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A Message From the General Chairman/Un Message du President Général

in the pages which follow you will find the papers,
both invited and refereed, which will be presented at
this, the Fifth National Conference of the Canadian
Society for Computational Studies of Intelligence. A
conference however is much more than a set of paper
presentations. It is a meeting of minds - not all of
which are open! (it is a place for meeting old friends
and making new ones. It is a place for discussing is-
sues and, usually at great length, non issues. It is
a place for riding hobby horses and, occasionally,
Derby winners. 1t is something like an academic cir-
cus, with its barkers and hucksters and three card
men; its chamber of horrors and its hall of mirrors and,
yes, its strong man and the fat lady. You have paid
for your ticket (I hope!) and the rides are free; en-
joy yourselves.

This particular conference of the Society is being
held at a time when the subject matter which draws us
together is passing through a period of high visibil-
ity. For the first time in the lives of most of us,
industry, the Professions and yes, even Government
want to know, if not us, then experts in our area of
interest. Some of us, (though we're a dying breed),
have been here before. |'m not sure that [ like it
and )'m not sure that | don't. As a one time bank
manager T7.S. Elliot said "'this above all is the great-
est treason, to do the right deed for the wrong rea-
son." You could well transpose this, and anyway, you
all know what happened to Beckett.

But enough of this amateur philosophising: there are
really intellectually exciting things happening out
there for those who can stand the pace. Whether we
have to wait five or five to the fifth years for the
first all singing dancing robot, remember that it is
said to be better to travel hopefully than to arrive.
| am not sure that | belive this last aphorism, but
anyway, take a step or two along the way at The
University of Western Ontario in London - home of

the inaugural meeting of the Society more years ago
than | care to remember.

Ted Elcock

General Chairman

Fifth National Conference
of the CSCSI/SCEIO

Dans les pages suivantes, vous trouverez les articles,
invités et examinés, qui seront presentés 3 la Cinqui-
2me Conférence Nationale de la Société Canadienne pour
Etudes d'lIntelligence par Ordinateur. Pourtant une
conférence est beaucoup plus qu'une série de présent-
ation d articles. C'est une rencontre d'esprits - pas
tous ouvert! C'est une place pour rencontrer de vieux
amis et en faire de nouveaux. C'est une place pour dis-
cuter des questions et habituellement, aussi pour dis~
cuter longuement des sujets de peu de conséquence.
C'est une place pour chevaucher ses dadas favoris et,
parfois, des gagnants du Derby. C'est un peu comme un
cirque académique, avec ses bonimenteurs et colporteurs
et les hommes de trois cartes; sa chambre d'épouvante
et sa maison de miroirs et, oui, son homme fort et sa
femme grasse. Vous avez payé pour votre billet (je
1'esp2re) et les tours sont gratuits; amusez-vous bien.

Cette conférence particulidre de la Société a lieu 3
un temps oll le sujet qui nous assemble passe par une
period d'haute visibilitée. Pour la premidre fois
dans la vie de la plupart de nous, )'industrie, les
Professions et oui, méme le Gouvernement veulent nous
en savoir, si pas nous, alors les experts dans nos do-
mains d intéré&ts. Quelques-uns de nous 1'avions déj3
vécu (malgré que nous sommes une espéce qui est en
train de disparaTtre). Je ne suis pas certain que je
1'aime mais je ne suis pas certain que je ne 1'aime
pas. Comme un ancien directeur d'une banque

T.S. Elliott a dit ‘“this above all is the greatest
treason, to do the right deed for the wrong reason.'
Vous pouvez facilement transposer ceci, et en tout
cas, vous savez ce qui est arrivé 3 Beckett.

Mais assez de ce philosophie amateur: Il y a des
choses vraiment intellectuellements passionnantes

qui arrivent pour ceux qui peuvent survivre les dé-
veloppements. Que nous ayons besoin d'attendre cing
ou cing 3 la cinquigme années pour le premier robot
tout chantant et dansant, souvenez-vous qu on dit

que c'est mieux de voyager avec espoir que d'arriver.
Je ne suis pas certain que je crois ce dernier aphor-
isme, mais en tout cas, prenez un pas ou deux sur le
chemin 3 1'Université de Western Ontario 3 London -
place d'origine de la conférence inaugural de la So-
ciété plus d'année que j'aime me rappeler.

Ted Elcock

Président Général,

Cinquigme Conférence Nationale
de la CSCSt/SCE1O
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Computational Linguistics = Generalized Unification + Applied Graph Theory

Martin Kay

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto
California 94304

Introduction

We usually characterize things from on top—I{rom the point of
view of how they fit into some larger picture. So. if someone asks
me what my claim to be a computational linguist implies for the
way [ spend my time. [ might be expected to wax eloquent about
building computational models to help explain deep psychological
phenomena or at least about the importance of machine translation
for world peace. My aim in this paper is to characterize computa-
tional linguistics from below, say from the point of view of a tool
maker trying to decide where he might best invest his ingenuity.

I shall begin with an operation that I call generalized wnifica-
tion which applies to sets of descriptions. [f there could he some
objects that all the descriptions refer to. then the operation delivers
a single description of this set. [f there are none, the operation is
said to fail. Much of the data that hinguists work with can profitably
be cast in terms of descriptions of the appropriate kind, in which
case many computational operations that had previously seemed
unrelated, reduce to unification. However. the familiar notion of
unification needs to be generalized, in particular, in order to allow
it to treat different types of data in different, though mutually con-
sistent ways. Much of the data can usefully be represented in the
form of directed acyclic graphs with labeled nodes and arcs. One
particular type of data that has an obvious place in linguistics con-
sists of sets of strings, in particular. regular sets. Regular sets
are readily characterized by finite automata which, in turn, are
routinely represented by directed graphs. A programming system
that implemented generalized unification and the principal opera-

tions of graph theory, particularly as it relates to finite automata.
would therefore meet the needs of computational linguists belonging
to a wide variety of theoretical sects.

[ will begin with an informal account of generalized unifica-
tion, motivating it with examples from international espionage. syn-
tax and semantics. This will lead naturally to a discussion of the
roles played by finite automata in syntax and morphology as well
as to a related kind of object called a parsing chart.

Generalized Unification

Suppose that. in your capacity as Director of Intelligence for
the Department of Fine Arts, you send one of your operatives to
photograph an important design on a wall in some far-off place.
What you receive back is these two microfilm frames, now publicly
displayed for the first time.
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Apparently, someone was walking in front of the design when
hoth photographs were taken. After weeks of feverish work, the
boys in the green eyeshades come up with a new technique, now
also revealed for the {irst time. Thev make transparencies from
the photographs and, when they project them superimposed on
one another, the intruding figure disappears. The technique they
discovered is what we now know as unificatton. It consists in creating
a picture from two or more potentially incomplete originals, filling
holes in each with information taken from corresponding places
in the others. The result may, of course, also be incomplete. but
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since it contains the union of the information in the contributors,
it produces a result that is at least as good as they are. In the
course of unification, it may be discovered that a pair of pictures
are deceptively similar but that they could in fact not be of the
same scene. The pictire below. for example, could not be the same
wall because there is a different pattern of lines in the top lefthand
square. In this case, unification fails.
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The microfilm story is. of course, hopelessly contrived. Even
if the registration of the two images were perfect, the person that
obscured part of each would probably not have been transparent.
Furthermore, this tatest picture could in fact depict the same scene
as the earlier one if we continue to insist that the hlack parts of
the images contain reliable information whereas the white parts

contain no information at all. What this means. however. is that
unification alone would probably not be sutficient to the needs of the
intelligence agency. not that the notion of unification itself bas been
betrayed in any tundamental way.

Consider another example, also from the world of cloak and
dagger. This time, we are comparing the descriptions given below-
with a view to determining whether they might be of the same
person. We cannot be sure that they are the same, but nothing
contradicts that hvpothesis In order to be sure of this, we need to
be able to convert hetween pounds and kilograms and to know that
a 48-year-old person 1s middle aged We know that we need not be
too dismaved by the apparent disparity in children’s names because,
while we expect the intormation we are given to be correct, we know
that it is not complete. On the assumption that the people are the
same, we can formulate a new description in the ohvious way which
would be more complete that vither of the originals but necessarily
true of the person if the originals were true. [t does not matter
what units we choose to represent the lady’s weight. The figure
48 is presumably better than middle-aged on the grounds that it is
more accurate. Our new view is of @ man with brown hair because
we know to combine propositional expressions using the rules of
propositional logic. Qur new composite picture will be ot a man with
at least three children, Ahmed. Rebecca, and Angela. Notice that.
while we are not directly interested in the wife, the descriptions we
have of her appear as part of the description of the man and unifving
them occurs as part of the process of unifving tbe descripions of the
man. An inconsistency there would cause the unification to fail just
as if it had occurred among the man’s primary attributes

eyes. hlue eyes: blue
hair: black or brown hair: brown or red
height. 53117 height: 57117

accent [talian

name: O'Grady

wite: see helow

children: Rebecca, Angela
age: 18

wife: see helow
chifdren: Ahmed. Angela
age: middle



The wife:
eyes: brown
weight: 2471bs 112.015 Kg.

disposition: surly

This has been an exercise in generalized unitication, which
differs from ordinary unification in two respects. First, the set of
attributes that can be part of a description is open ended. New
reports can always bring new information and there is therefore no
sense in which a description can ever be said to be complete. Second.
the ways in which the values of attributes ure compared differs with
the type of the value. For example. metric conversion can be applied
to weights, set union to the names of children, and the unification
process itself to embedded descriptinns. In logic programming, where
most of us probably gained whatever familiarity with unification we
may have, there are just three kinds of entities, constants, variables,
and expressions, The variables are the holes in our picture; the
constants and expressions are the solid object that can fill them.
But if a particular variable occurs more than once in the expressions
being unified, each occurrence must be filled in the same way. If
A, B, and C are constants and T and y are variables. we may take
(AyC)B) and (zy) to be typical expressions over them. When they
are unified, B hecomes the value of the variable y, filling that hole.
and (ABC) becomes the value of 7.

Attribute-value lists, with values of various types, are a natural
form in which to couch descriptions of objects in general and of
linguistic objects in particular. [t is easy to see how a dictionary
entry might be put in this form. The structure ot a sentence can
be represented simply and perspicuously using such attributes as
“Subject”, “Indirect object”, “Tense™, "Topic”, "Gender™, "Predicate™,
and "Argument”. As we shall now see, the grammar of' a whole lan-
guage, which is a description of the set of expressions that it contains
can also be expressed in this form. [fthis is done, and if the rules for
comparing and combining various kind of information are defined
appropriately, then unification, rather than string manipulation,
emerges as the primary operation of linguistic computatinn.

Syntax

There are several modern syntactic theories in which uaifica-
tion, or something equivalent to it plays a crucial role. Among these
are Lexical Functional Grammar, Functional Unification Grammar,
Generalized Phrase Structure Grammar, and the PATR grammar
currently under development at SRI International. Since the details
that distinguish these formalisms are of no concern to my present
aim, [ will illustrate my point with a formalism that is different
from all of them except in its use of unification. We start with five
familiar rules of context free grammar, namely

1.5 —» NPVP
2.VP —» VNP

3.VP —» V
4. NP —» DetN
5 NP —» N

and write their counterparts in the new formalism. Rather than
explaining the formalism in detail, [ append annotate each rule with
a short commentary.

Cat =35

Head = |Cat= VP
Head = {Subj = {Cat = NPJ|

— < Head Head Subj > <Head >

The label, or formal description. of a sentence must have at least
the attributes Cat and Head. Any other attributes that it may
acquire for any reason, are irrelevant. The Cat attribute has the
value S and the head has as its value a subexpression, or embedded
description, in which the attribulte Cat has the value VP. This has
a Head attribute whose value has a Subj attribute, and this has the
description [Cat = NP]. So much for the label. A sentence has
two parts, or constituent phrases, whose descriptions are embedded
in that of the sentence itself. The value of the first is the value of
the Subj attribute of the value of the Head attribute of the value

of the Head attribute of the sentence, or its Head's [Tead’s Subject.
The second constituent is the value of the Head attribute of the
sentence: its Head. Notice that the description of the sentence
properly contains the descriptions of its constituents, hut one of these
properly includes the other.

Cat = VP

Head = |Cat = Verb
Obj = (Cat = NP

—» <Head > < FHead Obj >
|
A phrase whose description has the attribute Cut with the value VP
{a verb phrase) has two constituents, one its head and the other its
Head's Object. The former must be describable as {Cat = V] and
the latter [Cat = NP]. Once again, the description of the object is
part of the description of the verb.

Cat = VP,
Head = Cat = Verb —» < Head ~
Obj = NONE

A verb phrase is not required to have an object and. in this case.
rule 3 applies in place of rule 2. The Head’s Object has the value
NONE and the Head is the only constituent.

Cat = NP
Head = at = Noun —» < Art Head > <Head>
B Art = |Cat = Det

Rule 4 is like rule 2;
Cat = NP
Cat = Noun —» - Head>
Tead =
Hlea Art = N()NE:I

And rule 5 is like rule 3.

Needless to say. this is a trivial grammar but it will serve
the purpuses of illustration. Let us now consider how this grammar
might be used in the generation of a simple sentence. Analogously
with the rewriting procedure used with context-free grammars, we
begin by writing down a particular expression. namely that which
appears to the left of the arrow in the first rule. This will label the
top node in the tree we shall grow. The rule tells us that there will
be two nodes beneath it. The occupant of the first of these must be
describable as [Cat = N P| and what occupies the second as

Cat = VP
Head = [Subj = [Cat = NP}

But there is a little more information in the rules than this
suggests and. to and it is revealed in the tree diagram at the head
of the next column: The variable r, with the value (Cat = N P| has
been used to indicate the fact that whatever description occupies one
of the sites labeled r in the tree must also appear at all the others.
A rule must be found to apply to the [Cat = V P...}. It must be one
whose teft-hand side is a description that is unifiable with the label
on the node and the candidates are clearly rules 2 and 3. Let us
take rule 3, thus committing ourselves to a single new node on the

right labeled
Cat = Verb
Object = NONE

We now have the following tree structure shown at the foot of this
column. The bottom node on the right is a terminal node in the

Cat =8

Head = Cat = VP
Head = {Subj = x|

/\ x =[Cat = NP|

X Cat = VP
Head = [Subj = x |



Cat = S
Cat = VP
Head = [Head = |Subj = .\'J
/\ v = {Cat = NP|
~
x Cat = VP
Head = v | Cat = Verh
y = |obj = NONE
Subj = «x

usual sense that there are no rules that can be applied to it. The
left-hand node can be expanded by rule 4 or rule 5 and we will take
rule 4 giving us the following value for z.

Cat = NP

Cat
Head = | 5 ¢

|

|Cat = Detj

= Nouﬁ]

i

So far, the complexity we have added to the familiar context-
free grammar will doubtless seem gratuitous. Its cash value will
begin to appear when we begin to examine the lexical descriptions
of the items that can fill the terminal positions in this structure.
Let us begin with the tirst word. [ts description in the lexicon must
be one that unifies with [Cat = Det]. Possible examples might be:

Cat = Det Cat = Det Cat = Det
[Cac = Det :{ Word = this Word = these | |Word = all
Word = the Num = sing Num = Plur Num = Plur

“This” and “These™ are marked to show that they are singular
and plural. "The” is not marked because it can be used in either
a singular or a plural context. Some nouns that might occupy the
second position in our sentence are

Cat = Noun
Word = dogs
Art = [Num =plur]|

Cat = Noun
Word = dog
Art = |[Num = sing|

Cat = Noun Cat = Noun
Word = Fido Word = sheep
Art = NONE

The crucial point to notice is that the description of the article
must be unifiable with the Art attribute of the noun. If we choose
the first of these. the variable v would be required to have the
value NONE, conllicting with the one already assigned in rule 4.
Apparently, the noun "Fido" can only be used in a noun phrase that
has no determiner. For similar reasons, the other three nouns can
be used only in a noun phrase that does have a determiner. Now, if
the word “dog” is chosen, v must have the property [Num = sing],
restricting the choice of determiner to “the”™ and “"this™. Notice that
these agreements are not specified in detail by the grammar: all
that is required is that the description of the head of the phrase
contain a description of the determiner, thus enabling it to restrict
the determiner in arbitrary ways.

The verh is taken to be the head of the sentence and it can
impose arbitray restrictions on all the other constitutents. The
following are lexical entries for some possible verbs

]

Cat=Verh

Word = devour

Obj = {Cat = NP{
Subj = (Num = plur|

Cat=Verb

Word = devours
Uby = {Cat = NP}
Subj = {Num = sing

Cat=Verb
Word = slept [Cat:Veth
Obj = NONEJ Word = at

If we choose "devours” as the verb in our sentence, we are com-
mitted to a value for the variable z with the property INum = singl,
whereas if we choose “devour”, we are committed to one with the
property [ Num = plurl. It goes without saying that we are simplify-
ing the facts of English grammar immensely, in particular, by
restricting ourselves to third-person forms. However, it should be
clear that person can be treated in an entirely analogous manner.
“"Devour™ is a transitive verb and accordinglv can onlv he usedin a
verb phrase whose Obj attribute has the value [Cut = NP|, whereas
“slept” is intransitive and does not allow an object. Being a past
tense form, "slept” also places no restriction on the number of its
subject. Finally, the lexical entry for the verb “ate™ places no restric-
tions either on its subject or on its object because it is a past tense
form that can be used either transitively or intransitively.

There are two important features that set the family of for-
malisms of which this is a member off from its predecessors in com-
putational linguistics, like Augmented Transition Networks and in
computer science, such as Attribute Grammars. One is that there
are entirely declaritive not requiring grammar writers to know any-
thing about a particular sequence of events that will be followed
either in generation or in analysis. The other is that the only
operation that needs to be added to what is already known about
context-free grammars to achieve this is that of generalized unifica-
tion. From the declaritive property, there follows a considerahle
amount of cormputational robustness: in particular. we have a for-
malism with the kind of power that seems to be required to describe
natural languages in a theoretically revealing way while supporting

the computation operations of generation and analysis with equal
facility.

Semantics

I now hope to show that the benefits of unification go well
heyond those just outlined. Let us augment the lexical entries tor
“all” and “dogs” so that they become as shown at the top of the
next column. Observe what will happen now when, following rule 4.
these two words are incorporated in a noun pbrase. The determiner’s
description is unified with the value of the Art property of the noun,
causing the variable p to take on the value of he Meaning property
of the determiner unified with the value of the meaning property of
the noun. This unification gives the following result:

Tvpe = all
Var = ¢
Type = and
Prop = |Pl = [Pred = dog ]
Arg= ¢
P2 =[Arg = ¢ |

Without going into elaborate detail, this can be seen as description
of the logical expression

Vq.dog(q}AP(q)

The predicate £ remains to be specified. [t would come to be specified
if the noun phrase "all dogs” hecame the subject of the verb “ate”.
and the lexical entry of "ate” were provided with a Meaning as
follows:

Cat = Verb

Word = sleep

Meaning = r

Subj = [Meaning = r = [Prop = |P2 = [Pred = eat]}]

The meaning of the verb is unified with that of the subject, and P2
of the Prop of that meaning is unified with [Pred = eatl. It is not



—Cat = Det
Word = all
Num = plur
Tvpe = all
Var = g
Meaning = Type = Implies
Prop = |P1 = [Arg =q |
P2 = [Arg =q!
—Cat = Noun T
Word = dogs
Num = pl
Arg =| oM TR
Meaning = p
“T )
Meaning = p =] Prop = |Pl = ype = Pred
Pred = dog J

difficult to see that the result of this is effectively
Vq.dog(q)Aeat(q)

Graminars belonging to the family we have heen considering have
several clear advantages over context-free grammars. It is possihle
to show that they are more powerful as measured in the usual way,
namely by the size of the class of sets of strings that it is possible
to characterize with them. This may he more or less closely related
to the more important fact that they can be used to characterize
natural languages in a more concise and perspicuous manner. [n
addition. they make it possible to locate more of the constraints that
characterizing a language entails in the lexicon, thus naturally ac-
commodating in some measure the massive lexical idiosyneracy that
seems to be characteristic of natural languages. ¥Furthermore. these
formalisms have the facilities necessary to establish relationships
among ditterent kinds ol structure, as we lllustrated with the most
recent example.

A common characteristic of these grammars is that they impose
two different structures on each sentence, one a constituent structure
which is a tree such as has long heen familiar, and the other a
functionul structure, which is a recursive structure of attributes and
associated values. In general, this is not a tree but a directed acvelic
graph. If it were a tree, then we should not have found it necessary
to use variables to describe this structures. Variahles turn out to be
necessary in just those cases where a node has more than one parent,
thus violating oue of the principal conditions that a tree must meet.

Word Order and Configurationality

[n respect of their ability to state ordering relationships among
the words and phrases in a sentence and to capture significant
generalizations that these relationships exhibit, these grammars
share many of the difficiencies ot context-tree grammmar. In par-
ticular, while they are able to characterize so-called free-word-order
and nonconfigurational languages clumsily at best. A pure free-word
order language would be one with the property that the members
of any phrase can he arbitrarily rearranged without substantan-
tially changing its meaning or its grammatical properties. There
are no pure examples of such languages, but there are many that
come close. A pure nonconfigurational language would be one in
which the members of a syntactic phrase do not have to be adjac-
tent to one another. These are also not found in the pure form.
On the other hand, many more familiar languages seem to obey
ordering constraints of a stronger kind than can be readily stated in
an unadorned context-free grammar. For example, it may be that
whenever a verb and a noun appear in the same phrase, the verb
invariably precedes the noun.

In response to such observations as these, the designers of
some formalisms have felt impelled to introduce new mechanisms
for describing order. Lexical Functional Grammar and Functional
Unification Grammar both allow the string of elements that make
up a phrase to be described by a regular expression. In the latter

case, the expression can also designate places in the string where
material from outside the phrase can be allowed to intrude. One
can get some of the {lavor of this by moditfying the formalism we
have been using in this paper in a similar direction. Consider the
following rule:

Cat = NP
Head = v = |Cat = Noun
Art = [Cat = Det|

Mod = [Cat =8
Binding = «x

—» < Head Art ~ <2 Head ™ < Mod >

This is intended to bhe taken as meaning that a noun phrase
may have three constituents: its head's article, the head itself, and
a modifier. The modifier is a sentence with a non-null value for
the Rinding attribute and this will be realized as a relative clause
through mechanisms that are beyond our scope. Following the list
of constituents is a separate statement of the order in which it is
permissible for them to occur, namely with the article and head ad-
jacent to one another and in that order and with the modifer follow-
ing, though not necessarily immediately. This allows for sentences
like "A man came in whom [ did not recognize™. If the ordering
information had been omitted altogether, the understanding would
have been that the three parts of such « noun phrase could occur in
any order and without any requirement that they be adjacent.

The right-band side of the above rule has been broken into two
parts, one a set of constituent names and the other a regular expres-
sion, with # as a "wild card” constraining their order. The hypotheti-
cal constraint mentioned edarlier, that a verh always precedes a noun
when both are members of the same phrase is stated in the following
regular expression

Z¥ — [Z* noun £* verb £¥]

This set contains all strings over the alphabet ¥ not containing a
member of the offending set
[£* noun L* verb 3¢

Non-trivial computation with regular sets must invariably be carried
on the in equivalent domain of finite-state machines, and computa-
tion with finite-state machines is effectively computation with the
labeled directed graphs whose nodes and arcs represent their states
and transitions. So it seems that there are directed graphs with at
least three different interpretations that play crucial roles in com-
puting with the new kinds of grammar. But there is at least one

more.

The Parsing Chart

The sentences of natural language are notorious the number of
different kinds of ambiguity that frequently occur in them. At one
time or another. almost evervhody has tound it socially acceptable
to show some amusement at sentences like “Time tiles like an arrow
but fruit flies like a banana”. In the absence of any « priori basis
on which to prefer one syntactic alternative to another, still less
to compute only the desirable alternative, computational linguists
have tried to develop means of analyzing sentences that

1. Find all alternatives,

2. Find none of them more than once,

3. Reuse parts that can be incorprated in more than one
structure rather than computing them once for each.

4. Are simple and perspicuous,

. Leave the sequence of events as fluid as possible so that
any beuristic that shows any likelihood of producing better
alternatives earlier can be incorporated without changing
the overall scheme,

(2]

6. Are relatively insensitive to minor differences in linguistic
theory.

The strategy that seems to come closest to meeting all these

requirements is based on the notion of a parsing chart. By this time

it will be no surprise to learn that this is a directed graph. Here is

b=



an example.

The chart contains the information that results from parsing
the seténce "Time flies like an arrow” using a context-free with
just those rules necessary to produce the ambiguity for which it is
famous, but simplified somewhat for expository purposes.

There is a node in the chart for the beginning and end of the
setence as well as for the space between each word. The grammatical
labels assigned too each word and phrase are written against and
edge that spans that appropriate segment of the sentence. If two
or more edges have the same scope. then there are competing
interpretations for that part of the string. A realistic grammar,
and in particular one of the kind we considered earlier, would label
each edge with a recursive structure of attributes and values. The
simple part-of-speech labels in this diagram can be thought of as
standing in for these. In fact, they must be allowed to stand in
for something still more complex because the label on each edge
must also explicitely nume the other edges that are labeled with its
grammatical constituents. Only if this done will it be possible to
recover constituent trees unambiguously from the chart.

A complete pasing chart contains and edge for every gram-
matically allowable word and phrase. just as the one we have ex-
hibited does, and these are its active edges. [t also contains active
edges which represent partial phrases. The label of an active edge
contains, aamong other things, a grammar rule together with an
indication of which parts of it have already found a match. If the
chart shown above is thought of as the final result of parsing the
sentence “Time flies like and arrow”, omitting active edges, then the
following shows the state of affairs that might have obtained at an
early stage in the parsing process, with the active edges included.

NP --> adj . noun

NP --> . adj noun PEAEERRN
RN ’ \\
- , :
N Sl adj L ~verh
L
St noun
_ SN
SN noun
‘ \
! v
¢ 1
\\ Y]
S.-> NPVP

The edges closest to thbe horizontal axis of the diagram presumably
result from a morphological analysis of the individual words and
we assume that they are in place when parsing proper begins. We
have shown active edges with dotted lines and have annotated them
with a context-free rule with a dot somewhere among the symbols
on its right-hand side. The symbols to the right of this dot have
already found a match among the inactive edges in the chart; the
symbol immediately to the right of the dot must find a match
among the inactive edges incident {rom the node at which the active
edge in question terminates. Otherwise, it represents a step in an
unsuccessful attempt to apply the rule.

A complete rehearsal of the priciples of chart parsing are
clearly beyond the scope of this paper But enough has already been
said to establish it as an exercise in the manipulation of directed
graphs. [n fact, while there is presumably little profit in doing so, it
is possible to interpret the inactive edges of a parsing chart as the
transition diagram of a finite-state machine. The set ol strings the
generate is simply the lines in the various syntactic derivations of
the sentence.

...5_.

For a final example of the crucial role plaved be directed graphs
in linguistic computing, we turn to morphology; more particularly
morphopbonemics or morphographemics. A given lexical item-a
stem, pretix or suffix—is often written or spelled differently depend-
ing on the context in which it occurs. The o in “telephone” is
pronounced differently from the one in “telephonic” and the word
"spv” changes its spelling when a plural 5" follows. For decades,
linguists have relied no cascades of string rewriting rules to describe
these phenomena. Given a sequence of items taken {rom the diction-
ary, say “spy’ followed by "s”, it is a simple matter to apply the rules
in order to produce the word “spies”. However, it is anything but a
simple matter to reverse this process so as to obtain “spy +s” from
“spies”. It turns out that there is nothing intrinsically unidirectional
about the rules and that it is possible to recast them automatically
as finite-state transducers. Here, for example is a rule the handles
the “spy'spies” case:

[{(Final-Y:ii {a:a | exe | 00 | win | Mute-E:e | S-Suffix }
| (Final-Y:y} OTHER }* (Final-Y:y)}

It reads quite simply. An english word consists of a sequence
of segments each of which is one of the following:

1. One of the letters “a”, "e”, "0”, or “u” coming from the same
letter in the dictionary, or an “e” coming from the speical
dictionary character "Mute-E" or the "-s” suftix. Preceding
these inthe segment, there may optionally be an instance
of the dictionary character "Final-Y™ representented in the
text as 17,

2. Any dictionary-text combination not mentioned in this
expression, possibly preceded by a "Final-Y" represented
in the text as "y,

The foregoing notwithstanding, a word can end in a “y” cor-
responding to a "Final-Y" in the dictionary.
Conclusion

Efforts have been made in the past to provide computational
linguists with specialized tools. Notable among these was the pro-
gramming language COMIT which provided a rich set of primitives
for manipulating strings. That was in the 1960's. In recent years,
philanthropic activity of this kind has falled off because, [ believe,
there has been no clear perception of what kinds ot tool would best.
serve the needs of our field. [f [ am right about what [ have said here,
a clearer picture is now beginning to emerge. Some of the benefits of
actually building a programming environment based on generalized
unification and applied graph theorv would be the nbvious ones of
reducing the labor involved in writing programs and of increasing
the quality and perspicuity of those programs. [ believe that we
should also benetit from a sharpened perception of the ditferences
among the theories that inderlie the programs that we write. In
particular. I believe that programming can do much to strip theories
of inessential rhetorical trappings and. that it there were encourage-
ment to do this in our field, there would be a great deal more unity
than the present fragmentd scene suggests,
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Abstract

This paper describes a theocry of coherence for
argument structure, developed as part of a
computational model for analyzing arguments. Th=
theory of argument understanding aims to restrict the
s2arch for interpretation of propositions Lo 3

computationally reasonable task, but at the same Uimne
assure that the majority of possible argumant
structures used by the speaker will be recognized.
This dual goal of efficiency and robustness ocan bHe

achieved by presenting a characterizition ol ashereat

transmission forms and reducing analysis Lo El
racognition of these forms (in the absence .0
z1lit’onal 2luss f-oa the speaker as to the intended
structure). The limiza~ions yield an analysis

algorithm of linear complexity and capture the set of
accaphbable  argument structures to be recognized. Tha
proposed ccherence thecry also sets a (ramewsrk ur
2stablishing” interpretations for each of the
propositions of an argument within an overall argument
representation - an analysis issue largely ignored in
other argument understanding research.

1. Goals of research

The theory of coherence for argument understanding
described in this paper 1is one part of a general
computational medel for the analysis of arguments,
developed in [Cohen 83]. The aim of this research is
to model a patient 1listener in a conversational
setting where the speaker is trying to convince the
hearer of a particular point of view. For the model
to be effective, it should exhibit two important
properties:

(1) efficiancy:
a representation for the
computationally well-behaved.

(ii) robustness: a wide variety of
structures should be accepted.

the amount of time required to derive
argument should be

possible input

processing  strategles are
outlined as a basis for the model and efficiency
measures demonstrated. The restrictions selected,
however, are crucially dependent on a characterizition
of the prssihle forms of input used by the speaker.
The purpcse of this paper is to describe the proposed
restrictions as a theory of coherence for arguments,
model which designs its

In [Cohen 81] certain

and to claim that that a
analysis methods accordingz 42 such a theory can
successfully combine the two required goals of

efficiency and robustness., An understanding of the
overall goals of the research will serve to motivate
the develcopment of the coherence theory.

There have been relatively few efforts to study
arguments as a specific Fform of input to natural
language understanding systeas INLU3)Y. Y5356 argument
understanding research to date, however, has fcused
on the problem of generating a rasponse ©H aa argument
within a conversational setting ([Birnbaum et al.
80J, [(Reichman 81]). A necessary pre-requisite
process 1s an analysis of the input, constructing a
reprasdantation of the intended meaning, in order to
sezlect ideal avenues for rebuttal,

Tn (Birnhaun ot al, B80] a representation for the
argument i3 ganerataed and several possible
disagreements cutlinz2d for each pcint raised. The
repres=antation  =sastructed indicates both support and
Albbank 50 pniats raised, and shows the points raised
t assumes a shared conception
hencar,

Dy Dobh o oonversa’s,
of the argument structure between speaker and
REEY hy each 1In the subsequent construeticn of
tialogae,  Variabilioy n h2lisly ».tween speaker and
hearer is only appar=nf {n 2ach :oaversant's selection
of salient parts of the argument graph te address in

genoeal ion,

]

it 15 our contention that the speaker may conceive
rynnections between his points which wWill ot
r2covered by the hearer, because of differaence
beliefs. Consider the following example:

T

s
>

EX1: 1) The great white likes te tap dance
2) It is a shark

Suppose the speaker believas: 3) All sharks like tap
dancing. From the speaker's point of view, 2) may
serve as evidence for 1) using a modus ponens rule of
inference where 3) and 2) together combine to lead &
ihe conclusion of 1) (with "great white=" instantiaiiag
the generalization about sharks far this pacticular
case). But clearly, most hearers wiil not see any
support relation between 1) and 2) in EX1, since a
premise like 3) i3 not considered plausible to fill in
Aas intended by the speaker.

Because of cases lika EX1, it is more appropriate to
construct a representation for the argument from the
framewnrk of the hearer himself, Furthermore, the
hearer should be able to record connecticns between
propositions that he does not currentiy believe, But
these will only be connecticns he feels could be
plausible beliefs of another person, or if he knows
the speaker well, plausible contentions of the
speaker. Note that this problea of reconstructing
argument structure is centred around the fact that
most arguments have unstated premises which must be
surmised by the other conversant. Our first main
Jdesign decision is thus to build the representation of
the argument from the framewsrk of the hearer.



The second main design approach is toc treat an
argument as a set of propositions, and to then focus
on the recognition of relabions between propositions
in an argument. MMece more, Hhe effsrts of [Birnbaum
et al. 80] and [Reichman 31} indicate in overall
argument diagrams which propositions do relate and
according to which relation (e.g. support, contrast).
But there 15 no discussion of how an argument analyzer
could take a stream of propositions uttered and
successively build a representation by checking
prs3ible relations for each new proposition, Qur
approach s to specify rules of coherence to cutline
where each new proposition may fit with respect Lo the
argument so far. As a result, we alsec bring to
attention the issue of verifying possible relaticons
between propositions, elaborating on the problems in
defining relations such as "evidence".

The proposed analysis model now 3ddresses 31 thaory of
argument coherence in that both relations between
propositions and goals of the speaker are important.
The theory of coherence for argument transmission caa
then be usdd Lo cover both overall aims of the model,
as  follows: (1) analysis can be restricted to the
acceptance of a limited set of argument forms to
ensire afficieazy and (ii) robustness can be achieved
by e2naracterizing the set of acceptable transmissions,
exctaling transmissions with argument structures which
could be deemed too difficult for a hearer to
reconstruct. To briefly illustrate what constitutes a
coherent transmission consider “he following:

EX2: 1) The city is a mess
2) The parks dare ruined
3) The.benches are all rotting
4) The highways are all eroded
5) The legs can barely support the seat

In this example, one possible overall representation
for  Ehe argument is a structure of claim and evidence
relations as follows:

/1\
L2 4
3
5

[The tree notation has sons as evidence for their
father; the numbers correspond to the propisitinas of
the argument; the representation serves t- indicate
the function of each proposition in  ta: averall
argument . (This is the notation wused throughout
{Cohen 831)1. Here, the speaker may intend that 5)
serve as evidence for 3). But this is not a relation
wnich a hearer should be expected to recover as part
of a restricted search for coherent transmissions., 1In

short, certain propositions will ainply aoct be
considered while a current proposition is being
interpreted. Further discussion o this example

appears in section 3, as tha proposed restricted

processing theory is cutlined.

2, Overview of argument analysis model

Consider a computational model wused to analyze an
argumant a proposition at a time, building a
representation of the overall structure (claim and
evidence relations). The model is divided into three
main components:

a) Proposition Analyzer
This module takes the

current proposition to be

analyzed and a representation for the argument "so
far" and assigns an interpretaticn to the proposition
by including it in the arganeat. capeosantatioag,
3'aing its relation to previcus statements,

YY) Linguistic Clue Interpreter

This module gui.les the analysis of a proposition in
the presence of special words and phrases explicitly
used by the speaker tc indicate argument structure,
For example, connectives such as "as a result" or "for
example" provide some indication of “he claim  and
avidence relation between the connecting propositioas,
T2 zlue interpreter thus constrains the operabion of
he proposition analyzer.

¢) Evidence Verifier

To build the overall representation, the test for
evidence relations between propositions - e.g. "is A
evidence for B?" is separataed anl  delegated to this
module. This "evidence oracle” then returns a yes/no
answer to the propositlon analyzer to  assist in  the
final interpretabion o W=re Bhe propositisn fits
Wwith rest of the argument.

focuses on a description of coherent
transmission strategies used to guide the proposition
analyzer and discusses briefly the necessary working
definition of evidence for Lhe evidencs verifler to
achieve interpretation within the framework of
pragmatic analysis. (The role of clues is factored
cut of the discussioa in this paper, but is developed
fully in {Cohen 3310,

This paper

3. Ooherent transmission and reception straltegies

5

The 1issues surrounding the oparation of the
proposition analyzer are Jdiscussed ia {Cohen 81]. The
proposed restrictions Lo processing e raviewed here,
and the implications for a th2ory of coherence
highlighted.

Consider a representation for an argument which is a
tree of claim and evidence relations. ‘the root holds
the overall point and any son acts as cvidence for its
father,

One example ol a conerent transmission strategy used
15 PRE-DRDER -~ thnz sp-aker consistently states a olainm
and Lnwen preseats cvilence for it. A sample argument
of this form is presented below:

EX3: 1) Jones would make a good president
2) He has lots of experieane
3) He's been on the city board 10 years
4) And he's honest
5) He refused bribes while an the force

with the argument representaticn:

In order for the hearer to reconstrucl a pre-ocier
arsument he must simply lcok for a father for each new
proposition (NEW). This is done by first testing NEW
as evidence for tUthe last proposition (LAST), and if
the evidence verification test fails, then the father
of LAST and so on, 1p the right border of the tree. A
reception algorithm for pre-order can thus be defined
which will successfully assign an interpretation for
all propositions in linear time - i.e., the number of
operations required to build the overall
representation will be proportional to the number of



nodes in the tree.

Another coherent transmission strategy is POST-ORDER,
where the speaker presenbs evidence and then states
the claim. A post-crder form of the argunent in  EX3
could be as follows:

EX4: 1) Jones has been on the city board 10 years
2) He has lots of experience
3) And he's refused bribes
4) So he's honest
5) He would really make a good president

with the argument representation:
N

2 3
1 ~ 4

It is possible to describe a reception algorithm for
post~order transmission, essentially asing a stack to
hold sons until the father arrives and reconstructing
a sub~tree with that father as root, until the entire
tree is built. Once more, the search can be shown to
operate in linear time.

As a first approximation to a general processing
strategy for the hearer a HYBRID of pre and post order
is expected. Now, each particular sub-argument may be
transmitited in  :ither pre or post corder, as in EX5
below:

EX5: 1) Jones would make a good president
2) He has lots of experience
3) He's been on the board 10 years
4) And he's refused bribes
5) 30 he's honest

with the argument representaticn:
2/1\5
'l Ny

The reception algorithm must neow search both for
possible father and sons of each new proposition,
essentially using a combination of techniques from pre
and  post order reception algorithms. Considering
evidence as a transitive relation - 1i.e. if A is
evidence for B and B is evidence for C, then A is also
evidence for C - there is the additional problem that
the final representation should reflect the closest
evidence relations ~ i.e. if A is evidence for B and
B is evidence for C the tree should simply indicate
that A is a son of B, and B is a son of C, Thus, 1t
is possible that a transmission will require
re~-location of sons in the repres=zntation -~ for
example, if the A,B and C discussed above were
transmitted in the order: C, A and then B. Then, A
would attach to C first and eventually be recorded as
evidence for B. Once more, the resulting reception
algorithm for HYBRID transmissions c¢an be shown to
work in linear time, since the number of possible
re-attachments is still limited.

In sum, the proposition analyzer can be restricted to
a specified search for possible relatives to the
current proposition which performs with reasonable
computational effort (linear time) . Not all
transmissions which can be theoretically generated can
be recognized, but the subset accepled i3 intended to
cover coherent structures from the speaker. The
theory has been tested on a number of naturally

-8~

cccuring examples from rhetoric books and newspapers
(see ({Cchen 83)). The transmission forns 3f these
examples conformed to the prescribed restrictions and
reasonable representations of Lhe input could be
constructed according to the proposed hybrid
algorithm. (Hand sinulatioas «were done, 1in the
absence of implementation). Moraover, 1t can be
argued that in the absence of any direct indication of
structure (linguistic clue) the hearer will not be
able Lo reconstruct the structure underlying
transmissions violating these restrictions; he will
not expect this mors complex shrategy.

characteristics of the

Note some important 2
propos2|

transmission forms recognized by Lk
raslricted analysis.

1) Not all prior propositions are eligible to receive
evidence from the current proposition. Some are
closed off from consideration. EX2 shown previously
illnustrates this property. Here, proposition 3) is ao
longer a possible father for 5), according to the
restrictions of the hybrid reception algorithm.

2) The tests for possible relatives Lo  bthe ourrzab
oroposition are ordered, so0  that a relation to a
proposition closer to the current one in the utterance
stream is found first. Any relation to a proposition
further back will not o2 tested. For example:

EX6: 1) The city is a4 mess
23 Th o pnetits ar2 4283
3) The grassy areas are all rotting
4) The ygravel paths are run down

Here, 4) is recorded as evidence for 2) rather than
for 1), because the connection between 4) and 2) can
be established and 2) {s closer. (The relation to

fill is: M“If an area has rotting gravel paths then it
is a mess" with the area instantiated here Ly
"parks"). The overall representation 1looks as
follows:
A
L2l
3 . ~y

3) It is possible for the current proposition to szrve
as evidence for a proposition mentioned wuch earlier
in the dialogue. In other words, a relabion ©oy  the
immediate prior statement 1is not wmandatory. For
example:
EX7: 1) The city is »a mess

2) The parks are a mess

3) The playground area 13 all run down

4) The sandboxes are dirty

5) The swings are broken

6) The highway system needs revamping

earlier
current

evidence for 1) because no
satisfies a relation to the
The overall representation is:

Here, 6) s
propysition

proposition.

/1
2 \6

Note as well some important similarities between the
restrictions for this cocherence theory and those
required for reference resolution in the work of
[3idner 79] and [Grosz 771. A set of alternatives is



specified. There is a hierarchy of possible ocholces,
Wwith more recent parts of the conversation checked
first. The exact components of the hierarchy used to
search for the answer to the semantic problem at hand
(referent resolution or evidence verificaticn) are
specified differently, but the principla is th2 same:
develop a consistent theory for restricting aasalysis.

4, Evidence verification

The study of evidence relations i{s a crucial part of
the coherence theory of arguments, since the evidence
relation 1is in fact the only coherence relation
between propositions in the model, Recall the two
main steps to interpreting a proposition according to
the model's design: (1) seleect an eligible prior
proposition to test as relating to  the current
proposition (ii} wverify that the evidence relation
dces hold between the propositions, by approving the
necessary missing premises as plausible. Ths model
begins with a shared definition of evidence as
follows: a propasition P is said to be evidence for
proposition Q if there is some rule of inference such
that P is  a premise to Q's conclusion. But since
analysis is conducted from the hearer's viewpoint, it
is possible to elaborate beyond this definition fo
allow the hearer to recognize evidence relations that
use a form of "relaxed lugic" or to accept beliefs
that he does not currently hold.

It is important to note that b avidence
relationship is an underspecified reprasentatioa tool,
The motivation for its wuse 1is as follows. In
designing an argument unJderstanding system, one
fundamental operation for the hearer is to determine
the function. of 2ach proposition - that is, tc which
of the ofher argunent propositions it is intended to
furnish support. A representation which indicates how
all the propositicns connect can serve as a model of
the plan of the speaker, with the translaticn: the
goal of convincing the hearer of a certain claim is
achieved by convinecing him that the evidence
propositions should be believed., This interpretation
of evidence integrates well with Hobbs' description of
coherence ralations As those which not only 1link
propositions but relate to the goals of the speaker in
overall communication (([Hobbs 781).

details of how the support 1is to be
and accepted ultimately by the hearer is not
This falls into the
However, the

The exact
realized
recorded in our analysis model,
category of Jjudging credibility,
evidence relation is intended to cover a variety of
possible relations that the speaker could be
advocating, including leading the hearer to accept the
claim by virtue of a long case analysis or induction.
case of reasoning by example. The
evidence relation would then %e understood by the
hearer as a modus ponens rule of inference of the
form: "If the examples pro are sufficient, then the
generalization holds". Of course, with several
examples the hearer's credibility will increase. But
even with a lone example as supporlt, Gthe hearer can
recognize the intended use of the case toc support the
general claim, especially in the presence of a clue
word such as "for example". (More detail on the
interpretation of claim and evidence between examples
and generalizations, wusing mutual belief filters, is
outlined in [Cochen 83]). This gives only a brief
insight intec the use of evidence relations toc achieve
connections of a kind of relaxed logic, 1in that the

Consider the

inferences contained are not shared Maxioms" but

defeasible connections.

The effort in defining evidence for this research can
be compared te other work in coherence rolations,
Consider the theories of Hobbs ([Hobbs 76J), ([Hobbs
781), employing a set of c¢oherence rolations mirz
extensive than claim and evidence, including
olaboration, specification, parallel constructions,
etc. For our coherence relations we have done the
following:

1)} provided restrictions on the overall combination of
noherence relations within a paragraph of text, by
specifying wiich propositions can possibly be related,
This provides a framework for judging coherence of a
set of propositions in terms of the cohzrence
relations of the model. [Hobbs 78) does not sp-oify
the possible overall combination of relations. In
[Hobbs 76) the problem is addressed only partially by
specifying a goal list of propasitions which have a
higher priority Lo be "related to" by upcoming
propositions.,

general |:finitional framework for
also provides definitions for his
{Hobbs 76]. Our  pragmatic
however, provides a framnework

2) provided a
"evidence, Hobhs
nonerence relations in
approach to analysis,

for recognition of relations beyond that of a3  shared
lexicon and encyclopaelia, We have already shown
examples where the hearer may wich to reason beyond

his current cet of bdeliefs (EX1). The spectrum of
possible  teshs  for  avideace verification in fact
includes: a) relaxation of logic b) stereotyping tn-
ap-aker and <) considering what a hypothetical person
could be advocating. EX1 illustrates the hearer's
attempt at technique o). Below are examples to
illustrate variabluns a) and d).

EX8: 1) Bilandic will win
2) He's the maznine candidate

EX9: 1) Reagan is great
23 He stands for apple pie and Mom

In EX8 (drawn from [5Sadoek 774), the missing major
premise is: ALl machine candidates win". But
surely, there are exceptions to this statement in real
life. The more appropriate belief is: "Most machine
rand tdases  win', Thus, the rule of inference
ing 2) to 1) as evidence has a relaxed
generalized quantifier.

Qoaanes

evidence for 1) 1t the hearer
believes "If a person stands for appl: pie and Mom,
then he is great". The hearer may not believe this
statement, but still record the evidence relation
between ) and 1) as intended by the speaker if he
kKnows that the speaker is heavily rightwing.

In EX9, 2) can be

tity heia? discussion  of
2vijence, but at least
definitions for
(More

These examples ara a nac2s!
the problem of verifying
emphasize the importance of detailed
evidence within argument understanding systems.
details of the issues appear in {Cohen 83]).

5. Summary

The theory of coherence for arguments presented here
to govern the design of a computational model for
argument analysis provides the following framework:
transmission forms adhering to the specificaticns of
the hybrid algorithm are coherent; transmission forms



beyond these specifications are either a) incoherent
or b) coherent in conjunction with the use of
alditional clues to the structure (e.g. linguistic
sonstructions) . Note as well there 1is extensive
variahilihy AT Lowad in I form of acceptable
arguments, and in the specificatison of the evidence
relation to be recognized by th2 haarer.

The main advantage of this rescarch 1in argument
understanding 1is to move beyond tha concerns of other
researchers to the fundanenfal question of recognizing
the structural relatioas of an argument, in order to
construct a4 represae: tion which can be wused in
subsequent response. We have developed a notion of
coherent transmission forms, both to limit analysis to
a computatinonally efficient process and to cover the
variety of acceptable input forms for arguments. The
coherence thecory employs as well a lihe-al aokion of
evidence to deal with beliefs not 2urrently held which
could still be part of a cohereal  argai2at
transmission. Cnce more, this surpasses current
research in the field to include necessary pragmatic
analyses.
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Abstract

Indirect responses to yes/no questions h-ve commonly been accounted
for in terms of the particular *higher goals® of speaker and hearer,
However, a form of conversational implicature identified by Horn (8],
Scalar Implicature, suggests a more general interpretation. When a
cooperative speaker affinns a value on some scale, that value will
represent the highest value on its scale the speaker can truthfully
affirin. Thus higher values are implicitly marked as false or unknown to
the speuker. This puper proposes tajor extensions to this concept based
upon an examination of naturally-occurring question-answer exchanges,
It proposes a redefinition of 'seale’ and a formalization of the extension
for use in computer-hiynun guestion-answering systems, It describes
how the potential sealar implicatures licensed by direct and indirect
responses to a yes/no question may be caleulated and used to guide the
forrnulation of minimal cooperative responses.

Introduction

A major challenge in natural language processing is how to capture the
fact that, in natural discourse, speakers succeed in communicating
indirectly as well as directly. Hearers derive more from an utterance
than its syntax and semantics convey. In particular. they must often
determine not only those propositions that speakers commit themselves
to, but also those they do not, to interpret an utterance fully. Speakers
in turn take thiy fact into account when formulating their utterances.

Indirect responses to yes/no quuh’onn(a), for example, often
permit the inference of both a dircet response and additional implicit
information. In (1}, a questioner (€(J] may infer that a respondent (R})'s

{1) Q: Has Jones taken all bis medication?
R: He's had some of it.
direct response to her query is either no or [ dont know. She is also
entitled to infer either that R belicves Jones has not taken sorne of his
medicine or that 1t cannot rule out this possibility. Yet neither of these
conclusions can be accounted for by standard models of formal

reasoning.

In a  first-order  representation,  K's  response  in (i},
Izfmedication(Joness) A takenf{Jonea,z]), does not imply the query's
negation, ~Vz(medicalion{Jonva,z] — takenfJones,zj. or  the
equivalent inference 3r{medication(Jones.r}) A ~taken{Joncs,x})  Alter
all, if Jones has had some of his medication it may also be true that he
has had all of it.

Scholars have lang recognized this particular divergence between
formal aad infortal reasoning. However, to date, they have generally
explained "non-logical® inferences in exchanges like (1) in terms of
particular higher goals of speaker and hearer 7). For example, if Q and
R are medical personnel in (1), they may both realize that Q's higher
goal is to make sure Jones has taken his medicution but not to give
him medication he has already taken. So, R's response is apptopriate
insofar as it furthers this goal.

However, linguistic pragmatics offers a more general explanation of

s} . . .

( )lndlrocl responses 1o yes/no questions will be defined a3 responses that fail to
provide a direct response of yes or no or an explicit statement of the respondent’s
ignorance, ¢.g. [ don't know,

how such inferences may b calculn.cd, A form of conversational
irmplicature termed by linguists scalar smplidcature (51} provides
the basis for an account of exchanges like (1) that is less dependent
upon the particulars of context and conversaticaalists. Observatinn of
naturally occurring  dislogues suggest major extensions to this
concept!Y) A formalisation of an extended notion of SI provides a
powerful tool for use in the generation and interpretation of cooperative
responses in computer-based gquestion-answering systems.

Scalar Implicuture

Grice's {1967] (3] Couperative Principle pestulates that, without
contrary evideo: e, participants in conversation assumne their partners
are trying to be cooperative.  Cooperative speakers recognize certuin
conversational muazims, which they may use to convey
conversational {mplicatures: A spesker conversationally
¢mplic.iteal”) a proposition P when he conveys the smplicatum P
by virtue of the belief he shares with his hearer that CP represents the
norm and that the implicatum can be worked out by the henror.
Conversational implicatures may he cancelled by the linguistic or
discourse context: While a speaker who utters 'Same people 1oty carly
and, in fact. everyone did’ potentiulluh” implicates 'not all people left
early’, this potential implicature is intrasententiatly cancelled, Speakers
may not always ohey the Gricean maxims:  they may violate them,
thus misleading their heacers; they may opt out of themn, maki: g it
plain that they are not being eooperative: they may be faced with a
clash betwern two or more maxims and be unable to fultill all of them;
or they may flout them, causing hearees to search for additiona)
information to explain speakers’ deviation from the norm. However,
these very nations rely wpon speaker and hearer's mutyal recognition
that CP defines normal conversational behavior.

Of Grice's four original maxims, his Mazim of Quality.

Try to make your contribution one that is true.
a) Do not say what you believe to be fal-e.
b} Do not say that for which you lzck adequate evidence.

and his Mazim of Quantity,

a} Make your contribution as informative as is

required {Jor the rurrent purposes of the exchange).
b) Do not make your contribution more informative

than is required.

provide the basis for a definition of Si.

Horn {8] vbserved that, if these maxims hold, then when a speaker

(b)Thp bulk of data examined were transeripts of a radio callin program, “The
Harry Gross Show: Spraking of Your Money®, described in [t4]. Other data
examined are described in (17, 18] or were gathered by Martha Pollack, Ethel
Schuster, Gregory Ward, Boanie Webber, snd e author from independent
observations. [n the interest of brevity and symmetry, the cxamples presented
below are artificial.

{c) . . . 3
) fraplicate is used instead of vmply to distinguish implicature from logical
implication,

(d) .
Potential implicatures become actual implicatures if they are not o
cancelled. {2]

~11=



refers (o a secalar'® value on a scale defined by eemantie
¢ntailment'~”, that value represents the highest value on its scale the
speaker can truthfully affirm.  The speaker is saying as much
{Quantity) as he truthfully (Quality) can. Higher values on the scale,
i.e., those that eutail the asserted value, are implicitly marked as either
not known to be true or known net to be true. Lower values, je.,
those entailed by the asserted value, are true by definition. Horn
identifies certain scalar predicates, including logical quantifiers and
some connectives, inodals, «cardinals, ordinals, and miscellaneons
modifiers, that support these implicatures. Gazdar [2] later noted that
these scalar predicates in effect rank sentences that differ from one
another only in a mentioned scalar via this mentioned scalar.

More formally, one might say that, when a speaker R affirms a
proposition Py, that refers to a value b2 on a scale S defined by
semantic entailment, for ail propositions phz/bz formed hy substituting

in Pb‘a some b3 that is higher on 8 than b2, R implicates that either he
knows Pba/bn to be lalse, KRl—‘Pba/ba)'(z‘ or he does not know

whether Pba/bz is true or false, wn(Pba/m,'(h) The entire disjunction,
(wR(Pbs/bz)— v KR(—‘Pba/hz))' will be represented below by a U
operator, where Up(x) is equivalent to (Welx) v KR(x)),“) So, by
asserting P\ o, 1t implicates U)(("Pbs/hz)‘ Far all propositions Pbl/ba
formed by substituting some bl lower on 8 in Py.. KR!Pbl/bzl is
entailed.

The concept of SE might be applied to question-answer exchanges such
as (1) as follows: () may understand that some is the highest value oa
a quantifier scale fnone/ some/ all) that 1R can truthfully alfirm. By
affirming P . R indicates Up~(Jones took all his medication), that
is, that either R knows Jones did not tuke all his medication or R does
not know whether Jcenes took all his medication. Thus the direct
response to queried all is no or I don't know. Note that, if R simply
denied the queried proposition P, Q would be entitled to assuine that
{if R were being cooperative) there was no proposition, say, Pwmc, that
R could affirm. That is, if a cooperative speaker affirms the highest
scalar he can truthfully affirm, then a hearer should be entitled to
conclude that failure 1o affirm such a scalar means that the speaker is
unable to do so.

Extending Scalar Implicature

While Horn's concept of SI provides a principled explanation for (1), in
its current form it is insufficient to account for other exchanges that
seem intuitively similar. These exchanges may differ from (1) in three
ways: First, théy may invoke scales that are neither linear nor defined
by entailment. Second, they may include responses affirming a higher
value or a value of equal rank, instead of a lower value. Third, tiey
may contain a response that denies or asserts ignorance of some scalar
instead of affirming it.

Scales Supporting SI

Many utterances licensing similar imiplicatures refer to relationships
between entities, attributes, events, or states that cannot be adequately
represented as linear orderings defined by entailment. Such items may
be hierarchically or linearly ordered, as by some whole/part,
type/subtype, entity /attribute, set inclusion, temporal, stages of a

¢
{ )A value on some scale

{f . . . .
M scmaatically entails T iff T is true ander every assignment of truth values
{i.e., in every model) in which M is true.

(‘,The K operator used here is Hintikka's [4] knowledge operator.
h . I

( )Thxs W operator is introduced for cosmetic purposes and, in effect, is
equivalent to —-KR(x). i.e., for R the truth value of x is undefined. Although, in the
three-valued logic assumed here, KR(x) \ ﬂKn(x) is not tautological -- the tautology

is KR(X) v KR(—vx) v "KR(X) ~ W i3 used to prevent confusion over this point,

i) . .
{ Below, UR(ﬁ(x)) will be written UR'-‘(X). Note that WR(ﬂx) ifr WR(x).

_]2_

process, or ordinal ranking, among others. Some of these orderings ean
be defined by entailment. In (2), 5 ce. of insulin might be scen as a

{2) Q: Has Jones had his medication?
R: He's had 5 cc. of insulin.
part entailed by the whole, Jones's 2rdication. By affirming 5 ce. of
inaulin, R alfirms the largest part of the whole he truthfully can. The
queried value Jonea' medication is thus marked by R as unknown or
false, Uy ~(Jones has had Lis medication).

It is less clear that stages of a process may also be deflined by
entailment, although process metrics support similar implicatures, In
(3). registration and filling out insurance forme may be viewed as

(3) Q: Has Jones registered yet?
R: He's filled out the insurance forms.
stages in a hospital adinissions process. By affirming the stage filling
out inaurance forms to a query of the later stage regratration, R
affirms the furthest stage in the process he can truthfully affirm.
Later stages, in particular the queried stage, registration, are implicitly
marked by R as Up ~(later stages), while prior stages, say. filling out a
Jamily medical history, seein to be implicitly affirmed, although they
are not entailed.

And some relationships simrly cannot be modeled as entailment

(1) Q: Did the chief surgeon concur in the diagnosis?
R: The resident did.
orderings. In (4), for example, the chiel surgeon’s concurrence clearly
dues not entail the resident’s. Horn himsell notes that the implicatures
licensed by reference to scales such as coid/cool/warm/hot and ugly
Jpretty/beantiful, and tort fmisderneanor/fclony/eapital crime cannot
be accounted for by an entailinent definition of scale, although he
supplies only ad hoe solutious. A more general definition of scale
seems necessary to capture the full power of S1.

References to Higher or Equal Rank Seulars

Not only is entailtuent too limited to define the scales that permit S,
but SI conventions may influence the decicion to assert a higher scalar
than a queried valie, and SI also 1nay be vonveyed by the assertion of
scalars of equal rank with surne gnericd value. In (5), ebdominal pain

{5) Q: Is Jones experiencing much discomfort?
R: He's complaining of abdominal pain.
may be seen as a subtype of (.nd thus a higher vulu«mj thao
discom fort. R's affirmation of abdominal pain allows  to interpret
the direct response as ye: or no, depending upon whether she indeed
defines the scale as R does. Similariy, if heving beew to X-ray is a prior
stage to gitting ~caults in (6), then by simple deduction  can conclude

(6} Q: Has Jones been to X-ray yet?
R: I've got the results right here.
that, by affirming the higher scalar, R has affinned the lower.
Although SI does not determine Q's interpretation of the direct
response in (5} amd (6}, it does figure importantly in R’'s decision not to
provide a simple {and truthful) yes in either, as will be shown below.
And, of course, it does predict Q's inferences about values higher than
the asserted sculars, as noted above.

. . . . L . .

The affirmation of scalars sharing equal rank™ with a quericd
scalar may also license implicatures about other values on their scale.
In (7). for example, I's assertion of the value insulin conveys

(7) Q: Has Jones takeu the cortisone?
R: He's taken the insulin.
UR—w(Joncs has taken the cortisone) as well as Up ~(Jones has taken his
medication), if cortizons and {naulin are viewed as parts of that whole,

medication.  Thut s, R conveys URﬂ about other parts of the

(3},

k) . . .
{ For the moment this relationship may be likened to that of stblings in some
hierarchy.

The truth of « subtype entails the truth of its type.



unmentioned whole, as weil as about that whole itself.

Denying and Asserting lgncrance of Sealars

The notion of Sl can also be extended to permit the calculation of
itnplicatures licensed by the denial of some scalar or assertion of
ignorance of its value. The dual to Horn's original concept vould be the
negation of the lowest scalar R can truthfully deny. By such a denial R
denies higher scalars and affirms or conveys ignorance of Jower scalars.
So, in question-answer exchanges such as {8) a scalar Jower than the

(8) Q: Has Jones registered yet?
R: He hasn't signed the release.

queried value may be denied. [If signing the releaseis viewed as a stage
prior to registration, then Q can interpret R's response as no. By
denying signing the releare R implicates that 'Jones has register=d’ is
also false. For any stage bl prior to signing the release, R implicates
either that he knows bl has been completed, Kn(bl), or that he does
not know whether it has been completed, WR(bl). This disjunction
may thus be represented UR(Jones has completed bl), where Up(P) is
equivalent to KR(P) v WR(P)‘ Higher scalars may also be denied, as in
(9). Q may infer Up(Jones has been ta X-ray), since, in a

(9) Q: Has Jones been to X-ray yet?
R: 1 haven't got the results.
cooperative exchange, if R could deny the fower scalar, he would do so.
So, the denial of th iinplicates UR(PbI) for bi lower than b2, as,
signing the releaze in (8). The value of higher b3 for scales defined by

entailment will be false, by implication.

The notion of SI may also be extended to define implicatures r sulting
from assertions of ignorance. [t follows from Horn's original concept
and the extensions to it proposed above that explicit assertions of
ignorance of ope scalar implicate ignorance of al} other values on that
scale. A response of [ don't know may be interpreted as follows: 1If, in
a cooperative exchange, R affirms the highest value on some scale he
can truthfully affirm, then his failure to affirm such a value entitles Q
to conclude that R can affirm no value on any scale invoked by the
query. However, R may also deny the lowest value he can truthfufly
deny and still produce a cooperative respouse.  Again, his failure to do
so entitles Q to conclude that he cannot. So,  may infer that R can
neither affirm nor deny nny value on any scale mentioned in the guery.
That is, W(bt) for any bl on some scalar in the utterance. In (5), for
example, J don't know would implicate that there is no higher value,
i.e.,, no subtype of type discomfort, and no lower value, ie. no
supertype of type dizcom fort, that R can truthfully affirm or deuy.

Defining Seules and Formalizing S1

Any ordering that supports SI can be defined as a partial
orderl'ng“) O on a coflection B of referents {bl1,b2,...,bn}. So, one
can view a scale 8 as a partially-ordered set. B ay he finite or
infinite, as cardinal seales illustrate. Furthermore, any such poset will
support Si, so the poset condition is both necessary and sufficient.

This definition provides a mere precise semantics for the informal
notions of higher, lower, and equal rank used above. Given a
partial ordering on B, for any values b1, b2 on a 8, b2 is Aigher on 8
than bl iff b1Ob2; similarly, bl is {ower on S than b2 iff b1Ob2.
For any pair bl, b2 of incomparable elemental™ of S for which
there exists a b3€DB that is higher than both or that is fower than
both, bl and b2 will be said to have equal rank on S.

So. in {10), op 4 scale defined by, say, an inclusion relation,

( )1_9‘, 2 reflexive, antisymmetric, and traositive relation

)y . . N
{n )E,lunenta are incomparable il they are not ordered with respect to one another
by O.

(10) Q: Did you see Catalonia?

122 [ saw Bareelona,

13 saw all of Spain.

R4 I saw Valeneia.
DBareelona is included in Catalonia, so farcelona represents a lower
value on this scale in R2; in R3, aff of Sparn is a higher value than
Catalonia, since it includes that province; and in R4, Catalonia and
Valencia are both included in Spain, but neither includes the other, so
they share equal rank.

Given such a definitiou, implicature may be completely divorced from
deduction. An assertion of sz may convey for lower values bl either
KR(PMJ' or KRﬂ(Ph‘), or WR(PM), depending upoo the nature of the
relation defining the scale, ie., whether it is defined by entailment or
n?uru:)l exclusion, or neither, Similarly, a denial of PM rnn)’r smply for
highee values b3, KR—'(PM), or it may convey some other information

about these scalurs.

With this revised definition of scale and with an extended notion of
S it s possible to define a set of conventions, l'mpl_:!Y which, for a
given seale, a value on that seale, and an utterance affirming, denying,
or asserting ignorance of that value, determine a set of potential
implicatures for the utterance. For somne scale S, a value on that scale
bl, and a speaker R's utterance Utt affirming, denying, or asserting
ignorance of a proposition Py, referring to b1, a set of potential
implicatures of Utt, PSIU“, may be construeted as follows:

Imp: If Utt affirms Phl then for all b2 such that b2 is
higher on 8 than bl, U (P,) € PSIy,,,; and, for all b3
such that b3 and bl have equal rank on 8, Un“(P},a' €
PSIU',L'

Impz: If Utt is a denial of Phl then for all b2 such that
b2 is luwer on 8 than bl, UR4b2) € PSIy;,,; and, for all b3
such that b3 and bl have equal rank on §, Up(Py) €
P8I,

Imp:,: It Utt is an assertion of ignorance of P,)‘, then for
all b5 on S, such that bs 3 b1, W (P, } € PSL, "

it might well be said that the conventions defined above are, for
humans, only conventions, not rules; speakers may mnot choose
responses that convey as much as they can convey and heareis may
not always expect such responses. However, it is a truism that
computer-based question-answering systems should be cooperative. In
fact, as Joshi [‘)] has suggested, users may expect these systems to be
even more cooperative than other humans. Since most such systems
musl also assume the cooperativeness of their users, it seems reasonable
to accept Crice’s Cooperative Principle, and, by extension, the 51
conventious defined on this basis, as a model for human-machine
commupication.  In the remainder of this paper 1 will propose some
ways in which SI conventions can gnide the generation of cooperative
responses in question-answering systems.

Providing Cooperative Responses

The notion that question-answering systems should support more
‘natural’ interaction with their users has long been accepted. This
'naturalness’ may in fact involve more than simple ‘syntactic
sugar’. {10, 14] Studies of human question-answering have found that
respondents often provide rore information than questioners reguest to
anticipate a follow-up question or explain a violated cxpectation {14); to
correct  a misconception (9. 11, 12, 13, 17, 18]: or to satisfy some
inferred goal [1, 15]. Joshi's {9 revision of Cirice's Marim of Quality:
‘Do not say anything which inay imply for the hesrer something which
you the speaker believe to be false’ suggests that respondeuts often

Nl . . . .
( ).'\olt- that W R(pbl) is asserted, not implicate ],
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attempt to *square away”® any misconcepticns apparent in 8 question of
any that they anticipate a questioner might derive from their provision
of the information requested. SI conventions provide one account of
how respondents may anticipate responses that may be misleading and
identify alternatives that are less likely to mislead. That is, using
conventions similar to thuse identified above, respondents may
anticipate false implicaturea that might be liceased by a given
response.  Using the same conventions, respondents muy determine
minimal coaperative responses that do not license such
implicatures.

Avaiding False lmplicatures

The potential false tmplieatures . given response licenses may be
calculated by comparing the implicatures that that response conveys {as
defined in Imp -Imp,) with the state of the respondent’s knowledge
base. Recall that, if speakers are expected to affirm the highest value
on a scale they can truthfully affirm, a simple and truthful yes to a
query of sz will implicate to Q thut, for all values b3 higher vn some
scale than b2, U ~(P,). Either Py is false or R does not know its
truth value. Hence, if R does believe some Pyy then a simple yes to
the queried P, will license a [potential) falae smplicature, so long
of course as  views b2 as a scalar and R as cooperative. More
generally, for any speaker R, Py o is a polential false imnplicature of Pia
iff in some context D, R's affirmation of Pb: implicates a truth value
for P, that is inconsistent with R's knowledge of Pba‘ [f this

implicatum 15 not cancelled® in the discourse, then R shonld try to
forrnulate an alternative response that will not carry this risk of
misleading ().

So yes in (6), for example, might mislead in the following sonse:
Affirming the value, going to X-ray, for Jones, affirms a value that is
nat the highest value on its scale, getting and processing an X-ray,
that R can truthfully affiem. Thus (incorrectly} higher values, such as
getting back the rcaulte, are marked as false or unknowa by it So Q
will be entitled to conclude that R does not know that getting back the
resulta of an X-rayis true for Jones - when in fact he does. Sunilarly,
in {3), a simple no also fails to affirm the highest value on the scale
getting into the hospital L knows to be true. In {2), a direct response of
no implicates that there is no lower value, no part(s) of the whole, that
R can affirm.

Recall also that R may deny the lowest value on some scale that he
can truthfully deny. Such a denial implicates that lower values bl on a
scale are not known to he false, i.e., are either knoewn to be true or have
an unkpown truth value. Thus if R knows sonte bl to be false, a
simple no to a query of a higher b2 will be true but possibly micleading.
For example, in {8), a simple no denying the stage registration would
implicate UR(Jum-s has signed the release), when, in fact, R knows

Jones has not completed this stage.

The notion of ST may also be extended to define implicatures resulting
from assertions of ignorance. As noted abuve, explicit assertions of
ignorance of one sealar implicate ignorance of all other values on that
scale, that is, WR(bI) for any scalar bl. If, in fact, R can affirm or
deny some such value, then an expression of ignorance will license false
implicatures about other values on any scale invoked in the query. In
{5), for example, [ don't know would implicate that there is no higher
value, i.e., no subtype of type discomfort that R can truthfuliy affirin
or deny. Thus Q is entitled to assume not only that R is ignorant of
whether or not Jones suffers from any discomfort, as the response
entails, but also that R is ignorant of whether Jones suffers from any
subtype of discomfort, such as abdominral pain, or any supertype of
digcomfort, say, general complaints.

So the concept of SI can help determine that an indirect response is
more appropriate than a direct response when the latter would entitle Q
to derive [false inplicatures. But even il R anticipates such
implicatures, why might he choose to avoid them by making an indirect

0 . .
{ )See [2, 8] for a discussion of cancellation.
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response instead of, pevhaps, a qualified direct response?

Minimal Cooperative Responses

The appropriatencss of the indirect responses in the exchanges
presented avove depends in part upon the relative inappropriateness of
alternative responses. Suppose that possible (truthful) direct responses
to yes/no questions could be pliced on a continvum according to
amount of information explicitly provided, from a simple direct
response through various modified direet reaponnn(p), to a
complete and unambiguous response (CUR). A CUR will be
defined ax a response in which R attempts, in some context D, explicitly
to square away (9], or resolve, all miscone tions which might arise in
D if he provides only the information requested by Q.

We have seen above that simple direct responses may mislead by
licensing false implicatures.  Suppose inctead that 3 attemptls to
provide a CUR to the query in (2). as in (11):

(11) : Has Jounes hud bis medication?
R: No. He's had 5 ce. of tnsulin, which is part of that
medication, but be hasn’t had the rest of that medication,
that is, the liprin, the cortisone.... So, he hasn’t had his
medication,
This alternaiive, fike that in (2), certainly anticipates and avoids
potentiad fulse fmplicatures. But verbosity obviously lessens the appeal
of such responses: Q may be overwhelmed by unrequested information
which R must {ubortonsly zather and present, and which may be

redundant or irrelevant for )

Grice notes that sprakers generally prefer to communicate sia the
briefest utterance that conveys what they wish to convey. Dy taking
advantage of the ST conventions, R may limit the explicit inforiution
he ot produce in his response an several ways: Uirst, he may omit
the unnecessury simple direet response, since. 95 we have seen, the
tearer can infer it. Second. he may coit an explicit statement of
additional unrequested information that is implicated by his response,
avoiding some ri kb of drrelevance and odundancy by permitting
inference of propositions instead of asserting those propositions,  So, 51
conventions pro ide a principled  way of limiting the amount of
wformation explicitly provided in a response.  As uoted above, Sl
conveat;ons may also help determine when responses will hcense false
implicatures, and. by extersion, which responses will not license false
implicatures. So, in terms of the potential a response mnay ‘have for
misleading a questioger as well as in terms of the amount of explicit
information provided in a response, S[corveations provide one method
of determining minimal cooperative responses in  guestion-

answering systems,

With a definition of scale, conventions for identifying potential SI, and
some understanding of how these conventions might define a muimal
cooperative response, it is possible to describe the process of identifying
such a response in general terms:

1. Q queries some proposition P in a discourse context D;

2. For each bl referenced in P (Pbi) that R recognizes as lyiug

on sote scale Si

a. Px represeuts the open proposition formed by
substituting a variable x for bl in Pbi;

b. R instantiates Px with some bJ that co-occurs with bl
on Si and determines the truth-value of the resulting

proposition Phj;

o

R determines that ij has not been asserted in D;

d. Using Impl-lmpa, R calculates the set of implicutures

PSI licensed by asserting the truth-value of ij;

Utt

([‘)Simple direct respunses with some additional information
(q} : S .
That is, P represents that query’s desideratum [5]), "That which the questioner

desires Lo be made known to him'.



e. R examines P8I, to determine whether these
implicatures are consistent with his knowledge base or
whether any that are not will be cancelled in D;

f. If Phj has not been asserted, and if it Yicenses no lalse
uncancelled implicatures in D, R will reslize ij in
Utt.

The following example illustrates this model:

(12} Q: Is the Pacific Flect in port?
12: The First Battle Division is.
The proposition 'the Pacific Fleet is in port’ represents the desideratum
of Q's query, R perceives Pacific Fleet as lying on a whole/part ~eale
F defined by inclusion. The open proposition Px forined from Py, o
Fleet is 'x 5 in port’. I instantiates P with the Firat Dattle Division,
which occurs on F with Pacific Fleet, producing ‘the First Battle
Division is in port’ (PM). From his knowledge base R calculates the
truth-valie of Pb" aud finds it true. He determines from D that “the
First Battle Division is in port’ has not been asserted in the discourse. R
then calculates the potential implicatures licensed by un assertion of
"The First Battle Division is.', given F. Using lmp, R determines that
this assertion would license the potential implicatures URﬁ(the Pacific
Fleet is in port. the Second Battle Division is in port,...}. R finds these
implicatures consistent with his knowledge base. If no other sealurs
pass the tests for inclusion in his response, R will decide that "The First
Battle Division is.” represents a minimal cooperative response to Q's

query.

The discourse model sketched above is somewhat oversimplified.
Questions of when bossible sealars are actually viewed as such, how Q
und K recognize a common scale for any :uch scalar, and how multiple
scalars are accommodated in a single response add to the model's
complexity and are now under investigu.ion. FHowever, it should serve
to illustrate the way a formalization of Sl can serve to gude the
generation of minimal cooperative responses to yes/no questions in
computer-based question-answering systems. A module of a natural
fanguage interface to such a system that uses a more complex version
of this model to provide such responses is currently being developed,

Conclusion

In this paper I have proposed an extension of the notion of SI, defining
scale more generally to encompass additional metrics, ideatilying
implicatures licensed by deniuls and assertions of ignorance, and
recognizing the parallels hetween references to lower and higher scalars
and scalars of equal rank. [ have presented a simpfe formalistn of this
extended notion as well as a genera) model for its use in answering yes~
no questions, Together these permit a principled account of

1. how respondents might decide a simple direct response is
misleading,

2. how respondents might choose a ininimal cooperative
response that is not, and

3. how questioners might derive a simple response aud
additional inferences from that response.

Although I have focussed here upon the possibilities Sl presents for the
generation of cooperative responses, the same conventions should be
pertinent to natural language understanding as well. [n particular,
the process suggested above for identifying potential false imnplicatures
might be turned to the task of recognizing iinplicatures licensed by user
assertions, again permitting more natural interaction between system
and user. Thus SI might make the extraction of information from users
more efficient as well as making the responses provided to those users
more cooperative.
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Generating Corrective Answers by Computing
Presuppositions of Answers, Not of Questions
or Mind Your P’s, not Q’s!

R.E. Mercer and R.S. Rosenberg
Department of Computer Science
University of British Columbia

Abstract

The standard approach for an Answerer to generate
correclive as opposed to direct answers to a question is to
compute the ‘“‘presupposition of the question”, interpret this
statement as a belief of the Questioner, and, if this belief is
false, to correct the false belief. We suggest a new approach
based on computing the presupposition of the answer, for the
following reasons: (1) one does not need to compute the
“presupposition of the question’ to be able to justify and
form a corrective answer, since one can accomplish these ends
by computing the presupposition of the answer, (2) the new
approach is successful in a class of Question-Answer situa-
tions for which the standard approach was not designed, and
(3) the new approach generates the desired direct and correc-
tive answers within a well established theory (Gazdar, 1979).

Introduction

The Question-Answer situation is a planning process in
which the Questioner (Q) plans questions according to some
desired outcome and the Answerer {A} plans replies according
to the truth value of the available information. Yes/no, wh-,
and how many-questions concern us here. The following are
examples of these types of questions. In each of the the three
examples Q is the question, P is the “‘presupposition of the
question'’2, A1 represents a positive direct answer that entails
P, A2 a negative direct answer that presupposes P, and A3 is
a correclive answer which denies P. The answer can be shor-
tened by deleting the restatement of the {modified) question.
The meaning of the shortened answer, shown in parentheses,

is taken to be that of the full answer.

Q: Have you stopped beating the rug?
P: You have been beating the rug.
Al: Yes, I have stopped beating the rug. (Yes.)
A2: No, I have not stopped beating the rug. (No.)
A3: No, I have not stopped beating the rug, because [
haven't started. (No, because...)

Q: Which boys that went to the circus went to the

movies?

! This research was supported in part by the Natural Sciences and
Engineering Research Council of Canada grant A7642 (to R. Reiter).
? Scare quotes are used to indicate that we are not committed to the
existence of such an entity.

P: Some boys went to the circus,
Al: John and Bill, the boys that went to the circus, went
to the movies. (John and Bill)
A2: No boy that went to the circus went to the movies.
(None of the boys.)
A3: No boy that went to the circus went to the movies,
because no boy went to the circus. (None, because...}

Q: How many boys that went to the circus went to the
movies?
P: Some boys went to the circus.
Al: Three boys that went to the circus went to the
movies. (Three.)
A2; None of the boys that went to the circus went to the
movies. {None.j
A3: None of the boys that went to the circus went to the
movies, because none of the boys went to the circus.

(None, because...)

The standard approach® to the Question-Answer situa-
tion, which we call PQ, computes the “‘presupposition of the
question’ and generates answers to correct false presupposi-
tions (Belnap and Steel, 1976; Kaplan, 1982). This method
provides A with two sources of information to form an
answer: A's knowledge of the domain about which Q is
requesting information and a supposed subset of Q’s beliefs
which A derives as the ‘‘presupposition of the question”. The
“presupposition’ is inferred from lexical items and syntactic
constructions in the question. The examples above demon-
strate this for “'stop’’ and relative clauses. A plans answers
in the following way: If the presupposition is true then A can
give a direct answer. If it is false then A is required to give a
corrective answer which appears to correct the false belief
rather than answer the main question.

The alternative approach, presented here, forms answers
with presuppositions that can be proved true. This method,

here called P,, produces answers from A's point of view

3 Comments throughout are about the standard approach in general,
but since Kaplan(1982) is contained in a computational framework and
since it is representative of the standard approach, we will make comparis-
ons with it specifically.
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recardless of Q's beliefs. It is based on
Gazdar{1979)’s interpretation of the Maxim of Quality of the
cooperative principle (Grice, 1975); that is, A cannot utter an
answer that has In addition,
Gazdar's theory for computing presuppositions is used by A

to plan the form of the answer. This theory states that Q

{(supposed)

non-true presuppositions.

will infer the presuppositions of the answer from lexical items
and syntactic constructions contained in the answer unless
the presupposition is inconsistent with the context. The con-
text includes general real world knowledge, specific knowledge
that Q has, and information contained in the sentence. A,
applying this theory, plans the answer in the following way: If
the presupposition is true then A can give a direct answer. If
the presupposition is not provably true then since A knows
that Q finds the presupposition assumable (ie does not believe
it to be false (Kaplan,1982)), A must supply enough extra
information (possibly in the form of a because-clause) so that
Q will not infer the (non-true) presupposition and will inter-
pret the sentence properly. Details and examples are given in

the next section.

For questions that ask about objects and relations in
closed extensional data bases, PQ is sound and complete. P,
should be viewed as generalizing the cooperative behaviour
found in Pé to data bases that are not closed, allow
inferencing, and are incomplete with respect to the questions
that can be asked.

Description of the Two Methods

Given the previous examples we realize that the struc-
ture of the answers for yes/no, wh-, and how many-questions
are just modifications of the question’s syntax, together with
appropriate additions such as yes or no for yes/no questions,
a list for what-, which-, or who-questions or a number for
how many-questions, and because-clauses for corrective
answers. Since this is the case, PQ and P, can generate an
answer from some simple set of rules and sentence schema.
We now look in more detail at how the two methods compute
answers.

Both methods transform the question into a query in
some query language, and present it to a data base. If the
answer is positive, both methods produce an Al answer. If
the answer is negative, the two methods take different
approaches.

PQ does the following for negative answers. The

“presupposition of the question'” is computed. It is then
passed to the data base as a query. If the query is true then
an A2 answer is formed. If the query is false an A3 answer is

created. The content of the because-clause is computed

according to an algorithm which finds the smallest failing
subgraph in a Meta-Query Language (MQL) graph (Kaplan,
1982). The details are not important, but it essentially finds
the most general correction.

P, works in the following way for negative answers. A

first forms an A2 answer. Because A is committed to the

Maxim of Quality, A cannot utter the answer unless the
presupposition of the answer is true. The presupposition is
computed (computation proceeds as in  Mercer and
Reiter(1982)), translated into a query, and passed to the data
base. The presupposition can be proved true, proved false,
not provably true or false, or the proof may be terminated
early because of resource limitations. We consider each of

these outcomes.

(1} If the presupposition is true then the A2 answer can be

uttered.

{(2) If the presupposition is false then an A3 answer is
formed with a because-clause that dentes the presup-
position. Noting that an A3 answer may have a

presupposition, this answer is subjected to the same

If the new presupposition is true the

If it is not true then the

process again.
A3 answer is uttered.
because-clause is replaced by another because-clause
which denies the new presupposition. This cycle con-
tinues until the A3 answer has only true presupposi-
tions. We end up generating a sentence with the most

gencral correction. This is analogous to PQ which

finds the smallest failing subgraph in MQL graphs.

(3) If the presupposition cannot be proved true or false, or
if the proof is terminated early, then a different kind
of answer must be generated -- an answer like [ don't
know (if...) because I don’t know if ‘the presupposi-
tion' is true.” And like the answers in case (2), this
sentence may have new presuppositions that need to

The result of

any of these steps may be an A3 answer or an I don't

undergo the same cycle as in case (2).

know..." answer.

If the answer cannot be proved true or false the two

methods are different. PQ gives as a solution an “I don’t

1

know..." answer. But this answer is potentially incorrect

because it may have false presuppositions. P, processes this
class of answers in the same manner as negative answers.
The following example illustrates the differences between the

two approaches.
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Question: ‘Do any professors that teach CPSCI0L teach
CPSC114?7”

which “presupposes’
“There are professors that teach CPSC101.".
The query, in some query language, would be
“Does there exist an individual that teaches CPS('{01 and

teaches CPSC1147".

(1) Suppose the data base can prove the query false, and can
prove that the presupposition is true. Then the answer
for both PQ and P, would be an A2 answer, that is,

“NO "

Suppose the data base can prove the query and the
presupposition false. Then the answer for both methods
would be an A3 answer, that is, ““No, because no professor
teaches CPSC101.".

—
o
—

Suppose the data base can prove the query [false, (say, by
proving that no professor exists that teaches CPSCI14)
but cannot prove that the presupposition is true or false.

Because the presupposition cannot be proved false, PQ

—
=)
~2

must give an A2 answer. This answer is wrong in this
case because an A2 (ie A is
communicating to Q that the data base can prove) that
“There are professors that teach CPSC101.”. P, can give

answer presupposes

an A3-like answer, that is, “No, and in addition [ don't
even know if any professor teaches CPSC101.” Note that
P, requires that any new presuppositions be treated like
the original one. So the presupposition “CPSC101 is
taught.” must now be proved. If the data base proves it
true (say, by proving that sessional instructors teach
CPSC101), the answer is not changed. If the data base
proves it false, then the answer must be changed to “No,
and in addition CPSCI01 is not taught.”. If the data
base cannot prove it either true or false, then the answer
must be changed to “No, and in addition I don’t even
know if CPSCI101 is taught.".

{4) Suppose the data base cannot prove the query true or
false. In addition the presupposition cannot be proved
true or [false. PQ would answer “I don’t know.”” which
would be incorrect because this answer presupposes that
there are professors that teach CPSC101. On the other
hand, F'A would respond with “I don't know, and I don’t

even know if any teach CPSC101."

Differences between P, and PQ

PQ works correctly with closed extensional data bases
and for questions that can be answered by the data base; that
is, questions that ask about objects and relations in the data
base. Also it is complete for these types of data bases and
questions. PQ and P, coincide in this restricted environment.

P, is intended to work additionally with data bases that are

not closed, that allow inferencing, and that are incomplete
with respect to the questions that can be asked.

The major difference (other than the obvious difference
between computing presuppositions from questions or
answers) between P, and Py is that where PQ must prove the
presupposition false in order to give a corrective answer, P,
need only fail to prove it true in order to generate a correc-
tive answer.

PQ takes the “‘presupposition of the question’ as a belief
of Q. To correct Q, A must prove that this belief is false.
From this point of view, this is a reasonable rule; A should
not correct a belief of @ unless A is certain that it is false.
Simply changing PQ to allow answers similar to those gen-
crated by P, is not justified, because correcting Q would be
allowed even though A is not sure that @ has false beliefs, A
shift in point of view from computing the “presupposition of
the question" to computing the presupposition of the answer
must be made in order to justify the switch from having to

prove false to failing to prove true.

Conclusion

We have presented an alternative to the standard
approach for generating corrective answers to questions. We
have demonstrated that the new method not only works for
those Question-Answer situations for which the standard
approach works, but also for the situation in which a proof of
the truth or falsity of the question or the presupposition is
unavailable. In addition the algorithm uses a well-established

theory for computing presuppositions (Gazdar, 1979).
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GOAL INFERENCE IN EXPERT ADVICZE-GIVING
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Abstract — In the past expert systems have adopted the appropriate-
query aszumplion—that people consulting them always ask for
precisely the information they need. In fact, people often need to
consult with experts because they have an incomplete understanding of
their options and do not know what it is that they need to know. Tt is
a significant feature of human expertise to be able to deduce, from an
incomplete of inappropriate query, what advice is actnally needed. This
paper describes ongoing research to incorporate similar inference
capabilities in automated expert systems so that they too will be able to
deduce advice-seckers’ goals and thereby generate appropriate answers
to their queries. A framework for inferring goals is described. along
with a strategy for conttolling the inferences.

Introduction

Imagine that you're trying to uwse MM, a mail system on the
DEC-2060 computer, and that partway through creating a message yon
accidently type a Control-Z, which has the pernicious effect of ending
your message creation and sending you to the prompt level. You turn
to your ever-ready expert and ask if there's some way to undo a control
character from within the mail system. Your expert tells you that there
isn't, and so, feeling annoyed and frustrated, you proceed to recreate
your message fromn scrateh. When you later discover that you could
indeed have entered an editor from the prompt level and added dircetly
to the existing message fragment, you begin to doubl your expert’s
expertise,

Now imagine that you've just inherited $120,000. You imniediately
call an investment counselor to ask whether you'll cara more interest on
Treasury-notes or on certificates of deposit.  The counsefor asks you a
few questions about your tax bracket and other investments, and Lhen
informs you that T-notes are the better investment. What she doesn't
tell you is that, given her knowledge of your financial situation,
municipal bonds would be a far better investment than either of your
expressed alternatives.  When you luter learn this fact, vou're very
likely to find a new investment counselor.

In each of these scenarios, you've gone to un expert sceking advice
about some problem, and in each the expert has failed to provide you
with the most appropriate advice. The failure resulted from the
expert's assumption that you knew exactly what advice you needed,
and that you had accurately and literally expressed a request for that
advice in your query. This assumption, which [ call the appropriate-
query azeumption, has been made in most existing expert systems, Yet
observation of dialogues between human experts and advice-seckers
reveals that it is much too strong. People often need to consult with
experts precisely because they do not know what it is that they need to
know: they may have an incomplete notion of what their opticus are
~ or perhaps no good notion at all. As a result they may intend to do
something that is not actually the best thing they could do.

It is a significant feature of human expertise to be able to deduce,
from an incomplete or inappropriate query, what advice is actually
needed. The goal of the ongoing research described in part here is to
enable automated experts to perform similar deductions, and thereby
generate appropriate answers to queries made to them. This paper
describes the components of a framework for goal infcrence, along with
a strategy for controlling the inferences.

_20_

19104

Assumptions

Two distinet types of goals can be associated with aay query to an
expert. Previous work has often been directed to the inference of
communicalive or illocutionary goals of indirect speech acts.  For
example, [4, 9] present a theory relating the query *Is there some way
to undo a Control-Z?* to the goal of finding out a procedure for
undoing a Control-Z. In contrast, the theory being developed here
assumes the inference of the communicative goal and emphasizes the
deduction of what [ shall call domein goals: it relates a request to be
told how to undo a Control-Z to an unexpressed request for a method
by which to complete a partial muail message.

The inference of domain goals has been studied within the context of
one agent observing anctiier's actions |5, 6, 13} or reading about them
[2]. This differs from the context wsumed in current work, in which
the expert must infer the advice-seeker’s goal from the discourse rather
than from observing his actions.,  The difference in assumptions is
critical to the implementation of this work in systerns that are expert
on some domain external to the computer:  such systems can only
receive their information from discussion with the advice-seeker.

Research into domain goal deduction buased on discourse {1, 3, 7} has
generally made the appropriate-query assumption, that the advice-
seeker's query requests information that he actually veeds. When (he
appropriate-query assumption is made, domain goals are deduced in
order to provide additional information or to respond to query
tragments. The one current system that appears nol to be making the
appropriate-query assutaption is the Consul system [S] However, it
does make the strong assumiption that the advice-secker has a complete
model of one domain (postal mail) which is distinct from the systemn’s
domain of expertise {electronic mail) and which is specifiable a priors.
What Consul provides is a mechanism for mapping between the two
domains, In fact it does implicitly assume the appropriateness of the
advice-secker’s query, hut with respect to the former domain.

To sumnarize, the research described in this paper differs from eurlier
work in that it studies the inference of domain goals, based only on
discourse with an advice-seeker, without making the appropriate-query

assutmplion.

The Goul-Inference Process

As already meationed, existing expert and planning-systems make the
approptiate-query assumption: they adopt the advice-seeker's expressed
goal, and attempt to deduce either a fact that he says he waats to
know or a plun that achieves a state of affairs he says he wants to
obtain. However, as shown in the introduction, a cooperative expert
cannot assnme that the most appropriate response to a query addresses
the expressed goal. Often the best response will address some domain
goal unexpressed in the query. This section maps out the steps needed
to determine what that goal may be.

The analysis of goal inference described here was motivated by the
study of dialogues between human experts and advice-seckers.(*1 For

(I)Thanks are due to M. Tyson and I. Hobbs: B. Lewis and E. Goldberg; and
E. Eceli, . Klein, and P. Natali for collecting the transcripts,



the initial study, the dialogues came from several sources, but in all
cases the domuin of expertise was a computer system such as MM or
the text editor EMACS.  Computer systems provided an attractive
domain for the preliminary analysis because of several simplifications
they permit Lo the general problem of providing an appropriate answer:

sThere is only one agent operating, apart from the system.
Interactions among multiple agents’ goals need not be
considered.

oThe effects of actions can be assumed to be certain. When
an MM user, for example, types *SEND®, one can assuime
that this results in his current nsessage being sent. No such
assumptions can be made about the effect, say, of investing
money.

sThere is a limited but nontrivial number of putential actions
the user can perform. The number is small enough to make
an axiomatization feasible.  However, this small set of
actions can be combined and structured in interesting ways.

Allowing Different Query Types

LEven a cursory examination of naturally occurring dialogues reveals
the first way in which the appropriate-query assemption is overly
restrictive.  Advice-seekers do not always directly specify the state of
affairs they want. The cooperative expert must use what information
ia provided in the query to infer the advice-secker's goal.

Study of the transcripts mentioned above has shown that a large
percentage of queries are of three types. The first type can be
paraphrased as *How can [ have condition P hold?® (where P may be
some condition or a Poolean combination of conditions); the second as
*How can 1 do action «?® (where a may be some action or a Boolran
combination of actions); and the third as *How can [ perform some
action a but have modifying condition P hold?» () of course, there are
queries that do not fall into vne of these types; ideatifying and
analyziug other query types is part of the ongoing research.

In the goal-inference framework 1 am constructing, each query type is
associated with a target predicate. The target predicates for the query
types mentioned above are wantState(A,p), wantAction{A.a), and
wantModifiedAction(A.a.p), respectively, where A indexes the advice-
serker and p and « encode the formula(s) andfor action{s) he says he
wants. [ am assuming the existence of a semantic analyzer to provide
logical forms that could then be translated in a principled way into such
a set of predicates. The target predicates serve as input to the goal-
inference system.

To see how potential goals are inferred from target predicates, let us
consider how a human expert deals with queries of each type. To begin
consider the second query type, in which the advice-secker describes in
his query an action that he wants to perforin. This is the type of the
query in the Control-Z example. When presented with the description
of an action, the human expert infers that a potential goal of the
advice-seeker is the effect of the described action. So, for example,
when asked *How do I send a message to Joe?®, the expert will provide
a plan that achieves the result of the action *send a message to Joe®,
This may seem somewhat paradoxical. [f what the expert is going to
provide is a plan that will achieve the advice-seeker's goal, then why
does the advice-secker specify to the expert a plan whose effect will be
that goal? That is, if the advice-seeker already knows the action he
wants to perform, why does he bother the expert at all? The answer to
this is that the advice-seeker does not know how to perform the action
he is describing: what he conveys to the expert is an action deseription,
not an actual, executable plan.

Sometimes the action described in the query may be extremely close

They occur when something has

(b) s estions is quite common. ng
Another class of question q o with s P

sgone wrong® and the advice-seeker asks either "How K
19 or "1 performed action a,

i t ted condition Q) L
bolding [when [ vante deferred becauge it requires an additional

hold now!® Analysis of this class has been

layer of reasoning.
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what conditions’

to an exceytable sequence of actions, particalarly in a computer-system
domain. This results in exchanges like the following:

A: *How do | delete a message?®

E: “Would you believe DELETE followed by the
message number?®

Because the action description *delete a message® happens to be nearly
identical to the MM command DELETE, it is easy to confuse the two.
However, in another mail wystem, deleting a message might require that
you first read the message and then type *DIESTROY." so that the
exchange between expert and ndvice-secker instead looks like this:

A *How do [ delete a message?®

E: *Type READ u, where n is the number of the
message you want to delete, and then iype
DESTROY."

Although the query contains the same action description as the previous
example, the answer consists of a different executable plan.

The following three examples, taken from the transcripts, provide
further evidence that experts often take the effect of a described action,
rather than the action itself, to be what the advice-seeker wants.

A: *I'm getting some inconsistency here. 1 wanted to
add some addresses to my LETTER file and | used
APPEND to do it. But nothing's happening. How
can I get APPEND to work?®

1A *Well, LETTER is unsupported softwuare so if it isn't
working there isn't much you can do. What you can
do is set up a separate, new file and then just use
S0OS to copy that file to the end of the other one.*

Note that here the expert is unable to give the advice-seeker u way to
fix the APPEND command. However, she knows what the result of
fixing APPEND would be, and she provides a plan that achieves that
result.

The next example is similar:

Al *I'm trying o usc the Diablo printer, but there's no
ribbon in it, Could you put one in for me?®

E: "Nou. You have to have your own ribbon. You can
buy one at the computer store.®

Here the expert’s answer is in the same spirit as the previous example:
although the requested action cannot it~elf be performed, the results
that that action would have if it were performable can be independently
planned for. The expert cannot hersell put a ribbon into the printer,
but she can.and does teil the advice-sceker an alternative way to
achieve what would be the result of her inserting a ribbon.

Here is a third example, from an EMACS user:

Al *How can [ tepeat a command? Control-K?*®

E: *Most likely what you should do is define a region,
and then just kill that region.®

The advice-seeker here describes an action he would like to perform:
his  query would be represented in  the framework as
wantAction(A repeat(Control-K)).  What the expert does is determine
the effect of the action he wants. Control-IX deletes a line, so repeated
Control-K's will delete several lines. The expert then tells him a plan
to achieve that effect. Note that the given plan does not involve
repeating Control-K's at all. The expert has produced a plan to achieve
the effect of the action o {repeat(Control-K)) independent of a itself.



Linking [tules

The expert's ubility to infer a potential goal from the query s
captured in the goal-inference Jramework by a set of linking rulee.
Linking rules link tugether target predicates and potential goals. The
linking rule that applies to the target predicate wantAction(A n)
follows:

It an advice-secker A describes an action « that he
wants {i.e. the target predicate is wantAction{A o))
and the result of performing « in the current state of
affairs would be the state of affairs p, then p is a
potential goaf of A.

Linking Rule 1.

Such a linking rule will not by itself suffice. In order to apply it. the
system needs to know the result of performing the action « in the
current state. What is required is a dictionary actions desceibed by the
advice-seckers.  Presumably sowne action descriptions, such as undo,
repeat. and add-to-n-list, are general and domain-independent, while
others, such as soud, carbon-copy, respoand-to-a-message, and forward

are domain-specific.

The performance of any aclion results in two types of propositions
holding: (1} those that have been mude true by the performance of the
action; {2} frame propositions that were true before the action was
performed.  (ivimne propositions are propositions whose truth-value is
not affected by the performance of the action.) In most analyses of
planning and actioas, all frame propositions have equal status, and so
either all frame propositicas would be part of the resulling state of
affairs (in which case the state of affairs would he a complete possible
world), or else none would. However, when someone wants to perform
an action, he will be more concerned with some frame propositioss than

with others.

Consider, for instance, an MM user who has finished his message and
now wants to move from create mode to send mode. Not anly does he
want the mode to change, but it is essential to him that his message
remmain unchanged; after all, the reason he is shifting into send mode is
to send the message he’s just created. On the other hand, it probably
does not matter to him whether his terminal display remains similarly
unaffected. A plan that enables him to get to send mode but changes
his current message will be unsatjsfactory to him, whereas one that gets
him to send mode but clears tie display will sulfice.

When the expert applies Linking Rule 1 to determine the advice-
seeketr's potential goal, that goal should include those properties that
are essential to have hold true. A major aim of the ongning research is
the development of a representation that distinguishes between essential
and inessential effects of actions. A preliminary attempt at modeling
this distinction is given in [10].

The other query types studied also have associated linking rules. The
following dialogue fragment exemplifies a query that is represented by
the target predicate wantState{A,p).

A *How do I get out of read mode and into send
mode?”
E: *If you've finished reading all the messages you said

to tead, a carriage return will get yon out. If you
want to stop early, just type QUIT.*
In this case the associated linking rule is extremely simple:

If an advice-seeker A describes some state of affuirs p
that he wants (wantState{A,p)), then p is a potential
goal of his,

Linking Rule 2:

This rule equates the expressed goal with a potential goa). As we shall
see, it is only potential, and may not be the dumain goal that an
appropriate response addresses.

An example of a query represented by wantModifiedAction{A n.q) is
the following:

A *How can [ use the MOVE command to put a niail
message in another file but not have it deleted from
the MM file?®

E: *Use COPY instead of MOVE.®

The action a here is *move a message m*; the modification qis *have
m remain in the MM file.® The relationship between the offect of the
described setion and the requested modification will affeet the answer
given. In the *normal® case, exemplified by the dialogue above, action
a does not achicve q, but it does achieve at feast some propositions that
are compatible with . Let us call those compatible propositions p'. So
for this example p' is *have the text of message mn in a file in A's
directory ™ A putential goal of the advice-seeker is P'Aq.

Thus a formulation of the linkiug rule for this query type is

Linking Rule 3 If A says he wants an action @ and a modification q
to that action, and « does not achieve q but it does
achieve at Jeast some propositions p' compatible with

q, theu p" A ¢ is a potential goal of A.

It turns out that this rule will not properly handle situations in which
the advice-seeker is mistahen about the relationship hetween the result
of the action a and the modification q. [t not work, for instance, if
itsell achieves q. A more gencral statement of it is given in the
following table, slong with a summary of some of the other linking rules
formulated to date:

Query Type Linking Rule

wantAction(A,a) LRLIT A says he wants action a and the result of
performing « in the current state of affairs is p, then
pis a potential goal of A.

LRR2If A says he wants a state of affairs p, then pis
a potential goal of A.

wantState(A p)

wantModifiedAction(A,a,q)

LR3I A says he wants an action « and a
modification q to that action, then {i) it « does not
achieve q but it does achieve some propositions p’
compatible with g, then p’ A ¢ is a poteutial goal of
A; (i) if @ itsell achieves q. then A should be told
this; {iii) it @ achieves only propositions incompatible
with ¢, then A should be told this.

wantAction{A,OR(a, 7))
LRI A says he wants a or 5 and the result of
perforning o in the current state of affuirs is p and
the result of performing 7 in the current state of
affairs is q, then the intersection of p and q is a
potential goal of AL

wantState{A, AND{p.q}}
LI (see above)

Inferring Alternative Gouls

Consider again the advice-seeker in the introduction who wanted to
know how to undo a Control-Z. This query would be represented in the
frammework as wantAction(undo(Control-Z})).  Let us consider what a
system based upon the framework would do with this input, [irst, it
would attempt to apply Linking Rule t, which is associated with the
target predicate WantAction. To do se, it would have to Jook up the
definition of undo, which would be encoded roughly as follows:

If action a achieves state p when performed in state
q. then undo(c}), when performed in state q, achieves
state p.

To instantiate this definition, the expert would next have to fook up the
definition of the action described by ControlZ, and would find that
performing Control-Z in create mode with a certain message m results
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in send wode with that same message. Hence the action of undoing a
Control-Z from send mode with inessage m should result in ereate mode
with message m. Linking Rule 1 then implies that this state of affairs—
being in create mode with message m--is a potential goal of the advice-
secker.

Unfortunately, if the system at this point attempted to derive a plan
to achieve this goal, it would fail, and would have to respond with
sornething akin to *You can't get there from here.® There is simply no
way in MM to return from send mode to create mode without
destroying the current inessage. The human who actually responded to
this query, however, was able to provide a much more appropriate
answer.  She told the advice-seeker "Type EDIT to enter the editor,
Then you can finisi building your message and, when you're done, type
Control-X Control-Z to return to send mode.® To arrive at this answer,
the human expert had to dedure that the reason the advice-seeker
wanted to be in create mode was to finish building his message prior to
sending it. He believed that being in create mode was prerequisite to
being in send mode with a completed message.

An expert often needs to make just this sort of deduction. It is not
always sufficient for her to determine the advice-secker’s potential goal
directly from his query: often she will have to determine why those
goals are potential goals, and what other goals they are intended to
support. The introduction of a set of rules called alternalive-goal rulea
will enable this type of reasoning in the goal-inference framewnrk.
Alternative goal rules add to the <et of potentisl gonls: they are all of
the form *if p is a potential goal, then q is also a potential goal.®

Allen and Perrault {l] present a set of rules that interconnect an
advice-seeker’s possible wants. Far example, they propose a rule stating
that, if an advice-secker wants some proposition p and if » is a
precondition of some naction «, then the adviee-seeker may want to
perform a (Precindition-Action Rule). Another rule states that, if an
advice-secker wants to perform some action g3, then he may want the
effect of 3 (Action-Effect Rule). The alternative-goal rule needed in the
Control-Z example is a combination of these two rules. It asserts that
if p is a potential goal of the advice-seeker and p is a precondition for
some action «, then another potential goal of the advice-seeker is the
result of o [ will call this Alternative-Goal Rule 1.

For the Control-Z example, the expert knows that one thing the user
can do in create mode is add to his current message.  Applying
Alternative-Goal Rule 1 Ieads to the introduction of a new potential
goal:  being in create mode with some message that consists of the
current message with additional text appended to it. Let us call this
new potential goal g’ Alternutive-Goal Rule 1 can then apply
iteratively to its own output: one state achievable from g’ is being in
send mode with the new {appended) message. This is the state of
affairs that the human cxpert chose to treat as the advice-secker's
domain goal: she provided as a response a plan to achieve it.

The reader has a right to be concerned at this point about the
combinatorial explosion that may ensue as a result of applying
Alternative-Goal Rule 1. As it now stands, this rule can introduce into
the set of potential goals all the effects of any action that has as a
precondition any proposition already inferred to be a potential goul.
Human experts are not nearly so profligate in hypothesizing potential
goals of their advice-seekers. Instead they make extensive use of their
knowledge of the domain and of the goals people are likely to hold in it.
Similarly, the use of rules such as Alternative-Goal Rule 1 by an
automated expert will have to be governed by a control strategy that is
expectation-driven. We now turn our attention to such a strategy.

Seleeting the Most Appropriate Goal

As was just mentioned, human experts use their extensive knowledge
of the domain---their expertise-—-to guide them in inferring what it is
that an advice-secker may be trying to achieve. They know what sorts
of things people are apt to want to do.
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{n the goalinference framework, this expertise is represented by a set
of plausible goals associated with each state of affairs. lach set is
partially ordered according to the likelihood of a particular goal: for
example, while being in send mode with a complete message, and being
out of MM entirely are both plausible goals for someone in create mode,
the former is a more likely goal and conscquently would be ranked

higher.

The idea of having expectations guide goal inference i8 not a new one.
Allen and Perrault [1] discuss it extensively, although they have only
global plans serving as expectations.  For them, what counts as an
expected plan is independent of the questioner's current state.
Furthermore, they do not consider an ordeting of possible expected

plans

The following algorithm uses the plausible-goal sets to control goal
inference:

ol. Let G be the set of potential goals, and g a distinguished
member of (. Set g equal to the potential goal inferred via
the linking rules from the query, and make it the only
member of G so far. Assume PLAUS is the ordered set of
plausible goals associated with the current state. If g is a
member of PLAUS

o2 Then the system attempts to find a plan to achieve g. If

It succeeds,

o3, Then that plan is given as an answer.

ot.Else (if it cannot find a plan to achieve g) the
alternative-goal rules are applied backwards to each
niember of PLAUS in order of plausibilty to attempt
to find one that is an alternative to one of the existing
potential goals in Gi. If one is found,

5. Then the newly inferred state is made a
meniber of G.iu becomes g, and the algorithm
loops to step (2).

ofi.  Else (if PLAUS has been exhausted) the
system reports failure

o7. Else (if g is not a member of PLAUS) a dialogue must
ensue with the advice-speker to attempt to determine whut
he is teying to achieve.

Let us consider how the control algorithm would be ap lied in the
Control-Z example.  First g would be set equal to the potential goal
derived via Linking Rule 1; g can be deserihed as "create mode with the
message equal to . where m is the current message.® To <tart, g is
made the only member of the set G of potential goals. PLAUS is the
ordered sev of plausible goals associated with the current stute, "send
mode with message m.* PLAUS is examined and g is found to be a
member of it {step {1}), so the system attempts to achieve g (step (2)).
If fails, and so step {4) is executed and PLAUS examined. The highest
tanaing member of PLAUS that can be derived via an alternutive-goal
rule from a member of G turns out to be "cieate mode with the current
message and additional vext appended to it.®  This goal becomes the
new distinguished member of i, and the algorithm loops to step (2).
Again the systemn attempts to find a plan that aciiieves {the new) g, and
again it fails, so step (1) is once again executed. This time the goal
found via the alfternative-goal rules is "send mode with the cureent
message and additionaf text appended to it.*  This becomes the new
g. Now step {2) is again executed. and this time the system is successful
in finding a plan that achieves g. That plan is given as the answer,
according to step {3).

Notice that even if the systemn finds that the originally inferred
potential goal is both plansible and achievable, its behavior may steill go
beyond that of existing systems in addressing an unexpressed goal.
This fact is a result of the reasoning encoded in the linking rules, and it
is tmportant to ohserve because a large number of the collected



examples show the expert behaving in just this manner. Recall, for
instance, the EMACS example given carlier, in which the advice-seeker
asked how to repeat the Control-K command and the expert responded
by telling him how to delete a region. No alternative-goal rules need to
apply in this example. The potential goal inferred via Linking Rule I is
found to be plausible {step (1)), the system finds a plan to achieve it
{step(2)}; and that plan is provided as an answer (step (3)). The linking
rule led to the inference of a goal state that was not explicitly expressed
in the example, und this goal was planned for independently of the
action that was mentioned by the advice-seeker. Even when no
alternative-goal rules need be applied, an unexpressed goal may be
addressed.

The control algorithm certainly needs some enhancement. One thing,
for instance, that must be added is a check that the newly inferred
potential goal state in step (5) is not the current state. For the
Countrol-Z example, this would preclude planning to achieve being in
send mode with the current message unchanged. Such enhancements to
the control algorithm are part of the research now in progress.

Overview of the Goal-Inference Framework

The goal-tuference framework has now been described. It is
diagrammed below. In the framework, the advice-sceker first presents
his query and any relevant facts to the expert. This query is mapped
into a target predicate by a set of translation procedures external to the
framework. The system then needs to infer the advice-seeker’s domain
goal before it can provide an answer. It does this in two stages. First,
it relates the query to a potential goal. This is done using two types of
rules: linking rules and action-description definitions. Linking rules are
general rules that relate the type of a query to the type of a potential
goal.(") Action-description definitions are specific rules that capture
people’s commonly held beliels about actions.

Once the system has linked the query to a potential goal, it may then
have to determine how it might be related to other potential goals of
the advice-seeker. Alternative-goal rules are used for this purpose. The
application of alternative-goal rules is constrained by an expectation-
driven control strategy that makes use of ordered sets of plausible goals
associated with the domain states.

translation

procedure
v Englieh query | ) { target predicate|
| including  f[v-==mmoommemes )= >| (& given facts) |
{ relovant facts | ) | |

linking rules

e o — — — —

&
action-description
definitions
| [
alternative-goal |------ > potential goal |
rules | | set [
(and control strategy) | I

f
I
!
|

{  oolution ¢

| |  deduction engine

(CJThe “type of a query® should not be taken to refer to s syntactic form, but
rather to the answers to such questions as: does it express an action or a state?; o

conjunction or disjunction?; ete.
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Conclusion

This paper has described ongoing research to incorporate goal
inference capabilities in expert systems. Study of transcripts of human
experts and advice-seekers has shown that providing expert advice is
not a one-stage process in which the expert simply attempts to find a
solution to the advice-secker's stated problem. Rather she must first
deduce what the actual problem might be, and only then look for a
solution. The components of a goal-inference framework have been
described, along with a strategy for controlling the inferences. A
formalization of the goal-inference process has heen attempted [10]
using a modal vasiant of the dynamic logic described by [12], but it
proved too cumbersome. At present, several different formal systems

for representation are being explored.
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TO IDENTIFY RELEVANT HELP
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Abstract: On-line assistance programs should have
the abtlity to fulfill complex requests for information. We
have butlt an assistance program for the Franz Lisp
programming language in which users can enifer mulliple
keyword queries in an ungtructured form. The keywords are
mapped into the semantic network database, and spreading
activation is used to determine the object to be retrieved.

A many-to-many mapping between keywords and topics
permits familiar words to refer to polentially unfamiliar
and diverse topics, for example in Franz Lisp, the keyword
‘add’ 15 assoctated with CONS, APPEND and PLUS. A
weighting scheme assigng a value for relatedness between
keywords and objects, making ADD most closely related to
PLUS. Activation i3 directed by agsigning weights to the
topics and to the classes of links belween objects.

Introduction

On-line assistance programs are frequently included in
interactive systems to make them easier to use. Assistance is
generally initiated by an explicit request from the user, who
enters a command like help or man [8]. One of the most
common and frustrating problems with most conventional
help systems is a variation on the old dictionary-lookup
problem:

How can I look a word up in the dictionary to

discover its spelling if [ don’t know how to spell

it?
Users of computer systems are often faced with a need to
learn about some aspect of the system but do not know what
information to ask for or exactly how to ask for it.

There are several possible approaches to this problem.
One approach is to index information in the Help database
by function terms that the user will have a good chance of
knowing [8]. Another is to endow the help system with a
model of its users which can be used to predict what
information the user will need [4]. Still another approach is
to develop a help system which the user can easily explore in
. a top-down manner to find the information he needs [1]. The
information retrieval field [7] has a wide set of stategies for
identifying possibly relevant items from a large data base.

In this research, we have followed the general approach
of providing the user with a network of chunks of help text
connected by a variety of syntactic and semantic links. The
user can explore the network to seek the answer to a
particular question or more generally browse through the
network to discover new facts. One of the primary problems

* Address is now ITT Advanced Technology Center,
Shelton, CT 06484

with such a network based help system is providing the user
with a mechanism to find an appropriate place in the
network from which to begin his exploration. Asking the
user to employ a top-down search strategy from a root help
node places a large burden on him when the network is large.
We have provided a keyword access system which the user
can use to identify relevant starting places in the network.

In some keyword access systems, the user describes the
desired information by specifying a set of unique terms for
commands or objects in the system. Accessing information
using unique keywords, however, presupposes that the user
knows the keywords and their corresponding topics in the
system. To request information about the function that adds
an atom to the front of a list in Lisp, the user would need to
know that it is called cons.

Alternatively, using many keywords to refer to objects in
the system causes confusion about what the user wants to
know. For example, one can add numbers to numbers {(e.g.
Plus) or add atoms to lists (e.g., Cons). If the user asks for
help about add, how does the help program determine what
type of adding is of interest? We propose a technique for
determining rosponses in help programs given a network
database of help information and at least two keywords as
input from the user.

Description of HOW?

Our help facility, HOW?, provides textual information as
descriptions, examples, and errors about a subset of the
language and programming environment of Franz Lisp. The
information is organized in a network, where the nodes are
textual descriptions and the named links (sublopic, related
topic, supertopic, example-of, errors- from, details-about) are
the relations between the concepts that the descriptions
represent. The system is entered from Lisp via the function
HELP along with any number of keywords. Further
information is accessed by choosing from a menu of
associated topics, executing designated help commands, or
entering a list of one or more keywords in an unstructured
form.

Translation of User Request to Program Response
Using a string of words fo describe a topic seems to be
the most natural method for a human. Given at least two
words that refer to concepts in the database and the network
configuration, a node can be selected for presentation by
using spreading activation {2].

Spreading activation theory models human memory
retrieval as activation energy spreading from input nodes
across links in a semantic nelwork to an intersection [2].
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Applied in the help network database, this theory provides
the basis for retrieving information from the database in
response to complex, multiple word queries.

Abstractly, our version of this technique involves spread-
to-limit from a starting point of a list of keywords, which
refer to nodes. In spread-to-limit, the activation is divided
among the Initial nodes, multiplied by an attenuator or
spread-decay value and spread to adjacent nodes (and spread
to their adjacent nodes and so on) until the activation is
below the spread-limit, a threshold value that defines
negligible activation levels.

Description of the Algorithm

The algorithm relies on the weighting of the keyword
types and the meaning of the links for distributing the
activation. Keywords can be of three types, based on how
closely they describe their topic. Synonomous or unique keys
are given a weight of three, keys that describe a topic very
well a weight of two, and secondary or loosely descriptive
keys a weight of one. Each type of link (supertopic, subtopic,
related-topic, details-of, errors-of, examples-of) also has a
weight associated with it. These weights are determined by a
combination of the designer’s intuition of their relative
importance and empirical testing.

The parallel scarch is simulated by maintaining a queue
of active nodes (nodes with activation to spread further) and
maintaining two activation levels per node. The two levels
are temp-level and activation-level. Temp-level is the level of
activation that the topic has received since the last time it
spread activation to other nodes. Activation-level is the total
amount of activation that has been accumulated by it during
the current retrieval.

The process is started by extracting the keywords from
the user request and setting the initial activation levels of the
appropriate topics. The starting network activation of 1.0
units is divided evenly among the input keywords (words
frons wne request that correspond to nodes in the network).
The initial keyword activation level is then distributed
among the topics, referred to by the keyword, by summing
their weights (three, two, or one) and distributing the
keyword’s initial weight between the topics by percentage of
total weight. A symbolic form of the equation used appears
in figure 1. The topics are added to the active queue, and
normal cycling is begun.

Given: KEYS== K K, Ks"'KM
which map to nodes Nly N,, NS"'NS
with values V of {3, 2 or 1}

activation/node =V * W.
=3 i
v

where Vj == value associated with each node

W, = activation /key = 1
M

Figure 1: Formula for Initial Activation Levels

In a normal cycle, the next node on the queue is read. Its
temp-level is multiplied by an attenuation factor. The
attenuation factor is much like the resistance of the links to
having energy spread through them; a weak link, such as
errors-from, has a high resistance and so allows less energy
to pass. The attenuation factor reduces the influence of the
initial activation over time/distance. If the femp-level times
the attenuator is less than the spread-limit, then no
activation will be spread.

The attenuated activation divided among the
associated nodes according to their percentage of the total
weight.  The weights of the links are summed, and the
activation to be spread to each is the input activation
multiplied by the weight of the link and divided by the sum
of the weights. This amount is added to both the activation-
level and the temp-level for the associated nodes, which are
pushed onto the queue. Finally, the node just processed is
removed from the queue. This formula is in figure 2.
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1 where

A == attenuation factor
W = weight of each link

E;, = temp-level

L
7
E,, ~—> Node ~—>L,

for the node

1=}

E . for each [ == W, E_ * A
W

where (E; * A) > spread-limit
Figure 2: Formula for Spreading Activation During Cycling

Cycling continues until there no nodes are left on the queue,
The spread-activation function returns the list of topics, that
have been activated, sorted according to their activation-
levels. The highest ranking candidate on the list is the topic
to be retrieved, with other topics offered to the user as
alternatives. A more complex alternative selection scheme
would involve choosing alternatives relative to the highest.
For example, if the first topic's activation is considerably
higher than any other’s, then only this topic would be
offered. The alternates are printed on the screen for the
user's reference and can be accessed by use of a built-in
command.

Results and Conclusions
The technique has been tested with a series of multiple
keyword requests. Because the system discards irrelevant
keywords, pseudo-natural language input is possible, but not
necessary. Figure 3 demonstrates a few test cases input to the
spreading activation functions. The requests were chosen
from the portion of the database that is the most complete,

One benefit of this technique is that a request which
seems appropriate to a number of related topics will usually
suggest a suitable general node from which the user can
explore. This stems from the organization of the network
along supertopic and sublopic links.



How do I add an atom to a 1list?
highest ranking candidate: APPEND
alternatives: APPEND1 CONS List-data-type CAR/CDR

How do I add an atom to the front of a 1list?

highest ranking candidate: CONS
alternatives: APPEND1 CAR/CDR APPEND List-data-type

How do I add an a.tom to the back of a 1list?

highest ranking candidate: APPEND1
alternatives: CONS CAR/CDR APPEND List-data-type

How do I add two 1lists together?
highest ranking candidate: APPEND
alternatives: APPEND1 CONS List-data-type CAR/CDR

Figure 3: Spreading Activation Test Cases

The use of spreading activation with the weighted
keyword scheme shows promise as a method for processing
complex queries to a help program without developing a
natural language interface. Because the database structure
and keyword set impact the result of spreading activation
searches, the database must currently be hand coded.
Current research is investigating ways of automating the
database construction process to confront this issue.
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Abstract

This paper describes a mechanism for dealing with the
representation of events and their effects occurring in and
over time. The mechanism, which I refer to as a time map
manager (TMM), maintains a set of temporal constraints
on a partially ordered kernel of events and their projected
effects. Constraints on the persistence of facts
corresponding to the effects of events are maintained so as
to avoid contradiction as the partial order is modified.
The TMM is a self contained unit which subsumes and
extends the functions of procedural nets [7].

1 Introduction
Most interesting planning problems involve dynamic
issues;

o the wofld changes (and one would hope that
our view of it is modified accordingly)

e plans evolve and goals shift to meet our
varying desires and aspirations

o execution deadlines approach {and sometimes
are ignored for one reason or another)

e assumptions made at one point during
planning are invalidated by new knowledge or
by constraints imposed by other plans

Each of these problems require an ability to reason about
time. A pragmatic foundation for reasoning about time
should be able to capture the notion that actions can
modify the persistence of facts which are true in the
world. It should be able to use information about the
duration and sequence of events so as to infer possible
effects.  Finally it should provide a representational
structure to support planning and reasoning about the
causal structure of the surrounding environment.

A good deal of energy has been spent on developing
logics of time and representations for actions and events
which attempt to capture our intuitions about cause and
effect {5] [6] [1] [2]. The objective of this work is to build a
naive but pragmatic theory of causality in order to model
the world changing about us and our interaction with it.
Using such a model a robot should be capable of
developing plans to achieve its goals, executing these plans
and recovering from the inevitable problems that arise.
To illustrate I'll describe a simple problem from the task
domain which has motivated much of my current research.
The domain involves a mobile robot, which you can think
of as an automated forklift truck, and an environment
resembling an industrial machine shop or warehouse.

Suppose that the forklift has two general tasks:

e stack all similar unused items (presumably to
conserve floor space) and

e clear all unused items obstructing major
thoroughfares in the work space.

There are obvious constraints that one could suggest
concerning the order in which plans to achieve these tasks
are executed. In particular if, say, a hall was cluttered
with vacant desks and the forklift was capable of lifting
just one desk at a time then certainly it should clear the
desks from the hall before stacking other desks upon
them. It would also be reasonable to expect it to integrate
stacking with clearing where possible.

A planner has to be able to determine what facts are
true at a given point in time (e.g. is a desk clear or a
thoroughfare free of obstructions). Whether a fact is true
or not at a particular point in time may depend upon the
order in which certain tasks are performed and upon other
events believed to precede the point in question. This
paper presents a possible solution to the problem of
efficiently maintaining such knowledge.

2 Time Maps

Events occur in time. The sort of events we will be
investigating, events involving actions, can also be said to
occur over time. It is convenient to associate with a
particular occurrence of an event a temporal interval
demarcating its beginning and ending, in which the event
is said to occur. In the following we will refer to such an
event occurence as an event token. An event type on the
other hand refers to a description of an event without
reference to a particular time or occurrence fitting that
description (e.g. “an attempt made on the president’s life”
describes an event type while “John Wilkes Booth shot
Abraham Lincoln on April 14, 1885” refers to a specific
event token). Event tokens can be compared temporally
by means of the relative positions of their beginning and
ending points in a single dimensional space, that of time.
From the information that two event tokens meet,
overlap, or that one occurs during the other it is often
possible to infer a causal relationship between them or, in
the case that a causal relationship is already known,
deduce possible events to follow.

In addition to events causing other events, events can be
thought of as causing certain facts to “become true”.
Each fact caused by a given event is associated with an
uninterupted temporal interval designating (1) the point in
time at which the event ostensibly made the fact true (it
might have already been true) and (2) the first point in
time following (1) at which the fact is known to be false.
The event is said to enable the fact to persist over a
particular temporal interval which we refer to as a fact



token. The beginning and ending of a fact token is often
of interest. The fact token spanning this moment and
asserting my continued sanity is hopefully not going to
end soon. Other events can shorten the duration of a fact
token. I might open a window causing a draft because I
am warm and someone else might immediately close that
window complaining of the cold.

One can hypothesize about a given event occurring at
any point in time but the temporal placement of an event
affects both the persistence of the facts caused by that
event and the persistence of facts caused by other events.
Suppose that we are considering the event TOKENI as
occurring at a particular point in time. Facts caused by
TOKENI affect the persistence of facts caused by events
which precede TOKEN! and the facts caused by events
which follow TOKENI affect the persistence of facts
caused by TOKENI1.

A planner must be able to reason about how an event
will unfold at a particular point in time. In forming a
hypothesis about how an event will occur it is necessary to
make certain assumptions concerning the temporal context
in which the event is to be placed (i.e. the facts which can
be said to be true in adjacent temporal intervals). An
event projection refers to a set of inferences made
assuming that an event will occur in a particular interval.
A projection of an event token E includes:

1.a set of fact tokens {F, F, .. F}
representing the effects of E
2.a set of event tokens {E,, E, .. E_ }

suggested by causal inference rules to occur
given the immediate temporal context of E

3. constraints upon the time of occurrence of the
tokens in the sets mentioned in (1) and (2)
relative to £

4. projections of the event tokens in {El’ E2
E }
m
I may form a projection (or hypothesis about how the
future is to unfold) based upon certain fact tokens and my
current estimates concerning their duration or persistence.
Later I may feel obliged to retract my hypothesis upon
learning that one of the fact tokens on which I was
depending has been truncated by another event. After
opening the window I might expect the room will soon be
cool and the air freshened. When the window is shut after
so brief a time I must either reconcile myself with the stale
air (and my unaccommodating roommate) or do something
to restore the flow of fresh air.

A time map manager (TMM) keeps track of the known
relative positions of points corresponding to the beginning
and ending of fact tokens and event tokens. The TMM
maintains a consistent database of fact tokens by limiting
the duration of fact token intervals. By consistent we
simply mean that no fact token asserting P overlaps a fact
token asserting ~P. The TMM allows other programs,
under a wide variety conditions, to keep track of the
validity of assumptions made on the basis of facts believed
to persist over time. For example the assertion that a
particular event has occurred can be withdrawn along with
its current projection by simply withdrawing support for
the assertion. Any other assertions which depended upon
this event or any of its derived effects occurring will be
called into question as a side effect. In practice this might
mean that an “assumption failure” message would be
generated annotating the source of the failure and the
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parties involved. The planner could then take steps to
reestablish the the failed assumptions or replan the
threatened steps.

It is also quite easy to displace an event in time while
maintaining the temporal relationships between the event
and the tokens in its associated projection. This means
that a cascade of causally connected tokens can easily be
hypothesized to occur at different points in time. Shifting
an event from the point in time in which its current
projection was formulated to some other point in time
may threaten the validity of that projection. For example
I may have predicted that the circus clown on the trapeze
would be hurt by a fall until I discover that the clown's
act will follow the high wire act prior to which a safety
net will be set up under the trapeze. The TMM was
designed to assist a planner in keeping track of the
validity of predictions based upon temporally dependent
facts.

3 Time maps in the abstract

The general ideas behind time maps and time map
maintenance are quite simple. They rely upon the notion
of temporal dependence. A time map designates a partial
order on points. Intervals are described as ordered pairs of
points with the stipulation that the first point in a pair
precedes the second one. Each pair is associated with a
token and certain tokens are distinguished by their
designating a (temporally dependent) fact. The
maintenance algorithm simply sees to it that if there exists
a pair (beginl end1) referring to a fact P, then for all pairs
{begin2 end2) referring to ~P it is not the case that either
begin2 < beginl < end? or beginl < begin2 < endl.
When such an overlap is detected the token occurring
earlier is shortened so that it ends before the later token
begins.

If facts were added to the time map and never erased or
moved about then enforcing this invariant would be
simple. The problem is that we are anticipating the needs
of a planning algorithm which will use the time map, and
those needs dictate the flexibility to quickly add, shift,
remove and restore arbitrarily large event projections. In
order to achieve flexibility the maintenance system must
keep track for each fact token asserting P, those fact
tokens asserting ~P that are "likely” to change position
in the temporal partial order.

Determining a reasonable context of events for planning
or other forms of problem solving is often a significant
part of the problem. Suppose that I'm trying to
reconstruct yesterday's events during which my office was
entered and my coffee cup with the broken handle and
chipped lip stolen. I might be justifiably interested in the
event in which I went to the cafeteria, carelessly leaving
the office door unlocked behind me. But its not likely
that the events corresponding to my waking yesterday

.morning or riding the shuttle last night will be of any use

in discovering just who might have perpetrated the crime.

A practical TMM might designate temporal windows or
a set of categories for determining the sort of events that
might be considered valuable during planning.
Unfortunately fixed-duration windows are likely to prove
too restrictive and it is difficult to specify reasonable
categories that capture what we mean by relative
importance. The duration of an event is certainly not a
reliable indicator: the bomb detonations at Hiroshima and
Nagasaki together spanned at most a few milliseconds



though their repercussions are likely to extend well into
the next millenia (if we're so lucky). On the other hand
the duration of an event’s effects is no indication either,
otherwise every person’s death would would be considered
as an event on a cosmic scale. Rather than introduce
events on the basis of some inherent property of the
events themselves it seems more reasonable to leave it up
to the planner to establish criteria for inclusion.

The solution that I have adopted is to keep track of a
map kernel, the set of events that the TMM is currently
operating on. It is assumed that any events which the
planning program deems relevant will be introduced into
this kernel. As long as an event remains active in the
kernel its projected effects will be taken into account by
the consistency maintenance algorithm.

At this point it is obvious that knowledge about events
occurring in time can become available in at least two
forms in the data base. There are the privileged few
events currently residing within the kernel: privileged in
the sense that these events, in isolation at least, present to
the planner a consistent world model. Then there are all
those events that we are not currently concerned with and
among which we might find inconsistent temporal
assertions. This introduces two additional problems which
we will briefly discuss.

The first problem has to do with the status of events
lying outside the kernel. How are facts caused by events
no longer in the kernel retrieved efficiently from memory?
The answer is, that they may not be efficiently retrieved.
They will have to be searched for and how efficient that
search is will depend upon whatever indices are currently
available (perhaps through those events currently residing
in the kernel). It is up to the planner to index events
relative to other events in such a way that given one event
E1 it is reasonably simple to find events whose effects may
influence our consideration of E1.

The second problem introduced by a privileged kernel
has to do with removing items from the kernel which are
no longer relevant to the planner’s immediately active
tasks. The routine which performs the removal of a token
from the kernel has to perform some rather complex
juggling in order to maintain all active assumptions in the
network. An event token must be disentangled from its
projection in such a way as to maintain dependency
relationships and yet reduce the size of the kernel. A set
of token extraction routines which manage this operation
are described in [3]).

4 Dependency Directed Programming

In order that much of the following discusion be
intelligible the reader should be at least passingly familiar
with the concept of data dependency [4. A data
dependency network can be thought of as a graph
structure whose nodes correspond to beliefs and whose
links define support or justificatory relationships. The
nodes themselves which we refer to as ddnodes (for data
dependency nodes) might be associated with just about
anything but for our present purposes suppose that each
ddnode is associated with a predicate calculus formula (an
assertion or implication). In the following we will often
refer to the ddnode and its associated formula
interchangeably. A ddnode is said to be IN (in our case
the associated formula is believed to be true) if there exists
a well founded or non-circular justification whose
associated ddnodes are themselves IN, or OUT, depending
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upon the type of support relationships involved (a
justification can depend upon some ddnodes being OUT as
well as IN). Otherwise a ddnode is said to be OUT. A
formula can be made IN by simply asserting it, in which
case its justification is the fact that it is a premiss. In
other cases a formula will be IN or OUT depending upon
the current status of other formulas in the network.

One important fact about data dependency mgchanisms
{at least those modeled after Doyle’s tmph.malntenance
system) is that they support non-monotonic ml'erepce. In
data dependency terms, this means that changing the
status of an existing ddnode can cause a change in the
status of other ddnodes. In particular asserting & new
premiss can cause something that was formerly. IN to
become OUT. For example suppose that my belief that
stockpiling nuclear weapons is an effective deterrent to
their use is continzent upon my belief that no sane
country would risk nuclear retaliation. If I later learn that
one or more of the major powers believes that a first strike
offensive would enable the aggressor to survive a nuclear
exchange virtually unscathed then I might wish to reassess
more than a few of my beliefs.

b5 A description of the actual TMM

algorithms

A great deal of the power of TMM stems from the use of
dependency hierarchies. Some of the dependencies used in
the TMM are shown in figure I (+ and - labeled links
indicate that the lower assertion depends upon the upper
assertion being respectively IN or OUT. Multiple links
indicate that an assertion is dependent upon the
conjunction of specified support links).

(plaustble fact-token)
1+ [+
(active fact-token) al) related
| | (explicit-be fore ptl pt2)
[+ [+ I+

] all retated (derived-before pt1 pt2)

!

| (t begin2end2 ~P)

I I+ I+

| | | {derived-before begin2 begin1)

| (I | (derived-be fore end2 begin1)
[ o [+ (-

| (inconsistent-order end?2 beginl}

[ 1= !

[ | (derived-before beginl begin 2}
I || (derived-be fore end 1 begin?2)
I I (e

|1 {incongistent-order end! begin2)

Il I~

{t beginl end1 P)

Figare 1: TMM data dependencies

The assertion predicates used in the diagram require a
bit of explanation. A fact token referring to P is
associated with a tassertion in the data base of the form
{t begin end P) where begin and end correspond to the
beginning and ending of the token interval. A token is
plausible if it is believed to have occurred or to be going
to occur. A token is active if it is in the kernel of the
TMM. A tlagsertion is a kernel data structure: its status



is dependent upon its associated fact token being active.

All temporal relationships specified in the kernel are
represented by the derived-be fore predicate. The efficient
operation of the TMM consistency algorithm relies upon
the explicit presence in the data base of the transitive
closure of derfved-before on the set of all begin and end
points of tokens in the kernel. ~When the planner
introduces a constraint upon two tokens in the kernel (e.g.
that one token begins before the other) appropriate
ezplicit-before relations are added to the data base
dependent upon the two tokens being plausible and
whatever other reasons the planner has for adding this
constraint. At the same time the transitive closure on the
kernel points is updated so that all resulting derived-be fore
assertions are dependent upon the explicit-be fore assertion
which gave rise to them and the associated tokens being
active in the kernel. The explicit-be fore assertions remain
in the data base as long as the related tokens are plaussble
but the derived-be fore assertions are part of the kernel and
hence they exist only as long as the related tokens are
active. ~ The system garbage collects ddnodes
corresponding to kernel relations (relations such as
derived-before used exclusively by the kernel maintenance
routines) between tokens (or their begin and end points)
no longer active in the kernel.

The routine which generates the transitive closure sets
up data dependency links on new dervved-be fore assertions
so that when additions and deletions are made to the data
base only the correct subset of dertved-before assertions
will remain. All constraints imposed on the time map
partial order are done so in such a way that if at any time
in the future support for one of these constraints is
withdrawn the data base will “appear” as il the constraint
had never been made.

Now we can describe the tlassertion consistency
algorithm. A (tassertion is added to the data base
dependent upon its associated fact token being plausible.
As long as the fact token remains active in the kernel its
duration is contingent upon other tokens in the kernel. At
the time a tassertion (t beginl end! P)is added a check is
made of all currently active tassertions of the form (¢
begin2 end?2 ~P). For each such latter tassertion, if
{derived-be fore begin! begin2) is IN then it must also be
the case that (derived-before endl begin2) is IN and
similarl;  if  (derived-before begin2 beginl) is IN
(derived-be fore end2 begin1) must also be IN.

The tassertion initialization process makes the
appropriate changes, if necessary, by constraining the
kernel points. [t then creates a set of tnconsistent-order
assertions which are initially OUT but whose justifications
are set up so as to capture the derived-before mandates
just stated. Remember that the TMM is really only
interested in the persistence of fact tokens: that is to say
the position of their endpoints in the time map partial
order. The inconsistent-order assertions refer to
constraints which must be imposed if certain conditions
become true.

In order to detect and correct inconsistencies, a forward
chaining rule is set up in the data base to call a function
to restore consistency whenever an assertion of the form
(inconsistent-order fPpoint! ?point2) changes its status
from OUT to IN. Thus whenever a consistency mandate
is violated its associated snconsistent-order assertion will
become IN and consistency can be restored as during
initialization. With this algorithm a tassertion need only
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be “aware” of tassertions added hefore it, as tassertions
added afterward will take care of any interactions which
they cause.

8 Example

Suppose that the robot is clearing some old desks
stacked in halll4 and it is currently considering two tasks
(unstack desk13 deskstackl) and (transport deski?
storeroom3) where the first is constrained to precede the
second. Suppose further that there is a tassertion (t
beginl endl (clear-path halll4)) which 1is currently
believed (its associated ddnode is IN} and there is
presently no constraint on endl. The planner expands
{transport desk17 storeroom3) resulting in a subtask
(traverse-path halll4 desk17) beginning at begin2 and
ending end2 This expansion includes the addition of the
assertion (passume (traverse-path hall1{ desk17)) justified
by (derived-before begin! begin2) being IN and
(derived-be fore end! end2) being OUT. That is to say one
of the preconditions of using the {raverse-path plan is that
the chosen path be clear throughout the period of
traversal (see figure 2 for the setup thus far).

Now suppose that the planner (blindly) expands
{unstack desk18 deskstackl) resulting in the subtask
(place-al desk13 halllf). One projected consequence of
(place-at desk18 halll4) is the tasgertion (t begin8 end8
(not (clear hall14))) where begin3 corresponds to the end
of the token associated with (unstack desk13 deskstack1).
The tassertion consistency machinery then adds
(explicit-before end! begin3) thus truncating the
persistence of (¢ beginl end!l (clear-path hall1{)) and
{among other things) making (derived-before endl end2)
IN in the process of updating the trapsitive closure. The
fact that this threatens the (traverse-path hall1{ desk17)
task is noticed by a demon rule primed to watch for
assertions of the form (passume ?tagk-description)
changing from IN to OUT. The demon body, having its
condition satisfied, prompts the planner telling it that a
task expansion is in danger of failing and in order to
resolve the conflict it can either retract the current plan
for (transport desk17 storeroom3) or modify the plan that
resulted in (t begind end3 (not (clear halll{))) namely
(place-at desk13 hall14).

begint (clear-path hall14) end1

begin2 end?

Figure 2: Simple task network

7 Related Work

The approach described above subsumes and extends
the functionality of Sacerdoti's procedural nets and the
attendant mechanism for detecting interactions (using a
table of multiple effects (TOME}). The machinery for
detecting interactions is more flexible than either NOAH
or its descendent NONLIN [8] in that tokens or token
complexes can be moved about in the kernel without



missing potential interactions due to the changed ordering.

Allen’s work [2] comes closest to the issues addressed in
this paper. Allen describes an interval based temporal
logic and a computational mechanism for handling relative
{non-metric) interval relations. The system computes the
transitive closure of a set of interval relations and stores
the resulting n? interval-interval relation assertions in an
array for easy access. Reference intervals serve a purpose
similar to the kernel in controlling the computation
involved in adding and removing relations. Allen also
employs reference intervals to organize the temporal data
base hierarchically. He mentions but does not discuss in
any detail the possiblity of handling the persistence of
facts using data dependencies. Comparison between the
point based approach taken in this paper and Allen’s
interval based approach should prove interesting as both
systems are developed to deal with significant problems.

8 Application and Conclusions

The TMM algorithms are being used in a hierarchical
planning program for solving problems in the forklift
domain. The planner uses dependency relations based on
the status of derived-before assertions to detect and
resolve conflicts between plans. Interleaved planning and
execution is made possible using routines for removing no
longer relevant tokens (and their respective projections)
from the time map kernel. Current work is focussed on
integrating metric constraints and coordinating the time
map representation with a coherent and appropriately
indexed representation of episodic memory.
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Optical Phenomena
in Computer Vision
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Computer vision programs are based on some kind of model of
the optical world, in addition to whatever significance they may
have in terms of human vision, algorithms, architectures, efc.
There is a school of research that addresses this aspect of
~ computer vision directly, by developing mathematical models of the

optics and geometry of image formation and applying these models
in image understanding algorithms. In this paper, we examine the
optical phenomena that have been analyzed in computer vision and
suggest several topics for future research.

The three topics that have received the most attention are
shading (and gilossiness), color, and shadows. Shape-from-
shading research, while producing many interesting algorithms and
research results, has primarily been based on very simplitied
models of glossiness. Since realistic gloss models exist within the
optics community, we can expect improved computer vision
algorithms in the future. Color work in the past has similarly
concentrated on developing sophisticated algorithms tor exploiting
very simple color. models. but a more realistic analysis technique
has recently been proposed. Shadows have been used by a
number of pecople for simple analysis such as locating buildings in
aerial photographs, and a more complex theory already exists that
relates surface orientations to shapes of shadows in the image.

A number of problems plague this kind of research, however,
including the current inability to model real complexities of
ilumination and reflection, and the nagging feeling that humans
don't seem to rely upon very quantitative analysis of optical
properties of materials and illumination. These questions are also
addressed.

1. Introduction

Any effort in computer vision can be evaluated on several
grounds, such as:

o Computational What are the algorithms, data
structures and architectures involved?

e Perceptual -- How well does this work explain or
correspond to human visual performance?
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Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania
15213.
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¢ Semantic -- What kinds of knowledge are being used,
and how do various knowledge sources interact?

s Analytic -- What are the underlying geometric and
optical models of the world and the imaging process?

Various research efforts have addressed one or more of these sets
of issues; for exampie, the “connectionist” workers study
architectures for modeling human vision (computational and
perceptual issues [20]). Because the computational aspect of
computer vision most closely follows the lines of traditional
computer science. it perhaps receives the most attention. But, any
or all of the above factors may be crucial in evaluating research
ideas and practical nerformance; thus, the best anafytic model may
be useless if embecded in a pooriy designed algorithm, and at the
same time, a sophisticated algorithm based on naive imaging
models may never achieve its potential.

In this paper, we examine the analytic aspect of computer vision.
This is comprised of a set of geometric and optical models of
ilumination, reflection, and imaging that provide constraint in
performing low-level vision tasks,

There is a definite pattern of evolution in analytic computer vision.
Each optical or geometric phenomenon is (or was) historically
considered to be first a "source of noise", interfering with perfect
and simple images. Eventually, the reguiar behavior of the
phenomenan is studied in analytic computer vision research, and
good models are developed. When the models are good enough,
the research issue then becomes how to find this phenomenon
reliably in real images, and the research becomes computational
rather than analytic in nature. Several phenomena, primarily
geometric ones, are based on simple enough mathematics that they
have already undergone the change to computational problems.
They include stereo matching [2], perspective and texture gradients
[3, 46. 49, 30|, blocks-world line labeling (58], motion (58, 94], and
optical How {18, 37, 73].

In this paper, we are instead concentrating on those phenomena
for which good optical models are still under development. Some
of these have received considerable attention, such as shading,
color, and shadows, which will be the focus of our attention.
Several other topics have received limited attention but need more.
A few topics have received little or no attention in computer vision
to date, and are still considered "noise" even by researchers in
analytic computer vision.

The focus of this paper is on models that might be useful for
"general vision", ie. vision in the domains in which humans
typically operate. Thus, there will be no substantial discussion of
structured lighting techniques or range finders, for example.

2. Shading and Gloss

Early work in image segmentation was generally based on the
assumption that pixels representing a single surface should have
approximately the same intensity, and that pixels on different
surtaces should have different intensities. The first optical



modeling in computer vision acdressed this issue by recognizing
that highlights and shading are normal phenomena rather than
aberrations in the image.

2.1 Shape From Shading

For fixed directions ot ilumination and view and a specific surface
material, the amount of light reflected from the surface depends on
the orientation of the surface. We can denote surface oitentation
using the gradient space -- p represents the degree ot left-right
slant in the surface, and g represents the up or down slant (figure 1)
[55,80]. Horn's reflectance map R(p.q) can then be used to
represent pixel values as a function of surface gradient (figure 2)
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Figure 1: Gradient Space Represents Surface Orientation
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Figure 2: The Reflectance Map Relates Pixel Value to Gradient
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The reflectance map provides an explicit relationship between
reflected intensity and imaging geometry. A rellectance map can
also be expressed in terms of the photometric angles (figure 3) [32]:

sangle of incidence, i-- the angle between
illumination direction I and the surface normal N

the

e angle of emittance, e
viewing direction vV

- the angle between N and the

s phase angle, g -- the angle between [and V

0.2
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In gloss modeling (see below), it is useful aiso to define the
direction of perfect specular reflection J (the dircction of mirror-like
reflection, which is 1 reflected through N), and the off-specular
angle s between Vand J. A reflectance map assumes constant g;
the angles i and e are then functions of p and q.

i

Figure 3: Photometric Angles

Figure 4 shows the reflectance map of a perfect diffuse refiector
{"Lambertian surface™), in which R = cos . Such a surface is
perfectly matte in appearance - it exhibits no glossiness
(highlights) at all. Most work in shading analysis has been directed
towards analyzing Lambertian surfaces (or maria of the Moon,
which also have a simple retlectance function [32]).

1/

N

O

o o\
Figure 4: Reflectance Map of a Perfect Diffuse Reflector

When given the intensity of an image at a point, a contour of
possible surface orientations in the gradient space is produced,
according to the image irradiance equation I(x,y) = H{p.q). This
does not give a unique surface orientation at a point, but rather a
one-dimensional set of possible orientations.  One method for
obtaining additional constraint is to use derivatives of / and A, but
the results indicate that some assumptions about surface shape
must also be made to abtain unique solutions
[10. 12,31, 68, 69, 89, 104]. Another approach has been to use
relaxation with a smoothness constraint on the surface, and
possibly some boundary conditions where the surface normal is
determined by tangency or shadow edges {4, 11,31, 41, 101].
Additional constraint can also be provided by taking several imayes



of the same objects with several light sources at different positions
using the “photometric stereo” technique [16, 42, 84, 102].  In
yeneral, photometric  analysis seems to complement such
approaches as stereo [33], and photometric arguments have been
used to justify surface interpolation between the edges used for
stereo disparity measurement [24].

Many of these efforts include a constant term in the intensity
relations, intended to model "ambient” light diffusely reflected from
the environment. [n addition, any such work based on reflectance
maps relies on the assumptions built into the reflectance map:
orthographic image projection and infinitely distant light source,
producing a constant phase angle g.

2.2 Modeling of Glossiness

In most of the work described above, surfaces were assumed to
be Lambertian. Real surfaces are not Lambertian. but rather
display some amount of glossiness {i.¢. highlights). Since very little
work has done in the measurement of retlectance maps frorn real
surfaces [30, 35, 103), glossiness is usually taken into account
through the use of some reflection moder that predicts reflection R
as a function of the photometric angles J, e, and g (and sometimes
s). N

When light is reflected from a surface, reflection of two types
occurs {figure ). Some ¢f the light is bounced off of the interface
between the air and the surface material, producing glossiness
("specular” reflection); other light penetrates into the material,
where it is scattered and may re-emerge ("diffuse" reflection).
While diffuse reflection is usually assumed to be Lambertian [96),
specular reflection may be scattered about the perfect specular
direction J because of the optical roughness of the surface.
Various reflection models differ in how they model the distribution
of the specular-reflection.

macrascopic pertect

spnealar direction specular reflection

N

incrdent light

diffuse reflection

e e °
° ® [
° °
. °
Figure 5: Reflection of Light from a Surface
The Lambertian reflection model B = cos j simply ignores

specular reflection altogether. While objects can be coated with
special paints that resemble Lambertian reflectors, such techniques
cannot be considered suitable for general purpose vision. Along
slightly more general lines, specular reflection can be modeled as
occurring only in the perfect specular direction J itself [16, 42].
Such a condition is true oniy for optically smooth surfaces such as
polished optical glass, whereas more typical surfaces are optically
rotigh and exhibit scattered specular reflection.

The most popular modef of highlighits used in computer vision has
been Phong's model intended for computer graphics [71]:

n+1

R =t cos"s + (1 -~ t)cosi

In this model, the first term represents the specular reflection and
the second term represents diffuse retlection. The material is
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characterized by ¢, the total amount of light specularly reflected,
and n, the sharpness of the specular peak about the perfect
specular direction J. Phong's model has been used for modeling
highlights of paint [32] and metal {103], and for finding highlights
using intensity gradients [22, 93].

While Phong's model captures some of the aspects of specular
reflection, it fails on several counts. It predicts that specular
reflection is symmetric about J and that the the spread of the
specular reflection for a given material is independent of the angle
of incidence i. In fact, specular reflection usually does not have
these properties [ 1], Phong's model has been widely used because
it is relatively simpla, although it is not motivated by the underlying
physics of reflection {71}, More sophisticated models have been
developed within the optics community and adapted for computer
graphics use, including Torrance and Sparrow's model of surface
facets [92] Bechmann's more general modef (5], adapted for
computer graphics by 8linn (8] and by Cook and Torrance {17],
respectively.  These models, uniike Phong's, arc based on a
consideration of physical reality.

N

surface

Phong's model, t= 1.0, n =10

N
J
| ‘\
AIR N

surtace

Beckmann's model, t=1.0,m=0.2

Curves show amount of specular reflection predicted at various
angles for surface illuminated ati = 45 degrees

Figure 6: Gloss Models of Phong and Beckmann
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Beckmann's model is based on a statistical description of the
probability distribution of surface heights and slopes.  When
combined with diffraction-theoretic equations for scatlering of
electromagnetic waves, a reflection distribution tunction results.
The eguation used by Cook and Torrance is:

tikexp { - tan®n / m?}

A = > —r - + (1 ~ tycosi
7 m*cos” ncosicose

with 2cosncose 2c0sncosi )

k = min {1,

cos g/2 cos g/2

f = Fresnel's reflection coefficient (approx 0.04)
n = angle from N1to bisector of land V
("second off-specular angle” [34])

t = parameter: amount of specular reflection {as above)

m = parameter: roughness (typically 0.1 to 1.0)
The models of Beckmann and Phong are compared in figure 6.
Beckmann's model has been used in laser speckie studies. It has
also been successfully applied in computer vision to detecting
defects in metal castings as the basis for segmentation by surface



roughness (57, 72]. Beckmann's model describes asymetric
distributions of specular reflection and changing distribution of
specular reflection with the incidence angle i, but more important, it
describes the inter-relationship of these elfects through the surface
roughness parameter m. Even though the cquation itself is rather
unwicldy, it may make possible the study of these properties of
reflection that are missed by Phong's model.

Optical models such as Beckmann's describe only specular
reflection; there are no. comprehensive models yet for diffuse
reflection, The Kubelka-Munk theory assumes that it is isotropic
(i.e. Lambertian), while scattering theories do not yet model such
important effects as the passage of light through the surface-air
interface on its way into and out of the material [27].

One of the problems with applying any reflectance model is the
determination of the paramelers for a given surface.  Grimson
solved this problem using a sterco pair of images by finding the
specular reflection parameters (for Phong's model) where they
could be reliably computed, then upplying the resulling
parameterized model to the entire surface [25].  This kind of
approach seems promising and is probably necessary for the
general application of sophisticated reflection madels.

Another open question is how much precision is necessary in a
reflectance model. There are some results that imprecise reflection
models (or maps) yield qualitatively correct but quantitatively
inaccurate results[41], and some researchers believe that
oversimplified models are sufficient (presumably for the purposes
they have in mind) [4, 6, 103]. Intensity measurements in images
are also imprecise [32], although sensors are improving.

An interesting illustration of the use of different reflectance
models occurs in acrial photointerpretation. Synthetic images are
created via terrain models and reflectance maps to determine the
registration of real images by comparison. Lambertian reflectance
maps have been used for this purpose with some success [34, 53];
Shibata et al. used a Lambertian model at first, then adopted a
version of Phong's model with an additionat term for backscatter
(refloction in the direction of iHumination), 1, cos™ g (where t, and
m are parameters of the material) [83]. For their purposes, the
backscatter was even more important than normal specular
reflection in improving their results.

2.3 Summary ot Shading and Gloss Modeling

The reflectance map and accompanying image irradiance
equation have been the focal point for a good deal of work, mostly
in examination of the ambiguity inherent in analysis of irradiance
and in surface reconstruction employing photometric analysis
combined with smoothneas and somctimes surface shape
assumptions.  Most of this work has been based on very simple
optical models of reflectance, and has been limited to orthography
with distant light sources.

Gloss modeling is a critical issue in applying this work to real
images. While some believe that the current models such as
Phong's are sufficiently precise, there is stll some impelus for
developing better medels. Future work along these lines inay rely
more on models such as Beckmann's thal appeal to the underlying
physics of reflection. There has also peen some limited work on
direct measurement of reflectance maps from material samples,

3. Color .

Color pictures obviously contain more information than
monochrome (black-and-white) intensity images. [However, the
most obvious methods for taking advantage of this information yield
only incremental improvements in the results of computer vision
programs.
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3.1 Color Imaging and Color Space

A monochrome image forms pixel values p by integrating light at
all wavelengths A, weighting the amount of light X(\) at each
wavelength by the responsivity s{A) of the camera at that
wavelength:

p = [ X(\)s(A) dA

When a color image is formed with a TV camera, several filters are
interposed in front of a monochrome camera one at a time.
{Alternate image formation systems, such as beam-splitting or color
film scanning, are conceptually similar.) A filter can be
characterized by its transmittance r(\), which tells what fraction of
light at each wavelength passes through the filter. Thus, with a
standard set of red, green, and blue filters (such as Wratten filters
#25, #68, and #4708 [51]) whose transmittances are T Tge and
7y, the color C of a pixel is:

co ], [umnmmmmx
=lg = X{A) rq(/\) S(A) dA
b T XN () s(A) dA

All of these integrals arc evaluated over the set of wavelengths for
which the filter's transmittance and camera’s responsivity are
nonzero. Because a CCD camera is very sensitive to infrared light
{13] and gelatin filters do not block this light [51], an infrared-
blocking filter is used for color measurcments with a CCD camera.

As shown by the abave equation, the color imaging process can
be viewed as spectral projection from the set of all colored lights
X(A) tothe B-G-B coior space, which is the set of all values [r, g, b].
The color space is shown in figure 7. 1t is a cube because the
camera's response is hounded by some maximum pixel value for
each color component. The main diagonal r = g = b is called the
intensity axis, and corresponds roughly to the various gray levels
from black to white.
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Figure 7: R-G-B Color Space

3.2 Colar Pixel Classification and Clustering

Most work in color image understanding has been based on the
idea that algorithins exploiting pixel differences will work better
when more dimensions are avaliable for discriminating among pixel
values. One of the heaviest research arcas has been color pixel
clustering, in which pixels are grouped into sets of relatod pixels
based on distances between clusters of pixel values in color space
[9, 15,60, 65). The other area that has received much attention is
pixel labeling, in which prior knowledge about typical object colors
in a particular domain is used to assign object labels to pixels
[52.75, 87, 90, 97, 105]. Such pixel labeling can be very
sophisticated and etfective, usually depending on how limited the



domain is. For example, in aerial photographs, Nagao et al. use
typical spectral reflectances to distinguish vegetation, and a
common kind of building roof {58]. (N.B. There are so many
examples of these same basic strategies that the citations above
are representative rather than exhaustive.)

The above efforts are based upon the general idea that, while
discrimination amang sets of pixels is pessible using only intensity
information, color provides more dimensions and thus makes
clusters of pixels more easily distinguishable from each other.
Some attention has been given to finding transformations of the
color space that muke such clusters even more easily separable
[48, 66], but no such set of transformations has been found that
decisively improves the quality of image segmentation or labeling
based on the above methaeds.

Another kind of color modeling assumes that the various color
components are related (o cach other and tend {o exhibit
discontinuities at the same places in the image. This has been
exploited by Nevatia, whose color edge finder used the different
color components invidually, then looked ifor places where all three
components exhibited edges as an indication of refiability [61].
Similarly, Kanade matched portions of occluded edges based on
similarity of color values across the edge pieces|45]. Blicher
proposed that two colors are sufficient to perform unambiguous
stero matching, but didn't propose an actual algorithim fo doing so
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3.3 Analysis of Colored Reflection

There have been a tew efforts to analyze color information based
on gencral madels of reflection and transmission. For example,
shadows have been detected by looking for regions of low intensily
adjacent to brighter regions with the same hue[65]. More
sophisticated models have included the idea that outdoor shadows
tend to be more blue then adjacent illuminated regions because of
the blue ditfuse skylight [58]. The idea that distant objects tend to
be bluish because of scattering of long wavelengths has also been
uscd [87]. Even more sophisticated, but stili simple, ideas about
color modelling of shadows, etc.. were used by Richards Rubin and
Richards [76]). They propose that surtaces of differing materials
can be recognized by looking for crosspoints in the spectral power
distributions (SPDs} X(A) from the two regions of the image.

in recent work, Shafer has proposed a method for breaking down
an image into two componernts: an image of just the glossiness at
each point, and an itnage with alfi the glossiness removed [82]. This
can be done by compuling, at each pixel, the amount of specular
and diffuse reflection at that pixel. Such analysis is impossible in a
monochrome image, where cnly one value is measured at each
pixel, but is theoretically achievable in a color image. It is based on
the idea that, while specular reflection is about the same color as
the incident illumination (figure 5), ditfuse reflection results from
interactions with colorant particles and is thus of a completely
different color [40, 44]. The resulting images would be useful, for
example, in stereo or uptical flow situations where the highlights
may appear in different places in several images due to camera
position changes; the removal of highlights would improve image
maltching reliability. ‘

Shafer's model expresses two ideas:

1. the total retlected light 1. (A, /, e, g) is composed of two
parts representing the specular refiection £, and
diffuse reflection 4

2. each of these has a spectral power distribution (SPD)
cg O Cy that gives it a characleristic color, and a

geometric scale factor m or m that tells how this type
of reflection varies with the photoinetric angles:

LAeg) = Lg(Nieg) + Ly (\ieg)

mg (Le,g) ¢ (A) + mylieg) e, (N)
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Using the fact that the color of a mixture of SPDs is the same as
the mixture of colors of the individual SPDs (i.e. spectral projection
i5 alinear transform) [79], the above model gives rise to an equation
which relates the olor C of any pixel on a surface to the
characteristic colurs Cg and C4 of the specular and diffuse
reflection from that surface:

C=m,Cy+ myCy

Since mg and my vary from pixel to pixel on the surlace but C; and
C,4 do not, this suggests that the distribution of the colors of pixels
on a surface will form a parallelogram in color space (figure 8), with
C, and C, as its sides.

G

pixel colors

R

Figure 8: Colors from a Single Surface Form a Parallelogram

fhe algorithm suggested for exploiting this model is to histogram
the colors of a set of pixels in color space, fit a paralielogram in
color space to the values, and measure the amounts of reflection
mg and m, at each point by the position of its color within the
parallelogram {figure 9). The model can be extended by adding a
term C, to represent diffuse (ambient) lighting; in that case, the
parallelogram is simply transfated by C, in color space. Shadow
pixels can be recuynized as having 4R and 1y both equal to zero,
ie. C = C,; this is a much more sophisticated model of shadow
colors than simply assuming, for example, that "shadows tend to be
bluish",

Figure 9: Position In Paralletogram Gives Reflection Magnitudes

While this model is very general, making no assumgptions about
the size or shape of the light source, the use of orthographic or
perspective projection, etc., any such complexities as extended
light sources may make the resulting intrinsic images very difficult
to analyze. The model also has shortcomings in its slight deviation
from the known laws of reflection and the need for prior
segmentation, though the former may be negligible and the latter
may he addressed by appropriate extension of the model. While
this approach has not yet been implemented, it is important
bhecause it quantitatively modefs the retationship between color and
scene geometry,



It is interesting to note that the reflection models of the previous
chapter are (approximately) instantiations of the color model
presented here, with specific functions substituted for mg (i, e, 9)
and my (i e, g).

3.4 Summary of Color Modeling

Most of the work in color image understanding has been
exploring clustering and labeling algorithms that explcit very simple
color models. Little work has been done in analyzing how color
information is related to three-dimensional surface relationships in
the scene, although a theoretical approach to this problem has
recently been suggested.

4. Shadows

The analysis of shadows primarily invnlves three processes:
finding shadow regions and edycs, establishing correspondences
between shadow-casting objects and shadows, and geometric
analysis of the shadows.

4.1 Finding Shadow Regions and Correspondences
Three different strategies have been identified for identifying
shadow regions and edges:

o Finding shadow regions based on intensity and color.
« Finding shadow edyes using geometry.

o Identifying shadow edges using intensity correlations.

We will examine each of these topics.

Shadow regions are formed where illumination from the primary
light source is blocked by an object. Simple modeling of shadow
region intensity might be based on the idea of looking for dark
regions in the image. However, since objects themselves might be
dark, it is desirable to look for some additional constraint on
shadow pixel values. One such constraint is provided by the fact
that the diffuse illumination that strikes shadowed regions is related
to the color of the light source; thus, shadow regions might be
expected to have the same hue as adjacent ilfluminated portions of
the same surface, with lower intensity [65]. When the diffuse light
has a different color than the bright light source. this color
difference itself can be used. For example, in outdoor
photographs, where the sun is yellowish and the sky is blue,
shadows tend to look bluish. This observation can be used directly
[87] or by looking for "darkness" according to an intensity
measure that is weighted towards long (yellow, red, and infrared)
wavelengths [58].  Shafer's model of color reflection, presented
carlier, makes a more quantitative prediction about shadow colors
on individual surfaces.

convex edge concave edge occluding edge

shadow edge

shadow edge

shadow edge

-

Figure 10: Shadow Edges Bend or Break at Geometric Edges

Another approach to finding shadows is to look for edges that
separate light and dark regions in the image. Such edges are likely
candidates for labeling as shadow edges. This lubeling may be
combined with vertex or line labeling schemes [39, 95]. When a
shadow falls across two surfaces, the shadow edges bend in one
direction or another or break, depending on whether the two
surfaces are connected by a convex edge, connected by a concave
edge, or not connected (figure 10); these relationships can also be
used to identity shadow edges [6].
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Finally, shadow cdges may be recoynized using the variation of
image intensity nearby. There are three distinet kinds of shadow
edge, each with its own intensity and geometry characteristics
(figure 11:  shadow-making edges on illuminated polyhedra,
terminators of illuminated curved surfuces, and cast shadow cdges
on shaded surfaces. The first of these, shadow-making edges of
polyhedra, can be recognized because they must be convex edges
separating an illuminated face from a shaded face of the
polyhedron. The second kind of shadow edge, the terminator of a
curved surface, is recognizable because the intensity on the
shaded side is constant, while the inlensity on the illuminated side
falls off smoothly from a bright level to the same constant level as
the shaded side [4]. Finally, cast shadow edges can be detected
because the underlying surface is the same on both sides of the
edge; thus, the ratio of intensities on the two sides of the edge
should be constant along the edge [54].

convex shadow-making edge

cast shadow edges

Figure 11: Three Kinds of Shadow Edges

Witkin uses a similar method for distinguishing cast shadow
edges from other types of edges [100]. He produces strips of pixels
parallel to the edge in question. If the edye is a cast shadow edge,
the correlation of these strips is expected to remain constant and
high as the edge is crossed, while the "stope” of the intensity
tunction 1(x.y) will drop sharply. On the other hand, if the edge is
not a cast shadow edge, the correlation wiil drop while the siope is
steady or drops. This is a potentially robust algorithm utilizing the
same underlying model of cast shadow edges as described above:
that the relative intensity distribution within the shadow region is
the same as that of the illuminated portion of the same surface
because the surface malterial is the same.

The correspondence problem between shadows and shadow-
casting objects is generally solved using a model of the postion of
the light source [38, 54, 64]. Sometimes, the presence of identified
objects is used to suggest where shadows might be found
[6, 19, 78]; in other cases, the shadows are found first and used to
indicate where three-dimensicnal objects may be found (usually in
aerial photographs) [21,58]). Huertas and Nevatia produced a
system for finding buildings in aerial photographs in which shadows
and building outlines are used to suggest each other in several
ways [39]:

e a sun position model predicts shadows from building
positions

» shadow hypotheses arise froin two-dimensional vertex
types

s intensity histograms are used to confirm shadow
hypotheses

e shadows are used to suggest where buildings may be
located

e shadows are used to distinguish tall objects from flat
ones



4.2 Analysis of Shadows

Once shadows have been located and the shadow-making
objects have been identified, shadow analysis can proceed. While
most such analysis is geometric, shadows have been used as well
for computing the parameters of a model of atimospheric scaltering
in aerial photographs [85].

Most of the geometric use of shadows has been for identifying the
height of objects above a reference plane. In such situations, the
size of the shadow (i.e. distance from the shadow-making edge to
the cast shadow edge) is proportionai to the height of the shadow-
making edge above the reference plane. This kind of analysis has
been used in manual aerial photointerpretation for many years [88],
and has now been applied to computerized aerial image
interpretation {6, 38, 39]. In such analysis, the shape of the shadow
similarly gives the variation of the height of the object above the
reference plane [19]. Related work has used the same method for
finding defects in metal castings [67].

The above analysis does not capture all the information avaitable
from shadows. Mackworth proposed that a shadow-making edge
creates a "shadow plane" containing that edge and the light
source: this plane separates the illuminated volume of space from
the area shadowed by the object containing the shadow-making
edge [55]. This approach was adopted by Shafer and Kanade to
produce a theory describing the relationship between shadow
edges and surface orientations (811,

Shafer and Kanade began with a "Basic Shadow Problem”
involving a single vertex vn a shadow-making polygon P and its
associuted shadow vertex on a surface B {tigure 12). Information
about the orientation (gradient) of P and 8 can be derived from this
image using shadow planes. A shadow plane is shown as S in
figure 13; it is a set of light rays, coming from the light source, that
graze past P along the shadow-imaking edge E}, and strike 8 afong
the cast shadow edge E. Cdge Eg, joining P and S, is convex and
edge Eg, joining S and B, is concave. These edge labels give rise
to the gradient space relationships shown in figure 13 because two
surfaces that are connected by a concave or convex edge have
gradients that lie on a line in gradient space perpendicular to the
connecting edqge in the image [55]. Mathematically, a this provides
a one-dimensional constraint on the surface gradients invoived, A
similar constraint can be found by examining the shadow plane
joining the upper edges of P and Bin figure 12.

Figure 12: Basic Shadow Problem

The image above provides three constraints, one arising from
each pair of shadow-making and shadow edges and one from the
vector joining the two vertices, which points at the light source.
However, there are six parameters to be computed: the gradient of
each of the two surfaces and the direction of illumination (two
parameters for each gradient and the illumination vector). Thus,
the problem is underconstrained by three deqrees of freedom.
When the light source is in a different position, © + ambiguily is the
same,; when multiple light sources are present. additional constraint
is provided only when the three dimensional direction of
iftlumination is known for each. Since a line drawing with no
shadows is also underconstrained by three degrees of freedom
{55], shadows do not reduce the ambiguity; instead, they allow
information about light source positions to be used to compute
surface orientations.
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Figure 13: Shadow Plane and Gradient Space Relationship

Figure 14 shows some more complex shadowing situations also
discussed by Shafer and Kanade. In figure 14(a), a polyhedron is
casting a shadow. In such a picture, the edges marked (*) will be
difficult to find because they separate two dark regions. Using
shadow geometry, two of these three edges are shown to be
redundant and thus unnecessary for the shape recovery of the
object. In figure 14(b), a shadow falls on a polyhedron. In this
case, as well as the previous case, thc additional shadow
inforimation balances the missing information concerning the
additional surfaces whose orientation is unknown; thus, att stch
problems are underconstrained by three degrees of freedom
regardless of how many surfaces are present. Without shadow
analysis, such problems become increasingly complex as more
surfaces are added. Finally, in figure 14(c), a curved object casts
its shadow on a flat object. Using a derivation similar to that of
Witkin [99]. Shafer and Kanade showed that the surface gradient
can be determined at every point of the terminator {marked by *)
using the shape of the shadow, the position of the light source, and
the yradient of the shaded surlace (three degrees af freedom total).

E
-

{a) (b)

Figure 14: Shadows of Polyhedra and Curved Surfaces



The true significance of the shadow geometry theory lies not only
in the mathematical formulas that relate surface gradients to
shadow edges, but also in the simple statements that were deduced
about shadows using this mathematics. Such statements as
“multiple light sources add constraint only when their three-
dimensional positions are known" are simply not obvious until the
mathematics has been developed. Like Beckmann's model of
reflectance presented earlier, this kind of theory is usefut for
increasing our understanding of how light works, quite independent
of the value of the formulas themselves.

4.3 Summary of Shadow Modeling

Shadow identification has been primarily based on simple
spectral or geometric properties, with some relatively sophisticated
methods for shadow edge labelling. The shadow correspondence
problem has been approached by using prior knowledyge about the
position of the sun or other light source. In aerial photographs, tall
objects suggest the occurence of shadows and shadows likewise
suggest the presence of such tall objects.

Shadow analysis has mostly been limited to determination of the
height of an object above a reference plane. A more detailed
theory already exists, however, that describes the relationship
between surface orientation and shadow shape,

5. Other Optical Phenomena
Gloss, color, and shadows are not the only optical phenomena of

interest in computer vision.

5.1 Previous Work
A number of aspects of optical modeling have received some

attention in the past in computer vision,

Image sensors induce distortions by nonlinear response to
intensity [21, 30, 36]. by geometric distortions due to lens design
and sensor scanning [30], and by defocussing due to limited depth-
of-field (29]. Depth-of-field has actually been used as a source of
range information by some researchers (70, 77].

Light sources are really "extended" (with finite area) rather than
being points in space. This produces blurred shadow edges and
plays havoc with any attempt to determine surface shape using
intensity. In an aerial photograph, for example, the edges of
shadows cast by airplane wings 7 meters above the ground will be
bounded by blurred strips 6 centimeters wide {well below the
resolution of typical aerial photographs). Indoors, with windows
and light fixtures as light sources, such problems will be far more
severe.

Reflection from surfaces is also complicated by polarization and
by inter-reflection from multiple surfaces. Polarization of specular
reflection can be quite pronounced [43], and [his fact has been
used to measure surface orientation with a polarizing filter [47].
This work has not been extended to TV camera images, however,
Inter-reflection has been studied by Horn [32], who concluded that
closed-form analysis appears intractable.

In aerial photointerpretation, models of atmospheric scattering
and attenuation of light have been studied [28. 85]. Aerial
photointerpretation probably uses the most sophisticated optical
models of any branch of computer vision, as we have seen
throughout this paper. This is probably due to the relatively limited
nature of the objects being viewed and the existence of very
detailed camera, illumination, atmosphere, and reflection models in
the remote sensing field [23, 86).

5.2 Looking Ahead

There are a number of optical phenomena that have not been
heavily studied but have a direct bearing on the most important of
the above theories for gloss, color, and shadow analysis. These are
likely areas for future study of optical modeling.
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They are:

o Extended Light Sources -- As noted above, real light
sources have finite area and finite distance to the
objects being illuminated. Additional study is needed
to produce a comprehensive theory of how image
intensity is affected by light source shape.

s Non-Uniform illumination Distribution -- Real light
sources do not distribute illumination uniformly,
Outdoors, the sky is not uniformly bright {14, 85},
indoors, lamp fixture construction contribute to
nonuniform light distribution [83]. Intensity analysis
must eventually take this into account,

s Inter-Reflection Among Surfaces -- As noted above,
inter-refiection is very difficult to model. The computer
graphics community does have some very coarse
models of inter- reflection [17], and some additional
thought on this topic is needed in computer vision.

e Polarization of Specular Rellection -- Image sensors
can be sensilive to polarization in the periphery of the
image plane [13].  When this is combined with the
polarization of specular reffection, it can be seen that
peripheral pixels will represent less contribution of
specular reflection than central pixels, for surfaces of
certain orientations.  The magnitude of this effect is not
known, at least within the computer vision community.

e Extensions to Perspective Projection -~ Most of the
above work in optical modeling has been explored only
under orthography. In  this sense, modeling
photometric  phenomena lags behind models of
geometric phenomena, which have largely been
explored in both orthography and perspective. While
some attention has been given to rellectance maps
under perspective [32, 35}, more is needed.

6. The Role of Modeling Optical Phenomena

Optical modeling in computer vision attempts to provide a firm
foundation on which to build image understanding algorithms.
While this may seem to be a laudable goal, this whole area of
research is subject to some controversy and criticism.

There are two related grounds for objection to optical modeling in
computer vision. The first may be stated in any of these ways
{4,91]

e Real images are very complex.

« We do not yet know how to model inter-reflection and
extended light sources, but any such modeting appears
very ditficult.

e Theoretical optical models have only rarely been
applied to real images, and those have generally been
contrived by special lighting and by painting objects
with special paints.

All of the above are true. However, far from being arguments
against the pursuit of optical models, they may well be interepreted
as arguments promating such work, Since optical phenomena tend
to evolve from being considered "noise” to being considered
"knowledge sources" (as highlights have evolved), the existence of
important phenomena that we stili consider to be "noise” should be
a goad to further.research. Rather than concliding that current
theories are too complex to be applied to real images, we might
conclude that they are far too simple!

The other principal objection to detailed optical models in
camputer vision might be stated as follows (6, 54, 91}



« Humans seem to rely on simpler, qualitative models.

s Humans perform vision in complex domains without
detailed knowledge of the oplical properties of
materials and light sources.

e Vision seems to be possible even without quantitative
analysis, for example when images are badly distorted.

Here, the objection is to the use of complex formulas in a computer
vision program rather than the use of qualitative, intuitive
observations about images. Such objections overlook the fact that
analyzing detailed modeis frequently gives rise to insight that can
then be described simply. An analogous circumstance in cooking
was described by Andy Rooney, an author and telovision
commentator on the "Sixty Minutes” show in the United Slates [74].
He noted that a good cook looks at a recipe, then puts it away and
makes the dish. The good cook doesn’t need to consult the recipe
line-by-line while he is cooking, because he understands the recipe.
In computer vision, we derive benefit even it we "put away" the
mathematical  formulas  after deriving simple qualitative
observations from them. Such statements might be impossible to
make without a deep understanding of the physical or mathematical
process involved, and it would certainly be harder to know if (or
when) they were true.

Computer vision already seen the evolution towards more
sophisticated optical models for metal defect detection and aerial
phowinterpretation.  Qur increasing understanding of complex
optical phenomena may eventually make such evolution possible
for more general vision systems as well.
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PROCEDURAL ADEQUACY IN AN IMAGE UNDERSTANDING SYSTEM

Jay Glicksman
Computer Science Laboratory
Texas Instruments
Dallas, Texas

Abstract —- Model-driven vision gystems often employ

feedback loops as part of their control mechanisms 8o
that the context provided by previous analyais can
effect subsequent procesasing. The MISSEE Iimage
understanding system combines a cycle of perception
with a gemantic network to interpret aerlal
photographs of urban areas.

The semantic network links nodes via two

hierarchies; specialization and composition, and two
relations, instance and neighbour. Hierarchical
control resulte in the network being built and the
structure of the network in turn influences the cycle
of perception. Heterarchical control promotes
efficient use of context in a message-passing
paradigm.

MISSEE combines information from wup to three
sources: a digitized image, a sketch map, and advice
given by the user. Several scenes have been
interpreted and. the results are reported.

Introduction

An {mportant aspect of vision systems is the matter
of procedural adequacy [l1]. Most domain independent
syatems tend to operate in a bottom—-up, linear fashion
beginning with the image and working towards the
possible objects in {t. Domain dependent systems
generally have a wider range of control strategies,
but most contain either a top~down component or a
feedback loop of some sort. Such s8ystems have the
problem of deciding which object to hypothesize (the
chicken and egg problem [2]) but once determined,
these programg can make efficient use of
object-gspecific heuristics to plan their strategies.
A priori expectations derived from the models as well
as the context resulting from previoue interpretation
both provide {Important clues (and cues) to gulde the
understanding of images.

There are two reasons for employing more complex
control mechanisms 1in vision systems. First, by
making better use of the available information, the
program ls able to achleve superior results than would
be posgsible by trying all possible mappings of models

to 1image features, Context-sensitive feature
extraction results in more appropriate boundaries
being chosen, thresholds selected, etc. The second
reason is a question of efficiency. In all but

trivial scenes, the combinatorial explosion of
possible image to scene mappings requires some
gelection method to limit the number of choices.

aerial
Ob jects

The domain of this research is the area of
photo~interpretation of amall urban scenes.

The research discussed in this paper was carried out
at the University of British Columbia.

on the level of roads, rivers, bridges, and towns are
pogstulated from features in the image. These objects
are fit into the hierarchies that also contain
road-systems, river~systems, waterbodies, and
geo-gystems. Objects are represented as schemata [3]
which contain value slots, relation glots, confidence
valuesa, and attached procedures.

Previous Research

Feedback control loops were well exemplified in the
HEARSAY 1I speech understanding gystem {4].
Procegsing progressed in a two-stage faghion known as
hypothesize and test. In production rule systems,
this is done by modifying the global data base.

The VISIONS system [5] uses schemata as the primary
form of represgentation, Schemata guide the
instantiation of hypotheses during interpretation.
The gystem follows a three-phase mode of control,
focugs—-expand-verify, which, depending on the knowledge
gources involved, could exhibit either bottom-up or
top-down control.

In the ACRONYM vision system [6] objects are modeled
in three dimensions as generalized cones and their
relationships are represented in an "object" graph.
The "restriction" graph contains constraints on the
spatial relationships between objects. From these
representations, a "prediction” graph is generated to
hypothesize object to image feature  matches.
"Observation” and "interpretation™ graphs are built
during the analysis of an {mage.

A Cycle Of Perception

Cognitive peychologists have examined the role of
gchemata as collections of structures and processes
that both accept perceptual information and direct

movements and exploratory activities (7]. Neisser
describes a perceptual cycle where anticipatory
schemata determine plans for perceptual action, the

outcome of which modifies the original schemata. Its
three phagses are "schema" directing “exploration”
which gamples "objects" in the 1image which modifies

the "schema". A similar feedback 1loop has been
proposed specifically for model-based computer vision
(83. It 18 called the cycle of perception. A

slightly modified version can be seen in Figure l.

Depending on where the cycle is entered, one will
observe different modes of operation which correspond
to the traditional methods of control in Computer
Science. If the cycle begins at the "object" stage
then bottom—up processing will regult. If the cycle
is entered at the stage of schema invocation then
top~down behaviour would result. The model knowledge
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OUTPUT: GLOBAL
what schema has
been invoked
and why

INPUT: GLOBAL
what the user knows
about the image

SCHEMA INVOCATION
AND INSTANTIATION

INPUT: LOCAL
what the
user sees
in the
image

OUTPUT: LOCAL
what features
have been
discovered

EXPLORATION

samples

OBJECT

OUTPUT: PLANNING
what the schema
or advisor want
to look for

INPUT: PRIORITIES
where to search
and what for
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Figure 1. A Cycle of Perception

contained in the schema will be used to hypothesize
the existence of objects in the image. There will
also be information concerning how and where to obtain
the information in the image that will verify the
hypotheses. So, the exploration module will cause the
{mage to be sampled to find the appropriate
information. Depending on what is found {n the image,
the schema will be suitably modified, The
instantiated schema can then request more information
to confirm its existence or it can use the knowledge

gained to help hypothesize the whereabouts of other
objects.
In this way, the cycle of perception promotes

cooperation among the schemata. As objects are
instantiated they communicate to other schemata to
give advice and/or to build the semantic network.
This in turn initiates another loop around the cycle
as a new schema is inatantiated. The schemata work as
individuals (via attached procedures) and together
(via messages) to bring about the interpretation of
particular information sources.

The cycle of perception is similar to other feedback
paradigms such as hypothesize and test. It is
particularly well-suited to a schema-based system
because it identifies the natural places where
gchemata can move Into and out of the focus of
attention. The consequences of thia are discussed 1in
the following section.

The Hierarchies

Besides the cycle of perception, control is strongly
influenced by the hierarchical relationships betwesen
schemata. In an object—-oriented system, the
connections between the objects determine which pairs
of schemata can most profitably communicate. Messages
can be gent from any schema to another; however, part
of the goal of interpretation is to join all of the
schemata into a unified network necessitating
significant communication between neighbouring nodes.

The two important hierarchies in terms of control
are specialization and decompogition. These are
combined with two relations, instance and neighbour,
to form the gemantic network. Instances represent
pogsibly hypothetical objecte particular to a given
image. This distinguishes particular from stereotypic
knowledge. The neighbour relation is wused to group
objects in the composition hierarchies. Objects that
are neighbours are "part of" the same structure.

Figure 2 shows the generic hierarchies used in the
MISSEE system. In graphic form, the standard control
paradigms are apparent. Top~down, model-driven
behaviour will be observed when eschema-specific
routines respond to messages from "above" in the
hierarchies. Bottom-up, data-driven control comes
from below, since the objects at the "bottom™ of the
graph (road, river) can be considered to be the most
primitive, "closest" to the data. The data (the
intensity image and the sketch map) can be thought of
as being another layer "below"” the depicted schemata.
The relationehip between data and schemata is not
gspeclalization or decomposition but some type of
mapping. The directions in the graph make sense
because the graph has been displayed with the schemata
ordered from the bottom by increasing generality and
composition.

specializes to

decomposes to
one or more of

URBAN OR
BUILT-UP
{TOWN}

Figure 2. The Generic Objects in MISSEE



Control: Top-~Down/Bottom-Up/Middle—Qut

Top-down control can take two forms. The first is
like top—down parsing: e.g. if one wants to establish
a geosystem then find either a landmass or a
waterbody. Model knowledge is used at each stage in
deciding how to move down the hierarchies until a
bottom level schema (terminal symbol) is reached. If
it can be instantiated from the information sources
then the hierarchies that have been built wup can
remain in place. Otherwise, control must back up to a
choice point and a different branch must be taken.

The other type of top—down control can take effect
only after part of the interpretation has taken place.
Previous results help form the context of the current

stage of processing. The context plus the model
knowledge of the gchema are used to produce a more
efficient gearch strategy. For example, if it has

already been established that a bridge exists, then if
control currently resides in the road system schema, a
good strategy would be to look for a road going over
the bridge. Since the location and orientation of the
bridge are known, this greatly constrains the
reaulting search for evidence of a road.

This second type of top-down, or expectation-driven,
control can also be wuged to relax thresholds.
Thresholds are those cutoff points that
schema-specific routines must use to determine whether
the features in an information source are sufficient
to instantiate the object. For example, the
intensities of pixels representing water are usually
legs than those corresponding to land. A threshold
for water is an intensity value that classifies as
water all pixels having lower intensities. However,
it is generally true that if one tries to find an
intensity wvalue that divides all pixels into two
categories (water and land), there will always be some
pixels that are classified incorrectly.

If one starts from a conservative posgition that will
only accept feature values that are reliable
indicators of the pregence of an object (the principle
of least commitment [9]), then as the expectations
rige for existence of the object, the thresholds can
be relaxed so that less reliable feature values will
still verify its presence. The current context plus
model knowledge determine how much the thresholds
should be relaxed.

Although top-down control can be very effective,
bottom-up, data-driven control is also necessary. It
is essential in providing the inftial context that the
previously-mentioned top-~down method can use. It 18
also important in scenes where context is lacking.

the data by
mesgages

Once a s9gchema 18 instantliated from
having its slots filled, then two types of
can be sent. First, the schema will generally
transmit a bottom-up request to higher-level schemata
to discover where it should fit into the semantic
network., For example, a newly instantiated road will
send a message to "road system"” which looks for a
compatible existing road-system instance to join. if
one does not exist, it will be created. Second, the
gchema may send out suggestions of other possible
interpretations. While one road schema was being
instantiated, an intersecting, bright, 1linear region
would be a candidate for another road. These
suggestiona could go in any direction in the
hierarchy--up, down, or laterally.

the first few stages,
possiblilities for

passed
several

Once processing has
there will generally be

further processing. These are placed in a priority
queue which can be modified by the user (cf. the next
gection). These possgibilities include a mixture of
both top-down and bottom-up messages. Control will
move up and down the hierarchies and at each node more
messages will be spawned to induce more processing.

This type of processing is neither top-down nor
bottom-up. It takes advantage of the relations
between schemata which organizes them into a graph
(see also [10]). A message sent from a schema may be

going up the hierarchy (bottom-up), down it
(top—-down), or laterally across. The latter mode |is
gimilar to heterarchical processing {11]. The

best-firast or island-driven with the
rankings on the priority queue used to determine the
order of gearch. Since hypotheses can be retracted,
it is more akin to non—-monotonic reasoning than most
vision systems which usually follow the principle of
least commitment. It is also described well and is
independently motivated by the cycle of perception.

strategy is

Interaction

convenient points
At each node in the

The cycle of perception provides
for communication with the user.
cycle there 1ig a particular, useful kind of
information that can be exchanged. These inputs and
outputs are shown in Figure 1 and are described below.

Qutputs

GLOBAL: When a schema is8 invoked, the model type
(e.g. river) can be described for the user so that
he/she knows what the current focus of attention is.

LOCAL: The information derived from the image can be
output when the image is sampled. It can be in the
form of verifications of hypotheses directed by the
schema, facts concerning the image features that may
be relevant to the schema, or data that can cause a
shift in attention.

possibilities for
executing, the
inferences about

PLANNING: This 1is a 1list of
further processing. As they are
gchema-gpecific procedures can make
other models that should be invoked. They will then
send a message to alert the appropriate schema. Those
messages plus the user’s input make up the
posgibilities list.

The schema-specific procedures will give up control
for one of three reasons. The procedure might succeed
and the current schema will become part of the
semantic network. It might fail, in which case the
hypothetical schema will be destroyed. Or it might
sugpend to wait for more information. Attention would
then normally shift to the first entry in the
possibilities list.

The possibilities list is a priority queue. Its
entries are ranked by the sachema that sent the
mesgage. The value given by the schema will generally
be a factor of its own confidence and the certainty of
the inference that caugsed the megsage to be sent. The
rankings are shown to the user so that he/she can sgee
how processing will continue and can assert his/her
priorities by rearranging the queue.

Inputs

general or specific
General data includes

enter
gcene.

GLOBAL: The wuser can
information about the
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parametere that affect all levels of processing, for
example, the scale of the aerial photograph. Specific
{nformation pertaine to specific objects. For

{nstance, one can indicate that there is & road in the

picture., This information can cause entries to be
added to the possibilities list or might cause global
pchemats to be modified.

LOCAL: More specific information can also be
introduced concerning the interpretation that is
taking place. This would 1include advice to the

procedures of particular invoked schemata.

PRIORITIES: The user can influence subsequent
processing by modifying the priority queue.
Rearranging the entries changes the search and
instantiation priorities of objects. Objects that are
ot no interest or that are perceived to be false can
be removed from the queue. By altering the parameters
within the entries, one can modify the interpretation
context. This would include changing the location {n
the image where the object will be Bought.

The cycle of perception is well-guited to a
schema—based, object-oriented vision system. It
allows feedback from previously instantiated schemata
to provide a more {nformed context for subsequent
processing. Also, interaction {is facilitated by
having clearly distinguished points in the cycle where
different types of information can be exchanged.

The Implementation

Sketch = maps
results in a

Figure 3 shows the MISSEE system [12].
are analyzed by Mapsee?2 [13] which
semantic network of MAYA [l14] schemata. The digitized
images are analyzed with respect to both edges and
regions, vylelding primal sketch-like descriptions. A
more complete description of the MISSEE system can be
found in [15].

Control is exercised through the cycle of perception
by means of a global priority queue. Each message on
the queue designates a reciplent schema, how it is to
be entered, and a possible context for the evaluation
of one of its attached procedures. Thie {8 analogous
to, but more limjted than, pattern-directed invocation
and lchgeves a Bimilar modularity.

HesBages are sent from schemata to redirect
attention to other schemata as the results of
interpretation become available. The user can also
initiate messages either to impart new information or
to make known his/her requirements. For modularity,
the sender of the message (a schema or the user) only
needs to "know™ two aspects of the receiver: the name
of the recipient schema as well as where it sits in
the hierarchy relative to the sender. Lateral
messages are always sent top~down. A priority value
{8 included to rank the message. The user can provide
a value to reflect the importance of his/her message
relative to those already in the queue. A schema will
generally wuse its CONFIDENCE value plus or minus some
small number to reflect the importance of the message.
Finally, some information wuseful to the procedures,
such ae location, may be provided.

Another global facility is the demon list. Demons,
functions established by attached procedures, are
activated when some future condition becomes true.

After svery attached procedure is executed, ®ath demon
is evaluated {f ita initiation conditions are true.
Normally, after a demon has run it will remove jtsalf
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Figure 3. The MISSEE System

from the list.

Demons are wused in MISSEE in conjunction with
lateral messages. For example, while {nstantiating a
bridge, a message may be sent to suggest a region that
might correspond to a river. At the same time, a
demon will be set up to wait for the river to actually
be instantiated. If it is, the demon will create a
neighbour link between the two instances and vanish.
The demon’s action saves the river schema from having
to search all of its neighbouring regions for one
corresponding to a bridge instance.

Bottom~-up procedures are used to instantiate
schemata and to build up the semantic network.
Top~down procedures are used to direct attention to

Bchemata whose instantiation would wost profitably

advance the interpretation.

In MISSEE, the user is able to do as much or as
little as he/she desires to influence the progress of
interpretation. The wuser would generally vary the
amount of interaction depending on the accuracy of
processing, his/her priorities, or both. By taking an
active role, the user can guarantee that the results
will be to his/her liking. Depending on how well the
automatic system is performing, this may take more or
lees effort.

At one extreme, the wuser may choose to let the
system run automatically. It ia not required that
he/she draw a sketch map. In the current
implementation, he/she must help train the intensity
categorizer to aesign possible classes to regions in
the {mage, but there are ways to make this automatic,
too.



The user can ensure that the end resgults will be
perfect. However, since there is no "natural" user
interface, more extreme actions require the usger to
have more knowledge about the nature of messages and
the schemata manipulation functions.

With regard to task priorities, the user can narrow
the system’s focus. If the user is only interested in
objectas of a certain type, such as roads or river
systems, then he/she can direct MISSEE to 1look for
only those objects (and their components and
gpecializations) and to ignore irrelevant messages.
In addition, the user can be very specific about where
to find the items of interest. Then, he/she can
examine gpecific parts of the resulting sgchemata to
obtain the degired information about the objects.

Results

The goal of the cycle of perception is to use the
regults of interpretation to guide further processing
a0 that - scene knowledge 1is accumulated in an
intelligent manner. Instead of randomly searching the
image for interesting features, the focus of attention

ghifts in a direction determined by model knowledge
and newly acquired information. A summary of the
results of applying MISSEE to six images is shown in

Table 1. The values indicate the number of regions
correctly or incorrectly identified. The overall
arror rates are 24% when only the image is available

uged. Thisg
only one or two

and 9% when a s8ketchmap 1is also
illustrates its effectiveness when
information sources is available.

IMAGE WITHOUT SKETCHMAP WITH SKETCHMAP

CORRECT | INCORRECT|CORRECT | INCORRECT
Ashcroft 43 22 25 2
Houston 49 13 14 2
Spences Bridge 62 29 15 4
Spencea Br. W. 89 11 10 o]
Spences Br. E. 18 6 11 1
Cranbrook 13 5 16 0

Table 1. Results of Interpreting Several Images

Search Iin the image is automatically reduced in
three ways. 1) Positional information from the sketch
map guides instantiation in the registered intensity
image. 2) Model knowledge filters regions for further
processing based on the size and average intensity of
the region. }) Model knowledge plus context (the
information gained from the interpretation process)
suggest 1likely interpretations for regions near the
current focus of attention. Furthermore,
possibilities for search are made explicit, giving the
user control over their eventual use.

Table 2 shows the number of regions that were
searched to ingtantiate the five bottom level
gchemata.

As would be expected, the number of regions searched
when the sketch map was employed was considerably
smaller than without the sketch map. On the average,
22% of the reglons were examined when the sketch map
wag uged and 41% when it was not,

~48-

IMAGE TOTAL NUMBER SEARCHED
REGIONS WITHOUT WITH
SKETCHMAP | SKETCHMAP
Ashcroft 75 39 23
Houston 139 82 22
Spences Bridge 161 97 35
Spences Bridge West 125 72 32
Spences Bridge East 119 58 45
Cranbrook 285 22 44

Table 2. The Number of Regions Searched

Conclusions

The major hypothesisz being tested by this work is
that multiple sources of information are "better" than

a single source for the interpretation of images.
MISSEE is procedurally adequate because it fulfills
the two requirements stated in the introduction.
Superior results were obtained when the gecond

information gource was added (Table 1) and they were
obtained more efficiently (Table 2).

By providing several types of attached procedures
for each schema, MISSEE engures that the appropriate
method will be used for interpretation. Since the
procedurea are algorithms, they are flexible, easy to
program, and effective at image interpretation. Also,
because the procedures are tightly coupled with the
declarative portion of the schema greater modularity
ig maintained.

Schemata cooperate by means of the messages that are
pagsed between them. This is an effective means of
shifting the focus of attention to build the semantic
network, interpret bottom level schemata, and provide
context for subsequent processing.

The control regime, the cycle of perception, is the
prime gource of procedural adequacy. It allows the
user to give and receive information at timely
intervals so that he/she can influence processing.
Furthermore, it ranks the interpretation posaibilities
to provide a focus of attention. It fits together
with the hierarchies in the semantic network to both
fit new knowledge Iinto its proper position as well as
using the existing structure to guide subsequent
processing.
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THE LOCAL STRUCTURE OF IMAGE DISCONTINUITIES
IN ONE DIMENSION

Yvan [Leclere
Steven W. Zucker

Computer Vision and Robotics Laboratory
Department of Electrical Engineering
MeGill University

Abstract — We present a new method for locat-
ing discontinuities in one-dimensional cuts through
idealized images. The model for such a cut is a
sampled, piecewise smooth ((,J’l) function corrupted by
noise. The new method uses an extension of the math-
ematical definition that a function is discontinuous at
a point if the left- and right-hand limits of the function
(or any of its derivatives) are unequal. The extended
definition is that a noisy function is discoutinuous at a
point if the difference in the estimates of the limits is
statisticallv significant. It follows from this extended
definition that focating discontinuities must be carried
out at the same time as determining the structure
of the uncorrupted function in a loeal neighbourhood
about the discontinuity (we call this the loeal structure
of the discontinuity). Determining this local structure
is an important first step in interpreting the physical
event causing the image discontinuity.

Introduction

Image intensivy discontinuities play a cruetal role
in the interpretation of images because they can only
correspond to one thing - discontinuities in the physi-
cal events being viewed. For example. the labeled
regions of Figure 1(a) all contain discontinuities in the
physical events viewed; be they discontinuities in sur-
face depth, surface orientation. reflectance, or light-
ing. In a real image, some of these events might be
out of focus or some of the cast shadows might have
fuzzy houndaries due to non-point sources of light,
ete. Such an image would therefore have a combina-
tion of image intensity discontinuities {for those events
that are in focus), and “image events at larger scales”
{1]. To focus our attention on image intensity discon-
tinuities per se, we will consider an idealized world in
which the surfaces and their reflectance properties are
piecewise smooth, with only point sources of light and
no dilfraction. The immage of such a world taken by
an idealized camera in which evervthing is perfectly
in focus is a piecewise smooth intensity function.

We tackle two problems with regards to these
idealized images. The first is locating the discon-

...50..

tinutities in a one-dimensional cut of this piecewise
siooth intensity function given a noisy, sampled ver-
sion of the cut. The second is determining what we
call the local strncture of these discontinuities. In
the following Section we disciss why for determining
loeal structure is important for image interpretation.
Foltowing this, we show that loeating discontinuities
cannot be done without simultaneously determining
local strueture.  Next. we describe a technigue for
doing both simultanecously and present some results of
the 1echnique.

Why Determining Local Structure is Important
for Image Interpretation

several researchers have noted that the structure
of the intensities in a local neighbourhood around a
discontinuity is a function of the physical events being
viewed [2, 3. We call this the Jocal structure of the dis-
continuity. In general, the local stracture can be quite
complex and is often characteristic to the physical
event corresponding to the discontinuity. Thus, cap-
turing the local structure can be an important first step
in image interpretation. For the special case ol one-
dimensional cuts of idealized imuges, the local strue-
ture is the left- and right-hand limits of the intensity
function and its derivatives.

As an example of the characteristic local strue-
ture of the image of a physical event, consider the
boundary of the cast shadow in the left-hand C¥ region
of IMigure {{a). Given that the region is planar. and
has a smoothly varving Lambertian retlectance, the
cast shudow effectively multiplies the image intensity
within its boundary by a constant factor. Thus. the
cast shadow adds a constant to the logarithm of the
image intensity within its boundary. Because deriva-
Lives are unaffeeted by the addition of a constant,
the values of all of the derivatives of the logarithm
of the intensity just to the left and right of the dis-
continuity MUST be identical.  This example is il-
fustrated in Figures ({b) and (¢]. Figure [(b) is a graph
ol the logarithm of the intensities along a horizontal
ettt through the region when there is no cast shadow.



Figure 1(c) is a graph of the same cut when there is a
cast shadow. Note in particutar that the Hrst deriva-
tives (slopes) just to the left and right of the discon-
tinuity are identical.

The above example is not meant to indicate
that cast shadows have identical left- and right-hand
limits of derivatives in all circumstances (they do
not). Rather. the example is there to show that lo-
cal strueture is often characteristic of particular physi-
cal situations (in this case a shadow cast on a planar
[Lambertian surface), and therefore capturing this local
structure is an important Hrst step in the interpreta-
tion of images.

Why Determining Local Structure is Necessary
for Locating Discontinuities

A second motivation for determining local strue-
ture is that it will necessarily affect whatever process is
used for the location of discontinuitics. [n particular,
techniques that assume that all discontinuities have
the same, fixed, local structure are bound to be in
error wherever the assumption is false (an example
that illustrates this follows). This is inevitable for at
least some discontinuities. even in idealized images of
general scenes. For example, every discontinuity in
Figure 2{a), which is a typical cut through an idealized
image, has a different local structure. Sinee loeal strue-
ture must be known to properly locate discontinuities,
it follows that locating discontinuities must be dope
coneurrently with determining their local structure.

Many current techniques assume thar local strue-
ture is the same for all discontinuities {1, 1. 5. The
first two, based on “gradient estimation”™. implicitly
asstme that every discontinuity s a local step func-
tion. as illustrated in Figure 2(b). Both approaches
also suffer from a problem in principle: gradients
are undefined at points of discontinuity, hence any
“estimate” of the gradient at these points is necessarily
meaningless.  The techniques desceribed by de Souza,
based on sliding statistical tests, either assume that
the function is piecewise constant. or that the function
only differs by an additive constant across the discon-
tinuity (which is correct for certain cast shadows. as
described above, but is incorrect for other types of dis-
continuities).

Why Zero-Crossings Can’t Work. To il-
lustrate the kinds of problems that can arise when
assuming that local structure is the same for all dis-
continuities, consider the Marr-Hildreth zero-crossing
technique. The basic algorithm is to fnd the points
of inflection (zero-crossings of the second derivative)
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of a function blurred hy a Gaussian. Applying this to
the piecewise smooth function of Figure 2(a) produces
the zero-crossings of Figure 2(¢} and (d). indicated by
vertical lines superimposed on the original function.

Two problems with the technique are im-
mediately apparent.

1. Only the discontinuities that are approxi-
mately local step functions are correctly lo-
cated. For the small o of Figure 2(¢). this cor-
responds to the first and fifth zero-crossings.
while for the larger o of Figure 2(d). this cor-
responds to just the first zero-crossing.

Many of the zero-crossings do not correspond
to any discontinuities at all.  In particular.
the last three in Ficure 2{¢) aud the last
one in 2(d} correspond to ordinary points of
inflection of the function.

(3]

The technique deseribed in [+], while more resistant to
noise, has very similar problems.

In <hort. the inflection points of smoothed fune-
tions are nol guaranteed to correspond to discon-
rinuities unless the function is originally plecewise con-
stant. This is not the case, oven for rdealrzod tmagoes
of general scenes,

Overview of Our Approach

Our approach is based on the application of es-
timation theory to the mathematical definition of dis-
continuity: a function is discontinuous at a point if
and only if its left- and right-hand limits are unequal.
Specifically, we:

— estimate the lefi- and right-hand limits of the
function and of its derivatives at every point:

— determine whether certain necessary condi-
tions for estimation are satistied;

~if so, determine whether the difference
between the limits is statistically significant.

For a neighbourhood size of 2.V samples, we es-
timate the left-hand limit of a function at a given point
as follows. Deline the origin to be midway between two
consecutive samples. Estimate the funetion to the left
of the origin using the left-most .V samples {we call
this the left half-neighbourhood). The value of this
estimated function at the origin is the left-hand limit.
Similarly. the value of the derivatives of this estimated
function at the origin are the left-hand limits of the
derivatives. The analogous procedure using the right
half-neighbourhood produces the right-hand limits.



Lhe key to this approach is the procedure for
explicitly verifying that the necessary eonditions for
estimation are satisfied at every point. We examine,
case by case over a range of neighbourhood sizes. those
situations in which these necessary conditions might
be violated. and inhibit the estimate whenever the
conditions are in fact violated. [n addition, multiple
neighbourhood sizes allows us to automatically use
larger neighbourhoods for estimation {which is more
reliable) when the discontinuities are far apart. and
smaller neighbourhoods when the discontinuities are
closely packed.

The necessary conditions for our estimation
procedure are:

C1. Each half-neighbourhood must correspond to
a ('L piece of the function: that is. the half-
neighbourhoods must not contain any discon-
tinuities.

C2. The class of estimating functions must be ap-
propriate: that is, the error introduced by
restricting the estimation to this class must
be small relative to the error introduced by
the noise process.

Although this approach can be applied to many
types of underlying functions corrupted by many tvpes
we will be presenting an application of the
approach to one-dimensional piecewise ('L functions
corrupted by additive white Gaussian noise. There
are several reasons for this choice. First. as dis-
cussed in the first section, piecewise ('l functions are
idealizations of one-dimensional cuts through images.
Second, additive white Gaussian noise allows us to
make the presentation simple by keeping the estima-
tion theoretical analysis simple.

of noise,

sstimating left- and right-hand limits differs
from the techniques described previously in two
significant ways. First, this approach estimates the lo-
cal strueture at each discontinuity. rather than assum-
ing that it is the same for each discontinuity. Second,
the limits that we estimate are defined everywhere,
whereas the gradients “estimated™ by the other tech-
niques are undefined at discontinuities.  Yet this is
precisely where the “estimates™ of the gradients are
nsed.

Design Issues

Sensitivity and Reliability

Estimation procedures tend to be more reliable
(and hence more sensitive) as the number of samples

used for estimation increases. Thus, the estimation
procedure should use as large a ueighbourhood as pos-
sible to increase sensitivity. At the same time, the need
to locate closely packed high contrast discontinuities
suggests that a small neighbourhood size should be
used. These apparently contradictory requirements
can be met through the use of multiple-sized neigh-
bourhoods. However. this introduces the problem of
consistency between multiple results. The following
seetion addreses this problem.

A Constraint on the Domain of Estimation

There are two constraints that estimation theory
imposes on our domain. The first is the minimum
rate at which the ('L pieces of the fnetion must
be sampled. and the second is the minimum spacing
between the discontinuities.

The first constraint comes [rom the requirement
that the nwmber of degrees of lreedom for an estima-
tlon problem be strictly greater than zero. That is.
for the neighbourhood over which the estimation is
performed, the underlying funetion must be defined
using fewer parameters than samples. This is clearly
not the case for arbiteary ! function. However, al-
most all L funetions can be sampled at a rate such
that they are approximately ficst order over a given
number of samples everywhere (eall this number of
samples .V, ). Thus, demanding that the funetion
be sampled at this rate allows us to use a first order
] consecurive samples

; oximati er 4
wproximation over any N,

within the 'L pieces of the function. [mposing this
constraint on the sampling rate satislies the estimation
theoretical requirement without significantly reducing
the space of ' functions. An important note is that
this minimum sampling rate does NOT imply that a
lirst order approximation (or any other specific order
of approximation) is appropriate for more than . '.m,/n
consecutive samples. [ndeed. one of the problems we
face is choosing an appropriate order of approximation

for more than Nyin samples, as discussed later.

The second constraint is that the minimum dis-
tance between successive discontinuities be ;me
samples.  This constraint allows us to use a neigh-
bourhood of Nmm samples on cither side of a discon-
tinuity which is guaranteed to be approximately first
order without overlapping other discontinuities. As we
shall see, this allows us to use a particular technique
called intra-seale inhibition to inhibit rhe estimation
procedure in places where the necessary conditions for

estimation are not satistied.
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Details of the Procedure

The details and results that follow are for the
special domain of piecewise ¢! funetions corrupted
by additive white Gaussian noise. We use nt order
polvonomials as our estimating funcrions to facilitate
both the least-squares estimation of the limits and the
determination of statistical signilicance.

Estimating the Limits

We estimate the function in cach half-neighbour-
hood as follows. Define a local coordinate system with
the origin mid-way between two cousectitive samples,
In this way, the coeflicients of the polvnomials are the
limits of the polvnomials and their derivarives at the
origin,  The least-squares approximation of the two
independent polvnomials is carried out as follows.

[Let:

Y'/ be the column vector of observations for the
left half-neighbourhood:

Yy be the column vector of observations [or the
right half-neighbourhood:

Xy be the column veetor of coordinates for the
left half-neighbourhood:  (—(2N — 1)/2,
—(2N —3)/2, .o =32, —1/2);

X, be the column vector of coordinates for the
right half-neighbourhood: {172, 3/2, ...,
(QN —3)/2, 2NV — [)/2);

"y be the column veetor of unknown (noise)
values for the left half-neighbourhood:

(" be the column veetor of unknown (noise)
values for the richt half-neighbourhood:

i

i be a column vector of N zeros:
1 be a column veetor of .V ones:
then the model for the estimate of the two independent

nth order polynomials with the origin defined at the
center can be written as {ollows [6]:

or

T= XD+

—t,

The maximum-likelihood vector of parameters B
can he computed using the matrix product

B =(X/\yLlyy,

Since the coordinate system is defined locally, the
matrix 7 = (X/XV A7 is the same for all points.
Thus, at each point. a given coefficient of B3 is the
inner-product of a constant row of /" wirh the sampled
data Y. This is equivalent to convolving the sampled
data with the reverse of this row vector. a very eflicient
computation.

For example. the difference between the left- and
right-hand limits of the estimate is ([3”)—/3,‘”). This is
equivalent to convolving the sampled data with (7] —
Iy). illustrated in Figure 3.

Verifying the Necessary Conditions

The procedure for verifving that conditions C1
and C2 are met. 5 two-lold.  The first step of the
procedure applies to the smallest half-neighbourhood
size N, o as follows. Recall that we have con-
strained our domain such that suceessive discon-

samples apart., and

tinuities are no closer than .\ .

that the ('L function is approximately first order over
N, contiguous samples.  Given this constraint,
a hall-neighbourhood of <ize .\ can contaln at

At
most one discontinuity. Also. by choosing 1> order
polynomials, condition C2 is necessarily satistied and
need not be veriied. Thus, for a half-petghbourhood

size ol N, o we are left with three possibilities:

1. there is no discontinuity within the neigh-
bourhood, in which estimation
procedure is valid;

case  the

2. there is one discontinuity that is in the center

*rg — T f(ﬁ i) \'{3 g .- X" 5 [bgo] + C,’ﬁ of the neighbourhood, in which case neither
B . f .y f al L . of the half-neighbourhoods contain discon-
Yr 0oL 0 X, 0. ; 0 X . bro T tinuities and again the estimation procedure
bf] is valid; or
by 3. there is one discontinuity within either the left
bpo or right half-neighbourhood (or hoth).
bra See Figure 1 for examples of these three cases.
Since the estimates are only valid for cases (1) and (2)
b, a’bove. what nefzds to be dgge 13 60 inhil.)i[ the estima-
brn) tion procedure in case (3). The observation that allows
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us to do this is that, all else being equal, the error in
estimating the function in case (3} will be considerably
larger than in case (2). Thus, by choosing only those
estimates that are locally minimum in error (i.e.. those
estimates that have smaller sum of squared errors than
those within a distance of \, pi g SAd ples). we inhibit
all estimates that fall into the third category.

Figures 5(a) to 5(cd) illustrate what can happen
if the verification stage of the estimation procedure is
left out. [n Figure 5(a), we have applied the estima-
tion procedure at every point (or a half-neighboturhood
size of V. == 4 using first order approximations.
and have highlighted all points where the difference
between the left- and right-hand limits were considered
to be statistically significant with vertical lines. Note
that some singularities are surrounded by several high-
lighted points. In Figure 5{b). we have applied the
verification procedure, which we call intra-scale in-
hibition, eliminating estimates for case {3) situations.
Note that each singularity now has only one high-
lighted point.

The second step in the procedure is applicable to
all neighbourhoods whose half-neighbourhood size is
greater than N - . By applying the same procedure
as for the smaller neighbourhoods, we ean eliminate
invalid estimates for case (3) situations as before.
However, there are two more cases that must also be
dealt with:

4, there is more than one discontinuity within
one or the other half-neighbourhood: and

5. even if there are no discontinuities within
the neighbourhood, there is now no guarantee
that a given order of approximation is ap-
propriate for this larger neighbourhood size.

[n both cases, the expected value of the normal-
ized sum of squared errors will be farger than the stan-
dard deviation of the Gaussian noise. By inhibiting
estimates whose sum of squared errors is significantly
farger than an independent estimate of the standard
deviation, we are left with valid estimates.

We can get an approximately independent es-
timate of the standard deviation as follows. Divide
the left half neighbourhood into non-overlapping in-
tervals of .V, . samples. Let A" denote the number
of such intervals that are valid according to step 1 of
this procedure. Let S denote the sum over these inter-
vals of the sum of squared errors. Because 5 is formed
using only walid estimates, 5‘/(/\'(.\'”“'-” — 2)) is an
unbiased estimator of the standard deviation. Let S"{

denote the sum of squared errors over the larger half-
neighbourhood. S and S’/. are two chi-squared random
variables that are approximately independent. [hus.
if the order of the polynomial used at the larger neigh-
bourhood size is n, then the statistic

// (N —(n+1)
b/ [\(; min — 2
is approximately F( (LN i —2)) dis-

tributed.  Thus, we can reject the hypothesis that
the sum ol squared errors of the smaller and larger
neighbourhoods are equal if the statistic is larger
than the 0.99 confidence level of this distribution.
The analogous test is done for the right half-
neighbhourhood.

Figure 5(c¢) illustrates what can happen if step
2 of the procedure is omitted. In this ligure, we
have applied the estimation procedure at every point
for a half-neighbourhood size of N = 16 using
second order approximations. We have inhibited all
estimates using intra-scale inhibition, and have high-
lighted all points where the difference between the left-
and right-hand limits were considered to be statisti-
cally significant.  Note that the third singularity is
not properly identilied, and that a point is highlighted
where the function is clearly smooth. [n Figure 5(d)
we have applied the second step of the verifieation
procedure. Note that all singufarities separated by at
least 16 samples are now highlighted. and that only
singularities are highlighted.

Determining Statistical Significance

Having computed the maximum-likelihood vee-
tor of polvnomial coefficients /3, we can determine
whether the coefficients are significantly different from
each other. In particular, we are interested in seeing
if the 04N and 15% coefficients are significantly different
from each other. This is done by setting up three
hypotheses, and testing them in turn: chey are:

Hl: /)m = br() and
[y by = by
fy by =bry

b{l = bl‘l:

If £} is accepted, then both coefficients are equal
and no further testing is required. [f /7 is rejected. we
goou to Hy. Il Hyis accepted then the )[h coellicients
are the same, and, as a consequence of the rejection
of Hy, the 1% coeflicients must be different. If 1
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is rejected, we go on to ffy. If Hy is accepted. then
the 150 coefficients must be the same, and again, as a

consequence of the rejection of HI, the OUR coefficients
must be different. Finally, if /4 is rejected, then both
coeflicients must be different.

Hypothesis /7| can be tested by performing a
least-squares fit to the constrained model [6]:

- v wn a1r 1
v B R B SO o 9N B
r r
bf‘)
o
b//z
e

Note that in this constrained model. there is one coni-
mon coetficient by and one common coetlicient by .
reflecting the hyvpothesis that both h” = by and
(“ = b, If we denote the sum of squ: eri mrms
resulting t'rom the least-squares fit of [hlh constrained

model as S5}, then the statistic

/N =30 + 1)

follows the /'W(QQ:V—'-’(H%—[)) distribution.  Thus,

we rejecl H| if the statistic is larger than the .99
confidence level of this distribution.

Similarly, hypotheses [y and Hy can be tested
using constrained models reflecting the appropriate
equality in coefficients.

Results

We  have demonstrated the results of the
procedure on a piecewise smooth function with no ad-
ded noise in Figure 5. In Figure 6 we illustrate the
results of the procedure on the same function with
added white Gaussian noise of standard deviation 2.
Note that very few false discontinuities were found by
the procedure, and that most discontinuities that are
visible to the eye were properly identified.

Summary and Conclusions

The local structure of image intensity discon-
tinuities can be used to great advantage in the inter-
pretation of images. Yet, the techniques that have
heen advocated by other researchers for tinding discon-

tinuities cannot recover such structure. Indeed. they
assume a predetermined strueture, and this produces
inadequate results when applied to more eeneral
domains. A new approach is therefore necessary, and
we have developed a technique for doing preeisely this
in the reduced problem space of piecewise (1 one-
dimensional signals. Examples have demonstrated the
power of the technique, even in the presence of a con-
siderable amount of noise.

The general approach we used in developing
the technique came directly from the mathematicnl
definition of discontinuity: a function is discontinuous
at a point if and only if its left- and right-hand
limits do not equal each other. We showed thal rhe
kev to estimating these limits is verifving that the
necessary conditions for estimation are satistied (this
must be done for every estimation problem. another
shorteoming of existing approaches). We resolved the
verification problem by examining, case by case, those
situations in which the necessary conditions would be
violated.  Thus, we were able to inhibit estimation
in these situations through the iteraction of certain
error procedures over multiple-sized neighbourhoods.
In addition, multiple-sized neighbourhoods allowed for
the use of many samples for estimation (when ap-
propriate) to increase the reliability of the results.
while at the same time accomodating closelv packed
discontinuities. This produced an algorithm which
was very sensitive to low contrast discontinuities when
little or no noise was present, and veu rarely produced
[alse discontinuities in the presence of large amounts
ol noise.
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Figure L. A simple scene illustrating some of the types

of image-forming processes that resull in image
intensity discontinuities.  Regions ('S rontain
boundaries of east shadows: regions AS con-
tain boundaries of attached <hadows: regions
O contain ocelusion boundaries: and regions €
contain complex combinations of image-forming
processes.

Figure 1(Db)
Intensity
profile
without
cast
shadow.

ay

Figure 1(c)
Intensity
profile
with

cast
shadow.

N

Figure 3. The convolution kernel for estimating the

difference in coefficients b/() — b,.().

Jyo h )
Figure 2.

(a) A sampled piccewise 1 function.
(b) The zero-crossings of the [aplacian of the
Graussian blurred [unction for & = 2.5 [central
positive region ol about 5 samples). Note that
only the first and fifth zero-crossings correspond
to discontinuities. (¢) Same as (b). with ¢ =
5 (central positive region of about 10 samples).
Note that only the first zero-crossing corresponds
to o discontinuity.
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Figure 4. An illustration of the various neighbourhood
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cases. Cases (1) aud (2) provide valid estimates,
whereas the others do not. and hence the es-
timates must be inhibited.




4

.............

Figure 5. An illustration of the need for the various
estimate inhibition procedures. The function
is the same as in Figure 2. (a) Results of
first order approximations over the smallest half
neighbourhood size .V, .~ = | without the

inhibition procedure. Note that some discon-

tinuities are surrouned be several highlighted
points. (b) Same as (a) with intra-seale inhibi-
tion applied. Note that now each discontinuity is
properly identified. () Results of
second order approximations over a hall neigh-
bourhood size of N = 16 with intra-scale in-
hibition, but without inter-scale inhibition. Note
that the neighbourhood about the third high-

lighted point is case (4) and the next is case (5).

and therefore cannot be properly dealt with by

intra-scale inhibition alone. (d) Same as (¢) with
the addition of inter-scale inhibition. Note that
each discontinuity that is separated by at least

16 samples is now properly identitied.
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[igure 6. Results using all estimate inhibition
procedures on the sampled function of IMigure
2 with added white Gaussian noise of standard
deviation 2. (a) The function with added noise.
(b) Result of the procedure for .V =N, = =
£ (c) Result of the procedure for .V = X. (d)
Result of the procedure for .\ = 6.



RECEPTIVE FIELDS AND THE

RECONSTRUCTION OF VISUAL INFORMATION

Steven W. Zucker
Computer Vision and Robotics Laboratory
Department of Electrical Engineering
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Montreal, Quebec, Canada

ABSTRACT.

Receptive fields in the retina indicate the
first measurements taken over the (discrete) visual
image. Why are they circular surround with an exci-
tatory/inhibitory structure? We hypothesize that they
provide a representation of the visual information in
a form suitable for transmission over the optic nerve,
a rather limited channel. The hypothesis is supported
by a formal scheme for reconstructing visual informa-
tion at the cortex. The scheme is both physiolo-
gically plausible, and leads to a number of predic-
tions about receptive field size, structure and hyper-
acuity that are supported. The existence of such a
scheme suggests that the analysis of visual informa-
tion really begins in the cortex, a suggestion that
stands in strong opposition to many current beliefs
about "edge detection™.

We have developed a theory of image reconst=-
ruction which explains precisely how it is possible
that detailed visual information can be made available
to the cortex. The theory provides a single, consis-~
tent role for much of the spatial processing along
the X-pathway from the retina through the lateral
geniculate nucleus to the visual cortex. The need
for this information follows, in principle, from the
precision with which we can interact with our visual
environment [1]. Under the assumption that receptive
fields carry measurements that can be represented by
operator convolutions, the theory accounts for the
following physiological observations: (i) retinal
receptive fields have a center surround organization,
with an excitatory center and inhibitory surround;
as well as (ii) with an inhibitory center and excita-
tory surround [2]. We are using the terms as defined
in (3], to stress the antagonistic manner in which
information is combined within a receptive field.
(iii) At the cortex, receptive fields span a range of
sizes [4). The theory takes into account that (iv)
neurons have a limited capacity to carry information,
and that (v) neurons along the X-pathway have a
rather low spontaneous firing rate [5]. Finally,
truly accurate reconstructions the theory requires
(vi) the presence of additional side lobes in certain
cortical receptive fields {6;7}. Since these facts
summarize most of what is known about the basic X-
pathway, the suggestion that the analysis of visual
information begins in the cortex becomes very much
more plausible.

for

The reconstruction scheme is based on a resto-
ration of data obtained from receptive field measure~
ments. An essential feature of these measurements is
the blurring or diffusion of information, which we
shall model according to the heat equation. While
the formal role of the heat equation will be intro-
duced shortly, the intuition comes from the observa-
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tion that a unit impulse of heat diffuses into incre-
asingly larger Gaussian distributions as time¢ proceeds
(Fig. 1). Such a (temporal) spread will become ana-
lgous to the (spatial) extent of a receptive : :1d.

Mathematically, let f(x) denote the initial
temperature distribution as a function of the spatial

variable X € H{n. Then a solution to the heat equation
u(x,t), t > 0, satisfying

ul(x,0) = £{x)

can be obtained from the convolution

ulx,t) = J K(x-x',t) £(x') dx'
]Rn

where K(x,t) is the "source" kernel {8]

2
Kt = (2re) ™2 o700
Since the kernel acts as a blurring operator, we can
regard the distributions u(x,t) as representing con-
tinuously coarser representations of the original
data f(x) as t increases. In fact, assuming f(x) is
bounded, u(x,t) as given above is analytic. It is
the unique bounded solution to the heat equation

u,_ = 4du

t
satisfying u(x,0) = f(x}). Other (bounded) solutions
are technically possible, but the function u({x,t)
given by convolution against the Gaussian kernel K is
the one that naturally occurs in physical systems.

Suppose initial image data were blurred by a
Gaussian kernel., Is it possible to reproduce the
original data? Specifically, given g{x}) = u(x,t),
some fixed 1T > 0, is it possible to solve the heat
equation backwards to recover u(x,t) for 0 < t < t?

for

There are two separate aspects to the answer:
whether recovery is possible in principle and whether
it is possible in practice. In principle it can be
shown that necessary and sufficient conditions for the
existence of a solution to the heat equation, u(x,t),

0 <t <, satisfying u(x,1) = g(x), X € IRn, are that
g(x} be analytic, and that the extension of g{x) to an
analytic function of several complex variables g(z),

Both of
fit

certain growth conditions.
analyticity are bounded growth,
vision context.

n e
z € C, satisfies
these conditions,
smoothly into the

Given the existence of a backsolution, calcula-
ting it may still be impractical. The difficulty is



that the backward heat problem is unstable; that is,

a small change in the initial data g(x) can lead to an
arbitrarily large change in u{x,t). No matter how
well g{(x) is approximated numerically, there will
always exist examples where the resulting calculation
for f(x) is arbitrarily far off.

Nevertheless, John [9] has shown that, if a
non-negative backsolution exists, then stable recon-
struction of u(x,t) is possible for a < t < 1, where
a » 0 is fixed. Specifically, suppose that 0 < g(x)
< 4, and that g(x) is sampled so that it can be re-
constructed to within accuracy €. Then an estimate
u({x,t) can be formed using discrete kernels such that
the error U(x,t) - u(x,t) , for a £ t < 1, is bounded

1-¢ )
by a constant (depending on a) times u o EO. Here 0

is a number between 0 and 1, which implies that, e.g.,
a twofold increase in the accuracy of reproducing
u{x,t) requires more than a twofold increase in the
representational accuracy. The coefficients of this
kernel are shown in Fig. 2.

In summary, then, the essential restrictions
amount to requiring that g(x) be bounded, that a non-
negative back solution exists, and that a solution
is sought only back as far as some positive time
t >a > 0. And, for numerical stability, we must
represent g(x) as accurately as possible.

The physiological interpretation begins with
the earlier points (i) and (ii): that receptive fields
have an antagonistic center/surround organization.
Such local operations are useful in data coding, since
they compress the required dynamic range of a channel
[10,11]. They may also exist in primate visual
systems for evolutionary reasons. But, since they are
modifying the initial light measurements, they would
seem to make reconstruction more difficult. Somehow
their effects need to be undone. However, as we now
show, given the form of these operators, we just need
to add an extra step onto the reconstruction scheme.

Circular surround receptive fields have been
modeled by kernels given either as the difference
of two Gaussians (12, 13], or as the Laplacian of a
Gaussian [14]. Although these Kernels are distinct,
we can interpret the former as a discrete analog of
the latter. This follows since the heat kernel K(x,t),
a solution of the heat equation, satisfies

— L ~ -
CAK(x,t) = Py Kix,t) [K(x,tl) K(x,tz)]/
(t, - t)

which is the difference of two Gaussians. We there-

fore take

vix,t) = JAK(X - x', t) f(x") ax'

mn

as a continuous version of the initial measurements,
where t parameterizes the effective size of the recep-
tive field. Note that v(x,t) is only available for

t > 1, where 1T corresponds to the size of the smallest
receptive field., Since

vix,t) = A J K(x - x', t) f(x') dx'
IRn

J K(x - x', t} (Af) (x') ax'
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v(x,t) can be interpreted either as the Laplacian of
the blurred intensity data, i.e., as Au{x,t), or as the
bounded scolution to the heat equation using the initial
data Af(x). From the former interpretation and the
fact that u(x,t) satisfies the heat equation, we have

that v(x,t) = Au(x,t) = ?% u(x,t), so

T
-J v(ix,t)dt = u(x,0) - u(x,T).
0

Now, u(x,T) 1s nearly constant for large T, so the
above integral can be used to recover f{x) modulo an
additive constant. From the other interpretation of
v(x,t), we see that v(x,t) is itself a solution to the
heat equation. Thus the values of v(x,t), for

0 <t < 71, will have to be obtained by backsolving the
heat equation using v(x,T) as initial data.

To discuss physiological realizations of these
formulas, we must confront problems of discretization
and stability. The receptive field measurements v(x,t)
are not continuous in t, but rather are given by the
discrete approximation t = tk, tk+l' .y tm' with

each t, > 1. The data are sampled spatially, and it
i =

is likely that v(x,t) is sampled more coarsely in x for
larger t, reflecting the more uniform variations of the

smoothed data [15]. Values for V(x'ti)' t = tl’ £t

, with 0 < t,l < 1, will be obtained by back-

.y tk—l
solving. An examination of John's coefficients for the
backsolution kernel reveals the addition of decreasing
side lobes for higher orders of approximation, as would
be expected from the de-blurring of Gaussians [l6].

The third order approximation agrees nicely with
physiological observation (vi}; see [6, fig. 9b]. The
integral for recovering f(x) can be approximated by a
welghted sum

m
—J vix,t) dt = 2 (ti - t,_l
o i=1 +

) vix,t,)

i
thereby requiring the different size operators (physio-
logical observation (iii)). It is especially interes-
ting to note, with regard to this sum, that it is only
the data for t near 0 that needs to be reconstructed,
and it is precisely these smaller operators (receptive
fields) that have been observed to have the extra side
lobes [6]; see also [17} for psychophysical support.

The last remaining issue is stability. John's
results require that the backsolution be non-negative,
but v{x,t) can be both positive and negative. There-
fore we shall split the manner in which v(x,t) is
represented, separating the positive and negative parts.
Recalling physiological observation (v), that X-pathway
neurons have a low spontaneous firing rate, we intro-
duce a smooth approximation to the "positive part"
function:

¢ (x) = max [x, 0]
+
for x < A, a saturation level; see Fig. 3. Similarly,
set ¢_ (x) = ¢ _(-x), and note that
¢+(X) - ¢_(x) ¥ x for ’x[ < A

since 4 is linear in the range in which it is used. We
can then separate the receptive-field convolution data
into

V+(x,ti) = JK(X-X', ti) ¢+(Af(x')) dx'



v_(x,ti) = K(x—x',ti) $_(Af(x")) dx'

Note that this functional form implies that it is only
the small convolutions that are sent back from the
retina, which is in agreement with the physiology

{5; 18}. This formulation also suggests that there
should only be a limited range over which X-cells
behave linearly, which is also well known. Patterns
qualitatively matching these receptive fields are,

it is further interesting to note, the ones to which
our visual systems are thé most sensitive [19]. Since

v, and v are both solutions to the heat equation

with (essentially) non=-negative data, both can be
backsolved from t = T to t = tl' with tl > 0, in a

The desired data v(x,t.), as used
ifference

stable fashion.
before, can then be recovered from the

vix,t) = v+(x,t) - v_(x,t).

In summary, the reconstruction method involves
sampling and transmitting the receptive field con-
volutions v+(x,ti) and v_(x,ti) for small t.l > T,

backsolution of v+(x,ti) and v_(x,ti) for ti < 1, and

(weighted) summing of all these measurements with the
larger, smoothed convolutions. Note that these larger
convolutions are obtained just by Gaussian blurring
of small center surround receptive fields. The back-
solution is stable for both v+ and v_ provided recon-

struction is attempted only as far as some resolution
level t >0, as would be expected from hyperacuity
data.

Our proposal differs fundamentally from those
that implicate the different size operators with
notions of "edge detection" [14]. Qualitatively,
this other approach asserts that physical events such
as reflectance, depth, or illumination changes take
place over different spatial "scales", so that
different size operators are necessary to capture
them. However, this approach suffers from several
problems, First, from photometric observations, it
can be shown that the physical processes responsible
for generating the intensity changes operate over
many scales simultaneously [20] and non-linearly.
Second, there is the problem of how to combine the
information at the different scales. Finally, there
is increasingly more psychophysical and computational
evidence that early vision in general, and anything
ilike edge detection in particular, requires very
precise information ([l; 21; 22]. Nevertheless,
attempts have been made within this approach to use
the zero~crossings of the different size operators
as "edge" locations, and diffusion eguations have been
used to study their migration across scales [20; 23].

While our method has some gqualitative simila-
rity to others based on the Shannon sampling theorem
(e.g., [24], and references cited therein), there are
fundamental differences. The spatial support required
for sin x/x reconstruction is larger than the local
polynomials that we incorporated, raising serious
questions about accuracy (25]. Also, the idea of
backsolving to obtain the highest frequency data is
not there. Finally, one of the principle advantages
of that scheme - - noise averaging in the larger
receptive fields -- is present in our scheme as well.

While our reconstruction method demonstrates
the possibility of precise image reconstruction in

principle, it does not imply that it is necessarily
taking place in practice. Perhaps only part of the
scheme is utilized, such as just step (1) above,

since this also amounts to an effective Gaussian
de-blurring strategy. Many sources of such blur exist
early in vision, from receptive field convolutions to
motion smear {26] to physiological variation in
neuronal conduction velocities. Or perhaps the recon-
struction takes place only implicitly, within a sub-
sequent level of processing such as orientation
selection {21]. Ultimately, the physiology will
decide.
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Trajectory Planning Problems, I:
Determining Velocity Along a Fixed Path
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Abstract ~ In this paper, we generalize the path
planning problem to that of the trajectory planning
problem (TPP) in a time-varying environment. We
present an algorithm to solve a special case of the TPP
- the fixed path TPP. In this case, the path is a
point set fixed in space and the aim is to determine
the velocity of a robot vehicle moving along this path
from an initial position to a final position while avoid-
ing moving obstacles. The solution is essentially equiv-
alent to a (static) 2-D path planning problem. Graph
searching techniques are used to construct the velocity
profile.

Introduction

The search for a path connecting an initial point
with a final point while avoiding obstacles is known as
the path planning problem (PPP). The structure of
a path planning problem is dependent on apriori con-
straints on the path and on the environment. Because
of the complexity of the general problem [Reif 79,
Schwartz 32|, researchers have concentrated on sub-
problems in which different aspects of the environment
are highly constrained. For example. many [Perez
79, Brooks 82| have concentrated on the problem of
finding paths through static, 2-dimensional worlds,
and have discovered algorithms that are global and
efficient in these worlds.

In this paper, we approach the PPP from the
other direction ~ that of planning trajectories through
3-dimensional, time-varving environments. We call
this the trajectory planning problem (TPP). This
perspective (of time varying environments) on the PPP
suggests different sub-problems than those that have
already been addressed. We concentrate on a special
case of the TPP, called the fixed path TPP, in which
the path of the moving object as a space curve is fixed
and the trajectories of the moving obstacles are known.
The problem, then. is to find the velocity of the moving
object as a function of time along this curve, so that no
collisions occur with the moving obstacles. We trans-
form the fixed path TPP into an equivalent problem
of planning paths i a 2-D static world. the static 2-D
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PPP and solve it with a graph search similar to that
in the 2-D PPP.

The Trajectory Planning Problem (TPP)
The TPP is formulated as follows:
(Given :

1. \ moving object {robot). and

2. Obstacles moving along trajectories (as given

functions of time) are completely known.

Alm

To find the trajectory of the robot as a mapping
J(t) from the time interval [¢,, tj-] to £ e,

flt): [rz,xf] — €5

where £ denotes the 3-D Euclidean space.

Note the dilference between the (static) PPP case
and the (time varying) TPP case. In the former. the
aim is to find the path as a point set 2 in £2: in the
latter, we are interested in the mapping f(¢) as well
as its range £. Intuitively, in the static case, once
the path has been found, the robot’s velocity along
it does not matter for collisions. [n the time-varying
environment, however, it does matter: of two different
velocity functions on the same path, one may lead to
a collision and the other may not.

The Fixed Path TPP

The above definition suggests a natural special

case of the TPP:

Let the path be given as a space eurve. r.
parameterized by its arc length s Find the
mapping f(f) {rom ([tr,t/~j — 1{s) such that
the robot does not collide with the obstacles.

One may view this as follows:

Given that the robot is constrained to move along
a fixed path {e.g.. it moves on rails which predetermine
the path}, find the velocity of the robot as a function
of tinte such that collisions with the moving obstacles



are avoided. We call this special case the fixed path
TPP.

We now solve an idealized version of this problem
in which the robot is constrained to be a point object
moving along the given space curve .

A Transformation:

From Fixed Path TPP to 2-D Static PPP

An object moving in space sweeps out an effective
hvper-volume in space-time. An intuitive solution to
the tixed path TPP can be obtained by intersecting the
swept volumes of the obstacles with the given path of
the robot. These intersections will provide time vary-
ing constraints for the robot’s position on the path,

Let 5 = [s;. .sf] be the segment of the curve on

which the robot is constrained to move, with s(¢,) =
3y, and .s(lf) = The trajectories of the obstacles

are given as [unctions of time. To compute the inter-
section of the path r(s) with the volumes swept by the
obstacles as they move around is a non trivial task.
Since, in general, these intersections will be compli-
cated functions of time depending on:

1. the shape of the obstacle.

2. the trajectory of the obstacle. and
3. the space curve X, L.e., the path ol the robot.

As an approximation. these intersections may be
taken as a subsegment of the path being unavailable
during a subinterval of time. Let 7, be the time instant
when obstacle £ touches the path segment, and (/A. be
the time instant when it leaves the segment. During
the whole interval [tk, t/k]' let the maximum subseg-
ment of the fixed path .r(s) oceupied by the obstacle
k be given by [s;.5/;]. Once these intersections are
available, they act as constraints on the mapping f(f).
[n other words, f(f) may not map the time subinter-
val [t /] to the spatial subsegment [5, +//]. This
is iltustrated in figure L(a).

Now consider the s-f plane. Since our approxima-
tions to the intersections are of the form:

sibsegment [s,, 5/, is unavailable during the

subinterval {¢,,¢/,], they will appear as rec-
tangles in the s-f plane.

This is shown in figure {(b). Also. viewed a3
a graph in the s-f plane, the mapping »(¢) will be a
curve, The necessary and sufficient condition for
no-collision is that the intersection of the curve, i.e.,
the graph of the mapping f(¢), with these rectangular
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obstacles, be null. This is analogous to the 2-D static
PPP. ’

Thus. we have reduced the fixed path TPP
problem to the following 2-D static problem:

Given the initial point (sl;, [L-) and the final point
(af, [f), tind a curve in the s-¢ plane, avoiding
the rectangular obstacles (refer to figure 1(c)).

Note that a more exact computation of the
volumes swept by the moving obstacles will give rise to
more general shapes than rectangles (in the ~-/ planel
as shown in tigure L(d).

Note that the velocity ¢{t) = dr/dt may he
expressed as v(t) = (dr/d=)(ds/dt). For a
giver curve . the quantity «r/d~ is known.
This permits us to restrict ourselves ro a
simple variable = instead of the vector r,
for. determining o= /df completely deternmines
e{t). Moreover. idr/ds| = 1. Therefore,
!(/I/r[/[ == :(/*/([/! S ['7”(“3 (n other
words, the same V5,50 constraint holds for
Lds/dt). \We emphasize that the original space
curve £ omay be any curve in 3-D; we need
a parameterization of the curve z by its are
length . Onece the arce length ~ is known as
a function of time, it may be easily mapped
back to r as a function of time, since r{f) =

(5(1)).
The Static 2-D PPP

There exist several techniques to <olve the static
2-D PPP. e.g., (i) the visibility graph {Wang 71, Perez
79]. (ii) the generalized cone [Brooks %21, and (iii) the
Voronoi diagram [O'Dunlaing 33]. \ny of these tech-
niques may be used to solve the statie 2-D PPP, which
was obtained from the fixed path TPP. \We present an
approach based on the visibility graph. First, we give a
hrief overview of the visibility graph approach to soly-
ing the static 2-D PPP, and then, extend it to solve
the static 2-D PPP (in the s-t plane) corresponding to
the fixed path TPP.

The static 2-D PPP:

Find a path for a point object from its initial
position [ to the final position /" while avoid-
ing the polygonal obstacles.

The necessary condition for the minimum
length path is that it be composed of straight line
segments connecting a subset of the vertices of the
polygonal obstacles [Wang 74, Perez 79|. For a proof.
refer to [Kant 84]. This 2-D (static) PPP is solved as



follows:

Consider the graph. 7, with the set of nodes
N = [,Ful. where [ corresponds to the initinl
point; ', to the final point; and V" is the set of ver-
tices o the polvgonal obstacles. Counstruct the edge
set. Loof all the edges (n,. ”j) stuch that the straight

line connecting node n; to node nj does not intersect

any ol the obstacles. This graph G(.NV, L) is called
the visibility graph and the shortest collision frec
(physical) path from the initial point to the final point
is given by the minimum cost (graph) path {rom node
[ to node £ where the cost of an edge is given by the
Euclidean metric.

The Fixed Path TPP Algorithm

We have reduced the tixed path TPP problem to
the following 2-D static problem:

Given the initial point (s, ¢ ) and the final point
(sf, tf), find a curve in the s-f plane, joining
these two points, while avoiding the rectan-
gular obstacles (refer to figure (c})).

The Constraints The visibility graph in the s-¢
plane has following constraints:

1. The first constraint is due to the fact that it is
impossible to move backwards in time. This
translates the graph to a directed graph since
a node (.s]. t,») may be accessible from atother

node (\k tk) only if £, < /.‘/-.

2. The second constraint comes {rom the maxi-
mum veloeity limit. The velocity corresponds
to the inverse slope [ds/dt| in the s-f plane.
Hence, an edge is valid if and ouly if the
veloeity corresponding to the edge is less than
or equal to Vg, :

To accomodate these two constraints, the
visibility graph needs to be moditied. We state the
results here. For the corresponding proofs, refer to
[Kant 84].

[t is sutficient to prune all those edges which cor-
respond to velocities less than V), 2. A min-
iinum path search over the remaining edges
will give the optimal path within the Vyar
constraint. If such a path does not exist, it
implies that there does not exist a collision-
[ree velocity profile to the goal node.

Two nodes in the pruned visibility graph are con-

nected by an edge il the corresponding velocity {the
inverse slope |ds/dt|) is less than or equal to Vipar.
A minimum path search over this graph will give rise
to the optimal path as shown in figure 2. Note that a
straight line segment in the s+t plane will correspond
to a constant speed motion. The distance between
two points (sj-,t]-) and (<, f,) in the »-/ plane will

ST T T ey
: 1 to (s, — &)=+ (L, —t,)=). This is
correspond to \’(( 2 ]) + (4, ]) )

. LU -

equivalent to y (L4 v=)(t; — l‘jﬂ) where v = (5 —
.sj-)/(fk — t/-). The optimal path in this visibility
graph corresponds to a velocity profile that mini-
mizes the above cost function over all possible velocity
profiles. This cost funetion is refated to the energy dis-
sipated. but. note that it does not aceount {or switeh-
ing from one velocity vatue to another.

The Fixed Path TPP: Time as Cost Function

Another version of the fixed path TPP is one
in which the final position, ~ . is specified and the

aim is to reach it in mipimum time, /, . [0 the s5-¢
plane, minimum time corresponds to minimizing path
lenieths with respeet to a different cost function, lLe.,
the cost [(;,4,). (,\7]-, t‘/-)J = (tj — t,). The goal node
may lie anywhere on the vertical line [, (vefer to fgure
3) passing through the final position S \We state the
restlt to obtain the minimum time solution. Lor a
prool., refer to [Kant 34,

For each node in the pruned visibility graph {as
obtained in the previous section). construct a probe
(fe. o ray) with slope (1yqr ot —1ngp). [ this
probe intersects the vertical line L, without interseet-
ing any obstacle first, i.e., if this node can “see” the
line [., the point of intersection with the line ., will
he a new potential final node {refer to tigure 3). The
visibility graph is augmented with these new poten-
tial final nodes. The node. that may be reached lrom
the initial node, and has minimum time co-ordinate, is
the required goal node; the corresponding time is the
minimum time solution to reach the final position S

Velocity Profile : Smoothness Requirements
Consider figure 2 . The optimal path (from node [ to
node ) in the s-f plane, corresponds to the velocity
function shown in figure 4. The velocity profile is dis-
continuous. This implies infinite aceleration. This oce-
curs because straight line segments were used to con-
nect the vertices. This results in (' continuity. [n or-
der that accleration be linite, we require ‘2 con-
tinuity. One approach to remedy (his & to
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smoothly interpolate between the vertices [through
which the path in the s-f plane passes). [t is
sufficient to use cubic splines for interpolation to as-
sure ¢ continuity [De Boor 78|, The interpo-
lated function may not intersect the forbidden regions.

Conclusion

We generalized the path planning problem to
that of trajectory planning problem in a time-varving
environment. An algorithm was developed to solve a
special case of the TPP - the fixed path TPP, where
the path is a point set fixed in space and the robot
is an idealized point object.  The algorithm deter-
mines a velocity profile (along the fixed path) for the
robot such that there is no collision with the obstacles.
Generalizations of the ideas developed in this paper to
deal with the more general TPPs are in preparation.
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Figure I(a) Computation of constraints for the velocity function. The obstacle

is a circle. [t is shown crossing the path segment (-\.'/,e/','. A=
it touches the path, and at t = f/k. it teaves the path. The maximal
subsegment occupied by the cirele is {."“A-"’/A';' To a first approximation.
this subsegment, [s ../, ] is considered occupied or unavailable during the

interval (¢, /],

Figure 1{b) The hashed portion. {x,..~/, 1. of the segment (. /] is unavailable

during the time interval [tA..t/A,j. This is shown in the st plane as a
rectangle. This rectangle is a forbidden region for the trajectory to pass
through,
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tligure L(c) A more exact computation of the swept volumes could give rise 1o
more complicated shapes. in the < plane, e.g., an ellipse in the case of
a cirele crossing the path segment. We are taking bounding rectangular
approximation to these shapes.
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Figure 1(d) Equivalence of the fixed path trajectory planning problem to the
(static) 2-D path planning problem in the s-t plane. The horizontal axis
is the arc length and the vertical axis is the time. The hashed rectangular
regions (computed as in figure la and Lb) represent the 2-D obstacles
through which the trajectory may not pass.

_67_



-

A >

Figure 2 The maximum velocity constraint modifies the visibility graph. [n the
st plane, the inverse slope of an edge corresponds to the velocity of the
robot. The edges corresponding to velocity greater than Vynqr are pruned
out. These edges are shown in dotted lines. Also the graph is directed (as
shown by the arrows) since one can not go back in time. A minimum path
search over the pruned graph gives the optimal path in the s-f plane. The
minimum path, from / to £, is shown in bold lines.
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Figure 3 The final position S is specified in this case. The time when the robot
reaches this position is to be minimized. [t is determined by the intersection
of a (one of many possible ones) trajectory with the vertical line L that
passes through 5 - The Vimaz (and —Vimayr) probes intersecting the line
L give rise to potential final nodes. [ a probe intersects an obstacte before
it intersects the line 7, no potential goal node is generated. Such probes
are shown in dotted lines. Minimum time cocresponds to the node that is
reachable and has minimum / coordinate.



Figure 4 The velocity profile corresponding to the path in the »-f plane in figure
2 . Note that the velocity profile is discontinuous, thereby hmplying
infinite accleration. A smooth cubic spline fit is required. But the spline

fit is constrained by the obstacles in the s-¢ plane, Le., it may not intersect
the obstacles.
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Interpreting Range Data For A Mobile Robot

Stan Letovsky
Department of Computer Science
Yale University
New Haven, Conpecticut, 06520

Abstract

The Yale Spatial Reasoning Group has been developing
perceptual and navigational strategies for wuse in
conjunction with a Heathkit Hero-1 mobile robot. This
paper describes a strategy for recovering from sonar range
data an approximate description of the environment which

generated it.

1 Introduction

Sonar rangefinders are common sensing devices in the
current generation of commercial mobile robots. A sonar
rangefinder measures the elapsed time between the
emission of an ultrasonic pulse and the detection of a
reflected echo of that pulse.  This elapsed time is
proportional to the distance between the sensor and the
nearest reflecting object. The technology is simple, cheap,
and provides data in a form which is directly usable for
some purposes (eg., obstacle avoidance), in contrast to the
considerable processing that must be done on, say, visual
data, in order to do anything useful. [8] A more advanced,
and interesting, use of sonar range data is in the
construction of cognitive maps. A cognitive map is a
representation of a physical environment, which can be
used for navigation and route planning. Representations
for cognitive maps have been explored by Davis [2] 3],
Kuipers [4] and McDermott [6]. If sonar range data is to
be used to construct a cognitive map, the raw range data
must be tnrterpreted to recover a description of the
environment that produced it. The interpretation process
is analogous to Al theories of vision {5], [1], in that it
involves a computational inversion of the physical
processes that generated the “image”. This paper
describes one method for acquiring and interpreting range
data.

2 The Sonar “Image”

The sonar rangefinder's view of the world has several
distinctive features. The first is its range limitation.
When a sonar rangefinder takes a sample, the sonic pulse
leaves the sensor and spreads out in a cone. If the beam is
pointed horizontally, as is usual, the sensing is limited by
the point where this cone intersects the ground. The
distance to this point represents an upper limit on the
distances which can be measured with the sensor. In the
Hero robot, this distance is about 8 feet.
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Secondly, there is an angular resolution issue. When a
sample is taken, there is no way to tell what the
orientation of the point that produced the echo was, other
than that it lay within the sonic cone. For HERO, this
cone has a total angle of 30 degrees. Thus, if a sample
reads a 6 foot distance, it means that the nearest object in
the direction that the sensor is pointing plus-or-minus 15
degrees is 6 feet away.

Finally, since the robot cannot change the vertical
orientation of the sensor, the perception problem is
considered to be 2-dimensional: the world consists only of
open spaces and impassable boundaries, there are no steps
or pits.

The way the world appears to such a robot is illustrated
in Fig.1 . A sample environment is shown in thin lines,
consisting of a hallway with doorways and corners, and a
desk. Superimposed on this scene is a possible sonar
image of it. The robot, represented by a hexagon, stands
in place and rotates a full 360 degrees, taking range
samples every 15 degrees. The value measured in each
sample is shown as a point whose orientation from the
robot is identical to the direction of the sensor when the
sample was taken, and whose distance from the robot is
equal to the distance measured. Points that were beyond
the 8 foot sensing limit are shown as little circles at the
limit; the other points are connected by thick line
segments.

3 Recovering The World Description
Mathematically, we can describe the distance perceived

by the rangefinder with the formula

o+
P(g) = L{g D(y)

where

P(6) = perceived distance as a function of sensor
orientation
¢ = beam semi-angle (15 degrees, for HERO)

D(9) == true distance as a function of orientation



This may be inverted as follows:
D(6) > MAX( P(6-¢) , P(6+¢) )

In words, the larger of the two perceived distances seen at
¢ degrees on either side of @ give a near bound on the true
distance to the point at §. This equation, here referred to
as the back-transform, represents the mathematical
inverse of the simple sonar “image” formation process.

The view of the world which it generates is shown in
Fig.2, which was formed from- the raw data in Fig.1 using
this equation. You will note that the reconstruction is not
perfect; information is lost in the original encoding by
taking the continuous MIN, and the back-transform
cannot recreate this information. The back-transform is
better at recovering convexities (eg., the desk corner) than
concavities (eg., the doorway or the corner where the desk
meets the wall). This knowledge can be put to use. It
turns out that the inequality in the back-transform is a
strict equality except when the robot is looking into a
concavity; thus, perceived concavities indicate departures
from completely accurate perception.

One feature which distinguishes the back-transform
from the sonar image can be seen from examining the lines
that connect the sample points. In the sonar image, these
lines describe a region that is completely free of objects, so
that if the robot stays within this region it will never
bump into anything. In the back-transform this useful
property is lost. The reason is that the back-transform is
finding the true distance at particular points, and has
nothing to say about the points in between them. So in
those intervals where concentrating exclusively on the
back-transform might lead the robot to bump into things,
the sonar image still contains useful information.

4 Implementation Notes

The images in this paper, and the theory behind them,
were developed using a simulator written in T on an
Apollo workstation. When our HERO was assembled, we
discovered that its rangefinder performance fell
considerably short of the specs. Its data is of poor quality,
often spurious, and extremely susceptible to environmental
ultrasonic noise. Also, it has been suggested to me [9] that
its results are a function of angle of incidence and surface
texture. Due to these problems, this strategy was never
successfully implemented on Hero. However, more recent
work by Miller {7] shows promise for coping with these
difficulties.

5 Conclusion

A sensing strategy and data-analysis technique has been
described which permits approximate reconstruction of the
true description of a 2-dimensional environment from
sonar-range samples of that environment. Like perceptual
methods developed for other senses, the technique recovers
the original environment by inverting the physics of the
sensing process.
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Figure 1: A hallway with desk, doorways,

robot, and sonar "image'.

Figure 2: Back-transform of Fig.l.
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THE USE OF
CAUSAL EXPLANATIONS IN LEARNING(®)

David J. Atkinson and Steven Salzberg(b)
Yale University
Artificial Intelligence Project
Department of Computer Science
New Haven, Connecticut 06520

Abstract — Models of learning in complex domains are
faced with the difficult task of sorting through the masses
of data which humans must examine to understand those
domains. The use of a causal model is necessary to
constrain the search process through these domains, where
a causal model includes knowledge of the relationships
between the fundamental events and objects in a given
domain. . Causal knowledge is particularly useful in Al
systems where the task is to predict future events in some
complex domain. When a prediction fails, causal
knowledge is used to examine the relevant data and create
an explanation of the failure. This explanation then
drives memory reorganization processes in the system.
Two case studies provide examples of the use of causal
knowledge in processing: FORECASTER, a program
which predicts the weather, and HANDICAPPER, a
program which predicts horse races,

Why Explanations are Necessary

In any real world domain, human experts know an
enormous number of facts. Al researchers have often in
the past avoided such domains precisely because the
number of facts is unmanageably large. Current
programs, however, are beginning to tackle these types of
domains ([17, [9], [8], [13]), and new techniques are being
developed to handle the new types of problems that are
arising.

Whether a program performs a task, predicts an
event, or diagnoses a problem, it still will fail at times,
Failures are not a bane for Al systems, however, because
they provide an opportunity to learn something new, in
order to modify the behavior of the program when a
similar situation occurs in the future {14]. The first
question which a person or program must ask after a
failure is, naturally, why did the failure occur? The
answer must be discovered by examining what factors
influenced the decision in the first place, and changing
some of those factors or their relationships to one another.

Take for example a model that predicts earthquakes.
Two types of failures occur here, which are typical of Al
prediction models: either ap event happens which was not
predicted, or an event is predicted and it does not happen.

(a) This work was supported in part by the U.S. Air
Force Office of Scientific Research under contract
F 49820-82-K-0010.

{b) The order of names of the authors is not
significant.

For earthquakes the consequences are much more serious
in the former instance, but in general we want our models
to respond to both types of failures. The problem that
human experts have been struggling to solve is what
events precede an earthquake. Unfortunately, there are

.thousands of environmental events that might potentially

cause an earthquake: other earthquakes, volcanic
eruptions, movements of the tectonic plates, changes in
sea level, underground atomic tests, sunspots, the
alignment of the planets, the position of the moon, and so
course. A recent New York Times article described a
theory held by some geophysicists that earthquakes at
widely separated places on the planet might be connected
to each other. In order to make such a claim, the events
preceding each of the separate quakes must be traced
back to some common event. What the geophysicist
wants, at least after an earthquake occurs, is a model of
geophysics that provides an explanation of the
earthquake. An explanation consists of a sequence of
events whose causal relationships are clearly understood.
At the very least, explanation consists of identifying the
plausible proximal causes of an event. Of course, it is
impossible to prove that any event really causes any
other, but certain relationships must simply be axiomatic
in any domain. Continental drift theory, for example,
might be among the axiomatic rules in a model of
earthquakes. While people typically prefer explanations of
this form; i.e., based on unitary causation [B] [12], they
also acknowledge (but less frequently act upon)
explanations based on multiple causes [18].

Explanations are necessary because without them we
have no organized way of changing our models after
failures.  Learning in any complex domain is simply
impossible if we have no knowledge to direct the search
through the space of features that may have caused a
failure (11]. In our earthquake example, suppose we had
twenty (not necessarily unrelated) geophysical events
preceding a major quake. Without any knowledge to
direct it, a model cannot distinguish between the
hypothesis that any single event or any combination of
events caused the quake. The number of combinations of
twenty events is unmanageably large, so obviously we
need to use whatever causal knowledge is available to
build explanations. Although one could use a syntactic
rule like “generate the shortest hypothesis” to avoid the
hypothesis explogion problem, this rule fails for obvious
reasons in any situation where a complex explanation is
the best one. Suppose the correct reason for a given
earthquake were a combination of five different factors: &
program which generated the shortest explanation would



generate (at least, if no otner factors were known) thirty
incorrect explanations before it reached the combination
of all five factors. It is unlikely that such a program
would ever have thirty similar earthquakes to refine its
model, so we clearly want to generate the correct
explanation sooner.

One more example should suffice to prove the
necessity of explanations. Suppose the domain were the
stock market, and the task were to predict the behavior of
a certain computer company, call it CCC. If the stock
goes down when it was expected to go up, one has to look
at why it was expected to rise. There may have been
numerous factors: perhaps the personnel are known to be
good, and maybe a new product has gotten favorable
reviews. The general climate for computers might be good
as well, but the new product in this case was the principal
reason for expecting the stock to :ise. Suppose, when the
explanation process looked back over its decision, all the
factors used to make the prediction seemed sound. One of
the factors about the marketplace, however, was that IBM
was releasing a very similar product. Here is where causal
knowledge can play a role. Why, one should ask, might a
similar product on the market cause CCC’s product to sell
poorly? Causal knowledge about the marketplace includes
the rule:

If two products are equslly good,
and one product selis better than the other,
then the company producing the better seller
has better marketing strategies.

The hypothesis which must be produced, then, is that
IBM has better marketing strategies than CCC. If this is
the case, then the new product will not sell well, and
therefore the stock of CCC will not rise. By using the
available causal knowledge, the model can focus on the
source of the failure, and learn something new (about
IBM}) in the process.

Having learned that IBM has better marketing
abilities than CCC, the model should be reminded of this
example by future, similar events. When another
company comes along with a product, and IBM is also
marketing that product, the model will know that IBM’s
product has a greater likelihood of selling well because of
IBM’s superior marketing ability. The reminding will
occur because the entire episode above will be stored
under indices that are used to process the episode [14].
The indices can be generalized so that the new knowledge
can be used in more general situations: anytime two
companies with similar products are competing, the model
will look for the company with better marketing strategy,
and predict that company’s product will sell better.

Without an explanation process, it would be
impossible to learn the fact learned in the above example.
All of the factors contributing to the initial prediction
would be cast in doubt, although in fact none of them
were incorrect. The explanation involved hypothesizing a
new factor, marketing strategy, and attributing the failure
to it. A more inductive process without causal knowledge
would be forced to choose some or all of the factors and
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blame them for the failure, but it would simply be wrong
to say, for example, that a good product should not lead
to a rise in a company’s stock. The explanation process
singles out one line of reasoning which leads to plausible
changes in the model of the domain. Because the p-ocess
uses causal knowledge, it avoids wrongly hypoth: i/iug
that events which were believed to be connected are not.
Furthermore, ‘the hypotheses generated by explanations
are not necessarily correct, but can be tested empirically,
and can be revised in the light of future examples. Since
pointers can be kept to previous episodes, the revision
process can be designed to insure that a consistent model
is maintained at all times.

How Explanation is Done

There are at least three primary purposes to
explanation for which algorithms must be developed.
First, as discussed above, explanation is a procedure which
utilizes causal knowledge in order to limit the number of
hypothetical causal factors relevant to a failure. Without
the judicious application of causal knowledge about the
domain in question, the number of speculations about the
causes of a failure can be phenomenally large with the
complexity of the domain -- and the real world is certainly
complex. To test and verify this number of hypotheses in
real world experience (ie., not through experiences
thoughtfully provided by a teacher) is computationally
intractable given our present understanding.

Explanations should improve

Secondly, explanation procedures should allow
prediction failures in certain circumstances to signal an
orderly change in the causal model of the domain.
Without this facility, explanations could never improve
beyond those possible with any a priori causal model of
the domain in question. It is unlikely, however, that a
complete causal model of al]l the domains of experience is
innate. The explanations provided by humans clearly
improve with experience in a given domain, and it is our
contention that this is the result of failure-driven
modifications to memory. If we want our Al programs to
improve in their understanding of a domain ~ especially if
we want their understanding to improve beyond our own
-- the re-organization and growth of causal models needs
to be a focus of research.

Avoiding future failures

Finally, the most important function of explanation
is to provide a mechanismm whereby future expectation
failures can be avoided. Having made an adequate
explanation for a failure, and perhaps having reorganized
some causal knowledge, the causal elements leading to the
correct expectations must be identified in advance of any
prediction failures. It is not enough to improve
understanding of the reasons for an erroneous prediction if
it cannot be avoided in the future. Hence we need to
make faijlure- and explanation-driven modifications to the
knowledge structures which represent and process events.



Deduction of missing information

In the CCC example in the previous section, the
causal relation that superior marketing strategies are
likely to resull in higher product sales againsl a similar
product is known, but the data about the marketing
strategies of the companies in question is unknown. This
defines one type of condition for explanation, i.e.; where
the relevant causal relation is known, but the data which
would cause the relation to be applied in the current
instance is unknown. In the absence of competing
explanations, the deduction that IBM has superior
marketing strategies provides a forthright explanation.

Furthermore, the prediction which failed could have
taken place in two different contexts regarding the
information about marketing strategy. First, the
processing structure responsible for the prediction could
represent the fact that knowledge about marketing
strategy is important in making & prediction about
product sales, but the real data about IBM and CCC are
unknown. The utility of making predictions from partial
data in the absence of complete data is one of the
motivations for frame based representations and content-
addressable memory {e.g., [2]). The hypothesis is that
what is known is sufficient to make the inference., In
this case, however, the explanation process has shown that
without the data about marketing strategy, an inference
about future product sales is unreliable. Therefore, the
current processing structure should itself be re-indexed
such that data about marketing strategy is required before
the structure is used for prediction. This effectively
prevents a prediction failure from recurring. Finally, a
representation of the current situation is constructed, and
indexed from the current structure by a specification of
the type of failure.

Adding to incomplete causal models

Suppose that at some later time, the episodic
processing structure that we have been discussing is
retrieved. This time, CCC is introducing a
microcomputer which is again similar to another
company’s product, and it is known that CCC's
marketing strategies are slightly superior to its
competitor’s (call them TEX). The prediction is made
that CCC's product will sell more, but once again the
prediction fails. A search of causal knowledge reveals that
there are no additional rules to apply which can help
identify elements in the current situation which may have
caused the failure. However, since the current failure is
similar to the previous one, a reminding occurs of the
previous failure {14).

The situation we are describing is one where a
relevant causal relation has not been retrieved from the
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causal model of the domain, and it is unknown whethet or
not the causal factors relevant to the failure have been
observed. The task of explanation processes in this case is
to try to identify previously unknown potential causal
factors in the currert failure. It is in this situation that
one utility of the reminding process is made apparent. An
explanation procedure which may operate here compares
the two episodic representations in order to find
similarities and differences. Let us suppose that both IBM
and TEX are located in the southwest, and CCC is
located in the northeastern part of the country. A
hypothetical causal explanation is that location in the
southwest is important {in the context of the other
variables) for strong product sales.

This causal ezplanation becomes a hypothesis about

" a new causal relation to add to the existing model of the

domain. This process of case-based induction is related to
the logical methods of discovering causal regularities
called “eliminative in: ‘tion”, first proposed by J.S. Mill
(10] (and more recently described in [7]). Functionally,
the hypothesis may serve in memory as part of an index
to the episodic structure which represents a generalization
of the two failure episodes. The matching of this index in
future episodes provides a test of the hypothesis.
Successful prediction of product sales based on the
information supplied in this new processing structure
signals that the explanation linking southwest location to
product sales may be added to the causal model of the
domain. This example should make clear the strong
interdependence of the causal model of the domain and
the structures in episodic memory which organize and
predict events.

To clarify things further, let us turn now to case
studies of two programs that produce explanations as a
result of failures, and use these explanations to improve
future performance.

Example: FORECASTER

FORECASTER is a program which operates in the
domain of weather prediction. The goals of the research
of which the program is a part are to explore the initial
develo ment of episodic and causal knowledge using
explanation processes. The FORECASTER program
processes synoptic weather reports obtained from a
National Weather Service station and attempts to predict
the future weather reports for that station. The program
builds simple memory structures to represent short
sequences of weather reports that it has seen, where a
typical report consists of about seventeen different kinds
of observations. These episodic structures are stored in
memory using indices derived from the particular weather
observations represented in the first report in the
structure {e.s., Temnerature 150, Visivility



poor). In particular, an index specifies the conditions
which the program believes are causally sufficient for
expecting the observations in the subsequent weather
reports in one of these structures.

When the program receives a new weather report,
the indices to structures are checked. When an index has
a match among the current observations, it causes the
corresponding episodic structure to be retrieved and then
used to make predictions about the next weather report
from the given station. This process of matching new
observations against indices is a process of judging when a
new weather report is similar to one which has been
experienced before. If the same causally relevant
observations are present in the new weather report that
were present in a previously experienced onme, it is a
natural inference that subsequent observations will also be
the same. FORECASTER does not use causal knowledge
to make predictions of individual observations, but rather
of weather reports as a whole.

One example of FORECASTER's explanation
abilities occurred when it was processing the data from
the Albany, New York weather station in November 1983.
It illustrates the most simple way in which the program
hypothesizes and uses causal regularities in the weather
reports it processes. In this case, an episodic memory
structure was retrieved on the basis of several different
observations, including the height of the cloud base, type
of low clouds, overcast sky, and visibility. However, the
retrieved structure did not reflect all of the current
observations. The temperature and dewpoint values were
among those observations which were not matched; the
temperature was slightly lower and the dewpoint was
quite a bit lower than the corresponding values
represented in the first report in the structure. However,
because they were not part of the active index, they were
not considered necessary to predict the subsequent
observations in the structure. So, the program went
ahead and predicted the next report from that station.
The predictions included that the base of the clouds
would be below 100 feet, and both the dew point and
temperature would be around 2 degrees Celsius.

When the next weather report was obtained, the
program had several failed predictions, including that the
cloud base was about a hundred feet higher than
expected. Like the CCC example above, an explanation
strategy used by the program is to examine the supposed
causal antecedents for the expectation. The most basic
explanation for this failure is that the observed
antecedents, i.e., those observations which were part of
the active index, may not be causally sufficient for the
prediction of the height of the cloud base. Some other
observation, part of the first weather report in the
structure, nust necessarily he ohserved hefore the
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prediction can be made. Through the use of several
heuristics to attribute causality (similar to Mill's methods
of eliminative induction, cited above) and repeated
observations of co-occurance [1], the program had by this
date formed the hypothesis that the value of the dew
point and the predicted height of the cloud base could be
causally related. It had not yet learned that the
temperature of the air is also a factor in this relationship
(dew point and temperature together help to determine
the saturation of the air, and thus the altitude where the
air is cold enough such that condensation will occur).
Among all the differences between the current weather
report and the observations represented in the retrieved
structure, this observed regularity allowed the program to
focus on the difference in the dewpoint observation as a
probable cause of the failure.

To prevent a failure to accurately predict the height
of the cloud base for similar reasons (i.e., an errant
dewpoint observation) from occurring in the future when
using the same structure, the current index to the
structure was specialized. The program did this by
adding the expected dewpoint observation to the current
index, thus making it a necessary condition for retrieval of
the structure. In addition, to help future explanations a
new episodic structure representing the actual weather
data in this situation was indexed “underneath” the
current structure by a specification of the failure to
predict the height of the cloud base. If a similar failure
were to occur in the future when using the current
memory structure, then the program would be reminded
[14] of this instance of f:.ilure.

Sometime in the {uture, let us suppose that the
current weather report matches the dewpoint and other
observations as specifie:” in the index that FORECASTER
constructed.  The sane episodic structure would be
retrieved once more. Again, the temperature fails to
correspond to the t(emperature represented in the
structure but this is an insignificant difference from the
point of view of the program. In this case, the prediction
about the future height of the cloud base (among 15 other
expectations) would again be made.

If the prediction about the height of the cloud base
were again to fail, then a reminding would occur of the
previous failure. The program would once again examine
the context of the failure to check whether the known
causal antecedent observations were present (i.e., the
dewpoint, overcast sky, and type of low clouds). In this
case, the program discovers that they all were observed.
In comparing the case of the previous failure and the
current case of failure, the program would notice that in
both instances the temperature observations were

anomalous. However, many such similarities could exist,
anv one of which coul” e 4 caniilate cause of the
failure,



This set can be substantially reduced by eliminating the
observations which are kmown from experience to be
unnecessary for the predicted observation, and by using
general domain knowledge to filter additional unlikely
causal factors. This comparison-based explanation process
reveals that the temperature value is likely to be an
important causal antecedent of the height of the cloud
base in addition to the dewpoint value. Re-indexing of
the current structure would occur as before.

Example: HANDICAPPER

HANDICAPPER is a program which uses causal
knowledge to constrain its hypothesis generation process
in the domain of horse racing {13]. It has the ability to
recognize 35 different features for each horse in a race,
and its goal is to pick the correct winners of races. When
it picks incorrectly it generates an explanation of its
failure. This explanation serves as a hypothesis which is
then used in future predictions if similar circumstances
recur.

The example to be discussed here occurred in a race
in September 1982, The two horses favored by the
program both had a feature called “early speed”, meaning
they usually jumped out to a lead early in a race. The
race in question was a short race, and the program knows
that early speed is a good feature in a short race, because
often the other horses in the race do not have time to
make up the distance they've lost at the beginning. In
this race, however, another horse, which did not have
early speed, beat both of the top horses predicted by
HANDICAPPER. The task of the program was then to
determine how, if possible, this latest horse could have
defeated two seemingly better horses. Knowing that early
speed is a good feature in short races, it would seem
wrong to hypothesize the opposite, unless there was some
causal knowledge that would tell the program otherwise.

There were, in fact, three horses in this race with
early speed, none of which won. HANDICAPPER knew
that its original prediction was based in part on the fact
that the horses it liked had early speed, so it proceeded to
simulate the effect on each horse in the race of having
three early speedsters. It knew that when one horse has
early speed, other horses tend to run a little harder (i.e.,
use a little more energy) early in the race in order not to
fall too far behind. It also knew that horses with early
speed run a different style of race from average
thoroughbreds: they tend to use more of their energy in
the beginning of the race, and then just hold onto their
lead if possible through the middle stages and the finish.
Combining these two pieces of knowledge, the program
discovered that when more than several horses with early

speed are present, there is a chance that they will all use
too much enersy at the heainnine and die hefore the
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finish. If this happens, it will allow a horse without early
speed to defeat them ail. For the race in question, this
explanation seems adequate, so it is used as the
explanation for the failure. A structure for races
containing multiple early speedsters is then built, and this
race is indexed under it. In future races with more than
one early speed horse, this structure will be re-activated,
and the advice it contains will prevent the program from
using early speed as a predictor of a win.

What the program has learned here is that two
horses with early speed in the same race may tire each
other out, causing both to lose. It did not know this in
the beginning, and it was not designed to discover this
single fact. In the beginning, it knew

1. what style of race a horse with
early speed runs

how 3 horse with early speed affects other
horses in the race

2.

but it had never considered how a horse with early speed
might affect another horse with early speed, because such
a situation had not occurred previously in its experience.
By storing away this experience so that it will be recalled
in similar future situations, the program avoids repeating
its failure.

Conclusion

We have seen through this discussion and the case
studies that followed the value of causal explanations in
models of learning. The knowledge of how events in any
domain are causally related allows our models to focus
more precisely on the sources of error when their
predictions fail. For Al prediction models, especially those
in complex domains, it is essential that some means be
employed to search through the enormous number of
potentially relevant causes of any failure, to avoid the
hypothesis explosion problem. We have seen how a causal
model helps guide this search from the reasons for the
initial prediction to the source of the error, and how new
causal knowledge can be acquired. The explanations that
are built as a result of failures improve the accuracy of
the programs’ domain models, and subsequently improve
their abilities to make accurate predictions.
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ABSTRACT

A discovery system has been implemented which learns both
declarative and pracedural concepts in the domain of data
structures. The system starts with a small initial knowledge
base containing 1 structure ("list"), 1 operation ("search™),

7 relations (such as "lessp"y "atom", "memq", etc.), and 24
heuristics. From this knowiedge base, the heuristics are able
to generate many new concepts, including various kinds of
ordered lists, trees, and forests; several sorts of search,
including tree search and binary search; and many new
relations such as "greaterp”, “less—~than-all®, "not-memgqg",
etc, Heuristics cannot as yet be learned, but the system has
been designed with learning new heuristics in mind, It may
even aventually be possible to apply the discovery program to
itself, and thus automatically discover new things about,
discovery.

i, Introduction

Learning has finally begun to take its place as one of
the cornerstones of artificial intelligence, Evidence for
this includes the recent publication of a collection of papers
on learning (Michalski, Carbonell, and Mitchell [17231), the
many papers presented at the {%&3 machine learning workshop

(IMLW [19221), and the number of sessions devated to the topic

of learning at current Al conferences (e.g, ITCAT (1 e In
these various collections a number of different categories of
learning are identified including learning by analagy,
learning from examples, concept learning, learning from
observatian, and discovery., Discovery is the topic of this
paper.

Specifically we are interested in automating the
discovery of computer science concepts, in particular the
discovery of concepts having to do with data structures and
their manipulation, Discovering such concepts requires the
ability to learn procedural information (relations,
operations) in addition to declarative information
(structures), Same current work is concerned with the
discavery of computer science concepts (e,g. Lenat’s (1782b]
general discovery system EURISKO which has learned about
aspects of LISP programming among other things), However,
discovery in the domain of data structures is still an area
ripe for further concentrated exploration. Being able to learn
new kinds of structures {e.g. lists, trees, etc.) and new
kinds of procedures (especially search techniques) is an
essential prerequisite to a discovery program being able to
discover new things about discovery pragrams., Moreover, data
structures is a relatively shallow area (as compared to
mathematics, say, which Lenat‘s [17771 AM explored), so it is
even conceivable that eventually new, useful computer science
concepts could be discovered,

Various approaches to discovery have been proposed over
the years, notably the data manipulation approach to

scientific discavery of the BACON systems (Langley [ 19201) and

the heuristic search paradigm developed in systems like AM,
EURISKO, and LEX (Mitchell [17321), For our particular
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applicaticn, the heuristic search approach is more appropriate
since the concepts being manipulated are more procedural than
the data driven approaches can readily handles In the
heuristic search approach an initial knowledge base of
concepts (representing various "primitive" data structures and
procedures) are manipulated by a number of heuristics that
slowly extend this knawledge base until new and interesting
coneepts emerge,

In our system there are faur different types of concepts!
operations, relations, structures, and heuristics, The system
i3 able to discaver new operations, new relations, and new
structures. The system currently does not learn new
heuristics, although it has been designed to make such an
extension relatively easy. Many systems {such as EURISKQO,
LEX, and SAGE (Langley [1%¥231)) have explored the discovery of
heuristics for various domains, Lenat [1%52a] even proposes
that the time is right for a theory of beuristics?

"heuretics", The insights pravided by this bady of research
will hopefully prove to be useful when extending the current
cystem to he able to discover heuristics for the data
structures domain, Such an extension will be crucial if
discovery about discavery is to be achieved.

2, Details of the System

In this section some of the details of the discovery
system will be discussed, Further elaboration can be found 1n
Aref [17223, Much as in AM, the four different types of
concepts {operations, relations, structures, and heuristics)
are represented in frames, a different type of frame faor each
category of concept,

Cperation frames represent various processes that can be
undertaken, Here is a simplified version of a typical
operation frame, "search":

Name: search
Tsal operation
Definitiont
Semantict looks for an element in a structure
Parameters: OBJ, LST
Code!
Precondition! OBJ is an atom; LST is not an atom
Succeed! the first element of LST is an atom} and
the first element of LST equals OBJ
Faill there are no elements in L&T
Recursivel search for OBJ in first element of LST;
search for OBJ in rest of LST
Warth! 200

imiscellaneous other <lots are not shown} code is pseudo-code’
The key slots (and subslots) are "Iza" and "Definition",

The "Iza" slot merely places the frame appropriately in an
"TIsa" hierarchy. In the early stages of discovery only the



top levels of this hierarchy exist} the discovery process
slowly deepens the hierarchy as these initial abstract frames
are specialized. The "Definition" slot defines the meaning of
the concept represented by the frame, In an operation frame
this slot has 3 subslots! "Semantic", a comment (in English)
describing the action of the operation; "Parameters", a list
of the parameters taken by the operation} and "Code", which
actually contains the cade that carries out the operatian (for
readability, the ccde shown here is pseudo-code) it is
actually LISP code in the implemented system).

"Code" breaks down into 4 important subparts,
"Precondition" defines conditions which must be met by any
arguments before the operation can be executed, "Succeed" and
"Fail" are base conditions for the recursion defining what it
means to terminate successfully or not in the execution of the
operation. "Recursive" is the recursive step that is
undertaken if the termination conditions are not met,

Breaking down the action of an operation into parts allows the
discovery process to manipulate each part separately and hence
"understand” some of the subtleties underlying the structure
of a program.

The other 3 types of frames are similar ta operation
frames. Relation frames represent predicates and are much
like operation frames except that the "Code" subslot is
simpler (no recursive definition is necessary), There is also
an “Examplec" slot that contains data structures for which the
relation is true (e.g, pairs of numbers where the first is
"lessp” the second). Here is a version of one such relation

e

frame, "lessp"!

Name! lessp
Isa! ane-to-one
Definition!
Semantic! return true if the first number is less
than the second number
Parameter: NUM1, NUM2
Code’
Preconditiont NUM1 and NUMZ are numbers
Relation! NUM! is less than NUMZ
Examples! (2 %), (22 207, (73 &3)
Worth! 100

Structure frames represent various data structures, In a
structure frame the "Code" slot is a recursive definition of
the structure, broken down into slightly different subparts
than an operation frame, In addition there is an "Examples"
slot that is used to contain examples of the structure.
Usually, these can be generated by the system from the
definition; 1f for some discovered structure no examples can
be generated, the structure can be rejected as not meaningful,
The system’s "list" frame is shown below!

Name: list
Isal structure
Definitiont
Semantic! a collection of non-repeated elements
Parameteri L
Code!
Precondition! L is not an atom
Termination! the first element is not an atom} and
there are no more elements in L
First-step! the first element is an atom; and
the first element is not in the rest
of L
Recursive! the rest of L is a list
Examples: (kxfup c s m 12% 217 785 771), (777)
Wortht 200
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Heuristic frames are the driving force behind the
discovery process in that they actually create the newly
discovered frames, The "Code" slot of a heuristic frame works
with one (or maore) frame(s) of other types. The action of the
code is to generate a revised version of the frame(s) provided
to ity perhaps indirectly through the agenda ~-~ see below,
Here is a simplified version of the "add-relations" heuristic
frame!

Name! add-relation
Ieal h-structure
Definition?!
Semantic! if the current task is to add a relation,
and the structure hasn’t a specific type
of relation, then add tasks to the agenda
to try to add each type of relation to the
structure
Code!
If~part! if the task is to add a relation to a
structure 5
Then-part! add to the agenda tasks to add relations
to § which ara not in 8
Worth: 50

Here is an example of how the heuristic frames act in
concert to produce the learning behaviour of the system, The
"change-relation” heuristic” might start off by suggesting
that the preconditions for each elament of a "list" structure
be "element is a number" rather than "element is an atom™,

This would result in a new concept, "list-of-numbers", being
generated, If examples could be generatad of "list-of-numbers"
then the new frame could be added to the Isa hierarchy as a
sub-concept gf "list", Mext, the heuristic "add-relation"

might insist that the relation "lessp" must hold between each
pair of elements in "list-of-numbers". Adding this restrictive
relation would give an "ascending-ordered-list-of-numhers",
assuming once again that examples could be generated. Another
heuristic, "change-domain" might then suggest changing the
preconditions on the parameters for "search” so that LST must
be an "ascending-ordered-list~of-numbers", If the heuristic
also made minor changes (mostly trivial lexical changes) to

the rest of the "Code", the frame could be successfully
executed and a new concept "search-ascending-ordered-list-of-
numbers" could be added as a sub-concept of "search”,

This is fairly typical of the kind of learning which goes
on in the discavery system. Small modifications of various
kinds to the "Code" parts of existing frames yield new frames,
These new frames are further modified (sometimes involving
references to other new frames), and so on, until startingly
different concepts can eventually evolve, Of course, there
are many irrelevant steps and blind alleys along the road,
There is also the chance that some heuristic can postulate
many different possible modifications., Thus, there must be
some way to handle multiple goals and to choose which goals
are most promising.

This is actomplished using an agenda mechanism similar to
that employed in AM. This agenda is a list of "tasks", each
of the form

(worth concept-to-be-modified suggested—heuristic
<further-specification’)

arranged in descending order of the worth of the tasks.

The concept-to-be-modified is the name of a frame that may be
modifiable to get a new concept} the suggested-heuristic
should be able to make the appropriate modifications. An
optional further-specification can impose a limitation on the
action of the suggested heuristic, An example of this might



be the "add-relation" heuristic which, in addition to trying
to add "lessp" to "list-of-numbers" might also consider adding
"greaterp” or "equal”, To do this, the tasks

(worthi list-of-numbers add-relation lessp)
(worth? list-of-numbers add-relation greaterp)
(worth list-of-numbers add-relation equal)

could be added to the agenda for later execution,

The worth is an "interestingness" number that is used to
arder the tasks (the most interesting is tried first), The
interestingness of a task is computed on the basis of the
intrinsic worth of the concept-to-be-modified (which is
available in its worth slot) and the utility of the suggested-
heuristic {as specified in its warth slot), The worth values
of the concepts in the initial knowledge base are assigned by

the pragrammer. New concepts take their worth values from the

worth value of the task that generated them, This can be
further reduced if the new concept doesn’t have enough
examples. In any event the worth of a new concept cannot
exceed the worth of the concept from which it was built, This
will guarantee that eventvally the discovery program will
terminate since as time goes on the worth of concepts will
tend ta 0. Ultimately there will be no interesting tasks left
on the agenda.

2, Experimenting with the System

The system has been fully implemented in FranzLisp, In
the initial knowledge base, there were 1 operation {"search")
7 relations ("numberp", "atom”, "listp", "oddp" "lessp",
nalphaless”, and "memq"), 1 structure (“list™), and 26
heuristic rulesy The heuristics included the “change~
relatian", "change-domain”, and "add~relation" heuristics
mentioned in the last section, and also included a number of
other useful heuristics such as “invert-relation” (which cauld
suggest reversing a relation, e.g. to get "greaterp" from
"lessp™)} "nesting” (which would allow a structure to be
further parenthesized, e.g. to get trees from lists); "divide-
domain" (which would divide the domain of applicability of an
operation into 2 or 2 parts, especially useful for devising
binary search and various tree searches); "add-testing" (which
could add various boundary candition tests to an aoperation,
e.q. to check for an element being less than the first element
or greater than the last element)} among many others, There
were no heuristics to generate new heuristics in this version
of the system.

Many runs were made of the system, fine tuning the
initial worth values, adding in new heuristics, and making
generalizations to various parts of the program. The final
versian of the system executed 800 tasks, built 400 frames,
and succeeded in keeping 10 relations, 70 structures, and &0
operations which it found interesting (e, structures for
which is could find examples} operations and relations it

could successfully execute), Approximately 20 CPU hours were

needed to achieve this level of discovery.

Perhaps the most interesting discovery was "binary-
search", A skeletal version of the Isa hierarchy of concepts
generated in the discovery of "binary-search” {and the main
heuristics used) is shown in Figure 1. The salient steps in
the discovery process can be summarized in the following
steps!

~-The system started with no tasks on the agenda. It
added tasks to modify and extend its knowledge base.

~It tried to extend "search" to a new domain, "list".

~The system tried to madify structures, It specified a
particular structure “"list", It tried to modify "list" by
changing a relation in the definition of “list". It changed
the predicate "atom" to "numberp" and found a new concept
"list-of-numbers",

-After the system had spent some time in extending
tse@aych" to both "list" and "list-of-numbers", it tried to
modify "list-of-numbers"

-By adding a relation "less" ta the "list-of-numbers"
definition, it discovered the concept "ascending-ordered-list~-
of~numbers",

-By extending “search" to the new domain "ascending-
ordered-list-of-numbers”, the system built a new aperation
"search-ascending-ardered-list-of-numbers",

~Then, it divided the domain of "search-ascending~
ordered-list~of-numbers" into two parts, and built 3 new
operation "search-ordered-list-by-Z-divisions",

~Tt modified the operation “search-ordered-list-by-Z~
divisions" by adding a testing step so that the new operatian
testz for the desired element in the first part only if the
first element of the second part is bigger than the desired
element, i.e, the general idea of binary search,

Here is an abridged version of the "binary-search” frame
that was concacted by the system: .

Mame! binary-search <name supplied by system user
Isa! search-ordered-list-by-Z-divisions
Definition:
Semantici ‘comment must be added by system user:
Parameters; OBJ,L5T
Code!
Preconditioni OBJ is an atom;
LST is an ascending-ordered-list-
of-nuinbers
Succeed: the first element equals OBJ
Fail! there are no elements in LST;} ar
OBJ is less than the first element; or
the last element is less than OBJ
Recursive! binary-search far OBJ
in first half of list}
binary-search for 0BT
in second half of list
Worth! 50

A number of ather recognizable relations, operations, and
structures were discovered, In addition to "binary-search",
other new operations generated were “binary-search” (again - by
another route), "tree—search", and "ordered-binary-tree-
search". Among the relations discovered were "greaterp",
"avenp", “alphagreater", "less-than-all" {e.g. 1 is less-than~
all (7 & 52 25)), "greater-than-all", "not~-memq", and "not~
numberp", Interesting structures that were discovered include
“hinary-list", "ternary-list", “list~of-numbers", "ascending~
ordered-list~of-numbers”, "descending-ordered~list-af-
numbers", "ordered—tree", "binary-tree", "binary-forest", and
"forest", The most widely useful heuristics in generating
these concepts were "invert", "add-relation", "nesting",
“change-domain", and "divide-domain", Figures 2, 3, and 4
show the interesting structures, relations, and operations
discovered by the system, including the heuristics used to

generate them.



4, Conclusion

The discavery system has discovered a number of relevant
concepts, bath declarative and procedural, in an important
area, data structures. The declarative concepts are learned
through relatively straightfarward manipulations of lists,
The procedural concepts are learned through identifying
different parts of a procedure (e.g, precondition step,
recursive step, base steps of a recursion, etc,) and
manipulating the code for each step separately, The
particular heuristics used to generate new concepts from old
(e.g. "nesting", "add-relation", "invert-relation", atc.)
suggest genetic relationships among the various data structure
concepts, It is interesting that so few heuristics could he
s0 useful,

There are still shortcomings to the system. The
interestingness criteria are fairly primitive and need to be
refined to cut down the number of irrelevant concepts
generated. This might be done by more closely tying the data
structures generated to the procedures that use them, and call
a structure "interesting” only if it is useful to some other
procedure, Some of the heuristics are overly specific (e.g,
“add-testing", which adds tests to check for something being
less than the first element ar bigger than the last, seems a
bit "special purpose”, although the AM system, for instance,
has shown the usefulness of testing for extreme cases in the
mathematics domainj, Mareaver, it is difficult to see how
certain classes of concepts could be generated by these
heuristics. For example, while it seems just passible that
with a few additional heuristics something like sorting could
be handled, but how could hashing ever be discovered?

This raises an interesting question as to what algorithms
and structures can patentially be generated by the current
system. The power to madify existing structures and
procedures lies primarily in the heuristics, so in order to
answer this question the full implications of the heuristics
must be understood, Each of the current heuristics has been
specifically chosen to lead the system fram its initially
simple ideas of linear lists and sequential searches to more
complex data structures and searches. Certainly, if run
further, the system could, with little or no madification, use
these heuristics to discover strange new data structures of
limited utility (e.g, alternating pairs and triplas of
numbers, deeply nested structures, etc.) or varieties of
sequential or binary search procedures. However, brand new
heuristics would be necessary to achieve a breakthrough inta
substantially different classes of structures, such as arrays,
database architectures, networks and their affiliated
procedures,

Another aspect of the current approach is the breakdown
of the “Code" slot into parts such as pre-condition,
termination condition, if-part, then-part, recursive step,
etc, Each of these parts is manipulated separately by the
heuristics to achieve revised procedural capability. Again,
the particular kinds of code parts have been chasen with an
eye to producing complex structures and searching algorithms,
and may not be fully appropriate in devising other pracedures,
especially for things like array manipulation which might
require code parts appropriate for iteration rather than
recursion, Even allowing the addition of different kinds of
parts to the code slot in the current system, it would seem
extremely difficult to evolve genetically from "list" and
"search” to iterative algorithms without additional heuristics
and perhaps extra starting concepts as well,

The biggest aid ta further extension of the system would
be achieving the ability to generate new heuristics
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automatically, The frame structure for heuristics and the
procedure manipulation capabilities should make this passible
without undue upheaval to the current architecture. Figuring
out exactly what to modify when, though, will still be a
difficult task, hopafully one ameliorated somewhat by other
work an heuristics (e.g, Lenat {1932a,b1, Mitchell (19337,
Langley ( 1), Once it can learn new heuristics, the
discovery system should be able to learn new things about
discovery. As it stands, the system is a promising start
towards this gaal.
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Abstracl

Some fundamental problems concerned with the

formation and incorporation of conjectural knowledge in

ed.

i

base are addre From a minimal set of

knowledge

assumplions  a  logical language for constraining and

interrelaling a set of consistent hypotheses, or theory, of a

domain is derived. Il is shcewn, by means of the formal

properlics of this language, Lhut Lhis approach allows a basic,

yet broad and inleresling, sul of potenlinl conjectures.

Moreover, it is argued that the restoration of consistency of

a Ltheory in the Tace of conflicting evidenice may be carried

out wilh reasonable cfliciency. Laslly, il is shown Lhal this
approach may be incorporated into a  well-speeiiied
representation system.,
Introduce
An important and difficult sue ot knowledge
representation  research concerns  the acquisilion and
incorporation of new knowledge into a knowledge base.

Broadly speaking, a knowledge base (kb) may be “"Lold” a
statement concerning some domain, or it may "discover”
such a slatement. Clearly any lully general learning system

must be able to independently derive or induce such

statements. This paper examines some of the fundamental

problermns facced by such an autonornious learning system.

Initially il is
Lhe

The approach taken here is as follows.

assurned that nothing is known or supposed about

domain, except that it is describable in termns of predicates

on individuals; further, nolhing is assumed about the

undertying knowledge structures of the learning system,
except of course that ground instances are representable.

Such a syslem is termed “pure” to distinguish it from other

Lypes of learning sysboms, The only input to such o systom
{ren must consist solely of ground instances. On the Lasis of
these inslances the syslem may form general stutements, or

conjectures, concerning Lhe domain, This sel of conjectures

1s altered only when a conflicting ground  inslance  is
cncountered,  lssues ard concerning  whal conjraetures
should be formed and when, and how consisteney tiay be

maintained in the presceoce of conflicting inslances,

e carly work of John Scely HBrown on theory

formation {4] is perhips the elosest in spiril Lo the prosent

s have deall with

work. towever a lorge nurnber of ai sy=tbur

Lt where

inducing rules or relations Trom ground instances b

Lhe domain is assumed govierenasd by anunderlying gramrmar,
See {8] for foundational work, and {1} for a recent survey,
The flield of learning and induclive 1nference in general s

surveyed in [7]. The approach taken here Uhienis to nol make

such assumnplions concerning the doreain, and o tgnors
pragmalic  issues  dealing “with,  for cxarmple noise,

the

constraints, presuppositions, ele., and instead Lo addr

“ower-ltevel isaues of learning.

The is that the issues faced by pure

tearning syslerms are the same as those Lthat must be Taced

elaim here

by any learning system or knowledge acquisition system (or

else, one way or another, cxplained away). lience pure

represent and

systems the basic or essential features

principles of Jearning systems in general. Perhaps somewhat,
surprisingly, it s nol overly diffeult to exlend o pure system
the

Lrosovdor oo, wlia Loprort assun b ool



The next section considers the general problem of
forming and maintaining a theory of a domain., This is
followed by o discussion of specific 1ssues and problems
related Lo introducing conjectures. After this an algebra,
thence logic, is presented for expressing a theory of a
domain. The formal propertics of Lhis logic serve to
precisely specify Lhe set of potenlially (ormable conjectures,
as well as provide a means of enforcing Lhe consistuncy of a
Lheory. This work is extended to deal with ground instances
where the predicates may now take sels as arguments,
laastly, tt is shown how a theory may be mapped into a well-
specified knowledge representalion system. Purther details

and extensions of Lhis work may be {ound in [8].

Theory Formation

A theory of a domain will be Taken to be simply a
conststent set of conjectures concerning a dormain. Since alt
that can be known of a domain by a pure theory formation
statements

systern are  ground instances, all genersl

(excepling logival truths) are, of necessity, conjecture.

It is iraportant to distinguish forming a theory from
reasontng wilhin one. The first area deals with Lhe issues
involved in introducing conjeclures and maintaining Lhe
consistcney of a Lheory. Since in forming conjeclures one
"goes beyond" the faets al hand, this activily is largely non-
deduclive. Reasoning within a theory on the other hand is a
primacily deductive activity; much of currenl representation
research has been cencerned with what inferences may be
drawn, how Llhese inferences may be drawn, and how
knowledge may be structured to best facilitate Lluese
inferences, There is no reason then why a system that is
well-suited to performing deductions from a particular
Lheory should also be well suiled to allering the contenls of
the thieory. Thus, for example, it is one thing to use a theory
to predict the motion of known planets and Lhe exislence of
unseen planets; il is quite another to formulate a theory

aboul how planets move.

One possibility for representing conjectures is to use
prototypes [11], [15]. In such a case membership in Lhe
extension of a term is a graded affair, and is a matter of
sirnijarity to a representative member, or prototype. Thus
one might say that it is more "ravenlike" for a particular
raven to be black, rather than some other colour. | wish

however to explicitly reject this approach, and instead deal

with universal staternents which represent (hypothesised)
laws governing a domain. Thus one would make the stronger
claim that "all ravens are black”. The advantage of this
approach is that it allows a much greater degree of overall
kb systeimatisation through the intervelation of predicates,
as well as permitting a full logical apparatus for reasoning
with conjectures. The problem with this latler approach, of
course, is that one rarely, if ever, nalurally cncounters
exceptionless  laws.  Thus the above generalisation  is
“falsified” by the exisitence of an albino ravens [ailing thatl,

some matcontent is always likely to paint a ruven red.

I'he problems of rationalising and aliowing exceptions
is beyond the scope of Lhis paper; again Lhe reader is
referred Lo [6]. SufMee Lo say however that in verifying o

scientific law, for exarnple "water boils at 100°C" one must
rely on a host of undertbving assumplions, such as the
pressure is 760 mm.. the waler is pure, Lhe Lhermomeler
accurale, et Svich assumptions then may be used, even if

unknown, to excuse an exception,

It is instructive also to specily Lhe properties thal
conjectures should have. Te begin with, before a conjeclurne
is formed, there should be a reason for so doing, and thus
gvidence In support of it. Evidence then musl also
diseriminate among the other leasible hypotheses. On Lhe
other hand a falsified conjecture should {subject Lo Lhe above
caveat concerning exceptions) be abandonced.  Also the
properties of a conjecture should be the sawme. wherever
possible, as the corresponding "known' formula. tThus, for
example, if P and Q wure hypothesised to be equal, we would
like this hypothesised equalily to behave siumilarly to

standard extensional equality.

Clearly the sel of conjectures must be consistent with
what is both known and conjecturcd Lo be Lrue. Also, while a
conjecture can never be dernonstrated Lo he Lrue, Lhe set of
conjectures should converge to the “true” solution. or
idenlify the underlying retations "in the Hmit” [8]. Note
though that for reasons of efliciency we don’t want to know
all that potentially may be known -- that is the truth values

of all known predicates applied Lo all known individuals



introducing Conjectures

Corresponding Lo each known priadicale symbol P in
the dormain, we will have a set ot individuals that P is known
to be truc of, and a sccond set which iv is known to be fatse
of. Fenee for rach known [* we can specily sets /7 and #
by
P =fulK

Nefine: », = fn! K Pla )} Pla )y

The operutor K is as in [9] and may be read as Uit is kooown
that”. Thus all information known about P is contaimed in /7 v
and £ . and can say:

Define: 7 ={(P ./ ).

These nolions elearly generalise Lo higher-place prodivates.

To make the netation clear, upper case Roman leilers
will be ased for the names of standard, set-theortic
eredicates, while upper case italic Tetlers will be used Lo
stiana for whal is known aboul Lhe corresponding predicate,
and /2

relation and nperotion signs are obtained by subseripting an

Murthermore, the hypothesised

the sets P
"h" to the ‘orresponding sel-theorelic <igns. Thus, for

example,  white  P=0Q  will mean (hat 7 and Q@ are
(extensionally) equivalent, =, G will mean that 7 and Q are

hypothesised to be cquivaland,

Now, we can conjecture Lthal P ond Q are cgual when
1) there is some evidenee to do so {ie. AR )
and
i} it is nob known tha! P and Q are not eqgual (1.c.
~ Q=)

Continumg e the same mcnner, we gel the Tollowing

7o = bsand P

v
vonditions for forming conjeclures.
Defing,

/‘:h(J HT PG ed N Pong =pal 0 =0
/’L'hll) 17 P,"Q,/irb/\ /’P"A(I) :Sb‘/\/),ﬂff);/?"
1P, @ [P ER AN }J’”‘Q‘:(b

PN P ) kA BN AP )

W 5

The condilion [ o @ ~,¢ is not included because,

potentially
about the

assutning . an  arbilrarvily large universe of

knowable individuals, it tells us nothing
relalionship bulween P oand Q. Clearly though any coherent

approach lto forming conjectural relations roust al [cast
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include Lhe above condilions, Fowuover Lheso defined one fead
imimrediately to problems. Consider, for example, "he ase
where all that is known are instances PQa). a), Qi) and
i{b). Cortamly f’:hQ and Q:n [, but we cannol Torm Lhe
hypothesis 1=, R The problern is that aceording Lo the
above doefinition Lhere is no dirvet evidence (or I’:h 2. The
pulv way oul of Lhis dilanvna (shorl of coanlaining separale
kb's for Lthe different alternatives) is to test one of Lhe known
individuals against Lhe predicales in gquestion so  thai
cvidence for the hypothesis may be obtained. Thus, in the

above example, i we determine thal P(b) 1= lru Woro A

assert P= 000 Pb) turns out to boe Lrue on the obher hond,
we have falxified P:h Q and can replace it by l’!.‘h Q. I Lhis
latter vase the conjectures Pf,‘lé and Q:h [ should yicl |
P'h R. Determining Lhe truth veiue of R{a) dlows one of
oither P"n R, or Pfh I (and Q:h R) to be wsserfed, Tho 7o

that individusls can always be localed from among the set of

Known individuals o rostore oo eney o this manner

folows from the resulls of Lhe nex! section.
hoere arce howesor pragoaabic as owell o Tormed

ning conjectures, Thalois, noe mizhl be

con<cderalions in
soreewhal. nervous by pochiesising, o samiples That il
tavens are black (or. moere starkiv, v Vs oo s) a0 the
basis of a single observed individaal, aond oaght pecier nore
(say. 12) of such common individuals, In this paper though |
am concerned slriclly with the Torraal azpeels ol such

conjecetures and thus pragmatic considerations have no

bearing on Lhe ts=ues discusaed hoe

The notions of hyeothesised complenient, rolatove
cotnpternent, union and mtersection arc casdy and Tairly

intutively introduced,

o))

Pey @ =(P, 080 P Q)
Pog @ = (0,09, P Q)
Pr Q=P Q. P ul)

(= @)

Thus we can lorm conjectures such as
Father_of Mather _af

Roven Flies

Bachelor =, ale ©, {nmarried .

The language corresponding to the set of sentences which

may be formed under standard rules of composition from the

above operations is called H,



These  operations  for  the most  part behave

analognusly  to  their  scb-thuoretic  counterparis.  or

vxantple, the assovialive and comrautative Taws hold, as do
the  disterbutive laws and  De Morgan's laws.  Powevor,
hypolhusised  coniglem nt are

relalions  involving  the

able rebidions do nol work ool as

probiematio and any de
vxpected, For example, neither
(r T, @) > ( W@, ‘);F) nor P o, 0

hold in general. The reason for Lhese difficulties is that while
shared  posilive  instances are required to hypothesise
squality or containment refations, we would require shared
negalive nstances  when considering the negalions  of
predicates. These probleros  disappear then 0 woe  add
Pong ¢ to the definitions of the hy pothesised relations,
ftowever, while this fix would indecd give us a complerment
that corresponded more closely with the set-Lheorotic idea
of comploment, it is  enlirely wnsatisfactory in other
vespeets, Fiest, it violales bhe requirernent for ovidence scl,
out previously, that it scrve to diseriminale among the
competing hypolheses. Also, in order to claim Lhal 'wo
predicates are disjoint, or thal one contains the other, it iy

lotally unreasonable to require Lhal they share a comimon

negalive nstanee, as the above solution would demand

The resolution to this problem is to simpty accept
things as they arve. First, the idea of complemaent in set
theory is a not entirely reputuble notion [10]. Second, the
conjuectures assumedly concern nalural kind concepls. and
there is good reason to beiteve Lhal the coraplement of ~uch
a conceplois not ibsell a nalwal kind 112)0 Laslly, shoared
tegative instance for two predicates does not tell anytinng
ibout how thoir extensions are related. These conaderalions

we pub ona fiqiner, formal footing in the next seclion,

A Logic for Conjeclures

I'he contral ideas of this secltion are as follows.
Fxpressions formed from the hypothesised operations salisly
many standard algebraic propertics. Thus, for examnple, we
are guaranteed that ar, f = g7 a, for suitably defined "="
The algebra, called HLG, corresponding to this syslem is
investigated. Dy introducing an operation analogous to
rraplication, a corresponding propositional togie, L, . is
derived.  This logic can be used to guide hypothesis

formationin ', and to enforce ron<istency.
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Thus we havae:

Defivre: If o and g are cxpress.ons Tarmed fron won

predicate names, uxing Lhe operations oo T

v dile, =8 wda =4
a<fifla, = B andf e
a<gifa<gbula /g

If [is the set of known individuals then lower and

uppur bounds for the expressions of t 1 are defined by

0:41' (s 1 = (1.¢)

Fotlowing from Lhis we oblain:

R o= ’ N N
o =, Cormmutativg

AT, k= e )y

o=, «
Sssoun e
o B s tan B) oy

Lo, iy = sy (a'\h 8) = Absorption
a Afo, v = (a S ), (a,

ac, {8, 7) = (ae, B) ~, (e, 7

Distribative

A E o, o= Tde ranatont

oedal rly

ny (p’uh lar, 7)) = {w W B, L

o (80 (ao, ) = (an, ) 7, (e, o)

= It = TR ;
a,0=0 xw, 0 =q v s
awhl—r.x o, 1 =1
Q= o, ‘nvotaiion

Do Morgan

wlos, A=

ala By = o, - B

N N
R

This algrbriais nearly, but not quite, a Joolean cigebra, ior

Lo be a Boolan algebra, we would also regaire the existonge
of  w complernenl, a6 forwacke elermerd 0w hers
an, = 0 and abo = 1 bowerer. o such enenent

(previbly) s pos=ible here in wenerad. Pl ovsbom Dt wo g
obtain instead has been called a De Morgan latlice [2] or

quasi-Boolean algebra [ 13].

A ply operalor, >, which will vorrespond to implication

I:

in E{Lt is bound by the following postulates [
a, (a>p)<g
if an, y = B theny < (ang).

The first postulate curresponds to modus poncns, while the
second says that Lhe ply is maximal among solutions to the

first.



Theorem: a g8 =(1~ ((ar—ﬂ+) VB~ ) B_—a)

Curresponding to Lhis ilgebra, Lhe following logic is derived:

Axlorus:
Al a>(foa)
A2 (a(8>7)) > ((a28) 2 {ady))
A3 anfoa
Ad andog
AS as(@>(a A 8))
AB ad{ung)
A7 Bo(anB)
A8 (ady) 2{(F>y) D> (B 2 7))

A9 A= - -

Rules of Inference:
MP Fromk a and Fa > g infer 8.
NH Fa2f iffl= g0 a

The propositional connectives A, Nv, > and - of HlAl

correspond to the operations i, ., v, , > and - in HL . The

h
sign ' is given its standard definition for provability, while

"I+ can be defined by:

Define: Ia iff @' = 1, where o' is the corresponding formula

in HL .
a
Theorem: Fa iff Fa.

Two proofs of this theorern have been obtained. The
first links the logic Kl with its (Lindenbaum) algebra HL, .
The second treats HI, as a threc-valued logic (with
intermediate truth value "unknown”). Truth tables for the
logic are obtained, and tautologies are shown to be theorems

of Hl't (and vice versa). From this we get the easy result:

Corollary: Hl.l is decidable.

Lastly we get:
Theorem: If ta, -+ ,a (F@in HL, and a e " B are the
corresponding expressions of HL, and a ', -+ ", "have
been hypothesised, then known individuals may be
located which will either

i) provide evidence to allow £ to be

hypothesised, or

ii) falsity one of a ', -~ x -

Moreover, the proof of this theorem shows how such

individuals can be located in O(n) time. Thus while only a

srnall  proportion of the potentially knowable ground
instances typically are known, the above result gu:rantecs
that instances can readily be found Lo resolve any

inconsistencies.

Thus we can form and enforce the consistency of a set
of conjrctures which correspond to lhe sentences of o
Booiean algebra, except that we carnot refer to absolute
complements.  Translated into proposilional logic, this
means that we lose the law of the excluded middle and proof

by contradiction.

This togic provides a rather nice solution to the so-
called paradox of confirmation [3}]. The paradox arisus frorm
the claiin that whatever evidence supports a gencralisution
also supports all logical consequences of the generalisalion.
Thus, for example a non-bluck non-raven =upports
~Bluck (x ) > ~Raven (z ) and thus Faven (x) > flack (x ).
I'his means that a non-black non-raven (e.g. this papoer, or
Jupiter) provides evidence for the assertion thal ail ravens

are black.

Thie paradox is resolved here by replacing
F(a>8) ={(-A> -a) by
—aoB iff = 8> -a.
Thus, if it is the case that all ravens are indeed black, then it

is the case also for the contrapositive.

Further Results

I'his section briefly summarises additional work that
has been carried out. This work breaks down into two
subcategories: the set of individuals over which predicates
may range is extended to include sels, and the set of

(hypothesised) operations is expanded.

In the first case, in addition to ground instances of the

forrn raven {(a) or above (a,b), instances such as
stack ({n .2 ,a (), or stack (S) where § is defined to be
ia.l,a.z,a, s;' are permitted. This however leaves us with two
types of sets (or, perhaps, "set-like objects"). First there are
the finite, known sets which may now appear as pradicate
arguments. These include not only collections of primitive
individuals, like f{a 1@ 5. o, but also may include colluclions
of predicate names, for example {Ked K Orange . Green |
These sets are called reducible Second are the predicate

extensions. These may be either finite or inlinite; however

_9]_



neither this, nor the extensions Lhemselves, can ever be
known. All that can be known s (from before) the subsels of
known individuals that the prudicate is and is not known to
by, for example,

be true of. ‘this is expressed

Red = (fed o fred ). Such sels are called irreducible.

The set of allowable reducible and irreducible sets,
and the interaclion between the two types, are specified by
modifying the Zermelo-fraenkel axiomatic set theory.
However, “higher-level” axioms, including the axiom of
infintty, are not included. This gives us an infinite universe of
knowahle individuals, but where no set has an infinite nuniber
of known mermbers. In addition, Lhis expanded system is still
decidable. (The system actually remains decidable even with
an  axiorn of infinity. Howover, it just scemed ore
convenient and natural to limil Lhe universe to “hereditarily

finite” sels. Additional axioins could, of course, be added Lo

ezxtend the systern.)

An immediate benefil of this extension is that it allows
"meta-conjectures’ about sets of conjectures to be phreaced.
Thus, for example, we can express the conjecture “for all
types of bears, all individuals of a particular type are

coloured the same”. Thus
x €llear__type >(Fy (y « Colour_type ~(z ){z €z >z €y ))).

It is worlth nioting though tbat if we assuwne that the only
kinds of bears are the known ones, then the above can be
cxpressed in first order tevms, and thus all that we've gained
is a somewhal more compact notation and higher degree of

kb systematisation.

Hypothetical sel operations corresponding to Lhe
standard domain, range, converse, imaoge and composition
operations are also defined for binary predicates (as well as
ubvious exlensions to higher-place predicales).
Furthermore, notions corresponding to the transitive closure
of a relation, and sels closed under a particular binéry
relation are also defined. This however doesn’t alter the
relations that may be expressed; and thus Llhe results
concerning Hlin the previous section still apply. However, it
does increase the individuals l.ha.t may be referred Lo. Thus
srcannow forim conjroturn s sui aw

.

S On Above or Stunk =, Cn,
P
coure Op g ihe e wThiee eonenree of Lbe (noorelation, anad
48
n is (e o’ bl s s hased cnde o T mola o,

Thus the above expresses the facts thal il something is
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known to be On something else, then these objecls are
(known to be) in the transitive closure of On @ if a pair of
objects are linked by an On chain, lhen the first s
hypothesised to be Above Lhe olher; and a stack of blocks is
hypothesised to be such Lhat every pair of blocks is in the

transitive closure of On .

[ have not examined the compulalional problems
invetved in forming and maintaining the consistney of such
conjectures. Unlike the conjectures of the previous section,
it is not obvious how efficienl or ineffcient such procedures
would be, since the set of furmable individuals has been
vastly expanded. tlowever, here as in the previeus rasoes,

decidability is retained,

Reasuning with Conjeclural Knowledge

The previous seclions dealt with the probicems of
constructing a theory of a domain; this section sununarises
the issues and approaches taken in reasoning wilthin a theory.
Basically what we want to do is take a theory {which is
entirely conjecture) and aflx it to a kb which cordains

general and arbilrary sentences.

For this, | have taken an existent language, KL [9] and
extended it to allow seatences that are only hypothesised Lo
be true; the resuiting language is called HKL. In briefl, Kl is a
logical language thal can refer both to application domains
and to whal knowledge bases rmight know about such
domains. This was accomplished by adding a senlenlial
operator, K, to first order predicate cateutus, where Ka could
be rcad as "'w is known to be true’. A semantic and proof-
theoretic analysis was provided for the language (KL) as well
as for operations of answering quertes, acquiring knowledge

and assuming delaulls.

The basic idea with HKL is that KL is exlended by the
addition of a senlential operator, |7, where Hu can te read as
"a is conjectured to be true”. Thus a distinetion is made
between what is strictly xnown (K) and what is only surmise
(H). The semantic and proof-theoretic analyses of Kl arc
extended approprialely for HKY.. VYollowing Trum this, bl s

stratghifocward Lo soeeiy o transiabion ol senteness o by

mte PG A provion, foes acise bowever ot conio o ue -
Phat cpaantifly ovor et s This may be avos Ped th
ceraans noloerbioes :..‘i»-".l.-\,')r':i,) [RN [ the

only predicates quantified over are the known predicales.



KT, also allows a minor extension Lo defeult theories
of reasoning. A sentence such as ‘typically birds fly” might
be expressed in HKL as

(Bird{(z ) A ~K-VBird:i (z )} > V8ird:d (x )
VBird:i {z ) > Fly(z )
where VBird: is interpreted as "z inherils the i-th default

property of Bird", or, in Reiter’s notation [14], as

Fly(z )
fowever, if one knows that something is a bird, and it is

consistent to believe that it flies, Lhe best thal one can really
do is hypothesise that it flies. Thus:

(Bird(z ) A ~K-VBirdi (z)) > {(YBird: (z 1)
or

H(Fly(x )

Use of the operator H then is sanclioned through HKI.

Conclusion

This paper has presented an approach to autonorious
learning. The major characteristic of this appreach s That
nothing is assurmed concerning I he domain or Lhe underlying
representalion scherne, except that the former is assumed
describable in terms of predicates and individuads, and that
the latler can represent these instances. The predicates are
taken as first ranging over (primitive) individuals, and later

over finite sets.

Conjectural relations may be formed .ccording to
slementary evidence conditions, and new hypolhetical sets
may be crealed using Lhe set of hypothelical operations. The
undeclyng logic, HLL , is used Lo cnsure the consistency of a
seb of conjectures. Also the proplem of resloring consistency
n the face of a conflicting instance is quite efficient. This
logic also precisely specifics the set of legal formable
conjectures; an axiomatic approach to the enlilies of Lhe
system  -- the primitive individuals and reducible and
irreducible scts -- also preciscly specifies Lhe set of Jegal

individuals.

A nuraber  of important open problems  renin,
Certainly if Lhe system is (o be nmolemented for no sy, coal
wortd situations, then issues corcerned with such sitaations
need ko be dealt with, At Lres. ol The problem of exe otioas
Feobeing  addressed: that is, when should exscensoons be

admitled, and, more importantly, what il rmeans for
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something to be an exception and how this afTects the
meaning of the violated rule. Also the matter of definition
needs to be addressed. Given a coliection of conjectures
concerning a set of predicates, we neced to be able Lo specifly
a subset of the predicates as being primitive, and define the
remaining predicates in terms of these. This systemalising
of the kb also leads to a consideration of Lthe inlroduciion of
new terrns. Thus, for example, it would be useful bo be able to
conjecture that the class of people consists of two (unknown)
subclasses (say, "male” and “fernale”) based on obscrved

symmetries of kinship relalions.

Since this approach deals exptlicitly with sels and
their interrelations, it may provide a means for invesligating
learning wilth respect to Lhose schernes that deal expheitly
with classes and concepls, namnely sernantic nets. This would
be in direet contras. wilh most other systerns, which are
concerned with learning production rules, or other =such

condition“action pairs,
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ABSTRACT

In this paper we examinge Lhe relation between learning from examples and
the task of conceprual clustering. We brefly veview Michalski and Stepp's
work in this arca, and present an alternate approach based on Hunt and
Quinlan's method for learning discrimination networks from cxamples.
The new approach treats all observed objects as positive instances. while
unobserved objects arc treated as negative instances. with the latter being
cnumerated from known attributes and their values. 'This clustering
method is more clegant than carlier vnes, and generates simple
classification schemes that predict the observed objects but none of the
unobscrved oncs.

INTRODUCTION

The ability to acquire new concepts is an cssential aspeet of intelligence,
and the task of lfcarning concepts from cxamples has been cxtensively
studicd by rescarchers in machine learning, In this paradigin, a ttor
presents the fearning system with a sct of positive and negative instances of
some concept (such as arch or chair). In turn, the system is expected to
form some description of the concept that allows it to correctly classify
future instances as weil as the presented ones.

However, there arc many situations in which one must learn concepts
without the aid of a tutor, or without cxplicit feedback of any kind. For
instance, children acquire concepts fike ¢hair or dog before they know the
associated words, and scientists formulate taxonomic schemes based on-
observational data. In fact, biologists and statisticians have developed the
techniques of cluster analysis and numerical taxonomy [1] to aid in this
process, and onc can view these methods as automating the process of
concept formation. Such techniques accept a sct of objects with associated
attribute-value pairs as input, and producc a hicrarchical classification
scheme as output, with similar objects being placed in the same classes.

One disadvantage of traditional clustering methods is that they define
classes extensionally — by giving a list of members — rather than
intensionally ~ by giving some description or rule used to assign class
membership. In response to this limitation, Michalski and Stepp [2] have
explored the process of conceptual clustering, in which intensionat
descriptions are generated along with cxtensional definitions. Below we
bricfly review their carlier work in this challenging domain. In the
remainder of the paper, we present an approach to conceptual clustering
that is quite different from the onc described by Michalski and Stepp. We
describe the method in terms of scarch through a space of classification
trees, examine its behavior on two clustering tasks. and consider both the
advantages and limitations of the approach.

THE CONCEPTUAL CLUSTERING TASK

During the task of learning concepls from examples. explicit feedback is
provided with cach sumple description, [n otber words, the input is divided
into a set of positive instances which exemplify the concept to be learned,
and a set of negative instances or counter-cxamples to the concept. In
contrast, a conceptual clustering system is simply given a sct of objects and
asked to group similar oncs together, However, more subtle differences
also exist between the two tasks. First, much of the work on fearning from
cxamples has focused on conjunctive concepts, in ‘vhich a conjunction of
features or relations defines the concept. In contrase, if one views the
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classification tree produced during conceptual clustering as the "concept”
t be fearned, then this concept is always disjunctive, since mutually
exclusive branches are involved. Sccond, learning from cxamples usually
requires a single level concept to be learned, with no sub-concepts being
involved, However, the classification  hicrarchics  gencrated  during
coneeptual clustering often involve multiple levels of description.

Despite the greater complexity of the conceptual clustering task, there
arc also many similaritics to learning from cxamples, and it is natural to
look for ways to apply methods from this domain to the problem of
conceptual clustering, In fact, this is precisely the approach taken by
Michalski and Stepp with their CLUSTER/2 system {2]. This program
emploved a method for learning concepts from examples to determine the
branches (or concepts) at cach level in the classification tree, starting at the
top and working downward. In order to do this, it required scts of positive
and negative instances, and these were inferred in the following manner.
Given the goal of dividing the observed objects into N disjoint classes,
CLUSTER/2 randomly selected N seed objects. The system treated cach
such sced as a positive instance of some concept to be learned, and treated
other sceds as negative instances. In this way, it arrived at a sct of
descriptions, cach covering a different seed (but none of the other sceds).
In addition, cach description also covered a number of other (non-secd)
obscrvations, and thesc were assigned to the same class,

Based on these descriptions, CLUSTER/2 produced a new sct of seeds
representing the cencral tendency of cach aescription: that is. objeets with
vadues aceurring in the center of the aceeptable range were chosen as the
new seeds, Using these as input Lo the method fur learing from examples,
the system repeated the process described above, generating a revised set of
descriptions, ‘This strategy continued until the sced objects stabilized,
giving an optimal set of N disjoint classes, which became branchies on the
classification tree, The system repeated this process for different values of
N, retaining the best classification tree according to some user-specified
criterion. CLUSTER/2 then applied the entire process recursively to cach
subsct of objects, adding lower lTevel branches to the classification tree.
When finished. the systein produced noc only a hicrarchical clustering of
the objects T terms of classes and subclasses, but the rules it had used in
making that clustering. In sununary. Michalski and Stepp’s system
cemployed a method for learning from examples as a subrouting, using it to
formulate decision rules at cach fevel in the classification hicrarchy.

Other approaches to the conceptual clustering task are possible. For
instance. Lebowitz [3] has reported a concept formation system that Icarns
in an incremental fashion, rather than requiring all data at the outsct. One
can also imagine starting with specific subclasses, and working upwards to
more general superclasses. Wolff[4] has described such a “bottom-up*
system that operates in the domain of grammar learning, while Langley,
Zytkow, Bradshaw, and Simon [5] have described a similar system that
works in the domain of chemistry. Since cach of these systems allow
overlapping classes rather than requiring disjoint groups, ID. Fisher
(personal communication) has suggested they be called conceptual
clumping systems rather than clustering systems, In this paper, we will limit
our attention to the problem of furming disjoint classification schemes.
Now that we have considered Michalski and Stepp’s approach to this task,
let us turn to another method that reties on a somewhat different mapping
to learning from cxamples.



Table 1, Four objects and their descriptions.

NAME COLOR SHAPE SIZE
OBJECT-1 BLACK CIRCLE SMALL
ODBJECT-2 BLACK SQUARE MEDIUM
OBJECT-3 WHITE CIRCLE MEDIUM
OBJECT-4 WHITE TRIANGLE LARGE

CONSTRUCTING DISCRINUNATION NETWORKS

Some of the carliest work on learning from examples was carried out by
Hunt, Marin, and Stone [6]. In their approach, a concept was viewed as a
discrimination network for predicting positive and negative instances, and
the concept learning task consisted of constructing this discrimination net.
Their system (named CLS) input two scts — one containing’ positive
instances and one containing negative instances — with cach instance
described as a conjunction of attribute-value pairs. The program began by
finding the most discriminating attribute (according to some cvaluation
function), and created separate branches for cach of its values. CLS sorted
instances down these branches, and applied the method recursively to cach
of the resudting  subscts, generating new  branches and  further
discriminations. ‘Fhis process continucd until every terminal node in the
trec contained cither all positive instances or all negative instances.

Despite its carly occurrence, this approach was largely ignored by later
machine learning rescarchers. There were probably two rcasons for this
abandonment: attention shifted from all-at-once learning methods to
incremental oncs; and attention shifted from  attribute-value based
concepts to relational ones. Hunt’s method did not appear to generalize to
cither of these more difficult cases (though we shall sce that this is not
quite true for the relational issuc). Despite these Himitations, the approach
has a number of advantages: it requires very little scarch; it can acquire
disjunctive concepts; and .it can be casily modified to deal with noise,
Quinlan (7] has continued to work within Hunt’s original paradigm, using a
different cvaluation function for directing scarch through the space of
discrimination ncts. and implementing a sampling approach that can deal
with very large amounts of data.

Hunt and Quinlan’s approach to learning from cxamples is significant to
conceptual clustering for a simple reason: the discrimination nctworks
generated by the approach bear a striking resemblance to the classification
trees generated by conceptual clustering methods. In addition, the method
represents concepts in terms of a number of "levels”. and when disjuncts
occur, it generates trees with multiple branches at cach level. In fact, the
only difficulty in using the method for conceptual clustering is the need for
a division of data into positive and negative instances, and this is casily
corrected. [n the conceptuat clustering paradigm, only some of the possible
objects arc actually observed, and these  can be treated as if they were
positive instances. If the possible values of cach attribute are known, then it
is simple to enumcrate those objects which were not observed, and to
interpret them as negative instances. Given these two sets, one can
construct a discrimination nctwork using Hunt and Quinlan's method.
Only asingle step is necessary to transform this network into an acceptable.
classification tree, as we shall sce shortly.

The relation between the two tasks can be clarified with an example.
Table 1 presents descriptions of four objects in terms of three attributes —
color {black vr white). shape (circle, triangle, or square), and size (small,
medium, or large). Since there cxist 2 x 3 x 3 = 18 possible objects, and
only four observed objects (positive instances of the “concept™ to be
learned), we can infer that some 14 negative instances remain. If necessary,
we could enumerate these negative instances, but in general this is not
required. The left part of Figure 1 presents a minimal discrimination
network for summarizing these observed and inferred instances, The color
attribute occurs at the top of the network, since it is most uscful in
distinguishing positive instances from negatives. ‘The four terminal nodes
with +'s cover the observed positive instances, while the remaining
terminal nodes Icad to the unobserved negative instances.

In order to transform a discrimination network into a classification tree,
only one operation is required — we remove all branches that lead only to
ncgative instances. Applying this transformation to the network at the lcft
of Figurc 1, we arrive at the classification tree on the right of the same
figure. This tree has only four terminal nodes, cach corresponding to one
of the + nodes in the original nctwork. The resulting taxonomy specifies
that there are two basic classes of objects — black and white, However,
each of these is further subdivided, the black objects into small circles and
medium squares, and the white objects into medium circles and large
triangles. Duc to the manner of its construction, no unobserved object will
be covered by this classification tree. Thus, the trec summarizes the
obscrved objects, but does not go beyond the data in the sense that it
makes any predictions: we will return to this feature later in the paper.

AN QVERVIEW OF DISCON

We have implemented DISCON, a conceptual clustering system that
incorporates the method deseribed above.* The program is bascd on an
carlier system we constructed tor learning from examples, and required
only minor modifications for the conceptual clustering domain, The major
difference between DISCON and the carlier systems lics in the evaluation
function used to direct scarch through the space of discrimination
networks. At cach point in the learning process, Hunt's systein scleeted the
attribute whose values matched the most positive instances, while
Quinlan’s method incorporated a morce sophisticated information-based
measure. Thus, both systems could be viewed as carrying out a best-first
search without backup through the space of possible networks. Although
these evaluation tunctions climinated many undesirable networks from
consideration, they were not guaranteed to find the simplest network (the
onc with the smallest number of nodes) that summarized the data,
Disjunctive concepts were especially troublesome to this approach, and
since these always occur in conceptual clustering tasks, we developed an
alternate method for directing the scarch process.

*DISCON stands for Discrimination-based Conceptual Clustering
System. D. Fisher has independently proposed a very similar approach,
and has implemented another conceptual clustering system that shares
many features with DISCON [8].

Figure 1. A discrimination network and a classification tree.



Given a set of attributes, DISCON carries out a near-exhaustive look-
ahead for cach attribute, to determine the minimal subtrees possible for
cach value of an auribute. The numbers of nodes in these minimal subtrecs
are counted, giving a scorc for cach attribute that corresponds to the
cvaluation functions used by Hunt and Quinlan. The lowest scoring
attribute is selected for use at the top level in the classification tree, and one
branch is created for cach of its possibie vafues, except for those having no
associated observations. One could then apply this process recursively 0
determinc lower parts of the trec. However, since DISCON determinces the
minimal subtrees during the look-ahcad process, it takes advantage of this

information, as we shall sce dircetly.

Figure 2. Scarching the space of classification trees,

Figure 2 presents a partial search tree for the example cousidered carlier,
involving four observations and the three autributes color, size, and shupe.
Note that two types of iine vccur in the figure. Bold lines represent
branches in the scarch tree, while narrow lines represent branches in
classification trees that are ¢imbedded within the search process. The reader
should keep this distinction in mind as we describe DISCON's scarch
method. The system bhegins by considering the attributes in their order of
presentation; let us suppose that color is considered first. In order 0
determine the score for this atribute, DISCON begins constructing a
classification tree with branches for the values black and white; these
branches are shown with narrow Jines. The program must then determine,
for cach of these branches. the size of the minimal tree that covers the
observations. In order ta do this, it must actually construct the subtrees; let
us supposc that it deals with the black branch first,

Since the two attributes size and shape remain, DISCON must consider
trees based on both choices. Lel us sappose that it considers size first; this
path is represented by the bold line labeled with this attribute. Now the
system must construct a subtree based on the values of size; however, since
only small black objects and medium black objects have been observed,
only branches for small and medium arc created. At this point, only the
shape attribute remains, so this path in the search tree is taken in cach case.
Since only onc observed object cxists in these cases, only one new branch is
neeessary for cach, Morcover, since these branches cover observed objects
but none of the potential but unobserved objects, they lead to terminal
nodes, Upon considering the subtree based on shape. the program notes
that it is no more complex thaa the size subtree. and moves on to consider
subtrees for the value white. After determining the minimal subtrees for
both black and white, DISCON counts the number of nodes in these
subtrees, giving a score of {1 for the color attribute. When the same
pracess is applied to the size and shape attributes (at the top level), each
receives a score of 12. Accordingly, DISCON selects color as the best
attribute to use at the wp of its classification tree.

Farlier we suggested that the same process could be applied recursively,
letting DISCON detenmine the best atiribute for the next level, and so on
until terminal nodes were reached, However, note that the system must
detertnine  the minimal subtrees for the lower levels, during its
computation of the scores for the highest level, 1DISCON takes advantage
of this fact, and actually constructs each of the possible subtrees during its
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look-ahead process. However, the program connects the parent nodes only
to the mininel subtrees, so that larger structures are cffectively forgotten.
As a result, many subtrees arc constructed before the higher levels are
created, but only a few of these are retained in the final taxonomy, which is
the classification tree presented in Figure 1. Note that the system does not
actually create a discrimination network, and then climinate branches
pointing to negative instances: rather. it never hothers to create these
branches in the first place. Despite its upparent complexity, the DISCON
program consists of some 75 lines of [-ranz Lisp code.

Table 2. Descriptions of four dinosaurs.

NAME DIET LEGS DEFENSE HIPS
BRONTOSAURUS PLANTS FOUR SIZE LIZARD
TYRANNOSAURUS MEAT T™WO TEETH LIZARD
TRICERATOPS PLANTS FOUR ARMOR BIRD
TRACHODON PLANTS WO SPEED BIRD

AN EXAMPLE: CLASSIFYING DINOSAURS

Now that we have cxamined DISCON’s method for constructing
classification trees, let us consider its behavior on a more realistic cxample.
As we noted carlier, numecrical clustering techniques have been used within
biology to aid in the classification process. and onc shoutd be able to apply
conceptual clustering methods here as well, We presented the system with
descriptions of four dinosaurs, cach having four associated featurcs, as
shown in Table 2. The features were dict (cither plants or meat), number of
legs (cither two or four), method of defense (size, armor, speed. or teeth),
and type of hip-bones (cither hird-like or lizard-like). These descriptions are
somewhat whimsical, since they are rather removed from  direct
obscrvations of fossils, but they will serve for our purposes.

DIET plants
LEGS

DEFENSE

HIPS lizard

trachodon

brontosaurus

triceratops tyrannosaurus

Figure 3. A taxonomic scheme for dinosaurs.

The method we have described is guaranteed to find a classification tree
with the minimuam number of nodes, but it is quite posstble that more than
onc minimal tree exists. In such cases, the tree generated by the system is
determiined by the order in which the user has listed the attributes. Other
things being equal, DISCON prefers atiributes listed carlicr to those given
later. For instance, given the observations in Table 2 and the attribute
order number of legs, dict, method of defense, and type of hips, the system
generates the classification scheme shown in Figure 3. This divides the
observed organisms into two groups based on their dict, Only one meat-
cater is observed, with two legs. teeth for defense, and lizard-like hips.
However, three plant-caters exist, so this group is further sub-divided on
the basis of number of legs. Only one biped cxists, which uses speed for
defense. and has bird-like hips. Since two quadrupeds are noted, these are
divided into two further groups, one using size for defense and with lizard-
like hips, and the other with armor for defense and bird-like hips. Given
the descriptions in the table. this is a perfectly reasonabie taxonomy, and
somc readers may have arrived at a very similar one themselves.



Figure 4 presents a quite different taxonomy, formulated by the system
when the attributes were presented in the reverse order — type of hips,
method of defense, dict, and number of legs. This scheme initially divides
the organisms into two groups bascd on their type of hips, with two
members of cach class. The dinosaurs with bird-like hips are both plant-
eaters, but they are further subdivided on the basis of number of legs. The
quadruped uses armor for defense, while the biped employs speed to the
same end. The dinosaurs with lizard-like hips are divided into two
subclasses based on dict, with the plant-cater having four legs and using
size for defense, and the meat-eater having two legs and using teeth for
defense. This organizational scheme is very similar to that arrived at by
palcontologists, who divide dinosaurs into two major groups (Ornithischia
and Saurischia) based on their hip structures, and further divide these
classes into groups similar to those shown in Figure 4. However, the
generally accepted taxonomy is based on hundreds of organisms and inany
additional featurcs, so the tree generated by our system should be taken
with a grain of salt. Nevertheless, this example docs reveal one potential
application of our conceptual clustering method.

HIPS lizard
DIET A plants plants meat
LEGS two
DEFENSE armor teeth
. tr'iceratops brontosaurus
trachodon tyrannosaurus

Figure 4. Another taxonomic scheme for dinosaurs.

EVALUATION OF THE APPROACH

In the preceding pages, we described a method for generating
classification trees that relics on viewing this task as a variant on learning
from cxamples. Like Michalski und Stepp's CLUSTER/2 program for
taxonomy formation, the DISCON system also produces intensional
descriptions of the classes it forms, and so provides another viable
approach to the task of concepiual clustering. DISCON is based on Hunt’s
CLS and Quinlan's ID3 programs for generating discrimination networks,
but does not require an explicit set of positive and negative instances, as
did these carlicr systems. Instead, the program treats observed objects as
positive instances, and treats unobserved objects as negative instances,
inferring the latter from known attributes and their valucs.

Onc difficulty with this approach is that DisCon's classification trees
have no predictive power. Although they summarize the observed objects,
they can never place a previously unobserved object in an appropriate
class. A natural solution to this problem preseats itself, which we plan to
unplement in future versions of the system. Rather than attempting to
construct a nctwork that completely discriminates positive instances from
the inferred negative instances, DisCon should ccase to make distinctions
below a certain point. This cutoff might be stated in terms of the depth of
the classification tree, or a more sophisticated test might be used. For
example, Quinlan’s{7] “change in information” mecasure could be
employed to determine whether further branches will provide sufficient
improvement in discriminating power to-be worth including. If not, then
no further distinctions need be made. This proposal also has a beneficial
side effect, since it will keep DISCON from carrying out an exhaustive
look-ahead. Instead, the system will nced to look ahcad only to the depth
of the tree, and this will greatly improve the system's performance when
many attributes are involved.
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DISCON’s approach to conceptual clustering should be applicable to
any sct of observations that can be stated in terms of attributes with
symbolic valucs. One advantage of the CLUSTER/2 program over the
current systen is that the former can also handle observations involving
numeric values and structured (or hierarchical) values. However, DISCON
has two major advantages over Michalski and Stepp’s system — its
simplicity and its efficiency. Although we do not have statistics to back up
our claim, we believe that our approach to conceptual clustering is
inherently more cfficient than the carlier one. We also belicve that the
cxisting system can be extended to deal with numeric and structured values
without a substantial increasc in cither the program's complexity or in the
scarch it must carry out. When DISCON has been extended in this
manner, we will be able to run the system on the same clustering tasks
reported by Michalski and Stepp [2], and compare the results of the two
systems directly. However, independent of questions about clegance and
cfficiency, we now have two distinct approaches to the problem of
conceptual clustering, and thus the potential for a better understanding of
this fascinating discovery task.

One additional limitation of the current system should be corrected in
future varsions. As it stands, DISCON cannot deal with relations between
objects. This abitity could be included by providing the system with a list
of n-ary predicates, such as greater-than. Given such a list, the program
could enumerate all possibie relational tests, and then determine which of
these were the most uscful. Some effort would be involtved in extending the
system along this dimension and those mentioned above, but taken
together, ey should lead 10 a simple yet robust ol for automating the
process of conceptual clustering.
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SOME ISSUES IN TRAINING LEARNING SYSTEMS AND AN
AUTONOMOUS DESIGN
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ABSTRACT

Training is an important corsideration irn the operation of
learning systems; introduction of inappropriate trairing
data may cause ineflicient, possibly impotent behaviour.

This paper presents a general training method based
on observation of current performance capability. The idea
is to sample system performarce and select training prob-

.lems taxing search limuts. Experiments demonstrate the
utility of the approach in terms of time efficiency.

1. INTRODUCTION

Training metheds used for inductive systems have recently
taken on greater significance with the re-emergence of
learning within AL

[nductive systems may generally be decomposed irto
performance and learning furctions. The performance ele-
ment (PE) interacts directly with an external environment
(e.g. problem instances requiring solution), while the learn-
ing counterpart (LE) must induce or refine a strategy for
future action based or perfcrmance data Of the several

“factors which infiuence learning element behavicur, cne is

the quality of training problems presented: higher quality
data processed by the PE erable the LF to extract more
meaningful icformation, yielding greater ymprovement i
performance.

One approact. to increasing informatior quality would
be to present more complex training problems to the sys-
tem. [n practise, however, early performance ability is a
limiting factor [4,5]. Generally ther, learnirg systems
require problems complex enough to present rew inferma-
tion to the learning element, but still solvable within
current performance element capabilities.

M This research was supported by ar NSERC operating
grart ard an NSERC summer schelarship.
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2. CONSIDERATIONS

lLearrirg irvariably incorporates scme search activity. An
effective tearrving systern must limit search by using a stra-
tegy often referred te as a control structure (CS). [f the PE
of a systerm relies er suck o structure fer guidance, then
the rele of the corresperdivs LI is to modify the structure
‘o improve subseqrert prfrforrndn(‘c!“). An autcnomous
learricg system requires re boman rtervection in improve
g its capabuities. | his speeifies an additicrnal cormponent:
the instance selector ( 'RAINER) must irdependently gen-
erate problem irstarces te train the system effectively.
Furtber, a vsefil! traiver s gercral. “hese requiremerts
ey he stated more pre

1. ‘o be gereral, a trawning method must be independent
of the host syster (e its PE ard asseciated CS) In
effect, a 'black box' ts required This will be elaborated
subsequently.

o

Effective trairing aflerds strorg learring ability at
mcderate cost.  Althouwgh o rmecharized trairer pre-
vides full actorcrmy. i mav rct prove as effective as
exterrnal passtve mears (U] ‘e ¢ Foman training [4])
Fortber, costs ‘evaliated 10 tire and space measures)
which are excessive may crdermine any benefits of a
mechanized traicer

3. We have stated trab learnry svstems require preblems
cernptex ercugh to prescr! rew anformalior. to the
learvirg elemert, but still scivable within current PE
capabilities. [nitial perfermarce is typically poor, since
(in early unsupervised learnirg), the control structure
15 primitive at best; begirnirg preblems must be sim-
pie. However, as perfcrmarce improves (due to CS
refiremerts), more difficult problems are appropriate.
v stort, learricg is a dyrarue process, and requires ar
adaptive training mechanisi. After estimating currert
P performarce ability. this mecharism determires ar
appropriate level of trairirg preblem difficulty.

Our trairirg methed requires twe measures: a meas-

rre of difficulty for trairing preblems, and a measure of

0
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performance for guaging current PE ability. Problem
difficulty can be quantified as the length of the shortest
known solutior. path from iritial to goal states®). Perfor-
marnce may be measured as the number of nodes developed
(D) in finding the goal state {fewer nodes developed means
better performance). As cost consideratiors impose a
practical limit on this search, define an 1.pper bound or )
as [D-MAX (externally specified). [-41AX conveniently
quantifies PE ability himits. We would expect that a system
could have no more information presented to its LE than
through a problem which requires exactly -MAX states to
be developed in reaching the goal; problems of greater
difficulty must recessarily exceed [)-YAX resulting in ro
sclution. 7o present a maximum ef infermatien te the
learning element then, trairirg preblems should result in
some D whict is slightly less than D-M 4

TRAINER estimates an appropriate level of difficulty
for training problems, based on real time sampling of sys-
tem perfecrmarce. A suitable difficulty is ore causirg the
performance element to develop slightly fewer than O-A74Y
nodes ir reachirg the goal state. This trainirg scheme is
not straightforward, since variarce in perfermarce may be
large despite apparert similarity of sample data. Perfor-
mance depends on the control striucture (s mere informed
CS will perferm better and more unifermly while an imper-
fect €S may be urable to deal with certain preblem
instances). While this large fiuctuatior could be compen-
sated by increasing sample size, there are cbvicus limits
imposed by cost.

3. TRAINER MODUILE

Essentially TRAINER is which
assesses the ability of a PE using any cortrel structure. Its
operation involves a movable window which iteratively
appreaches an upper bound on perfermance (-MAX). After
a stort series of window placements, a difficulty (DIFF) is
found which approximates D-#AX Figure | illustrates the
operation of the "RAINER module.

a sampling mechanism

(b) Furmally, this difficulty characlerizes secme region in
instance space [4]. Our traiming mechkanism requires
some method of produecing proeblems within this region.
For some problem types, irstances may be generated
by making a number of random moves sway from the
goal state. However, other problems are governed by
cperators which are not uniquely reversible. Also,
games typically contain a cumber of goal states. In-
stances in these categories may be generated by play-
ing complete games or solving problems, retaining a list
of rodes developed during search, and backing up a
number of stales to the desired diffienlty. “raining ox-
amples may bhe sportarocny cererafed vsing this
method, or selected from a set of problems catalogued
by difliculty (termed active instance selection in [2]).

LN(D-HAX)
6 -
4 4
LN(D)
2 4
0

Figure 1. TRAINER OPERATION. Given a current CS, TRAINER sam-
ples PE ability, discovering performance £ as a function of prob-
lem difficulty D/FF. The desired value of D/FF is that which results
in 2 approximating J-MAX.

The module is currently applied to a dala-driver learrirg
systern: PLS1{[5). PLS1 provides a good testing environ-
ment, as it requires performance-sersitive trairing for
strong learning behaviour (refer to next seclion).

Yo reiterate, difficclty (DIFF) acd redes developed
(D) are necessary measures (and a value for D-4AN s
assurmed).  'RAINER must select an appropriate set of
depth DIFF prebilems which result 1o an approsimalion of
DAY developed states. Our slrategy is to approach O-
HAX interms of DIFF using a conservative underestimate.
Regression is used for estimatiorn of D as a function of
DIFE. “he gereral algoritbrm follows:
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{. Choose a range of difficulty values centered about a
central value (DIFF) - igitjally, this value is arbitrarily
small. Generate (or seldct) a number of prcblems at
each edge of this ‘window'{®), and refer these to the
application system PE far solution, obtairing a measure
of performance (D) for'the control structure in each

case(“),

2. Use a least-squares fit and a (log-)linear model to
express [) in terms of DIFF. Determine a value of 0
centered within the window. Take some (externally
defined) fractional step between this central vale and
D-MAX |, and translate into a new value for DIFF | usirg
parameters obtained from the regression.

3. Repeat these steps until the reighbourhood of O-#AX is
reached (e.g. within 90%). The final value of DIFF is the
appropriate training difficulty for current PL ability. As
the control structure improves, this difficudty level
increases until the PE is capable of solving rardom
depth problems.

The reason for using a progressive series of wirdow
placements is related to complexity and urcertainty. [f too
difficult a problem is attempted, no corresponding value of
D can be found; this waste is expensive. Alternatively, for
simple problems, 1naccuracy of the lirear model and
significant variance in sample data may cause an iraccu-
rate fit (step 2) Rather than extrapolating a final value of
DIFF based on one sample of problems, it is vltimately
more aceurate and cost-effective to take several nitermaedi-
ate samples, so as nct to exceed [FMAX, all windows excepl
the last one or two approaching D-MAX require insignificant
resources. The question of whether the TRAINER justifies
its cost is examined in the followirg section.

4. RESULTS

To measure the effectiveness of the TRAINER, it was com-
pared with a manual procedure for choosing problem
difficulty using the fifteen-puzzle ard the learning system
PLS1 [5]. This is an iterative system so a static difficulty
vector (SDV) was supplied. This vector defines a fixed pro-
gression of problem difficulty over successive iterations.
The SDV used was one found Lo be eflective in extensive
human interaction with PLS1. Of several tested, it pro-
duced acceptable learning characteristics over the
greatest proportion of runs. For the experiments, 36 trials
were run for each of (i) TRAINER, and (ii) the SDV.

Table 1 summarizes the results:

(¢) Draper and Smith [3] indicate that a sample distribu-
tion: with exclusive emphasis on end points of a range
results in the smallest variance in slope determination.

(d) The actual number of problems is determined by the
statistical error of performance values sampled (957%
confidence s used).

# Successful Expected Cost
(i) USING SDV

(504,000 nodes)

within 75% of best 12 (33%) 42,000
within 25% of best 6 (167) 84,600
(ii) USING TRAINER

(870.00C redes)

within 75% cf best 36 (100%) 24,000
within 257 of best 27 (75%) 32,000

Table 1. Wiinin eaca of the two training environments, performance
of resuiling contro: siructures is suodivided into two categories:
within 75% and within 25% of performance using the best known CS.
Column one ind:caies 1ne numbper successful in each category (and
corresronding percentage), witie columrn iwo indicates the expect-
ed cost :n nodes for a CS 1o demonstrate performance within the
respective categories. Using the SDV, 504,000 nodes were
developed over 36 runs. Wiile use of TRAINER resulied in a greater
aumber of deveioved nodes (870,000), 1he proportion of successes

wizs dramatical:y fugher, resuliing in lower expected costs for each

casegory.

Experimerts with TRAINER to date demonstrate con-
sistent and irexpensive behaviour. [f within 25% of best is
categorized as strong learning behaviour, the expected
costs of achieving this using TRAINER is 32,000 nodes, a sav-
irg of approximately 68% over the case where an SDV is
used. This is significant.

Yet tke strongest support for use of TRAINER ljes in its
provision of coraplete autonomy for the host system. The
effectiveness of external lraining may be attributed to
extensive knowledge of systemn performance; such
krowledge is expensive to acquire. By providing strong
learring capabilities with only modest real time machine
costs, TRAINER ehminates this other corsiderable experse.
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5. CONCLUSIONS

The intent of this method is to present a maximum of new
information to ary learning system, while abiding by its
performance limitatiors. This is achieved by estimatirg
perfermance results in terms of training problem difficulty.
Training problems are autonomously gererated according
to results of perfermance sampling, ard rc assumptiors
are made about system capability or operation. Measures
of system performance (D) and problem difficulty (DIFF),
ard a limit or. D (D-MAX) are tte only requiremerts. Our
method is effective and inexpensive, demonstrated by its
current implementation, ard it is gereral erough tc kave
wide application within mactire learnirg.
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INDUCTIVE LEARNING OF PHONETIC RULES
FOR AUTOMATIC SPEECH RECOGNITION

Renato De Mari*, Michel Gilloux**
*Concordia University, Montreal, Canada
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Telecommunications, tannion, France

ABSTRACT: An application of Automatic Inductive
Learning of Rules from Examples to Automatic Speech
Recognition os described. An algorithm for
incremental Tearning is proposed and preliminary
results are reported.

1. Motivations and Relations with Previous Words

A number of researches on Automatic Speech
Recognition (ASR) have been carried out using a
recognition model based on feature extraction and
classification [DE MORI 83] and [BAHL 83]. With such
an approach, the same set of features are extracted
at fixed time intervals (typically every 10 msecs.)
and classification is based on distances between
feature patterns and prototypes [LEVINSON 81] or
1ikelihoods computed from a markov model of a source
of symbols generated by matching centisecond speech
patterns and prototypes [BAHL 83].

These methods are usually speaker-dependent and
are made speaker independent by clustering protot{pes
among many speakers. The classifier is not capable
of making reliable decisions on phonemes or phonetic
features, rather it may generate scored competing
hypotheses that are combined together to form scored
word and sentence candidates.
1f the protocol exhibits enough redundancy it is
Tikely that the cumulative score of the right
candidate is remarkably higher than the scores of
competing candidates.

If there is 1ittle redundancy in the protocols, like
in the case of connected letters or digits or in the
case of a lexicon of more than 10,000 words, then it
is important that ambiguities at the phonetic level
are solved before hypotheses are generated. For
example, in the case of connected letters, in order
to distinguish them between /p/ and /t/ the place

of articulation is the only distinctive feature and
its detection may require the execution of special
sensory procedures on a limited portion of the signal
with a time resolution finer than 10 msec.

This suggested to introduce plans for hypotheses
generation and disambiguation [DE MORI 82].

Operators of these plans may translate a description
of acoustic properties into more abstract descriptions
or they may extract new useful properties. Operators
may contain the execution of sensory procedures,
Their application is conditioned by the verification
of some preconditions in the database that contains
already generated descriptions of the signal under
analysis.,

The planning system is a network of plans. The
input to the network is made of descriptions of
acoustic properties obtained by hybrid (parametric
and syntactic) pattern recognition algorithms and
the outputs are hypotheses about phonetic features.
A portion of the network for the generation of hy-
potheses about the phonetic feature "nonsonorant-
interrupted-consonant™ (NI) is shown in Fig, 1. For
more details on the features used in this example see
[DEMICHELIS 83], Each box in Fig. 1 represents an

operator capable of producing descriptions of acoustic
properties of phonetic hypotheses. Preconditions for
operator application are loaical expressions of pre-
dicates. Predicates are defined over relations between
acoustic properties. Both precondition expressions and
predicate definitions are not known a priori and have
to be learned. Furthermore, the use of an operator in
a plan is required only if that operator is the most
suited for producing descriptions that are required for
evaluatina preconditions of operators that have already
been considered for buildina that plan. So learning
also involves building new sequences of operator appli-
cations when a feature is not correctly hypothesized.
So far, most of the attention has been focused on
learning and generating precondition relations. Learn-
ing of plans has mostly been done with the interaction
of a human expert.

2. Learning Methodology

Learning rules from examples can be seen as the
process of generalizina descriptions of positive and
negative examples and previously learned rules to form
new candidate rules. When apnlied incrementally this
methodology can produce results which depend on the
order in which examples are supplied and on the occur-
ence of examples which are exceptions to the relevant
rules, Incremental learning of rules has to come out
with a set of rules that is the most consistent with
the examples encountered so far.

In order to allow dynamic preservation of consis-
tency among the set of rules, an algorithm is proposed
which uses the Truth Maintenance System formalism
[DOYLE 79] and which is reminiscent of previous work
bv Whitehill [WHITEHILL 807,

The choice of a description language for examples
and rules along with that of the generalizing algorithms
is critical in a Tearning system in the sense that it
may or may not allow the Tearning of relevant rules.

A description language and rule generalization
heuristics have been defined based on knowledge about
rule-based Automatic Speech Recognition (ASR). This
knowledge has been acquired with many years of experi-
ence. A relevant aspect of the learning system develdp-
ped for ASR is that generalization rules are not con-
strained by the Maximally Common Generalization proper-
ty introduced in [WHITEHILL 80].

Positive and necative facts used for learning
operators preconditions are described by their relevant
concept and a conjunction of predicate expressions,
Each predicate expression or selector [MICHALSKI 83]
asserts that an acoustic property has been detected
or that an acoustic parameter has been extracted with
some specified value.

A generalization rule derives from two conjunctions
€1 and C2 a conjunction €3 that is more general than
both C1 and C2, i.e. C1 = €3 and C2 = (3.

The generalized rules themselves are the nodes of
a TMS [DOYLE 79]. Each node represents a rule of
left-hand-side (LHS) CONJ and right-hand-side (RHS)
CONC, having a support list SL whose IN and OUT part
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TABLE 1: the Learning Algorithm

procedure LearnExample (EXAMPLE)
NEWNODE := NIL
For every node N in ListOfNodes do
if RHS(N) = Concept(EXAMPLE)
then
begin
if MoreGeneralThan{LHS{N),Conjunction{EXAMPLE)
then Push(EXAMPLE),PE(N}); )
if Equivalent(LHS{N),Conjunction(EXAMPLE))
then NEWNODE := N
end
else
if MoreGeneralThan(LHS(N),Conjunction(EXAMPLE))
Then Push(EXAMPLE,NE(N))
unless NN # NIL do

begin
NN := MakeNode(Conjunction({EXAMPLE),Concept(EXAMPLE))
AddNode (NN)

end

if P(PE(NN),NE(NN)) and EveryIn(In(SL(NN))) and EveryOut(Qut{SL(NN)))

then TruthMaintain{NN,in) else TruthMaintain(NN,out)
endproc

procedure AddNode (NODE)
for every node N in ListOfNodes do
unless N = NODE do
if RHS(N) = RHS{NODE)
then
case
MoreGeneralThan(LHS(N)
Push(NODE, In{SL(N)))
MoreGeneralThan(LHS(NO
begin
Push(N,In(SL(NODE)))
PE(NODE) := Union(PE(NODE),PE(N))
end
else
begin
NC := Generalize(LHS(NODE),LHS(N)),RHS(NODE)))
AddNode (MakeNode (NC,RHS(NODE)))
end
else
case
MoreGeneral Than(LHS(N),
Push(NODE ,0ut(SL(N)))
MoreGeneral Than(LHS(NODE) ,LHS(N))
begin
Push(N,0ut(SL(NODE)))
NE(NODE) := Union{NE(NODE),PE(N))
end

,LHS(NODE) )
DE),LHS(N))

LHS (NODE))

endproc
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are respectively the 1ist of nodes with RHS CONC and
LHS less general than CONJ and the Tist of nodes with
RHS different of CONC and LHS Tess general than CONC.
With each node are kept the lists of consistent
examples (PE for positive evidence) and unconsistent
examples (NE for negative evidence). Lastly each node
as a STATUS property which is IN when the correspond-
ence rule is believed to be true and OUT otherwise.

A node is IN i.e. its STATUS is IN if and only if all
the nodes in the IN part and all the nodes in the

O0UT part of its SL are respectively IN and OUT and
the numbers of examples in PE and NE satisfy a given
predicate P (for example NE 2 2.PE),

When a new example is learned a new node is
created if necessary and this node is generalized with
the existing ones to generate new nodes that are them-
selves generalized with other ones. Then the PE and
NE of concerned nodes are updated and STATUS
properties are modified when necessary and propagated
through the network in order to maintain consistency.
‘The stability of this process is guaranteed together
by the definitions of SL and the predicate P. The
algorithm is described in Table 1 in a Pascal-like
form. -

For each concept encountered so far a character-
istic rule is derived from the network of nodes whose
LHS is the disjunction of LHSs of all IN nodes with
corresponding RHS.

3. Results and Conclusion

With this method, precondition rules for ten
operators have been learned from the prounounciation
of 700 Canadian postal codes leading to a very
accurate generation of hypotheses about phonetic

features like NI.
The following is an example of the precondition

of the operator that generates the hypotheses Ni:

([AC2=MediumPeak] [F3-F1=[700,750]] ([Burst=Detected]
[Buzz=NotDetected] [Step=NotDetected])
([AC1=ShortDeepDip] [AC2=LongPeak]
[A2=A1=[-0.5,0.0]] [Burst=NotDetected]
[Step=NotDetected]) ([ACl=LongDeepDip]
[AC2=LongPeak] [F2=[1200,1300]] [F3-F2=[1600,17007]
[F3Locus~F3vowel=[200,250]] [Burst=Detected]
[Buzz=NotDetected]) [Step=Detected]

ACl, AC2 are morphology descriptions of the signal
energy, Step is a predicate on the morphology
description of the signal envelope sampled every
2.5 msecs. Fi are formant frequencies, Ai are
formants amplitudes extracted by the "prevocalic
transient analysis operator”. Burst and Buzz are
predicates defined over cnvelope and buzz
descriptions.
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STEREOPSIS OF TIME-VARYING IMAGERY
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Abstract

A noncooperative algorithim is presented for the
problem of Lhe stercopsis of time-varying imagery. The
algorithrm integrales two  problems; the problem  of
stereopsis and Lhe problem of tracking objects through time.
Rather than finding the interseetion of Lhe two problems to
be more difficalt, it was found that by solving the two
problems simullancously, and Lhus incorporating the spalio-
temporal context within which a scene exisls, some of the
hard subproblems belonging to the problems of stereopsis
and temporal corcespondence could be avolded,

In terms of the modset for lemporal stercopsis
presented in this papoer the induced effect and hysteresis
have sirnple cxplanations as a result of Lhe molion of the
strelehing stirmulic [t is argued thal Lhe difficalty algorithins
for static stercopsis have wilh the induced effect and
hysteresis are a result of their temporal nature,

The algorithm relies on a general  smoolhness
assurnplion to assign bolh disparity and temporal matches.
A simple model of the motion of Lhree-dimensional points is
used to guide the matching process and to identify
conditional malches which violate the gencral smoothness
assumption, A proximal rule is used Lo Turther restrict
possible matches.

The algorithm bas been tested on bolh synthetic and
real input sequences. Input scquences were chosen from
three-dimensional rmoving light displays and frorn real”
grey-level digilized images.

A basic problem in any motion understanding vision
system is that of determining a temporal correspondence
between objects. Independent of the domain of application,
be it human body motion [11], Hamburg strect scenes (1], or
human hearls [15] in order to analyze the motion of the
objects it is firsl necessary to determine Lhe position of
objects in the scene as a function of time. In a perspective
projection of the world such a correspondence can be
difficult to obtain unless some assumption is made as Lo
vither the type of object being observed (such as being rigid
or being composed of jointed rigid parts[16]) or the type of
motion the object can exhibit [17]. The problem arises
because in a perspective view true object localion is not
readily available. The buman visual system overcomes Lhis
problem in part by using two images of the scene rather than
just one. By combining the two views depth informalion can
Se colained and thus accur .o positional intormation s
available. Such information would simolifv th - probtem of
oterinining Pemporal corresprardo e,

Any algorithm for stereopsis has to face two critical
design choices; what monocular point descriptions are to be
used, and what rmechanisms are to be used to resolve any
ambiguity within the population of possible local matches.
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When the stereopsis problem is expanded to include time-
varying imagery. the algorithm must also deal with the
problem of tracking the monocular point descriptions, or the
Lhree dimenstonal descriplions which they represent throngh
Lime. In addition a choice must be made as (o the order of
processing. lemporal roatehing could be performed before,
alter, or sirnultaneously with stereonpsis.

If stereopsis is performed afler temporal malehing
then  Lernporal  malching  must  take place in o a two
dirmensional perspeelive view of the world. Wilhoul sorne
motion or object assumplions rolalion in depth, and plastic
deformation would prescot difflewt problems Lo such a
scheme.  Allernalively, of slercopsis takes place belore
temporal matehing the temporal malching is easier as it can
be performed in real world ro-ordinates. Unforlunately the
slereopsis problem would Lhen reduce to thal of =olving
sltatic stercoscopic images. From the work of Mare and
Poggio [9] and Mayhew and Frisby [10] we know that even
when sophisticated  monocular primitives such as zero-
crossings or zcro-crossings and peaks arce available the
problem of stalic stereopsis is very diffeult, and usualty
cannot be solved without some global mechanism Lo assign
final disparities. Performing stercopsis simultancousty wilh
Lemporal malching scems boest as Lhe temporal malehing can
be pecformed in real world co-ordinates (thus avoiding the
problem of perspeclive matching) and motion information
could be wsed to further limit Lhe possible binocular
inatchings.

An algorithr using Lhis approach has been previously
described|[6].  This approach muade certain siraplifying
assurnptions aboul the nalure of the input, which would be
diff.cull to overcorne in order to apply Lhe algorithm Lo real
image data. The algorithm assumed Lhal there was no
occlusion, thak all points were visible in all Trames, and {hat
all real world positions were known at some indid Lime. We
base our algorithin on the sarme underlying principles as
Jeakin [68] but presernt one more suitable Lo Lhe analysis of
real world images. In particular we must deal with Lhe
protlem of occlusion; a fealure visible by one eye may not be
visible by the other, and points may move out of view of the
entire vision system,

Paychological Basis

We bascd our algorithm on the assumption that the
motion uf an object being viewed would obey a gencral
smoothness assurmption.

The smoothness assurmption was based upon cerlain
beliefs from psychology. The principle of least action {14]
suggests that when we perceive an object as moving we tend
to perceive it as moving along a path that in some sense is
the shortest, simplest or most direct. Rarnachandran and
Anstis' principle of "visual inerlia”[13] suggests that when
iy objucl woves o vae ditcebivn ol oumform veiocily v
lend o pereeive it as continuing ils motion in thal dhirection,
Phose ruter Tormed the bosis of oo sron’ b ey chion



The temporal slereopsis algorithm follows the basic
smoothness assurnption; changes in feature characteristics
will be small and continuous. In particular we assume that
when observing the motion of an object (one that does not
disappear or is created), the object will be relatively
unchanged from one frame to the next:

1) The location of a given feature would be relatively
unchanged from one frame to the next.

2) The three-dimensional vector velocity of a given
feature would be re]atlivel'y unchanged from one frame
to the next.

3) The motion of objects has temporal continuity, ie. the
above two assumnptions hold for sequential time
intervals.

The first two assumptions define how moving objects
(those that are not, created or destroyed) acl locally in time,
while the Lhird smoothness assumption says that the first two
will hold over temporally sequential inputs, and allow
decisions to be made in time.

Many algorithms for static stereopsis exist {see Marr
and Poggio [9] for a review). Marr and Poggio [9] identify two
physical constraints in order for the left and right view to be
combined:

R1 Uniqueness. Bach item from each image can be
assigned at most one disparity value.

R2 Continuity. Disparity varies smoothly almost
everywherc.
Unfort\inately R1 flatly contradicts the usual

interpretation of Panum's Limiting Case ‘(ie the
interpretation that a feature in one eye's image can be
matched to more than one feature in the other eye's image).
Mayhew and Frisby [10] have developed a better rule of
uniqueness: that a given point in space may hold at rnost one
feature at any given time.

Px.y.z)

~————sl image plane

Figure 1: Nonconvergent Vision System.

Marr and Poggio [9] then use their R2 to allow for a
"pulling effect” to make final disparity assignments. As they
point out there is really no evidence to support such "pulling”
or global labelling. Consider the standard "wedding cake"
random dot stereogram (see Grimson [4] for an example).
When viewed stereoscopically ome sees several distinct
layers with sharp boundaries. If spatial global constraints
are used to assign disparity values using R2 above then one
would expect the algorithm to produce smoolh boandaries
setween the layers due to edge effeces. Indewd Uns is an
oTect which is obs.:rved when algorttinns asing waeh

pproachics are ppled o Uis t pe ol clercousien,
onbradictior s e trong arg Loen g Qe Lores
dgorchies gring slaubar spodie T gle el Gonsieain

The Algorithm

Figure 1 shows the basic geomelry of the
nonconvergent binocular vision system. The two eyes of the
system are separated by a distance of 2e and are located at
positions (—e ,0,f ) and (e ,0.f ), looking towards infinity in
the minus z direction. (In Figure | the y axis can be
considered to project out of the plane of the paper lowards
the reader.) By similar triangles it is easy to show that a
point P = (z . .z ) on an object will have a projection on the
plane 2 =0 (the image plane) in the right and left eye's co-
ordinate systems respeetively as:

= Q__}E__)_g_[. (1a)

y, = %‘:: - (10)

2 = (3__;__9._15_[_ (2a)
¥ r :

Y = f -z (2b)

Where f is the focal length, and (z, .y, ) and (z, .y, ) are the
projections of the point P in the left and right eye views
respectively.

Provided that the point P is visible by both the left
and right eyes, then the three-dimensional co-ordinate of P
can be reconstructed from these projections as:

= e — 3
T P—— (3a)
2‘ e * yT
= i 3b
Yy PR (3b)
_ grer* [
2oy - B0 (3c)

by solving for z ,y , and z in equations (1) and (2).

Let L; and K, be the co-ordinates of point j in the
left eye. & in the right. The valid three-dimensional point
which can be constructed from [; and /., using equation (3)
will be denoted as [ .k |.

All possible combinations of /; and £, would resuitin
roughly n ? possible points from n real points in three-space,
The number of matchings can be reduced by noting certain
geometric properties of the nonconvergent binocular vision
systern.

From equations (1) and (2) for a combination [{ v ] to
be valid it must be Lrue that the y co-ordinate of { in the
left eye (denoted as y (£ )) must be equal to the y co-
ordinate of  in the right eye (denoted as y (&, )). Thus from
the geometry [{ 7 ] will be valid only if y (L; ) =y (7. ). For
real irmage data, this constraint should be relaxed.

In addition, from equations (1a) and (2a) and as e is
positive, and as z must be negative, then for [/ ,» ] to be a
valid combination z (/, ) > =z (£. ). As the image plane is not
infinite in size as depicted in Figure 1, there will be a
minimurn distance a point can lie from the image plane
before it becomes visible to both eyes. In the limiting casc
z ([t .r ]} = 0is the closest a point may lie to the eyes of Lhe
svstem. Inthis cose r (7,) =z (R, } < 2e from equation (3).

] T, e e ddesum ameunt of devietion botween
k) cad gy (L e el o e Lhe postriclion onog (J40) and
j ool e Teft el g hil e

S
Sy suling oo e Gt

400 .
e v e i b s b e b red e thie fallnu g

two constraints.

—]07..



(y () =y (R <m, (1a)

O<z(ly)—x{R)<T, <2 (4b)

Figure 2 shows how (he parameters 7, and 7, restrict the
~ogion for possible spatial malchings.  Let the circle
represent some feature in Lhe lell cye's image. If we
superimpose Lthe [oft and right images then the rectangalar
region formed by 7, and 7, denotes the region in the right
cye's view from wilhin which we may look for possible
matches.

-

~

<- - = -

Figure 2: Spalial Conslraints on Matlchings.

In relationship with the homan visual system, the
nonconvergent binocular system is a Limiting case in which
the eyes are fixed on a point an infinite distance from Lhe
viewur. The conslraints 7, and Ty denote the rogion of
fusion for the binocular system and correspond Lo Parnin's
‘ustonal area In lhe human visual svster. Results from
Psychology indicate that dbtheugh matehes must be L. led
Lo this area, il is posxible Lo Fave ore than one mateh per
fealure from within this arca.

The problem cian now be staled more formaliy; given
Pult) to P (t), the Lhree-dimensional localion of Lhe
features al time ¢,V {(¢) to 1, (¢ ), the vector velceitios of
the same n points Al Lime . and L to [, , and 10y Lo [,
{where /[ does not oecessarily correspond to /4 ), Lhe teft
and cight eye views of the ponts ab the next lime interval
{denoted by €+ 1), the problem is Lo find mappings 2 N ¥V
ad g A N where Vo= L §, such that /2 has location
for (W e (B)] at time ¢+ 1. Note thal £, may have 0, ! or
more  possible  corresponding  points  at time £ o+ 1. In
addition, the algorithin rust construct a list of points that
have been "ereated” or thal appear at time ¢+ 1. Formally,
i must ind the points that are elenent « of
Her [l bal o ~~3p feor | =tp () ()11
wherae Lo=400 i, ). 0=y, and
[er 1 =1p (@ )p, (D)) 0F the Luo poinls vorrespond Lo 'he
same Lhree-dimensional location,

Certain results from Psychology suggest that the
number of possible matches in 4, and ¢, cdn be restricted
by considering the velocity and dislance paramecters of the
points. From work on apparent rmotion [7] it is clear thal
spatial range limits the power of attraction; "when the
distance belween the circles s increased Lhe quality of
motion is somelimes affeeled, so that maintaining the
perceplion of a smoothly moving (igure rmay require sore
change of intervals or of the flash duration.” Korte's third law
of apparent motion (8] slates thal the increase in optimum
diffurence in time is essentially proportional to any increase
in separalion in space, or cquivalently, that the critical time
increases lincarly wilth distance. There is also the “visual
momenturmn” effect reported by Ramachandran| (3], Thus the
velocity of the object is also a limiting lactor in object
tracking. These lwo constrainls can be incorporated within a
general  srmoothness assumption by de(ining  predicates
velocity and distance which limit membership in g, and p,.
as;

distance (i,j k)= /(L) ~[7 k] <74 (Hn)

(17 4

i
velnctty (1,5 k)= ¥ {t) -
\

where st ix the inter-stimutas time intervad, the nolation

(L denotes bhe length of the veetor o, and 7y and 7, arn
constramts limiting the distance an object can move, cnd the
change in velocily an object rcan exhibil during @ given
frame. Characteristics of monovular primitives thal ire used
Lo restrict combinations of {{ .| could also be used to
restrict g, and g, .

Consider the restriction of the tracking problem to
Lwo dimensions. Figure 3 shows how the values of vy aod =,
restrict the nossible molions of an object being Lracked, e
small cirele moving from teft to right represents the motion
of the feature being tracked. Suppose woe are tracking
from its serond position and that it bays a constant velocity
The circte with radius 74 shows Lhe region which constroain .-
the: object's next position using equation (da). The object hins
Leen restricted Trom moving more than a distance 7,
belween frames,

The cirele with radiug 7, restricus the reogion in which

the object may move based on the maditmom change in
velocity an object may undergo belween framues. This s the
geomelrieal interpretation of equation (Bb). The circle is

centred ot Lhe prodicted location of the feature in the noext
frame and has radius 7, . As bolh Lhe distance and velocily
ficates must hold we need Jook Tor valid matehes only in
bion of these two regions.,

()I'I"
the interse

Pigure 3: Motion Constrainls on Mileting.,

In three aimensions the circles become spheres and
valid malches oo jonger are restricled to Lhe plane. ['he
interseclion of Loe Lwo spheres (which corcespond Lo the two
circles roentioned sbove) defines the region for possible
matehes,

The values of 74 and 1, must be sel so that Lhe
motion of the cbjecl you wish to Lrack does not violate
distance and velocity . (n the limiling case the two sphoeres
must at least overlap so thal 1t is possible Lo satisfy the
conditions for a valid match,

The smoothness assurnption permits sharp Lurns, and
cven for an object to change its dircction (sece FMigure 3).
There is a trade-off between change in direction and change
insealae soood An ahivet grae radicaly ehango it direclion
bul only by redacio g by speeds Sunilorty an obgecl miay
chivige e =peed, ont orly by moving i siantar dieecoon,

Ty and 7, define methematically Lhe conditions of the
srmoothness assumption Tor a single interstimulus interval.
Ancobject will be said to salisfy the neral smoothnoss
assumplion for a given frame if for that . ame il satisfios Lhe
predicales dislence and velocity .
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Unless the situation is wdeal, or the values of 7, Ty
Td and 7, are chosen so as to unreasonably constrain the
problem there will still be o large number of possible
combinations [{,r ] and possible mappings ¢, and ¢, . In
static  stereopsis. even with  sophisticated  monocular
nrimitives such as zero-crossings 9] or zero-crossings and
peaks [10], not all local matehes will have been reduced. A
commoin approach has been Lo use a global spatial relaxation
process (in a possibly limited manner) to assign final
disparity values. As it has been shown carlier, This is not an
attractive approach.

One poussible approach would be Lo apply some sort of
relaxation on lhe vector velocity values of the features.
Such an approach would have a psychological basis in the
rule of common fate. There would be somr difficulties with
non-rigid objects and with scenes contaning more than one
object moving with different velneities, This would, however,
be an interesting starting potnt fTor fulure rescarch,

Rather than use any sorl of global muchanisin Lo
determine the final spaliad and temporal eorrespondences,
decisions are made locally in the »patial dimension but arce
made later in Lhe Lemporal dimension. A very simple model
for the motion of three-dimensional  features  was
constructed. By considering possible temporal combinations
of motion hypotheses inconsistencies can be ideotified. These
imeonsistencies can be used Yo toeally Lrim hypotheses to
determine the correct spalial and temporal roalehes.,

fFor  the purposes of this discussion let circles
cepresent features. One of the following labels (see tigure 4)
van be bdenbified with Lthe between feame motion for ach
point:

CREATR
The point is created from Lhe void.
DEATH
The point disappears,
TRACK
The point moves from one {rame to the next
SPLIT
The point undergnes ficsion to become two or more
points in Lhe next {raine.

[n addition Lwo or more points in one frame riay have
the same candidate poine for tracking in the next. Phus
branches of SPLIT und TRACK tabellings may also be
(dentified as MERGE hypothesis.

.\‘PLI;O CREATE
O—0 O~

I'RACK DEATH

Figure 4: Motion hypothueses

[ world with perfecl monncular feature deteciors
the set of fracking hypoth res would be much sbhapler, A no
serfect monceular Fealure detecter exists i is quite possible
that SPLIT and MERGE hypotheses are not just the resuit of
poor matching, but that the monocular features do SPLIT wnd
MERGE, Take a sheet of refleetive maturiat and bendb it Hoack
and forth, Lthe specatar reflection will move along the surface
of the material, splitting «nd Tusing. A monocular prinutive
that is sensitive Lo peaks i the intensity of the image weuld
find Lhal the monocular primitives do SPLIT and MERGE L
would be incorrect to remove SPUT and MERGE hypoihesis in
aoreal world application simply becauase most real world
bjerts do nol andergo these o Teets,

Prssible Tebellngs oo Peopoint 2 (0 as
Tollows., tat o =3[0 | L »
fistance (i bor ) owe o0 b gy o POk }
ceriens witn a CRAUS ettt aaf ol s vt Sl
ot TR b Dt o , s S cdennficd e B
JEATE Toedt ng  f . o0 Poonts T wh b o e
o bl o Y e e e b e e U ATl

[ counts e GUILer ol poss wid Ulueaoi
hypotheses for g given pornt /2. 10 M, | =1 then there is

only one motion hypothesis for the oaint /5 and it can be
associated with a TRACK labelling. CM, . > b then the
point /% has competing motion hypotueses. At Lhis point it is
not. possible to determme if the point wetually splits inlo twn
or more poinls, or if some of the possible motion hypotheses

are invahid, (0] 8, =0 then the poinl /7, has no possible
motion hypotheses. 'his poinl is said to have died. Finally,
some combinations [£,r ] will not have been candidales for
any point £ . These points are considered for creation
hypolheses.

Let 22, (t) be a possibly empty set of points for which
both rmotion and positional inforination is known. Fxamine
the monoveular primilives for the next frame and construct
atl possible matches ({7 | From £, (t), ¥, (¢t ), and [{ 7 ] all
possible motion hypott -=s according to Lthe model given
above can be constructe Rather than decetding the correct
matches al Lhis point, assurne (Lemporarily) that all of the
matches are  correct. Thus cach  possible  maleh
P A(t) » [l ] is considered to give rise to a new point at
time £ + 1. The process of examining the monoculac imput is
repeated  for time (£ +2 and all labellings are then
considered. Thus there are double mappings of Lthe form
Pty st ] [t

The algorithm assumes that every possible matching
£t » [0 ] is correet. This assumption is the prediction
make by the prediclion phase of the algorithm. 'or cach
possible mateb £, (t) > [ ,r | a poinl (with corresponding
positional and velocity parameters) is constructed. The
constructed poinis are temporarily assurned to be valid at
Lime ¢ + 1. Possible matchings are Lthen considered between
the constructed point at time £ +1 and all points
constructable from Lhe monocular features presented Lo Lthe
algorithin  at time ( + 2. Ilnconsistencies belween  the
mapping £ () > [t ] and [ 7] s [ r7]) are used by the
test phase of the algorithm to restrict the double mappings
and to decide on the correct mapping /4, (¢) » [1 .7

There are two problerns within the general problem of
stercopsis of tirne-varying imagery. The first is Lhal there
may be ghosts arising from the problem of stalic stereopsis,
and the second is that while tracking poinls TRAUK Lype
results are preferable to SPLIT. Consider the tracking
problem alone for a moment; assurne Lthal the motinon of the
features obey a gencral smoothness assumption, then the
points will move smoothly from one frame to the next. A
problemn will arise only when for a given frame there exists
more than one candidate point for tracking. If the incorrect
choices arise due to noise (or [rom some olher random
source such as Lhe accidental alignment of true features in
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an image), then one would expect that although they satisfy
the smoothness assumption for the current frame, they wiil
not satisfy it for a sequence of frames. A large class of these
Lypes of errors could be eliminated by simply examining the
"matching potential” of the points for the next frame. {f the
points are truly invahid then they should die out as there will
be no nmatches for these points in future frames which do
satisfy the smoothness assumption. When discontinuities are
present in the motion of the features (such that the motion
violates the general smoothness assumption), the points will
die. Once the discontinuity ends the points will be recreated
and tracked correctly. .

In order to trim the possible matches it seems that
these are two cases of interest; when a CREATE label is
followed by a DEATH label, and when one branch of a SPLIT
tabclling is followed by a DEATH label. The hypothesis
reduction is summar. zed below (see table 1).

Thus  hypolheses trimming can be Jemnstrated
graphoeally vsee ciguees 5, 6, and 7). There are two otries in
table 8.7 whoenare inconsistent with the general smoothness
ssimption, Phose can be used o elirmeate possible
maltehirgs Creai th oo oas GEORT matehings). The first is
wilcn a vabatn wabeiliog s woliowew vy it URALL wabeliing.
Such an occurrence is depicted in Figure 5. Some accidental

| Current Next
DEATH CREATE TRACK SPLIT
e —
DEATH - - - -
CREATE GHOST - CREATE CREATE
TRACK TRACK - TRACK TRACK
SPLIT GHOST - SPLIT SPLIT

Table 1: Hypothesis reduction.

combimation of monocular features has given rise to a valid
three-dimensional point in one frame which then disappears
in the next. This "creation” of in object is considered to be a
GHOST tabelling and it is rernoved from the list of valid
hypothesus.

Figure 5: CREATE followed by DEATH.

The second inconsistency occurs when a branch of a
SPLIT tabelling is followed by a DEATH labelling. Such an
occurrence is displayed in Figure 8. One branch of the three
way SPLIT is shown to have a DEATH labelling in the [ollowing
frame while all other branches have TRACK lubellings. The
set of hypotheses is trimmed by considering the branch of
the SPLIT that was followed by a DEATH labelling as a GHOST,
and removing it from the list of hypotheses. [n performing
this operation the number of branches of the given SPLIT
labelling has been reduced by one.

There is another possibility when trimming branches
of a SPLIT labelling (see Figure 7). In this case all but one of
the branches of a SPLIT labelling are followed by DEATH
labels. When these branches are removed there remains a
SPLIT label with only one branch. Consider the value of ;.
It. will have been reduced from the condition |4, | >1 to
I'#, | = 1. The SPLIT labelling of this node is replaced by
TRACK to reflect the new value of | A; °
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Figure 6: SPLIT followed by DEATH.

This trimming follows from the general smoothness
assurnption. When a label is identified as a GHOST it is
removed from the list of possible labels. Thus it is possible
that in reducing a SPLIT label that there exists a different
branch of the SPLIT which has been reduced due to trimming
to a TRACK. This s a very desirable result.

Figure 7: Reducing SPLIT to TRACK.

At this stage the final correspondences must be
determined. All surviving labels have been found to salisfy
the general smoothness assumption. For all, excupt SPLIT
labeliings, final tracking and disparity assignments have now
been obtained. For SPLIT labellings a final restriction can be
made to further reduce SPLIT labels to TRACK. or to reducc
fe wumber ot broetes i the SR tabeltine.

As mentioned earlier, distance limits the cffect of
attraction for motion correspondence. This eflect is most
apparent when a SPLIT labelling is being considered. Kolers
[7] reported two experiments which showed that in a SPLIT
situation the presence of near points reduced the attraction.
of far ones. This can be used as a final constraint to remove
some cornpeting SPLIT branches. Remuve competing SPLIT
branches that lie at a distance greater than some fixed
multiple & of the distance that the minimum distance SPLIT
branch lies from the father point in the previous frame. This
has the added aflect of favouring no motion hypotheses for
stationary points having a stationary candidate point for
tracking.

The use of & to remove branches of SPLIT labelling
will not reduce all SPLIT labels to TRACK. Setting the value of
& to 1 will reduce most SPLIT labels, but any point which
splits into two equidistant points will not be reduced to a
TRACK labelling. It is not clear that all SPLIT labelling, should
be reduced, as some inputs may exhibit objects which
undergo fission, and SPLIT labels must be retained if these
points are to be correctly tracked.



be proximity rule used to obtain final matches is
depeadent upon the motion of the candidate feature with the
<rnallest possible displacement. Trimmiag is performed in
terms of multiples of the shortest distance. As this takes
nlo account inputs with different speeds, or diffecent inler-
<timvdus intervals, the choice of & will not be dependent
upon, cither the vetocity of the featuces, or the length of
nter-stitnulus interval.

Figure 2: ind Decisions Lsing & .

Firure 8 shows how the » alte of £ 1= used Lo remove
SPLIV branches. {igure 3 shoss « point inn one frame with
arrows showing valid SPLIT braaches laselled A through /) in
the rext frame. Suppose That The value of £ w3 2. Then as
all branches that lie ot a listance grealer than & times the
istance to the nearcst oranch are eliminated, the nodes
labelled /4 and ) would be brimmed.

Bach ef the rodules tateract in a cyelic fashion. [he
~esutts of the decision module become the vasis of Lthe
oredoetion module for the next frame of orocessing. Thus
"his 15 a smatl closed system which observes the motion of

. |
the fratures and build- up an cbserver oriented 2 -1 sketch

of Lo rotion of the objects over time. The sketch is
temporally lirnited in that it holds information only for two
or (indire elly Lhrough motion information) three [raines.

When atl of the finad decisiens have been made from
vme £ lo tirae ¢+ 1, the poinls that were tracked to. or
created ol time £+ 1 become the poinls for wtueh Lracking
o roqueed. The valaes of /), and V) arce updated, with
created pomnts given anniliat © elocity of zero.

The  algorithim dees ot weight  aguinst MERGE
hypobhes s except that ir consistenecies are used to reduce
the tolal number of possibile matehings, and thus indirectly
the MERGH hy potheses are venoved. There appear to be two
cvhotens; cithiere broat o MFRGE as simply being o mapping to
‘nore than one point having the same physical location, or
actuatly merge the poonts to form only cne singie point,

Wty is thus a problem? Consoder the case of two points
at the sawine depth moving al constant velocity al right angles
having a frame in which there exists a single point of
intersectinn. Depending upon Lhe representation of a MERGE,
different effects will be perceived by the algorithm. [If more
than one point is allowed to occupy the same physical
location at the same Lime then there is no problem as each
point will be seen to continue in a straight line. If points are
forced to merge then the velocity of Lhe merged point must
be compuled. [t ts not obvious bow this should be done, and
depending on the choice different cffects will be perceived.

Neither appro.sch scems to be particularly attractive.
Aside from the physical impossibitity of having morve than
one point occupy the same physical location at the same
time there are other problerus in allowing MERGEs Lo be

treated as simple TRACK hypothesis. Unloss the motion iy
actually a TRACK and not a MERGE there will be two points for
tracking that will be 'ndistinguishable by the algort hm: they
will have identical velocity and motion parameters. This
would not be desirable. The other choice 15 unattractive for
reasons that have aiready been mentioned. What is really
desired is an appruach that has the advantages of both
schemes, bul with none of their problems. The problem is
this; if while tracking points ace mergoed together, (assuring
some function to obltain the velocity of the new point), vhat
process should be used in the foltowing frame to SPLIT the
point apart if the merge was veally a collision? [f more than
one point is allowed to occupy the same physical location
how are poirts truely merged Ltogether once a true merge has
been detected?

This problem was solved by allowing MERGEQ points b
be rmultiple points in ihal more than one point, may have the
same physical lovalion provided they have different velocity
parameters. Whenever two (or more) points have identieal
posilions in the six-soace (£, ,Py VY ,Vy V) atrue MERGH
was assumed to have taken place {as Lhe points can not b
distinguished by the systern). Utherwise the points ar:
considered Lo b distinel. This has the advantage that ol
solves bolh probiems without having to remember ‘special’
points that may tor may not have) Leen mecged Logether.

b perimmental Results

Figures 9, 10, :nd 11 show the action of the algoriihm
on u three-dimensional moving tight uisplay of Lwo cowiding
hexagons. I'he moving hghts outline lwo hexigons,
~tationary one ithe one on the !eft), and oae rmoviig al
constant velocily from left Lo right. {norder to help av.onwer
diztinguish between the two hex:ygons the moving hexagon
has an additional marker located at its ventre. Figure 9
shows the search wrndow deterrnined from distance and
velocity applied Lo coe frame of the input. The values of 7
and 7, were taken to be equal, and the previous frame's
motion was markud with white Lines. The darker grey redions
delineate the regions in which one of distance nd relocity
hold, with the  brighter reg.ons  represonting  theuwr
ntersection. Nole that for the stationacy points the Lwo
regions coincide.

Figure 9 Search ¥indow.

Figure 10 shows the algorithm identifying a potential
'RACK labelling. As vach potential labelling is identified the
display is updated. Note that a previous TRACK labelling has
already been identified for a different pair of points
(indicated by the white line). Figure Ll shows the action of
the trim phase of the algorithm as applied Lo o stervoscopin
gho~t formed frormn the accidental allignment of the two
hexagons. The stercoscopic ghost was climiated as the
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creation of the ghost and it's subsequent movement violated
the smoothness assumption,

Figure 10: [dentifying Potenlial Labels.

Figure 11: Removing Stereoscopic Ghosts.

The algorithm nas also been applied to real world data.
A digitized stereoscopic tilm was vreated of a small tov beat.
The Moravec operator [11] was applicd to each frame. and
the points detectnd by the operator were used as input to the
tracking algoritnm (sec Figure 12). Figure !3 shows the
tracking of the fealure points identified by the moraves
operator. The tracked points were transformed to the sarne
perspective view as the image of the boat in igure 12, and
then superimposed on the image.

Figure 12: oravec Response.

Figure (3: Tracking Grey-level Images.

Discussion

We have presented an algor:ithm for the stercopsis of
time varying imagery. The algorithm was based on a general
stnoothness assumptoon; a feature point will remain
relatively unchanged from one frame to the next. [he
algorithm is nonservative in that provided that the features
being satisfy the general smoothness assumption and a
proximity constraint then the correct matches will be
inciuded in the tracking observed by the algorithm.
Competeing tnatches are eiiminated if they (i) violate the
general smoothness assumption over he next two frames, or
{ii) violate the proximity rule.

The algorithm utilizes spatio-temporal context
constraints, and takes a wait and see approach to both the
Lemporal matching and stereopsis problems. The algorithm
performs the short range matching function, in that if a
given object leaves the system view and then returas the two
objects will not be identified as being the same. It is assurned
that Lhere exists sorne long range matching function to
interpret the results of the temporal stereopsis algorithm.

Hysteresis is the offect - hat 'anuim’s fusional area can
be eclended once fusion has been obtined. Algorichrne for
static stereopsis have toed s as o basis for global

‘wechanisms tn sterrops,s, v simpler cterpretation fin
Lerres of Lhe ternporal stereop <is Alzonithmij s that the valee
of 71, differs for creat’on and motien  hvpolhe ses In
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particular for the motion hypothesis there is a broader
horizontal range allowed for [{ v ]. In terms of a general
smoothness principle such a favouring of a motion
hypothesis is justifled in that the temporal continuity of an
object is more desireable than having to destroy the object
and then re-create it.

A similar intepretation exists for the induced efTect of
vertical disparities. The value of 7, can be relaxed for
motion hypothesis. Again in terms of a general smoothness
constraint such an approach is justified.

[n order to modify the temporal stereopsis algorithm
so that it would exhibit expansion of the [usional area once
fusion had been obtained, it was necessary to introduce two
new parameters; e, and e, into the algorithm. e, and e,
denote the fusional region once fusion has been obtained. As
the fusional region should expand for motion hypotheses,
e, =T, and e, >71,, where 7, and 7, denote thc fusional
region for creation type hypotheses (see Figure 14).

~~

f e m—- = —w d

tigure 14: Creation and Motion Fusion Areas

Conclusions

We have developed a spatially noncooperative
algorithm for the stereupsis and tracking of time varying
stereoscopic imagery. We have argued that by enforcing
temporal consgistencies based on results from human
psychology both sterrcoscopic ghosts and invalid temporat
malches can  be oliminated. Our algorithm  correctly
interprels Panuri's Limiting Case in that we allow for more
than one matceh for o given monocular feature, and we have
suggested that the induced effect and hysteresis are not
effects of statin stercopsis but rather result {rom the
relaxation of spaticl constraints in ocrder to rnaintain
temporal stereopsis.
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SCALE-BASED DESCRIPTIONS OF PLANAR CURVES
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Department of Computer Science
University of British Columbia

Abstract

The problem posed in this paper is the description of
planar curves at varying levels of detail. Five necessar
conditions are imposed on any candidate solution method.
Two candidate methods are rejected. A new method that
uses well-known Gaussian smoothing techniques but applies
them in a path-based coordinate system is described. By
smoothing with respect to a path-length parameter the
difficultics of other methods are overcome. An example
shows how the method extracts the major features of a
curve, at varying levels of detail, based on segmentation at
zeroes of the curvature, k. The method satisfies the five
necessary criteria.

1. The Problem: Detail and Scale

Achieving a Eroper notion of detail in a domain is a
prerequisite for the construction of useful descriptions of
domain elements. Such descriptions allow, for example,
efficient coarse-to-fine matching. In vision, the problem of
image detail is often reduced to the problem of scale. One
approach to that problem extracts the locations of zero-
crossings in the second derivative of the Gaussian-smoothed
signal, varying the width of the Gaussian kernel to obtain
multiple descriptions of the signal. This method has been
used to extract “‘edge” elements at different spatial frequen-
cies in an image intensity function I(x,y) of two independent
variables [1]. It has also been used to perform automatic
peak selection in histograms [2] and generalized to extract a
new description, the scale space image, of signals that are
functions of one variable [3].

Here, we are concerned with the problem of detail at a
higher level in the visual system for the description of edges
and other contours rather than for the extraction of edge
locations from sensory data. We pose the problem of scale-
based descriptions of planar curves. In our cooperative
interpretation project [45), we are {aced with the task of, for
example, matching shorelines, roads and rivers extracted
from aerial and satellite imagery, at varying scales, and
from sketched maps. To do this successfully for a shoreline,
say, we want to extract scale-based descriptions of it as an
alternating sequence of headlands and bays.

2. Necessary Conditlons on Any Method

In artificial intelligence, we often settle for sufficienc
conditions, simply finding a method that will do the job,
more powerful methodology specifies criteria that any ade-
quate solution method must satisly. Here, we propose five
such criteria.

Criterion 1 The method must be computational, prefer-
ably using local support techniques.

Criterion 2 The method must produce essentially the same
result regardless of the coordinate system
imposed on the curve. This implies that the
descriptions must be well-behaved under rota-
tion, translation, reflection and uniform expan-

sion of the coordinate system (or the curve
itself}).

Criterion 8 It must not be ill-conditioned. Small changes
in the curve should not cause large changes in
its descriptions.

Criterion {4 The descriptions should correspond to human

performance on the task.

Criterion 5 The method must not require arbitrary choices
that affect the descriptions.

These criteria may not all be easy to justify or trivial
to verify, however, if accepted, they impose stringent
requirements on the class of all acceptabie methods.

Qur first candidate method was based on the detail
hierarchy for curves used in the Mapsee project since its ori-
gin [5,6{. That hierarchy is a binary tree of straight line
approximations to the curve. The initial approximation
joins the end points. Subsequent approximations recursively
refine the initial approximation by breaking the approxima-
tion at the point on the curve farthest from the straight line
joining its end points.

This method violates criterion 3. If two points are
roughly equidistant outliers from the current approximation
then a small movement of one of them could cause a large
change in the description. Criterion 5 is also violated. If
the curve is closed then a purely arbitrary choice of end
points is required which has a drastic eflect on the descrip-
tion.

A second candidate method considers the curve to be a
function of one variable y(x). If that function is mul-
tivalued, break it into several piecewise single-valued func-
tions. Then apply Witkin'g tecgniqucs {3] to y&x) to extract
smoothed functions and mark the points of inflection. The
problems with that method would include the handling of
the boundary conditions at the end of each break in the
curve. Even if those serious problems were solved the
method would still not satisfy criterion 2. For example,
after a reflection, of the coordinate system (or the curve)
through the line y = z the method would not produce essen-
tially the same result. Smoothing x(v} with respect to y is
quite different from smoothing y(x} with respect to x. Simi-
lar arguments apply to rotation transformations.

These considerations suggest using a description based
on curvature [7,8} but one that is elaborated to analyze the
curve at varying levels of detail in scale space.

3. A Method

To satisfy criterion 2, we have to use a path-based
coordinate system for a curve C. Consider the paramcteri-
zation

C ={(z(hy (] te0,1]}

In this section we consider only closed curves so
z(0) = z(1) and  y(0) =y (1)
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The parameter t is a linecar function of s, the path
length along the curve from (x(0),y(0)), scaled to range over
[0,1]. x(t) and y(t) may be considered defined over Eco,oo)

1}.
wnt‘z periodic behaviour:
At+1) = 2(¢) wt+1) = o)

and

The method requires smoothing the functions x(t) and
y(t) by convolution with a Gaussian kernel of width o.

) (t-n)?
Define Xt0) = 2(t) @ o{t,0) = [ {v) m}é_ﬂe 7 gy

and define Y{{,¢) similarly.
The smoothed curve C, is simply:

Co = {(X(t,o'),)’(t,a)) l te [011”~

Notice that C = Cy = lin;C',.
T—

The points of particular interest on C, are the points
of inflection. The curvature & of a planar curve at a point
on the curve is the inverse of the radius of curvature of an
osculating circle tangent at that point with its sign indicat-
ing the direction of curvature. Define

dy Ly
o 2y n 2y
y dr y d
Then
yI'
CCTIRRE

The zeroes of & are of interest. Since to obtain C, we
are smoothing x(t) and y(t), it is cumbersome to return to
the image domain to compute y'(z) and y'' (), in order to
compute «; moreover, there would be difliculties when

— o0 or y''! —oco and when y(x) is multivalued.
Accordingly we wish to express x purely as a function of
derivatives of xﬁ&) and y(t). Those derivatives can then be
computed directly using appropriate masks. Define

sty ds
dt d?
.d £
V=—¥‘ !I=—.g'
di 4t
Then
y'(z) =L
z
al?]
f} dl . ..., ..
"' (2) = dy - 'I Zy.z.'l
dz T 1.3
and
« TYy-y7r

eI

In the smoothed curve X(t,a) = Q%-ttﬂ)-, Ht,cr), ;\?(t,a)

and i}(t,c(? are needed to compute «(t,0). They can be
obtained directly from x(t) and y(t) using,

; dXte) Ot ®gto)] dglo
Mbo) = =5 = at = () ®[—5¢—l‘
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and

Vo) = 22X Pdlto)
Abo) =T =20 ®[ ae? ]

Using these equations «(t,o} may

and similarly for YSt,o?
y from convolutions performed on x(t)

be computed direct
and y(t).

Several remarks about the method are appropriate.
First, notice that for closed curves, treating x(t) and y(t) as
periodic eliminates all edge cffects. Sccond, if C i3 closed
then the choice of the point on C at which ¢ = 0 is purely
arbitrary but has no elfect on the description in terms of
zeroes of & or the smoothed curve. Third, the use of a

ath-based parameterization of the curve gives the desired
invariance with respect to rotation, translation, reflection
and uniform scale change of the curve. The curvature x is
invariant under rotation, translation and reflection. If the

curve is scaled by a factor w then ' = —x. la particular

w
the shape of the smoothed curve and the relative locations
of the zeroes of x will be invariant. One way to see this is
to realize that linear coordinate transforms commute with
linear smoothing operations. Fourth, small changes in the
original curve may perturb the zero-crossing description for
small ¢ but for larger values of ¢ their effects will disappear.

4. An Example

This method is apglied to the coastline of Africa in Fig-
ure 1 for successively doubled values of 6. Beside each C
the functions X(t,¢), Y(t,0) and «(t,¢) are displayed. The
domain of t, the interval {0,1], has been divided into 1024
equally-sized subintervals for this experment. The values of
o are given in terms of the number of subintervals. The
locations at which « =0 are marked on each curve. As
o — oo the curve asymptotically approaches its centre of
mass. Notice also that as ¢ becomes larger the major head-
lands and bays emerge as dominant. At this point we can
only appeal to the reader's intuitions to justify the claim
that the results cerrespond to human performance.
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Figure 1. Smoothing a Curve: Scale-based Effects
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Figure 1. (Continued) Smoothing a Curve: Scale-based Effects
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5. Extenslons

We have only discussed the application to closed curves
so far. However, in our application, curves do not always
close. They may also have [ree ends and junctions, or they
ma cxtendybeyond the bounds of the map or satellite image
- tﬁ’e frame problem. The only difficulty in extending our
method to these curves lies in specifying the correct boun-
dary conditions. Exteasions to space curves and surfaces in
higher dimensionality spaces should be pursued.

6. Conclusion
We have posed a groblem of scale-based description of
planar curves, proposed five criteria to judge any solution
method and described a method that satisfies those criteria.
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IMPLEMENT ING PROGRAPH IN PROLOG: AN OVERVIEW
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Abstract -- The graphical programming
language PROGRAPH and visual effects accom-
panying execution of prographs are briefly
described. A correspondance is demonstrated
between prographs and executable Prolog pro-
grams written in micro-PROLOG. It is shown
how the graphical information can be expres-
sed, and how the Prolog program corresponding
to a prograph can be modified to incorporate
communication with this graphical structure.
Finally, an interpreter is described. This
interpeter, written in micro-PROLOG, executes
the modified Prolog program wusing the
graphical information to produce the required
visual effects. It also allows the user to
query partial results during execution.

1. Introduction.

The recent strong interest in functional
programming languages is due to dis-
enchantment with procedural programming
lanquages [1,4], and rapidly growing interest
in dataflow architectures [7].

Functional programming lanquages them-
selves also have some drawbacks. For ex-
ample, to avoid using variables one must
either apply strong restrictions as in Lisp,
where the functional nature allows only one
return value from each functional evaluation;
or adopt a complicated formalism, as in the
FP system of Backus [1].

These problems can be avoided by dis-
carding the usual textual representation of
programs and using instead a graph in which
arcs carry values normally passed using
variables. The source and destinations of an
item of data are therefore made obvious: so
the user need not keep track of all the
occurrences of a variable, or distinguish
between similar variable names. An added
advantage of such a graphical representation
is that potential paralfelism is explicit.
The first attempt to create such a graphical
language resulted in GPL [3], which was never
completely developed. A more recent develop-
ment is the language PROGRAPH [6] which,
unlike GPL, provides the modularity that
allows programs to be built and debugged in
manageable portions, like prgrams in textual
languages such as Prolog. A preliminary
implementation on a PERQ graphics station is
presently undergoing testing. This version
is written in Pascal and is extremely com-
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plex, particularly the graphics portion, and
it is now clear that an alternative implemen-
tation language is required. Although in
this paper we outline only an interpreter and
graphical interface written in Prolog, it is
clear that Prolog is ideally suited to
implementing the whole PROGRAPH system. This
includes the graphical editor, compiler,
database manager and operating system.

2. Introduction to PROGRAPH.

In this section we will introduce the
main features of PROGRAPH by considering an
example, shown in figure 1 at the top of the
following page.

A prograph consists aof a collection of
one or more frames containing boxes connected
by wires. Data flows through a frame from
top to bottom, so wires incident on the top
of a box carry inputs to it, while wires
incident on the bottom transmit its outputs.
Our example shows a prograph consisting of a
single frame named REVERSE which reverses a
list., This frame contains a complex box
consisting of two compartments IF and THEN.
When a list arrives at the complex box
through the top wire, it is passed first to
the IF compartment which is activated. The
box labelled NONEMPTY receives the list, and
outputs either true or false to the diamond.
In the first case, the list is passed to the
THEN compartment, otherwise it it is passed
unchanged to the output of the complex., If
the THEN compartment is activated, the list
passes to the FIRST-REST box which returns
the head and tail of the list on the left and
right output wires respectively. The next
box to be activated is the one labelled
REVERSE, since its output is required as an
input to APPEND. The REVERSE box is of
course, a recursive call to the frame
REVERSE, and produces as output the reverse
of the tail of our original input list. The
APPEND box then receives this reversed tail
on its left input wire, and the head of the
original list on its right input wire. It
attaches this head to the end of the reversed
tail, and passes the result via its output
wire to the output wire of the whole complex,
which in turn, becomes the output of the
frame. The boxes labelled NONEMPTY, FIRST-
REST and APPEND are calls to system defined
functions. There are a number of other com-
plexes, for example WHILE for iteration. For
? ?ore detailed description of PROGRAPH see

6].
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FIRST-REST J
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APPEND

Figure 1; A prograph that produces as output

the reverse of the

3. Observing and interacting
with the execution of prographs.

It should be noted that figure 1 is a
hard copy of the screen representation of a
pragraph aon the PERQ@, and that during the
execution it is possible to observe various
things happening on the screen. When exe-
cution begins, the top bar of the REVERSE
frame flashes for a brief period, then as
data passes down the top wire, a "fireball”
rolls down it. Next, the top bar of the IF
compartment flashes and a fireball passes to
the NONEMPTY box, which in turn flashes and
sends a fireball to the diamond. [f NONEMPTY
produces true, the THEN compartment bar will
flash, and the process will continue inside
the compartment. The recursion produces the
following effects on the screen. When the
FIRST-REST box has been executed, fireballs
travel down its output wires to the APPEND
and REVERSE boxes. The REVERSE box then
flashes and as a result of the call, the
whole process is repeated on the REVERSE
frame, Finally an invocation of REVERSE will
be reached in which the NONEMPTY box produces
false, in which case a fireball will appear
on the output wire of the output of the
complex. This fireball corresponds to an
output from the deepest activation of the
REVERSE box, so a fireball will appear on the
output wire of that box and travel to APPEND,
which will flash and produce a fireball which
again becomes the output of a REVERSE box.
Firebalis will continue to appear from the
REVERSE box and APPEND will flash corres-
pondingly until the original invocation of
the frame is complete.

to be incor-
interact with
in order to
it will

facilities soon

allow the user to
during execution
In particular

Other
porated, will
the interpreter
allow easy debugging.

list which

is its input.

be possible to execute a prograph in a step-
wise fashion, one box at a time. After each
box is executed, the user will have the op-
portunity of asking for values on individual
wires, changing these values, and modifying

the prograph. It will also be possible to
ask that execution proceeds until an error is
detected during execution. At that point the

appropriate message

system will issue an
is at fault and the

indicating which box
nature of the error.

4. Correspondence between

PROGRAPH and PROLOG.

As we mentioned in the introduction,
implementing PROGRAPH in Pascal was awkward.
We will now show that Prolog is the ideal

language to use for this purpose. First we
show using an example, that prographs corres-
pond to Prolog clauses of a certain res-
tricted type. This correspondence between
PROGRAPH and Prolog raises interesting
questions about the relationship between
functional and logic programming. These
issues are currently being investigated. In
the following discussion we will use micro-
PROLOG [5] since it has some convenient
features and is being used for the next ex-
perimental version of PROGRAPH.

Prolog program
in figure 1.

Below we present a
equivalent to the prograph

((reverse (x) (y))
(jf-then (x) (y)))

((if-then (x) (y))
(if (x) (true))
(then (x) (y)))

((if-then (x) (x)))
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(Gif (x) (y))
(nonempty (x) (y)))

((then (x) (y))
(first-rest (x) (z Z))
(reverse (Z) (Z1))
(append (Z1 z) (y)))

The clause that defines the predicate
reverse corresponds to the frame REVERSE;
this frame has a single input wire, corres-
ponding to the variable x and a single output
wire corresponding to the variable y. The
complex box inside the REVERSE frame corres-
ponds to the single literal with predicate
if-then in the body of the clause. Again the
variables x and y in this literal correspond
to the input and output wires of the complex
box. Although it is unnecessary from the
Prolog point of view, we have divided input
variables and output variables of boxes and
frames into two lists, the first of which is
always the list of inputs., This is because
the numbers of inputs and outputs may vary in
some PROGRAPH operations, and if inputs and
outputs were not distinguished, the Prolog
interpreter would not be able to determine
which were which, in the corresponding Prolog
program.

The clause defining if corresponds to
the IF compartment of the complex box; its
output variable y correponds to the wire
which terminates in the diamond. We will
assume that the predicate nonempty implements
the PROGRAPH primitive NONEMPTY. Similarly,
the clause defining then corresponds to the
THEN compartment of the complex box, and the
literals in the body of this clause corres-
pond in the obvious way with the contents of
this compartment. Again, append and first-
rest implement the corresponding PROGRAPH
primitives. Note that the order of the
literals in the body of this clause corres-
ponds to the order of execution of the cor-
responding boxes in the prograph. In general
there may be more than one possible execution
order for boxes, in which case there is more
than one possible ordering of literals in a
clause.

Clearly we could write a much shorter
Prolog program functionally equivalent to the
prograph in figure 1; however, the version we
have chosen preserves the structural
equivalence, which is necessary for the im-
plementation of the graphical features dis-
cussed in section 3.

As we mentioned above, Prolog programs
corresponding to prographs are of a res-
tricted type. Since each variable in a
literal is either an input or an output and
inputs are always fully instantiated and
outputs are always variables when a literal
is executed, every unification is between a
variable and a ground term. - The only ex-
ception is when constants true or false occur
as outputs in a literal for the purpose of
selecting alternatives, as in our example.
As a consequence these Prolog programs are
deterministic.
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5. Incorporating graphical information.

In the previous section, we showed that
prographs can be translated into directly
executable Prolog programs. This trans-
lation, however, does not preserve any con-
nection with the display on the screen, so
that none of the visual effects described in
section 3 can be implemented. In this sec-
tion, we present two sets of Prolog clauses,
one describing the graphical characteristics
of the prograph, the other specifying the
functional characteristics. This second set
of clauses corresponds strictly to the exe-
cutable Prolog program of the last section,
but also includes the necessary links to the
graphical information. We will refer to
these two sets of clauses as the graphical
and functional bases respectively.

In the following, we refer to the
prograph in figure 2, at the top of the next
page. This is identical to the prograph of
figure 1 except for the addition of integer
labels to uniquely identify significant
objects.

The graphical base: The following clauses
provide graphical information about all the
items in the picture except the wires. The
predicate name FRAME indicates an object
drawn with a banner. In each case, the first
parameter specifies further characteristics
of the object: for example, def indicates the
need for a bottom banner, and rect indicates
a rectangular shape. The second parameter is
the identifying integer linking the graphics
information with the functional base, pre-
sented later. The third parameter is a list
of coordinates which locate the object on the
screen: cl, c2 etc. would in actuality be
pairs of integers. The next two parameters
in each clause are lists of identifiers of
input and output wires respectively. The last
parameter occurring in certain clauses, gives
the displayed name of the object. The last
clause in this group corresponds to the com-
plex box. The graphical image of this box is
actually completely occluded by the images of
the IF and THEN compartments; this is re-
flected 1in the relationship between their
coordinates.

((FRAME def 1 (cl c2) (2) (17) REVERSE))
((FRAME if 3 (c3 c4) (5) ()))
((FRAE then &4 (c5 c6) (9) (16)))
((BOX oval 6 (c7 c8) (5) (7) NONBMPTY))
((BOX diamand 8 (c9) (7) ()))
((BOX rect 10

(el0 cll) (9) (12 11) FIRST-REST))
((BOX rect 13 (cl2 ¢13) (11) (14) REVERSE))

((BOX rect 15 (cla ¢l5) (14 12) (16) APPEND))
((BOX complex 18 (c3 c6) (2) (17)))

The following group of clauses specifies
how the wires are drawn. For brevity we have
specified only two of them. In each case the
first parameter is the identifying integer,
and the second parameter is a list of co-
ordinates specifying how the wire is drawn,
starting at the top.

((WIRE 2 (clé6 cl7) ))
((WIRE 14 (cl18 cl9 ¢20 c2l) ))



1 mEF REVERSE

5 9
6 10/ FIRST-REST
NONEMPTY 12 11
7
13| REVERSE
8 l 14
15| APPEND
[16
- 17

Figure 2: The prograph from figure 1 with
integer labels to i{dentify significant
objects.
The functional base: In general, every 6. The interpreter.
frame, complex, compartment and box corres-
ponds to exactly one literal in the func- In this section we present the inter-

tional base. Similarly, every wire corres-
ponds to exactly one variable, remembering of

course that two variables occurring in two
different clauses may have the same name.
The first parameter of every literal is the
identifier of the corresponding object in the

prograph: if this parameter is 0, then there
is no object in the prograph corresponding to
the literal. The first item in the body of
each clause is not a literal to be executed,
but is a list of pairs relating all the
variables occurring in the clause to their
corresponding wire identifiers. This list we

will call the wire list.

((reverse 1 (x) (y))
((x 2) (y 17))
(if-then 18 (x) (y)) )

((ifzghen 0 (x) (y))

(if 0 (x) (true))
(then 0 (x) (y)) )

((if-then 0 (x) (x))
0)

(it 3 (x) (y))
({(x 5) (y 7))
(nonempty 6 (x) (y))
(diamond 8 () ()) )
((then 4 (x) (y))
((x 9) (y 16) (z 12) (Z 11) (Z1 14a))
(first-rest 10 (x) (z 2))
(reverse 13 (Z) (Z1))
(append 15 (21 z) (y)) )

preter which executes a prograph by operating
on the graphical and functional bases. Note
that speed is not of prime importance here
since the visual effects are intended as an
aid to debugging prographs, so execution
should proceed slowly enough for these
effects to be observed. Fast execution of a
fully debugged prograph can be accomplished
by directly executing the corresponding
Prolog program, described in section 4. The
interpreter obviously requires definitions
for primitive operations: it also requires
information about the names of these
operations. In our example, this information
is contained in the following set of clauses:

((PRIMITIVE
((PRIMITIVE
((PRIMITIVE
((PRIMITIVE

nonempty))
diamond))
first-rest))
append))
The interpreter is as follows:
((EXEC X Y 2)

(PRIMITIVE X)

Xy z))
((EXEC X Y 7)

(L ((X x Y 2)IX1))

(FLASH x)

(FIRE x)

(EXEC-BODY X1) )
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((EXEC-BODY (x (y z X Y)12))
(QXERY x)
(FLASH z)
(EXEC ¥y X Y)
(FIRE z)
(EXEC-BODY (x12)) )
((EXEC-BODY (x)) )

((FIRE 0))
((FIRE x)
(FRAVE X x y YIZ)
(FIREBALL Y)) :
((FIRE x)
(BOX X x y z YiZ)
(FIREBALL Y))

To execute a prograph, a goal literal is
supplied of the form:

?2((EXEC <name> <input data list>

<output variable list>))
to which the second definition of EXEC is
applied since a prograph must consist of a
DEF frame. In executing the body of EXEC,
first CL extracts a clause for <name> from
the functional base, instantiating x with the
identifier for the graphical object corres-
ponding to <name>. Next, execution of FLASH
causes this object to be flashed on the
screen, FIRE sends fireballs down its input
wires, and finally EXEC-BODY is called to
execute the contents of the frame. The
variable .x in the definition of EXEC-BODY is
bound to the wire list. QUERY allows the
user to request the value of a variable by
using the cursor to select a wire: the iden-
tifier of the wire is found from the
graphical base, and its vailue is laocated in
the wire list. The wires accessible to the
user in this way are those inside the frame
which is being processed by the current
invocation of EXEC-BODY. The variable z in
the definition of EXEC-BODY is bound to the
identifier of a box in the frame; this box
is FLASHed, then executed by a call to EXEC.
If the box corresponds to a primitive
operation, the first definition of EXEC is
applied. When execution of the box is com-
plete, FIRE sends fireballs down its output
wires. Finally, the remaining boxes in the
frame are executed by a recursive call to
EXEC-BODY which receives the wire list x as
a parameter. When no unexecuted boxes re-
main, the second definition of EXEC-BADY is
applied.

Before we explain how FIRE and FLASH
work, we recall that Jliterals in the
functional base which have the parameter 0 as
graphica)l identifier do not correspond to any
objects in the graphical base. In our ex-
ampl{e, the literals wires in the clauses
defining predicate if-then have this proper-
ty. This is because these clauses perform
only a canditional control function. The O
value inhibits FIREing and FLASHing. The
remaining two definitions of FIRE correspond
to FIREBALLing input wires of frames and
output wires of boxes, respectively.
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7. Final remarks.

The above description of the interpreter
dnes not go into any detail about the
predicates FIREBALL, FLASH and QJERY. The
first two are purely graphical and are large-
ly implemented in assembly lanquage. There
are several interesting possibilities for
QAJERY, however; for example, the user could
cause the call to QJERY to fail, so that
backtracking occurs, with the result that
wires outside the frame could then be
queried. Because prographs are determinis-
tic, interpreting the functional base of a
prograph is deterministic. Hence no back-
tracking occurs unless the user forces it
through QJERY, in which case, execution will
be rolled back exactly one box. Another
consequence of this determinism is that the
Prolog program corresponding to a prograph
can be efficiently executed by an optimising
Prolog interpreter.

In a separate report [2], we describe an
editor/interpreter for PROGRAPH, alsc written
in micro-PROLOG, that allows prographs to be
constructed and tested simultaneously.
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ABSTRACT

There has recently been a number of papers
which extend ‘‘clausal’’ theorem proving systems
into  “non-clausal” theorem proving systems.
Most of these use the justification that the non
clausal form eliminates redundancy by not multi-
plying out subterms. This paper presents the fal-
lacy of such justification by presenting a way to
convert to clause form without multiplying out
subterms. It also shows how to generate a non-
clausal extension to your favourite clausal-
theorem prover.

1. Introduction

Recently there has been a number of papers which give
non-clausal extensions to clausal deduction systems. [or
example, the extension of resolution to non-clausal form
(Manna and Waldinger(80], Murray[82]); the extension of
Kowalski[75]'s connection graph proof procedure to non-
clausal form (Stickel{82]); and the extension of Andrews(76]'
matings to non-clausal form (Andrews{81}).

One of the major disadvantages attributed to clausal
form is the need to multiply out subterms. This paper shows
that this disadvantage can be overcome by choosing a dif-
ferent algorithm to convert to clause form.

2. Converting to Clausal form - Propositional Case

In this section we will show how to transform a wif in
negation normal form, NNF (Andrews[81]) into conjunctive
normal form, CNF! (or equivalently use Murray([82]'s notion
of polarity and ignore all explicit negations).

Assume f is a formula in negation normal form
(Skolemised, with equivalence and implication expanded out
and negations moved inj.

If f contains something of the form

(av(BAn))

then it is not in conjunctive normal form and the usual way
to convert to conjunctive normal form is to multiply out
subterms, viz:

((avA)A(avr))

Thus forming two copies of the subformula a. This causes a
problem in theorem proving systems, as a large number of
such transformations produces an exponential growth of
subterms.

t It you would rather convert to disjunctive normal form then read
the dual of the paper (.awap A and V; swap true and false; and
read valid for unsatisfiable),

We instead form f°® which is f with (aV(8r+))
replaced by (aVp) where p is a unique atom (not appearing
in f). Then form f'= fOA(<pVB)A(-pV~A)

Theorem: Repeated use of this transformation from f to
/' (assuming associativity and distributivity of A and V)
will convert a formula from NNF to CNF.

Proof: (1) the only way a NNF formula will not be in

CNF is if it has a subexpression of the form (a V(A 7})

in which case the transformation can be repeated.

(2) the number of A’s within the scope of V's is

reduced by (at least) one each time, thus repeated use

of the transformation will terminate.
Theorem: There is no multiplication of subterms in this
conversion.

Proof: This is shown by noting that there is only one

occurrence of each of a, # and 7 in the resulting for-

mula. The repeated p is only an atom and has no strue-
ture.

Theorem (Correctness): This transformation preserves
the unsatisfiability of the resulting formula.
Proof follows directly from the following Lemma.
Lemma: f is satisfiable if and only if f’ is satisfiable.
Proof:
1. (Only if Case) - Suppose f is satisfied by interpreta-
tion I. We can assume, without loss of generality, that
the denotation of p does not occur in the domain of [I.
If it does then it can be removed, creating an interpre-
tation still satisfying f.
There are two cases to consider:
a) (JA4) is true in L. In this case make ' =IU{p}. T
satisfies f° as none of the truth values have changed.
(We have substituted a true value for a true value). I
satisfies (GA4) so it satisfies ((-pVB)A(~-pVH) so T’
satisfies f'
b) (BA«) is false in 1. In this case make 7 =7U{-p}.
Then I' satisfies f° as none of the truth values has
changed. -p is true in I' so ((-p VB)A(-p V%)) is true
in I, so I' satisfies f’.
2. (If Case) - Suppose f' is satisfied by interpretation
I'. Then in particular both f° and ((~p vV B)A(~pV4))
are true in I”. There are two cases to consider:
a) p is true in I”. Then as ((~p V) A(~p V7)) is true in
I', (8 and <) must be true in I', so f is true in I' as
none of the truth values have changed.
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b) p is false in I". In this case f must be true in I as
replacing something that was false in a conjunction or a
disjunction cannot make the conjunction or disjunction
false when it was previously true. Note that there are
no negations to be considered, as all negations are
moved in, and p does not involve a negation in f.

QED.

3. The Predicate Calculus Case

The predicate calculus conversion is like the proposi-
tional calculus case except that the new atomic formula
introduced is of the form P(zy, - - ,z;) where 2y, -z,
are the free variables in (3A+) and P is a unique n-place
predicate symbol. Let f’ be created from f in the same way
as for the ground (propositional) case.

Theorem: For the predicate calculus case, f is unsatisfi-
able if and only is f' is unsatisfiable.
Proof:
Case . 1: Suppose f is satisfied by [I. Define
P(zy, -+ ,zn) to be true in I' in exactly those cases for
which (#A7) is true in I. Then for each of the values
for the variables z), - -+ ,z, the same argument as for
the ground case holds. So f’ is satisfied by I' for all
values of 2y, " - * |z,

Case 2: Suppose f’ is satisfied by I' Then for each
value of 2y, - -+ ,z, the ground argument holds. So f is
satisfied by I".

QED.
4. Using the Transformation

4.1. What Has Been Gained?

The gain that occured is that there is only one copy of
a in the resulting formula. If a is a large structure, then
once a has been proven false (or resolved away) once then
both 8 and 7 can be used. In the distributive form, a must
be resolved away for both 8 and 4.

If n is the number of A's in the scope of V's, then in
the transformation here there are 2n +1 clauses produced.
In the traditional transformation there may be 2" clauses
produced. (Consider the case of converting something in
disjunctive normal form {two literals per conjunct) into con-
junctive normal form.)

4,2. Making the Transformation Implicit

The disadvantage of such a transformation may be in
the cost of creating the new literals. In this section we show
how to avoid creating new literals, and how to avoid doing
the explicit transformation at all. The first approach is to
change the deduction system to make the transformation
implicit as a special case. The second is to modify the
preprocessing that has to be carried out before the
(unchanged)} deduction system runs.

As an example of the former, consider a resolution-type
theorem prover. In the transformed system, the only atoms
that p can unify with are the instances of p explicitly
created in the transformation. In particular, only three
instances of the atom p appear. If p is ever successfully
resolved away then both a and either 8 or 7 is resolved
away. If a is resolved away, then instead of leaving the resi-
dual literal p, and letting it resolve with one of the clauses
(-pVvpB) or (~pV~), and producing S or 4 to be resolved
away, the deduction system can be modified to recognise
this case and produce B or 4 one step earlier. The other
case of having resolved away one of 8 or 7, leaves {aVp) as
the only choice to resolve away p. Instead of having p expli-
cit, the theorem prover can try immediately to resolve away
a.

In connection graph proof procedures, the connection
graph contains all of the information about unifications. In
particular, after the connection graph is built, the internal
form of the literals is irrelevant. A connection graph
builder, instead of creat.ng the p’s and then adding the two
connections, and forgetting about the internal forms of the
p's, can build the connections without creating the p's at
all.

5. Conclusion

This paper demonstrates that one of the advantages
that “non clausal” theorem proving has over ‘‘clausal”
theorem proving is not that converting to clause form mul-
tiplies out subterms.

In any theorem proving method the only unifications
with the introduced atomic symbol will be those given by
the procedure above. Therefore the effect of the connection
can be calculated before any actual deduction, so the above
procedure may not need to be carried out at all.

If you like the idea of non-clausal theorem proving then
find your favorite clausal theorem prover; allow input in
non-clausal form; find a way to do the transformation above
implicitly; and you have an extension of the theorem prover
to the non-clausal case.
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ABSTRACT

This paper addresses the problem of interac-
tive input and output in logic programming. We
propose incremental queries as one method for
declarative interactive I/O. As another method
we propose a new model of computation (the
query interaction model) based on Sergot’s
“Query-The-User“ expert system interface.

1. Introduction

Prolog contains a well-defined declarative subset, which
does not, however, provide for input or output. Hence an
important advance is to achieve declarative I/O in a logic
programming language. In this paper we propose two ways
of modifying Prolog that make its I/O declarative: incre-
mental goal statements and the query-interaction model.
This last proposal is merely to carry the idea of Sergot's
“Query-The-User” (2] a step further.

2. Incremental goal statements

From the mathematical viewpoint, the result of a logic
program computation is a substitution to be applied to a
goal statement, Declarative output is some display of this
substitution. A convenient form is the one used in the SIM-
PLE front end to micro-Prolog {1}, where one can request
for output an arbitrary list typically containing some of the
goal statement's variables. On successful proof of the goal
statement the list is displayed with the substitution applied
to it.

We propose to make it possible to submit queries in
installments rather than all at once.

A non-incremental query has the form:

which ( <pattern>: G 8§ G, § ...}

Before the colon is an answer patlern: any expression con-
taining, say, the variables z, .. z_. After the colon is a
goal atatement: a conjunction of atomic formulas typically
containing these variables. The effect of this query depends
on whether some instance of the goal statement is a logical
consequence of the current set of assertions. If this is the
case, then the effect is to display such an instance substi-
tuted into the answer pattern.

Now we can imagine a system where not just the final
instance of the answer is displayed, but also all its

intermediate instances: the one after G, has been proved,
after G, 8 G, has been proved, etc. In general, the initial
segments G, & --- & G; may have more than one answer
substitution; the first one found is not necessarily compati-
ble with those of later initial segments.

Let us first consider the special case of deterministic
goals. Here it may be advantageous if the user can post-
pone typing in G4, till after he has seen the substitution for
G,8..6G;. This is the idea of an incremental query. We
present it as a generalization of the existing “which” query,
which can coexist with incremental queries. A ‘‘which.."”
query does not complete a query but only adds the next
increment to the query currently being built up. Thus the
sequence of incremental queries

which.{z(; -+ : G}, & ..)
which.(z,, - Gy 8 ..)
which(z,, - 1 G, & ..)

causes the same goal statement to be proved and the same
substitutiom to be determined as

which(y, ~++ G, & ~ 8Gu § -+ - §G,, 5.)
where y, --- i3 a pattern containing the union of the x-
variables.

An incremental query allows interaction: the (i+1)st
“which.."” subguery can be determined by means of the sub-
stitution displayed as a result of the first i increments.
Note that only a “which” completes the query: a variable
name in different “which..” expressions not separated by a
“which” npames the same variable. In programming
language terminology, a first “‘which..” opens a block; every
“which’ closes one.

We show an example interaction by means of incremen-
tal goal statements. Let ‘“trans” denote a relation with
database states as first and third arguments and with a
transaction as second argument. This relation holds if and
only if the third argument is the result of applying the
second to the first “init”" is some standard initial database
state,

which..(z1 : trans{init add(red{cherry)} z,))

The effect of this subquery is to display the value of z,, viz.
z, = {red(cherry)}.
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which..(z, : trans(z, add(green(apple)} z,))

and z, is now the database state resulting from adding both
red(cherry) and green(apple) to init. In this way states are
built up by successive query increments containing chained
“trans” goals. Each time the database is displayed. The
next query increment can take into account the state last
displayed.

Suppose we regret the transaction add(green(apple))
and that we now enter the query increment

which..(z, : trans(z, add(red(apple)) z,))

Here it seems reasonable to implement trans in such a way
that its third argument always has to be an uninstantiated
variable. Then the last query increment will be voided by a
control error, signalling relation misuse causing an imple-
mentation exception. Otherwise failure will result: no =z,
exists as required by the last two query increments. But let
us assume that a control error occurs so that the first two
query increments still stand. The user's mistake in the
voided query increment can now be corrected:

-

which..(z4 : trans(z; add(red(apple)) z,))

We see that because we have names of previous states, we
can undo transactions.

If we are not interested in being able to undo, and only
use trans in chained mode, then the name of states are not
needed. For such situations a specialized notation can be
used. Instead of

which..(z; : trans(init <tc—ac—~1> z,))

which..(z, : trans(z;, <tr—ac—2> z,))

we could write something like
chain trans init

<tr—ac—1> {z, is displayed}

<tr—ac~2> {z, is displayed}

With this convention the interaction looks completely
imperative, But we know that it cran be syntactic sugar for
declarative I/O using incremental queries. For example, the
states and transactions could be those of the BASIC
programming language. Then our proposal for the sugared
form of query increments containing chained ‘“‘trans’ goals
results in an interaction indistinguishable from a conven-
tional one in BASIC. Yet ours is (sugared) logic. However,
we do not advocate this usage because BASIC computations
can usually be recast as more problem-oriented relations not
involving BASIC states, so that not only incremental queries
are inappropriate but also the entire state-change paradigm.

It has been suggested by Marek Sergot (personal com-
munication) that incremental queries are useful for non-
deterministic goals as well. He suggests the example of a
logic program constructing a timetable satisfying con-
straints expressed as goals of a query. The user enters a
query containing all constraints he can think of. In
response, the program displays the first solution. The user
may then notice some undesirable feature of this solution.

If this first query were incremental, the user can then con-
tinue it with a goal further constraining the solution to
avoid the objectionable feature. In this way the user can
converge interactively to a satisfying timetable without hav-
ing to be able to have in mind in advance all the required
constraints.

Robert Kowalski (private communication) has looked at
incremental goal statements from the metalevel. From this
august vantage point they look a very special case indeed:
he remarked that the successive goal statements can be
regarded 2s a sequence of independent queries having the
special property that each is an extension of the previous
one. That immediately suggests a more general mechanism
allowing one to generate sequences of object-level queries
specified by a logic program at the metalevel. Such a pro-
gram could of course generate any sequence. However, if it
would generate the next element of the sequence by tacking
on a goal to the previous element and if it would ask the
user (sce below) what this additional goal should be, then
Kowalski's general mechanism would simulate the proposed
incremental goal statements,

3. The query-interaction model

We introduce the query-interaction model by a brief
sketch of the main idea of “Query-The-User” [2]. Prolog
programs consist of conditional assertions, which can be
regarded as rules, and of unconditional assertions which are
more like database facts. If a query matches an uncondi-
tional assertion it is answered immediately, otherwise it may
match a conditional assertion resulting in a modified query.
Ultimately, however, all queries must be reduced to ones
that can be answered by a database entry. Conventional
Prolog execution causes a query to fail if every way of
choosing matching assertions leaves at least one unmatch-
able query.

In Query-The-User this last situation is regarded as a
symptom of lack of information for which there exists,
potentially, a remedy. The nser is regarded as an extension
of the program database. Whenever missing information is
encountered, the user is queried. Here we emphasize two
aspects of Query-The-User. The first is that there is a new
type of relation between user and machine: it is symmetrical
in the sense that queries can go both ways. The second is
that, because of this symmetry, declarative snput has been
added to the declarative output of microProlog's SIMPLE.
Moreover the declarative I/O thus achieved is interactive.

Logic programming has inherited some aspects of the
legacy of conventional programming: solipsistic program
execution is the norm; I/O is tacked on in the form of cer-
tain system functions. Kowalski's procedural interpretation
of logic, where definite clauses are interpreted as procedure
declarations and where SLD resolutions are interpreted as
procedure calls, is based on this solipsistic model of compu-
tation. Prolog's I/O by means of procedures with side
effects is a part of this inheritance.

In Query-The-User, logic programming has contributed
a new model of computation; let us call it the query interac-
tion model. The operational interpretation of a definite
clause

A-B & - 8B,
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is that of a query reflector: when a query of the form

A

is directed at it, this results in queries
By, -+, B,

being reflected from it, without any @ priori commitment as
to where these reflected queries go. Let us consider as possi-
ble destinations of reflected queries

A) the user

B) the clause set itself

C) other clause sets (in the same machine or not)

D) programs in other languages (in the same machine or
not)

At the solipsistic end of a spectrum of possibilities, the des-
tination is always B. But even conventional Prolog imple-
mentations are not that extreme: if the predicate symbol of
a reflected query belongs to a certain class, then its destina-
tion is D. This class is usually called ‘“‘built-in”; these
queries typically ask for arithmetical operations, I/O by side
effect, deviation from the normal control regime, type
conversion, and perhaps other facilities. At the interactive
extreme of the spectrum, the destination is never B.

We see that deciding where reflected queries are
answered now becomes a new dimension of control. In the
procedural interpretation of logic, control is needed to deter-
mine in what order goals are selected and in what order
matching clauses are tried for a given selected goal. These
decisions also have to be taken in the query interaction
model. But there one has the additional choice in determin-
ing the destination of reflected queries.

Consider an existing system from the point of view pro-
vided by the query interaction model. APES (see
Hammond's contribution in [1]) determines the destination
of reflected queries in the same way as conventional Prolog
interpreters: by determining to which class the predicate
symbol belongs. APES goes beyond conventional Prolog in
allowing the uvser to determine these classes by an interac-
tion at the meta-level. Another control strategy would be
always to try first the rule set itself and to send the
reflected query elsewhere in case of failure, trying perhaps
first option D and then option A. This gives quite different
properties: to make the query interaction model practically
attractive, it needs to be implemented with a flexible and
convenient facility for the user to specify this new aspect of
control.
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Abstract

Rog-O-Matic is a novel combination of algorithmic and
production systems programming techniques which cooperate
to explore a hostle cnvironment. This environment is the
computer game Rogue, which offers several advantages for
studying exploration tasks. This paper presents the major
features of the Rog-O-Matic system, the types of knowledge
sources and rules used to control the exploration, and
compares the performance of the system with human Rogue
players. .

Introduction

Rog-O-Matic plays the computer game Rogue, wherein the
object is to explore and survive a complex and hostile
environment. Rogue is an example of an exploration task, ie
given an undirected planar graph, a starting node, and a
visibility function which maps each node into a subset of
visibile nodes, exploration entails traversing edges so as to see
all of the nodes. Minimizing the number of nodes visited is a
subgoal. Studying exploration requires two things; terrain to be
explored, and an explorer to search it. There are four major
advantages for choosing Rogue as a terrain generator:

o Success in Rogue depends heavily on successful
cxploration,

o It is a standard game, designed for human play.

« It has an objective, scalar measure of performance (ie.
the score).

o There is an abundance of human volunteers to
calibrate the performance measure.

The Rogue exploration task is complicated by adversaries
which attempt to prevent the explorer from reaching his goal.
Carbonell has studied the problem of planning in an adversary
relationship {2], but planning in Rogue is hampered by the
randomness of the adversary.  Where the probabilities are
known, search trees can be built with cach possible next state
labelled with its transition probability. The action with the
highest expected value can then be selected {1}, In Rogue,
however, these probabilities are unknown to the player, and

can change from game to game. Scenarios have also been used’

to analyze combat situations [9], but when unseen opponents
can appear at any time, and when many of the combat
parameters are unknown, choosing the right scenarios can be
very difficult. .

Rog-O-Matic is designed as an knowledge based or "expert”
system  because a  search  based solution is  inherently
intractable. There are as many as 500 possible actions at any
onc time; for cach action there are several thousand possible
next states.

‘1l29"

Rog-O-Matic differs from other expert systems in the
following respects:

o It solves a dynamic problem rather than a static one.

o [ plans against adversaties.

o It plays a game in which some events are determined
randomiy.

o IL plays despite limited information.

In this paper we introduce the Rogue environment and
discuss the architecture, knowledge sources, and production
rules used by Rog-O-Muatic to explore that environment. We
also discuss (he system’s implementation and compare its
performance with that of human Rogue experts. IFor more a
more detailed description of the program, see (7].

The Rogue Environment

The Rogue game is described in more detail in {8]; an
overview is given here. The environment is a cave composed
of levels: each level contains between six and nine rectangular
rooms connected by tunnels. The game player takes the role of
explorer, searching for gold and fighting the monsters which
guard the cave. Magical items such as potions or weapons are
also scattered about, and these can be used to advantage in
combat. Traps are hidden throughout the rooms to thwart
careless players.

The object of the game is to explore to the 26" level, find
the Amulet of Yendor, und bring it back to the surface. A
player who achieves this goal is calied a Toral Winner. As the
explorer poes decper into the cave, the gold becomes more
plentiful and the monsters become more difficult to defeat, As
the explorer kills monsters in combat, he becomes a better
fighter. On the average, monsters increase in ferocity faster
than the player increases his skill, so reaching the 26™ level is
almost impossible. The player's score is the amount of gold he
obtains, with bonuses given for retrieving the amulet.

The Expert System Architecture

Rog-O-Matic is a combination of algorithmic knowledge
sources and production rules.  Where uncertainty is low,
algorithmic  methods provide fast calculation of relevant
information. Where uncertainty is high, heuristic production
rules provide reasonable behavior,  Knowledge sources and
production rules interact through a world model or
"blackboard™ {3].  Because the system s implemented in an
imperative  language. the production rules are  statically
ordered.  Dynamically ordered ruies would have been much
more complicated 1o code, and very few of the rules would
benefit from this added complexity,
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Figore 1: Rog-O-Matic System Architecture

Figure 1 shows the Rog-O-Matic high-level system
architecture.  Rog-O-Matic plays the game by intercepting
characters from the terminal stream, and sending command
characters back to the Rogue process. The input interface must
convert a stream of characters designed to draw a meaningful
picture on a CRT screen into a representation of the world
state. This function is performed by the sensory module. The
less difficult task of converting motion and action directives
into Rogue commands is done by the effector module, which is
shown mainly for symmetry, Langley er al have described the
advantages of simple sensory/cffector interfaces in studying a
reactive environment {6]. The long term memory file is a
portion of the world model which is saved between games.
The gene pool tracks successful settings of parameters which
modify the behavior rules. All long term learning is achieved
by modifying these two files.

Knowledge Sources

The world modcl is operated on by a variety of knowledge
sources, which take tow level data from the world model and
process it into higher level information. Eventually, the
information is encoded at a sufficiently high level for the rules
to operate directly on it. The action primitives also change the
worfd model. This feedback permits the production rules to
encode inference mechanisms and short term memory. A
partial list of knowledge sources is given here:

» Sensory system (sense) Builds low level data structures
from Roguc output,

¢ Object map (objmap) A data structure which tracks the
location and history of objects in the environment
(such as weapons or monsters).

e Inventory handler (invent) A database of items in Rog-
O-Matic’s pack.

o Terrain map (termap) A data structure recording the
terrain features of the current level.

« Connectivity analyzer (connect) Finds cycles of rooms
(loops).

o Path calculation (pathc) Performs weighted shortest
path calculations. )

o Internal state recognizer (intern) Tracks the health and
combat status of Rog-O-Matic.

Production Rules

The rules are grouped hicrarchically into experts; cach

cxpert performs a related set of wasks,  These experts are
prioritized in order of cstimated contribution to survivability,
For example, if the melee expert decides that a monster must
be fought, that decision overrides the advice of the object
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Figure 2:  Experts (ovals) and Knowledge Sources (boxes)

acquisition expert calling for an object to be picked up. If the
melee expert suggests no action, then the object acquisition
expert’s directive is acted upon. The basic structure resembles
a directed acyclic graph (DAG) of [F-THEN-LLSE rules.
Figure 2 shows the intormation flow between these experts.
Here is a list of the most important experts:

o Weapon handler (weapon) Chooses weapon to wield.

« Melee expert (melee) Controls fighting during combat.

o Target acquisition expert (target) Controls pursuit of
targets.

e Missile fire expert (missile) Fires missiles (arrows,
spears, rocks, etc.) at distant targets.

« Battlestations expert (battle) Performs special attacks,
initiates retreat,

o Retreat expert (retreat) Uses the termap and connect
to choose a path for retreat,

o Object acquisition expert {object) Picks up objects.

o Armor handlcr (armor) Chooses armor to wear.

o Magic item handlers (magic) Manipulates magic items.

o Health maintenance (health) Decides to eat when
hungry and (o heal damage by resting.

o Exploration expert (explore) Chooses next place to
explore, and controls movement.

Algorithmic Knowledge Sources

Of the algorithmic knowledge sources, the path calculator is
the most interesting, 1t reads the wrrain map and determines
weighted shortest paths from Rog-O-Matic 0 the nearest
location satisfying specified criteria (such as the nearest



/.
* If we can die in one turn and we are not at peak
* strength, we might want to retreat. Don't try to
* run if we are confused or being held by somathing.
* If we are on a door, wait until the monster is next
* to us {(that way we can shoot arrows at him, while
* he catches up). Don‘t run away from Oragons!{!
* They'll just flame you from behind.
-

/

1f ({die_in (1) && Hp+Explev < Hpmax) &%
tconfused && lbeingheld &&
{(ton(DOOR) |} turns < 1) &&
'streg(monster, "dragon") &&
runaway ()) '
{ display ("Run away! Run away!"): return(1}: }

/t

* Wg can't run and are next to a monster which can kill
* uys in one turn. Read a scroll of teleportation,

*/

if (die_in (1) && turns == 0 &%
(obj=havenamed (scroll, "teleportation")) >= 0 &&
reads (obj))

{ return (1); }

Figure 3: Sample Rules from the Partlestations Expert

unknown object, or the nearest escape route). The edge costs
are small, bounded integers which encode known or possible
dangers (such as traps or unexplored squares). A breadth-first
scarch explores outward from the current location, and any
square with a non-zere  ost (an avoidance value) has its cost
decremented and then square is placed unexamined at the end
of the search queue. The result is a weighted shortest path
obtained in time linear to the number of terrain squares. Since
exploration requires the system to spend most of its time
moving, a fast path calculator is essential.

Most of the actions taken by Rog-O-Matic are simpler than
movement, and these actions are performed directly by the
production rules. For example, when the melee expert has
determined that a battle is underway, it puts certain key
parameters of the battle, such as the strength of the monster,
the number of turns which the monster wiil require to reach
the player, and its direction, into the blackboard and invokes
the battlestations expert.  Batilestations decides whether to
attack with the weapon currently in hand, attack with a special
magic item, or to retreat. Figure 3 shows some sample rules
extracted from batilestations,

Learning

There are three kinds of learning in Rog-O-Matic: short
term, for object recognition, long term  for monster
characteristics, and genetic learning, for parameter adjustment,
Short term learning is used to gather information about the
offensive and defensive weaponry available to the player,
Proper use of this weaponry is crucial to success in Rogue. At
the beginning, the player does not know the characteristics of
the majority of the objects in the game, Knowledge about
items can be gained through experimentation, or by using the
various /dentifv scrolls in the game. This kind of learning is
closed, since there are fewer than 50 different things any object
can be. A hand-coded database is used to match the results of
experimentation (/e trying an item to see what it does) with the
nature and use of that item.

A more intcresting problem is learning about monster
characteristics. When deciding whether to attack or retreat, an
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accurate estimate of the opponent’s strengths and weaknesses is
needed. A hardwired table of these estimates was used in early
versions of Rog-O-Matic, but the monsters were changed in
the latest release of Rogue (version 5.3). Rather than build
another table by hand, we added a learning package which
estmiates the offensive and detensive strength of each maonster
encountered. These values are retained from game to game,
and are stored in a long term memory file. This kind of
learning is not intended to increase performance (since the
earlier versions already had perfect information about monster
characteristics), but to provide flexibility for the program.
Changes in the opponents do not require changes in the
program.

The most recent addition to the program is a genctic
learning component based on the genetic adaptive algorithm of
Holland [5].  This module adjusts the following  seven
parameters which control the program’s high-level behavior:

e when to scarch for traps

o when to search for secret doors

o when to rest (1o heal damage)

o when to shoot arrows

o when o experiment with items

» when to retreat

o when t attack sleeping monsters

Twenty different settings of these parameters are kept in
another fong term memory file called the gene pool. The
average score of each such genotype is also retained. High
scoring genotypes are crossed to generate new genotypes, and
the resulting parameter scttings are evaluated until one
genotype is significantly worse than the others, at which point
it is discarded and another new genotype is generated. This
learning process produced versions of the program with
average scores twice as high as the best versions without
genetic learning (mean scores greater than 1500 as opposed to
700 for older versions, playing against Rogue 5.3).

Implementation

Rog-O-Matic runs under the Berkeley 4.2 Unix operating
system, It is composed of 12,000 lines of C code; € was chosen
for convenience and speed. It offers direct access to the
operating system primitives required to interface to the Rogue
game (a necessity, since we wanted our program to play exactly
the same game as the human players). C code also runs much
faster than most production systems languages, and this speed
was necessary for Rog-O-Matic to play enough games-for its
performance to be measured. The program takes about 30
CPU seconds (generating about 400 actions) to explore one
level, and Rogue takes an additional 15 CPU seconds
calculating its part of the simulation. At CMU, Rog-O-Matic
has played more than 12,000 games in two years on one VAX
11/780. Rog-O-Matic is also running at more than 40 other
installations in the US, Canada, and England.

Performance

Evaluation of expert systems can be a difficult problem [4],
but two measures of a game playing program are obvious: its
reputation among its competitors and its raw scores, Rog-O-
Matic has garnercd a very favorable reputation as an expert
Rogue player, and many human players have reported learning
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Figure 4: Log Scores vs. Player, Sorted by Median

a lot about Rogue both by watching it play and by reading the
source code.

We compared Rog-O-Matic scores with 15 of the best
Rogue players at CMU over a two month period, and Rog-O-
Matic played as well as the human experts.  Figure 4 shows
percentife plots of these games, sorted by median score. Rog-
O-Matic obtained the seventh best high score and the best
median score of any playver. Rog-O-Malic has also been a
Total Winner playing against each major version of Rogue.

The graph includes all players with ten or more games
against Rogue (version 5.2) on the GP-Vax at CMU. The data
were collected over a two month period from January 1, 1983
to February 21, 1983. Boxes are drawn from the fower quartile
to the upper quartite, with a line at the median. The whiskers
are drawn at the 10" and 90™ percentile marks, and extreme
games are plotted as asterisks. The vertical scale is the score
(drawn logarithmically) and the horizontal scale is the player’s
rank, The vertical scale is drawn logarithmically because
Rogue scores approximate a log-normal distribution.

Problems

The static ordering used prevents some Rogue tactics from
being cleanly represented. An example is the use of armor. In
certain cases the best armor should be worn, and in other cases
the second best armor should be worn. The rule calling for the
best armor must be disabled while the second best armor is in
place, and yet be reactivated at the right time. Each of these
dependencics requires a new global variable in short term
memory.  Dynamic rule ordering might be a cleancr way to
.solve this problem.

Another problem is single-mindedness. For example, when
retreating from a monster, it is often possible to pick up objects
on the way to an escape route. Rog-O-Malic does not consider
that a single action may satisfy multiple goals, so the program
fails to take advantage of such situations. [n other cases the
presence of a secondary factor requires more creative actions
than are currently possible. This problem is most severe when
Rog-O-Matic has to combat multiple monsters, Its heuristic is
to fight the most dangerous monster first, but there are
situations in which this rule fails miserably. In Rogue, failing
miserably usually results in death.

Conclusion and Future Work

By combining efficient algorithmic knowledge sources with
a rule based control mechanism, we have produced a program
demonstrably expert at the game of Rogue. The result is a
system capable of performing exploration  tasks while also
fulfilling the goal of seif-preservation, The system can function
well in the face of uncertain dangers, make well considered
Sight or flight decisions, and retreat successfully when it faces
overwhelming opposition.  Short term and long term learning
have provided sufficient flexibility to handle a changing
environment and reduced the programming time required to
handle newer versions of Rogue. Genetic learning has resulted
in higher average scores.  Our current work is focused on
increasing the number of parameters available for tuning by
the genetic learning algorithm, with the goal of increasing the
program’s high scores.
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Abstract

This paper describes an explanation system for frame
based knowledge about events, as presented in a visual motion
expert system. As such, it can be applied to representations
that embody different frame organizational relationships such
as is_a, part__of, instance__of, similarity, and time. This may be
contrasted with most current expert systems which employ
rufe-based knowledge representations. In addition, such
expert systems typically do not deal with complex spatio-
temporal information and only a small number of them have any
explanation capabilities. The system described in this
document Is capable of making inferences about frame
comparisons and temporal relationships not present in the
knowledge base, and provides output in both textual and
pictorial formats. The graphical format is particularly useful for
revealing the structure of the knowledge frames. The system
has been impfemented and tested on a knowledge base
designed for human left ventricular performance assessment
and examples of interaction with the system will be presented.

Introduction

One of the early conclusions of designers of expert
systems was that they should have an explanation capability
[10]. Although most of the early systems demonstrated
interesting results In thelr domain of expertise, there was a
need to see not only correct results, but also the means by
which they were achieved. Typically knowiedge appeared as
rules and was organized through the implicit AND/OR tree
formed by the premise-action pairs, and context trees that
group rules according to their applicability [16]. Rule-based
systems have many benefits; however, their ability to
accomodate an explanation facility that deals with abstractions
and comparisons of knowledge units seems limited.

in this document, we present an explanation capability
which was built upon the ALVEN system [12, 13, 14]. ALVEN
evaluates human left ventricutar performance, employing an
extensive frame-based knowledge base. With its rich
represantation scheme, which includes different knowledge
organizations and frame inter-refationships, it is able to deal
with complex issues such as time and space. In the case of
ALVEN, abstraction can be achieved with the different
knowledge organizations found in the representation, such as
generalization and aggregation, while comparison is avallable
between frames connected via similarity links. We
concentrated mainly on explanation of the knowledge base.
Although the explanation of reasoning was not addressed
explicitly, much of It can be handled since some control
information is declaratively embedded in the knowledge base.

The Representation Scheme

The explanation system makes use of the different
features of the representation scheme. Most of the important
information which one would like to get from the knowledge
base can be obtained from the organization, either directly from
the different relationships, or by inference.

The representation of knowledge uses concepts from
semantic network theory [2] and particularly the PSN formalism
[6]1. The basic entities of the representation are frames which
are used to model abstract concepts. The internal structure of
a frame is defined by siofs that form its parts, each slot having
a specific type, constraints, defaults, relations to other slots,
and exceptions. Any slot constraint or relationship may have an
associated "at time..." clause specifying the time instant or
interval at which the expression is to be evaluated [14]. The
exceptions are frames themselves and have slots that are
filled with the matching failure characteristics, so that proper
selection can be made of alternate frames. This defines an
implicit fPART_OF hierarchy of description. The PART_OF
relationship relates a frame to its parts, which are the types of
its slots. Slots are classified into two categories: prerequisite
slots specify concepts which must be observed before the
frame can be instantiated, while dependents slots provide
additional semantic components that are included along with the
frame concept on instantiation. Frames are organized along the
IS_A relationship in order to relate general to specific frames.
This provides a mechanism for imposing more global constraints
on specific concepts, by means of inheritance of properties
from father to son nodes in the hierarchy. In order to assist the
motion recognition process, one or more similarity links [7]
are inciuded with each frame. These links relate frames that
are competitors and are used to handle situations where one or
more exceptions have been raised. Exceptions are handled via
similarity links of the PART_OF parent frame of the failing frame,
which provides a context for the exception. An exception
raised by a part implies that the frame itself has also failed,
since PART_OF is a form of existential quantification. Finally,
temporal connectivity is included in the representation scheme
in several ways. Each frame has a special slot ("time__int") that
defines its temporal boundarics and is itself a frame with 3
slots : start time, end time, and duration. Temporal constraints
on each of these qualities can be attached to any siot,
providing points of time or intervais with which to represent
temporal information, as opposed to interval based operations
only [1]. In addition, the PART_OF hierarchy offers event
arcuping in time.

Classes of Knowledge Queries

As mentioned before, the questions evolve from the
structure of the knowledge base. We therefore distinguish
between two main aspects of the explanation capability in the
system: explaining the contents of specific frames, and
explaining the organization of frames.



One important note is the fact that it is expected that
the system will be used by different users. Therefore, there will
be some variations to questions, depending on the users'
background or knowledge of the system. All the examples in
this section will be of "canonical’ questions, l.e., questions in
their extended form, without complex syntax or abbreviated
wordings. For some examples of variations in wordings, see

[4].

Presenting contents of frames

The system has the ability to extract portions of
information found within frames, as requested by the user,
Exact definitions of each frame can be presented to the user,
revealing the actual quantitative and qualitative data. To
ilustrate what kind of information is obtained, we present an
example of explanation concerning contents of frames.

>>> show me the constraints on slot SUBJ in N__SYSTOLE

subj : N_LV such that

find narrow : NARROW where |
narrow,.subj = self.subj ,
narrow.time_int during self.time__int,
narrow.speed < 150 and narrow.speed >50 /*1*/

exception [NARROWING__IMPROPERLY

.

Note that in the above example, there is a number
between two asterisks on the right hand side (i.e., " /% 1 %/ "),
This points the user to a certain reference (from the medical
literature) which was used by the knowledge engineer when
the knowledge base was constructed. This reference can be
queried by the user if desired. It is also clear that such a
response is useful only to a sophisticated user.

Presenting frame organization

The second set of gquestions are 'organization
questions. The ability to traverse the different organizations
allows the user to obtain a general picture of the knowledge
base, without getting into detailed descriptions (the contents
of frames). Therefore one can see how certain concepts are
specialized, how complex concept aggregations are broken
down into simpler ones, how the failure of one hypothesis leads
to the consideration of a different one, and how events are
ordered in time. This constitutes the four dimensions along
which one can trace information: the IS_A relationship, the
PART__OF relationship, similarity links, and temporal connections,
Some examples of organization questions are:

- Show me the IS_A hierarchy rooted at frame F.

- What are the direct PART_OF descendents of frame F?
- Show me the similarity relationships that eventE has.
- What event precedes event E?

The questions that involve the IS_A and PART_OF
relationships invoive traversal of directed graphs (the 1S_A and
PART_OF hierarchies). This information is presented using a
graphics package since it is more convenient to see it in
pictorial form. Al frames have both IS_A and PART_OF
relationships with other frames. Thus, the level of specificity of
detail can be controlled by, or examined by traversing, the IS_A
hierarchy, while the level of resolution of detail (decomposition)
is reflected in the PART_OF hierarchy. An example of an IS_A
question can be found in Figure 1.

>>> show me Lhe is-a hierarchy rooted at MOTION

L R U D 1 P s ¥ C H X
SEQUENCE RECEDE
OVERIAPL_ AWAY__FR(

REFL_TRA
SIMUIL_MO / APPROACEﬂ
MOTION
2DORIENT s TOWARDS
OB_TRAN
PITYS_CHA QUTWARDS
TRANSLAT INWARDS
is-a
Figure 1

Frame Comparisgns

Similarity links connect concepts which have both some
common features and some differences, and are considered as
competitors in a recognition process. For further details on the
control scheme in ALVEN see [12, 14]. if the user asks about
frame comparisons, the explanation module must show how the
frames differ and how they are similar. The significance of this
comparison is the fact that the similarity links are used by the
control scheme. Being able to see how and why control is
transferred from one hypothesis (frame) to another allows the
user to understand what options the system has in case
certain hvpothgses fail

Initially the system has to find out whether the frames in
question are comparable, i.e., check if they are connected via
similarity links, There does not have to be a direct connection --
there could be a chain (or chains) of links connecting two
frames. Common features are found between chains of frames
and are presented as they appear In the “with similarities"
component; differences can be compared alonyg a chain of
frames, but comparison is conducted only if the same
exceptions are invoived. The reason is that these exceptions
are the driving force that causes one frame to activate
another, and following an exception along the simitarity chain is
a way of examining how one phenomenon can cause the
activation of different aiternatives. Consequently, if there
exists a similarity path of frames with no common exceptions,
the result of such a search will be regarded as failure -- no
common thread of differences. However, if the system does
find a path with common exception types, the constraints
attached to the exceptions are examined. If they do not involve
the same slot filiers (subjects, referents, etc.) -- the system
notes the fact that the exception types themselves were
common but not their tokens. On the other hand, If the
constraints do involve common slot fillers, the system finds
which ones form the difference chain. We present below an
example of finding differences between frames.
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>>> display the temporal connections between
N__DIASTASIS and N__SYSTOLE

frame tirning data
N_ISOCONTRACT | }—
N_SYSTOLE [
N_[SORELAX H
N_DIASTOLE [
0 relative Lime G_(ﬂ

The events are not of the same level.
N_DIASTASIS is part of N_DIASTOLR
To sce how, Lype x and hit CR

frame timing data
N_RAPID_FILL r——‘—l
N_D!ASTASIS A —
N_ATRIAL_FILL L ———
28 relative time B
Remarks

The upper figure presents the ter.poral order-
ing between the higher level events, while the
figure below provides more details about the
lower level event's place within its ancestor’s
context.

Figure 3

implementation

The general design of the explanation system consists
of three basic steps ~- an input module, the explanation
generator, and an output module. The purpose of the input
module is to enabie the user to ask questions in natural
language, with some restrictions, and to activate the
corresponding explanation function within the generator.
Therefore, a parser was designed and implemented, enabling
the system to cope with questions asked in free format and
different variations. The output module presents the sought
information in a suitable form, either using textual or graphic
representation. The textual response is either the contents of
frames as they appear in the knowledge base, or lists of frames
which share common features as requested by the user, along
with some additional remarks. The graphical representation
includes tools for presenting hierarchies or parts of them, as
well as displaying events on a time scale after they have been
temporally ordered by the system.

The parser utilizes a semantic grammar, represented by
means of Augmented Transition Networks (ATNs), and an ATN
interpreter. Parsing of queries is preceded by a fexical analysis
phase during which dictionary look-up is performed and the
input is scanned for keywords in order to determine the order
of application of the ATN subnets. The grammar has been
designed to accommodate variations in the tense, voice, and
number features used in the expression of queries by the user.
Ellipsis can be employed to almost any extent desirable. There
is also some provision to handie so-called "semantic ellipsis":
for instance, if a user requests some information involving a
particular frame, but fails to specify the identity of the frame,
the system fills in the missing information by "guessing" which
frame was meant, using a heuristically-guided search
backwards through a context fist containing the names of
entities mentioned in previous queries. The same mechanism is
used to resolve pronoun reference. The system informs the
user of any substitutions or insertions after the successful
completion of the parsing phase for a query. Recognition of a
query results in a direct call to the particular explanation
module designed to respond to it, followed by an opportunity for
the user to continue the dialogue by entering another gquestion,

Summary

The explanation capability described in this paper
provides an interactive mechanism for user communication with
the knowledge base. It supplies tools with which the user can
be exposed to the knowledge base and gather, study, or query
its information. It was built upon a knowledge base in which
each concept was represented as a frame, and all frames were
linked through different relationships. These relationships
enablie the system to cope with issues such as time, space, and
events, whereas other systems, in particular, the rule-based
ones, do not offer adequate solutions to these complex issues.
Moreover, the explanation of the knowledge base need not end
with queries whose answaers involve retrieval of chains of rules,
but rather handle a variety of cases, such as abstraction along
one of several directions (e.g., IS_A, PART_OF), temporal
ordering of events, comparisons between different frames, and
the ability to extract frames and parts of them. Since the
explanation system makes use of the underlying
representation, and generates the explanations without using
domain specific constructs, it can handle any knowledge base
organized similarly. Another important characteristic of this
system is the fact that it combines text and diagrams as
appropriate in the explanation process.
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>>> Whal are Lhe differences between HCM_LV_CYCLE and
CCM_LV_CYCLE ?

TOO_HIGH__ESV

d3.time_int = systole.time__int.ct
d2.time_int = diastole.time_int.et

Remarks:

Here, two differences are observed : TOO_HIGH_ESV (too high
end systolic volume), which has no additional constraints
attached to it, and MINAX|IS_TOO_SHORT (the minor axis is too
short), and the constraints are as shown (at the times of end-
systole and at end-diastole).

Explanation of Temporal Information

Perhaps the most challenging aspect is the explanation
of temporal information. The reason Is that some concepts
inherit their temporal properties from the IS_A hierarchy, while
other temporal information is found within slots and within "at"”
clauses. Ali frames in our system which are motion frames (i.e.,
not cbject frames) are events. The task of the system is to
take these frames as they appear within the knowledge hase
and map thein onto a time scale according to their relative
occurrence,

The ALVEN system contains a general motion knowledge
base, as well as a domain specific motion knowledge base (left
ventriculur motion concepts), the domain knowledge being
defined in terms of the general knowiedge. General motion
concepts can be thought of as temporally unbound motions
white domain specific motion concepts as femporally bound
motions. In other words, we usually place quantitative
temporal restrictions on the motions in the application domain,
while generai motion concepts remain always unbound
quantitatively, Additionally, the design of the explanation
capability relies on the fact that there are frames such as
SEQUENCLE, SIMUL_MOT, and OVERLAP_MOT which exist and
define temporal grouping of sets of events.

Temporal Orderin

For the purpose of relating events to each other, the
notation suggested in {1] is used. The process of ordering is
facilitated by the fact that frames contain all the information
(including the temporal ordering) about their immediate
descendents. Figure 2 illustrates this point. In N_LV_CYCLE
we can learn that N_ ISORELAX is met by N_SYSTOLE , so when
the traversal reaches the next level, the system already knows
that N_SLOW_EJECTION must be met by N_ISORELAX.
Therefore, information is local to the frame itself, but it is global
to all the componants of that frame.

In order to demonstrate the method by which the system
orders frames, we shall use one of the questions mentioned
before. The problem will be to show the temporal connections
between N_DIASTASIS and N_SYSTOLE, and they appear in the
PART_OF hierarchy presented in Figure 2.

N_DIASTOLE N_ATRIAL_FILL
N_DIASTASIS
N_ISORELAX
N_RAPID_FILI,
N_LV_CYCLE
N._SL.OW_FIECTION
N_SYSTOLE

T N_RAMD_EJECTION

N_ISOCONTRACT N_INWARD_ONSET

.—part-of

Figure 2

The first problem the system has to tackie is the fact
that the two events are not in the same PART__OF level. It is
semantically more appropriate to relate the event of the higher
level (in our example -~ N_SYSTOLE) to the other one's PART__OF
ancestor that shares the same level in the hierarchy
(N_DIASTOLE). The lower level event (N_DIASTASIS) appears
within its ancestor's (N__DIASTOLE) context. Since the PART_OF
hierarchy enables the system's designer to break complex
concepts into simpler ones, what this means is that the
comparison will be performed between concepts of the same
complexity, and then, further information will te provided to
show where and how the simpler concept appears within the
more complex context. An example of the system's response to
the original question can be found in Figure 3.

The process of ordering is done in two phases: (a) the
system has to search up the PART_OF hierarchy for a common
ancestor to the two events in question, which will be an event
containing them or their ancestors as parts; (b) from the
common event, the system traverses down the hierarchy, level
after level, relating the parts according to their temporal
ordering. (The detailed aigorithm appears in [5]). The search up
the PART_OF hierarchy can be complicated by the fact that one
of the events in question, or its ancestors, may have more than
one ancestor. This can happen when an event appears in two
(or more) different contexts, in which case the system asks
the user to resolve the ambiguity. For the simplicity of our
example, Figure 2 is presented as a tree, i.e,, all the ambiguities
have already been resolved by the user.
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Abstract

A working computer program, an air traffic control expert
system, generates knowledge that human air traffic controllers
use to justify plans. The knowledge is derived from mathemat-
ical knowledge of aircraft performance by qualitative simula-
tion. The computer translates the equations into a semantic
structure which provides a framework for qualitative simula-
tion, Simulation results are interpreted at an abstract level that
represents the human controller's understanding of naive phy-
sics. The process is called qualitative sensitivity analysis. The
approach is unique in three aspects. First, an abstraction level is
used. The equations can be interpreted in terms of Newtonian
mechanics as applied to the one dimensional motion. Second, the
reasoning process is bidirectional. Third, the computer generates
the semantic structure based on a symbolic series expansion of
the equations.

1.0. Introduction

Pilots often ‘talk with thelr hands.’ During a mission pre-
briefing, a fighter pilot will use hand gestures to indicate how
individual afrcraft are to approach the lead aircraft, fly in for-
mation, and accomplish other mission related goals. In essence,
the pilot is justifying plans for specific mission goals using sen-
sit{vity analysis based on a naive understanding of the aircraft
equations of motion. This type of reasoning is common to many
human problem solving domains. For instance, the driver of an
automobile can justify why one would decrease gears while
climbing a hill. Air traffic controllers justify their plans and
the plans of other controllers (including novel plans which
may be more elegant than their own) through a similar reason~
ing process. A common aspect is that the physics of the machine
or machines being controlled by the human can be modeled
with mathematical equations and that humans produce and
understand justifications based on their naive physics under-
standing of the equations [1]. The reasoning process, qualita-
tive sensitivity analysis, enables the computer to acquire
knowledge in a form useful for plan jfustification.

The approach is unigue in three aspects. First, a level of
abstraction is included. Domain equations may be
computationally too complex for a human expert to use. How-
ever, the equations can be interpreted in terms of a naive
representation of Newton's laws as applied to one dimensional
motion thus abstracting the influences inherent in the equa-
tions. Second, the approach enables bidirectional reasoning.
Qualitative knowledge can be used to direct quantitative rea-
soning, Additionally, when new equations are implemented,
their meaning is represented explicitly and interpreted using
the existing qualitative knowledge. Third, the computer con-
structs its own representation of the equations based on a sym-
bolic series expansion.

lThls research was accomplished at the University of Illinols and was sup-
ported by the Department of Transportation, Federal Aviation Administration
under contract number DOT-FA79WA-4380.

2.0, An Example Problem

An illustrative problem from air traffic control is used in
the remaining sections of the paper. Consider two aircraft that
are involved in a ‘head~on' conflict. The controller must gen-
erate a plan that prevents a mid-air collision. The plan must
involve the modification of one of the aircraft's flight plans. If
collision avoidance were the only air traffic control goal, the
solution would be trivial. Any legal operator (.eg., climb, des-
cend) could be used, but there are other important goals such as
fuel efficiency. A significant portion of the controller's train-
ing involves assimilating heuristics useful for generating plans
that achieve both goals. For instance, aircraft are usually more
fuel efficient at higher altitudes, The human controller choses
an operator that prevents a collision and improves (or at least
not seriously degrades) fuel efficiency. The strategies and tac-
tics one controller uses may vary from those of another con-
troller, However, a human controller can easily understand the
plans of another controller. The justifications use knowledge of
naive physics and the aircraft equations of motion.

Consider two aircraft in a head-on conflict and assume
both aircraft have an enroute goal (fly a fuel efficient path
cross country). The expert system solves this problem by using
heuristics about aircraft intentions and the conflict goals to
cause one of the aircraft to climb to a higher altitude. The jus-
tification is based on the knowledge that cross country aircraft
are more fuel efficient at higher altitudes because as they burn
off fuel, they become lighter and thus encounter less resistive

- force at a higher altitude. The same solution was obtained in a

scenario when of the cross country aircraft was a recently
inflight-refueled military transport aircraft. When the com-
puter was advised to descend the military aircraft, the com-
puter was able to generate the knowledge that since the mili-
tary aircraft's mass increased (due to the inflight refueling) it
was more fuel efficient at a lower altitude. The reasoning pro-
cess that allows this type of knowledge to be translated from
mathematical models is now discussed.

3.0, The Reasoning Component

The reasoning component consists of naive physics
knowledge, domain equations, and interfaces between these
knowledge types and a data base of heuristics. The reasoning
component serves the role of a knowledge translator. That is,
the reasoning component can generate heuristic~-like knowledge
from a mathematical substructure.

3.1. Naive Physics Level

Newton's laws are represented in a semantic network
where nodes are primitive concepts (eg, force, velocity) and
links indicate their interaction, The structure represents the
author's understanding of Newtonian mechanics as abstructed to
one dimensional motion of mechanical systems. The naive phy-
sics knowledge is made explicit by the designer. The linkages
between the naive physics level and a domain are equation
dependent. The representation serves as the basis for the
Interpretation of yet-to-be specified equations and algorithms.
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Nodes represent forces (propulsive, enabling, resistive),
acceleration, velocity, position, mass, and power. Propulsive
and enabling forces are referred to as positive forces. Propul-
sive forces require an external enablement which converts fuel
(portion of system's mass) into the force. The rate of change of
mass varies directly with the change in propulsive force. That
is, when propulsive force increases, the fuel flow rate increases
causing the mass rate of change to increase.

Another positive force is called an enabling force, Ena-
bling forces do not directly influence mass. For instance, the
air flow over a wing causes a pressure differential that enables
lift, Lift is an enabling force that counteracts weight, Resistive
forces counteract positive forces. Common examples are pressure
and friction forces which vary with velocity and domain
dependent variables such as weight, density, and surface area.

Nodes are related by links which specify how an indepen-
dent variable is 'influenced' by a changing dependent variable,
The links define a structure in which gqualitative values are
propagated. There are four types of links: influences, com-
ponent, parent, and instance. Influence links are labeled with
two attributes: primary/secondary and positive/negative. For
example, acceleration is primarily influenced by force and
secondarily influenced by mass. The primary/secondary attri-
bute is used to identify variables that are normally static thus
improving the search efficiency. The positive/negative attri-
bute indicates the direction of change of a variable. For
instance, mass is a negative influence on acceleration. When
mass increases, acceleration decreases (assuming that force does
not changes and the body is in motion). Component links are
used to partition equations into semantically relevant subterms.
For instance, aircraft drag has two components: parasitic drag
and induced drag. Parent and instance links indicate hierarchi-
cal relationships (often identified as an 'ISA' link).

3.2, Domain Equations

Aircraft equations of motion are dependent on four forces:
lift (L), thrust (T), drag (D), and weight (W), For level flight,
dynamic equilibrium is defined as:

L-W=0 (1)
T -D=0 (2)

Each force is defined by an equation. Thrust is a function
of throttle setting. Lift is a function of velocity, air density,
angle of attack, and wing geometry. Weight is a function of air-
craft mass and gravity. Drag is a function of air density, velo-
city, and aircraft configuration variables. Drag has two com-
ponents: parasitic and induced drag. All subsonic aircraft per-
formance capabilities can be derived from the drag equation (3).
Consider an aircraft at a constant altitude and configuration.
The maximum velocity then occurs when the drag equals the
maximum thrust. Since drag is parabolic with velocity, the
velocity at the minimum drag defines the 'best endurance'
airspeed~

D= Dp +D; (3)
2
fV 0o
= — 4
DP 285 @
D, = % \wi2 V'z (5)
I~ ge b
where,
v = velocity
w = weight
(14 = altitude density ratio

aircraft configuration variables

A symbolic series expansion is used to define the influence
links. The sign of the first error term indicates a positive or
negative influence, The magnitude of the influence Is the
amount of the first error term and is saved if ambiguity resolu-
tion is later required. A variable is defined as a primary influ-
ence if it is an instance of an abstracted concept and that con-
cept is also a primary influence. Aircraft airspeed (or horizontal
velocity) is a primary influence because it Is an instance of
veloclty which is itself a primary influence of position. Some-
times influences are fouud recursively. For instance, air den-
sity is a function of altitude (an instance of vertical position).
Position can be a primary influence of resistive force (eg., fric-
tion). Thus, it is inferred that air density is a primary influ-
ence of drag.

3.3. Intertaces

The sign of the terms in the force equations in (1) and (2)
are used to define instances of forces in the naive physics
representation. For instance, T and L are positive forces. Seman-
tic knowledge is also required. Thrust is a propulsive force
while lift is an enabling force. In this context, weight and drag
are resistive forces. The representation of both aircraft levels
and the abstracted structure is shown in Fig. 1. Conceptual
knowledge specifies the procedures to use in different contexts.
A plan is fuel efficient if after implementing the plan, fuel enn-
sumption decreases. Less fuel 1s used if the drag decreases since
thrust equals drag in level flight. Consider the case where a
climb command 1s given. From the structure of Fig. 1, it 1s seen
that the air density term decreases. This may or may not cause a
favorable change i1 drag. The effect of error terms on the drag
components due to changes in density are retrieved and the
pertinent computation is performed.

4.0, Artificial Intelligence Issues

Hayes [2] discussed the need for naive theories and pro-
vided a theoretical framework for future work. de Kleer [3]
explored the computational aspects of qualitative reasoning in
the mini-world of the roller coaster and contributed the con-
cept of envisionment. Envisionment predicts system behavior
through qualitative simulation. In related research [4], he
illustrates the use of Incremental Qualitative (IQ) analysis as a
weak form of reasoning about perturbation. Forbus [5] uses a
stronger approach that includes the sign and magnitude of a
quantity's amount and derivative. In esseunce, Forbus enables the
computer to perform a sensitivity analysis.

Qualitative sensitivity analysis generates the knowledge
that humans sometimes use for plan justification. The tradi-
tional approach to plan justification is based on non-monotonic
dependency networks and associated processes (e.g., data-
dependent backtracking) [6,7] and requires that the knowledge
be represented in a uniform and convenient form. Knowledge
may reside at many levels and in many forms. A data-dependent
backtracking scheme for plan justification would first need to
acquire and represent the relevant knowledge. In this work,
the ccmputer can acquire the relevant knowledge.

The justification for the climb command is that it prevents
a mid-air collision and is fuel efficient, The important point is
that the computer understands the fuel efficlent aspect in terms
of the equation and its semantic structure. It can explain its
Justification at a more abstract level. The decrease in air density
causes drag to decrease, Drag is a resistive force. Since resistive
force decreases, the positive forces can also decrease. Similarly, a
novel plan can be justified. An aircraft that increased its mass
was found to be more fue] efficlent at a lower altitude by qual-
itatively simulating the influences of the increased mass.

Propagation of constraints in the overall structure pro-
vides a form of common-sense reasoning about the represented
domain. A controller should never issue a command that cannot
be implemented by the aircraft. For instance, consider that an
aircraft is commanded to increase its velocity. Implicit in the
command is that the aircraft is to maintain its present altitude.
The computer can perform a qualitative simulation of the com-
mand subject to constraints. The computer finds that (1) the
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Figure 1: Interface to the Aircraft Spaces

alrcraft increases its speed by increasing its throttle setting and
(2) it maintains its present altitude by decreasing its angle of
attack. The answers were obtained by a combination of forward
and backward constraint propagation.

The approach may be useful in learning new problem solv-
ing strategies. Human controllers acquire their skill by the
assimilation and justification of an expert controller's plans.
The alr traffic control expert system [1] is a script-based and
DeJong's Explanatory Schema Acquisition theory [8] is being
investigated as a potential learning module. An important aspect
of building new schemata is obtaining the correct knowledge.
Recent research has stressed the importance of understanding
the knowledge and translating the knowledge into a useful
form [9,10]. The computer can transform mathematical
knowledge into a form useful for novel plan justification in the
domain of air traffic control (as well as the automobile domain
in a limited test). Research has begun on how to use the
knowledge for automated plan Jjustification and how to
represent the knowledge in schemata,

5,0. Conclusions

Qualitative sensitivity analysis has been used by an air
traffic control expert system to facilitate the integration of
mathematical and heuristic knowledge, The reasoning is accom-
plished using a computer generated semantic network which
represents the domain equations. The space of domain equations
is referenced to an abstract space that represents Newton's laws
as applied to one dimensional motion. A qualitative simulation
based on constraint propagation was useful for generating the
type of naive physics knowledge that human controllers use in
plan justification. The future research goals are to represent
this knowledge in a heuristic form (i.e., to learn) and to use the
knowledge for plan justification.
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A Fundamental Tradeoff in
Knowledge Representation and Reasoning

Hector J. Levesque

Fairchild Laboratory for Al Research
Palo Alto, CA

This paper examines from a general point of view
a basic computational limit on automated reasoning,
and the effect that it has on Knowledge Representa-
tion (KR). The problem is essentially that it can be
more difficult to reason correctly with one representa-
tional language than with another and, moreover, that
this difficulty increases as the expressive power of the
language increases. So there is a tradeofl between the
expressiveness of a representational language and its
computational tractability. What we attempt to show
is that this tradeoff underlies the differences among a
number of representational formalisms {such as first-
order logic, databases, semantic networks, frames) and
motivates many current research issues in KR {such
as the role of analogues, syntactic encodings, and de-
faults, as well as the systems of limited inference and
hybrid reasoning).

To deal with a such a broad range of representa-
tional phenomena, we must, of necessity, take a con-
siderably simplified and incomplete view of KR. In
particular, we focus on its computational and logical
aspects, more or less ignoring its history and relevance
in the areas of psychology, linguistics, and philosophy.
The area of KR is still very disconnected today and
the role of logic remains quite controversial, despite
what this paper might suggest. We do believe, how-
ever, that the tradeoff discussed here is fundamental.
As long as we are dealing with computational systems
that reason automatically {without any special inter-
vention or advice) and correctly (once we define what
that means), we will be able to locate where they stand
on the tradeoff: they will either be limited in what
knowledge they can represent or unlimited in the rea-
soning effort they might require.

Qur computational focus will not lead us to inves-
tigate specific algorithms and data structures for KR
and reasoning, however. What we discuss is something
much stronger, namely whether or not algorithms of
a certain kind can exist at all. So the analysis here
is at the Knowledge Level [1] where we look at the

content of what is represented (in terms of what it
says about the world) and not the symbolic structures
used to represent that knowledge. Indeed, we exam-
ine specific representation schemes in terms of what
knowledge they can or cannot represent, rather than
in terms of how they might actually represent it.

In the first section below, we discuss what a KR
system is for and what it could mean to reason cor-
rectly. Next, we investigate how a KR service might
be realized using theorem proving in first-order logic
and the problem this raises. Following this, we present
various representational formalisms and examine the
special kinds of reasoning they suggest. Finally, we
draw some tentative conclusions {rom this analysis.

1. The Role of KR

While it is generally agreced that KR plays an
important role in (what have come to be called)
knowledge-based systems, the exact nature of thar role
is often hard to define. In some cases, the KR subsys-
tem does no more than manage a collection of data
structures, providing, for example, suitable search fa-
cilities; in others, the KR subsystem is not really dis-
tinguished from the rest of the system at all and does
just about everything: make decisions, prove theo-
rems, solve problems, and so on. In this section, we
discuss in very general terms the role of a KR subsys-
tem within a knowledge-based system.

1.1. The KRR Hypothesis

A good place to begin a discussion of KR as a whole
is with what Brian Smith has called in [2] the Anowl-
edge flepresentation Hypothesis:

Any mechanically embodied intelligent pro-
cess will be comprised of structural ingredi-
ents that a) we as external observers nat-
urally take to represent a propositional ac-
count of the knowledge that the overall pro-
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cess exhibits, and b) independent of such ex-
ternal semantical attribution, play a formal
but causal and essential role in engender-
ing the behaviour that manifests that knowl-
edge.

This hypothesis seems to underly much of the rescarch
in KR. In fact, we might think of knowledge-baged
systems as those that satisly the hypothesis by de-
sign. Also, in some scnse, it is only with respect to
this hypothesis that KR research can be distinguished
from any number of other areas involving symbolic
structures such as database management, program-
ming languages and data structures.

Granting this hypothesiy, there are two major prop-
erties that the structures in a knowledge-based system
have to satisfy. First of all, it must be possible to in-
terpret them as propositions representing the overall
knowledge of the system. Otherwise, the represen-
tation would not necessarily be of knowledge at all,
but of something quite different, like numbers or cir-
cuits. Implicit in this constraint is that the structures
have to be expressions in a language that has a truth
theory. We should be able to point to one of them
and say what the world would have to be like for it
to be true. The structures themselves need not look
like sentences—there are no syntactic requirements on
them at all, other than perhaps finiteness—but we
have to be able to understand them that way.

A second requirement of the hypothesis is per-
haps more obvious. The symbolic structures within
a koowledge-based system must play a causal role in
the behaviour of that system, as opposed to, say, com-
ments in a programming language. Moreover, the
influence they have on the behaviour of the system
should agree with our understanding of them as propo-
sitions representing knowledge. Not that the system
has to be aware in any mysterious way of the inter-
pretation of its structures and their connection to the
world;' but for us to call it knowledge-based, we have
to be able to understand its behaviour as if it be-
lieved these propositions, just as we understand the
behaviour of a numerical program as if it appreciated
the connection between bit patterns and abstract nu-
merical quantities.

!'Indeed, part of what philosophers have called the formality con-
dition is that computation at some level has to be uninterpreted
symbol manipulation.

1.2. Knowledge Bases

To make the above discussion a bit less abstract,
we can consider a very simple task and consider what
a system facing this task would have to be like for us
to call it knowledge-based. The amount of knowledge
the system will be dealing with will, of course, be very
small.

Suppose we want a system in PROLOG that is able
to print the colours of various items. One way to im-
plement that system would be as follows:

printColour(snow) : -

!, write("It’s white.").
printColour(grass) :-

!, write("It’s green.").
printColour(sky) :-

!, write("It’s yellow.").
printColour(X) :- write("Beats me.").

A slightly different organization that leads to the same
overall behaviour iy

printColour(X) :-
colour(X,Y), !, write("It’s "),
write(Y), write(".").
printColour(X) :- write("Beats me.").

colour(snow,white) .
colour(grass,green) .
colour(sky,yellow).

The second program is characterized by explicit struc-
tures representing the (minimal) knowledge® the sys-
tem has about colours and is the kind of system that
we are calling knowledge-based. In the first program,
the association between the object (we understand as)
referring to grass and the one referring to its colour
is implicit in the structure of the program. In the
second, we have an explicit knowledge base (or KB)
that we can understand as propositions relating the
items to their colours. Moreover, this interpretation
is justified in that these structures determine what
the system does when asked to print the colour of a
particular item.

One thing to notice about the example is that
it is not the use of a certain programming lan-
guage or data-structuring facility that makes a system
knowledge-based. The fact that PROLOG happens to
be understandable as a subset of first-order logic is

ZNotice that typical of how the term “knowledge™ is used in Al,
there is no requirement of truth. A system may be mistaken
about the colour of the sky but still be knowledge-based.
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largely irrelevant. We could probably read the first
program “declaratively” and get sentences represcnt-
ing some kind of knowledge out of it; but these would
be very strange onecs dealing with writing strings and
printing colours, not with the colours of objects.

1.3. The KR Subsystem

In terms of its overall goals, a knowledge-based sys-
tem is not directly interested in what specific struc-
tures might exist in its KB. Rather, it is concerned
about what the application domain is like, for exam-
ple, what the colour of grass is. How that knowledge
is represented and made available to the overal] sys-
tem is a secondary concern and one that we take to
be the reponsibility of the KRR subsystem. The role
of a KR subsystem, then, is to manage a KB for a
knowledge-based system and present a picture of the
world based on what it has represented in the KB.

If, for simplicity, we restrict our attention to the
yes-no questions about the world that a system might
be interested in, what is involved here is being able
to determine what the KB says regarding the truth of
certain sentences. It is not whether the sentence itself
is present in the KB that counts, but whether its truth
is dmplicit in the KB. Stated differently, what a KR
system has to be able to determine, given a sentence
a, is the answer to the following question:

Assuming the world is such that what is be-
lieved is true, is a also true?

We will let the notation KB |= a mean that a is im-
plied {in this sense) by what is in the KB.

One thing to notice about this view of a KR sys-
tem is that the service it provides to a knowledge-
based system depends only on the truth theory of the
language of representation. Depending on the par-
ticular truth theory, determining if KB | o might
require not just simple retrieval capabilities, but also
inference of some sort. This is not to say that the
only service to be performed by a KR subsystem'is
question-answering. If we imagine the overall system
existing over a period of time, then we will also want
it to be able to augment the KB as it acquires new
information about the world.® In other words, the
responsibility of the KR system is to select appropri-
ate symbolic structures to represent knowledge, and
to select appropriate reasoning mechanisms both to

31t is this management of a KB over timé that makes 3 KR
subsystem much more than just the implementation of a static
deductive calculus.

answer questions and to assimilate new information,
in accordance with the truth theory of the underlying
representation language.

So our view of KRR makes it depend only on the
semantics of the representation language, unlike other
possible accounts that might have it defined in terms
of a set of formal symbol manipulation routines (e.g.,
a proof theory). This is in keeping with what we have
called elsewhere a functional view of KR (see [3] and
{4]), where the service performed by a KR system is
defined separately from the techniques a system might
use to realize that service.

2. The Logical Approach

To make a lot of the above more concrete, it is
useful to look at an example of the kinds of knowledge
that might be available in a given domain and how it
might be represented in a KB. The language that will
be used to represent knowledge is that of a standard
first-order logic (FOL).

2.1. Using First-Order Logic

The first and most prevalent type of knowledge to
consider representing is what might be called simple
facts about the world, such as

e Joe is married to Sue.
o Bill has a brother with no children.
o flenry’s friends are Bill's cousins.

These might be complicated in any number of ways,
for example, by including time parameters and cer-
tainty factors.

Simple observations such as these do not exhaust
what might be known about the domain, however. We
may also have knowledge about the terminology used
in these observations, such as

e Ancestor is the transitive closure of parent.
o Drother is sibling restricted to males.
e Favourite-cousip is a special type of cousin.

These could be called definitions except for the fact
that necessary and suflicient conditions might not al-
ways be available (as in the last example above). In
this sense, they are much more like standard dictio-
nary entries.

The above two example sets concentrate on what
might be called declarative knowledge about the world.
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We might also have to deal with procedural knowledge
that focuses not on the individuals and their interre-
lationships, but on advice for reasoning about these.
For example, we might know that

e To find the father of someone, it is better to
search for a parent and then check if he is male,
than to check each male to see if he is a parent.

o Toseeif z is an ancestor of y, it is better to secarch
up from y than down from z.

One way to think of this last type of knowledge is
not necessarily as advice to a reasoner, but as declar-
ative knowledge that deals implicitly with the combi-
natorics of the domain as a whole.

This is how the above knowledge might be repre-
sented in FOL.

1. The first thing to do is to “translate” the simple
facts into sentences of FOL. This would lead to
sentences like

Vz Friend({henry, z) = Cousin(bill, z).

2. To deal with terminology in FOL, the easiest
way is to “extensionalize” it, that is, to pretend
that it is a simple observation about the domain.
For example, the brother statement above would
become?*

VzVy Brother(z, y) = (Sibling(z, y)AMale(y)).

3. Typically, the procedural advice would not be
represented explicitly at all in an FOL KB, but
would show up in the form of (1) and (2) above.
Another alternative would be to use extra-logical
annotations like the kind used in PROLOG or
those described in [5).

The end result of this process would be a first-
order KB: a collection of sentences in FOL represent-
ing what was known about the domain. A major ad-
vantage of FOL is that given a yes-no question also
expressed in this language, we can give a very precise
definition of KB k= a (and thus, under what conditions
the question should be answered yes, no, or unknown):

KB | a iff every interpretation satisfying
the sentences in the KB also satisfies a.’

4This is a little misleading since it will make the brother sen-

tence appear to be no different in kind from the one about
Henry's friends, though we surely do not want to say that
Henry's friends are defined to be Bill's cousins,

BThe assumption here is that the semantics of FOL specify
in the usual way what an interpretation is and under what
conditions it will satisfy a sentence.

There is, moreover, another property of FOL which
helps solidify the role of KR. If we assume that the KB
is a finite set of sentences and let KB stand for their
conjunction, it can be shown that

KBla iff F(KBD a)

In other words, the question as to whether or not the
truth of « is implicit in the KB reduces to whether or
not a certain sentence is a theorern of FOL. Thus, the
question-answering operation becomes one of theorem
proving in FOL.

2.2. The Problem

The good news in reducing the KR service to the-
orem proving is that we now have a very clear, very
specific notion of what the KR system should do; the
bad news is that it is also clear that this service cannot
be provided. The sad fact of the matter is that deciding
whether or not a sentence of FOL is a theorem (i.c.,
the decision problem) is unsolvable. Moreover, even
il we restrict the language practically to the point of
triviality by eliminating the quantifiers, the decision
problem, though now solvable, does not appear to be
solvable in anywhere ncar reasonable time.® It is im-
portant to realize that this is not a property of partic-
ular algorithms that people have looked at but of the
problem itself: there cannot be an algorithm that docs
the theorem proving correctly in a reasonable amount
of time. This bodes poorly, to say the least, for a
service that is supposed to be only a part of a larger
knowledge-based system,

One aspect of these intractability results that
should be mentioned, however, is that they decal with
the worst case behaviour of algorithms. In practice,
a given theorem proving algorithm may work quite
well. In other words, it might be the case that for a
wide range of questiony, the program behaves prop-
erly, even though it can be shown that there will al-
ways be short questions whose answers will not be
returned for a very long time, if at all.

How serious is the problem, then? To a large extent
this depends on the kind of question you would like

‘to ask of a KR subsystem. The worst case prospect

might be perfectly tolerable if you are interested in
a mathematical application and the kind of question
you ask is an open problem in mathematics. Provided
progress is being made, you might be quite willing

STechnically, the problem is now co-NP-complete, meaning that
it is strongly believed to be computationally intractable.
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to stop and redirect the theorem prover after a few
months if it scems to be thrashing. Never mind worst
case behaviour; this might be the only case you are
interested in..

But imagine, on the other hand, a robot that needs
to know about its external world {such as whether or
not it is raining outside or where its umbrella is) before
it can act. If this robot has to call a KR system utility
as a subroutine, the worst case prospect is much more
serious. Bogging down on a logically difficult but low-
level subgoal and being unable to continue without
human intervention is clearly an unreasonable form of
behaviour for something aspiring to intelligence.

Not that “on the average” the robot might not do
alright. The trouble is that nobody seems to be able
to characterize what an “average” case might be like.”
As responsible computer scientists, we should not be
providing a general inferential service if all that we
can say about it is that by and large it will probably
work satisfactorily. If the KR service is going to be
used as a utility and is not available for introspection
or control, then it had better be dependable both in
terms of its correctness and the resources it consumes.
Unfortunately, this seems to rule out a service based
on theorem proving.

2.3. Two Pscudo-solutions

There are at least two fairly obvious ways to min-
imize the intractability problem. The first is to push
the computational barrier as far back as possible. The
area of Automatic Theorem Proving has concentrated
on techniques for avoiding redundancies and snceding
up certain operations in theorem provers. Significant
progress has been achieved here, allowing open ques-
tions in mathematics to be answered. Along similar
lines, VLSI architectural support stands to improve
the performance of theorem provers at least as much
as it would any scarch program.

The second way to make theorem provers more us-
able is to relax our notion of correctness. A very sim-
ple way of doing this is to make a theorem proving pro-
gram always return an answer after a certain amount
of time.® If it has been unable to prove either that a
sentence or its negation is implicit in the KB, it could
assume that it was independent of the KB and an-

"This seems to account more than anything for the'fact that
there are so few average case results regarding decidability.

9The resource limitation here should obviously be a function of
how important overall it might be to answer the question.

swer unknown {or maybe reassess the importance of
the question and try again). This form of error (i.e.,
one introduced by an incomplete theorem prover), is
not nearly as serious as returning a yes for a no, and
is obviously preferrable to an answer that pever ar-
rives. This is of course especially true if the program
uses its resources wisely, in conjunction with the first
suggestion above.

However, from the point of view of KR, both of
these are only pseudo-solutions. Clearly, the first one
alone does not help us guarantee anything about an
inferential service. The second one, on the other hand,
might allow us to guarantee an answer within certain
time bounds, but would make it very hard for us to
specify what that answer would be. If we think of the
KR sevice as reasoning according to a certain logic,
then the logic being followed is immensely complicated
(compared to that of FOL) when resource limitations
are present. Indeed, the whole notion of the KR sys-
tem calculating what is implicit in the KB (which was
our original goal} would have to be replaced by some
other notion that went beyond the truth theory of
the representation language to include the inferential
power of a particular theorem proving program. In a
nutshell, we can guarantee getting an answer, but not
the one we wanted.

One final observation about this intractability is
that it is not a problem that is due to the formaliza-
tion of knowledge in FOL. If we assume that the goal
of our KR sevice is to calculate what is implicit in the
KB, then as long as the truth theory of our representa-
tion language is upward-compatible with that of FOL,
we will run into the same problem. In particular, using
English {or any other natural or artificial language) as
our representation language does not avoid the prob-
lem as long as we can express in it at least what FOL
allows us to express.

3. Expressiveness and Tractability

It appears that we have run into a serious difficulty
in trying to develop a KR service that calculates what
is implicit in a KB and yet does so in a reasonable
amount of time. One option we have not yet consid-
cred, however, is to limit what can be in the KB so
that its implications arc more manageable computa-
tionally. Indeed, as we will demonstrate in this scc-
tion, much of the research in KR can be construed
as trading off expressiveness in a representation lan-
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guage for a more tractable form of inference. More-
over, unlike the restricted dialects of FOL analyzed
in the logic and computer science literatures (e.g., in
terms of nestings of quantifiers), the languages consid-
ered here have at least proven themselves quite uscful
in practice, however contrived they may appear on the
surface.

3.1. Incomplete Knowledge

To see where this tradeoff between expressiveness
and tractability originates, we have to look at the use
of the expressive power of FOL in KR and how it
differs from its use in mathematics.

In the study of mathematical foundations, the main
use of FOL is in the formalization of infinite collections
of entities. So, for example, we have first-order num-
ber and set theories that use quantifiers to range over
these classes, and conditionals to state what proper-
ties these entities have. This is exactly how Frege
intended his formalism to be used.

In KR, on the other hand, the domains being char-
acterized are usually finite. The power of FOL is used
not so much to deal with infinities, but to deal with
incomplete knowledge [6]. Consider the kind of facts®
that might be represented using FOL:

1. ~Student(john).
This sentence says that John is not a student
without saying what John is.

2. Parent(sue,bill) v Parent(sue,gcorge).

This sentence says that either Bill or George
is a parent of Sue, but does not spccify which.
3. 3z Cousin(bill,z) A Male(z).
This sentence says that Bill has at least one
male cousin but does not say who that cousin
is.
4. Vz Friend(george,z) D> 3y Child(z,y).
This sentence says that all of George's friends
have children without saying who those
friends or their children are or even if there
are any.

The main feature of these examples is that FOL is not
used to capture complex details about the domain, but
to avoid having to represent details that may not be
konown. The ezpressive power of FOL determines not
80 much what can be said, but what can be left unsaid.

9The use of FOL to capture lerminology or laws is somewhat
" different. See [7] for details.

For a system that has to be able to acquire knowl-
edge in a piecemeal fashion, there may be no alter-
native to using all of FOL. But if we can restrict the
kind of the incompleteness that hay to be dealt with,
we can also avoid having to use the {ull expressiveness
of FOL. This, in turn, might lead to a more manage-
able inference procedure.

The last pseudo-solution to the tractability prob-
lem, then, is to restrict the logical form of the KB by
controlling the incompleteness of the knowledge rep-
resented. This is still a pseudo-solution, of course.
Indeed, provably, there cannot be a real solution to
the problem. But this one has the distinct advantage
of allowing us to calculate exactly the picture of the
world implied by the KB, precisely what a KR service
was supposed to do. In what follows, we will show
how restricting the logical form of a KB can lead to
very specialized forms of inference.

3.2. Database Form

The most obvious type of restriction to the form of
a KB is what might be called database form. Following
the structure of what is typically found in Database
Management, we imagine a KB divided into two parts.
The first contains only a set of function-free ground
atoms such as

Cousin(fred,george) Male(joe)
Cousin(fred,wendy) Male(jim)
Cousin(henry,joe) Male(fred)

This tabular format allows positive instances of vari-
ouy predicates to be characterized. The second part
of the KB is a collection of sentences called “integrity
constraints” that are used to determine if the first part
is reasonable (but not to infer new relationships). For
example, the sentence

VzVyMother(z,y) = Female(y)AParent(z, y)

could be used to rule out a KB where a mother was
not also a parent.

To the extent that all we were interested in was the
stored “data”, this would be the complete database.
In this case, however, we would not have queries like

How many cousins does Fred have?
but one more typical of Database Management like

ITow many tuples in the Cousin relation con-
tain fred in the first column?
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The answers here may be different since while there
are exactly two Cousin tuples, there is nothing so far
in the KB that implies that Fred has at least two
cousins (since “george” and “wendy” could be names
of the same individual) nor that Fred has at most two
cousins (since there could be cousins other than those
mentioned in the KB). So if we want to use this KB to
answer questions in a way that is at least compatible
with the database approach, we have to add additional
facts to the KB. First of all, it should contain {at least
implicitly) all sentences of the form

¢i # ¢y, for distinct constants ¢; and cj,
stating that each constant represents a unique indi-
vidual. In addition, it also needs for cach predicate in

the KB a sentence of the form
Vz[Male(z) D z =joeV .-V z = fred]

telling it that the only instances of the predicate are
the ones it has explicitly.!® With this implicit KB
added to the above explicit one, a KR system could,
in fact, conclude that Fred has exactly two cousins,
just like its Database Management counterpart.

The main property of a KB in this form (including,
that is, both its explicit and implicit parts) is that it
is much easier than in the general case to answer ques-
tions about the world. [n particular, since the explicit
KB does not use negation, disjunction or existential
quantification (except in the integrity constraints), we
know the exact instances of every predicate of inter-
est in the language. There is no incompleteness in our
knowledge at all. Because of this, inference reduces
to calculation. To find out how many cousins Fred
has, all we have to do is count how many appropri-
ate tuples appear in the Cousin relation. We do not,
for instance, have to reason by cases or by contradic-
tion, as we would have to otherwise. For example, if
we also knew that either Mary or Joe or both was a
cousin of Fred but that no cousin of Fred apart from
Wendy was female, we could still determine that Fred
had three cousins, but not by simply counting. But
a KB that is in database form does not allow us to
express this kind of uncertainty and, because of this
expressive limitation, the KR service is much more
tractable,

This limitation on the logical form of a KB
has other interesting features. FEssentially, what it
amouats to is making sure that there is very cloge

10This is one form of what has been called the closed world as-
sumption (8].

structural correspondence between the {explicit) KB
and the domain of interest: for cach entity in the do-
main, there is a unique representational object that
stands for it; for each relationship that it participates
in, there is a a tuple in the KB that corresponds to
it. In a very real scnse, the KB is an analogue of the
domain of interest, not so different from other ana-
logues such as maps or physical models. The main
advantange of having such an analogue is that it can
be used directly to answer questions about the do-
main. That is, the calculations on the model itself
can play the role of more general reasoning techniques
much the way arithmetic can replace rcasoning with
Peano's axioms. The disadvantage of an analogue,
however, should also be clear: within a certain de-
scriptive language, it does not allow anything to be
left unsaid about the domain.'! In this sense, an ana-
logue representation can be viewed as a special case of
a propositional one where the information it contains
is relatively complete.

3.3. Logic Program Form

The second restriction on the form of a KB we will
consider is a generalization of the previous one that
is found in programs written in PROLOG, PLANNER,
and related languages. A KB in logic program form
also has an explicit and an implicit part. The explicit
KB in a PROLOG program is a collection of first-order
sentences (called Horn sentences) of the form

V- zp[PLA-- APy D Pry where

m > 0 and each FP; is atomic.

In the case where m = 0 and the arguments to the
predicates are all constants, the logic program form
coincides with the database form. Otherwise, because
of the possible nesting of functions, the set of rel-
evant terms (whose technical name is the Herbrand
universe) is much larger and may be infinite.

As in the database case, if we were only interested
in the universe of terms, the explicit KB would be
sufficient. To understand the KB as being about the

Y The same is true for the standard analogues. One of the
things a map does not allow you to say, for example, is that a
river passes through one of two widely separated towns, with-
out specifying which. Similarly, a plastic model of a ship
cannot tell us that the ship it represents does not have two
smokestacks, without also telling us how many it does have,
This is not to say that there is no wncertainty associated with
an analogue, but that this uncertainty is due to the coarseness
of the analogue {e.g., how carefully the map is drawn) rather
than to its content.
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world, but in a way that is compatible with the an-
swers provided by a PROLOG processor, we again have
to include additional facts in an implicit KB. In this
case, the implicit KB is normally infinite since it must
contain a set of sentences of the form (s # ¢), for any
two distinct terms in the Ilerbrand universe. As in
the database case, it must also contain a version of
the closed world assumption which is now a set con-
taining the negation of every ground atomic sentence
not implied by the Horn sentences in the explicit KB.

The net result of these restrictions is a KB that once
again has complete knowledge of the world (within a
given language), but this time, may require inference
to answer questions.!®> The reasoning in this case, is
the ezecution of the logic program. For example, given
an explicit PROLOG KB counsisting of

parent (bill, mary).
parent (bill,sam).
mother (1,Y) :-
parent(X,¥), female(Y).
female(mary).

we know exactly who the mother of Bill is, but only
after having executed the program.

In one sense, the logic program form does not pro-
vide any computational advantage to a reasoning sys-
tem since determining what is in the implicit KB is, in
general, undecidable.!® On the other hand, the form is
much more manageable than in the general case since
the necessary inference can be split very nicely into
two components: a relrieval component that extracts
{atomic) facts from a database by pattern-matching
and a search component that tries to use the non-
atomic Horn sentences to complete the inference. In
actual systems like PROLOG and PLANNER, more-
over, the search component is partially under user
control, giving him the ability to incorporate some
of the kinds of procedural knowledge (or combinatoric
advice) referred to earlier. The only purely automatic
inference is the retrieval component.

This suggests a different way of looking at the in-
ferential service provided by a KR system (without
even taking into account the logical form of the KB).
Instead of automatically performing the full deduc-

'2Notice that it is impossible to state in a KB of this form that
(pV q) is true without stating which, or that 3zP(a) is true
without saying what that z is. However, see the comments
below regarding the use of encodings.

131y other words, determining if a ground atomic sentence is
implied by a collection of Horn sentences is undecidable.

tion necessary to answer questions, a KR system could
manage a limited form of inference and leave to the
rest of the knowledge-based system (or to the user) the
responsibility of intelligently completing the inference.
As suggested in {9], the idea is to take the “muscle”
out of the automatic component and leave the difficult
part of reasoning as a problem that the overall system
can {meta-)reason about and plan to solve |10].

While this is certainly a promising approach, espe-
cially for a KB of a fully general logical form, it does
hayve its problems. First of all, it is far {rom clear
what primitives should be available to a program to
extend the reasoning performed by the KR subsystem,
It is not as if it were a simple matter to gencralize the
meager PROLOG control facilities to handle a general
theorem prover, for example.!* The scarch space in
this case scems to be much more complex.

Moreover, it is not clear what the KR service it-
self should be. If all a KR utility does is perform
explicit retrieval over sentences in a KB, it would not
be much help. For example, if asked about (p V g),
it would fail if it only had (¢ v p) in the KB. What
we really need is an automatic inferential service that
lies somewhere between simple retrieval and full logi-
cal inference. But finding such a service that can be
motivated semantically (the way logical deduction is)
and defined independently of the how any program
actually operates is a non-trivial matter, though one
we have taken some steps towards in [12].

3.4. Semantic Network Form

Turning now to semantic networks, a first observa-
tion about a KB in this form is that it only contains
unary and binary predicates. For example, instead of
representing the fact that John's grade in ¢s100 was
85 by

Grade(john, ¢s100, 85),

we would postulate the existence of objects called
“grade-assignments” and represent the fact about
John in terms of a particular grade-assignment ¢ as

Grade-assignment(e) A Student(e, john) A
Course(e, cs100) A Mark(e, 85).

This part of a KB in semantic net {orm is also in
database form: a collection of function-free ground
atoms, sentences stating the uniqueness of constants
and the closed world assumption.

Though see [11] for some ideas in this direction.
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The main feature of a semantic net {and of the
frame form below), however, is not how individuals
are handled, but the treatment of the unary predicates
(which we will call types) and binary ones (which we
will call attributes). First of all, the types are orga~
nized into a taxonomy, which, for our purposes, can
be represented by a set of sentences of the form!®

vz[B(z) > A{z)}.
The sccond kind of sentence in the generic KB places

a constraint on an attribute as it applies to instances
of a type:

vz{B(z) > 3y(R(z,y) A V{(y))] or
vz|B(z) D R(z,c)}.'®

This completes the semantic net form.

One property of a KB in this form is that it can
be represented by a labelled directed graph (and dis-
played in the usual way). The nodes are either con-
stants or types, and the edges are either labelled with
an attribute or with the special label is-a.17 The sig-
nificance of this graphical representation is that it al-
lows certain kinds of inference to be performed by sim-
ple graph-searching techniques. For example, to fiud
out if a particular individual has a certain attribute,
it is sufficient to search from the constant represent-
ing that individual, up is-a links, for a node having
an cdge labelled with the attribute. By placing the
attribute as high as possible in the taxonomy, all in-
dividuals below it can inherit the property. Compu-
tationally, any mechanism that speeds up this type of
graph-searching can be used directly to improve the
performance of inference in a KB of this form.

In addition, the graph representation suggests dif-
ferent kinds of inference that are based more directly
on the structure of the KB than on its logical con-
tent. For example, we can ask how two nodes are
related and answer by finding a path in the graph be-
tween them. Given for instance, Clyde the clephant
and Jimmy Carter, we could end up with an answer
saying that Clyde is an elephant and that the favourite
food of elephants is pcanuts which is also the major

18See (18] for a discussion of some of the subtleties involved here.

'6There are other forms possible for this constraint. For exam-
ple, we might wart to say that every R rather than some R is a
V. See also {14]. For the variant we have here, however, note
that the KB is no longer in logic program form.

"Note that the interpretation of an edge depends on whether its
source and target are constants or types. For example, from
a constant ¢ to a type B, is-a says B(c), but from a type I to
a type A, it is a taxonomic sentence {again, see [13]).

product of the farm owned by Jimmy Carter. A typi-
cal method of producing this answer would be to per-
form a “spreading activation” scarch beginning zt the
nodes for Clyde and Jimmy. Obviously, this form of
question would be very difficult to answer for a KB
that was not in semantic net form.

For better or worse, the appeal of the graphical
nature of semantic nety has lead to forms of reason-
ing (such as default reasoning [15]) that do not fall
into standard logical categoricy and are not yet very
well undersiood [16].'® This is a case of a representa-
tional notation taking on a life of its own and motivat-
ing a completely different style of use not necessarily
grounded in a truth theory, [t is unfortunately much
casier Lo develop algorithms that appear to reason over
structures of a certain kind than to justify its reason-
ing by explaining what the structures are saying about
the world.

This is not to say that defaults are not a crucial part
of our knowledge about the world. Indeed, the ability
to abandon a troublesome or unsuccessful line of rea-
soning in favour of a default answer seems intuitively
to be a fundamental way of coping with incomplete
knowledge in the presence of resource limitations, The
problem is to make this intuition precise. Paradoxi-
cally, the best formal accounts we have of defaults
(such as [17]) would clain that reasoning with them
is even more difficult than reasoning without them, so
rescarch remains to be done.

One final observation concerns the elimination of
higher arity predicates in semantic networks. [t seems
to be a fairly common phenomenon that a certain gen-
eralily of logical form can be avoided by introducing
special representational objects into the domain. In
the example above, a special “grade-assignment” ob-
ject took the place of a 3-place predicate. Another
example is the use of encodings of sentences as a way
of providing (what appears to be) a completely exten-
sional version of modal logic [18].!°® Not that exactly
the same expressiveness is preserved in these cases;
but what is preserved is still fairly mysterious and

A simple example of a default would be to make elephant
have the colour grey but to allow anything below elephant
(such as albino-clephant) to be linked to a different colour
vaiue. To determine the colour of an individual would involve
searching up for a value and stopping when the first one is
found, allowing it to preempt any higher ones.

®Indecd, some modern semantic network formalisms {such as
[19]} actually include all of FOL by encodinv sentences as
terms.
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deserves serious investigation, especially given its po-
tential impact on the tractability of inference.

3.5. Frame Description Form

The final form we will consider, the frame descrip-
tion form, is mainly an elaboration of the semantic
network one. The emphasis, in this case, is on the
structure of types themselves (usually called frames)
in terms of their attributes (called slots). Typically,
the kind of detail that is involved includes

1. values, stating exactly what the attribute of an
instance should be. Alternatively, the value may
be just a default, in which case an individual in-
herits the value provided he does not override it.

o

. restrictions, stating what constraints must be sat-
isfied by attribute values. These can be value re-
strictions, specified by a type that attribute val-
ues should be instances of, or number restrictions,
specified in terms of a minimum and a maximum
number of attribute values.

3. attached procedures, providing procedural advice
on how the attribute should be used. An if-needed
procedure says how to calculate attribute values if
none have been specified; an if-added procedure
says what should be done when a new value is
discovered.

Like semantic networks, frame languages tend to take
liberties with logical form and the developers of these
languages have been notoriously lax in characterizing
their truth theories [14]. What we can do, however,
is restrict ourselves to a non-controversial subset of a
frame language that supports descriptions of the fol-
lowing form:

(Student
with a dept is computer-science and
with > 3 enrolled-course is a
{(Graduate-Course
with a dept is a
Engineering-Department )

This is intended to be a structured type that describes
Computer Science students taking at least three grad-
uate courses in departments within Engineering. If
this type had a name (say A), we could express the
type in FOL by a “meaning postulate” of the form

VzA(z) =
[Student(z) A dept(z, computer-science) A
3nivays (NA V2 AN A ys Az # Ys A

Yl A
celYz. A
..ys...)].

Similarly, it should be clear how to state equally
clumsily*? in FOL that an individual is an instance
of this type.

One interesting property of these structured types
is that we do not have to state explicitly when one
of them is below another in the taxonomy. The de-
scriptions themselves implicitly define a taxonomy of
subsumption, where type A subsumes type D if, by
virtue of the form of A and B, every instance of I
must be an instance of A. For example, without any
world knowledge, we can determine that the type Per-
son subsumes

{Person with every male friend is a Doctor)
which in turn subsumes
(Person with every iricnd is a
(Doctor with a specialty is surgery}).
Similarly,

{Person with > 2 children)
(Person with > 3 male children).

subsumes

Also, we might say that two types are disjoint if no
instance of one can be an instance of the other. An
example ol disjoint types is

(Person with > 3 young children) and

(Person with £ 2 children).

Analytic relationships like subsumption and disjoint-
ness are a property of structured types that is not
availble in a semantic net where all of the types are
atoic.

There are very good reasons to be interested in
these analytic relationships [7]. In KRYPTON [4], a
full first-order KB is used to represent facts about the
world, but subsumption and disjointness information
is also available without having to add to the KB a col-
lection of meaning postulates representing the struc-
ture of the types. The reason this is significant is that
while subsumption and disjointness can be defined in

2°What makes these sentences especially awkward in FOL is
the number restrictions. For example, the sentence “There
are a hundred billion stars in the Milky Way Galaxy” would
be translated into an FOL sentence with on the order of 1042
conjuncts.
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terms of logical implication,*! there are good special-
purpose algorithms for calculating these relationships
in frame descriptiop languages. Again, because the
logical form is sufficiently constrained, the required
inference is much more tractable.

As it turns out, frame description languages are
themselves a microcosm of the tradeofl between ex-
pressiveness and tractability. Il we imagine a language
of structured descriptions specified by a grammar of
types and attributes, we get a family of dialects by in-
cluding or omitting certain formation rules.** In one
dialect, we might allow a description to place a maxi-
mum on the number of attribute values, for instance,
but not a minimum. As discussed in [20], the remark-
able property of these dialects is that a small increase
in expressive power can make subsumption completely
intractable. To keep subsumption manageable, the in-
clusion of certain formation rules has to be compen-
sated by the omission of others. Because it is relatively
easy to cross the threshold from the tractable to the
intractable, structured description languages scem to
be a good place to study the tradeoff between expres-
sivenes and tractability, and perhaps even to discover
the fundamental parameters that control it.

4. Conclusions and Morals

In this final section, we step back from the details
of the specific representational formalisms we have ex-
amined and attempt to draw a few conclusions.

An important observation about these formalisms
is that we cannot really say that one is betler than
any other; they simply take different positions on the
tradeoff between expressiveness and tractability. For
example, full FOL is both more expressive and less ap-
pealing computationally than a language in semantic
net form. Nor is it rcasonable to say that expressive-
ness is the primary issue and that the other is “merely”
one of efficiency. In fact, we are not really tdkiné
about efficiency here at all; that, presumably, is an
issue of algorithm and data structure, concerns of the
Symbol Level [1]. The tractability concern we have
here is much deeper and involves whether or not it

215pecifically, type A subsumes type B ifl the meaning postu-
lates for A and B logically imply Vz[B(z) D Alz)).

*3The fact that these languages have a simple structural form
(as exhibited by formation rules) does not mean that they
have a simple logical form (as exhibited by meaning postulates),
however.

makes sense to even think of the language as compu-
tationally based.

From the point of view of those doing research in
KR, this has a very important consequence: we should
continue to design and examine represeatation lan-
guages, cven when these languages can be viewed as
spectal cases of FOL. What really counts is that these
special casey be interesting both from the point of view
of what they can represent, and froni the point of view
of the reasoning strategies they permit. All of the {or-
malisms we have examined above satisly these two re-
quirements. To dismiss a language as Just a subset of
FOL is probably as misleading as dismissing the no-
tion of a context-free grammar as just a special case
of a context-sensitive one,

What truth in advertising does require, however, is
that these special cases of FOL be identified as such.
Apart from allowing a systematic comparison of rep-
resentation languages (as positions on the tradeofl},
this might also encourage us to consider systems that
usc more than one sublanguage and reasoning mech-
anism (as suggested for equality in {21]). The KRYP-
TON language, for example, includes all of FOL and a
frame description language. To do the necessary rea-
soning, the system contains both a theorem prover and
a description subsumption mechanism, even though
the former could do the job of the latter {(but much
less efficiently}. The trick with these Aybrid systems
is to factor the reasoning task so that the specialists
are able to cooperate and apply their optimized algo-
rithms without interfering with cach other.

These considerations for designers of representation
languages apply in a similar way to those intercsted
in populating a KB with a theory of some sort. A
good first step might be to write down a set of first-
order sentences characterizing the domain, bat it is
somewhat naive to stop there and claim that the ac-
count could be made computational alter the fact by
the inclusion of a ticorem prover and a few well cho-
sen heuristics. What is really needed is the (much
more difficult) analysis of the logical form of the the-
ory, keeping the tradeofl clearly in mind. An excellent
example of this is the representation of {ime described
in [22]. Allen is very careful to point out what kind
ol information about time cannot be represented in
his system, as well 23 the computational advantage he
gains from this limitation.

For the future, we still have a lot to Jearn about
the tradeoff. It would be very helpful to accumu-
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late a wide variety of data points involving tractable
and intractable languages. Especially significant are
crossover points where small changes in a language
change its computational character completely. More-
over, we need to know more about what people find
easy or hard to handle. There is no doubt that peo-
ple can reason when necessary with radically incom-
plete knowledge {such as that expressible in full FOL)
but apparently only by going into a special problem-
solving or logic puzzle mode. In normal common sense
situations, when reading a geography book, for in-
stance, the ability to handle disjunctions (say) seems
to be quite limited. The question is what forms of
incomplete knowledge can be handled readily, given
that the geography book is not likely to contain any
procedural advice on how to reason.

In summary, we feel that there are many interesting
issues to pursue involving the tradeoff between expres-
siveness and tractability. Although there has always
been a temptation in KR to cither set the sights too
low {and provide only a data structuring facility with
little or no inference) or too high (and provide a full
theorem proving facility), this paper argues for the
rich world of representation that lies between these
two extremes.
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Abstract., Control or strategic kiowlaedze |is
necessary to enable kncwledge based systems zontalning
large numbers of facts to choose appropriately among
these facts. In this paper, an architeckure |is
presented that allows such knowledge to be stated 1in
the same language that is used to express facts about
the domain. This architecture is obtained by creating
a reflective ([12]) architecture based on a Horn
clause processor.

Tntroduction

Much of the powar of a knowledge-based expert
system 1lies in its ability to apply a large amount of
knowledge to a variety of prcblems. However, as the
amount of knowledge Brows, an increasingly
sophisticated inference engine or control component is
necessary to extract only the facts relevant to a
problem at hand.

Past research has suggested that one way of
providing sophisticated control is through an
architecture which includes a knowledge base of facts
pertaining to control ({2,123]). Indeed, it has been
argued that, given that an expert system must acquire
its knowledge through interaction with experts, and
that experts' knowledge consists to a large degree of
control  strategies, that It is essential that this
knowledge be represented in a knowledge base ({13]).

In this paper an architecture based on a
combination of a Horn clause knowledge base and
Smith's concept of reflection ([12]) is presented. It
is then shown how various schemes for controlling
deduction currently used in knowledge based systems
can be expressed in the framework of this
architecture,

Control in Knowledge-Based Systems

A major motivation for the use of a knowledge
base of strategic knowledge 1is, of «course, the
potential improvement in the efficiency of the system.
There are however, other strong motivations.

Firstly, knowledge bases are designed to be easy
to modify. When control strategies are stored in such
a knowledge base, the techniques used to acquire
factual knowledge can also be applied to the
acquisition of strategic knowledge. In systems where
control 1is held by an inference engine coded in some
programming language, the expert would have to
communicate his strategies to a programmer who would
have to modify the program. For example, in a system
to give investment advice described by Davis ([2]), an
expert might want the system to know that '"when
dealing with older subjects avoid facts which would
support conclusions advising high risk investments”.
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This rule captures the knowledge that deductions for
older subjects will never result in suggestions for
high risk investments, and thali Lhe system should
therefore avoid bad search paths by avoiding cerfain
classes of knowledge. If such rules are stored in a
knowledge base, it is just as easy Lo acquire them
from the expert as it 1is to acquire the fact that
"Company x 1s a high risk investment”,

Secondly, programs can use the control knowledge
base as data and reason about it or with it. This is
important for the explanation component of the expert
system —— in the traditional architecture the
explanation component would have to be modified each
time the inference engine were changed. More
importantly, one can use an inference engine which can
deduce from the strategic knowledige and the state of
the problem solution the best strategy to follow at a
given time, In additiocn, a program can use the
strategic knowledge base and the history of various
processes to deduce new strategies. This 1is
illustrated by Lenat's AM system ([9]).

The above are examples of the use of knowledge
in mcore than one way. This is, "wwever, a major
motivation for the use of a knowledge representation
language to express the factual knowledge of a domain
([111). Similarly, the representation of control would
equally benefit from the abstraction and
organizational mechanisms provided by these languages,
It therefore makes sense to apply Hayes' mandate (I71])
and use the same language to represent both factual
knowledge and strategic knowledge.

A Reflective Horn Clause Architecture

tExpressing Facts

Horn clauses as in ([8]) are used as the
knowledge base language. Horn clauses represent
knowledge as implications having one consequent which
follows from the conjunction of zero or more
antecedents. All variables are universally quantified.
An example, in the notation used in this paper, is

(Uncle $uncle $person) <=
(Father $father $person)
(Brother $father $uncle)

Atoms such as ™"guncle® are variables. The clause
states that for any three people "$father", "$uncle",
and "person", if "$father" is the father of "$person”
and the brother of "$uncle™ then "$uncle"” is the uncle
of "3person™.



The knowledge used to make control decisions
consists of facts about the clauses in the knowledge
base. These facts must be represented as clauses which
contain constant symbols which refer to other clauses
in the knowledge base. Control knowledge can also
refer to the individual terms {(consequents and
antecedents) of other clauses. The following 1is an
example of facts that might be known about a clause:

(clause:consequent %cl (P '$x '4y)) <=
(clause:antecedents %ct1 %al.1) <=
(ante:first %al.1 (Q '$x '$y '82)) <=
(ante:rest %al.1 %al.2) <=

(ante:first %a1.2 (R '$2)) <=
(ante:rest %a1.2 nil) <=

(priority %e1 9) <=

The special constant symbols that start with "%" are
used to name objects that name clauses and parts of
clauses. The notation "'$z" names the wvariable "$z2",
In the example, "ol is a constant symbcl
representing a clause with consequent "(P $x $y)" and
antecedents "(Q ¢$x $y $z) (R $z)" having pricrity 9.
The predicates ante:first and ante:rest represent a
list of antecedents. Note that there is no special
meaning in the predicate names containing a colon;
this 1is merely a convention wused to group related
predicates. . Thus "clause :consequent” and
"clause:antecedents" are two predicates that have in
common the fact that the first argument is a clause.
Note also that the first six clauses provide a
representation of the «clause; that 1is, the same
information that is contained in the representation

(P $x $y) <= (Q $x 3y $z2) (R $2)

while the clause containing the predicate "priority"
is an additional fact about the clause., This latter
fact might be useful in controlling a deduction which
uses "hclM,

The inference engine on which the architecture
is based is a simple backward chaining interpreter of
the clauses, This inference engine maintains a set of
goals which are terms of Horn clauses with values
(which may contain other variables) for the variables.
Inference proceeds by choosing one of these goals,
finding a clause whose consequent unifies with that
goal, and replacing that goal with ‘the antecedents of
the matching clause with an assignment of values to
the variables as specified by the unification. If
there is nc matching clause it is necessary to
backtrack to an earlier state in the sequence of
inferences and choose an alternative matching clause.
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Brian Smith's procedural reflection arises from
what he calls the process reduction model of
computation. In this model, a process can be
decomposed into another process called a processor
acting on a procedure represented in the machine. Thus
an accounting process implemented in LISP can be
decomposed into a LISP processor and a LISP procedure
represented in the machine by cons cells. Similarly,
the same accounting process might have been
implemented as a set of Horn clauses and an processor
for Horn clauses. In this case the set of Horn clauses
is a knowledge base and the processor is the inference
engine,

Smith then notes that the decomposition of a
process can be continued by decomposing the processor.
For example, the LISP processcor could be viewed as a
processor for some high level language executing a
program text which describes a LISP processor. The
interesting case is that in which the processor for a
language A is decomposed intc a processor for the
language A and a text in language A describing that
processor. This is achieved, for example, when one
applies I3P's eval to a representation of itself and
some LISP program. Smith calls the representation of
the processor 1in the language 1t 1is processing a
meta-circular processor. Similarly, one can write a
Set of Horn clauses which when processed by a Horn
clause processor itself acts as a Horn clause
processor. Kowalski ([81) gives an example of such an
processcr.

Consider a situaticn 1in which a Horn clause
processor, P, is processing a a Horn clause knowledge
base. In particular, let M be a subset of this
knowledge base which implements a meta-circular
processor for Horn clauses, and assume that the goals
maintained by P are terms of the clauses of M. Thus
the processor P is 1in effect executing the meta-
circular processor, M, which will be therefcore be
processing a subset H of the knowledge base. Now
suppose a clause C which is not in M matches a goal in
P's processing of M. This clause will represent some
fact about the clauses H and the state of the
processor (implemented by M) processing them. If,
furthermore, control returns to M after the processing
of C, scme processing will have cccurred which might
affect the continued execution of M. A system
supports procedural reflection when it allows the
augmentation of 1its meta-circular processor M with
clauses such as C. Notice that the ability to augment
the knowledge base with clauses which reason with the
program and the state of the process is exactly what
is required a system in which control knowledge is
represented.

This model can be extended to allow arbitrary
decomposition of the processor. 1In effect, the system
can be viewed as an infinite tower of meta-circular
processors each processing the cne below, that is, H
is processed by M which is processed by M, etc. At any
level clauses from the knowledge base might affect the
course of execution.



The architecture for controlled kncwledge bases
is based on such a model. As in Smith, reflection is
restricted to significant points in the execution
cycle of the processor. In Smith's 3-LISP reflection
occurs at the point when the processor 1looks at the
function position of an s~expressicn: if the function
is one that is designated reflective, its body is run
at the 1level of the processor. An analagous Horn
clause system would be one in which certain predicates
are designated reflective and when a goal using such a
predicate is encountered, its antecedents become goals
of the processor of the processor. In the Horn clause
architecture of this paper, however, reflection can
occur at more points in the control cycle. Moreover,
these points are those at which knowledge supplied by
the expert 1is useful to make controcl decisions. At
significant places in the control cycle, the processor
of the processor attempts to match goals of the form

(control <arguments> <name of place in control
cycle>) <=
<body>

which if matched indicate a reflective situation where
the body 1is processed at the level of the processor,
For example, suppose "%al.1" is the goal which has
been matched against the clause knowledge base; then
if the clause

(control $history $conflict-set $node %al.l $clause
CHOOSE-MATCH) <=
<{body>

is in the clause knowledge base at the 1level of the
processor, <body> will be executed at the level of the
processor.,

Smith's restricticn on the origin of reflective
activity 1is what makes possible an implementation of
an architecture containing an arbitrary number of
levels, Since reflective activity arises from objects
encountered in the processing from the bottom up, at
most a finite number of levels can be affected by
reflective code at any time. The implementation can
therefore consist of a processor P that simulates an
infinite tower of meta-circular processors in which no
reflection occurs. It would be P that processes a copy
of the meta-circular processor plus reflective code,
M+, which processes another M+, and so on until a copy
processes H, the Horn clause program. If no reflection
has occurred, P can process H directly. Also, P can be
written so that, should it detect that the M+ below it
no longer is affected by reflective code it can absorb
that processcr and run one level closer to H., When a
control clause such as the one above is encountered, a
new copy of M plus the vrelevant controcl clauses 1is
added between P and the previous M+,

A Meta-Circular Processor

The state of a process is described by a tree of
ncdes containing the history of the process. Each ncde
contains a set of goals that have not yet been
executed. A child 1is derived from its parent by the
inference rule: a goal 1is chosen, a clause whose
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consequent unifies with that goal is found, and the
child's set of goals consists of the gcals of the
parent in which the goal that was unified is replaced
by the antecedents of the unifying clause. A node 1is
marked open if it contains gcals that may still unify
with clauses in the knowledge buse. It 13 marked
success if it contains the empty set of goals, and
failure if all its children are marked failure and no
further children can be generated., This processor
differs from one such as Kowalski's ([8]}) in that the
representation of the histery allcws explicit control
of backtracking.

Given this structure, the following choice
points can be identified in the inference algorithm:
) choosing a node in the history tree. Two uses
for this are: a) loccating a place in the tree to
resume processing should a leaf fail (backtracking),
and b) switching from node to node in successive
execution cycles to pursue more than one line of
reasoning at a time. 2) choosing a goal in the
node. Choosing a most recently included gcal is depth
first processing while choosing an oldest goal is
breadth first processing. 3) choice of a clause
context . A common way of making matching more
efficient is to attempt to match only a subset of the
clause database. u) choice of a member of the
conflict set. The algorithm generates cne new node at
a time. However, the search for matching clauses will
return all those that match. Conflict resolution
involves choosing among these for a single clause to
use. opPS5  ([101) has a complicated conflict
resolution algorithm involving how recently a clause
was added to the knowledge base, statistics about the
goal that is matched, etc. Note that a simpler system
could aveoid this step by wusing step 3) to choose
orderings of clauses and then use "take the first
match" as a conflict resclution strategy. However, it
might be the case that decisions can be made based on
properties of the conflict set as a whole.

The following is a sketch of a meta-circular processor
which allows reflective reasoning at these chuice
points. The predicate "solve" corresponds to
Kowalski's MDemo"”. The details of procedures such as
"find-unifying-clause" are suppressed.

(solve $history $clauses $result) <=
(choose-node $history $clauses $node)
(choose-goal $node $clauses $goal)
{choose-clause $node $goal $clauses $new-
clauses)

(find-unifying-clause $node $goal $new-
clauses $conflict-set)

(choose-match $history $conflict-set $node
$goal $clause)

(create-leaf $history $node $gcal $clause
$new-history)

(solve 3new-history $new-clauses $result)

(choose-node $history $clauses $node) <=
(control $history $clauses $node CHOOSE-NODE)

(choose~-node $history $clauses $node) <=
(default-choose-node $history $clauses $ncde)

(choose~goal $node $clauses $goal) <=
(control $node $clauses $goal CHOOSE-GOAL)

(choose~goal $node $clauses $goal) <=
(default-choose-goal $node $clauses $goal)



(chcose-match $history NIL $node $goal $clause) <=
(mark-ncde $node FAIL)

(choose-match $history $conflict-set $node $goal
$clause) <=
(control $history $conflict-set $node $goal
$clause CHOOSE-MATCH)

(choose-match $history gconflict-set $node $goal
$clause) <=
(defaul t-choose-match $history $conflict-set
$node $clause)

(choose-clause $node 3goal $clauses $new-clauses)
<=
(control $node $goal $clauses $new-clauses
CHOOSE-CLAUSES)

(choose-clause $node $goal $clauses $new-clauses)
<=
(defaul t~choose~clause $node $goal $clauses
$new-clauses)

The explicit choice points are rules with the heads
"(choose-<x> ...)" where x names the choice points. If
no control clause 1s located, the backtracking results
in the execution of the default case. In general a
control goal is invoked with bindings for all but the
last variable, and the execution of the body is
expected to bind the last variable with a value which
will be wused in the next step of the control cycle.
For example, a control goal of type "CHOOSE-MATCH"
provides a goal tree, a conflict set, a ncde, and a
goal, and is-expected to bind tc "$clause™ a clause
from those 1in the conflict set which will be used by
"create-leaf" to create a new node.

The processor which executes this meta-circular
processcr takes as its default control decisions the
following: goals are expanded depth first from left to
right (in the textual representation), conflicts are
resolved by taking the first match encountered in
reading the text, and backtracking occurs at the most
recent choice.

An important feature of the architecture is that
clauses containing the term "(assert <a-claused)"
result in the addition of the clause "<a-clause>" to
the knowledge base, This enables the meta-circular
processcr and control clauses in the knowledge base to
record the state of a series of inferences for use in
subsequent control cycles. For example, reflective
code might want to assert additional facts about nodes
in the control tree which subsequent calls to control
clauses of the type "CHOOSE-NODE"™ might use. .

Applications

The architecture above allows strategic
knowledge to be expressed as Horn clauses. Note that,
although control results from clauses containing the
control predicate, the antecedents can involve
arbitrary predicates and arbitrarily complicated
reasoning involving knowledge about clauses, goals,
nodes, etc. Examples of such meta-knowledge 1include
simple facts such as

(priority %c109 10) <=
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which assigns a priority to a clause which could be
used to by the body of a control clause for conflict
resolution, or more complicated implications such as

(relevancy %c122 $g low) <=
(type $g high-risk)

which states that a certain clause 1s not very
relevant to high risk goals. This section illustrates
how control clauses and meta-knowledge can be used to
express various schemes for controlling deduction.

First, the ability to choose a node in the
history tree allows sophisticated backtracking
schemes. For example, one could write control rules
which record the dependencies between goals and rules,
that is, rules that record the fact that a given goal
appears in a given ncde due to the application of some
particular clause to some other node. The body of a
"CHOOSE~NODE" control rule could then return the node
where that inference occurred, and thereby implement
dependency directed backtracking as, for example, in
AMORD ([ 14]).

Secondly, choice of a goal is important fur the
efficiency of an expert system. In the reflective
architecture, the processing invoked through the
bodies of control rules allow arbitrarily complicated
processing to choose a goal. Through a rule such as

(control $node $rules $goal CHOOSE-GOAL) <=
(goal-planner ....)

one can invoke a planner such as that described by
Corkill and Lesser (£11) for their goal directed
HEARSAY-II architecture.

The goal selection choice point also corresponds
to the Hearsay-III architecture described in ([31).
The set of active goals in the current node compares
with the Hearsay-III control blackbcard, and contrcl
rules which are invoked by the presence of certain
goals in the current node compare with control
knowledge sources.

As mentioned above, the choose <c¢lause choice
point allows the implementation of clause set
partitioning. An example of this is Ceorgeff's scheme
({61) in which the control knowledge consists of
constraints on the sequence of invocation of c¢lauses
as expressed, for example, as a regular expression:

fct, (%c2, %c3, %cl) *, %c5

The "%ci" name clauses, and the regular expression
expresses the fact that a legal execution consists of
a call to "%c1" followed by zero or more sequences of
calls to "%c2" then "%c3", then "%ch", followed by a
call to "%e5". One of the control clauses which could
implement this might be

(control $node $goal $clauses (%c2, %c5} CHOOSE~
CLAUSES) <=
(last-call %cl)



which means that the new clause partition contains
nge2" and "%eS5" if the last rule called was "gcl"
(assuming a control clause in choose-match records
which clause it called),

Finally, choices from the conflict set
correspond to the meta-rules of Davis' program
TIERESIAS ([21)., In this case, the contrcl clause
invokes a procedure which chooses from the conflict
set the match most likely to succeed. The reflective
architecture, in fact, solves a problem mentioned by
Davis: 1in his system, conclusions made at one
invocation of the meta~level cannot by used by a
subsequent invocation.

Related Work

As mentioned earlier, the concept of procedural
reflection as wused in this paper comes from the work
of Brian Smith. His work involved the creation of a
reflective dialect of LISP which he called 3-LISP,
This was then used to show how reflection provided a
clean mechanism for defining common additions to LISP
such as the functions "cateh" and "throw".

Secondly, as 13 also clear in the above, Davis's
work with meta-rules has strongly influenced the
reflective architecture. In fact, the reflective
meta-circular processor bears resemblance to his
execution cycle. The reflective architecture differs,
however, in the addition of locations where meta-level
reasoning may occur (i.e. choice of node, etc.), and
in the ability of meta~level reasoning to record
conclusions to influence meta-level reasoning at
subsequent chcice points and subsequent executicn
cycles. In addition, the Horn clause system has the
ability to store facts about clauses, nodes, goals
etc, (e.g. the relevance of a clause to a goal) that
is missing in Davis's system.

Finally, the meta~level architecture described
in  ([4] and ([5] addresses the problem of controlling
the problem s8Solving activity of a program. This
architecture invclves a theorem prover which deduces
facts, the operation and arguments, about a desirable
action which 1is the passed to a processor for
execution. The meta-level architecture is presented as
a general scheme for which decisions such as the
nature of the processor and the number of meta-levels
must be made for each application. In contrast, the
reflective. Horn clause architecture has a specific
processor which 1is representable in the knowledge
base, and the level changing implementation allows an
arbitrary number of reflective levels.

Summary

This paper describes an architecture for expert
systems which provides the ability to describe control
knowledge in the same language used to describe facts
about the world. It has been shown in the past that
such control knowledge is necessary in the
implementation of efficient and understandable expert
systems. The paper 1illustrates that the reflective
architecture nicely captures many contrcl schemes
previously proposed.
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The architecture has been implementad on a VAX
computer using Franz LISP. This implementation
consists of a processor which simulates an infinite
towar  of processors, and a meta-circular processor as
described above.
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Abstract

Yucca is an operating system expert consultant
currently under development at Los Alamos National
Laboratory and the University of Vermont. It consists
of two modules, the natural-language front end, which
translates natural-language queries to and from the
formal query language Quelya, and the knowledge base,
which uses -a completely formal representation of the
behavior of the operating system to answer the Quelya
queries submitted by the front end. In this paper the
overall architecture of the knowledge base is
outlined.

1. Introduction

Yucca is an operating system expert consultant
currently under development at Los Alamos National
Laboratory and the University of Vermont. It is
designed to provide expert help to experienced
computer users who are encountering a new operating
system for the first time. To automate such
assistance, a utility must go beyond the capabilities
of ordinary operating system help facilities in
several respects. First of all, the user must not
need to know the name of the appropriate command to
get help. In other words, the system must be able to
answer questions of the "How do I ...?" variety. For
example, a user desiring to delete a file must not
need to know the name of the delete command in order
to get further help. Second, the expert helper must
be able to provide information about the static
structure of the system; questions of the "What is
user may wish to know what a pipe is (in UNIX a)y,
Third, the expert helper must have enough knowledge of
other systems to be able to provide meaningful
responses to queastions not directly applicable to the
current system. For example, a TOPS-20 user may
ask a UNIX consultant about online file expiration.
~Yucca has been designed to take all of these issues
into account,

Communication with the user is in natural
English. Any other interface would require the user
to learn the language of the expert system, which
would be self-defeating. Yucca ils a utility which
exists as an {ndependent subsystem of a currently
existing operating system. This 1is in
contradistinction to systems such as Cousin (5,6]1 and
Sara {3), which are integral help systems and which
involve rewriting parts of the command language
interpreter. Such integral help systems can provide
detajiled information on how to use a given utility,
* This work was performed in part under the auspices

of the United States Department of Energy.
fa) UNIX is a trademark of Bell Laboratories.

(b} TOPS-20 is a trademark of Digital Equipment

Corporation.

Robert J. Douglass
Los Alamos National Laboratory
C~10, M5 B296
Los Alamos, NM 87545

but they require that the user know which utility he
needs, and thus violate the first condition listed
above.

Yucca is designed to aid in the use of basic
commands; it is not intended to be a command language
version of the Programmer's Apprentice [B). The type
of answers which it supplies is limited to those which
can be accomplished using a single command, or a
simple sequence (UNIX piping) of commands.

Yucca is an outgrowth of the earlier system UCC,
which was reported in (2]. It ig currently being
implemented in Franz Lisp for BSD 4.2 UNIX running on
VAX'¢) hardware. However, the design also encompasses
basic concepts from other operating systems, such as
TOPS-20, so that users switching from such systems can
have their questions answered intelligently.

2. Design Ratiopale

The behavior of operating system commands is
completely and formally describable. Once a query is
understood, the problem is one of finding a correct
answer; there is no concept of degree of correctness.
To exploit this structure of knowledge, we have
divided the system into two distinct but
interconnected modules. The knowledge base provides a
completely formal representation of the behavior of
the operating system. It receives input in the form
of formal queries in the specially designed query
language Quelya and produces output which binds the
variables of the query. The interface of the user to
this knowledge base is provided by a separate module,
the natural-language front end. The role of this
module is to translate natural-language queries into
equivalent Quelya requests and to convert bindings of
these requests into natural-language answers. Thus,
its purpose is similar to that of the natural-language
components of database systems such as Planes [7) and
Team [4]1, although the nature of the formal queries
makes {ts design quite different. We note that this
philosophy 1is distinctly different from that used in
the UNIX consultant UC (9}, in which the natural-
language module is deeply involved in knowledge
representation.

In this paper, the overall architecture of the
knowledge base is outlined. Detalls of the natural-
language front end will be discussed in a separate
report.

(c) VAX is a trademark of Digital Equipment
Corporation.
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3. Tha Nature of Formal Queries

. In a conventional (nonprocedural) relational

database query language, answering queries corresponds
to the process of binding free variables in a first-
order formula. For example, retrieving the set of all
employees who make at least $£30000/year may be
. exXpressed as

{ x | employee(x) A (salary(x) 2 30000) } .

In Quelya, there are two basic query formats,
static and dynamic. Static queries are analogous to
conventional database queries and are used to retrieve
slmple definitions. For example, the natural-language
query "What is a pipe?" would be represented in Quelya
as

(Find x ( x = description("pipe"))),
which is the Lisp-like Quelya notation for
{ x | x = description{"pipe")} }.

Just as statlc queries make use of a first-order
static logic, dynamic queries make use of a first-
order dynamic logic. Statements in such a logic
follow the general flavor of Hoare-style propositional
semantics (l). The query "How do I list the contents
of a file with control characters displayed?" is
represented in Quelya as

(Find (Pl F1 QL)
(Dyn (P F Q)
(Define P
({Clauses
(Existsfile(#X))
{type(filae(#X)) = "plain"
(Addnecessary Pl))))
(Define F
((transform F1})
(Define Q
{{(Clauses
(Contents(file(standard-output(Xuser)})
1= contents(file(#X))
(visible-nonprinting-characters
{contents(file(standard-output
(Xuser)))) = "yes")
{Addimplications Ql)))).

Here P represents the precondition of the action, F
the action, and Q the postcondition of the action.
This is represented in more familiar notation as
{(P}F(Q). The string #X designates a generic file
path, while Xuser represents the terminal connection
of the current user., Pl, Fl and Ql are the variablas
to be bound in the query. Fl names the action and is
the primary variable to be bound. It will be bound to
"cat -v" for the above example. Pl is bound to any
secondary preconditions, in this case, to a statement
that the file of #X must be readable and the standard
output device of the user must be writeable.
Similarly, Ql to be is bound to any secondary
postconditions. The asslgnment ":=" In the
postconditions relates values before the action to
those after; it can be formally eliminated by
introducing new variables assigned in the
preconditlions.

This format may be used to express a wide variety
of dynamic query types. However, at the present time,
Yucca is only equipped to answer dynamic queries of
the "How do I..?" variety, in which the action is the
primary item to be bound.

4. Fundamental Components of the Knowledge Basa

The knowledge base consists of two components,
the encyclopedia and the formal semantics module. The
encyclopedia is comprised of simple English language
paragraphs describing key items, such as pipes and the
overall file structure. It is used in a completely
straightforward fashion to answer static queries and
will not be further discussed in this paper.

The formal semantics module is comprised of the
object and type definitions, the static predicates,
the command semantics, and the item templates. The
object definitions form the central core of the
knowledge base. Objects currently modelled include
files, directories, devices, terminal connections, and
users. Each object definition consists of a
hierarchically organized set of attributes. Part of
the definition for the object type file is given
below,

Intrinsic attributes:
node-definitions (set-of(file-node}]
owner [user-id)
mode:
protection [protection-typel
type [file-typel
contents [sequence-of(byte)]

Extrinsic subattributes of contents:
{condition (type = "plain”
or type = "device"))
numbered-lines [linetypel
visible-nonprinting-characters [yes-nol
end-lines-marked (yes-no]
tabs-marked [yes-nol
single-spaces [yes-nol

Intrinsic attributes are those which any instance of
the object must have at all times (whether or not the
value is actually known). £Extrinsic attributes, on
the other hand, can only have values when an explicit
action has taken place. The term in square brackets
next to each attribute is the type of the attribute;
each such type is declared as a data type in the
knowledge base.

The static predicates are used to describe states
of instances of the various objects. For example,
there is a static predicate Readable, which takes two
arguments, a path definition and a terminal
connection. Readable(P,c) is true if and only if the
user at terminal connection ¢ has read privileges on
the file defined by path P.

Command semantics are representad
propositionally. As an example, the semantic
description of the basic (one file) UNIX cat command
is given below.

QOperation: HL-cat(tl,t2)
tl = path
t2 = terminal-connection

Preconditions: .
AND : ! Readable(tl,t2}
! Writeable(standard-output{t2),t2)
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Postconditions:
AND : ! contentegl(filelstandard~output{t2)))
:= contents{file(tl)}
i All "yes-no" attributes of
contents(file(standard-output{t2)))
= "no"
! numbered~lines(contents(file
(standard-output{t2}})} = "none
! OK-cat-mods = "yes"
! Avail-cat-options-list = Cat-parameters
i Used-cat-options-list = ¢

Note that all extrinsic attributes of contents are
initially set to “null" values. To obtain additional
attributes of the target file, filters for the cat
command are logically appended to the basic action. A
description of the cat-visible-nonprinting-characters
filter ("~-v” option) is given below.

Preconditions:
AND : | OK-cat-mods = "yes'"
! Member
("visible-nonprinting-characters",
Avail~cat-options~list)
Postconditions:
AND : ! Avail-cat-options-list

;= Avail-cat-options~1list \
{"visible-nonprinting-characters"}
i visible-nonprinting-characters
(contents(file(standard-output(t2))))
= "yes"
! used-cat-options-list
:= used-cat-options-list U
{"visible-nonprinting-characters”}

The first precondition makes sure that it is all right
to append filters pertaining to the cat command, while
the second removes the applied feature from the
avallable options list, to make sure that it is not
used twice. By properly adding and deleting from the
- avail- and used- options lists of commands, complex
option interaction has been modelled.

The powerful UNIX feature of input and output
redirection is modelled in a similar fashion, via
filters which change the values of standard input and

standard output.

The description of the cat command contains all
‘of the information needed to answer the formal query

presented in the previous section; once Pl is bound to

Readable (#X,%user)AWriteable(standard-output{%user),
Xuser), all of the postconditions are satisfied by
appending the above filter to the basic cat command
and defining Fl to be this composition.

For each attribute of each object, there is an
item template which indexes commands pertinent to that
attribute. In our example, the item template of
interest is that which corresponds to the visible~
nonprinting-characters attribute of the file object
type. This template links this object attribute to

the visible-nonprinting-characters filter of the cat’
command. Thus, the solver module of the knowledge
base can, upon examining the postconditions of the
query, quickly zero in on the appropriate command and
filter(s).

A key feature of the object descriptions is the
inclusion of attributes which are applicable to other
systems, but inapplicable to the extant system. For
example, the attribute online-expiration-time is
included in the instrinsic attributes of file. This
attribute, meaningless in UNIX but central in TOPS-20,
is connected to an item template which contains an
explanation of its inapplicability. Thus, the query
"How do I determine the online expiration date of a
file?" is answered with a statement indicating the
inapplicability of this concept, rather than a
statement of the form "Question not understood."
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Abstract

This -paper explores the nolion of exceplions Lo
general statements. In particular, an account is provided for
those scntences thal are in some sense universal, yet allow
cxeeptions, Following from Lhis account, it is shown how
reasoning with such sentences may be carried oub using
existent techniques. Finally the problem of when Lo admit an
exception, as opposced to when to abandon a gencral

slaternent, is briefly discussed,

Broadly speaking, science s concerned  with
uncovering the fundarnental nature of natural phenomena
and, in large part, deals with Lhe discovery of gencral or
universal laws about such phenomena. In a word, science
systematises. Such laws, of course are never known Lo be
true  and, moreover, are rarcly kpown lo not  bLe
exceplionless. Ralher, one applics a law in conjunction with
an indefinitely large collection of "additional assumptions".
Thus "water boils at 100C” will be true of & particular sample
of water only if the water is pure, Lthe pressure is 760 ram.,
the measuring device is accurate, ete, If a sample fails to
boil at 100°C then, one can always claim that some additional
assurnplion has been violated, even if such a stalement (s not
known. Thus a law may be retained even though (logically)
Laleied,

The overall dircetion of this paper derives from these
intuitions. It is assumed that coucepts (including natural
kind terms) do indeed have underlying necessary and
sufficient conditions, but that such conditions are essentially

unknowable. 'he aim of a learning system in thes instance is

to hypothesise a theory of such terms. Now, as indicated
above, rmrany statemoents Lthat cun be made aboul such
concepts  are not  excepliontess  and  thuas  cannol e
niceessarily Lrue of a class. The first parl of the problem then
is Lo precisely specifly what we mean by o “universal”
stulement which allows exceptions. Note though Lhat we
specifically  reject w0 default  interpretalion  of - such
slaternenls, Thus we would not interpret a stadcment such as
“all elephant s have Tour Tegs” by “an elephant typicalty has
four legs”. Before provecdiog though, we review the notion of

cxeeption and the allicd nolion of defaalt.

Fixcoplions and Defaulls

An exzceplion is basically a counter-example Lo a
general statemenl or rule. Thus if Clyde were a Three-lewgyed
clephant (Lo pick a perfectly random example), he would be
an exception to the rule of four-lesgedness Tor clephants, A
defoull on the other hand is a rule that allows arvinference to
be drawn in the absence of contrary information. Thus if one
knew onty Lhat Clyde was an elephant, one might assurne that
tie had four legs. Nxeeptions then arise when formulaling (or
verifying) a theory of a domain; Jdefaults arize when
reasoning within such a theory, [lence excoptions arise with
respoect Lo the meaning of a term; defaults with respect toa
descriplion. The most fully developed approaches Lo default

reasoning are given in{5) and [7].

An informal division of exception types into individual
exceptions und exception classes is given in [4]. The first
type includes, for example, a raven Lhat has been painted
red, or an eclephant with threc legs as the resull of an
unfortunate accident. The second type can be divided into
forming

two sublypes.  First there are non-subclass
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exception classes, such as albino animals; and second there
are subclass forming exceplion classes. Penguins are an
example of Lhis latter type since they are flightless, in
contrast to birds which, on the whole, are taken to fly, Again
we ermphasize that we do not want a defaull interpretation of
such statements. Rather we want to say something to the
cffecl that it follows (in somo sense) from the nature of
birdhood thal birds fly; but it follows from the niature of
penguinhood that they don't fly, even though penguins are, of

course, birds.

We have assumed that necessary and suflicient
conditions for kinds, such as ravens or water, exist bul arcn't,
knowable. (See [2] for a collection of papers on Lhis subject.)
Thus a naive theory of watcr stales that it (reezes at 0°C, is
transparcnt when liquid, ete. Such stalements are clearly
potentially falsifiable. However, if such a slatement is
falsified, il is nol perforce rejecled, since it may be part of
the best available theory of waler, and does provide uscful

information about the substance.

A fess naive theory stales that water is HEO' and,
foltowing [6], we can say that if water is H, 0, it is necessarily
H,0. In this cese the definition of water admits no
exceptions; ‘the hydroxyl radical OH, for example, is simply
not water. In addition, our naive theory of water can now be
explained in terms of this more sophisticated theory, as can
the cxceptions. lastly, in Lhe presence of a full chemical
Lheory, water can be discharged as a primitive term and

defined in terms of more fundamental concepts.

A Sernantics for Iixeeptions

We associate with each predicate P in our Lhuory Llwo
sels, EP and S, I‘!P containg those conditions hypothesised
to be necessary for P-hood, and is thus the sel of
(hypothesised) essential features. This set 1s hypothesised
to be a subset of the actual (unknowable) necessary and
sufficient conditions for P-hood, u,. We will wrile Up (z ) to
mean that z satisfies these counditions. The set SP' of
significant statements contains those features that are true
ober ace will elaim cooenssarily tras) of Pootl things boing
vt Thos o caalaree of l':r can faes oo egceplions white g

cordopwe U8 ) cen ath though s ay beorecic g Werer. ive

>
i

SoGreau i aTes e e bae pliysie.d
e b e T SR LTI IRV ELT BRI PRI TN

Thus, for example, for a theory of birds (#), inciuding ravens

(R) and penguins (P ), we may have:

Ey = s _animal ]

S, = tunif _colouring , flies . 2 wings ., {
e = Lis_bird

8, =l black, flies . 2wings, |

B, = {is_bird, |

S, =t black_&_white | - flies , 2wings - {

The union of all hypothesised essential statements will be
denoted R, and significant stalements will be denoled 8. Both

I and S are assumed Lo be (nile.

Now, since /5 /7, we must have thal U, < U, and
thus can write U, =Ug v U, " where U," is specific to
ravens, We must also have Ky © By and thus b, =k o k0
where E,‘, “is agaln spoecific to ravens, Also if

by =tpp
therswe can write

SR . ..

"'R =P P Ty "y ;
where cach of the 7, represents a new condition specifie to i,
or represents a restriclion among the p . Containment
reiations, and honce inheritancee (il' such is defined) must
cleariy be strict. Thus, either way, a raven being o bird

necessitales that 1L also be ananimal.

[L is vasy enough to show that these hypolhesised
essential conditions interact reasonably. In fact, the scet of
I“.i under containment forrn an upper semilattice, which has
been claimed to be an appropriate structure for taxonomics

of natural kinds | 3],

[n the case of Lhe signiticant propertics, things cleariy
are different. Consider the example of B > 2 and /1 > /2.
The sel S, follows (in a sense to be speeified) from U, . while

therc are Lhree cases:

S, follows from UR. I oe Sn‘

R
i) ae SP - Here we could implement standard (“defautt”)
inheritance. Thus birds have feathers and penguins

have fcathers.
{rom" UP' But
a fotlows, al teast

i) o€ 3, - Then  -a "follows
U[, = UD L UF'. and o« SH' Thus
in part, from the meaning of penguin and, hence,
serves to distinguish its meaning from the nelusive
set of birds, Thus tirds Ny, bat ponga o don't

i) ooyt B, i cas he teend b s q). e VA Terent

caarapies by fly et ena ey
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This then fixes what is meant by a universal statement
that admits exceptions: it is a statement that follows (all
things buing equal) from the necessary conditions of that
class. This means that such a statement, all things being
equal, is necessarily frue. Thus an elephant, all things being

equal, necessarily has four legs.

The notion of ™all things being rnqual” clearly
corvesponds  to the “addilional assumptions” for the

predictions of scientific theories, discussed in the
introduction. [n reasoning about an individual, "all things
being equal” is equivalent to "in the absence of conflicling
information”, which of course is the standard interpretation

of a default rule.

Thus if z is a member of a particular class, £, we get:
Bz )= U, (z)
iand can write:
(UH(I)/\ Koalz)) > Halz) ac s,

Ka (Ha) is intorpreted as "o is known (resp. hypothesised) to
be true”. Thus, if A(z), z necessarily satisfies the

(unknown) conditions, U,. However, as a result, if it is not
known to n'ot salisfy a property in S,, then we can
hypothesise that it does. The use of Kand His coveredin|1],
which provides a semantic and proof-theorelic analysis of
first-order predicate calculus augmented by these operators.
The resullant language, I'KL in tuen is a straight-forward
extension of Kl developed in [5] (which also provides a

aeneral account of Lhe above dufault reasoning).

Now, within a theory of a domain, all sentences of the
sets B and 8 are hypothesised Lo be necessary (either
strietly, or'in a default sense). [However these sentences can
be Lransformed so that onty predicate letters appear within
the scope of the necessity operator, and so that all instances
of Lhe nceessily operator have only predicate letters (i.¢. no
connectives or quantifiers) in their scope. This means that
we can use Lhe machinery of HKL for represenling and
reasoning about the sets E, and S, where the sentences of

SP are represented as default rules, as indicated above.

lixception Types

Earlier we gave an informal breakdown of wxception
typrs, viz:
i) Individual exceplions
ii) Jixceplion classes
a) non-subclass forming
b) subclass forming
Now, exception conditions may be considered as predicates
and hence, (ntensionally, as classes: and thus should be

amenable to the preceding analysis.

To begin wilk, individual exceptions appear to
correspond Lo the siluation where the reason for Lhe
exception is kmown or assumed knowabte. Thus, if a raven
has been painted red. then the reasons behind Lhat particutar
excuption are fully specifled. Similarly, if one encounlers a
green raven, then Lhe claim can always be advanced that one
could discover (not hypolhesise) the cause if one tried hard
enough; and thus that the reason is potentially knowable,
This is in contrast Lo albinohood where at best the underlying
mechanism may be conjectured. The ey point is that with
individual exceplions Lhe exception can {in fact or allegedly)

be barnediately discharged.

In the case of exception classes. for cxample
albinohood (4), the set E.‘1 is never known. I may be
completely specificd, and even true; and if trac is nccessarily
true; but is never knewn to be true  Thas such exceptions are
kinds in exactly the same manner as are waler or roven . An
exception class then may be discharged only when the class
to which it applies is definable in more fundamental terms,
Thus once we can propose a definition for the term "animal”
(in terms of DNA or whatever), we can also fully define
atbinohood. Similarly a full specification of birdhood and
penguinhood leads to a full explanation (speciticalion of El}
and F'/-‘) as to why the former fies {(all things rven now

remaining equal) and the latter does not.
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Pragmatie Ccnsiderations

To this point we have discussed the meaning of
genecal stalements that allow exceptions, and in what scnse
they follow fcom a set of necessary conditions. However a
number of problems, largely of a pragmatic nalure, remain.
These  problems  likely cannol be answered  without
considering Lhe structure and use of the underlyving
reasoning system and without‘including‘ the a prori betboefls

held concerning the domain.

First Lhiere s the distinction between Lhe scts [ and S,
Certounly a sentence which has exceptions canrot bte a
nember of ki On the other hand, the asserlion [hat water iy
1,0 belongs in B However grey aceas reman. For example,
berause an”albino penguin has never been obscerved is no
reason Lo believe that none (can) exist. Such a contention
may be strengthenced by the existence of albinos in simijae
kinds (suclh as ravens and ducks) or perhaps in more general
kinds (such as mammals). However, before anything can be

accomplished, nolions such as “strengthen” and “similac”,

used in the preceding sentence, must be defined.

The major problem Lhough concerns aulomating the
decision of when an exceplion should be adniitted and when a
generatl statement should be todifled or abandoned, This
however presupposes that "coberent” general stotemconts
can be formed; thure is certaindy no diffeulty in constructing
arbitrary senlences that imply any given set ot data. This
consideration however leads directly to Lhe problems of

induction and confirmation; problems which are, in the

general case, inordinately difficull tsee [2] or [8]).

If we assurne that lthe general statrments ars indeed
reasoinable, then the only nnswer appears Lo be that violated
statemerts are retairned if they are credible and useful. By
credible we mean “inay be necessacily true, all things
remuoining equal”. Howev 1 this can be judged only on the
basis of a priori belielfs about the domain, and the contents

ol the knuwledge hase.

It is difficult also to . pecify what is rncant by a
staterncon boing “useful”. [ narticular. a statoment woold
be useha when it could be used by Lhe reasoning compoent

of the knowledge base. Howes there is also "he role 'hat

Lhe @ tatemenl plays in the theoey of the dornai s for

K" saay prodide

cxan ple, the conjecture “alb pavens are bl

cvidence for higher-level conjectures such as “all bird
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species are coloured uniformly”™ or "all animat species’
colonring varys umformly” as well as related conguetares,
such as “swans are white”, and thus perbaps “bird spocies

To abavlon  this  (iest

have sirnilar  characler
conjecture may Lhen involve abandoning a host of rolated
eonjectires. Thus exceptions atlow the overall strutare ol o
knowledge base Lo be maintained. The problom of when to

admil exceplions then redaces in part to the prablem of

knowled - base syslemnatisalion.

Conglu-ing

This paper has discussed the problom of exerpbinn: 1
gencral  slaternents I'he  guestion of the meaning of
cxeeplion-allowing  sentaences  has  been  approached v
disbinguishing Lwo Lypes of onjeclures coroerning o oo
Ihe first corresponds to hypothueased necessary conditions,
he second cvorresponds to dofoult necessary conditinns
these are analogous 1o the “widditional ossumplions™ of
scientific theories. In Lthe case of natural kiod tecms, The
first sul s assurned to likely be virtually emptysthe am here
howewet has ool beecn o show how sach =uch essonbial
conditions can be found, but rather to uvspbcate the

semanlics of excueptinniess and  exceplion-allowing
statermnents. A second problem. of reasonime with these
statements, follows from an easy adaplalion ol existing
default theories of reasoning. A third problem, thal ol when
to admil excepbtions. s assected to depend on the use and
overall struclure of Lthe Lheory and underlying knowledge

base.

This .pproach treals classes uniforraly. White the
discussion has been geared Lowerd nalurat Wod concepts
throughont Lhis paper, the approach could cqually well be
applied to strictly defimtional terms -- for example learning
about  kinship relalions.  In addition, ¢xeeplion classes

therselves may be treated within Lhis framework.
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Abstract .

In this paper we outline the role of the Canadian Society
for Computational Studies of Intelligence/Societe Canadienne
pour Etudes d’Intelligence par Ordinateur (CSCSI/SCEIO) in the
history of Canadian artificial intelligence (AI), We also
discuss passible future directions far Al in this country,
based on the opinions of the membership of the CSCSI/SCEIO
as expressed in a survey carried out in 1943, Finally, we pose
several questions about the role of the CSCSI/SCEIO in Canada
in the coming years.

1., Introduction

The CSCSI/SCEIO is now ten years old and the time is
appropriate for an examination of its past and future rales in
Canadian AI, This is doubly important given the recent
upsurge of interest in artificial intelligence shown by other
computer scientists, government funding agencies, private
funding agencies, and the media, The C5CSI/SCEIQ has done
a remarkable amount in its decade of existence, especially
considering the volunteer nature of the organisation, and it
has the patential to be even more useful and relevant in the
next decade,

In this paper we examine the past triumphs of the CSCSI/
SCEIQ (section 2), We then present the views and feelings
of the CSCSI/SCEIO membership about future directions for
Al in this country based on the responses given to the
recently distributed questionnaire (section 3), Finally
(section 4), we focus in on what we feel are the most
important decisions facing the CSCSI/SCEIO at the moment and
leave some ‘open’ questions in order to stimulate discussion
among the attendees at this conference and generate reaction
from the CSCSI/SCEIQ membership in general.

2. The CSCSIASCEIO

The CSCSI/SCEIQ was founded in 1973 to act as the
umbrella organisation for AI in Canada, Deliberately
circumlocutious, the name was chosen in order to attract a
wide range of research interests, including AT, but also
encompassing areas like image processing, pattern recognition,
cognitive psychology, computational linguistics, man—-machine
studies, and so on. Pattern recognition and image processing
now have their own arganisation (CIPPRS), as do graphics and
man-machine studies (CMCCS/ACCHO), but the CSCSI/SCEIO
still continues to attract some afficiandos of these areas as
well as people with "mainstream" AI interests,

Originally an infarmal grouping of about 20 researchers,
mainly academics, the CSCSI/SCEIQ is now nearly 200 strong,
The core of the organisation is still the academic Al research
community (and, in fact, its executive officers have always
come fraom this community), but there are now members from
government, research laboratories, and the private sector, The
organisation, while still maintaining much of its informal
character, has been legally constituted (receiving its "letters
patent" under Ontario law in 1%20), It is also now a special
interest group of the Canadian Information Processing Society
(CIPS)

The society has accumulated a number of functions over
the years, Its first major activity was to distribute a
newsletter, Compiled by the UBC AI group, the first one of
these appeared shortly after the formation of the society in
1?74, Typical of the early newsletters, it was considered to
be a "one-shot" enterprise and involved significant effort,
not to be soon repeated. This experience resulted in
responsibility sharing from one AI group to another around
Canada to produce approximately yearly newsletters, Thus, the
second newsletter was produced by University of Western
Ontario, the third at University of Toronta, the fourth at
University of Alberta, and the last one of the early series at
University of Ottawa, At this point the membership decided
that the newsletter should appear more frequently and with a
lat less effort than the special case newsletters that had
been produced to that time, Under Wayne Davis’ co-ordinating
editorship, a joint newsletter (shared among C5CSI/SCEIO,
CMCCS/ACCHQ, and CIPPRS) was formed, with sub-editors
representing each society. The lofty goal was to produce a
quarterly newsletter; in actuality, only half that number
has been forthcoming, but perhaps the frequency will pick up
as the popularity of Al grows and the number of submissions
consequently increases,

Another major activity of the CSCSI/SCEIO has been to
host national AT conferences, held in even numbered years, The
precursor to these conferences was an Al workshop held at
University of Ottawa in 1?75 under John Mylopoulos’
chairmanship, The first real conference (with refereed
extended abstracts) was held at UBC in August 1974, organised
by Richard Rosenberg and Alan Mackworth, It attracted around
40 people (this is remarkable considering that the decision to
hold the conference preceded the conference by only 4 months)
A full proceedings was produced, as at all future conferences,
and a marvellous salmon barbeque was held at Richard
Rosenberg’s mansion, The first conference established the
tradition of excellence in invited speakers with Zenon
Pylyshyn's keynote address.

The second canference was held in 1973 at University of
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Toronto, chaired by Ray Perrault with Ted Elcock as programme
chairman, Held in muggy July weather, it attracted 120 people,
Despite a less than outstanding Chinese banquet, the
conference still mantained the relaxed friendly atmosphere
which has become a CSCSI/SCEIQ conference tradition, The
keynote speaker at the second conference was Alan Mackworth,

The third conference was held in May 1780 at University
of Victoria under the direction of the Alberta’s Al
establishment (Wayne Davis, general chairman} Len Schubert,
programme chairman), It was notable not anly for its large
attendance (around 150 people), but also for being the first
conference held in conjunction with the CIPS national
conference and far its large number of invited speakers (Ted
Shortliffe, Ray Reiter, Jerry Hobhs, Steve Zucker, Hans
Berliner, Robert Wilensky): The 1¥30 conference was also the
first to compete with a AAAT conference (whose initial
conference was held in August 19720). Up until that time, the
CSCSI/SCEIO had hosted the only North American AI conference
in of f~-ITCAI years, although there had been a couple of
"special interest" TINLAP workshops.

The fourth conference was held at University of
Saskatchewan in May 1722, also in conjunction with the CIPS
conference, Gord McCalla was the general chairmanj Nick
Cercone the programme chairman (the first collabaration of the
dynamic duo), Considering that ITCAT had been held in Canada
only ? months before, and that AAAI now had their conference
organisation in high -2ar, attendance dropped to approximately
20 people. The numoer of invited speakers remained at six
(Roger Schank, Ron Brachman, B, Chandrasekaran, Scott Fahlman,
Bonnie Lynn Webber, and Robert Woodham), the size of the
programme committee doubled and the convivial atmosphere was
maintained, including a great banquet at the Faculty club,

The fifth conference is being held at Western Ontario
with Ted Elcock as general chairman and John Tsotsos in the
programme chair, This conference is the first to require full
papers, rather than extended abstracts, which should further
enhance the quality of the papers. This conference also marks
the re-establishment of independence from CIPS, due to the
locale problems posed by the fact that CIPS is an annual
conference and also due to the minimal cross-fertilization
that has occurred between the two conferences in the past,

Before leaving the conference beat, it should be
mentioned that the CSCSI/SCEIO was the host organisation for
the International Joint Conference on Artificial Intelligence
(ITCAI) in 1921 when it was held in Vancouver, Richard
Rosenberg had the herculean task of handling local
arrangements, He wisely decided not to have the salmon
barbeque at his house, The conference was a great success,
marred only slightly by a bus strike (providing authentic
local colour at least).

The CSCSI/SCEIO is also involved in other activities,
Currently a proposal has been put forward for the society to
sponsor an international AI journal "Computational Studies of
Intelligence", The executive is currently engaged in
negotiations with a publisher with publication planned to
commence in 1935, The organisation, through its executive, has
also produced a document entitled "Directions for Artificial
Intelligence in Canada" (1] which compiles the results of a
survey of its membership on current AI research activities and
future research directions,

In section 3 we single out the "directions” component of
this document for special attention. The section is mare or
less reproduced exactly from (11, Then, in section 4 we pose
several important questions which should be answered about the
CSCSI/SCEIO’s role in Canadian AI. We hope these will
stimulate discussion at this meeting and beyond,

Ze Directions for Canadiamn AT

We summarise the results of a questionnaire sent to the
CSCSI/SCEIO membership in Octiber, 1933, This questionnaire
is a shoart, multiple choice version of a longer “subjective"
questionnaire sent out in April of 1233, We received (0
responses to the questionnaire representing 107 individuals,
categorised as follows! 6 responses from the long
questionnaire and 54 responses from the short questionnaire,
Of these 54 responses, 32 were mailed in and 21 were the
result of a follow-up telephone campaign, The breakdown of the
responses geographically is shown in graph 1.

GRAPH 1 — Summary of Responses
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We integrated into one "lump" the respanses from the long
questionnaire and the written and phone responses to the short
questionnaire, We then sub~divided this lump into academics
residing within Canada (dubbed "academics") and all other
people (dubbed "non-academics"), Non-academics mostly consist
of individuals in private industry within Canada, but also
include personnel of government laboratories, private research
laboratories, and people residing in the United States or
overseas, It was felt that the vast majority of Canadian AI
research is being undertaken in the universities and we wanted
to single out this group to see if they held any substantially
different views from the rest, The division is fairly
arbitrary, and the distinctions in viewpoint between the two
groups have turned out to be fairly subtle (except where
explicitly indicated below); but it seemed important
nevertheless to keep the data separated in this explication,

We explain the results of the questionnaire below.
Accompanying the verbal description of the results are graphs
outlining the percentages of respondents picking a particular
answer in each of three categoriest! academics, non-academics,
and overall, The academic percentages were computed out of 3%,
the number of Canadian academics who answered the questionnaire;
the non-academic percentages were computed out of 21, the number
of other respondents} and the overall percentages were
calculated out of 69, the total number of respondents to the
questionnaire, Since respondents often made several choices to
a question (or no choices), the percentages don’t normally add
up to 100 percent in any category, In the graphs, the overall
percentages are represented by the solid bar on the left, the
academic percentages by the cross-hatched bar in the middle, and
the non-academic percentages by the striped bar on the right,
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Also quoted at length below are remarks made on the
questionnaires by respondents, We have attempted to pigeon-
hole the comments opposite the appropriate question on the
questionnaire, No comment is quoted more than once, even if
it has relevance to several points, Not every remark made on
the questionnaires has been quoted, We hope we have done
justice to the feelings of the respondents and haven‘t
misrepresented anyone’s opinions by quoting out of context or
in the wrong place,

Part 2 — Financial Support

In part 2 of the questionnaire respondents were asked to
comment on various aspects of funding for AI in Canada,
Needless to say, most people felt that current levels of
funding were inadequate, although Z respondents didn’t agree.
As one of them put it} "more people are the first need -
throwing money [at a problem without the people] wouldn’t
necessarily help much”, Others found the question difficult
to answer due to their lack of knowledge of the costs of doing
Al disinterest in the question, or a feeling that specific
projects should be set first before discussing funding.

The findings of the survey about funding are outlined in
graphs 2 through 5. They indicate that NSERC is the agency of
choice for distributing funds, that an additional 10 to 100
million dollars should be allocated to Al over the next
decade, that AT should be supported in conjunction with other
areas, and that equipment is the major priority {followed
closely by release time for current researchers, additional
support staff, and extra researchers), Lets look at each
question in more detail.

The first question in part 2 asked about who should
provide funds far Al research in Canada (see graph Z}, The
fact that NSERC is looked on favourably (by academics as well
as non-academics) is reassuring for current government funding
policies, It reflects a realisation that there is a role for
basic research and that anly NSERC currently has that mandate.

GRAPH 2 — 2. Financid Support
Additiond Funds: Provided by
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It was suggested that "NSERC should declare [AI] as one of the
areas eligible for strategic grants", presumably explicitly
rather than implicitly as part of computers and communications
as is the case now.

Private industry was the second most favoured source of
funds, again with remarkable agreement between academics and
non—-academics. One respondent thought that private industry
should be made more aware of the practical aspects of Al
Federal agencies other than NSERC came in a close third} among
the agencies mentioned were the Secretary of State’s office,
the Medical Research Council, the Department of
Communications, and the Department of National Defence. One
respondent expressed the sentiment that these other government
departments "should fund applied research leaving basic
research to NSERC", Provincial governments ranked fourth! the
provincial science councils were mentioned, as were the
universities, Research institutions as sources of funds for
Al did not rank highly, an opinion that may be changing as
organisations such as the Canadian Institute for Advanced
Research (which is currently funding a project with a strong
flavour of AID) prove that private capital does exist for
research projects in the field.

Perhaps the most interesting suggestions made about the
source of funds came among the 7 percent "others", One person
suggested that "the Japanese have called for collaboration od
the Fifth generation project - Canada should investigate the
offer of collaboration [rather than directly competing against
theml", Another well thought out response said that "a
granting agency is needed to fund AI software developments
requiring $200,000 or more (for manpower only), Such
developments should be targeted to areas of potential interest
to industry, perhaps 4 or mare such grants per year, The
effect and aim would be to get industry interested while
providing them with experienced people who could further
develop the products. This in turn would increase the demand
for graduates,"

The second question in part 2 (how much money should be
spent?) was sporadically answered (see graph 3), Most
respondents felt that 10 to 100 million dollars in additional
funding over the next 10 years (1 to 10 million per year) was
appropriate, although one persen said that "$10 million / year
is peanuts", Whether even 'l million dollars per year is
realistic is open to question in these days of restrained
budgets, but the unanimous opinion was that this level of
extra funds is the minimum required.

The third question in part Z (should AI be funded in
isolation or with other areas? also had decisive results,
There was less than a 100 percent response rate, but among the
two-thirds who did respond, there was a 4 to | ratio in favour
of funding AI in conjunction with other areas (see graph 4),
Computer science was the most prominently mentioned "other"
area, including VLSI design, hardware, software, CAD/CAM,
evaluation of technology, simulation, distributed processing,
and software engineering., Also mentioned were education and
engineering as well as areas directly related to AI (or
included in it) such as robotics, logic programming, pattern
recognition, cognitive psychology, man-machine interfaces,
psycho-linguistics, automatic programming, and computational
linguistics. Comments supporting the need for funding Al in
conjunction with other areas included "excursions into these
‘esateric’ fields are not isolated ventures, but a continuum"}
“[it is] impossible to define hard boundaries for AI"} and
“the last thing AI wants to do is grow in a vacuum®,

The biggest waorry about supporting AT in conjunction with
another area seemed to be a feeling that there had been
prejudice against AI in the past (especially within computer
science)! "[AT must achievel the remaoval of the prejudice
often directed at AI by colleagues and federal and provincial
funding agencies"} "more computing science support might have
NO effect on AT support"} and "it should be guaranteed that



GRAPH 3 —~ 2. Financid Support
Additiond Funds: How much

504

% RESPONSES

the increased support would be passed on to AL by the computer
science funding agencies", To avoid this problem, it was
suggested that it should be possible to "raise Al’s profile
within computer science so as to increase [its] visibility to
NSERC", Perhaps the whale questian will soon be moot, as the

following humorous observation attests! "if the Japanese are
right, AI will be computer science {(or vice versa) by 1720",

GRAPH 4 — 2. Financid Support
Additional Funds: Allocation
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The final question in part 2 of the questionnaire was an
attempt to find out on what to spend any extra money (see
graph 5), Surprisingly, equipment seemed to be the most in
demand, which is good since extra equipment would seem to be
pasier to buy than extra people, But, there was a large
demand for release time from current duties {especially among
academics from teaching and administration), extra
researchers, and support staff (often explicitly identified as
programmers), Very few respondents were keen on the need for
more adminstrators. Among the other needs mentioned were for
maintenance and infrastructure support, graduate student
support, saftware, travel, and a research centre for AL, The
most eloquently expressed “ather” need was to repatriate
Canadians! "[we must winl Canada’s best back from the U.S, by
paying competitive salaries”} "graduate students sent abroad
should be required to return for a reasonable period"} and
"[we should] keep good young Canadians in Canada and convince
expatriates to return (more money, better working conditions,
Al recearch labs,, etc)"s One respondent did note, however,
that "there are actually a growing number of Al researchers in
Canada despite the ‘brain drain’ - it is now ‘de rigeur’ to
have one Aler even in a small department™,

GRAPH 5 — 2. Financid Support
Additiond Funds: Targefed fowards
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Part 3 — Strategies

In part 3 of the questionnaire respondents were asked ta
comment on a number of different passible strategies for Al in
the next decade, This part was more universally answered by
the respondents than was part 2, It alsoled toa couple of
disagreements between the academics and the non-academics.

Graphs 4 through 11 summarise the responses to these
"strategic" questions, Here is a synopsis of the findings! Al
research should be widely distributed geographically (although
academics and non~academics differ an this), focussed an a
wide variety of topics, directed towards both practical and
thearetical results, carried out in universities; aimed at
long term goals, and oriented towards software rather than
hardware. Each question in part Z generated an interesting
variety of opinions.
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In the first question respondents were asked to contrast
two essentially different geographic arrangements! centres of
exellence vs widespread research (see graph 4), There is a
substantial difference of opinion between academics and non~-
academics on this issue! non-academics were 2 to 1 in favour
of concentrating research in centres of excellence {although
sometimes the number of centres suggested was somewhat
greater than 2), while academics were over 2 to 1 against
such concentration, preferring instead a widely distributed
research effort, The reasons for this difference of opinion
are open to speculation: it could merely be an artifact of
the particular subset of people who responded to the
questionnaire, or it could represent a distinctly different
approach favoured by the two camps. The fact that the
majority of both academics and non-academics preferred the
research focus to be wide ranging (see graph 7) further
clouds the issue, since it would seem to be easier (although
by no means essential) for a researcher to maintain a
different perspective on the world if he or she isn’t
physically close to a critical mass of people with a
particular world view.

This question of centralized vs widespread activity
generated many comments, In favour of centres of excellence
were remarks such as "one or two large AI centres is all the
country can support”, Against centres of excellence were
comments such as "Al is too diverze and ill-formed yet to put
all our eggs in a few baskets”} "centres are notoriously
difficult to create"} and a plea for the ability to do AI
research at smaller universities! "there are more graduate
students, perhaps, at a big school, but often less freedom,
less open-mindedness, less control, more anti-AI bias". Many
respondents suggested letting research grow wherever it found
root ("anarchism") or saw the need for a "judicious mix" of
the two strategies:! "both [centres and distributed] ~ we have
to have at least one AI person in each .. university to teach
the people who come to the centres to be Al graduate
students"} "practical work, i.e. functioning AI systems,
¢hould be concentrated in centres of excellence; theoretical
work can be distributed more widely",

GRAPH 6 — 3. Strategies: Geography
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One frequently expressed desire was for electronic
networks to allow geographically distributed researchers to
keep in touch! "one thing that would make a big difference is
if C5CSI could organise us all on a net”. Another suggestion
was funds to increase the mobility of people so they could
"interact on a personal basis, [make] visits, [takel leaves,
etc," This might allow a sort of distributed critical mass,
and would certainly enhance communication, idea sharing, and
the launching of ro-operative projects among different
institutions,

The second question in part 3 of the questionnaire asked
about whether the focus of AI research should be on one or two
topics or distributed more widely, There was considerable
opinion {(see graph 7) that research topics should be diverse
since to ensure self-sufficiency Canada "must provide
expertise in all areas of AI" and that the difficulty of
predicting successful avenues of research in advance requires
"broad based support". There was a strong feeling that it was
impossible at any rate to easily direct what people chose to
investigate, i.e\ that the focus should be “research driven”
and that we "don’t want a lot of regulations and government
direction.

Those who did suggest focussing on a couple of topics
(and more non-academics thought this way than did academics)
made general comments such as "priority {should bel given to
existing strengths and national needs", or made more specific
suggestions about particular topics! e.gs "Canada could
concentrate on natural language (machine translation),
linterpreting] satellite photos; and 2 or 3 other relevant
topics”} or Canada should focus on “"specific needs such as
French/English translators, mining robots, and grain train
schedulers”, This topic can be concluded with the following
two remarks; "those capable of spending the poor taxpayers’
dollar are more influenced by Japan’s Sth generation than by
anything we can do"} and "on the whole [AI] looks like an
interesting mosaic after an earthquake",

The third question in part 2 was aimed at sampling

opinion on whether theoretical research or research oriented
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GRAPH 8 — 3. Strategies: Directions
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towards practical results was more important, As graph 3
shaws, the strang feeling of academics and non-academics alike
was that both directions should be pursued, Most seemed to
feel that theory and practice are inextricably intertwined,
with practical systems providing essential data for
theoretical research, and theoretical results being extremely
helpful to practical applications. As one respondent put it}
"{youl can’t separate them yet ~ [moreover, it is} undesirable
to do so for political reasons"} and another noted that
"practical applications offer a door opener and the

possibility of support for more long term work", It was also
suggested that many pecple still don’t realise that Al is
practical - "[wel need to get across to Canadian
government/industry the idea that AI may actually be of use",

In the fourth question respondents were asked where they
felt AI research and development could best be carried aut
(see graph %), Substantial opinion (at 77 percent, the largest
percentage in the questionnaire) held that universities were
the best place (an opinion only slightly less strongly held
among non-academics than among academics), The second most
popular choice was industry, Many people opted for both
universities and the private sector. One remark summed up
this point of view accurately! “increased funding at all
levels is crucial, building on strengths". Another remark
indicates that industry should be more interested in Al
research and development than it currently is! "[there is] a
need to consider AT issues by industry and to remave the
‘hranch plant’ R&D mentality", There was very little backing
for research outside of academe and private industry, with
government laboratories receiving only 13 percent support and
such other suggestions as industrial conglomerates and private
laboratories associated with universities receiving sporadic
support, One person thought there was a need to avoid current
organisational structures altogether, but made no alternative
suggestions,

The second last question in this part asked about whether
41 should set long term goals or short term goals (see granh
10), Academics (as might be expected) strongly preferred (74
percent to 22 percent) taking a long term perspective; but,
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somewhat surprisingly, non-academics also preferred long term
goals to shart term goals (&7 parcent to 4% percent), The
argument for the long term view can he summed up in the
following comments! "[wel shouldn’t aversell the short term
applicability - we dan’t have nearly enough knowledge to
guarantee success in many, many areas"; and “[wel must
recognize the extremely long lead time and considerable
expense of doing AT research". However, it should always be
realised that "AI is clearly a cutting~edge discipline with
massive potential payoffs",

GRAPH 10 — 3. Strafegies: Godls
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Finally, respondents were queried about whether AI should
be oriented around software development or hardware
development. Graph 11 shows a 3 to 1 plurality favouring a
concentration on software, not surprisingly since only
recently has hardware become a topic that has begun to take on
any direct AI implications, The general feeling seemed to be
that, in contrast to hardware, software development in Canada
faces few competitive disadvantages ("[thel U.S, and Japan are
awesome competitors in hardware - in software they have littls
or no advantage™) that "hardware is too expensive"} and that
our competitors have too strong a lead in hardware (“(there
is) no point in challenging the U.S. or Japan in [hardware] at
this stage"): Backhanded support for hardware can be found in
the following remark: "if [hardwarel means LISP machines; no;
if it means special purpose hardware for, say, vision,
possibly", But, in general the mast promising path seems to
be software development (and as a few said "theory") rather
than hardware,

Fart 4 — The Role of the CSCSI/SCEID

In part 4 of the questionnaire the respondents were asked
to comment on the roles they saw as most important for the
CSCSI1/SCEIQ, in order of priority, Some people did not
indicate priorities; in such cases we decided to rank the )
choices in the order they appeared. This assumption does not
affect graph 12, indicating the roles peaple mentioned
anywhere in their choices, regardless of priority, Graph 13,
indicating people’s top three choices, may be a little less
accurate due to this assumption, but since many people did naot
mark more than a few choices, this graph is not too far off,

According to graph 1Z, respondents support all & roles
mentioned for CSCSI1/SCEIQ, with marginally more people in
favour of its roles as "provider of information to the AT
community" and "host of a Canadian AI conference" over its
other roles. The other roles did not differ too much, with
the least favourite roles, in order of disfavour, being
"nrovider of information to the general public” (dead last),

GRAPH 11 — 3. Strafegies: Orientation
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"co-ordinator of Canadian AI policy" (second last), and
"provider of information to private industry" (third last),
These preferences vary little between academics and non-
academics, with slightly more non-academics being in favour of
the CSCSI/SCEIO acting as the representative of Canada to the
worldwide AT community and slightly more academics favouring
its role as provider of information to NSERC, This is to be
expected when it is considered that the non-academic category
included all respondents living outside of Canada, and that
NSERC is much mare relevant to academics than to non-
academics.

Graph 13 reflects the same trends as graph 1Z, but in a
more pronounced manner, Due to our somewhat biased
interpretation of the priorities, roles occurring later in the
list should probably be boosted a hit and the earlier roles
decreased marginally., Nevertheless, this graph is informative
since it indicates strongly held opinions as to the role of
the CSCSI/SCEIO. Unlike graph {7, this graph divides sharply
into % equivalence classes of preferences. In the top class
there is "provider of information to the Al research
community", standing by itself {at 40 percent) as far and away
the most preferred role, In the next equivalence class are 4
roles in the 30 to 4% percent range, in descending order "host
of a Canadian AI conference", "reprasentative of Canada to the
worldwide AI community", "provider of information to NSERC",
and "pravider of information to other government agencies". In
the bottom equivalence class are roles which range from 3
percent to 13 percent, in descending order "co-ordinator of
Canadian Al policy", "provider of information to private
industry", and "provider of information to the general
public®,

Respondents were asked to make suggestions about future
roles far the CSCSI/SCEIO and many of them did, There were
those quite satisfied with the CS5CSI/SCEIQ: "it is the only
hope {for Canadian AI1"} and others were quite down on the
organisation? "the CSCSI is ‘mickey mouse’, unprofessional 4.
I am not impressed with the performance of the CSCSI so far.
AL in Canada is not synonymous with the CSCSI.“ But the
general feeling was constructive’ that we have done all right
s0 far and can work together to effect the various changes
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needed, The suggested areas for change were numerous, They
can be categorised into 5 basic groupingst changes in the

image of the CSCSI/SCEIO, changes in the publications, changes
in the conferénce, suggestions for ather roles, and changes in
organisational structure. Each of these categories will be
dealt with in turn, quoting liberally from the questionnaires.

The most numerous group of suggested changes pertained to
improving the CSCSI/SCEIO’s image in various ways. Az ane

persan suggested! "[wel must reach all of the AI community and

win its confidence that CSCSI is a useful body", There were
several ways of doing these put forward by the respondents:

(1) improve public relations ~

"[we need] more aggressive public relations work, i.e.
when someone thinks ‘AI’ they should also think ‘CSCSI™;}
"generate lots af ‘PR’ to let the world know we exist"}
"more press releases"] "[CSCSI/SCEIO] is not as widely
subscribed to as it should be - an extensively advertised
membership recruiting campaign is in order”}

{ii} influence gavernment ~

"[CSCSI/SCEIO should bel more active as spokesman to
government” with the following ways having been mentioned!
"try to get members into important positions in government
and NSERC"] "{appoint within C5CSI/SCEIO] an official
person or group to liase with and advise government"}
“lobby in Qttawa";

(ii1) change the style of CSCSI/SCEIQ -

"stop schoolboy responses - questionnaires"} "militancy"”}
"assertiveness”} "AISB [the British/European AT sacietyl
is successful - what has it got that CSCSI hasn/t?"

(iv) be more nationalistic -

"don’t look so much to the U.5. AT community"} "decide
whether [thel focus is primarily Canadian or
international”; "should use Canadians more in the CSCSI"}

(v) foster better communicatign ~

"[it} should be possible to get across to people on the
fringe of AI what is actually going on"} "[CSCSI/SCEIO
should] provide mare infarmation to A people and related
disciplines and find rmaney/vesearchers in this area"}
[CSCSI/SCEIO should] develop the ‘administrative
resources’ to respond quickly to requests for information
on Al in general and AT in Canada in particular") as well
as the comments nated earlier about the need for
electronic communications links among the Canadian Al
cammunity,

The second group of responses generally relate to
enhancements in the publications produced by the C5CSI/SCEIO!

(1) improve the newsletter ~

e

"[thel newsletter [shauld) be mare frequent and regular®;
"good explanations of research projects which don’t read
like grant applications ar bits of Ph.D, theses might help
outsiders get interested - it's that or Newsweek"; "[there
should bel reqular periodicals, reports, articles ~ aim at
educated public and industry™; "[we need al better
newsletter ~ have a specific ‘group’ within CSCST with
more direct responsibility for producing the newsletter”)

"raise the dues (iIf necessary) to support PR, a journal,
and a mDnthlx nawsletter (a la SIGPLAN)"}

(i) start a journal -

"lLwel need an AT journal in Canada"} "[we need al quick
publication journal stressing tutorials and

interdisciplinary research contributions serving to

improve communications within the AT community, to involve
crientists in ather disciplines, and to estahlish

visibility with the lay public"}

(iil) prepare a document on Al in Canada -

"[CBCSI/SCEIO shouldd put togather a summary of Al (in a
special CIPS mailing)"} "[CSCSI/SCEIO should] prepare a
document based on members’ opinions outlining the
directions Al is taking and/or <hould take"} "some time
consuming but useful activities might include our own view
of where we see the field going ... [but] this is largely

a matter of the time and energy people have to devote to
the cause, I'd still rather see people do real scientific
work,"

{iv) make use of electronic media ~

several suggestions were made about having an electronic
journal or electronic newsletter ar electronic conference.

The third group of responses pertain to the CSCSI/SCEIO
conference and improvements to it that would be possible! "a
first rate conference seems a good way to guarantee
credibility within the AT cammunity {and T think this has been
the case in the past)"} "[CSC5I/5CEIQ shauld] make conferences
higher profile"; "[CSCSI/SCEIO shouldl sponsor ‘special
topics’ conferences (i.e, ‘working’ conferences) in of f-years
from CSCST conferences, e.g. applications of AT to VLSI
design, man-machine interfaces, etc," There was some toncern
that the CSCSI/SCEIQ was being ignored in some AI conferences
and workshops and should have a more prominent role in such
affairs! "[we should1 insist on [CSCSI/SCEIO] participation at
all future conferences, workshops, etc,, having to do with
AT,

A fourth group of responses suggested other possible
roles for the CSCSI/SCEID. One of these was for it to act as a
clearinghouse! "C5CSI should be a very competent, aggressive
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link between academia and industry, actively trying to set up
pilot AI projects in industry or collaborative projects

involving several Al centres”; "people in Toronto, Montreal,
and Ottawa [could] promote CSCSI and act as contacts for
anyone in their [research] area who needs Al
information/referral/etc.” There were many reactions to
C5CSI/SCEIQ acting as co-ordinator for Canadian AI, ranging
from "no" to “that’ll be the day". Another possible role for
CSCSI/SCEIO would be to enhance its international outlook by
representing Canadian Al abroad, perhaps, as one person
suggested, by trying to gain “the right to send or elect a
Canadian representative to the AAATI executive board", or
conceivably by representing Canada on the IJCAI (International
Joint Conference on AI) board if it re~organises along IFIPS
lines, CSCSI/SCEIO was even mentioned as a possible source of
funds to support Al research,

There was a fifth set of reactions that questioned
CSCSI/SCEIO’s current organisational structure in relation to
achieving its goals! "[CSCSI/SCEIO] should review its
relationship to CIPS"} "[we should] push for a true Canadian
computer science organisation — I have nothing good ta say
about CIPS". Some pecple even questioned whether the
CSCSI/SCEIR could (or even should) achieve its goals! "CSCSI
hasn’t enough manpower to fulfill all its gonals"; "are there
enough AI people to justify a separate Canadian organisation
such as CSCSI?} "the C5CSI is not perceived as a ‘live’
entity - apart from the conferences it doesn’t ‘do” anything -
I'm not sure it really can, It’s not anyone’s fault," But,
the majority seemed ta be less pessimistic! "I think [the
changes] have been happening - =.g. refereeing for CSCSI-£4,
generally better organization with continued effort and
growth,”

4. Some important Questions
for the CSCSI/SCEIO

The previous section outlined a number of possibilities
for Canadian AT in general and the CSCSI/SCEIQ in particular,
In this section we discuss a number of open questions facing
the C5CS1/5CEIO, questians which should be answered if the
organisation is to find an appropriate niche in Canadian AI.
Hopefully, the views of the membership as expressed in the
survey and the feelings of the conference attendees will give
guidance as to how these questions should be answered, Where
we offer our own views, it is merely to give a basis faor
argument, :

(1) The main roles currently played by the CSC5I/SCEIQ
are producer of a newsletter and host of a biennial
conference, Can these roles be enhanced™ In
particular, should the newsletter come out more
regularly” Should we sever the newsletter affiliation
with CIPPRS and CMCCS/ACCHO? Should the conference be
held annually? Should more money be risked on publicity
in order to possibly gain increased attendance at the
conference? Should "special topics” conferences be
held? "Yes" answers to any of these questions will
require more time and effort on the part of saciety
members and probably more money from society coffers,

(2) Should the society consider taking on new roles? The
current executive is trying to establish a new
international AI journal under society sponsorship -
will the increased profile this gives the society, and
increased credibility, be worth the extra time, effort
and "risk capital” expended? Are other roles possible?
For example, could the CSCSI/SCEIO usefully serve as an
information provider to government and industry,
possibly by keeping the report "Directions for Canadian
AI" up-to-date year after year? Should the society act
as an accreditation agency for AT people”™ Again, any
of these options would involve more work, and possibly
imply an authoritarian role unsuitable to the
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organisation,

(3) Should the CSCSI/SCEIOQ change its orientation away from
academic pursuits? It could host seminars on aspects
of AI for government and industry. It could concoct
policy dacuments on a wide range of Al issues for
distribution to policy makers. It could more
aggressively seek out funds, more aggressively
advertise itself, and generally be more assertive in
its demeanour, All of these options would change the
fundamental character of the organisation, although
many of them waould enhance its normally meager coffers.

{4} Are structural changes necessary in the CSCSI/SCEIQ?
Specifically, should the society terminate affiliation
with CIPS™ If so, who would handle the many clerical
functions provided by CIPS (handling membership lists,
mailing things out, etcy™ Wauld independernce frae the
society from any great restrictions imposed by CIPS?
Other stroctural changes might be considered as well.
For exampla, a publications officer with
responcibilities for the newsletter and the journal (if
it comes to fruition) might be a good idea. Should
there be an executive member who is responsible for
providing continuity in the conferences to ensure that
conference sites are well chosen, ahead of time, to
2nsure that continuous publicity is provided, and to
act as an information provider to each conference
genaral chairman? More generally, should the entire
executive serve longer terms in order to enhance
continuity™ Is the organisation too much of an
oligarchy - should means be found to "open it up" to
more participation? Our experiences on the executive
convince us that it is very time consuming to maintain
an awareness of all that is going an in A in Canada,
and that to do an effective job requires much thankless
labour. We would be happy to have a veritable army of
volunteers to help out, and any changes in the
organisation which would help to spread the joy of
working for the benefit of AI in Canada as widely as
possible would be welcome.

(5) Finally, we must ask where resources to promote the
CSCSI/SCEIO will come from™ Although there are nearly
200 members, no more than S0 people are actively
involved in the organisation, and many of them are
ready to "retire" from active duty after service to the
cause, Who is going to follow in their fontsteps? The
CSCSI/SCEIO is also ridiculously poor. The CIAR is
able to find vast amounts of private sector maney to
fund its Al-oriented project; the Science Council has
found money in the thausands of dollars for conferences
and workshopsi NSERC, the Science Council, MRC and the
CIAR can invest enough money to help finance well over
100 people to travel to Ottawa. Why does the
CSCSI/8CEID have to struggle along with an annual
budget of around 2000 dollars, with its executive
members cleverly "finding" extra funds from their
universities or their personal research grants in order
to help finance CSCSI/SCEIQ business, with its
membership having to pay their own way to conferences
and meetings, when there is obviously funding to
support AI activities? Suggestions for how to increase
funds flowing to the C5CSI/SCEIQ are urgently needed.

There is currently an AI "policy vacuum" in this
country. Government and industry are crying out for AI
information and expertise, The CSCSI/SCEIO can act to fill
this vacuum. It is the only Canadian organisation devoted to
Al, Among its members are the most prominent AI people in the
land. It has an illustrious history of service promoting AI
in Canada, The CSCSI/SCEIQ is well respected internationally,
Through concerted action, the CSCSI/SCEIO can (and shauld)
become a major influence in Canadian AI over the next decade,
an indicpensible asset in policy decisions affecting AT




The society can, of course, choose not to become
involved. Policy decisions will still be made. They will be
made based on information provided by individuals who may or
may not have the credentials to give the information. The
decisions may not have the broad support of the Canadian AI
community and they may not be communicated to the Canadian AI
community, It is up to the membership of the CSCSI/SCEIO and
its current executive to vigorously promote the organisation
and its abilities in order that it cannot be ignored in the
future, Never has the saciety been more relevant or needed.
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