(Money) is an element of 

possible-effects ( R2 (goto(y))) - effects (goto(y)), 

while Have(Money) E preconditions(buy( x)), therefore, 
(goto(y), buy(x)) does not satisfy Condition-Promotion 
Restriction. 

5 A Special Case Of Schemata 
Definition 

A special case of action reduction schemata definition ex
ists, which allows one to simplify the previous checking 
algorithm. This special case occurs when all the action 
templates in A have only positive literals as their precon
ditions. Then we can impose the following restriction: 

Restriction 5.1 A non-primitive action a satisfies the 
Negation-Promotion Restriction if \IR E o( a) and \II E 
possible-effects( R( a)) such that l is a negative literal, l E 
effects(a). 

The result is given in the following corollary to theo
rem 3.4 

Corollary 5.2 Let ~ be the set of action reduction 
schemata, and A be the set of action reduction schemata 
for a planning system. Suppose for every action template 
a in A, all the preconditions of a are positive literals. If 
all the actions in A satisfy the Negation-Promotion Re
striction, then every pair of actions in the domain satis
fies the Ordering-Induced Independence Property. 

The advantage of this corollary is that it allows a set of 
action reduction schemata to be preprocessed in a more 
efficient manner. In particular, the Negation-Promotion 
Restriction only restricts the way each action is related 
to its own set of subactions in its reduction schema. For 
each element p of possible-effects(R(a)), if p is a neg
ative literal, then a check can be made to see if p is 
also in effects (a). If every action in TC( a) satisfies the 
Negation-Promotion Restriction, then a is marked as so. 
If a and b are both marked, then both (a, b) and (b, a) 
satisfy the Ordering-Induced Independence Property. To 
examine the Ordering-Induced Independence Property 
for every pair of action templates, this marking algo
rithm need only run IAI times, while in the previous 
section, the algorithm Checking has to run IAl2 times 
in order to check every pair of actions. Note that the 
action goto( x) in the shopping example does not satisfy 
the Negation-Promotion Restriction. 

6 Conclusion 

This paper presented a solution for the problem of hierar
chical inaccuracy in hierarchical planning, which occurs 



when changes to a critical condition are not appropri
ately represented at the upper levels of knowledge repre
sentation. Allowing this to occur may cause many back
trackings during planning, and thus may detract from 
planning efficiency. 

Our solution to this problem is to impose syntactic 
restrictions on the definition of the relationship between 
a high-level action and its reductions. These restrictions 
are used to check if some subactions of a non-primitive 
action can affect a condition in an unexpected way dur
ing planning. An important feature of these restrictions 
is that they are syntactic, thus enable us to incorporate 
them in a preprocess algorithm. We also demonstrate 
how the preprocessed planning knowledge can be used 
in a number of ways for more informed decision making. 

The results presented in the paper can be useful for 
automatically constructing planning hierarchies, given a 
set of primitive actions as input. Usually for a set of ac
tions, there may be several ways for building this hierar
chy, and it is not obvious which alternative is better. For 
example, it may not be clear whether a particular effect 
of an action should be considered important, and should 
be promoted to a higher level. Condition-Promotion Re
striction can be used to check which alternative hierarchy 
is superior; if one way of building the hierarchy satisfies 
the restriction, then it may be preferred. We will pursue 
this issue further in our future research. 
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A Action Templates and Their 
Reduction Schemata for a Shopping 
Domain 

Here we define part of a simplified shopping domain, 
where there is a shop, Shop, and one can go to the shop 
either by bus or by riding a bike. Below we list the 
non-primitive and primitive actions, along with a set of 
action reduction schemata. If an effect is a main effect 
of an action, then it is marked by "*". 

The following actions are non-primitive: 

1. goto(y) 
comment: goto a place y. 
preconditions={} 
effects={At(y)} 

2. buy(x) 
comment: buy merchandise x. 
preconditions={ At(shop ), Have(Money)} 
effects={*Own(x),-, Have(Money)} 

The following actions are primitive: 

1. take-bus(y) 
comment: take bus to place y. 
preconditions={Have(Money)} 
effects={-,Have(Money), * At(y)} 

2. ride-bike(y) 
comment : ride bike to place y. 
preconditions={} 
effects={ At(y)} 

Below are reduction schemata for the non-primitive 
actions. A protection interval in these definitions is a 
condition to be protected from the end of one subaction 
to the beginning of another. Also, we omit the reduction 
schemata for the non-primitive action "buy( x )". 

1. R2(goto(y)) 
actions: { take-bus(y)} 
orderings: {} 
protection intervals: {} 

2. Ra(goto(y)) 
actions: { ride-bike(y)} 
orderings: {} 
protection intervals: {} 
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Abstract 

We have built, and tested with students, 
discovery learning environments in which 
intelligent tools help them explore a 
knowledge domain and construct a rule
based system. The learner first consults a 
complete rule-based system. His goal is to 
define a correct and complete set of rules to 
achieve a task, without seeing the rules 
known to the system. 
An implementation of these concepts in the 
PRISME programming language, and its 
integration in the LOUTI design system will 
be sketched showing the generality and 
usefulness of the approach. Finally, we will 
sketch perspectives for future applications. 

1. Introduction: 
the student as a knowledge engineer. 

In many educational applications, the knowledge 
that must be acquired by the learner is a rule 
system. One can use different pedagogic strategies 
to achieve that goal: by instruction, stating the rules 
and asking the learner to memorize; by analogy, 
presenting a similar system and having knowledge 
transferred; by induction, embedding rules in a 
laboratory-like environment where they can be 
used and re-discovered [Michalsky et al. 1983]. 
Because mere interaction of a learner with a 
knowledge-base systems (KBS), or display of its 
rules, are unsatisfactory ways of acquiring its 
knowledge, early attempts have been made to build 

This research have been achieved with the support of the 
APO-Quebec research center and Tele-universite. 
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Intelligent Tutoring Systems [Sleeman and Brown 
1982; Clancey 1988]. One important unsolved 
problem is what John Self [1990] has labeled "the 
intractable student problem", that is to have the ITS 
maintain a sufficient student model to guide its 
interventions. By-passing the very need for such 
models, many AI applications to education have 
put the student in command of a discovery learning 
environment [Papert 1980; Boming 1981; Ennals 
1983; Lawler 1987; Gaines 1988]. 
Although we believe exploratory environments are 
exciting educational tools, our previous classroom 
experiments has shown the importance to go 
beyond exploration and have the student achieve a 
constructive learning process [Bordier and Paquette 
1989]. 
Our research team has spent the last three years 
both experimenting the use of generic software as 
learning tools in the classroom and building new 
tools using AI concepts and methods [Paquette 
1988]. A design system called LOUTI has resulted 
from this work [Bergeron and Paquette 1989]. It is 
essentially a set of high level tools, built on top of 
the PRISME programming system [Bergeron et al. 
1988], that can be assembled to create 
environments where knowledge bases are explored 
and constructed by an active learner. 
Acting as a knowledge engineer in a limited 
domain, the student will discover important 
variables and relations and use them to build and 
validate his own rule system. Because this is a 
difficult task, access to knowledge, processing 
tools and methodological meta-knowledge must be 
present in the computer environment supporting the 
learner. 
We advocate that this approach encourages the 
learner's motivation, attention, integration with 
previous knowledge and long-term retention. 



2. A sample environment in physiotherapy 

Based on these principles, a learning environment 
has been built for college physiotherapy student 
training. Using an ultrasonic beam machine, with 
the patient's variables in mind-- treatment's goal, 
illness status, region's depth, bone reflection 
phenomena - the technician must settle the five 
treatment variables: frequency, intensity and mode 
of the ultrasonic beam, time-table and duration of 
each application. 

2.1 The learner's knowledge base 

The learner starts with a set of observations chosen 
by the designer. Each object of this Observations's 
class has nine attributes, four from the patients file 
and the five treatment parameters. 
Typically, the knowledge to be acquired is a set of 
if-then rules of a very simple form: 

• "if the wound's depth is between 2.0 cm and 
4.5 cm, then the frequency is equal to 1.0 Mh", 
• "if the goal is to cure the illness and the state of 
the patient is chronical, then the duration of each 
application must be 5 minutes". 

The learner starts with only these two rules as 
examples and he has to build a consistent and 
complete rule-group for each of the treatment 
parameters. Such groups, also called rule subjects, 
are defined by their treatment variable and the 
patient variables it depends on. 
At any time, a current rule subject and a current 
rule is selected. These selections can be changed by 

Consultation: Observations 

Consultation Q(I Prediction 

:5 

a From your own rules 
duration • 11 

Nev cue 

Duration 

- FrequencY, 

the student, every tool available adapting to the 
new selection. The current status of the evolving 
knowledge base can always be viewed with 
presentation tools such as tables, networks or lists. 

2.2 Consulting and prediction making 

Right from the beginning, the system has a 
complete Prolog-like set of rules. They cannot be 
seen by the learner, but the results of the inferences 
based on the system's rules are accessible in a way 
similar to expert system consultation. A machine
like interface offers two modes: consultation and 
prediction. In consultation mode, the student 
simply settles one or more patient variables. As 
soon as the system can infer one or more treatment 
variables, he will immediately show them on the 
machine interface. In this way, the student can 
quickly discover which patient's variable(s) have 
influence on each parameter of the treatment and 
use these informations in his rule construction 
process. 
In prediction mode, the student settles all of the 
patient's parameters and makes a prediction on the 
value of the currently selected subject. When he 
asks for verification, the system makes its 
deductions and settles the five treatment parameters 
on the machine. It also shows the current subject's 
value that should have been deduced by the 
student's from his own rule set. 
If there are none or more than one such values, the 
system signals a problem by questions marks. 

• None of your actual rules 
makes possible a prediction 

Fil, 8811 
In this case. Furthermore your 
prediction Is Inadequate I 

SUGGESTION 
Define a new rule or modify 

f':::il on eHlstlng rule to make It 
~ more general. 

Goal: I analgesic I 
Status: ~cal J 
Depth: [from Oto 2) 
Bone reflection: no VeIU'y_ 

.-.,------,,-'o -,. 

TIME-TABLE 
D ence-•--1 
Otvlc•-•-••1 
181 .... Z dogs 

Figure 1 - Consultation and prediction interface 
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The student can then ask for advice. In the example 
of the above figure, he has received a suggestion to 
use the completeness tool because the chosen case 
is not covered with any yet defined student rule. 

2.3 Simplifying links and defining rules 

Consultation mode normally leads to link 
identification between variables. The next figure 
shows a graph displayed by a typical learner at the 
beginning and at the end of a link simplification 
using the link modification tool. 

Figure 2 - Link simplification. 

Simplifying dependency links in this way has 
many advantages. In particular, it makes the rule 
definition and redefinition process more focussed. 
Building a new rule on duration with simplified 
variable links reduces the choices available, and 
error possibilities, for the rule's attributes. 

2.4 Validity and Completeness Tests 

The prediction mode will normally lead the student 
to validity or completeness tests. If a student 
suspects one of his rules to fail some observations 
or contradict another rule, he can ask for a validity 
diagnosis. From the validity window, he can ask 
for a table of examples and/or counter-examples. 
He can also ask for advice from the system. 
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In the following example, the system says his rule 
is free from counter-example but is contradicted by 
another rule, so he should check the validity of the 
latter and modify or destroy it if necessary. 

The rule Is uolld 
~ Uolldlt!1: rrequenc11-2 liiiiiilil ...... 

ii IIIJICII jrrequency-2! for nil the cnses 
but It Is In e Is verified In !561. ! of the cues 
contradiction 
with other rules • 1s contradicted 1n @!] of the cases 

SUGGESTION e gives different va lues from the 
Keep the seclected ones obtained from the 
rule ns such but following rul es: @ test the uolldlly of lfrequency-4 

~ ench rule In 
contredlctln with It 

Figure 3 - Validity test interface 

The next figure shows a completeness test for the 
duration subject. A grid gives the attributes covered 
by each rule in the currently selected rule-group. In 
this case, one can see that many cases are covered 
by none of the actual rules. For example the only 
rule covering the case "chronical" (Ch) is rule 
"duration-4". In that case, when the goal is 
anything except "cure" (Cu), no rule is covering. 

Rules 

Ourotlon-6 
Ourntlon-5 
Durotlon-4 
Ourntlon-5 
Ourotlon-2 
Ourntlon-1 

Couern e: Durntlon 

Figure 4 - Completeness test interface 

On the other hand, many rules are useless. For 
example, if a comparison is asked between rule 
duration-6 and duration-5, a Venn diagram will 
appear showing the first to be a particular case of 
the second. If asked for advice, the system will tell 
to eliminate all these useless rules so a clearer 
coverage picture can be obtained on the grid. 



• Rule Ouretlon-6 Is less general 
then rua Duretlon-5 

SUGGEST ION 

Uerflfy the ualldity of this last 
rule. If It Is, discard the less 
general rule Durotlon-6 

Figure 5 - Rule comparison 

At any time some of the student rules can be 
partially or totally false or there may exist patient's 
cases not yet covered by any rule. The student is 
guided to discover such problems in many ways. 
First, using the rules he has already built, he can 
make predictions for different cases and see what 
happens. The system has enough knowledge to tell 
him if he applies his rules correctly and if the 
results coincide with those deduced by the 
system's own rules. He can also make suggestions 
if two or more student rule are not consistent or if 
none exist for to the case chosen by the student. 
This in tum can lead to validity and consistency test 
on the selected rule, to completeness check on all 
the rules in the selected rule-group (the selected 
subject) or simply a new look at the observations, 
especially at the rule's examples or counter
examples. One of these processes will in turn 
induce the student to make changes to links 
defining rule-schema and to modify one or more 
rule, define new rules or destroy old ones. 

3. Integration in the LOUTI design system 

The present work has resulted in an extension of 
the knowledge-base concept in LOUTI. We added 
rule-groups and rules, giving access to rule 
definition and processing by the learner in an 
integrate way with facts and concepts processing 
already present. 

3.1 Knowledge Bases in LOUTI 

The LOUT! design system gives the user (learner 
or designer) the possibility to build knowledge 
bases. The user can: 

• define one or more classes grouping entities; 
• add, delete or modify the class attributes; 
• add elements to any class; 
• define class structures: sets, relations, 
rule-groups and rules. 

This knowledge base concept is implemented as 
PRISME objects.The main objects are: 

• Knowledge-base: maintains the list of classes, 
sets, relations, rule-groups and rules defined in 
the KB; holds a currently selected type and 
relation; possesses functions to create, destroy or 
modify the KB' s components. 
• Classes: maintains a class functions (attributes) 
list and its elements list; holds a selected set, a 
selected rule-group, a list of independent and 
dependent variables (attributes); possesses 
functions to create, modify and destroy attributes 
and sets and to add elements. 
• Sets: holds its class name, its definition 
predicate, its element lists and the relations 
defined on it. 
• Relations: holds the the two sets (not 
necessarily of the same class) on which the binary 
relation is defined, its definition predicate, and the 
list of its couples. 
• Rule-groups: maintains a list of its antecedent 
and consequent attributes, the class it is defined 
on, its rules list, the class elements covered by 
one of its rule and the current selected-rule; 
possesses functions to create, destroy or modify 
one of its rules; a rule-group can be destroy only 
if its rule list is empty. It can be modified by 
changing the antecedent and consequent lists, 
only if these list are supersets of all the attributes 
actually used in the rule-group's rules. 
• Rules: holds its rule-group, its antecedent(if) 
and consequent(then) predicates; possesses 
functions to compute the class elements it covers 
and the elements on which it contradicts other 
rules; constructs the list of its examples, counter
examples and non-contradictions over the 
currently selected set of observations. 
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3.2 Tool management 

Another very important object is "tool
management". It is responsible to alert every active 
tool of any modification of the knowledge base by 
the student These active tools are chosen by the 
designer in a library which is also a hierarchy of 
PRISME objects. 
Each library tool is linked to one of the knowledge 
base components. For example, a class can be se~n 
in a set-subset tree; each set can be presented m 
table or graphic form, binary relatio~s ca? be 
viewed as networks; rules can be shown m a hst or 
evaluated using a validity rule; rule-groups can be 
shown on a completeness grid and their rules 
compared with a comparison tool. 

4. Rule attribute computation 

Some of the rule attributes, for instance examples 
and counter-examples, are computed by simply 
matching of the predicates against the observati~n 
set, giving the student another view. of his 
knowledge base. But unless the observations. are 
very well distributed, which is not always feasible, 
they do not give reliable in~uction in~icators on 
which the system could base its suggestions to the 
student. 
For this reason, we have developed algorithms to 
compute universal examples and counter-examples, 
coverage of a rule or divergence between rules, 
based on the student's rule syntax instead of the 
observation set. A first algorithm constructs a 
solution set for a predicate in a compact interval 
notation. A second algorithm computes a measure 
of the solution set from this interval notation. 
But first, we will give a precise definition of some 
of the rule attributes we need to compute. 

4.1 Definition of some rule attributes 

A rule is an expression of the form 
r(x): if p(x) then q(x) 

where p(x) and q(x) are predicates constructed in 
the usual way from a sublist of the rule's class, 
PRISME relations and functions, and logical 
connectives. 
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The Cartesian product of value sets for attributes 
appearing in the rule is called the set of cases. 
Each rule defines on this set of cases C three 
universal characteristic sets: 

CX(r) = P \ Q, the set of counter-examples in C 
EX(r) = P n Q he set of examples in C 
NC(r) = C \ P the set of non-contradictions in C 
- Note that P and Q are the solution-sets on C of 
predicates p and q respectively. 

The coverage of a rule r is the subset of C for 
whose elements the condition predicate p holds. 

Cov(r) = P = EX(r) U CX(r) 
The coverage of a rule-group is the union .of t~e 
coverage of each of its rules.The rule-group 1s said 
to be complete if and only if its coverage is equal 
to the rule's cases. 
Last, the divergence between rules r1 and r2 of the 
same rule group is the set of cases for which these 
rules have their condition predicate satisfied, but 
not their conclusion predicates together. 

Div(r1,r2) = P1 nP2 n[C\ (Q1 nQi)] 
Two rules of the same group are consistent if and 
only if their divergence is empty and a rule-gro~p 
is called consistent if and only if any two of its 
rules are consistent together. 

4.2 The interval form algorithm 

The interval form algoritlun takes a predicate as 
input and produces its solution-set in a compact 
interval form. 

a) First, each attribute appearing in the predi?ate is 
assigned a "universal" interval of values m the 
following way: 
• if it has bounded continuous values, the interval 
is defined by the lower and upper bounds; . 
• if it has discrete values, they are enumerated m 
an ordered list and ranked to produce an interval. 
b) Next, depending on the attributes and relations 
it uses, each atomic predicate is assigned a list of 
sub-intervals for each attribute that represent the 
cartesian product of the sub-intervals. 
c) Finally, the logical connectives linking the 
atomic predicates are taken in account, and 
simplification rules are used, to produce a three 
level list of intervals representing the solution-set 
of the input predicate. 



Applying this algorithm to different predicates, 
makes possible a computation of the main rule
attribute, independently from the observations set. 
For instance, applying the algorithm with input 
predicate p 1 (x) gives the coverage of rule: 

q(x): ifp1(x)thenq1(x). 
Now lets take a second rule: 

r2(x): if P2(x) then q2(x). 
Applying the algorithm with input predicate 

Pl (x) and P2(x) and not (q1 (x) and q2(x)) 

yields the divergence between the two rules, that is 
an interval form representation of the set where 
both rules contradict. 
Then, computing a rule's divergence with all the 
system's hidden rules, gives a universal set of 
counter-examples of that rule in interval form. 

4.3 Measure of solution sets 

On the list of intervals resulting from the interval
form algorithm, a measure can be define 
associating a real number to the solution set of the 
input predicate. 
Using this measure the following rule attributes are 
computed: 

a) The utility of a rule, that is the percentage of 
elements covered by the rule over the set of all 
elements. 
b) The invalidity of a rule, that is the percentage 
of the rule's universal counter-examples over 
the set of all elements. 

For example, the depth attribute in the 
physiotherapy environment has real values in the 
bounded interval [0,7], the frequency attribute has 
discrete values <0.75, 1, 3>. 
For a rule like: 

~f depth(x) > 3.5 then frequency(x) = 0.75, 
the mterval-form algorithm will associate to the 
condition predicate the interval [3.5, 7] 
corresponding to the antecedent of the of the 
predicate. The measure of this interval is (7 - 3.5) 
while the measure of all the possible values is 7. 
For this rule, the utility will be 

(7 - 3.5) * 100 / 7 = 50%, 
showing the rule has a good coverage and is quite 
useful, which doesn't mean of course it is valid. 
On the other hand, computing with the interval
form algorithm the divergence of the rule with the 

system's hidden (valid) rules: 
if depth(x)~ 2.0 then frequency(x) = 3 
if 2.0 < depth(x) < 4.5 then frequency(x) = 1 
if depth(x) > 4.5 then frequency(x) = 0.75 

yields the incompatibility interval list: ([3.5, 4.5], 
<0.75, 1, 3>). Measuring this interval list over the 
interval list of all possible values gives an invalidity 
measure of 

(4.5 - 3.5)*3*100/21 =14.3 %. 
In other words, the rule is wrong 14.3 % of the 
time. 

5. Embedding heuristic meta-knowledge in 
tools 

With the interval-form algorithm and the different 
measures on the resulting solution-set the rule 
attributes lie on solid grounds. It is then possible to 
ei:nl?ed heuristic meta-knowledge in different tools, 
g1vmg help to the learner in his rule induction 
activity, independently of his observation set. 
In the physiotherapy environment, a set of about 
thirty meta-rules are associated with the prediction, 
validity, completeness and comparison tools. Each 
meta-rule uses the above rule attributes and others 
to capture properties of the student's knowledge 
base at any moment, and to build appropriate 
messages to the student. 
Unlike the usual practice in Intelligent Tutoring 
Systems, the decision for advice display is up to 
the student. Each of the tool has a private menu in 
its window bar containing an option to ask for a 
methodological advice. 

5.1 Heuristics for the validity tool 

As a first example, let's look back at Figure-3 in 
section 2 presenting one use of the validity tool in 
the physiotherapy environment. This tool can list 
all the rules inconsistent with the selected rule 
Frequency-2 with the help the interval-form 
al~orithm. Each rule having non-empty divergence 
with rule Frequency-2 is included in the list. 
Using the suggestion facility, the student has 
triggered the following meta-rule: 

(iff (and(=cex+ 0) (not (string=? chaine))) 
(message 
"The rule is valid for all the cases but it 
is not consistent with other rules. 
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SUGGESTION: Keep the selected rule 
but test the validity of all inconsistent 
rules.")) 

This rule has fired because both of its conditions 
are met: 

( = cex+ 0) means that the invalidity measure is 
0 so there. can exist no counter-example of the rule, 
even outside the small observation set the learner is 
currently using. 

(not (string=? chafne '"')) means that the 
inconsistency list is not empty; there are rules in the 
same rule-group, inconsistent with the selected rule 

5.2 Heuristics for the completeness tool 

Lets look now at Figure-5 in section 2, showing 
the comparison Venn diagram between rule 
Duration-6 and rule Duration-5. The four 
percentages given on the lower part of the figure 
are computed with the measure defined on the 
interval form of each subset involved. From left to 
right: 

• rs-re. is the percentage of elements covered by 
rule-A but not rule-B; 
• inter: is the percentage of elements covered by 
both rules; 
• re-rs: is the percentage of the cases covered by 
rule-B but not rule-A; 
• exter = 100% - (rs-re + inter + re-rs) is the 
percentage of cases not covered by either rule. 

Now in the case shown on Figure-5, we have rs-re 
= 0 and re-rs ,;:: 0. The conditions of the following 
meta-rule are being met, 

(iff (and(= rs-re O)(not(= re-rs 0))) 
(message 
"Rule A is less general then Rule B. 
SUGGESTION: Verify the validity of this last 
rule. If it is, discard the less general rule A.")) 

When the student will ask for a suggestion, he will 
have the corresponding message displayed. 
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6. Conclusion: future developments. 

The LOUT! design system components presented 
here can be labeled as a computer-assisted 
induction system. It is inspired by some aspects of 
the scientific discovery process [Holland et al. 
1987; Langley et al. 1987]. This is why we have 
used terms like "observation set" or "prediction". 
One way to extend the system is to enable it to 
tackle other forms of assertions used in scientific 
in~ucti.on; for . exampl.e, universally and 
existentially quantified relations between variables. 
Another issue is generality. The rule component of 
the knowledge base and the associated domain are 
independent. For example, a similar environment 
has been experimented in an elementary school. 
With a slight adaptation to the interface, it has 
enabled pupils to write rule systems for translation 
from the Roman numeration system to the decimal 
system. 
Another aspect of the generality problem is the rule 
predicates complexity. There is a trade-off between 
the user's freedom of expression and the degree of 
support by the system. We have decided to let the 
designer choose between two possibilities: 

1- To limit the user to one "then" predicate of 
th~ fom_i <:attribute=value> an~ to an "if' predicate 
wtth a hmtted number of atomtc clauses containing 
no functions. These limitations are needed for the 
interv~l-form algorithm to perform computations 
essential to many tools. Other limitations are also 
needed by interface considerations. 

2- To have the student write complex predicates 
he chooses in the very general formal language 
used in LOUT!. In this option, some of the tools 
relying on the interval-form algorithm may not be 
available to the student. · 
Finally, beside its training applications, the system 
we have presented can be useful for expert-system 
development. The tools we have developed, and 
others we have in mind, are well adapted to view 
different aspects of a small set of rules, before they 
are embedded in a larger system. This is another 
extension of the present research we will explore in 
the coming months. 
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Abstract 

MENTONIEZH (the Breton word for geom
etry; a combination of MENT, measurement, 
and ONIEZH, science of) is an expert sys
tem designed to help secondary school stu
dents solve problems in geometry. The sys
tem is organized around four components, the 
first of which is figure construction by the stu
dent. The student uses the capabilities pro
vided by the system to construct a geometric 
figure which conforms to a logical specification 
of the figure given by the teacher. The pedagog
ical objective of this component with its accom
panying activities is to assure that the student 
has a solid understanding of the hypotheses in
volved in a problem before proceeding further 
with its solution. 
Attempt is made to express criteria which as
sure that the construction of a figure conforms 
to a previously given logical specification of 
it. The approach taken is first to associate a 
logic formula to the constructed figure and an
other to the specification of the figure, and then 
to formulate the desired correctness as a rela
tionship between these two formulas. Usually, 
a constructed figure must represent not just a 
particular case, but rather exhibit the gener
ality intended by the given specification of it. 
Showing the figure is correct with respect to the 
specification seems simpler when a human does 
it than when one attempts to model this pro
cess. To obtain a satistfactory and decidable 
formulation of correctness, we use a method for 
constructing a well-founded extension of one 
fomula (the specification) with respect to the 
other (the figure). In this way, the required 
equivalence between a figure and its specifica
tion can be adequately expressed and verified. 

1 Introduction 

The system MENTONIEZH [Allen et al., 1985; Nicolas, 
1989] was conceived at LR.LS.A. as a help to secondary 
students in solving problems in geometry. It consists of 
four components: 
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- Figure Acquisition: the student constructs a figure 
which conforms to the teacher's specifications. 
- Figure Appropriation: the student or the system itself 
can make graphical changes to a figure while preserving 
or not its logical properties. The student can discover 
interesting invariant as well as observe graphically the 
impact of suppressing a hypothesis. 
- Property Exploration: the student expresses his opin
ion on possible interesting properties suggested by the 
system using theorems furnished by the teacher as aids. 
- Proof Organization: aided by a list of relevant the
orems provided by the teacher and stimulated by rela
tionships and properties discovered during activities per
formed while using the three preceding components, the 
student constructs a proof which will be verified by the 
system. 

This paper focuses exclusively on the first component 
of the system. Pedagogically, the figure acquisition com
ponent helps assure that the student has a solid un
derstanding of the hypotheses of the problem. It does 
this using a graphics language which asks the student 
to "paraphrase" graphically the hypotheses of the prob
lem which are normally presented to him in a natural 
language statement of the geometry problem under con
sideration. We believe that success at this activity indi
cates a reasonable understanding of what the problem's 
hypotheses are. 

One question which arises here pertains to the crite
ria which allow verification that a student's graphical 
paraphrase (i .e., the class of figures characterized by his 
constructed figure) conforms to what the teacher has in 
mind (i .e., the specifications). Before addressing this 
question, we must first indicate the means given the 
student to construct a figure and the means given the 
teacher for specifying the intended class of figure. For 
constructing geometric objects, our interface provides a 
language with simple drafting capabilities (e.g., objects 
constructed using pencil, ruler, compass, protractor). 
Another language, a formal language similar to those 
utilzed in classroom geometry textbooks, is provided for 
specifying objects and logical relationships among them. 
Synopses of these two languages are presented in section 
2 and 3, respectively. 

Finally, a third language is defined for expressing pre
cisely the correctness of a constructed figure with respect 
to a given specification. This language which is summa-



rized in section 4 is a logic-based language and is used 
to construct a formula F (for Figure) to describe the 
student's figure and to construct another formula S (for 
Specification) to represent the teacher's specification. A 
set of axioms, called a TIG (Theorie Instrumentale de la 
Geometrie), is associated with this language and encap
sulates the basic geometric knowledge that the teacher 
assumes students to have. 

Section 5 contains the criteria that the desired correct
ness must satisfy. On the one hand, the teacher wants 
the student to construct the most general type of figure 
satisfying the specifications. This means the student's 
figure satisfies all logical properties given in the specifi
cations but not additional logical properties not found 
in the speccification. For example, if the specifications 
indicates just two lines intersecting, one doesn't want 
the student to draw them perpendicular to one another; 
one really wants a certain kind of equivalence between 
figure and specifications. On the other hand, one cannot 
exclude a priori the student from creating in his figure 
more geometric objects (supplementary ones) that are 
given explicitly in the specification. The situation is fur
ther complicated by the need to remain, for reasons of 
decidability, in a finite universe of objects. In section 6, 
we show satisfaction of the criteria by creating an ex
tension of the specification formula as a function of the 
construction. 

In this paper, our focus is not on automatic theo
rem rroving [Gelernter et al., 1963; Coelho and Pereira, 
1979 nor on aiding problem solving in geometry [An
derson et al., 1985; Chouraqui and Inghilterra, 1987; 
Py, 1990]. Rather, we are trying to make more precise 
what a teacher means when he says a constructed figure 
is a correct paraphrase of what a problem statements 
intends. 

2 SCL (Student Construction 
Language) 

This language provides the interface with which a stu
dent (1) indicates on a menu what object (point, line, 
ray, segment, circle) he wants to draw on the graphic 
tablet; (2) draws the object; and (3) expresses the logical 
properties (name, belonging to another object, parallel 
to, perpendicular to, ... ) of the drawn object with re
spect to already-drawn objects. Details concerning both 
the functionning of the system and its logical capabilities 
can be found in [Nicolas, 1989]. What is important to 
point out here is that each operation must be realizable 
using drafting table instruments (ruler with translation, 
square, compass) . Consequently, the student is limited 
in his constructions. For example, he cannot construct 
a line passing through three points although he could 
create a line and afterwards three points belonging to it. 

As an example, consider the statement: Let ABC be 
a right triangle at A. Let H determine the height coming 
from A and let M and D be the midpoints, respectively, 
of the sides BC and AB. [Students are usually asked to 
show there is a circle passing through A, H, M and D 
given the preceding statements as hypotheses.] 

C 

D 

A B 

A possible construction by the student might be en
coded using the following sequence of steps: 

OBJECTS and PROPERTIES 
point name A 
point name B 
segment with endpoints A and B 
segment with endpoints A and C with support perpen
dicular to support of preceding segment 
segment with endpoints B and C 
line passing through A and perpendicular to support of 
preceding segment 
point name H belonging to line (BC) and to preceding 
line 
point name M belonging to segment [BC] and at distance 
from B equal to one-half IBCI 
point name D and belonging to [AB] at distance from A 
equal to one-half IABI 

3 CDL ( Classroom Description 
Language) 

This language is similar in syntax to those used in text
books [Deledicq et al., 1983] to decribe geometric prop
erties and is to be used by the teacher to specify the 
hypotheses of the problem. Basic elements are given be
low. 

TERMS: 
x,y, ... (lower cases): identifiers designating unnamed ob
jects 
A,B, ... (upper cases): identifiers designating named ob
jects 
(pq) : line passing through points p and q 
IPq l: distance between points p and q 
2d, 1 \ 2d: twice, one-half the distance d 
[pq): ray with origin p passing through q 
[pq] : segment with endpoints p and q 
centre( c): center of circle c 
rayon(c): radius of circle c 

PREDICATES: 
point(p) : p is a point 
droi te(l) : l is a line 
demi-droite(h) : h is a ray 
segment(s): sis a segment 
cercle( c): c is a circle 
distance(d): dis a distance 
x = y: x and y are the same objects 
x E y: point x belongs to y 
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11 II 12: lines 11 and 12 are parallel 
11 1- 12: lines 11 and 12 are perpendicular 
memesens(h,h'): rays h and h' have the same direction 
invsens(h,h'): rays h and h' have opposite directions 
dl < d2: distance dl is less than distance d2 
dl > d2: distance dl is greater than distance d2 

Example: The teacher's specification for the figure to 
be constructed in the preceding example could be given 
in CDL as a conjunction of the following atomic formu
las: 

[AB] 1- [AC], (AH) 1- [BC], H E (BC), M E [BC], 

IBM I = IMCI, D E [AB], IADI = IDB I 

4 LDL (logical Description Language) 

This language provides a commom medium in which 
both the figure and the specification can be represented. 
It contains six type predicates and ten property predi
cates which are described below. 

TYPES: 
point(p ): satisfied if p is a point 
droite(l): satisfied if l is a line 
demi-droite(h,o,l): satisfied if h is a ray with origin o 
and support l 
segment(s,pl,p2,l): satisfied ifs is a segment with end
points pl and p2 and with support l 
cercle( c,o,r ): satisfied if c is a circle with center o and 
with radius r 
distance( d): satisfied if d is a distance 

PROPERTIES: 
appdr(p,l): satisfied if the point p belongs to the line l 
appdd(p,h): satisfied if the point p belongs to the ray h 
appseg(p,s) : satisfied if the point p belongs to the seg
ments 
appcc(p,c): satisfied if the point p belongs to the circle 
C 

memesens(hl,h2): satisfied if the rays hl and h2 have 
the same direction 
invsens(hl,h2) : satisfied if the rays hl and h2 have op
posite directions 
par(ll ,12): satisfied if the lines 11 and 12 are parallel 
perp(ll,12): satisfied if the lines 11 and 12 are perpendic
ular 
demi dist( dl ,d2): satisfied if the distance dl is equal to 
one-half distance d2 
infdist( dl,d2): satisfied if the distance dl is less than the 
distance d2 

The figure construction previously described using 
SCL could be associated with the LDL formula F: 
point(A) point(B) point(C) point(H) point(M) point(D) 
droite(ll) droite(l2) droite(l3) droite(l4) 
distance( dl,B,M) distance( d2 ,B,C) distance( d3,A,D) 
distance( d4,A,B) 
segment(sl ,A,B,11) segment(s2,A,C,12) 
segment(s3,B,C,13) 
appdr(H,13) appdr(H,14) appdr(A,14) 
appseg(M,s3) appseg(D,sl) 
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perp(ll,12) perp(l3,14) 
demidist(dl,d2) demidist(d3,d4) 

The specification previously described in CDL could 
also be associated with the LDL formula S: 
point(A) point(B) point(C) point(H) point(M) point(D) 
droite(l) droite(l ') droite(l") droite(l" ') 
distance( d,B,M) distance( d,M,C) distance( d',A,D) dis
tance( d" ,D,B) 
segment(s,A,B,l) segment(s',A,C,l') segment(s" ,B,C,l") 
appdr(H,l") appdr(H,l" ') appdr(A,l" ') 
appseg(M,s") appseg(D,s) 
perp(l,l') perp(l" ,l" ') 

F is obtained by associating with each object as it is 
- being constructed an object predicate and one or more 

property predicates. In a similar way, S is constructed 
by associating with each object from the CDL notation a 
type predicate and property predicates which correspond 
to the explicitly expressed logical relations. 

5 Figure Correctness Criteria with 
respect to a Specification 

There are four such criteria. Each criterion has as
sociated with it a key question ( and in one case, two 
questions), the answer to which allows one to determine 
whether or not the criterion is satisfied. 

(1) Graphical Correctness: Does the drawn figure con
tain all the geometric objects intended by the teacher in 
his specification? 

Our resolution to this question is simple: the figure 
must contain all objects on which the specification op
erates. However, one must be cautious as to what is 
implied in the construction of composed objects. In 
the preceding example, the specification in CDL con
tains both [BC] and (BC) . Geometrically speaking (BC) 
is a component of [BC] . In LDL, the use of the predi
cate segment(s" ,B,C,l") expresses explicitly that the line 
l" associated with (BC) belongs to the term represent
ing [BC]. Consequently, if the student first constructs 
the segment [BC], (which is translated by the predicate 
segment(s3,B,C,13) in F), then he will not have to con
struct the line (BC). On the other hand, the reverse is 
not true. Even if in a specification one finds both [BC] 
and [BC), the construction of [BC] beforehand does not 
assure that of [BC) since a ray is not a parameter of 
segment(s,pl,p2,l) . 

(2) Consistency of figure F and of specification S: Are 
F and S coherent? 

One must be sure that there are not terms in S that 
could imply contradictory information . For example, if 
Euclid's axiom is allowed, one must exclude a specifica
tion for which the corresponding LDL formula S implies 
that two distinct lines which intersect in a point are par
allel. One must also be sure that the LDL formula F 
corresponding to the construction is not contridactory. 
Of course, regardless of how accurate the graphics are, 
it is always possible for the student to draw, incorrectly, 
two lines parallel to a third line and passing through a 
common point. 



(3) Constructibility: Does at least one figure exist that 
can be constructed and that is correct with respect to 
the specification? 

There are specifications for which there are no figures 
constructible with ruler and compass. For example, the 
trisector of a 60° angle is defined by the specification: 
0 = centre(C), Ml E C, M2 E C, M3 E C, M4 E C 
IM1M41 = rayon(C), 
IM1M21 = IM2M31 = IM3M41 
yet is not constructible with ruler and compass. 

(4) Correctness of F with respect to S: (i) Does F sat
isfy the conditions specified in S? (ii) Is F not particular? 

This criterion is complicated by the fact that it is un
reasonable to prohibit a student from constructing more 
objects than are used in S. For example, consider the 
specification S and two constructions F and F', all three 
encoded in LDL: 

S = A E 11, B E 11, M E 12, B E 12, M f= A 

F = A E 11', BE 11', ME 12', BE 12', A EL, MEL, 
M f= A 

L 

F' = A E 11', B E 11', M E 12', B E 12', A E L, M E 
L, M f= A, L ..L 11' 

L 

Note that F satisfies both 4(i ) and 4(ii), whereas F' 
satisfies only 4(i) and not 4(ii). However, both F and F' 
contain more objects than are referred to in S. 

6 Logical Expression of the Correctness 
Criteria 

In this section issues raised by each question related to 
the correctness criteria are elucidated . The order of 
treatment of the questions is different than in section 
5, beginning with the consistency criterion. 

Consistency. Here we need to introduce a set of ax
ioms (TIG) representing the student's basic knowledge 
in geometry. Then consistency of F and of S is expressed 
by two conditions: 

(I) TIG ,S 'rf D 
(II) TIG ,F 'rf D 

where D represents the empty clause. 
In order for (II) not to cause rejection of F as contain

ing contradictory information when, in fact, it does not, 
we must choose TIG that it is contained in the actual 
theory of geometry being used in classrooms. [It would 
be easy just to verify individually that every axiom of 
TIG is a correct formula of geometry.] 

In order for conditions (I) and (II) to be effectively 
verified, TIG must be decidable. And, in order for TIG 
to be modified and calibrated to the level of the student, 
restriction that bear upon it must remain simple. We 
have chosen the restriction of Bernays-Schonfinkel [Ack
erman, 1954], which provides for universally quantified 
formulas not containing function terms (the Herbrand 
universe remains finite). For example, an axiom such as: 

V x, P(x) => (3 y, Q(y)) 

is not allowed (skolemization would introduce function 
terms). 

Constructibility. To show that there exists (or not) a 
figure constructible with ruler and compass satisfying a 
given specification is a difficult problem [Carrega, 1989], 
but a decidable one [Lebesgue, 1989]. However, in our 
case, rather than employ complicated means, it seems 
preferable in our teaching context to ask the teacher 
who has drawn up the specification to put himself in 
a student's place and to provide at least one correct con
struction. However, note that even if SCL can be used 
to produce a drawing, thereby almost certainly guaran
teeing a construction by ruler and compass, this does 
not constitute a formal proof that a figure can be con
structed by ruler and compass. 

Figure Correctness with respect to the Specification 
and Graphical Correctness. Let S(a,a', ... ) denote the 
Formula S where a, a',... are the unnamed objects of 
S. Let OF be the set of objects of F. Criterion 4(i) is 
expressed by: 

TIG, Ff- 3 a,a', ... (S(a,a', ... ), a E OF, a'E OF, ... ) 
Note that this formulation takes into account a part 

of the graphical correctness criterion (1). In fact, the 
formulation requires that all the objects present in S also 
be found in F and, therefore, have been constructed by 
the student. 

Observe that the unnamed objects of S must associ
ated with distinct objects in OF - ONS, where ONS 
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is the set of named objects of S. For example, consider 
a specification for a triangle ABC with heights hl, h2 
and h3 emanating respectively from A, B and C, and 
with the points of intersection of hl and h2 and of h2 
and h3 . It is clear that a correct construction must con
tain the creation of these two intersection points ( even 
if geometrically they are the same). Conditions such as 
these can be verified easily by letting the predicate Tou
sdifferent( a,a', ... ) model the fact that a, a', ... are all 
syntactically different. Then correction criteria 4(i) and 
(1) become 

(III) TIG, F f- 3 a,a', ... (S(a,a', ... ), a E OF - ONS, 
a'E OF - ONS, ... Tousdifferent(a,a', ... )) 

Particularity. Establishing a criterion associated with 
this question is complicated by two requirements. On the 
one hand, one cannot forbid the student from creating 
more objects than are given. On the other, the axioms 
of TIG are in a form such that the universe of objects is 
fixed (being the set of OF). 

Consider µ(S) whereµ is a substitution { a= .. ,a'= .. , ... } 
such that (III) is satisfied. We seek an etension S* of 
µ(S) with respect to F by adding geometrically reason
able properties to µ (S) for objects belonging to OF -
OS. So, s• and F operate on the same vocabulary of ob
jects. Intuitively, adding a geometrically reasonable new 
object to a formula comes down to adding to the formula 
those minimal properties corresponding to a geometric
instrument construction of the object in relation to ob
jects present in the formula. Then correction criteria 
4(ii) becomes 

(IV) TIG, S* f- F if there exists an extension S* of 
µ(S) with respect to F. 

Example: RecaU the specification S and the two fig
ures F and F' presented in the example found at the end 
of Section 5. Let µ = {ll=ll', 12=12'} and define S* = 
µ (S), droite(L), A E L, M E L. 
s• and F satisfy (IV) yet S* and F' do not satisfy (IV). 
Moreover, µ (S) admits two other simple extensions S*' 
and S*" with respect to F' and neither of these satisfies 
(IV): 

S*' = µ (S), droite(L), A EL, L .l..11' 
S*" = µ(S), droite(L), MEL, L .l.. 11' 

The construction of an extension S* is defined using 
so called "extension axioms" of the type: V yl,y2, ... , 
CE(yl ,y2, ... ) => (3 x, Propmin(x,yl,y2, ... )). For each 
type of object x, one can introduce such axioms to model 
the unique construction of x using the construction in
struments of geometry and constructing from the objects 
yl,y2, .... For example, associated with the construction 
of a line, one has the extension axiom: 

(*) V pl,p2 pl:;i:p2 => (3 I, droite(l), plEl, p2El) 

The extension S* is then constructed using the se
quences ES; and OS; such that: 
ESo = µ(S) 
ES;+1 = ES;, Propmin; 
ESn = S* 
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OSo = OS 
OS;+1 = OS; u ob; 
OSn = OF 
where Propmin; and ob; are determined in the following 
two ways: 

(i) if there is o; E OF - OS; and if there is an extension 
axiom such that ( a) and (b) are satisfied: 

(a) ES;, R(o;) => (3yl,y2, ... , Propmin(o;,yl,y2, ... )) 
where R(o;) is the conjunction of all litterals of F where 
o; appears alone or with some object belonging to OS; . 

(b) ES;=> µ;(CE(yl,y2, .. . )) whereµ;= {yl= .. , y2= .. , 
... } satisfies (a) then Propmin; = µ;(Propmin(o;, yl, 
y2, ... )) and ob; = { o;}. 
Example: Let us return to the last example and exten
sion axiom * above. Then, using *, we have: 
oo = L 
ESo = µ(S) 
R(oo) = droite(L),A E L, M E L 
µo = { pl = A, p2 = M } 
CE(pl,p2) = pl :;i: p2, 
µo(pl :;i: p2) = A :;i: M 
Propmin(L,pl,p2) = droite(L), pl E L, p2 E L. 
Propmino = µo(Propmin(L,pl,p2)) = droite(L) A E L, 
MEL. 
Since OS1 = OF, we obtain 

S* = µ(S), droite(L), A E L, M E L. 

The extension S*' and S*" with regard to F' are obtained 
by considering an extension axiom signifying that there 
exists a unique line passing through a point and perpen
dicular to a line (no matter what the point and the line 
may be). 

(ii) For no element of OS; does there exist an exten
sion axiom such that (a) is satisfied. This signifies that 
no object of OF - OS; is uniquely constructed from the 
objects of OS;. One can then add all the properties of 
these objects to ES;; so let 

Prop min( o; = conjunction of all predicates of F 
depending on objects belonging to OF - OS; 

OS;+l = OF. 

Note that (1) can be satisfied without (2) being satis
fied. In this case, one cannot construct an extension and 
F is not acceptable. For example, let 

S = droite(L), droite(L') 
F = droite(L), droite(L'), P E L, P E L' 

with extension axiom 

V 1, l', -,(J Ii l') => (3p,p', pEl, p'El'). 

Since -,(L II L') cannot be deduced from S, the construc
tion F is not acceptable. 



7 Conclusion 

We have identified four conditions for expressing the cri
teria of figure correctness with respect to a specification. 
It is natural to look at the characteristics of the set of 
axioms of TIG in the context of the student knowledge 
TIG represents and from the point of view of modifica
tions the teacher might wish to make. In addition, we 
need to look at the problems involved in implementing 
the verification of these four conditions. 

The first question is how powerful the set of axioms 
TIG should be. It seems desirable to be able to detect 
and point out reconstruction of clearly useless objects 
and redundant definitions. For example, if a student 
has constructed a segment [AB] and he then constructs 
the line (AB), it is desirable to indicate to him that the 
second construction is unnecessary. In addition, if the 
teacher has named M (resp. M') as the intersection point 
of hl and h2 (resp . h2 and h3), then it is undesiderable 
to allow TIG to permit a construction where the student 
indicates M ( resp. M ') is the intersection point of h2 and 
h3 (resp. hl and h2) . 

We have manually identified about forty axioms as a 
base, called TIG0 , from which we hope a useful, robust 
TIG can evolve. Our method has consisted in itemizing 
all the apparently elementary cases in which the truth 
of a predicate can be implied. We have an approach d 
la Horn; however, some clauses contain negations. With 
TIG0 it is not possible to cause the deduction M = M' 
in the preceding example. However, the problem of cal
ibrating TIG remains very difficult especially since we 
lack of a complete theory of geometry encoded in first 
order logic terms with predicates similar to those in LDL. 
Our situation is different from that in [Hilbert, 1971] and 
in [Lelon15-Ferrand, 1985]. There is an axiomatic formu
lation in lTarski, 1959], but it is not very helpful since it 
uses only three predicates. However, in-depth study of 
this axiomatization seems indispensable if one wants to 
construct a complete TIG. 

A second problem concerns the adoption, or not, of 
the unique-name assumption for S as well as for F. For 
example, ifS = A EL, BEL, A EL', BEL' 
and if the axiom of the uniqueness of a line passing 
through two distinct point is part of TIG, then either 
A f. Band L = L', or A= B. Is S acceptable under such 
conditions? 

What makes us lean toward adoption of the unique
name assumption is the desire to respect graphical cor
rectness. If the student must construct all objects in S 
and if one wants to recover all constructions made, then 
the objects ofS must be different. If view of this, (I), (II), 
(III) and (IV) must all be understood w_ith this ~su~p
tion in force. Consequently, the preceding specification 
would be rejected. 

The implementation already completed [Nicolas, 1989] 
contains translations SCL to LDL and CDL to LDL and 
verification of (III), the latter of which is achieved by a 
saturation method which has succeeded a prohibitively 
high costs ( on the order of 20 minutes on a SUN3 for 
the example given in Section 2). We are currently in
vestigating how to represent TIGo in a logic program 
with reasonable simplifications so that one can obtain 

acceptable implementation running costs. 
The extension used in (IV) completes µ(S) with ob

jects from F. Making use of it calls into play two levels 
of nondeterminism: both µ and each ESi can be deter
mined in several ways. The first is not too costly, espe
cially if the teacher names most of the objects he uses. 
The second poses more of a problem because failure to 
satisfy (IV) can result from the non-existence of the ex
tension, which necessitates trying all possible extensions. 
However, a promising new way to detect these failures 
resides with constructing the ESo, ... , ESn by following 
the order in which the student constructs his objects. 

It is important to underscore how the finite universe of 
objects is constructed here. On the one hand, it is done 
through translation of SCL to LDL and CDL to LDL. 
The choices of objects made (e.g., creation of the sup
port (AB) if the segment [AB] is created but the distance 
IABI is not) clearly have implications for the deductions 
possible and can be reevaluated after some experimenta
tion. On the other hand, the set of extension axioms is 
crucial for obtaining a good modelling of what happens 
in geometry. 
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Abstract 

Human problem solving uses past experiences to 
solve current problems. When faced with a 
problem, one often locates experiences (cases) in 
memory that are similar and adapts them to meet 
the current situation. The reasoning process that 
combines these tasks for problem solving is called 
Case-Based Reasoning (CBR). We also need to 
forget some experiences. Therefore, weak, invalid, 
and harmful cases must be removed from the case 
library, while strong ones remain. We have 
extended genetic algorithm techniques to apply to 
CBR. Using modified genetic techniques, we 
propose a method of learning cases in a noisy 
environment and controlling the integrity of case 
memory, and a method of generating novel cases 
that does not rely on the failures of other cases for 
the construction of a new case. We have tested our 
approach in the domain of a 4x4 checker game. 
Favorable empirical results, as predicted by genetic 
theory, have been achieved. 

1 Introduction 

To learn, a Case-Based Reasoning System (CBRS) 
[Kolodner, 1987; Kolodner, 1988] must be able to acquire 
and incorporate new and modified cases into its existing 
case library. New cases are typically generated by three 
methods: hand-coded cases from experts, cases adapted 
from existing ones by the CBRS, or newly developed 
cases produced by the CBRS that reflect the current 
environment better than any existing case in the library. 
One might believe that experts are best at generating cases 
representing solutions of a problem space. However, as 
[Bradtke, 1988] points out: 'the effectiveness of a case
base is the number of unique problem states underlying 
the case-base encoding', and humans tend to cluster cases 
about points in a problem space rather than providing 
unique points. Initial cases developed by experts - as 
opposed to cases that constitute an expert's solution to a 
specific problem posed by the CBRS - are more redundant 
than might be expected. CBR can also lead to redundancy, 
when modifications to a case and additions to the case 
library are very similar to existing cases. 

The positioning of a case is not an easy task. For each 
newly generated case, the CBRS must consider whether it 
or a similar case already exists in memory, and thus 
should not be added at all, or, if it is added, how its 
addition will affect the existing cases in memory. For 
instance, the introduction of a new case may make some 
cases unretrievable or create opposing solutions to a 
problem. 

There is another factor that can affect the relationships 
between the cases in memory. In a dynamic environment, 
changing conditions may render past solutions 
inapplicable to similar problems in the present. Memory, 
in effect, is growing old. 

A CBRS must continually look for and remove 
redundant and possibly harmful cases, and must be able to 
cope with the three types of environmental changes: an 
anomaly (freak occurrence), an unforeseen but lasting 
change in the environment, and a probabilistic failure 
(predictable). Figure 1.1 helps to illustrate the different 
types of cases that can arise in memory due to 
environmental changes. Unique cases and loosely similar 
ones are desirable because they provide solutions to 
different problems in the problem space. Redundant and 
harmful cases are undesirable and need to be removed from 
memory because they do not lead to new solutions and 
may provide incorrect ones. 

Desirable Cases 

C) 
unique loosely a lml lar 

redundant 

UnDeslrable Cases 

O ..-. ACaae 

Figure 1.1 Case Relationships 

Novelty, although not often part of a CBRS, can play 
an important part in the learning process. When one is 
solving problems using cases of past solutions, the 
solutions tend to become repetitive - stuck in a rut. Even 
the strongest of adaptive methods can make only similar 
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adaptations of a case, time and time again, using the 
traditional methods of adaptation and analogy. What is 
more desirable is a method of altering a case in a novel 
way so as to, more often than not, produce a case that is 
not one of the normal adaptations [Sycara, 1988] of the 
case. We are looking for novel cases, loosely based on the 
original, but not an adaptation that is consistently 
performed using other traditional methods. If the problem 
of removing poor cases were solved, the system would be 
able to garbage collect them, removing unacceptable novel 
cases that were created and added to the case library. Good 
novel cases, however, will remain in the case library and 
improve its overall quality. 

To address these problems, i.e. the production of 
radically novel cases and the detection and removal of 
redundant and invalid ones, we propose the use of a 
genetic algorithm [Goldberg, 1989], specifically, the 
application of a Conservative Reproduction Algorithm for 
Cases (CRAC), to handle the entropic graying of case 
memory. Genetic algorithms (GAs) simulate mechanisms 
of biological evolution, and can benefit case-based 
approaches in a number of ways through the application 
of their genetic operators. 

In the following sections, we describe a combined 
genetic and case-based learning approach. Section 2 is 
dedicated to explaining how a case is analogous to a 
chromosome string, allowing us to combine the genetic 
and case-based techniques. Section 3 shows how the 
genetic concepts of reproduction and credit apportionment 
can be achieved with cases, giving rise to the CRAC, a 
method of generating a new case library, removing bad 
cases, and keeping good ones. Section 3 also describes the 
other genetic operators of mutation, crossover, division, 
and connection for use with cases. Section 4, by way of 
an example, describes how the genetic and case-based 
techniques are molded together to form our learning 
approach. Section 5 describes our results, and section 6 
concludes with a brief summary. 

2 Cases as Chromosome Strings 

The notion of using GAs with cases differs from the 
traditional use of GAs in several respects. GAs typically 
encode the data as fixed length strings using the symbols 
0 and 1 as the language of the alleles. This makes for ease 
of use in applying genetic operators; however, the 
expressive power is not enough for symbolic problem 
solving used by many expert systems today. It is a 
difficult task to encode values and all other parameters that 
contribute to a problem's description into a fixed length 
string of zeros and ones. A language of two symbols can 
only encode two possibilities for any one allele and is 
inadequate. Case structures, for example frames, use a 
rich symbol notation; thus, frames can represent a 
considerably larger number of values than that of a single 
allele. We increase the descriptive power of cases by 
increasing the alphabet, at the cost of increasing 
complexity. 

Another important distinction is that cases do not 
necessarily have to have a fixed number of frames [Deugo, 
1989a]. For example, a checker strategy could be 
considered as a case where each frame provides the next 
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game move of the strategy. As a strategy grows and 
shrinks, so too does the number of frames in the case. 
Strings have a fixed size, so expansion or contraction of 
the number of alleles is impossible. Having dynamic 
cases expands the number of representations the case can 
form; thus, increasing the potential use of GAs. Often a 
problem produces more and more recognizable symptoms 
as it is better understood. Having dynamic cases provides a 
means of easily adding information to them. 

To use a GA with cases, case frames require a strength 
field. Figure 2.1 outlines a general case frame structure to 
support a GA. Making the strength of a case a function of 
the strength of each frame, the addition of new frames 
causes no problem for the concept of strength. 

The final distinction between a GA for cases rather than 
strings, is that a case is symbolic while a string is 
subsymbolic. It is easy to perform mutations and 
crossover on strings with O and 1, but the language is 
restrictive. As will be described later, genetic operators 
such as crossover and mutation can also be performed on 
cases. The process of using GAs with symbolic rules has 
been suggested [Bickel, 1987; Antonisse, 1987] and 
performed using bit strings to represent symbolic rules 
[Holland, 1986], but never have GAs been used with 
cases. The power of GAs makes them very attractive when 
applied to cases. 

3 

Case Frame-2 

Frame-1 
Frame-2 
II 

II 

Frame-n 

Figure 2.1 GA Case Structure 

Case Library Reproduction 

The solution to the main goal of maintaining a 
minimal set of strong cases in a fixed size case library is 
achieved with the Conservative Reproduction Algorithm 
for Cases, shown in Figure 3.1. 

The traditional genetic reproduction operator selects a 
new population of chromosomes from the strongest 
chromosomes of the previous population. The CRAC 
reproduces and ensures that the next generation of the case 
library contains a nonredundant majority of strong cases 
from the past generation, but still allows for the 
introduction of new cases that have yet to be proven or 
disproven. 

The CRAC contains three parts: case strength ordering, 
case selection, and new case generation. Memory is 
always a fixed resource; therefore, as input to the 
algorithm an upper bound on the number of cases in the 
library is provided. This is not an absolute upper bound 
because a percentage of that number in new cases may be 
added to the library, but for now it is reasonable to think 



Input: Case-Library, Minimum-Acceptable-Strength, 
Maximum-Number-Of-Cases, New-Case-Percentage 

Output New-Case-Library 
Begin 

number-of-cases := 0 
New-Case-Library := Empty-Case-Library 
{ Sort the cases into descending order based on their strength) 
ordered-case-library := Order-Case-Descending-In-S trength(Case-Library) 
{ Select the maximum number of cases allowable for the next generation whose 

strength is above an acceptable value ) 
current-case:= Next( ordered-case-library) 
While ((current-case.Strength>= Minimum-Acceptable-Strength) AND 

(number-of-cases <= Maximum-Number-Of-Cases)) Do 
Add( current-case, New-Case-Library) 
current-case:= Next( ordered-case-library) 
number-of-cases:= number-of-cases+ 1 

EndWhile 
{ Normal CBR adaptation methods could be performed here if so desired) 
{Apply other genetic operators to probabilistically selected cases, 

adding a given percentage of new cases into the case library - see the next 
section for the details. ) 

For (size(New-Case-Library) * New-Case-Percentage) Times Do 
new-case := Probabilistically-Select-Case( ordered:case-library) 
new-case:= Apply-Other-Genetic-Operators-To( new-case) 
Add( new-case, New-Case-Library) 

EndFor 
End 

Figure 3.1 Conservative Reproduction Algorithm For Cases 

of it as an upper bound. Another parameter provided to the 
algorithm is a minimum acceptable strength threshold 
value. This value determines the minimum strength of a 
case that is permissible in the new case library. Our 
conservative approach assures that from one generation to 
another, a constant number of strong cases are always 
reproduced, yet it avoids duplication and guarantees the 
consistency and integrity of the library between 
generations. It does not, however, select the same cases 
from one generation to another. It is the performance of a 
case that indicates its acceptability for reproduction into 
the next generation. From an old case library a new one is 
produced with the weak cases weeded out, a small portion 
of new cases introduced, and a solid base of strong cases 
remaining. 

3 .1 Case Operators 

The reproduction operator is only the first piece of a 
genetic algorithm; after selecting strong cases for the new 
library generation, other genetic operators are performed 
on selected strong cases providing a set of possibly novel 
cases for the next generation of the case library. 

We have used four other case operators in addition to the 
CRAC: mutation, crossover, division, and connection. 
Mutation of a case is the process of changing the contents 
of one or more of its frames (slots) from their current 
values to another legal value. Crossover of two cases is 
the process of merging a collection of the first half of a 

case's frames with that of the second half of another case's 
frames. Division of a case is the process of splitting a 
case at a frame producing two smaller cases. Connection 
of cases is the process of joining two smaller cases 
producing a larger single case. Used in coordination with 
the division operator, the pair have the ability to produce 
strong new cases built from smaller subcases. Operators 
may be forced to make certain assumptions about the 
domain. For example, the Connection operator must be 
able to know that it is allowable to connect two pieces at 
a given point; however this complication increases the 
overall power of the operator and is worth the added 
trouble. 

4 Our Approach 

In this section, by way of an example, the complete 
genetic process for learning strong new cases is molded 
together. The process has two major steps: case 
reinforcement, and the application of the CRAC. Case 
reinforcement - the process of increasing or decreasing a 
case's strength - is performed by the modified Bucket 
Brigade Algorithm [Goldberg, 1989]. The algorithm uses 
the success or failure of the application of a case in its 
judgment to reward or penalize a case's strength. After a 
period of case reinforcement, the CRAC, using the genetic 
operators of mutation, crossover, division, and 
connection, reproduces the strong cases into the next 
generation of the case library and removes the weak, 
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invalid, and harmful cases. The learning process is an 
infinite cycle of using the cases, reproducing the best 
ones, and adding new cases formed from genetic 
adaptations of existing strong cases. The end result is a 
library of strong, non-redundant cases. 
The example domain we will use is that of checkers. The 
initial goal is to produce a system that plays a game of 
checkers with a human and improves over time. The only 
piece of domain information the system begins with is 
what a legal move in a checker game is. Cases are used to 
represent checker move strategies; the CRAC, genetic 
operators, and the modified Bucket Brigade Algorithm are 
used to introduce and control the knowledge in the case 
library. 

The goal is to show that using only a very small 
amount of domain knowledge, the system can generate and 
keep strong new cases for application in a checker game. 
As a measure of this, the average strength of a case should 
increase as the number of generations of the case library 
increases [Deugo, 1989b]. 

4 .1 Structures 

The basic and only structure is a case; a case defining a 
checker strategy. Reviewing the case structure described in 
section 2, a case has a collection of frames and a strength 
value; and a frame has a strength value and a data item. A 
checker case frame has a strength value and a checker 
piece's move as its data item. A move consists of a board 
layout and a legal move for a player. A checker case 
consists of a strength value and a set of checker frames -
each frame a checker move - alternating between between 
legal moves of the white and black players in the game of 
checkers. A checker case - known as a strategy - is just a 
sequence of moves experienced during the progress of a 
checker game. 

An important feature of a case is that its size is 
dynamic. A case strategy does not represent the moves 
taken in a full game of checkers, but rather that of a 
partial sequence of moves of different lengths. A good case 
can then be defined as a sequence of moves that leads the 
system player, black, to a better position. 

New cases are formed in two manners: by the 
application of genetic operators, or by system creation. It 
has been described how genetic operators form new cases. 
Strong existing cases are taken and altered by the four 
genetic operators: mutation, crossover, division, and 
connection. However, before these operations can be 
performed, cases have to exist. This is where the domain 
theory, i.e. the legal moves of the game, plays an 
important role. The domain theory does not help in 
forming strong cases, although it might, but in producing 
cases that can be manipulated by the genetic portion of the 
system to form strong cases. 

To describe how the system produces cases we must 
first talk about the general operation of it. The game 
begins with the human making a move. The system must 
now produce its own move. If the system can find a case 
in memory that contains, in its frames, the exact game 
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history 1, the next move in the case is returned as the 
system's move. However, if no such case can be found, 
the last white move and a legal move returned by the 
domain theory form a new case that is added to the case 
library, and the legal move is returned as the system's 
move. The new, two move case that was formed by the 
system can also be extended in the following manner. If 
it, or any other case, was used to return the last black 
move, but does not have a move in response to the next 
white move because the case is at its last frame, and no 
other cases in memory have a move in response to white's 
move, rather than using the last white move and a legal 
move returned by the domain theory to form a new case, 
these moves are added to the end of the last used case, and 
the legal move returned as the system's move. The effect 
of this is that rather than forming another smaller case, 
the case that was used in the last tum is extended by two 
more moves. 

The fact that the domain theory returns any legal move, 
not the best, leads to the fact that the strategies formed 
from the domain theory are not necessarily good; however, 
the system must detect this. A case library of strong 
strategies is the system objective. 

4. 2 Reinforcement Schema: Modified Bucket 
Brigade 

The Bucket Brigade Algorithm [Goldberg, 1989; 
Westerdale, 1989; Grefenstette, 1988) is an apportionment 
of credit algorithm for classifiers2. We propose a modified 
and renamed algorithm for the apportionment of credit of 
cases called the Reinforcement Schema for Cases (RSC). 
Whether for a classifier or for a case the requirement is 
similar; genetic operators require a method of ranking 
cases or classifiers. The rank, a case's strength or fitness 
value, is a measure of the performance of the case in its 
environment. 

A schematic of the RSC processes is shown in figure 
4.1. Initially, all cases matching the current 
environmental features are located. The cases are said to be 
activated for duty (ready to return a solution). To perform 
a case's duty, an auction is held to determine the case that 
has the right to return its solution. When only one case is 
returned, it automatically wins the auction and returns its 
solution. When there is more than one case in the active 
case set, each case makes a bid for the right to return its 
solution. The bid of a case is proportional to its strength. 
Stronger cases make larger bids than weaker ones. For 
example, a simple bid function could be the average 
strength of a case's frames: 

Size(Case) 
L FrameStrength(i) 
i=l Case Bid= ---------

Size(Case) 

1 The game history is the previous sequence of game moves 
to a selected depth. 

2 A classifier is a special form of chromosome string that 
encodes a rule for use in a classifier system. 



The case with the largest bid wins the right to perform 
its duty and the other cases are deactivated. 
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Case 
Winning\ 

Cases 

Winning 
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Figure 4.1 The Reinforcement Schema for 
Cases 

All cases that bid for the right to perform their duty 
must now pay for that right. Each is taxed by the amount 
of its bid. The effect is that each case has a decrease in its 
strength. How does a case increase its strength? This 
depends on how well the winning case performs its duty 
in the environment. If a case performs adequately, its 
strength regains the amount of its bid; its strength is now 
at least as strong as it was before it performed its duty. If 
the case performed exceptionally well, its bid and a reward 
amount are added to its strength, making it a little 
stronger than is was before performing its duty. Finally, if 
the case performed poorly, the bid is not returned and a 
penalty amount is subtracted from its strength. Cases that 
perform well will have their strength increased, while 
cases that appear to be strong but perform poorly, will 
have their strength decreased more than the cases that lost 
the right to perform their duty. This gives these secondary 
cases a better chance at performing their duty on the next 
iteration, given the same conditions. 

4. 3 Approach: Simple Classifier System For 
Cases 

Our approach called the Simple Classifier System for 
Cases (SCSC), and its three components: CBR, genetic 
algorithms, and reinforcement schema, are shown in figure 
4.2 in a closed learning loop. 

We describe the architecture by way of a checker 
example. As a starting point for the SCSC, we begin 
with the case library. The case library contains a 
collection, possibly empty, of source cases. In the 
checker example, each case represents a checker strategy. 
For this example, we start with an empty case library, 
although initially we could seed the library with hand
coded cases. As long as there is a limited domain theory, 
and an initial learning period, the SCSC will develop its 
own cases. 

Next, the environment produces an input problem for 
which an action or response is required. The input 
situation is used as a probe and all appropriate cases that 
have a chance of providing a solution to the input 
problem are retrieved from the case library. This is the 

normal process of CBR retrieval. These activated cases are 
then passed to the Bidding House. Here the cases bid for 
the right to return their responses. As a result of the 
auction, the case with the largest bid is found. 

Genetic 
Algorithm 

ibrary 

Winning 
Case 's 

Roaulta 
Winning 

Case-Based Reasoning 

Figure 4.2 Simple Classifier System for 
Cases 

In the checker example, the bid of a case is a function of 
the case's strength which is a function of the individual 
strengths of the case's frames. The bid is the normalized 
ratio of the number of frames that match the problem 
description in the retrieval process divided by the number 
of frames in the case. The function causes cases that have 
a greater number of matching frames to be favored over 
smaller cases that match the same number of frames. 

At this point, a limited domain theory may be required. 
It is limited because it provides a minimal amount of 
information to enable the formation of initial cases. For 
example, if there are no cases retrieved by the CBR 
retrieval process, the domain theory can form a short 
simple case and return it as the winning case. In the 
checker example, this would be equivalent to starting a 
case with the last move of the opponent followed by any 
legal system move. It is not difficult for a domain theory 
to compute a legal move as long as it knows the rules of 
the game. What the domain theory is missing is 
knowledge as to what constitutes a good move. This, as 
we will see, is where the genetic algorithm and the RSC 
form an important part of the approach. 

The winning case is now passed to the CBR adaptation 
process so final modifications can be made, ensuring that 
its response fits the input problem. This is a link back to 
the CBR process. Here we do not present any such 
adaptations, but if so desired, further adaptations can be 
made using traditional CBR adaptation techniques. The 
adapted winning case and all other activated cases are 
passed to the Taxation Department for the decrease of their 
strengths by their bids. 

The winning case's response is now passed to the 
environment for use. All other activated cases have no 
chance of getting their strengths back, except on further 
iterations of the learning loop. It is only the winning case 
that has a chance of gaining its strength back and more. 
This all depends on how well the case performs in the 
environment. The goal is to select the best case for use in 
the environment. The environment provides feedback as 
to how well, or poorly, the case performs, in the form of 
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three results: -1, 0, and 1. The feedback is used by the 
Evaluation component of the approach. In the checker 
example the environmental evaluation is as follows: 

If the move produces a king 
or jumps an opponent Then 

a 1 is returned 
Else If the move produced an opponent jump Then 

a -1 is returned 
Else 

a O is returned 

The Evaluation component takes the following actions 
based on these three results: 

Case Evaluation of 
0 : add the case's bid to its strength; 
1 : add the case's bid and a reward value to its 

strength; 
otherwise: { the evaluation is a -1} 

penalize the case's strength further by a 
penalty amount 

In the checker example, a frame's maximum allowable 
strength is 2, and the reward and penalty values 1. Cases 
initially have all their frames' strengths set to 0.2. After 
completing the evaluation, the modified cases are updated 
in the case library. 

The processes of case retrieval, adaptation, and 
evaluation are repeated for a fixed3 number of iterations, 
after which the CRAC is performed on the case library, 
removing the bad cases, keeping the good ones, and adding 
new ones based on variations of existing strong cases. The 
result is that over time a library of strong cases will be 
generated from a initial, possibly empty, set of original 
cases. 

The SCSC and the RSC provide systematic methods for 
obtaining strong cases; genetic algorithms provide a novel 
method of case adaptation, but still rely heavily on the 
past history of the case so as to not alter the case too 
drastically; and CBR is a method of reasoning from cases. 
The combination of the three leads to a complete approach 
to learning and reasoning in a dynamic environment Each 
of the above components aids the others in performing 
their task. 

5 Results 

The results described in this section are produced from a 
human playing a 4x4 checker game against a SCSC as 
described in the last section. The goals of the SCSC are to 
produce new, strong cases using genetic operators, and to 
have the overall strength of the case library improve with 
each successive generation. Using a 4x4 checker game 
integrated with the approach, we demonstrate that these 
goals are met. 

The following results show how the SCSC operates on 
a volatile parameter set. With these parameter settings, 
genetic operators are applied with a probability of 1. That 

3 System parameter set upon initialization of the SCSC. 
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is, given the correct conditions, the genetic operator will 
be performed. Also, the number of cases in the library is 
small compared to the number of possible cases in the 
domain. This means that there is a high tum-over of cases 
from generation to generation. The end result is that new 
cases are added and removed at a high rate. 

Before describing the individual results, we describe the 
common factors affecting the SCSC. Initially the case 
library is empty, no seed cases are provided, and the only 
domain theory is the simple rules of checkers; that is 
when called upon the domain theory will return a random 
legal move for black, the system player. This is an 
important point. Good case information is not added to the 
case library to begin with. Therefore, its initial strength is 
zero. Just relying on the domain theory to build our cases 
would result in cases built at random - since the domain 
theory only returns random legal moves. If the moves 
returned were poor, the cases would be constantly loosing 
strength, and with such cases the library would experience 
an overall decrease in strength, not an increase as desired. 
Each session consists of forty checker games where the 
human and system player alternate moves under the rules 
of checkers. The CRAC is performed every n games, 
where n is set as a parameter. 

The results plot the average case strength and case 
library strength against the number of games played using 
the following volatile parameter set. 

Maximum Case Library Size= 10 
Genetic Algorithm Performed Every 2 Games 
Probability of Mutation, Crossover, Division, and 

Connection = 1 
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Figure 5.1 Average Case Strength in a 
Volatile Environment 

In figure 5 .1, the average case strength is plotted against 
the number of games played. As shown in the graph, there 
is a steep rise in the average strength of a case over the 
first few games because there are no cases in the library to 
begin with. However, after the case library is filled up 
with the domain theory cases, it is easy to see that the 
overall average case strength continues to increase. There 
are many local minima and maxima, but this is the nature 
of using genetic operators. There are major advancements 
in strength followed by retreats; however, the number of 
advancements is larger than the number of retreats. From 



the graph in figure 5 .1 it is easy to see that the overall 
strength of the cases is increasing with every game played. 

Figure 5.2 plots the strength of the entire case library 
against the number of games played. The result. is the 
same. After a fast jump in the total strength of the hbrary, 
as result of the addition of new cases to the case library by 
the domain theory, the overall strength continues to 
increase as a result of the application of the genetic 
algorithm and the RSC. Other experiments using different 
parameter settings experienced the same results - an 
overall increase in the strength of the cases in the case 
library 
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Figure 5.2 Case Library Strength in a 
Volatile Environment 

6 Summary 

CBR is a powerful model of reasoning based on the 
human ability of reminding. Although powerful, still 
many · issues remain to be solved to make CBR a more 
practical and useable method of reasoning. Our approach 
has been to take other AI methods and integrate them, 
where appropriate, to extend CBR by providing solutions 
to some of the open issues. In particular, we have adapted 
genetic techniques for use by CBR to aid in forgetting and 
novel case construction. Adaptation is in fact the central 
theme of CBR; adapt solutions when appropriate to 
provide, in this case, novel methods of extending CBR. 

We feel that our approach could benefit anybody 
concerned with the growing size of case memory over 
time and with issues of the timely detection of redundant 
and invalid cases. However, the full advantages of the 
approach only accrue to systems for which a 'fitness' 
function can be devised to help eliminate bad new cases. 

The use of genetic techniques has proven quite helpful 
in the formation of a self-perpetuating learning model. 
Although the genetic case structure is constructed as a 
general structure, not connected to any specific domain, 
the application of the model to another domain would help 
to further develop the characteristics that cases must have 
for the further use of genetic techniques. The current 
strength of a case, for instance, is shown as a function of 
the strengths of individual frames (slots, game moves, etc) 
of a given case. If cases do not have a frame structure, 
what other methods of assessing case strength are there? 
Different methods of calculating strength and fitness have 
been proposed by genetic algorithm researchers and would 

be of great interest to those wishing to alter the method of 
credit apportionment for cases. 
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Abstract 

Explanation-Based Learning (EBL) is an analytical 
learning method where a concept is learned by 
building an explanation of a training example. One 
weakness of EBL is its inability to explain when the 
theory is incomplete. This paper presents a 
systematic approach to deal with imperfect theories 
based on abductive reasoning, analogical reasoning 
and case-based reasoning. The approach is presented in 
the context of the system LISE (Learning in Software 
Engineering). LISE converts a user requirement for a 
software module into an operational module 
definition, using a (possibly incomplete) specification 
of this and other modules as the domain theory. When 
the training example can be explained in this theory, 
the result of EBL is a specification for the user 
requirement given in terms of primitive operations. If 
the training example is unexplainable, LISE will 
extend the incomplete specification to cover the new 
user requirement 

1 Introduction 

In the software development life cycle, one of the early 
phases consists of transforming informal user requirements 
into a more formal software specification. This phase, called 
the analysis phase, relies mainly on the experience and 
creativity of the system analyst. Consequently, different 
specifications can be produced for the same requirement and, 
even worse, the resulting specification can suffer from 
incompleteness and inconsistency. 

A software system usually implements one or more 
activities normally carried out by some people. The 
approach used by system analysts to produce the 
specification of a software system should consist in 
specifying externally observable activities [Yau et al. 1986). 
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The specifications of the activities are integrated together 
resulting in the specification of the entire software system. 

To build the specification of an activity, the analyst 
takes an example and extracts from it a generalized sequence 
of actions. Actions in the sequence are subsequently refined 
until they can be implemented. Suppose that banking is our 
area of application. The following scenario shows an 
activity called wi t hdraw as observed by an analyst: 

Bob wa lks up to the t e ller and indicat e s 
that he wants to withdraw $100 . The t elle r 
verifies if Bob has an account. The t e ller 
then ensures that the balance of Bob's 
account - $15 0 - is greater that $100. The 
teller will then subtract $100 from the 
balance of Bob's account and will give the 
money to Bob. Bob walks away . 

The analyst will identify all the relevant actions in the 
activity in their correct order. The analyst will discard the 
actions which, according to his understanding of the domain, 
are irrelevant, e.g. Bob walks up to the teller and Bob 

walks away. The analyst will also generalize the actions so 
that they do not only apply to constants introduced by the 
specific example. The predicate logic rendering of the 
specification produced by the analyst is : 

withdraw (Person,Amount ) <

account(Person,Account ) , 

balance (Account,Balance ) , 

Balance> Amount, 

sub_ fm_balance (Balance,Amount ) , 

issue_money (Person,Amount ) . 

This paper presents a system designed to implement the 
process followed by the analyst in the scenario above.The 
system called LISE (Learning In Software Engineering) 
transforms activities representing user requirements into 
corresponding formal specifications. The formal 
specification for each activity is produced in a notation 
combining frames and predicate logic. LISE uses EBL 
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(Explanation-Based Learning) to build explanations of the 
activities using a domain theory. The domain theory is the 
specification of software system being developed. It includes 
specifications of all the activities known to this point. The 
result of EBL is the specification for the user requirement in 
terms of primitive operations. The primitive operations do 
not need any further specification: they may represent library 
modules or abstract data type operations which are already 
available. 

If the user requirement is an activity for which no 
specification exists in the domain theory, regular EBL will 
not be able to build the explanation. This is called the 
incomplete domain theory problem, and is typical of any 
practical application of EBL. LISE will extend the domain 
theory using abduction, analogical reasoning and case-based 
reasoning. 

2 Explanation-based Learning 

Explanation-Based Learning (EBL) is an analytical learning 
method where a definition of a concept from some domain is 
learned using a single training example [Delong et al. 
1986],[Mitchell et al. 1986]. The process of EBL uses a 
domain theory , i.e. a set of rules pertinent to the domain of 
the goal concept The domain theory is used to construct an 
explanation, or a deductive proof, of how the training 
example is an instance of the goal concept. The goal concept 
is often expressed in terms which are not useful for the 
particular application of the concept definition. The 
explanation creates a new definition of the goal concept, 
expressed in terms which are operational, i.e. adequate for a 
given use of the concept. A concept definition is considered 
operational when it is expressed in terms which satisfy a 
stated operationality criterion. 

An explanation in EBL is build using rules. The 
antecedents of the rules are satisfied using facts from the 
training example or using the consequents of other rules. A 
common assumption in EBL is that the domain theory 
contains all the rules required to build the explanation of 
each positive training example. Unfortunately, real domain 
theories tend to be incomplete [Ellman 1989], [Rajamoney 
et al. 1987]. Instead of producing a full explanation as 
described above, the incomplete domain theories will 
produce one or more partial explanations. A partial 
explanation is an explanation containing proven and 
unproven antecedents. Antecedents are proven using training 
example facts, or using the consequent of a rule for which 
all antecedents were proven. The unproven antecedents are 
antecedents for which no facts were found in the example, 
and no rules could be used to prove the antecedents. 

In LISE, if the training example is a new user 
requirement, the domain theory will miss some of the rules 
necessary to build an explanation. LISE will produce one or 
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more partial explanations. LISE will then attempt to build a 
plausible explanation using abduction, analogical reasoning 
and case-based reasoning. 

[Ellman 1989] mentions that the effort in EBL research 
addresses the problems of justified generalization, chunking, 
operationalization and justified analogy. With regard to that 
classification, our work addresses the problem of 
operationalization since our objective is to translate a non
operational expression (i.e. user requirement) into an 
operational one (i.e. a specification). 

3 The domain theory in LISE 

In LISE, the domain theory represents the specification of a 
software system. In the particular software system considered 
here, the domain theory will be the specification of a 
banking system. 

The specification of the system is given in terms of 
objects and operations applicable to objects. The objects 
represent structural properties of the system. The operations 
represent behavioral properties of the system. 

The domain theory consists of frames arranged in a hierarchy 
and allowing multiple inheritance of properties. Each frame 
specifies an object or an operation using a set of properties. 
One common property of all frames is is a which links a 
frame to its parents. Frames representing objects are located 
under the top-level frame called ENTITY. Similarly, the 
frames representing operations are located under the frames 
ACTION and TRANSACTION. Operations specified as 
ACTIONS in the hierarchy are non-primitive operations. 
Non-primitive operations are defined by a precondition 
stating the condition under which a primitive operation can 
be applied and a procedure which includes the single 
primitive operation. Primitive operations are atomic and 
they are not defined anywhere. Operations specified as 
TRANSACTIONS in the hierarchy are defined using 
primitive and non-primitive operations arranged in a fixed 
sequence. Figure 1 illustrates four frames taken from a 
domain theory containing the specification of a banking 
system. Each frame of the domain theory is transformed 
into a rule prior to executing EBL. 

During the analysis phase, the analyst has to take into 
account the objectives of the organization for which the 
system is being designed. The objectives of the organization 
are specified by specific goals. An example of a goal for an 
organization such as a bank is protect_bank_interest. The 
analyst will have to keep this goal in mind when writing the 
specification of any banking transaction. Goals are included 
in the domain theory of LISE. A goal is attached to a 
property of an entity or to an operation which is intended to 
enforce it. An example of a goal in the domain theory is 

goal(credit_margin(Pe r s on,Margin), 
protect_bank_interest) 



wit hdraw (Person,Amount ) debit (Account,Amount ) 
~ TRANSACTION 

precondition: 
account (Person,Account ) 

procedure: 
debit (Account,Amount ) 
issue_money (Person,Amount ) 

ll.a.:. ACT ION 
precondition: 

balance (Account,Balance ) 
Balance> Amoun t 

procedure: 
sub_fm_balance (Account,Amount ) 

deposit (Person,Amount ) 
~ TRANSACTION 

precondi tion: 
account (Pers on ,Account ) , 

procedure: 
issue_money (Person,Amount ) 
credit (Account,Amount ) 

credit (Account ,Amount ) 
ll.a.:. ACT ION 

precondition: nil 
procedu re: 

add_to_bal ance (Account, Amoun t ) 

Figure 1. Frames of the domain theory for banking 

which means that the goal protect_bank_interest is 
enforced by the property credit_margin of Person. Goals 
are essential to the analogical reasoning process employed to 
extend the domain theory. 

4 LISE in a nutshell 

LISE is an integrated learning system consisting of three 
modules. 

a. Explanation-based learning for LISE <ELLn. ELLI is 
the first module receiving the training example. The 
main engine of ELLI is the conventional EBL process 
in which the deductive inference found in regular EBL 
was enhanced by the addition of abductive inference. 

b. LISE's Analogical Reasoner <LARS}. LARS is a 
module designed to build a new specification from a set 
of partial explanations. LARS will build a plausible 
explanation by re-using the proven antecedents of the 
partial explanations and by applying analogical 
reasoning to replace the unproven antecedents. The 
plausible explanation will be used to create the new 
frames which will be added to the domain theory. 

c. CAse-based Reasoning for LISE <CARL}. If ELLI and 
LARS fail to provide the specification for a training 
example, the module CARL will use its case-base in 
order to build the new specification. 

4.1 Explanation-based learning for LISE 
(ELLI) . 

ELLI receives the training example representing a user 
requirement and attempts to explain it according to the 
domain theory. If an explanation is produced, then all is 
well. The result will be the specification for the training 
example given in terms of primitive actions. Figure 2 
shows such a scenario where the training example is the user 
requirement for the transaction withdraw (bob, 100) . The 

training example is given as a sequence of four features. The 
result produced by ELLI is the specification for the 
transaction withdraw ( Person, Amount ) which is given in 
tenns of five features which are more general than features of 
the training example. The new feature is the constraint 
Balance > Amount which is part of the specification and 
was satisfied by the training example values for Balance 
and Amount. The feature address (bob, lOl_Colonel_by ) 
is considered irrelevant and was not integrated in the 
specification of withdraw. 

The training example is: withdraw (bob,100 ) 
The facts are: 

account (bob,acc_l ) 
address (bob,lOl_Colonel _by ) 
balance (acc_l,150) 
sub_fm_balance (acc_l,1 00) 
issue_money (bob,10 0) 

Result: 
wit hdraw (Person,Amount ) 

Specification : 
account (Person,Account ) , 
balance (Account,Balance ) , 
Balance> Amount, 
sub_fm_balance (Account,Amount ) , 
issue monev (Person,Amount ) 

Figure 2. A complete explanation scenario 

The specification from the domain theory that were used 
in the construction of the specification of figure 2 are 
withdraw (Person,Amount ) anddebit (Account,Amount ) 
as shown in figure 1. 

When a explanation is not possible using the deductive 
inference, ELLI applies abduction [Pople 1973). Abduction 
is the generation of hypotheses, which, if true, would 
explain observed facts. More precisely, if the rule Q <- P 
and the fact Q are given, then the desired abductive 
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conclusion would be P. P can be characterized as being a 
hypothesis because there could exist another rule a <- P • 

which would have been used to derive a. 

Abduction is used to cope with partial explanations. 
Using the training example features as a set of facts, ELLI 
attempts to draw hypotheses from the unproven antecedents 
using abduction. If hypotheses can be drawn for each 
unproven antecedent, the partial explanation can be 
completed. Using the above example of the rule a <- P and 
a. P would be an unproven antecedent and a would be a fact 
given as a training example feature. If P is the only 
unproven antecedent, a hypothesis can be drawn to account 
for the occurrence of a in the training example, and the 
partial explanation can be completed. 

The next scenario illustrates the usage of abduction to 
complete a partial explanation. The training example is 
withdraw (bob, 100) of figure 2 where the fact 
account (bob , acc_l ) was replaced by client (bob) (See 
figure 3). 

The training example is: withdraw (bob,10 0) 

The facts are: 

client (bob) 

address (bob,lOl_ Colonel_ by) 

balance(acc_l, 150) 

sub_fm_balance (acc_l,1 00) 

issue money (bob,10 0) 

Figure 3. The training example on which ELLI uses 
abduction 

The partial explanation produced for the training 
example contains the unproven antecedent 
account (bob, Account> as shown in the explanation tree of 
figure 4. The partial explanation generated can be changed 
into a plausible explanation by using abduction to transfonn 
acco unt (bob, Acco un t > as a hypothesis for the training 
example feature client (bob ) . The domain theory rule 
client (Person) <- account (Person, Account) was 
used to perform abduction. That rule is the part of the 
definition of the entity client. 

Again, we see that some irrelevant features of training 
example, address (bob, lOl _Co lonel _ By) and 
phone (bob , 992-2318 ) , were not used in the explanation. 

4.2 LISE's analogical reasoner (LARS) 

When no complete explanation is possible using the domain 
theory, ELLI will generate one or more partial explanation. 
A partial explanation is an explanation containing some 
proven and some unproven antecedents. Each partial 
explanation is provided by the specification of a transaction 
from the domain theory which contains one or more facts 
belonging to the training example. 
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Initially, LARS will rank the partial explanations 
according to a score attributed to each partial explanation 
based on its coverage of the training example. The heuristic 
proposed to score the explanations is: 

a. reward a partial explanation for each common feature 
it shares with the training example, 

b. penalize a partial explanation for each of its unproven 
leafs, 

c. penalize a partial explanation for each feature of the 
training example that was left unaccounted for, and, 

d. slightly penalize a partial explanation for each 
abductive inference that was used in its construction. 

LARS will attempt to build a plausible explanation by 
first re-using the proven antecedents of the best partial 
explanation. Unproven antecedents of the best partial 
explanation are replaced by analogous training example 
facts, i.e. by those facts that share the same goal with the 

withdraw (bob,1 00) 

client /bob) .,...~ 

accou~.:o:t) I issue.::::Yibob 100) 

debit (account_l,100 ) 

balance1acc_1,1so1 100) 

150 > 1 00 

Figure 4. EBL with abduction 

unproven antecedents. The plausible explanation so obtained 
will be used to augment the domain theory so that it 
includes the specification for the new transaction. Since the 
theory is augmented during learning, LARS performs a form 
of constructive learning [Muggleton et al. 1988). 

LARS will be demonstrated using the training example 
for borrow (bob, 1000 ) . The training example is shown in 
figure 5. 

The domain theory is incomplete because the 
specification of the transaction borrow required to explain 
the training example is missing. Consequently, two partial 
explanations will be produced. Figure 6a and figure 6b 
illustrate partial explanations that were obtained using the 
transactions withdraw and deposit. The dashed lines in 



the partial explanations indicate which antecedents were left 
unproven. The underlined antecedents in the partial 
explanations indicate which antecedents were found as 
training example features. The ranking heuristic determined 
that the best partial explanation was the one in figure 6a 
obtained using withdraw(Person,Amount). 

The training example is: borrow(bob,1000). 

The facts are: 

account(bob,acc_l) 

credit_margin(bob,3500) 

record_loan(bob,1000 ) 

issue_money(bob,1000) 

car(bob,car_of_bob ) 

value(car of bob,12000 ) 

Figure 5. The training example 
for borrow(Person,Amount) 

Figure 7 shows that the proven antecedents of withdraw 
are re-used in the plausible explanation of borrow. The 
unproven antecedents were replaced by selected analogous 
training example features. A training example feature is 
selected to replace an unproven antecedent if it shares the 
same goal. In the borrow example, account (bob, acc_l >, 

issue_money (bob, 1000) and the operator">" were all re
used. The antecedent balance(Account,Balance) was 
replaced by the training example feature 
credit_margin (bob, 3500) because they have the same 
goal: protect_bank_interest Similarly, 
sub_fm_balance (Balance, Amount ) was replaced by 
record_loan (bob, 1000) because they share the same 
goal: record_transaction. LISE asked the user for a 
name to replace debit (Account, Amount> in the plausible 
explanation. The user provided the name grant_loan. 

Training example features that were not re-used nor 
selected are deemed irrelevant. In the example, 
car(bob,car_of_bob) and value(car_of_bob,12000) 

are irrelevant 

Initially, partial explanations were obtained because the 
domain theory did not contain the frames for borrow and for 
grant_loan. To circumvent the incompleteness problem, a 
plausible explanation was build from the partial explanation 
obtained using withdraw. The next step is to synthesize the 
missing frames from the plausible explanation and to insert 

them in the domain theory. The frames that produced the 
partial explanation are used as a guide to create the new 
frames from the plausible explanation. The structure of the 
frame of withdraw is used to create the frame of borrow and 
the structure of the frame of debit is used to build the frame 

of grant_loan. Figure 8 shows the frames added to the 
domain theory. 

withdraw (bob,1000) 

account {bob. ace 1 l 

I 
debit(Account,Amount ) 

.,,,, ;f"" -
/ I ' . \ 

/ Balance> Amount 

I \ 

liquid 

goal 

1000) 

I 
sub_fm_balance(Account,Amount ) 

balance(Account,Balance) 

goaf 
record transaction 

protect-bank interest 

Figure 6a. Partial explanation for borrow produced using 
withdraw 

deposit(bob,1000) 

/.',, 
account{bob.acc 1) f credit (Account,Amount) 

I \ 

receive money(Person,Amount) \ 

goal- /add_ to_ balanc.'(:cco,n t, Amo, otl 

dec_client_liquid • goal . 

record transaction 

Figure 6b. Partial explanation for borrow produced using 
deposit 

A single partial explanation might contribute to explain 
several features of the training example while leaving out 
other relevant ones. Such a situation can be suspected when 
several partial explanations match different features of the 
training example. Figure 9 pictures the training example 
transfer(Person,Amount) which will be learned using 
two partial explanations. 
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account (bob,acc_l ) issue_money (bob,1 000) 

! credit_margin (bob ,35 00) ! !record_loan (bob ,1 000) 

·' 13soo > 1 000 I 

. ! 

' I 
' . ·· 1 

! 

Leaeod· 

Feature of partial explanation re-used 

II II 
Select ed training example features replace unproven antecedent since 
they s hare the same goal 

c ) Name generated by t he user 

Figure 7. The plausible explanation for borrow produced using withdraw 

Name: grant loan (Person,Amount ) 

isa: ACTION 

precondition : 

credit_margin(Person,Margin) 

Margin> Amount 

procedure: 

record_loan (Person,Amount) 

Name: borrow(Person,Amount ) 

isa : TRANSACTION 

precondition: 

account(Person,Account) 

procedure: 

grant_loan (Person,Amount ) 

issue monev(Person,Amount) 

Figure 8. The frames for grant_loan and for borrow 

The training example is: transfer(bob,100). 

The facts are: 

account(bob ,acc_l ) 

account (bob ,acc_2 ) 

phone(bob,992-2318 ) 

balance (acc_l,350 ) 

sub_fm_balance(acc_l,10 0) 

add to balance(acc 2,1 00) 

Figure 9. The training example for 
the transaction transfer(Person,Amount). 

The domain theory is incomplete since it does not 
include the frame of transfer. Consequently, partial 
explanations are produced (Figure 10a and 10b). It is 
interesting to note that the partial explanation obtained 
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using withdraw covers some training example features (the 
underlined antecedents) while the one obtained using 
deposit covers other features. In that case, we recognize 
that a single partial explanation will not provide enough 
foundation to build the plausible explanation. Both partial 
explanations will be integrated to yield the plausible 
explanation of transfer (Figure 11). The unproven 
antecedents issue_money of withdraw, and 
receive_money of deposit, do not raise any ·problem 
since the goal hierarchy indicates that they can be mutually 
removed when the person and the amount are the same. 

After the plausible explanation was build, the frame 
(Figure 12) for transfer is synthesized and integrated with 
the domain theory. It is the only frame added to the domain 
theory since the frames of debit and credit already exists. 

4.3 Case-based reasoning for LISE (CARL) 

LARS processes the training examples using a rule
based approach. This approach proved to be very effective in 
providing an explanation and in extending the domain theory 
when required. However, LARS can run into difficulty for 
some training examples when a lack of background 
knowledge hinders the usage of analogical reasoning. CARL 
is a case-based reasoning system designed to retrieve 
previous cases to apply to these training examples. 

The cases in our system represent transactions 
which are not explained with the domain theory because of 
their complexity or because they are exceptions to general 
rules. For example, suppose that according to the domain 
theory, a check may be cashed by a person only if that 
person owns an account. Suppose that there is a single 



withdraw(bob,100) 

account tbob acc_J > 

'- inc_client_ liquid 

',/ goal 

issue_money(Person,Amount) 

debit (acc_l, 100) 

150 > 100 

1.100) 

balance/ace 1,1so1 \goal goal' 
record transaction 

protect-bank_interest 

Figure 10a. Partial explanation for transfer produced using 
withdraw 

exception to this rule for travellers checks. Instead of 
refining the domain theory to cover the exception, a case 
will be inserted in the case-base so that, when the domain 
theory fails to explain a training example where a person 
cashes a travellers check, a case will be applied by CARL. 

The transactions in the case-base are composed of a 
precondition and a procedure containing properties of entities 
and operations. We call these properties and operations case 
features. CARL will retrieve a case for a training example if 
there is a match between the case features and the training 
example features and if the order of the case features is 

account (bob,account_l ) 

account(bob,account_2 ) 

preserved in the training example. Detail of the matching 
process are described in [Genest90]. When more than one 
case is retrieved, a heuristic similar to the one used to rank 
the partial explanations will select the most applicable one. 

The cost of matching and the likelihood that a case be 
applicable make the case-based approach of CARL secondary 
to the rule-based approach of LARS. 

deposit (bob,100 ) 

add to balance!acc 2.1001 

dec_client_liquid 
~ goal 

record_transaction 

Figure 10b. Partial explanation for transfer produced using 
deposit 

5 Conclusion 

This paper has presented a learning method in which 
EBL is used in concert with an incomplete domain theory. 
The approach to deal with the incomplete theory is by 
integrating abduction, analogical reasoning and case-based 
reasoning. Inasmuch as our system augments the deductive 
closure of its domain theory by adding rules into it, it 
achieves knowledge-level learning. This is seldom the case 
for EBL systems. 

debit (account_l,10 0) 
add_to_balance (account 2,100) 

balance(account_l,150) 

subtract_from_balance (account_l,100 ) 

150 > 100 

Legend· 

Feature of partial explanation re-used 

Name generated by the user 

Figure 11. The plausible explanation for transfer produced using withdraw (the goals are omitted for clarity) 
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Name: transfer (Person,Amount ) 

Parents: [t ransaction (Person ) J 

precondition: 

account (Person,Accountl ) 

account (Person,Account2 ) 

procedure: 

debit(Accountl,Amount) 

credit (Account 2,Amount) 

Figure 12. The new frame for transfer added to the domain 
theory. 

The cost involved in LISE to extend the incomplete 
domain theory does not increase considerably beyond that of 
normal EBL. ff the case-based approach needs to be used for 
a training example, the cost will increase more but will still 
be reasonable. 

[Ellman 1989) divides the methods to handle the 
incomplete domain theories into the analytical methods and 
the empirical methods. The usage of abduction, analogical 
reasoning and case-based reasoning categorizes LISE as an 
analytical methods. Other analytical methods require that a 
pair of training examples with similar functions be presented 
simultaneously [Hall 1988) or they need an experimentation 
theory to refine the domain theory [Rajamoney 1988). 
Empirical methods deal with incomplete domain theories 
[Pazzani 1988) [Fawcett 1989) by conjecturing rules to fill 
holes in the partial explanation and, using subsequent 
training examples, empirically refine the conjectured rules. 

LISE was successfully implemented in Prolog. A 
specification for a small banking system was developed. We 
are currently working on the specification of a fleet 
management system. 

6 Future research 

As in any non-empirical learning system, the quality of 
the specification learned by LISE is limited by the amount 
of knowledge initially contained in the domain theory and in 
the case-base. A future goal is to make LISE less dependent 
on the initial knowledge. 

A future plan for LISE is to produce executable 
specifications. This would require that the primitive actions 
of the specification be mapped to an implementation such as 
a database management system or a library of Ada packages. 
Similarly, the static part of the specification would have to 
be mapped to a data structure. LISE could then execute the 
specification for given user requirements providing instant 
design capability. 
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Abstract 

In the last few years, a theoretical frame
work, variously called probably approximately 
correct (PAC) learning theory and distribution
free learning theory, has been developed for 
analyzing the behavior of a broad class of 
learning algorithms. This paper extends this 
framework to the problem of improving a pro
gram's performance, with the aim of develop
ing a methodology for the analysis of common 
program improvement learning techniques such 
as macro-operators [Fikes et al., 1972], EBL 
[Mitchell et al., 1986], and chunking [Laird et 
al., 1986]. The framework is then used to eval
uate a simplified chunking mechanism for a 
class of heuristic search programs. Several of 
the predictions made by the model have been 
confirmed by recently published experiments 
[Mooney, 1989; Tambe and Rosenbloom, 1989]. 

1 Introduction 

Research in machine learning has been primarily focused 
on two problems. The first problem, called symbol-level 
learning (SLL), is to improve the performance of some 
sort of program given examples of its behavior on typ
ical inputs. The second problem, called knowledge-level 
learning (KLL), is to identify one particular concept 
from a list of hypotheses, given examples of members 
and non-members of the concept.1 

In the last few years, a theoretical framework, vari
ously called probably approximately correct {PAC) learn
ing theory and distribution-free learning theory, has been 
developed for analyzing the behavior of a broad class of 
knowledge-level learning algorithms [Blumer et al., 1986; 
Valiant, 1984]. This paper extends this framework to 
the problem of symbol-level learning, or improving a 
program's performance. The goal of this paper is to 
develop a methodology for the analysis of common pro
gram improvement learnin~ techniques such as macro
operators [Fikes et al., 1972J, EBL [Mitchell et al., 1986], 
and chunking [Laird et al. , 1986]. 

1This distinction, and the terminology used here to de
scribe it, was introduced in [Dietterich, 1986] . 

The paper begins by defining a notion of "performance 
improvement"; our definitions parallel Valiant's defini
tions of PAC-learnability [Valiant, 1984]. We then de
scribe a framework for analysis of learning programs, 
and use the framework to evaluate a chunking mecha
nism for a particular class of search programs. Several 
of the predictions made by our model have been con
firmed by recently published experiments [Mooney, 1989; 
Tambe and Rosenbloom, 1989]. 

Because of space limitations, proofs have been either 
sketched or omitted. Interested readers are referred to 
[Cohen, 1989] for details. 

2 The goal of learning 
The goal of SLL is to improve a program. In general, 
there are two ways in which a program p may be im
proved: the quality of the solutions which p generates 
may be improved, relative to some metric on solution 
quality, or the run-time of p may be improved. In this 
paper we consider only the problem of improving the 
run-time of programs; we use the term performance im
provement learning (PIL) to describe this task. A PIL 
program, then, will keep solution quality constant and 
improve performance. We also restrict our attention to 
improvement of programs which use search to find solu
tions to problems given as input. 

The definitions below make precise the sort of perfor
mance improvement considered acceptable. In the defini
tions, TIM E(p, s) is some measure of the time required 
by the program p to process the input s, SIZE(p) is 
some measure of program size, and D is a probability 
distribution on initial problem states. D will sometimes 
be referred to as the run-time environment of the pro
gram p. Also, the average case time complexity of a 
program p on a set S, denoted AVGTIMEv(p,S), is 
defined as L D(s)TIM E(p, s) 

•ES 

Definition 1 (l-approximation) A search program q 
is called an (-approximation of p (with respect to D) if, 
for an s drawn randomly according to D, 

Prob(q(s) :f. p(s)) < f 

A search program q is called an improving (
approximation of p if it is an (-approximation of p and 
AVGTIMEv(q,S) < AVGTIMEv(p,S). 
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The goal of PIL is to reliably produce an improving 
£-approximation using a bounded number of training ex
amples and computational resources. 

The fact that an improvement program q need not be 
correct for all possible inputs, but only for most inputs, is 
important. Unless pis poorly coded, improving its per
formance by purely automatic means is a very difficult 
problem. However, it is often the case that the inputs 
to p will follow some pattern which is unknown to the 
implementor of p. In this case, it is reasonable to try to 
infer this pattern of inputs and then optimize the pro
gram p for those inputs. Since the inference about the 
environment is not likely to be perfect, it is likely that 
the optimized program will fail for some small fraction f 

of the inputs. 
Notice that the definition does not specify what the 

improvement program q will do on the remaining f of 
the inputs. Two reasonable choices would be for q to 
simply abort, or for q to call the original program p. 

3 A framework for analysis of PIL 
programs 

One of the reasons for the success of the Valiant frame
work for learnability is that there are simple procedures 
for establishing the success of a learning algorithm within 
the framework. One of such procedure rests on the fol
lowing basic result. Define a sample of p drawn accord
ing to D to be a set of pairs {(s1, p(s1)}, ... , (sm, p( sm)}} 
such that each s, is drawn according to the probability 
distribution D. We will consider learning programs that 
dynamically build up a sample via calls to an oracle for 
p. If H is a hypothesis space, a set of functions which 
are possible conjectures of a learning program LEARN, 
let [H]n denote {q EH: SIZE(q) < n}, and define the 
dimension of [H]n (written dim([H]n)) to be log2 ![H]nl· 
In [Natarajan, 1989] the following result is given: 

Theorem 1 (Natarajan 89) Let dim([H]n) be poly
nomial in n, and let LEARN always request a sample S 
and return a hypothesis q E H such that 

1. p(s) = q(s) for every problems ES, 
2. there is no q' E H which meets condition {1} such 

that SIZE(q') < SIZE(q). 

Then if S exceeds a certain size (which is polynomial 
in 1/£, 1/6, and the size of p}, LEARN outputs an£
approximation of p with probability at least (1 - 6). 

A similar result can be developed for the PIL frame
work. Define q to be optimal on S with respect to H and 
D if 

Vq' EH, AVGTIMEv(q,S) ~ AVGTIMEv(q',S) 

Also let DOMAIN (p) denote the set of problems for 
which p is capable of finding solutions. The following 
theorem can now be stated. 

Theorem 2 Let dim([Hp]n) be polynomial in n, and let 
LEARN(p) always request a sample S return a program 
q E Hp such that 

2This result generalizes a result from [Blumer et al., 1986] 
to functions. 
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• p(s) = q(s) for every problems ES, 
• there is no q' E H which meets condition {1} such 

that SIZE(q') < SIZE(q), 
• q is optimal on DOMAIN(q) with respect to Hp. 

Also let q0pt be the program which is optimal on 
DOMAIN(p) with respect to Hp and D, and assume 
that there is some qe:cact E Hp which is identical in be
havior and performance (but not necessarily in size) to 
p. 

Then ifp is suboptimal on DOMAIN(p) with respect 
to Hp, and if S exceeds a certain size (which is polyno
mial in 1/£, 1/6, and the size of q0pt}, LEARN outputs 
an improving £-approximation of p with probability at 
least (1 - £)(1 - 6). 

Proof: Natarajan's result tells us that q will agree 
with p on all but f of the inputs with probability at least 
(1-6); the remainder follows from theorem 7 of [Cohen, 
1~~. • 

There are three changes in this theorem, relative to 
the Natarajan result. First, the program pis now known, 
and is assumed to be suboptimal. Second, the hypoth
esis space Hp is derived from p (typically, via a set of 
"improvement operations" such as adding control rules, 
etc) rather than being independent of p. Finally, learn
ing program is allowed to take time proportional, not to 
the program p, but to the unknown optimal program in 
Hp. 

This theorem, like the previous one, describes a 
methodology for evaluating learning algorithms. The 
theorem says that in order to achieve performance im
provement, it is sufficient to find a program q which 
agrees with p on a number of inputs, and which is opti
mal in both size and in average-case performance. Re
quiring optimality in size ensures that the learner con
verges to a q which is behaviorially a good approximation 
of p. Requiring optimality in performance ensures that 
q's average case performance is better. 

It is not typically the case that optimality in size will 
correspond to optimality in performance; this may occur, 
however, if every q E Hp is a set of decision rules. In this 
case, it may be that a smaller set of rules will always take 
less time to use than a larger set of rules. 

4 Analysis of a Chunking Mechanism 
The learning algorithm described in this section is an 
idealized version of chunkine;: it is similar in flavor to 
the techniques described in LFikes et al. , 1972; Laird et 
al., 1986; Mitchell et al., 1986]. We first discuss the 
various components of the learning mechanism: the class 
of programs which can be improved, the time measure 
relative to which programs are improved, the hypothesis 
space Hp, and finally the learning algorithm. 

4.1 The Class of Improvable Programs 

We assume that the program which is to be improved is a 
heuristic search program using the A search algorithm as 
presented in [Nilsson, 1987]. A program can be thought 
of as a triple p = (h, 0, F) where his the heuristic func
tion, 0 is the set of available operations, and F is the 
set of solution states. The output of a heuristic search 



program given an initial problem state s is defined to be 
the sequence of operations which leads to a final state. 

Following Nilsson [Nilsson, 1987], a search program 
is called monotone if, Vs;,sj, h(s;) ~ h(sj) + c(s;,sj), 
where c( s;, Sj) denotes the cost of the operator o such 
that o( s;) = Sj. Henceforth we assume that all programs 
are monotone. 

The time measure, denoted NODES(p, s), is the num
ber of nodes expanded by p in finding a solution to 
the problem with initial state n. This has been cho
sen because it is closely related to actual CPU time 
(as shown in [Cohen, 1989]), but is also analytically 
tractable. AVGNODESv(p,S) denotes the average
case time complexity with respect to this measure. 

We assume the operations to be deterministic, in the 
sense that applying an operator to a state produces a 
unique result; it is not necessary, however, to assume 
that there is a finite set of such operators. It is also 
not necessary for our analysis to assume that each oper
ator produces a single subgoal: in other words, we also 
consider decomposable production systems [Nilsson, 1987] 
(sometimes called problem reduction problem solvers) 
which are guided by a monotone heuristic function. A 
decomposable production system is a problem-solving sys
tem which decomposes an initial problem into a set of in
dependent subproblems, and then recursively solves the 
subproblems. The recursion ends when all the subprob
lems have been "solved" by reducing them to a set of 
final states. For a decomposable production system, the 
output of the program is an not an operator sequence 
but an operator tree, which specifies the partial ordering 
of problem decomposition operators used to reach a so
lution state. An operator tree will be represented as a 
tree with operator labels on the arcs; the nodes of the 
tree, which are unlabeled, correspond to problem states. 

A more detailed description of this extension to the 
heuristic search can be found in [Cohen, 1989]. 

4.2 The Hypothesis Space 

For state-space search problem solvers, a concise rep
resentation of a set of operator sequences is a rooted, 
directed graph in in which every path through the graph 
is an operator sequence. We will call such a graph a se
quence graph. The natural extension for decomposable 
production systems is a sequence hypergraph3 , which is 
a concise representation of a set of operator trees. 

Let p be a search program. We de-
fine REST RICT(p, G) to be a search program q which 
contains only operators from p to which certain precon
ditions have been added: preconditions which constrain 
q to apply operators in an order consistent with some 
path in the sequence (hyper)graph G. We also restrict q 
to use the same rule as p uses to decide which of several 
nodes of equal value to expand next: for instance, if p 
choses between nodes of equal heuristic worth by always 
expanding the most recently generated node first, then 
q must also operate in this manner. 

The set Hp= {q: 3G q = RESTRICT(p, G)} will be 
used as our hypothesis space. Our size measure SIZE( q) 

3 A hypergraph is also sometimes called an AND/OR 
graph . Our usage of this term follows [Nilsson, 1987]. 

on programs in this space is just the number of maximal
length paths in the hypergraph G which begin at the 
root. 

The correspondence between a program q E Hp and 
a set of chunks is close, but not obvious. Note that ap
plying a single chunk is equivalent to executing a series 
of primitive operators, so there is a close correspondence 
between a single chunk and an operator tree. A sequence 
hypergraph is essentially a collection of operator trees in 
which the heuristic function used by the original search 
program has been retained, and is used to decide in what 
order to apply operator trees. Another advantage of the 
hypergraph representation is that operator sequence hy
pergraphs provide a simple means of combining common 
prefixes of two operator trees, which eliminates a possi
ble source of inefficiency for the problem solver. These 
optimizations are necessary to ensure that chunking does 
not actually degrade performance. 

Another important difference is that in most chunk
ing mechanisms, when it is known that a specific series 
of operators Seq will be applied, some sort of partial 
evaluation4 is performed on Tree so that the series of op
erators can be applied more efficiently. We have elected 
to ignore this aspect of chunking, and emphasize the role 
of chunking in reducing search. Our results indicate that 
even without partial evaluation, chunking can provably 
improve performance. 

4.3 A Chunking Mechanism 

We are now ready to present a learning algorithm which 
makes use of sequence hypergraphs to construct an im
provement of a program p. The program CHUNK -
code for which is shown in Figure 1 - constructs a se
quence hypergraph HTREE which contains exactly those 
operator sequences which have been used to solve the ex
ample problems. These sequences are organized, as the 
name suggests, into a hypertree structure, in which the 
longest common prefixes of two trees will be shared. This 
eliminates a possible source of inefficiency. The variable 
n counts the number of times that CHUNK rejects a 
hypothesis, and is used to determine when to stop ex
tending the sample. 

To illustrate the operation of CHUNK, consider the 
simple decomposable production system shown in figure 
2. This program uses a series of rewrite rules to verify 
that containers are cups. For example, the initial prob
lem TESTCUP(CONTl) could be re-written as the set 
of subproblems 

{TESTSTABLE(CONTl), TESTLIFTABLE(CONTl)} 

and, after additional rewrites, eventually solved. 
Consider now using CHUNK to improve this program. 

Assume that the first problem/solution pair returned by 
SOLUTIONv is for the problem TESTCUP(CONTl). 
The operator tree for the solution to this problem is 

4 By partial evaluation we refer to some sort of program 
transformation which is meaning-preserving, but which im
proves efficiency. An example of partial evaluation is the goal 
regression done in EBG [Mitchell et al., 1986] . 
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Algorithm CHUNK((, 5, p): 

inputs: real numbers l, 5; a program p 
outputs: a program q which approximates p 

m+-n+-0 
HT REE+- emptyJitree() 
while m ~ confirm(l,5, n) do 

m+-m+l 
(x,Tree) +- SOLUTIONp() 
ifTree \t HTREE then 

htree_extend( 
root(HTREE), Tree) 

m +- 0 
n+-n+l 

endif 
endwhile 
return RESTRICT(p, HT REE) 

Subfunction confirm(l,5, n): 
return l ln 2 n~ 

< 6 

Subroutine htree_extend( v, Tree) : 

inputs: a vertex v E HT REE; a tree Tree 
modifies: the hypertree HT REE 

r +- the root of Tree 
01 +- the operator labeling r 
if 3 a hyperedge (v, (w1, ... , wi.}) 

labeled 01 then 
for 1 = 1, ... , k do 

n +- the i-th subtree of r 
htree_extend(w;, T;) 

endfor 
else 

replace v with a copy of Tree 
endif 

Figure 1: The Performance Improvement Learner CHUNK 

Operators: 

01: TESTCUP(x) -. TESTSTABLE(x), 
TESTLIFTABLE(x) 

02 : TESTCUP(x) -. TESTDISPOSABLE(x), 
TESTLIFTABLE(x) 

03 : TESTSTABLE(x) -. TESTFLATBOTTOM(x) 
04: TESTLIFTABLE(x) -. TESTCONIC(x) 
os: TESTLIFTABLE(x)-. TESTHANDLE(X) 
06: TESTFLATBOTTOM(CONTl)-. T 
01: TESTHANDLE(CONTl)-. T 
os: TESTCONIC(CONT2) -. T 
09: TESTFLATBOTTOM(CONT2)-. T 

Solution States: { T } 

Heuristic function: 

h( decomposition tree) = number of non-T leaves 

Figure 2: An example search program p 

Since this tree is not contained in the (empty) hyper
tree HTREE, the routine htree_extend is called. The 
effect is add to HTREE a copy of this tree, and to des-
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ignate the root of the tree as the root of HTREE. So 
HTREE is now a copy of the tree above. Additionally, 
m is reset to zero, and n is incremented to 1. 

Now suppose that the next problem/solution pair pro
vided 
by SOLUTIONp is the problem TESTCUP(CONT2), 
which has the solution below: 

Again, this operator tree is not contained in HTREE, 
to htree_extend is called. The result is to modify 
HTREE, producing the following hypergraph. 

CHUNK will continue to incrementally add operator 
trees to this hypergraph until the hypergraph remains 



unchanged after confirm(t,6,n) consecutive examples. 
At this point, CHUNK will assume that the hypergraph 
is sufficent, and return a program q which has the same 
operator set and heuristic function as the initial search 
program, but which uses this hypergraph to constrain 
its search. 

There are several difference between CHUNK and 
conventional chunking mechanisms. One difference be
tween CHUNK and conventional chunking mechanisms 
is that most chunking mechanisms do not learn solu
tions to all problems, but only for a carefully selected 
set of problems or subproblems on which chunking is 
likely to help - for instance, problems on which the 
default search strategy does poorly, or commonly oc
curing subproblems. Construction of such "problem fil
ters" is an active area of research [Laird et al., 1986; 
Minton, 1988). CHUNK contains no such filtering mech
anism, although one could be easily added by filtering 
the output of the oracle SOLUTIONp(). 

Another difference is that CHUNK does not gener
alize solution sequences in any way. This deficiency is 
addressed in section 5. 

4.4 Analysis of CHUNK 

Theorem 2 can now be used to establish the following 
result; see the proof of theorem 5 in [Cohen, 1989) for 
details. 

Theorem 3 Let q0 pt be the program which is optimal 
on DOM AIN(p) with respect to Hp and D. Then if 
p is suboptimal on DOMAIN(p) with respect to Hp, 
CHUNK outputs an improving £-approximation of p with 
probability at least (l-t)(l -6), making at most 7 In lf
calls on SOLUTIONp(). Further, CHUNK runs in 
time polynomial in the size of its inputs and the values 
returned by SOLUTIONp(). 

5 Abstracting Operator Sequences 

A common extension to chunking is abstraction of 
the chunks which are learned, so that they are more 
broadly applicable. Consider a variant of CHUNK called 
CHUNK-A in which, rather than adding a only single 
operator tree when HTREE proves to be inadequate, 
a large numb,er of trees "similar" to the new solution 
tree Tree are added. One possible implementation of 
CHUNK-A is to store in HTREE some sort of an "ab
stract description" of Tree. Since this abstract descrip
tion will also match many other sequences, the effect is 
as if many trees similar to Tree had been stored. 

The most common context in which operator se
quences are abstracted is in decomposible production 
systems. Recall that the solution "sequences" of a de
composible production system are naturally represented 
as trees. These trees can be abstracted by pruning away 
leaf nodes. A natural way of restricting a search pro
gram by an such an abstract operator tree is to require 
existing links in the tree to be followed, but to allow any 
sequence of applicable operators in solving subproblems 
which have been pruned. For example, one way to ab
stracting the operator sequence for TESTCUP(CONTl) 

in the example is to simply discard the final arcs in the 
tree. 

A 
fo, }, 
0 0 

In EBL, this technique is called operationality pruning 
[Mitchell et al., 1986); a similar technique for planning 
problems is called plan abstraction [Sacerdoti, 197 4). I 
will refer to a version of CHUNK which has been mod
ified in this way as CHUNK-A; see [Cohen, 1989] for 
details. 

The primary advantage of using abstraction is that 
the convergence rate of the learning algorithm can be 
improved. Suppose, for instance, that an abstraction 
function is used which maps 100 different operator se
quences to a single abstract description. CHUNK-A can 
learn these 100 different operator sequences from a single 
example, whereas CHUNK may require as many as 100 
examples. Of course, if only one of the 100 different op
erator sequences which are mapped to the same abstract 
description is actually used, then CHUNK-A will learn 
at precisely the same rate as CHUNK. Formalizing this 
argument leads to the following theorem. 

Theorem 4 Let CHUNK-A use an abstraction function 
which maps A operator descriptions to B abstract de
scriptions, let a = A - B, and consider a learning prob
lem for which CHUNK requires m examples. Then, if 
n is the size of the program output by CHUNK, and if 
CHUNK-A receives exactly the same sequence of exam
ples as CHUNK: 

1. CHUNK-A will require at most m examples. 

2. CHUNK-A will require at least m - 0
~

1 In lf ex
amples. 

The price that is paid for possibly more rapid conver
gence is that the program q produced by CHUNK-A is 
less restricted, in the sense that the hypergraph used to 
restrict p contains more paths, and thus potentially not 
as efficient. There is, however, one interesting case in 
which there is no efficiency loss. 

Theorem 5 Let S be a class of problem states such that 
the heuristic function h is perfect on S : that is, no nodes 
not directly on the path to the solution found are vis
ited in solving a problem s E S. Let CHUNK-A use an 
abstraction function which maps every possible solution 
sequence for a problem s E S to the same abstract de
scription, let q1 be the program learned by CHUNK using 
a fixed set of examples, and let q2 be the program learned 
by CHUNK-A using the same set of examples. Then 

Vs : q1(s) = q2(s), NODES(q2, s) = NODES(q1, s) 

In other words, abstraction carries no efficiency 
penalty if the abstraction function classifies as "plan de
tails" or "operational subgoals" only those subproblems 
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which can be solved without search. A corollary of this 
result is that CHUNK-A, with such an abstraction func
tion, has the same computational properties as CHUNK. 

6 Related Work 

Since these results were developed, several experimental 
results have been published which support the predic
tions made by the model. One of the conditions nec
essary to guarantee the optimality of a set of chunks is 
that the heuristic function be monotonic. In [Mooney, 
1989] results are given which show that unrestricted use 
of EBL in a depth-first search problem solver leads to 
performance degradation, whereas use of use of EBL 
in a breadth-first search problem solver leads to per
formance improvement; note that breadth-first search 
uses a monotonic search function, and depth-first search 
does not. A second conditions necessary to guarantee 
performance improvement in our model is that abstrac
tion must be constrained to only "abstract away" sub
problems which can be solved without using search. In 
[Tambe and Rosenbloom, 1989], results are given which 
show that using an arbitrary abstraction function on 
chunks in SOAR can cause performance degradation. 
This degradation can be eliminated by constraining the 
abstraction function to produce chunks which can be 
matched in linear time: that is, without search. The 
argument made in [Tambe and Rosenbloom, 1989] to 
support the experimental claim relies on the condition
sharing done by the RETE algorithm, an operation 
similar in effect to the operator tree merging done in 
CHUNK. 

In [Greiner and Likuski, 1989] a formal analysis of 
EBL is made, under a different assumption. Greiner as
sumes that cached solution paths are incorporated as 
additional operations, augmenting the set of primitive 
queries. A method for incorporating redundant rules and 
constructing an optimal ordering of rules is described. 
However, the optimality is with respect to a single query, 
not a set of queries; the general problem of finding an 
optimal search strategy in an arbitrary redundant search 
space is shown to be NP-hard. In our research, in con
trast, we assume the original set of primitive operators 
will be discarded, and a set of cached solution paths 
used in its stead. In doing this, we sacrifice complete
ness of the optimized problem solver, but make tractable 
the process of finding an optimal search strateiy. The 
negative results of [Greiner and Likuski, 1989] can be 
viewed as support for our contention that it is necessary 
to trade off some coverage to tractably obtain perfor
mance improvement on the remaining inputs. 

In [Mahadevan et al., 1988; Natajaran and Tade
palli, 1988] is an alternative formalization of the prob
lem of improving the performance of search programs. 
They take the goal of learning to be improvement in 
the asymptotic time complexity of problem solving; the 
principle means considered for doing this is inductively 
learning the conditions under which operators are useful 
to apply. Two practical difficulties with applying their 
framework are, first, that verifying the preconditions of 
their theorems may be difficult in a poorly understood 
domain ( this has been verified for one formalization of 
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the problem of symbolic integration, however [N atajaran 
and Tadepalli, 1988]), and second, that implementation 
of the oracles needed by the learning algorithm appears 
to require breadth-first search: in contrast, implementa
tion of the SOLUTIONp() oracle requires only heuristic 
search. 

7 Conclusion 
The ultimate goal of the research described in this paper 
is to develop a sound and workable methodology for the 
analysis of common program improvement learning tech
niques such as macro-operators [Fikes et al., 1972], EBL 
[Mitchell et al., 1986], and chunking [Laird et al., 1986]. 
To this end, we have extended the distribution-free learn
ing framework introduced by Valiant [Valiant, 1984]; we 
defined a notion of program improvement which, paral
leling Valiant's definition, allows the improving program 
to approximate the original program, and then extended 
the basic result of the Valiant learning framework to the 
problem of performance improvement learning. An alter
native theoretical analysis of performance improvement 
learning [Greiner and Likuski, 1989] suggests that this 
assumption may be necessary for tractable learning. 

We then use this learnability framework to evaluate 
a chunking mechanism for a particular class of search 
programs. Several of the predictions made by our model 
have been confirmed by recently published experiments; 
in particular, the requirements that the original search 
program use a monotonic heuristic function, that com
mon conditions be merged, and that abstraction be 
greatly constrained are supported by experimental evi
dence in [Mooney, 1989; Tambe and Rosenbloom, 1989]. 
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Abstract 

If analogical reasoning programs are going to ei
ther have a broad application or approach the 
capacity of ordinary human thinking, then the 
mechanisms must become more complex or the 
semantics must become richer or both. Little 
research is being done to discover what a broad 
collection of semantics can contribute to gen
eral purpose analogical reasoning. 
This paper presents a methodology for deter
mining which meaningful concepts to use in 
general analogical reasoning. It uses a broad 
range of metaphors and incorporates human 
subject understanding. The reasoning mech
anism operates on a broad semantic base us
ing a thesaurus hierarchy for interactions be
tween the target and source components of 
metaphors. 

1 Introduction 

Studies of metaphor and analogical reasoning have been 
explored for a long time by many disciplines[Shibles, 
1971; von Noppen et al., 1985; Helman, 1988] with much 
of the current research coming from artificial intelligence 
[Prieditis , 1988; Eskridge, 1989; Hall, 1986; Hall 1989· 
Leishman, 1989; Wolstencroft, 1989]. This pa;er de~ 
scribes a semantic approach to analogical reasoning. 

1.1 Scope, Diversity, and Human 
Understanding 

1.1.1 Scope 
To approach ordinary human thinking, general ana

logical reasoning programs need either more complex 
mechanisms or much richer semantics, or both. With 
the notable exception of the CYC project[Lenat et al., 
1986], little research is being done with a broad collec
tion of semantics for general purpose analogical reason
ing. The methodology discussed herein addresses this 
point by using a hierarchy containing a wide scope of 
concepts ( called schemata) taken from Roget's The
saurus [1987] spanning the two classes of abstract rela
tions and space. 

·This work was supported by NSERC grant # 99185220 
and NSERC grant # A4515. 
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1.1.2 Diversity 
AI approaches tend to be based on a small collection 

of well-used examples. Both the program and the repre
sentation of a particular analogy can appear to be built 
for each other. More diverse metaphors need to be 
handled for a program to work beyond a narrow range 
of domains. The methodology presented here uses a col
lection of 260 wide-ranging nonliterary metaphors[Katz 
et al., 1988] and takes precautions to independently rep
resent each of the primary (target and source) concepts 
(without knowledge of the metaphor). 

1.1.3 Human Understanding 
Current approaches underplay the human understand

ing of metaphor. While psychological studies are in
corporated in AI research, more understanding of hu
man metaphorical reasoning is required. The methodol
ogy below applies human understanding to machine
generated meanings in determining the concepts used in 
metaphorical reasoning. 

This paper presents a novel methodology for 
determining which semantics are useful in gen
eral analogical reasoning. It uses a broad range of 
metaphors and incorporates human subject un
derstanding. The reasoning mechanism operates 
on a thesaurus hierarchy using the meaningful 
concepts therein for interactions between the tar
get and source of metaphors. The methodology 
has been fully implemented and tested on human 
subjects. A Sun computer using ART and LISP 
was used. 

The remaining sections of this paper elaborate upon 
the methodology. Section two discusses the terminology 
used. Section three presents the computational model 
as exemplified by the TisS program. Section four de
scribes a test of the methodology, section five presents 
a discussion, and section six concludes the body of the 
paper. 

2 Terminology 

2.1 Metaphor and Analogical Reasoning 

The concept of metaphor as used in this paper is the 
pattern Target is Source (TisS) such as in The eye 



Figure 1: Partial Representation of treasure chests and 
Thesaurus (left) 

is a camera or Books are treasure chests or Criticism 
is a branding iron. Analogical reasoning is the pro
cess involved in making sense of metaphors. In the 
case of a computer program, analogical reasoning re
sults in changes in the structure (rearrangements and 
additions) to the target concept and rearrangements 
to the source concept (see discussions of interaction 
theory[Black, 1962; Tourangeau and Sternberg, 1982; 
Hunt, 1989]). 

2.2 Knowledge Structures 

There are two major structures in the design. One is the 
changeable conceptual network which captures knowl
edge about target and source domains. The other is 
a fixed thesaurus taxonomy which embodies abstract 
schemata. 

2.2.1 Schemata, Gestalts, and Concepts 
Three types of units are used in conceptual net

works: schemata, gestalts, and concepts. Schemata are 
common units found within a concept which form the 
bridge between concepts within the target / source net
work. through the fixed thesaurus. An example in Fig
ure 1 is content. Schemata contain further components, 
which are either gestalts or concepts. 

The gestalts only have a name and are found only as 
a final units (leaves) in a conceptual network. The only 
gestalt in Figure 1 is partial. 

Concepts are composed of schemata which in turn con
sist of gestalts and other concepts. This results in the 
concept being a network of all three units. One con
cept in Figure 1 is treasure chests. Each of two different 
concepts has its own schemata but can be connected to 
the other concept through common schemata in the the
saurus. 

Figure 2: The Four Phases of the TisS Program 

2.2.2 Thesaurus 
The choice of schemata began with the work of Mark 

Johnson and George Lakoff. They discussed a handful 
of schemata at length[Johnson, 1987; Lakoff, 1987], enu
merated 30, but considered the list to be incomplete. 

To establish a stronger foundation for delimiting 
schemata with sufficient generality and scope, the 
two classes of ABSTRACT RELATIONS and 
SPACE from Roget's Thesaurus of English Words and 
Phrases [1987] were used. Besides its long-standing and 
continuing use, strong empirical support for exploring 
this semantic organization comes from the analysis of an 
earlier Roget's Thesaurus by Sedelow and Sedelow [1986]. 
A further analysis [Hunt, 1989] reveals that all but one 
( compulsion) of Johnson and Lakoff's schemata can be 
found at the category level of these two classes. 

A further reason for using the thesaurus is its ability 
to serve as a model for the conceptual base theory. A 
conceptual base provides a common ground for both the 
source and target. Support for this theory comes from 
several quarters. From philosophy, this notion is called 
abstraction[Hesse, 1966; Darden and Rada, 1988; Way, 
1988]. In analogical reasoning programs[Greiner, 1988; 
Burstein, 1988; Leishman, 1989], the use of abstrac
tions is common. From psychology, studies in proverb 
comprehension[Honeck et al., 1980; Hoffman and Ho
neck, 1987], categorization[Honeck et al., 1987], and 
metaphorical representation[Honeck and Kibler, 1985] 
support the conceptual base theory. 

A taxonomy with 182 abstract relation schemata and 
134 space schemata are formed from the two classes. 
This remains stable while connected to the changing con
ceptual networks via links to instances of the schemata 
found within the concepts. 

3 The Computational Model of 
Metaphor 

3.1 General Reasoning Process 

Several researchers in machine learning have studied 
analogical reasoning and use similar phases in the 
process[Kedar-Cabelli, 1985; Hall, 1986; Hall, 1989; 
Falkenhainer, 1987]. A study of the literature on cre
ativity and discovery[Wallas, 1926; Hadamard, 1945; 
Parnes et al., 1977; Langley and Jones, 1986] also shows 
that phases parallel to these are in the creative problem 
solving process. From this research have come the four 
phases of the TisS Program (see Figure 2). The primary 
sequence involves: 
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source-c uster 

target-glimpse 
context 
general-schema 

a imit to t e size o the source c us
ter 
first thoughts about the target 
the current context of thinking 
general concepts useful in under
standin meta hors 

Figure 3: Recognition Phase Rules 

mteract10n-size 

matching 
transference 

modification 

size hrmtations for the mteraction 
cluster 
criteria for matching clusters 
minimum count for node transfer
ence 
target modifications 

Figure 4: Elaboration Phase Rules 

recognizing relevant schemata (thesaurus entries) within 
the source structure 

elaborating the target structure based on 

• interaction with the source through common 
schemata 

• otherwise significant schemata (testable) 

evaluating the schemata using human judgement 

consolidating the changes 

Other pathways for program flow also exist among 
the phases. One provides more interaction between 
the source and target (Elaboration to Recognition), one 
consolidates source changes (Recognition to Consolida
tion to Recognition) and the third consolidates target 
changes (Elaboration to Consolidation to Elaboration). 

3.2 Recognition 

Given the metaphorical structure Target is Source, 
what is meant by recognition is locating a cluster of 
nodes for use in the subsequent steps. A node is one 
of schema, gestalt, or concept. The cluster must include 
the Source. The cluster is determined by parameter
ized rules (see Hunt [1989] regarding rule choice). These 
constrain a search that starts at the Source and spreads 
outward including acceptable nodes. Four rules are used 
to extract information from the source concept during 
the recognition phase. These are listed in Figure 3. 
An example of a general-schema rule is: (rec-rule SE
Contents 1 6) which states that the contents schema has 
priority 1, with a search range of 6 levels beyond the 
source. 

3.3 Elaboration 

Once the Source cluster is formed, it must interact with 
the Target to form an interaction cluster that even
tually becomes part of the final Target cluster. Again, 
rules constrain the construction of the clusters. These 
are listed in Figure 4. An example of a modification rule 
is: (modify-target-rule QCj-Part 1 3) which states that 
the part schema can be added to the target cluster along 
with 1 ajoining level of nodes provided it is placed no 
more than 3 levels from the target c~mcept. 
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3.4 Evaluation 

The evaluation phase of TisS requires humans . For 
problem-solving metaphors getting the calculable answer 
is acceptable[Greiner, 1988]. To handle a wide range of 
metaphors, meaning will have to involve humans more 
closely. Section four discusses the evaluation phase in
cluding human testing. 

3.5 Consolidation 

There are two aspects to consolidation within the TisS 
design: rearrangement and modification. Rearrange
ment just determines which nodes, target or source, will 
be examined first on future passes. Modification involves 
adding new nodes to the target. 

After all possible firings of the general schema rules 
are made for a given level of the source cluster, then the 
source cluster is rearranged leaving all matched nodes in 
front of all unmatched ones. 

For the target cluster, modifications are the result of 
the firing of modification rules. Rearrangement occurs 
after modifications are performed, with new nodes and 
recognized nodes (i.e., fired matching rules) occurring 
first. 

3.6 Process Overview 

In Figure 5 the TisS process is depicted. The solid ar
rows indicate the flow of the program, heavier arrows be
ing the major flow. The dashed arrows indicate changes 
to a cluster, heavy dashed arrows are creations or mod
ifications while the light dashed arrows are rearrange
ments . After a metaphor is processed by TisS, both 
source and target clusters are typically rearranged and 
the target cluster may have new nodes. The evaluation 
phase also suggests changes in the rule priorities. All 
these changes provide a difference in the knowledge base 
for future metaphors. 

4 The Test 

Four metaphors (see Figure 6) were randomly chosen 
from a list of 260 nonliterary metaphors[Katz et al., 
1988] . Each of the targets and sources was encoded into 
a network of nodes attached to the thesaurus (see Fig
ure 1) based on lists of facts and ideas for each concept. 
For each target/source pair, two human subjects were en
listed, one to create each list. Neither subject was aware 
of the other concept (nor of the shared metaphor). 

The TisS program was given each metaphor ( and its 
reverse) and generated interpretations of each based on 
existing or newly formed connections to the thesaurus. 
The number of statements generated for each metaphor 
ranged from three to nine for a total of 40. Figure 7 
shows selected interpretations and associated schemas. 

Four human subjects then rated these 40 statements 
on scales of aptness and agreement. The five-valued apt
ness scale ranged from poor to good. With the subjects 
writing down their own interpretations of the metaphors, 
the five-valued agreement scale included the extremes 
of "no agreement" and "wrote the same interpretation" 
with "thought of the computer's interpretation" in the 
middle. 



Recognition Elaboration 

Consolidation Evaluation 

Figure 5: The TisS Process 

Target Source 
the wind IS a cat 

books are treasure chests 
mosquitoes are vampires 

caves are pockets 

Figure 6: Metaphors Used in Test 

Statement 
ig aptness an 

Books are receptacles with 
contents. 
Mosquitoes are active in the 
evening. 
Blood is food for vampires. 

ow aptness an 
The wind is small. 
The cat is an agent. 

Schema 
agreement 

contents/ receptacle 

evening 

food 
agreement 

littleness 
agency 

Figure 7: Selected Metaphors and Associated Schemata 

written 0 0 

thought 
0 21 

none llttlene99 

i 
agency 

2 7 

agreement 

aptness ~ poor mediocre 

3 
contents/ 

receptacle 
evening 
food 

7 

0 

good 

Figure 8: Subject Ratings ( and Schemata) of TisS State
ments about Metaphors 

Each of the 40 statements was given a rating on a 
three-valued version of each scale based on unanimous 
ratings by the subjects for extreme values. Figure 8 
shows the numerical results along with the associated 
schemata of the extreme values. 

5 Discussion 

Figure 8 shows that the three statements ( of the 40) 
associated with container/receptacle, evening, and food 
were not only considered quite apt, but were in agree
ment with the written interpretations of the subjects. 
Another seven were as well considered good. At the 
other extreme two statements associated with littleness 
and agency were neither thought by any subjects nor 
considered at all apt. The most interesting statements 
would be those considered very apt but not even con
ceived of by subjects. These would be novel interpreta
tions. There were none of these in this sample. Of the 
significant schemata, only evening was the result of TisS 
adding a new node. 

The Recognition and Elaboration Phases are generally 
rule-governed breadth-first searches and model a domain 
interaction theory[Black, 1962; Tourangeau and Stern
berg, 1982; Kelly and Keil, 1989]. The most demostra
tive action of TisS is the addition of new nodes to the 
target domain. These are subsequently evaluated by sub
jects to determine which schemata are worth adding. For 
early tests of metaphors, a broad if not complete range 
of schemata should be candidates for addition. 

The Evaluation Phase requires human judgement. 
The broader range of metaphors intended for study re
quire more human input, at least for now. The actual 
evaluation involved three steps on different days, includ
ing a test for consistency and the use of a novelty scale. 
It would be difficult to sustain the involvement of larger 
groups of subjects in a similar design . 
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During the Consolidation Phase, the target schemata 
are rearranged, with those matching source schemata 
moving to earlier positions. Added schema may also 
appear within the target. True to the interaction the
ory but not described in other analogical reasoning pro
grams, the source also changes, via the rearrangement of 
schemata. 

6 Conclusions 

This paper presents a methodology for determining the 
semantics needed for a general analogical reasoning pro
gram. This methodology uses a broad base of concepts 
from a thesaurus. Init ial testing was carried out and 
gave support to the methodology. 

The next major step is to test new domains. There 
are already two new domains coded and fourteen others 
for which facts have been collected. It then remains to 
process the other metaphors from the source collection. 

Revising the thesaurus is currently being stud
ied. Two promising areas of revisions are part
whole relationships[Winston et al., 1987] and modes of 
existence[Hirst, 1989]. 

A continuing concern is improving the goodness and 
independence of each of the source and target represen
tations. 
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ABSTRACT 
We present a simpler and more efficient algo
rithm for learning a finite-state machine than the 
previously known methods. The present algo
rithm constructs the minimal deterministic finite
state machine and is based on a series of 
'yes'/'no' answers to the queries of the form 
equivalent(xi, x~ and accepted(x), where x, xi, 
and x2 are input strings over the alphabet of the 
machine. If the minimal machine has m states 
and the size of the input alphabet is n, then the 
algorithm uses at most O(m2.n) queries. If we 
restrict the queries only to the form accepted(x), 
then the learning algorithm requires O(m.n m-l) 
queries. 

1. INTRODUCTION 
One of the main criteria for a machine MO to be 
considered intelligent is that it should be able to 
discover algorithms for solving a given class of 
problems from a suitable specification of that 
problem class. Since a general algorithm 
corresponds to a Turing machine, it means that an 
intelligent machine should be able to construct a 
Turing machine Mp from the specification of a 
problem class P. In a sense, this is always possi
ble if P is specified in a special form. For exam
ple, suppose the problem consists of deciding 
whether a given input string belongs to a 
language (class of strings) Lp or not. If Lp is 
specified by a regular expression, then the desired 
machine Mp is a finite-state machine that accepts 
the language Lp and there is a Turing machine 
M O (i.e., an algorithm) which can generate the 
transitions of such an Mp. More generally, sup
pose the problem class Pis modeled by a primi
tive recursive function f p: N1r. ~ N = {O, 1, 2, 
... ) , and the function f p is specified by a finite set 
of expressions which define f p in terms of certain 
initial functions, and the operations of function 
composition, primitive recursion, and unbounded 

minimalization [1].6 It is not hard to design a Tur
ing machine MO which can generate the transi
tions of a Turing machine Mp for computing the 
function f p from such a specification. The learn
ing problem is thus reduced to the problem of 
finding a suitable representation and, moreover, 
the learning problem becomes more or less trivial, 
given such a representation. However, we do not 
have at present an algorithm for constructing a 
representation in the form of regular expressions 
or function expressions using the initial functions, 
etc. from other forms of specification. This calls 
for a different approach to the learning problem. 
One such approach is called learning from exam
ples, where one examines a set of input-output 
pairs of the machine Mp and tries to construct Mp 
from that information. In the remainder of the 
paper, we consider the problem of learning a 
finite-state machine from examples. 

The class of finite-state machines are par
ticularly important because it models the simplest 
form of recursively defined languages (concepts). 
The concept defined by a boolean function is 
non-recursive and is suitable only when the con
cept distinguishes among a finitely many alterna
tives (~ 2" for a function of n boolean variables). 

In practice, we do not often have a 
sufficient knowledge of a problem class P 
(equivalently, the associated set of strings Lp) to 
express the set Lp in the form of a regular expres
sion. Instead, we generally have only a set of 
examples E of input-output pairs of Mp for the 

§ The three commonly used initial functions are: 
(1) the successor function o(n) = n + 1 for n 2: 0, 
(2) the 0-place function ~( ) = 0, which has no ar
gument, and (3) the projection functions rt" i (n I• 
n2, ... , n1,,) = n; for all n 1• n2, ... , n1,, 2: o. 



language Lp. Here, an input-output pair has the 
form (x;, 'yes') or (xi, 'no'), depending on 
whether the input string xi e Lp or not. A pair of 
the form (xi, 'yes') is called a positive example 
and a pair of the form (x;, 'no') is called a nega
tive example. The learning task is to construct a 
finite-state machine which is consistent with a 
given set of examples E. Such a machine may be 
taken as an approximation to the actual machine 
Mp. Unfortunately, the class of finite-state 
machines is too large to identify its members in 
terms of their behavior on a given finite set of 
example inputs. There are in fact an infinite 
number of non-equivalent (i.e., which differ in 
the output for at least one input other than those 
in E) finite-state machines which are consistent 
with a given finite set of examples E. Thus one 
cannot determine Mp exactly from any finite set 
of examples E no matter how simple or complex 
the machine Mp is. The situation does not 
improve much even if we have additional infor
mation about the regular language Lp such as that 
Lp is disjoint from (or contains) another known 
regular language L', where L' may be given in the 
form of a regular expression, say. Thus in order 
to learn Mp exactly the learning algorithm must 
have access to a teacher (oracle) which can 
answer the queries of type (1 )-( 4) shown below or 
some other equivalent forms of them. We say 
that the input strings xi and xi are equivalent, 
denoted by xi == xi, if for each string y, either both 
X;.y and xi.y are accepted by Mp or both are 
rejected by Mp [l, 2]. 

(1) Is the machine Mp to be learned is 
equivalent to the one currently constructed 
by the learning algorithm? 

(2) Give new examples of input-output pairs 
(xi, Yi), or equivalently, determine the out
put Yi = 'yes'/'no' = accepted(xi) for an 
input xi, where X; may be generated by the 
learning algorithm. 

(3) Are the input strings xi and xi equivalent? 

(4) Is the number of states in Mp :5: m? 

The learning algorithm in [3] is based on 
the queries of type (1)-(2). The main part of that 
algorithm constructs a deterministic finite-state 
machine M'p which is consistent with a given set 
of examples E. If M'p is not equivalent to the 
machine Mp, then it obtains one or more other 
inputs x; from the teacher such that xi is accepted 

by one of M'p and Mp and rejected by the other. 
The algorithm then modifies M' p on the basis of 
the new example xi , and repeats the cycle until 
the teacher confirms that M'p is equivalent to Mp. 
The finite-state machine M' p constructed at each 
stage has the smallest number of states and each 
new M' P obtained has the same output for a 
larger set of input strings than that for the previ
ous M'p. 

We give two algorithms LEARN and 
LEARN2 for learning a finite-state machine. The 
first algorithm LEARN uses the queries of type 
(2) and type (3). The second algorithm LEARN2 
is a slight variation of LEARN, where only the 
queries of type (2) are used, in addition to a 
bound on the number of states in Mp (queries of 
type (4)). Note that the queries of type (3) are, in 
a sense, implicit in the queries of type (1). In this 
sense, the algorithm LEARN does not assume any 
additional help from the teacher than the algo
rithm in [3]. In LEARN2, the bound on the 
number of states helps to replace the queries on 
equivalence of strings. We should point out that 
although the queries of type (3) simplifies the 
learning of the finite-state machine Mp, the con
struction of the machines M' p given in [3] is of 
much independent interest. This is because, from 
the practical point of view, it is important to be 
able to construct a finite-state machine which is 
consistent with a given set of examples E and 
which has the minimum number of states. 

2. THE NEW LEARNING ALGORITHM 
The basis of the new learning algorithm is the 
Myhill-Nerode's theorem given below [1]. The 
equivalence relation "..," on the set of input strings 
of a finite-state machine Mp has the following 
properties (i)-(iii). Here, I: is the alphabet of Mp. 

(i) For any two strings x 1 and x 2, X1 == X2 

implies that x 1.a == x 2.a for all ex e I:. 
(Repeated application of this gives x 1.y == 
x2.y for all input strings y.) 

(ii) The equivalence relation "==" has only a 
finitely many equivalence classes. 

(iii) The set of strings accepted by Mp is the 
union of zero of more of these equivalence 
classes. 

Given the equivalence classes, one can 
define a finite-state machine M • p , which is 
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equivalent to Mp (i.e., accepts the same strings) 
as follows. Let [x tl, [xii, ... , [xk] be the 
equivalence classes of the set of input strings I:*. 
We define one state s; in M• p for each 
equivalence class [xi]. The starting-state 
corresponds to the class [xi], say, which contains 
the empty string A. A state si is a final state of 
M • P if and only if the equivalence class [x;] con
tains a string which is accepted by Mp (and hence 
each string in [xi] is accepted by Mp by the pro
perty (iii)). Finally, we have the transition 6(si, 
a.) = si in M• p if and only if the string x; .a. e 
[xi]. The property (i) assures that the transitions 
are well-defined The machine M• p has the 
important property that it has the smallest number 
of states among all finite-state machines which 
are equivalent to Mp. In particular, M" p is 
unique except for the names of the states. 

Since there is no way to distinguish the 
machine Mp from its equivalent minimum 
machine M• p in terms of the input-output 
behavior, it is not surprising that a learning algo
rithm for a finite-state machine determines (both 
in our algorithm and that in [3]) only the 
equivalent form M• p, which is after all the sim
plest (equivalent) form of Mp. 

We now present the first learning algorithm 
LEARN. We denote the current set of states by 
STATES. A state sx e STATES, corresponding 
to the equivalent class [x], is said to be closed if 
all the transitions from that state have been deter
mined; otherwise, sx is said to be open. The 

current set of open states is denoted by OPEN. In 
Step(2) of LEARN, the states sx e OPEN may be 
selected in an arbitrary order. The algorithm 
stops when the set OPEN becomes empty. 

Example 1. Table 1 illustrates the compu
tations of LEARN in learning the finite-state 
machine Mp shown in Fig. 1. The input alphabet 
of Mp is I:= (0, l} and Mp accepts the strings 
which have an even number of O's and an even 
number of l's [3]. In Table 1, we show the suc
cessive choice of x, the set OPEN at the end of 
each iteration of Step (4), the new state added to 
the set STATES (if any), and the transition 
defined. We write the state sx simply as [x]. If 
we select the successive states sx in Step (2) in 
the order in which they are added to OPEN (i.e., 
in the non-decreasing order of lengths), then the 
underlying search-tree for the new states of M • p 

takes the form as shown in Fig. 2(i). This 
corresponds to the breadth-first search for the 
states of M" p. Fig. 2(ii) shows the corresponding 
search-tree if the states sx are selected in the 
depth-first fashion. Each branch of the tree from 
a parent node x to a child node y = x.a. 
corresponds to the transition 6(sx, a.) = sy, where 
a. is the label of that branch. • 

It is easy to see that the algorithm LEARN 
takes at most O(m 2.n) queries, where m = the 
number of states in Mp and n = the size of the 
alphabet I:. For each state sx, there is one query 
accepted(x) and at most (m.n) queries of the form 
equivalent(x.a., y), where sy is one of the current 

Algorithm LEARN (for learning a finite-state-machine): 

Input: The input alphabet I: of the finite-state machine Mp and a set of queries of the 
form accepted(x 1) and equivalent(x 1, xi), where the strings x 1 and x 2 are gen
erated by the algorithm. 

Output: The minimal deterministic finite-state machine M" p which is equivalent to Mp. 

1. [Initialize.] Let STATES= {s)..} = OPEN. 

2. If OPEN = empty-set, then the desired finite-state machine has been obtained, and stop. Other
wise, choose a state sx e OPEN and delete it from OPEN. 

3. If accepted(x) ='yes', then label sx as a final state. 

4. [Close sx .] For each symbol a. e I: do the following: 

(i) Find the unique state Sy_ e ST A TES, if any, such that sx. a is equivalent to Sy. 

(ii) If no such state sy exists, then let y = x.a. and add the state Sy to both OPEN and 
STATES. 

(iii) Define the transition 6(sx, a.)= Sy. 

5. Go to Step (2). • 



TABLE 1. Computations performed by the algorithm LEARN 
in learning the finite-state machine in Fig. 1. 

Final New state [xJ OPEN Transitions from 
X 

state 
(l 

or equivalent [y J states the state [xJ 

[AJ [AJ 

x=A yes a=O [OJ [OJ o([AJ, 0) = [OJ 
<l= 1 [lJ [OJ, [lJ o([AJ, 1) = [IJ 

x= ·o· no a=O [OOJ = [AJ [IJ o([OJ, 0) = [AJ 
a= 1 [OIJ [IJ, [OIJ o([OJ, 1) = [OIJ 

X = '1' no a=O [lOJ = [OIJ [OlJ o([lJ, 0) = [OlJ 
<l= 1 [llJ = [AJ [OIJ o([lJ, 1) = [AJ 

X = '01' no a=O [OlOJ = [IJ empty o([OIJ, 0) = [lJ 
<l= 1 [OllJ = [OJ empty o([OIJ, 1) = [OJ 

Figure 1. The state-diagram of the finite-state machine which accepts all strings 
over I:= {O, 1} containing an even number of O's and an even number of 1 's. 

states. The time required by the algorithm 
LEARN is also at most O(m2.n). 

3. A MODIFIED FORM OF LEARN USING 
ONLY QUERIES OF TYPE (2) 
Actually, it is possible to learn a finite-state 
machine Mp using only queries of type (2) pro
vided we are given an upper bound m on the 
number of states in Mp . In that case, one can 
determine the equivalence of two strings xi and 
xj by comparing the values of accepted(xi .y) and 
accepted(xj .y) for sufficiently many strings y. To 
be precise, we have the following lemma [IJ. 

Lemma 1. If the finite-state machine MP 
has m states, then two input strings x; and xj are 
equivalent if and only if for all strings y of length 
~ (m - 2), we have accepted(x; .y) = 
accepted(xj .y). 

In [3J, each approximation M'p to the 
desired finite-state machine Mp is constructed on 
the basis of verifying the equality accepted(xi , y) 
= accepted(xj .y) for a certain set of strings y; 
each new approximation uses a larger class of 
strings y than that used in the previous approxi
mations. We give below a variation of the algo
rithm LEARN, called LEARN2, where only the 
queries of type (2) are used, in addition to the 
upper bound m. The only difference between 
LEARN and LEARN2 is in Step 4(i); the 
modified form of this step is shown as Step 4(i') 
below. We denote by TEST the set of all strings 
of length~ (m - 2). There are (n <m - l) - 1)/(n - 1) 
strings in TEST. 

Example 2. Table 2 illustrates the compu
tations of LEARN2 in learning the finite-state 
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~/Al~ [A] 

o/ ~ 
[0] [1] [0] [l] 

I\ !\ ~~ 
"'[010] 

[00] [01] [10] [11] [00] [01] 
"' [A] (\/[] "' [A] "'[A] I~ 1 

[01 ] [011] [010] [011] 
"'[0] I~ "'[0] 

[0100] [0101] 
,., [01] "'[A] 

(i) Breadth-first search-tree. (ii) Depth-first search-tree. 

Figure 2. The underlying search-trees in learning the finite-state machine in Fig. 1 using 
breadth-first and depth-first search for new states. A node is a terminal node in 
the search-tree if it equivalent to a node in the current tree. 

Algorithm LEARN2 (for learning a finite-state-machine using a bound on the number of 
states): 

Input: The input alphabet I: of the finite-state machine Mp , an upper bound m on the 
number of states, and a set of queries of the form accepted(x), where x is a 
string of length less than 2m. 

Output: The minimal deterministic finite-state machine M* p which is equivalent to Mp. 

1. [Initialize.] Let OPEN= {sA.) and STATES= {sA.). 

2. If OPEN = empty-set, then the desired finite-state machine has been obtained, and stop. Other
wise, choose a states,. e OPEN and delete it from OPEN. 

3. If accepted(x) = 'yes', then labels,. as a final state. 

4. [Closes,..] For each symbol a e I: do the following: 

(i') Obtain 'yes'/'no' values of accepted(x.a.z) for z e TEST and find the unique state sy e 
STATES, if any, such that accepted(x.a.z) = accepted(y.z) for all z e TEST. 

(ii) If no such state sy exists, then let y = x.a and add the state sy to both OPEN and 
STATES. 

(iii) Define the transition B<sx, a) =Sy. 

5. Go to Step (2). • 

machine considered in Example 1. The set TEST 
has 7 strings TEST = {A, 0, 1, 00, 01, 10, 11). 
The middle part of Table 2 shows the values of 
accepted(x.a.z) for ex e I: and z e TEST. Two 
strings xi and xi are considered equivalent if the 

associated Y/N-row for xi and xi are the same. 
Thus A is equivalent to 00 and 11, 01 is 
equivalent to 10, and so forth. The final finite
state machine constructed by LEARN2 is once 
again the minimal equivalent machine of Mp. • 



That the algorithm LEARN2 requires 
O(m.nm-l) queries of the form accepted(x) is 
clear because TEST is of size O(nm -2) and for 
each state [x] in M• p one has to make O(nm-l) 
many evaluations of queries of the form 
accepted(x.cx.z). The time required by LEARN2 
is at most O(m.n m-

2.(m + n)) because to test the 
equivalence of a state sx one has to compare 
O(n m-

2
) values of accepted(x.cx.z) with each of 

the current states and ex e I:. The fact that the 
algorithm LEARN2 takes exponential amount of 
time in n is not surprising because the problem of 
determining a finite-state machine from input
output behaviors alone is known to be NP
complete [4]. 

Acknowledgement: I like to thank Dr. 
Jianhua Chen for many valuable technical discus
sions in course of the preparation of this paper. 
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TABLE 2. Computations performed by LEARN2 in learning 
the finite-state machine in Fig. 1. 

TEST = {A. 0, 1, 00, 01, 10, 11} New state Transitions 
x.a or OPEN from 

A 0 1 00 01 10 11 equivalent [y] states state [x] 

A y N N y N N y [A] [A] 
0 N y N N N N N [0] [0] 6([A], 0) = [0] 
1 N N y N N N N [1] [0], [1] 6([A], 1) = [1] 
00 y N N y N N y [00) == [A] [1] 6([0], 0) = [A] 
01 N N N N y y N [01) [1]. [01) 6([0], 1) = [01) 
10 N N N N y y N [10) ... [01) [01) 6([1], 0) = [01) 
11 y N N y N N y [11) == [A] [01) 6([1], 1) = [A] 
010 N N y N N N N [010) ... [1] empty 6([01], 0) = [1] 
011 N y N N N N N [011) == [0] empty 6([01), 1) = [0] 
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Abstract 
A framework for automatically discovering regularities 
in numerical data is described. The fimction-finding 
problem, a restricted version of the numerical data
analysis problem, is characterized as an induction 
problem. The framework is presented as an exponential
time algorithm, DAT AX, which organii.es and chooses 
among numerical-analysis techniques for automatic 
scientific discovery. The approach combines a theory
driven approach based on a set of fimction forms 
("curve-fitting") with a data-driven approach based on 
relations observed in subsets of the data. A polynomial
time algorithm, DATAX-2, is provided for a restricted 
form of the problem where the target fimction is binary
partition decomposable. DATAX-2 is more efficient 
than the Reduction method [Wu 88], but applicable to 
the same class of problems. 

1 Introduction 
A framework is described for searching for regularities in 
numerical data. This framework combines techniques 
developed in AI for controlling automatic discovery with 
traditional numerical-analysis ("curve-fitting") techniques. 
The framework is presented as an algorithm, DATAX, 
which requires exponential time in the worst case. A 
polynomial-time algorithm, DATAX-2, is then provided for 
a restricted form of the problem. The framework is 
appropriate to observational data that have been 
accumulated and need to be analyzed for numerical 
relationships. DATAX-2 is more efficient than the 
methods used in BACON [Langley 78; Langley et al 87), 
ABACUS [Falkenhainer and Michalski 86], and Reduction 
[Wu 88; Wu and Wang 89]. 

Both numerical-analysis and AI methods have their 
weaknesses. Often in data analysis, a number of numerical
analysis techniques must be applied, but the choice and 
ordering of the techniques is not automated and is often 
done in an ad hoc way. Two weaknesses in previous AI 
discovery programs have been the inability to handle noise 
in data and inefficiency in searching for regularities in 

• This work was supported by a Simon Fraser University Graduate 
Fellowship, a B.C. Advanced Systems Foundation Graduate Research 
Scholarship, and Natural Sciences and Engineering Research Council of 
Canada Grant A4309. 
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numerical data. Incorporating numerical-analysis 
techniques into a control strategy derived from an AI 
discovery program seems to be a promising way of 
overcoming both of these weaknesses. In this paper, the 
second of these weaknesses is addressed by showing how 
the efficiency of an AI discovery program can be improved 
by incorporating numerical-analysis techniques. 
Numerical-analysis techniques improve the efficiency by 
searching for classes of relations between variables instead 
of individual relations. As a simple example, DAT AX 
considers all functions of the form /(x) = J at once rather 
than considering each of /(x) = x,J(x) = x2,J(x) = ~ .... 
separately, as BACON does. 

In the numerical-data analysis problem, an attempt is 
made to find sets of inequalities and/or equations that are 
consistent with numerical data. The function-finding 
problem is a restricted version of the numerical-data 
analysis problem in which each hypothesis is an equation 
between a numerical constant and a nontrivial function on 
all the variables (a nontrivial function on n variables cannot 
be redefined using a proper subset of the variables). Such 
an equation is called a target equation, and the included 
function is called a target function. Thus, the solution to a 
function-finding problem is a nontrivial function on a set of 
variables that yields a constant value for all data tuples. For 
example, for a sequence of (x,y,z) data tuples including 
{(1,0,1), (2,3,1), (3,2,2)}, a suitable target function is 
i2-yz2, which has a constant value of 1 for these data 
tuples. The function-finding problem has been attempted 
by BACON.I, BACON.3, BACON.4, ABACUS, and 
Reduction. In [Langley et al. 87], the place of the function
finding problem in the process of scientific discovery is 
identified. 

The DATAX method is applied to the function-finding 
problem. In this method, the task of discovering a target 
equation on n variables is reduced to discovering simpler 
equations on fewer variables. Given a set of n variables, 
the DATAX method first finds a constant-valued function, 
a nontrivial function on a subset of two or more of the 
variables that yields a constant value for all examined data 
tuples. Then the subset of the variables is replaced by a 
newly created synthetic variable defined to have the value 
given by applying the constant-valued function to the 
subset of variables. This process is repeated until only a 
single variable remains. Beginning with the final variable, 



the synthetic variables are replaced by their definitions in 
terms of constant-valued functions until the target function 
is produced. (Since the substitution is straightforward, it 
will not be considered further.) 

The remainder of the paper is organized as follows. The 
problem of finding regularity in data is characterized as an 
induction problem in Section 2. In Section 3, Algorithm 
DATAX is presented and discussed. In Section 4, one 
particular class of functions for which the method is 
efficient is identified, and an efficient algorithm for this 
class, DATAX-2, is presented, along with its complexity 
analysis and suggestions for improving its efficiency in 
practice. Finally, in Section 5, the method is compared to 
other published methods and conclusions are drawn. 

2 Function Finding as Induction 
In this section, the function-finding problem is 
characterized as an induction problem. Before doing so, 
induction is defined and data-driven and theory-driven 
approaches to induction are described. 

2.1 Induction 
Induction is the process of forming a general concept on the 
basis of specific examples. Adapting slightly from [Simon 
and Lea 74], all possible examples of the concept form an 
example space and all hypotheses that are considered form 
a hypothesis space. For clarity, sometimes the examples 
are assumed to be presented by a presenter as requested by 
an inducer, who is conducting a structured search of the 
hypothesis space. To solve an induction problem, the 
inducer must identify the target hypothesis, a hypothesis in 
the hypothesis space that matches all examples in the 
example space. The approach taken in this paper involves 
(1) making assumptions about the nature of the example 
space so that only a small portion of it needs to be 
examined, and (2) searching a restricted hypothesis space 
that matches these assumptions. 

According to [Langley et al. 87] (pp.13-I4), it is 
assumed that when scientific discovery is attempted, a body 
of data and/or some scientific laws are presumed to be 
already known. If the set of previously known laws is 
empty, the discovery process is called data driven. On the 
other hand, if the set of data is empty, the discovery process 
is called theory driven. The terms data-driven induction 
and theory-driven induction can be defined to describe the 
corresponding approaches to induction. Purely data-driven 
and purely theory-driven approaches represent extreme 
cases, and there is a continuum of approaches in between. 

We claim that a purely data-driven approach is not 
possible. It is only by searching for a particular relation in 
the data, perhaps by applying one of a set of operators, that 
any relation is found. Thus, existing formulations of data
driven approaches also assume that a set of base-level 
operators is known and that some of these operators are 
relevant. For example, in one data-driven approach, 
BACON.I [Langley 78; Langley et al. 87], the 
multiplication, division, and modulus operators are 
assumed to be relevant to discovering a target function in 
numerical data. In BACON.I, the hypotheses are not stated 
in terms of possible forms for the target function, but in 
terms of operators that might be applied to the data. The 
implicit theory is that any function will consist of a 

combination of these operators. In general, with a data
driven approach, each hypothesis is assumed to be a 
combination of the operators, but there may not be a 
concise description of the hypothesis space. 

To gauge the portions of data-driven and theory-driven 
induction in a particular method, consider whether the 
search space is defined in terms of the examples (data) or 
the hypotheses (theories). The search employed in 
DAT AX is an attempt to combine theory-driven and data
driven methods. In the theory-driven portion, each of a set 
of function forms is considered in turn. If a match is found 
between a function form and the data, a function is derived 
from the function form. This function is not chosen as the 
target function, as it would be in a completely theory-driven 
approach; instead, the function is used as one of the 
component functions from which the target function is 
composed. Thus, the function forms correspond to the 
operators in BACON.I. 

2.2 The Function-Finding Problem 
In numerical-data analysis, the examples are data tuples 
giving numerical values for a set of variables, and the 
hypotheses are sets of mathematical equations and 
inequalities involving the variables. In the function-finding 
problem, the hypothesis space is greatly restricted by 
assuming that there exists a nontrivial function on the 
complete set of variables that yields a constant value. Since 
an induction problem can be defined as determining 
whether or not a method is sufficient to choose a hypothesis 
which describes a set of examples, the function-finding 
problem is discussed in the next two subsections with 
respect to the hypotheses and the examples. The 
assumptions needed for the DAT AX method are 
highlighted. DAT AX itself is discussed in Section 3. 

2.3 Hypotheses 
The hypothesis space for the function-finding problem is 
the set of target equations between target functions 
(nontrivial functions on the complete set of variables) and 
constant values. We assume that each target function can 
be decomposed into functions. To describe the hypothesis 
space further, we consider the set of function forms and 
their relation to the process of decomposing the target 
function. 

In the DAT AX method, it is assumed that each function 
used in a decomposition can be produced by replacing the 
parameters in some function form. by constants. In 
Algorithm DAT AX, P represents the complete set of 
function forms and Pi represents the set of function forms 
on i variables. For example, P 2 gives the set of function 
forms with two variables. Wu suggests four function forms 
for P 2 , with variables x and y and parameters rj and 
cj [Wu 88]: 

1.flx,y) =x1 + c1yr2 

2.flx, y) = x1 f2 

3.flx, y) = (XI + c1/2 (y3 + c2) 

4.flx, y) = (x1 + c1/2 + c2 (f3 + c3{4 

Choosing a small set P in this manner restricts the set of 
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functions used in the composition of the target function to 
those with only a small set of forms. This assumption is 
not unusual in data analysis; for example, in statistical 
inference, one often begins with the assumption that the 
target function is a linear combination of the variables and 
small powers of the variables. As well, each variable is 
assumed to appear in only one of the functions. These two 
assumptions can have a crucial effect on DATAX's ability 
to find the "correct answer", i.e., the actual relation in the 
data. Because of the first assumption, if DAT AX does not 
find any function, then either no nontrivial function on all 
the variables exists or the actual function does not 
correspond to a composition of the given function forms. 
Because of the second assumption, complicated function 
forms involving several variables are needed to handle 
cases where a single variable interacts with several 
variables. For both cases, the set of function forms can be 
expanded as necessary. 

If a variable must appear in two different The second 
assumption limits the complexity of the variable 
combinations in the target function 

2.4 Examples 
Four relevant considerations for examples are their type 
(positive or negative),/ormat, presentation, and number. 

2.4.1 Type 
A positive example is a valid instance of the target 

hypothesis; a negative example is a data tuple that is 
inconsistent with the target hypothesis. Since numerical
analysis techniques do not use negative examples, any 
available data tuple is assumed to be a positive example. 

2.4.2 Fonnat 
Each example is described by a data tuple giving a value 

selected from a continuous interval for each relevant 
variable. Thus, it is assumed that each data tuple is 
complete. Typically, the units of the values are not given, 
which implies that they are unknown, irrelevant or 
nonexistent. This assumption is standard in data analysis, 
but in COPER [Kokar 86 88], the search for relevant 
variables is motivated by a dimensional analysis using the 
units of the target function (say kg1m-1s-2) and the units of 
the known variables. The DATAX method could be 
modified to use similar consistency information if the 
search for a function was constrained by considering only 
the function forms involving compatible combinations of 
the variables' units. 

2.4.3 Presentation 
In general, the order in which examples are presented to 

an inducer can be controlled or uncontrolled. With 
controlled example presentation, the inducer has some 
degree of control over the order in which examples are 
presented. Control is exerted by placing constraints on the 
values for a subset of the variables in the next data tuple to 
be presented. A constraint either restricts a variable to have 
one of a set of values or not to have any of a set of values. 

In numerical analysis, the data is assumed to be a given, 
fixed set; this corresponds to uncontrolled presentation 
because the inducer has no control over the order in which 
data tuples are presented. In AI discovery programs, it is 
assumed that presentation is controlled to some degree. For 
example, in BACON.I the inducer can choose the values 
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for a fixed set of variables. When the inducer is given 
control over only a subset of the variables, these variables 
are called the predictor or independent variables and the 
other variables are called the response or dependent 
variables. DATAX assumes that controlled presentation is 
available and that constraints may be placed on any of the 
variables. 

In many experiments, the number of occurrences of a 
data tuple is significant, but, for simplicity, in DAT AX it is 
not To use DATAX in such situations, the format of the 
data tuples should be converted, either by including a value 
to uniquely identify each data tuple, or by discarding 
duplicates and adding a value to all remaining tuples to 
represent the number of occurrences. Such a conversion 
will prevent information about tuple occurrences from 
being lost 

2.4.4 Number 
Although the example space is infinite, only a finite 

number of examples are accessed by DAT AX. The number 
of data tuples accessed depends on the number of variables 
being considered and the number of data tuples required to 
match a function form (i.e., to choose values for parameters 
in a function form to produce a function). The number of 
examples required to match a function form depends on the 
matching method. In DAT AX, #D, the maximum number 
of tuples needed for any matching method, is specified in 
advance. For example, choosing #D = 40 would limit 
numerical-analysis procedures used for matching to at most 
40 data tuples. An alternate approach would be to include 
with each function form a specification of the number of 
tuples required to match it. As the first step of the 
procedure for matching a function form, the number of 
tuples available could then be checked and more obtained if 
necessary. 

2.5 Summary of Assumptions 
The following assumptions are required for the DAT AX 
method: 
• The target equation can be written in the form 

ft:V 1, ... , V,) = c where c is a numerical constant and 
function f is a nontrivial function on the variables 
Vl' ... VII. 

• There exists a decomposition of function/ such that each 
function used in the decomposition is an instance (with 
parameters given constant values) of a function form in a 
set of function forms P . 

• Data tuples are complete. 

• Controlled presentation of data tuples is available. 

• Duplicate data tuples are not significant. 

• A maximum number of data tuples #D needed to match 
any function form is known for the function forms in P . 

• The data tuples are in general position, i.e., they are not 
chosen to disguise the target function. 



3 DATAX Method 
3.1 DAT AX Algorithm 
An outline of the DAT AX method is as follows: 

Set S to the original set of variables. 
while S contains more than one variable: 

for all subsets U of two or more variables in S , 
from smallest to largest subsets: 

if a constant-valued function/ on U can be 
found 
then Remove the variables in U from S; . 

Create a new synthetic variable 
corresponding to f and add 
it to S; 
Restart the for loop with the new value 
forS. 

if no constant-valued function is found for any 
subset 
then the method fails. 

DATAX is easily seen to have exponential time complexity 
because in the worst case, all subsets of S ( except those 
containing fewer than 2 elements) are examined. 
DATAX-2, the polynomial-time restricted version of 
~ATAX given in Section 4.2, is obtained by restricting the 
stze of the subsets to 2 and avoiding redundant matches. 

Algorithm DAT AX(V, P, Get_Data, #D ). 

(* Given a set V of n variables {V1, ... ,Vn}, a set P of 
parameterized function forms, and access via Function Get Data to 
d~ta tuples providing values for these variables, this algorithm 
either finds and returns a target equation or returns null if no 
equation can be found. The number of data tuples to be used for 
matching against forms is given by #D. *) 

i-loop: 

c+-0 
S+-V 
while Is l>l 

0/dS+-S 
ror i = 2,3, ... , Is I 

for all U ~ S such that I U I= i 

tr S = OldS 

D +- Get_Data(V .S - U,#D ) 
rorallp EP; 

{el} +- Match_Form(p,U,D) 
tr/* null 
then c +-c + 1 

Make_ Variable (Vn+cf.U) 
S +-S- U + {Vn+J 
exltloop(i-loop) 

then return(null) 
return(e) 

Algorithm DAT AX includes calls to several functions: 
I. Function Get_Data(V,C,k) obtains k data 

tuples on the variables in V by constraining 
the variables in C to constant values and 
leaving the other variables unconstrainted. 
The constant values for the variables in C are 
obtained from the first data tuple. ff a 
synthetic variable is present in C , the variables 
in terms of which it is defined are also 
constrained to constant values. 

2. Function Match_Form applies an appropriate 
method to try to match a form p to all data 
tuples in D. In particular, Match_Form tries 
to find values for the parameters of form p 
such that the resulting function f has a 
constant value on all data tuples in D . H 
successful, an equation e between f and the 
constant is created, and both f and e are 
returned; otherwise, null is returned for both. 

3. Function Make Variable defines a new 
synthetic variable (i.e., adds a new element to 
V) whose values are related to the values of 
the variables in U by function f. An 
implementation of Make_ Variable would 
likely create a procedure for automatically 
calculating values for V n+c as data tuples are 
accessed. At most n-1 synthetic variables 
will ever be defined because S starts with n 
variables and each time one variable is defined 
and added to S , at least two variables are 
removed. 

A few points need to be made about the methods used 
for finding a constant function consistent with the set of 
data tuples and for updating the set of variables. 

3.2 Finding a Constant-Valued Function 
To find a constant-valued function on a subset U of the 
variables consistent the data tuples, a match is attempted 
between a sequence of function forms and these data tuples. 
Two relevant issues are (1) choosing the technique for 
matching and (2) choosing the function forms; these issues 
are now discussed in turn. 

A match is obtained if the parameters of a function form 
can be given constant values such that the resulting 
function yields a constant value for all the tuples. A 
procedure for finding values for parameters is associated 
with each function form. A procedure may simply 
calculate a closed-form expression for each parameter, or it 
may apply a numerical-analysis technique to obtain values 
for all expressions. Where available, the closed-form 
expression provides the result with the least effort. For 
example, for a simple linear equation y=ax+b and two data 
tuples (x1 ,y1) and (.xi,y2), the constants can be calculated 
as a=(y2-y1)/(.xi-x1) and b=ycax1• For the second 
function form in P 2 given in Section 2.3, a similar closed
form expression can be derived by taking natural 
logarithms. However, since closed-form expressions are 
not available for many function forms, this method is not 
generally applicable. 

The second method of finding values for parameters is 
to use iterative numerical-analysis techniques, such as 
Newton's Method. For such an approach, the values from 
the data tuples are used to create a set of equations (called 
"error _functions") of the form e(r1,r2, ... ,ri) = 0 that 
constram the values of the parameters r 1,r2' ... 'ri. Then 
iterative techniques are applied to search for a set of values 
for the parameters that satisfies these equations, i.e., where 
the error functions are all zero. In practice, no such set of 
values exists because of machine arithmetic and imprecise 
or incorrect data. Instead, a set is found that minimizes the 
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"total error", as measured by some metric, such as the sum 
of squares of the error functions. Using an iterative method 
requires the assumptions that the method terminates if no 
values for the parameters can give a function that matches 
the data tuples, that appropriate starting values for the 
parameters can be selected, and that an appropriate 
termination condition can be specified. If several 
numerical-analysis techniques are to be used, they should 
be encapsulated into a single procedure. Function 
Match_Form in Algorithm DATAX simply calls the 
procedure associated with the specified function form. 

The second issue relevant to finding the constant 
function is the choice of the function forms. The four 
function forms given in Section 2.3 for P 2 illustrate that 
ordering for efficiency is also relevant because the first two 
are special cases of the last two. Choosing an ordering for 
the function forms corresponds to structuring the 
hypothesis space in what is hoped to be an efficient search 
order. Recent work on statistical expert systems [Phelps 
87) has attempted to perform the analogous task for 
statistical inference. Ordering function forms in DAT AX is 
considered in conjunction with choosing function forms 
because the method proposed for choosing them also yields 
suggestions for ordering them. 

It is difficult to specify a suitable set of function forms. 
Any set of function forms represents a trade-off between 
completeness and efficiency: the larger the set of function 
forms, the greater the probability that it includes the right 
one for the data, but the longer the search time. A 
reasonable compromise might be a parameter which 
specifies the level of thoroughness of search; then the 
number of function forms could be selected to reflect the 
user's patience. In [Wu 88), 4 function forms are given, 
in [Wu and Wang 89), an expanded set of 20 function 
forms is given, and even more will be needed to apply the 
method to a wide range of problems. For efficiency, many 
function forms having closed-form solutions should be 
included, since they are relatively cheap to evaluate. The 
common models used in statistical inference should also be 
included. As well, it would be useful to allow the user to 
specify a set of function forms that must be included and a 
set that could be excluded, which might allow the selection 
of a more useful set of function forms for a particular 
application. 

To reduce the number of function forms, the following 
rules are provided. A function form p that is a special case 

s 
of a more general function form p should only be included 
if a more efficient method is available for matching against 
p s than for p 

8 
, where the efficiencies are determined by 

classes of time complexity, such as O (n2) versus O (n3), or 
by timing the matching procedures while DATAX is being 
used. If both function forms appear, Ps should appear 
before p

8 
in the ordering of function forms. If a number of 

special cases of p 
8 

could be included in this way, then the 
total cost of the special cases should be compared to the 
cost of the p 

8 
. If the cost of p is less than half of that of 

all the special cases combin~. then only p should be 
included. 

8 
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3.3 Updating Variables 
In DAT AX, the set of variables S is updated by replacing a 
subset of variables by a single variable once a constant
valued function on these variables has been discovered. In 
other induction programs, variables are not removed 
because synthetic variables are defined that may lead to the 
discovery of a constant-valued function or may be useless, 
rather than after a constant-valued function has been found 
as in DATAX. In BACON, synthetic variables (called 
terms) are added but existing variables are left in place, 
which leads to a variable set that expands without bound. 
In ABACUS, existing variables are left in place when 
synthetic variables are added, but dependencies among the 
variables are recorded and no effort is made to keep one 
variable constant if one of its dependent variables is being 
varied. In both of these cases, no consideration is given to 
the possibility that the function can be decomposed into 
constant-valued functions using fewer variables. When 
DATAX finds a constant-valued function on i variables, 
where i is small, it is more efficient that BACON and 
ABACUS because it can reduce the size of its set of 
variables. The crucial assumption made with the DATAX 
method is that there is a function form in P that will allow 
a constant-valued function to be found. 

4 DATAX-2: A Polynomial Algorithm 
To obtain a polynomial-time algorithm, a suitable inductive 
bias must be found. In [Utgoff 86), an inductive bias is 
defined as the "set of all factors that collectively influence 
hypothesis selection" (p.5). Typically, the inductive bias is 
determined by a combination of the hypothesis space and 
the method used for induction. Our approach is to define a 
restricted hypothesis space and then use an exhaustive 
search of this hypothesis space as the method. 

The class of binary-partition decomposable functions, 
which is defined in this section, provides a suitable 
hypothesis space because it includes many of the numerical 
functions considered in the machine-discovery literature, 
including all those attempted by BACON.I, BACON.3 and 
Reduction. The class provides a tree-structured 
bias [Russell 88), since each hypothesis can be viewed as a 
tree, as will be described shortly. Algorithm DATAX-2, 
the polynomial-time version of DATAX presented in this 
section, searches the hypothesis space and performs a 
bottom-up construction of a tree-structured function. 
Following the presentation of DATAX-2, the time 
complexity is discussed and suggestions for improving the 
efficiency of the method in practice are given. 

4.1 Binary-Partition Decomposable Functions 
For the polynomial algorithm, the target functions are 
restricted to those which can be recursively decomposed 
into binary functions with each variable appearing in only 
one binary function. However, this assumption is not 
always correct. For example,j(x,y,z)=xy+xz+yz cannot be 
decomposed into such binary functions; i.e., there are no 
functions g and h such thatj(x,y,z) = g(v;,h(vj,vk)) for any 
assignment of x, y, and z to one each of v;, vi, and vk. 
These cases are handled by DAT AX. 



A binary decomposable function is defined as follows: 
Definition: A function f(Vl' ... ,V

11
) is binary 

decomposable if n ~2 (such a function is called a 
primitive binary function), or if n >2 and there exist 
functions/', g, and h such that 

f (V1 , •.. ,V11
) = f'(g(Va, ... ,Vb ),h(Ve, ... ,Vd )) ; 

{Va, ... ,Vb} "# 0; {Ve, ... ,Vd} :t:. 0; 
{Va, ... ,vb} u {Ve, ... ,Vd} = {Vl' ... ,VII } ; and 
g(Va, ... ,Vb) and h(Ve, ... ,Vd) 

are both binary decomposable. 

(The function f' used in the definition is called the 
composition function .) 

Definition: A function is binary-partition 
decomposable if it is binary decomposable and 
{Va, ... ,Vb} n {Ve, ... ,Vd} = 0 at each step of the 
decomposition. 

In other words, a binary-partition decomposable function 
can be decomposed into functions involving at most two 
variables by partitioning the variables into two nonempty 
subsets at each step of the decomposition. Such a 
decomposition can be pictured as a tree with the target 
function at the root, the constant-valued functions (and thus 
the synthetic variables) at the interior nodes, and the 
original variables at the leaves. For DATAX-2, the 
hypothesis space is restricted to the class of target equations 
whose target functions are binary-partition decomposable 
according to the definition just given. 

The function forms are relevant to both the primitive 
binary functions and the composition functions. The set of 
target functions is restricted to binary-partition 
decomposable functions where both the primitive binary 
functions and the composition functions are instantiated 
versions of the function forms. 

Binary-partition decomposable functions include the 
common models used in statistical inference. For example, 
multiple linear regression looks for equations of the form 

"f.~=<> ax. 
I I I 

where the xi's are variables and the ai 's are associated 
constants; the target functions involved are binary-partition 
decomposable functions. Variations of this form with extra 
variables such as x .2 or x .3 are also tried when statistical 

I I 

inference is attempted in practice. Again, the relevant 
functions are binary-partition decomposable. 

4.2 Algorithm DAT AX-2 

Algorithm DATAX-2(V, P, Get_Data, #D). 

C +-- 0 
S +-- V 
for i = 2, ... ,2n-1 

j -loop: for j = 1, ... ,i -1 
lfV. e S 

J 
then U +-- W; , Vi } 

D +- Get_Data(V .S - U,#D ) 
forallp eP 

{f.e} +-- Match_Form(p,U,D) 
If/'* null 
then c +-- c + 1 

Make_ Variable(V ll+C.r.u) 

lf iSl =l 
then retum(e) 
else return(null) 

S +-- S - U + {V n+c} 
exitloop(i-loop) 

P in this algorithm corresponds to P 2 in Algorithm 
DAT AX. Ignoring the cost of Function Match_Form, the 
time complexity of DAT AX-2 is O ( IP I n2). The cost of 
Function Match_Form depends on the efficiency of the 
included nwnerical-analysis functions. A typical 
numerical-analysis method is Newton's method, which has 
quadratic convergence if a satisfactory initial 
approximation is provided ( [Burden et al. 78], p.445). The 
method uses O (P) operations at each step of the 
convergence, where k is the number of parameters in the 
function form. The value of k depends on the function 
forms included in P, but is independent of n and IP I . 
4.3 Improving the Efficiency of DAT AX-2 
Since the three components of the cost of Algorithm 
DATAX-2 are the number of pairs of variables considered, 
the number of function forms, and the cost of matching 
with each function form, any of these components might be 
addressed to improve the efficiency of the algorithm. 
Reducing the cost of matching is outside the scope of this 
paper, and reducing the number of function forms has 
already been considered in Section 3. Two techniques are 
now proposed for ordering the pairs and function forms 
which may reduce the cost in practice. 

A heuristic can be used to suggest promising pairs of 
variables for consideration. Typically, when checking that 
a function defined on a pair of variables is constant-valued, 
the other variables are varied one at a time. When an 
attempt to find a constant-valued function on two variables 
Va and Vb fails when a third variable Ve is varied, the 
possibility is suggested that a relation may exist between Ve 
one of Va and Vb. Therefore a counter for the two pairs 
(Va,V) and (Vb,Ve) is incremented. Then, when choosing 
a pair of variables to examine next, the pair with the highest 
counter is tried first. This heuristic uses previously 
discovered information about possible relations to guide the 
search for exact descriptions of the relations. The heuristic 
will not affect the algorithm's ability to find a function, 
because it merely reorders the order in which possibilities 
are considered. 
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The function forms could be ordered according to 
computational cost c or according to the estimated 
probability p of success. By analyzing the relative 
frequency with which the function forms match real sets of 
data in a domain, p could be updated. If values were 
available for both c and p, the next function form could be 
chosen according to some function of c and p. Also, the set 
of function forms might be structured to allow classes of 
forms to be included and excluded easily and to allow 
results obtained when using one form to guide the choice 
for the next form to be considered. Of course, by excluding 
a class of function forms, the user might prevent the 
algorithm from succeeding, if the a function derived from 
this class was needed in composing the target function. 

5 Discussion 
In this paper, the DATAX method for nwnerical-data 
analysis problems has been presented. Typically, statistical 
analysis methods of solving these problems attempt to fit 
one equation model to a set of data. Numerical-analysis 
techniques can be applied to select one of a family of 
equations by approximating the parameters in an equation 
form. The aim of DAT AX is broader still: to co-ordinate 
the search among many equation forms. 

The function-finding problem has been characterized in 
Section 2 as attempting to find a nontrivial function on all 
variables that yields a constant value for all data tuples. 
Algorithm DAT AX solves such problems; it can be seen as 
a framework because it allows the inclusion of any set of 
function forms and matching procedures and because as an 
exponential-time algorithm it clearly requires the inclusion 
of some heuristics based on domain knowledge for practical 
use. 

DATAX-2 is an efficient method for discovering 
regularities in data if the target function can be asswned to 
be a binary-partition decomposable function. DATAX-2 is 
more efficient than Reduction [Wu 88], but is applicable to 
the same class of problems. Wu's Basic Reduction method 
begins with a set of n variables. During each of n-1 
iterations, matches are attempted between all pairs of 
variables and all forms until a match is found. Then the 
pair of variables is replaced by a single synthetic variable 
and the process is repeated. Using this approach, the same 
match may be attempted between a form and a pair of 
variables on each of the n iterations, which is wasted 
computation because the matching results do not change. 
As a result, Basic Reduction requires O (n3 ) time in the 
worst case, while DATAX-2, which attempts a match 
between a form and a pair of variables only once, requires 
0 (n2

) time. A more complete appraisal of Wu's 
Reduction method is given in [Hamilton 89]. Like Basic 
Reduction, DATAX-2 is more efficient than ABACUS and 
BACON, but it achieves this efficiency by limiting the 
hypothesis space to binary-partition decomposable 
functions. According to published reports, all of the 
numerical functions found by ABACUS, BACON.I, and 
BACON.3 are binary-partition decomposable functions. 
However, BACON.4 has been applied to Black's heat law 
( [Langley et al. 87], p.145), which does not correspond to 
a binary-partition decomposable function. 

Restricting attention to binary-partition decomposable 
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functions represents applying a tree-structured bias to the 
set of functions. In [Russell 88], a tree-structured bias for 
the task of inducing predicates from Boolean variables is 
discussed. Russell says that a polynomial-time algorithm 
"has been found for the case in which the functions at each 
internal node of the tree are restricted to be monotone" 
(p.645), but he does not present the algorithm or explain the 
term "monotone" further. DATAX-2 is a polynomial-time 
algorithm in which the functions at the internal node are 
restricted to be binary functions and in which each original 
variable appears at one leaf. Since attention is restricted to 
Boolean functions in [Russell 88], only the 16 possible 
binary functions need to be considered when defining a 
function on 2 variables, but with DATAX-2, any binary 
numerical function might be applicable. Therefore, 
DATAX-2 performs heuristically when choosing a binary 
function by considering only functions corresponding to a 
specified set of parameterized function forms. 

The next step for the development of DATAX is to 
incorporate a way of handling noise in data. The inability 
to handle noise has been identified in [Schaffer 89b] as a 
key weakness of current machine-discovery approaches to 
the function-finding problem. The first step is to specify, 
for each variable, the type and extent of the noise in the 
data values for that variable. This information could be 
passed by parameter to the matching routines. After a 
function has been chosen by the nwnerical-analysis 
procedure, we must check whether the difference between 
the data and this function is consistent, at some level of 
statistical confidence, with the specified amount of noise in 
the variables. This approach should supply an 
improvement on BACON, which has been criticized for 
depending on programmer-selected error bounds to obtain 
the desired answer [Lubinsky 89; Schaffer 89a]. 

DATAX could also be improved by extending it to cases 
where controlled presentation of data tuples is not 
available. Furthermore, a way of incorporating statistical 
inference techniques efficiently into the DAT AX method is 
needed. DATAX-2 is less efficient than standard statistical 
programs because the variables are considered two at a 
time, rather than all at once using matrix methods. 

To be applied to the search for multiple equalities in the 
numerical-data analysis problem, DATAX could be 
modified to return all constant-valued functions found, 
instead of null, in case of failure. However, it would only 
find constant-valued functions on disjoint subsets of the 
variables, just as ABACUS does. A major addition to 
DAT AX would be required to find simultaneous equations 
that share some variables. 
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Abstract 

In this paper, we present algorithms for mak
ing a fast model theoretic propositional prover 
informative. The prover outputs a model if the 
input formula is satisfiable or a minimum sub
set of unsatisfiable clauses if the input formula 
is unsatisfiable. The correctness of the result 
can then be verified by examining these output 
information. The model found by the prover 
also enables a new technique for problem solv
ing in first-order logic. 

1 Introduction 

Deciding that a given propositional logic formula in con
junctive normal form (CNF) is satisfiable or unsatisfiable 
is called the satisfiability problem. It is well known that 
the model theoretic decision procedures can be more ef
ficient than the proof theoretic decision procedures in 
solving such problems [Plaisted, 1989]. However, it is 
sometimes difficult for the model theoretic decision pro
cedures to provide information for users easily to verify 
the result obtained. 

We have already presented an intelligent propositional 
calculus prover in [Lee and Plaisted, 1989b]. It is a fast 
model theoretic decision procedure. The prover basically 
consists of two rules: the transitive one-literal rule and 
the intelligent case analysis rule. It avoids performing 
both cases in a case analysis all the time by checking 
the proof dependency information. It has been shown to 
run faster than the Davis-Putnam method in most cases. 
However, it also suffers the disadvantage of providing no 
information about the result for users. 

In this paper, we present algorithms that can be im
plemented in the intelligent propositional calculus prover 
to make it informative without much overhead. A model 
is provided if the input formula is satisfiable, while a 
minimum subset of unsatisfiable clauses is found if the 
input foumula is unsatisfiable. The correctness of the 
result can then be verified by examining this output in
formation. An easy, short program may be written for 
verifying if the input formula is indeed satisfied by the 

*This research was supported by NSF under grant CCR-
8802282. 
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output model. Usually, the number of clauses in a mini
mum subset of unsatisfiable clauses for an input formula 
is small. Therefore, a simple, constructive yet less ef
ficient proof theoretic decision procedure with tracing 
capability may be used to verify if the subset is indeed 
unsatisfiable. Most of the time, the verification can be 
done by hand very easily. 

The model found by the propositional calculus prover 
also provides a new technique for problem solving in 
first-order logic. The propositional calculus prover works 
in conjunction with an instance based first-order theo
rem prover, IBTP, for this purpose. IBTP generates 
instances of the axioms of a given problem. Then the 
propositional calculus prover is used to find a model for 
the instances. A ground literal in the model is a possible 
logical consequence of the axioms. This can be verified 
by running IBTP on the conjunction of the axioms and 
the negation of the ground literal. 

Throughout this paper, a disjunction of literals may 
also be represented as a set of literals, called a clause. 
A formula in conjunctive normal form may also be rep
resented as a set of clauses. A propositional constant p 
is called a positive literal, while -.p is called a negative 
literal. A clause with all positive literals is called a posi
tive clause. A clause with all negative literals is called a 
negative clause. 

In the sequel, we begin with an introduction of the in
telligent propositional calculus prover. Then we present 
the algorithms for making the prover informative. Fi
nally, we present the new technique for problem solving 
in first-order logic enabled by the capability of finding 
models of the propositional calculus prover. 

2 The Intelligent Propositional 
Calculus Prover 

Definition. Suppose F is a set of clauses and contains 
a unit clause {p}. Deleting all clauses containing p from 
F is called (propositional) unit subsumption. c:::> 

Definition. Suppose Fis a set of clauses and contains 
a unit clause {p}. Replacing C by C - {-.p} in F for all 
clauses C containing -.p is called ( propositional) unit 
simplification. c:::> 

Definition. Suppose a set F of clauses is of the form 

(A1 V p) t\ · · · t\ (Am V p) t\ (B1 V-.p) t\ · · · t\ (Bn V-.p) t\ R 



where Ai, 1 ~ i ~ m, B;, 1 ~ j ~ n, and Rare free of p 
and -,p, Let F1 be the set 

Bi I\ · · · I\ Bn I\ R 

and F2 be the set 

Ai I\ · · · I\ Am I\ R 

F1 is called the affirmative case. p is called the affirma
tive assumption. The simplification of clauses B1 V -,p, 
... , Bn V -,p is called assumption simplification with as
sumption p. F2 is called the negative case. -,p is called 
the negative assumption. The simplification of clauses 
A1 V p, . . . , Am V p is called assumption simplification 
with assumption -,p, <:::> 

Definition. An assumption p is relevant to a clause 
C if one of the following conditions holds: 

1. C is a clause produced by assumption simplification 
with assumption p. 

2. If p is relevant to a unit clause U, then p is also 
relevant to all the clauses simplified by unit simpli
fication with U. 

We call pa relevant assumption to C. We also say that 
C depends on p. <v 

The intelligent propositional calculus prover consists 
of two rules: the transitive one-literal rule and the intel
ligent case-analysis rule. 

1. The transitive one-literal rule. Suppose F is a set 
of clauses. 

(a) It performs unit subsumption. 
(b) It performs unit simplification. 
(c) It passes all the relevant assumptions of a unit 

clause to all the clauses simplified by the unit 
clause during unit simplification. 

( d) During unit simplification, if a simplified clause 
is the empty clause, then F is unsatisfiable and 
the unsatisfiability of F depends on all the rel
evant assumptions of this empty clause. 

2. The intelligent case-analysis rule. Suppose F is a 
set of clauses. 

(a) If F does not contain positive clauses or nega
tive clauses, then F is satisfiable. 

(b) If F contains an empty clause, then F is unsat
isfiable and the unsatisfiability of F depends 
on all the relevant assumptions of this empty 
clause. 

( c) Otherwise, pick the first negative clause C from 
F with least number of literals. Pick a literal p 
from C as the affirmative assumption and com
pute the affirmative case F1. All the clauses 
simplified by p depend on p. 

1. If F1 is satisfiable, then F is satisfiable. 
11 . If F1 is unsatisfiable and the unsatisfiability 

of Fi depends on p, compute the negative 
case F2 with the negative assumption -,p, 
All the clauses simplified by -,p depend on 
-,p, 

A. If F2 is satisfiable, then F is satisfiable. 

B. If F2 is unsatisfiable and the unsatisfiabil
ity of F2 depends on .,P, then F is unsat
isfiable and the unsatisfiability of F de
pends on what F1 or F2 depends. 

C. If F2 is unsatisfiable and the unsatisfia
hi lity of F2 does not depend on -,p, then 
F is unsatisfiable and the unsatisfiability 
of F depends on what F2 depends. 

m. If F1 is unsatisfiable and the unsatisfiability 
of F1 does not depend on p, then F is unsat
isfiable and the unsatisfiability of F depends 
on what F1 depends. 

The intelligent propositional calculus prover applies 
the transitive one-literal rule and the intelligent case
analysis rule iteratively. The prover terminates on any 
given set F of clauses since the size of F is monotonically 
decreasing by applying these two rules. 

3 Making The Prover Informative 

In this section, we present algorithms that make the in
telligent propositional calculus prover informative with
out much overhead. If a set F of input clauses is sat
isfiable, the prover outputs a model that makes all the 
clauses in F true. If F is unsatisfiable, the prover out
puts a minimum subset R of unsatisfiable clauses for S, 
i.e., if C is a clause in R, then R - { C} is satisfiable. 

Definition. A clause C is relevant to a clause D if 
one of the following conditions holds: 

1. If C is a unit clause, and D is a clause simplified by 
C during unit simplification. 

2. If C is relevant to a unit clause U, and D is a clause 
simplified by U. 

We call Ca relevant clause to D, or D depends on C. If 
C is an input clause, then C is also a relevant clause to 
itself. <:::> 

In the following algorithms, procedure IP is the top 
level call. It returns a model M if the input set F is 
satifiable or a minimum subset of unsatisfiable clauses 
of F if F is unsatisfiable. Procedure TOLR performs 
transitive one-literal rule. Procedure ICAR carries out 
intelligent case-analysis rule. Procedure PDE computes 
dependencies if both cases in a case analysis are unsat
isfiable. 

• Input: A CNF formula or clause set F. M is set 
empty. 

• Output: If F is satisfiable, then Tag is true and M 
is a model. If F is unsatisfiable, then Tag is false 
and RF is a minimum subset of unsatisfiable clauses 
for F. 

Algorithms of the informative prover 

IP(F ,Tag,DF,M ,RF) 
if Fis 
- .£.!!g 1: empty 

.£.!!g2: non-positive; 
M = MU {p E F : p is a negative lit eral} 

case3: non-negative; 
M = MU {p E F : p is a positive literal} 

then Tag = true % satisfiable 
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I 

I 

. . 1 

else if F contains an empty clause E 

!!. 

then Tag = false; 
DF contains the relevant assumptions 
of E; 
RF contains the relevant clauses of E 

else TOLR(F,Tag,DF,M,RF); 
if Fis empty 
then Tag = true % satisfiable 
else if Tag = false 

then return 
else ICAR(F,Tag,DF,M,RF) 

!!. 

TOLR(F,Tag,DF,M,RF) 
while F has a unit clause U = { q} do 

do unit subsumption and 
unit simplification on F; 
pass the relevant assumptions of U to 
all the clauses simplified by U; 
pass the relevant clauses of U to 
all the clauses simplified by U; 
M = MU{p}; 
if a simplified clause E is {} 
Then Tag = false; 

!!. 

DF contains the relevant assumptions 
of E; 
RF contains the relevant clauses of E; 
return 

let the resulting set be F 
endwhile 

ICAR(F,Tag,DF,M,RF) 
pick a negative literal p from 
the first smallest negative clause in F; 
let F be 

(Ai V p) /\···/\(Am V p)/\ 
(Bi V-.p) /\ · · · /\ (Bn V-.p) /\ R; 

let Fi be 
Bi /\ · · · /\ Bn /\ R; 

add p as a relevant assumption to Bi, ... , Bn; 
Mi= MU{p}; 
IP(Fi,Tagl,DF11Mi,RF1 ); % affirmative case 
if Tagl % satisfiable 
then Tag= Tagl; 

M=Mi 
else if p E DF1 

then let F2 be 
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Ai /\ · · · /\ Am /\ R; 
add -.p as a relevant assumption to 
Ai, ... , Am; 
M2 = MU {-.p}; 
IP(F2,Tag2,DF2 ,M2,RF2 ); 

% negative case 
jJ Tag2 % satisfiable 
then Tag = Tag2; 

M = M2 
else PDE(p,DF1 ,Dp2 ,DF,RF1 ,RF2 ,RF) 
!!. 

else Tag = Tagl; 
DF = DF1; 
RF= RF. 

!!. 
!!. 

PDE(p,DF. ,DF2 ,DF,RF. ,RF2 ,RF) 
if-.p E DF2 
then DF = (DF1 - {p}) U (DF2 - {-.p}); 

RF= RF. URF2 
else DF = DF2; 

RF= RF2 

4 Examples 

Two examples are given here to show how the output 
information provided by the prover look like. Predicate 
symbols with ground terms as arguments denote propsi
tional symbols. 

Example 1. Suppose S contains the following 
clauses: 

1. {-.p(b, a), -.p(b, f(b) ), -.p(J(b), b)} 

2. {-.p(a, a)} 

3. {-.p(J(b ), a), -.p(J(b ), b ), -.p(b, f(b))} 

4. {p(b, f(b)),p(b, a)} 
5. {p(f(b),b),p(b,a)} 

6. {-.p(b,a), -.p(b,b),-.p(b,b)} 

7. {p(f(a), a)} 
8. {-.p(J(a), J(f(a))), -.p(J(f(a)), /(a))} 
9. {-.p(a, /(a))} 

The prover detects S being satisfiable and outputs the 
following model M : 

• -.p(J(b), a) 

• p(f(b), b) 

• p(b, f(b)) 

• -.p(b, a) 
• -.p(J(a), J(f(a))) 

• -.p(a, f(a)) 
• p(f(a), a) 

• -.p(a, a) 
It can be examined by hand very easily that M indeed 
makes all the clauses in S true. A very simple program 
may also be used to do this check. c;;> 

Example 2. Suppose S contains the following 
clauses: 

1. {g(f(a),a),g(a,a)} 

2. {g(f(f(a)), /(a)), -.g(a, f(a))} 

3. {g(f(f(f(b))), f(f(b))), -.g(J(b), J(f(b)))} 

4. {g(f(f(b)), f(b)), -.g(b, f(b))} 

5. {g(f(b), f(f(b))), -.g(J(f(b)), f(b))} 

6. {g(b, f(b)), -.g(J(b), b)} 



7. {g(J(a), f(J(a))), -,g(a, /(a))} 

8. {g(J(J(b)), f(J(J(b)))), -,g(J(b), f(J(b)))} 

9. {g(J(b), f(J(b))), -,g(b, f(b))} 

10. {-,g(J(a), a), -,g(J(J(a)), f(a))} 

11. {-,g(J(a), a), -,g(a, /(a))} 

12. {-,g(J(b), a), -,g(J(J(b)), f(b))} 

13. {-,g(b, a), -,g(J(b), b)} 

14. {-,g(a, a)} 

15. {-,g(J(J(b)), a), -,g(J(b), f(J(b)))} 

16. {-,g(J(b), a), -,g(b, f(b))} 

17. {g(/(/(a)),/(a)),g(/(a),a)} 

18. {g(J(J(b)), f(b)), g(J(b), a)} 

19. {g(a,f(a)),g(a,a)} 

20. {g(f(a),f(f(a))),g(f(a),a)} 

21. {g(f(b),f(f(b))),g(f(b),a)} 

22. {g(f(b),b),g(b,a)} 

23. {g(b, f(b)), g(b, a)} 

24. {g(J(b), b), -,g(b, b)} 

25. {g(b, /(b)), -,g(b, b)} 

26. {-,g(b, a), -,g(b, b)} 

The prover detects S being unsatisfiable and outputs the 
following minimum subset R of unsatisfiable clauses: 

l. {g(J(a),a),g(a,a)} (clause 1) 

2. {g(J(J(a)), /(a)), -,g(a, f(a))} (clause 2) 

3. {-,g(J(a),a),-,g(J(J(a)),f(a))} (clause 10) 

4. {-,g(a, a)} (clause 14) 

5. {g(a,f(a)),g(a,a)} (clause 19) 

Again, it is easy to check by hand that R is indeed min
imum and unsatisfiable. We may also use a proof the
oretic decision procedure [Robinson, 1965; Chang and 
Lee, 1973; Loveland, 1978, Plaisted, 1988; Stickel, 1988], 
equipped with tracing capability, to verify the unsatisfi
ability of R. 'v 

5 Implementation and Test 

We have implemented the informative propositional cal
culus prover in Prolog. The Prolog system we used is 
ALS-Prolog Compiler (Version 0.60). The following are 
some remarks about the implementation: 

l. Prolog has no occurs check. We write a sound uni
fication algorithm in Prolog. 

2. We take advantage of the fast implementation of 
failure in Prolog. We don't use tags to indicate sat
isfiable or unsatisfiable for procedures. A procedure 
succeeds if the input to this procedure is unsatisfi
able and fails if the input is satisfiable. 

3. A flag ouLmodeLrc is provided to do the following 
things if it is turned on: 

• recording relevant clauses for each clause 

• printing out a model before the deepest-level 
call fails 

• printing out a minimum subset of unsatisfiable 
clauses when the top-level call succeeds if the 
input set of clauses is unsatisfiable 

The model construction is performed regardless of 
the setting of the flag, since it does not slow down 
the prover noticeably much from the experiments 
we have done. 

4. A technique, called delayed merging, is used for find
ing a minimum subset of unsatisfiable clauses. A re
cursive expression of relevant clauses is created for 
each clause until an empty clause is found, where 
the expression of relevant clauses with this empty 
clause is evaluated to form an ordered list. For ex
ample, suppose X and Y are two expressions of rel
evant clauses. We use merge(X,Y,Z) to denote that 
Z is the resulting expression of the union of X and 
Y, where Z is a variable and X and Y are similar 
expressions. We don't evaluate Z until the clause 
with Z is an empty clause. The evaluation of an 
expression is done recursively. 

Adding the capability of providing information for 
users to the intelligent propositional calculus prover only 
incurs a little overhead. This is shown in Table 11 at the 
end of the paper. In Table 1, the number of clauses 
and propositional constants for each problems are listed 
in third and fourth columns respectively. 'Sat' in fifth 
column indicates that the problem is satisfiable, while 
'Unsat' indicates that the problem is unsatisfiable. The 
running times for each problem are listed in columns 6-
8. Column 6 is for the intelligent propositional prover 
without the capability of constructing and printing out 
information. Columns 7 and 8 are for the informative in
telligent propositional prover with ouLmodeLrc turned 
off and out_model_rc turned on respectively. 

The test problems we used are the ground instance 
sets of first-order logic problems. These ground instance 
sets are generated by an instance based theorem prover 
IBTP in our research. Problems 1- 36 come from the 
problem set of [Stickel, 1988] . The problem "example" 
is a theorem presented by Pellitier and Rudnicki in AAR 
Newsletter No. 6, 1986. The problem "salt" is the salt 
and mustard problem. Problems 41- 43 are pigeon hole 
theorems; they are propositional problems. Problems 44-
46 are obtained from propositional temporal logic theo
rems. 

6 A New Technique For Problem 
Solving 

6 .1 Descriptions 

The model finding capability of the propositional calcu
lus prover provides a new technique for solving problems 
of first-order logic . The prover works in conjunction with 
IBTP for this purpose. IBTP is an instance based theo
rem prover developed for our theorem proving research . 

1 The times are obtained on a SUN3/ 60 workstation with 
12 MB memery 
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It is complete for first-order logic, namely, given any the
orem it will eventually find a proof. It basically applies 
a hyper-matching strategy [Lee and Plaisted, 1989a] to 
generate instances of the input clauses, and then tries to 
find a contradiction from the instances obtained so far. 
If a contradiction is found, then the input clauses are un
satisfiable and we are done. Otherwise, more instances 
are generated. 

A typical problem for a theorem prover to solve con
sists of a set of axioms and the conclusion to be proved. 
However, in some cases, we may only have a set of ax
ioms described as rules or constraints. We don't know 
what conclusions can be drawn from these axioms. Typ
ical examples are puzzles. Therefore, it is hard to get 
help from a normal theorem prover in these cases. 

A new technique for solving such kind of problems is 
basically as follows. Suppose we have a set A of axioms. 
We use IBTP to generate the instances of A, then call 
the informative propositional calculus prover. Since A is 
satisfiable, a model M can be found for these instances. 
Suppose M contains a literal p. Then p is a possible 
logical consequence of A. To verify that p is a conclusion 
of A, we can run IBTP again on the set A U { -.p} . 

This technique works well, especially for those prob
lems whose Herbrand universe is finite . Many problems, 
i.e. puzzles, have finite Herbrand universe. If problems 
have a certain form (no function symbols), then the Her
brand universe is guaranteed to be finite. In this case, 
IBTP works as a decision procedure; it will stop with an 
answer. For such problems, we can let IBTP generate 
all instances of the axioms with hyper-matching strat
egy before calling the informative propositional calculus 
prover. We may find out all the possible conclusions 
we want from the model obtained by the propositional 
calculus prover . 

6.2 Examples 

Three examples are given here for illustrations. 
Example 3. Here is a description for a logic puzzle 

"friends" [Sterling and Shapiro, 1986]: 

1. There are three friends: Michael, Richard, and Si
mon; three nationalities: American, Australian, and 
Israeli; three sports: basketball, cricket, and tennis. 
Each friend has a unique nationality and plays a 
unique sport. 

2. These friends came first, second, and third in a pro
gramming competition. 

3. Michael likes basketball, and did better than the 
American. 

4. Simon, the Israeli, did better than the tennis player. 

5. The cricket player came first. 

These rules can be expressed in first order logic as fol
lows: 

1. VP3N nationality(P, N) . 
( each person has a nationality) 

2. VP1, N1, P2, N2 (nationality(P1, Ni) I\ 
nationality(P2, N2) /1. P1 =p P2 -+ N1 =p N2) 

( uniqueness of nationality) 
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3. VP3S play(P, S) 
( each person plays a sport) 

4. VP1,S1,P2,S2 (play(P1,S1) I\ play(P2,S2) I\ 
P1 # P2 -+ S1 # S2) 

(uniqueness of sport) 

5. VP30 came(P, 0) 
( each person came in an order) 

6. VP1,01,P2,02 (came(P1,01) I\ came(P2,02) I\ 
P1 # P2 -+ 01 # 02) 

( uniqueness of order) 

7. play(michael,basketball) 

8. VP (nationality(P,american)-+ 
did_better(michael,P)) 

9. nationality(simon,israeli) 

10. VP (play(P,tennis)-+ did_better(simon,P)) 

11. VP1, P2 (did_better(P1, P2) V did_better(P2, P1)) 

12. V Pi, P2 ( did_better(P1, P2) -+ -.did_better(P2, P1)) 
( exclusiveness of did_better) 

13. VPi, P2, P3 (did_better(P1, P2) I\ did_better(P2, P3) 
-+ did_better( P1, P3)) 

(transitivity of did_better) 

14. VP (play(P,cricket) -+ came(P,1)) 

We transformed these first-order formulas into function
free first-order formulas using the transformation rules 
that will be described later. The function-free first-order 
formulas are then converted into a set A of clauses by 
a standard procedure [Chang and Lee, 1973; Loveland, 
1978]. Then we use IBTP to generate all the instances of 
A with hyper-matching strategy. The informative propo
sitional calculus prover is called to find a model M for 
these instances. The following literals are contained in 
M: 

• came(simon,1) 

• nationality(michael,australian) 

• nationality(richard,american) 

• nationality( simon ,israeli) 

• play(michael,basketball) 

• play(richard,tennis) 

• play(simon,cricket), 

• did_better(michael,richard) 

• did_better(simon,richard) 

These literals are indeed logical consequences of the 
above rules. This can be verified by running IBTP on 
A and the disjunction of all the negated literals above . 
The total time for solving this problem is 29 . 7832 sec
onds and 0.300 seconds of it is spent by the informative 
propositional calculus prover to find the model. <v 

Example 4. The following constraints are for the 
"jobs" puzzle found in [Wos et al., 1984]: 

2 All the times in this section are obtained on a SUN3/60 
workstation with 12 MB memery 



1. There are four people: Roberta, Thelma, Pete, and 
Steve; eight jobs: actor, boxer, chef, guard, nurse, 
police officer, teacher, and telephone operator. 

2. Each person holds exactly two jobs. 

3. The job of nurse is held by a male. 

4. The husband of the chef is the telephone operator. 

5. Roberta is not a boxer. 

6. Pete is not college educated. 

7. Roberta, chef, and the police officer went golfing 
together. 

8. The nurse, teacher, and police officer are all college 
educated. 

A model found for the above constraints contains the 
following literals: 

• job(roberta,guard) 

• job(roberta,teacher), 

o job(thelma,boxer) 

• job(thelma,chef), 

• job(pete,actor) 

• job(pete,telephone_operator), 

• job(steve,nurse) 

• job(steve,police_officer), 

• husband(pete,thelma) 

These literals are indeed logical consequences of the con
straints. The total time for solving this problem is 
351.683 seconds and 46.183 seconds of it is spent by 
the informative propositional calculus prover to find the 
model. 0 

Example 5. The following rules are for a problem 
called "zebra" [Sterling and Shapiro, 1986]: 

1. There are five people: englishman, spaniard, nor
wegian, japanese, and ukranian; five houses: 1, 2, 
3, 4, and 5. five drinks: orange, coffee, water, 
tea, and milk; five cigarettes: gold, kools, chest
fields, lucky, and parliaments; five animals: dog, 
fox, horse, snails, and zebra; five colors: yellow, red, 
blue, ivory, and green. Each people lives in a unique 
house, drinks a unique drink, owns a unique ani
mal, smokes a unique cigarette, and each house has 
a unique color. 

2. The englishman lives in the red house. 

3. The spaniard owns a dog. 

4. The norwegian lives in the first house. 

5. Kools are smoked in the yellow house. 

6. Chesterfields are smoked next to where the fox is 
kept. 

7. The norwegian lives next to the blue house. 

8. The gold smoker owns snails. 

9. The lucky smoker drinks orange juice. 

10. The ukranian drinks tea. 

11. The japanese smokes parliaments. 

12. The kools smoker lives next to where the horse horse 
is kept. 

13. Coffee is drunk in the green house. 

14. The green house is to the immediate right of the 
ivory house. 

15. Milk is drunk in the middle house. 

A model found for the above rules contains contains the 
following literals: 

• color(l,yellow) 

• color(2,blue) 

• color(3,red) 

• color( 4,ivory) 

• color(5,green) 

• lives(norwegian,1) 

• lives(ukranian,2) 

• Ii ves( english, 3) 

• lives(spaniard,4) 

• lives(japanese,5) 

• owns(norwegian,fox) 

• owns(ukranian,horse) 

• owns( english,snails) 

• owns(spaniard,dog) 

• owns(japanese,zebra) 

• smokes( norwegian ,kools) 

• smokes(ukranian,chestfields) 

• smokes( english ,gold) 

• smokes(spaniard,lucky) 

• smokes(japanese,parliaments) 

• drinks( norwegian, water) 

• drinks(ukranian,tea) 

• drinks( english,milk) 

• drinks(spaniard,orange) 

• drinks(japanese,coffee) 

These literals are indeed logical consequences of the 
rules. The total time for solving this problem is 1805.950 
seconds and 157.033 seconds of it is spent by the infor
mative propositional calculus prover to find the model. 
0 

Some problems, like 8 queens, have more than one 
solution. Our prover can be used to find all the solutions, 
one by one, by finding models and negating them and 
adding to the set of axioms. 

One point we should mention here. Our axiomatiza
tions all have the characteristic that they are expressed 
in function free quantifier free first order logic, which 
is decidable since the Herbrand universe is finite. Also, 
these axiomatizations are fully declarative, and do not 
use negation as failure as Prolog does. Therefore, these 
formulations are more natural than Prolog ones, even 
though the times to solve the problems are often slower 
than Prolog times. 
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7 Transformation rules 

In this section, we describe some rules of transforming a 
first-order formula with finite domain into function-free 
first-order formulas. The function-free first-order formu
las guarantee the finiteness of the Herbrand universe, 
thus our prover is guaranteed to stop with an answer. 

Suppose the domain of the problem contains elements 
a1, ... , and an, 

1. Suppose there is an expression: 

VX3Yp(X, Y) 

The expression can be transformed into the follow
ing function-free expression: 

VX(p(X, ai) V p(X, a2) V · · · V p(X, an)) 

2. Consider the following expression: 

3XVYp(X, Y) 

This expression can be transformed into the follow
ing function-free expression: 

(VY1p(a1, Y1)) V (VY2p(a2, Y2)) V · · · V (VYnp(an, Yn)) 

3. The expression for uniqueness often has the follow
ing form: 

(VX1X2Y1Y2(p(X1, Y1) /\p(X2, Y2) /\X1 # X2--. 
Y1 # Y2) 

we may replace it by the following set of formulas: 

\f X-,p(a1, X) V -,p(a2, X) 
\fX-,p(a1, X) V -,p(aa, X) 

\fX-,p(a1,X) v-,p(an,X) 
\fX-,p(a2, X) V -.p(aa, X) 

\fX-,p(a2, X) V -.p(an, X) 

\fX-,p(an_i) V -,p(an, X) 

Note that the transformation can be done mechanically. 

8 Conclusion 

We have briefly introduced the idea of an intelligent 
propositional calculus prover, which is a fast model the
oretic decision procedure. We have also presented algo
rithms for making the prover informative without much 
overhead. A model is provided if the input formula is sat
isfiable, while a minimum subset of unsatisfiable clauses 
is found if the input foumula is unsatisfiable. 

The output information can be used for verifying the 
result obtained by the prover. An easy, short program 
may be written for verifying if the input formula is in
deed satisfied by the output model. Usually, the number 
of clauses in a minimum subset of unsatisfiable clauses 
for an input formula is small. Therefore, a simple, con
structive yet less efficient proof theoretic decision pro
cedure with tracing capability may be used to verify if 
the subset is indeed unsatisfiable. Most of the time, the 
verification can be done by hand very easily. 
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The model found by the propositional calculus prover 
also provides a new technique for solving problems of 
first-order logic. The propositional calculus prover works 
in conjunction with an instance based first-order theo
rem prover, IBTP, for this purpose. IBTP generates 
instances of the axioms of a given problem. Then the 
propositional calculus prover is used to find a model for 
these instances. A ground literal in the model is a possi
ble logical consequence of the axioms. This can be veri
fied by running IBTP on the conjunction of the axioms 
and the negation of the ground literal. 
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Table 1. Sample running times3 

no. of no . of 
No problem input prop. satisfi- PC 

clauses consts ability 

l burstall Jt> 37 :;at 0.150 
2 ~hurt burst 15 16 SaL 0.017 
3 prim 31 40 Sat 0.117 
4 hasparts2 33 49 Unsat 0.083 
5 group2 11 10 Sat 0.017 
6 ew2 5 3 Unsat 0.000 
7 ew3 9 5 Unsat 0.017 
8 rob2 27 34 Sat 0.067 
9 qw 9 10 Sat 0.017 

10 mqw 26 15 Unsat 0.017 
11 dbabhp 42 50 Sat 0.183 
12 ex4-tl 107 54 Unsat 0.900 
13 ex4-t2 107 54 Unsat 0.900 
14 ex5 498 324 Unsat 3.967 
15 ex6-tl 62 58 Sat 0.367 
16 ex6-t2 62 58 Sat 0.383 
17 wos2 29 26 Sat 0.083 
18 wos4 134 101 Unsat 0.767 
19 wos6 146 138 Sat 2.167 
20 wos7 104 104 Sat 1.100 
21 wos9 390 387 Unsat 0.017 
22 wosll 193 185 Sat 3.700 
23 wosl6 122 116 Sat 1.600 
24 wosl7 159 159 Sat 2.583 
25 wos25 172 193 Sat 1.367 
26 wos33 103 125 Sat 0.717 
27 ls103 105 49 Unsat 0.283 
28 ls106 23 17 Sat 0.050 
29 ls108 288 328 Unsat 1.267 
30 ls17 32 38 Sat 0.083 
31 ls28 351 276 Sat 8.800 
32 ls29 348 277 Unsat 1.217 
33 ls5 6 4 Unsat 0.000 
34 ls65 61 58 Sat 0.333 
35 ls75 56 55 Sat 0.333 
36 ls112 699 754 Unsat 6.333 
37 example 136 47 Unsat 0.750 
38 expq 4 2 Unsat 0.000 
39 liar 39 35 Unsat 0.033 
40 salt 104 30 Unsat 2.400 
41 ph4 22 12 Unsat 0.133 
42 ph5 45 20 Unsat 0.833 
43 ph6 81 30 Unsat 5.000 
44 tempol 27 16 Unsat 0.000 
45 tempo2 11 8 Unsat 0.017 
46 tempo3 10 7 Unsat 0.017 

Average 1.070 

3The unit of time is second. For the descriptions of the 
table, see section 5 

INF-PC INF-PC 
with with 

flag off flag on 
0.133 0.233 
0.017 0.067 
0.117 0.183 
0.083 0.100 
0.033 0.067 
0.017 0.017 
0.033 0.050 
0.083 0.117 
0.033 0.050 
0.033 0.033 
0.167 0.217 
0.867 1.183 
0.917 1.100 
3.867 3.933 
0.350 0.500 
0.383 0.500 
0.083 0.133 
0.700 0.717 
2.117 2.683 
1.117 1.417 
0.000 0.000 
3.650 4.333 
1.533 1.917 
2.567 3.083 
1.350 1.500 
0.717 0.817 
0.250 0.300 
0.050 0.100 
1.300 1.350 
0.083 0.150 
8.767 9.267 
1.233 1.267 
0.017 0.033 
0.333 0.517 
0.317 0.633 
6.233 6.333 
0.783 0.833 
0.000 0.033 
0.067 0.100 
2.433 2.733 
0.150 0.183 
0.817 1.033 
5.067 6.400 
0.033 0.017 
0.017 0.033 
0.000 0.017 
1.070 1.223 
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Abstract 

This paper concerns algorithms to answer 
queries in circumscriptive theories. Two re
cent papers present such algorithms that are 
relatively complex: Przymusinski's algorithm is 
based on MILO-resolution, a variant of ordered 
linear resolution; Ginsberg's theorem prover 
uses a backward-chaining ATMS. Because of 
their different concerns, formalisms, and imple
mentation, it is not clear what their relative 
advantages are. This paper makes a detailed 
comparison of these relating them to a logi
cal framework of abduction, explains their intu
itive meaning, and shows how the efficiency of 
both can be improved. Additionally, some limi
tations of both circumscriptive theorem provers 
are also discussed. 

1 Introduction 

Circumscription [McCarthy, 1980; Lifschitz, 1985] is one 
of the most powerful and well-developed formalizations 
of nonmonotonic reasoning as it is based on classical 
predicate logic. Although its formal properties are well 
investigated, there have been few attempts at effective 
query answering procedures or implementations for cir
cumscriptive theories. 

Recently, Przymusinski [1989] and Ginsberg [1989] 
have published algorithms to compute circumscription. 
Ginsberg acknowledges a strong connection between the 
results presented. However, not much is known about 
the algorithms' relative advantages and disadvantages. 

The goal of this paper is twofold: 

1. We further explore the connections between algo
rithms [Przymusinski, 1989; Ginsberg, 1989], show
ing that: 

(a) The theoretical results obtained in each of these 
papers are the same, and both can be re
expressed in a simple, general framework. 

(b) The algorithms presented have different com
putational properties; we provide a detailed 
comparison of these. 

2. We show how the efficiency of both algorithms can 
be improved. 
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Sections 2, 3, and 4 consider the above questions. In 
Section 5, we further discuss two important problems 
that arise in Przymusinski's and Ginsberg's approaches 
and suggest some solutions to them. 

2 Comparing the Theorems 

We will consider ground theories, that is, first-order 
theories, without equality, consisting of finitely many 
ground formulas over the representation language £; 
these are sufficient to illustrate the comparison between 
the algorithms of [Przymusinski, 1989; Ginsberg, 1989]. 
We will use the clausal form representation, and also as
sume that Unique Names Axioms (UNA) are satisfied for 
£, as in both algorithms. According to Przymusinski's 
claims, however, the algorithms are applicable to the 
first-order case with UNA and equality axioms. Gins
berg adds the domain-closure axiom, which is unneces
sary according to the results we shall present which in
dicate the equivalence between the theoretical results of 
[Przymusinski, 1989; Ginsberg, 1989]. In Section 5, we 
will return to the incompleteness problem, which is due 
to the infinite properties of first-order theories. 

We briefly recall a basic property of circumscription, 
on which the algorithms are based. The predicate sym
bols of a theory T are divided into three disjoint sets: 
P, minimized predicates; Z, variables; and Q, fixed. Us
ing this information, some models of T are defined as 
minimal with respect to the sets P and Z; we say they 
are (P, Z)-minimal. Let CIRC(T; P; Z) be the circum
scription of P in T with variable predicates Z . Then, 
for any formula F, CIRC(T; P; Z) FF iff M FF for 
every (P, Z)-minimal model M of T [McCarthy, 1980; 
Lifschitz, 1985]. 

Now, to compare the theoretical results of Przymusin
ski and Ginsberg, we use the notion of characteristic 
clauses which was introduced by Bossu & Siegel [1985] 
and was later generalized by Siegel [1987]. This concept 
can also give the computational aspect of abduction. In
formally speaking, characteristic clauses are intended to 
represent "interesting" clauses to solve a certain prob
lem, and are constructed over a sub-vocabulary of C 
called a production field. 

Definition 2.1 A production field P is a set of ground 
literals. A clause C belongs to a production field P if 
every literal in C belongs to P. The set of clauses that 



are logical consequences of a set of clauses T and that 
belong to Pis denoted by Thp(T). 

If R is a set of predicate symbols, we denote by R+ 
(respectively R-) the positive (respectively negative) 
ground literals with predicates from R, which range over 
all constants in £. Moreover, R+ U R- is denoted R±. 

Example 2.2 Suppose that the language C contains 
predicates, bird, flies, ab, and ostrich, and that tweety 
is a constant. Let P be {ab}+u{bird,ostrich}±. Then, 
-,ostrich(tweety) V bird(tweety) belongs to 'P, while 
-,ab(tweety) does not . 

Definition 2.3 Let T be a set of formulas, F a formula, 
and P a production field . 

1. The characteristic clauses of T are: 

Carc(T) = µ [Thp(T)] 1, 

where for a set of clauses E, byµ [E] we mean the 
set of clauses of E not subsumed by any other clause 
ofE. 

2. The new characteristic clauses of F with respect to 
Tare: 

N ewcarc(T, F) = Carc(T U {F}) - Carc(T), 

that is, those characteristic clauses of TU { F} that 
are not characteristic clauses of T. 

Example 2.2 ( continued) Let T be 

bird(tweety), 
-,bird(tweety) V ab(tweety) V flies(tweety), 
-,ostrich(tweety) V -,flies(tweety). 

In this well-known example, P = {ab}, Z = {!lies}, 
and Q = {bird, ostrich}. 

Let us fix as above P to be p+ U Q±, that is, positive 
occurrences of ab, or any occurrence of bird and ostrich. 
Then, 

Carc(T) = { bird(tweety), 
ab(tweety) V -,ostrich(tweety) }, 

N ewcarc(T, bird(tweety)) = ¢ 
because bird(tweety) E Carc(T), 

N ewcarc(T, flies(tweety)) = 
{-,ostrich(tweety)} 

as -,ostrich(tweety) (/. Carc(T) belongs to 
Carc(T U {flies(tweety)} ). 

There is a strong connection between the concept of 
the new characteristic clauses and a logical account of 
abductive or hypothetical reasoning defined by such as 
[Poole et al., 1987; Poole, 1989]. 

Definition 2.4 Let T be a set of formulas, D a set of 
ground literals ( called the hypotheses), and F a closed 
formula. A conjunction E of elements of D is an expla
nation of F from (T, D) if: (i) TU {E} is satisfiable, 
and (ii) TU {E} FF. 

An explanation E of F from (T, D) is minimal if no 
proper sub-conjunct E' of E satisfies TU {E'} FF. 

1 Carc(T) depends on the production field 'P, and thus a 
correct notation would be Carc(T, 'P). As there will be no 
confusion about 'P, we simply write Carc(T). 

An extension of (T, D) is the set of logical conse
quences of T U { E} where E is a maximal conjunct of 
elements of D such that TU { E} is satisfiable. 

We will denote by -, · E the set formed by taking the 
negation of each element in E. 

Theorem 2.5 Let T, D and F be the same as Defini
tion 2.4. The set of all minimal explanations of F from 
(T, D) is -, · N ewcarc(T, -,F), where 'P = -, · D. 

Corollary 2.6 Let T, D and F be the same as Def
inition 2.4. There is no extension of (T, D) in which 
F holds iff there is no explanation of F from (T, D) iff 
N ewcarc(T, -,F) = ¢. 

2.1 Przymusinski's Results 

Przymusinski's [1989] algorithm is based on the following 
two theorems developed by Gelfond et al. [1989]. 

Theorem 2. 7 [Przymusinski, 1989, Theorem 2.5] 
If a formula F does not contain literals from Z, then 
CI RC(T; P; Z) F F iff there is no clause E such that 
(i) E does not contain literals in z± Up-, and (ii) T p= 
-,F VE but T ~ E. 

Now let us rewrite this theorem using the notation 
introduced above. Condition (i) means that E belongs 
to the production field P = p+ U Q±. T p= -,F V E 
can be written as TU {F} F E. So we are looking 
for a clause E belonging to the production field, implied 
by T U { F} but not by T alone. This means that E E 
Thp(TU{F} )-Thp(T). The theorem requires that such 
E does not exist. Now, for a set of clauses E, E = ¢ 
iff µ[E] = ¢. Therefore, by Lemma A.l, it is enough to 
check whether N ewcarc(T, F) is empty or not. That is, 

Theorem 2. 7 (new version) Let F be a formula not 
containing literals from Z. Let P be p+ U Q±. Then 

CI RC(T; P; Z) F F iff N ewcarc(T, F) = ¢. 

This formulation helps to understand the intuition un
derlying the above theorem. We want to know if a query 
F not involving literals from Z is true or not in the 
(P, Z)-minimal models ofa theory T. Now, every (P, Z)
minimal model of T is defined on interpretations of T by 
considering differences of extensions of P and equality 
of extensions of Q, but by ignoring differences of exten
sions of Z [Lifschitz, 1985]. Therefore, the characteristic 
clauses of T are representative of those minimal models, 
in the sense that if adding F to T produces a change ( new 
one) in Carc(T) then the addition of F has produced a 
change in the minimal models of T as well. The exis
tence of a new characteristic clause of F means that F 
has altered the minimal models: thus if N ewcarc(T, F) 
is empty, the addition of F has no effect on the minimal 
models and the circumscriptive theory entails it. 

For formulas containing predicates from Z, the follow
ing holds: 

Theorem 2.8 [Przymusinski, 1989, Theorem 2.6] 
Let F be any formula. CIRC(T; P; Z) F F if£ either 
T p= F or there is a formula G such that (i) G does not 
contain literals in z± Up- , (ii) T p= F V G, and (iii) 
CIRC(T; P; Z) F -,G. 
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Now, T I= F means TU {-,F} is unsatisfiable; note 
that in this case, N ewcarc(T, -,F) would contain only D 
(the empty clause). Condition (i) again means that G 
belongs to P = p+ U Q±; condition (ii) can be written 
as T U {-,F} I= G; and condition (iii) is equivalent to 
N ewcarc(T, -,Q) = <f, by Theorem 2. 7. In this case, the 
condition T ~ G is missing in Theorem 2.8; if T I= G, 
however, then N ewcarc(T, -,Q) = {D} f. <f, holds for 
satisfiable T. Therefore, condition (ii) together with (iii) 
further implies that G is of the form of a conjunction of 
clauses of N ewcarc(T, -,F) 2 • And in condition (iii), if 
G is D, then -,Q is the formula true and adding it to T 
produces no new theorem: N ewcarc(T, true) = <f,. We 
can now write: 

Theorem 2.8 (new version) Let F be any formula, 
and P = p+ U Q±. Then CI RC(T; P; Z) I= F iff there 
is a conjunct G of clauses in N ewcarc(T, -,F) such that 
N ewcarc(T, -,Q) = <f,. 

While this formulation seems simpler than the original 
one, it still does not provide much insight . We will see it 
more clearly in Section 2.2, relating it with hypothetical 
reasoning. Let us review one of Przymusinski's examples 
with these new concepts. 

Example 2.2 (continued) Przymusinski [1989, Ex
ample 3.10] shows that CIRC(T; P; Z) does not imply 
F1 = flies(tweety) but implies F2 = ostrich(tweety) V 
flies(tweety). Let us verify these facts. 

Adding -,F1 = -,J/ies(tweety) to T gives 

N ewcarc(T, -,F1) = { ab(tweety)}. 

Since adding -,ab(tweety) to T gives a new characteristic 
clause, -,ostrich(tweety), CIRC(T; P; Z) ~ F1 holds. 

Now we add 

-,F2 = -,ostrich(tweety) I\ -,J/ies(tweety) 

to T, which gives 

N ewcarc(T, -,F2) = {-,ostrich(tweety), ab(tweety)} . 

The negation of the conjunction of these two clauses is 

ostrich(tweety) V -,ab(tweety) . 

Adding this formula to T produces no new characteristic 
clauses, as the only new theorems are 

{ ostrich(tweety) V -,ab(tweety), f lies(tweety)}, 

and neither belongs to P. Thus, as expected, F2 is in 
the circumscribed theory. 

2.2 Ginsberg's Results 

Ginsberg [1989] presents an another algorithm for com
puting circumscription. The algorithm however works 
only in the case where Q, the set of fixed predicates, 
is empty. We will transform Ginsberg's definitions and 
results to ours. 

2 In practice, the minimality condition involved by the µ 
operation is not crucial. See Section 3.1. 
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Definition 2.9 [Ginsberg, 1989, Definition 3.1] 
Let D and T be two sets of formulas . G is dnf wrt D if 
it is written as a disjunction of conjunctions of elements 
of D. And F is confirmed by G (wrt T and D) if the 
following conditions hold: 

1. T U { G} is satisfiable, 
2. TU {G} I= F, and 
3. G is dnf wrt D. 

Comparing Definition 2.9 with Definition 2.4, we see 
that F is confirmed by G wrt D if G is a disjunction of 
explanations of F from (T, D). Now, -,Q is a conjunction 
of clauses belonging to the production field -, · D by 
Theorem 2.5. Or, in other words, 

Definition 2.9 (new version) Let P = -, · D. F 
is confirmed by G if -,Q is a conjunction of clauses in 
N ewcarc(T, -,F) . Moreover, F is unconfirmed, if no G 
confirms F: N ewcarc(T, -,F) = <f,. 

Next is the main result: 

Proposition 2.10 [Ginsberg, 1989, Proposition 3.2] 
Let D be p-. CI RC(T; P; Z) I= F iff there is some G 
confirming F so that -,Q is unconfirmed. 

We can rewrite it as: 

Proposition 2.10 (new version) Let P = -, · D. 
CIRC(T; P; Z) I= F iff there is a conjunct G of clauses 
in N ewcarc(T, -,F) such that N ewcarc(T, -,Q) = <f,. 

Ginsberg briefly mentions connections with Przy
musinski's work and the possibility of relaxing the as
sumption of all non-minimized predicates being variable. 
Our above results show that: 

1. This last proposition is exactly Theorem 2.8. 

2. All results can thus be extended to the case Q f. <f, 
(that is, not varying all predicates) just by setting 
D = p- U Q±, that is, P = -, · D = p+ U Q±. 

The intuition behind Theorem 2.8 and Proposition 2.10 
is the following. From the viewpoint of abductive rea
soning, those theorems say that CI RC(T, P, Z) I= F iff 
there is a disjunct G of explanations from (T, D) such 
that there exists no explanation of -,Q from (T, D) 3 , 

and Poole [1989] introduces the similar condition for a 
formula to hold in all extensions of (T, D)4 • For answer
ing queries in circumscription, the hypotheses D must be 
carefully chosen in the direction of (P, Z)-minimization: 
for minimized predicates P, p- should be hypothesized, 
and for fixed predicates Q, Q± should be taken into ac
count. Now the existence of an explanation of F from 
(T, D) guarantees that F holds in at least one extension 
of (T, D) by Corollary 2.6. Clearly, if some disjunct G 
of explanations of F holds in all extensions, then F also 
holds in all extensions. Since this G is constructed over 
D and thus does not contain literals from Z, we see that 

3 Lin & Goebel [1989) independently derive the equivalent 
theorem from the result by [Gelfond et al., 1989) within the 
Theorist framework [Poole et al., 1987). 

• Etherington [1987) has shown the equivalence of mem
bership in all extensions and circumscriptive entailment for 
propositional theories without fixed predicates. 



G holds in all extensions of (T, D) if£ N ewcarc(T, G) = ¢i 
wrt P =-,. D (by Theorem 2.7) if£ there is no explana
tion of -,G from (T, D) (by Corollary 2.6). 

3 Comparing the Algorithms 

In the last section we showed that both Przymusinski 's 
and Ginsberg's algorithms were based on the same theo
retical results. This section concerns the computational 
efficiency of the algorithms. 

Przymusinski [1989] defines MILO-resolution, a vari
ant of ordered linear (OL) resolution [Chang and Lee, 
1973]. Given a clause C, MILO-resolution is used to de
duce a set of minimal clauses belonging to Th-p(TU{ C} ), 
called the derivative o/T+C, with top clause C and the 
background theory T. The algorithm needs to check the 
non-deducibility of each clause in the derivative from T, 
in order to determine the new characteristic clauses. On 
the other hand, Ginsberg's [1989] circumscriptive the
orem prover uses a "backward-chaining ATMS" [Reiter 
and de Kleer, 1987] to compute minimal explanations of 
formulas. This backward chaining procedure also uses a 
classical theorem prover. 

While the structure of the proofs are similar, each al
gorithm has a different concern and extends a resolution 
procedure in a different way. Remember that we should 
produce clauses (i) in the production field, and (ii) the 
"new" and "minimal" of these, that is, neither implied 
by the original theory nor by another produced clause. 
MILO-resolution provides the ability to restrict the res
olution to some literals by which the algorithm directly 
focuses on producing the clauses relevant to answer the 
query, that is, those in the production field p+ U Q±. 
Przymusinski 's concern is thus efficiency regarding the 
first of the above two points. Ginsberg uses a classical 
theorem prover; this means that no information concern
ing the production field is used during the proof. His 
algorithm has however another concern, that of the min
imality of the produced formulas. For this, he uses a 
structure called a "bilattice" based on his previous work 
on multivalued logic [Ginsberg, 1988]. The role of this 
bilattice is to record inferences, in order to avoid mak
ing them more than once. He is thus concerned with the 
second of the above. 

The next two subsections expand on these ideas. The 
discussion is based on each resolution procedure to com
pute N ewcarc(T, C), given a background theory T, a 
clause C and a production field P . 

3.1 What Needs to be Computed 

From the results presented above, it appears that to an
swer a query, an algorithm should first compute the min
imal explanations of a formula F from (T, p- U Q±), or 
equivalently their negations, N ewcarc(T, -,F), with the 
production field set to p+ U Q±. Ginsberg's theorem 
prover works exactly along this line of computation 5 • 

However, there is a set smaller than N ewcarc(T, F) 
that can be used to answer such a query. Let us divide 
the produced clauses S by using deductions with top 
clause C, the background theory T and the production 

5 This is in essence what [Lin and Goebel, 1989) does too. 

field P, possibly containing subsumed clauses (note that 
N ewcarc(T, C) ~ S; see Theorem A.3) into two sets, 
say S1 and S2, such that 

S = S1 U S2 and TU S1 I= S2 . 

Adding S2 to S1 does not change the models of the pro
duced clauses, so only S1 needs to be computed model
theoretically. We call a set S1 verifying this condition a 
precursor of S. Note that a clause in a precursor may 
not belong to N ewcarc(T, P), that is, the clause is not 
always minimal in the sense of set-inclusion, but it is the 
weakest in the sense that for any clause A 2 E S 2 there 
exists a clause A1 E S1 such that TU {-,A2} I= -,A1 
holds (recall that for AES, -,A is an explanation of-,C 
from (T,-, · P) if it is consistent with T 6). 

MILO-resolution actually computes such a precursor, 
as the derivative of T + C, because it restricts the reso
lution to literals belonging to z± U p-. In other words, 
when the first literal of the center clause belongs to 
P = p+ U Q±, it is skipped. If it were resolved upon with 
a clause from the theory, the resulting leave obtained by 
chaining the inference would be implied by the one ob
tained with the skipping operation (see Theorem 4.2). 
This is best understood with an example. 

Example 3.1 The theory is 

T = { Pl V -,P2, P2 V -,pa, Pa V Z1 } . 

The production field is P = p+ = {p1,P2,Pa}+ . The 
query is z1. 

By adding -,z1 to T, MILO-resolution generates only 
Pa, the only new theorem that belongs to P. Since this 
literal belongs to P, the procedure skips it and stops. 
It then adds -,pa to T which generates no characteristic 
clause, showing that CIRC(T; P; Z) I= z1. 

If the procedure would examine the remaining choice, 
resolving Pa with the clause P2 V -,pa, it would produce 
p2 , and a further step would produce Pl. This is exactly 
what Ginsberg's prover does, as it uses no information 
from P to stop the execution when Pa is produced. The 
set of assumptions is D = -, · P = p-. The confirmation 
of z1 produced by an ATMS is dnf: 

-,pa V -,P2 V -,Pl . 

The negation of the confirmation is 

Pa A P2 A P1 , 

which is unconfirmed. Using Ginsberg's terminology, 
two additional contexts have been produced, {-,pi} and 
{-,p2}, in which z holds (the three are produced because 
none of them is a subset of another) . MILO-resolution 
did not need to generate them. As explained above, the 
reason is that {pa} is the precursor of the others, as: 

TU {pa} I= Pl Ap2 . 

There is another big difference between Przymusin
ski 's and Ginsberg's provers concerning checking the 

6 An explanation E 1 is called less-presumptive than E2 
[Poole, 1989) if TU {E2} I= E1. Therefore, an explanation in 
-,.S1 is a least-presumptive explanation of ...,c from (T, ...,. 'P). 
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consistency of hypotheses. Recall that to apply Theo
rem 2.8 or Proposition 2.10, we need two steps; firstly 
computing a set of clauses belonging to N ewcarc(T, -iF) 
for the query F, then checking whether a conjunct G 
of those clauses satisfies N ewcarc(T, -iG) = ¢, . Gins
berg's prover first computes the minimal explanations £ 
of F from (T,-, · 'P), then computes the minimal expla
nations of -, V Ee£ E from (T,-, · 'P); on the contrary, 
Przymusinski's prover first computes the derivative 1)1 
of T + F, without checking the non-deducibility of each 
clause in 'D1 from T, then computes the derivative 1)2 of 
T +-, V AE'D A, checking whether T ~ B for each clause 
Bin 'D2 one'by one. Clearly, in the second step, we need 
not compute all the minimal explanations for the nega
tion of the disjunct; ifit has at least one explanation then 
we can stop the computation immediately. For the first 
step, Przymusinski's prover may include some clauses be
longing to Thp(T) in 'Di, which are excluded from the 
produced clauses by Ginsberg's prover 7 • However, since 
it takes much computation for this consistency checking 
(non-decidable for the first-order case), it seems rather 
efficient even if these extra clauses are taken into account 
in the second step (indeed, the efficiency may depend on 
the knowledge base). 

3.2 How it is Computed 

Now suppose both algorithms have to compute the same 
set, that is, MILO-resolution computes all the new char
acteristic clauses by avoiding the skipping of literals, or 
Ginsberg's theorem prover is restricted to computing a 
precursor. In that case, another advantage of using the 
information on the production field 'P during the deduc
tion is that fewer clauses are generated. 

For a very simple example, suppose that the center 
clause is z V q, where z ¢ 'P, while q E 'P. If z cannot 
be resolved upon against clauses of the theory in such a 
way that the result of the deduction produces a clause 
belonging to 'P, MILO-resolution will never try to resolve 
on the next literal q. Conventional theorem provers will 
give no priority to z over q and thus will try all the res
olutions on q as well, making unnecessary computation. 
This example, although trivial, is representative of what 
will happen in many realistic situations. 

We said above that a central concern of [Ginsberg, 
1989] was to avoid computing the same clauses more 
than once. The role of the bilattice is to record infor
mation and use it to avoid redundant derivations by 
making subsumption tests. A voiding the exploration 
of unnecessary portions of the search space, and in 
particular the non-production of subsumed clauses has 
been a central concern of automated theorem proving 
and is one of the motivations behind all the refine
ments of resolution [Loveland, 1978]. Many of these 
use the information of literals that have been resolved 
upon to avoid producing many of redundant clauses. 
For example, OL-resolution on which MILO-resolution 
uses framed literals to record the history of the de-

7If there is a clause A E V1 such that T I= A, then in 
the second step, the negation of the disjuncts contains -.A . 
Since its valuation is false, this does not affect the result of 
the query answering. 
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duction . Regarding other problems related to irredun
dancy and control, a thorough analysis can be found 
in the chapter on subsumption in [Loveland, 1978]. 
There is not enough information in [Ginsberg, 1989; 
Ginsberg, 1988] to determine whether the bilattice rep
resents a better alternative. 

4 Improving Efficiency 

We show here how MILO-resolution's search space can 
be reduced. MILO-resolution is based on Chang and 
Lee's [1973] version of OL-resolution; this procedure is 
augmented with the ability to skip literals when they 
belong to the production field. 

Now, actually there exist superior versions of linear 
resolution that can be augmented with skipping opera
tions. Most notably, Model Elimination [Loveland, 1978] 
and SL-resolution [Kowalski and Kuhner, 1971]. Basi
cally, the Model Elimination procedure introduced the 
restriction that without loss of completeness, it can avoid 
resolving the center clause with clauses from the theory 
that have literals equal to framed literals at the right 
of the literal resolved upon, as this would produce only 
clauses subsumed by some previous center clause. 

Example 4.1 Suppose a clause, 

F=aVd, 

resolves with a clause, 

-ia Vb, 

in T, giving 
b V [a] V d. 

Now suppose there is a clause, 

-,b Va, 

in T. The above restriction tells us that this clause may 
safely be skipped in the deduction, as it contains a, a 
literal appearing framed in the center clause. In effect, 
it would give the clause, 

a V [b] V [a] V d, 

which is subsumed by a previous center clause, F. 

Clearly, this has two advantages: it restricts the search 
space, and avoids many of subsumption tests in step (iii) 
of MILO-resolution [Przymusinski, 1989, Definition 3.1}. 

Additional improvements in efficiency were introduced 
by [Shostak, 1976] and [Bibel, 1982]. Shostak [1976] 
shows that we can record still more information on cen
ter clauses. When the first literal of the center clause 
is framed, previous versions of linear resolution delete it 
from the clause. Shostak 's procedure complements it and 
keeps it in a different position called the C-point in the 
clause, where it can still be used later in the reduction 
to reduce the search space and do ancestor resolution as 
with ordinary framed literals. 

Example 4.1 (continued) If now the above clause, 

bV[a]Vd, 

is resolved with, 
-,b' 



the result will be 

d V ( -,b) V ( -ia) , 

where, the notation (-ii) is used for the truncated framed 
literal [I] moved to the C-point; thus the information that 
-ia and -,b are proved is kept. 

4.1 Summary 
We thus propose the following procedure schema. Given 
a set of clauses T, a clause C, and a production field P, 
a deduction of a clause K from T + C ( the background 
theory T with top clause C) and P consists of a sequence 
of structured clauses, Co, Ci, ... , Cn, such that: 

1. Co= (D, C), 

2. Cn = (K, D), and 

3. Ci+l = ( Ki+1, _Rj+1 ) is obtained from Ci = 
(Ki, _llj ) by applying either of the following op
erations. We assume that _Rj is ordered and I is the 
first literal of _Rj. 

(a) (Skip) If IE P, then Ki+1 = Ki VI and _llj+1 
is obtained by removing I from _llj. 

(b) Otherwise, Ki+l = Ki and _Rj+1 is obtained by 
a linear resolution procedure where the center 
clause is _Rj and the background theory is T. 

By using this procedure we can find a precursor without 
computing all the N ewcarc(T, C): 

Theorem 4.2 If a clause L belongs to N ewcarc(T, C), 
then there is a deduction of a clause M E Thp(TU { C}) 
from T + C and P such that TU {M} p L . 

The query answering procedure for circumscriptive 
theories [Przymusinski, 1989, Algorithm 4.1] that calls 
MILO-resolution remains identical; the definition of the 
derivative of T + C is just changed to be the output 
of the above procedure instead of the output of MILO
resolution. 

4.2 Example 

We might use Shostak's GC procedure as a linear resolu
tion procedure for step 3(b) above, and get the following: 

Example 4.3 (modified version of [Przymusinski, 1989, 
Example 3.5]) We apply the procedure to formulas with 
variables in order to show that it is not limited to the 
ground case. Let T contain the following formulas, with 
P = { learns, senior}, and Z = ¢. 

VX senior(X):) learns(X, latin)V learns(X, greek ), 
VX senior(X) :) learns(X, french), 
senior( ann ), 
VX learns(X, greek) :) senior(X). 

In clausal form and with the obvious abbreviations, the 
theory is 

l(X, It) V l(X, gr) V -is(X), (1) 
-is(X) V l(X, fr), (2) 
s(a), (3) 
-il(X, gr) V s(X). (4) 

The production field P is then p+ = {I, s} +. Consider 
the query -il(a, gr) V-il(a, fr). The following is a deduc
tion obtained by our procedure. 

Co = ( D, -il(a, gr) V -il(a, fr) ) -Given. 
C1 = ( D, l(a, It) V -is(a) V [-il(a, gr)] V -il(a,/r) ) 

-Resolution with 1 (*). 
C2 = (/(a, It), -is(a) V [-il(a, gr)] V -il(a, fr) ) 

-Skip the literal from P (**). 
Ca= ( l(a, It), [-is(a)] V [-il(a, gr)] V -il(a, fr)) 

-Resolution with 3. 
C4 = (/(a, It), -,/(a, fr) V (s(a)) V (l(a, gr))) 

-Recording of solved literals. 
Cs= ( l(a, It), -is(a) V [-il(a, fr) ] V (s(a)) V (l(a, gr))) 

-Resolution with 2. 
C5 = ( l(a, It), [-il(a, fr)] V (s(a)) V (l(a, gr))) 

-Truncation using the solved literal (***). 
C1 = ( l(a, It), D) -Reduction. 

Now according to Theorem 2.7, we can answer "no" 
to the above query, that is, 

CIRC(T; P; Z) ~ -il(a, gr) V-il(a, fr), 

because l(a, It) is not implied by T. 
Let us look at some advantages of this deduction over 

MILO-resolution and Ginsberg's theorem prover. 

• At point (*), Ginsberg's prover, which lacks in
formation on the production field, will resolve 
on l(a, It), instead of skipping it, thus exploring 
branches that are pruned by the skipping operation. 

• At point (**), MILO-resolution will behave as in 
the above deduction, but keeps an additional choice 
that results from resolving -is(a) with clause 4. Our 
procedure avoids this because clause 4 contains the 
literal -il(a, gr) that appears framed in the center 
clause, thus indicating the remaining choice is un
necessary. 

• At point (***), MILO-resolution would have lost 
information about s( a), and thus makes a resolution 
against all clauses containing -is(a). Reduction with 
solved literal avoids this exploration. 

5 Concluding Remarks 
We have compared two algorithms to compute circum
scription, relating them to abductive reasoning, and 
showing that they are based on the same theoretical re
sults. We have also analyzed their computational prop
erties, showing their different concerns: [Przymusinski, 
1989] defines the set of formulas that needs to be com
puted and uses skippin~ operations to compute them 
directly; [Ginsberg, 1989] concerns avoiding redundancy 
by recording information during a deduction. 

The skipping operation can be applied to other, more 
efficient versions of linear resolution, and further im
provements on these methods can be incorporated into 
the procedure. Other techniques of theorem proving can 
be used to improve efficiency still more. For example, 
we can "compile" the theory, producing either its prime 
implicates [Reiter and de Kleer, 1987] or the sub-clauses 
implied by it. In both cases, the resultant theory has the 
same models, and thus the same (P, Z)-minimal models 
as the former. Deduction from this compiled theory will 
give the same results as from the former . 

The improvements in the present paper are based 
on direct refinements of linear resolution procedures, 
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and actually applicable to efficient computation of 
N ewcarc(T, -,F) for a query F and N ewcarc(T, -,G) for 
some Gin Theorem 2.8. However, both Przymusinski's 
(1989] and Ginsberg's (1989] algorithms are naive imple
mentations of Theorem 2.8, which states the need for the 
existence of a certain conjunct G of N ewcarc(T, -,F), ig
noring that many of clauses in N ewcarc(T, -,F) may ex
ist. Therefore they turn out to suffer from the following 
two problems in their computations: 

l. Both "algorithms" do not work for the case in 
which there are potentially an infinite number of 
clauses in N ewcarc(T, -,F). Even if the number of 
N ewcarc(T, -,F) is finite, not all of them are the 
relevant parts needed to determine that F is in the 
circumscribed theory 8 • 

2. Neither algorithm can handle the answer extrac
tion for open queries. That is, when a query con
tains variables, the algorithms cannot return the 
substitution values of the variables for which the 
query holds. This is a much broader problem than 
"Yes/No" type questions. 

A procedure attempting to solve the first problem is pro
posed by Poole (1989], which is the dialectical imple
mentation of membership in all extensions. In [Helft et 
al., 1989], which complements this paper, a solution for 
both the first and the second problems was proposed, 
which finds a minimal, rather than maximal conjunct G 
of N ewcarc(T, -,F). While we will not discuss it further 
in this paper, we should note that a certain subset of 
N ewcarc(T, -,F) must be computed anyway. Therefore, 
the improvements proposed in this paper can still be ap
plied to any proof procedure attempting to solve these 
problems. 
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A Appendix: Proofs of Theorems 

The next lemma is used to prove Theorem 2.5. 

Lemma A.1 Let T be a set of clauses, Fa formula. 

N ewcarc(T, F) = µ [Thp (T U {F} ) - Thp (T )] . 

Proof: Let A= Thp(TU{F}) and B = 'l'hp(T). 
Notice that B ~ A. We will prove that µ[A - B] = 
µ[A] - µ[B]. 

Let c E µ[A- B]. Then obviously c EA-Band thus 
c EA. Now assume that c (/:. µ[A]. Then 3d EA such 
that d C c. By the minimality of c E A - B, d E B. 
Since d C c, c E B, contradiction. Therefore c E µ[A]. 
Clearly, by c (/:. B, c (/:. µ[B]. Hence, c E µ[A] - µ[B]. 

Conversely, assume that c E µ[A] - µ[B]. Firstly we 
must prove that c E A - B. Suppose to the contrary 
that c E B. Since c (/:. µ[B], 3d E B such that d C c. 
However, as B ~ A, d E A, contradicting the minimality 
of c E A. Therefore, c E A - B. Now assume that 
c is not minimal in A - B. Then, 3e E A - B such 
that e C c, again contradicting the minimality of c E A. 
Hence, c E µ[A - B]. D 

Theorem 2.5 Let T be a set of clauses, D a set of 
ground literal, Fa formula. The set of all minimal expla
nations of F from (T, D) is -, · Newcarc(T, -,F), where 
p = -,. D. 

Proof: Now, suppose that E is an explanation of F 
from (T, D). By Definition 2.4, it is observed that (i) 
the fact that T U { E} is satisfiable means T ~ -,E, 
(ii) TU { E} I= F can be written as TU {-,F} I= -,E, 
and -,E is a clause all of whose literals belong to -, · D . 
Thus -,E E Thp(T U {-,F}) -Thp(T) . By Lemma A.1, 
E is a minimal explanation of F from (T, D) iff -,E E 
N ewcarc(T, -,F). D 

We need the following preliminaries for the proof of 
Theorem 4.2. In the subsequent discussion, we will de
note a clause as a set of literals. Firstly, a complete ab
ductive procedure is defined by modifying the procedure 
described in Section 4.1 as follows: 
Definition A.2 Given a set of clauses T, a clause 
C, and a production field 'P, an LS (Skipping Lin
ear) deduction of a clause K from T + C and 'P 
consists of a sequence of structured clauses, Co = 
( o, C ), .. . , Ci, Ci+1, ... , Cn = ( K, o ), such that 
Ci+1 = ( Ki+1, Ri+1 ) is obtained from Ci = ( Ki, Ri ) 
by applying either of the following operations ( we assume 
that H-i is ordered and / is the first literal of Ri ): 

3(a') (Skip) If I E 'P, then Ki+1 = Ki U {/} and 
Ri+1 = Ri - {/}. 

3(b' ) Ki+l = Ki and Ri+l is obtained by a linear 
resolution procedure where the center clause is 
Ri and the background theory is T. 

An example of LS resolution is proposed by Siegel [1987], 
which incorporates the restriction rule used in Exam
ple 4.1. The only difference between an LS deduction 
and one in Section 4.1 is that while the rules 3(a) and 
3(b) in the latter are exclusive, in the former 3( a') and 
3(b') are not; for / E 'P either rule can be applied. The 
next theorem shows that LS resolution is complete for 
finding new characteristic clauses. 

Theorem A.3 If a clause L belongs to Thp (T U { C } ) 
Thp (T ), then there is an LS deduction of a clause M E 
Thp (T U {C }) from T+C and P such that M subsumes 
L. 

Proof: The proof can be seen as an extension of the 
completeness result for consequence-finding in linear res
olution by Minicozzi & Reiter [1972] augmented with the 
skipping operation. And the result also follows easily us
ing the same method as in the completeness proof for the 
procedure described in [Siegel, 1987]. D 

By using Theorem A.3, we can show that N ewcarc(T, C) 
is a subset of the set of clauses derived using LS deduc
tions from T + C and P. Now, we will prove that, if a 
clause L is derived by using an LS deduction from T + C 
and P, then there is an LS deduction of a clause M from 
T+C and 'P by using only the Skip rule for each first lit
eral/ E Pin every center clause, such that T U{M} I= L. 
This result completes the proof of Theorem 4.2. 

Theorem 4.2 If a clause L belongs to N ewcarc(T, C), 
then there is a deduction of a clause M E Thp(TU { C}) 
from T + C and 'P such that TU {M} I= L. 

Proof: Let Co,C1, .. . ,Cn be an LS deduction of L 
from T + C and 'P . Let /i be the first literal of H-i, where 
Ci = ( Ki, Ri} and O ~ i ~ n - l. Firstly, if Skip is 
applied for every I; (0 ~ j ~ n - 1) such that I; E P, 
then L is actually derived from T + C and P, and of 
course TU { L} I= L holds. 

Next, suppose that 3C; in the LS deduction such that 
I; E 'P is resolved upon with a clause B; E T. In the fol
lowing proof, to simplify the discussion, we assume that 
there are no identical, truncated, or reduced literals in 
Ry+1 and denote Ry+l by removing the framed literals in 
it; if they exist, then we can modify the proof appropri
ately. Let x (1 ~ x ~ n) be the number of such clauses, 
and Cy be such a clause where y (0 ~ y ~ n - 1) is the 
largest number. In this case, Cy+l = {Ky+1, Ry+i}, 
where Ky+l = Ky and Ry+l = {By-{-,/y})U(Ry-{ly}). 
Now, let U be a clause LS derived from T + ( By - {-,/y}) 
and P , V a clause LS derived from T + ( Ry - { ly}) 
and P . Here, we can choose such U and V to sat
isfy L = Ky U U U V, because L is LS derived from 
T + (Ky+1 U Ry+i) and P. 

Now assume that instead of resolving Ry with By, 
Skip is applied to Ky, deducing K;+i = ( K;+i, R~+l }, 
where K;+i = Ky U {ly} and R~+l = Ry - {ly}. Then, 
Ky U{ly}UV is LS derived from T+(I<;+i UR~+l) and P, 
and thus from T+C and P. Since T U{ly} I= By-{-,/y}, 
T U {ly} I= U holds, and thus T U {( Ky U {ly} U V)} FL 
holds. 

Now let Mo = Land M1 = (Ky U {ly} U V). In the 
similar way, we can find an LS deduction of M2 from 
T+ C and P such that T U {M2} F M1, by resetting y 
to the second largest number. By using the bottom-up 
manner, we can successively find clauses M; (1 ~ j ~ x) 
LS derived from T + C and P such that T U { M;} F 
Mj-1· Therefore, TU {Mx} F Mx-1, TU {Mx-d F 
Mx-2, ... , TU {Mi} F Mo . Hence, TU {Mx} F Mo, 
and we get the theorem . D 
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Abstract 

This paper deals with a natural-like method of 
deduction for First-Order Logic: the system G 
of Gentzen. This system is, among natural-like 
methods, one of the best suited to mechanisa
tion, due to the use of both a sequent formal
ism, providing control facilities for deduction, 
and a system of rules being "convergent" . The 
paper describes two complementary improve
ments of the system G to make it even more 
natural as well as more efficient. 
The first one deals with an extension of the set 
of inference rules. Actually, for some formu
las, the use of new connectives (not contained 
in the standard system) has interesting conse
quences. Directly handling these new connec
tives through the use of macro-rules increases 
both the performances of the system (saving 
time and space) and the naturalness of the 
proofs. 
The second improvement concerns the search 
procedure. It consists to detect dynamically 
whether useless steps are being performed, and, 
if so, to stop their development. As above, this 
improvement leads to gain in both efficiency 
due to the decrease in the number of developed 
nodes in the deduction tree, and naturalness 
of the resulting proofs, since useless steps have 
been removed. 

1 Introduction 

Out of all existing methods of deduction, resolution 
emerges as a proof procedure dealing with formulas in 
a standard form by means of a single inference rule 
((Chang and Lee, 73] (Stickel, 881). In contrast, natural
like methods accept formulas in their original form, and 
so, use more than one inference rule in order to take i~to 
account the different connectives. This paper deals with 
a system of the latter kind: the system G, a sequent Cal
culus defined by Gentzen ([Gallier, 86, Bowen, 821). 
Actually the system G is, among natural-like methods, 
one of the best suited to mechanisation. First of all, the 
sequent method keeps track of all the formulas available 
at each deduction step, thus providing facilities to con-
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trol the deduction. This contrasts with the method of 
the semantic tableaux for instance, which spreads for
mulas along the deduction tree ((Smullyan, 681). Fur
thermore, the inference rules of the system G are "con
vergent": they make the number of connectives in the 
sequent to decrease ( except for some rules concerning 
quantifiers), and then the search procedure is trivially 
decidable for propositional calculus. This differs from 
the natural deduction systems, where we must face the 
harder problem of controlling both the use of introducing 
and discharging assumptions. This paper describes two 
complementary improvements of the system G to make 
it even more natural as well as more efficient. 
The first section briefly introduces the features of the 
original system G, the following section deals with an 
extension of the set of inference rules, and the last one 
concerns a modification of the search procedure. 

2 System G 
2.1 Formal system 

2.1.1 Sequents 
Definition: A sequent is a pair (f, A) of, possibly 

empty, sets of formulas. 
Notation: the sequent (f, A) is usually noted r-+ 
A , and if r ={Al, ... , Am} and A= {Bl, ... , Bn} 
the simplified notation is Al, .. , Am-+ Bl, .. , Bn. 

Semantics : Given an interpretation I, a sequent 
Al, .. , Am-+ BI, .. , Bn is True in I iff the formula 
Al I\ ... I\ Am =} Bl V ... V Bn is True in I. 
That is, Al, .. , Am-+ BI, .. , Bn is 

• falsifiable iff there exists I which makes Al /\ 
... I\ Am I\ -.BI I\ ... I\ -.Bn True, 

• satisfiable iff there exists I which makes -iAl V 
... V -iAm V Bl V ... V Bn True. 

2.1.2 Rules system 
The inference rules of the system G directly reflect 

the semantics of the logical connectives. There are two 
inference rules for each connective: one operating on a 
formula occuring in the antecedent of the sequent, and 
the second operating on a formula occuring in the succe
dent of the sequent . 

A,B,f-A 
A/\B,f-A 

r-A,A r-A,B 
f__.A,A/\B 



A,f-+ 6 B,r-+ 6 f-+ 6,A,B 

A V B,f-+ 6 f-+6,A V B 

f-+6,A B,r-+ 6 A,r-+ 6 , B 
A'* B, r-+ 6 f-+6,A'*B 

f-+ 6,A A,f-+ 6 
-,A,f-+ 6 f-+ 6 ,-,A 

A[t / x],VxA,f-+ 6 f-+ 6,A[y/ x] 
VxA,f-+ 6 f-+ 6,VxA 

A[y/ x],r-+ 6 f-+ 6,A[t / x],3xA 
3xA,f-+ 6 f-+ 6,3xA 

where y (called eigenvariable) does not occur free in 
the lower sequent, 
and t is any term free for x in A. 

2.1.3 Axioms and deduction tree 
Definition : An axiom is any sequent r - A such 

that r and A contain some common formula. 

Property: Every axiom is valid. 

Definition : A deduction tree for r -> A 1s a tree 
where: 

• the root is labeled by r - A 
• we get children nodes from a parent node using 

an inference rule. The "parent node" is labeled 
with an instance of the conclusion of the rule, 
and the "children" nodes are labeled with the 
corresponding instances of the premises . 

• a leaf is labeled with a sequent r - A where: 
- either r - A is an axiom, 
- or r and ~ are disjoint sets of atomic formu-
las. 

Definition : A proof tree is a finite deduction tree, 
where all leaves are labeled with axioms. 

Definition: A counter-example tree is a deduction tree 
which is not a proof tree, that is: 
- either there is a non-axiom leaf, 
- or there is an infinite branch. 

Example : here is a deduction tree for the formula F = 
(P => Q) => (-,Q => -,p) 

-+ (P '* Q) '* (-,Q '* -,p) 
I 

p =} Q -+ -,Q ::} -,p 
I \ 

-+ P, -,Q '* -,p Q -+ -,Q '* -,p 
I I 

-,Q -+ P, -,p Q, -,Q -+ -,p 

I I 
-,Q, p-+ p Q-+ -,p,Q 

It is a proof tree. 

2.2 Search procedure 

We now describe an algorithm to construct a deduction 
tree for a sequent in a systematic fashion. Contrary to 
the algorithm defined in [Gallier, 86], this one builds the 

tree in a depth-first fashion. The procedure develop is 
inductive . It takes a sequent as an input, and gives a 
deduction tree as a result. 
PROC develop ( sequent, deduction-tree ) 
BEGIX 
IF leaf( sequent) 

THEH deduction-tree<- sequent 
ELSE 
list-of-children<- apply-a-rule (sequent ) 
child<- first-member (list-of-children) 
DO 
I develop (child, child-tree) 
I child<- succedent (list-of-children) 
UHTIL no-more-children 

sequent 
deduction- tree<- / I \ 

child-tree-1 ... child-tree-n 
I 

EHD 

Note : apply-a-rule(sequent) is a function searching for 
an inference rule to apply on sequent; it gives as a 
result the sequents resulting from applying the rule 
to sequent. Generally, more than one rule can be 
applied, and the choice of the rule to apply may be 
guided by heuristics. 

Definition : r -+ A is provable by the system G iff 
develop (r -+ A ) produces a proof tree. 

Properties : the procedure is 

• sound : if r -+ A is provable then r -+ A IS 

valid, 
• complete : if r -+ A is valid then r -+ A is 

provable, providing, for the First-Order Calcu
lus, that the procedure apply-a-rule is fair, 

• decidable for the propositional calculus. 

3 Modifying the system G 

We now describe two optimisations for the system G. 
The first one concerns an extension of the rule system, 
and the second one concerns a modification of the search 
procedure. Both optimisations use a sequent property 
we call "sequents subsumption". We first define this 
property. 

Definition : a sequent r -+ A subsumes a sequent 
f1-+ A1 ifff ~ f1 and A~ A1. 

Property 1: r-+ A subsumes f1,f-+ A ,A1. 

Property 2: if r-+ A subsumes f1 -+ A1 then 
if I I= r-+ A then I I= f1 -+ A1 . 

Property 3: if f 1 -+ A1 subsumes r-+ A then 
if r 1 -+ A1 is provable then r -+ A is provable 
and any proof of f1 -+ A1 is a proof for r-+ A 

3.1 Construction of macro-rules 

The modification of the system proposed here concerns 
the system of inference rules. In the system G, the rules 
system is closed. It describes the semantics of the primi
tive connectives: /\, V, =>, -,, :3, V. So, in order to be han
dled by the system G, any formula must be expressed in 
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terms of these primitive connectives, which will then be 
successively dealt with, by the appropriate rules . How
ever, if a formula is to express a significant relationship 
between its subformulas, stating it using primitive con
nectives may be rather unnatural ( cf the "relationships" 
equivalent, exclusive-or, n-among-m, etc ... ). We call 
such structures macro-connectives. We would like the 
system to be able to directly deal with them through as
sociated macro-rules. The semantics of such a structure 
will be explicitly rendered by the corresponding macro
rule. Moreover, it will be accounted for, in a proof, by a 
single derivation step. 
The method described in this section is restricted to the 
handling of propositional macro-connectives. 

3.1.1 Definitions 
A macro-connective with arity n is a connective de

fined from an application of primitive connectives to n 
formulas. 
Consider for instance the binary macro-connective ¢> de
fined by 

A¢> B = (A => B) A (B => A) 

Accordingly, a macro-rule is an inference rule for a 
macro-connective. It expresses the semantics of the 
macro-connective with respect to the semantics of the 
n arguments formulas. 

3.1.2 A method to construct a macro-rule 
Similarly to primitive connectives, each macro

connective gives rise to two macro-rules. One deals with 
an occurrence of the macro-connective in the left part 
of the sequent, and the other deals with an occurrence 
of the macro-connective in the right part of the sequent. 
A macro-rule is produced by synthetizing the deduction 
tree of the macro-connective. 
The deduction tree is generated by successively applying 
the inference rules to the primitive connectives involved 
in the macro-connective, so as to completely develop the 
structure. This deduction tree is then pruned by discard
ing all axiom leaves and redundant leaves. The resulting 
macro-rule consists in the leaves of this pruned tree as 
its premises, and the macro-connective structure as its 
conclusion. 

Definition : A sequent S is redundant with respect to 
a set E of sequents iff S is implied by E . That is, 
taking E = S1, · ··,Sn , S is redundant with respect 
to E iff for all I, if I I= /\ Si then I I= S . 

Proposition : A sequent S is redundant with respect 
to a set E of leaf sequents iff there exists a sequent 
Sn such as Sn follows from E by transitivity, and Sn 
subsumes S. 

Definition : rule of transitivity on sequents 
Given two sequents S1 and S2, if there exists four 
finite sets of formulas r, ~. f1, ~ 1 and a formula F 
such as S1 = f-+ F, ~ and S2 = F , f1-+ ~1, 
then S1 and S2 imply r, f1-+ ~. ~1 by transitivity. 

Definition : S follows from E by transitivity iff there 
exists S1, ... , Sn such that 

• S1 EE 
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• for i = l...n -1, there exists Seq in E U{ Si, j :S 
i} such that S; and Seq imply S;+1 by transi
tivity 

•Sn= S 
Note: the rule of transitivity is based on a well-known 

semantical result : 

• first, this result is used to defined the Cut rule 
for the Gentzen Sequent Calculus LK ( this rule 
formalizes the use of an auxiliary lemma in a 
proof, [Gallier , 86] pl09) 

• then, this result is used to defined the rule of 
Resolution. The similarity is easy to detect if 
we refer to the semantical definition of a se
quent : I I= Al, .. , Am -+ Bl, .. , Bn iff I I= 
Al I\ ... I\ Am => Bl V ... V Bn , that is iff I 
I= -iAl V ... V-iAm V Bl V ... V Bn. The clausal 
form is an instance of the latter form, and the 
rule of Resolution is the same as the rule of 
transitivity applied on formulas in clausal form . 

3.1.3 Example 
Given the macro-connective ¢> defined by A ¢> B = 

(A=> B)A(B => A), there are two macro-rules asociated 
with it: "¢>-+" and "-+¢>" . 
1 - construction of "¢>-+" 
deduction tree for "¢>-+ ": 

A<=>B-
1 

(A=> B) A (B => A) -
I 

A=> B , B => A-
/ \ 

B => A-A B,B => A -
I \ I \ 

- A, B A - A B - B B, A -

synthetized tree: 
A<=>B-

/ \ 
-A,B A,B-

inference rule : 

r-+ ~, A, B A, B, r-+ ~ 
A¢>B,f-+~ 

2 - construction of "-+¢>" 
deduction tree for "-+¢>" : 

-A<=> B 
I 

- (A=> B) A (B => A) 
I \ 

-A=>B -B=>A 
I I 

A-B B-A 

synthetized tree: inference rule : 

A,r - A, B B,r-A, A 
r-A,A<=>B 

3.1.4 Some .significant rules 
Of special interest are the macro-rules for n-ary con

nectives "1 among n" (noted XORn and defined by 
(A1 V ... V An) A -i(A1 A A2 ) I\ ... I\ -i(An - 1 A An )) , and 
"equivalence between n" (noted EQUin and defined by 



(A1t\ ... t\An)V(-,A1t\ ... t\-,An)). Indeed, those connec
tives are quite useful to describe some "combinatorial" 
problems, and introducing those connectives in usual de
duction systems ( including resolution methods, and the 
"standard" system G) is costly in time and space. We 
establish the general rules to deal with them directly ( cf 
figure 1). 

Remarks 
-XO Rn: use of XOR3 by different systems of resolution. 

• with the "standard" system G: the deduction of 
XOR3(A, B, C) - from the formula (AV B V C) t\ 
-,(At\ B) t\ -,(B t\ C) t\ -,(At\ C) gives a deduction 
tree whose depth is 10, and has 19 nodes and 15 
leaves, 9 of them are axioms. 

• with the system G including the macro-rule XOR3: 
the deduction of XOR3(A, B, C) - gives a deduc
tion whose depth is 1, and has 1 node and 3 leaves. 

-EQUin: end of construction of"- EQU In" 

• synthetized tree before using the rule of transitivity 
(the axiom leaves and the subsumed leaves only have 
already been removed): 

-+ EQU!n(/1, ... ,ln) 

I I \ \ 

It is a tree with n * ( n - 1) leaves. 

• synthetized tree after using the rule of transitivity: 

-+ EQU/n(/1, ... ,ln) 

I \ 

It is a tree with 2 * ( n - 1) leaves. 

3.1.5 Conclusion 

\ 
In-+ ln-1 

In our opinion, an interesting point of the macro-rule 
notion is to propose a mean to generate automatically 
new rules, when they appear useful in some application 
domain, instead of giving a new system of rules obtained 
from adding an exhaustive collection of new inferences 
rules. Indeed, this system would be frozen, as the first 
one, and there surely would exist some "non universal re
lationship", not taken into account by that system, and 
although very useful in some special domain. So, the 
idea is to set up a dedicated system for each application 
domain. The global result is to have, for each domain, 
a system of rules with all and only useful rules (to limit 
the waste of time in searching for a rule to apply). The 
construction of macro-rules is not costly (rules are com
puted once for all) and the use of those rules can give an 
important reduction of the depth of the proof tree (by 
saving time and space in deductions). 

3.2 Alternative cuts 

The second optimisation we have implemented with the 
system G is about the search procedure. It consists to 
detect dynamically whether useless steps are being per
formed in the development, and if so, to prune pending 
alternative branches subordinate to those steps. 

3.2.1 Principle 
Consider the following derivation of the sequent S = 

AV B,CV D-C,D 

S: A v B,CVD-+C,D 

/'* 
Si= A,Cv D-+ C,D 

Su = A, C -+ C, D S12 = A, D -+ C, D 

Sl is provable, and the proof of Sl does not rely on 
the subformula A (which is the only formula from Sl not 
being in S already). So, the sub-sequent CV D - C, D 
from Sl is provable. As this sub-sequent comes from 
S without being modified, we conclude that S could be 
proved without developing the formula A V B. That is: 
- Sis proved, and its proof is the proof of CV D - C, D, 
namely, the proof of Sl. 
- developing AV B is a useless step, so this development 
can be stopped. 
- the pending alternative S2, as it comes from the devel
opment of AV B, is suppressed. 
The resulting proof is the following one: 

AV B,C v D-C,D 
I \ 

AV B,C-C,D A V B,D-C,D 

3.2.2 Method 
Consider a sequent S, in which we decide to develop 

the formula F. using the rule R. We note S = F, + Seq, 
where Seq is the "skeleton sequent", that is, the sequent 
S without the selected formula F •. 

The application of the inference rule R to S can be 
schematized by the following figure: 

F, + Seq 

/ I \ 
· · · F Lchild, + Seq F Lchild,+ 1 + Seq · · · F Lchild,. + Seq 

l 
develop (Seqchild.) 
-+ deduction - treechild, 
-+ U Fchild, 

where 

• F Lchild; is the list of the subformulas of F, devel
oped by the jth premise of the inference rule R, 

• Seq is the "skeleton sequent" inherited from the par
ent sequent S. It contains every formula of S not 
modified by the application of the rule, 

• Seq child; = F Lchild; + Seq. Seqchi ld; is the jth child 
resulting from applying the rule, 

• U Fchi/d
1 

is the set of formulas from Seqchild; effec
tively used to prove Seqchild;. 
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A1,A2, ,,, ,An,f-+A f-+A,A1,A2, . . . ,An 
EQU In(A1, ... , An), r-+ A 

A1,f-+A,A2 A2,f-+A,A1 ... A;-1,f-+A,A; A;,f-+A,A;_1 ... An-1,f-+A,An An,f-+A,An-1 
r-+ A, EQU In(A1, ... , An) 

An, f -+ A , A 1, ... , An-1 
XORn(A1, ... ,An),f-+ A 

f-+A,A1,.,,,An A1,A2,f-+A An-1,An,f-+A 
r-+ A, XORn(A1, ... ,An) 

Figure 1: Generic rules for EQUin and XORn 

The cut: 

• Cut condition : 
Seqchild; is provable and F Lchild; n U Fchild; = 0 

• Cut actions : 

suppress from the pending alternative list the 
child sequents Seqchild; not developed yet , 
note that the formula F, is useless to prove S, 
give as a proof for S the proof of Seqchild;. 

• Cut justification : 
When the cut condition is verified the current situ
ation is the following one: the sequent Seqchild; is 
provable and its proof is independent of the formu
las in F Lehi Id;; hence the proof only depends on the 
"skeleton sequent" Seq. That is, Seq is provable. 
Seq subsumes F, + Seq ( according to property 1 on 
subsumbtion), and Seq is provable; hence, accord
ing to property 3, S is provable, and the proof of 
Seqchild, is a proof for S. 

3.2.3 New search procedure 
This new search procedure implements the cut. It 

takes a sequent as an input and gives as a result both the 
deduction tree for the sequent, and the list of formulas of 
the sequent necessary for the proof (when the deduction 
tree is a proof tree) . 
PROC develop (sequent,deduction-tree,UF-parent) 
BEGIN 
IF leaf( sequent) 

THEN deduction-tree<- sequent 
IF axioa (sequent) 

THEN UF-parent <- "both formulas which 
displayed the axiom" 

ELSE UF-parent <- "all formulas 
of the sequent" 

ELSE 
list-of-children<- apply-a-rule(sequent) 
child<- first-member (list-of-children) 
DO 
I develop (child, child-tree,UF-child) 
I IF cut-condition (child,UF-child) 
I GO-TO-END sibling-cut 
I child<- succedent (list-of-children) 
UNTIL sibling-cut OR no-more-children 
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I 
END 

END sibling-cut: 

deduction-tree<- child-tree 
UF-parent <- UF-child 

END no-more-children 
sequent 

deduction-tree<- I I \ 
child-tree-1 ... child-tree-n 

UF-parent <- construct(Ui UF-child-i,sequent) 

where construct{U; U Fchild,, sequent) = 
[ u (U Fchild; \ F Lchild; )] u F. 

j 

where F, is the formula being developed in sequent; con
struct is used to mention that F, is used in the proof of 
sequent. 

Note: the test sibling-cut to go out of the loop is re
alised before the other test no-more-children is. This 
enables one to supress a proof step, even when the detec
tion of uselessness is only made at the end of the step. In 
this case, the immediate effect of the detection is the re
duction of the proof given as a result for this node. The 
postponed effect is to make it possible to detect some 
higher cuts, which could not be detected otherwise. 

3.3 Example 
Here is an example to illustrate the use of the cut. 
Consider the sequent S such that 
S = XOR3(B,A V Q,C),P {:} Q-+ A,P => Q. The 
figure 2 shows the deduction tree of S processed us
ing the "standard" procedure develop. Using the proce
dure develop with cut implementation, the two sub-trees 
sub - treechild, and sub - treechild, are not expanded 
and the resulting proof is the following: 

;i;or3(B , A V Q,C),P ~ Q-+ A,P ~ Q 
I 

;i;or3(B,Av Q,C),P ~ Q,P-+ A,Q 
I \ 

;i;or3(B, AVQ, C), P, Q, P-+ A, Q ;i;or3(B, AVQ, C), P-+ A, Q, P, Q 



XOR3(B,A V Q , C ), P {} Q-A,P => Q 
I 

XOR3(B,A v Q,C),P * Q,P- A,Q 

I 
B, P {} Q, P - A, Q, A V Q, C •ub - treechil4o ,ub - tree ch i l d 3 

I \ 
B , P , Q , P-A,Q , A V Q,C B , P-A , Q, Av Q , C,P, Q 

with sub - treeehild, = sub - treeehild3 = 
Av Q,P * Q,P -A,Q, B,C C , P * Q , P-A,Q,B,A v Q 

I \ I \ 
A,P{}Q,P-A, Q,B,C Q,P* Q,P-A , Q,B,C C,P,Q,P-A,Q,B,AV Q C,P - A,Q,B,A v Q,P,Q 

Figure 2: Deduction tree of the sequent S according to the system G 

3.4 Some results 

Some tests have been performed to compare the stan
dard search procedure (pl) and the new one with cut 
(p2). For guidance, we give the computional time for 
a few combinatorial problems: the Andrew's Challenge 
[Pelletier, 86] and the lemma of Schur [Schur, 16] per
formed with respectively pl and p2: 

Andrew 
Schur6 
Schur4 

3.5 Conclusion 

324s 
82s 
30s 

385s 
no result 

2200s 

A step is regarded as useless iff there exists one ( or more) 
child from the step whose proof is free from the fulfil
ment of the step. If so, all the pending alternative childs 
are pruned, and the useless step is removed from the 
resulting proof. Hence, this yields a reduction in both 
the effective proof (saving the time and space needed 
to develop the alternative branches removed), and the 
resulting proof (giving a more natural proof, with only 
meaningfull steps). In fact, the gain may be all the more 
significant as the arity of the connective expanded by 
the step is important. Our method is reminiscent of 
that given by [Oppacher and Suen, 86], but the latter is 
about semantic tableaux, and deals with binary trees. 

4 Conclusion 

This paper presents improvements of the system G, a 
Sequent Calculus of Gentzen. Both proposed extensions 
lead to more efficiency and naturalness of the proofs. 
Actually, both methods are examples of partial evalua
tion ([van Harmelen and Bundy, 88]) applied to the pro
cedure develop. In so far as the first one consists in per
forming once for all the computing of a special sequence 
of connectives, and the second one applies the principle 
which consists in immediately declaring as true any se
quent that includes a true sequent. The methods have 
been implemented in Prolog-MALI [Brisset, 89]. The 
resulting system is considered as the basis for the spec
ification of an adaptative prover. Our project is to pro
duce automatically a set of macro-rules for a specific do
main, given a sample of theorems on this domain . The 

realisation of this project contains an extension of the 
macro-rule notion . Actually, it supposes a macro-rules 
to be able to deal not only with a connective, but also 
with "macro structures"; that is to deal directly with 
a combination of primitive connectives not labeled ex
plicitly with a macro-connective name. Furthermore the 
notion of macro-connectives could be extended to struc
tures handling more than one formula in a sequent. With 
this broader perspective, macro-connectives may be view 
as a means to syntactically characterize some semantical 
features of a given domain. 
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Abstract 

Rosenfeld et al. [1976] present,ed a relaxation 
method for approximate constraint satisfaction 
to be used with a "fuzzy logic" conception of 
the merit of a labeling. We present a modifi
cation of the Rosenfeld et al. result in which 
each candidate label initiates revision of the es
timated desirability of related labels at neigh
boring nodes at most once. The candidate label 
is then retired from further analysis. We also 
present a result that aids in the search for an 
actual labeling once the relaxation is quiescent. 
Finally, we note that these methods can be ex
tended to approximate constraint satisfaction 
outside of "fuzzy logic" conceptions. In par
ticular, we discuss the notion of an "undomi
nate<l" labeling. The relaxation and search re
sults presented here are easily adapted to the 
search for an undominated labeling. 

1 Introduction 

In the most familiar kind of constraint satisfaction r,rob
lem [Haralick et al., 1978; Dechter and Pearl, 1987 , the 
interacting interpretations ("labels") for the various ob
jects under discussion are either compatible in certain 
combinations, or they are not. The goal i..<1 to find at 
least one set of interpretations, with exactly one inter
pretation for each object ( a "labeling"), in which all the 
interpretations are compatible with one another. 

The purpose of this paper is to present methods for 
problems where compatibility is not simply a yes or no 
predicate. That is, we consider problems where there 
are degrees to which a constraint can be satisfied. 

Such problems arise in several ways. Perhaps we feel 
that some combinat,ion of labels is more likely than an
other, although both are possible. Waltz [1975 ] en
countered such a situation in his work on line drawings 
with shadows. Perhaps the constraints themselves are 
not clear-cut. For example, maybe some numeric la
bel must be approximately equal, hut not necessarily 
exactly equal, to another. Yager [1988] discusses such 

• This material is based in part upon work supported 
by the National Science Foundation under Grant No. IRI-
8601209 and Grant No. IRl- 8913040. 

Eugene C. Freud er 
Computer Science Department 
University of New Hampshire 

Durham, NH 03824 USA 

problems in the context of fuzzy decision theory. Or 
perhaps we simply prefer one set of interpretations over 
another. Rosenfeld et al. [1976] consider cases where we 
prefer to find convex objects in a scene if it is possible 
that any are there. 

2 Notation and Preliminaries 
We conceive of our problem as one of finding labels for 
the nodes of a graph subject to binary constraints gov
erning labels at adjacent nodes. We shall call the set of 
nodes in the graph N. 

For each node n in N, there is a set of candidate la
bels. A particular candidate label is denoted by the t.u
ple ( n, c), where n is the node in N and c distinguishes 
among the candidate labels available at n. 

To express our approximate constraints, we introduce 
a. "goodness" function, g(n, c, m, d), where (n, c) and 
( m, d) a.re candidate labels at adjacent nodes n and 
m. For convenience, we bound g(,,,) above and be
low, confining it to values in the closed unit interval. If 
g(n, c, m, d) is zero, then (n, c) and (m, d) are incompat
ible in the usual sense: no labeling containing both of 
them is acceptable. Otherwise, a higher goodness value 
is better than a lower one, all other things being equal. 

The nature and source of the goodness values are in
tentionally left unspecified. They may reflect expert 
judgments of fuzzy membership grades in the satisfac
tion sets of various constraints, estimates of likelihood, 
or expressions of preference. 

3 The Merit of a Labeling 
We assume that we have no other information about 
the desirability of different labelings except the edgewise 
goodness introduced above. Despite this ignorance, we 
wish t.o devise a figure of merit for a labeling as a whole, 
to guide us in choosing a particular labeling. 

Many conventions are possible. The convention that 
will be pursued here is 

M(L) = min g(n, c, m, d) 

where M ( L) is the merit for labeling L, and the min
imum is taken over all labels that appear at adjacent 
nodes in L. In choosing a labeling, therefore, we shall 
seek to maximize t.l1e merit, or "maximin" the goodness 
of adjacent label pairs. 
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While our choice is hardly t.he only possibility, it com
ports well with several defensible notions about what, a 
useful figure of merit should be. Rosenfeld, et al. [1976] 
and Yager [1988] arrived at the same figure of merit us
ing a fuzzy decision t,heory argument. If g(, , , ) is a. fuzzy 
degree of constraint satisfaction, them M() is the ordi
nary implementation of the fuzzy AND operation. That 
is, M() is a conventional measure of the degree to which 
a.II the fuzzy edgewise constraints are satisfied simulta
neously. 

Interest in maximining is not restricted to fuzzy theo
rists . Dyson 11980] has argued for the generality of max
imin in mult,i-criteria decision making. Or, perhaps the 
labeling represents the deployment of assets in a com
pet.it,ive environment. Opponents can often be counted 
on to exploit local weaknesses in such domains. 

The labeling may represent au explanation of a given 
set. of facts, wit,h some parts of the explanation fitting the 
facts better that others. The hoary heuristic "a chain is 
as strong as its weakest link" may be a plausible predic
tor of how convincing the explanation is over-all. 

Other motivations are possible. If g(,,,) is the joint 
probability of the label pairs, M() is an upper bound on 
the joint probability of the labeling as a whole. Such au 
upper bound might be useful in planning applications, 
where the whole plan's chances of success can not exceed 
the chances of any part of the plan. 

It is wort,h noting that the goodness funct.ion is 
thought of as a description of how well adjacent labels 
go together paribus ceteris, independent of how well they 
suit the context of a specific problem. We believe that 
this is in the spirit of the more familiar, two-valued, com
patibilities. This approach contrasts with that of Rosen
feld et al. 11976], who view their counterpart of goodness 
as an estimate of compatibility to be revised by the other 
estimates in a specific problem. 

4 An Upper Bound on the Merit 

If labeling L contains label ( n, c), then it can easily be 
shown that 

M(L) ~ minmaxg(n,c,m,d) 

where the minimum is taken over all nodeR m adjacent t,o 
n, and the maximum is taken over all candidate labels 
( m, d) at each such m. If ( n, c) is included in L, then 
the maximizat.ion describes the best goodness which in
volves (n, c) that we can hope to find among the can
didate labels at each adjacent node. The minimum of 
these maxima clearly bounds M ( L), which is the min
imum of all goodnesses that, arise from L. For brevity, 
we shall denote the right side of the above inequality as 
B(n, c). 

This upper bound is generally loose. We shall attempt 
to improve it by relaxation. First, we shall consider 
Rosenfeld et al.'s [1976] relaxation, and then we shall 
develop a variation of it. Even after relaxation, how
ever, the refined B(,) values are typically loose. Thus, 
we must generally search among labelings t.o find an ac
tual labeling that realizes the maximum possible merit. 
We can exploit a result about the relaxation process to 
help us in that search. 
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5 Rosenfeld et al. Relaxation 

The goodness g(n, c, m, d) is itself an upper bound on 
the merit of any labeling containing ( n, c) and ( m, d). 
Rosenfeld et al. [1976] use B(n,c) and B(m,d) t.o de
rive a tighter bound than g(n, c, m, d). They revise the 
goodness values. We find it convenient to introduce a 
new edgewise bounding quantity, h( n, c, m, d), initially 
equal to the corresponding goodness, and later the sub
ject of further refinement by relaxation. 

These edgewise bounds can then be used to calculate 
new, tighter B(,) values, which can tighten the edgewise 
bounds further, and so on. The relaxation algorithm 
that accomplishes this is: 

begin 
for all candidate label pairs ( n, c) and ( m, d) 

do h(n, c, m, d) := g(n, c, m, d) 

for all candidate labels ( n, c) 
do B(n, c) := min max h(n, c, m, d) 

min and max taken as described above 

repeat 
for all candidate pah·s ( n, c) and ( m, d) do 

begin 
h(n, c, m, d) := min( h(n, c, m, d), B(n, c), 

B(m, d) ) 
if h(n, c, m, d) changes, then recompute 

B(n, c) and B(m, d) 
endfor 

until no changes in any h(, , , ) occur during 
au iteration 

end. 

The idea, of course, is that h(n, c, m, d), B(n, c), and 
B( m, d) all bound the merit of any labeling that contains 
both ( n, c) and ( m, d). So, any h(, , , ) that exceeds either 
of the corresponding B(, )'s is looser than it has to be 
based on other known facts. 

Rosenfeld et al. show that, in the case where h(,,,) 
is two-valued (zero or unity, that is, the familiar yes or 
no compatibility), the quiescent values of the B(, )'s are 
isomorphic to the result of a Waltz 11975] relaxation. 
"Possible" labels found by Waltz have a quiescent B(,) 
value of unity in the two-valued Rosenfeld et al.; "im
possible" labels have a value of zero. 

6 A Refined Relaxation 
Another algorithm that depends on B(,) values can be 
devised that relies on the same notion of hound consis
tency as Rosenfeld et. a.I.. This new algorithm achieves 
quiescence with no candidate label's B(,) being propa
gated to related candidates' h(,,,) values at neighboring 
nodes more than once. 

The extra bookkeeping required to accomplish t.his re
sult is to track a new number. We call the new number b; 
it is the smallest B(,) value among the labels that, have 
not been compared to their neighbors. It, is simple to 
confirm that no label will have a quiescent B(,) smaller 
than the original value of b. 



That is because the fundamental relaxation relation: 

h(n,c,m,d) := min( h(n,c,m,d), B(n,c), B(m,d)) 

cannot lead to a decrease in B(n, c) unless B(m, d) is 
lower, which is not t.l1e case if B(n, c) is already the low
est B(, ). Those labels whose B(, )'s are already equal to 
b will therefore not have their values further reduced by 
the relaxation. 

The strategy, then, is to compute b, locate the labels 
that, have b as their B(, ), and propagate that bound to 
the h(,,,) values at each of their neighbors. Any labels 
that thereby fall to a B(,) of b are similarly treated, 
until all the labels that will be pulled down to b have 
been identified and their effect has been propagated. 

Once the original b has been fully propagated, we re
compute the B(, )'s for labels that have been revised, but 
not all the way to b. Then, we are ready to compute a 
new b among all labels whose B(,) is not the original b. 
Labels that have already been relaxed to the old b will 
not be relaxed again, and the effects of their presence is 
ah·eady reflected in the current h(,,,) values at adjacent 
nodes. We can therefore exclude them from any further 
analysis. Among the remaining labels, we proceed with 
the new b much the same way as we did before with the 
original b. 

We thus perform one round of relaxation for each dis
tinct value of b we encounter. The results of each round 
are isomorphic to those of a classic Waltz relaxation. 
The candidate labels are divided into two classes, those 
with B(, )'s equal to b, and those with higher B(, )'s. The 
basic mechanism of each round 's relaxation is also very 
similar to the Waltz procedure, except we emphasize the 
"zeros" rather than the "ones", and we do not throw la
bels away, b11t rather record their B(, )'s and associated 
h(,,, )'s. 

To know when we are done, we can look at a.not.her 
quantity we shall call t, the smallest of those B(,) values 
that are the highest B(, )'s among labels at their nodes . 
Since some label must be included from each node in any 
labeling, t is an upper bound on the merit of a label
ing built from the available candidates. Hence, when b 
equals t, we can simply set, a.ny h(,,, )'s which are higher 
than t to be equal to t and quit. 

The algorithm can be specified in pseudocode as fol
lows. We shall use a stack, Check, for the labels to 
be compared to their neighbors . Labels that must have 
their B(, )'s recomputed will be "marked" as such. 

begin 
Store the h(,, , ) 's and compute the B(,) 's as before. 
Compute t and b as described above. 
All labels are initial unmarked. 

while t > b do 
begin 

for all labels do 
if B(n, c) = b, then push (n, c) onto Check 

repeat, 
pop a label (n, c) from Check; 
for all (m, d) where mis adjacent ton do 

begin 
h(n,c,n,d) := min( h(n,c,m,d), b ); 
if there is no (n,c') with h(n,c ,m,d) > b 

then 
begin 

unmark (m, d) 
push ( m, d) onto Check 

end 
else mark ( m, d) 

endfor 
until Check is empty 

for all marked labels ( m, d) do 
begin 

recompute B(m, d) 
unmark ( m, d) 

endfor 

for all labels where B(,) > b do 
recompute b and t 

endwhile 

for all adjacent pairs where h(,,,) > t do 
reset h(, , , ) = t 

end. 

7 Search After Relaxation 
After relaxation, we have refined h(,,,) values for each 
adjacent pair of candidate labels. Rosenfeld et al. rec
ommended a "best first" search among labels. They take 
those labels whose B(,) values are the highest (i.e., our 
t), and see whether a labeling can be constructed using 
just those labels. If so, a maximin labeling has been 
found; introducing other la.bels with lower B(, )'s can
not improve the merit over that of the labeling found. 
If no labeling is found among the best labels, then the 
next best labels (based on B(,) values) are added tot.he 
search space, and so on until a labeling is found, or until 
there are no new labels to try. 

During each round of search, Rosenfeld et al. proceed 
by a simple backtracking strategy. They choose any la
bels at any node with more than one candidate in the 
current search space as the labels for that node. They 
then do a Waltz relaxation, and pursue the search as far 
as possible by instantiating another node and so on. 

We consider a somewhat different search strategy. It, 
too, is "best first", but the search space consists of label 
pairs (henceforth called "links" for brevity). The links 
are selected for their quiescent h(,,,) values, with the 
highest value (i.e., t) taken on the first round, and suc
cessively lower values brought in during later rounds. On 
each round, all links that share a single common h(,,,) 
value are added to the search space. 

Among the links added to the search space on each 
round, there will be at least one link whose h(,,,) is 
equal to its original goodness. (This can be shown by 
a simple induction argument starting from the class of 
links whose quiescent h(,,,) is the original band working 
up.) Let us call such a link an "obligatory link". 
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Furt,her, if there is a labeling t.ha.t. can be built. from 
among the links in the current search space, that, labeling 
will include at least one obligat,ory link whose goodness is 
the lowest among the links in the search space. (Suppose 
t,ha.t, on t.he first round, a labeling could be construded 
wit.bout an obligatory link. Then such a labeling would 
have a higher merit than t, contrary to t being an upper 
bound on the merit. The argument for later rounds is 
similar.) 

This fact. can he exploited in search. We need only try 
t,o build a. labeling start,ing with each of the obligatory 
links in turn. For each trial, we can employ any back
tracking search strategy to find a labeling. When we 
have exhausted the obligatory links, however, we need 
not t,ry to build on any other links; we simply bring in 
the next-best set of links. 

As in the Rosenfeld et al. search, we can quit as soon 
as we find any labeling, knowing that we have achieved 
the highest merit possible. 

8 Dominance 
In some domains, we may prefer one labeling to another, 
even if they both have the same merit. One way that can 
happen is simple dominance. We say labeling K simply 
dominates labeling L if for every edge, the goodness of 
K is a.t least as great as the goodness of L, and for at 
least one edge, the inequality is strict. 

A related standard is lexicographic dominance. Label
ing K lexicographically dominates labeling L, if for all i 
bet.ween one and the number of edges, the i-th best edge 
of K is at least as great as the i-th best edge of L, and 
the inequality is strict for at least one value of i. 

Clearly, simple dominance implies lexicographic dom
inance (but not t.l1e converse). We may wish to adopt as 
our labeling selection criterion that the selected labeling 
he lexicographically undominated (i.e . no other labeling 
lexicographically dominates the one selected). Such a 
criterion will always select a labeling that simply domi
nates all others if one exists (since lexicographic undom
inated implies simply undominated) and, of course, one 
that lexicographically dominates all others if one exists. 

Searching for a lexicographically undominated label
ing requires only a simple modification of the methods 
presented for maximin goodness. This makes sense, since 
higher (or equal) maximin goodness is implied by lexi
cographic dominance . 

No change is required in the relaxation step, nor in 
the choice of best first h(,,,) search, nor in the use of 
obligatory links. A change that is useful is that once an 
obligatory link is selected for trial, the attempt to build 
on that link should proceed in best first goodness order 
on the remaining links. 

Generally, if a labeling is found, search must continue 
until all obligatory links in t,he current search space have 
been tried. Also, within a search trial based on any oblig
atory link, "ties" in the best first search must be pursued 
until and unless an i-th best link is bettered by the i-t.h 
best link of the labeling already found. Once a lexico
graphically undominated labeling in any current search 
space is found, however, no expansion of the search space 
is necessary. Any other labelings in an expanded search 
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space will have lower merit than, and hence cannot, lex
icographically dominate, the labeling already found. 

9 Conclusion 

Maximining provides a simple way to combine local de
grees of constraint satisfaction into a figure of merit for 
a labeling as a whole. This figure of merit is meaning
ful under a variety of notions about what const,itutes 
a "better" labeling. Well-understood and simple-to
implement st,rategies are available for searches informed 
by the maxin1in criterion. With straightforward modifi
cations, these strategies also support the stronger crite
rion of lexicographic undominatedness. 

We have been able to use information about easily 
computed edge and label bounds on maximin goodness 
to provide a "sense of direction" to an existing relaxation 
algorithm. This reduces the effort involved in propagat
ing label bounds to their related edge bounds. We have 
used similar information to prune post-relaxation search 
spaces. 
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Abstract 

In reasoning tasks involving the maintenance of 
consistent databases (so called "constraint net
works") it is customary to enforce local con
sistency conditions in order to simplify the con
struction of a globally coherent model of the data. 
In this paper we present a relationship between the 
sizes of the variables' domains and the level of 
local consistency sufficient to ensure global con
sistency. The results are presented for binary con
straint networks first, and then are generalized to 
higher order constraints. An interesting result 
emerging from this relationship is that any relation 
on bi-valued variables which is not representable 
by a network of binary constraints cannot be 
represented by networks with hidden variables, 
regardless of the number of hidden variables 
allowed. 

1. Introduction 

One of the major forces shaping resource-bounded reason
ing stem from the requirement of local computation, 
namely, from the need to consider only a few data items at 
any inference step and to avoid the decision where to store 
intennediate results. All realistic models of human reason
ing invoke this notion of locality in one form or another. 
For example, spreading activation in conceptual memories 
is grounded in the notion that activity spreads locally, 
among conceptually neighboring entities, but does not leap 
toward remotely designated addresses. 

In reasoning tasks involving the maintenance of 
consistent set of infonnation items (so called "constraints") 
the principle of locality has been embodied in techniques 

*This work was supported in part by the National Science 
Foundation, Grant #IRI-8821444 and by the Air Force Office of 
Scientific Research, Grant #AFOSR-88-0177 while the author was 
visiting the cognitive systems lab at UCLA. 

that enforce local consistency among groups of related vari
ables. The rationale being that such local consistency will 
simplify the task of construction a globally coherent model 
of the data. For example, Truth Maintenance Systems 
[Doyle 1979], often sacrifice completeness by limiting the 
inferential steps to those involving constraint-propagation 
[McAllester 1980]. Such local techniques share the compu
tational advantages mentioned earlier; there are only a few 
data items participating in each inference step, these items 
bear meaningful conceptual relationships to one another, 
partial results are stored exactly where they will be useful, 
computational steps can be perfonned in any order, and 
there is no need to remember which part of the knowledge 
has been processed and which part has not 

So far the conditions under which local consistency 
would entail global consistency involved topological pro
perties of the network which represent the interaction 
among data items (so called "constraint networks") [Freuder 
1982, Dechter 1987, Dechter 1989a]. In this paper we 
present a relationship between the sizes of the variables' 
domains in the network and the level of local consistency 
required for ensuring global consistency. The results are 
presented for binary constraint networks first, and then are 
generalized to higher arity constraints. 

2. Definitions and Preliminaries 

A constraint-network (CN), involves a set of n variables 
X 1, ••• ,X,., each represented by its domain values, 
D 1, ••• ,D,., and a set of constraints. A constraint 
C;(X;

1 
, ... ,X;i) is a subset of the cartesian product 

D;
1 
x · · · xD;i that specifies which values of the variables 

are compatible with each other. A solution is an assignment 
of values to all the variables which satisfy all the con
straints, and the most common task associated with these 
problems is to find one or all solutions. A constraint is usu
ally represented by the set of all tuples which are not forbid
den by it. A constraint network is associated with a relation 
p containing all its solutions. A binary CN is one in which 
all the constraints are binary, i.e., they involve only pairs of 
variables. An r-ary CN involves constraints with arity r or 
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less. 

A partial instantiation of variables 
(X 1 = xi, ... ,Xi = xi) is locally consistent if it satisfies all the 
constraints which are defined on subsets of {X 1 , ••. ,XJ. Any 
subset of variables X determines a subnetwork Rx that con
tains all the constraints defined on subsets of variables of X. 
A partial instantiation (X 1 = xi, ... ,Xi = xi) is consistent 
w.r.t a containing subnetwork, Rx, if it is locally consistent 
and if it can be consistently extended to a full solution of 
Rx. A partial instantiation (X 1 = x 1 , .•. ,Xi = xi) is globally 
consistent if it is consistent w.r.t. to the overall constraint 
network. 

A network of constraints is said to be i-consistent 
[Freuder 1982] if every subnetwork of size i-1 which is 
locally consistent can be consistently extended by any i'11 

variable. Namely, if (xi, ... ,xi-1) is locally consistent then 
for each variable Xi, there exists xi e Di such that 
(x1, ... ,X;- i ,xi) is locally consistent. A network is 
strong i -consistent if it is j-consistent for every j = 1,2, ... i. 

When a network is not i-consistent, consistency
enforcing algorithms can be used to get it to the required 
consistency level [Mackworth 1984]. These algorithms pro
cess all subsets of i variables, and on each they record an 
i - 1-ary constraint that ensures its consistency. The general 
complexity of an i-consistency enforcing algorithm is 
O((nki) and O ((nk)u). 

A binary constraint network is the minimal net
work [Montanari 1974] if each locally consistent pair of 
values is globally consistent. A network of constraints is 
globally consistent if every locally-consistent subtuple is 
globally consistent Clearly a network is i-consistent for all 
i iff it is globally consistent. 

The notion of a globally consistent network is a 
generalization of Montanari's decomposability property 
which was defined for the minimal network. Global con
sistency means that the constraint network is completely 
explicit, namely, the set of all partial instantiations that are 
consistent with any subnetwork is exactly the projection of 
the overall relation on the corresponding subset of variables. 
An important property of globally-consistent networks is 
that they can be solved by a greedy search algorithm which 
is guaranteed to generate a solution without any dead-ends. 
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3. Local Consistency in Binary Networks 

In this and in the following sections we present a relation
ship between the number of values in the domain of each 
variable and the level of local consistency that can ensure 
global-consistency. Theorem 1 presents the relationship for 
binary networks while Theorem 4 extends it to arbitrary net
works. For simplicity and w.1.o.g. we assume that all vari
ables have the same size, k, for their domains. 

Theorem 1: A k-valued binary constraint network which is 
strongly k + I-consistent is also k +i + I-consistent for any 
i ~o. 

Proof: Let x = (xi,x2, •.• ,Xt+;) be a locally consistent subtu
ple of the subset of variables {X 1,X 2 , ••• ,Xt+J, and letXt+i+l 
be an additional variable. We need to show that, given a k
valued network which is strongly k+l -consistent, there is a 
value Xt+i+l of Xt+i+l that is consistent with x. Since all 
constraints are binary it means that the value Xt+i+l has to 
be consistent with each value of the set {x 1 ,x2 , ••• ,xt+J, 
separately. Variable Xt+i+l has k values {1,2, ... ,k} and we 
accordingly define k sets A 1 , . •• ,At as follows. Ai is the set 
of all values of x that are consistent with the value j of 
Xt+i+l · Since the problem is in particular 2-consistent, all 
i's values must appear in the set A 1 u A2 , ••• , u At. We 
claim that there must be at least one set, say A 1, that spans 
all values x1, ... ,Xt+i · If this is not the case each set Ai must 
have a value x'i that does not~ppear in it. From this it can 
be concluded that the tuple x' = (x' 1,x' 2 , ••• ,x't) is not con
sistent with any one value of Xt+i+l which leads to a con
tradiction since we assumed strong k +I-consistency. Note 
that if the {x'j)'s are not distinct we have a subtuple whose 
arity is less than k however since strong k+l-consistency 
was required the argument still holds. 

Assume, now, w.1.o.g. that A I spans all values, 
therefore each value xi , j e {l, ... ,k+i} is consistent with 
the value "1" of X;+t+i and we therefore found a value 
(1 e Dt+i+t) which is consistent with x. D 

We may be tempted to conclude from Theorem 1 
that any k-valued network can be solved polynomially by 
enforcing strong k +I-consistency. However enforcing 
k + I-consistency may require the addition of non-binary 
constraints for which the theorem doesn't apply. We can 
therefore conclude something weaker. 

Corollary 1: A k-valued binary network, whose all induced 
constraints, (generated by enforcing strong-k+l
consistency) are decomposable to binary constraints, can be 
solved in O ((nk)2<A:+1>) steps. 



Proof: One can enforce strong k + I-consistency in 
0 ((nk)2(k+I)) steps [Mackworth 1984]. Then, each 
recorded constraint is decomposed to its minimal network 
(by projecting the constraint on all subsets of two variables). 
Since we assumed that such a binary network represents 
each induced constraint precisely, the intersection of all the 
binary constraints result in a binary network of constraints 
which is strong k + 1 consistent. Therefore, from Theorem 1 
we can conclude that the resulting network is globally con
sistent. Since a globally consistent network can be solved in 
a backtrack-free manner, the cost of generating a solution is 
the cost of verifying that a partial instantiation of variables 
satisfies all the constraints. In binary networks this can be 
accomplished by O (n 2) constraint checks. O 

A unique special case exists when all variables are 
bi-valued, namely, k = 2. This is the only case when the net
work is inherently binary. According to Theorem 1, bi
valued networks require strong 3-consistency (also called 
path-consistency) in order to be globally consistent and 3-
consistency can be achieved using binary constraints only. 
This leads to the following corollary: 

Corollary 2: A strong 3-consistent bi-valued binary net
work is minimal. 

It follows that: 
Theorem 2: A bi-valued binary constraint network can be 
solved in O (n 3) steps. 

Proof: In this case enforcing strong 3-consistency takes 
0 (n 3), and since the resulting network is globally con-
sistent, solution generation is O (n 2). O 

Corollary 2 has a surprising implication regarding 
the expressiveness of bi-valued binary constraint networks. 
It is quite obvious that most relations defined over bi-valued 
variables cannot be represented by a network of binary rela
tions. Given a bi-valued relation p, we can generate the 
minimal network of p [Montanari 1974] by taking the pro
jection of p on each pair of variables (projection is defined 
ahead). The set of all solutions of this minimal network 
always contains p and it is the best binary network approxi
mation to p. Clearly in this network each locally consistent 
pair of values is globally consistent. When the minimal net
work represents p exactly we say that p is binary
network-decomposable. In most cases, however, a relation 
p will not be binary-network decomposable. The question is 
whether by allowing auxiliary bi-valued variables we can 
enhance the expressiveness of binary networks, namely, 
whether p can be a projection of some other relation which 

is binary-network decomposable. It turns out that if a bi
valued relation is not network-decomposable, adding any 
number of additional bi-valued variables will not remedy 
the situation. To formalize our claim we need the following 
definitions. 

Let rel (R) denote the relation associated with a 
network R, (i.e., rel (R) is the set of all solutions to R). Let 
p be an n-ary bi-valued relation over a set of variables 
X = (X 1 , ... ,XJ. Relation p is h-network-decomposable 
if there exist h additional bi-valued variables Y = {Y 1, ..• ,Y iJ 
for which there is a binary network R (X,Y) on XuY s.t. 
p = Ilxrel (R (X,Y)). Ilu(P) denotes the projection<1> of 
relation p on subset of variables U. The additional variables 
needed for decomposition are called hidden variables. 

Theorem 3: A bi-valued relation that is not network
decomposable is also not h-network-decomposable, for any 
h. 

Proof: Assume the contrary, that p is a bi-valued relation 
which is not network-decomposable over variables 
X = {X 1, ••• ,XJ and let Y = {Y 1, ••• ,Y iJ be a set of hidden 
variables such that there is a relation p' over X u f satisfy
ing p = Ilxp' and p' is network-decomposable. Since p' is 
network-decomposable its minimal network, M (p'), must be 
a binary network decomposition of p' and since it is 
minimal it is known to be strong 3-consistent [Montanari 
1974]. The subnetwork, Mx, which is M restricted to the 
subset of variables, X, is a constraint subnetwork. Accord
ing to Theorem 1, since M is bi-valued strong 3-consistent 
binary network, any tuple which is consistent in any subnet
work is globally consistent. In particular, partial solutions of 
Mx are globally consistent and therefore rel (Mx) is the pro
jection of the set of all solutions (rel (M)) on the set of vari
ables X. Namely: 

rel (Mx) = Ilxrel (M). 

Since p' = rel (M), we have 

rel (Mx) = Ilxp'. 

Since we assumed p = Ilxp' we get: 

p = rel(Mx) 

(1) 

(2) 

(3) 

Mx is, therefore, an exact network decomposition of p 
which contradicts our supposition. D 

(1) The projection of a relation p on a subset of variables 
U = U 1 , ••• ,U1 is given by 
Ilu(P) = fxu = (xu

1 
, ••• ,Xu,) I 3 XE p, xis an extension of x,J. 
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This result may severely limit the expressive power 
of some connectionist models, e.g., the Hopfield model, 
[Hopfield 1982] where each unit is assumed to have two 
states. Note however that in the Hopfield model the con
straints are not necessarily binary and, therefore, further 
analysis of networks with higher order constraints is 
required. 

4. Local Consistency in General Networks 

In trying to generalize Theorem 1 to networks having con
straints of arbitrary arity we follow the proof of Theorem 1 
and make the needed modifications. 

Theorem 4: A k-valued r-ary constraint network that is 
strong k(r - 1)+1-consistent is also k(r-l)+i+l-consistent 
for any i > 0. 

Proof: Let x = (x 1,x2, ... ,x1c,- i>+J be a locally consistent 
subtuple over variables {X 1,X2, ... ,X1c,- i)+d, and let 
X1c,-1)+i+l be an additional variable. We need to show that, 
given a k-valued strongly k(r-1)+1-consistent network, 
there is a value x1c,-t)+i+l of X1c,- t)+i+l that is consistent 
with x. Since the network has constraints of arity r or less, 
it means that such x1c,-t)+i+l has to be independently con
sistent with each subset of r-1 values of the set 
{x 1 ,x2, ... ,x1c,-t)+d, and the consistency of such sets is 
verified via the relevant constraints, having arity r or less, 
which are defined on the variable X1cr- l)+i+t and on the 
corresponding subset of r - I variables from 
{X 1,X 2, ... ,X1c,- t)+d, In other words, all the constraints 
having arity r or less, that involve variable X1c,- t)+i+l have 
to be verified in checking the consistency of any extension. 
Each such constraint can be uniquely determined by a sub
set of r - 1 or less variables from the set {X 1, ... ,X1c,-t)+J on 
which it is defined. 

Variable X1c,-t)+i+l has k values {1,2, .. . ,k} and we 
accordingly define k sets A 1 , ... ,A1 as follows. Ai is the set of 
all subtuples of x of size less or equal to (r - 1) that are 
locally consistent with the value j of X1c,- t)+i+l. Note that 
each such subtuple must be locally consistent and since the 
network is strongly k(r-1)+1 -consistent, and in particular 
strong r-consistent, any such partial tuple must have at least 
one matching value in X1c,-t)+i+l. Therefore all partial 
tuples of x, having length (r-1) or less must appear in the 
set A 1 u A 2, ••• , u A1• The participation of a tuple t in a 
set Ai means that all the constraints involving both the 
tuple's variables and variable X1c,- t)+i+l have to be 
satisfied. Let S denotes the set of all constraints that needs 
to be verified, the subset of constraints involved in the con
sistency verification of a tuple t with the value j of 
X1c,-t)+i+l by S1(j), and let S (j) denotes all the constraints 
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that are relevant to all tuples in Ai• namely S (j) = u S1(j). 
teAi 

Clearly S = uS (j). 
i 

We claim that there must be at least one set, say 
A 1, that requires that all the constraints in S will be verified, 
namely that S = S (1). If this is not the case each set Ai must 
have a constraint in S that is not verified. Let {X li•·"•Xii}, 
i :S; r-1, denote a constraint that is not verified in Ai. 
(Remember that constraints in S are identified by the subset 
of variables on which they are defined.) This means that the 
tuple xi= (x 1i, ... ,xii) is not in Ai. From this it can be con
cluded that the tuple which results from concatenating all 
these excluded subtuples, x I x 2 • • • x1 is not consistent with 
any of the values of X1c,-t)+i+l · However, the length of this 
tuple is less or equal to k (r -1) and since we assumed strong 
k(r-1)+1 consistency it must be consistent with at least one 
value, thus yielding a contradiction. Assume, now, w .l.o.g. 
that S = S ( 1), therefore all partial tuples of x of size r - I or 
less are consistent with the value "l" of X1c,- t)+i+l and we 
therefore found a value (leD1c,-t)+i+t) which is consistent 
withx. D 

Theorem 4 supplies us with the ability to generate 
complexity conjectures for families of constraint networks. 
For constraint networlcs having maximum number of values, 
k, and maximum constraint arity, r, we may try to prove that 
strong k(r - 1)+1-consistency can be achieved using con
straints with arity that does not exceed r. If this is proved 
Theorem 4 ensures that the resulting network is globally 
consistent and in such a case we have a polynomial problem 
with degree 2(k(r- 1)+1). 

An interesting special case arise in the context of 
k-colorability of a given graph. Any such decision problem 
corresponds to a binary constraint network that is 
already k-<:onsistent. From Theorem 4 it is implied that if 
only we could extend the consistency level from k to k+l 
the problem could be solved polynomially. 

We can divide k-valued binary constraint problems 
having n variables into loSA:n + 1 classes. The 0-class con
tains those problems that can be made k +I-consistent with 
only binary constraints, class 1 contains problems that can 
be made k2 consistent using constraints of arity k or less, 
and in general, the itJt class contains problems that can be 
made (ki+l) consistent via constraints of arity ki or less. 
From Theorem 4 it follows that problems in class i can be 
solved in O ((nk )u•+l ). Determining the class membership of 
a problem is still exponential, while verifying that the prob
lem is in a given bounded class is polynomial. 



Theorem 5: The membership of a problem in class i can be 
detennined in O ( (nk )2.t .. 

1 
). 

Proof: First, we run the problem through a strong ki+t con
sistency algorithm which talces O ((nk)2k'+i )). The resulting 
problem may have constraints of arity ki or less. For each 
such constraint we want to detennine whether or not it is 
expressible with constraint of arity ki-t. Let C be one such 
constraint. We then generate a network, Rc(i) of ki-t -ary 
constraints by projecting Con each sub~et of ki-t variables, 
an operation which is bounded by O ({"'), (i.e., the cardinal
ity of the constraint C). We then have to solve the resulting 
network Re Ci) in order to check if it has the same solution 
set as the original relation C. Since this is a constraint net
work problem ha".ing ki variables and k values, solving it is 
bounded by O (k1'). The number of constraints, like C, that 
we may need to process that way is O (n "') ~d we get, 
therefore, that the overall complexity is O ((nk )2t'+

1 
). D 

In the next subsection we show that by requiring 
only directional consistency we are able to bound the com
plexity to a squareroot of the above expression. 

5. 1>irectional Consistency 

The notion of directional consistency was introduced in 
[Dechter 1987] as a mean of weakening local consistency 
demand while still ensuring global consistency along a 
given ordering. The advantage of this weaker consistency 
property is that it can be enforced much more cheaply and 
at the same time it ensures backtrack-free search using the 
same ordering. 

Definition: A network of constraints is said to be directional 
i-consistent, w.r.t. an ordering d = X 1, ••• ,X,. if every subnet
work of size i-1 which is locally consistent can be con
sistently extended by any i"' variable which succeeds all the 
subnetwork's variables in the ordering d. A network of 
constraints is directional globally consistent w.r.t. ordering 
d, if it is directional-i-consistent for every i. 

Theorem 6: A k-valued r-ary constraint network that is 
directional strong k(r-1)+1-consistent w.r.t. dis also direc
tional (k (r-l)+i + 1)-consistent for any i. 

Proof: Follows immediately from the proof of Theorem 4. 

0 

For completeness sake we present an algorithm, 
adaptive(level) that enforce directional strong i + I
consistency when level=i, which was presented at [Dechter 
1989b]. Let level be a parameter indicating the utmost 

cardinality of constraints which are recorded. Let .d be an 
ordering X 1, . .. ,X,., and let PARENTS(Xi) be the variables 
preceding Xi in the ordering d which are connected to it 
(originally these are all the variables that are explicitly con
straining Xi). 

adaptive(level, X 1 , ••• ,X,.) 
Begin 
1. for i=n to 1 by -1 do 
2. Compute PARENTS(Xi) 
3. perform new-record( level, Xi, PARENTS(Xi)) 
4. for leve/'2:2, connect all elements in PARENTS(Xi) 
(if they are not yet connected) 
End 

Procedure new-record(/eve/, var, set) records only con
straints of size less or equal to level from subsets of set and 
is defined as follows: 

new-record(level, var, set) 
Begin 
1. if level S: I setl then 
2. for every subset Sin set, s.t IS I = level do 
3. record-constraint( var ,S) 
4. end 
5. else do record-constraint(var,set) · 
end 

The procedure record-constraint(V,SET) generates and 
records those tuples of variables in SET that are consistent 
with at least one value of V. Clearly, the algorithm enforces 
a directional strong /evel+l consistency. The complexity of 
adaptive(level) is both time and space dominated by the pro
ced(e new-record(/evel) which is 
0( n \k1m1+1)) = O((nk)uvel+I). 

evel) 

Given an ordering d of an r-ary k-valued constraint 
network, a problem is in directional class i if directional 
strong ki+t(r-1)+1 consistency can be enforced using con
straints of arity ki(r - 1) or less. As we saw, the cost of 
enforcing this level of directional consistency by 
adaptive (ki+l(r-1)) is O ((nkf+'c,-1>+1). We get, therefore, 
that the bound on directional consistency is a square-root of 
the bound on full consistency and we can conclude that: 

Theorem 7: Given an ordering of the variables, d, the 
membership of a problem in directional class i can be deter-
mined in O ((nkf+

1
<r-l)+I) steps. 0 
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6. Examples 

Tasks of reasoning with time and space provide many 
examples of constraint networks, having special local con
sistency properties. Allen's algebra [Allen 1983), for exam
ple, defines thirteen possible relations between time inter
vals and provides a transitivity table for their propagation. 
This algebra can be described as a traditional constraint net
work where the variables are the relationships between two 
intervals, each having 13 values, and the transitivity table 
defines ternary constraints on triplets of variables. Having 
k = 13 and r = 3, we can conclude from Theorem 4 that if 
we can enforce 27-strong-consistency without introducing 
higher than ternary constraints, we can generate a globally 
consistent network using a polynomial algorithm of degree 
27. However, since Allen's algebra is known to be NP
complete it follows that this is not an achievable task. 

A second example comes from simplifying tem
poral constraints into relationships between time points. 
Vilain and Kautz [Vilain 1986) suggested that if we con
sider three temporal relations between any two time points 
{ <,=, >}, and define the transitive relationship induced by 
such relations we get a simpler network that can be made 
globally consistent using a 3-consistent algorithm. This 
claim was later corrected by van Beek and Cohen 
[van_Beek 1989), showing that 4-consistency is necessary 
for global consistency. 

This PA" algebra (as termed by van Beek et al.) 
can be described as a traditional constraint network, where 
the variables are the relationships between two points and 
the transitivity table defines ternary constraints. This yields 
a constraint network with k = 3, r = 3. Theorem 4 suggests 
that if such a network is 7-strong-consistent it is globally 
consistent. To make this observation useful one has to show 
that it is feasible to enforce 7-consistency with ternary con
straints. This is indeed the case since van Beek and Cohen 
[van_Beek 1989) have shown that even 4-consistency is 
sufficient for global consistency, and this is achievable via 
ternary constraints. Although the result of van Beek et al. is 
much stronger, our result is a direct bi-product of a general 
principle. 

If we further simplify the point algebra and con
sider only two labels between time points{<,>} (one may 
argue that equality never really happens), we get a ternary 
2-valued constraint network. According to Theorem 4, 
strong 4-consistency is sufficient to ensure global con
sistency and, being a subset of PA", this level of con
sistency can indeed be achieved with ternary constraints 
only. 
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A different family of constraint networks arises in 
the domain of scene labeling. Huffman [Huffman 1971) and 
Clowes [Clowes 1971) developed a basic labeling scheme 
for blocks world picture graphs. Given a basic labeling set: 
+ (convex), - (concave),-> (occluding, object on arrowhead 
side), and a standard set of simplifying assumptions on 
scene content, the physically realizable junction labeling are 
just those shown in Figure 1. 

Fork labels A A x1x 

Arr ow I abels 1S 1> ~ 

xx xx ~ 
L labels 

X/+ 'v< X/-

T labels 

Figure 1: Junction Labels 

Freuder [Freuder 1980) provided algorithms for labeling 
this restricted set while Waltz [Waltz 1975) explored a 
richer label set. 

A network composed of junctions in Figure 1 can 
be viewed in two ways: Each line can be viewed as a vari
able having three values while the constraints are binary or 
ternary depending on whether two or three lines intersect. In 
this view Theorem 4 states that if a given network is already 
7-strong-consistent it is already globally consistent. The 
second view treats each junction as a variable, each variable 
has 3 or 4 values (the number of possible labeling combina
tion of a junction) and the constraints are binary. Theorem 
1 states that if the problem is 4-consistent it is globally con
sistent. The second view, thus, provided a much weaker 
consistency demand for guaranteeing global-consistency. 
However, it is yet unclear whether this level of consistency 
is achievable without increasing the arity of the constraints. 

7. Conclusions 

A globally consistent network permits the construction of a 
consistent solution in linear time. We showed that the 
amount of local consistency required for achieving such 
global consistency is dependent on the product of two 



parameters: the number of values in each variable and the 
constraint-arity. The complexity of achieving the required 
local consistency is exponential in this product 

A surprising implication emerging from the above 
relationship is that for the special case when the constraints 
are bi-valued and binary (k=r=2), 3-consistency ensures 
global consistency in all cases. As a consequence we 
showed that if a bi-valued relations is not representable by a 
binary constraint network it cannot be helped by any 
number of hidden variables. 
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Abstract 
This paper proposes the orthogonality hypothesis: 

provided certain two-dimensional constraints are satisfied, 
some trihedral junctions in a polyhedral scene are assumed to 
represent orthogonal comers. Using this hypothesis one can 
analytically infer the three-dimensional coordinates of the 
vertices representing orthogonal comers. A reconstruction al
gorithm is presented which uses the orthogonality hypothesis 
to initiate reconstruction at a few vertices and then propagates 
the reconstruction to other vertices in the scene. A fonnal 
analysis of this algorithm indicates some of its strengths and 
limitations. 

1. Introduction 

The process of projecting a three-dimensional (3-D) 
scene onto a two-dimensional (2-D) image is mathematically 
relatively straightforward and well known. The reverse pro
cess of how to recover the 3-D properties of a scene given a 
2-D image, is not as well understood. Psychologists have tra
ditionally emphasized the role of perceptual organization in 
the 3-D reconstruction process. However, elements of a com
putational theory of the role of perceptual organization in 3-
D reconstruction have started to emerge only recently (Wil
kin and Tenenbaum, 1983, 1986; Perkins, 1983). Although 
the overall basis of perceptual organization is not well under
stood, there appears to be some consensus that one of its pur
poses is to detect stable image groupings, which reflect actual 
structure in the scene rather than accidental properties. Stabil
ity in image groupings means that such groupings remain in
variant over a variety of viewpoints. Groupings have been 
proposed based on different image relations such as proximi
ty, parallelism, collinearity (Lowe, 1987), and skewed sym
metry (Kanade, 1981). 

In this paper we propose a heuristic principle suit
able for reconstructing many types of scene: the orthogonal
ity hypothesis. This recognizes that, while we may not have a 
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global model of the objects in the scene, we may be able to 
assume as a local assumption that some vertices will be or
thogonal. In addition, we show that this hypothesis can be 
used to reconstruct the 3-D coordinates of vertices and orien
tation of most edges in a polyhedral scene consisting of a va
riety of objects without using any specific knowledge about 
the objects involved. Finally, we fonnally analyze some of 
the strengths and limitations of this approach. 

Orthogonality assumptions are known to facilitate 
the analysis of 3-D scenes. This has been demonstrated in 
work using gradient space representation (Mackworth, 1976), 
and in work in shape-from-contour (e.g. Barnard 1983; 
Horaud 1987, 1989). The main difference between the work 
presented here and previous work is an explicit exploration of 
orthogonality based on local assumptions only. In addition, 
this paper contains a fonnal analysis of some of the strengths 
and limitations of the orthogonality hypothesis when it is 
used in the reconstruction of polyhedral scenes. The method 
used is analytic, and uses orthographic projection only. 

2. The Orthogonality Hypothesis 

If we compare Fig. 1 with Fig. 2 then it is easily 
observed, that all comers of Fig. 1 could be orthogonal, 
whereas no such interpretation is allowable in Fig. 2. Perkins, 
in a study titled "Cubic Comers" (Perkins, 1968) discovered 
that in a polyhedral scene three-line junctions can represent 
orthogonal comers if and only if one of the following con
straints is satisfied: 

1. All three angles are obtuse. 
2. Two angles are right. 
3. Two angles are acute and the third is less than 270 degrees. 

From here on we will refer to these three constraints 
as the orthogonality constraints. The mathematical correct-



ness of Perlcins's discovery is simple to prove. It is based on 
the observation that the angles of a projection of an orthogo
nal trihedral corner contain enough information to determine 
orientation up to sign. 

C 

T1 (Xo,Yo,zo) 

Figure 1 

Figure 2 

In the coordinate system which we will use, the pro
jection of the corner in XYZ space is simply its orthogonal 
projection on the viewing XY plane. Perkins proves that the 
angles a, b, and c of the trihedral junction (see Fig. 1) repre
sented by three vectors in the XY plane can be traced back to 
three vectors inXYZ space which are mutually orthogonal and 
project, respectively, to the vectors in the XYplane. People 
living in an industrialized society can distinguish orthogonal 
from non-orthogonal corners with a high degree of accuracy 
(Perkins, 1972). Native populations in Zimbabwe, on the oth
er hand, have been found to score much lower on the rectan
gularity discrimination task (Perkins and Deregowski, 1982). 

As a complement to Perkins's proof, Mulder and 
Dawson (1989) have shown that an orthogonality assumption 
can also be used to compute a viewpoint with respect to a tri
hedral comer. The only information needed are the angles a, 
b, and c of the trihedral junction. If the junction represents an 
orthogonal corner (taken to be the origin of XfZ space), then 
the coordinates of the viewpoint (up to scalar multiple and 
some changes of sign) are determined to be: 

--/ cot b cot c, --1 cot a cot c, --1 cot a cot b 

The orthogonality hypothesis can be defined 
as follows: provided the orthogonality constraints are satis
fied, trihedral junctions in a polyhedral scene are assumed to 
represent orthogonal corners. The constraints imposed on 
the scene by this assumption are propagated across the object 
of which the corner is a component. 

Figures 1 and 2 are examples of a rectangular and a 
non-rectangular object All trihedral junctions in Fig. 1 satis
fy the orthogonality constraints, whereas none of the junc
tions in Fig. 2 do. However, it is also possible for a trihedral 
junction to satisfy the orthogonality constraints, while it is not 
orthogonal in space. Fig. 3 is an example of such a situation. 
Both T 1 and T 2 satisfy the orthogonality constraints. Yet, only 
one of them can represent an orthogonal corner. The problem 
is caused by the fact that different comers in a single object 
should be consistent in viewpoint (Lowe, 1987). In Fig. 1 this 
is the case for all trihedral junctions, but not so in Fig. 3. T1 
and T 2 cannot be orthogonal from the same viewpoint A con
sistent interpretation can therefore be arrived at only if one of 
the corners is accepted as non-orthogonal. 

The orthogonality hypothesis is powerful. It helps 
us determine the 3-D coordinates of many vertices in the 
scene without having to rely on models of the objects in the 
scene. This scene recovery process takes place in an analyti
cal manner and it uses orthographic projections only. In the 
next section we present an algorithm which uses orthogonal
ity of a particular junction as a working hypothesis and which 
uses this hypothesis to propagate the 3-D position of vertices 
and orientation of edges constrained by the junction over the 
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scene. 

T1 

Figure 3 

3. Propagating Orthogonality Constraints over 
the Scene 

We will first describe the orthogonality constraint 
propagation process in an informal way before presenting a 
formal algorithm. Let us take Fig. I as an example. For the 
purpose of explanation we assume that we are dealing with a 
perfectly segmented image; that is, we can compute all junc
tions T and 2-D closures C in the image. (A 2-D closure is a 
cycle of edges which is not internally bridged.) Each 2-D clo
sure represents a surface in 3-D space. In 2-D space we use an 
XY coordinate frame with its origin in the lower left comer of 
the image. 

In 3-D space we use the same coordinate system, but 
we add a z-coordinate perpendicular to the XY (image) plane. 
The advantage of such a coordinate system is that we can 
compute the relative z-coordinates of vertices in terms of the 
viewpoint computed with respect to a trihedral junction as
sumed to be orthogonal (Mulder and Dawson, 1989). In addi
tion, in scenes with more than one object we can align objects 
by a simple translation of z-coordinates. 

First, create a queue of all trihedral junctions 
which satisfy the orthogonality constraints. We exclude T
junctions from this process, because such junctions may rep
resent edges belonging to different objects. For Fig. I the 
queue consists of the junctions: (T1 T2 T3 T4). 

The first step is to delete T 1 from the queue and to 
reconstruct it by hypothesis, as an orthogonal comer. We as
sume the coordinates of T 1 to be (x0,y 0,0) with x0 and y O rep
resenting the image coordinates of T 1• The z-coordinate of the 
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endpoints of e1 can then be expressed as a function of x0, y0, 

xl'yl and the angles a, b, c ofT1• Forinstance, z1 can be com
puted from the following expression: 

z2 and z3 can be computed in a similar way. A posi
tive value of z1 assumes that the viewpoint is outside the ob
ject. This assumption is generally preferable to an "inside" 
viewpoint 

The edges e 1, e2, e3 jointly determine the 3-D ori
entation of the closures C1 and C2, represented in 3-D space 
by the surfaces S1 and S2• Knowing the orientation of S1 and 
the end point coordinates of e 1 allows us to determine the co
ordinates of e4 and e5• In the same manner we can compute 
the end point coordinates of e6 and e9 in S2• Next, the coor
dinates of the vertices in C3 are inferred. Since e5 and e6 are 
now known, we have determined the orientation of S3• This 
enables us to compute the location of the last missing edges, 
e1 and e8• 

Since S3 is directly constrained by S 1 and Sz, we 
amalgamate the three surfaces into a single cluster. In this pa
per, we define an object as a cluster of surfaces. An object, 
however, does not necessarily correspond to a solid object 
with an interior space . 

The 3-D reconstruction of Fig. 1 could have taken 
place in more than one way. The analysis could also have 
been based on T2, T3, or T4 which would have resulted in a 
similar viewpoint and a compatible set of coordinates for the 
vertices. 

We will now discuss the reconstruction algorithm. 
We will then proceed to show that this algorithm can interpret 
scenes with more than one object (such as Fig. 4) correctly. 

Definition: Two edges are 3-D-connected if they are 
connected by means of a junction or L-vertex and neither 
edge forms the stem of a T-junction. 

The Reconstruction Algorithm RA*: 

I. Determine all 2-D closures C (C 1 ......... Ck) in the image. 
(C0 is the outer-region and is not part of C). 

2. Create a queue of all trihedral junctions (with the exclusion 
of T-junctions) which satisfy the orthogonality con
straints. Call this queue T with elements T 1 ..... Tn. The 
order of vertices is arbitrary. 

3. While T not empty do: 
3.1 Mark each C. in C uncompleted (1 <= i <= k). 

1 

3.2 Delete the 1st element T. (I <= i <= n) from T. Com-
1 

pule a viewpoint Vi (for Ti) which constitutes a hy-
pothesis H. for the local 3-D situation. We attempt to 

1 

create clusters of surfaces based on Hi. 



3.3 Compute the 3-D coordinates of the vertices connect
ed with Ti. 

3.4 Create a queue UC consisting of all uncompleted Ci 
(1 <= i <= k) which contain 2 or more 3-D-connect
ed edges with known 3-D location. 

3.5 Create a cluster CLi for surfaces constrained by Hi. 
CLi ~ { ). 

3.6 WHILE UC not empty do: 
3.6.1 Delete the first element c from UC. 

Create a surface s which represents c in 3-D 
space. 
Propagate (c.s). 
Marie c completed. 
Associate Hi with s. 
Append s to CLi. 

3.6.2 UC ~ union of UC and all uncompleted Ci 
which contain two or more 3-D-connected edges 
with known 3-D location. 

3.7 For each T. (1 <= j <= n, j -:1:- i) with all three of its 
edges conshltlned by Hi do: 

If IV} = IVil then delete Tj from T. 

Every combination of non-overlapping clusters cov
ering all surfaces constibltes a valid scene interpretation. 

Procedure Propagate (c,s) 
1. Among the set of edges surrounding c find 2 connecting 

edges with known 3-D location such that the connecting 
junction is a trihedral junction which is not a T-junction. 
Call this junction tr. 

2. Assume c is surrounded by a sequence of m edges (E 1 •..••. 

Em) such that E1 and Em are edges connecting in tr. 

Figure 4 

3. Compute the orientation of s based on the end point coor
dinates of E1 and Em. 

4. FOR k = 2 TO m DO 
1F Ek and Ek-l are 3-D-connected 

THEN compute the 3-D location of Ek based on 
the end point coordinates of Ek-land the orienta
tion of s. 

5. FOR k = m-1 DOWNTO 2 DO 
1F Ek+ 1 and Ek are 3-D-connected AND the 3-D 

location of Ek is unknown 
THEN compute the 3-D location of Ek based on 
the end point coordinates of Ek+l and the orien
tation of s. 

The reconstruction algorithm is conservative. 
Vertex coordinates are not propagated across the stem of a T
junction, because T-junctions may indicate occlusion by an
other object. The intent of cluster formation in RA* is to join 
surfaces which are likely to belong to a single object. The 
computation of the 3-D location of all edges surrounding a 
surface implies complete visibility of the surface. Step 3. 7 in 
RA* is an efficiency measure. It prevents duplication of inter
pretations. 

Fig. 4 is an example of a scene with two objects 
partially occluding each other. The reconstruction algorithm 
starts with junction T1 and determines the coordinates of the 
vertices surrounding C 1 and C2• At this point C3 becomes part 
of UC and the coordinates of its vertices are computed as 
well. The cluster CL1 now consists of the surfaces S1, S2, and 
S3, and grows no further. As a side effect, the junctions T6, T7, 

and T8 are removed from T (step 3.7). 
Next, we delete T2 from T. Now the coordinates of 
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the vertices surrounding C 4 and C 5 are determined. This caus
es C6 to be added to UC and the coordinates of its vertices are 
computed. Note, that because of the 3-D-connectedness rule 
the edges e3 and e9, although part of C6, are not associated 
with S6, thereby emphasizing S6's partial visibility. The end 
point coordinates of these edges are computed as part of S 1 
and S3 respectively. 

When more than one object is involved, some inter
esting issues arise about the precedence of principles of per
ceptual organi7.ation. The viewpoints from which T2 and T4 
are orthogonal do not match. Two different surf ace clusters 
(CL2 and CL4} are therefore created, each based on a different 
viewpoint assumption. Two different global interpretations 
arise from this split. In the first one (CL1 CL4) S3 and S6 have 
the same orientation, in the second interpretation (CL1 CL2) 
they do not. The parallelism principle stipulates that lines par
allel in the image are also parallel in the scene. In the (CL1 
CL4) interpretation orthogonality and parallelism cooperate. 
In the {CL1 CL2) interpretation orthogonality conflicts with 
parallelism. 

Alignment of objects also becomes an issue when 
more than one object is involved. For every orthogonality hy
pothesis we assume a zero value for the z-coordinate of the 
corresponding junction. If we assume (from the proximity 
principle) that two objects touch each other, then the z-coor
dinates in one of the objects must be realigned. If the objects 
in Fig. 4 touch in e2 then we must translate the z-coordinates 
of one of the objects such that z-coordinates are the same in 
T3• This realignment will reveal the spatial nature of two T
junctions; e16 turns out to be connected with e2 and e3, 

whereas e19 does not connect with e9 and e10. Thus, RA* is 
capable of resolving connection/occlusion issues. 

4. A formal analysis of RA•. 

Despite RA*'s apparent ability to reconstruct poly
hedral scenes with a variety of objects, the algorithm has lim
itations as well. To mention a few: 
1. A sufficient supply of "orthogonal" trihedral junctions (i.e. 

trihedral junctions which are not T-junctions, and which 
satisfy the orthogonality constraints) must be available. 
More precisely, every object in the scene must contain at 
least one "orthogonal" trihedral junction. 

2. Higher order junctions (i.e. junctions with more than 3 
lines) can block the propagation process. For example, 
RA* may fail in pyramid shaped objects with more than 
three visible surfaces. On the other hand, if a higher order 
junction lies on the boundary between two or more ob
jects, then RA* may survive. 

3. T-junctions can block reconstruction. The procedure 
"propagate" is successful as long as there is at most one 
edge forming the stem of a T-junction on the boundary of 
the surface explored. A second T-junction stem will pre
vent RA* from completing the propagation. Usually, such 
a situation implies that part of the surface is occluded by 
another object (e.g. S6 in Fig. 4). 
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The strength and limitations of RA* can be proven 
by means of the following theorem. 

Theorem: 
The reconstruction algorithm will recover the coor

dinates of all visible edges of a single object, if the following 
conditions are met 

1. The edges of the object are straight and its surfaces are 
planar. 

2. Edges meet in L-vertices and trihedral junctions only. 
3. At most one edge on the boundary of each surface forms 

the stem of a T-junction. 
4. At least one trihedral junction is not a T-junction, and it 

satisfies the orthogonality constraints. 

Note that these conditions exclude pyramid shaped 
objects with more than two visible surfaces. In addition, if the 
object has more than two visible surfaces, then each surface 
must be adjacent to at least two other surfaces which are also 
adjacent 

Proof: 
The proof is in three parts. First, we prove that at 

least two adjacent surfaces can be completed (i.e. the coordi
nates of all visible edges surrounding the surface are comput
ed). Next, we show that at any time, before RA* terminates, 
there is an uncompleted surface that has at least two 3-D-con
nected edges with known coordinates. Finally, we prove that 
RA* terminates. 
1. Condition 4 stipulates that there is at least one trihedral 

junction tr which satisfies the orthogonality constraints. 
The presence of tr implies that at least two of the object's 
surfaces (say, S 1 and S2) are visible. If we assume tr to be 
orthogonal, then we can compute the coordinates of the 
three vertices it is connected with. The edges connecting 
these vertices determine the orientation of both S 1 and S2• 

Thus, we can compute the coordinates of all vertices of the 
adjacent surfaces S 1 and S2• If the object has only two vis
ible surfaces then we have thus computed the coordinates 
of all vertices. 

2. If the object has more than two visible surfaces, then each 
surface is adjacent to at least two others, which are also ad
jacent. Thus, there must be a surface (S3) adjacent to both 
S 1 and S2• Since all of the vertices of S 1 and S2 are known, 
the end points of two 3-D-connected edges of S3 must be 
known as well. This condition is sufficient to complete S3• 

3. RA* has two WHILE loops. In the outer loop the elements 
of Tare removed one by one and are not replaced. With a 
finite number of elements in T, T must eventually get emp
ty. At the start of the inner WHILE loop UC contains two 
closures each consisting of at least two 3-D-connected 
edges with known location. In principle, all closures of the 
object may be placed on the queue. However, once a clo
sure is removed from UC, it is completed and will not be 



returned. UC must therefore eventually get empty as well. 
Thus, both WHILE loops are guaranteed to terminate. As 
a result, RA* must terminate. 

One limitation of this theorem is that it only applies 
to objects when seen in isolation. How does RA* behave, 
when the scene consists of a variety of objects, which are 
touching and/or partially occluding each other? For this situ
ation, we can somewhat relax the conditions without sacrific
ing any of RA*'s power. Subject to condition 4 being satis
fied for each object in the scene we can relax condition 2 by 
permitting higher order junctions provided that they mark the 
boundary between two or more objects. This does not cause 
any difficulty for the propagation of vertex coordinates, be
cause propagation can be blocked only by the stem of a T
junction. As an example, Fig. 5 is successfully interpreted by 
RA*. The interpretation results in 2 clusters: CL1 containing 
S1, S2, and S3, and CL2 containing S4, S5, and S6• Note that e4 
will obtain 2 different sets of coordinates depending on 
whether it forms the boundary of S1 or S6• 

Fig. 5 also raises some interesting issues regarding 
precedence of principles. If we assume the two objects to be 
wedges, then the orthogonality hypothesis conflicts with the 
parallelism principle. Assuming both principles, on the other 
hand, implies concavity for one of the objects. Proximity is 
also an issue. If we assume the two wedges to connect at the 
lower end of e4, then the two objects are not connected at the 
higher end. 

Fig. 6 illustrates not only the strengths, but also 
some limitations of RA*. If we omit edge e8 from the image, 
then the presence of one trihedral junction satisfying the or
thogonality constraints suffices to determine the complete 3-

Cs 
c6 

e10 

e12 

Figure 5 

D layout of the object However, if we add e8 to Fig. 6, then 
we create two objects. For the object on the left, T1 will still 
compute the coordinates of all vertices. However, the object 
on the right (consisting of C3 and C 4) has no valid trihedral 
junction, since T-junctions are discarded. As a result, nothing 
can be done in the second object. 

The main strength of the orthogonality hypothesis, 
however, remains its emphasis on local models whose con
straints are propagated across the scene. A reconstruction of 
the scene is therefore possible, even if the objects in the scene 
are unfamiliar. Thus, we can avoid one of the chicken and egg 
problems in perception, namely that we cannot make 3-D 
sense of an image unless we make assumptions about the ob
jects in the scene first. 

5. Possible extensions. 

Given a projection of a polyhedral object, one can 
have many potential reconstructions under the orthogonality 
hypothesis. In ambiguous situations, RA* will simply list all 
possible interpretations. People, on the other hand, tend to 
show preference for particular interpretations. It is possible, 
to modify RA*'s behavior to reflect this phenomenon. For 
one thing, we can take further advantage of the orthogonality 
hypothesis. If two or more trihedral junctions, via global re
construction, suggest the same viewpoint, then clusters based 
on this viewpoint should be preferred over others. We may 
make this approach quantitative by assigning an a priori 
probability of p > 0.5 that any given junction satisfying the 
orthogonality constraints is orthogonal. The computed prob
ability of an interpretation will then be greatest when it con-

T3 
e7 

C1 
C2 

e4 
e2 

T1 
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tains most orthogonal junctions. 

e9 

T1 
e8 C3 

e10 

e5 

ei 
C1 

e4 
C4 e6 

e7 

Figure 6 

This approach can be further generalized by includ
ing other shapes for trihedral junctions, such as the 90:90:(5() 
junction of a right triangular prism, the 90:90: 120 junction of 
a right hexagonal prism, or the (5():(5():(5() junction of a regular 
tetrahedron. We may also use families of trihedral junctions: 
for instance, those with 1 or 2 right angles, or those with equal 
face angles. 

Finally, RA• can be extended to cope with imperfect 
segmentation. Lowe (1987) has suggested a method that cal
culates the probability for two line segments with adjacent 
endpoints to have arisen by accident of viewpoint This meth
od can be extended to compute a certainty value for junctions 
in an imperfectly segmented image. Combined with a priori 
probabilities for corner models we can thus extend RA• to 
compute a probability for each interpretation and choose the 
interpretation with the highest probability. 

6. Conclusion 

In this paper, we have proposed the orthogonality 
hypothesis: provided certain constraints are satisfied some 
trihedral junctions in a polyhedral scene are assumed to rep
resent orthogonal comers. Using an analytical method and or
thographic projection, we can then infer the 3-D coordinates 
of the vertices connected with this comer. A reconstruction 
algorithm was presented which propagates vertex coordinates 
across the scene. The conditions under which this algorithm 
can recover the complete structure of the scene were ana-
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lyzed. The orthogonality hypothesis allows for a reconstruc
tion of a polyhedral scene using local models only. 
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Abstract 

This paper addresses the problem of inferring 
the structure of a composed object given an evi
dential image-derivable description. The struc
ture inference problem is posed as a labelling 
problem expressed in a Markov Random Field 
network. Evidence about high-level structural 
hypotheses is represented as likelihoods at the 
labels, and prior knowledge is represented as 
weights or clique parameters in the MRF. A 
network inference algorithm is then used to 
combine the evidence and prior knowledge to 
yield a segmented description of a Tinkertoy 
scene. Implementation experiments involving 
the traditionally difficult problems of occlusion 
and accidental alignment are given to demon
strate the effectiveness of the framework. 

1 Introduction 

Noise and the projection of a 3D world into two dimen
sions mean that image data can provide only uncertain 
information for use in higher level visual processing, such 
as recognition. Recognition therefore requires inference 
and decision making. 

This paper describes a parallel network that infers the 
structure of a composed object from an uncertain de
scription. In particular, a massively parallel representa
tion with uncertainty is developed for Tinkertoy objects. 
A network inference mechanism is then used to combine 
image-derivable evidence with prior knowledge to yield 
a segmented description of a Tinkertoy scene. 

Inferring the true physical structure of an object in the 
world is a necessary part of the process of recognizing it. 
In the typical approach, decisions (usually thresholds) 
are made during the building of an object description 
from image data, yielding a single symbolic object de
scription that is hoped to be essentially correct. 

In contrast, the focus in this work is reflecting the 
evidential or uncertain nature of the input data even 
in high-level object representations for structurally com
posed objects. Object structure hypotheses and the evi
dential support for the hypotheses are encoded in a par
allel labelling framework. The labelling framework itself 
is represented as a Markov Random Field, which pro-

vides a principled probabilistic interpretation of the evi
dence and inference process. The Markov Random Field 
representation also allows the expression of appropriate 
prior knowledge in a convenient way. A discrete object 
description is then inferred from the evidence and prior 
knowledge. 

2 Background 

2.1 Recognition from Structure and Structure 
Inference 

The recognition of Tinkertoy objects is the goal of 
The Tinkertoy Project. Previous work[Cooper and 
Swain, 1989; Swain and Cooper, 1988; Cooper, 1988; 
Cooper and Hollbach, 1987] has addressed issues in the 
parallel recognition of objects from structure, assuming 
that discrete essentially error-free descriptions of com
posed objects can be obtained from images. Recognition 
from structure addresses the role of parts and the spatial 
relations between them in the recognition process[Pent
land, 1987; Biederman, 1985; Hoffman and Richards, 
1986]. Because their identity is defined primarily by the 
spatial relationships between simple parts, Tinkertoys 
provide a convenient domain task for examining recog
nition from structure. 

When perfect information assumptions are not made, 
developing a principled solution to the problem of recog
nition from structure is considerably more difficult. The 
solution of at least two related sub-problems is required. 
The first problem is determining the identity of the ob
ject in the scene, with respect to a model base of objects 
already known. This sub-problem must be solved even 
when absolutely perfect geometric descriptions of the ob
ject in the scene are available. The second sub-problem, 
present when only uncertain evidence is available, is in
ferring the physical description of the object in the world 
from the available evidence and relevant prior knowl
edge. It is this second sub-problem, structure inference, 
that is the topic of this paper. 

(In other work, I argue that these are coupled prob
lems, and show how both problems can be solved to
gether simultaneously in a unified way[Cooper, 1989; 
Cooper, 1990]. Others have addressed the recognition 
of structured objects by developing heuristic inexact 
matching algorithms that compensate for the possibility 
of an erroneous object description[Shapiro and Haralick, 
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1981; Eshera and Fu, 1986]). 
Inferring the true structure of the physical world sub

sumes both the problems of segmentation and recon
struction. Evidential approaches to these problems have 
been proposed before[Feldman and Yakimovsky, 1974; 
Chou, 1988; Sher, 1987), but usually with a much lower
level visual representation. 

2.2 Markov Random Fields in Vision 

Markov Random Fields (MRFs) have been used as the 
basis of an evidential approach to many computer vi
sion tasks in recent years[Geman and Geman, 1984; 
Marroquin, September 1985; Cross and Jain, 1983; 
Chou, 1988). While most previous vision work has used 
MRFs that are essentially rectangular arrays, the theory 
of Markov Random Fields applies to arbitrarily struc
tured graphs like the one described later. Some of the 
relevant aspects of MRF theory and its application to 
labelling problems are now very briefly reviewed [Kin
dermann and Snell, 1980).. 

Consider a set X of discrete-valued random variables 
X. Associate with the random variables an undirected 
graph G defined as a set S of sites (or vertices) and a 
neighborhood system ( or set of edges) E. The random 
variables of the field are indexed by the graph vertices 
as X,. Variables are neighbors in the MRF when the 
associated vertices are adjacent in the graph. In the for
mulation of a labelling problem as an MRF, the variables 
in the labelling problem are the random variables of the 
MRF. 

The value w, of a random variable may be any member 
l; of the state space set L. Because of the application of 
the field to the labelling problem, the event elements of 
the set L will be called labels. An assignment of values 
to all the variables in the field is called a configuration, 
and is denoted w. 

We are interested in the probability distributions P 
over the random field X. Markov Random Fields have a 
locality property: 

P(X, = w, IXr = Wr,r E S,r f; s) = 
P(X, = w. lXr = wr,r EN,) (1) 

that says roughly that the state of site is dependent only 
upon the state of its neighbors (N,). MRFs can also be 
characterized in terms of an energy function U with a 
Gibb's distribution: 

e-U(w)/T 

P(w) = z (2) 

where T is the temperature, and Z is a normalizing con
stant. 

If we are interested only in the prior distribution P(w ), 
the energy function U is defined as: 

U(w) = L Ve(w) (3) 
eEC 

where C is the set of cliques defined by the neighborhood 
graph G, and the Ve are the clique potentials. 

Specifying the clique potentials Ve provides a conve
nient way to specify the global joint prior probability dis
tribution P. The clique potentials can be conveniently 

246 

Figure 1: Real Tinkertoy Image 

viewed as weights in a connectionist network. They pro
vide a mechanism to express soft constraints between 
labels at related variables. Unary clique potentials in 
effect express first order priors, while binary clique po
tentials express the constraints between pairs of variables 
in the field. 

Suppose we are instead interested in the distribution 
P(wlO) on the field after an observation 0. An observa
tion constitutes a combination of spatially distinct ob
servations at each local site. The evidence from an ob
servation at a site is denoted P(O, lw,) and is called a 
likelihood. Assuming likelihoods are local and spatially 
distinct, it is reasonable to assume that they are con
ditionally independent. Then, with Bayes' Rule we can 
derive: 

U(wlO) = L Ve(w) - LlogP(O, lw,) (4) 
cEC •ES 

To summarize, the MRF represents a labelling prob
lem. Evidence about the hypotheses is expressed as label 
likelihoods, and prior knowledge is expressed in terms of 
the clique potentials, generalized weights that express 
soft constraints between spatially related variables. 

Inference on the MRF network can be framed in terms 
of the energy function. For example, the maximum a 
posteriori probability can be computed by finding the 
minimum of the non-convex energy function U. Needless 
to say, this is a non-trivial problem and not the focus of 
this work. In the experiments which follow , a determin
istic approximation algorithm called HCF[Chou, 1988} 
is used to find a good minimum of the energy function. 
This minimum corresponds to a particular selection of 
labels for each variable. 

3 Network Description 

3.1 Network Structure 

The crux of the problem is defining a network that can 
represent possible Tinkertoy objects, including uncer
tainty about their structure. As can be seen in Figure 1, 
even images of very simple Tinkertoy scenes contain sig
nificant uncertainty. Part parameters such as rod length 
are clearly difficult to determine reliably. Self-occlusion 



Variables Labels 
slots doesn't exist 

exists and empty 
exists and full 

virtual rods doesn't exist 
exists and has length Ll 
exists and has length L2 
exists and has length L3 

Table 1: Definition of Variables and Labels 

and noise make the geometry of the junctions difficult to 
determine, and this might have a profound effect on the 
task of determining the identity of the object. In short, 
in a real image of even a very simple part-and-junction 
world, the existence, identity and parameterization of 
the parts might all be uncertain. 

Many possible network designs are possible. The chief 
constraints on the design arise from trying to represent 
the relevant uncertainties while minimizing the complex
ity of the network. A more detailed and rigorous presen
tation of the network, including complexity analysis, is 
available in Cooper [1989]. 

The most basic element of the network design is the 
definition of the variables and labels. Adopting the 
unit/value principle[Barlow, 1972; Feldman and Ballard, 
1982; Ballard, 1984] leads to a discrete parameter repre
sentation of Tinkertoy part-and-junction geometry with 
two types of variables: rods and slots [Cooper and Swain, 
1989] . Slot variables represent the slots in Tinkertoy 
junction disks where rods can be connected, and provide 
a discrete representation of possible junction geometries. 
Uncertainty about rod length is represented by labels at 
the rod variables. Structural uncertainty is represented 
by whether or not slots and rods are connected . The 
possibility of a rod connecting any two slots is repre
sented by the existence of a rod variable for every pair 
of slots, so-called "virtual rods". With this represen
tation, most mutually exclusive hypotheses are compet
ing labels at a variable (eg. different rod lengths). The 
competition between other mutually exclusive hypothe
ses ( eg. virtual rods representing alternative connections 
to the same slot) is enforced by winner-take-all network 
topology[Feldman and Ballard, 1982]. 

The definitions of the variables and labels are sum
marized in Table l. Note that the possibility that parts 
do not exist (they might be artifacts of signal noise, for 
example), is explicitly represented. 

The key to any connectionist design is establishing 
connections which encode the essence of the computa
tion. In the case of the MRF, the connections define the 
MRF graph, and represent adjacencies between related 
variables in the field . In this design, there are three kinds 
of connections. Slot/slot connections communicate con
sistency amongst the interpretations of the slot variables 
at a single disk junction. For example, all slots at a disk 
should be consistently labelled as "existing". Virtual 
rod/virtual rod connections consitute a winner-take-all 
network. Each virtual rod is connected to all the other 
incompatible hypotheses and discourages them. Finally, 
there are connections between related slots and virtual 

Slots Virtual Rods 

Figure 2: Fragment of MRF Graph. The shaded objects 
are the MRF sites (slots and rods). The solid lines rep
resent edges in the MRF graph. The virtual rods show 
all the connections from one slot to slots on one other 
disk, as well as the dangling rod possibility. The set of 
virtual rods is a clique; only some of the connections are 
shown. 

rods, so that communication between rod/ slot pairs can 
enforce consistency. For example, a consistent rod/ slot 
pair is one where the rod "exists" and is connected to a 
"exists and full" slot. 

A fragment of the full MRF graph defined in this 
way is given in Figure 2. The irregular nature of the 
graph structure reflects the application of representing 
high-level structure, and differs greatly from traditional 
image-based array MRF applications. 

3.2 Likelihoods: The Image-derivable Evidence 

To complete the definition of the MRF, it is necessary 
to provide data for the field. The evidence and prior 
knowledge must be specified. 

Variable/label events (eg. rod of length Ll) were 
carefully chosen to represent spatially local events in 
the image. Thus, it should be possible to develop 
operators that gather likelihood evidence about the 
events from the image. Significant work exists that 
demonstrates the feasibility of building such probabilis
tically well-founded likelihood operators [Bolles, 1977; 
Sher, 1987], at least for lower-level events such as edge 
and line detection. However, providing well-justified ev
idence about higher-level events requires a fully devel
oped probabilistic model of low and intermediate level 
vision, including evidence combination for composed 
events. The eventual generation of high-level evidence 
via such a theory was assumed for this work, and ev
idence was synthesized artificially. Generally the evi
dence was constructed from qualitative criteria, such as 
"very certain", "almost no evidence for this", etc. The 
experiments deliberately probed a wide range of input 
conditions, reflecting possible data that could arise from 
real images. Furthermore, the network behavior was ex
tremely robust to variations in the exact values for the 
evidential input, reducing the significance of the fact that 
the data were synthetic. 

3.3 Prior Knowledge 

In any inference problem involving perception, there are 
only two sources of information: sensor evidence for this 
problem instance, and what was known before. In proba
bilistic frameworks including MRFs, previous knowledge 
is expressed as priors. The joint prior distribution on an 
entire MRF is expressed through the clique potentials, or 
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Cliaue Potential 
Slot Slot 
doesn't exist doesn't exist consistent 
doesn't exist exists, full inconsistent 
doesn't exist exists, empty inconsistent 
exists, empty exists, empty freq. dependent 
exists, empty exists, full freq. dependent 
exists, full exists, full freq. dependent 
Vrod Vrod 
doesn't exist doesn't exist consistent 
doesn't exist exists, Ll lL2 IL3 consistent 
exists, LI1L2IL3 exists, LI1L2IL3 inconsistent 
Slot Vrod 
doesn't exist doesn't exist consistent 
doesn't exist exists, Ll lL2 IL3 inconsistent 
exists, empty doesn't exist consistent 
exists, empty exists, Ll lL2 IL3 inconsistent 
exists, full doesn't exist inconsistent 
exists, full exists. LI1L2IL3 J!:OOd 

Table 2: 2-Clique Potentials 

network weights. Domain dependent Tinkertoy knowl
edge, both qualitative and quantitative, was represented 
by clique potentials in the Tinkertoy MRF. Although 
it should be possible to derive clique potentials directly 
from frequency measurements on problem instances in 
the world, clique potentials were synthesized on an ad 
hoc basis. 

The first set of potentials represented constraints aris
ing from the nature of Tinkertoys. For example, for a 
disk to exist in the world, all its slots must have the "ex
ists" label. Clearly, we know this fact a priori. In an
other example, the "existing filled" hypothesis at a slot is 
consistent with the existence of an adjacent rod. A table 
summarizing a qualitative description of the potentials 
for cliques of size 2 is shown in Table 2. In practice, once 
the appropriate order of magnitude was established for 
the representation of such clique parameters, variations 
in the values of the potentials had no effect on network 
performance. 

The network architecture also allows the expression 
of quantitative prior knowledge where it is appropriate. 
The frequency with which local properties occurred in 
past problem instances is representable as clique poten
tials . For example, first order statistics about the lengths 
of rods in previous problem instances were encoded as 
clique potentials at the length labels of the rod variables. 
Salient second and higher order features (such as junc
tion geometry at a disk) were also represented in the 
network. In this way, statistics based on a domain of 
previous problem instances can influence perceptual in
ference in the current problem instance. One might think 
of the domain depedent prior knowledge as "smoothing" 
the current evidence to a solution during the inference 
process on the network . 

4 Experiments 

An implementation of the MRF network described 
above was built with the Rochester Connectionist 
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Figure 3: A Man and His Dog: schematic of image show
ing accidental alignment 

Simulator[Goddard et al., 1988]. 

4.1 Accidental Alignment: A Man and His Dog 

The basic structure of the first experiment is given in 
Figure 3. The scene shows a 2D Tinkertoy scene with 2 
objects, a man and his dog, accidentally aligned so that 
the hypothesis that there is only one object is reasonable. 
(Alternative interpretations that have been suggested in
clude a caterpillar and a molecule with 6 atoms) . 

The experiment is principally designed to explore and 
demonstrate the power of the representational frame
work. The scene represents a non-trivial problem of 
representation and inference. The solution framework 
provides the richness necessary to represent the ambigu
ity arising from a degenerate alignment of objects, and 
provides an inference mechanism strong enough to over
come the ambiguity and make a decision. 

Some interesting features of the experiment are as fol
lows. First , it demonstrates a scene in which a segmen
tation ambiguity is present, and shows how the evidence 
in such a scene might occur and be represented. Local 
labelling ambiguity is present and simple to represent -
for example, different rod lengths have different likeli
hoods. The experiment also contains non-trivial struc
tural uncertainty - is it one object or two? Second, 
it demonstrates the way both priors and evidence com
bine to yield a decision . In this experiment, the evidence 
about the major segmentation decision is (by design) in
conclusive. The priors must therefore provide the infor
mation necessary to achieve an interpretation . This rep
resents one possible balance that can exist between the 
ev~dence an? the priors. In some cases with ambiguous 
evidence, pnor knowledge alone is inadequate, and inter
pretation mistakes are made. Thirdly, it demonstrates 
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doesn't exist 
exists, empty 
exists, full 

doesn't exist 
exists, Ll 

exists, L2 
exists, L3 

Figure 4: Input Evidence from the Image: bar graphs of 
label likelihoods 

the power of the inference procedure in resolving such 
an ambiguous decision problem. The sequential trace of 
the inference process is particularly impressive in this 
regard, because it involves a local decision-reversal. In 
this case, the global energy of the later decision is better 
than the first decision. 

The input evidence for the problem instance is pre
sented graphically in Figure 4. In the figure, the like
lihoods are shown for each label by bar graphs located 
near the spatial hypothesis they describe. The lines are 
scaled to represent likelihoods between zero and one. 

The evidence surrounding the connection of the two 
objects (at point A in the figure) is very ambiguous. The 
'connected' and 'disconnected' hypotheses both have 
very similar evidence. Note that the hypothetical like
lihood generator was fairly confident about the length 
of the rod, just not about whether it connected the two 
slots or not. (Both hypotheses have about the same like
lihoods at each of their labels). This is an example of 
how true structural ambiguity is represented in the net. 
Note also that the evidence at the slot hypothesis (B in 
the figure) is completely ambiguous. In effect, because of 
the accidental alignment, the likelihood generator would 
find evidence for the full label. On the other hand, area
sonable likelihood generator would probably have knowl
edge about slot-rod junctions, and would thus know that 
lack of perpendicularity at the junction is evidence for 
the empty label. 

In figures 5 through 9 the progress of the inference 
process on the experiment is shown. Figure 5 shows the 
first few label commitments that were made: these are 
the MRF sites with the least ambiguous evidence. 

Of particular interest is Figure 6 when HCF has in-

doesn't exist 

® exists, empty 
e exists, full 

doesn't exist 
Wttf.<..@i@ti exists, Ll 

II I I I i 111111111 i exists, L2 
exists, L3 

Figure 5: Segmentation Inference on MRF: First Few 
Committed States 

Figure 6: Segmentation Inference on MRF: Incorrrect 
vrod hypothesis "B" is chosen over correct hypothesis 
"C", providing excitation energy for the "full" label at 
"D" 

249 



.I 

.. I 

Figure 7: Segmentation Inference on MRF: "full" deci
sion at "Z" makes inhibitory 4-clique relevant 

Figure 8: Segmentation Inference on MRF: inconsistent 
"empty" slot with connecting vrod causes change of de
c1s1on 
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Figure 9: Final Segmentation 

correctly labelled the scene as one object. Once the slot 
(the man's 'hip' joint, designated A in the figure) is la
belled full, excitation energy exists in favor of some rod 
being attached. Then the 'connecting' virtual rod (B) 
is chosen because its local evidence is slightly stronger 
than that of the competing 'dangling' virtual rod (C). 
When the connecting virtual rod is labelled as existing, 
the associated unlabelled slot D gets energy encouraging 
the full label. 

The slot D does not get labelled immediately. Instead, 
later, the slot designated Z in Figure 7 gets labelled as 
full. Once the slot Z is full, if slot D were full as well, 
this would commit 4 slots on that disk as full . But 
the set of priors used for the experiment states that this 
particular configuration of 4 rods at a disk is unlikely, 
as marked in Figure 7. This 4-clique prior inhibits the 
simultaneous labelling of all 4 of the slots as full. The 
inhibition energy is sufficient to commit the fourth slot, 
slot D, to the state empty, as shown in Figure 7. Of 
course, an empty slot is incompatible with the vrod B 
hypothesizing connection, so that vrod gets relabelled as 
not existing, and the alternative rod C is relabelled as 
existing and L3 . 

Other parts of the input evidence are comparatively 
ambiguous as well. The man's right leg, for example, has 
very uncertain evidence about the correct length . (An 
explanatory assumption for the evidence might be that 
that region of the image was noisy, so the likelihood gen
erator had difficulty discriminating lengths). This uncer
tainty, purely local, is easily resolved by the network. 

Eventually, the whole scene is correctly labelled, as 
shown in Figure 9. 



doesn't exist 

--- exists, empty 
exists, full 

doesn't exist 

exists, LI 

exists, L2 
exists, L3 

Figure 10: Dog Occluding Giraffe, Input Evidence: label 
likelihoods 

4.2 Dog Occluding Giraffe 

A more representative experiment is now given. This 
experiment demonstrates the kind of uncertain informa
tion that could arise in a typical occlusion, and how it 
might be resolved. Compared to the extremely unlikely 
accidental alignment that was correctly interpreted in 
the last experiment, this occlusion is a much simpler 
problem for the system to handle. Relative to the ca
pabilities of other vision systems, especially those not 
handling uncertainty, the ability to correctly segment an 
occluded scene is a non-trivial achievement. 

The scene and the input evidence can be seen in 
Figure 10. Note the evidence about a variety of struc
tural hypotheses surrounding the location of the occlu
sion. In order for there to be any possibility at all of 
a mistaken interpretation, it is once again necessary to 
contrive an accidental alignment of the occluded rod and 
two occluding slots. (Otherwise, the likelihood genera
tors would not have ambiguous local information, and 
the correct global interpretation would follow simply 
from the evidence). 

Let's examine the evidence relevant to the occlusion . 
At a high-level of analysis, there are two main possible 
hypotheses: the true hypothesis ( dog occluding giraffe) 
with a single occluded rod connecting the giraffe's head 
to its shoulders, and the mistaken hypothesis that the 
giraffe and dog are awkwardly connected. The latter hy
pothesis requires two short rod's connecting the giraffe's 
head and shoulders to the dog, respectively. Note that 
the local evidence about the vrods representing the hy
potheses is ambiguous; they have exactly the same like
lihoods. Consider also the evidence about the slots. On 
the dog's head, the two slots aligned with the occluding 
rod show better evidence for full than empty. The local 
evidence is thus actually ranked in inverse order to the 
truth. 

For this problem, making a segmentation decision 
based on the usual simple criteria will obviously not suf
fice. In particular, a threshold will yield the wrong an-

Figure 11: Dog and Giraffe: Final Segmentation La
belling 

swer, because of the incorrect ranking of the evidence at 
the slots. 

As can be seen in Figure 11, the Tinkertoy MRF even
tually achieves the right interpretation, correctly seg
menting the two overlapping objects. In this problem, 
the statistically derived priors reflecting the frequency 
of junction-pattern occurrence play little role. Instead, 
constraints propagating to the competing rod hypotheses 
at the occlusion allow the correct interpretation. Con
sider the "giraffe neck" hypothesis versus its competi
tors. The evidence at the slot at both ends of the neck 
is strongly in favor of the slots being labelled exists and 
full. As a result, HCF commits those states early. At 
this point, the connecting "neck" virtual rod is receiv
ing excitation energy from both slots. The competing 
(incorrect) hypotheses are each compatible at one end 
only. As a result, the "neck" hypothesis commits to ex
istence, winning the vrod WTA competition, and forcing 
the competitors to turn off. In short, the correct global 
interpretation is more compatible with the evidence, and 
thus has a lower energy. 

5 Conclusion 

This paper has shown a high-level parallel representation 
for complex structurally composed objects that incor
porates a principled treatment of uncertainty and do
main dependence. Given the fundamentally evidential 
nature of image data, inference decisions about the world 
must be made at some point. Rather than depend upon 
heuristically selected thresholds, this framework demon
strates how uncertainty may be organized and main
tained at a high level of representational abstraction. 
Inference decisions about object structure can then in
corporate appropriately high-level prior knowledge. As a 
result, correct segmentation decisions can be computed 
even when the local evidence is ambiguous or favors the 
incorrect interpretation. 

Experiments have been shown that demonstrate the 
power of combining evidence and prior knowledge at a 
high-level of abstraction. Visual inference decisions were 
computed that would be very difficult to successfully 
achieve with traditional vision system architectures. 

The idea of high-level structure inference makes even 
more sense in the context of a coupled solution to recog-
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nition and segmentation. If both decisions are to be 
made together, representing both problems at the same 
level of abstraction allows the convenient expression of 
coupling constraints. 

The work also demonstrates a novel application of 
Markov Random Fields in a non-homogeneous, non
isotropic, high-level application. MRFs are convenient 
for the representation of labelling problems, and partic
ularly convenient for the expression of arbitrary spatial 
relationships that arise in the representation of spatially 
complex objects. 
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Abstract 
A new technique for describing and partition
ing curved surfaces is presented. This tech
nique is a generalization of two-dimensional 
"curvature-tuned smoothing" for decomposing 
planar curves. The three-dimensional method 
described here performs smoothing using the 
Gaussian and mean surface curvatures. As the 
smoothing is performed, parts are extracted in 
a robust manner, each at its appropriate scale. 
The extracted parts correspond to regions of 
roughly uniform curvature and constitute a rich 
description of the original data suitable for ob
ject recognition. 

1 Introduction 
In this paper, we describe a technique for computing ab
stracted descriptions of curved objects. A key aspect of 
this approach is that it reduces a dense and unmanage
able image-domain description of the object to a sparse 
one containing the fundamental characteristics in curva
ture space necessary to establish the object's identity. 
The technique is robust in the face of noise or partially 
corrupt data. 

The method is based of the application of an energy
based smoothing technique to the image data. In the 
process of producing multiple smoothed versions of the 
image, several different part structures are induced on 
the emerging representations. The segments modelled 
by these parts are smoothed in slightly different ways. 
A symbolic description of the input curve is constructed 
from these segments. The description allows the data 
to be dealt with either in terms of its coarse structure, 
or based on finer scale properties. Furthermore, because 
the representation is derived from local properties it al
lows recognition to proceed despite occlusion of sections 
of the object. 

The stable extraction and measurement of curvature 
information in the presence of noise has been dealt with 
in several ways [Bes!, 1988, Zucker et al. , 1988). One 
characteristic of most existing curvature-measurement 
techniques is the assumption that there is a unique cur
vature that can be measured at each point .1 While this 

1 This assumption is often only stated implicitly. Some 

is, of course, true in the analytic case, the assumption 
introduces significant problems for inverse problems in
volving noisy signals, such as those that occur in vision. 
Despite the respectable results that have been achieved 
by some researchers, the need for scale-specific operators 
to deal with noise problems (which also manifests itself 
as the need for the choice of a best smoothing scale, or 
the choice of an appropriate neighborhood for measure
ments) causes .an inherent preference for certain ranges 
o_f curvature value and involves strong implicit assump
t10ns about the underlying signal. The actual curvature 
of a signal depends on what we call noise and what we 
call signal, and hence may take on differing values de
pending on our goals. 

One of the central ideas behind our approach is to 
target the smoothing technique to the particular mod
els to be extracted. For each type of part, a smoothing 
operator is applied which is appropriate to this specific 
goal. We have previously demonstrated the advantage 
of this approach for two dimensional curves [Dudek and 
Tsotsos, 1989, Dudek and Tsotsos, 1990); here we extend 
our framework to the case of smoothing for three dimen
sional surfaces. We conjecture that smoothing methods 
in other domains may also be improved upon by taking 
into account the particular measurements to be made 
from the smoothed data. In this case, curvature-tuned 
smoothing allows us to obtain measurements which have 
not been subjected to an unnatural "flattening" or dis
tortion as a result of the smoothing. 

A second key strength of our approach is that it al
lows patches with different curvatures to be extracted 
at the same location. Since curvature and scale are in
timately related, this provides a multi-scale description 
of the object, based on curvature. Surface patches with 
low curvatures correspond to coarse-level aspects of ob
ject structure. 

Lastly, the subdivision of curvature space obtained 
from our method can be made far richer than the con
ventional one based on merely the signs of mean and 
Gaussian curvature. This should allow for much more 
precise shape discrimination than is usually associated 
with curvature based object recognition. The part struc-

techniques use multiple scales at an intermediate filt ering 
stage, but then concentra te on selecting the single correct 
curvature at each point . 
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tures in terms of which the object is described includes, 
for example, cylindrical and spherical patches of different 
sizes and curvatures. 

2 Method 
Given the projection, u(x, y), of a C 2 surface, its Gaus
sian curvature, K, and mean curvature, H, are given in 
terms of the principal curvatures k1 and k2 as: 

(1) 

Note that the power of these quantities comes not only 
from their perceptual relevance, but also from the fact 
that Gaussian curvature, like the curvature of plane 
curves, is an intrinsic property of the curve ( and hence 
invariant to rotation and translation). For single-valued 
surfaces, z = d(x, y), we can define these in terms of 
the derivatives in the orthogonal projection plane [Do
Carmo, 1976]: 

K(x, y) = (2) 

H(x, y) = (3) 
8u 2 8 2u 8u 2 8 2 u 8u 8u 8 2u 

! (l+ay )~+(l+0x )~-2&x"ay ~ 
2 (1+8u\8u )! 

8:r: 8y 

In practice, these quantities cannot be measured di
rectly from real data due to its sensitivity to noise. The 
condition of C 2 continuity presents a further problem 
in that the depth map is unlikely to be continuous and 
that the relationship between discontinuities (edges) and 
noise is often a subtle one. These difficulties are usually 
partially addressed by the application of some non-local 
surface model, in particular neighborhood smoothness, 
to reduce the effects of high-frequency noise. The se
rious shortcoming of most such techniques is that the 
appropriate neighborhood for their application is diffi
cult to select ( and, in fact, ill-defined) and further, the 
smoothing itself corrupts the curvature values.2 

One approach to dealing with real, noisy, data is to 
apply a minimization technique based on finding an ap
proximating surface with pre-defined (fixed) curvatures 
[Dudek and Tsotsos, 1989]. In two dimensions, this 
"curvature-tuned smoothing" technique is based on min
imizing the functional: 

E(u) = 1T llu(x)- d(t)ll2 + A(K(u(t)) - ci)2 dt (4) 

with respect to u(t), where d(t) is the input curve as a 
function of arc length, t, and k is the curvature function. 
The minimization is performed for various values of the 
constant Ci. When this minimization is performed in 
conjunction with discontinuity insertion, useful decom
positions of the curve can be obtained. The advantage 

2Typically the smoothing is posed so that it reduces the 
curvature. Even for ideal data, the smoothing alters the 
measurements. 
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of this method is that the series of minimizations extract 
structures at different curvatures, even though they may 
overlap arbitrarily. The parts into which the curve is de
composed correspond to uniformly curved regions which 
are both visually salient and useful for recognition. 

We can generalize this two-dimensional technique to 
three dimensions to obtain the following (variational) 
minimization problem: 

E(u) = ls ll u(x, y)- d(x, y)i!2+ (5) 

A1(k1(x,y)- c1,i)2 + A2(k2(x,y)- c2,,)2 dS 

A closely related problem is minimizing: 

E(u) = ls llu(x, y) - d(x, y)i!2+ (6) 

>.H(H(x, y) - h,)2 + AK(K(x, y) - k,)2 dS 

where d(x, y) is the observed data, u(x, y) is the smooth 
surface function which constitutes a minimum of the 
functional, and AK, AH, h, and k, are constants. The in
formation content of the Gaussian and mean curvatures 
is equivalent to that of the principal curvatures. An ad
vantage of this formulation is that the signs of the Gaus
sian and mean curvatures are directly related to broad 
but useful surface classifications [Vemuri et al., 1986, 
Besl, 1988]. 

The AK, AH weighting terms govern the degree of in
fluence of the various terms in the minimization. They 
act as scale parameters determining both the size of the 
neighborhood influencing a point's value as well as the 
relative salience of the input data. h, and k, are "target 
values" for the curvatures which prescribe the definition 
of an optimal surface in terms of its principal curvatures. 
The minimization is performed for a variety of h, and k, 
values in what is, essentially, a sampling of curvature 
space. Because of the relationship between scale and 
curvature, the values of the A parameters are a function 
of the curvature tuning. 

Discontinuities must also be introduced in the process 
of performing this minimization. Although the precise 
placement of these discontinuities is, in general, a dif
ficult non-linear problem [Blake and Zisserman, 1987, 
Terzopoulos, 1986], we need not be overly concerned 
with their accurate localization in all cases. The sub
set of the discontinuities that can be easily determined 
is exactly those we are most concerned with. This is 
because the non-linear interaction that makes disconti
nuities hard to place arises when discontinuities are close 
together and along the same orientation. This, in turn, 
indicates that the patch being fitted has a high local 
energy with respect to the current curvature parame
ters (since it is being broken into small pieces). Hence, 
discontinuities that are difficult to place correspond to 
regions of the input data that are poorly described by 
the h, and ki at which they were detected, and hence 
they are much less likely to be salient. 

The image regions into which the technique naturally 
decomposes the image may subsequently be ranked in 
terms of their "energy" according to the above func
tional. That is, the value of the energy functional for 



a fixed value of the parameters h, and k, over a surface 
patch u(x, y) indicate the "naturalness" or "appropriate
ness" of those parameters as a description of the patch. 
Regions with low energy correspond to natural descrip
tions of the underlying image. The collection of these 
low-energy regions constitutes a powerful description of 
the original image and can be used for matching. The 
form of the functional also assures a substantial degree 
of immunity to noise in the image. 

3 Practical Considerations 

In the vision and sensing domains, the surface function, 
u(x, y), which gives the depth of the surface points is not 
a continuous function. In fact, in many practical cases 
such as depth from stereo, in may not be uniformly sam
pled. The minimization problem posed above can readily 
be posed in discrete terms and modified so that the data 
consistency term, I lu(x, y) - d(x, y) l 12 , is evaluated only 
at those locations where actual surface measurements 
are available. The use of conventional thin-plate models 
(equivalent to the h, = k, = 0 for almost-flat surfaces) 
for such surface interpolation from sparse data has been 
exploited with considerable success by Terzopoulos [Ter
zopoulos, 1986]. 

It is important to note the the curvature-based energy 
functional given by equation 7 corresponds to a large
deflection thin-plate bending model of a surface with 
"natural" preferred curvature. As such it is a natural 
model of a flexible surface being bent. On the other 
hand, it is also a non-linear functional. 

As a result of the non-linearity nature of the system 
being solved, it can, in principle, admit local minima. 
In practice this are not of great concern for two rea
sons: local minima in this type of system do not al?pear 
to be physically plausible [Tauchert and Lu, 1987J and 
we are interested in solutions to the minization prob
lem that occur close to the initial data, hence drastically 
constraining the solution space for the minimization . 

4 Implementation 

A variety of potential minimization techniques could be 
used to solve this problem. For the purposes of this 
implementation, a simple steepest descent method was 
used. The surface derivatives were computed using first
order finite differences and a discrete formulation of the 
energy functional in equation 7 has the following form: 

E(u) = I: B(x, y)(u(x, y) - d(x, y)) 2 + (7) 
s 

>.H(H(x, y) - h,)2 + 
>.K(K(x, y) - k,) 2 

where B( x, y) is zero except where there are depth mea
surements d(x, y), where is has the value one. 

It should be noted that the formulae for Gaussian and 
mean curvature are actually reliable only in the differen
tial case and for C 2 surfaces. Although within each sur
face patch the validity of this approximation can be guar
anteed after the minimization has had time to approach 
a minimum, the initial state of the surface, u(x, y), with 

noisy data may be very spikey. In order for this to 
be smoothed out at all, it must be detected as a point 
of high curvature. The straightforward formulae break 
down, however for severe noise points (and give very low 
curvature estimates) 3 • As a result, it is necessary to use 
an augmented curvature measure that returns high cur
vature values at spikes or thin ridges. These augmented 
measures are used when the surface second derivatives 
are large and have the form: 

K(x, y) = 

H(x,y) = 

</J(u) = { ~u - sign("vu) * Thrsh 

+ <P (8) 

(9) 

for "v2u < Thrsh 
for "v2u > Thrsh 

(10) 
For surfaces of low curvature these augmented measures 
results in measurements close to the conventional mea
sures (i.e. equations 2 and 4) even if they are used. For 
noise patches, these measures produce large "curvature" 
measures. One artifact of this method is that for curved 
surfaces at extremely oblique angles, the curvature esti
mate could be artificially magnified. 

5 Experiments and Discussion 

We briefly present some experimental results to illustrate 
the surface decomposition technique described above. A 
range image of a small portion of a human face (near the 
nose) is shown both as a 3-D perspective plot, and with 
depth mapped to intensity. Accompanying it are regions 
extracted from the image by several different curvature
tuned minimizations. The sections shown in black are 
those with low energy, i.e. those that were well suited to 
description with those combinations of curvatures. 

It may be interesting to reflect on the comparison be
tween this technique and others for surface decomposi
tion. A variety of techniques for coarse surface typing 
have been proposed [Marr, 1982, Vemuri et al., 1986, 
Blicher, 1987, Koenderink and van Doorn, 1980]. In 
particular, some effective techniques for surface parti
tioning based on quadric surface classes have been de
veloped [Ferrie and Levine, 1988, Besl and Jain, 1985, 
Besl , 1988]. Note, however, that these techniques have 
been proposed for surface decomposition into only a 
small set of surface classes and hence have limited dis
criminatory ability. This small set of surface classes, 
although potentially useful for coarse classification, ap
pears to be too spare for powerful object recognition. 

3 Note that in the 2-D case, for example, at noise spikes, 
there may not be any potential interpolating circle that allows 
a single-valued circular function to be interpolated through 
the data. In short, the conventional conception of curvature 
in this context becomes ill-defined. 
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Figure 1: Input image and sample decompositions for different curvature tunings .. Observe that the sides of the nose 
and the cheeks are selected by the smoother tuned for flat surfaces. The cylindrical tuning picks out the bridge of 
the nose, the edges of the nostrils, and the edges of the eye sockets. The spherical tuning selects the tip of the nose. 
In practice, these data would be postprocessed you select only certain "canonical" descriptors at each level. The 
curvature tuning was quite coarse; a finer sampling of curvature space would produce fewer, more precise, descriptors 
at each level. 

Input data shown as intensities and as a 3-D plot. The 
region marked with the black rectangle is that used for 
the computations below . ... 

Convex cylindrical tuning Convex spherical tuning Planar tuning 
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Detail of nose showing concave cylindrical regions (in 
black) at sides of nose and nostrils (left) and convex 
cylindrical regions down center of nose and around edges 
(right ). 



Perhaps more important, these methods implicitly use 
a scale-specific decomposition operation and allow only 
one descriptive part to cover any given part of the image. 
The technique described here can be used to produce 
either coarse descriptors as well as richer descriptive el
ements. Finally, the technique proposed here includes 
segmentation as a natural part of the measurement pro
cess rather than imposing it as a arbitrary second stage 
of processing. 

6 Summary 

A technique for "smoothing" data using a family of 
curvature-tuned minimization procedures has been in
troduced. The application of this technique divides the 
image into regions in a robust manner. These regions 
are defined by roughly uniform properties in terms of the 
surface curvatures. This decomposition captures struc
ture at different curvatures (and scales) even if they oc
cur at the same location. 

The resulting description appears to be appropriate 
for a variety of recognition tasks. A similar technique 
has been found to be useful for recognition in the do
main of plane curves. Further issues alluded to, but not 
discussed here, are the detection of discontinuities, the 
completeness of the representation, and the robustness 
of the description; these issues are currently being ex
plored. 
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Can We Build Learning Robots? 
Peut-on construire des robots qui apprennent? 

Tom M. Mitchell 
Department of Computer Science and Robotics 

Carnegie Mellon University 
Pittsburgh, Pennsylvania, U.S.A. 

Abstract 

Yes. At least simple ones ... 
One approach to overcoming the brittleness 

and inflexibility of current robot systems is to 
develop approaches that allow them to learn 
from their experience. This talk discusses the 
general problem of robot learning, and focuses 
on three types of learning that are currently ex
hibited by prototype robot systems in our labo
ratory. The first is learning of strategies for ap
proaching and recognizing simple objects ( e.g., 
cups, boxes) using sonar sensors aboard a mo
bile robot. The robot is trained by showing it 
a new type of object, and it inductively learns 
to approach, sense, and discriminate the object 
from others it has observed. The second type 
of learning automatically improves robot reac
tivity for routine actions by compiling the re
sults of slow, deliberate planning into stimulus
response rules. These learned rules produce the 
same decisions as the original planning process, 
but reduce the reaction time of the robot from 
minutes to subsecond. The third type of learn
ing improves the robot's ability to correctly pre
dict the effects of its actions on the world, thus 
improving the correctness of its control deci
sions. This third project uses a robot arm ma
nipulating objects, with feedback provided by 
a vision system. 

The talk will summarize current · results from 
these three learning robot systems, and con
sider some of the MANY open issues that re
main. 

Oui. Du moins s'ils sont simples ... 
Une approche pour venir a bout de la fragilite 

des systemes robotiques actuels est de developper 
des mecanismes qui leur permettent d'apprendre par 
expenence. Cette presentation discute le probleme 
general d'apprentissage en robotique et present trois 
types d'apprentissages qui sont actuellement utilises 
par des prototypes de robots dans notre laboratoire. 
Le premier est l'apprentissage de strategies pour ap
procher et reconnaitre de simples objets (par exemples 
des boites, des verres) a l'aide de senseurs soniques 
mantes sur un robot mobile. L'apprentissage se fait 
en presentant un nouveau type d'objet au robot qui 
apprend par induction a l'approcher, le reconnaitre et 
le differencier d'autres objets qu'il a observes. Le sec
ond type d'apprentissage ameliore la vitesse de reaction 
du robot pour des actions routinieres en compilant les 
resultats d'une planification intentionnelle lente en une 
serie de regles stimulus-reaction. Ces regles produisent 
les memes decisions que le processus original, mais 
reduisent le temps de reaction du robot de plusieurs 
minutes a moins d'une seconde. Le troisieme type 
d'apprentissage ameliore la capacite qu'a le robot de 
predire les effet de ses actions sur le monde, ameliorant 
ainsi la qualite de ses decisions de controle. Ce troisieme 
project utilise un bras mecanique et un systeme de vi
sion pour manipuler des objets. 

Cette presentation resume des resulta.ts recents 
obtenus avec ces trois systemes de robots et considerc 
quelques unes des NOMBREUSES questions qui de
meurent. 

259 



. I 

· . . ·1 

·1 

I 

·I 

i 

260 

Planning the Future of Natural Language Research 
( even in Canada) 

Graeme Hirst 
Department of Computer Science 

University of Toronto 
Toronto, Ontario, CAN ADA 

Abstract 

I believe that the following issues will ( or should) become important in AI research 
in natural language in the 1990s: 

• Nuances of language and style; 

• Problems in knowledge representation for natural language; 

• Deciding when partial understanding suffices. 

I will discuss each of these, describing the present foundations and why I think 
the topics will be important for the future. In addition, I will discuss the role of 
NL research in Canada, especially with regard to machine translation. 



Obtaining Colour Signal Spectra for Colour Constancy 

Brian V. Funt, Mark S. Drew, and Jian Ho 
School of Computing Science 

Simon Fraser University 
Vancouver, B.C. 
Canada V5A 1S6 

604-291-3126 
e-mail funt@cs.sfu.ca 

Abstract 
We wish to report on progress on two problems 
related to colour constancy. The first is how 
to obtain information about the colour signal 
from a standard colour image; and the second is 
how to extract the illumination and reflectance 
components from a colour signal. In particular, 
we will show how colour signal information can 
be extracted from either chromatic aberration 
or mutual illumination and then used for colour 
constancy. 
Chromatic aberration blurs an image in a 
wavelength-dependent manner. By analysing 
the chromatic-aberration-induced blur at a re
flectance edge, the difference in the colour sig
nals from the regions forming the edge can be 
calculated. Mutual illumination between sur
faces (i.e. light reflected off surface A impinging 
on surface B) also contains clues about the re
spective colour signals from A and B. The light 
a camera receives from a point on A where mu
tual illumination from B is absent tells us the 
colour of one component of the illumination in
cident on B; namely, that part reflected from A 
onto B. Comparing a point on B where mutual 
illumination is present to one where it is ab
sent allows the ambient illumination to be de
termined. The method is formalized in terms 
of finite-dimensional models oflight and surface 
reflectance and leads to a set of simultaneous, 
non-linear equations. 
The algorithm for decomposing a colour sig
nal minimizes the difference between it and 
approximations to it formed as products of 
finite-dimensional models of potential illumi
nants and surface reflectances. The method 
succeeds because the statistical properties of 
typical illuminants such as daylight differ from 
those of typical surface reflectances. 

1 Introduction 
The spectrum of light reflected from a surface contains 
information about both the surface's reflectance and the 
spectrum of the incident illumination. In general, it 

would be very useful to be able to decompose the spec
trum of the reflected light, known as the 'colour signal,' 
into two components- one due to the surface reflectance 
and a second due to the illumination. Such a decompo
sition would yield the colour of the surface independent 
of the colour of the illumination. Since surface colour is 
properly a surface property, not a property of reflected 
light, it must be encoded with a descriptor that remains 
constant despite changes in the colour of the illumina
tion. The surface reflectance component of the colour 
signal is one such descriptor. 

Figure 1 depicts the situation. A point on a surface 
with percent spectral reflectance S(.~) illuminated with 
light of spectral power distribution (SPD) E(A) reflects 
light, the colour signal, of SPD C(A) = E(A) x S(A). 
Ideally, we would like to obtain S(A) from some type of 
sampled measurement of the colour signal, C(A). The 
traditional colour camera samples the colour signal in 
three broad bands defined by three sensor response func
tions, Rk(A), k = 1..3. The camera output is defined by: 

Pk = j C(A) Rk(A) dA, k = 1..3 (1) 

While less general than the complete surface reflectance 
function, a second common type of colour-constant de
scriptor is defined as what the camera output would be 
if the surface were illuminated under a standard, white 
illuminant such as D65. In the case of an 'ideal white' 
where E(A) = 1, the colour-constant descriptor is sim
ply: 

Pk = J S(A) Rk(A) dA, k = 1..3 (2) 

Many approaches to colour constancy [Maloney and 
Wandell, 1986; Land, 1974; Gershon et al., 1987] take 
the view that a set of output camera vectors p obtained 
from one or more points constitutes all that is known 
about the colour signal reflected from them. More than 
this, however, can be established by taking into account 
the effects of chromatic aberration and mutual illumina
tion, as long as the camera parameters are known and 
some assumptions about the scene are valid. With more 
information about the colour signal in hand, a different 
approach can be taken to calculating colour-constant de
scriptors. 
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Figure 1: Incident illumination and reflectance combine 
to form the colour signal. Shown here is the colour sig
nal resulting from standard daylight D65 illuminating 
Krinov reflectance # 53 (heather, dense growth before 
flowering) [Krinov, 1947). 

2 Mutual Illumination 
Mutual illumination causes much of the illumination 
variation in a scene and therefore contributes to the need 
for a colour constancy algorithm. It occurs when light 
reflected from one surface hits a second surface thus illu
minating it with a different SPD than that of whatever 
direct illumination is present. As a concrete example, 
consider a red and a blue surface meeting at a concave 
edge outdoors in the sun. The basically white mixture of 
sunlight and skylight impinges on the red surface from 
which it reflects as dominantly red. Illuminating the 
blue surface, therefore, is a mixture of reflected red and 
direct white light, the relative mixture of which varies 
across the surface. By symmetry, reflected blue light also 
impinges on the red surface, which while very damped, 
again will bounce back to the blue side. 

For two mutually illuminating surfaces A and B, let 
C4.(..\) be the colour signal reflected from surface A at 
a location where mutual illumination from B is present 
and cA(..\) be the colour signal where mutual illumi
nation is not present; and similarly C£(>-.) and cB(..\). 
The fraction of cA ( .X) striking B is denoted by a AB. If 
we i~nore multiple reflective bounces (see [Drew et al., 
1989J) then to first order we have: 

C4.(.X) = cA(.X) + OBA cB(.X) sA(.X) (3a) 

C{:.(.X) cB(.X) + 0AB cA(.X) sB(.X) (3b) 
If we could measure colour signal SPDs directly, then 

these equations could be used to solve for the percent 
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reflectance up to an overall multiplicative constant. For 
example, using (3a) 

If colour signal SPDs are not available, then we can 
employ finite dimensional linear models to approximate 
the illumination and surface reflectances in a manner 
similar to [Maloney and Wandell, 1986; Sallstrom, 1973; 
Buchsbaum and Goldstein, 1979). Using appropri
ate basis functions, E;, i = 1..m for illumination and 
S;, j = 1..n for reflectance, models of low dimensional
ity approximate typical illuminations, such as daylight, 
and reflectances of natural objects quite well[Maloney, 
1986). This technique can be extended to model colour 
signals[Drew and Funt, 1990) using basis functions C1(.X) 
derived by principal components analysis of a large set 
of measured colour signals. 

In terms of a finite-dimensional linear model with n 
basis functions, a colour signal is approximated: 

n 

C(.X) = L 'YI C1(.X) (5) 
l=l 

with weights 'YI. 
The basis functions are fixed, so it is the weights 'YI 

that represent the colour signal. Substituting the finite
dimensional expansion into the camera response equa
tion ( 1) yields 

Pk = t 'YI J Ci(.X) Rk(.X) d.X (6) 
l=l 

Given a set of camera response measurements Pk, this 
equation set can be solved for the weights 'YI that rep
resent an approximation to the colour signal C(.X) . For 
'natural' objects (e.g. leaves or rose petals) lit by natu
ral illuminants (e.g. sunlight), the recovery of the colour 
signal is surprisingly good even for n = 3. 

In the case of mutual illumination, three colour sig
nals are required to determine the surface reflectance of 
A: two from points on surface A, one within the mutual 
illumination area and one outside it, and a point from B 
unaffected by mutual illumination from A. Approxima
tions to these colour signals can be obtained from the 
camera responses at these locations via equation (6) and 
employed in ( 4) to establish the surface reflectance and 
colour of A. 

In [Drew et al., 1989) an alternative set of equations 
is presented in which the surface reflectance is solved 
for directly without first determining the three colour 
signals. 

3 Chromatic Aberration 

Chromatic aberration is a wavelength-dependent distor
tion and as such it contains information about an incom
ing colour signal. A single-element lens, such as that of 
the eye, only can focus one wavelength at a time. All 
other wavelengths will be out of focus. Another way of 
saying this is that the focal length of a lens is a function 
of the refractive index of its material, and in general, 



the refractive index of a typical material varies mono
tonically with wavelength. A glass prism illustrates this. 

Given the wavelength-dependent nature of chromatic 
aberration, what information can be gleaned from it 
about the colour signal? To answer this question, we 
first consider a model of image formation in the pres
ence of chromatic aberration. The point spread function 
(PSF) characterizes a shift-invariant linear system, such 
as that of an ideal lens, by specifying the system's out
put in response to an idealized point impulse input. The 
image a lens forms is then described by the convolution 
of the PSF with the input, the input being the pattern 
of light entering the lens. 

In the case of chromatic aberration, the PSF for a sin
gle wavelength A is simply that of a defocussed lens and 
the image for that wavelength alone is the convolution 
of that PSF with the input. For a second wavelength A', 
the PSF is again that of a defocussed lens, but with a 
different degree of defocussing. The defocussed images 
corresponding to varying wavelengths superimpose ad
ditively to create one pattern of light intensity on the 
image plane. 

The geometrical (i .e. ignoring diffraction) PSF of a de
focussed lens is a circularly symmetric 'pillbox' function 
of radius R(A): 

{ 
0, r > R(A) 

h(r,A) = l/1/'R2 , r ~ R(A) (7) 

The chromatic-aberration-induced defocussing depends 
on wavelength, as is made explicit by expressing R as a 
function of A. Figure 2 shows how the image of a single 
point is the superposition of a set of disks defined by 
the wavelength-dependent PSFs. A crucial observation 
is that the thickness of each disk varies both as a func
tion of the height PSF and of the energy in the colour 
signal C(A) emanating from the point for the relevant 
wavelength A. 

Now consider the image of a scene. From each image 
location (x,y) there is a corresponding colour signal, so 
the scene can be described as a function C(x, y, A). The 
grey level, intensity image (i .e. black and white picture) 
in the presence of chromatic aberration is given by 

I(x,y) = { C(x,y,A)*h(r,A) dA (8) 
lvisible 

where'*' is the convolution operator. 
What will the resulting image look like for a re

flectance edge occurring between two regions of different 
colour? Suppose, for the sake of having names to use, 
the regions are red and blue and the transition from red 
to blue is a vertical step function. In the red region far 
from the edge, the convolution simply blurs red into red 
creating no change. Near the edge, however, some of 
the red will spread into the blue and vice versa. Such a 
point's grey level intensity can be expressed as a baseline 
intensity due to the red, less the amount of red blurred 
into the blue region, plus the amount of blue blurred into 
the red region. 

For the reflectance edge case, this relative blurring can 
be made precise. The constraints on Callow the integral 
equation (8) to be solved for the difference (the DSPD) 

A max 

I 

Figure 2: The image of a single point is the superposition 
of a set of disks defined by the wavelength-dependent 
PSFs. 

between the SPD of the colour signal from the red region 
and that of the blue. Details are given in [Funt and 
Ho, 1988], but intuitively it is clear by the symmetry 
of the blurring between the red and blue regions that it 
will only be possible to obtain the colour signal of one 
relative to the other. 

The influence of diffraction on the PSF cannot be ig
nored for the DSPD extraction to work properly. Fig
ure 3 shows two examples of PSFs for different defo
cussings, which clearly bear only superficial resemblance 
to the often-suggested approximation (e .g. , [Horn, 1986, 
p. 127)) the pillbox. These PSFs were calculated from 
the inverse Fourier transform of the optical transfer func
tions given in [Stokseth, 1969]. 

Figure 4 plots intensity profiles across a unit step edge 
convolved with different PSFs. Profiles generated using 
the pillbox PSFs are shown for comparison. The inten
sity profile across a reflectance edge between two arbi
trarily coloured regions will be a weighted sum of a set of 
such profiles, with weights proportional to the DSPD at 
the corresponding wavelength. We are currently testing 
a new chromatic aberration algorithm based on this ob
servation that fits the reflectance-edge profile as a sum 
of the PSF-convolved edge profiles, thereby solving for 
the weights representing the DSPD. · 

4 Separating Illumination from 
Reflectance 

An important premise of the above is that knowing the 
SPD of a colour signal or the DSPD of two colour signals 
will be of some use. In particular, can the SPD C(A), 
which is the product of two functions E(A) and S(.\), be 
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Figure 4: Step-edge profiles using zero defocussing and 
large defocussing including the effects of diffraction 
(solid lines) and the corresponding no-diffraction profiles 
( dashed lines) . 

separated into its respective components? It might at 
first appear that the answer is negative because of the 
product nature of their intermixture in the colour sig
nal. Typical illuminants and typical reflectances, how
ever, differ in their statistical properties. 

Finite-dimensional linear models of illumination and 
reflectance could be based on any linearly independent 
set of basis functions, but for models of low dimensional
ity to succeed, the best bases can be found via a principal 
components analysis[Jolliffe, 1986) oflarge and represen
tative sets of illumination and reflectance measurements. 
The basis functions so obtained capture the statistically 
most relevant features of the data. The bases determined 
for illumination and reflectance by Judd [Judd et al., 
1964) and Cohen [Cohen, 1964) as well as the bases de
termined from our own analysis of the reflectance data of 
Krinov [Krinov, 1947) have the interesting property that 
the set of EiS; pairs, (i = 1, . .4; j = 1..6) is linearly 
independent. As a consequence, the finite-dimensional 
approximations to the reflectance and illumination com
ponents can be extracted from the colour signal. 

The colour signal components are found by minimiz
ing the least-squares difference between the actual colour 
signal and synthesized colour signals composed as prod
ucts of candidate illuminations and reflectances- the 
candidates being those illuminations and reflectances 
that can be generated using the basis functions estab
lished by the principal component analyses. The quan-



tity to minimize is 

Setting the partial derivatives with respect to the un
knowns to zero leads to the corresponding 'normal' equa
tions to be solved for fi and u;. 
Fork= 1 tom, 

t. E,(A,) [t. u;S;(A,)] { [t. <;E;(A,) l 
[t.u;S;(A1)] - C(A,)} = 0. 

Fork= 1 ton, 

tsk(A1) [ttiEi(A1) l { [ttiEi(A1) l 
[t.u,s,(A,)] - C(A,)} = 0. (10) 

Tests on the accuracy of the recovered illumination spec
tra and surface reflectance functions show quite good 
results and a theorem ties the accuracy of the recov
ery to the accuracy of the underlying finite-dimensional 
model[Ho et al., 1990]. The recovery is unique up to an 
overall multiplicative scale factor representing the rela
tive brightness of the illumination. For a colour signal 
which is the product of an illumination and reflectance 
that can each be exactly expressed in terms of the basis 
functions, the recovery is exact. 

When a DSPD is available, not an SPD, then the 
above equations can be solved for the fi and terms /:,,.u; 
representing the difference in the reflectance between the 
two regions. Once the illumination weights fi are known, 
the reflectance weights u; for each side of an edge can 
be determined from illumination-corrected responses of 
a colour camera. Thus colour-constant descriptors are 
recovered for each region. 

5 Conclusion 

We have followed on the work of [Sallstrom, 1973), 
who first proposed approximating spectra by finite
dimensional linear models, as well as that of [Maloney 
and Wandell, 1986; Wandell, 1987] where they are ex
ploited so cleverly in a computational model of colour 
constancy. The advantage of finite-dimensional models 
lies in the fact that they allow one to think about, rep
resent and manipulate whole spectra very easily- a sig
nificant advance over representing all colour information 
in terms of a vector of sensor responses. 

Once one makes spectra one's focus instead of trichro
matic sensor responses, it becomes natural to seek ways 
of obtaining more information about them. In terms of 
the spectrum of the incoming colour signal, one option 

is to measure it directly with a spectrometer or, as we 
have shown, chromatic aberration and mutual illumina
tion effects can be analysed to provide knowledge of some 
of its characteristics. In either case, additional informa
tion about the colour signal helps establish its surface 
reflectance and illumination components, which are at 
the heart of the problem of producing colour-constant 
surface descriptors. 
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