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Abstraot

Tha Procedural Semantic Network (PSN) is an
extensible knowledge representation scheme1 with
several unusual features and unique design

criteria. This paper outlines the current state of

PSN emphasizing 4its adherence to the design
criteria of uniformity and self-description. It
also describes the current implementation of PSN at
the University of Toronto and summarizes research

on P3N being conducted here.

1. Introduction

PSN i3

(herea®ter KR scheme)
those of object, link, and 1S-A,

a knowledge representation scheme

based on semantic network

notions such as
However, instead of requiring a global interpreter,
a PSN  knowledge (KB)

attached to each generic object

contains

(or g¢lass)
role of determining the
that

base procedures
which
very important
instance and inheritanée relationships for
class along the lines of the frame proposal [Minsky
751, Further, PSN has a
inheritance in its

saany other KR sohemes whiah sllow wmost

very strict notion of
IS-A hierarchy as opposed to
inherited

inforzation to be overridden.
various

PSN consists of a kernel and

extensions which together form a set of KB schemes
ranging

These various KR schemes allow a user to

’rom the very basia to the quite complex.

select a

level of Zunctionality that is appropriate for his

define a

P Following Hayes [Hayes T4] we
Tormal

knowledge representation scheme as a
notation for representing knowledge.
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application. He does not need to include

unwanted functionality with its extra cost and
complexity.

different

PSN is deafgned so that further or
extenalons can be built from existing
into i, thus
that do not fit well
If this was not

features and integrated

accomodating applications
into current PSN, possible an
ad-hoc exteniion (one that cannot be integrated
into PSN likely be

unrelated

and would useless in
areas) would be required
to be

lead to a

application

or a totally new KR scheme would have

designed. Both of theae routes

proliferation of incompatible XR sohemes and

make it harder for users to select an
appropriate KR scheme.
PSN adheres to two very important design

criteria throughout all 1its extensiona. The

first 1as the uniformity of a KR

scheme 1a

scheame. A
uniform if it has only a few basio
concepts and all features in 1t are naturally
large, regular sets (ie. with
[Hewitt

highly

applicable over

Aotor formaliom
{Ingalls 78) are

uniform schemes as all entities within a prograa

few exceptions). The
731 and Smalltalk

are of one basic kind. Uniformity is a powerful
that it
"kitchen sink" syndrome where new oonstructa are

design oriterion in disgourages the

added for each new concept being represented
without considering the interaotion of theae new

This
highly

concepts with the rest of the formalism.
help  1is

extensible KR scheme such as P3SN,

partioularly important in a

The sacond gonsideration is

self-deacription: the

design

degree to which the



meanings ol di”“ersnt Zeatures of a KR scheme are
representable and accessible within the scheme
itsel?. from

This criteris

LISP, for example, gains much power
ita high degree of sel’-descoription.
has a direct impact on the ease with which a scheame
be extanded

can and which the extensions can be

understood.

Together these two design criteria give PSN a
that The
naxt section of this paper gives an overview of PSN
of

criteria in an extensible KR scheme.

coherence many extensible systems lack,

atressing the Importance these two design

A new implementation of PSN is currently id
at This LISP
implementation follows the extensible design of PSN
of
available
PSN

progress the University of Toronto.

without paying for the usual cost

selT-descriptive syatems and will become

to users not closely connected with the

project. The third section of this paper discuases
the current implementation effort., Finally we give
to PSN

the

an overview of research questions related

that are currently being considered at

University of Toronto.

2. The Extenaible Deaign of PSN

PSN currently has six extensions in addition
The

each one builds on the previous

its kernal. extenasions
additive that

™is section will introduce the basic

to are generally
in
onesy. ideas
and features of the kermel and each extension with
emphasis on how the main PSN desaign criteria impact
on their design. These short discussions, although
they suppress detail, serve to illustrate the basic
PSN and demonstrate how

design philosophy of

.sdherence to the design philosophies of uniformity

and self-description serve to mould PSH,

The
extensions.
by Abrial ([Abrial 78] and adheres to the following
design criteria: pon-redundancy -- in

the kernel i3 naturally or directly expressible in

kernel of PSN is the all

The kernel has been greatly influenced

basis of

no feature
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terms of the other features, pinimality
exist in the kerpel,
completeneas ~- the kernel is sufficient for the
definition of any feature in the extensions, and

extensibility the is naturally

extensible to include arbitrary new features.

-

no

unneccessdry features

kernel

The basic unit

is the gbjiect which
in the world being

of a PSN knowledge base (KB)
entity
modelled or a useful concept
of the KB. The
constraint in PSN is that everything
that is represented by a PSN KB 1i»

represents either an
in the organization moat basiec
uniformity
represented
as an object and can therefore be manipulated as
A ¢lasa, in PSN,
of PSN object which represents a generic

an object.

type
concept and has

is a particular

other obJjeocts as instances.

Another very important uniformity constraint in
PSN i3 that every object in a PSN KB must be an
instance of a class, in particular every PSN KB
'OBJECT', which has as instances
all objects, and 'CLASS', which has as instances
" Note that 'OBJECT' 1s

is

has the classes

all classes,
'CLASS!

an object
and a class and thus they are both

instances of themselves,

wWhat it means to be an instance of a olass
is determined by four procedures attached to the
class. One of these procedures is
to the
the

whether an object is an instance of

responsible

for adding instances olass, one for

removing 1instances froa olasa, one for

deterxining
the class, and one for geneba;ing all instances
of the class. These four prooedures suffice to
define the semantics of each class: this differs
from most KR schemes in which an underlying and
whioh be

manipulated from within the scheme, determines

unchangeable interpreter, cannot
the semantics of all construots,
the four procedures attached to each of 'OBJECT'

*CLASS!'

In particular

and define the semantios of these very

important These prooedures are, more

the

clasases,
behaviour
in PSN
investigated
within PSN and forms the basis of

than any others, responsible for
of the PSN kernel. Their
allows the behaviour of PSN to be
modified

inolusion

and



the 3elf-aescriptive aspects of PSH.

3ome classes in the PSN kernel have as

instances objects whioh represent binary
Each of these

classes thus forms a binary relation from objects

relationships between objects.

to objects. All of these classes are instances of
the meta-class 'RELATION' whose four procedures are
responaidble for the behaviour of relations,
FPinally, the class "PROCEDURE' is part of all PSN
KBs and 13 responsible for giving meaning to
procedures which, of course, are objects and must

be grouped into a class.

Part of a small PSN kernel knowledge base
(without most of the attached procedures and

several instance relationships) is shown

declaratively 1in Figure ). The figure represents
two instances of the class *'PERSON', namely ‘'John'
and ‘'Mary, two relations, 'BROTHER' and fSEX', and
the appropriate relationships for 'John' and ‘'Mary’
in these relations. The four classes 'OBJECT!,
'CLASS®, °'RELATION', and *PROCEDURE form a

prominent role in this KB, as in all PSN KBs.

The figure hides the faot that to do anything
useful in the PSN kernel a KB designer has to be

concerned with the procedures that support classes

PROCEDURE RELATION

EX

? male

Mary*————-———4£::emale

Figure 1

and rclations, For example, to enforce
constrainta suoh as ¥“for each inatanoe of
'PERSON' there must be an {instance of ‘'SEX'
mapping it to a sex™ tha add prooedure for
'PERSON' must be explicitly modified by the KB

designer.

The PSN kernel defines the notion of
object, the notion of claas with attached
procedures defining the inastances of each claas
and the behaviour of the olasa, the notions of
relation and procedure, and the four predefined
classes which hold things together, Here in the
kernel are the most important uses of
uniformity, the conatrainta that everything must
be an object and that all objects must be
instances of classes that desoribe the behaviour
of thelr instances through attached procedurea.
This uniform basis allows many different sorts
of extensions to be made and also allows the
exten:loni to be wide-ranging. Thus an extended
veraion of PSN should also be uniform and will
encourage further extensions, The kernel also
lays down the basis of self-description in PSN
by 4ts inclusion of the objecta 'OBJECT®,
*CLASS', ‘'"RELATION', and 'PROCEDURE', These
objects have information attached to them in the
form of procedures that describe the behaviour
of all other objects and a major part of the
extensions to PSN are extensions to these

procedures.

Tne first extensaion to the kernel 1is the
addition of an IS-A hierarchy. The basio idea
of this partial-order hierarchy is that if clasn
A 1S5-A olass B then every instance of A is an
instance of B (ie. this IS-A hierarohy has no
exceptions). This extension is effected by
defining a new relation oalled 'IS-A'. The four
procedures attached to 'IS-A' ensure that it
forms a partial order on classes. To complete
the implementation of this extension the
procedures attached to the obJects defined by
the kernel must alao be extended to ensure that
the 1S-A hierarchy has the intended meaning.

This 1involves creating V1S-A" links as



appropriata and ensuring that objeots are added
added

extenslons to procedures

1S-4 parenta when to a class.

do not alter
behaviour when there are no IS-A links and thus

truly extensions.

to

411 thess
PSNts

are

The IS~A extension can be considered in one of

two ways: as the definition of a new relation

and

various supporting procedures along with extensions

to several other procedures or as the addition of a

striot IS-A hierarchy to PSN, A KB designer (

le.

a typical PSN user) should only consider the second

interpretation of this extension and

implementation of
hidden froa him.
is

the

extension useful when investigating

behaviour ar vhen adding further extensions

‘orms

This dualism bhetween intended meaning

implementation is present in all PSN extensions.

The second extenslon to PSN is an independ

the

new concept should remain

However, the implementation of an

its
and

part of the self-descriptive nature of PSN,

and

ent

enhancement to the kernel introducing slots [Minsky

75} (alias roles [Brachman 79}, etc.). Each cl
in this extenslon to PSN can define slots which
functional relationships between the olass

other classes. That is, each slot of a class

each 1instance of the c¢lass to

value. Slots are introduced as apeoial relati
of the

which

which
delined by

also 1inatances class

this

are
extension constraina
values of slots to be unchangeable.

of the IS~A extension, the procedures attached
*CLASS®
handle the set-up and use of slots.
this is
aggregating information about an

As

of extension to 1introduce a method

abjeot into
with other extensions,

are hidden

conceptual unit.

sel7-descriptive aspects from

users.

These

togeLhor and then

first two

further extended. ™is

extension involves the
the IS~A hierarchy. Since an instance of A 1s

inatance

ass
are

and

maps

a corresponding

ona

'SLOT!

the

As in the ocase

to

and 'OBJECT' must be extended to correctly
The net effect

for
one
the

normal

extensions can be combined
third

inheritance of 3lots down

an

of all A's 1S-A ancestors, A can be sald

inherited all of the its
Ve this the
definition of A to restriot, but not otherwise
modify, the
inherits. This restriction of slota is effected
by the oreation of a new slot which 15 related
to the ald via a 'RESTRICTION' link (similar to
a DMODS 1ink in KL-ONE),
modificationa
This
way of new ooncepts

to have of

by allowing

alots
ancestoray, extend

possible values for slots that it

This again involves
of the predefined progedures.
does not introduce much in the
to PSN but
extending the reach of existing
concepts or broadening their applicablility and
In this way it the

uniformity of PSN and shows how the basic design

extenaion
is largely
concerned with
usefulness. increases
oriteria of PSN provide guldance not only on how

to proceed with an extension but also help to
dictate what its content should be.

With these three extensions PSN has an IS-A
hierarchy plus an integrated alot mechanism both
At this stage
several declarative features can be added to PSN
to hide
kernel.
the

having strict inheritance rules.

some of the procedural aspects of the
This results in bpaaic PSH as
small knowledge base
*PERSON!

shown by
2. Tvo
'STUDENT*

in Figure

classes, and 'STUDENT' with

CLASS

» age :NUMBER
”9“B~R SLXES

1

sex:SEXES

STUDENT

e
student-number
:NUMBER

Sex

35292 John
22— age
Mary——igzﬂfemale

36307924 sEudent-numper

—imale

Figure 2



an 1S-2 descendant of 'PERSON' are shown in this

figure. 4130 shown are definitions of the salots
‘age®, '"sex', and ‘student number' and their values
for *John® and °Mary', This lknowledge base

the additions of IS-A and slots in a declarative

ahows

manner, the way that moat users would view them.
These

e’fected via extensions of the procedures

users would not care that these features are
attached
to the predefined objects of the kernel and to them
basic PSN would have a large declarative core.

However, the derivation of basic PSN from the
PSN Kkernel 1is who wish to
inveatigate the behaviour of the

available to those
procedural
extensions or to further extend these concepts (as
Basic PSN is satill highly

all classes

we have already done).
uniform (the
uniformly) and has

extensions apply over

considerable self-description
{as shown by the derivation of the extensiona) and

thus can itself be easily extended.

The remalning extensions to PSN all build upon
basie P3SN, The firat
generalizes the slot mechanism already introduced
[Xramer 80b].
to constrain all properties (both
de®initions) of an object by means of properties
attached to the classes of which the object 1s an

of these extensions
The basic idea of this extension is

slots and slot

(Previously the slot values of an object
slot definitions 1in the
it belongs but slot definitions

inatance.
were conatrained by the
classes to which

were unconstrained.) This new mechanism allows the

user to i{mpose constraints on the definitions of

slots by means of special slots c¢alled meta-slots
(and also on these constraints (and so on)). For
number of

With this

example, a meta-slot can constrain the

slots of a given type in a class.
extension the user can himself add new types of
slot definitions that have their own conatraint

mechanism, PSR therefore becomes more

selZ-descriptive because one of 1its constraint
mechanisms, slots, is now described within PSN,
Un{formity within PSN i3 also increased because the
'SLOT' are

to the instance hierarchy for

special properties of replaced by a

hierarchy analogous

objects {(consisting of objects, classes,
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meta-cluasaes, eto.). Thus uniformity and

self-description not only allow this extenaion
to be made but strongly suggest that it be made

and how it should be designed.

The next extenaion 1a oconcerned with making
examinable and thus more like other
In this
represented as

various slots attaohed to it whioh 1include thae

proocedures
objeots. extenaion procedures are
olasses, Bach proocedure has

operationa of the procedure. Sinoe proocedures

are now olasses with slots they oan be wusefully
placed in the I3~A hierarchy. The I3-A
inheritance of slots can now be used to inherit
the procedural information enclosed in the slotas
of procedures and thus a procedure can be made
more specialized by modifying individual slots
or adding new slots 1instead of modifying the
allows refinexents to

entire procedure. This

existing procedures to be created more easily

[Borgida et al 82), an important consideration

when oreating the attached prooedures for

olasaes in a large IS-A hierarchy,

The sixth

creates a claas of relationships between classes

extension ourrently in P3SN

[Lesperance 80a]. One of these relationships is
the 1S~A relationship and
method of organizing knowledge about oclasses,

each of them 1is a
This generalization of 1S-A allows the
representation of non-striot inheritance such as
exceptional alasases,

It also

similarity mappings and
thus 1hcreaaing the wutility of PSN.
provides a meta~description for IS-A  thus

enhancing the aself-desoriptive aspeats of PSN.

A small knowlsdge base 3showing some of
these extensions in a deolarative manner ia
This figure actually shows

thelir

given in Figure 3,

parts of two procedures demonstrating

declarative slots and the meta-slots definod in
'PROCEDURE' that constrain them and define their

behaviour.

With these final extensions PSN achieves a

complexity similar to other KR schemes {(such a»



KL-ONE (Brachman 79) and KRL {Bobrow and Winograd
771). ir all

needed the extensions do not have to be

However,
then all

this coaplexity 1s not

used.
smaller

This allowa users who want a siampler or
system to co-exist with those that want a
conplex system offering many

features for

organizing knowledge.

In
of uniformity and self-description are used in two
Pirst, they contribute to the
ease o extanding PSN.
by which the

extension can be measured: if an extension does not

each extension to PSN the design criteris
complementary ways.
Second, they provide a

meayure suitability of a proposed

PROCEDURE

parameter: <0, o>

prerequisite: <0,«>
body:

<{, %>

returns:  <1,1>

|

ENROL

parameter

STUDENT
COURSE

student:
course:

prerequisite

room left?:
course pre?:

body

enrol:
fill course:

BOOLEAN,
BOOLEAN,

{...)
(...]

returns

valuc: NUMBER, [fill course]

ENROL-GRAD-STUDENT
- ]

parameter
student: .GRAD~STUDENT
prerequisite
advanced course?: BOOLEAN, [...]
body

notify dept: (...]

Figure 3
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retain or enhance uniformity or if it does not
lend itaelf to self-desoription then it is not a
desirable extenaion to PSN, In this way PSN and
its extenaions are foroced to form an integrated
whole.

follow this standard.

Any further extenaions to PSN must

3. The Implementation of PSN

The
the Univeraity of Toronto attempts to mirror the
of PSN without paying the

current LISP implementation of PSN at
extensible aspects
very high penalty in terms of efficiency that a
direot implementation of the self-descriptive
aspects of PSN would.
of PSN

interface language [Kramer 80]

A previous implementation

and most of its extensions plus an

resulted in a
very large program and has been put aside due to
The goal of

efficiency in the new implementation is partly a

insufficient ocomputing resouroces,

result of this experienoce.

The idea behind the to

have a layer corresponding to each useful set of

implementation: ia
would not be
the
directly
This
extension

These layers
PSN 1s because
procedural would be
implemented in LISP and not in PSN itself.
means that the implementation of an

extensfons in P3N,
self-descriptive as

extensions

would not necessarily be direotly accessible and
modifiable from within PSN but would produce a

much more efficient system. However, aside froa

this, the implementation will have the same
behaviour &as a direot implementation. This is
much the same as the difference between

where the PSN
compiled

compiled LISP,
implementation is essentially a hand

interpreted and
and optimized version of PSN,

A critiocsl problem with suoch a layered
implementation is that an application written in
This could

arise from incompatibility of internal structure

one layer may not work in another.

or from reliance on some oode partigular to one

layer. We plan to retain as much upward and



downsard compatibility as in the

If an
in one layer of the implementation then it

poasible

implenentation. application {a originally
written
will work in a layer with more extensions and if 1t
not use

does some of the extensions present in a

layer then it will work in a layer not containing

those extensions. This is precisely what would be

expected if a direct implementation of the

extensions was done.

Currently only two implemented layers of PSN
are availlable: PSN/O,
and PSN/1, an implementation of basic PSN.
These two layers are faithful implementationa with
from PSN. A third layer,
after

an implementation of the

kernel,
only minor differences

incorporating some of the extensions basio
PSN an probably several other extensions, is in the

process of development,

The implementation is expected to give another

impetus to the development of PSN as applications
are developed and users determine what are the most
of PSN. We that the
the of
uniforaity and self-description will help it resist

KR

useful features expect

adherence of PSN to deaign criteria

the poor compromises that are often forced on

schemes Dby users who want a particular feature
implemented without considering how it will Jimpaot
on the KR scheme as a whole,
§. Research Directions and Applications
Although PSN has had influence on the
developaent of aeveral knowledge-based systems
(e.g. [Cohen 78), [Tootsos B0)), 1t hasn't been

used yet as a knowledge representation scheme in

its own right. However, the current implementation

is 1intended to be used by a number of projects

involving the developament of  knowledge-based
systems for medical applications (e.g. ALVEN
{Tsotsos 80], CAA {Shibahara et al 82)). In faot,

the features of PSN ta be included in PSN/2 were

determined in part by the knowledge representation

needs of the group that intends to use {t.

1BL}

have been raised

The

Many research questions
PSN projeot.,
of events along with causal and
to be

particularly for a KR scheme

from our work on the
representation
temporal links relating them appears an
important i{ssue,
that is to be used in medical applications such
the CAA We like to
formalize the notion of KR scheme extensibility
thia paper to
about the ocompatibility

different

as systenm. would alsc

discusased in make precise

of KBs
A third

statements

developed at PSN layers.
research question involvea the development of an
objeot-based representation for assertions, We
such a
that P3N
procedures have all the features of vlasses. We
like to do similar with

that a

have already done much work on

representation for procedures B0

would something
PSN KB

and

inoludse
all
cbjeat~based

assertions can

entities,

so
procedures, assertions

represented within a single

framework.
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A COMPUTATIONAL APPROACH TO FUZZY QUANTIFIERS IN NATURAL LANGUAGESl

Lotfi A. Zadeh

Division of Computer Science
University of California, Berkeley, CA 94720

ABSTRACT

The generic term fuzzy quantifier is employed in
this paper to denote the collection of quantifiers
in natura) languages whose representative elements
are: several, most, much, many, not _g?y, very
many, not very many, few, quite 3 few number,

all number, close to five, agprox1mate[y ten, etc.
In our approach, such quantifiers are treated as
fuzzy numbers which may be manipulated through the
use of fuzzy arithmetic and, more generally, fuzzy
togic.

A concept which plays an essential role in the treat-
ment of fuzzy quantifiers is that of the cardinality
of fuzzy sets. Through the use of this concept,

the meaning of a proposition containing one or more
fuzzy quantifiers may be represented as a system of
elastic constraints whose domain is a collection of
fuzzy relations in a relational database. This re-
presentation, then, provides a basis for inference
from premises which contain fuzzy quantifiers. For
example, from the propositions “most X's are A's"and
"most A's are B's," it follows that "*most X's are B's"
where most is the fuzzy product of the fuzzy pro-
portion most with itself. The method in question

may be viewed as a constituent of test-score seman-
tics-- a meaning-representation system for naturale
languages in which the meaning of a semantic entity
is represented as a procedure which tests, scores

and aggregates the elastic constraints which are in-
duced. by the entity in question,

1. INTRODUCTION

During the past decade, the work of Montague and
others (Montague (1974), Partee (1976), Dowty (1581))
has contributed greatly to our understanding of the
proper treatment of the quantifiers all, some and
any when they occur singly or in combination in a
proposition in a natural language.

Recently, Barwise and Cooper and others (Barwise and
Cooper {1981), Peterson (1980)) have described me-
thods of dealing with so-called generalized quanti-
fiers exemplified by most, many, etc. In a different
approach which we have described in a series of
papers starting in 1975 {Zadeh (1975, 1977, 1978,
1981)), the quantifiers in questions -- as well as
other quantifiers with imprecise meaning such as

1
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few, several, not very many, etc. are treated as
fuzzy numbers and hence are referred to as furzy
%uantiflers As an 11lustration, a fuzzy quanti-
ier such as most in the proposition "Most tall
men are fat" {s interpreted as a fuzzily defined
proportion of the fuzzy set of fat men in the
fuzzy set of tall men. Then, the concept aof the
cardinality of fuzzy sets §s employed to compute
the proportion in-question and find the degree to
which it {s compatible with the meaning of most.

A convenient framework for the treatment of fuzzy
quantifiers as fuzzy numbers is provided by a re-
cently developed meaning-representation system

for natural languages termed test-score semantics
(Zadeh (1981)).

Test-score semantics represents a break with the
traditional approaches to semantics in that ft {s
based on the premise that almost everything that
relates to natural languages is a matter of degree.
The acceptance of this premise necessitates an
abandonment of bivalent logical systems as a basis
for the analysis of natural languages and suggests
the adoption of fuzzy logic (2adeh (1975, 1979),
Bellman and Zadeh (1979)) as the basic conceptual
framework for the representation of meaning,
knowledge and strength of belief.

Viewed from the perspective of test-score seman-
tics, a semantic entity such as a proposition,
predicate, predicate-modifier, quantifier, quali-
fier, command, question, etc., may be regarded as
a system of elastic constraints whose domain {s &
collection of fuzzy relations in a database -- a
database which describes a state of affairs (Car-
nap (1952)) or a possible world (Lambert and van
Fraassen (1970)) or, more generally, a set of ob-,
jects or derived objects in a universe of dis-
course. The meaning of a semantic entity, then, is
represented as a test which applied to the data-
base yields a collection of partial test scores. '
Upon aggregatfon, these test scores lead to an
overall vector test score,t, whose components are
numbers in the unit interval, with 1 serving as a
measure of the compatibility of the semantic en-
tity with the database. In this respect, test-
score semantics subsumes both truth-conditional
and possible-world semantics as limiting cases in
which the partjal and overall test scores are re-
stricted to {pass, fail} or, equivalently, {true,
false} or {1,0}.

In more specific terms, the process of meaning re-



presentation in test-score semantics involves three
distinct phases. In Phase 1, an explanatory data-
base frame or EDF, for short, is constructed. EOF
consists of a collection of relational frames, i.e.,
nanes of relations, names of attributes and attri-
bute domains whose meaning is assumed to be known.
In consequence of this assumption, the choice of EDF
fs not unique and is strongly influenced by the know-
ledge profile of the addressee of the representation
firocess as well as by the desideratum of explanatory
effectiveness. For example, in the case of the pro-
position p & Over the past few years Nickearned far
more than most of his close friends, the EDF might
consist of the following relations: INCOME [Name;
Amount; Year] which 1ists the income of each indivi-
dual identified by his/her name as a function of the
variable Year; FRIEND [Name; u), where p is the de-
gree to which Name is a friend of Nick; FEW [Number;
L], where u is the degree to which Number is compa-
tible with the fuzzy quantifier few; MOST [Propor-
tion; u], tn which u is the degree to which Propor-
tion is compatible with the fuzzy quantifier most;
and FAR.MORE [Incomel; Income2; u], where p 1s the
deqgree to which Incomel fits the fuzzy predicate

far more in relation to Income2. Each of these re-
Tations is interpreted as an elastic constraint on
the variables which are associated with it,

In Phase 2, a test procedure is constructed which
acts on relations in the explanatory database and
yields the test scores which represent the degrees
to which the elastic constraints induced by the con-
stituents of the semantic entity are satisfied. For
example, in the case of p, the test procedure would
yield the test scores for the constraints induced by
the relations FRIEND, FEW, MOST and FAR.MORE.

In Phase 3, the partial test scores are aggregated
into an overall test score,T, which, in general, is
a vector which serves as a measure of the compati-
bility of the semantic entity with an instantiation
of EDF. As was stated earlier, the components of
this vector are numbers in the unit interval or,
more generally, possibility/probability distribu-
tions over this interval, In particular, in the
case of a proposition, p, for which the overall test
score is a scalar, 1 may be interpreted-- in the
spirit of truth-conditional semantics -- as the de-
gree of truth of the proposition with respect to
the expalantory database EO (i.e., an instantiation
of EOF). Equivalently, t may be interpreted as- the
possibility of ED given p, in which case we may say
that p induces a possibility distribution. More
concretely, we shall say that p translates into a
possibility assignment equation (Zadeh (1978)):

- [l x F
P ( xn)

where F is a fuzzy subset of a universe of discourse
U, xl.---.xn are variables which are explicit or

(xl'...'xn)

sibility distribution, For example, in the case of
the proposition p & Danielle is tall, we have

Danielle {s tall - 1 TALL

S

implicit in p, and I is their joint pos-

Height(Danielle)” (1.1)

where TALL is a fuzzy subset of the real line,

Height(Danielle) 1s a variable which is implicit
in p, and nHeight(Daniel]e) 1s the possibility

distribution of the variable Height(Danielle).
Equation (1.1) implies that

Poss (Height(DanielIe)-u)-uTALL(u)

where u is a specified value of the variable
Height(Danielle), “TALL(“) is the grade of member-

ship of u in the fuzzy set TALL, and Poss{X=u)
should be read as "the possibility that X is u)."*
In effect, (1.1) signifies that the proposition
"Danfelle {s tall,* may be interpreted as an elas-
tic constraint on the variable Height(Danielle),
with the elasticity of the cons;raint character-
ized by the unary relation TALL which is defined
as a fuzzy subset of the real line.

.The same basic idea may be applied to propositions
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containing one or more fuzzy quantifiers. As a
simple 1llustration, let us consider the proposi-
tion

pd Mary has several credit cards

in which several {s regarded as a fuzzy quantifier
which induces an elastic constraint on the number
of credit cards possessed by Mary. In this case,
X may be taken to be the count of Mary's cards,
and the possibility assignment equation becomes

Mary has several credit cards+ (1.2)

nCount(Cards(Mary)) = SEVERAL,

in which SEVERAL plays the role of a specified
fuzzK subset of the integers 1, 2,:¢+, 10. Thus,
if the integer 4, say, 1is assumed to be compati-
ble with the meaning of several to the degree 0.8,
then (1.2) implies that, given p and the definj-
tion of several, the possibility that Mary has
four credit cards is expressed by

Poss{Count(Cards(Mary))=4}= 0.8.

In the above example, the class of Mary's credit
cards 1s a nonfuzzy set and hence there is no
problem in counting their number, By contrast,
in the proposition

p Mary has several close friends

the class of close friends is a fuzzy set and
thus we must first resolve the question of how to
count the number of elements in a fuzzy sets or,
equivalently, how to determine its cardinality.
This issue is addressed in the following section,

2. CARDINALITY OF FUZZY SETS

For simplicity, we shall restrict our attention
to finite universes of discourse, in which case a
fuzzy subset of U‘(“l""'“n) may be expressed

symbolically as

F:p]/u1+...+ un/un
in which the term ”i/ui' i=1,+++, n, signifies
that u, is the grade of membership of uy in F, and

*Generally, we follow the practice of writing the
names of fuzzy subsets and fuzzy relations in
uppercase symbols.



the plus sign represents the union.3

A simple way of extending the concept of cardinality
to fuzzy sets is to form the sigma-count (Zadeh(1978,
1981)), which is the arithmetic sum of the grades of
membership in F. Thus

LCount(F) §£1u1

with the understanding that the sum may be rounded,
if need be, to the nearest integer. Furthermore, one
may stipulate that the terms whose grade of member-
ship falls below a specified threshold be excluded
from the summation. The purpose of such an exclusion
is to avoid a sftuation in which a large number of
terms with low grades of membership become count-
equivalent to a smal) number of terms with high
rembership.

As a simple {llustration of the concept of sigma-
count, assume that the fuzzy set of close friends
of Mary is expressed as

F=0.8/Enrique+) /Ramon+0.7/E)ie40,9/Sergei+0.8/Ron
In this case,

ICount(F) = 0.8+1+0.7+0.9+0.8 .
= 4.2
Another and perhaps more natural approach is to al-
low the cardinality of a fuzzy set to be a fuzzy num-
ber (Zadeh (1979)). In this case, the point of de-
parture is a stratified representation of F in terms
of its level sets, i.e.,

F=g of
a a
in which the a-level-sets F0 are nonfuzzy sets de-
fined by

Fo eluluF(u)>u) » 0 <a<l .

In terms of this representation, there are three

fuzzy counts that may be associated with F. First,
the FGCount {s defined as the fuzzy integer
FGCount (F) = xu a/Count (Fu)
Second, the FLCount is defined as
FLCount (F) = (FGCount(F))' el
where ' denotes the complement, and el means that

1 {s subtracted from the fuzzy number FGCount (F).
And finally, the FECount (F) is defined as the in-
tersection of FGCount(F) and FLCount(F), f.e.,

FECount (F) =FGCount(F) N FLCount(F}

Equivalently, we may define the counts in question
via their membership function, 1.e.,

bEecount(F) (1)3supjalCount (F)31), 120,1,-+,n
A .
uFLCOUnt(F)(1).Sup0(u|Count(F]_°>n-i}
A .
vrecount (F) (% F6count (F) (1) MeLcount (F) (1)

3For the most part we shall rely on the context to

disambiquate the meaning of +.
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where -~ stands for min in infix position

For our purposes, it will be sufficient to deal with
FGCount(F). For this count, "FGCount(F)(i) may

be interpreted as the truth-value of the proposi-
tion “The number of elements in F {s greater than
or equal to i." Another useful observation {is

that FGCount(Fg may readily be obtained from F by
first sorting F 1n the order of decreasing grades
of membership and then replacing uy with 1. For
example, if

F-O.G/u]+0.9/u2+l/u3*0.7/u4+0.3/u5
then
FGCount (F)=1/1+0.9/2+0.7/3+0.6/4+0.3/5

As was stated earlier, the concept of cardinality
of fuzzy sets plays an essential role in testscore
semantics in representing the meaning of seman-

tic entities containing fuzzy quantifiers, In
the following section, we shall consider a few
examples which serve to {llustrate the meaning-
representation process in question.

_3. MEANING REPRESENTATION AND INFERENCE
Consider the semantic entity
SEA several balls most of which are large

For this semantic entity, we shall assume that
EDF comprises the following relatfions:

. EDF & BALL[ Identifier Size] +
LARGE(S1ze; u} +
SEVERAL{Number; u] +
MOST[Proportion; u]

In this EDF, the first relation has n rows and 1is
a list of the identifiers of balls and their re-
spective sizes; in LARGE, y 1s the degree to which
2 ball of size Size is large; in SEVERAL, u 1is

the degree to which Number fits the description
several; and in MOST, u {s the degree to which
Proportion fits the description most.

The test which ylelds the compatibility of SE with
ED and thus defines the meaning of SE depends on
the definition of fuzzy set cardinality, In par-
ticular, using the sigma-count, the test procedure
becomes:

1. Test the constraint induced by SEVERAL:
- uSEVERAL[Number-n]
which means that the value of Number is set to n

and the value of u is read, yielding the test
score 1y for the constraint in question.

2. Find the size of each ball in BALL:
Size,= szeBALL[ldent1fier-ldent1fier1]
, i1, .n.

Test the constraint induced by LARGE
for each ball in BALL:

uLB(i)-uLARGE[Size-S1ze1]






Example
p & most Frenchmen are not very tall

How many Frenchmen are tall?

As shown in Zadeh (1978), p 1s semantically equiva-
lent to the proposition

4 ant(most) Frenchmen are very tall

where ant{most) denotes the antonym of most, 1.e.,
banT (MosT) ()= osT (1-¥) » uefo,1]

Furthermore, it can readily be shown that, in gen-
eral, a proposition of the form

QX's are very F

where § is a fuzzy quantifier and F is a fuzzy set,
entails

réQ’ X's are F

where Q’ is the square root of the fuzzy number Q.
Consequently, the answer to the question may be ex-
pressed as

(ant(most))! Frenchmen are tall:
where

b (anT (MosT) )} (W) =gt ( (1=0) ) uel0,1].

The main point that the above examples are intended
to make {5 that the interoretation of fuzzy quanti-
fiers as fuzzy numbers provides a systemati¢ basis
for both representing the meaning of - and inferring
from- propositions containing fuzzy quantifiers.

In thecase of inference, the answer to a question
is, in general, a possibility distribution which
may be viewed as an elastic restriction on the pos-
sible values of the variable in question.
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GOAL SELECTION STRATEGIES IN HORN LLAUSE PROGRAMMING

E.W. Elcock

The Unlversity of Western Ontario

It is arguable that knowledge representation
and use should be founded on a complete system,
For example, if the knowledge representation
Yanguage is to be first-order logic, then we would
like to express the knowledge K under the assump-
tion that we have available a sequenthood procedure
which is complete in the sense that any true
sequent K => G s demonstrably true by the
procedure. Ffor example, our knowledge system might
be based on finite clausal sequents for which there
is indeed a procedure using resolution which has
the completeness property (Robinson, 1979).

For resolution systems it is well-known that
selection strategies play a vital role in deter-
mining the pragmatics of such systems and design of
strategies has been an ongoing research activity.

Over the last decade an incomplete system
called Prolog has been elaborated and has become
widely used. Prolog has intriguing analogies with
Absys = an assertative programming system developed
in 1968 (Foster and Elcock, 1969). This note
attempts to iltustrate some issues of incomplete-
ness by comparing some aspects of the two systems.

Prolog Is a wel)l documented system. There are
excellent texts (Kowalski, 1979; Clocksin and
Mellish, 1981), together with numerous short over-
views. Ffor this reason we shall simply note here
that a Prolog program is a palr {A,G) where A
is @ sequence of Horn clauses and G a conjunction
of literals. The pair [A,G] has the model
theoretic reading that A => G is a true sequent
(G logically follows from A). It has a procedu-
ra) reading which regards G as an executable
statement which is Iinterpreted as a set of procedu-
re calls to procedures declared in A . The
execution of the procedure calls essentially
parallels a linear input resolution strategy. The
mode) theoretic and procedural semantics are
potentially equivalent In a precise sense (Van
Emden and Kowalski, 1976). However, for pragmatic
reasons, Prolog uses a procedure call and evaluation
strategy which paraliels the LUSH restriction of
the linear input strategy. Essentially, the
current executable statement is regarded, not as a
set, but as a sequence of procedure calls, and A
is regarded as a sequence of procedure declarations.
Prolog attempts to execute the first of the
sequence of calls using the first matching
declaration in the sequence of procedure declara-
tions - the parallel of the depth first LUSH
resolution strategy. Successful matching leads to
replacement of the executed call by the body of the

relevant declaration, and the resumption of the
executlon cycle with an augmented binding
environment determined by the matchlng (for
details see Kowalskl, 1979).

This execution strategy makes Prolog
incomplete in the sense that a true sequent
A => G is not necessarily a terminating Prolog
program [A,G] . A slimple illustrative example
is the program [A,G] where A Is the
sequence of clauses

V.o mem(X,[Y|L]) If mem(X,L).
2. mem((x,[X]L].
specifying list membership, and G s
mem(a,(a]L]).
[X]Lt] Is simply a speclal notatlon (used
In the Edinburgh Prolog) for a term whose
intended interpretation Is a tist with flrst

member X and remalnder )ist L .

The sequent A »> G 1Is true but the Prolog
evaluator persistently uses clause | of A to
generate the sequence of execution statements

mem(a, [a]L))

mem(a,L)

mem{a,Ll) where L s [x]L1]}

mem(a,L2) where L1 is [Y]|L2]
etc. etc.

Unltike Prolog, Absys Is not a well
documented system and only informal accounts are

. avallable (Foster and Elcock, 1969; Eicock,

1971). Absys (standing for Aberdeen System) was
an experimental working on-1Tne incremental
compiler for assertions, developed by the
Computer Research Group at the University of
Aberdeen and essentlally completed In 1968,

A written program In Absys consists of a
conjunction of assertions about objects and
relations holding over them. The system acts
to construct objects satlsfylng the conjunctlon
of assertions. The written program places no
explicit constralnts on the order in which par-
ticular operations are performed, (n addition,



the effect of processing an assertion, as in
Prolog, depends upon the binding context in which
the assertion is processed. Thus, In Absys, as in
Prolog,

L = [X|M)

simply asserts that L is a llst whose head is X
and whose tall is L ., Whether the assertion acts
to construet L , or to select X and M, or
simply check that L,X and M satisfy the
asserted relation, depends solely on the data or
binding environment at the time that the assertion
is processed.

In Absys alternatives could be asserted by an
expliclt disjunction <<al or a2> where al and
a2 are conjunctions of assertions. The (implicit)
and and or distribute in the usual way so that, for
example,

al << 32 or a) »> ab
is equivalent to
<< al a2 ah > or << al a3 al >> |

The system attempts to construct data to
satisfy each conjunction of assertions, each
conjunction notionally constituting a separate
(parallel) computation branch of the total program.
In practice, of course, the non-determinism was
handled by appropriate differential record keeping
and backtracking in a similar spirit to Prolog
implementations. The distribution of and and or
connectives was handled in a way which attempted to
minimize duplication of processing. A particular
computational branch terminates when unsatis=-
flability is datected,

A tambda construction allowed the enprgsslon
of functions other than the primitives of the
system - the analogy of the procedure declarations
of Prolog. Thus list mambership might be
specified in Absys by:

mem = lambda m,s key s

<< g = [p|sl) and
<< m= pgr_mem(m,sl) >> 3>

The assertion

menm(x,[1,2,3])
is equivalent to asserting

<< xm) _D_I: xu2 or xa3 >> |
If in addition we were now to assert

m"(xllzl'.l6])

equivalent to

<< =2 or x=k or x=6 >> ,
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then distribution would lead to nine computa-
tiona! branches of which only one, that
assoclated with x=2 would be satisfiable and
hence remaln active,

The "key'' statement in the declaration of
‘mem'' {elaborated later on) prevents the kind of
non-terminating behaviour exhiblited In the
(admittedly deliberately contrived) Prolog
specification of "mem', The "key’ statement In
effact says '"don't elaborate this call of mem
unless the actual parameter which Is to be bound
to the Indicated formal parameter ''s'" of mem
has a value", Thls prevents a possible
attempt to elaborate the recursive call of mem
before the conjolned assertion s=[p|sl] has
been successfully elaborated, and hence
prevents the possibility of non-terminating
elaboration of mem.

Anticipating Prolog, Absys had a primitive
aggregatlon operator set: |t takes as para-
meters a prototype set element and ‘an assertion
and produces the set of prototype elements
satlsfying the assertion., The assertion Is
typlcally a disjunction. The set aggregator
initiates the '"parallel' computations and then
extracts the datum corresponding to the
prototype from those computations which do not
terminate because of unsatisflability (c.f.
Prolog's extraction of those elements for which
the assertion is established to be a loglcal
consequence of the "A'" sequence of clauses).

Anticipating Prolog and Planner, Absys
negation acts |lke a degenerate or In that It
initlates an Independent computatlonal branch,
but one In which the criteria for termination
are reversed In that not (<<a>) s
satisfiable iff <<a>> is unsatisfiable
(c.f. Prolog's ''not provable").

Although nelther the negation nor the
aggregation operator are central to the theme
of this note, they are mentioned In passing In
the spirit of historical footnotes of potential
interest-to a new generation of researchers In
artificlal intelligence! The maln thrust of
this thumbnail sketch of Absys, which draws
heavily on Foster and Elcock {1969), Is to
bring attention to the fact that Absys, like
Prolog, has a declarative reading (semantics)
which asserts relatlons holding over objects.
Also like Prolog, It has a uniform evaluation
mechanism (Inducing a procedural. semantics)
which attempts to instantiate varlables by
constants in such a way that the assertions are
demonstrably satisfied. Unlike Prolog, however,
Absys, although possessing a clean applicative
semantics, lacks the generality of Prolog's
powerful theoretical underpinnings supplied by
the model theory of first-order logic and the
practical power of dnification as the basis for
the procedure calling mechanism for the system
viewed as a programming language.

We have drawn attentlion to the fact that
the Prolog evaluation mechanism Is incomplete.



What about the Absys evaluation mechanism? 1t too
Is incomplete, but for quite different reasons and
in an interastingly different way.

The Absys evaluation mechanism is explained
In detall In Elcock et.a! (1972), Absys maintains
a list of relations still to be elaborated.
Suppose we actlvate the flrst such relation
f(x,y,z) , say, on this 1list. It Is expected
that the functor f , whether primitive or user
defined, has been defined in such a way that the
header for f specifies, by means of its ‘'key"
statement, a constraint on Its argument set which
indicates whether or not it is "worthwhile”
elaborating the body of f (e.g. "plus(x,y,z)"
is only worthwhile elaborating if two of Its
arguments already have values in the domain of
vplus'’), If the relation is not deemed worth
elaborating, then it is “associated" with each of
its arguments which are currently uninstantiated
variables. The evaluator now continues processing
the tist of relations awaiting elaboration.
Suppose, on the other hand, that the relation
f(x,y,z) Is worth processing in the sense that
enough is known about some of the arguments to
allow others to be inferred through elaboration of
the body of the function. The body is now elabo-
rated and the binding environment necessarlly
augmented, The process of changing a variable
binding In the binding environment automatically
returns any relations associated with that
variable to the list of relations still to be
elaborated.

Let us llustrate this with a very simple

example involving only system functions. Suppose
we have the Absys program
utvm 16 and wiu=v and u+il=12

and suppose the list of relations is initially
processed in this order. The relation u+v=16 is
examined and, for the reasons mentioned, associated
with u and v . The relation wiu=v is now
examined and associated with w,u and v . We now
have the association lists {(u: uetv=16; wru=y) ;
(v: usvelb; wrusyv) and (w: wiuey). The
relation u+410=12 is now examined, elaborated

and the binding environment augmented so that u is
bound to 2 (12-10). As a result of this bindin

to u, the !ist of relations (24vewl6; wi2m v?
assoclated with u |s appended to the list of
relations to be elaborated. The relation 2+v=16
is now examined and elaborated and the binding
environment augmented so that v " is bound to 14,
and the list assoclated with v appended to the
list of relations to be elaborated. This list is
now (2414 = 16; w2 e lh; w*2« 1), The first
relation is examined, elaborated and found satis-
fied. The second is examined, elaborated and the
binding environment augmented so that w is bound
to 7, and the list associated with w appended
to the list of relations still to be processed.
This list is now (7%2=14; 752 = 14), Both these
remaining relations are examined, elaborated and
found satisfied. The list of relations to be
elavorated Is now empty and the {examinable) state
of the binding environment reflects what
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the system has been able to Infer from the
original conjunction of assertions,

Ltet's now contrast this with a Prolog
evaluation. Suppose we ask Prolog to establish
that Its ''system axloms'' Imply that there
exists a u,v, and w such that

utvm 16 and wrumv and u+l0=12 ,

if the goal conjunction Is In this order, then
all Prolog Implementions of which { am aware
would fail at the first relation, This is
because top-down-left-right relation
selectlon-elaboration strategy inslsts that
Prolog determine a successful match for the
selected relation and elaborate it or else
fail. Now Prolog, llke Absys, senslbly says
that it Is not golng to have a system specl-
fication of '"+4'' which will allow a matching
of ut+v=12 lInvolving an Infinite {or at
least potentially very very large) set of
palrs u,v satisfylng the relation: the
chance of doing any useful arithmetic this way
are slim, The Edinburgh Prolog, excessively
cautious in the true Scots tradition, would
Insist that all of u,v, and w are already
Instantiated to Integers., IC Prolog from
swinging London, 1lke Absys, |s happy If two
of the three varlables are Instantiated by
integers at the time of elaborating the call,
However, 1C Prolog still could not cope with
the above ordering because of the left-right
rule, although It could cope with the
loglcally equivalent conjunction

utl0=12 and ufv=16 and wiumv,
Indeed, the actlon of the Absys evaluator could
be viewed as dynamically rearranging the order
of elaboration of the relations under the
Tnfluence of the changing binding environment.
We are now at the heart of the matter,

Certainly the arithmetic example, of
itself, is not very exciting, However, the
{1lustrated problem Is quite ganeral. it Is
that a knowledge manipulation system Is 1likely
to have enough to worry about to generate a
specification of a consequent under Its
declarative reading without having to worry
about any potential Incompleteness of a con-
comltant procedural reading.

For example, the arlthmetlic relatlons In
the example above might have been gonerated in
that order as a result of a particular parse
of the word problem: '‘Two stralight rods laid
end to end measure slxteen inches In length.
The second rod ls longer than the first by a
factor 'k , and the first rod Is the plece
that was left after cutting ten Inches of a rod
one foot long."

Absys would accept the parsed sequence of
relations as is. Prolog would need a further
stage of processing in which the conjuncts were
reordered to meet certaln deficlences in the
sequent processor.



The eaample has, of course, been chosen to
thow Absys to advantage. However, the Absys
dynamic data directed elaboration of the conjunc-
tion is galned only at a high price of mare
elaborate runtime processing structures. In any
case, a nalve dynamic data directed flow of
elaboration, although elegant in certain well
clrcumscribed contexts, of itself rapidly runs out
of steam. For example, and staying within arlith-
metic for pedagogic simplicity, much more sophis-
ticated aggregation and solution methods would be
necessary to deal! with a conjunction of a general
set of llinear equations in n variables. Even the
task of recognizing what aggregations of individual
conjuncts might lend themselves to reorganization
as 2 speclfiod “higher' relation {e.q. the relation
“alralblteega (L) where L Is & tiat of 1lsts of
coafficlants say) I3 challenglng to say the least.

tndeed such aggregatlion is a central problem
of know!edge deployment. Nevertheless, it is
Tikely that flexible dynamically determined
selection strategies for evaluation systems will
remain an important feature of good knowledge
manipulation systems in whatever formalism. The
dynamic methods of Absys take one a little way.
The author s currently investigating whether such
methods can be extended and embedded in the con-
text of a suftably designed logic programming
Vanguage.

Summarz

A major problem with particular logic
programming languages s that a sequent may be
true but not established as such by the system
simply because, in the interests of certain
notions of efficiency, the sequenthood establishing
procedure used by the system is incomplete.

It has been argued that a central issue for
Prolog (and for other first-order systems) as a
vehicle for knowledge representation and use is
the dynamic aggregation of and selection of
appropriate relations for elaboration. The issue
has been i)lustrated by a comparison of the
elaboration strategies of Abset and Prolog.
Examination of the work of (certain) members of
the Prolog programming community shows that
incredibly complex procedural effects can be
obtained (often by the rape of any mode!
theoretic semantics the constructs might once have
had). Although not a sufficlent condition, this
phenomenon offers hope that sophisticated
behaviour might be obtained by tidier means.
indeed, the meta-logical approaches of Kowalski
(Kowalski, 1979) and others are examples of such
attempts. |t might be that, by a suitable super-
structure, one could maintain some of the
pragmotic advantages of Pralog {or Prolog like
systems) and yet avoid the sequencing difficulties
identified in this note.

The content of this note and its wider
context Is part of work being conducted under
Operating Grant Number A3!23 from the Natural
Science § Engincering Research Council of Canada.

124

Refurunces

Clocksin, W.F. and Mellish, C.5, (1981).
Programming In Prolog. Springer-Verlag,
Berlin.

Elcock, E.W. (1971). Probiem solving complilers.
Artificlial intelligence and Heuristic
Programming. (Ed. Findlar, N.}.

Edinburgh University Press, Edinburgh.
pp. 37-50.

Elcock, E.W., McGregor, J.J. and Murray, A.M.
(1972) . Data directed contro! and
operating systems, British Computer
Journal, Vol. 15, No, 2, pp, 125-129,

Foster, J.M. and Elcock, E.W. (1969).

" 7 Absys 1: an Incremental compller for

assertions; an Introduction. Machine

Intelligence 4, (eds. Meltzer, B, and

Michie, D.). Edinburgh University Press,

Edinburgh. pp. 423-429,

(1979). Logic for Problem
North Holland Elsevier,

Kowalski, R.A.
Solving.
New York.

Robinson, A, (1979). Logic: Form and Function
Edinburgh University Press, Edinburgh.

Van Emden, M.H., and Kowalskl, R,A. (1976},
The semantlcs of predicate logic as a
programming language. J.A.C.M,, Vol. 23,
No. &. pp. 733-742,



AN EXPERIMENTAL THEOREM PROVER USING
FAST UNIFICATION AND VERTICAL PATH GRAPHS

Nell Vv,

Murray

LeMoyne College
Syracuse, NY 13214

Abstract
We describe an experimental
Prawitz-based theorem prover.,
Unnormalized quantifier-free formulas
are represented as dlrected acyclic
graphs and we use a fast wunification
algorithm. An additional data structure

called a vertical path graph (vpg) |is
used to gulde the prover toward a proof.
Paths in a vpg are related to disjuncts

in the DNF of the quantifier-free
formulas, We define a well-ordering of
certain paths 1in the vpg, which allows

the search for a proof to be organized
as a recursive backtrack search.

l. Introduction.

In recent vyears, the non-clausal
approach to theorem proving has drawn a
growing amount of attention. Some of
these efforts are based on inference
and/or splitting and reduction methods
[4,5,7,12,18) while others are
variations of Prawitz analysis
[1,2,6,8,16). The major advantage of
the non-clausal approach {is that it
avoids the proliferation of 1literals
during conversion to conjunctive (or
disjunctive) normal form. Two
advantages of Prawitz-analysis are that
no new formuylas are inferred (although
variants of formulas may be) and the
original problem is not split into
separate parts which are then analyzed
and processed locally.

The theorem. prover
retains the advantages of non-clausal
form and Prawitz analysis. The approach
evolved from a preliminary variation on
Prawitz-analysis, which was originally
inefficient, but is now improved.

described here
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In section 2 we briefly describe
the original approach and some
experimental results, The removal of
some major deflclencies is described {n
section 3. Features of the improved
implementation and additional
experimental results are presented |in
section 4, along with a brief discussion
of possible future improvements.

2, An approach to Prawltz-analysis
based on fast unification and
equivalence-class manipulation.

We now tersely describe the

formalism on which our theorem prover is
based. Atoms are constructed in the
usual way from a vocabulary of predicate
and function symbols, and variables.
Formulas are quantifler-free and all
variables are implicitly universally
quantified, We place no restriction on
truth-functional structure: atoms are
formulas and {f B and C are formulas,
then so are (B &« C), (Bv O, “B,
(B =>C), and (B <=> C). Input to the
theorem prover consists of a set of
formulas which s Interpreted as the
conjunction of its members.
Such a s8set § of
unsatisfiable Iff for some n,
n variants of S, 8n, has an instance SnM
that is a boolean contradiction. Notice
that M induces a partition P on the atom
set of Sn. Atoms X and Y are in the
same block of P {ff XM=yM, P is
contradictory iff Sn is false under all

formul as is
the set of

assignments in which atoms in the same
block of P are assigned the same
truth-value, Notice also that any

partition Q, of which P is a refinement,
is contradictory whenever P is. We say
a partition 1{s wunifiable {f it can in
fact be induced by some substitution, P
is maximal unifiable {f it 1is the
refinement of no wunifiable partition.
Thus Sn has a contradictory instance {ff
there is a maximal unifiable partition P

11y, I RS



of the atom
contradictory.
The partitions of an atom set form
a lattice in a natural way, Top is the
trivial partition having only one block,

set of Sn which s

and bottom is the other trivial
partition in which each block is a
singleton, The partial order is
containment. To find maximal wunifiable
partitions, we mwmay begin at top and
follow each branch down until we
discover the first unifiable partition.

Or we may begin at bottom and climb up
each branch, until we discover the first
partition from which no branch leads to
a unifiable partition. :

Now given 5, we may investigate the
naximal unifiable partitions of the atom
sets of S1, S2, until we discover
the first n for which Sn has a unifiable
contradictory partition. This approach
was directly implemented in the original

design of our theorem-prover, We
briefly describe the original
inplementation, noting that some

important data structures and techniques
mentioned remain an integral part of the
improved version.

The set of formulas to
is represented as a set acyclic
graphs (dags), in which different
occurrences of the same expression are
represented by different paths to the

be
of

refuted

sane node., Unifications are performed
rapidly through fast unification
techniques which make use of the same

equivalence class operations (UNION and
FIND) as would be needed to represent
pacrtitions efficiently (18],

With this representation, climbing
up a branch {in the lattice structure
would involve the merging of two blocks
in the current partition. This is done
by setting & polinter from the atom
representing one block to the atom
representing the other, which {s also

the first step in rapidly testing the
resultant partition for unifiability.
However, the partition constructed
may be non-unifiable or
non-contradlctory and thus force
backtracking. So the work done by the
unification algorithm in the attempt to
construct a partition must be quickly
reversible., Therefore the sequence of
UNION and FIND operations caused by a
unification must be remembered and
occasionally undone. This would create
prohibitive overhead in the best-known
inplementation of UNION and FIND, To
reduce this overhead we do not allow
path-compression in FIND, and we ignore
the weighted union rule. Omitting path
compression increases running time from
almost-linear to 0{d log n), where d and
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‘partitions,

n are the number of directed arcs and
nodes in the dags being wunified. The
weighted union rule can be used without
incurcring unsacceptable overhead (it
UNIONs are undone in the opposite order
in which they were performed, allowing
recalculation of equivalence class
sizes.) But its removal does not change
the average running time, although the
worst case becomes 0(dn). We also force
UNION to choose non-variables as
equivalence class representatives
whenever possible, and this modification
does not affect the running time order
f12).

Now the lattice of
which the theorem
prover must search. The number of paths
from bottom to a given partition may be
quite large, and represents the many
redundant ways in which {t can be
constructed. Our search procedure was
written s0o as to traverse exactly one
path to each partition, effectively
converting the 1lattice {into a search
tree in which the ancestor relation
entails refinement. Partitions were
constructed as follows. Given n atoms
in a set of formulas, we number the
atoms from 1 to n, Now every block in a
partition can be uniquely numbered by
the lowest numbered atom {t contains,
Starting at bottom (the partition having
all singleton blocks) we may now
construct all other partitions under the
following restrictions.

consider
through

wWhenever blocks A and B are merged to
form a new (more coarse) partition:

1. B is a singleton.

2. The number of the atom in B |is
greater than that of the
highest numbered atom in A.

3. All blocks numbered less than B
will not grow at any later
time,

It can easlly be shown
partition has a unique
under these restrictions. The following
algorithm summar izes the initial
implemented search procedure, and |is
given without additional explanation for
the interested reader.

that every
construction



procedure SEARCH(GROWINGBLOCK, MAXATOM)
Comment Add to the growing block
MAXUNIFIABLE := TRUE
FOR I 1= MAXATOM+1 UNTIL NUMOFATOMS DO
IF (GROWINGBLOCK and I can be unified)
THEN BEGIN

MAXUNIFYABLE := FALSE

Unify blocks GROWINGBLOCK and I

IF SEARCH(GROWINGBLOCK,I)=success

THEN return (success)
ELSE undo the unification
END

Conment GROWINGBLOCK {s now static
NEW := GROWINGBLOCK+1l
FOR I :s NEW+l UNTIL NUMOFATOMS DO

IP (I Is in a singleton block) THEN

FOR J := I+1 UNTIL NUMOFATOMS DO
IF (I and J can be unified) THEN
BEGIN
MAXUNIFIABLE 1= FALSE
unify blocks I and J
IF SEARCH(I,J)=success
THEN return (success)
ELSE undo the unification
END ’
IF MAXUNIFIABLE
N IF ( partition is contradictory)
THEN return (success)
ELSE return (failure)
ELSE return (failure)
end SEARCH
This verslon of the theorem prover
per formed well on some theorems. The
following two formulas express set
equivalence and the denial that set
equivalence is commutative. x, s, and t
are variables while a and b are

constants.

(1) s=t<=> (ELEMENT{x,S)<=>ELEMENT(x,t))
(2) “{{a=b) <=> (b=a})
De Champeaux [7) reported that for this
example his connection graph theorem
prover had generated K}) non-empty
clauses when the run was abandoned. Our
prover printed out the following
contradictory instance of (1), (2), and
a copy of (1), after running for .77

seconds (on an IBM 370-155).
baga <m> (ELEMENT(x,b) <=> ELEMENT(x,a))
“((2=b) <=> (b=a))

asbh <=> (ELEMENT(x,a2) <=> ELEMENT(x,b))

when
the

Another good performance occurred
our prover was presented with
following unsatisfiable set of wffs:

(Pxyu & Pyzv & Pxvw) => Puzw
Plg(r,s), r, s)

P(l, h(l,m), m)

“P(k(t), t, k(t))
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The first three wffs say that we are
given & set which 18 closed under a left
asgsociative binary operation and that
there exist solutions for g and h for
all equations of the form gx=y and xhwsy,
The 1last wff 1is the denial that there
exists a right identity, In less than
one second the prover diacovered the
unifiable contradictory partitions

{ {pxyu, Pxvw, P(g(r,s),r,s)},
{pyzv, P(1,h(1lm) ,m)},
{Puzv, P(k(t),t,k(t))} }

Desplte these fsolated
results, the theorem

bogged down on many theorems.
the result of at least two major
deficliences. Firse, all maximal
unifiable partitions of an atom set were
befng constructed, without regard to the
truth~functional structure of the
formulas involved; vyet in general only
a small fraction of these partitions
were contradictory. Second, for each
maximal unifiable partition constructed,

encouraging
prover became
This was

the NP-complete computation of testing
for boolean satisfiability had to be
performed,

To reduce the number of candidate

thus alleviate both of
aome extent, a

partitions, and
the above problems to
heuristic was added. We demanded that
every block of the partition under
construction eventually contain at least
two atoms of opposite “polarity®" as
defined in (13]. Unfortunately,
performance was still unsatisfactory.

3. An almost optimal heuristic.

Consider what properties an ideal
heuristic should have, {in order to
reduce or eliminate the two deficlencies
mentioned {in section 2, To eliminate

the first, we would 1like to construct
only contradictory partitions,
Furthermore if that could be

accomplished, then the second deficlency
is also eliminated. Andrews' concept of
vertical path (2}, defined for formulas
in negation normal form, is adapted to
our prover to provide the required
{completeness-preserving) heuristic,

A vertical path in a formula F, |is
essentially a set of 1literals from F
that corresponds to one of the disjuncts
in the disjunctive normal form of F, If
F has a contradictory instance, then all
vertical paths in that {nstance contain
a pair of complementary literals.

We may construct a directed graph
V(F] so that every path from an initial
to terminal node in V[F} corresponds to






CASE 1 CASE 2

CASE 3

Example: In the vpg illustrated below,
we have (BC)<(BCF), (ACF)<({BC), and
(BCE)<(BCF), assuming successors are
ordered left to right, :

We attempt to fix paths in their defined
order. However, fixing one path usually
fixes many others, Consider path
p=(n0,nl, ===, nk). If we fix p by
unifying (the atoms represented by)
nodes ni and nj where 0<i<j<k, then we
have really fixed the path (n0, ---, nj)
and all 1{ts extensions. We therefore
would 1like not to consider path p until
every way of fixing (n0, -~-, n(k~-1))
has led to failure. Furthermore we then
know that the only way to fix p is by
unifying nk with one of n0O,n}, ---,
n(k-1). So after fixing a given path p,
we denote the next path to be considered
by NEXTPATH(p), which {s actually a
defined procedure in our implementation.
NEXTPATH(p) 1is defined as the earliest
path > p which contains at least 2 nodes
and is not an extension of p.

Lemma 23 Let p= (n0,nl, --~, nk} and
NEXTPATH(pP) = (x0,x1, =---, Xr)
If p is fixed and all ways of fixing
(n0,~-=,n(k-1)) lead to failure, then to
fix NEXTPATH(p) we need only consider
unifying xr with one of x0,-~-,x(r-1).

Proof: Let d be the earliest g such
that nd~exd.
Case 1: There {s no such d.

Then since NEXTPATH(pP) > p and not an
extension of p, it is undefined; {.e.,
fixing p fixes the last path in the vpg.
Case 2: d=0

Then NEXTPATH(p} = (x0, x1l).

Case 3: d>0

Then for some {, nd and xd are the {-th
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and (i+1)-th successors of n(d-1)sx(d-1)
and d=r. So (x0,xl, ~--, xX(r-1)=x(d-1))
= (n0,nl, ~---, n(d~1l)) and all ways of
fixing (n0, «--~, n(k~1)) and therefore
{(n0, --~, n{(d-1)) lead to fallure. Thus
tixing (x0, ~~--, xr) must involve xr.

A B

Lemma 2 justifies the fact that
procedure FIXPATH shown below only fixes
a path p by unifying the last node in p
with another node {n p. I1f no such

attempt succeeds, then FIXPATH begins
work on the earliest extension of p.

NEXTPATH (BCE)= (BCF)
NEXTPATH (BC) = (BD)
NEXTPATH (BCF) = (8D)

NEXTPATH (BD)= null

procedure FIXPATH(PATH)

Comment PATH i8 a sequence of nodes
- {n0,nl,--=,nk), where k>1

1. NEXT:=NEXTPATH(PATH)

2. IF (PATH i{s already fixed)

THEN return (FIXPATH(NEXT))
3. FOR {i:ek-1 STEP ~1 UNTIL 0 DO
IF (unifying nk and ni fixes PATH)
THEN BEGIN
Unify nk and ni
IF NEXT={) THEN return(success)
IF FIXPATH(NEXT)»=success
THEN return {(success)
ELSE undo the unification
END
4. IF {(nk has successors)
THEN BEGIN
n{k+l):=first successor of nk
APPEND(PATH, n(k+l))

k := k+t1l
Return to Step 1
END

ELSE return (failure)

end FIXPATH

Notice that there Is no guarantee that
the path that FIXPATH 1s working on
isn't already fixed. This {8 because
fixing path p. may fix many paths that
are not extensions of p.

4. Current features, performance, and
future work.

As it is currently implemented, the
theorem prover has some advantageous
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A LEARNING AUTOMATON THAT INFERS STKUCTURE FROM BEHAVIOR *

DIONYSIOS KOUNTANIS

WESTERN MICHIGAN UNIVERSITY

ABSTRACT

A learning system that infers the struc-
ture of a model from a finite sample of the
wodel's behavior is described, Necessary and
sufficient conditions on the sample behavior
for the learning system to cOnverge to an ex-

act copy (up to isomorphism) of the goal struc-~

ture are' established. The learning system is
represented as a state automaton. The auto-
maton is a homomorphic pre-~image of Menzel's

learning model, which formally describes other

well known theories of learning. A hierar-

chical decomposition of the learning automaton

is derived from a hierarchical decomposition
of the daca that the learning automaton pro-
cesses,

Key Words: Llearning Automaton, Behavior,
Model Structure, Homomorphic
Decomposition, Convergence.

* This work was partially supported by a
Fellowship Crant from the Faculty Research
Fund, Western Michigan University

1. INTRODUCTION

One of the most important information
processing problems is the problem of trying
to choose a model to explain a collection of
sample data. Amarel [1] calls this type of
problem the "formation" type.

Our work here is related to this general
class of problems. We are specifically con-
cerned with the design of a learning system
that infers a finlte state transducer from a
finice sample of input-output sequences (be-
havior).

Moore in his fundamental paper (9] is
concerned with the question of what kind of
conclusions about the structure of a finite
stace acceptor we can draw from external
experiments. We have decomposed Moore's
Experimencer into two parts, the Learning
Strategy part and the Input Generation
Strategy part. Suppes [11, 12] has used
finlte state automata as behavioral models.
There are numerous researchers who have
considered similar problems, such as Gold
[4), Horning |S), Feldman (3] and Crespi-

Reghixzi [2].

Menzel [7,8] on the other hand, has intro-

duced state machines ss models of learning.
Menzel's work 1s systematic, rigorous snd
he has shown how his learning theory can
describe other well known theories of
learning (learning through trial and error,
or through conditional reflexes, or through
classification etc.)

Although much research has been done
using stochastic automata as models of
learning (for example Thathachar and Rama~
krishman (13]), non-probabilistic automats
have hardly been used as models of learning.
Scandura [10] states that the modern infor-
mation processing psychology has & theoraot~
ical base which 1s inherently deterministic.
Digital computers are also inherently detesr-
ministic devices. Non-probabilistic auto-
mata theory is a well investigated area and
important tools have been developed which
can be used for analyeis of non-probabilistic
models. The sbove reasons lesd us to chooss
a non-probabilistic model for our learning
system,

2., LEARNING MODEL
The structure of ihn learning environ-

ment we have considered is illustrated on
Figure 1.

Qutput
Black Bo from Learning
Machine n n Strategy r,cgnglnninn_,
LS
Input to I
m
Input
Ceneration
Strategy - IGS

Figure 1: Learning Environment

The Black Box contains a state machine
from a class m(p, q, r) of machines. The
class m(p, q, r) of machines has the follow-
ing properties, Kountanis [6]:

1. p is the cardinality of the set of
input symbols,
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2. q is the cardinality of the set of out~
put symbols.

3. r is an upper bound on the number of
states.

4. Every machine in a{p, q, r) 1s deter~
ninistic, completely specified and
connected.

The Input Generation Strstegy supplies the
machine m in cthe Black Box with input symbols
detarminsd by the obuerved behavior of a.

The purpose of the Learning Strategy is to
infer the wachine w based on the observed input~
output sequences produced by m. The LS employs
a pruning technique for the inference of m.

The LS is defined as a quadruple LS=(M,J,
F,m0), vhere M is the set of machines that
includes all machines in the class m(p,q,r) as
well as all the connected submachines of every
machine in m(p,q,r). M can be considered as
the searching space for the LS, J=(I x 0) is
the set of inputs to LS, where 1,0 are the

-input, output sets over which the machines in
m(p,q,r,) are defined.

F: (MxS)yxJ=- 2"‘5 is a partial relation
which describes the pruning strategy employed
by the LS. S denotus the set of statcs of
¢very machine in M, Intuitively F operstes as
follows: Assume that the LS receives an (input,
output) pailr from the machine w in the Black
fox. Then F will gencvrite a sat of (machine,
state) paiis from each machine m(m € M) that
the LS tias tn Lty muemorty,
m> € 4 1% the null machine, the initial ma-
chine the LS has in its memory.
The following algorithm describes the way
F operatss: Assume that the LS receives an
(1,0) palr from the machine in the Black Box
and that (u, s) is a (machine, atate) pair in
1S’'s memory.
Step 1: Does the state diagram of m have
an i-transition from state s to
a state 8' of m?
Yes, go to step 2.
No, go to step 3. :
Is the output on the i-transition
the same with o in the received
(i, o) pair?
Yes, keep the machine (m, 8') in
BEDOYY.
No, eliminate (m, &) from the
wemory of the LS because the
deterministic constraint on the
machines has been violated.
Does m have fewer than r states?
Yes, add a new state in m and
go to step 4.
No, go to step 4.
Generate all possible machines
from m by adding a new transition
from the state 8 to every state
of m., The (i, o) palr received
as input should be the label on
the new transitions. Keep these
michines in memory. The number
of generated machines is equal to

Step 2:

Step 3:

Step 4:
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the number of m's states.

The LS applies the above algorithm to
every machine in memory. The process 1is
repeated until LS has only a single machine
in memory which will be isomorphic to the
machine in the Black Box. Equivalence among
machines 1in memory is determined during the
process and only one of them is kept in the
BEBOTY o

Figure 3 illustrates an example of a LS.
Ths machine m in the Black Box ie from ths
class m(2,2,2) defined over I={a, b} and 0=
{o, 1}. The machine m 1s 1llustrated below:
We assume that the LS receives the input-out-
put sequence 0=(a,0) (b,0) (a,1) (s,0) (a,0)
from the Black Box,

/ N
alo @ b/i J:) b/0
a

Machine m in the Black Box.

Figure 2:

We have adopted the following notation:
(x,y) for the (input, output) pairs
recelived from the Black Box.

x/y for the input/output labels on
the transitions of the machines
the LS conjectures.

The "heavy" lines in the illustration

denote the control of the Learning Strategy.

The "1ight" lines denote the transitions

of the machines gencrated by the Learning
Strategy.

Note that the control lines identify the

machine in the Black Box.

3. CONVERGENCE THEOREM

In this section we prove that the
Learning Strategy converges to the machine
in the Black Box if and only if the received
sequence of input-output pairs meets certaln
condicions. MxS

let F: (M x 8) xJ —»2 ie the par-
tial relation defined before. We define F
as the extension of P to the domain (M x §) x
J* such that
F (( m,8), A) = {(m,s)}
and
F ((m,s), (1,0)0 = k\_}nion of F (( m',8'),0)

(m',s')eF((m.u). (1,0))
wnere geJ*, (1,0)eJ, and A is the null
sequence, -

We also define F' as the extension of F

to the domain ZHxsx J* such that F'({(m‘,s‘),
ceey (m, 8)1,0) -}lg1 F ((myy8,)0) where geJ*.

We say that the LS converges to a machinme
mem(p,q,r) with respect to a sequence OEJ*
if and only if F' (((mo, so)},u) = {(m,8)},

where L 1s the null machine, 8, cthe only
state of 2 and 8 a state of m.

We can easlly now prove the following
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s (o)

a/o ™

O

(b,1) (b,1)
® |
alo
O O3>0
(b,0) b,0)
ll 1 - W1 b/0
Cu Ol TYo)
(a,1) (a,1)
E-:/a_—-;ll -;I-O- ' alg
; '9.@‘ By ¥y
' a/l )
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Figure 3:

a,0)
o6
(b,1 (b,1)
:
CLD el
(b,0) (b/0)
a/0 a/0

(a,l (a,1)

b0 a/.b/0

‘iil!!!z:'ubnll

An Example of a LS,

couvergence theorem:

Let geJ* be & sequence of input-output
pairs generated by the machine m in the Black
Box. Then, LS coanverges to m if and only if o
meets the following conditions:

1.
2.

3.

a-ahat N

oh covers all the transitions of the
goal machine =,

0t distinguishes (m, oh) from every
pair (»', s;)cnsh vhere

sh-fn(so.ch) with fn being the exten-
sion of the next state function

tn of m, 8, i8 the initial state of m,

[¢]
and HSh 1s the set

s, ={(n,s, ) [nem(p,q,x) and s, =f(85:0,)
with fn being the next state function

of n}.
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4. HOMOMORPHIC IMAGE OF THE LEARNING STRATEGY

We have defined the Learning Strategy as
the automaton LS = (M,J,F,m ), Wa will now
dexrive a homomorphism that maps LS to Menzel's
Learning System,

Wolfram Menzel [8) defines his learning
system in terms of functions and sete as
follows:

A learning system over two finite sets
I, O is a function A such that A:

(I x )4 — 2(110) and for each sequonce
ge(l X 0)*, 1f 0 18 l-admissible then
nl(A(o)) = I where o-(il.ol)...(in, on) ie
A-admissible if and only if (1r'°r)
cX((il,ol)...(1r_1,or_1)) for each r< (length
of ¢) and Il is the firat projection function
i.e. I, maps a sequence 0 to the set of the
i~parts of o's (i,0) pairs.

We will now define a homomorphisms h that

maps LS to Menzel's learning system.
Let Sm denote the set of states of &
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ABSTRACT

BACONS is a program that discovars empirical laws for
summarizing data. The system incorporates four data-driven
heuristics for retating numeric terms, recursing to higher levels
of description, postulating intrinsic properties such as mass and
specific heat, and finding common divisors. BACON.5 &aISO
includes expectation-driven strategies for directing search based
on discoveries that the program has already made. These
wclude heuristics for expecting similar forms of taws, reducing
the amount of data that must be gathered, and taking advantage
of the symmetrical form ol some laws. BACON is a general
cdiscovery system that has rediscovered a number of laws from
tne history of physics and chemistry.

Keywords: scientific discovery, physical laws, data-driven
haunstcs, expectation-driven heuristics

1. Introduction

Scientific discovery is a complex, ill-efined activity, and one
of the maost profitable ways 1o study such phenomena is to
construct intelligent programs that mode! them. In this paper we
descnbe BACON.S, a program that discovers empirical laws for
summarizing data. The core of this system is a set of general,
data-dnven heuristics for detacting numerical relations and
proposing new terms 1o express these relations. However, the
program also incorporates expaclation-driven rules that let it
laae advantage of its earlier discoveries. Belore moving on to
descnbe the system in detail, we should first review some of the
earlier Artificial Intelligence research on discovery, and outline
tha scope and hm:ations of the current project.

One of the earliest attempts 10 model scientific discovery was
the simutation work of Gerwin (1]. Gerwin was interested in how
humans could infer numerical faws or functiong, given
knowledge of specitic data points. Of course, such descriptive
aiscovery s only one part of the total scientific process. in
order to understand this process, he gave subjects several sets
of cata and asked them to find the relationships which best
summanzed each data set. Using the verbai protocols collected
trom this task, Gerwin buill a working simutation of the subjects’
pehaviars. The model first attempied to identify a general pattern
tn the data, such as a p2riodic trend with increasing amplitudes,
or a monotonic decreasing trend. A class of funclions was
stored with each pattern the program could recognize; once 8
class was hypothesized, the system attempted to determing the
specific lunction responsible tor the data.  unexplained
variance remained, the program treated the dillerences between
the observed and predicled valuss as a new set of data. This

‘This work was supported in part by ONR Contract Number
00014 82-0168, and in part by NiMH Grant Mi1.07722.

procedure was used to elaborate the hypothesis until no pattern
could be found in the residual data. The program also had the
ability to backtrack it the fatest addition to the rule (ailed to
improve predictions. One limitation of Gerwin's simulation was
that the program incorporated speclfic knowledge about the
shapes of functions within a specified range. Therelore, thase
functions could not have variable parameters assoclated with
them. Even though Gerwin's model could only solve a very
restricted range of problems, it was an important step In
understanding the discovery process.

Another early discovery system was DENDRAL {2}, & program
that identilled organic molacules from mass spectrograms and
nuclear magnetic resonances. The system identifiod chemical
structures In three main stages ~ planning, generating plausible
structures, and testing those structures. The firat stage used
patierns in the data to inler that certain familiar molecules were
present  Considering these molecules as units drastically
reduced the number of structures produced during the
generation stage. This second phase used knowledge of
valences, chemical stability, and user-specified constraints to
generate all plausible chemical structures. In the final testing
stage, the system predicted muss spectrograms for each of these
structures, which were then ranked accarding to their agreement
with the data. DeNORAL ralied on cansiderable domain-specific
knowledge, which was faboriously acquired through interaction
with human experis in organic chemistry,

In order to reduce thelr dependence an human experts, the
same researchers designed META-DENDRAL [3), & system that
acquired knowledge of mass speciroscopy which could then ba
used by the DENDRAL program. META-DENDRAL was provided
with known ogrganic compounds and thelr pssociated mass
spectrograms, from which it lormulated rules 10 explain these
data. Two types of events were used 1o explain specirograms -
cleavages in the bonds of & molecule and migrations of aloms
from one site to another., Although plausible actions were
determined using domain.specific chemical knowledge, the
conditions on rules were found thirough & much more general
technique [4]. MeTA-DENDRAL has successfully discovered new
rules of mass spectroscopy for three related fumilies of organic
molecules.

Lenat {5) has described AM, 8 system that has rediscovered
important concapls from number theory. The program began
with some 100 basic concep!s such as sets, /ists, equality, and
oporations, along with some 250 heunstics 10 direct the
discovery process. These heuristics were responsible for filling
the facets of concepts, suggesting new tasks, and creating new
concepts based on existing ones. New tasks were ordered
according 10 their interestingness, with tasks proposed by a
number ol dilferent heuristics tending to be more intersting than
those proposed by a single rule. Using this measure to direct its
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s ch itouyh the space of mathematical concepts, aM defined
concepts lor the integers, multiplication, divisors-of, prime
numbers. and the unique factorization theorem. Like
META-OENDAAL, Lenal's system incorporated some very general
sirategies, as well as some domain-specific knowledge about the
heid of mathematics.

In our work on BACON, we have attempted to develop a general
purpose descriptive discovery sysltem. Rather than relying on
domain-dependent heuristics, as many of the earlier discovery
systems have done, GACON incorporates weak yet general
heunstics that can be applied to many different domains. The
current version oddresses only the descriptive component of
scientiic  discovery. it does not attempt to construct
explanations of phenomena, such as the atomic theory or the
kinetic theory of gasses, but we will have more to say on thisina
later section. Neither is the system meant to replicate the
historical details ol various scientilic discoveries, though of
course we find those details interesting. Instead, it is intended as
a model of how discoveries might occur in these domains. '

Descriptive discovery may take either of two basic forms: one
may start rom the data and use very general strategies to
uncover regulanities in those dala; or one may bring certain
expactations to the task and examine the data to see if they
match those expectations. Earher versions of sacon [8, 7, 8)
rehed entirely on data-driven discovery methads. The current
version takes advantage of these heuristics, but also
ncorporates a number of expectation-driven discovery
wchniques. The latter take advantage of discoveries that have
already been made to direct and simplify the search process in
new situations. \We have chosen to organize the paper around
the system's discovery methods. Since the expectation-driven
heunstics work with the results of the data-driven approaches,
we will begin by focusing on the data.driven components and
then move on to their expectalion-driven counterparts. Both
types of heuriatics are implemented as condition-action rules In
Forgy's [9] ors4 production system formalism.

2. Discovering Numeric Relations

BACON.3'S most basic heuristic attempts to discover
potynomial relatons between two variables that take on numeric
values. Thus rule computes the successive derivatives of one
werm with respect to the other, until it arrives at a set of constant
valves. The lavel ot the constant derivative tells aacon the
nighest power necéessary in the polynomial it seeks, while the
constant determines the coelhicient of this term. As in Gerwin's
system, this component is subtracted out, and the technigue is
repeated on residua! valugs. This process continues until all of
the vanance has been accounted lor, and the program has
determined the complete functional relation between the two
variables.

X Y v A\ &

1 L]
14

3 34 3
29

| ] mm 3
80

10 321 3
7

AL 708

Table 1. Determining the coellicient of a quadratic term.

As an caample, lat us consider DACON.s's use of Lius heuristic
to discover the taw y & 3x“ + 2x + 1. The program begins by
examining values of the dependent term y for dilferent values of
the independent term x, as shown in Table 1. Since y is not
constant, the system computes the values of y’, the first
derivative with respect to x. In the table, the first value of y'ls
{34 - 6)/(3 - 1) = 14, while the second value is (121 - 34)/(6 - J)
= 20. Since these values are not constant either, BACON
examines the second derivative y', basing its computation on
the values of y’and x. Thus, the first value of ¥’ is (28 - 14)/(8
- 1) = 3, while the second is (30 - 20)/(10 - 3) « 3. In this case,
the progrgm flinds the constant value it seeks; this tells sBaCON
that an x“ term Is present in the final law, and that its coeflicient
is 3.

However, more remains 1o be done before the discovery Is
complete. After subtracting out the 3x“ term, BACON attempts to
relate the values of y - 3x° to the independent term x, as shown
in Table 2. This time the first derivative is the constant 2,
implying that an x term with a coefficient of 2 is also present in
the final taw. Subtracting this new component out as well, the
constant value 1 immediately results, as we see in Table 3.
BACON.S includes this value as the final term in the law it has
discovered, y = 3x< + 2x + 1, which completely summarizes
the original set of observed data.

x vy.ax? (v .ax2y
1 )
2
3 7
2
e 1
' 2
10 21
2
18 )

Table 2. Determining the coefficient of a linear term.

This method lets BACON.S discover any of a large class of
functions that can be expressed as polynomials with integer
powers and real coeflicients. in cases where no polynomial can
be found, the system considers various powers of the dependent
term, so that an even larger set of relations can_be discovered.
Thus, BACON can uncover relations such as y© = 6.71x" +
4.23x and y" s 3.5x*“. The system entertains only one
hypothesis at a time, and since simpler relations are considered
before more complex ones, they are preferred if they are found
to hold.

x v-3x2.2x
1 1
3 1
.3 1
10 1
15 1

Table 3. Determining the constant term in an equation.
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3. Levels of Description

By isell, the above diflerencing heuristic can discover
numeric relations between fwo variables, but more complex
retanons lie beyond its scope. in order to find laws relating many
terms, BACON.S invokes a second data-driven heuristic that lets it
summarize reguianues at diffarent leveis ol description. Upon
discovering a law at one level, this methaod stores the coelliclents
from that taw at the next higher tevel. Once enough of these
hugher level valuas have been gathered, BACON altempts 10 relate
them to the independent term that was varied in each of the
expanments. The system employs the same dillerencing
technique to find the second level law as i did at lower levels.
Alter a law at the second leve! has been found, the program
recurses to still higher levels, until all of the data have been
summarized,

Bacon.s's discovery of the ideal gas ltaw provides a uselul
exampie of this strategy. This law may be ctated as PV s
8.22N(T - 273}, where P s tha pressure on a quantity of gas,
the dependent term V is the volume ol the gas, T is the
temperature of the gas in degrees Celsius, and N is the quantity
of gas in moles. In uncovering this law, 8acon first finds the
relation V°' = 8P, where a is a parameter that varies with
different values of Tand N. Upon comparing the values of a and
T, the system finds the law & ' = 8T + ¢, where b and ¢
represent second lavel parameters that potentially vary with N.
Finally, the program finds that & = dN, and that ¢ = eN.
Substituting these relations into the first taw, .we arrive at the
cquation V! = P(ONT + et)”!. Bacon.s calculates the valuo
cf dito be 8.32, and eto be -2271.36. When the factor 8.32is
dividued out, @ becomes -273, or the absolule 20r0 pPoint
expressed in the Celsws scala. Thus, the equation is equivalent
to the standard lorm o! the ideal gas law, Table 4 summarizes
the steps taken in this discovery, comparing BACON's version of
the law with the standard version, and showing the independent
terms held constant at each leve! of description.

BACON'S VERSION STANOARD VERSION CONSTANT TERMS

1/V = aP PV s K T.N
1/V = P/(bT +c) PV = K(T-273) N
1/V = P/(ANT « eN) PV = 8.32N(T-273)

Table 4. Summary of Ideal Gas Law Discovery.

Taken together, the heuristics tor relating numeric terms and
recursing to higher levels give BACON.S considerable power.
Using these two strategies, the system has successfully
rediscovered versions of Coutomb's law of electrical attraction,
Kepler's thied law of planetary motion, and Ohm's law for
electncal circuits. Table 5 presents the forms of these laws,
along with that for the ideal gas law. Variables are shown in
upper case, while coellicents are glven in lower case.
Superlicially, the equations in the table have quite different
torms, yet all can be expressed as combinations of the
polynomual relations for which BACON searches.

ideal gas law PV = INT
Coulomb's taw F = 20,0,/02
Kepler's third law 03/p2 2 k
Ohm’s law vagaell

Table 5. Numeric laws discovered by BACON.S.

4. Postulating Intrinsic Properties

The heuristics we have discussed 8o far are line lor rolaling
numeric terms, but they are of lillle usa when an Independent
term takes on nominal or symbolic values. In such cosos,
BACON.8 draws on a third data-driven heuristic that postulales
intrinsic properties. This rule associates the values of the
numeric dependent term with the nominal independent values,
und retrieves them In later situations. In this contoxt, BACON
moves bayond the relatively simple process of curve fitling, and
takes on same leatures of expianatory discovery,

For example, consider a version of Ohm’s expariment in which
the batleries and wires take on nominal values, so that one can
distinguish between them but measure none of their
characleristics. Obm's law may be stated as { » V7R, where [is
the current flowing through a circuit, V is the voltage assoclated
with a wire, and R is the resistance of the wire. (We ussume here
that the internal rosistance is nugligible.) Table 8 prowents dala
that might be gathered In an experimant with three batterias (A,
8, and C) and three wires (X, Y, and Z). The values of the current
were calculated on the assumption that V', = 4.613, V, =
5.279, Vc % 7.382, Rx s 1,327, RY = 0.948, and Vg -
1.508.

BATTERY WIRE CURRENT CONDUCTANCE sLore
A X 3.4763 3.4783 1.0
A \ 4.6783 4.8763 1.0
A 4 3.0860 3.0590 1.0
8 X 3.9781 3.4783 1.1444
8 Yy 8.5803 4.6763 1.1444
a z 3.6007 3.0590 1.1444
[ X 5.5629 3.4763 1.6003
c Yy 7.8034 4.8763 1.6003
c rd 4.8952 3.0590 1.6003

Table 8. Postulating the property of conductance.

Focusing on the first three rows of thig table, BACON.S finds
that with the battery sat to A and varying the wire, the current of
the circuit varies as well. Since It cannot apply s numeric
heuristic in this situation, the program proposes conductance
as an intrinsic property of the wire, and bases the valugs of this
new term on those of the current. Having done this, BACON Can
apply its difterencing heuristic, and finda a linear relation
between the current and the new property, with a slope of one,
Ot coursae, this is hardly surprising, since the conductance was
delined so that this relation would hold.

However, upon varying the values of the battery, 8ACON
retrieves the same values of the conductance in the new
situations, as shown in the fourth through ninth rowa. When
theso ara compared 1o the currents, the system discovers other
linear relations with diflerent siopes. Alter recursing to a higher
level of description, BACON uses these new parameters {0
postulate an intrinsic property associated with the battery, which
we would calt the voltage. The retrieval technique is actually
stated as a separale heuristic, and shows more similarity to the
expectation-driven heuristics we shall discuss later than to the
data-driven ones. We have mentioned it here because the data.
driven process of postulating an intrinsic property has littie
purpose without the ability to retrieve the associated values at
later times.



Unlortunalaly, the discovery of intrinsic properties is more
complex than wa have made it appear. Some properties exist
which ase associaled not with one, but with many, nominal terms.
An obvious example is the coetlicient of friction, which is a
tunction of pairs ol surfaces. To avoid difficulties in such cases,
SACON.8 takes a conservative path by comparing dillerent sets of
nrinsc values. W a hnear relation is found, the system
generalizes and retrieves values as in the Ohm's isw example.
However, i no relation 3 found, it retains the additional
condiions.  Table 7 lisls some of the laws rediscovered by
RACON.3 that incorporate Intninsic properties. These include a
version of Aschimedes’ law of displacement, in which tha system
computes the valumes ol irregular solids as well as their density,
and Proust's law of delinite proportions, in which a constant
weignt ratio is associated with an element-compound pair,

Ohn's taw vs ol
Archimedes’ law of displacement d s W/v
The taw ol definite proportions k = w./wc

Table 7. Laws discovered with intrinsic properties.

5. Finding Common Divisors

Tha histary of chemistry from 1800 to 1860 provides some
additional examples of the discavery ol intrinsic properties, with
an witerecting comphcation. In 1808, John Dalton set forih the
law of simiple proportions, which statad that when two
viements could combine to lorm difterent compounds, the
weights contributed by one e'2ament {or a constant weight of the
other always occurred in smalf intcger proportions to each
other. In 1809, Joseph Gay-Lussac lound evidence for his law
ol combining volumes, which stated that a similar relation held
for the relative volumes contributed by gaseous elements In
chermical reactions. Again, in 1815, Willinm Prout notod that the
atoouc wuaights ol the known elumants were all vory nearly
divisibie by the weight of hydrogen. And hnally, in 1860,
Stanistao Cannizzaro pointed out that when a given element took
part in different reactions, the ratios of the elament's weight and
the voluma of the resulting compound always occurred in smalt
Nnteger Proportions.

OLEMENT COMPOUND W!/Vc INTEGER DIVISOR
HYDAOGEN WATER 0.0892 2.0 0.0448
HYDROGEN  AMMONIA 0.1338 3.0 0.0448
HYDROGEN  ETHYLENE 0.0892 2.0 0.0446

OXYGEN Nzo 0.715 1.0 0.718

OXYGEN SO: 1.430 2.0 0718

OXYGEN CO2 1.430 2.0 0.718
NITROGEN Nzo 1.250 20 0.62%
NITROGEN AMMONIA 0.623 1.0 0.625
NITROGEN NO2 0.62% 1.0 0.825

Table B. 8acOn.8's rediscovery of Cannizzaro's law.

Bacon.s incorporates a fourth data-driven heuristic that
enables it 10 discover these regularities in the chemical data.
When the system s about 10 postulate a new intrinsic propeity,
Uus rule examines the dependent vaiues 1o se# il they have a
common divisor. !l none can be lound, then the process
conunues as descrnibed in the last section. However, il the
numbers can be evenly dinded, then the resulting integers are

used as the intrinsic values instead of the original numbers.
Also, the common divisor is assoclated with the terms that were
held constant, instead of the 1.0 that would normally be used,
This means that even in cases where 8ACON.8 cannot generalize
and so retrieve a set of intrinsic values in a new situation, the
common divisors let the system break out of the tautologica!
circie and make further interesting discoveries.

Table 8 summarizes BAcON.8's reformulation of Cannizzaro's
discovery. The system is given control over two independent
nominal terms - one of the slements entering into a reaction, and
the resulting compound. The dependent varlable is w./vc, or
tha weight of the element used in the reaction, divided by the
volume of the compound that results. For the elemant
hydrogen, difterent compounds lead to different values of
w_ /v o 30 the system postulates an intrinsic property. However,
the dependent values are all divisible by 0.0448, so the integers
2, 3, and 2 are used as the intrinsic values instead of the
originals. This process is repeated with the elements oxygen
and nltrogen, but in these cases the divisors 0.7 15 and 0.628
are found instead. The integers in the table correspond to the
coefficients on the given elements in the balanced equations for
each reaction, while the divisors correspond to the relative
atomic weights of the elements. When these divisors are carried
along 10 the next level ol description, BACON.S also notes that
they can all be divided by the value associated with hydrogen;
this statement Is a variant on Prout's hypothesis. By searching
for common divisors, BACON has replicated some ol the major
empirical discoveries of nineteenth century chemistry.

6. Expecting Similar Relations

We have now completed our survey ol BACON.5's data-driven
heuristics. The remainder of the system's sirategies draw upon
information gathered in this bottom-up manner 1o reduce search
at later stages. Thus, when we speak of expectation-driven
heuristics, we do not mean to imply that BACON starls with
knowledge of a purticutar domain. Rather, we moan ihat the
program Is cupable of tuking advantage of discoveries it has
made at early stages to simplily this process at later points.

The simpiest of these heuristics proposes that if BACON.8 has
found a law in one context (i.e., when cenain variables are held
constant), it should expect a similar form ol law to hold in a new
context (i.e., when those terms take on different values). For
example, this similar relations heuristic could be used after the
system has discovered Kepler's third law for the planets orbliting
the sun, to predict an analogous law to hold for the moons of
Jupiter. Specilically, i the law D¥ = 1.0P° were lound in lhg
first situation, BACON.S expects that a law of the form Da = kP
would hold in the new case, though it would not yet know the
value of the parameter k. Such a prediction allows BACON to
replace i3 search through the space of possibie relationships
belween twp variables with a simple calculation designed to test
the expected relationship, If this relationship holds, BACON
calculates the values of the unknown parameters and moves on
to further discoveries.

Previous versions of BACON always utilized the same number
ot observations to find relationships between variables In its
experiments. However, once the system expects & particular
torm of a law to hold, it can determine the number of
observations necessary to estimate the desired parameters.
Using this date reduction heuristic, 8ACON only collects the
minimum number of gbservations necessary to complete its
description of the current law. It D were being expressed as a
function of P in the above example, BACON.3 would need only
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threo déna points 10 dalerming the value of k for the Jovian
moons. :

Tahen together, these two heuristics signlificantly reduce the
program’s scarch through both the space of data and the space
of rules. The actual amount of savings depends on the number
of superfiuous data points. in order t0 evaluate the impact of the
new h2unstics, BACON was given six values of each independant
variable in four separate discovery tasks. Performance of the
purely data-driven system was compared 1o sysiems
ncorporahng the expectation-drivan heuristics, and is shown in
Table 9. From this table, it can be seen that the similar relation
heuristic only resulted in a small amount of savings. This resuit
is somewhat misleading, because the amount of search required
by the difterencing technique was significantly reduced;
however, the 0Psa4 interpreter was slowed by the inclusion of an
additional condition-action rule, so the effect was masked. For
more complex lorms of laws, the compuitational savings would
be greater. *

DD DD+ SR . DD+SR+DRA
IDEAL GAS LAW R LI 34 21
coutLomB a3 s 23
OHM 3 3 3
KEPLER 3 3 3
3

Table 9. Time to discover numeric laws in CPU seconds.

The present system employs a few simple heuristics for
dealing with noise. In executing the dilferencing technique,
BACON.S chechs the current gerivative term to see if its values
are constant, All values which lall within a small interval of one
another ore accepted as equivalent. The program also
calcutates the number of outhers, or exceptions to the current
relationship. ! the number of exceptions is a small proportion of
tha total number of data points, BACON.S decides the current
term s constant, and updales its functional description.
A'though these methods a'low BACON.S to cope with modest
amounts ol noise, more sophisticated techniques might be
required to deal with very noisy data.

One such technigue nught be to check the dependent term for
systematic trends. The values of y in Table 1 are monotonically
increasing, for example, which suggests a higher order
denvativa should be calcutated. i no such trends wera found,
BACON 3 could accept the current relationship, even though the
number of outliers was large. A second technique would be to
allow the program to store several possible relationships
between tha current independent and dependent terms. Beam
searching techniques could be used to limit the number of
competing hypotheses BACON entertained at any given time, and
the program could design critical experiments to determine the
best description of the data. Finally, it the system discovered
promesing relationships in parts of the data, the expectation-
driven heunstics discussed above couid help BACON to deveiop &
consistent interpretation o! the data, even in the presence of
subslantial nowy.  Combmning these tuchniques should ullow
BACON 10 dual with realisuc amounts of noise in dala in a robust
manner. '

200 course, mors would be required it significant noise were
present, but the principle of reduced data would remain.
300 = data.driven heuristics, DD + SR = data-driven and

simutar relation heuristics, 00 + SR + DR = data-driven, similar
relaton, and data reduction heuristics.

7. Discovering Symmetrical Laws

The assumption of symmetry has been a powerful aid in the
discovery of physical laws, Table 10 presents three well-known
laws that exhibit symmetry. Although BACON.S could discover
these laws without any heuristics other than those ws have
already described, the Inclusion of a new component that
positulates symmetry significantly reduces tha search required
to find these laws. This new heuristic waits untit all the terms
associated with an object have been related, and then assumes
that the same relation will hold for a second set of terms that are
associated with an analogous object. The resulting complex
terms are then combined into a symmetrical law,

Snell's law of refraction sine 01 /n1 = sine 02/1\2
Conservation of momentum  m (V4 - U,) » -m,(V, - Uy)

Black's specific heat law 01M‘(T‘| . F‘) " -c2M2(T2 . Fz)

Table 10. Symmetrica! laws discovered by BACON.5,

As an example, consider BACON.5's discovery of Snell's Jaw of
refraction, as summarized in Table 11. The progrum starts with
two objects and two variables associated with each object - the
medium through which light passes, and the sine of the angle
the light tukes. Varying medium , and holding medlum, and
sinef 1 constant, the system postulates an intrinsic property, n
whose values are associated with difterent media. Of course, the
ratio sine 02/n2 has the constant value 1.0. At thig point,
BACON.5 relates the terms associated with the second object,
and decides that it should examine the values of sinoc 8 ,/n
and relate them to the former ratio. Upon gathering additiona!
dalta, the program discovers thot the two ratios are identical, or
that sine 8 /N, = sine 02/n2. which Is one statement of
Snell's law,

MEDIUM, SINJ, MEDIUM, SING, N, SIN 8Ny
VACUUM 0.25 WATER 0.33 0.33 1.0
VACUUM 0.25 on 0.37 0.37 1.0
VACUUM 0.25 GLASS 0.42 0.42 1.0

Table 11, Discovering Sneil's law of relfraction.

The BACON.5 system has discovered two other symmatrical
laws -~ conservation of momentum and Black's specilic heat law
- following very similar paths. Tebie 10 presents the full form of
the laws; direclly observable terms are shown in upper case,
while intrinsic properties are shown in lower case, The program
has also discovered two dillerent versions ol Joule's law of
energy conservation, using a simple form of reasoning by
analogy. This strategy states that if the same set of terms occurs
in more than one experiment, one should consider combining
them in the same fashion as proved vseful before, For a more
complete description of this heuristic and it 8 application to
Joule's luw, the reader I3 directed o un eurlier articlo on DACON
[10). X

tn summary, we have seen thal BACON's expectation-driven
heuristics - expecting similar relations, reducing the data that is
pathered, and postuiating symmetrical laws - allow it to
discover empirical laws with considerable reduction in search.
Actual computationa! savings for three symmetric laws sre
shown in Table 12. From this table, it can be seen that, when
combined, BACON.S’S expectation-driven heuristics result In
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NON-TEMPORAL PREDICTION - A DISTRIBUTED SYSTEM FOR CONCEPT ACQUISITION
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Abstract

& thecry of learning based on the principle
of non-temporal prediction has been developed.
The significant aspects of the theory are that a
data~driven part of learning ia isolated and its
cceputation demonstrated in the form of a highly
distributed network of simple processores.
Iaplementional considerations give rise to a
number of architectural constraints that suggest
a particular processor topology. An outline of
the theory is presented.

Keyvwords- Models of learning, Skill Acquisition
Cistributed Problem Solving, Society of Mind.

Introduction

Traditional astudies of learning have
concuntrated on aituationa involving a “teacher’
(cften in the form of a timely reward).
€xplaining the learning pheomenon has usually
depended on the notion of recency, whereby a
memory trace decays with time. The notion of
recency brings with it some serious problems,
furthermore, it is possidble to explain the
cbserved phencmenon without reference to trace
decay (Robvertaon [ 13 ]). It 1is contended that
although time plays an important role in many
learning situations, there is another more
srimitive mechanism for learning that is time
inveriant ~ Non-Temporal prediction.

Knowledge is viewed as a means of predicting
events in the world. Our survival is in a large
part dependant on our ability to °‘predict’ the
world. Learning is seen as a mechsnism that has
evolved to meet this need. Predictions about the
vorld can be divided into time-related (temporal)
predictionas and predictions that involve
classifying events. The latter form of prediction
is time invariant, learning of this nature will
te refered to as ‘learning through non-temporal
prediction. Two recent trends have been
particularly successful within certain areas of
artificial intelligence, especially that of low
level vision. The first has been a concentration
ca what information can be extracted from a acene
(usually visual), knowledge free, that is without
top-down influence. Notsable successes with this
approach are those of Marr [ 123 ] as well as
some recent work on parallel slgorithms for
extracting feature points in optical flows. The
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other important trend (not entirely disjoint from
the first) has been a drift avay from the
Von-Neumann architecture aam the default for
modelling cognitive processes. By choosing an
appropriate architecture, many of the traditionsl
problems disappear, and the issuee that underlie
the problem computationally surface. This is
particularly evident in Fahlman | 4 whers a
highly distributed architecture is used to
implement a semantic network and marker
propagating scheme. A class of problems that are
definable as the union and intersection of eets
can be computed at high speed where an wvxpensive
search would otherwise have been needed., Having
the wrong architecture can render an csasentially
simple task restrictively costly. Instead of
devoting a lot of effort to finding ways of
speeding up these algorithma, it is almost
certainly better to direct the effort towards
finding architectures well suited to the taak.

Progress in VLSI teohniquses along with the
emergence of highly dietributed architectures,
has awakened an interest in examining what can be
done with certain architectures based on aimple
“neuron like' processors, such as Hinton [ 5 L
Computational intuitionms for this kind of
architecture are presently lacking. A few pencil
and paper exercises have been attempted with some
success such as Marr 6 ), Minsky [ 7 8 ],
Abelaon { 9 ], Waltz [ 10 ]. There have also been
a number of successful implementations auch as
gome work on relaxation algorithms. In this paper
we concentrate on two aspeats of such
architectures. FPirat, how natural conatraints can
be brought to bear on the problem of choosing
suitable categories without the help of a teacher
(without top down control), and how this forms
the basis for a low-level theory of learning.
Second, an attempt to constrain the N explosion
of processor interconnections based on
computational intuitions and physiologicel
evidence.

Work on learning has oconcentrated on
learning that involves a teacher to guide the
learning process. Winaston [ 16 ] stressed the
importance of the role of the teacher. We argue
in this paper that the importance of the teacher
was exaggerated for the following reasons. The
teacher according to Winston, is responsible for
the choice of example/near miss in two respects.
First that the examples form a natural sequence,






ausbwr of functicns that can be ccmputed.
As the number of inputs to a LTP increases,
the ratio of possible functions of that
input space to those that can be computed
by a LTF rapidly approaches zero.

There seexs to be a contradiction, on the
one hand current understanding of cortical
physiology suggeats that LTF like devices are in
great abundance and some interconnection of these
devices forms the computational hardware of the
brain. These units typicslly have a very large
aumber of iaputs. On the other hand, it appears
that there are real limits to what can bYe
ccaputed by s ayatem of such devices (2) and the
individual devices are highly restricted in terms
of vhat they can compute, especially for LTF's of
many inputs. In a teacher driven system, where
processors are a scarce resource this presents a
serious probles (much work has been done along
these lines with little succeas). If a processor
has a large number of inputs and the teacher
wiskes to teach a function of those inputs, the
chances that the function in question is one that
can te computed by a LTP is very amall. Making
processors an abundant resource turas the
situation upon its head. The apparent limitations
of LTF's turns out to be their most important
prcperty and serves as a 3socurce of natural
ccnstraint. The functions that cannot be computed
bty a LTP can be thought of as having a greater
structural complexity than can be computed by a
L?P. Any complex structure can be decomposed into
a structure of LTP's that compute it. This notion
leuds to an idea that explains an observable
gsychological phenomenon.

Izmmediate learnability

Some things are eaaier to learn than others.
For example, show a child how to open a child
proof pill box and he will learn it immediately,
ro revhearsal is in evidence. Tell a child that
the nommal body temperature is 98.6 F snd he will
socn forget it, much rehearsal may be required
tefore retention is achieved. This phenomenon is
probably due to a number of interacting
eechanisms. One obvious candidate ia inteference.
The reason of interest to the present discuasion
concerns the idea of immediate learnability. If
an agent can be formed from the progrsmming of a
single LTF (implying that all sudbordinate agents
have been learned on a previocus occasion), the
agent is said to be immediately learnable. When
atructurally subordinate agents are not present,
their formation must preceed the learning of the
LTF ia question.

Learning by being WRONG

Piagat | 15 | described learning as
“sdaptation’, an equilibrium between
“accemodution' and Tasaimilation'. This taxonomy
helps to distinguish two computationally disjoint
forms of learaing. Asaimilation deals with
fitting new information into an already existing
structure, vhereas accomodation involves adding
structure ao that new information can be
assinilated. The following viewpoint indicates
hcw these processes can proceed bottom up.
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Learning by being wrong

The structure to which an event can be
assimilated, can be viewed as a prediction
about the world. When a prediction turns
out to be wrong, a degree of suprise is
experienced. Suprise causes predictions
about the world to change, and hence change
or accomodate new structures.

The notion of suprise is cgloesely related to
¥inston's [ 16 ] 1dea of Near Miss. Suprise might
take many forms. These can be divided into
time-related and claseificatory asuprieea. The
former concerns predictions of the form ‘the
event B will ocecur at time T' being unsatisfied
at time T (4f T is specifically atated). The
latter form of suprise can be implemented with
little difficulty, this type of suprise comee
from non-temporal prediction. Non-temporal
prediction is basasd on the form of a
classification. A new classification is
essentially a prediction about events that fall
within that category. When subsequent events are
later diagnosed as belonging to that category,
certain differences between the expactation and
the actual event (the auprise) allow the
classification to be modified. This form of
prediction is time invariant, the emphasis i»
placed on the classification. Another kind of
suprise ia the one that comss about by predioting
some future event, such as predicting that a loud
noise will follow if an object is dropped. If the
noise does not ensue, the suprise (unfulfilled
expectation) might be used to trigger the
learning process. This form of prediction is
essentially the same as the notion of recency
common in behaviourist theories of learning. The
notion of recency is seducingly intuitive,
unfortunately i1t hides many problema, such as a
computationally pertinant definition of time.
True recency is limited to simple laboratory
experiments, This kind of learning is probably an
important form of learning, but it seemns to defy
simple definition and may turn out to be a

learned strategy for learning rather than &

primitive mechanism. If I prediot that the shares
of 8 company X will increase 4in price
substantially in the next few weeka, and buy a
number of those shares, I will doubtless be
suprised if they do not follow my prediction, and
I may learn from it. In the mean tims however
weeks may have passed, and my suprise msy not be
inatantaneous but spread over a number of days.
Non-temporal prediotion frees us from ths probles
of defining time and recency, whilst providiog a
powerful learning strategy which is entirely data
driven. 1t remains to be seen vhether
non-temporal prediction is sufficient.

Computational Nature of a Processor

Non~temporal prediction can be computed as
local computations on a distributed network of
processors. Two issues require detailed
spscification. Pirst, the nature of the
computation performed by the processors of the
network, and second, the topology of the procesor
network. We will briefly dimscuss network
topological issues at the end of this paper.




At overy node oo the network there ias a
procesaor which either implexzents a simple
computing agent or has the potential to do so.
The computational component of a processor can
therefore be brokem into two stages, the agent
guneratios procesa and the agent refinement
process. Agent generatioan will tske place
vhenever sa event occurs that has not besn
categorised previously. Locally, the response to
an event will be monitored and used to trigger
the agsnt formation procesa. This process is more
iavolved than it at first appeare, a detailed
sccgount of this mechanism can be found in
Bobertson | 13 ]. Agent formation itself consigts
of copying the inputs to the procesaor at
generation time and aetting a threshold auch that
if the same event were tc happen again, the
processor would be activated. Hovever, a strictly
identical event will likely never occur agsin. A
concept similarity metric defined as the nuaber
cf differing inputa is utilized 20 as to define a
category of eimjilar events.

. A nev agent defines a category based on s
saaple of one. This acts as a ball park pointer
into the landscape. The refinement is best
described in terms of hill climdbing in the
probabiliatic landscape.

The {nputa to a processor consist of events
within sub-categoriea idontified by other agentns.
The inputs define an input event space ¥ Each
event ¢ ¢ ¥ occurs with probability p(e). 'If the
metric apace of events is imagined to be spread
out on a plane and the probabiljities of the
occurence of each event on thst plane is denoted
as a ‘height', the common events will appear as
mcuntaina. A nev agent therefore is s prediction
of the form 'the category that I define
corresponds to a mountain in the probsbolistic
landscape'. The refinement process consists of
determining the truth of the above assertion, and
if true accurately delimiting the mountain. If
there is Just one mowitaim im the neighborhood
defined by the category, this can be achieved
scnotonically by taking the arithmetic mean of
the aubdsequent eventas that fall within the
category (cause the threshold of the LTF to be
reached). If the landacspa contains two or more
mcuntains, the averaging mechanism will result in
the threshold being reduced to a point where the
Frocessor is available for re-use, becsuse there
i3 no vay of representing the situation with
single LTP'a, first a LTF must be formed to
discriminate the mountaina, then LTF's can be
forzed for each individusl mountain. The
rathematical details of the refinement can be
found in Robertaon [ 13 ].

; To sumsarise, each processor is upon
formation placed in s linear programming
aituation, subsequent events define the
landscupe. The processor sttempts to find a
linear prediction function for the landscape. The
restriction to a linear function has some
ccoputationally powerful comsequences as follows.

(1) A Proceassor attempting to find a
linear function of a higher order landscape
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will ultimately fail snd therefore be
available for use elsewvhere (processors
will not be wasted).

(2) Linear functions can be combined to
produce functions of higher orders. A high
order landscape will naturally decompose
into s hierarchy of linesr functions. This
heirarchy corresponds to the structurs of
the landscape. A given landscape may have
many equivalent structures.

(3) Given a sequencs of events and a
categorizing algorithm auoh as the one
devised by Marr [ 14 ]. the structure of
the landacape will cause the processas to
organige themselves into the appropriate
structure without the need for intervention
by a teacher.

(4) Linear Threshold Functions (LTF) have
a powerful constraining property. A LTIP of
2 inputs csn implement 14 of the 16
possible logical functions. A three input
LTF can implement only 104 of the possible
256. As the number of inputs increases the
ratio of functions that can be implemented
to the total that are posaible quickly
approaches zero. In the Mummalian brain it
is common to talk of processing elements
that have many thousands of inputs. If a
linear function is discovered within the
landscape presented by the inputs it is
probabilistically very unlikely that the
linearity was an accident. Restricting
Processors to finding and computing Linear
Threshold Functions therefore enables the
natural structure of the problem to be
extracted bottom up, and assuming that many
inputs are employed it is highly probable
that when a LTP is found, it is a
significant one (only 'interesting’ agents
are learned).

When dealing with highly interconnected
systems such as the one proposed here, there
arises a problem of connectivity referred to by
Minsky 8 as the Eroubar problem and by
Fahlman | 4 as the N~ problem. The problem is
not encountered in Von-Neuman based systems
because an address can effectively connect any
node to any other node. This use of addresses
reaults in a serial based architecture and
thereby illiminates any gains that might have
been sought with parallelism.

It is doubtfull that any brain voulg seek to
implement such high connectivity. The N problem
cannot be ignored, Minasky and Papert [ 11 ] made
the point

"- we do not see that any good can come
of experiments which pay no attention
to limiting factors that will assert
themselves as soon as the small model
is scaled up to a usable size.”

If connectivity is to be reduced, certain
assumptions need to be made. A number of



ccnstreining factors have been isolated [ 12 13 ]
that reduce the growth of connectivity to a
linear function of the system size. This can be
achieved by making the following briefly atated
assumptions adbout communication.

Assumption ~ Principle of locality
Most communication between processors takes
place betveen procesaors that are
physically close. To implement these
communication channels, direct connections
are alloved for the ~local’ communications.

Definition ~ of Locality

locality is defined by the product space of
two metric apaces. The firat ia the metric
space of “processednesa'. The
“processedness’ of a processor defines a
partial ordering and is computed as the
shortest distance from the processor to an
unproceased input. It ia thought to be the
exception rather than the rule that a
processor that is processing highly
processed information will have cauae to
ccmzmunicate with a processor dealing with
very primitive information. For example, it
seeas absurd that a classification would
involve both highly processed information,
such aa the recognition of a persons face
and low-processed data auch as recognition
of a hair movement in the nose.

It 1s contended that thia generality
is exceasive and that this can form the
basia for architectural conatraint. The
second metric is the metric of ad)acency.
This metric defines a locality for
Frocesscrs vwithin the same processednesa
band. Processors involved in similar types
of work are placed in close proximity. It
is thought unlikely that a high degree of
ccmnunication will take place between
processors of highly differing function.

Ad Jacency ia at firat leas intuitive
than processednesa, as & source of
architectural constraint. An example will
clarify the point. Stimulation of a hair on
the forearam, might be used as evidence,
along with the excitation monitored on a
pearby hair to predict the presence of some
ohject touching that region of the arm. Two
similar hairs on opposite arms will likely
not be considered as evidence in favour of
sny such hypotheais.

Overlap of neighborhoods
The comzunjcation neighborhcods defined by
a processors locality overlap one another
by a fixed ratio of their size. This
overlap is defined by a window and overlap
function.

Softening the Restrictions
The above restrictions provide a meana of
controlling the connectivity problem. Although
the restrictions are intuitively valid, if they
cannot be defeated in exceptional circumstances
they are surely counter intuitive. Rather than

1hs

maying that all assooiations ooccur within a given
neighlorhood, it would be more acceptable
intuitively to present our intuitions about
associstion locality in terms of a distribution
such as the Gauss. Although we are unlikely to
ever confira a particular diatribution, by
etating our intuitione in this way, we do not
prohibit any particular association, rather we
impose a restriction on the diatribution of
non-local asssociationa.

The architecture presented can be extended
to incorporate non-local connections aas follows.
If & processor is used to 'relay’ a distant
connection inastead of implementing an agent,
diastant connections can be achieved. With this

scheme, non-local connections have & coat in
processora proportional to the distance of the
connection (the conatant of proportionality is an

inverse function of the locality metrica). If a
procesasor is used to implement a ‘'relay’, that
processor may not be used to implement an agent.
In order that the implementation of relays not
intefere with the agent formation procees, it is
necensary to provide enough topologically
equivalent (with the same connections) coples of
the processor to allow both ‘relays' and an agent
to be implemented at every point in the
architecture. Replacing every proceasor (in the
original architecture) with a constant number of
'cloned' processors increaees the processor
connectivity and the total number of proceasors
by a conetant factor. If we aspume a Causs
diatribution of connectivity, the number of
golny’ proceasors required at each point 1ia
/d1 where 41 ia the ameter of the
neighborhood. If d1 = , the nunber of
processors required at each point aspacifically to
implement relays is Jjust one. In other words, if
the neighborhood contains the apresd of the
distribution, the proceaasors reguired to
implement the relays can be kept as low as one
relay processcr per agent processor. Each point
on the architecture therefore can be vieved as
follows. )

\ e /
/ PROCESSON \
AGENT
PROCESSOA
(iocal) anrur wPACE
Figure 2

One proceesor is concerned only with
supporting non-local connections, the other only






STATE-SPACE LEARNING SYSTEMS USING REGIONALIZED PENETRANCE

Larry A.

Rendell

C.1.S. Dept., University of Guelph, Guelph, Ontario

A new basis is presented for heuris~
tie learning in state-space problem
solving. Given a problem and a set of

user-defined features, the method first
attempts to solve user-selected problem
instances, From the results, perfor-

mance statistics are computed in local-
ized volumes of the feature space.
These data allow least squares fitting,

and an evaluation function results, for
use in future solution attempts, Over
" repeated 1iterations of this three-step
process: solving, feature space
analysis, and statistical regression,
the evaluation function improves.

In experiments with the fifteen puz-
zle, an evaluation function repeatedly
resulted which had locally optimal

parameters and which consistently solved
the puzzle, a unrique result. The method
is general and has promising extensions,

1. INTRODUCTION

Like much A.1., work, this research

can be viewed in two basic ways. One is
that some aspect of intelligence is be-
ing modelled and the chosen problem

domain is primarily & rigorous arena in
which to test the quality of the "higher

level* theory of learning. Rendell
(1981) to some extent considers the
presaent method as a partial model of

perception. The other viewpoint is that
a clearly mechanizable but computation-
ally complex problem exists, and the
pragmatic aim 1is to discover a good
heuristic to speed solution, or more am-
bitiously, to automate development of
heuristies, possibly for a <class of
problems. This is the perspective taken
here.

A state-space problem is one that oan
be formulated in terms of explicitly
describable, distinct configurations or
states., One state produces others when
moves or operators of the problem are
applied. For our purposes, w. consider

a Sstate either to be completely
developed by having had all eligible
operators applied, or else to be entire-
ly undeveloped. (Partial development is
examined in Michie & Ross, 1970, and
Mitchell et al, 1981.,) A problam
instance is speoified by a given
starting state and (here a single) goal
state., In computer implementations, the
starting state becomes the root of =a
search tree, 1in which operators are
edges, and the eventual solution (if ob-
tained) is 8 path from the start node to
the goal. See Nilsson (1971, 1980).

the
block
tiles
a space into which an adjacent tile

One state-space problem is
fifteen puzzle, a four-by-four
containing fifteen labeled squars
and

can be slid (see figure 1). This board
puzzle has been the subject of experi-
ment by Doran & Michie (1966), Ponhl
(1969), Michie & Ross (1970), and Chan-
dra {(1972). Schofield (1967) gave a
complete mathematical analysis of the
simpler eight puzzle, which Gaschnig

(1979) also studiesd in his clear and ex-
tensive analysis of heuristios. The
fifteen puzzle 1is a frequently ohosen
representative of state~spuce problems
because, on the one hand, it is diffi-
cult to solve by computer, having about
ten trillion states, and on the other
hand the problem i1s easy to meohanize
and easily admits wuseful heuristics,
having conaiderable "structure" or syme
metries (see Goldin & Luger, 1975).
Although most discussion in this paper
involves the fifteen puzzle, the learn~-
ing system to be described {s problem-
independent.

In theory, the entire state-space or|
a problem exists itmplicitly, but in
practice, a search tree is grown m(pli--|

citly, subject to computer resource con-.
straints. If nodes are developed in the
order of their generation, the resulting
breadth-first search is impractical for
interesting problems, since nodes in-
crease exponentially with tree deptlh.
Hence, guided searoh 1is necessary to
lead more directly to the goal, wasting
fewer nodes and less time (see figure
2).
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Pigure 1, Pifteon puxzle {llustration. A move core-

responds to an edge in the search trea. With
breadeth~fivet search, a solution (heavy lines) is
eventually obtained, but in order to create a heur-
istie, festures can be defined, such as f) (distance
score) and f3 (reverssl score). In the t), f; fea-
tyre spice, points close to the origin ara better,

To measure quality of a completed
search, Doran & Michie (1966) defined
the penetrance to be the length of the

solution divided by the number of
developed nodes. Figure 2 shows an ex- -
ample. A novel refinement” of this
statistiec forms the central concept in

the present learning system; penetrance
measures are converted into a heuristic
Lo c¢control search,

One general approach to guided search
uses the evaluation function to order
and select states for best-first
development. For example, a simple
evaluation function for the fifteen puz-
zle is the distance score , the sum, ig-
noring intervening tiles, of the dis-
tances of each tile from its home posi-

- vion (see figure 1).

The distance score is an exomple of
an evaluation function H that esti-
mates path length remaining to the goal.
dore generally, a function can be chosen

of the form F H G + H or F =
(1-w)G  + wh where G(A) represents the
estimated shortest length from the

startving s3tate to node A; H is the

‘mentary functions or features are

heur 1.tic component, the
length from A to the goal;
1. The dependence of search
on the accuracy of H has been shown in
the 1interesting work of Hart et al
(1968), Ponl (1970), Gaschnig (1979),
Huyn et al (1980), and Pearl (1980).

eslimaled
and 0 ¢ w £
per formance

In practice, however, it is
difficult to discover an
function sufficiently accurate
tisfactory performance. For
while the distance score is an
cholce for the fifteen puzzle, it often
fails Dbecause tiles tend to become
lodged only close to their correct posi=-
tions. Doran & Michie (1966) added the
reversal score , the number of instances
of pairs of tiles being correct except
interchanged. In general, several ele~
typi-
cally merged into a heuristlic function.:
But the difficulty is 1in knowing just
how to combine them. To reduce problems
of stability, 1linearity 1is frequently
imposed, so that if f is a (column) vec=-

a (row) vector of

usually
evaluation
for sa-
example,
obvious

tor of features and b
parameters, the heuristic function is H
= b.f (the vector inner product). Even
with this simplification, optimization

of b is not straightforward since per-
formance measures are required, and,
within computer resource constraints,

often no solutioens whatever can be found
to random problem instances, whereas
easy ones may not be representative.
Despite this, several approaches to
narameter adjustment have been quite
successful, among them Samuel (1963,
1967), Michie & Ross (1970) and Berliner

(1979). While these methods allow
learning during a single search, the
present system utilizes only completed
searches, beginning with easy problem

instances and improving
function iteratively.

its heuristic

One way of
learning 1is to
function {n
between

facilitating
define the evaluation
terms of correlations
observed solution participation

heuristic

4 essoibdid bedodedbae b ddbd e d goal

Figure 2. Two superimposed searches for a short so-
lution. Ty is breadth-first and Ty (solid edges on-
ly) is more direct. The Doran & Michie penetrances:
p(Tg) = 4/24 = 0.17, whereas p(T)) = 4/6 = 0.67.



of sStates 'and thelir distinguishing
characteristies (e¢.f. Slagle & Bursky,
1968, Slagle & Farrel, 197), and Simon &
Kadane, 1975). In particular, the
present method regionalizes penetrance
in the user-defined feature space formed
from the components of the evaluation
function., More precisely, if r is a
volume of the feature space and T 1is a
search tree, then the penetrance p{(r,T)
is the number of solution nodes from T
which map into r, divided by the total
number of developed nodes falling within
r. A simple example i3 shown in figure
3. As described later, it is these lo-
calized penetrance values, that, after
some manipulation, provide state evalua-
tion. So, rather than estimate path
distance, our evaluation functions rank
states in a range of probabilities
[0,1]. The mediating feature space al-
lows state discrimination and heuristic
modification. Probabilistic performance
measures and feature space differentia-
tion are topies of <control theory and
pattern recognition; see Fu (1978),
dananabe (1972), Hunt (1975) and Sklan-
sky & Wassel (1981).

. F
N
N
P e
N
N
.
N
4
. » 3
DR »
Yy “a
e .
-
-
AR
N e
E ]
teo e Mu LY
3
1

L

Figure 3. localizing penetrance. Shown are a vary
amal)l search tree T and feature space P into which
developed nodes are mapped. The full space pene-
trance of T {s 3/6 = 0.5, whersas localization in P
gives (e.g.) three differentiated values: plry,T) =
1/1 = 1.0, piry,T) = 1/2 = 0.5, and plry,T) = 1/3
= 0.3, Such -olutxon participation proportions can
be used to ganerate a probablilistic evaluation func-
tion.

In the present penetrance learning
system PLS1, the state, feature and
ranking spaces interact in an iterative
method which employs three steps: (1)
solving, (2) manipulation of resulting
statisties in the feature space, and (3)
parameter computation for the penetrance
estimating heuristic function to be used
for state evaluation in the next round
of solving. More specifically, at the
outset the user defines a feature vector
f. Then, at each iteration t: (1) The
solver accepts a user-selected set of
problem instances and attempts solution,
guided by the penetrance predicting
function He-1. Initially, Hgo gives

‘the second two steps

brewdth-first search. (2) Assuming at
least one successful search, penetrance
measures are localized or clustered in
the feature space, where they are com-
bined with previous values for normalie
zation and refinement. This step i3
complex; details are given later. (3)
The penetrance statistios are regressed
on feature values for least-squares
determination of the parameter vector bg
to give the evaluation funotion Hg s
oxplby £ I, This heuristic estimates
the probability of solution participa-
tion. Figure 4 shows an example, In
their interesting work, Mitchell et al
(1981) use a different sort of iterative
refinement, along » general-to~specific
partial ordering in a "“version space" of
incompletely learned heuristios.

In the terminology of Buchanan et al
(1978), the performance element of PLS1
is the solving step (1) T (b) , an algo~
rithm whose standardized control struo-
ture is the paremeter vector b. The
higher 1level learning elemenlL comprises

%27 feature space
penetrance manipulation, and (3) regres=
sion. The learning element of PLS1 im-
proves b in an unsupervised manner, in-
directly throug the eature space.
Along with b, feature apace penetrance
measures constitute the blackboard of
structures for communication between the
performance and learning elements. In-
terestingly, although local optima have
been located, there i{s no critic direct~
ly examining the quality ol a parameter
vector,

Parameters in an evaluation funotion
for the (fifteen puzzle have not previ-
ously been optimized in any way, and
only one other program has consistently
solved the puzzle. Chandra (1972) wrote
a successful bidirectional search pro-
gram that used problem reduotion, plao~
ing outer gnomons first; this was not a
learning system. The present PLS1 has
repeatedly generated an evaluation funo-
tion with 1locally optimal parameters
which solves all of a set of 50 random
puzzle instances.

Generality, stability, and extensions
of PLSY are discussed after a closer ex-
amination of the system.

2. BASIC CONCEPTS AND STRUCTURES

Forming the basis for PLS1 1is the
solution participation proportion, the
localized penetrance. This section de-
fines an fdealized normalization of this
statistic and discusses the "region", a
convenient notation for associating
penetrance values with feature space
volumes.



Given a feature vector f and
search trees T, define the total count
t{r,T) to be the number of developed
states from trees in 7T which fall into
volume r in the feature space determined
by f. Define the good count g(r,T)
simiTarly, except each node counted must
also hparticlpate #n a solution 1in a
searc tree 1in . The elementar

for 7 s

enetrance p(r,T) of r
r,37elr,7T). It is precisely the con~
ditional probability that a state Ac T
eT is in the solution in T, given that
f(A)er. Figure 3 shows a simple exam-
ple.

set of

As figure 2 suggests, the elementary
penetrance is affected drastically by
the heuristic used in the search. Since
they result {n fewer wasted nodes, good
evaluation functions bias elementary
penetrance values wupwards. Moreover,
the difficulty of the problem 1instances
solved may also influence elementary
penetrance, For example, in a uniform
breadth-first tree, if B is the
branching factor and d is the depth at
which the goal is found, the number of
nodes developed is roughly gd , 30 the
full feature space penetrance i3 about
d/BQ, Actually, this effect of lower
penetrance with harder problem instances
does not generalize when penetrance 1is
localized. A "good" feature space
volume tends to have high penetrance,
independent of poorer volumes, where the
wasted nodes congregate. See figure 4.
Nevertheless, a more subtle phenomenon
does remain: The 1importance of some
features may depend on the difficulty of
the problem instance. For example, 1in
the fifteen puzzle, reversals cannot oc-
cur in very easy starting states. This
is reflected in figure 4, where the re-
versal score is found to discriminate
only in later jiterations when harder in-
stances can be solved.

Since we want complete and accurate
information in order to create the best
evaluation function, we .could imagine
the ideal case in which all possible in-

stances of a problem were solved
breadth-first, to give the exhaustive
search tree set T, . This would a
perfect collection of unbiased shortest
solution searches. The result would be
p{r,T,}> = plr), the true penetrance of

volume r, an absolute‘ measure of the
worth of a (feature Space area r. Ap-

proaching this ideal in practice, howev=
er, presents considerable difficulty.
The dilemma i{s that search trees for
typical, random problem instances are
simply too large to generate breadth-
first, and while enough representative
problem instances might be solved wusing
some heuristic (if a fairly good one tis
already known), the elementary
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peunet:r ance measures from the resulting
sSearch trees are badly biased in an unk-
nown way.

But, in PLSI1,
is first

the true penetranoce P
approximated, then the esti-
mates are improved iteratively. Ini-
tially, breadth~first searoh trees are
obtained for easy (solvable) problem in-
stances, then a heuristio derived from
this foothold 1is exploited to solve
harder problem 1instances. The conse~
quent elementary penetrance values,
though biased if untreated, are normal-
ized to estimate true penetrance before
contributing to the accumulating heuris-
tic base,

As a useful notation for discussion,
and as a blackboard structure for system
communication and manipulation, we pro-
vide a means for associating penetrance
with 1its feature space location. A re-
gion R = (r, u, e) is a feature space
volume r, real number ue [0,1]), which is
interpreted as a probability, and real
e> 1, which represents an error factor
estimate for u. The value u can be an
elementary penetrance, in which case R
is an elementary region, or u can es-~
timate the true penetrance pir), in
which case R 1is a (true penetrance)
estimating region, If r contalns Just
one point, R i3 a point region.

In a PLS3, sets of estimating reglons
{(r, P, e)}) house the entire heuristio
essence, The evaluation funotion H oom-
puted from such a set is given by logH =
b.f where f is the feature vector and D
Ts™ the parameter vector found by error-

weighted regression. (Reasons for the
logarithmiec form and other details are
discussed in Rendell, 1981). More re-

cent PLS's extend the region definition
to R = (r,u,e,b) to provide non-linear.
evaluation. |

3. PL31 HIGHLIGHTS

This section mentions some of the
choices made in implementing PL31. De-~
tails and further examination are given)
in Rendell (1981, 1982).

Although practically unattainable,
the most desirable heuristic information
would be in the. primary form of an ex-
haustive set R= {(r, B(r), 1)) of per-
fectly accurate true penetrance estimat-
ing point regions where each r contains
just one point and R ocovers the whole
feature space. Even so, Berliner's
(1979) results concerning the detrimen-
tal effect of local feature space “blem-.
ishes" suggest these data should be
smoothed. In addition to this con-
sideration of evaluation stability, when'



improvement was attempted,
Rendell (1981) found problems of
anamalous "drift® away from wuseful
heuristic function convergence without
some control. Hence the (log-) linear
model logH = b.f is fitted, where b and
{f represent the parameter and feature
vectors, and H 1s the predicted true
penet-ance. A stepwise regression algo-
rithu i3 wused, which rejects less gen-
eral and useless features.

lterative

The data used for this statistical
regression estimate true penetrance. In
the first iteration, easy problem 1in-
stances are solved breath-first to give
a set of search trees 7T, Each estimat-
ing region (r, p(r,T), e) is constructed

assuming the elementary penetrance
p(r,T) represents the true value. In
subsequent iterations, the true

penetrance estimate P 1s obtained for
each updated estimating region (r, p, e)
by a process comparing former data with
current elementary regions, a bootstrap-
ing approach to penetrance normaliza-
tion, For matching feature space
volumes r, penetrance values of new es-
timating regions and former estimating
regions are combined in an error-
werghted average to give a revised true
penetrance estimate. Heuristic informa-
tion collects and alters in cumulative
regions.

The elementary penetrance observa-
tions are taken for point regions but
the normalized true penetrance estimates
are clustered into sizable volumes of
the feature space, housed 1in non-point
cumulative regions.
ruiative estimating regions, the primary

blackboard structure, partitions the
feature space (see figure 4). The re-
gions are rectangular and aligned with

the axes, reducing the complexity of the
clustering algorithm that determines the
partition (and apparently not vitiating
the system). This information compres-
sion relieves storage and facilities PLS
extensions (discussed in section 4).

In the first system 4iteration, the
feature space is undifferentiated until
this clustering is performed (typically
giving about three rectangles). In any
later iteration, each cumulative region
becomes an input for the clustering al-
gorithm, as the established partition
gradually becomes more refined (typical-
ly about twenty rectangles after half a

dozen complete system iterations, solv-
tn,, clustering, regressing). The clus-
tering algorithm i3 efficient; typically

ten features are handled using less time
than the solving step.

A set of these cu~
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In all, a PLS1 iteration t has three
steps: (1) solving step: the search
tree set Ty = T(H, ,,P ) 1is obtained
from a selected problem instance set %
using heuristic evaluation function Hg.]
(trivial in the breadth~-first initisl!
iteration); (2) clustering step: the cu-;
mulative region set C¢ = C(C¢.i,Ty) =
{Cr, p, )} is either formed (for t=z1|
when C, is a single all-embracing region|
with undefined penetrance) or else modi-!
fied (for t>1, by penetrance revision
and partition refinement); and (3) - re-
gression step: the improved evaluation)
function H = H(Cy ) 1is computed by
(error-weighted) stepwise regression of
penetrance B on centers of the feature

space rectangles r. Figure 4 4{llus-
trates., (The appendix shows state evaluation.)’
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4. CONCLUSIONS AND EXTENSIONS

In experiments with the fifteen puz-
zle, parameters, for six features simi-
lar to the two in examples here, repeat-
edly converged to a local optimum in the
parameter space, resulting in a  linear
evaluation function which solved all of
a set of 50 random puzzle 1instances.
Detailed results for a formula manipula-
tion problem and for the fifteen puzzle
are given in Rendell) (1981), and
highlights are summarized 4in Rendell
(1982). This section discusses more
general issues.

Although the local optimum found was
not far from the parameter vector at
Just one or two iterations (final param-
eters within a factor of about 2 or 3 of
early values), several facts stand out.
First, the discovery did not use any



overall performance measure 8s feedback
(no optimization objective function).
Also, alternate methods of finding the
exact optimum even after approximate lo-
cation were less efficient, perhaps
partly because PLSY! wutilizes as many
quantities as there are regions, rather
than just one datum per solution search.
Finally, true penetrance is valuable.

This penetrance learning is  applica-
ble when solutions proceed roughly along
a low to high true penetrance path in
the feature space. If, instead, for a
given state-space problem, localized
penetrance and feature space solution
paths were highly varied among different
problem instances, statistics for "aver-
age® searches would frequently be
misleading. This phenomenon could be
called solution irregularity. An exam-
ple is shown in figure 5(a). One might
suppose that solution irregularity is
one way of characterizing problems not
amenable to a PLS-like method, problems
which need "planning™. But as discussed
in different contexts in Watanabe (1972,
pp. 563-4) and Feldman & Yakimovsky
(1974), other paradigms are theoretical-
ly equivalent to a feature space ap-
proach. In the latter, successful {m-
plementation relies on appropriate
feature abstraction and suitable combi-
nation of the features 1into a good
heuristic. Solution irregularity is
dissolved by adding further discriminat-
ing features; see figure 5(b).

However , assuming enough relevant and
easily computable features can be real-
ized, the problem of how to merge them
still remains. Among the limitations of
PLS1, perhaps the most serious is that
it attains stability through linearity
in feature combination. In preliminary
experiments with features having
suspected strong 1interactions, a good
evaluation function did not result.

)

)
]

Piguze 3. Enough good features élscriminate solu-
tions., Irregular solution paths traced in feature
spece bacomw unsurprising when dimensionality is in-
crcased. Again ) and f; are the distance and re-
versal scores. 1n the one-dimensional f) space (a),
s0lutions sometimes follow stange paths. However,
they appear normal in the £y, fi space (b), where the
distance score is tcmporu'ily worscned to unclog a
reversal,

ULher penetrance-based 3systems, ex-
tensions of PLS1 designed for both sta-
biity and power, seem promising. In
one, feature nonlinearities are accommo~
dated through multiple, plecewise linear

models H{1), one for each cumulative re-
gion Ry, At system iteration t, suppose
there are m¢ cumulative regions, there-

fore my evaluation functions Ht(i) -

expbe (1) £) (lcicmy). Heuristic Hy (1) is,

obtained through stepwise regression as
in PLS?1, but now the contribution from
each _region Rj is weighted by a value.
1/d12, where d y§ represents a "distance"
betugen the prinocipal region R and the
contributing one R , the édea being
that regions in the "neighbourhood of Ry
more accurately reflect penetrance
behavior within . The most obvious
choice is the Euclidean feature space
distance dw = Jlgy - g lgy - g4) v«
where ey a d ¢ are the feature " space
centers of the”*egions (and ¢ is a small
number to avoid a zero for i = j). How-
ever, since some features are more im-
portant than others, and in fact some
are irrelevant, this d, would be
misleading. A better choicg might be to
multiply each feature value by its
parameter, converting dij into a
penetrance-related measure, but it is
the parameter vector itself that we want
to determine. This suggests another
iterative aﬁ§orithm to improve the esti-
mate of Et< in sucoeasivi regressions.
Assuming convergence in ( )repetitiona,
the total number of stepwise regressions
in (a primery) system iteration t is

m .
‘ti kt(l). This multiplicity probably
would not s3low the system significantly,
since in PLS1 the regression step is at
least two ordera of magnitude faster
than the solving step. This scheme
modelling feature interactions s com~
pleted by a similar distance-weighted
state evaluation in the solving step.

Another extension, c¢ompatible with
this one, has additional benefits. It is
based on Holland's (1975) genetic model
which i3 capable of locating absolute
optima. The natural example of a
structure is DNA, within which one of a
small number of alternatives (alleles)
occurs at each location, 1In any genera-
tion, there are many individuals, each
characterized by a distinct structure.
Certain genetic operators (e.g. crosso-
ver, 1inversion) act on structures to
produce offspring. Some fitness funoe-
tion is wused stochastically to select
structures for procreation according to
their survivability. As Holland shows
in his substantial boak, genetic plans



exploit inherent advantages of parallel-

ism, testing schemata, whole sets of
structures in a single trial, and the

resulting gain is much greater than sug-.

gested by the

atructures.

simple multiplicity of

In a proposed genetic PLS, the struc-
ture i3 the cumulative region set, At
each iteration or generation t, there

are Q¢ solving steps, each attempting to

solve the same problem instances. In
the normal PLS1 manner, each of these
leads to q¢ region handling steps which
independently produce qt refined cumula-
tive region sets Cy (1 <k «q¢).

These are pooled and their members are
Judged. The fitness of a region R 1is
u{R) = (average number of states

developed in all q¢ solution trials of
the problem instance training set) /
(average number of states developed 1in
solutions associated with region sets C(k)
(1<k<qc) containing a region "like™ R).
UsTng present PLS1 mechanisms, 1t is
stralightforward to define "like" re-
glons, and beyond the multiplicity of
trials, the global measure u does not
worsen complexity since it is a by-
product of PLS1 penetrance refinement.

q
ut ¢, (K
kel

cording to their fitness, by a stochas-

tic selection mechanism which includes a
tendency to cover the whole feature

Froa regions are chosen ac-

space. The chosen regions are collected
and their centers perhaps reclustered
belore

evolvln%(Xnto one of several new
structures (4] (1 < k€qey)). Each of
these qu4) region sets determines a dif-
ferent evalustion function for the fol=-
lowing Q¢4 Parallel solving steps.

Although it is several times more ex-
pensive to compute than PLS1, this
genetic plan has important advantages.
The y~weighted trial allocation gradual-
ly 1increases the proportion of good
heuristic representatives (successful
regions), allowing shifts as the en-
vironment changes (as problem instances
become harder). One would also expect
good stability, even with small q,.
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APPENDIX-—NODE EVALUATION

The table below shows how the five
labelled nodes in figure 1 are evaluated
by the two penetrance predicting funce
tions of figure 4, H) = exp(~0.8f1) and
Hy = exp(-0.B8f; ~0.7f3).

Frate | ¢, | £, Hy Hy
Ay | 26 1 9.3 x 20719 | 4.6 x 20727
A | 1 .2 x 10719 | 2.1 x 10720
A, | 26 1 9.3 x 10719 | 4.6 x 10720
Ay |27 0 .2 x 10710 | 4.2 x 1072
G 0 ° 1 1
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ASSTRACT

We survey theories of the nature of
emotion and consider the implications
for Artificial Intelligence models of cog-
mt\on. We arpue that for an organism
to have emolions, it must ;‘zossess eel-
ings in the sense of innate feedback
from its physical body (implementation
substrate‘s to its mind and cognitive
processes. The models of mind com-
monly adopted in Artificial Intelligence -
Information Processing models - tend to
focus on cognitive 'rational’ processes
to the exclusion of ‘feelings'.

1. INTRODUCTION

A recenl paper by Sloman and Croucher(1]
discusses the 1dca that eventually some robots or intel-
hgent systems might be said to have emotions. They
discuss the concepl of Emotion, and relate it particu-
lerly Lo the concept of Motive.

In this paper, we take another look al the concept
ol Eriotion, and bricfly survey the reeent lilerature on
the topic. We also exanune specifically the 'Causal-
evaluative’ theory of Lyons’2] and olhers, and the
‘Structural’ analysis of de Rivera[3). :

We shall argue that a theory of fealing 1s essental
to an adequale conceplualization of emotion, and that
this 13 mussing from the Information Processing (IP)
modcls of cognition generally adopted in Artficial Intel-
lgence studies. We offer some suggestions on how feel-
inj can be handled in an IP-type analysis of mind.

It may scern somewhat perverse to exanune such
rarificd (high-level) concepts as ‘emotion’ in the
present context of computational studies of intelh-
gence  Mowever, we argue that it is necessary some-
Umes (perhaps especially in Coznitive Science) to look
ahead and grapple with problems which we are not yet
ready to solve. Thus paper s intended in part to sug-
gest directions for future research. There is a marked
lack of detailed computational theories in this area, and
many questions remain to be studied.

2 THEORIES OF EMOTION

Over the centuries, a wide variely of theories of
cmotion have been propounded. Our survey will follow
lyona'2] tor tha most part. but we shall consider espe-
ciully what value these theories might have i guiding
proposed architectures for minds. In fact there is an
enormous lterature om Emotion, bul not much 13
immediately relevant to Al

Sometimes it can be helpful, 1n analyzing a con-
cupl, to examune dictionary definiions, and especially
the examples cited for various usages. Thus helps guard
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agalnst the danger of locussing too much on only part
of the total meaning of a word. However, we must not
be mislead by the presuppositions of the lexicogra-
phers, elther.

My dictionary[4] defines emolion thus (abbrevi-
ated):

emolion: 0. from: emovere Lo remnove, move avay,
shake, upheave
1. stirring up, agilation, excilement of feelings
2. any of feelings~contrasted with mental processes of
reasoning [joy, grief, hatred, love, fear, ate.]
(popularly) emotion of heart, contrasted to intellect

2.1. Feeling Theories of Emotian

This dictionary definition links emofions closely
with feelings. That essociation is well embedded in our
culture. 'Feeling’ theories of emotion date from Des-
cartes or earlier, and describe emotiong as mental
events of one sort or another which involve feelings as
the essential component. This approach, however, is
incomplete.

_The deflnition noted above for ‘cmotion’ leaves only
implicit (mainly In Its elymology) another aspecet, thal
In many respects an emotion can be eomething of a
molive for aclion. A person in the grip of an emotion,
such as anger or love, is Lthereby moved to act in cer-
tain ways (or to avoid certain actions). Indeed, some-
limes emotions in people are diagnosed by how (and
whether) they manifest themselves in behaviour. A
stock example is "'l didn't realise how angry ! was until |
found mysell pounding on the table.”

Feeling theories of emotion do not account for this
satisfactorily, since feelings, as such, do not motivate
behaviour. Also, If emotions are merely mental cvents
of feeling, there is a mind-body problem in how can
they affect behaviour. Emotions may involve feelings,
but there Is something more.

2.2. Behaviourist Theories

Another group of theories may be called
‘Behaviourist’. These attempt to identify emotions by
(resulting) behaviour (Jim punched Robert on the nose.
Mary’'s eyes sparkied and her pulse rate increasad when
Andrew came [nto the recom.) Behaviour is understood
to include observable physicloglcal changes (in pulse
rale, skin flush, breathing, ete.)

Howover, cereful cxamlination of the [acts shows
that emotions {in humans) do not possess a one-Lo-one
mapping with sets of vbucrvablus, Tho sunio outward
behaviourist manifestations can indicate any of several
different emotions, depending on context. (Jim and
Robert may have been In a boxing match, or may be
acting in the theatre.) People only label physiological
changes and overt behaviour as ‘'emotion’ |f appropriate
cognitions are present.



There 1s & very considcrabie literature on emotions
Irom a behaviourist perspective, largely founded on
expennments with amurmals. This research does explore
particularly the correlations of outward signs of emo-
uon with physiological aspects such as body chemistry
(bormones, etc.) and with activity in the Central ner-
vous system and the Autonomic nervous system[5].

23 Paychoanalytical Theories

Psychoanalytical theories, malnly derived from
Freudian perspectives, interpret emotions as maniles-
tations of unconscious influences on the czo. The fact
that much mental activily is unconscious is now gen-
erally accepted. This perspective, also, has a very large
Literature, mainly in the context of treatment of emo-
uonally disturbed people.

2.4. Jungian Theories

Jungian theories do not have much to say about
emotion as such. They make a claim, however, which is
somewhat relevant. All coznitions, mental associations,
‘cornplexes’, and thoughts are said to be accompanied
irinsically by a feeling fone’ Thus is something of a
radical challenge to any theory of mind based {as many
are in Al circles) predominantly on the ideas of Infor
mation Processing. Jungian theories say that feelings
in the form of (perhaps unanalysable) attractions and
repulsions, likes and dislikes, are part and parcel of all
mental events. Part, 1n a sense, of the low-leve! neural
funcuoning of the brain (though the implementation
aspects of this are not defined). )

Trus claim, of the centrality of ‘feeling tones' in mental
processing, can be correlated with the observations of
behaviourist 'physiological psychology’, which sce feel-
i3 and emotions as essvntially “paychic side-cffects’ of
activity 1n the CNS or ANS )

Yeelings and Mouves

The Jungian theory otfers grounds for regarding
not only feelings, but also motives, and goals or desires
as intrinsic to amumal mental functioning. The intimate
connection between the mental phenomenaon of 'leel-
ings' and the physiological activity in the ncrvous sys-
tem provides a direct mechanism why the animal
should have purposes; they can arise at least {rom pure
hedorusm-maximisation of pleasurable [feelings.
Although this appears obvious, tt cannot be accommo-
dated by the purely cogrutive 1> models now tn use.

It 13 a trvial phuloscphicul uvbservation that no
amount of tnformation ever leads of itsell to a value
judzement, nor to a molive for action. The mental
cvent that something is valued, or that some action or
response is called for in a particular situstion, must
involve another element besidcs the information inputs.
This other element is seen tn 1ls most primaeval form in
s:mple reflexes. for instance where a mosquito homes in
on sources of warm humud ar, having been stimulated
to acuvity by carbon dioxide. Of course, we normally
reserve the words ‘motive’, ‘goal’ and ‘desire’ for more
elaborate mental processes involving complex informa-
tion processing and coznitions

20 Uuuve Theories of Kmotion

We have remarked thal emotions arp nol just feel-
ing: (or just physiological disturbances) but are com-
morly associated with a spurring towards action, i.e. a
mauotive; these words have a common etymological root:

motive: n. causs of movement

1. That which infiuences desires, incites will in a
direction, induces specific action;
inner force causing specifin netions

2. Predominant feature, idea or theme underlying or
running throeugh an artistic compesition, ste.

This has led to theories, e.g. Leeper(6,7], which see
emolions as speclal kinds of wnofives. lazarus and
Magda Arnold have also argued this, and Sloman and
Croucher[1] hold a position close to this. For instance,
an angry person s angry of someone or some group
whom s/he believes has damaged his/her interests, and
s/he may well feel an impulse to retaliate. This
approach dates back to Aristotle.

When we examlne our usage of the word ‘emotion’,
we find yet another element {s also involved besides the
motivation to actlon. The motive to retallate (in the
above example) is consequent on a prior parception
that ‘interests have been dumaged’ (e.g. the ball broke
my window, or your spouse spent the money you were
saving for a holiday, or the postal workers were on
strike again).

2.6. Causal-livalualivo Thcories

This refinement of tbe motive theory loads to a
Causal-Evaluative theory of emotion. In this, an emo-
tion is sald to consist of a subject perceiving or svaluat-
ing a situalion as significant (veguo word!). This per-
ception or evaluation involves reference Lo the subject's
expectutions and desirus. 1L Jeads to (Causuy) somuw
combination of changed physiologicul reuponses (in liv-
ing creaturcs), leelings, and a motive to roact. In this
theory, the imitial evaluation s central, and depends on
the subject’'s purposes and expeclations. Hurthermore,
to qualily as an emotion in norial usuge, the evaluastion
and its consequences (physiological and mental) should
be ‘automatie’ — not directly controlled by the
subjuect’'s will-power.

To explicate, visual' pereception is  also an
‘automatic’ process, and f{or the most part we cannot
directly will to see or nol svo an object 1n the visual
fleld presented to our cyes. Similarly, we cannot will to
feel or not feel a particular emotion, though of course
we can Influence our cmollons Indircctly, such as by
leaving the room or consciously rudirecting our atten-
tion. The Motive component may or may not result in
overt action. Fear of an enemy may include a dosire to
flee, but can result in paralysis of action depending on
the circumstances.

However, the emotion moy not directly involve a
specific motive at all. For instance, in the griel of
bereavement it 13 hard to identify any motive as result-
ing from the sense of logs. (This will be related to the
concept of ‘Auid’ and 'fixed’ emotions to be discussed

-later.)

Evalualions or Perceplions

The evaluation invoivud it un emotion goncrully
involves prior mental states, cxpectations and beliefs.
For instance, {f Emma comes into the room while | am
eating lunch, and ] display signs of agitation, you would
need to know more about my prior mental state to
judge what emotion | might be feeling. For instance, !



could ba secretly in love with her, or perhops J dishke
her very much Alternatively, | might have a private
message for her which is making me anxious, or | might
fear she will embarrass me. Allernalively, 1 might be
getung indigestion, and her arrival was a coincidence.

Naote that the evaluation leading to an emotion is
somewhat sinular Lo those processes normally regarded
a3 ‘perception’; Lthey are automatic and present an
analysis of the situation. However, while 'perception’

encrally tavolves reference to beliefs and expectations
fl. 8] 1t does not invplve (as usually understood) refer-
ence Lo our purposes and desires. The evaluation for an
emotion typically does involve reference Lo our pur-
poses and desires. We might infer that feeling an emo-
Uon involves a more elaborate mental machinery than
1s requred for perception. Or it may be that the under-
lying information processing mechanisms are essen-
tially similar, but have access to ‘hugher level data-
bases in the case of emotions.

2.7. Cognilive Lheonies

Sloman's{1] analysis is consistent with the causal-
evaluative position, though perhaps over-estimating
molives as compared with the evaluation. It seems
forced to describe a pain as a kind of ‘motive’. When
you sit on a thumb-tack, the reflex actions (a gasp. and
upward leap) are hardly mediated by 'molives’' as the
term is usually understood. The whole process Involves
only phylogenetically ancient parts ol the nervous sys-
tem (refiexes), and it is a moment tater that hizher coz-
ritive processes asstmilate the signals thal your rear
end has been punctured. }otives (and possibly emo-
tions) then follow, as tn removing the offending object
betore sitting down again, and maybe feeling anger at
the careless (or deliberate?) placement of the tack.

Again, as supgested earlter, It 1s an unusual usage
to describe the paitn in the emotion ol grief as a
‘motive’. And sumilarly for tho emotion of "langing' (lor
someone absent). These ‘fixed’ emotions tend to per-
n13t for a period of time. and ure not amenable to being
resolved by taking any outward action. Also there is no
cxplosion ol emolion with cathartic eflect in these
cases {Compare the emotion of anger al someone's
action, where permitting expression of the emotion
goes a long way towards remowving it.)

Sloman does mention rightly the intrusive involun-
tary nature ol emotions as mental disturbance, though
mental disturbance alone does not compose an emotfon
{pace some behaviourist psychologists). Such distur
bances could indeed be suffered by an artificial inteli-
gence. If they are consequent upon an evaluative pro-
cess as described above, perhaps even a robot might be
sald to be [eehing an e¢motion. However, this s
definitely stretching the word a bit in favour of the
rabot, unless tn some scnse the robot also hag feclings.
This 18 not & matter of physiologicel disturbunce, but as
suggested earlier 13 perhaps dependant on whether the
cogrulive machine directly ‘possesses feelings’ as a
peumtive ‘datum’. More precise formulations are
needed 1n Lhis area. The word ‘feelinz’ has diverse
mearungs in English )
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feclwg
I n. 1. physical sensation, sentivpee;
power of, capacity for, uxperioncing seusution.
2, a. specific sensations; b. specific emotion or
sentiment; c. a premonition, intuition
3.(pl.] a the emotionx; .
b. (specifically) kindly, generous sentiment, stc
4. excitement of mind; esp. angry, etc. sentiment
6. intuitive aesthelic nppreciation, delicate and
just sensibility (e.g. leeling for beauty)
Il adj. having, animated by, expressing. strong feeling
and emotion.

Note that it is distinctly anomalous for someone to
say "I love (fear, envy, etc.) Janet, but never have any
feelings towards her.” In fact, a common way to report
an emotion is to say, e.g. "] feel love (etc.) for Janet.”

3. A TAXONOMY OF EMOTIONS

Previous writers have, of course, made distinctions
between the various emotions. Sloman, for instance,
distinguishes Anger, Exasperation, Annoyance, end
Dismay. Nevertheless, diflerent people often draw
slightly different divisions between such related emo-
tions, and doubtless these differences depend on the
community one grows up in. For instance, 'being emo-
tional' about something is not (for me) quite the same
as ‘having an emotion’ about it. To my mind, the
former is a comment primarily on the subject's
behaviour, while the latter implies that the subject has
a definite emotion tn mind (jealousy, for example).

Agaln, 'being emotional’ can mean a disposition,
attitude or mood, or could be a matter of temperament
or character. These are different things again from
“occurrent emotfong'--cmotions 'in the act’. Of course,
dispositional usages of emolion words depend on the
occurrent usages we have been discussing so far. This
distinction {8 well understood.

De Rivera[3] presents a taxonomy for emotions
which he claims is fairly comprehensive, and shows the
relationships and contrasts between the different emo-
tion words. It is based on a structural analysis built on
the concept of psychological distance in interpersonal
space. An emotion involves a movement--a push or
pull~between the subject and an object or ‘other’,

The movement or force may be fowards or awa}.
The movement may be of the Subject, or of tho Qbjact.
In either case, the one Inoving may be jnitiating the
motion (active) or it may be forced by the other (pas-
sive). The movement may be in any one of the dimen-
sions of Belonging, Recognition, or Being. Figure 1 from
[3, Fig. 11) summarises the overall scheme.

D¢ Rivera explains his Lthroe dimensions in terms of
James' {9] notions of the 'Self’. The Belonging emotions
relate to one’'s 'material' self (one’s body, family, home,
etc.). The Recognition emotions relate to one’s 'social’
self - image in the eyes of others. The Being emotions
relate to one's 'spiritual’ self (one's spirit, soul, mind,
psyche).
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MIGURE 1. Matrix of Emotions (from de Rivera [3})

This structural analysis i3 very interusting, yet Lias
an air of considerable formal structuring. One fears the
word meanings might have been forced into the mould
of a neat diagram. However, de Rivera ciles some
confirmation of this taxonomy [op.cit.}]. The 'sites’ in
the cubic diagram represent ‘pure types' of emotion,
and have been labelied with words generally representa-
tive of theu kinds. He clams that individual emotion
words have meanings which tend to cluster into one or
another ‘site’ tn the diagram

His conlinued analysis surveys how some of 100-
plus different emotion words 1n use fit into this scheme.
This shows thal in some cases different emotion words
occupy the same ‘site’ yet are distingwshed in every-
day use. Thus further distinctions must be made in the
structural apparatus.

The one extra distinction that appears to be fairly
clearly established is in the dimension "fluid”/"fixed".
For example, both Anger and Hate occupy the site for
movernent By the Subject in the Belonging dimension
Away from the object. However the bebaviour evinced
in an angry person does somecthing to resolve the emo-
tonal feelings (‘catharsis') whie ‘bate’ is in a sense
‘frozen’ and 1s not relieved by outward action. (lhe
most one can do is to turn ones attention away from the
object of the hate, or seek a different perspective 8o as
to change the evaluation underlying the motion.
Pcrhaps eventually the hate can be converted into
anger, and then worked out; the fact we can talk about
thus conversion lends credence to the analysis.)
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4. RELATIONSHIP OF THESE T1HHEORIES 10 Al

Following Sloman [1, 10} we can adopt a model of
mind architecture involving a database of information
(tacts, tied into models of the world and of the self—~
many partial models actually) and databases (stores) of
current purposes, goals, expectations, etc. The intelli-
gent being has many purposes at any particular time,
only some of which are selected for attention. Purposes
may be represented by descriptions of slates or events
to achieve or to avoid, and are also characterised by
descriptions of their relative tmportance or priorilies,
and dependencies.

The consideralions advanced abovy lead pur-
suasively Lo a causal-vvalualive theory of emotion, We
must now attend to two important compononts or
prerequisites lor having umotions: feelings, and pur
poses.

In the context of cognitive science, hitherto, pur-
posas have received attention, while for the most part
Jfeelings have not. This is presumably the resuit of
applying the Information-Processing metuphor for men-
tal functioning, which draws attention towards inteltec-
tual and rational funclions and away from feelings, For
instance, feelings aro barcly mentioned In [10], and are
not even listed in the index for [11}. Slater[12)
describes entertainingly how our male-dominated cul-
ture encourages us to ignore leelings. and other fved-
back signals, as we pursue our individualistic goals and
life scripts.

4.1. Feelings

Somehow, feelings’ have to be brought Into the
scope of the Information processing model. Ax a first
step, we regard feelings as the psychic or mental coun-
terpart of the fact that intelligent (and stupid) beings
have bodies—a physical substrate, In the case of Living
creatures, at least, the physical body and the mind are
related, and evolution (or creation?) hay provided feed-
back loops trom body to mind. This fcedback is partly
through perception mecharusmy, such as sight and
hearing, and partly through what we call feelings.

Taking a hint from Jungian psychology, we model
the influence of feelings in cognitive mechanisms
through associating fealing wveclors' with aoll montal
processes and data In the information processing
model. A calculus or theory for how these fesling vec-
tors should be transformed during menlal processing
remalns to be worked out.

The simplest model of this kind would be Lo aswoci-
ale a single signed numerical “desirabtlity” or “inten-
sity” value with each thought and process. Indeed, this
case bears some analogy to the Freudian theory, which
sees all mental processes as lavolving flows (and some-
times captures) of Libido or psychic energy between
different parts of the psyche [13]. This is undoubtedly
too simple a model, but it meshes quite nicely with
other parts of the theory. (It also suggests that a ‘con-
servation law’ for feeling vectors or for psychic energy
should be sought.)

Sloman and Croucher [1, 10] identity different pur-
poses and diflerent motives vs having differing 'priori-
ties'. Thus 'priority’ can be soen as really (part of) the
feeling intensity for the purpose or motive. (One can
even see how evolutionary mechanisms might favour
organisms able to makeo priority distinctions botweon
conflicting urges.) Similarly, de Rivera has a 'move-
ment’ component (towurds or away) in each emotion.
This again is a (signed) ‘intensity’, with negative values
{by convention, but not arbitrarily so) buing lor move-
ments gway.



Again, some other ntelligent systems have
dusplayed a need for simular continuous-valued control
parametars. Expert systems such as MYCIN use
them[14). Berliner has also demonstratad the peed for
something like this in gama playing programs, with his
"smoothly varying application cocMiciuats’ [15).

The Freudian and Jungian theories are united in
ascnbing all sources of psychic energy to the uncons-
ctous, with roots ulumately in the instinctual mechan-
tsms of the organism (those instincts bieing reflected 1n
‘archelypes’ according te Jungian t.heoryg. In a com-
puter, we can of course made! such a theory of feeling.

We claimn, nevertheless, that lor [celing to be ‘real’
(whatever that means, depending on your philosophical
slant) it must be based at least in part on ‘genetically
programmed’ or 'innate’ mechanisms which provide
feedback Lo the mind from its physical implementation
body. Thus it will be premature to talk about feelings in
robots untll they do indeed need to interact with the
environment for their 'hfe support’, etc., and have some
built-in awareness of this. A robot which periodically
has to recharge itsell from a wal socket, and the

rmicro-mice in the maze competitions, are a primitive

start in thus direction. These conclusions are consistent
with the arguments of Dennett (18).

Note, however, that we do not consider a single-
valued real number associated with each mental datum
to be an adequate mode! of feelings. We suggest that a
vector of values, or some other structured data type,
would be moro appropriate. lowever, unlil such
modcls are implemented and tested, there is no evi-
dence to settle Lthe matter.

4.2, Purposecs and Molives

Given the understanding that purposes and
motives are qualified by feeling vectors, we have little
further to add to previous discussions of ‘purposes’ and
‘motives’. Sloman [1, 10] has presented an outline
account of how purposes and motives can be imple-
mented under an information processing mode! of the
mind Boden's [11] position seems to be compatible
with this also. She argues that purposes are rooted in
the mechanmstic processcs of Lthe brain, but Lhat we are
not thereby forced to acopt a reductonist (or deter-
minist or behavounst) viewpotnt. We emphasise more
strongly the role of feelings as part of the rooting of
mental processes 1n the physical bratn--and in the
organism generally.

4.3 Analyms of Emolioas and Feclings

We suggest that de Rivera’s structural analysis is a
fruitful starting point. We shall outline how to reinter-
pret hts medel in the concepts of wn 1P niodel of cogni-
Lon (swtably enhanced).

An objeclon of principle might be made, that the
structural analysis wvolves an assumption that every
emotion tnvolves "an other’. Hut this i1s not really a new
difficulty; the same assumption is embedded in the view
that an emotion tnvolves an evaluation of the situation
which includes consideration of the subject’s purposes.
The three ‘dimensions’ of Belongzing, Recogmition, and
Heing are not readily grasped; they were introduced
carlier, and wo return Lo then shortly

De Rivera makes o distincuion between "ud” and
“"flxed” emottons. (It 13 not clear whelher tus s
intended as a discrete binary-valued or a continuous
parameler.) We sugpuest that this distinction can be
interpreted in the information processing mmodel as fol-
fows. A Flud emotion 13 one including consequent
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motives for action, and if the actions are taken then
this removes that psychic energy from the emotion as
such (shades of Libido theory!).

A Fixed emotion, by contrast, is ono where no
direct motives are gonorated (pace Sloman). Thare-
fore, naturally, no immediate outlets for the emotion
present themselves. (This is not to say a Fixed emotion
cannot be resolved in other ways.) The Fixed emotion,
in Sloman's terminology, may involve Molive Ganerators
and in some later changed circumstances these genera-
tors may be able to produce actual motives for action,
which can take off some of the bottled energy. The pro-
duction of actual motives can be regarded as an
unfreezing of the emotion, converting it into a fluid one.

Now to reexamine the three dimensions of
interpersonal space. We may compare them tentatively
with Jung’'s Theory of Types [17]). Jung classifics
people’'s temperaments (and by implication their emo-~
tions and feelings) on four different dimensions or
‘functions’: the Feeling function (sensitivity to values);
the Thinking functlion (orientation towards intellectual
and rational thought); the Sensation function (aware-
ness of physical sensations and perceptions); and ths
Intuition function (sensitivity towards hunches and
intuitions which well up Irom the unconscious mind).
Each of these functions Is present in a person, though
one or another may be stronger.

This theory has been criticised that it may owe
more to an attractive ‘mandala’ representation than it
does to observation. Nevertheless, it seems to have
some descriplive value with human beings.

The Dimensions ol interpersonal space (a la
James[9]) can be roughly mapped onto Jung's 'func-
tions’ as follows. The Being emotions, and spiritual self,
are roughly equivalent to Lhe Intuition function. The
Belonging emotions and material sell are roughly
equivalent to the Sensation function. The Recognition
emotions and social sel are roughly equivalent to the
Feeling function. Jung's Thinking function is not
involved here, in this view.

The identifications suggested in the previous para-
graph are inevitably only tentative, at this stage, in the
abscnce of working computer miodels of emotion
according to these lights. The whole of Seclion 4 above
is intended to show how to modily the “classical” Infor-
mation Processing modc! of cognition (as expounded by
Sloman and others, in various forms) to take account of
the phenomena of feelings and emotions.

6. SUMMARY

A wide range of theories about the nature of Emo-
tion has been surveyed. The causal-evaluative theory
appcars to be the most adequate approach, and it ean
be interpreted (n terms of an information processing
model on the general lines suggested by Sloman and
others. The information processing model as described
hitherto must, however, be extended by inclusion of a
notion of feeling.

We discuss fecllngs, and describe how they can be
integrated into an information processing model of
mind. They underpin any adequate description of
motives and of purposes. With this addition, we have an
approach to a more adequate model of emotion. We
also draw on do Rivera's structurai analysis of emotion,
and inlegrale also elements of the Jungian and Freu-
dian theories of the psyche. Our goal is to develop a
unified theory of feeling, emolion, and motivation.



ln summary, we consider that Feelings are essen-
tial for an adequate theory of mind, that they do not
exist in a ‘pure intellect’ but depend on interaction
between the body and mind, and that without them it is
inappropriate to talk of Emolions. An intelligence
which has a body, and feelings. and purposes, will be
able to have emotions and indeed will be almost human
(or at any rate animal).
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ABSTRACT

Hany problem-solving applications need
%nfor-atxon sbout temporal properties of objects
in the domain of spplication as well as test for
patterns of temporal relationships between
different objects. In the approach presented

here temporal informstion is organized in the
form of events which describe some temporal
propecty of an object. In this scheme, events

are organized around some “key-events’ in a
hierarchical fashion to form “episodes”.
Continucus eveats are sodelled by an episode of
telated point-events. Recurring episodes form
an episode~cluster, This scheme also handles
tne impreciaion and variety in  temporal
description in a natural manner. Finslly, some
strategies are discussed for ansvering many
typical temporal queries in the context of a
particular application of these 1ideas for
organizing temporsl data in the medical domain.

XNTRODUC!!Q!
In many dowaina, osolving problems or
providing expert~like consultation not only

requires a database of fscts about objects in
tne dowmain but also information about temporal
variations in some attributes of these objects.
Examples of such domsins include cliamical
decision-making, fault-disgunosia of electrical
or mechanical systews, economic forecasting, and
monitoring changes in the atate of some system,
In medical diaguosis, for instance, one not only
needs to model the state of the patient at the

time of diagnosis but also changes in the
various signs, symptoms, and 1labdata over a
period of time. In addition, many disgnostic

rules are based on the temporal and causal
telationships betwveen different data concepts.

The tewmporal iunforwmation required to model
the dynasice of the objects in the domain of
such applicstions is typically event-oriented.
la other worda, the dynamics can be adequately
represcated by describing what events occurred;

wnen they occurred; hov long they lasted, if
indeed it 1s useful to represent their duration
of occurrence; and how they were related

Given such a database,
questions are of the

teoporally and causally,
tne typical temporal

following kind: (a) What events occurred at
tume T?7 (b) Did event Y occur? When? (c) Did
event Y occur before or after event Z?7 How far
apart were they? (d) What was the change in
some attribute of an object during interval T?
(e) When did event Y start? How long did it
last?

In this paper, we describe an event-baaed
organizstion which can be used to represent the
different kinds of temporal information and
answer 8 wide range of questions based on that
information. Thia organization is based on the
following observations. Firet, events which can
be conveniently viewed as having occurred at the

same time can be grouped together into an
event-cluster, Because of this grouping,

reterence to an event implicitly refers to the
event-cluster as well to which an event belongs.
For thia reason, we shall use the terms event
and event-cluster interchangeably, except where
the distinction is important. Second, events

are typically organized around some “key”
events, in  effect forming &  group of
event~clusters related temporally. The events

in each such group are related to each other by
certain criteria, These groups will be
considered as epjisodes. Third, description of
temporal relstionship between events is often
imprecise, incomplete, or both. The implication
of tbis observation is that some queations may
not be ansyerable at all and others only
partially, in any given state of the database,
though availability of more precise information
in the future should lead to a re-organization
and posaibly wmore accurate answers, Fourth, the
time when an event occurred can be deacribed in
a vsariety of ways and it should be possible to

integrate them all in & seingle organization,
Fitth, there is an inherent duality between
interval~based and point~based representations

of tewporal information., In other worda, it is
possible to ‘collapse” intervals into
point~events and vice-versa (where applicable)
depending on the questions asked and specificity
desired in the responses.

These observations point to the need for =a
set of possibly iater-linked eplsode clusters.
The questions described earlier can all be
answered by suitably searching in this largely
hierarchical organization of eveats. We have



used this approsch to reprement a variety of
medical data sbout patients which can then be
used by an automated medical diagnosis system.
The two systems, PATREC which organizes medical
data about patients and MDX which provides
clinical consultation wusing this dats, are
deacribed elsevhere [Mittal and Chandrasekaran
1980, Mittal et al 1979, Mittal 1980]). Here we
wiil focua only on those aspects of the database
organization which pertain to temporal
informataion.

REPRESENTATION OF TEMPORAL DATA

We shall discuss our approach to
representation of ‘temporal data in the context
of examining the nature of description and use
of temporal information in applicationa such as
clanical decision-making or trouble-shooting
complex mechanical systems. For illustrative
purposes wve will use the medical domain though
similar issues are relevant in other domains as
wvell,

Description of Events

An event can be viewed as an assertion
about the occurrence of some data concept. For
example, in two weeks after admission, the
patient had intermittent jaundice, one of the
events ia “patient had intermittent jaundice”
wvhich is an assertion about the dats concept
“jaundice’., Events occur at some point in time

which we shall call the temporal descriptor of
an event. Thus im the above example, “two weeks
after admission” is the tewmporal descriptor for

“intermittent jaundice®. Note that the temporal
descriptor not only describes when an event
occurred but also serves to uniquely identify it
(of course oaly to the extent that the teaporal
description itself is unique). For example, in
“jaundice at admission’ and “jaundice three days
arter surgery”, the temporal descriptors ‘at
admission" and "three daya after surgery" not
only describe the time of occurrences of the two
jaundice events but also distinguish between the
tvo events., There are some interesting 1issues
about vhat ‘happens if these descriptors refer to
toe same event (this may be determiped from
other information) or if a temporal description
does not identify a unique event-cluster. We
shall postpone a discussion of these issues to a
later veport [Mittal 1982]).

Also note that often the time of occurrence
of one event ia described in terms of another
event, In the previous example, the temporal
descriptor for the event “intermittent
jaundice’,namely, “two weeke after admission"
wvas in terms of another event “admission’, In
general, the notion of events and their temporal
descriptiona will be relative to one another. A
particuiarly useful inatance of this relativity
occurs in the case of certain events whose time
of occurrence ia given in terms of the event
itaelf, As we point out later, this
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self-referenti1slity is often an importsnt clue
that thesa events play a important role in the
domain for organizing other events.

Organization of Events

Event Clusters. Events which are yiewed ao
having occurred at the same time, i.a., defined
by the same temporal descriptor, can be grouped
into am event-cluster. This grouping i
actually an artifact, albeit a very useful one.
It allows extraneous temporal information to ba
ignored because even though events within an
event-cluster may have occurred hours or even
days apart, they can be usefully viewved a»
occurring at the sama time. Thims “collapsing”
of an interval into a point~in~time is essential
in  wmanaging the large amounts of temporal
information. The clustering may be performed
statically by the wuaser, i.e., a set of events
may be given to the system as an event-~cluster

(witn a eingle temporal descriptor), slthough,
in reality, the events may have occurred at
different times. - This clustering may also be

performed dynamically by the system in response
to certain questions. Oune of the ipteresting
characteristics of our scheme is this ability to
maintain the duality Dbetween point and
interval~based representatijons, i.e., allow
temporal descriptors of events to be described
to any degree of specificity but also allow an
interval to be viewed as a single “point ip
time” for answering some questions, We will
discuss this issue in greater datail later on.

There is an important consequence of this
clustering of events. A temporal descriptor of
any event in a cluster aleo describes the time
of occurrence ot any other event in the cluster,
In other worde, uniquely specifying an event in
a cluster also specifies the cluster, Yor
example, given the following cluster of events,

"at sdmission the patieat had jaundice,
pruritus, abdominal pain, and complained of
nausea and vomiting",

the temporal descriptor “at admission’ not only
describes when the patient had jaundice but aleo
pruritus, nausea etc. Furthermore, a nev
temporal descriptor “at(jaundice at admission)”
con be created from one of the events in the
cluster, namely, jaundice, which serves the same
function as the previous temporal descriptor,
Thus, we shall wuse the term event to refer to
event-clusters also in the rest of the paper,
keeping in mind that an event implicitly also
refers to the event-cluster to which it belonge.

Grouping related eyente jintp epjsodgs.
Given these event-clusters, how do we represent
the temporal relationships between them?
Typically, these events do not exist in a linear
temporal relation. There are varioua reasons
for tnia. First, the temporal deacriptions
defining sn event are imprecise or incomplete.
Por example, "two weeks after admission' does



ool weal precisely
appruximately so.
data about a patient,
“...a week after surgery, the patient
complained of severe pain in the abdomen,
nausea, and vomitting. Three days after
admission, he had high fever and complained
of chitls...",
‘a week after aurgery’ is imprecise. But the
relation between thia description and “threa
days after admission” is not even known, unless
one makes the {nference that the “admission”
being described must have tsken place after the
event  “severe pain”, in  which case the
relationship fis known but still imprecise. In
tnis example, there are two event~clusters, "a
week after surgery” (abdominal pain, nausea,
vomitting, etc,) and "three days after
admission” (fever, chills, etc.), with the
latter occurring after the former,

“two  weeks’ but  omly
Similarly, in the following

Second, nev events are described in terms
of exiating events. For example, in the above
fragment, “a week after surgery’ was derived

from surgery, “three days after admission’ was
derived from admission, and admission was, by
inference, “after a week after surgery’ or more
precisely “after the event severe pain which
occurred a week after surgery”. Thus, there is
a natural grouping of eveunts around ones which
are used to describe them.

Finally, there are some
viewed as

events which are
“key” events, in the sense that many
events are grouped around them, These are
events which are important to remember (and
other avents are remembered baaed on them) based
on domain-dependent criteria. For example, in
the medical dowmain, “admission”, “discharge’,
“surgery’, etc. are some of the key-events. An
important property of these events ia that they
can be self-referential in the sense defined
eartier. One consequence of this property of
key-events 1is that large sub-sets of temporal
data can be usefully organized and retrieved
arouna tbese key-events without knowing
precisely (or at all) how these events are
related to other events in the database. For
vxample, large smounta of data about a patient
can be organized into event-clueters around the

key-event “admission”, and wuseful diagnosis
performed, without ever knowing when this
sdmission evaent actually took place.

We shall refer to these groups of events

organixed around some key—event as episodes. In
general, an episode can ba viewed as a
partitioned hierarchy of event~clusters,
originating from the key-event cluster. Each
level in the hierarchy contains events directly
defined with respect to the event at the next
higher level (let us call this event the
d-event, short for the “defining event’). The
left partition countains events which oceurred
before thbe d-event and the right partition
contains events which occurred after the
d-event. Note that the partitioning is only
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with respect to the d-event at that level and
oot the key—-event at the top of the hierarchy.
One implication of this relative grouping of
events (i.e,, relative to the d-event at each
level) is that some events in the left partition
might actually have occurred after tha key-event
defining the episodic hierarchy. The converse
may hold true for the right-partition. Thus for
efficiently answering questions such as "Did X
occur before/after event Y?", the episodes might
also be organized into a separate hierarchy:
here events at one level are strictly before or

atter the events at other levels to which they
are linked and different events at the same
level are temporally indeterminate with respect

to each other, (By temporal indeterminacy we
mean the following: due to a lack of precision
in temporal descriptions, it may not be possible

to say which of the two events in question
occurred before or after the other one.) This
latter hierarchy is a hierarchical

representation of what may be thought of as the

time~graph of eventa in an episode. The former
hierarchy can be thought of as the definition
hierarchy of events in an episode. The latter

can be created from the information contained in
tnhe former.

Let us illustrate this organization with an

example. Conaider this somewhat complex
description:
"A wmonth before admission, the patient

first complained of fever and chills. He
took medication and felt better. A week
later, the fever recurred, accompanied by
anorexia. A few days later, he developed
jaundice. At admiseion, he was found to
have jaundice, pruritus, anorexia, severe
asbdominal pain, etc. Two months before
admission, he had eaten shellfish and had

vomited a few times the next day. A few
weeks later, he had an attack of acute
abdominal pain, but it subsided. Three
days after admission, his labtests were

Two days later, he was operated upon
for gallstones. A few days after
admission, he was alright and discharged."

The key-event for organizing all this data is
“adwmission”. All other events can be directly
or indirectly grouped around “at admission”,
The two hierarchies - definition and time-graph
-~ for this episode are shown in figures 1 and 2
respectively. A few explanatory commenta are in
order here. Our current implementation does unot
parse the natural language text as preseated,
Instead, the information contained in the text
has to be given to the system in a stylized
format, one event-cluster at a time with each
cluster preceded by the temporal description of

the cluster. Figure 3 shows the actual format
for entering aome of this data. However, not
processing the actual text prevents the system

from making certain inferences which would help
in reducing some of the imprecision in the
temporal description of evente., For example, by



iteelt it is haxd to ssy if the event E9 (refer
to figure 1) occurred after the event EB or even
E7, This is because of the inherent imprecision

in tne phrase “a few days after sdmission”.
However, the textusl occurrence of E9 after ES8
ang E7 coupled with the fact that “a few days’

can be more than 3 or 5 days, can be used to
infer that E9 actuslly occurred after E7 and E8.
Other infaexences are also possible based on
domain knowledge. For example, & property of

the event “admission” in the medical domainm,
aamely, patients are admitted for problems
originating before admission, can be used to

decide that event E10 must have occurred before
£l (i.e., sdmission) even though the phrase “a
few weeks later”

Other criteria for creatjng episodes. So
far wve have described only one criteria for
grouping events into episodes, namely, grouping

around some key-event. There is often need for
otner typea of episodes as well. For example,
events with duration can be wodelled as an
episode about the occurrence of the event.
These episodes would contain information about
toe event describing the start of the event,
events describing changes in the state of the

concept underlying the event, the termination of

the event, other events which may be closely
linked, etc. Consider the following
description:

“Jsundice was first noticed a week after

surgery. It gradually increased in
intensity, till the patieant was given
medication four days later. It subsided,
but recurred a month later when the patient
was admitted, Three days later, he was
operated s second time. There was no
jmundice a day after surgery"

Thie description can be modelled as an episode
for jaundice (in addition to the other episodes
based on key-eveuts), buc oae in which only
events pertinent to jsundice are stored. Such
an episode allows questions about jaundice to be
etficiently answered, as well as allows jaundice
to be treated sas a point-event in the other
episodes. We shall discuss this in more detail
in the next section.

We are currently investigating what other
criteria are wuseful for episodic groupings,
This anae related issues are dealt in a
fortbcoming report [Mittal 1982}. It ehould be
emphasized that episodes other than those based
on key-events are meant to provide additional

organizstion for efficiently answering certain
kinds of questions, in particular, questions
About continuous eventa and causal
relationships. The key-event based episodic

groups contain sll the necessary inforwation for
answering auch questions, though not quite as
efficiently If these additionali structures are
not imposed,
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Belutionghip between episodes. An episode
may be linked to another episode either directly
by wmeans of a known temporal relationship
between the respective key-events or iadirectly
because of a relationship between events in the
twvo episodes. Por example, in the description
for jaundice given above, there are three
episodes: “at first surgery"”, "at admission”,

ana "at second surgery”, The relation betwesn
the last two episodes is direct, namely, “at
second surgery" was 'three days after(at

admission)”. But the relationship between the
first two episodes is more indirect, namely, "at
admission" was "l month after" the event "4 days
atter(l veek after{at firet surgery))".

There are other reasons also for relating
different episodes. Ooe particularly important
one is between different episodes of a recurring
event, For example, different admissions,
different bouts of jaundice, etc. We shall
refer to groups of episodes bassed on recurring
episodes as episode~clusters. Lack of space
does not permit a comprehensive discussion and
interested readers should see [Mittal 1982),

Variety of Tempora) Deacription

As the examples discussed so far show,
temporal descriptions can take many forms. Soms
of the different kinde found ism the medical
domaln are: (1) kay events, such as
“admission’; (2) those derived from key events,
such a8 “three months after second admission”;
(3) those derived from other events, such as “a
week before jaundice®, or “a month after the
last time he was administered hsalothane”; (4)
those contexually derived iu a narrative, such
as “four days later...”, “a month earlier’, or
“two weeks after the previous surgery”; (3) and
talendar events, such ss “March 1975°, “Japuary
1>, 1956, 4:56pm” or “latter part of 19817, All
of these different kinds are frequently used to
describe the time of occurrence of events, all
can be more or less imprecise and ambiguous, and
they require different kinds of knowledgas to
understang and integrate.

Aside from requiring & model which can
integrate all these different kinde of
descriptions, this variety also creates
potentially conflicting  multiple temporal
descriptions of the sama avent., Insues
pertaining to inconsistency or ambiguity ia
temporsl relationaships are beyond the scops of

tnis paper. Iunterested readers are referred to

[Mittal 19y82).

EPISODIC ORGANIZATION IN THE PATREC SYSTEM

Io the earlier section, wa have described
an episodic organization for the representation

of temporal data, To recapitulate, temporal
data are represented a8 events, Eveats
occurring at the same time are clustered

together and described by the same temporsl



descriptor. Event-clusters are further grouped
iato episodes, often organized around asome
Xey-event, Finally, episodes of recurring

events are clustered into episode~clusters.

Ve have implemented some of these ideas in
tbe temporal component of the medical database
system (PATREC, see [Mittal and Chandrasekaran
1¥80)) and the folloving discussion wvill be in
toe coatext of the PATREC system. The important

things to koow about the PATREC system are: it
has a conceptual model of medical data,
organized as a hierarchy of frames; and the
actual data about a particular patient are

stored as a patient model by instantiating the
relevant frames from the conceptual model.

¥pisodic Orpanization of Patjeng Model

Each instance of a medical data concept can
be vieved as an event, Events that are
described aa belonging to the same event-cluster
are grouped in an event-cluster frame, Each

event-cluster frame has an associated temporal
description frame which defines the
event-cluster. Fach event-cluster is organized

in one of the hierarchies - one for each key
event described for a patient. An event may be
implicitly lioked to more than one hierarchy
because of the multiplicity of descriptions,
Sometimes events may be described which cannot
be linked to any of the key-episodes (i.e.,
episodes formed from some key-event). In such
cases, the defining event is used to create a
temporary key~event arouad which an episode may
be formed,

Bepresentation of Imprecision

In our curreat implementation we have
adopted a relatively simple representation of
the imprecision of temporal description, which
nevertniese has proved to be quite powerful,

Our model allows for both implicit and explicit
imprecision. The former refers to the
observation nade earlier that temporal
descriptions are inherently imprecise. For

example, given “one year ,,.”, it is represented
as  (LYEARS 1) (MONTHS U)(DAYS U)). Another
beuristic that is useful for implicit fuzzinesas,
assumes that tha higher units of time, if not
specified, are rero, For exanmple, “three
moatns...” is represented as ((YEARS O)(MONTHS
I)tpaxs U)).

Sometimes the range of imprecision is made
more explicit. Por example, “between two and
toree years...” wvill be represented as ((YEARS
(BETWEEN 2 3))UMONTHS U)(DAYS U)).

During the procees of searching the
temporal structure for answering questions,
these imprecise descriptions are combinoed wusing
some simple heuristics, One such heuristic
states that, “if the bighest precision in one
descriptor falls within the imprecision of
another, then the new description is no more

precise than the second one’, For example,
combining “one year” and “two months” still
yields ‘one year”. |Needless to say, such

introduce
domain our

heuristic combinations can easily
errors., However, in the medical
experience indicates that imprecise events are
combined (or compared) not for obtaining an
exact answer but mainly for relative order, a
purpose adequately served by our heuristic
approach.

In order to complete the discussion of this
model, let us consider how some typical
questions can be answered uaing the organization
outlined above.

When type gquestions

One common type of questions are of the
form, "when did event Y occur?”, Examples of
such questions are, "when did the patient have
jaundice?”, ‘'when was the first occurrence of
pruritus?"”, "when was liver surgery performed?”,

The basic strategy for answering such
questions involves a search of the different
episodes in which the event could have occurred,
For all such episodes selected, the osearch
begins at the key-event defining the episoda,
Thus, questions about key-events can be answered
most efficiently, (This could be viewed as
another definition of key events.) Ae¢ mentioned
earlier, episodes may be created based on other
criteria a8 well, Therefore, in case of event
types for which such episodes exist, such
questions can again be answered efficiently. 1In
general, however, the temporal organization is
not eufficient by itself for efficiently
answering when-type questions, A variety of
secondary access structures need to be created.
These structures capture patterns of temporal
relationships ioherent in the domain. For .
example, direct 1linke may also be kept for
certain events which are frequently queried
about, These allow questions such as "Did X
occur?”, "When wae the first(or last) occurrence
of X¢” etc. to be answered without a great deal
of search, Certain data concepts have
constraint expressions which limit the episodes
in which events asbout these concepts can occur,
For instance, labtests are only performed after
admission. Thus given a question such aes “When
was SGOT performed?”, the system need only
search the time-graph hierarchies in the
admission episode-cluster and then only the
right partitions. Moat of these secondary
access links are domain-dependent and beyond the
scope of thie paper.

Questions over & time interval

Even though the organizstion 1is largely

event~based, it allows for the creation of time
intervals and asking questions over that
interval. Examples of such questions are "did

the patient have pruritus in the year preceding
adoission?", "did he have abdominal pain between



the onsets of jsundice and pruritus!”, “how long
did tne jaundice which started a week prior to
admission last?!™, The first two require the
system to create an interval and search it in
the required order. Answvering such questions is
nore efficient than the general when-type
questions because here the specification of some
interval provides a more bounded temporal
organization, In medical diaguosis, at least,
such bounded when-type questions are much more
frequently asked than the general ones. In
particular, once a certain interval is
specified, & large numbers of questions are
asxed in that interval. For example, the
typical diagnostic scenario involves specifying
a “vindow® around some key-event and then
querying the database about the occurrence of
large number of medical data objects,

The strategy for answering the third type
of question mentioned sbove, namely, “how long
did jaundice which started a week prior to
admission 1last?™ depends on how a particular
continuous event is modelled im the database.
Some eventa with duration are modelled as
separate episodes. In such cases, most of the
work is in determining the relevant episode in
tne episode-~cluster for that psrticular data
concept. For example, in the case of the above
question, the first step is finding the episode
for jaundice which occurred “a weck prior to
adaission”. This can be done by the same
strategy employed for bounded when-type
questions., Once the jaundice episode is
retrieved, it can be easily searched for the
cvent representing the termination of jaundice,
ana the answer returned. This latter searcb can
often be avoided for some  questions by
summarizing the important Ctemporsl properties
from tnis data-episode into the point-event
represented in the key-episode. This also
allows a natural way to handle continuocus events
which bave not terminated yet, or summarize a
data-episode into a point—event, Or summarize an
episode-cluster into a single episode. For more
details reter to [Mitcal 1982},

Representing continuous events by separate
episodes is npeither required for all data
objects nor feasible Dbecause of space
limitations. Therefore, temporal information
about the continuous behavior of those data
objects which are queried about less often is
represented by point-events describing when it
started, when it ended, causal links to other
events, etc. In such cases, answering these
quescions could involve an exhaustive search of
the key~episode(a) in which events describing
the data object lie unless some reasonable
assumptions vere made about typical duration of
particular events or typical temporal interval
between two causally~related events. In our
current implementation we expect tha dats
concept behind each event to contain knowledyge
about typical duracion etc. to limit the
seagrch. |
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Cowpgrjng fwo gvents

" One of the most important typa of questions
that are asked are of the form, "did event Y
occur within interval T of event 20", Such
questions are very useful in establishing causal
links between events, Here we describa some of
the basic strategies for such questions, For
more detaiis see [Mittal 1982},

(1) If the two events have associated
calendar timea, then use them, unless the
precision is less than specified in interval T,
or the precision does not allow a comparison.

(2) In some cases, evente Y or Z may be
defined in terms of the other. This
relationship would be used with the caveats
noted above.

(3) 1f botn events are organized in the
same episode, then try to find a common event to
which both can be related. Again the sane
caveats apply.

(4) If the avents are organized in
different episodes, first try to relate each
event to the key—event of the episods. Next,
try to relate the two key-events. Again the
same caveats apply.

It should be pointed out that the lack of
precision and completeness in temporal
description implies that not all such questions
csn be answered and some may be answered at best
as “maybe”.

REVIEW OF RELATED WORK

The little work that has been done in
representing and reasoning with  temporal
knovledge cam be categorized om & spectrum
ranging from domain-~dependent to
domain~independent. By domain-dependent we
basically mean that the temporal structure sad
reasoning are strongly guided by the content of
the objects in a particular domain. An
important work of this type is Kolodner and
Schank’s model for organizing events along the
lines of human memory organigation. The CYRUS
database system [Kolodner 1978}, which is based
on these ideas, {8 organised using a
semantically-~rich model of objects in the world
of diplomacy such as political personalities,
roles, places, events, etc. Questions about
events and relactionship between events can be
answered by exploiting a rich interconnection
betveen different types of events., Our episodic
model was also influenced by Kolodner and
Schank”s work.

One of the earliest attewpts at building a
domain-independent time-expert was the work by
Kahn and Gorry [Kahn and Gorry 1977). Some of
tnerr analyses regarding description of events,
ana representation of fuzziness have proved



wsetul in our work., MHore recently, Allen {Allen
1ya1) has proposed an interval-based
represcatation of temporal knowledge, The
notion of “persistence” of events and vuvae of
intervala to represeat imprecision in event
description may prove to be uaaful in organizing
temporal databases too.

The approach preaeated im thia paper
differs from the earlier ones in developing a
framevork in which domain knowledge can be
easily integrated into a largaly
domuin~indapendent scheme., As we showed, our
approach allovs s variety of temporal knowledge
to be efficiently organized and queried about
regardless  of the domais being modelled.
Anotner interesting property of our ascheme is
tne ability to maintain the duality between
point~based and interval~based representation of
events and make & <ctransition from one to the

otber depending on the questions asked.,
Iatervals are represented in the progression
from events, to episodea, to episode-clusters.

Intervals can be collapaed by the use of

event-cluaters, by sucmarizing data-episodes
into an event, and by summarizing
episode-clustere into episodes. PFinally, our
scheme allows for domain knowledge in the form

of key-events, constraints on - temporal
relationshipe between events, typical behavior
of continuous events, etc. to be integrated

vitn the otner domain~independent mechaniams for
better partormance.

Another ioterestiang work, though orthogonal
to the wvork reported here, 1is the RX system
[Blum 1981}, Yo this aystem, a temporally
organized database is used to infer new
relationships betveen pedical data, that is,
temporal relationships are uveed to infer causal
relationshipa,

SUMMARY
We described an episodic  event-based
organization of temporal databases that are
typically used io many expert~system

applications. The organization allows a large
nunber of events to be represented and
efficiently queried about. It was shovn how a
variety of temparal descriptions can be
integrated into a single organization, even vhen
such descriptiona are imprecise and incomplete.
A wvide range of questions were considered which
can be easily snswvered using this scheme. An
ioteresting feature of the organization is the
ability to answver interval~type questions in a
natural wanner using essentially an event-based
representation, This points to the duality of
the interval-based and point-based
representations. Finally, some details of the
actual implementation were discussed which
incorporatea both domsin-dependent and
domain-indepeadent aspects of temporal
hoowledge,

L |
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1. Introduction

A suitable representation can render difficult
problans manageable. Artificial Intelligence (AI)
resaarchers are preoccupied with knowledge repre-
sentation for this reason. In addition, data base
managaement  {DOM] researchers realise that large
quantities of physical data can be administered
rore efficiently if there is a logical content ar
relationship amongst the data atoms (Chamberlin,
1976). The rules for interpreting a data base via
a data model, i.e.,, data scmantics, has become of
increasing interest to data base managers.

The extent of the divergence between artificial
intelligence knowledge representation [AIKR] and
corventicnal DBM over the logical content of data
is indicated by their fidelity tc the classical
ides of deduction. AIKR is relatively faithful to
logical deduction, with the exception that denota~
tional semantics has not been universally adopted
(McDarmott, 1978b). From its inception AI (and
AIKR) has been concerned with 'data models' which
permit logical deduction usually as an analogue for
human reasoning. For AXKR, the need to represent
and manipulate mre canplex and abstract data struc—
tures has motivated the development of nore elabor-
ate data semantics and accampanying deductive mech-
anisms.

Traditdonally, DIM has been corncerned with data
independence to the exclusion of logical deduction.
‘Data definitions' or ‘'schomas’ have been developed
which can describe any oollection of source data.
As cata base administrators become more ambitious
about capturing the meaning of their data, they
consider epistorologically adequate data models.
lLogically consistent data semantics must be devel-
opad along with epistemologically adequate data
mocels.,

Both AIKR and DBM are evolving fram heuristic
to mare formal methodologies. The canvergence of
the alternative methodologies should occur, we
believe, with the gradual adoption by AIKR of the
oEM paradigm and the inclusion of AIKR reasoning
systems into the DBM paradigm,

2. Artificial Intelligence as an Frpirical Study

2.1 The Ad-Hoc Development of Representatian
Tools

Early Al representation techniques were devel~
oped in an ad~-hoc manner, largely in response to
the constraints of implementation. Question—answer—

Randy Goebel

Camputer Science Department
University of Waterloo
Waterloo, Ontario, Canada

ing systems developed during the 1950's all lack-
ed a ocoherent notion of representation. They
used a dictionary and a limited predetermined
damain of discourso. Tho question-answering
data bases consisted of attribute-value pairs;
queries were evaluated by simple patterm-matching
according to various criteria, until answers were
founrd.

The conversation machine developed by Green,
Berkeley, and Gotlieb's (1959) used attribute-
value pairs. Their 'conversation machine' oper-
ated in the damain of weather. The data base
stored knowledge of the weather which character-
ized each season and the dictionary stored mean~
ings for ordinary and operator words., Ordinary
words included snow, rain, hail, time, today,
yesterday, etc. The dictionary represented mean-
ings as attribute-value pairs, e.qg., the attri-
bute of a time-classified word is a type of time,
calendar or relative, and the associated valuas is
a code for the amount. Operator word attributes
consisted of functions and values, supplied when
the associated functions were executed. Ordinary
words were coded similarly to operator words,

The meaning of a declaration, query, or asser-
tion was represented by the set of codes for the
oonstituent words. Words not in the dictionary
woro congideroad meaninglesns amd assigrexd a oade
of zero. Otherwise each word was found via table
lookup and coded by its attribute-value pair,

The conversation machine then campared this 'mean-
ing' with its own store of coded declarations and
selected an appropriate response 'frame' fram
memory (with slots to be filled in with words fram
the originaldeclaration of query).

The conversation machine limited syntactic
analysis to only a few constructions and the prob-
lem of selecting the correct response. Encoding
terms with attribute-value pairs is still utilised
to same extent today.

The numerous question-answering systems built
after the 'conversation machine' include the BASE-
BALL program of Green, Wolf, Chamsky, and
Laugherty (1963), SAD SAM from Lindsay (1963),
PROTOSYNTIIEX of Simmons, Klein, and McConlogue
(1964) , the 'deductive guestion-answering system’
developed by Black (1968), SIR fram Raphael (1968,
and the 'semantic memory' model of Quilliam (1969 .
These systems were limited in representational
epistemology. They chose small, well-defined
problem domains, relied almost exclusively on the



attribute-value pairs provided by LISP property
ligts, and utilised clever programming to good ad-
vantage. The lack of a coherent representation
framework limited further developments in ATKR.
Recently AIXR has achieved better understanding of
abstract representational primitives. Strategies
have been mapped out for property inheritance among
concepts, and associative processing algorithms for
relating concepts, etc. Now AIKR can apply the
representational strategy to a large real world data
{(knowledge) base. .

2.2 The DBM Paradigm and Artificial Intelligence

The data base management paradigm which we
believe could significantly contribute to the arti-
ficial intelligence treatment of large knowledge
bases is presented in Fiqure 1.
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Figure 1.

The data model makes explicit the data inter-
relationships within the data base. The external
and internal schemas represent interfaces between
the data model, the user of the data model, and
physical devices respectively. Figure 1 illus-
trates a weak kinship between knowledge represen—
tation lanquages [KRL) utilising frame systoms (and
scricts, schemata) of AIKR and extermal schemas and
beowaen associative networks (and logical represen-
tations) of AIKR and internal schemas., The parallel
between the AIKR representations and parts of the
DB paradigm is not exact, but assists discussion
of the advantages of using the DBM paradigm for AIKR.

Brachman (1979) classified levels of 'semantic'
netwaork tationg from implementation to the
linguistic level. Adapting Brachman's classificatin
to representation in general results in our summary
of representation levels presented in Table 1.

REPRESENTATION LEVELS

Level Representation les
Primitives {non—exclusive)
Implemen~ Atomg, Pointers, Data Structures
tational Arrays, Sets, etc.
Logical Propositions, Predi~ Schubert, 197%
cates, Arquments, Cercone, 1975
Operators, Functions Shapiro, 1971
Hemdrix, 1975
Epistemo- Concept structures Brachman, 1978
logical and types, Inheri- Goebel, 1977
tance and structur- Schubert et al,
ing relations, Topic 1979
predicates KRL'o Bobrow &
Winograd, 1977
Conceptual Semantic, conceptual Schank, 1972
relations (cases), Wilks, 1973
Primitive actions, Norman et al,
States and cvents, 1975
Frames, Scripts Minsky, 1975
Linguistic Words, Concepts Szolovits, 1977

Quillian, 1968

Table 1. Representational levels.
Obviously these classifications are fraught
with fuzzy boundaries; only with hirdsight oould
they have been drawn at all. The ad-hoc develop-
ment of AIKR representation technigues has led
most Al rescarchers to elaborate their representa-
tion level into a 'camplete' representation for
their theory. Thus it is that semantic networks
and frame systems can be thought of as correspond-
ing to either external or internal schemas in the
more structured DBEM terminology. Although the
analogy is imperfect, for purposes of camparison
we prefer to think of associative networks (in
Schubert's sense) as more closely aligned to
internal schemas, and the frame-based representa-
tion languages aligned to external schemas. The
major missing carponent for AIKR is the DBM data
model. AIKR, in fact, lacks a coherent data
model and obfuscates the data model concept by
amalgamating the notion under the guise of repre-
sentation systems, with a correspording loss of
data independence enjoyed by DBM systems. We
propose that AIKR capture the data model concept
by designing a logical data model, utilising the
associative network as an internal schema and a
knowledge representation language as the extarnal
schema to map user~interface constructions onto
the logical data model. Thus far, this functional
delineation has not been achieved in AIKR systema.

3. Fundamental Notions in Knowledge Representatim
3.1 Xnowlodge versus Data

Knowledge can be thought of simply as a range
of one's information or understanding. Artificial
intelligence uses an 'empirical' notion of know-
ledge: the information which may be accessed by
a program is its knowledge. A program’s know-
ledge usually takes the form of an internal
representation, organised in ways which are
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appeopriate  tor the program's various uses. Same
of the major approaches knowledge representation
thearistseamploy to design such programs include sam-
antic retworks (Quillian, 1968; Schank, 1972;
Anderson and Bower, 1973), logical statements
(Sandewall, 1971; Moore and Newell, 1973), and
procedures (Winograd, 1972; Hewitt, 1972).

Artificial intelligence programs have, however,
traditionally structured information in an ad-hoc
manner, in the sense of Lindsay (1973). This
structuring is partly the respansibility of the
interpretar (program) and partly the responsibility
of the experimenter (programmer).

Data, on the other hand, can be defined as
factual information used as the basis for reasan-
ing, discussion, or calculation. The concept of a
cata madel in DBM systems separates structure from
cdata; the data model concept is intuitively implied
in sane Al approaches, for example, productions
systems and same frame systems, but has lacked
the clarity of the concept as used for DBM.

3.2 Current Issues in AIKR

The designer of a knowledge representation
system must face fundamental representation issues
very early in his approach to design, and his
choices are critical., The designer must decide
what should be represented, that is, the content
of the representation, the form of the representa-
tion, and the level to which the representation
is reswricted. In aldition, since the representa-~
tion strongly influences the organisation of know-
ledge, the appropriate organisational strategies
and structures must be examined. On the basis of
these considerations, we have argued previously in
favour of a nan-primitive associative network
representation in which propositions are organised
in normal form determined by the concept hierarchy
(Schubert et al., 1979). We believe this repre-
sentation serves the role of an expressively
alaquate, semantically well-defined (Tarskian
sense) logical level representation. We view this
livel of representation as analogous to DBM's cone-
cept of internal schama and briefly defend that
view hare.

Woods (1975) believes that 'intensional' and
‘extensional® entities must be represented by
different sorts of nodes in an associative network.
[Extension and intension are terms used to distin-
quish that to which a designator refers or applies
and its meaning]. For example, Woods says that
in some contexts “the prettiest blonde" refers to
only "Sally Sunshine®, yet in other contexts "the
prettiest hlonde® depends an the notion conveyed
by the descriptive phrase. Woods believes that
these contexts are distinguished by different sorts
of nades (ar sub-networks). We believe that terms
(or noades) already encarpass both extensions and
intensions, and that a syntactic distinction is
not appropriate to distinquish extensional and
intensional infamation., It is aporopriate to
explain the conditions under which a term contri-
butes to the truth value of a sentence through its
intension rather than through its extension alone.
We propose that a distinction be made between pro-

positional content and pragmatic aspects. We
agree with Woods that internal meaning represen-
tations should reflect both propositional content
and pragmatic aspects, but the two sorts of infor-
mation should not be inextricably mixed, to
handicap the camprehension processes which must
utilise the acquired knowledge. Woods' special
syntactic representational device would also
encumber the matching process since the matching
processes seeking suitable referents of discourse
descriptions would depend on the original text.
In contrast, Schank (1975) has presented convinc~
ing reasons why an internal representation should
be in canonical form, relatively independent of
the original English sentence. Mingling propos-
itional and pragmatic information about utterances
would disperse pragmatic information about a
particular section of discourse over the propos-
itional data base. Information about speaker
intentions and assumptions would be buried with
knowledge about dogs, people, etc. We maintain
that a separate model for discourse status
(speaker intentions and the like) is necessary.
This model is the proper place for semantic
information.

We limit our discussion of the form of repre-
sentation to the issue of property inheritance.
Our entended samantic network notation is capable
of expressing any arbitrary proposition expres-
sible in English. But any system designed for
reasoning about the real world must also effece
tively exploit property inheritance within gener-
alisation hierarchies., Conceptual entities
typically consist of many camponents, the rela-
tionship between these components is valuable
information. We require a mechanism which allows
inheritance of the relationship fram components
to corresponding camponents within a conceptual
entity. For example, the attachment relationshirs
between the body parts of birds would require
non-trivial inference processes to transfer to
other similarly structured animals.

The method of 'variable-sharing' solves this
problam and allows for trivial transfer of rela=-
tionships. Knowledge associated with a generalis-
ation hierarchy'is stored as a set of implicative
propositions which share one universally quanti-
fied node and any number of existentially quanti-
fied nodes dependent on the universally quantifisl
mode. The antecedents of the implications involwe
the universally quantified node as argument and
carrespond to concepts which comprise the general-
isation hierarchy. Thus the implicants of a con-
cept are accessible by topic rather than by a
long list of propositions involved in the concept,
see Goebel (1977). This mechanism facilitates
addition of new information and we speculate that
it is possible to organise other than monadic
concepts, say relational concepts, hierarchically
as well,

To argue against the use of a small number of
very general primitive predicates for representirg
meaning in natural language utterances, we con-
trast the methods of Schank (1972) and Wilks
(1973) with the network-oriented state-based rep-
resentation, Schubert et al. (1979), Wilks is,
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perhaps, the most vocal advocate favouring the use
of a small mxber of primitive predicates to repre-
sent maaning. Indead his representation is based
almost entirely on approximately sixty primitive
predicates. In a recent position paper, Wilks
{1977), appears to soften that stance, yet remains
vagque, In particular, Wilks cites Hayes (1974, 1979
for presenting a number of sophisticated (radical
ard mon-radical) arguments against the use of sem—
antic primitivesas Schank and Wilks use them. Wills
writes:

"One aspect of these criticisms is not radical——
in the sense of questioning the very basis
of primitives —I*it it is a demand by Hayes
that primitive systems give a more explicit
account of the rules regulating inferences

a primitive for substance, like
STUFF. This demand faor greater explicitness
is a good one, though there is reason to doubt
that any echerent anrd consistent metaphysics
of substance can in fact be given. Two and
a half millenia of philosophy have failed to
provide one, yet throughout that time every-
day comnversations about substances, such as
ooal, oil, and air goes on unimpeded. It is
irportant to stress this fact, so as not to
fall into the error of imagining that langquage
about substances requires such a metaphysics
of substances in order to function at all,
It clearly does not.”

Wilks misinterprets Hayes' remarks when he
ascribes to Hayes the belief that a coherent and
consistent metaphysics for STUFF is necessary for
all ordinary language corprehension. At the other
extrane, anbalding the minimal content of terms
into a minimal conceptualisation does rot facilitate
Uw lunan interpretive process. The original term
itself suggests what content we could infer in add-
ition to the minimal content. This idea of infer-
ence can be efficiently programmed in a samantic
structure by inserting probable inferernces with
direct reference to the word definitions. This is
simpler than analysing the minimal representation
and then looking for applicable inference rules.

Wilks rejects Hayes' criticism that there is mo
madcl-theoretic semantics for primitive based
systums., Wilks feels that llayes’' donand for such a
model-theoretic semantics makes radical Hayes'
demand for a metaphycics of STUFF. Wilks emphati-
cally rejects the application of model-theoretic
semantics (in the manner of the semantics that
Tarski constructed for logic) to the analysis of
natural lanquage meaning. Wilks believes that pre-
ference semantics evolves inevitably into a 'natural
langquage’ itself. However, Wilks misconstrues
‘truth conditions’ as serving to determine the ACTUAL
truth of sentences in the object lanquage, and gives
the exarple of the inappropriateness of camputing
over a possible world, Nevertheless, possible
worlds are not intended to be camputational damains,
buc as part of an abstract conception of meaning
and truth. Truth is thus only relevant to truthe
determination. Model-theoretic semantics does, in
fact, provide a practical means for deciding truth~
Cetermination e.g., checking whether an inference
mechanism is truth-preserving.

Wi lks also chides Bobrow (1975) for arguing
that a primitive expansion or 'paraphrase’
requires a more canplex match than does the
original English word that the paraphrase is for.
He disputes the complexity of the matching,
however, sinepreference sanantics does not
operate in paraphrase mode; he uses Schank's
arquments about the paraphrase mode of Schank's
primitive-based system to reject Bobrow's
critique, Examining Schank's defence of primi-
tive-based systems, we fird the following list
of advantages: (1) paraphrase relations are
made clearer; (2) similarity relations are made
clearer; (3) inferences that are true of various
clagsses of verbs can be treated as caning fram
the individual (primitive) ACTs. The inferences
e fram ACTs and states rather than fram words;
and (4) organisation in memory is simplified
because much information need not be duplicated.
The primitive ACTs provide focal points under
which information is organised.

As Schubert et al. (1979} argue, the
increased clarity of paraphrase and similarity
relations derives fraom Schank's use of canonical
form rather than his basing his meaning represen-~
tation on primitives. Neither can the last two
advantages be traced to the use of scmantic prim-
itives. The sharing of inferences within classes
of verbs can be accanplished without restating
words in terms of primitive ACTs. See Cercone
(1975) for the detailed example which damwnstrates
that both 'eats' and 'drinks' as sejential forms
share in the implications that a single primitive
'ingests' would store but they are conservative
of storage space and camputation time. Also,
argument constraints for predicates may be shared
by related 'non-primitive' prodicates through a
oconstraint inheritance mechanism. Moroover,
while we see no disadvantages of non-primitive
based representations, point (4) shows a major
disadvantage in their elimination, namely the
resultant need for matching canplex primitive
representation instead of originally sinmple
propositions.

The meaning formulae of primitive-based
representations do single out those properties
most frequently needed for comprehension and
simple inferences. This is their romaining sal~
ient feature. The primitive~-based representatiors
do capture major properties of the defined cor~
cepts and we only add minor details to them. But
to rely on meaning caricatures as Schank ard
Wilks do ensures that camprehension will remain
of the crude sort. Non-primitive based repre-
sentations can be equipped with the advantages
of the Schank-Wilks approach, simply by providing
lists of the most frequently necded properties
for camprehension of each predicate and allowing
the significant properties of concepts to become
indeperdently accessible without irvoking the
full meaning répresentation defining the concept.
The camplexity of a concept does rot interfere
with its matchability since it is retrieved by
its name, Considerations of storage econamy and
the computational camplexity of pattern-directed
retrieval convice us of the limited value of
primitive-based representations.
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taving suid all ot the above, neverthelesa, we
regard the important issue centering on primitives
is one of 'krowledge structuring primitives' and
not. an issue of defining semantic primitives. This
issue is properly treated at the epistamological
level of representation. We can only speculate at
this time which knowledge structuring primitives
should prevail and which should not.

3.3 Separating Representational and
Canputational Issues

Within any theory of knowledge representation
systems {KRS], representational issues must be
separated from computational issues. Samne research-
ers, such as Feigenbaum (1977), treat this distinc-
tion between the theoretical and computational
issues in KRS in a perfunctary manner. The terms
‘knowledge engineering' and 'programs as theory'
reflect this eclectic manner of thinking. However,
McCarthy and Hayes (1969), Hayes (1974), and
MeDermott (1978) recognised the distinction and
their KRS work benefited with well-defined, logical-
ly elegant representational constructs., We choose
to evaluate knowledge representation systems in
terms of both thearetical and camputational merits,
swnoe amputational performance may not reflect
representational adequacy and vice-versa.

Representational issues can be investigated as
they are exposed when specifying a representation
language. Substituting the more neutral term
‘scheme’ for 'language', Hayes (1974) describes a
representation scheme as a set of admissible con-
figurations which derote domain objects and rela-
tionships between them., The interpretation assigned
to a confiquration depends on the scheme's seman-
tics: the way objects in a domain correspord with
representational objects, and the way configurations
representing domain relationships are assigned mean-
injy within the schone. The former issue concerns
the scheme's ontology, and determines the level of
detail at which non~decarposable representation
oblects will serve as surrogates to ‘real-world’
concepts whose actual relationships are to be cap-
tured in configurations involving these surrogates.
The choice of an ontology profoundly impacts the
representational ! ' of a scheme. 'Block’,
‘pyramid’, ‘box', and relatrions like ‘above',
‘inside', and ‘on’ may capture the essence of a -
blocks microworld, yet the more general notions of
'set' and ‘element’ might be demanded by another
damain. Success in interpreting configurations
resulting from a damain to scheme mapping deperds,
to a degree, on the precision with which an ontology
has been specified, Arguments for and against the
use of a fixed ontology (Schank, 1974; Wilks, 1977;
scubert et al., 1979) centre on the flexibility of
a representation (cf. Hayes, 1574) and the degree
of detail to which interpretation is necessary for
the proper treatment of a problem damain.

The second major component of a scheme's seman-
tics facilitates interpretation of configurations
involving the deroting abjects, and specifies how
configurations are related. This specification
forms the basis for inference within a scheme, i.e.,
the specification of a scheme logic which can det-
emine the inplications of existing configurations.
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The soundess and campleteness of a schene's
reasoning capabilities can be analysed only to
the extent of this component's precision.

Representational and camputational issues
are frequently confounded when semantics are
specified ‘on-line' while programming. When the
specification of a scheme and its associated
semantics is viewed as the 'implementation’' of a
programming language, difficulties of interpre-
tation are bound to arise (e.g., Bobrow and
Winograd, 1977). At least some semantic theory
must be prespecified and adopted as the basis
for a representation schame. The resulting
'system' should assign meanings via the chosen
semantics,

Oomputational issues are addressed when a
representation scheme is implemented. Experi-
ments with implementation often suggest modifi-
cations to a schene's semantics., For example,
the local contexts of Conniver (McDemmott and
Sussman, 1974) arise fram inadequacies of the
single global context of Microplanner (Sussman,
Winograd, and Charniak, 1970).

A knowledge representation system evolves
fran a knowledge representation scheme when an
implementation provides the user with the
facilities for managing configurations in a
mannexr consistent with the prespecified scheme. -
This implementation requires the design of data
structures and efficient canpanion algorithms
which capture the specifications of the scheme.
The implementation also requires the development
of a human user-interface which offers the nec-
essary capabilities without excessive, elaborate
detail. The design of a representation scheme
must be responsive not only to issues of repre-
sentation and ocamputation exposed upon implemen-
tation, but also to canputational issues exposed
along the man-mnachine interface, It is unlikely
that a single canprehensive 'representation
language' can successfully address all of the
issues of knowledge representation systems.

4. Adopting the DBM Paradigm for Artificial
Intelligence

4.1 DBM and AIKR; evolution ard objectives

Initially DBM developed in response to the
necds of large public and private organisations
to organise data. The requirements of these
organisations contimue to dictate DBM development,
and the objectives of DBM are now clearly defined
(Fry and Sibley, 1976): (1) to make an integra-
ted collection of data available to a wide
variety of users; (2) to provide for quality and
integrity of the data; (3) to ensure retention of
privacy through security measures within the
system; and (4) to allow centralised control of
the data base, which is necessary for efficient
data administration.

The general objectives of DEM have remained
more or less unchanged; research has refined
methods for achieving those objectives. In con-
trast, objectives for AIKR are evolving along



with the definition of AI but is instructive to
fanmilate AIKR abjectives in terms of DBM objec-
tives,

Considering the first DBM cbjective, the AIKR
system should provide for an intelligent program
what a DBM system provides for organisational
users. An AIKR system should allow manipulation,
interrogation, and analysis of a repository of
information which the program can consider as its
‘knowledge®, Making the integrated data available
boagins when the Al program is defined. The AI
program may be viewed as a collection of users or
as a multi-faceted individual., Some Al researchers
are explicit in the former, extremely modular

position, e.g., Hewitt et al, (1973); Hewitt (1977).

The second DBM objective, providing for quality
and integrity of the data, can be adopted directly,
although in ATKR the issues pertaining to this
cbjective are different fram their manifestations
in DBM. In DBM terms, the data base administrator
is responsible for maintaining data quality. The
human being is the conscience of the infarmation
system. The data base administrator is not
explicitly incarnated in the AI paradigm, though
it might be icentified with that camponent of a
system responsible far the maintenance of (say)
credibility values.

Credibility or certainty factors enable a sys-
tem to interpret the cquality of its own data. In
general, the autamatic assigning of credibility
values to input data also reguires the maintenance
of intermal belief structures or user views which
the system can interpret. A system which maintains
sare beliefs about the external world can use those
beliefs to help determine the credibility of new
data, MYCIN (Shortliffe, 1976} and INTERNIST
(Pople, 1977) may be interpreted as attamnpts to
automate the data quality function of a data base
aduinistrator,

r8M and AIKR have been attentive to data integ-
rity; both argue that data integrity should be
maintained automatically, DBM researchers consider
a range of intogrities fram physical to logical,

whereas AIKR has concentrated only an logical integ-

rity. As a result of this different emphasis, DOM
is more advanced in its implementation, while AIKR
shows a more sophisticated treatment of data seman-
tics. Although this gives the advantage to DBM
research at the implementation level, AIKR remains
rore sophisticated in their treatment of data sem-
antics.

The third objective, that of security and pri-
vacy, derives fram the fear of misuse ard destruc-
tion of vital data, a fear which is not yet an
isaue in AIKR. However, the security and privacy
issue includes data security in an ATKR envirorment
of a collection of autonamous ACTOR-like modules
whose access can be both recursive and heterogenous
{see Hewitt, 1977).

The final DBM cbjective, "to allow centralised
ocntrol of the data base, which is necessary for
cfficient administration®, is a plausible AIKR
objuctive, with sane re-interpretation, Control of

the duta base is centralisad in the data basae
administrator. If the AIKR interpretation which
views the data base adminigtrator as an automatic
coamponent of the AI program is acoepted, then the
spirit of the dbjective is synonamous for both
ATKR and DBM.

Whether a user views an information systew
as an anthropamorphic artificial intelligence, or
a oollection of DBM tools administrated by
another human seems largely a matter of tasta,
However, the extent to which the data base admin~
istrative function is performed autcmatically
does provide a criterion for distinguishing AIKR
and DBM,

4.2 The DBM Methodology

A data base management system includes a data
model ard a data sublanguage (DSL]. The use of
data sublanguages, by which a user cammnicates
with a data base affords the DBM system indepen-
dence of logical and physical representations.
The notions of data model and data sublanguages
are discussed with respect to the internal and
external schemas cammonly employed in traditional
data base systems,

A data model is a strategy according to which
data is organised in a data base. All data within
a data base can be interpreted in the sane manner,
in accordance with the data model. The meaning
of a collection of data is determined by the
inter-relationships between the data as defined
by the data model. The subtlety of data inter-
relationships which a data model can capture
deperds primarily on the bagic data structure or
ontology used in the data model, e.g., popular
data models include those bascd on relations,
hierarchies, and networks. A superior data model
can capture all of the meaningful relationships
within the data. For the effort expended to
transform the data into a form specified by the
data model, a user is rewarded with domain inde-
pendent techniques for manipulating his data base,
These facilities depend largely on the languages
provided for the use of a data model.

Data sublanguages including data definition
langquages {DDL] and data manipulation languages
[IML] facilitate communication with a data base.
A DDL is used to describe the relationships
within same data in terms consistent with the
structural oconstraints imposed by the data model,
A user must describe the relations within his
data in temns of the concepts provided by the DOL,
which derive fram the data modeol. The use of a
consistent DDL permits maintenance and manipula-
tion of the data base by danain indeperdent soft-
ware and hardware. A DML uses the definitions
provided in the DDL to enable the user to update,
insert, and retrieve data rendered in terms of
the data model.

Same DSL's, such as those which consist of
DBM primitive operations embedded in a general
purpose programming language, kecp the user in
close contact with the manipulation of his data,
These DSL's manipulate data in terms of tho low-
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est level data relationships or structures, i.e.,
the basic camponaents of the data model., Other DSL's
provide a complete complement of computational func-
tions independent of any other system. These more
sophisticatad systems far manipulating data do so
in terms of the data descriptions. For example,
data input and verification may be entirely the
user's responsiblity or data can be autcmatically
collectod and verified with the user supplied data
definitions. The level of sophistication required
in a OSL is a function of the data model, the user,
and the user's data. ISL's will continue to develcp
in response to naw combinations of those factors.
The notion of extermal schema (or schemata) is
closely related to the motion of DOL.

The interface between the user's view of his
data and the DBM system's view of his data is

definad by the data model is an important interface,

The external schema is the set of DDL descriptions
which camprise a user's view of his data. The
external schana enables the user to conceptualise
his data in termms of the data model. The user first
conceives his data inter-relationships in his exter-
nal schama, imposing the data model on his data by
means of user written DDL expressions. External
schamas may be unique to a given user's data base,
or several external schomas describing all or por-
tions of a single data base might provide multiple
user viewpoints,

The intermal schema is the DEM system component
which manages data at the level of physical devices.
The intermal schoma imposes the data model on the
internal represcentation of the data. A user con-
ceptualises his data in an external schema, which is
farmmalised in a data model, and the data model is
irplenented via the internal schana of the DBM

system, At the internal schema level, user's expres-

siong in a data manipulation language are finally
interpreted. At this level, the abstract data model
13 optumisad for storage, retrieval, and modifica-
tion of user data. The fidelity with which the
intemal schama imposes the data model onto the
physical devices which will perform storage, retrie-
val, and modification of the data is the most
ryortant factor in the overall performance of the
DM system. The internal schema implements the
data model in a canputationally efficient manner,
and insulates the user from all physical data
maragoment considerations. A DBM systom which
provides users this insulation provides ‘data
wulependence', the greatest achievement of good
data management.

4.3 Applying DBM to Artificial Intelligence

Having introduced DBM systems, we speculate on
the applicability of DBM rotions to Al representa-
tion systems, CQurrently DBM has better defined and
mare camprebensive ldeas of data management than AI,
esmeclally at the level of physical representation
and manipulation of data on actual devices and DBM
systams architecture provides a structured frame-
work in which to view Al representation schemes.

Comprehensive knowledge representation languages
[KRL] (e.g., FRL, Roberts and Goldstein, 1977; KRL,
Bahrow and Winograd, 1977; NETL, Fahlman, 1979;

KL-QUE, Braciman, 1978) are Al's attempts to
develop an AT data base management system, Know-
ledge representation languages act as the data
sublanquages of DBM systems. DSL's facilitate
ocowmnication with a data base and KRL's perfom
a similar function far AI data bases. KRL's are
more ambitious in design because they attempt to
accamplish all of the functions of DBM with a
single programning system,

A camprehensive symbol manipulation includes
the data definition language and data manipula-
tion lanquage of DBM systems. It is a disadvan-
tage that aspects of data representation and
manipulation which are clearly separable in DBM
become confused in the monolithic XRL approach.
The concept of a data model becames less clear,
especially when data representations overlap with
procedures for their manipulation, KRL-0's
(Bobhrow and Winograd, 1977) procedural attachment
demonstrates this dissolution of data management
and encourages an implementational treatment of
data model specification, KRL designers generally
specify data models, but rather imprecisely, so
that the data model is susceptible to adjustment
of its semantics upon camputer implementation.
Once the data model becanes diffused, it is dif-
ficult to distinguish the data base of represent~
ing expressions fram the rest of the system., If
the representing expressions are identified, it
is still difficult to interpret them consistently
and uniformly since the semantics of the data
model are rendered only procedurally, by imple-
mentation.

Frames, scripts, and schemata organise the
krowledge which they represent according to the
function of that knowledge. The following
example illustrates the functional organisation
for frames.

Knowledge associatively accessed via frame
slots can be procedurally embedded; execu-
tion of these procedures provides a campu-~
tational camprehension for concept and

context. In the sentences (see Schubert
et al., 1979)

John unlocked his car. (1)

He used his key. (2)

John graded the exam. (3)

He used his key. (4)

the meaning of 'key' changes from sentence .
{2) to sentence (4), comprehension of its '
different meanings depends upon the ‘unlock-
ingcars' frame and the 'gradirgexams' frame.
The frames might contain slots for carkeys

and examinatiorkeys, or slots for other

frames to explain car and examination keys.
The frames might also contain information
about the kind and use of keys in general.

The description of 'his key' quides clever
access mechanisms to select the appropriate
slot.,

This functional organisation of frames,
scripts, and schemata makes them the AI counter-
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part to the DBM data model. They serve as an epis-
teological level representation (cf. Brachman,
1979) between the Al ‘external schema' (conceptual
level representation) and the AI ‘internal schema!
(logical level and implementation level representa-
tion). Thus, functionally organised representatims
can be evaluated as data models. The use of frames
(scripts, schemata) as a data model should free the
knowledge representation systam from external and
intermal schema considerations until the semantics
of the proposed model are investigated. Unfortun-
ately, the sanantics of these models has not been
campletely irvestigated, As a result, schema con-
siderations have been ignored, or considered pre-
maturely. The semantics of functionally organised
representations are frequently treated as a compu-
tational rather than a representational issue, To
be effective 'procedural semantics* (e.g., Winograd,
1976) must distinguish between implementing a well-
specified notion ard specifying a notion by imple-
menting it. For example, various frame based sys-
tems treat the selaction of replacement frames dif-
ferently, as a computational problem to be solved
by clever irplementation, rather than as a represen-
tational issue to be solved with well-specified
sanantics whid delineate various selection classes,

Associative networks (including semantic net-
works, see Findler, 1979) are organised according
to the concepts which they represent. This concept-
centred organisation is the definitive characteris-
tic of associative networks.

Associative networks correspond closely to the
DBM internal schema becanse networks provide an
accessing structure for the cancepts which they
regresent. Associative networks have also been usal
as the basic data model for Al knowledge representa-
tion systems, usually as alternatives to frames,
scripts, and scharata., The functional organisation
ocxrron to frames, scripts, and schemata make them
the Al counterpart to the DBM model. However, sinca
netwarks provide an accessing structure for the con-
Cepts they represent, assocjative networks ocorres-
pornd more closely to the DBM internal schama than
frames, scripts, and cchanata., The network organi-
sation operates as an imdex for the concepts, their
properties and descriptions, this organisation is
closely related to the DBM internal schama notion.
All of the knowledge about a particular concept is
accessible from that concept. In a similar manner,
the intermal schema instantiates the data model as
the actual representation of data in a data base.

In conventional DaM, the data model defined all
items of data as interrelated, so the internal
schama was the actual relationship between items of
data, which made them accessible fram any single
data item.

Even' in non-network representations, such as KRL
(Bobrow and Winograd, 1977) and PLANNER (Hewitt,
1972) network organisations are used in implementa-
tion. The concept or 'object' centred arganisation
is a natural choice for an internal indexing struc-
ture. This is due, in part, to the earlier psycho~
logical notions about the organisation of memory
(see Anderson and Bower, 1973; Wilson, 1979). 1In
the process of implementation, when the equivalent
of an intermal schema must be defined, network organ-
isations are used, This not only strengthens the par-

allel Letween associative networks and logical

organisationa hut glio indicates that network org-
anisations are useful ones.
Network proponents who draw parallels between

conceptual organisations and external schemas
imply that the conceptual organisation parallels
the user's conception of his data expressed in
terms of the data model. To allow conceptual
organisations to be identified with an external
schema, these researchers sacrifice the indep~
endence between internal and external schemas.
This violates a fundamental DBM tenent of
extemal and internal schamas. External and
internal schemas were originally distinguished
by DBM in order to achieve data indeperndence, It
would be contrary to a major objective of DBM,
that is data dndependence, to permit amalgamation
of the internal and external schemas.

A production system includes a set of rules
{productions), a global data base, and an inter-
preter for cvaluating rules in terms of the data
base (Davis and King, 1977). The production
system data base typically stores state informa-
tion about a damain, and productjon rules specify
how state changes in the data base can be effect-
ed. The interpreter acts as a kind of pattern
matcher, selecting rules according to sume a
priori rule ordering, then applying them to the
data base to possibly affect subsequent rule
applications (cf. Microplanner, Sussman et al,,
1971). Production systems differ from frames,
scripts, schemata, and networks in that they
include methods for changing the information
stored, The multiple component nature of pro-
duction systems precludes a direct correspondence
with any single part of the DIM paradigm. Their
data base component gives production systems the
appearance of a (naive) DBM schane which, with a
suitable interface, would provide a canprehen-
sive information managament tool.

However, productions systems data bases lack
a unique data model (Davis and King, 1977). The
structure of each data base and its production
rules is detemmined by the application (e.g.,
DENDRAL, Faigenbaum et al., 1971). For examnple,
rule patterns and data base expressions of
DENDRAL are graphs representing chemical struc-
tures. The data model is motivated by the prob-
lem domain, where the structure of molecular
camponents is to be determined fram mass specto-
gram data. Alternatively, MYCIN (Shortliffe,
1976) uses a data model based on diagnostic rules
which, when applied to expressions representing
medical laboratory test results, produces a
nuneric measure of credibility for a particular
diagnosis. Each rule is assigned an a priori
credibility which contributes to the credibility
of a suggested diagnosis. Both systems rival
human performance in many cases. With or without
data models, production systems manage data bases
in a more structured manner than do most Al
systems, and provide a framework in which to
explore issues of representation.

4.4 A Data Model for Artificial Intelligence

Data models are specified in response to user
expectations of his data damain, Oonventional
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DM duta soakels were hnated to a sinple extension-
al treatment of the damain partly because such a
treatment seemad sufficient for the data concerned,
andd partly because data models which would capture
intensional knowledge would delay implementation

of the data base (Wang and Mylopolous, 1977). Arti
ficial intelligence danains are expected to acoom-
mocate more complex ‘hunan-like' use of data, there-
fore Al developed more sophisticated representation
schemes o represent intensional knowledge. Repre-
rentation ideas which are immature with respect to
what Al rescarcher require of damains greatly exterd
the domain with respect to the expectations of a
conventional data base, DBM researchers are beocan—
ing responsive to the advantages accruing fram more
sorhisticated data models (Codd, 1979).

If AT specified a data model, it would separate
internal and external schemas, and foster investiga-
tions of data independence, Fidelity to an AI data
rodel would eliminate ad-hoc representations. Like
their DBM counterparts, representation theorists
would be forced to separate representational and
iwplementational issues. Without this separation
the notions of intermal and extermal schemas and
data independence would lose their meaning.

Currently more important, AI representation
schunes aould be comparatively evaluated with res-
pect to one another if each ane declared its data
model, There exists a surfeit of representational
schares, each raising a host of questions and
tssues. A unified data model would identify truly
general representational issues rather than becom-
ing restricted to the problems of ane particular
representatiaon.

A precisely specified data model must define
exactly how each data base expression corresponds
with the problem damain. Since logical semantics
are precise, we suggest logic as a data model. The
logic will bring scmantic consistency to the data
raodel, Arbitrarily camplex logical sentences have
repeatedly been interpreted using logical semantics
and the interpretations have been evaluated. The
interpretations have been precise enough to fore-
stall criticism of the logic contained in them
(Mingky, 1975). Qurent approaches to autcmatic
programming, data base management, and problem
solving indicate that the logical perspective has
ajain becane fashionable (van BEmden,. 1977; Gallaire
and Minker, 1978; McDermott and Doyle, 1978). Those
as yet unconvinced that the logical point of view
has gained ascendency should consult Hayes (1977).

Logical data models have been used by research-
ers who have not yet explicitly defined a data
model. Schubert (1975) relied on a logical data
molel to give precise interpretations to sanantic
notwarks.  Schubert's work danonstrates how expres-
sions fram a logical data model can be extended to
a structure which provides an access scheme for
represented knowledge., The logical data model
dronstrates how the associative network functions
as an internal schoma. The logical data model has
elucidated interpretations for representations with
rmore vague data mocdels, such as frames. Hayes
(1977b) discusses 'the logic of frames' and offers
logical interpretations for the structure of frames.
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In hiu logical analysie he finds that frames
have tlie potential for reflexive reasoning (i.e.,
a frame knowing samething about itself). The
logical data model provided the tools necessary
for such an evaluation.

Using a logical data model, Hayes demons-
trates how the syntax of representation languages
can cbscure the underlying data model. Syntaxes
which are designed to provide amenable user-
level languages frequently disquise the under-
lying data model. This is another instance of
confusion between the human-engineered interface
and the data model, which the precise specifica~
tion of the data model can resolve.

As is the case with traditional DBM data
models, the requirements anticipated by poten—
tial users dictate the form of a logic-based
data model. . An AT data model should provide a
sophisticated treatment of representation. How-
ever, since programming invariably uncovers
unforeseen difficulties, pressure for experimen-
tal implementations affect the specification of
refinements in successive data models.

A logic-based data model will consist of a
logical language whose semantics offer a precise
interpretation for each language expression. A
standard syntax will suffice since any difficulty
with the syntax of data model expressions should
be alleviated by a suitable user DSL, as with the
relational DBM model, The experience of the
KRL~0 design group would attest to this point.

We expect the logic used as the basis for a
data model to include proof theory which can be
used to manipulate expressions of the data model.
The capabilities of the proof theory will depend
on the logical system adopted and how expressions
of the corresponding data model are interpreted
with respect to a damain (Nicolas amd Gallaire,
1977).

The use of logic to describe the data consid-
ered by traditional DBM data models illuminates
the develomment of a logic-based AI data model.
An edited volume (Gallaire and Minker, 1977)
treats this subject exclusively. One current
approach (Kowalski, 1977) rerders the extensional
relations of a relational model as base relatiors
in a first-order logic. Kowalski discusses how
general statements (i.e., quantified formilae)
can be interpreted procedurally to maintain
integrity or derive implications in the exten-
sional data base. Two levels of representation
can be identified: the base relations which
express a collection of extensional facts, and
a collection of general expressions which express
knowledge about the base relations. We concur
with Kowalski that a more sophisticated approach
would consider the general expressions as data
given in the data model.

Recent representation investigations
(Brachman, 1979; Schubert et al., 1979; Davis,
1976) suggest the use of several levels of know-
ledge representation. Each level would express
information about the lower level with the base



level correspanding to an actual danain interpreted Bracinan, R. (1978). "Theoretical Studies in

via a traditional logical semantics (e.g., Tarskian). Natural Language Understandimg", Report No.
Nenetheless, it would seem that a more elaborate 3888, BBN Inc., Cambridge, Mass.
data model is necessary, for example, a model in Cercone, N. (1975). "Representing Natural Lang-
wvhich sentences in a meta-language express knowledge uage in Extended Semantic Networks®, PhD The-
about how to manipulate the sentences in a corres- sis, Tech. Report TR75-11, Dept. of Computing
pording object language. The GOLUX project describ- Science, Univ. of Alberta, Edmonton, Alberta.
ed briefly by Hayes (1974) is concerned with the Chamberlin, D. (1976). "Relational Data Base
specification of such a langquage. Meta-level infar- Management Systams", ACM Canputing Surveys 8,
mation, when interpreted, provides control informa- 43-66.
tion for the use of cbject-level infommation. Codd, E. (1979). "Extending the Data Base Rela~
Whether the implied regress can be closed within a tional Model”, Supplement to Proceedings of
single canprehensive formal system remains an open ACM SIEGXD 1979, 29-52,
question., Davis, R. (1976). "Applications of Meta-level
Knowledge to the Construction, Maintenance and
Reiter's (1979) default logic provides a power- Use of Large Knowledge Bases™, Stanford AT lab
ful system for viewing a data base of first-order Mcmo AIM-283, Stanford, Cal.
and default expressions as a consistent set of Davis, R,, Buchanan, B., and Shortliffe, E.
beliefs about a domain. A default is a statement (1975). "Production Rules as a Representation
which suggests new infammation, which is assumned for a Knowledge Based Consultation Systems®,
true, will not be inconsistent with the existing Artificial Intelligence 8, 15-45,
data base. The logic is non-monotonic, i.e., new Davis, R. & King, J. (1977). "An Overview of Pro-
axioms can invalidate old theorems. The non-mono- duction Systems"”, MACHINE INTEILIGINCE 8, (eds)
tonic logic of McDermott and Doyle (1978) is another Elcock, E. & Michie, D., Ellis Horwood Ltd,,
candidate for consideration. Since the formal 300-332.
interpretaion of meta-level expressions requires a Doyle, J. (1978). "Truth Maintenance Systems for
higher level logic, the second order theory of Problem Solving”, AI Lab Mano TR-419, MIT,
Gilmore (1971) can also be investigated as a pos-— Cambridge, Mass.
sible data model, Fahlman, S. (1979). NETL: A Systom for Represent-
: ing and Using Real World Knowledye, MIT Press,
5. Final Remarks Cambridge, Mass. i
Feigenbaum, E. (1977)., "The Art of Artificial
We canclide by urging the adoption of the DM Intelligence: Themes and Case Studies of Know-
paradign by Al researchers and the develomment of ledge Engineering”, Proceeding of I1JCALS,
a strong data model of Al. The success demonstra- Cambridge, Mass., 1014-1029.
ted by AT in the retrieval of information implicit Feigenbaum, E., Buchanan, B. & Lederberg, J.
in the data (krnowledge) base and manifested by the (1971). "On Generality and Problem Solving: A
various pattern-directed (procedure-invoked) match- Case Study using the DENDRAL Program”, MACHINE
ing algorithms should contribute significantly to INTELLIGENCE 6, (eds) Meltzer, B. & Michie, D.,
the development of camantics for the data model. American Elseviep, New York, 165-189,
Nevertheless, the concept of a data model must first Findler, N. (1979). ASSOCIATIVE NETWORKS: Repre-
be incorporated by Al into their systems. The adop- sentation and Use of Knowledge by Conputers,
tion of the DM data model should prove to be an Academic Press, New York.
invaluable vehicle for improving the performance of Fry, J. & Sibley, E, (1976). "Evolution of Data-
Al systems which operate with a large knowledge base, Base Managament Systems", ACM Canmputing Surveys
8, 7-42. .
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ABSTRACT

The principal characteristic of the RESEDA
system is being able to question a bilographical
database about the causal relationships which may
be inferred between different attested facts in the
base. This paper deals with the two classes of
inference procedures existing in the system,
“hypotheses™ and “transformations"™, and their
cozmplementary practical aims. It will show that,
frao a very general point of view, the differences
between the two classes only concern the instru-
mental level : in theory, a same common sense
rule can be interpreted, and executed, equally
well as a “hypothesis®” or as a “transformation”,

INTRODUCTION

RESEDA " 15 asystem for managing a bilographical
database using Artificial Intelligence (AI) tech-
niques. The term "biographical data" must be
understood in its widest possible meaning : being
in fact any event, in the public or private lifo,
physical or intellectual, etc., that it is possible
to gather about the personages we are interested in
In the present state of the system, this inform-
ation concerns a well-defined period in time
(approximately between 1350 and 1450) and a particu-
lar subject area (French history), but the tech-
niques used in RESEDA could just as well be applied
to biographical information concerning other areas
(ned1cine, law, etc.).

RESEDA differs from “classical™ factual data-
base management systems in two ways :

a) The information is recorded in the base using a
particular Data Definition Language (metalan-
guage) which uses knowledge representation tech-
niques.

e e

¢ The RESEDA project is financed by grants from the
"Dntlégation Générale & la Recherche Scientifique et
Technique” (RESEDA/0, CNRS-DGRST Contract n® 75.7.
0350), from the “Institut de Recherche Ad'Informa-
tique et d'Automatique®™ (RESEDA/1, CNRS-IRIA
Contract n* 78.206), and from the "Centre National
de la Recherche Scientifique”™ within the framework
of the "Action Thématiaue Programmée Intelligence
Artificielle®.
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b) A user interrogating the base obtains not
only information which was directly intro-
duced into it but also implicit information
found using Inference moechanlsms particular
to the system -~ see, in the same veln,
Carbonell (1978), Kolodner (1980 ; 1981),
McGregor and Malone (1981), etc.

In this article, I shall deal mainly with
the aspects of the system concerning the "infer-~
ence procedures". More specifically, after
having explained the differing practical
aims of the two ways of using the inferences,
“hypothesis” mode and "transformation" mode, I
shall try to show that, from a very general
polint of view, that difference only concerns
the instrumental level : in theory, the same
comnon gense rule can be interpreted, and execu-
ted, equally well as a "hypothesis" or as a
"transfoxmation". I shall conclude by noting
that, in practice, the kind of scarchas that
RESEDA favours actually impede systematic
switching botween one intorpratation mode and the
other. Knowledge of their "deep” i1dentity does
however enable a more coherent systematization,
on a conceptual level as on the level of prac~
tical efficiency, of RESEDA's inference mechan-
isms.

THE RESEDA SYSTEM AND ITS INFERENCE RULES

I shall first of all state some fundamental
facts about RESEDA,

The biographical information which consti-
tutes the system's databawe is organized in the
form of units called "coded episodes” or “planes”
There are scvoral different types of plane ; the
"predicative plane”, the most important, corre-
sponds to a "flash"” which {llustrates a particu-
lar moment in the "life story" of one or more
persong. A predicative plane is made up of one
of five possible “"predicates" (BE-AFFECTED-BY,
BEHAVE, BE-PRESENT, MOVE, PRODUCE), to which
one or more "modulators" may be attached. The
modulator's function ie to specify and delimit
the semantic role of the predicata. Of course,
the “"meaning" of the modulator plus predicate is
“defined” - as for all elements of the RESEDA
Data Definition Language -~ by the general
behaviour of the system rather than by the usual
function of these codmss in natural language.
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‘Tha predicate of the plane is accompanied by "case
slots® (Rosner and Somers 1980 ; Charniak 1981)
wvhich introduce the predicate arguments.

Dating and mpace location information is also
given within a predicative plane, as is the biblio~
graphic authority for the statement. Predicative
planes may ba linked either through the label of
one plana being the value of an argument alot (the
slot OBJ) in another, or through explicit links
“and®, “or®, "cause®, “finality”, etc.

: The extremaly simple example given in figure 1
should provide a clearer idea of what I have just
explained. It is the representation of “Montreuil
was opposed, between 1413 and 1416, to the Burgun-
dian party on the subject of the Hundrer Years War";
the bibliographical authority is the historian
Valois. The codes given in capital letters indicate

1) against+BEHAVE SUBJ Montreull : Paris
[o]:8] burgundians
ARG hundred-year s—-war
datel : 1413
date2 1 1416
bibl : Valois, 1V
fiqure 1

the predicate and the cases associated with it ;
"against” is a modulator. For each predicative
plane there is a pair of temporal markers, “"datel-
datel®, which qive the duration of the episode.
“Montreull™ i{s one of the historical personages
whose "1ife story” is recorded in the database ;
“burgundlans® and "hundred~ycarus-war”™ are entries
in RESEDA's lexicon, which provides the historical
background of the system. "Paris” is obviously the
“subject location®. If the historical documents
give us some explanation for the Montreuil's
attitude recorded in plane !, then the correspond-
ing planes would be introduced into the database
and the plane 1 would be associated with them by
an explicit link of the “cause® type.

When the system is considered from the point
of view of {ts utiliration, the fundamental concept
which must be introduced is that of the "search
mxdel®., A "scarch model®™ gives the essential el-
vments, expressed in terms of the RESEDA metalan-
gquage, of a coded episode which it is necessary to
search for in the databasae. A search model may orig-
inate from outside the system, if fit is the direct
translation of a query posed by a user. On the
aother hand, it may be automatically generated by the
systuem, as will be clarified later on, during the
execution of an inference procedure.

Let us suppose, for example, that a user is
interrogating the system about the relationships
buotween Montreuil and the Burgundian party concern-
ing the Hundred Years wWar. In this case,the user
hinself creates the search model given in figure 2,
with the aid of a prompting program. The only
notable difference between this formalism and the
formalism required for the representatlon of the

184

episudes in the database i{s that of the presence
of a "search interval™, "boundl~bound2", which

BEHAVE SUBJ Montreuil

OBJ burqundians

ARG hundred-year s-warx
bound! : 1400

bound2 3 1420
figure 2

the user will employ to limit the period he
considers appropriate to explore according to the
information for which he 1is searching,

I do not intend, here, to go into the
details of the procedure adopted to test the
match of a search model with data in the base ;
fnstead, for details of this, see Zarri et al.
(1979 ; 1980). It is, for example, obvious that
the model in figure 2 may be directly matched
with the plane in figure 1 ; this of course is
the exception rather than the rule.

In the case of a dead end, a first class of
inference rules may be applied to the model,
that is the "transformations"™, To keep to an
extremely simple example, the search model :
"{for+BEHAVE SUBJ x OBJ y) = to be favourable
towards ", could be substituted by the model :
"(against+BEHAVE SUBJ x OBJ y)",given that
information regarding the unfavourable attitude
of person x toward person y is at the same time
a response to any query about the possibility of
a favourable attitude. Note the existence of an
underlying common sense rule even in such a
simple transformation.

“a

A second example of a transformation is
that given in figure 3. The underlying common
sense rule is : "if a person x has a university
degree w, then this person has followed some
course v" (one or several persons Yy have
“produced” the course v with the intention of
x)}. In figure 3, I have only partially detailed
the "restrictiqns" assoclated withe the "vari-
ables® x, y, v and w; the use of variables
allows maximum generality in the formulation of

PRODUCE SUBJ y ::)
0oBJ v
DEST x

BE-AFFECTED-BY SUBJ x
OBJ w

<personage>
<personage>|<personages>
Y

<university-course>
<degree-obtained>

f(v)

4 0N R

T ¥ < xwXx

figure 3

the common sense law underlying the transform-
ation. The values which replace the variables in
the retrieved plane (or planes) using the trans-
formed model must obviously respect these
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restrictions ; for exazple, the particular type of
“"degree® which will have been substituted for w
must be compatible with the value of v in the orig~
inal model, which I have indicated for simplicity
as w = f(v).

Unlike the transformation “for/against® given
earlier, the transformation in figure 3 is “one way",
that is, it is possible to transform the model froam
left to right, but not the inverse.

Very often the passage of one model to another
is subject to certain conditions ; it is only poss-
ible to substitute one model for the other if a
particular condition has been satisfied. This is
verified by checking the existence of episodes
within the base which are able to guarantee the
appropriate context ; examples of conditional trans-
formations will be examined in the next section,

Note that the use of concepts comparable with
our “semantic transformations™ is gquite common
when using AI techniques to exploit a factual data-
base, see for example “elaborations® in Kolodner
{1980), "extensions™ in Hafner (1981), "expansions®
in McCarty and Sridharan (1980), etc.

Even taking into consideration this first
category of inference rules, the behaviour of the
system such as it has been described up to now is
entirely classic in type. There is, however, a
second, more original way of searching RESEDA ; f{t
1s possible to search for the implicit “causes®, in
the widest sens of the word, of an attested fact in
the base. For example, {f the user, in submitting
the query in figure 2, obtained in reply the plane
in figure 1! and if we assume that the "causes” of
this negative attitude of Montreuil towards the
Burgundians are not explicitly recorded in the
database, he will now be able to ask the system to
automatically produce a plausible explanation of
this atcitude by using a second category of infer-
ence rules, the "hypotheses”.

In order to give a first idea, on an intuitive
level, of the functioning of the hypotheses, figure
4 shows the formulation in natural language of four
characteristic hypotheses of the RESEDA system.

The first part of each of these rules corre-
sponds to a particular class of confirmed facts
{(planes) for which one asks the causes., For example,
the plane in figure 1 {s clearly an exemplification
of the first part of the third hypothesis in figure
{. It RESEDA's terminology, the formal drafting of
the first part is called a “"premiss”™. The second
part (the “"condition”) gives instructions for
searching the database for information which would
be able to justify the fact which has been matched
with the premiss. That is, if planes matching the
particular search mode)l which can be obtained from
the “condition™ part of the hypothesf{s can be found
in the database, it is considered that the facts
represented by these planes could constitute a
justification for the plan-premiss and are then
returned as the response to the user's query. An
wmportant point to notice is that search models
generated by the hypotheses, like any search model,
can be transformed as well in the case of an initial

faillure of the match procedures.
a) ... one might cease to act on behalf of
scmeé other person
BECAUSE
one has abused that person's confidence
(a.g. by misrepresenting his views to
a third party)
b) ... one might leave something (in one’s
will) to a (religious) community
BECAUSE
one had some special connection with
this community
¢) ... one might take a particular attitude
in an argument
BECAUSE
one has close links with one of the parties
in a conflicting situation
d) ... one might lose a position (of civil

gervant)
BECAUSE

one is replaced by a supporter of the
(political) party which has just taken
power,

figure 4

In the case of the enquiry about the causes

of Montreuil's attitude, the search models gener-

ated
retri
plane
that

by the hypothesis in figure 4c enable the
eval from the biographical base of the

8 in figure 5 1 plane 2 translateas the fact
Montreuil (and Gontier Col) waere amongst

the Armagnac ranks between 1400 and 1415, while

plane
ians

3 tells us that the Armagnacs and Burgund-
were in conflict betweesn 1407 and 1425.

The following is a "résumé” of what I have

expressed in the preceding paragraphs. There
exist in RESEDA two fundamental ways of retriev-
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ing information requested by a user. In the first
2) BE-AFFECTED-BY SUBJ armagnacs
OBJ (COORD!1 Montreuil Col)
date!l 1 1400
date2 : 1415
bibl : Le-Duc
3) recliptagainst+BEHAVE SUBJ (COORD! armagnacs
burgundians)
France
0BJ (COORD! armagnacs
burgundians) i
France
datel ;1 1407
date2 ; 1425
bibl : consensus
figure 5
case, the information which we wish to obtain is

data

that already exists in the bame and is



retrivvad as much, without further processing. This
data can Le obtained by direct match of the search
nodel that corresponds to the user's question, If
this is not possible , we can still try to get an
answer by using the intcrence proccdures of the
“transformation® type. The second method retrieves
information which, on the contrary and most import-
antly, is created ex nihflo by the search procedure
itself. It expresses, in fact, the possibility of a
new causal relationship, in the base, between the
c>ded episode provided explicitly by the user and
one or more planes that the system retrieves by
applying the “"condition®™ part of an hypothesis. In
this second approach, and to the opposite of what
happens in the first, the research procedure modif-
fes in some way the primitive distribution of the
data. The second method is only possible by direct-
ly employing a particular category of inference
procedures, those of the type "hypothesis™ : trans-
formations can still intervene in this framework,
however, to aid the matching of the search models
obtained from the conditf{on.

THE SUBSTRATUM COMMON TO RESEDA'S
INFERENCE OPERATIONS

Let us now look in some detail at the hypoth-
esis shown in figure 44. A whole family of inference
rules expressed in RESEDA's metalanguage corre-
sponds in reality to the natural language formula-
tion shown in this figure ; one of these realis-
ations is shown in figure 6. A description of the
procedure followed in order to isolate the elements
of these families can be found in Zarri (1981) ;
sce also Zarrl (1979) for the general methodology
tor constructing hypotheses.

The formulation In figure 6 has been aimplified
in order to make {t sasler to understand, The vari-
ables concerning dates, locations and the personages
are indicated simply by the lettars “a", "1", "p"
with thelr indices, whilst in reality a more com-
plex system of variables and restrictions is needed
w0 account for their actual representation inside
the system. In the same way,we have given to the
variables m and n only the values that are most
likely in the hlstorical context of RESEDA, without
any attempt at generalization. Thus the "jobs™ that
t] may have lost to p2's advantage are limited to
monarchical or seigniorial posta directly provided
{"SOURCE »") by the corresponding authorities., Note
that the symbol “V* means “cxclusive or", and the
nymbul "A® means “and” (sce the “conditlion”).

The meaning, in clear, of the formalism {in
figure 7 is as follows (sce also figure 4d) to
explain what brought the administration n to deprive
r! of his job - pl no longer (end) disposes (BE-
AFFECTED-BY) professionally (soc) on the initiative
{SOURCE) of n of job m - the hypothesls suggests
we check in the system's wemory for the following
threoe facts

A) at a date contemporary with, or later than, the
dismissal of pl, the administration n gave the
post Lo a sccond personage p2 (p2? begins to
dispose of this post) ;

B) at a date that coincides with, or is previous to,
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41, tue administration n comes under the leader-
ship of a personage p3 (n starts to have p3 for
chief (1id = leader)) ;

C) p2 is p3's "protégd”.

Note that, in order to be satisfied, the con-
dition needs the concomitant matching (link

“A") of the three search models A, B and C '
the pattern C corresponds to a "relational
plane”, which is a particular type of plane,
without space or temporal information, re-
served in RESEDA for the expression of kinship,
social or interdependancy relationships (of the
kind "protector/protégé” used in C), etc. Of
course, in the actual application of the formal-
ism in figure 6, C could be "transformed” into

a whole series of search models which will try
to match in the base punctual evidence of the
dependancy relationship - for example the fact
that during some period p2 was an employee of
p3, see again Zarri (1981). The hypotheais in
figure 6 thus provides a reasonable explanation

Hypothesis concerning the dismissal from a
post because of a change in political power

premiss : a

a) end+soc+BE-AFFECTED-BY SUBJ pl
oBJ m: lI
SOURCE n °
datel : d1

date2

12

restrictions on the variables of tha premias
achema :

m = <monarchical-post> V <selgniorial-post>

n = king's-council v seigniorial-council
condition : A ABAC

M) begin+soc+BE~AFFECTED-BY SUBJ p2

oBY m: Ul
SOURCE n : l2
boundl 1 41
bound2 s 12

B) bagin+lid+BE-AFFECTED-BY SURJ n ¢ 18
OB p3
bound] : 13
bound2 : 14

C) (COORDI p3 p2 (SPECIF protdgd))

restriotions on the vartiables on the condition
achemata :

11 = d1<i2
13 < dI= 14

figure 6

of the dismissal, in September 1413, of Philibert
de St Léger from his post of baillif of Macon, to
the advantage of Robert de Bonnay, chamberlain

of Charles d'Orléans who took power and the
leadership of the royal council in August 1413,

We shall also take into account the two
patterns B' and C' of fiqure 7, which express
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the fact that pd, of whom pl was the protégé, lost
the leadership of the administration n. These two
patterns are part of a parallel hypothesis having
to do with the same general context of the dismiss-
al from a post because of a change in power.

B') end+1id+BE-AFFECTED-BY SUBJ n :
0BJ P4
boundl :
bound2 i

C') (COORD! pd pl (SPECIF protégé))

12

15
16

figure 7

If we try to use the patterns of figure 6 and
7 according to the logic of inferences "by trans-
formation®, we obtain a result that at first sight
ts surprising 1 the six patterns a, A, B, ¢, 8’, C*
can be equally distributed in four “"one-way" trans-
formations. More accurately, a first transformation,
without conditions, allows us to go from model a
to model A : proof of the fact that pl lost post
m at a date dl can be obtatned by ensuring that
this post was occuplied by p2 at the same date dl
or a later date. A second transformation without
conditions which, as the previous one, makes use
of the mechanism of the “end/begin® opposition,
enables us to transforz B' into B. The two remain-
ing transformations, on the other hand, have condi-
tions. One of them enables us to go from search
model a to model B', on condition that we can
check for the existence of a realisation of model
C* : if the search for a direct statement of the
dismissal of pl by the administration n fails, the
information provided by the fact that p4, protector
of »I, left the lcadership of n, can bring an in-
direct element to confirm ~ not decisively - this
dismissal. Finally, tre parallel transformation
with conditions changes search model A into model
B, as long as C is verified.

Let us now go back to the hypothesis in figure
4¢, that we have already examined in the preceding
section. Without going into formal details, it is
obvious that, in this case too, one can look at the
relationships between premiss and condition as one
of the type "transformation™ rather than of type
“hypothesis®™. To stay with the example that we have
already coummented, the information in plane 1
(which corresponds to a particular actualization of
the premiss), “Montreull was opposed' to the Burgund-
tan party on the subject of the tiundred Yeoars War",
is equivalent to the information in plane 2,
"Montreuil is in the Armagnac party"™ on condition
that we know that “Armagnacs and Burgundians were
1n completely opposite position during the period
in question®™ (plane 3). Planes 2 and 3 provide the
resulc of the use of the search models deduced from
the condition in the particular case that we are
taking into account.

There i3 no need here to insist further on
this point - other exazples of the “hypothesis~
transformation®™ equivalence can be found in Zarri
(1981) ; I shall simply point out that, if the
semantic content of the hypothesis in figure 4a
fully justifies the possibility of seeing it in a
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"transtormation” context, someé doubt may appuar
about the hypothesis in figure 4b. The "semantic
distance”™ between the information which could

be rotricvoed from tho premiss-model (tho atato-~
ment of the gift) and the information brought
by the matching of the different scarch models
which actualize the condition in practice, the
giver is a parishioner of the religious commun-
ity, the giver or a relation of the giver has
had some important duty inside that community,
etc,, see Zarri (1979), seems too great to really
be able to speak of "automatic equivalence"
between the two classes of data. The problem is
interesting because it is intrinsically linked
to that of warking, i{f possible, a line between
"certain® and "uncertain" transformations, a
distinction which is implicit in the very con-
cept of transformation but which is very hard

to express in formal terms.

Broadly speaking, the former wmainly involve
a simple reformulation of the original idea by
using other terms of the matalanguage, without
modifying the ori{ginal semantic domain. An
obvious example of this is provided by the trans
formation which translate the common sanse rula
"if someone goes from one place to another, he
has certainly left his starting point", and
which allows us to change a formulation in terms
of "end+BE-PRESENT" into one in terms of "MOVE",
sea figure 8,

end+BE-PRESENT SUBY x ; k MOVE sUDJ

z: k
OB z= : 1

k = <personage>
k, 1 = <location>

kvl
figure 8

Note that in the terms of RESEDA's metalan-
guage, the movements of a personage are always
expressed under the forw of a subject x which
moves {tself as an object.

The second, on the other hand, would have a
function analogous in the long run to that whichis
assigned to the hypotheses, although exercised
from a different point of view and according to
different practical modalities. This would be to
suggest the use of now noarch models which could
lead to information with an interesting logical
relationship with that originally searched for,
that is to draw "intaelligent" parallels which
were not a priori foresecable. Of course - mee
the case of the transformations that could be
extracted from the "gift" hypothesis - these
parallels are sometimes unexpected and - due to
the "inductive” nature of RESEDA's inforences -
always conjectural. In the light of these last
remarks, the possibility of using the same common
sense rules in totally different opearational
contexts wmust surely secem less surprising.
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CONCLUSION

In tha preceding section, I was only concerned
with taking a statement originally formulated in a
"hypothesis™ context in order to adapt it to a
“transformation® context. The opposite operation is
of course possible, but less interesting in prac-
tice mainly for the following two reasons 1

~ The information content of the common sense
rules underlying many transformations, especially
“certain® ones, is very small and appears useless
when searching for implicit causes, that is when
searching for new logical relationships between
events that appear a priori to be cowpletely inde-
pendant.

- Moreover, the fact that the new links that
RESEDA can find only belong, for the time being, to
the category of “causes” -~ even {f this concept is
sufficiently general for us : for a description of
the “taxonomy of causality™ in RESEDA see for
example 2arri et al. (1980 : 7-11) - impedes the
use of a whole series of transformations {n the
“hypothesis® mode. To quote just one example, the
transformation - sce Zarri et al. (1979 : 49-51) -
based on the common sense rule “the redoing, by the
mantdator or on his order, o3 some work given to a
trustee ig proof of an unfavourable attjtude of the
marclator towards the trustee about the work in
question® could be interpreted as a hypothesis,
that is to create new semantic links between the
data, only in the casc of a relatfonship of the
type "at the time of" - which is not explicitly
tormalized in the current state of the system ~
between the tangible demonstration of an unfavour-
able attitude and the act of redoing the work. An
interpretation of the type “cause” would really be
Low arbitrary in this case.

Despite these last remarks, the point that I
have tried to demonstrate in this paper, that of
the equivalence, "decp rooted” and within certain
limits, of the two categories of [nference rules
used in RESEUA, seems to be sufficiently well based.
Beyond the immediate use of such a notion to reach
a better formal definition of the system's infer-
ence rules - this topic was particularly emphasized
in Zarxi (1981) -~ this equivalence allows us to
reuse in a completely different context of oper-
ation the same “"common sense rules™ obtained
thanks to a patient study of the historian's work.
when one thinks of the difficulty involved in
establishing an intense, daily collaboration,
between two classes of researchers, historlans and
computer sclentists, whose scientific background
and mcethods of work are extremely different, one
can appreciate more fairly this precious reuse
capability.
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Abstract

The paper begins with an outline of a concise
notation for affining rules, oriented towards. use by &
mocphological analyzer. After s brief discussion of
word constituent parsing based on the output of a
norphalogical analyzer, the paper turns to the problem
of semant{c analysis of affixes. The problem is
consioecred within the framework of Gazdar's theory of
genaralized phrase structure grammar for English. This
tramoworn s eatremoly ‘attractive for Al purposes,
since it combines a sinmple, eminaently parsablie syntax
wilh an equally simple technique ibased on the work of
Ricnard %ontague) for deriving the logical form of
Input sentences as a byproduct of the parsing process.
Ine present approach departs from Gazdar's only in the
oetarls of the semantic rules. These are formulsted so
et to yield more or less ‘conventional’ logical
translations of English sentences, ratner than higher-
order translations {n a NMontague-style intensionatl
logic. Negaltve adjective prefires, noun
pluralization, and tense/aspect inflections are looked
at 'n some detatl. !n each case, the affix logic is
tound to be inscparable from the logic of larger
synhtactic structures {in which the inflected word is
eDedded (APs, NPy, and VP respuctivelyl: {.e.,
logically 1the affires do not operate directly on ward
stems, but on larger structures. In all three cases,
however, the goal of obtaining ’‘conventional’
trenslations seems attainable. For example, semantic
rules are shetched for tense/aspect strugture which
generate predications over time vartables, rather than
tense logic formulae,

1, Introduction

A very promising recent development in linguistics
has been the formulation of context-free grammars for
natursat languagos. The davelopnent ia  surprising,
since {1t runs counter to the transformational school
ot theoretical linguistics, wnich hay nheld sway for
twd and &8 half decades. Of particular interest from an
Al pownt of view is the work of Gazdar and olthurs on
Phrase Structure Grammar (PSG) (Gazdar 1961a, b,
Gazdar et al., o appear). PSG does sway with
transformations, witnout loss of descriptive economy,
by relying on certain metatinguistic devices,
Specifically, it represents classes of context-free
pnrase structure rules by means of rule schemata and
metarules, where the latter tuhe phrase structure
rules as input and generate new pnrase struclure rules
as output. The getosils need not concern us here. The
essential point s that the object level rules are
contlesl-frea, allowing tne application of efficient
conltext-freo parsing algaritnng { Thompson 1941,
Scnubort & Pellatier, tO appedr). Aanother cructal
aavenlage lies i1n the fgct thal thae phrase slructure
rules are semantically motivated, ang are paired with
semantic rules that generate the logical transiations
of the sentences they analyze. Althougn the
translations are not pregmatically disambiguated, they
appaar to provide a very appropristle point of
depdrture for the pragmalic phase of sentence
camprenension.

A phrase structure granmar consiste of rules such
as the following.

<1, 1(S DECL) (NP) (VP}], I[NP' VP']>

<2, [INP} (PN)}]), PN'>,
PNL2)} = {John, Mary, Rome, ...}
€3, LvP) (V)), V' >,
V(3$ » {run, smile, vanish, ...}
<4, tive) (v) 1s Halll, v &
V(4) = {pelfeve, notice, remember, ...}

<5, [1S THAT) {that) (S DECL)), §'>

fach rule {e headed by & ruie numbar, and ts followed
by 8 phrease structure rule Bnd the corresponding
semantic rule. The phrase structure rules ara of more
or less conventional type, apsrl from being piven
node-sdmissibility rather than generative
interpretation. for exsmple, the phrese structure part
of rule ! states that an S ({sentence) node with
feature DECL and direct descendants of category NP and
VP s aomissible., (In general categorties are feature
bundles; details have been wsuppressed here.) Esch
semantic rule specifies how to form the logical
translation of the superordinate node from the logtcal
transiations of the subordinate nodes. For exanple,
the semantic parl of rule 1 ststes that the §-
translation is to be formed by applying the VP~
translation to the NP-transliation; the semantic part
of rule 4 states that the VP-translation {s to be
formed by applying the V-transtatton to the §-
transiation. |(501id square brackets are usad for
sentences {in infix form and broken brackets for non-
sentential predicate expressions in prafix form. These
conventions are purely cosmetic -- they yleld very
resdable transliations.}! In addition, for eusch rule
fntroducing 8 texicatl category there ts »
spacification of the subcatugory of lexemas aliowed in
the rule. The sample rules can account for such
sentences as “"John notices that Mary smiles”. The
structure assigned to this sentence by the rules can
be f{indicatud by bracketing and rule numbers 1)
follows:
[112 John) 14 notices [5 that
[112 Mary] 13 smiles}}i}]

The target logtc for the semantic rules (s
standardly Montague’ s Intensional logic {Montague
18702, b, c). For Al purposes, howsver, il would be
preferable to have & more conventional tsrget logic,
such as & second order modal predicate togic. The
reasons are that conventional logics have a nore
natural semantics le.g., in Kriphe semantics namoes
denote fndividusle rather than propertly sets}, maKe
inference more tracteble, and reguire fewer monn\n?
postulstes., Tho expressive sduquacy of conventjona
logics was calied into queetion by Monlsgue,
particularly with regard to intenstonal locutions such
as “John looks for a unicorn”, “John concelives of a
unicorn®, snd “John worships & wunicorn®. However,
Schubert & Pelletier (to appear) argue that such
locutions aamit conventional translations {nvoliving
moda! operators, and show how to reformulate Gazxdar's
semantic rules to yleld such translations.
L]
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The purpose of the present psper is lo extend this
conventionalized PSG framework to dea! with some
aspects of affin structure and meaning. Such
ertansions are Important not only  because they
vourden the lexicon used by a parser, no longer
requiring It to 118t  {inflectional and derivational
verients of every lexems, bul 8lso because they
provice a basis for 198 1NQ calegories and meanings
of  uUNMNown  words . he syntactic formsalism proposed
heretn for affix struclure i1s eastly “conpiled” into a
form suitable tor efficient affix analysis. Logical
trenstation rules are offered for a8 few affia types,
namely negative prefixes, noun plurals, and
tensa/aspect inflections.

Affin r siituent structurg

The form of affix rules s {Tlustrated by the
following rule sel, which covars reguliar plurals as
wall as the more important irregular plurals:

rule grproles
Clettsh, s, x,y,22(/%) acas, strifes, skis,

radios, carQos, oafs,

beliets, raefs, proofs,

cliffs, Qulifs, scarfs
(womid<ale]o| V| r) Ut/ ves) leaves, loaves, thieves,
hooves, calves, elvey,
wolves, scarvas

<clsdhl/ae)
Clettec,s2hl/s)

churches, bushes
blahs, boughs, sylphs,
paths

tife/vas) Knives, wives, lives
{consdol /e ) heroes, cargoes
<g{adi/an) lenses, Kisses, buses,

tores

(vowd (s |2) /a8
(cons>zxi/esl

busses, quizzes
blitzes, fizzes

{consdiy/1es) fiies
Cvomeudyl/s) days, Keys, boys
ettsqiuyl(/s) Quys

quiy/iusl soliloguies

L)< chardi’s) i's, 5's

Fach rule consists of a sequence of sinple or compound
character predicates ancd substituthyon rules. For
eserple, the first rule specifies that if a word (noun
slem) ends 1n & Jeller which is neither an h, s, X, y,
or 2, then lhe wiptly character al the und of the word
‘s to be replaced by an s to form the plural, The
socond rule applies 10 ¢ wora whose tharg last  letter
'8 8 vowe !, wnosw second test letter s a, e, o, 1, or
r, and whose lawl letler 1s f; the plural is fornwd by
replacing the ! by ves, The remaining ruies are more
or less self-uvaplanstory, iIn the last rule ¢-> {6 a
predicate aignitytng o morpheaw  boundary.) Further
rules teven word-specific rutes) can easily be added.
For erample, the null ptural guffia for “figh”, the
trregutar plural for “mouse”™ and “louse”, and  the
Latn masculine plurel can be expruessed as

<->tisn fish, whitefish
(-2 |m>lous/icle lice, fieldmice
Cvow) Ccons | 2<cons } X<cons | > {us /i) dei, foct, cacti

Hare <cons|> signifies a consonant or an empty
character.

Such rules can ba converted automatically into a
decision tree suitable for morphological analysis. A
PASCAL progrem hak bwen written 1o UO this N a way
which permits ecasy editing of the rule set. The root
of the trev curreaporkis 10 the end of the word to be
enalyded and tne Dréenches COrrospLi) 1o succussive
tesls applied to succussive charecturs of the word in
a rignt-to-left scan. The tests (both sinple and
campowd) are afficiently inmplumented as  comparisons
ageinst bt wvuctors. The resultant tlow of control
osuring suftix analysis is smuch the sume as in a
directly programxd ‘morpher’ such as that of Cercone
119771, Prefines can be dealt wilh in much Lhe sane

way. .

The type of morpher output that will be sseunwd s
similar to that discussed by Kay (1977) and s

{llustrated by the following enalysis of
“interplanetary’:
inter- planet -ary

peleaceneeoset

"y
in-

The node reached by the subsidisry character chain
labelled ~“e° would become an arc destination {f the
lexicon contained (or the context leads to postulation
of) 8 wverb or noun “"planetare” transformable to
"planetary” (cf., scare —> scary).

In addition, the morpher (aided by the lexicon}
supplies the categories of the word constituents, such

as
{in- A/A VIV), (planet N},

(inter- A/A N/N V/V),
{-y A/V A/N N/N

{-ary A/N N/N ...},

Here N/N is the affix category which forms nouns from
nouns, A/V the category  which forms (deverbs}l)
adjectives from verbs, etc. Dots indicate potentially
incomplete categorica) knowledge.

from the morpher output, the parser is assumed to
produce phrase structure 'trees’ such as

{A {A/A inter-) A {N planet] [A/N -aryll}])

u11n9 phrase structure rules such as [A N A/N] and
(A AJA A).

The scene is now set for defining logical
translation rules for affixes. This task is far more
challenging than detining affix syntax, since affixes
vary &0 widely in semantic function. Therefore, this
paper focuses on the three psrticular (but important}
cases of negative adjectival prefixes, noun plurals,
and t{ense and awnpect inflections.

3. ‘Conveniionpl! semantic rules

The transliation of s word is to be constructed much
as the Ltranslation of s sentence is constructed in
PSG, 1.e., by combining operators wilh operands in an
order determined by the parse tree. Above, Lhe
translation of “-ary” would be applied to the
transliation of “planet”, and then the translation of
“inter-" would be applied to the result to vyield the
exprasstion translsting "interplanetary”.

At this point the rules for constructing logical
translations 1in accordance with specific semantic
rules need to be recapitulated.

The logical translations of individual lexical
items (usually single words) are individual constants,

predicators, functors, and quantifiers; e.g., the
translations of “Mary", “boy", and "loves” might be
the constant Mary2, the monadic predicator boy4, and
tha dyadic predicator lovest respectively., The
numerical indices 1, 2, 3, ... in such transiations
are not obtained from the lexicon, but rather are
affixed pafter lexical retrieval, Strictly, the
resulting indexed symbols are not to be regarded as
proper logical symbols, but rathor as preliminary
translations which may be ambiguous. They are to be
replaced in a later postprocessing phase by
unambiguous logical symbols such as MARY17, BOY1, and
LOVLS. A cruciail constraint imposed by the preliminary
translistions 1{s that iduntical synbols {and in
general, {dentical expressions) must be identically
disambiguated. for example,

[John2 shaves! John2)

can only mean that John shaves himself, whereas
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| Jonnl shaves! Jun2)

can mean that one Individual named John shaves anather
Indivigua! named John. Analogous remarks apply to

{Csome2 man3> shavest (soma2 man3))
versus
{¢some& man5> shavest (some2 mandd>],

In the semantic rules, exprossions of form 1E2 €1],
(EY E2., (EY E2), ana CE} E2) a1} dencte conmbination
of an eapression E1, as operator, with an expression
E2, as operand. The resultant expression in the #$irgt
case i3 8 sentence {i1n 1nfix form), in the second a
predicate eapression (in prefia form), in the third a
tunctional expression (in prefix form}, and in the
fourth a quantifier expression (consisting of a
quantifier followed by one or more predicate
expressions constraining the quantifier).

Both in the semantic rules and in the translations
they produce. application of an operator to a k-tuple
of operanas ts regarded as esquivalent o applying the
operator to the first operand, then applying the
resulting eapression to the second operand, and so
M.I

Examples:

1. With €1 » givest, E2 s Mary2, E3 = <al dogd>,
CEY E2 EJ} s JIEY E2) E3;
«iigivest Mary2) <a3d dogd>!
= (gives! Mary2 <ald dogd>!.

2. With E1 » {gives) Mary2 (a3 dog4>}, E2 = JohnS,
1€2 E1] = [JohnS 1gives) Mary2 <ad dogd>)]
» | John5 gives! FMary2 <al dogd>].

3. ¥ith EY & <the2 (big3 mand)>, E2 a |from$S NY6.,
CEY £2> » <<the2 (bigd mand))> (fromS NY6))D
= (tha2 {bi1gs mand) {from5 NYE,>.

In acditton to the asbove types of opeoration, the
semantic rules can also specify lambda abstraction. In
particular, an expression of form AxE specifies that a
new varisble {5 to be substituted for all  occurrences
ot x 'n £t and the resultant expression prefixed with A
followad by the new varianle. Als0, in the above rules
tor operand applicalion, immediate lambda conversion
18 10 be carrfed out if the operator is a lambda
aDstract.

Erarple:
with £1 s [JohnS gives! x <ald dog4>], E2 = Mary6,
VAaEY E2) 8 (ayldohnS givest y <a3 dog4>j Mary6)
s ldohnS gives! Maryb <a3d dogd>).

in the pragmatic post-processing phase which
foliows transiation, quantifier expresstons in term
positions are replaceo by varisbles and moved to the
nead of & sentence 1n which they were tormerly
empeaded; 8t this stage quantififer scope ambigutties
sre resolved. For example,

| <caomed boy5> loves) <every2 girld>]
bacomes efther

{somed x: boy5) (every2 y: girl3) [x loves! y)
vlovcr\d x: girt3) laomes y: boy5) ly loves! x].
hote thst predicate eapressions such as bo;? and

lovesl Mary2) are squivalent to Axlx boy and
Aala loves! Mary2)l respectively, sssuming that boy5

and loves! s&re one- and twa-argument predicates
respectively.
' This equivalence assumpl ion can be justified

semantically by interpreling operator applicalions {n
terms of sections of relations.

4. Negative sdivctiive Drefixey

The prosent task 16 to formulate seamantic rules of
the above type for atfixes, beginning with the
relatively sfmple case of ncgative sdjective prefixres.
These are

a-, an-, dis~, {1-, im-, in-, ir~, non~, and un-.

what {s of interest {a the gyglemplic conponent of
the mesning conveyed by thosa prefixes, The
speciatlized maunln?i of lexemses such as  “"disgraceful®
tct., “ungracaful”), ‘fapertinant’, ~“unflinching",
etc., ts 2 silde issue. Also, 1t 18 important not to
confuse adjective prefixes with wvarb prefixes, fFor
example, dis- ts an adjecte prafix {in “disagrecable”
and “discontented” but a verb prafix {n "digscouraged*
and (probably) “displeassd”,

The first task is lo determine tha logical category
of the gperands of the prefixes tn question. The main
possibilities are fllustrated by 1he following
examples:

(s} John {& unconscious;

John ts tlliterate;
(b) John is dissatisfied with Mary’s work;
John s unwilling to leave;

fc) John is an uneducsted boor;

John swallowed somu nontoxic paint;

{d) John bought 8 non-genuine antique;

Jonn (s an atypical student;
dJohn te sn unski))ful surgeon,

In the {a) examples, there s 1ittie doubt that the
negstive profixes are predicate modiflers, An
appropriate syntaclic-sumentic prefixing rule is

<8, ({AP PRED} (A/A F} (AP PRED P)}, [AJA" AP')>,
A/AL6) = {F}, F € (a~, an-, .,. , un~}.

Here the prefix iteelf {s used s& an agreemant fealure
to ensure that the correct choice of prefix will be
made for every adniesible adjective. But observe Lhat
the rule conbifnaes the prafix not with the asdjecttve,
bul with an AP tnd{ecllvo phrasel; thua latter s
formed from the adjective by the ruile

<7. {{AP PRED F) (A PRED F}}, A'>.

The reason for this spproach will be statad shortly,
The feature PRED pfichs out adjectives that can appesr
in predicative position. In thase cases, then, the
prefix acts semantically es a function trom predicate
meanings to predicate meanings.

In the (b) examples, 1t {a unclear whether the
operands are predicates such es “satisfied wilh Mary's
work® and “willing to leave" or just the predicate-
formi operstoras “salisfied” and 'wHHn?'. The
trouble with the latter analysis is that {t traeats
those prefixes which are appliicable tao e vartely of
adjectives with disparate complement requirementa -~
viz., most or all of them -- as multivocal; for i1 {a
hard to see how one and the same semantic function
could have both pradicates and wvaripus predicate-
formi operators as arguments. While soma categorias
of English words may be genuinely multivocsl (see the
discussion of numerals below}, the linguiatic evidence
tn the present case {s sgainst multivocality. for
exsmple, {f un- were muliivocel, 8 sentunce Yike

John {s unenthusiastic about the job
should he ambiguous between ¢ readin? according to
which John does not fee! enthusipstic asbout the job
and snother according to which his feeling sbout the
job {8 one of ‘non-enthusiassm’ ; such 1s not the case,

Theretore the firat sesnalysis hass been adoptaed,
according to which the negative prefixes operate on
complete (monadic) predicstes. Jt is to sccamodate
this analysis that the prefix oparand in rule 6§ was
chosen to be an AP. 1f the snalysis it correct, 1t
{mplies that adjectives with negative prefixes [evan
directly lexicalized ones) do not deliver their
meaning sll at once: the meaning of the stem fe
dep loyed first, allowing it to contine with
comp lenents; mesnwhile, the neqative force of the
prefix remaing encspsulated in the prefix feature, to
be. released only when an AP has been formed, Similar
delayed sction etfects are implictt {tn some of
Gazdar's rules, such as thoss for coordinstion,
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In the (C) exanples the protizes appear to operale
on predicate modifiers. However, the result of the
operation ts Intuitively s conjunction: an “uneducsted
DOOr° Vs lomuonu who & uncducaled s 8 boor, and
stmtlarly “nontoatc patnt® i3 stuft that is nontoxic
e paint. Thus tha prefixes actually opersts on
predicatas, 8n0 NO new prefis rule 15 nuedod. The rule
wnich tranglates certain asdjectives in attributive
positton ss predicstes conjoined with the noun s
roughly the following (restated more accurately as

rule 10 bulow):
INY), dalln AP ) & [x N ))>.

A, T1AN} 1AP PRED)

In the (a) aramples, howaver, the
sdjectives are gonuine predicate modifiers: a "Qenuine
antigue™ s not an article that fe genutne and an
antique, & “typical student” {s notl soOmeone who s
tynitcal and a sludent, and a "sKtllitul surgeon® 1s not
soneone wha 16 skillful and 8 surgeon. Nevertheless s
reguclion 10 the prudicalive case, similar to that for
the (b) catat, ssems pou!b\e in " non- oenulne
antigue®, "atypical student” and “unskillful surgeon®
the pre“lei can be viewod as opern!mq logically on
tm prm\_? “genuine antique® “typical student”

snitiEull at surgery® producino results similar
lo ‘not A genuine antique”, “nat a typical student”

neQated

and  “not  skhiltlful st surgery” respectively. Note,
nowever, thal (1n contrast with the case of a non-
Qgenuine antiguel, an  alypical student s stidl s
student andd an unshillful surgeon {% still 8 surgeon;
turthermore, n cases Jlike that of the unsk!lll‘ul
surgeon, it is possible to imagine contexts (e.g.

sedical school  soccer play-off} in which the skllh

referred to are not those determined by the
which the adjeCtlive operates.
can Le tormulated which
arvstinctions, rendering the second and third {d}-
cramptes as conjunctltions esimtlar to “John is not a
typrcal stuoent ang is 8 student™ and “John is oot
shilltul  at sometning (pragmatically, at surgery) and
s a surgeon”. The 1mportant point for present
purposas 15 that the negative prefixes are treated
uniformly as predicate modifirers.

noun  on
Syntactic-semantic rutles
corroctly make these

0t course. a full semantic fnvestigation of
neQative profixes requires more than an analysis of
theetir role tn the mapping from surface syntax 1o
fwiyrtcal form; 1t also requires fornulation of axioms

capluring their content. A hey question concerning the

neJalive pretixes is to whal extent their semantic
import dgittors from that of negation. ANl of them
entat) neyetion lan apaltticsl person s not a
potttical purson, a disagreeasble odour s nol an
egrevable odour, an inconplete success 15 not a
cuplete success, and so on) bul 15 the converse
generally true &s well? A perusal of dictionary
entries reveals few convincing counteraxaaples, The

following sre probabily as good as any!

~ an  odour that s not agreeable need not be
dleagrevable; tt may awnmply be neutral;
* conduct thet '8 not moral need nol be tmmoral but

may simply be amoral (!)
=~ a person who 14 not kind naed not
may twrely ba aloof.
Howevar , gince such cases are relatively scarce, they
can be treoated as erceptions whose exact meaning
céndl ba reconstructed from the meanings of the
prafia and atem, 1f the'r meanings were systematically
determined, Ithe foltlowing rather similar examples
nould mahe equally goua sense:
-~ & person wno 1s not honest need not be
disnonest
» two gitualions that are not similar need not
be dissimilar,
~ grinking that is not moderate need not be
mmoderate;
- a remdy that {s not effective need not be
inetfective;
-~ one who 1% not afrald need not be unafraid;
» conduct that is not fair need not be unfair.
Bul they ¢fw nOt, & Curftain menta) affort 1& required
1o maka any sense of them, indicating that some
201uytment of the usual neanings 1s required. Perhaps
these vaatples induce s bifurcation of nwenifgs, or
scparation of AN ING conponents, much as  tne
following exanples do:

be unkind but

John 18 the lossr, yet he is not.

John hates Mary, yet he doesn’'t,

8eing helped by dJohn {8 not being helped,

but hindered.

There 2re wines, and then there are wines.
Also, tha sttustion {8 very likely conplicated by
meaning overtones such as fmplicatures and
connotations. It may well be, for example, that
AppHcaHon of the dis- operator 1o s degres adjective
tmplicates s more deastic inversion of attributes than

mere negation., However, the focus here {s on bare
logical content, f.e., on the content relevant to
truth conditions; 8nd on Grice's analysis, truth
c%f;cgl,lions are independent of {mplicatures (Grice
1 .

The upshot ts that 1o a tirst spproximation, all of

the negative adjectival prefixes con be translated in
terms of & comon negative operator, say “non‘,
relatled to sentential negation by the axiom schems

s{(non P) = Ax~[x P}}.

Thus, the property of being uneducated is the property
of beyng an individua) that ts not educated, the
property of being dishonest is the property of being
an  individual that s not honest, etc. The given
schema {s entirely conpatible with the manifest non-
synonymy of such phrases 86 “complete)y uneducated”®
and “not completely educated”, since {completely
rx~[x educated)} is not equivalent to  Ax—{x
{completely educated)].

In a similar way, many other affixes {especially
dertvational affixes) can be trested logically es
predicate modifiers,

oun plur

The logic ot negative preofixes was seen to be
closely bound up with the \og‘lc of larger
constructions, especially of APs and NPs, and for this
reason non-transparent. The sams 1{& true of noun

plurals. In the first piace, it 15 to be expected that

VP pluralization will i{nteract logically with noun
pluralization in plursl NP+VP sentencas. Maoreover,
pluralization does not correspond simply to
application of s0Me logical operator to the

translation of the plurulized noun, as the following
sentence demonstirales:
The serrate leaves of the old oak covered
the ground,
Cluvarly the sentence makes reference to a
each of whose members 16 a serrate leaf, rather than
to a serrote plurality of leaves; 1{.e., the plura)
appiifes logically to “serrnte leaf”, not to "leaf”,
Thus the effect of pluralization, tike that of
negative prefixes, s in Qeneral deluyed.

plurality

the above sentence also illustrates another point:

plurals can give rise to alternative readings,
corresponding to distribut {ve and collective
interpretations of the NP. Though the only natural

reading of the sentence happens to be the collective
one, ¥t can in principle be taken 10 assert! that each
leaf individually covers the ground.

As far es the semantics of pluralities
(coltlections, ensembles, ...) is concerned, & theory
t{ke that of Linn (1882} saeems sppropriate; i.e.,
pluralities sre individuels which are ‘sums’ of other

individuals. The ‘sum’ of two pluralities equals the

‘sum’ of their individual constituents, and 8 'sum’ of
one atomic constituent equals thal atomic constituent
{cf., Bunt 1979 and Moore 1981}. Pluralities of atoms
are to be distinguished from their ‘material fusion'.
Link wuses an operator “+*" to convert predicales over
atoms to predicates over corresponding pluralites, and
® to form predicates over proper pluraiities of two or
more atoms. As an aid to intuition 8 will be writlen
“two-or-more” here. For exumple, (two-or-more leaf}] {e
s predicole over pluralitics of luavaw; or putling it

a 1ittle more explicitly, {1t {s a predicate that
applies truly to objects with two or more atomic
constituents each of which 1te a lesf. The English
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rumersis one, two, three, ... can be interpreted
analoguusly as predicale operators which Qencrale
pregicates over pluralities; thus (two leaf) fs &
preaicate truly applicable to any plurality of
lazactly) two leaves.

Both the cotlective-distributive ambiguity, and an
implicit guantifier ambiguity arises in the following
sentence: .

Two pacple can paddlo.n canoe,

The followi paraphrases resolve the 1implicit
quantifier ambiguity {(while preserving the collective-
distributive ambiguity):

Aryy two poople can paddie a cance.
Tnere are two peopis who can paddie 8 canoe.

{There is an analogous ambiguity sbout the phrase “s
canoe®, which could mean “any canoe” or “some canoe®,
but this 1s not of concern here.} Now, the first
{*any®) reacing clearly calls for quantification over
pluralities of two people, in the munner

{vxa: {two person) )...

1t then also seems natural to render the second
reading as

(ia: {two person] }...

‘Now, this translation seems well suited to expressing
the collective version of the existential reading; but
how i3 the distributive reading to be expressed, to
the effect that there sre two people each of whom can
peudle a8 cande? Link would employ the pluralized
predicate (o can paddle a canoe) here, obtlaining the
equivalent of

There 16 8 plurality of two people,

with the property that each atomic

constituent can paadle & cance.
But here a subtle dilenmna arises. In view of the close
syntactic smilarity of phrases like

a person, some person,
one person, two persons, ...

it would also seem naturs) to translate the numerals
girectly as quantifiers, in this manner:

{2a: person }...,

1.e., "At least two persons are such that each of them
P Moreover, this would give a subistanttally
simpler translation of the distributive existentyal
reading of the sentence under consideration than the
sort of transtation ndicated above, involving the two
pluralizing operators “two” and "¢°. Should nunerals
therefors be trested as bivocal? Experimentation with
syntactic-semantic rules of NP formution has failed to
turn up convincing eviodence for or against bivocality,
nowever, the following observalion has helped to tip
tha acalws '1n tavour of 8 Divocal treatment of
numeralas. 1f Link's treatmont were correct, the
"¢ande” sentence should be four ways ambigQuous:

Any each
two people can.
together

paddie a canoce.

But thers .i1s no “any“-"each” reading. Now, the “any”
reading of the NP is indispensanle, hence 1t s the
‘each” reading of tne VP which must be rejected. In
other words, the VP {s unanbigucus, and involves no
pluralizing operator. 0Of course, this snalysis also
gels rra of the “some”-"each™ reading, but this s
grecisely the reading re-instated by translating "two"
43 & quantifier.

Thers 18 8 close connection between the presumed
bivocelity of the nurorels (and cortain rolated
edjectives including ‘many®, “few”, “countiess” and
numerous®) and  the benaviour of “and® in such
senlences as

John and Mary can padcdle a cance.

Agsin, the cholce ta beatwsen treating the NP as
untvocal and the VP ss snbiguous betweon “each” and
"together® readings, or treating the NP as smbiguous
and Lthe VP as univocal. Only the \lstter spprosch (s
consiatent with the wniform treatment of and/or-
coordination proposed elsewhere as part  of a
‘ conventionslized’ version of Gazdsr'e grammat
{Schubert & Palletier, to appesr).

The following are some NP translations In heeping
with the preceding discussion, They will be followed
by some remarkhs on the NP grammar needed to ?on-rlu
them. P sbbreviates Ml?v jutcy}l & v spplell, Q
dencles the appropriate VP transiation in the first
three examples, and € is the predicate which relates
atoms to piursifties conlaining them. The NP
translations are ehown 8s they would appear in the
parser outputl (minus indicesl’, 1.e., prior to varisble
insertion and quantifier extraction.

five fui appl had worms {n them,
S P> qQ

i
five juicy apples cost a dollar nowsdays.
<Y (five P

five juicy appleg filled the backet,
T<Y {five P
the five juicy spples

(the [five P)),

<Y 1€ Cthe (five P))1)>
the fuf app !l

(the {two-or-more P)>,

¥ (€ <the (two-or-more P}>;)
five of the juicy spples

<5 1< <{the {two-or-more P)>}>,

¥ {five (€ <¢the {two-or-more P))E)),
‘<| [five (€ <(the (lm‘ror-moro P12
L._‘_lf,).f_)_,'.’_ﬁ_%‘ u_.'u_phlfxg_vu

¥ (€ Cthe (five 12,
Qlfl?elpzh fi

O (-4 V. V]
V14 Cthe (five P}>,7,
<the (five P}>

17 4 of the [
Y 1< (the [five 1< <(the !lwo~or~mora PI>ID>D,

¢the {five [ ¢ <the {two-or-more P)>;}>.

After varfable insertion and quantifier extraction the
first and last exanples would become

(5x: PIlx Q] and

{the z:{five Mwlthe y:itwo-or-more P)lw < y])

(the y: (two-or-nore P))(the z:(five Aw{w < yl}
respectively.

), or
[N

The NP rules needed to produce these translations
begtn with the plural affix rule

€9, [ (N PLUR) (N SING) (N/N PLUR}], N'>,

which nwrely tntroduces the PLUR festure while taking
the transtation of the plursl noun to be the some as
that of the sfnguiar noun. The remaining rules fa)!
naturally into seven groups: those which add
premodifiers (ss fn  “wide onale fens”j; those which
add an AP other than a numural or ordinal (ss in °
large begutifyll landsguped g@srden”}; those which
a0d 8 nomera) (a6 in "1 heavy snowfalls”); those
which sdd an ordina {as in “firgy five heavy
snowfalls®); those which add s determiner {as in "lhg
juictiest apple”); those which sdd a predetorminer (as
tn “all the spples”); and those which add
|l>ostmod|f|ern {as in “the apple pn_the tagle whigh |
eft for you ).

In the formation of & NP from s N, intarmudiate AN
(“adjectives plus npoun®) coabinations are formed. The
constraints governing the addition of premodifiers,
APs, numersls, ordinals and determiners can he
formulated in terms of features added to the AN by
these constituents. Features that appear to play &
central role are PRED {carried by adjectives I1ike
'{u\c « which are aillowed {n predicative positions),
AlTR ‘/cnrrtcd by sdjectives lihe "consunmate” &l lowed
only in sttributive positionsi, NUM (carrted by
numeral adjoctives 1ihe “fiva" and non-extrams
ordinals like “fifth"), QRD (carrfed botlh by extrems
ordinals Jike “first®, “next”, “last", and “only”, and
by non-extreme ordinals), COMP (carried by conparative
asdjectives )ihe "more excited"), and SUP {carried by
super lative adjectives like "juictiest”}.
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for arasple, an (AP ORD) can be added o the AN
only as long as the features ORD, COMP and SUP are not
yatl prasent; {(witness othe first Juiciest apples, °the
first five second apples). An porfant semantic
aspect of the ORD and SUP features it that their
Ntroduction Into the syntaa s accompanied by the
Wntroouction of sentence schemas conjoined with the AN
into the AN-translation; these schemas contain
distinguished predicate variables (P and Q below!
which are ultlimatlely bound to the pastnodiflers af the
NP, 4t any. Comsequently, in s phrase like “the
julg_\*ﬂ apple on the table®, the scops of the
Superiative adjeclive will enconpess the postmodifying
PP, wnile In & non-supertative case lihe “the Juicy
anle on the table”, the  scope of the adjective
eaCludes the postmodifier.

A few tentative NP rules are

<10, {(AN PRED ~ATTR ~NUM -~ORD -SUP)
(AP PRED =~SUP) (AN —~PRED -~ATTR -=NUM —ORD)]),
Axllx AP*) & Ix AN* 1))

<13, [(AN PLUR NUM ~ORD) (AN PLUR =NUM —~ORD)},
{two-0r “more AN’ ))

€12, 1N NUM ~ORD) (AP NUM] [AN ~NUM —~ORD}1],

{AP* AN'})>

<13, [IAN PLUR NUM ORD)
{AP ~NuM ORD) (AN PLUR NUM ~0RD -~COMP -~SuP)],
TORD* Aalln AN'Y & [x P} & [x Q11D

<v4, [INP NUM) IDET NUM) (AN -NUM ~QRD =SUP}),
COET* xalla AN} & |2 P} & (x Q))2

<18, [INP) (PP)], (APNP' PP’ ),

fule 10 provides the conjunctive transiatinn of a

potentially predicative AP n attributive position.
Rule 11 essentially translates a null numera) as “two-
oreore®  {bul without actually postulating a null
constituentt. Rules 12 and 14 respectively treat a
nomeral [1) an sdjective 8nd as & delerminer,
translating 1t as a predicate modifier tn the first
caze and a8 a quuntifier in the sccond. Rute 13
SIntroduces an ordinatl, treating 1t sy a modifier of
predicates over pluralities, snd adding conjuncts to
the translation which are to be bound by
postmodifiers: thus the scope of the ordinal witl
encompass the postmadifiers. In the same way rule 14
ensures that the scope of the numeric quantifier will
encompass  the pastnodifiers. Rule 15 binds the
postmadifying PP 1o
vertlable P.

6, Jense and pspect

The fina) topic to be locked at, more superficially
than the others, 1{s the saonantics of tltensv/aspact
inflections.

Oncea aQain, there 1{s a close interaction belween
the xyntsx and semanlics oOf the inflections in
qQuestion and the syntsx and semantics of the
structures in which the 1nflected words are embedded.
In the present case 1t is the grammnar of the VP, and
1n particular of the auxiliary systan, which provides
the conteat for thwe intlectional perudigm. The reader
s refarred to Gasdar, Pulluwn & Sag 1980) for a
comprenensive auriliary system granmmaer bosed on nutual
constrainte among VP features awsoctatled with the
auailiarres. ANl that ts noeded for pressnt purposeb
1% thoe esaunpliion that suffix analysis tuguther with
syntectic recugnition of "ba”, “have”, “will®, and "be
ot to" auxiliaries tw capable of recognizing the

follow types Of syntactyc constirtuents: PRES, PAST,
PROG progressive aspect: “be V-ing~ ), PERF
(perfectiiva aspect: “have V—en”), ABSF tabsoijute
tuture: “will v7), and RELF lrelative fulure: “be
going to V7.

Traditionally, tense and aspect have been
logically by assoctaling an event twyne, One or two
refarence times, and a time of speech with any
declarative sentence, and postulating a particular set
ot  relationships emong these tims for cach possible
tenaa-supact cuntiguralion, Ihits approsch  is due Lo
Kutcheraach 11547 ang has frequently serveo as @
Luwis tor Jnalytcs of tenue 0 A1 {e.p., sve Broce
1472, Aahn 1475, and Cohen 1977} . for earample, a past
portect vonstruclion such as “He had laughed” I8 ssid
1o place the event 1linw Dbufore the reference time
which {8 In turn prior to the tuse of spuuch. Ffor @

analyzed

the loriginally free) predicate.

cakw tihu sinple past, where (Intutlively only two
timas are buing related, the reference time is sald to
coincide wilth the ovent time. For the presunt tense,
all three times are satd to coincide.

from the point of view of phragse structure grammar,
this spproach is quite unnatural; for It fails to show
how the meaning of 8 VP in the temporal dimension fs
built up incrementally, in parallel with its syntactic
construction. For exanple, how is the meaning of "will

have laughed® functionally determined by the meaning
of "will® and “have laughed"?
Montague (1970c! {ncorporated future tense and

present perfect into his fragment of English tn s way
which {s indeed conpositional. For this purpose he
used intensional operators intuitively expressing “it
will be the case that® and "it has been the case
that®. Thus, “John will have laughed" 1is intuitively
expressed as "It will be the case that 1t has been the
case that John laughs®. The formal semantics is in
Keeping with Reichenbach’s analysis in this case, but
in general there is no fixed set of time points which
s sentence relates; instead, one new time reference is
introduced by each application of a tense operator. A
similar approach 1{s taken {in Schwind’'s lense logic
{Schwind 1978). Guenthner (1978) extends Montague's
(essentially Priorian) tense logic to deal with time
intervalg.

The present framework for determining the
form of English sentences {s expressly designed to
stay with conventional logic as far as possible, Since
tense operators are non-slandard, the question arises
whether translation rules can be formulated which
treat time conventionally, {.e., which introduce time
variables and erpress time relationships as
predications over these varfables., Such an approach
woild also have computational sdvantages; to date most
(perhaps a'1) language understanding systems which
have attempled to deal serfously with time have relied
on explicit representations of munents and intervals
of time to facilitate inference of time relationships.

logical

The following 1is 8 sketch of such an approach.
Intuitively, any tense or aspect functor 1{s to be
viewed as wmapping a given input time into an output
time, while simultaneously generating a constraint
relating those times. The constraints sre of the
following type, where in each case t is the input time
variable and t' or now' the output time variable (and
now' evaluates to the time of speechl:
PRES: [t ends-at now'}

PAST: [t before now’ }
PROG: ([t spans t')
PLRF: |t Letore t')
ABSF: (t after now' ]
RELF: |t after t' 1.

For exauple, suppose thet t0 denotes the time of
John's laughing in “John will have laughed”. Thus the
VP {s of form [ABSF [PERF [laugh at tO)ll, and so PERF
is applied first to t0, producing output time tt (say)
and constraint
110 before t1].
Next ABSFf {s spplied to t1, producing output time now?
(= time of speech| and constraint -
[t after now?).

In effect, t1 is the Reichenbachian reference time in
this exampie, but this time has been generated as 8
byproduct ot the stepwive translation process, Note
that no reference time will) be generated for sinple
prusent, past and future. Proper time relations are
automatically generated for constructions such Bas
"Mary had lsughed®, “Mary had been laughing®, “Mary
had been golng to leugh®, “Mary will have been going
to be laughing”, etc. Note that in the last two
eramplos two and three 'reference times’ are produced,
and quite properly so. (The constraints specified for
the tense/aspect functors above are not always the
correct ones, but they are among those most frequently
intended. For example, there is a progressive reading
of PRES and a future reading of PROG.)
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Technically, the semantic rules for the
tense/aspect functors can be espressed !n the same way
as other rules. In effect, they recast s sentence such
a3 “John will have laughed® as “John laughs at some
Limg before some time atter now®. The variable
Qgeneration process descripbed In intultive terms above
1s  accomplished by existentia) quantitication, To
11lustrate the mechanism, here are the rules for PERF
and ABSF (ignoring dotails of features):

16, HvP PERF) IV have
IATYP ‘before <3
a7, llvp ABSF) (V wil)
IATYP [after now’ )}

P -en)),

Iy
LIRS
;vP BASE} 1,

...-4..

T ts a distinguished time-predicate vartable. WwWhen a
temporal VP 1% first formed, prior to incorporation of
the ausiitiaries, {t is 1wmediately applied to a time
argument <J 1>, Thus, prior to the application ot PERF
ana ABSF, the transglation of “laughed” in the sentence
under consideration will be

{laughs <} 1))

when the PERF transtiation rule is applied to this, the
result is

1251 laughs ¢§ S} ibefore ¢ T}
= ;laughs ¢} (before ¢} 13;)

(Kate the renaming of T to § tn the lambda asbstract
tn  accordance with the rules described eurHer.‘
Simtlarly, wnen the ABSF rule s applied, the result
is

tlaughs ¢} !before <} jafter now2i>id}.
Ultimately, when explicit varisbles sre introduced ang
the quantifiers extracted from the sentence matrix,
the sentence translation becomes

tit1: {after now2)) (}t0: {before tV}}
{uohn laughs t0]:

and with
to conjuncts, the

¥ith lafter now2) = Ax[x after now2], etc.,
quantifier restrictions converted
result 18

ther)eieodllty atter now2) 8 110 before ti}}
John laughs t0}1,

which s tha sort of
frequently presupposed
systems leo.g., Schubert,

convent tonal transltation
in Wnowledge representation
Goebel 4 Cercone 1979).

1. _Concluston

These eatensions further substantiste tha thesis
that o?icﬂ form can be compuied as 8 byproduct of
parsing (as Montague maintained! wnd further, that the
target! logic can be hep! more or less conventional. 1t
true, thesa claims should prove very profitable for
al, since they i{mply that the natural tlanguage
unoarnund(ng process {at least in the initial stages)
ts stepler and more systematic than has generally been
supposed,

AcKnow ledgement

The author grateful ly achnow ledges Joffry
Pelletier's helpful comments on several issues and
well-informed pointers to tne litersture. The resecarch
was supporled by the National Sciences and Engineering
Research Council of Canaca under grant ABB18.

Refercences

Bruce, B. C. {1972). A model tor tempors} retsrences
and its a;;»’)chHon in & question answering
proqram. H Q!E .

Bunt, H, C. nsvint lus angg%ﬁ‘g formal semantic
proporli.n mase terms. in Pellatier,

F. . ' .
Probieme B’ Re :ﬁﬂ-ﬁéﬁ%ﬁ%ﬁmﬁmﬁﬁ#’"

Cercone, N. (1977). A heuristic morphological analyzer
for natural languaga undustanding programs. Proc,
of tst Int, IEEE COMPSAC * 77, Ch!cnqoo? 676-882,

Cohen, R. (1977). Conputer asnalysis  of temporal
reforence. TYech. Hep. No, 107, Dept. of Conputer
Science, Univ. of Yoronto, 10ronlo, Ont.

Gazdar, G. (1981s}. Phrase structure gremmar., To
sppear in dncoblon P., and Pullum, G, K. leda.),
lhe Nature of §xn(ggg ¢ Representution. Retidel,
Bortrecht.

Gazdar, o G, (188tb}. Unb(;unded dependcnclel and and
coor inate structure nguistic ry Zlg

Gazdar, G., Pullum, G. K,, and §aq. A
phrase &tructure grammar of the Enqlish uux!HAry
system. MS. To appear as “Auxiiiaries and related

phenomena® {n | anquage.
Gazdar, G., Kilein, FE., Pullum, G. K., and Sag, 1.

fEnglish Ntax, to appear.
Grice, H. g {1975}, Logic and conversation. lIn

Davidson, D., and Harman, G. {eds.), lhe loglc of
Grammar, Dickenson, Encino, CA, 64-7%,

Guenthner, F, (1978). Time schemas, tenze \ooic, ll’\d
the analysis of English tenses., In Guanthner. F..
Schmidt, S. J. {eds.), formal Semantic g?q
rambangg for Naturp) !g QUARER . D. LG
Dortrecht, 201-222,

Kay, M, (1977) Morphological and syntactic anslysfs.
In Zanpolly, A, (ed.}, tinquistd tructyres
Processing, North-Holland, Amslerdam, T1371-334.

Kahn, K. M. (1975). Mechanization = of temporal
knowledge. MIT Project MAC Tech. Rep. 155, MIT,
Cambridge, MA,

Knuth, O, E. (IQGBI Semantice of context-frea,
)angua es. hemat Systemns Thear , 127-145,

Link, 1982l A log\ca analycis plurals and
mus lerms A tattice-theoreticasl approach.

Montague, R, (1970a). Englifsh as a8 formal language. In
Thomason (1974), 188-221,

Montague, R. {(1970b), Universs) grammar. In Thomason
(1974), 222-246.

Montague, R, {1970c). The
quantification
11974), 247-270,

Moore, R. C. (1981). Problems in
Ann, Meet . of the
Linguistics, June 29 -
Stanford, CA, 1317-124,

proper treatment of
tn ordinary English. In Thomason

logical form. 19th
Assoc, for Computational
July 1, Stanford Univ.,

Schubert, L. K., Gosbel, R., & Cercone, N. (1879), The
structure and organization of a semanuc net for
conprehens ton and tnferanca. in Findler,
N. V. led,), Associntive Networhg: Ine
Representstion pnd Use of Knowl edqe i
Academic Press, New York, NY, 121-175.

Schubert, L. K., ana Pelleuer F. J.
From Englisnh to logic:
‘conventional’ logical

{to appear).
contuxt-tree computation of
transiations. MS, Dept. of

Computing Science, Univ, of Alberta, Edmonton,
Alberta.
Schwind, C, (1978a). A formalism for the deacription

of que?l\on answering systems. ln Bolc, L. (ed.},
Natura Langggg% %%]]g 1;&“193 with c_etmu]gc,.
igrlnour- erlag, Hulde lberg New YOrwm, -

Schwind, C. (1978b). The translistion of natural
language texts into sinte logic formulae. Tech,
Rep. TUM-INFO-7806, Technisches Univ, Muenchen
{available from Bibliothek des Fachbereichs

Forma)
Nm\uuw-

Mathemat ik, Technische Univ. Muanchan, 0-8000

Muenchen 2, W. Gci:rnmr)\y)i 24y,

Thawason, R. H. ed. 1874 A H
Selected Papers of Richacd ‘%-8%?5{.
Press, New Haven, CT.

Thoapson, H. (1981), Chart parsing and rule schemats
in PSG. Proc. {19th ann. Meet, of the Assoc. for

Conputational Linguistics, dJune 29 =~ July 1§,

Stanford Univ,, Stanford, CA, 167-172.



VERBS IN

®
DATABASES

David Mailer

Sharon C.

Salveter

Computer Science Department
SUNY Stony Brook
Stony Brook, N.Y. 11794

ABSTRACT

Although a great deal of research effort has been expended in support of natural

language (NL) database querying, little effort has gone to NL database update.

One

reason for this state of affairs is that in NL querying, one can tie nouns and stative
verbs in the query to database objects (relation names, attributes and domain values).

In nany cases thls correspondence seema sufficient to interpret NI, queries.

seems to require database counterparts for
and "enroll,” in addition to what 1is needed
be no natural candidate to f1ill this role.

We suggest a database counterpart for

The verbgraphs may be used to support NL update.

senting the various database changes that a
describing the variants of a verb, 1t may b
Other possible uses of verbgraphs include s
user to gulde but not dictate user {nteract
constraints.

I. MOTIVIATION AND PROBLEM STATEMENT

We want to support natural language interface
for all aspects of database manipulation. English
and English-like query systems alrendy exist, such
as ROBOT[Ha?77) 1QA[Da78], LUNAR[WO76] and those
described by KaplanTKa79], Walker{Wa78] and Waltz
[wz75]. We propose to extend natural languape inter-—
action to include data modification (insert, delete,
oodify), rather than simply data extraction, The
desirability and unavailability of natural language
database modification has been noted by Wiederhold,
et al.[Wwi81]. Database systems currently do not
contain structures for explicit madelling of real
world changes.

A database (DB) 1s an attempt to abstract infor-
mation about the real world. A state of the DB 1is
meant to represent a state of a portion of the real

world. We refer to the abstract description of the
nortion of the real world heing modelled an the
semantic dara description (SLD). A sSUD indlcates a

set of real world states (RWS) of interest, a DB
definition gives a ser of allowable database states
(pBS). The correspoadence between the SDD and the DB
definition induces connectlons between DB states and
real vorld states. The situation i{s diagrammed in
Figure 1.

Natural Language (ML) querying of the DB re-
quires that the correspondence between the semantic
description and the D3 definition be explicitly
stated. The query system must translate a question
phrased in terms of the semantic description into a
question phrased as a data retrieval command in the

*This research {s parcially supported by NSF grants

NL update
active verbs, such as '"hire," "schedule"
for NL querying. There currently seems to

active verbs, which we call verbgraphs.

A verbgraph is a structure for repre-
given verb might describe. In addition to

e used to digambiguate the update command.
pecification of defaults, prompting of the
ion, and enforcing database integrity

language of the DB ayatem. Thea response to the
command must be translated back into terms of the
DD, which yields information about the real
world state, For NL database modification, this
stative correspondence between DB states and real
world states is not adequate. We want changes in
the real world to be reflected in the DB, In
Figure 2 we see that when some action in the real
world causes a state change from RWS1 to RWS2, we
must perform some modification to the DB to
change its state from DBS1 to DBS2,

We have a means to describe th?/nctlon that
changed the state of the real worldf{ active
verbs. We also have a means to describe a change
in the DB atate: a data manipulation language
(DML) command sequence. But given a real world
action, how do we find a DML command sequence
that will accomplish the corresponding change in
the DB?

Before we explore ways to represent this
active correspondence~-the connection between
real world actions and DB updates-~, let us
examine how the stative correspondence is
captured for use by a NL query system. We need
to connect entities and relationships {n the
semantic description with files, flelds and field
values in the DB. This stative correspondence
between RWS and DBS is generally specified in a
system flle. For example, in Harris' ROBOT ays-
tem, the semantic description is implicit, and it
18 aassuymed to be given in English. The entities
and relationaships in the description are roughly

IST-79~18264 and FNG-79-07994,

196



English nouns and starive verbs. The correspondence
of the semantic description to the DB is given by a
lexicon that associates English words with files,
fields and field values in the DB, This lexicon
also pives possible referents for word and phrases
such 88 "who," "where" and "how much."

Consider the folloving example. Suppose we
have an office DB of employees and their acheduled
meetings, reservations for meeting rooms and mes~
sages from one employee to another. We capture this
tnformation in the following four relations:

RMP(name, office, phone, supervisor)

APPOINTMENT (name, date, time, duration, who,
topic, location)

MATLBOX(name, date, time, from, message)

ROO'MRESFRVE(room, date, time, durationm,

reserver)
with domains (permissible seta of values):
DOMAIN ATTRIBUTES WITH THAT DOMAIN
personname name, who, from, reserver,
supervisor
roomnum room, location, office
phonenum phone
calendardate date
clocktime time
elapsedtime duration
text message, topic.

Consider an analysis of the query

“What 13 the name and phone # of the person
who veserved room 85 for 2:45pm today?"

Using the lexicon, we can tie words in the query to
Jomalng and relatlons

nawe -~ personname

phone - phonenum

person - personname

vho -~ personnanme

reserved - ROOMRESERVE relation

room - roomnum

2:45pm -~ clocktime

today - calendardate

{/ea need to connect relatlons FMP and ROGMRESERVE,

The possible joins are room-office and name-reserver.

I1f we have stored the information that offices and
reservable rooms never intersect, we can eliminate
the firsc possibility. Thus we can arrive at the
query

in BMP, ROOMRESERVE retrieve name, phone where
name~reserver and room=85 and time=2:45pm
and date=CURRENTDATE
(We assume Wwe have access to some system maintained
variables such as CURRENTTIME and CURRENTDATE.)

Suppose we now want to make a change to the
database:

"Schedule Rob Marley for 2:15pm Friday."

This request could mean schedule a8 meeting with an
individual or schedule Bob Marley for a seminar.
Ue want to connect 'schedule'" with the insertion
of a tuple in efther APPOINTMENT or ROOMRESERVE.
Although we may have pointers from “schedule" to

197

APPOIL [I{ENT and ROOMRESERVE, we do not have
adequate information for choosing the relation to
update. We need a way to generate 8 question
that will distinguish the two senses. Then addi-
tional information must be requested to construct
s complete tuple for insertion, Finally, there
may be integrity constraints to check, such as no
one can have two appointments at once, or the
same room cannot be reserved twice at the same
time,

Although files, fields, domains and values
seem to be adequate for expressing the stative
correspondence, we have no similar DB objects to
which we may tie verbs that describe actions 1in
the real world, The best we can do with files,
fields and domains 1s to indicate what 1ig to be
modified; we cannot specify how to make the modi-
fication. We need to connect the verbs
“schedule,” '"hire"” and 'reserve' with some struc~
tures that dictate appropriate DML sequences to
perform the corresponding updates to the DB, 1In
addition, we have seen that a verb may denote
various. actionsg, that 1s, it may have differeant
senses. The particular sense can depend on the
entities involved in the action. There can also
be variants within a given sense. To what can
"schedule" be connected to in the DB? There is
no explicit database object that represents all
the changes in the database that correspond to
the changes in the real world brought about by
the action '"schedule.' The best we have is a
specific DML cormand sequence, a transaction, for
each instance of 'schedule'" in the real world.
No single transaction truly represents all the
implications and variants of the "schedule"
action, "Schedule' really corresponds to a set
of simtlar transactions, or perhaps some para-
meterized version of a DB transaction. MHowever,
there 1s no such 'parameterized transaction" in
the DB with which to connect "schedule.” Our
approach 18 to design and employ a structure on
the DB side that explicitly represents para-
meterized transactions.

The desired situation is shown in Figure 3,
where RWS1 statively corresponds to DBSl, Wa
have an active correspondence between ''schedule"
and a parameterized DB transaction (PT).
Different instances of the schedule action, S1
and S2, cause different changes in the real world
state, from RWS1 to RWS2 or to RWS3. From the
active correspondence of "“schedule" and the PT,
we want to produce the proper transaction, Tl or
T2, to effect the correct change in the DB state.

To implement the parameterized transaction
outlined above, which 1issues a correct DML
sequence for a verb in the real world, someone
could, of course, write a separate program for
each action to generate the DML commands, We re-
ject this approach because we want a higher~level
and more structured represantation. We desire a
high-level description for updates that corre~
sponde to verb senses and their varianta. We
want a system that, given a description of an
action in the real world using that verb sense,
will automatically select a DML sequence that
properly updates the database.



\e have additional uses in mind for these
higher-level descriptions. Firat, they can help us
select from among senses of a given root verb used
{n an action description. Another 1s to specify
the necessary information the action description
must contain to properly select a DML sequence,

It should also serve as a convenient means to
specify defaults. The verb representation can also
serve to express constraints on the update opera-
tion, juat as functional dependencies represent
conidtraints on the ntate of a database.

What must the high~level verb descriptions look
like and how should a system that usea them operate?
We must be able to readily express the correspaond~
ence betveen actions in the semantic world and verb
descriptions 1n this high-level specification. We
depend heavily on this correspondence to process
natural language updates, just as the stative corre~
spondence 1s used to process natural language
queries. Finally, the verb description helps to
disanbiguate multiple verb senses and aids in selec-
tion of the proper variant of a given verb sense.

In the next section we examine these requirements
in more detail and offer, by example, one candidate
for the representation.

Another indication that active verbs are a
problem in DBs shows up in a semantic data models,
Senantic data models are systems for constructing
precise descriptions of portions of the real world -
senantic data descriptions (SDD) - using terms that
come from the real world rather than a particular
DB system. A SDD 18 a starting point for designing
and comparing particular DB implementations. Some
of the semantic models that have been proposed are
the entity-relationship model[Ch76], soM{1mM817,
RM/T(Co79], and BetalBr78]. For some of these
models, methodologies exist for translating to a DB
specification in various DB models, as well as for
expressing the scatic correspondence between a SDD
in the semantic model and a particular DB implemen~
tation, These models generally have constructs
corresponding to entities, attributes and relation-
ships (stative verbs) in the real world, which can
be given natural names: person, helght, supervises.
To express actions in these models, however, there
are only terms that refer to DBs:. 1insert, delete,
modify, rather than schedule, cancel, postpone (the
notable exceptions are Skuce[$k80Jand TAXIS[MBWEO]).
Such terms are not useful for expressing the corre-
spondence of real world actions to DB changes, since
they already refer to the DB, Perhaps the defici-
ency exists because of the difficulty of extending
the translacion methodology to actions, or even
expressing the correspondence between action and
database modification.

While there have been a number of approaches
made to NL querying, there seems to be little work
on NL update. Carbonell and Hayes(CH81] have looked
at parsing a li{mited set of NL update commands, but
they do mot say much about generating the DB trans~
actions for theae commands. Kaplan snd Davidson
[kD81] have looked at the translation of NL updates
to transactions, but the active verbs they deal with
are synonyms for DB terms, essentially following the
semintic data models aa above. This limitation is
tntentional, aa the following excerpt shows:
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First, 1t 1s assumed that the underlying
databuase update must be a sertes of tranu-
actions of the same type indicated in the
request, That 1is, 1f the update requasts

a deletion, this can only be mapped into

a series of deletions in the databasa.
While some active verbs, auch as “schedule,"”
may correspond to a single type of DB update,
there are other verbs that will require multiple
types of DB updates, such as "cancel," which
night require sending message as well as removing
an appointment, Kaplan and Davidson are also
trying to be domain indepeandent, while we are
trying to exploit domain-specific information.
II, NATURE OF THE REPRESENTATION

We propose a structure, a verbgraph, to
represent action verbs, Verbgraphs are exten-~
sions of frame-like structures used to represent
verb meaning in MORAN[Sa78, S5a79]. One verbgraph
is associated with each sense of a verb; that
structure represents all varfants. A real world
change is described by a sentence that containse
an active verb; the DB changes are accomplished
by DML command sequences.

A verbgraph 1s used to select DML sequences
appropriate to process the varianta of a verb
gense, The primitives in these structures are
the relations, attributes and values from the DB,
employed in DML~like expressions, We actually
generate transactions in some {ntermediate lan~
guage (IL), rather than a particular DML, in
order to avoid trying the represontation to a
particular dactabase system. The IL can then ba
translated into various DMLa, We also wish to
capture that one verb may be used as part of
another, An analog is subparts in the noun
world, where month, day and year may be subparts
of date. Similarly, we may have s verb sense
RESERVE-ROOM that may be used by itself or may be
used as a subpart of the verb SCHEDULE-TALK., We
want our representation structure to capture the
knowledpe that some IL command scquences may be
repeatedly used as subparts of other, larger IL
command sequences.

Figure 4 1s an example of one posaible struc-
ture for a verbgraph. It models the 'schedule
appointment” sense of the verb "schedule." There
are four basic varisnts we are attempting to
capture; they are diatinguished by whether or not
the appointment is scheduled with someone in the
company and whether or not a meeting room 18 to
be reserved. There is also the possibilicty that
the supervisor must be notified of the meeting.
The different operations for each variant are
described below. In every cage the person sched-
uling the appointment gets an entry in the
APPOINTMENT relation.,

1) Meeting with person in cowpany, no resarv-
ed room., Make an appointment entry for the
other person and leave a message. The location
of the meeting will be one of the two offices of
the people involved. Optionally, supervisor may
be notified,



2) Heeting with persom not in company, no re-
served room. Meeting will be im scheduler's office,
Optionally, supervisor notifiaed.

3) Meeting with snother employee, reserve a
room. Make an appointment entry for the other per-
son and send a message. Reserve a meeting room for
the same time. Optionally, supervisor may be
notified.

4) Meeting with person not in company, reserve
a room. Reserve s meeting room for the same time.
Supervisor must be notified.

The verbgraph 1is directed acyclic graph (DAG)
vith 5 kinds of nodes: header, footer, information,
AND @ and ORQ . MNeader is the source of the graph,
the footer is the sink. FEvery information node has
one incoming and outgoing edge. An AND or OR node
can have any number of incoming or outgoing edges.
A variant corresponds to a directed path in the
graph. We define a path to be connected subgraph
such that 1) the header is included; 2) the foorer
18 included; 3) if it contains an information node,
tt contains the incoming and outgoing edge; 4) {if
it contains an AND node, it contains all incoming
and outgolng edges; and 5) 1f 1t contains an OR
node, it contains exactly one incoming and one out-
rnoing edge. We can think of tracing a path in the
praph by sctarting at the header and following {ts
outgolng cdge. tWhenever we encounter an information
node, we go through it. Whenever we encounter an
AND node, the path divides and follows all outgoing
edges. We may only pass through an AND node 1f all
{ts incomlng edges have been followed. An OR node
can be entered on only one edge and we leave it by
any of its outgoing edges.

An example of a complete path is one that con-
sista of the hcader, footer, information nodes, A,
B, D, J, and connector nodes a, b, ¢, d, g, k, 1, n.
Although there is a direction to paths we do not
intend that the order of nodes on a path implies
any order of processing the graph, except the footer
node is always last to be processed. A variant of
a verb sense i{s described by the set of all expres-
sions in the information nodea contained in
a path. )

Expressions in the information nodes can be of
two basic types: assignment and restriction., The
assignment type produces a value to be used in the
update, either by input or computation; the key
vord input indicates the value comes from the user,
Some examples of assignment are:

1) (node labelled A in Figure 4) APPT.who +
input from personname

The user must provide s value from the domain
personname.

2) (node labelled D in Figure 4) RES.date «
APPY.date

The value for APPT.date 1is used as the value
RES.date.

The form of a restriction is
<tvar>.<attrname> {not} in <valueset>.

An example of restriction 1a: (node B in Figure 4)
APPT.vho in Rl where Rl = in EMP retrieve name.
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These statements restrict the value of APPT.who
to eicher be a company employee or not. Also in
Figure 4, the symbols Ry, Ry, Rj and R, stand for
the retrievals

Ry = in EMP retrieve name

Rz = in EMP retrieve office where name =
APPT .name

Ry = in EMP retrieve office where name =
APPT.name or name = APPT.who.

Ry = in EMP retrieve supervisor where name
APPT,.name,

In Node B, INFORM(APPT.who, APPT.name, ‘'meeting
with me on YAPPT.date at XAPPT.time') stands for
another verbgraph that represents sending a mes-
sage by inserting a tuple in MAILBOX, We can
treat the INFORM verbgraph as a procedure by
specifying values for all slots that must be
filled from input. The input slots for INFORM
are (name, from, message).

III. WHAT CAN WE DO WITH IT?

One use for the verbgraphs is in support of
NL directed manipulation of the DB. In particu-
lar, they can aid in variant selection, We
assume that correct verb sense has already been
selected; we discuss sense gelection later. Our
goal is to use information in the query and user
responses to questions to identify a path in the
verbgraph. Let us refer again to the verbgraph
for SCHEDULE-APPOINTMENT shown in Figure 4.
Suppose the user command 18 "Schedule appointment
with James Parker on April 13' where James Parker
is a company employee. Interaction with the verb-
graph proceeds as follows. First, informdation is
extracted from the command and classified by
domain, For example, James Parker 1s in domain
personname, which can only be used to instantiate
APPT .name, APPT.who, APPT2.name and APPT2.who,
However, since USER 18 a system variable, the
only slots left are APPT,who and APPT2.name,
which are necessarily the same, Thus we can in-
stantiate APPT.who and APPT2.name with 'James
Parker." We classify "April 13" as a calendar-
date and instantiate APPT,date, APPT2,date and
RES.date with {t, because all these must be the
same. No more useful information is in the query.

Second, we examine the graph to see if a
unique path has been determined. 1In this case
it has not. However, other possibilities sre
constrained because we know the path must go
through node B. This 18 because the path must go
through either node B or node C and by analyzing
the response to retrieval R}, we can determine
it must be node B (i,e., James Parker is a
company employee).

Now we must determine the rest of the path.
One determination yet to be made is whether or
not node D is8 in the path. Because no room was
mentioned in the query, we generate from the
graph a question such as 'Where will the appoint-
ment take place?" Suppose the answer is "my
office." Presume we can translate "my office"
into the scheduler's office number. This re-
sponse has two effects. First, we know that no
room has to be reserved, 80 node D 1ig not in the



path., Second, we can fill APPT.where in node F,
Finally, all that remains to be decided is 1if node

B ia on the path. A question like "Should we notify
your supervisor?"™ is generated. Supposing the
answer i{s "no." Now the path is completely deter-
mined; it contains nodes A, B and F.

Nov that we have determined a unique path in
the graph, we discover that not all the information
has been filled-i{n in every node oz the path. We
now ask questions to complete these nodes, such as
"What time?", "For how long?" and "What ia the
topic?”, At this point we have a complete unique

" path, so the appropriate calls to INFORM can be made
and the parameterized IL in the footer can be
filled in.

Note that the above interaction was quite rig-
1dly structured. 1In particular after the user
issues the original command, the verbgraph instan-~
tiation program chooses the order of the subsequent
data entry. There is no provision for default, or
optional values. Even I1f optional values were
allowed, the program would have to ask questions
for them anyway, since the user has no opportunity
to specify them subsequent to the original command.
We want the interaction to be more user-directed,
Our general principle i1s to allow the user to volun~-
teer addicional information during the course of the
interaction, as long as the path has not been deter-
mined and values remain unspecified. We use the
following interaction protocol. The user enters the
i{nicial command and hits return. The prcgram will
accept additional lines of input, However, 1f the
user just hits return, and the program needs more
information, the program will generate a question.
The user then answers that question, followed by a
return. As before, additional information may be
entered on subsequent linca, If the user hits re=-
turn on an empty line, another question is gener-
ated, 1f necessary. .

The following advantages accure from letting
the user volunteer information. The user may choose
the arder of data entry. We can now have optional
values, but not have to ask questions about them,
Since the user has an opportunity to volunteer any
values, L1f he or she does not volunteer the value,

a default value will be used.

Brodie[Br81] and Skuce[Sk8Q] both present
systems for representing DB change, Skuce's goal is
to provide an English-~like syntax for DB procedure
specification, Procedures have a rigid format and
require all information to be entered at the time of
invocation in a specifie order, as with any computer
subprogram. Brodie is attempting to also specify
D8 procedures for DB change. MHe allows some infor-
mation to be specified later, but the order is fixed.
He also gets information from the DB when possible,
Neither allow the user to choose the order of entry,
and neither accomodates varlants that would require
different sets of values to be specified. However,
like our method, and unlike Kaplan and Davidson
{x031], they attempt to model DB changes that corre-
spond to real world actions rather than just speci-
fying English synonyms for single DB commands.

We are currently considering hierarchically
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structured transactions, as used in the TAXIS
semantic model [MBWBOJ, as an alternative to verb-
graphs. Verbgraphs can be ambiguous, and do not
lend themselves to top-down design. Hierarchical
transactions would seem to overcome both problems.
Hierarchical transactions in TAXIS are not quite
as versatile as verbgraphs in representing vari-
anta. The hierarchy 1s induced by hierarchies on
the entities classes involved. Variants based on
the relationship among particular entities, as
recorded in the database, cannot be represanted,
Also all variante in the hierarchy must involve
the same entity classes, where we may want to in-
volve some classes only in certain variants.
However, these shortcomings do not aseem insur-
mountable,

Certain constraints on updates are implicit
on verbgrapha, such as APPT.where + input from
R3, which constraina the location of the meeting
to be the office of one of the two employees, Wa
can also use verbgraphs to maintain database coun~
sistency. Integrity constraintas take two forms:
constraints on a single state and constraints on
successive database statea. The second kind 1s
harder to enforce; few systems support con-
straints on successive states. There are also
constraints on successive database atates partic~
vlar to a given update action. For example, if
we had a verbgraph for postponing appointments,
it should check that the new appointment time ia
later than the current appointment time, although
this 18 not a general constraint on changing
appointments,

Verbgraphs provide many opportunities for
specifying various defaults., Firat, we can spec~
ify default values, which may depend on other
values., Second, we can specify default paths.
Verbgrapha are also a means for specifying non-DB
operationa. For example, if an appointment 18
made with somcone outside the company, generate
a confirmation letter to be sent.

All of the above discussion has assumed we
are selecting a variant where the sense has al-
ready been determined. In general sense selec~
tion, being equivnlent to the frame selection
problem in Artifical Intelligence[CW76], is very
difficult. We do feel that verbgraph will aid
in sense selection, but will not be as efficacious
as for varfanct selection. In such a situation,
perhaps the English parser can help disambiguate
or we may want to ask an appropriate gquestion to
select the correct sense, or as a last resort,
provide menu selection.
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Natural Language Access to Databases:
User Modcling and Focus

Jim Davidson
Computer Science Department
Swuanfurd University
Stanford, California 94305

Abstract

Users of natural language database systems will sometimes
phrase inputs with respect 1o the perceived focus of the dialogue,
In order to interpret such inputs correctly, the system must
retain a model of the user's current focus. This paper discusses
the requirements of such a model, and describes the micthod of
user modeling implemented in the PIQUE system. This method
relies on retention of a formal description of the segment of the
database currently in focus. A aumber of examples of the use of
the focus model are presented, and its applicability and
limitations are discussed.

L. Introduction

Natural language database systems which do not retain user
models will behave inappropriately in a large class of naturally
occurring situations.  Without such a model, the system may
misinterpret the user's input, mis-handling such linguistic
phenomena as definite noun phrase reference, word-sense
ambiguity, and grammalical ambiguity,

Consider the folfowing diafogue between a user and a dutabase

management syslem‘:

Q1: Who are the programmers?

R1: Jones, Smith, Baker

Q2: What is Jones' salary?

R2: There are 37 employees named "Jones™;
which one do you mean?

The system here is being uncooperative, failing o recognize the
(apparent) intent of the user's second query. This problem
occurs because the system attempts 0 interpret the query in
wolation; on this basis, the referring noun phrase "Jones” in Q2
is genuincly ambiguous. However, the context of the first Q/R
pair strongly suggests a likely referent, and this should be
detected by the system.

leaample due 10 Bob Moore
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The use of the abbreviated form of refercace by the user for
his sccond request is not an isolated occurrence,  Users of
"intelligent” systems will tend 1w attribute human-like
intelligence 1o those systems. 1n the case of natural languuge
systems, this mcans that the uscrs will observe some of the
rules of conversational coherence, and phrase Inputs with
respect 1o the current context. In the example above, the
user has obeyed the Cooperative Principle (Grice, 1975), and
made his specification exactly as informative as (he belicves
10 be) necessary. To prevent the kind of failure which has
occurred here, the system must retain some modcel, however
simiple, of the user’s current "state of mind.”

This paper describes a simple yet adequate approach to user
modeling, which has been implemented as part of the
PIQUE (Program for Interpretation of Queries and Updates
in English) natural language database system (Kaplan and
Davidson, 1981)2. This approach is derived from formal
work in databases, and relies on retention of induced views,
which are analogous (o the view mechanism in database
management.  This method allows the system to interpret
correctly the phenomenon discussed above {and others), but
does not reguire any additional linguistic capabilitics in the
natural lunguage interface, nor any additional domain-
dependent information beyond that encoded in the ditabase
schema and the database hself.

The next section contains a discussion of user modeling as it
has bcen done in artificial intelligence and in database
management. Scction 3 describes, in detail, the approach to
user modeling used in PIQUE. Scction 4 contains a detailed
presentation of the use of this approach to address one
problem; interpretation of definite noun phrase reference.
The following section illustrates a number of other problems
which are amenable to the focus model approach. The final

Z&nmplcs similar 10 the oney presented in the paper have been run on
the PIQUE system. PIQUE is written in INTERLISP, and runs oo the
DECsysteni-20 at SRI, The PIQUE parser I8 wrilten in LIFER (Hendrix,
1977)



section contains a discussion of the coverage and adequacy of
this method.

L User modeling in artificia) intclligence and database
ranagement

Classes of user models for computer programs can be divided
along three dimensions (Rich, 1979):  expliciv/implicit (docs the
uset have to build the model himself, or does the system infer it
from his behavior), cunonicalindividual (is the model intended
1o represent users in general, or is there a different model for
each user), and long-termVshort-1erm (is the mode) intended to
represent the user’s profile in geneml, or is it intended to be
more dynamic, changing as he focuses on different tasks),
Within this framework, the class of models considered here is
tmplici, individual, and shon-term. A better term than “user
model” for this class might be "focus model”, since it concemns
the user’s current interest, rather than his global characteristics;
we will use the latter tenm,

There has been some work in anificial intelligence on the use of
focus models in dialogues, although none in the context of
dutabase weeess. Giose (1977) dcvclopcd a system for modcling
focus in tsk-oriented dinlogues.  That model relied on a
domain-specific representation of the task hierarchy—the globul
relationship between the tasks and sub-tasks being worked on.
The focus mode! (which was represented using partitioned
wmantic networks) was used mainly to resolve non-pronominal
definite noun phrases appearing in the discourse. Sidner (1979)
described a more generw! method of anaphora comprehension,
which relied on a mode! of focus similar to Grosz's. Cohien and
Perrault (1979) developed a sophisticated model, capable of
representing the user's wants, beliefs, and intentions, as part of a
plan-based theory of specch acts.

Databioe interactions present particular problems for focus

modeling, because there is, in gencral, no a prior stnucture 10

the kinds of diatogucs which can occur (as there is, for cxample,

in Lsk-onented dialogues), The user's access of the database
" will follow no globat pattem,

Within database management, only restricted forms of user
mudeling have been provided.. Database theory provides a
formal notion of an external model! (also called data submodel),
The eatemnal modet is a transformation of the conceptual model
(the "actual™ database), representing the aspect of the database
visible 10 a user or group of users. The external model is
compoed of views (derived relations), that are formed from the
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underiying database by operations such as projection (8., @
uscr mity be allowed to examine employee records, but not
the salary attribute) or restriction (e.g., the user may examine
the records of only those employecs in the sales department).
However, the structure of the cxtenal mode! is long-term,
and must be fully specified in advance of any transactions
involving the model, by the database administrator.

Short-term modcls have been considered in only a few
instances. Rowe (1982) has implemented a system that takes
into account the user's preferences (as dictated by the task
that he is trying to accomplish) to decide which items from
the database o present, and in which order to present them.
However, this depends upon (a) having a pre-specified
model of the task to be performed, and (b) recognizing the
current dialogue as an instance of an attempt to perform that
task.  Finkelstein (1982a) uses a short-term, implicit,
individual model, to improve efficiency of query response by
recognizing commonalitics between successive queries.
While his to ours, his
goal —optimization of responsc tinie —is very different from

mechanism  is  similar

ours, which might be termed cooperativeness or habitabiliy.

3. A formal mechanism for representing focus in database
systems

This section presents a focus representation which has been
developed as part of the PIQUE system, together with the
motivation for this model. In bricf, the PIQUE focus
representation models the user by noting which aspects of
the database he has previously examined.

of a focus model entails three

considerations: {a) a representation for the user’s current

The dcevelopment

focus; (b) 4 method of dertving the focus representation, and
maintaining the model during the course of a dialogue; (c) an
cxplicit mechanism for using the focus representation, when
appropriate, in interpretation, or response generation, The
representation and derivation of the focus will be detailed
here. The use of the representation, since it varies with the
type of the problem, will be explained together with the
examples in the following two sections,

3.2a) The focus representation

The user's queries o the datubasce are expressed, at some
level, in a formal data manipulation Janguage (DML), which
is typically a variant of the relational calculus or relational



algebra (Ullman, 1980). For cxample, the query “Who are
the programmers?” might be expressed, in an idealized
calculus-based DML:

{ 2.name : x€emps | x.occupation="programmer® )’

(Le., “Print the names of all the members of the employees
relation whose vocupation is ‘progrommer’,”)

This expression can be viewed as an intensional description of

the class of programmers, as well as as a query, Thus, the DML
can serve as a representation language for describing scgments
of the database (a representation language that has the benefit of
a formal scmantics). The user’s focus is assumed 10 be that
segment of the database that he is currently accessing, so in
PIQUE, the current focus, at any time, is represented
intensionally by a DML expression. The intension (description)
ts a more useful concept than the exrension because it describes,
not only the entities that are currently in the focus, but also the
aspect of hem that is curtently of interest,

Focus expressions encoded in the DML bear some resemblance
10 views, as described in the previous section; both are described
with DML expressions. The difference is that focus is short-
term and implicit, whereas views arc fong-term, and explicitly
specified by the database administrator,

3. b) Deriving the focus representation from the dialogue

PIQUE uses a simple method of tracking the focus in a
dialogue. Each request by the user establishes a temporary
“focus space™, represented by the DML form of the request
Successive inputs may make use of this space, or shiflt o a new
focus space. Focus spaces are "stacked™, to allow reference back
to events or entitics mentioned farther back in the dialogue,
Such references are rare, however,

Unlike Grosz2’s work, the database domain does not provide
stmtig clues for the clasing of a focus space. Rather, such action
s indicated by a shift 10 a new focus space; shifls are indicated
by quenes which examine different areas of the datbase,
queries which invoke entities outside the previous focus space,
etc.

ll’\w actual DML, wed in PIQUE & a madificd fonn of SODA, a LIS
wnpstible yanant of rdationat cilculus, developed by 15ob Mooe; cacept for
syutas, # b fuadanientatly kil 10 the DAL waad here.

4. Ust ol focus In interpreting non-prosomingd definite noun

phrases

A focus space, in general, establishes a "highlighted” subsct
of the objects or entities in the domain of discourse. In the
database context, the entitics of the domain arc those that
appear us entitics In the database ("entity" Is used here In the
sense of Chen (1976).)

The focus space identifies subsets of certain entity scts. This
focus space might then provide the referent for referring
expressions in subsequent dialogue. Further queries which
reference the entity set in question may be evaluated over the
subset, instead of the entire set. The interpretation-in-
context can be cffected via query modification:  the DML
expression of the subsequent query can be modified
algorithmically o incorporate the intension of the focus,
(See, for example, the INGRES system (Stonebraker, 1975).)

Consider again the example of Section 1. ‘The focus
representation,  established by Ql, “Who are the
programmers?”, would be cxpressed in the DML as:

{ x.name x€emps | x.occupat.ion-"progruuunor}

identifying a subset of the sct of employees.
The initial interpretation of Q2, "What is Jones' salary?”,
(without context) would be:

{ »x.sal x€emps | x.name="Jones" }

Q2 may be modified, to range over the subset established in
Ql:
{ x.s81 : x€emps | x.namo="Jones"A

x.occupation="programner” }

The decision to use the focus in Interpreting a query ls based
on a number of factors, and is discussed below.

Consider a more complex example of definite noun phrise
rcference:

Q1: List the name and type of all American ships
that are docked in French ports.

RL: Name type
Kranj supertanker :
Totor tanker
Pequod bulk carricr

R

Q2: What cargoes are the tankers carrying?



The DML corresponding to Q1 is:

{ n.name, a.type n€ships, y(ports |
y.portnm=a._portnm A y.country="france® A
x.country="Us® }

(e, conwining a single join between the ships and ports
relations), and the DML for the global interpretation for Q2 ls:

{ y.cargo : atships, y€shipments |
x.type="tanker® A y.shipment#=sx.shipmant# }

(also containing a single join; note that in the database,

shipmenis are kept in a scparate “relation, lo prescrve a
permancent record),

The focus determines a subset of the ships relation; Q2 can be
interpreted with respect to that subset, to mean, “What cargoes
arc American tankers that are docked in French ports
crmying?”:
{ y.cargao x(ships, yCshipments, z2Cports |
x.type="tanker”™ A x.countrya“"US® A

y.shipment#-x_shipment# A z.portam=x.portnm
A x.country="France® }

(Note that renaming of variables may be necessary during query
modification.)

The focus space also induces a subset of the porrs relation, 1 Q2

had been “What are the names of the ports?”,
{ x.portnm : x€ports }

a reaonable interpretation would have been to intemret it with
respect 10 the focus space, to mean, "What are the names of
French ports that have American ships docked in them?™:

{ x.portnm : x€ports, y€ships |

y.portams>x. portam A x.country="france” A
y.country="us® )

In natural dialogue, items not explicitly mentioned may
sometimes be considered 10 be "in focus™. Consider, "1 bought
a new bricfease yesterday, and the handle broke”, The phrase
“the handle™, although not mentioned previously, is in focus
through a type of foregrounding. This phienomenon of implicit
Jocus arises occasionally in natural fanguage querying; consider
a database of projects and parts, where parts have numbers,
asts, ec.:

Q1: What pans are needed for project 10?
Ri:d-12,5-79.....
Q2: What are the costs?

Clearly, the costs requested are those of the parts mentioned in

R1. However, Q2 contains nothing to relate it 1o Q1. The
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differcice between this example and the previous ones is that
in the carlier cases the follow-up query explicitly mentioned
an attribute. or relation that appearcd in the focus space (or a
value for such an attribute).

This phenomenon can be handied with the same mechanism.,
The initial interpretation of Q2 is:

{ x.cost : xepart )

(i.e., list all the costs in the database). This interpretation is
dictated by the databasc schema, which finds that costs occur
only as an attribute of parts. Since the variable of Q2 ranges
over the "parts” relation, and the focus space provides a
restriction on that relation, the qucr); may be interpreted in
context. Thus, the database schema and focus mechanism,
together, provide a type of implicit focus.

4. a) Appropriateness and efficacy

Like all heuristic approaches, the method discussed here has
limitations. In this section, we consider the class of situations
in which the model is appropriate, the kinds of errors that
can arise in the use of the model, and methods of avoiding
inappropriate vse.

For the focus model discussed here, an inappropriate effect
would be 10 evaluate the query with respect 1o a restricted
focus space, when the user had not intended this restriction,
It is instructive to consider the kinds of errors which can arise
from inappropriate application of the focus mechanism,

Consider the scquence:

Q!: Which employees make more than $20K?
R1: Forsythe, King.....
Q2: Who lives in San Francisco?

Suppose that the system assumes that the second query refers
to employecs making more than $20K who live in San
Francisco, when this is not actually the case. The answer
returned from Q2 will be incomplete—omitling many
employees~but not wrong: all the information that does
appear will be correct.

As anothier example, consider:

Q1: Which suppliers are located in LA?
R1: ABC,...
Q2: Which parts do not have suppliers?

If the restricted version of "suppliers” induced by the first
query is used in interpreting the second query, some parts



might erroncously be included in the answer set (ic., parts
which have only suppliers outside of LLA.).

The difference between these two queries is that the first is
manotonic {Finkelstein, 1982b). Roughly, monotonic queries
are those which contain neither universal quantification, notr
(cerain forms of) negation. (In the relational algebra, these
correspond 1o the operations of division and ser difference.) This
is a large class of queries, which includes the common selecs-
project-join queries. Only non-monotonic queries such as Q2 in
the second example above admit errors of. incorrectness,
PIQUE avoids such errors by restricting the use of focus o
monotonic queries; errors which do arise are, at worst, sins of
omission.

The problem of inappropriate application of focus may be
ameliorated in several ways. ‘The simplest is 10 provide
feedback, to inform the user whenever a contextual, as opposed
to a global, imerpretation of his query has been chosen, PIQUE
‘uses a simple natura! language generution module for this
purpose.  Far the example of scction 1, the statement produced
would be:

By “Jones™, ! assume you mean the employee
"lones™ with occupation = "programmer™

Feedbuck of this form does not solve the problem of
inappropriate use, but warns the user of the possibility of errors,

Another method of avoiding error is 10 be "conscrvative” in the

usc of the focus mechanism—to avoid context-directed
intcrpretation if there is doubt as to whether that is the user's
intent  In PIQUE, this decision about appropriatencss of the

focus s made hcunsucnlly, based on two rules;

(1) If the query identifies a subset of an entity set which is
already restricted by the focus space, do not use the contextual
interpretation,

“This peevents situations such as:

Ql: Which cmpldyccs work in the sales department?
R1: Kegan, Desjardins .. ...
Q2: Which employcees live in San Francisco?

The second query is presumably not intended to be interpreted
in the context of the st If the contestual interpretation had
been intended, the user would probably have cliosen a different
formulation for Q2, such as “Which of than live in San
Francisco.”® The invocation of the focus mechanism here would
be blocked by the fact that Q2 asks for the name (an
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identification field) in a subset of the set of cmployees.

(2) If the contextual interpretation of the query s alicady
answered in the focus space, do not use the contextual
interpretation.

Consider:

QI List the name, salary, and occupation dr
employees who live in Palo Afto.

.RL Name Salary - Occupation
Baker 20 clerk
Allen 25 programmer
Monro 30 programmer
White 25 typist

Q2: What are the salaries of the programmers?

In this case,
programmers who live in Palo Alto"” leads to a reading which

interpreting  “the programmers” us  “the
p 4 !

is already answered in Q1. The contextual reading of Q2 is
subsumed by Q1; the test for subsumption can be performcd
dircctly on the DML expressions.

A third method for avoiding inappropriate use of focus is to
operate in "f&ilurc-drivcn" mode - use focus only when the
interpretation without context fuils due 0 refercnce fullure.
An instance of reference fallure appears in the example of
section 1: the structure of the query Q2 indicates that “Jones’
salury™ is presumied 0 have u uniyue referent, but that Is not
the case for the global interpretation.  The failure-driven
method has not been impleniented in PIQUE, because the
DML dues not have the capabilily of expressing assumptions
To encode
such uniqueness, a metu-query lunguage, like that used in
(Kaplan, 1979) would have to be used, Also, the fulture-
driven approach does not handie plural noun phrases.

of uniqueness, as occur in Q2 of the example,

5. Other exumples of use of this model

We discuss a number of other uses for a focus mechanism,
These fall inlo two classes: (a) interpretation of potentlally,
ambiguous user input; (b) other applications: updates,

explanation, response generation, ctc.
S. a) use of focus to ald lu diswmblguation

A natural fanguage database system will often produce

’l’lonominul reference prescits difivient proliems, and ls typleally
addressed with diflerent mechanisms; interpictation of pronouns by not
implemented in PIQUE.



muhiple interpretations of a single input. These alf indicate the
presence of some fonn of ambiguity in the user's input. In many
cscs, a preferred interpretation may be selected, using
heuristics based on information contained in the database
schema (eg.. Kaplan, 1979), or in the database itself (e.g.,
Harris, 1977} Interaction with the user (e.g., Codd, 1978) is
another possible scheme for resolving ambiguity.  The
information provided by the focus model also allows use of
heunstics that provide a preference ordering for the possible
interprelations.

$. a. 1) structural ambiguity — navigation

Natural language database systems must perform navigation
between the concepts mentioned in a query, in order o reach an
mierprewation. If two concepts are multiply connected (ie., the
sct of perminted connections specified in the dawbase schema
cuntaing a cycle), each path between them will correspond 10 a

dillerent interpretation. The query might not provide enough’

information W determine the correct path. This problem might
be alled pragmaric or struciural ambiguity, and can be
addressed by a suitable context mechanism,

Consider a planning database, for an (American) city:

Residents

and a simple dialogue:

Q1: What is the zip cxic of Forsythe's home address?
R1:90120
Q2: What is Brown's zip ax]c“.'

Q2. by
“Rrown™ and “zip code™ within the database can be made in

itself, Is ambiguous, since the connectlon between

two ways, cach involving a join:

{ y.z2ip-code : yCzip-codes, xCresidents |
a.nama="Brown® A y.address=x.home-address }

{ y.zip-coda : y€zip-codes, xe€residents |
a.name="Brown” A y.address=x.office-address }

Using the focus derived from the QI, we sec that the user is
temporarily focusing on a particular sub-structure of the
dutabase, in which navigation between person and zip codes is
performed via the home address.  The structural similarity
between the focus established by QL and one of the
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intcrpietations of Q2 can be recogniced by obsciving that
they have the same connection graph.  Roughly, the
connection graph is the representation of the conncctions
between relations implicd by the query (Uftman, 1980), and
is sometimes formed automatically in course of query
processing.  Equivalence of connection graphs can be
checked easily, allowing the preferred reading to be sclected
with the aid of the focus.

$.a.2) word-sense ambiguity

As in normal English, a word may have a number of different
meanings in a database query prog}am. Focus will oflen
suggest the intended meaning. Consider a shipping database,
which has information about classes of ships, including
length, beam, draf, etc., and the following dialogue,

Ql: How long are tankers?

{where "tankers" are a class of ships}
R1:240 L
Q2: Which is the biggest class?

“Biggest” has two distinct meanings in the lexicon, referring
to the length of ships in a class, or the number of ships in the
class. Given the dialogue above, the former reading scems to
be preferred, ‘That reading can be selected, using the fact
that the attribute (property) mentioned in the query also
appears in the focus,

Use of focus to aid in disambiguation, as in the above
cxamples, is invoked only when global query intcrpretation
has failed (produced multiple readings). Thus there is no
danger of inappropriate use of the mechanism, although, of
course, the heuristics themselves may be wrohg.

5.b) other applications

In addldon o0 aiding in query disambiguation, focus models
may find application in a range of other database tasks,

5. b. 1) databasc updates

The main goal of the PIQUE system is the interpretation of
update requests.  Processing updates cxpicssed in natural
language introduces probiems beyond those encountered in
processing natural fanguage queries. These difficulties stem
from the fact that the user will naturally phrase requests with
respect o his conception of the domain, which may be a
considerable simplification of the actual underlying database
structure.  Updates which are meaningful and unambiguous



from the user’s standpoint may not translate into meaninghul or
unambiguous changes to the undc}lying database.  Update
requests may be impossible (cannot be performed in any way),
ambiguous (can be performed in several ways), or paihological
(can be performed only in ways which cause undesirable side
effects). Nawral language updates cannot be handled without
some form of focus model; the model is necessary in order to
generate the possible ways of performing the update, and to
choose among them.

Coasider a very simple database consisting of two relations:

Emnps Dapts

Name Empno Dept Name Mgr
Brown 103 Sales Sales Jones
Adams 222 Invntry Invaotry tLasker
Larkin 145 Sales

and the following diatogue:

Q1l: List the employees, and the managers
of their deparuments.

RI1: Name Mgr
Brown Jones
Adams Lasker
Larkin Jones

Q2: Change Brown's manager from Jones to Baker,

The update is a request 1w modify the information which was
presented in RL Since that relation is only derived, the change
must be effected in the underlying database; the only reasonable
way to do this is to replace Jones with Baker as manager of the
Sales Depantment (If Baker had been manager of another
department, say Production, another possibility for performing
the update would have been 1w move Brown o that
depanment.)

Focus can be used in two ways here:

(1) Without consideration of Q1, Q2 may be rather meaningless;

(2) The update Q2 has the side ¢ffect of changing the manager of
Larkin. PIQUE would inform the user of this with a message:

Note that the employee Larkin has also had the
manager attribute changed o " Baker”,

Without a focus model, these side effects cannot be detected.
The processing of natural language updates with a focus model

is analogous to the problem of performing updates through
views of databases, which has been extensively studied (sce, ¢.8.,
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Keller, 3982; Dayal and Bernstein, 1978; Bancithon and
Spyratos, 1981). The difference lies in the short-term mature
of the (ocus model, compared to the long-term character of
views. For morc details on the update process, see (Kaplan
and Davidson, 1981).

5. b.2) response generation

The gencration of descriptive expressions requires a model of
the user's viewpoint, just as intepretation of such expressions
does. The referring expression must be precise enough to
enable the user o pick out the object(s) specified from all the
other objects that he knows about,

Consider another update interaction with the database
above; '

Q1: List the employee numbers of employees in
the sales department.

R1: Name Empno
Brown 103
Larkin 145

Q2: Change Brown's employce number to 222,

This time, there is exactly one way to perform the update:
change Brown's employce number in the underlying
database. If, however, there is a scmantic constraint that
employce numbers be unique (i.c., a functional dependency
Empno --> Name), the change will be blocked because of the
tuple (Adams 222 Inventory). The explanation given to the
user by PIQUE would be:

The EMPNO value of 222 has already been assigned to
the employee Adams, whose department is "Inventory"”.

which informs the uscr of the existence of the "Adams”
tuple, and indicates why that tuple was not scen previously,
in this case, the model was necessary in order to understand
which aspects of the wple in question were salfent to the
user, allowing the system to present ohly those aspects.

7. Discussion and Conclusions

A method has been presented for modeling focus during
natural language interaction with a datubuase system, which
enables the system to exhibit more appropriate behavior in
certain situations than is otherwise possible.

Creation and maintenance of models of this sort are



inexpensive; the operations involved in retaining the focus, and
deciding the applicability of a focus to a later query, are cheap.,
The test for applicability of focus will return quickly with
negative resulls in most cases.

The view mode! does not require an explicit list of the
information known by the user (as is the case in some other
approaches), but rather operates with the intensional form of the
user's view, resultng in a space efficicncy. However, it may
sometimes be desireable o retain the extension of the focus
space, in the form of a “temporury™ or “snapshot”.
cases, significant improvements in efTiciency of query processing
may result  In appropriate cases, the query may be evaluated
against the temporary, rather than the full database, at much less
cost; Finkelstein (1982a) considers this possibility in detail,

The approach described here does not require any additional
information, beyond that which is already encoded in the
database and schema. natural Language capability (embodied in
the grammar) need not be extended, since all operations are
performed at the tevel of the DML, These points are requisites
for portubility of the natural language interface 1o a new domain
or new database system.
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WHAT “ISA" IS AND ISN'T

Ronald J,

Brachman
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Artificial Intelligence Research

Palo Alto, CA 94304

1. Introduction

This is a treatise on
representation - in
style of connecting up representational
entities Iin semantic network and frame
systems, A taxonomic hierarchy with some
sort of "inheritance® link has been the
mainstay of semantic nets since the work
of Collins and Quillian (7, 8), and the
"ISA link" (a.k.a. "IS-A", "IS", “SUPERC",
®AKQ®, *“SUBSET", etc., etc.} has been
perhaps the most stable element of
semantic nets as they have evolved over
the years. But this stability is perhaps
merely an illusion; as this paper* sets
out to illustrate, there 1is often very
little in common between ISA links in one
system and another,

knowledge
particular, on the

The idea of "ISA®™ is quite simple,

Early 1in the history of semantic nets it
was obsgserved that much of representation
of the world was concerned with the
conceptual relations reflected in
sentences like *"John is a bachelor®, and
“a Dog is a domesticated carnivorous
Mammal®, That is, two of the predominant

forms of statements to be handled by Al
knowledge representation systems were the
predicative one, expressing that an
individual (e.g., John) is of a certain
type (e.g., Bachelor), and the universally
quantified conditional one, expressing
that one type (e.g., Dog) is a "subtype"
of another (e.g., Mammal). The easiest
way to get such statements into a semantic
net scheme was to have a 1link that
directly represented the "is a®™ parts of
the above sentences, and thus the ISA link
was born,

brief summary of an
same name to be
Fourth National
Society for

*Thia paper is a
invited talk of the
presented at the
Conference of the Canadian
Computational Studies of Intelligence,
Saskatoon, Saskatchewan, May 17-19, 1982,
It is not intended to be a thorough
treatment of the 1issues, but rather an
outline of topics to be covered in the
presentation. :

It was quickly noted that the ISA
connections formed a hierarchy (or in some
cases a lattice) out of the ¢types being
connected. The hierarchical organization
made it easy to distribute “properties®
such that shared properties were stored at
the place 1in the hierarchy that covered
the maximal subset of nodes that shared
them. This made the semantic net an
efficient storage s8cheme, since shared
properties were not replicated every place
they held truejg they were instead
“inherited” by all nodes below the ones
where they were stored. This, of course,
is the notion of inheritance of properties
that 18 always mentioned in the same
breath as the ISA link,.

Once the pattern of a network of I1ISA
links with property inheritance was
established, all kinds of new sachemes

developed that used the net as a basis for

more elaborate kinds of statements,
descriptions, etc, (see (5) for a
survey). There also quickly arose a

debate about whether the network structure
was just so much obfuscation of the simple

predicative and conditional statements
that the ISA links were representing. It
seemed that all such eemantic nets

provided was an indexing facility over
formulae just as well (and perhaps better)
expressed in the language of first order
predicate logic (18, 12, 13, 15}). The
interesting. thing about the debate was its
consistent "apples vs., oranges"” flavor -
each time the logicians tried to pin down
the intent of ISA, the net-workers would
claim they were missing the point. The
same was true of cross-net comparisons ~
one scheme was criticized on the basis of
what the critic thought the ISA
connections should mean, while the scheme
was defended on the basis of what the
author thought s/he meant.

If nothing else, the various debatas
over semantic nets have made it clear that
there i8 not a single ISA link. It is
also clear that little sclentific progress
can be made until we understand what the
link could mean, since a coherent debate
on the merits of logic vs. semantic nets
cannot be had without some firm logical
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claim about the Import of ISA. (At the
very least, it is hard to imagine trying
to justify the advantage of a semantic net
over logic without formally characterizing
the expressive power of the former.)

So the question we set off to
investigate here is this: just what is 1t
that ISA 1links are intended to mean? 1In
the course of this investigation we shall
£ind sone interesting and perhaps
surprising things:

o the more or less "standard*® use
of ISA {the "default
interpretation of ISA®) has some
serious problems. You cannot
use a network based on it to
represent complex concepts, and
the notion of "®cancellation*®
that follows from it can wreak
havoc with your world knowledge.

o the tight association of
inheritance and ISA serves only
to confuse already confused
matters further, and only by
placing inheritance in its
proper place (it is an

implementation issue and not an
expressive power one) can we get

clear on what the claims about

ISA really are.

Along the way, we will produce a
rational reconstruction of the ISA

telation, and make some constructive
suggestions aa to how the next generation
of knowledge representation languages

should be structured. We'll
some fun with the “cancel link®,.

also have

2. What ISA is

Pirst we are going to
catalogue the various semantic relations
that ISA has been used to represent. This
will most likely not be a complete
catalogue, and it may even be unfair to
certain network designers. But a somewhat
careful look at the literature will reveal

attempt to

that this 1is such a murky area that
perhaps we can be excused on these two
counts.

2.1. An enumeration of ISA-intents

Before enumerating the ISA's, we need
to quickly cover the kinds of things that
ISA has been used to relate.
itself complicates matters immensely -
semantic net nodes (and frames, for that
matter) have been variously thought of as
representing sets, concepts, kinds,

construed

This in

predicates, propositions, “prototypes",
general terms, individual terms, and
individuals (and probably many more things

as well). One major split that we can
make, despite this variety, is that
between generic and individual
interpretations of nodes. Roughly
speaking, some semantic net nodes are

thought to be descriptions that can apply
to many individuals (think of "apply” here

in the loosest sense possible), and some
are thought to represent elther
descriptions applicable to a s8ingle
individual, or such individuals
themselves.

Generic nodes can be more or less

specific than other generic nodes -~ this
is what gives semantic nets their network
structure - while individual nodes tend to
be all at the same level of specificity.*
Thus, all internal nodes in the network
are generic, and the leaves are
individual, So we can immediately divide
the ISA relation into two major subtypes -
one relating two generic nodes, and one
relating an individual and a generic.**
For example, if generic nodes are
as sets and individual nodes as
individuals (see, for example (14)), then
we would expect to find an ISA for the
subset relation, and one for the
membership relation.

2.1.1, Generic/generic relations

Wwhen two generics are related by an
ISA connection, the intent is usually that
one is somehow related to, but lass
general than, the other. We have at least
the following kinds of uses for

*Unfortunately, even this is
controversial, Some authors distinguish
between two kinds of individuals, roughly
corresponding to "John®™ and “John as a
child". The latter is sometimes called a
"manifestation”. Further, sometimes the

individuals in semantic nets are
considered to be descriptions and
sometimes to be Russellian logically

proper names (descriptionally vacuous).

**To the extent that an "IS" relation is
considered a cousin of these ISA's (see,
for example (1)), we also have a relation

between two individual nodes to consider.
We would consider at least the "is"™ of
equality of individuals ("Cicero |is

Tully"™), the "ig® of attribution of an
individual description to an individual
("Kareem is the tallest player®”), and the
"is" related to manifestation.
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generic/generic relations:v

Subset/superset: when nodes are construed
as sets, then the connection that gives
the network 1its structure represents the
subset relation, Some nets appear to
represent relations 1like "a NUKE.SUB ISA
SUBMARINE", but when these are sets, they
really captuce the proposition “"all
NUKE.SUBS are SUBMARINES", In other
words, “for all x, if x is in the set
NUKE.SUBS, then x is in the set
SUBMARINES®" is the meaning of ISA here,

Generalization/specialization:
generalization seems to be expressible as
a simple conditional: e.q., N
NUKE.SUB(x) D SUBMARINE(x).

This is the interpretation of the ISA link
offered by Hayes (13), and is probably the
standarad semantic net connector. e
should point out that something further
needs to be said about the quantifier on
the conditional - while Hayes speculates
that a universal quantifier is what {is
meant, networks that interpret nodes as
“prototypes® or somehow typlical generics

enbed their conditionals in more
unorthodox “defaults®, We investigate
this point further in Section 3, as it
bears strongly on the expressive

capability of the language using it,**

"AKO": "AKO" means ®*a kind of", and |is
intended to stand for the relation between
“Camel® and “Mammal® in "the Camel is a
kind of Mammal®. To a very large extent,
this is exactly the same as a
generalization relation; however, somehow
it feels wrong to have an AKO link from a
caoncept that does not represent a kind
(e.g., "a person who just happens to be
walking to school right now" is certainly
a person, but seems not to be a kind of
person). Thus, we get the impression that
one ought to distinguish between nodes
standing for kinds and nodes standing for
more arbitrary descriptions, thereby
distinguishing between the
generalization-style relation and the
AKO-style relation.

Value restriction: another relation
between generics is the kind intended 1in
*the trunk of an elephant is a cylinder
1.3 meters long®”. The intent here is to
say that a certain kind of entity (in this
case, a °®trunk”) in some context must be
of a certain type. This is related to

sBorgida (2) offers a similar treatment
for the case where the objects related by
ISA are procedures.,

related issue is the presence
operator -

s**Another
or absence of the "necessity"”
see Section 2.2.4.

"attribuction® in (1).

Conceptual containment: in some cases, the
intent of an ISA connection is not merely
to Btate a generalization, but to express
the fact that one description includes
another. 1Instead of reading “a TRIANGLE
ISA POLYGON® as a simple generalization
(such that there are triangles and
polygons and this happens to be the
relation between them), we want to read it
as "to be a Triangle is8 to be a Polygon
with three sides”. This is the "ISA" of
lambda-abstraction, wherein one predicate
is used in defining another. Note that
this demands interpretation of nodes as
structured descriptions, not simple
predicates,

Set and i{ts characteriatic type: this
isn't really an ISA relation) it's the one
between the get of all Elephants and the
concept of an Elephant. It associates the
characteristic function of a set (e.g9., a
"prototype” in NETL (10)) with that set.

2.,1.2, Generic/individual

The general intent of
generic/individual connections is to state
that an individual is8 deecribable by a
general description.

Set menberships if the generic is
construed as a set, then the relation |is
membership - "CLYDE ISA CAMEL" means
"CLYDE I8 a member of (the set of)
CAMELS*®,

Classification: this is the use of ISA
that predicates a description of an
individual. It wusBually involves a type
predicate, like "DOG", or "“BRICK".

Abstraction: this relation "goes the other
way®, in a s8sense,. An abstraction is
individual, like "the camel”y the
abstraction relation is that between the
singular description "the camel” and the
(generic) predicate “"camel(x)".

Conceptual containment; when the
individual node is thought of as a
structured individual description, the
relation between it and a generic could be
one of conceptual containment ~ the
generic description could be used in the
formation of the individual description,
This {8 the case with the relation
between, say, "the father of John" and
"father™ in “the father of John 1is a
father", Note that the relation between
the two occurrences of "father* in this
statement is the classic type/token
relation of the earliest semantic nets.
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2.1.3. The “"general purpose®™ ISA link

One approach to the plethora of
ISA-relations that has surfaced from time
to time is the "general purpose
inheritance 1ink®, Since ISA has so0 many
guises, its inventors argue, they are best
served by making a "programmable®
connection between nodes.* The user can
turn off attributes that he doesn't want
inherited by the more specific node, and
turn on others that he does. Primitives
like "PASS", ®ADD", "EXCLUDE", and
"SUBSTITUTE" (1ll) give the user extensive
flexibility in making his ISA link do what
he wants. The semantics of ISA relations
constructed this way, however, cannot 1in
general be predicted.

2.2. An analysis

There seem to be several different
dimensions along which ISA links can vary.
Each of these will be briefly described
below:

o first, there |is
conceptual entity
can embody

the type of
that a node
{(description, set,
predicate) - this has a direct
effect on the import of the ISA
link (it governs the shape of
what we'll call the "matrix® in
Section 2.3);

o second, there |is the basic
syntactic function of the link -
in particular, we contrast a
sentence~forming intent with a
description-forming one;

o thirdq, for sentence-forming
ISA's, we have a notion of the
"quantifier® of the statement
(e.g., honest~-to-goodness
universal vs., default);

o for these types of relations, we
need also consider modality
{necessity vs. possibility);

o finally, we must consider
whether or not the link, by its
very presence, makes an
agssertion.

*®...a knowledge representation system

must represent arbitrary mappings between

concepts.” (1l1)

2.2.1. Effects of ontology

The first major influence on the ISA
relation is the type of item that ISA is
about. If ISA is a relation between two
sets, then it 1is wusually about their
membership or cardinality. 1In the typical
case, it is a relation between
memberships, with an implicit statement
about cardinality (the cardinality of the
less generic node must be no greater than
that of the one it is related to). The
generic/individual version 18 typically
the set membership relation (although see

(14) for variations).

When the {tems to be related
predicates, then ISA typically has
something to say about predications that
follow from other predications, using the
material conditional. The hierarchy
derived from this style of ISA has an
“if/then® flavor - if you are a person,
then you are a mammal, etc. Note that
this tends not to say what it {is that
makes you a person in the first place (see

are

Section 3 for more on this). If the
predicates related by ISA are all
one-place, then the semantic net style
link will suffice without elaboration.
I1f, however, the predicates have arity

greater than one,
to account for

something must be done
the mapping of variables

from antecedent to consequent, This has
traditionally been done with slot names,
but sBee (20, 4, 5) for a detailed
discussion on the insufficiency of this
mechanism,

When the 1ISA-related objects are
intended to be descriptions, or

“concepts®, then the relation between them
tends to be either about the structure of
the descriptions themselves or about the
classes of objects satisfying the
descriptions. In the former case, an ISA
like "a TRIANGLE ISA POLYGON" says that
part of the description of any triangle is

that it is a polygon. The same "kind of"
relation holds if one of the descriptions
is an individual description. Finally,
when the ISA link is about the objects
satisfying the ISA-related concepts (as
opposed to being about the descriptions

themselves), the relation is much like the

subset relation.

It should be pointed out that the
notion of an ISA relation carrying
structure between structured descriptions
is the point of most radical departure
from standard predicate logic~-based
representation schemes. All of the other
ISA sub-factors we have pointed out are
easily expressed in standard
quantificational languages (although see
Section 2.3).
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2.2.2. Sentence-forming vsa.
concept-forming

ISA 1links in most semantic nets are
used to make statements about the world.

When we say “an ELEPHANT-WITH-BLUE-EYES
ISA ELEPHANT*, we intend to make a
statement about two classes: all things

falling under ELEPHANT-WITH-BLUE-EYES also
fall under ELEPHANT. If we want to be a
little more explicit about the fact that
these elephants have blue eyes, we might
say “an ELEPHANT-WITH-BLUE-EYES ISA
ELEPHANT, and has BLUE EYES". But let's
not be misled by the hyphenated node name
- this could just as well have read "a
G0047 1is an ELEPHANT and has BLUE EYES".
This looks plainly like an assertion about
some independently existing GO0047 class.

But what about the class of elephants
with blue eyes (no hyphens)? A different
ISA~import is needed to create a
description of that class. The standard
sentence-forming ISA-import isn't enough,

since we don't intend to imply that there
is some independent class,
elephant-with~blue-eyes, that is not
merely the elephants with blue eyes. So
there needs to be a distinct
description~forming style of ISA to
express the relation between the concept

of an elephant with blue eyes, and the
concept from which it is formed, elephant.

This is what we have been calling
“conceptual containment®™, above.
2.2.3. "A weak Bengse of ‘every'"

AS Just mentioned, just about

everyone uses the ISA relation to make a
statement about two classes or a class and
an individual. While the obvious
quantifier to assume holding over such

statements is the universal one (e.g., see
(13)), this appears not to be in every
semantic net designer's mind. For

instance, consider,

I am using a weak sense of the
word "every® here: I mean that the
property is true of every elephant
for which it 1is not explicitly
cancelled. (10)

Fahlman has an operator to take a “weak
sense of ‘every'” quantifier and make a

standard one out of it - the “"sacred"
operator. So, for any sentence-forming
ISA link, we need to know if it is a true

universal, or merely a default.

2.2.4. 1s this necessary?

While the distinction is almost never
made in semantic net systems, there is
another dimension along which 1I5A‘'s can
vary. Some statements, be they unilversal
or default, could be otherwise - it is
quite conceivable that, for example, banks
in Massachusetts might have been open on
sundaysy it just didn't turn out that way
{i.e., "MASSACHUSETTS-BANK ISA
COMMERCIAL~INSTITUTION~CLOSED-ON-SUNDAY"
is contingently true). However, it is not
possible that triangles could be anything
but polygons. The latter is a necessary

truth, the former a contingent one.

One property of the term-formation
style of ISA is its implication of
necessity for the concomitant relations

(it {8 impossible for an elephant with

blue eyes to fafl to be an elephant).
2.2.5. To assert or not to assert
In many systems, the ISA link asserts

a truth by its mere presence. Having the
statement "CHRISTOPHER ISA SON-OF-J.R." in

your semantic net means your syastem
believes the horrible truth about
Christopher. Without some other form of
ISA relation, we are not free to
contemplate a proposition without
incidentally asserting {t. Thus the
distinction between asserted 1ISA's and
simply structural ISA's adds another
dimension to the ISA connection.
2.3. why isn't this just logic?

Our analysis has left us with the

following picture: there is a major split
of kinds of things to say with ISA into

1. those that take one concept and
form another out of it, and

2. those that make some sort of
gstatement about the relation
between two sets or the

arguments to two predicates.

The ones that are used to make statements

have four sub-componentsi

*aggertional force" of the
statement - whether or not the
statement represented by the
ISA is to be consgidered
believed.

1. the

2, the "modality" of the statement
- whether the truth represented
by ISA is necessarily true, or
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is just contingently true {and
could thus be contemplated to
be otherwise).
3. the "quantifier® of the
statement - whether the matrix
is to be considered universally

true, or Jjust “true unless

explicitly cancelled"™. In the

latter case, the 1ISA 1is a

default (see, for example,
{19)) .

4. the “"matrix® - the content of
the statement, As 1illustrated
abhove, this generally has the
structure of a set inclusion

{(or membership, in the case of
a generic/individual ISA) or a
material conditional {or
predication, in the case of a
generic/individual "ISA)
statement.

These four factors used to form the
ISA relation 1look suspiciously like the
pieces that make up more or less special
cases of more or less standard logical
statements (in, say, prenex normal form).
Is the ISA 1link, then, accounted for
completely by standard, off-the-shelf
logical machinery? Why isn't this just
logic?

Well, much of it is - but all of
factors combine to force us out of the
realm of the s8tandard, well-understood
logics. We won't belabor the point here,
since it is treated in depth in (15), but
the modalities and defaults are enough to
put us on shaky 1logical ground. When
lambda abstraction, or something 1like it
(the concept-forming kind of 1ISA), is
added, then a semantic net account that is
semantically well-specified is as valid a
candidate for a logical account as
something that looks more like predicate
calculus,

the

In addition, there are other factors
that make the concept-forming style of ISA
and the resultant network-style lanuages
look 1like real alternatives to standard
predicate logic accounts.* For one, having
structured terms that are {nterrelated
provides a basis for a formal account of
the terminology used to describe a domain.
Predicates in standard predicate 1logic
accounts are all atomic (see Section 3),
and thus, the relations among the
predicates themselves are not supported by
the logic (remember above, where we
mentioned that while it is easy to say “a

*These discussed 1in more

depth in

factors
(3.

are

person is a mammal®, what being a person
is in the first place 1is left unsaid).
While this is not an isaue of more
expressive power (you can say what needs
to be said in a primitive-predicate-based

system), it is a ~matter of perspicuity,
and perhaps even computational
tractability,

Also, semantic net-style
representation emphasizes certain
compelling patterns in knowledge
representation that do not emerge from
predicate-logic based ones. For example,
at least one interpretation of the
concept/role paradigm (see 3.1 for the

appropriate logical form) can be expressed
eagily in a standard logical language, but
that pattern is just one among infinitely
many. Network schemes have elevated the
pattern to the 1level of a built-in form
because of 1its widespread utility in
representing knowledge, Another
compelling pattern is the very distinction
of "ISA" from "is" ~ semantic nets have
acknowledged the prevalence of reasoning
based on types from very early on, and
have made a prominent distinction between
the sense of "is"” in "John is a man® and
all other senses of "is" (e.g., “"John is
running scared"®, "John is extremely
tall®").* Some recent interest 1in using
sorted logics for knowledge representation
(e.g., in KLAUS (17)) indicates that this
is another area where semantic net-based
schemes can make a contribution.

network
are a
of

it's not as |if

their ISA-links
non-contribution to the world
representationy it's just that we're
usually pretty confusing about the nature
of that contribution. Expressive power is
not the crux of this knowledge
representation issue; it's just one part
of a multi-faceted job., We should try to
be much clearer about the 1logical import
of our networks, frames, or whatever, so
that we can clearly see what 1is a real
contribution, and what is just syntactic
sugar. Section 4 provides an example of
one aspect of the ISA link that has served
more to confuse 1its import than to
highlight its contribution.

So, in sum,
schemes with

3. What ISA shouldn't be

Now that we have elaborated a bit on
the factors that make up the multi-faceted
ISA link, there are two final ohservations
to be made. The first, treated in this
section, concerns the more or less

*Notice link

for ISA

that substituting an "is"
{1) undoes this distinction.

217



standard use of ISA 1links in modern
semantic nets and frame systems. The
second involves the way that "inheritance”
falls to fit in with the rest of the
semantics of the ISA relation, and \is
treated in the next section.

3.1. The default interpretation of ISA

As we mentioned above, Hayes (13)
proposes the following as the meaning of a
frame representing the concept C, with
slot-relationships R ,...,R :

1l n

Vx C(x)DR (x, £ (x))
1 1

sVx CIX)DR (x, £ (x))
2 2

& L3

However, the standard use of ISA is
as a default - “"CLYDE ISA ELEPHANT" is a
truth about Clyde wuntil it is retracted
(*cancelled"). This logical notation
expresses the material conditional style
of ISA, but not the default nature of |t
(remember that the standard ISA involves
“a weak sense of 'every'").* The claim |is
made that without the ability to cancel
properties, exceptions cannot be
represented, and the world is such that
exceptions are an important aspect oOf
knowledge representation.

Thia style of representation
{(material conditional embedded in a
default) strongly suggests that we think

of the nodes in the net not as concepts,

but simply as holding points for bundles
of default properties. For exanmple, a
node like ELEPHANT should not be

interpreted as representing the concept of
a elephant, but instead as the place to

find all of the properties of "typical”
elephants. So, if we know "“CLYDE ISA
ELEPHANT", then we assume that all

properties of the typlical elephant hold of

t*The default rules can be expressed as
in Reiter's "Logic for pefault Reasoning*
(19), leaving the object language as is.

him.* At some point we may learn of some
specilal feature of Clyde that
distinguishes him from the prototypical
elephant (say, for instance, that he has
only three legs). We notate this by
“cancelling*® the normally inherited
property (e.g9., that typical elephants
have four legs) and substituting the new
one, An  explicit cancelling mechanism
allows accommodation of the fact that
rarely do real elephants match their
prototypes exactly.

Given
prototype

that the properties of the
can be violated by instances of
it, these properties are clearly
non-definitional (which they would be {f
the “conceptual containment® style of ISA
were used). This conclusion i{s reinforced

by the *“outward®” nature of the slots of
the frames: if Clyde is an elephant, then
he has typical-elephant-properties - not

the other way around (i.e., the connective
in the above logical reformulation is the
conditional, not the biconditional),
Again, this seems well and good, since
there are certainly no defining properties

for elephanthood - the elephant {is a
"natural kind*. And, you might add, so
are most, If not all of the concepts that

an AI system will have to deal with; leave
abstract and defined concepts like RHOMBUS
to the mathematicians, and leave the
philosophers to argue about whether
"bachelor® can be defined.

But this {intuitively appealing and
pervasive line is predicated on an
interesting, though unargued and plausibly
erroneous, assumption: as the elephant
goes, s0 goes everykind else. The
unwarranted belief that, with a few
technical exceptions, every concept is
natural kind~ish has had a significant
consequence. There has been no felt need
to provide a facility for expressing
analytic or definitional connections.
This perhaps raises no problems with the
conceptual counterparts of lexical items
like "elephant®. But just as we can
create the English phrase, "elephant that
lives in Africa®, we should expect to be
able to create the node for the composite
concept that it expressesa. Two things are

that tempted to

holding the

*Note we could be
interpret the node
elephant~properties as representing “the
typical elephant™. Pahlman (10) even
goes so far as to label his nodes in that
fashion. The major problem with this is
that it i{s totally unclear what kind of a

thing "the typical elephant {g* - 1t
certalinly 1isn't any particular real
elephant, 1like Clyde. And we don't want

the ISA to mislead us into thinking that

Clyde is the typical elephant.
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certain - an elephant that lives in Africa
can't fail to be an elephant, and it can't
help but 1live in Africal! That is, the
composite concept certainly stands in an
analytic relationship to its *head"
concept, even ir that concept is
associated with a natural kind.

The fact that defaults have been
almost universally adopted at the expenss
of definitional or other analytic
connections has left network
tepresentations 4in a funny state: the
material conditional style of ISA works
okay in one direction (Clyde will accrue
the properties of elephants once you
assert that he i3 one), and one can
represent exceptions (three-legged
elephants and the like). But one cannot
represent even the aimplest of conceptual
composites. And it follows from the lack
of composites that evety single node (or
frame or whatever) in the network is in
fact semantically simple - in other words,
a primitive. An Al system can certainly
use such a network as a databasge
repository for such classificatory facts
as the wuser sees fit to tell it (e.g.,
CLYDE ISA TYPICAL-ELEPHANT), but it cannot
draw any such conclusions itself. Without
being told explicitly, the system cannot
even tell that an elephant that lives in
Africa is an elephant.

3.2, The myth of cancellation

The preponderance of default-style

nodes in semantic nets has admitted
cancellation of properties into the realm
of representation. with it has
unfortunately come a raft of technical
problenms (see (9), for example) - but

even worse, the semantic consequences of
cancellation have not been thought
through. The intuitive feeling 1is that
cancellation can be constrained to handle
just the meaningful cases of exceptions;
the truth {3 that cancellation admits the
most bizarre structures with the most
trivial amount of work.

For example, take this simple case.
As we mentioned, 1if the nodes " in a
default-style semantic net are to be
thought of as representing some kind of
thing at all, they are best attributed
representation of *“typical*® types of
things. So the node labelled ELEPHANT
would best be thought of as representing
"the typical elephant®. Let's say that we
assert that ®"CLYDE ISA ELEPHANT"”, by which
we really mean that Clyde is a typical
elephant. Now let's say that poor Clyde
has had a checkered past and lost one of
his limbs in a street fight - we simply
take advantage of the ability to cancel
properties, and change Clyde's having four
legs to his having three. HNote that the

I8A connection between Clyde and ELEPHANT
ig still there, all the while 1insisting
that Clyde is a typical elephant. But our
taking advantage of the typicality intent
of ELEPHANT should have changed that -~
typical elephants have four legs and poor
old Clyde has only three. Unfortunately,
in default-style nets, there 1isn't any
node to point to that would allow us to
simply say "Clyde is an elephant, however
many legs he has®™ -~ all of the nodes are
just like ELEPHANT.

Anomalous behavior of all kinds can
be generated from the standaxrd ISA 1link
and the concomitant asgsociation of
typicality with the nodes it connects.
For example, {it's easy to 1imagine the
ELEPHANT node having a connection that
says "a TRUNK IS8A CYLINDER with LENGTH 1.3
METERS" (see (16), ch., 6, p. 22, for
example). Well, then, why isn't a
BABY-GIRAFFE simply an ELEPHANT whose "1.3
METER CYLINDER® 1is 1its neck and not its
trunk? i

4, what ISA isn't

One important observation to be made
about our analysis of the semantics of the
ISA link is that "inheritance of
properties” has played no part in our
understanding. This i8 not without good
reason - even though much has been made in
the past of the significance of
inheritance in semantic nets, no one has
been able to show that it makes any
difference in the expressive power of the
system that advertises it. At best, any
arqument that inheritance was useful was
made on pragmatic grounds: it saves
storage space in an implementation.

Without denying the importance of
implementation concerns, we submit that to
the extent inheritance is a useful
property, it is strictly an
implementational one and bears no weight
in any discussion of the expressive or
communicative superiority of semantic
nets. For one thing, any expression of
properties at "the most general place"” |in
a network-style system can duplicated
easily in a 1logical one, You simply
asgsociate the property axioms with the
most general predicate, and the standard
conditionals do the rest. Purther,
inheritance 1is8 only one cut at the
time/space tradeoff for storing properties
in a semantic net; it may be tremendously
eagsier in some cases to store all
properties explicitly where they apply to
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cut down search time.* Thus, although the
ISAN relation can be factored into
sub-components, the useful ones for
semantic purposes are assertional force,
modality, etc., and not “pass this
property® and “"block this one". While
these latter may be very useful tools for
implementing a particular ISA methodology,
they should not encroach on discussions of
the adequacy of semantic net schemes for
representing knowledge.

5. What ISA cughta be

What might be a viable prescription
for future ISA-schemes? It is our feeling
that the obvious one should be explored
firse, We advocate proceeding along the
lines of our analysis of the import of
ISA.

Pirst, we
distinguish between
term~-forming

should carefully

description~ or
operators and
sentence-forming ones. There is a wuseful
place for each, and a marriage of the
traditional logical approach and the more
recent "object-centered® terminological
approach along these lines has not been
explored. In (3), we explore some of the
technical details of the marriage, and
discuss in some depth the value of a
completely definitional taxonomy over and
above the "flat®” loglcal axioms that {t
implies, We believe that structured
predicates (or concepts) play an important
role in expressing knowledge, and the
vocabulary should be preserved in a
representation, despite the fact that all
‘statements using defined predicates might
be reducible to a set of statements using
only primitive ones. One way to do this
would be ' to have a network~style
representation scheme where the principal
relation 18 ' the ISA of conceptual
containment completely distinct from a
network (or set of axiomsa) expressing the
facts of the world. The latter set of
statements (in the "asgertional
component®) would use terminology from the
former {the "terminological component®).

The assertional component is where
statements about the world are made,
Thus, it needs to have the expressive and
inferential power of at least standard
predicate logic,. This could be
accomplished by using a standacd
quantificational langquage, or we could use

implementation of KL-ONE (6),
our purported “structured
inheritance®" framework, we ended up opting
for “memo-izing® properties {in order to
cut down time searching up the network.

*In an
despite

a more network~like language. In the
latter case, the backbone of the network
would be the sentence-forming style of
ISA.

This ISA could be broken down
componentially into a ‘"prefix®"™ and a
"matrix®. The prefix would have three
parts: the assertional force of the

statement (whether or not it was to be
believed}, the modality (necessary, eto.),
and the quantifier (universal,
existential, "typical”, etc.). The matrix
itself would include conditionals much as

in the "frame" eqguivalent above. what
needs to be done i8 to specify what s
implied by weach kind of structure in the

terminological component.

6. Conclusion

Semantic nets have prospered as a
framework for knowledge representation,
but all the while, their keystone
congtruct ~ the IS5A 1link ~ has wavered

ISA
form

considerably in its interpretation.
has been used principally to

sentences that could be asserted -~ {n
particular, gsentences with a default
import. However, there are mnany other

things that ISA has been used to mean, and
comparison between networks and between
networks and logic has been rendered all
but impossible. The analysis presented
here indicates that things might be a lot
clearer if 1ISA were broken down into its
semantic sub-components, and those used {n
turn to support representation (a similar
kind of analysis should be done for the
"PARTOF" or "HAS® link that semantic nets
use to describe properties).

Finally, we should make it a habit to
be careful about s8prinkling talk of
expressive power with implementation talk.
Each has {ts proper place, but taken
together, they tend to get confusing.
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Abstract

Our group’s work in medical decision making
has led us to formulate a framework for expert
system design, in particular about how the
donain knowledge may be decomposed into
substructures, We propose that there exist
different problem-solving types, i.,e., uses of
Xnowledge, snd corresponding to each is a
separate substructure specializing io that type
of problem-solving. Each substructure is in
turn further decomposed into a hierarchy of
specialists which differ from each other not in
the type of problem-solving, but in the
conceptual conteant of their knowledge; e.g., one
of them may specialize in "heart disease," while
another may do so in "liver disease,” though
both of them are doing the same type of
problem~solving., Thus ultimately all the
knowledge in the system is diatributed among
problem-solvers which know how to use that
knowledge. This is in contrast to the currently
doninant expert system paradigm which proposes a
coomon knowledge base accessed by knowledge-free
problem—solvers of various kinds. 1o our
framework there is no distinction between
knowledge bases and problem~solvers : each
knowledge source is a problem~solver. We have
sc far had occasion to deal with three generic
problem~solving types in expert clinical
reasouing § diagnosis (classification), data
recrieval and organization, and reasoning about
consequences of actions., In a novice, these
expert structures are often incomplete, and
other knowledge structures and learning
processes are needed to comstruct and complete
them.

Introdugtion

For the past two years our research group
(consisting of tha author, F. Comez, S. Mittal
aad J. W, Smith, Jr.) has been investigating the
issues of problem-solving as well as knowledge
organization and representation in medical
decision making. In parallel with this
investigation we have also been building and
extending a cluster of systems for various
aspects of medical reasoning. The major system
in this cluster is MDX, which is a disgnostic
system, i.e., its role is Lo arrive at a
classification of a given case into a node of a
diagnostic hierarchy. The theoretical basis of
this diagnostic problem-solving is laid out im

some detail in GComez and Chandrasekaran [1).

The MDX gystem, which is wholly diagunostic ia
its knowledge, communicates with two auxiliary
systems, PATREC and RADEX., PATREC is a data base
asgistant in the sense it acquires the patient
data, organizes them, and answers the queries of
MDX concerning the patient data. In all these
activities PATREC uses various types of inferential
knowledge embedded in an underlying conceptual
model of the domain of medical data. RADEX is a
radiology consultant to MDX, and it suggests or
confirms diagnostic possibilities by reasoning
based on its knowledge of imaging procedures and
relevant anatomy. See Mittal and Chandrasekaran
{2} and Chandrasekaran et al [3) for further
details about these subsystems.

Though in & sense RADEX and PATHEC can both be
viewed as "intelligent™ dats basa specialists,
RADEX has some additional features of interest dus
to the perceptual nature of some of its knowledge.
However, for the purpose of this paper, it is not
necessary to go into BADEX in much detail, and we
can view PATREC as prototypical of this clase of
auxiliary systems.

Our aim in this paper is to outline a point of
view about how a domain gets naturally decomposed
into substructures each of which specializas in one
type of problem~solving. Each of these
substructures in turn further gets decowposed into
small knowledge sources of the same problem~solving
type, but specializing in different concepts in the
domain, We shall see that this sort of
decomposition results in more natural control and
focus properties of the overall system.
Identification of these substructure and how thay
communicate with one another is vital to the proper
erganization of the body of knowledge for
problem~solving in that domain,

Our method in this paper will be to examine
how knowvledge is used in a few well-defined tasks:
diagnosis, data storage and retrieval, and
reasoning about consequences of actions, 1t should
be emphasized that these tasks are not particular
to the medical domain., Rather they are very
fundamental generic taske occurring in a wide
variety of problem-solving situations. Thue these
tasks are elements of a taxounomy of basic
problem~solving types. When we are done with this
examination, the general principles of knowledge
decompositon will begin to take on some clarity.
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Ooe final point: we will use examples from
both wedical and non—wedical domains. 1In
particular there ar¢ many similarities betveen
reasoaing about diseases and therspies on one
hand and trouble~shooting and synthesis of
corrective actions in complex engineering systems
oo the other.

Ihe Diagnostic Taok

By the term “diagnostic task,"” ve mesan
sonething very specific: the identification of a
case description with a specific node in a
pre-determined disgnostic hierarchy. PFor the
purpose of curreat discussion let us sssume that
all the data that can be obtained are already
there, i.e., the additional problem of launching
exploratory procedures such as ordering new tests
etc. does not exist. The following brief account
is a summary of the more detailed account given
ia [1) of diagnoatic problem-solving.

Let us imagine that corresponding to each
node of the classification hierarchy alluded to
earlier we identify a "concept." The total
diagnostic knowledge is then distributed through
the conceptual nodes of the hierarchy in a
specific manner to he discussed shortly. The
problem-solving for this task vill be performed
top dowm, i.e., the top-most concept will first
et control of the case, then control will pass
to sn appropriate successor concept, and so on.
In the medical example, a fragment of such a
hierarchy might be:

INTERNIST
LIVER HEART

MEPATITIS JAUNDICE

Hore general clasiificatory concepts sre higher
in the atructurs, while wore particular ones are
lower in the hiersarchy. It is as if INTERNIST
first establishes that there is in fact a
disease, then LIVER establishes that the case at
hand is a liver disease, while say HEART etc.
reject the case as being not in their domain.’
After this level, JAUNDICE may establish itself
and so on.

Each of the concepts in the classification
hierarchy has “"how -to" kmowledge in it in the
form of a collection of diagnostic rules. These
rules are of the form: <symptoms>
<concept in hierarchy>, e.g., "If high SGOT, add
n units of evidence in favor of cholestasis."
Because of the fact that when a concept rules
itself out from relevance to a case, all its
successors also get ruled out, large portions of
the diagnostic knowledge structure never get
cxercised. On the other hand, vhen a concept is
properly invoked, a small, highly relevant set of

————D

rules couwep into play.

The problem—solving that goes on in such s
structure is distributed. The problew—solving
regime that is implicit in the structura can be
characterized as an "gstablish-refine" type.
That is, each concept first tries to establish or
reject itself, If it succeeds in esteblishing
itself, then the refinement process consists of
seeing which of jtp successors can establish
itself, Each concept has several clusters of
rules: coufirmatory rules, exclusionary rules,
and perhaps some recommendation rules. The
evidence for confirmation and exclusion cao be
suitably weighted and combined to arrive at a
conclusion to establish, reject or suspend it.
The last mentioned situation may arise if there
is not sufficient data to make a decision.
Recommendation rules are further optimization
devices to reduce the work of the suhbconcepts.
Further discussion of this type of rules is not
necessary for our curreat purpose.

The concepts in the hierarchy are clearly
not a static collection of knowledge. They are
active in problem-solving. They also have
knowledge only about establishing or rejecting
the relevance of that conceptual entity. Thus
they may be termed "specialists," in particular,
"diagnostic specialiets.” The entire collection
of specialists engages in distributed
problem~solving.

The above account of diagnostic
problem—solving is quite incomplete. We have not
indicated how multiple disesases csn be handled
within the framework above, in particular when a
patient has & disease secondary to another
disease. GComez has developed a theory of
diagnostic problem=-solving which enables the
specialists in the diagnostic hierarchy to
communicate the results of their analysis to each
other by means of a blackboard (4], and bow the
problem~solving by different specialists can be
coordinated. See [1] for details. B8imilarly,
how the specialists combine the uncertainties of
medical data and diagnostic knowldege to arrive
at relatively robust conclusions about
establishing or rejecting & concept is an
important issue, for a discussion of which we
refer the reader to [5].

The points to notice here are the following.
The control transfer from specialist to
specialist is akin to the corresponding situation
in the medical community. We shall have more to
say about this later on. The most important
point I°d like you to notice is that there is oo
"problem—solver" standing outaide, weing &
knowledge base. The hierarchy of diagnostic
specialists is the problem~solver as well as the
knowledge—base, albeit of a limited type and
scope. That is, the particular kind of
problem-solving is gmbedded in each of the units
in the knowledge structure.



Data Retxieval and Inference

Consider the following situation that might
arise in diagnostic problem-solving that was
discussed earlier. Suppose a rule in the liver
specialist was: "If history of anesthetic
exposure, consider hepatitis.™ This is a
legitimate diagnosti¢ rule in the sense described
earlier, i.e., it relates a manifestation to a
conceptual specialist. However suppose there is
no mention of anesthetics in the patient record,
but his history indicates recent major surgery.
We would expect a competent physician to infer
possible exposure to snesthetics in this case and
proceed to consider hepatitis., Similarly, if a
disgnostic rule has “ahdominal surgery"” as the
datum needed to fire it, but the patient record
nentions only biliary surgery, it does not take a
deep knowledge of medicine to fire that
diagnostic rule. In both these cases domain
knowledge is needed, but the reasoning involved
is not diagnostic teasoning in our specific
technical sense. One can imagine an expert
diagnostician turning, in the course of her
diagnostic reasoning, to a nurse in charge of the
patient record and asking if there was evidence
of anesthetic exposure or of abdominal surgery,
and the nurse answering affirmatively in both the
instances wvithout his being trained in diagnosis
at all.

When we faced this problem in the design of
HDX, ve realized that it would be very inelegant
to combine reasoning of this type with the
diagnostic reasoning that we had isolated aa a
specific type of problem~solving activity. We
were led to the creation of a separate subsystem
‘for managing patient data, much like the nurse
alluded to earlier. For all questions concerning
manifestations MDX simply turned to this
subsystem, which performed the relevant reasoning
and returned the answer. We wvere surprised to
discover that all the retrieval activities of
this “data base assistant™ could be captured in a
uniform paradigm to be elaborated shortly.
Mittal [6) describes this in detajl as do the
references (7], [8). Similar to our discussion
regarding the diagnostic task, we just touch upos
the main issues here aufficient to make our main
points regarding decomposition.

This data base — called PATREC -~ is
organized as a hierarchy of medical data

concepts. A fragment of this hierarchy is shown
below.

MEDATA

ORGAN PROCEDURES

e s DRUG
.. 4{;mm1c / su&éﬁnv\
mo{mm-:

At a represeatational level, thexe 1w
nothiing novel here: each medata conceapt is
represented as a frame, and the inference rules
that we will describe shortly area implemented as
"demons"” or "procedural attachments." However
what will be worth noticing is the fact that all
these rules will be of a certain uniform type.
For the purpose of illustration, let us consider
the SURGERY concept. SURGERY frame has LOCATION
and PERFOBRMED? slots, smong others. The
"“PERFORMED?” mslot has the following rules:

l. ‘If po asurgery in the enclosing orgsum,
surgery not done.

2, If surgery in a component, infar
surgery in this orgasm.

3. If no surgery in any of the
components, thea infer no aurgery in this
organ.

4, 1f evidence of aneethetic, infer
“possibly."

The DBUG frame has the following rules in

the GIVEN? slot:

1. If any drug of this type given, then

infer this drug also.

2. 1f the drug classe was not given, rule

out this particular drug.

3. If all drugs of this type were ruled

out, then rule out the class too.

These rules need not be attached to the
successors of DRUG, since they can inherit these
rules = this is a fairly standsrd thing to do in
frame-based systems. A successor may have
further rules which are particular to it, e.g.
the ANESTHETIC councept has the rule:

1. If major surgery, infer ANESTHETIC
given, possibly.

lLet us reemphasize that the interesting
thing about the system is not that it uses frames
with embedded production rules = by now it is a
rare knowledge base system that doesn’t — but
that it is a collection of conceptual specialists
tuned to a particular type of problem-solving.
All the embedded inference rules have a common

, structure: derive the nheeded data valua from

data values relating to othar concepts. The
inferential knowledge that is encoded in the
concepts ia specific to the data retrieval task
io a data base activity. :

Let us consider some examplas, Buppose the
stored datum is that "Patient was given
halothane.” The HALOTHANE frame now has its
GIVEN? slot filled with "Yes." Consider the
following series of questions:

Ql. Given Anesthetic?

A : YES
(ANESTHETIC specialist inherits the rules
from the DRUG frame, Rule 1 gencrates the
question, among others, "Given l{lalothana?"
"Yes" is propogated upwards.)

Q2. Any Burgery performed?

A : Ponsibly
(SUBGERY specialist fails with rules 1, 2
and 3, rule 4 places query "Given
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Anesthetic?™ to ANESTHETIC specialist.
"Yas™ suswer results in “Possibly™ to Q2.
This is an example of lateral inheritance.)

Similarly if the stored datum were “Patient had
major surgery,“ and the query were, "Given
Anestbetic!™, xule ! in ANESTHETIC would have
given the answer "possibly.”

Another, more complex example of data
retrieval ressoning by PATREC is the following.

DATA: A liver—scan showed a filling

defect in the left hepatic
lobe, The liver was normal on

physical exam,

Q : Liver Normal?

A No
(On liver~scan data, following chain of
inference took place: (a) filling-defect in
lobe —~> 1lobe pqi normal; (b) If <comp-of>
Liver not normal --—2» liver not normal. On
the other hand Physical examination produced
“Normal" as answer. By using a general
principle that when therxe are contending
answers, pon-default value should be chosen
~— the defsult for "Normal?" slot of LIVER
i8 "Yes™ ~— the answer "No" was generated.)

The wain points relevsnt here sre, a8 in the
case of the diagnostic task: (1) There is no
scparation betwveen a knowledge base and a
problem~solver. Problem~solving is embedded in
the knowledge structure. (2) All the conceptual
specialists perform the same type of
problem~solving, in this case, inheritance of
data from other specialists., (3) Concepts with
the same name, say LIVER, in the diagnostic
structure and the data retrieval structure have
different pieces of knowledge and do different
things. This is akin to the fact that the LIVER
concept of a diagnostician is bound to be
different from that of the data base nurse. The
concepts in this aense are "tuned"” for different
types of knowledge use,

What-Will-Happen-If or Consequence Finding

Ve said that among the many types of
problem—solving that take place in a
koowledge-rich domain is that of answvering
questions of the form "What will happen if X is
donel"™ Examples are: “What will happen if valve
A is closed in this power plant when the boiler
is under high pressure?”; "What will happen if
drug A ia administered when both hepatitis and
arthritis are known to be present?” Questions
such as this can be surprisingly complex to
answer since formally it involves tracing a path
in a potentially large state space. Of course
what makes possible in practice to trace this
path is domain knowledge which contrains the
possibilities io an efficient way.

The problem-aolving involved and
correspoudingly the use of knowledge in this
process are difforent from that of diagoosis.

For one thing many of the pieces of knowledge for
the tvo tasks are completely different. For
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exsuple, consider answering the question in the
automobile mechanic”s domain: "What will huppen
if the engine gets hot?" Looking at all the
disgnostic rules of the form, "hot engine =<---=>
<malfunction>" will not be adequate, since
<malfunction® in the above rules is the cauge of
the hot engine, while the consequence finding
process looks for the effects of the hot engine.
Formally, if we regard the underlying knowledge
as a network connected by cause-effect links,
where from each node multiple cause links as well
as effect links emanate, we see that the search
processes are different in the two inatances of
diagnosis and consequence-finding. The
disgnostic concepts that typically help to
provide focus and comstrain search in the pursuit
of correct causes will thus be different from the
WWHI concepts that would be needed for the
pursuit of correct effecta,

The embedded problem~solving is also
correspoudingly different. We propose that the
sppropriate language in which to express the
consequence—finding rules is in terms of
state-changes. To elaborate:

1. WWHI-condition is first understood as a
state change in a subsyatem.

2, Bules are available which have the form
"<state change in subsystem> will result in
<state change in subsystem>", Just as in the
case of the diagnoseis problem, there are
thousands of rules in the case of any nomtrivial
domain. Again, following the diagnostic paradigm
we have already set, we propose that these rules
be associasted with conceptual specialiete. Thus
typically all the state change rules whose left
hand side deals with a subsystem will be
aggregated in the specialist for that subsystem,
and the right hand sides of those rules will
refer to state changes of the jmmediately
affected systems.

Again we propose that typically the
specialists be organized hierarchically, so that
a subsystem specialist, given a state change to
it, determines, by knowledge~based reasoning, the
state changes of the immediately larger system of
which it is & part, and calls that specialist
with the information determined by it, This
process will be repeated until the state
change(s) for the overall system, i.e., at the
most general relevant level of abstraction, are
determined. This form of organization of the
rules should provide a great deal of focue to the
reasoning process,

n Illustrati xam

Consider the question, in the domain of
automobile mechnanics, "WWHI there is a leak in
the radiator when the engine is running?" We
shall first suggest the specialists are to be
organired as follows:



Overall
Automobile
Systen
Transmission
Electrical Engine r System

=

Power Production
Systeo

AN

N

Radiator Fluid
System

Water Pump
System

Fan, ete.

The internal states that the radiator fluid
subsystem might recognize may be partially listed
as follows: {leaks/mo leaks, rust build-up,
total amount of water,.., } similarly, the fap
subsygtem specialist might recognize states
{bent/straight fan blades,
loose/tight/disconnected fan belt,...}.
cogling system subsystem itself need not
recognize states to this degree of detail; being
a8 specialist at a sowevhat higher level of
abstraction it will recognize states such as
{fluid flow rate, cooling-air flow )
rate...etc..}. Let us say that the radiator
fluid apecialist bas, among other, the following
rules. The rules are typically of the form:
<internal state change> <supersystem
state change>

The

—>

leak in the radiator ———-> reduced fluid

flov-rate

high rust in the pipes > reduced

fluid flowrate

no antifreeze in the water and very cold
weather > zero fluid flow etc.

The cooling syetem aspecialist might have rules of
the form

low fluid~flow rate and engine running
> engine state hot

low air~flov rate and engine running >

engine state hot

Again oote that the internal state recoguition is
at the appropriate level of abstraction, and the
conclusions refer to state changes of ite pareut
system. ’
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It should be fairly clear how such a system
night be able to respond to the query about
radiator leak. Again a blackboard for this task
would make it possible to take into account
subsystem interaction,

Unlike the structures for the diagnostic and
data retrieval taske, we have not yet implemented
a system performing the WWHI-task. While we
cannot speak with asaurance about the adequacy of
the proposed solution, we feuel that it is of &
piece with the other systems in pointing to the
same set of morsls: embedding still another type
of problem~solving in a knowledge structure,
which consists of cooperating specisliats of the
ssme problem-solving type.

Role of Copmon Senee and
IID i1} K 1 dg st :l l

Becently Hart {9] has claimed that expert
syetems which usee causal or other knowledge will
perform better than systems which use "compiled”
knowledge. OCur forsgoing discussion indicates
tbat it need not be so. Buppose our diagnostic
structure is wissing the rule, "If high 3GOT, add
n units of evidence in favor of cholestasis.”
Then clearly if a knowledge structure involving
knowledge of underlying biochemistry of liver
function were availsbla, and if the
problem—solver knew how to uge that knowledge,
then it could get out of the diagnostic structure
temporarily, access the biochemical/physiological
knowledge structure, do some problem-solving,
actually derive the rule relating S8GOT and
cholestasis, snd re-enter the diagnostic
structure to proceed to establish or reject
cholestasis on the basis of this new—found



knowledge. However once the rule is derived it
is not neceasary to invoke the "deueper" knowvledye
structures, Similarly the role of coumon sense
knowledge snd lesrning structures is to cCreste
nev pieces of knowledge in other structures, as
productive thinking results in new understunding
when Dew situations are fsced and solved,
However, we hold that, in principle, there exist
“cooplete™ problem-solving structures for
diagnosis, cousequence~finding etc. Given such
1dealixed experty, it is not necessary to hasve
the so-called deeper knowledge structureas,
However, resl-life experts often may have to
access the underlying structures in the absence
of such "compiled” rules.

Xnowledga=Use Taxonomy

There
field that

has been a growing realization in the
the importsnt issue in knowledge
systems is to determine how knowledge is to be
used., Our foregoing examination of the three
tasks — esch of which is not some ad ho¢ need
for medical reasoning, but is a generic task that
arises in 8 number of domains —- leads us to
propose the following theses.

(1) There is taxonomy of problem—solving
regimes that are involved in expert
problem~solving, We have identified three
wembers of this taxonomy

- diagnostic (classificatory):

establish-refine, top-down.

- consequence-finding: abstract state from

lov-level description to higher-level

description, bottom—-up,

~ data retrievsl: inheritance/inference of

values from data values in other concepts,
There are obviously more. Our research is
oriented tovards finding wmore elements of this
taxonomy and determining their
10terrelationships.

(2) For each type of problem~solving there
is 8 separste knowledge atructure, with the
sssocistsd p.s. regime embedded in it. Thus a
domsin of knowledge csn be decomposed into a
collection of structures, each of which
specializes in & p.s. type. We can call this a
hexizontal decomposition of a domain.

(3) Each of the structures in (2) sbove can
be further decomposed into s collection of
specislists, sll of whom are of the same p.s.
type, but differ from esch other in the
conceptual content. We have indicated how this
decompoaition can be done for the three tasks
consi1dered. We term this decomposition a

yertical decompowition.

. .

The prevslent approach to knowledge base
systems is based on the following decomposition:
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Knowl Inference
owledge Mechanism ]
Bage Ql/

Inference
Mechanism 2

In this psradigm, knowledge repressntation is
separated from its use. This approsch has the
attraction of generality and a certain kind of
modularity.

‘The representational questions are dealt
vith in this approach in a masaner to satisfy the
criteria of expressiveness, or the so—called
epistemological adequacy of McCarthy [10].
efficiency responsibilities are put on ‘the
shoulders of the inference mechanisms; they have
to have the so-~called heuristic knowledge in
order to use the knowledge efficiently for
problem~solving. Our approach is based on s
rather different decomposition of the same
problem, a8 indicsted in our discussion on
horizontal decomposition in the previous eection.

The

Pictorislly, the viewpoint of knowledge
bssed system that we advance can be given ae
follows:

Knowledge & > Knowledge &
Problem~Solving Problem~Solving
Structure Structure
____;>
Type 1 Type §

Thus the overall knowledge system is viewed as a

ign 8 iali in i , who
cooperstively solve a given problem. While in
the figure we have indicated the communication
among these specialists to be unconstrained, in
fact, however, it may not be so., There may be
reasons why only certain problem-solving
specialists can talk to other problem=—solving
specialists. Thie is an open research problem in
our approsch,

d i u d

In most of the preceding discussions the
of knowledge has been in the form
of rules. We feel that this is not accidental,
but that rules represent a basic form of
cognition, viz., "how-to" knowledge. This was



recognized early in AL by Newell and Simon [11)
and they gave it the name production yules.
Later, the Stanford Heuristic Programming Project
extended this production rule methodology for a
wide class of expert system design problems. We
are thua in agreement with the use of rules as a
basic knowledge representation formalism in
expert syatems.

There are two aspecta in which our
methodology differa from current work on
rule-based expert systems. We have already
alluded to the difference in the viewpoint which
regarda knowledge not as an independent structure
to be used by different problem—~solvers, but as
eabodimenty of implicit problem~solving
knowledge. Related to that is the idea that the
central determinant of effective use of knowvledge
is how it is organized. Our approach begins to
provide criteria for performing the organization
of a complex body of knowledge. It is well-known
that production rules need to be organized not
simply for purposes of efficiency, but for focus
and contro}l in probleno-solving (see [12] for a
discussion of these issues). We are proposing
two organiging constructs, which extend the
production rule methodology to make it applicable
to a larger class of problems, One construct is
the problem—-solying regime and the other is that
of a congeptual specialisg.

Belated to these organizational notions is
the other aspect of the difference betweea our
approach and the current production rule
methodologies. We do not use uniform
problem-solving mechanisms (backward chaining,
e.g.) across the vhole domain. As iodicated, the
problem~solving method differs from knowledge
structure to knowledge structure.

The Organization of the Medical Commumnity

The medical coamunity collectively is a good
case atudy in the principles by which knowledge
may be structured for cooperative, effective
problem—solving. Corresponding to our notion of
borizontal decomposition along the lines of
probles—solving types, we can identify
clinicians, educators, pathologists,
radiolpgiste, medical recorde specialists, etc.
Cliniciana combine the diagnostic and predictive
knowledge structures, for practical reasons
having to do with the close interaction between
diagnosia and therapy. Medical record
specialiats, as their name indicates, serve tpo
organize patient data and retrieve them
effectivaly., Radiologiats are not diagnosticiane
in the same sense as clinicians are: their
problem—solving is to reason from imaging
descriptions to confirm or reject diagnostic
possibilities; they are largely perceptual
specialista.

vid £y ical . ‘
Corresponding to our vertical decomposition,
many of the above problem—solvers are organized
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into cunceptusl hierarchies. For instance, an
intexpieg is the top-level diagnostic specialiwst,
who may call upon liver or heart specialiats for
further investigation of a problem. The top-down
problem-solving for diagnosiam {s indicated by the
fact that a sick person typically first goes to
an internist, who may refer the patient on to
wore detailed specialiats.

If the medical community were organizaed
sccording to the currently accepted paradigm in
expert syatems, i.e., a common knowledge base
shared by different problem-solvers who
themselves are without domain-knowledge, one
would expect to have knowledge—specialists, who
would be rather like encyclopaedias, and
problem-solving apecialists who would possess
expert—algorithms for, say, diagnosis, without
any medical knowledge about particular medical
concepts. Thus whenever a patient came, the
diagnostic specialiet would coneult the
knowledge—base specialist and together they would
arrive at a diagnostic comclusion.

However, that is not the way the community
vorks., Instead we find that experienced medical
specialists possess expertise which is not & raw:
knowledge-base, but which is highly effective in
problem~golving. On the other hand, a medical
student without clinical experience is more like
a pure knowledge-baae. Ae he or she becomes more
experienced in various types of problem-solving,
the unstructured knowledge base slowly begins to
shape and structure itself, so that pieces of
knowledge are tuned for ready use.

Acknowledgementa

I ove a great debt of intellectual gratitude
to Fernando Gomez, who was responsible for many
of the central theoretical ideas behind MDX,
Sanjay Mittal has been s dedicated co~worker,
responsible for much of the implementation as
well as for many of the ideas incorporated in
PATREC and RADEX. Jack Smith, M. D., is, in
addition to being the medical component of our
group, also a skilled computer scientist, which
contributed greatly to a smooth AI/medical
interface.

The preparatios of this paper was supported by
NSF grant MCS-8103480. The computing resources
of Rutgers University Laboratory for Computer
Science Research were used extensively in system
development, and this was made possible by the
Biotechnology Resources¢ Division of NIH, under
grant RR-00643,



f1)

{21

B

4]

(5]

16]

{71

(8)

9]

(10}

(1}

{12]

References

F. Gomez and B. Chandrasekuaran, "Knowledge
organization and distribution for medical
diagnosis,” IEEE Trans, Systems, Man Cyber-
netics, Vol. SMC-11, No, 1, January 1981,
pp. 34-~42,

S. Micttal and B, Chandrasekaran, "Conceptual
represencation of patient data bases,” J,
Medical Systems, 1981,

B. Chandrasekaran, S, Mittal and J. Smith,
"RADEX - towards a computer-based radiology
consultant,” in Pacttern Recognition in
Practice, E. S. Gelsema and L, N, Kanal (Ed.),
North~Holland, 1980,

L. D. Erman and V. R. Lesser, "A multi-level
organization for problem-solving using many
diverse cooperating sources of knowledge,"
in Proc, 4th Int. Joint Conf. Artificial
Incelligence, 1975, pp. 483-490.

B. Chandrasekaran, S. Mitral, and J. W, Smith,
M.D., "Reasoning with uncertain knowledge:

the MDX approach," Proc. lst Ann. Joint Conf,
of the American Medical Informatics Associa~
tion, May, 1982,

S. Mittal, "Design of a distributed medical
diagnosis and database system,” Ph.D. Thesis,
Dept. of Computer and Information Science,
The Ohio State Universicty, 1980,

S. Mittal and B, Chandrasekaran, "Software
design of knowledge~directed database systems,"
Proe. lut Conf. Foundations of Software Tech-
nolopv and Theorecical Computer Sclence,

Tatu Institute of Fundamental Research, Bombay,

India, Dec., 1981,

S. Mittal and B. Chandrasekaran, “Some 1ssues
in the design of knowledge-directed databasesr,"
Working Paper, Al Group, The Department of
Computer and Information Science, The Ohio
State University, 1981,

P. E. Hart, "Directlon for Al in the eightiea,"
ACM SIGART Newsletter, #79, January 1982,
pp. 11-16.

J. McCarthy and P. J. Hayes, "Some philosophi-
cal problems from the standpoint of artificial
intelligence,” 1n Machine Intelligence,

Vol, 4, New York: Elsevier, 1969.

A. Newell and H. A. Simon, Human Problem
Solving, Englewood Cliffs, NJ: Prentice-
Hall, 1972, :

D. B. Lenat and G. Narris, "Designing a rule
system that searches for scientific dis-
coveries,” in Partern-Directed Inference
Systems, D. A. Waterman and ¥, Hayes-Roth,
Eds., New York: Academic Press, 1978,

229
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Abstract

This paper expiores the relative costs and powers of three dif-
ferent kinds ol parallel compuling architecture that have been
proposed for use in Al Instead of parceling a problem out to a
small, fixed number o! processors, all of these systems employ &
much higher degree of parallelism: they provide enough processing
elements that we can assign a separate processor to every asser-
ton in a large knowledge base, to every pixel in an image, or o
every word in a speech system's lexicon. But, while thesa three
kinds of system share this general orientation toward the massive
use of paralielism, they difter markedly in the comglexity of their
processing elements and interconnections. They also differ in the
winds of problems that they can attack in paralle!, without resorting
to senal processing techniques. In order of increasing complexity
and power, thesad categories are marker-passing systems,
vdiue-passing systems, and message-passing systems. '

1. Introduction

For several years, my students and | have been exploring the use
ol specialized, highly paratiel computing architectures for a variety
ot Al tasks, especially the task of representing and accessing large
amounts of reai-world knowledge. Mast of this work has centered
around the NETL system [3), a design that is at once very powerlui
and very mited. On the one hand, NETL uses a separate hardware
processing element lor every entity and every simple assertion in its
wnowledge base. Thus, for a farge class of problems involving
searches and sumple deducuons in this knowledge base, the avail-
able processing power grows at the same rate as the problem. The
tme required for such operations is constant or nearly constant,
regardless ol the size of the knowledge base. In a very large
knowiedge base, such a system can perlorm some tasks thousands
or mihons ol times laster than a traditional senal processor buill
from comparable technology. On the other hand, the NETL
processing elements are so simple and their abilities are so limited
that some tashs cannot be attacked in paralle! at all; these tasks
must be dealt with serially, just as in a traditional machine. In such
cases, all ol the paralial processing hardware buys you nothing.

The problem is that we have not had a clean way of charac-
twenzing which tasks a NETL-ike marker-passing system can handio
n parallel and which tasks must, unavoidably, be handled serially.
We have never been quite sure, when NETL s unable to handle
some problem in paralie), whether the problem is inherent in the
nutations of the architecture or is merely a result af our parlicular
chowce of notations and algonthms. Other architectures, more
pawerful and much more costiy, have been proposed {rom time to
ume, but without & good theory of the powers and limitations of the
vanous paraliel architectures it has been impoasible 10 see clearly
what the more complex hardware buys you.
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in wrestling with these problems ovar the last few years, wa have
learned a great deal. Wae still do not have anything as elegant as
the theory of Turing computability lor these parallet systems, but we
can precisely characterize some of the things that a marker-passing
system can do, and we have some examples ol tasks thal delinitely
canno! be done in parallet by such a system. We have also dis-
covered that some of the tasks that are impossible for a marker-
passing system to perform in parailel can be handled by other, more
complex parailel architectures. This paper will explore three
classes of parallel systems that sesm to form a hierarchy of increas.
ing complexity and increasing power,

NETL is an example of the simplest of the three classas, which |
call "marker-passing” systems. These pass only a few types of
single-bit messages, called “markers", among the processing ele-
ments and can perform only simple Boolean operations on them.
More complex aore the “vnlue-passing” systems, which can pass
around numbers or continuous values and do simple arithimetic
operations on them as they flow through the network, Most com-
plex are the "message-passing” systems, which can pass around
messages of arbitrary complexity and. can perform arbitrary com-
putations on them within each clement.

2.The NETL Architecture

The NETL architecture can be taken as the stereotypical marker-
passing system, though many variations on the basic theme are
possible. Let us begin, then, with a brie! description of NETL.
Readers already familiar with NETL can skip this section.

NETL is a descendant o! the semantic network memory first
proposed by Quillian [11]). Each primitive concept in the memory
(elephani, Clyde-the-elephant, gray, truth, last-Thursday, eic.) is
represented by a node, which in NETL is a very simple hardware
device. (See figure 1) Each node communicates with the central
control computer, a serial computer of the familiar kind, via &
shared parly-line bus. Each node has a unique serial number by
which it can identily itself 10 the cenlral controfler and which can be
used as an address when the conliroller wants lo send a command
10 jus! one node. Inside each node {here are a few (perhaps 16 or
so0) independent bits of memory that can be set and cleared by
various commands on the control bus. These are called the marker
bus: it bil 3 is on, then the nods 13 said 10 be markod with marker 3.
There are also a lew write-once lype bits that record some ad-
ditional inlormation aboul the node: whether it is representing an
individual or a class, elc.

Each simple assertion in NETL, for example "Clyde Is an
alephant™, is represented by a iink. A link is also a simple hardware
element, and it also communicales with the central conirof com-
puler over a shared bus. A link has a lew write-once type bils, plus
a number of wires (typically four), each of which can be conneclad
fo any node in the notwork, To store an ussertion, the control






This gating ability ks also very usetu! in knowledge representation
systems. Some asserions in a knowtedge base are universally true,
but many are only true at cerlain imes, certain places, or in some
alternative reality such as a novel. By tying each hink to a context
node and by marking the sat of context nodes that are to be aclive
al any given ume, we can perform searches and deductions using
onty those assertions whose context nodes are active; links whose
context nodes lack the "active” marker simply play dead. The con-
text nodes are connected into a complex, tangled hierarchy similar
to the herarchy ol is-a realtions, and many ol them are normally
active at once, each with many associated assertions. For example,
il it is January 20 in Canada, it is also winter, and in the winter
context, it is cold, certain animals are white, others are hibernating,
and so on. The parallel gating mechanism gives us a way ol dealing
with complex sets of overtapping contexts, each with its own set of
assertions, at essentially no extra cost in access time.

3. Marker-Passing Systems

A key observation about NETL:like marker-passing systems is
that they are about as cheap and simple as any massively paraile!
system can be. Htis true that NETL requires one element for every
enlity and every simple assertion in the knowledge base, but these
elements are very simple. A typical system might have storage for
16 volatile marker bits and for 16 write-once type bits per element,
All that a NETL element really contains is thcse 32 bits of state,
some logic to perform simple boolean operations on them, and a
control-bus interface that can be shared among all the elements on
an IC chup. it the number of private-line connections required were
not a problem, then with today's technology one could easily fit
1000 or more ol these elements onto a sing!e chip.

However, the elements are not the whole story, or even the most
unportant part of it. Most of the fong-term knowledge in a NETL
system is stored in the pattern of interconnections belween the link-
wires and the nodes. [tis the switching network that contains most
ol the state ol the system, and not the elements themselves. This
swiChing network implements many-to-one connections: each link
wire goes to only one node terminal, but a node terminal may be

connected to many hink wires. The signals are simple binary levels,

and they are OR'ed together at tha node terminal. Ul a particular
marker s being propagated from link wires to nodes during a given
cycle, a noda does not have to record how many instances of that
marker have arrived or where they came from; it simply records that
marker N was received. Of course, when a marker is moving lrom a
node to the attached ink wires, each link wire gts a copy.

This OR'ing together of the markers arriving at a node is the
defining feature of marker-passing systems. {t means that the
switching network can be quite simple, white still guaranteeing that
there is no contention. If a million instances of marker 3 arrive at a
node, they can all be accepted at once, in ane cycle, and the arrival
of marker 3 can be recorded in one bit of memory within the node.
During this cycle, marker 3 is the only message being passed, S0 NO

- confusion can result.

tn fact, it would be impractical to tie a miltion wires direcily to a
singlke node terminal. A real marker-passing machine would use &
multi-level switching network, and would allow connection paths
bound lor the same node to merge at any level in the network. The
resull 5 a ree of connections, with OR'ing and amplification occur-
nng at each levet of the network. See {4] tor a sketch ol how such a
systern might be built for a million-element NETL Machine.

We have seen that marker-passing systems of this sont, despite
their simphcity, ofter us some delinite advantages over serial

machin:s for certain Al tagsks. We have gradually come 10 under-
stand that they sufler from some tundamental hmitations as well,
and we are beginning to understand what these limitations mean in
Al contexts.

The key limitation is in the nature of the markers themselves: only
a small, fixed number of markers are avallable, and it is impossible
for an individual marker to record where it came from or what path
it followed through an arbitrarily complex network. This means that
certain apparently simple operations cannot be done in parallel,
Suppose, for example, we want to mark the set of all sons who are
hated by their own fathers®. We can easily mark all the mates with
marker 1, their fathers with marker 2, and everyone hated by a
father with marker 3. Every node with both markers 1 and 3 is a son
who is hated by some lather, but is he hated by his own father? The
system has no way to tell, except by serlally inspecting each of
these nodes and seeing if the hater and the father are one and the
same. Some additional parafle! operations can be performed to
narrow down the list of suspects -- for example, we can eliminate
any son, hated by someone, whose father hates no one -- but we
cannot get the desired answer without soma serial processing of
individual nodes.

What is needed in this situation Is a more complex form of
marker, Suppose that each node could paint the markers it sonds
out with its own unigque color of paint (u colorful version fo its sarial
number). Then each father could send a painled marker 1 o vach
of hig sons and a painted marker 2 10 everyono that he hates. The
son-nodes could then compare the color of the marker 1 it receives
with the colors on all ol the marker 2's that arrive. (Some of the
sons might be hated by lots of fathers.) If there is a match, the son
is hated by his own father. This comparison happens to be one-to- ]
many, but if the problem were to identify all of the people who are
hated by any of their siblings, the match would be many-to-many;
the question would be whether any marker 1 has the same color a8
any marker 2 received by the same node.

Note that this use of painted markers {8 inconsistent with the
dehinition of 8 marker-passing sysiem that we gave above: since the
color of each of the incoming nodes must be preserved, we cannot
just OR incoming nodes together and receive them as a single mes-
sage. Instead, we must accept each incoming marker individually
and store it away for later comparison, at least in {he many-to-many
case. Since there is no g priori bound on the number of links that
might be connected 10 & node, there Is no hmit to the number ol
messages that might show up at once, and no limit to the amount of
storage required 1o hold on to them. It the incoming messages are
all 1o be accepted at once, we need an unbounded number ol input
ports on each node. More likely, we use a single input port and
queue up incoming messsges; this means that we must be
prepared (o tolerate unbounded delay due 10 contention at the most
popular nodes. In short, by allowing painted markers with an un-
limited number o! colora In the system, we have crossed the bound-
ary from simple marker-passing puraliclism to the much more com-
plex message-passing parallelism, which we will discuss later,

So, it we are to remain within the cheap, contention-free marker-
passing discipline, we must live with the fact that some operationa
cannot be performed without resorting to some amount of serial,
node-by-node processing. There are soveral ways to charactorize
this class of problems. in the language of relational data bases
(see, for example, {2]), the operations we cannot handie are called
joins. In the language of the lambda calculus, we can only have as
many distinct lambda-bindings in elfect at one {ime as we have

2Thu example was lirst suggesled 1o me by Brian Smith.



murkers ta regresent them. The problem above s that we want to
took at all of tha possible bindings of father at once, but we must

keep the vanous bindings ol father distinct and not treat them as
nerchangeable members of a set.

Some other problems we have encountered in NETL seem to
ansa from this same fundamental limitation. The copy-confusion
and tinding-ambriguity problems discussed in section 3.7 of
Faniman [3] could easily be solved in a system with painted
markers, but they require some amount of careful serial processing
il they are to be handled correctly 1n NETL. Simdarly, most of the
problems we have had with cancellation (see (5)]) would go away i
we Could write arbutrary messages on marhers as they pass through
certain nodes in the network: when a marker passes the tail of a
cancel-link, the link would add a spot ol its own color of paint to the
marker, when a marker passes the head of a cancel-tink, it would be
stopped and inspected, and if it has that link's paint on it, it would
be elminated. In ellect, each node must be able to carry with it a
history ol where it has been, and there is no a priori limit on how
much nlormation such a history might have to include. Since, in a
pury marker-passing System, we cannot paint the markers, we must
eher do some serial processing when a cancel-link is encountered
dunng a propagation, or we must do some serial analysis whenever
the network changes and store the result as redundant auxiliary
hinks in the network.

4. Message-Passing Systems

Lel us turn now to the most complex and powerful of the three
famihes, the message passing parallel systems. As stated earlier,
Ihesa systems allow Brbilrary messages 10 be passed around the
network, €an store any number of messages within the element (in
pracuce, ol course, there is some limit, but it can be taken to be
very large), and can perlorm arbitrary Turing-machine computa-
vons on the stored messages. The signed-marker algorithms dis-
cussed in the previous sachion are among the simplest uses of mes.
sage passing parallehsm, mare complex are the "'sociely of agents”
models of Minsky [10], and Hewnt's “actors”{12). Clearly, it
machines wn this class must resort 1o serial processing, it is due to
soma fundamental constraint within the problem - there is no more
powerful ctass of paraliel machine to which we can appeal, short of
an oracle.

One problem with machines ol this ciass is that they are hard (0
program and to control. It the elements are communicating via
artbetrary messages, they must all speak the same language and
obey the samea conventions. The more complex the messages, the
more difhicult it is to set this language up and maintain it as the
system grows and changes. ! some of the elements are, in effect,
able to contraod the operanon ot others, then carelul attention to the
control mechanisms is reguired to prevent chaos on the one hand
and various sons of deadlocks on the other. These problems may
not b insurmountable, but they are dilticutt. By contrast, all of the
complexity in NETL hes in the serial programs in the control com-
puter; the elements are too simple 1o get into any mischiel.

Of course, to simplily the communication and control problems,
we may choose {0 use a message-passing machine in very limited
ways. The painted-marker scheme is an example of such a limited
styla, reatly no harder to program and analyze than NETL itsell.

But even il we leave aside the programming problems, a
message-passing system remaing very much more expensive to
implement than a marker-passing system, Each individual element
must ba some sort of Turing-equivalent microprocessor, and there
must be a large amount of storage tor the saved messages, perhaps
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a lew thousand words per node. Instead ol getting a thousand ol
these on a chip, we would be lucky o get one. Contention in the
network is inevitable, and bulfering for stacked-up messages must
be provided. If the complex messages are to be iransmitted bit-
serially, keeping down the cost of the network hardware, this makes
the potential for delay even worse. So, while these systems can do
in paraliel some of the things that NETL muct do eerially, the
“paralle!™ operations themselves may introduce unbounded delays.

One Ingenious solution to this dilemma is currently being ex-
plored by Hillis (7]. Hilus allows only a small, fixed number ol con-
nections to be made 10 each element, limiting the number of mes-
sages that can arrive there at once and therelfore also limiting the
amount of storage needed and the amount of delay due to conten-
tion. A node, in the NETL sense, Is represented not by a single
physical element, but by many, connected in a balanced tree struc-
ture. When the need arises to add more connections to a node,
more hardware elements are recruiled and are added to the tree of
elements that already comprises the node. Thus, as the number ol
potential incoming messages increases, the number of input ports
and the amount of internal storage in the node increases propor-
tionately. Unlortunately, since the node is no longer atomic, there
is now the need for internal message traffic and the possibility for
contention within the data paths internal to the node. This would
be especially bad it the problem involved a many-to-many match of
the stored messages, as in the "hated by any sibling” problem
described above. Still, for some tasks this approach holds promise,
and it will be interesting to see how far Rillis and his colleagues can
take it.

So, the message-passing systems escape from some of the
problems that force a marker-passing system into serial-processing
mode, but with a fundamental and very substantial increase in cost.
An interesting question, then, is whether this added power Is worth
the cost. How important is it that we be able to perform arbitrary
join operations very fast? Can people do this? How close can we
come to handhng copy confusion and cancellation properly with
marker-passing, and how much trouble will be caused if a few
cases slip through? Can we at least determine, in parallel, that we

have encountered a case where a correct answer will require serial
processing? On the other hand, if we do need message-passing,
how bad will the contention and memory problems be in real
problem domains? Though unbounded in principle, these things
might be quite tractable for many domaing of interest. All of these
are interesting questions, and at the moment | can't answer any of
them. At feast, given this structuring of the problem, we can begin
to look for answers. '

5.Value-Passing Systems

The value-passing systems are Intermediate in complexity and
power between the marker-passing systems and the message-
passing systems. instead of passing around discrete marker-bits,
the value-passing systems can pass around numbers or continuous
quantities with some fimited amount of precision -- eight bits, for
example. Such values carry more information than a simple
marker, but they are not kept separate as true messages must be. ff
several values arrive at a node at once, they are added together and
only the sum is received and recorded. Alternatively, the maximum
or minimum of all arriving values might be saved. Other combining
functions might also be used, such as multiplication or averaging,
tut these are.more diflicult to implement; for now, we will allow only
sum, min, and max.

If a multi-level switching network is used, the connections to a
single node will form a tree, with values coming together at each of



v layers. Since the combining operations are associative and
~ommulabve, the same combining rule may be used at each place
where a new value joins the tree. Each element must provide
storage for a tew of these values, and must be able to do a lew
simpie anthmetic operations on them: comparison, negation, scal-
ing by a conslant factor, and so on. Al ol these operations are
under the control of a serial computer, just as in NETL.

it should be clear that a vaiue-passing machine of this sort can
easly simulate a marker-passing machine, so its capabilities must
be a superset of those possessed by NETL. 1t should also be clear
that, since messages are combined rather than being handled
separately, thss a value-passing machine cannot do a paraliel join
any better than a marker-passing machine can. However, this same
property of combining messages makes it possible for a value.
passing machine to get by with bounded memory requirements and
it guarantees that no contention can occur in the network. In fact, &
value-passing machine is more complex than a marker-passing
machine fo the same size, but only by a constant lactor, perhaps &
factor of 4. By contrast, a message-passing machine could easily
be hundreds ol tmes more complex, depending on how much
“unbounded” memory is present in each node. Of course, all of
these numbers are very rough; the machine designer has con-
sigerable freedom to trade oft complexity against speed.

This particular combination ol value-passing with massively
paraliel hardware and with some son of sequential contro! is rela-
tively new. Some of the same elements were present in the oid
Perceptron models and in such abstractions as the fuzzy fogic of
Zadeh {13), but in a different mixture and a different context. The
current wave of research in this area has been inffuenced by some
recent findings in neuroscienca and by the vsork of David Marr, and
it tends to emphasize problems in vision and motor control, See
Hinton {8), Feldman (6], and Ballard [1] lor examples. One inter-
esting development is the use of what Hinton calls a “mosaic®
representation: where some analog value, such as the angle of a
hne n the visual field, is to be represented, its rangae is quantized
into a number of smaller ranges, each represented by a noda. The
activation on each of these nodes is a measure of how strongly the
system beheves that that particular value is the right one.

Value-passing systems share many of the lundamental limitations
of marker-passing systems, in that they cannot perlorm parallel
loms and cannot perform the painted-marker operations described
abaove. However, they do have some advantages over marker-
passing systems in other areas. Often the few discrete markers of
NETL are too coarse for the task at hand. Consider, for example,
the hind ot recognition problem described earlier. !f we have only a
tew discrete features to deal with, we can assign one marker to
each feature and look lor descriptions that have collected alt of
these markers. But if we do not find such a description, we must
consider descnptions that have collacted only four out of five
markers, or three out of five -- in other words, we must resort to a
son o! scoring system. At least, we need some arithmetic
mechamsm in each noda that can count up the number of markers
present. It we have many leatures, a few of which will be spurious,
ang it the features are of dilferent strengths in helping to select or
reject centain hypotheses, a true value-passing system is needed. |t
allows each observed leature to vote for some collection of
hypotheses, and 10 vote for each with & dillerent strength. If one
descnplion gathers many more votes than its competitors, that
descnption wins.

This sornt of system meshes very well with NETL-type marker
passing: al the more abstract levels, marker.passing deduction can
be used to select a set ol possible descriptions. The nodes in this
set are marked, and the mark is cashed in tor some amount of initial

activation. The observed leatures then cast their voles and a wisi-
ner is delermined. The winner gets a new mark, and this can be
used in subsequent high-level processing.

Even more interesting is the possible use of value-passing in
what might be called Gestall recognition, in which the paris of an
image cannot be recognized out ol context, and the context can
only be determined by use ol the parts. For example, the words
"base", "diamond", “pitcher”, "strike”, and "ball* are ambiguous
individually, but taken togather they clearly select a baseball con-
text; this, in turn, selects a particular meaning for each of the
words. This is a simple, discrete example that can be handled ade-
quately by a marker-passing machine, but in many tasks the fea-
tures are more numerous and, individually, less powerful. In such
cases, wa ngain need 8 mechanism by which features can vote for
the hypotheses of their choice, and the hypotheses can reinlorce
certain interpretations of the features. Thig is a complex feedback
process, and due care must be exercised to prevent instability, but §
believe that it may offer some real hope for solving real-world
recognition problems thatl otherwise would be intraclable. Work in
this area is just beginning, however, and It is too soon to have much
evidence to back up this hunch,

There are sume other places in NETL where the nbility 10 pass
around values would help us out of awkward problems. In under-
standing English text, we olten favor one meaning lor a word over
another on the basis ol the goneral context we ere in and the
“semantic distance" belween euch meaning and the other llema
that have been mentioned recently. To pick a very simple exampte,
it we have rooks and pawns around, the word "king" tends to be
interpreted as a chess piece; it we have crowns and thiones
around, we get the other meaning. This is just a predisposlition;
other evidence can override this selection. A voting system works
much better for this than the discrete marker-passing of NETL,
With a voting system, we can take into account how many items we
have seen that wou!d reinforce each meaning, how long ago these
items were mentioned, and how close the relationship is between
each meaning and the other items in the context.

Attempts to implement something like the Harpy speech-
understanding system [9] in NETL have also demonsirated the need
for continuous values. In such systoms, we create o few new
hypotheses at each step ol the analysis, and we must keep scores
for several hypotheses at once, since the top-rated hypothesis may
well be knoched out by new evidence. In general, a marker-passing
style seems to work well at the higher conceptual Jevels of the sys-
tem, except when we are doing the sont of Iree-association
described above -- Clyde Is either nn elephant or he is not. Con-
tinuous values seem 1o bocome more important as we get closer to
the inputs and outputs of the system. If we build everything out of
value-passing hardware, we can easily mix marker-passing and
value-passing styles ol operalion, using each where it seems most
appropriate,

6.Summary and Concfusions
A few points should by now be clear:

o The marker-passing parallelism style of NETL halps ug
to avoid many problems thal have plagued serial ap-
proaches to Al.

* Some ol the fundamental limitations of marker-passing
create very awkward problems for NETL. Some kinds
of tasks must be done in serlal If they are to be done
properly.
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Atthough tlearalnag 18 ore of the most )mportsst
sress for resesrch in the fleld of artifliclel
latelligence, very 11ttle hes been schieved in the wiy
of s geners! theory of huean lesrning. This is dus, we
belleve, Lo the nead for learning to take place within
the frasewark of a gensra!l understanding systea. Ve
balleve that research st Yale In thea fleld of bullding
such sn understanding systes has preparead us to work on
s sodel of learning.

Ve proposs four basle criterls that » sodel of
learaling can be judged by:

1. FORR = Ths structure of what 13 to be
lesrned

2. CONTEXT = The conext provided by the
understanding systas for the lesrning of new
itens

3. DEVELOPHERTAL - Proposing s wmode! thet |Is
consistant with known facts about the stages
of hussn learning

-

EVOLUTIONARY - Proposing s motlvstion for
lesrning in the contest of understanding
which will sliov the systes to continuve to
lesrn and evolve as Its structures grow.

Our sode! Is besed on two |dess: Resory
Organlzstion Packets, or HOPs, which sre our propossi
for memory structures, end the concept of fsilure
driven modification of these sowory structures.
Briefly, MOPs provide expsctations sbout siturtlons the
understender is feced with, and the fallure of thoss
sxpectations (s wused Lo inder sinliar episodes snd to
indicoates modificetions which must be made to the KOP
structures.

We will dlscuas how our model nddreases our four
criteria. In sdditlon, ve will reviev briefly the work
on Jesrning to dete In Al, end discuss hov It addresses
- or falls Lo sddreas ~ these Issves.
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Abstract

Computational vision is the study of computa-
tional systems that interpret images. Representa-
tions required at different levels of visual pro-
cessing are discussed. Some specific knowledge
sources that constrain the descriptions produced at
each level are presented. These include laws of
physical optics and generic knowledge of possible
configurations in the world. The transformation of
a dJdescription of image features into a description
of scene features is the crucial step in any compu-
ter vision system. The image irradiance equation,
based on the reflectance map and the gradient space,
provides an appropriate theoretical tool to under-
stand and exploit this transformation. Examples are
drawn from applications to industrial automation and
remote sensing. :

Introduction

Computational vision is the study of computa-
tional systems that interpret images. That is, it
is the study of systems that produce symbolic des-
criptions of a world from images of that world.
Computational vision can be distinguished from other
disciplines that dea) directly or indirectly with
images along two principal dimensions: the problem
addressed and the approach taken.

Computational vision is concerned fundamentally
with images of three-dimensional worlds. A scene
domain consists of objects and surtucos defined in
three spatial dimensions. An imaging device pro-
jects rays of light onto a plane. The image domain
consists of a spatially varying brightness function
(image irradiance) defined over a bounded planar re-
gion. The problem of computational vision is to re-
construct a three-dimensional representation of the
scene from its two-dimensional projection onto the
image plane. More succinctly, computational vision
produces symbolic descriptions of surfaces from
measurements of image irradiance.

The approach takem is a computational one.
That is, any vision system is regarded as a general
information processor performing computations on and
manipulating internal symbolic descriptions of visual
information. VNithin this framework, key questions
become: What representations are required at
various levels of the computation? What information
is being made explicit at each level of the computa-
tion? llow are the various representations trans-
formed from one level to the next? What additional
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constraints are required to move from one level
to the next? Are these constraints generally
valid?

Computational vision has developed its own
paradigm for rescarch. One aspect is to choose u
stylized fragment of renlity to study in dopth,
In early computational vision rescarch, the frag-
ment of reality was a world of plane-faced poly-
hedra, uniformly painted with matte white paint
and assembled into structures on a flat table
covered with matte black felt. The task of muking
sense of this blocksworld had a precise function-
a) definition. The goal was to understand images
well enough so that o copy of the scenc in view
could be automatically assembled using a robot
arm and a warchouse of spare parts. This copy
demonstration was the focus of research losting
for nbout ten ycars (1965-1975) [1-8].

Substantianl progress has been made since
1975 both to define the levels of representation
required in computational vision and to describe
specific modules of vision working at each level.
This is largely the work of David Marr and his
colleagues [9] but has also benefited from the
work of others {10, 11].

Four levels of represcntation emerge. First,
there is the representation of locations in an
image whcre intensity is changing abruptly. (Mar
calls this the primal sketch). Second, explicit
surface properties are assigned to the locations
described in the primal skctch. (Marr culls this
the raw 2 1/2-D sketch). Explicit surface proper-
ties include: reflectance changes; illumination
changes (shadows, highlights, etc.); discontinui-
ties in depth; discontinuities in surface orienta-
tion. Third, the explicit surface properties
determined at specific image locations are inter-
polated so that the surfnce properties are de-
fined everywhere in the image. (Marr calls this
the full 2 1/2-D sketch. This level of represen-
tation has also been called an intrinsic image
[11]. When the surface property in question is
surface orientation, it has also been called a
needle map [12).) These three levels of represen-
tation are al) defined in s viewer-centred co-
ordinate system. That is, they all define spa-
tially varying functions over the plane forced by
the imaglng gcometry. The flnal and fourth level
produces fuil 3-D models of the objects in view
defined in an object-centred coordinate system.
This last representation is independent of viewer
position.



Specific modules that have been studied in de-
tail include: binocular stereo [13, 14}; shape from
shading [10, 15); photometric stereco [16]; shape from
motion [17}; shape from texture [18]; shape from con-
tour {19-21}; optical flow [22). Modules which have
30 far eluded analysis include the human-like percep-
tion of lightness and colour, '

Miny lessons have been learned. Perhaps the
most important is that writing computer programs to
interpret images in a domain requires a careful tecas-
ing out of the relationship between objects in the
world and their pictorial traces. This relationship
defines the semantics of imaging for the particular
visual world in question.

Computer vision systems do not have to be uni-
versal in order to be useful. A common sleight-of-
hand occurs in making the transition between image
features and scene fratures. Isolating where this
transition occurs is the key to understanding when a
particular system will work and when it will fail.

Typical appllcation areas include: industrial
automation (visual inspection, manipulation and loco-
notion); remote sensing (interpretation of acrial and
satellite imagery); biomedicine (microscope images,
radiographic images, tomographic reconstructions).

This paper accompunies an invited talk with the
samc title. The talk highlights the relationship
between image features and scene features using
examples from industrial automation and remote sens-
ing. The purpose of this paper is to provide a
summary of the issues discussed and an appropriate
list of references.

}ntctyrcling Image Features as Properties of the
Undertving Scene

There is no simple correspondence between image
irradiance, the quantity mcasured in an image, and
properties of the underlying scene. Image irradiance
results from the interaction of several factors, sam
of which are properties of the objects in view and
some of which are not. The effects of those which
are, surface shape and surface material, must be
separated from cach other and from the artifacts of
those which are not, illumination, shadows, viewing
dircction and path phenomena.

Several examples serve to fllustrate the diffi-
cultics. One example shows an cgp carton with scv-
gral compartments containing eggs, others empty, The
sense of which compartacnts contain cggs is reversed
when the same image is shown again upside down. This
corresponds to 8 fundamental ambiguity in distinguish-
ing indentations from protrusions. It is known that
hunans prefer an interpretation which corresponds to
the illumination cominyg from above.

A second example is more subtle. An image is
presented which corresponds to a right circular cone
made of a certain material and illuminated from a2
particular direction. It is demonstrated that this
1mage also corresponds to a right cone with ellipti-
cal cross section made of a slightly more reflective
naterial and illuminated from a slightly different
direction [15]. Trade-offs emerge between surface

shape and surface material that cannot bLe resolved
in a single view. Applications of computational
vision often assume uniform surface material and
known illumination so that changes in image ir-
radiance can be reliably related to surface shape.

Further examples come from applications to
remote sensing. Remote sensing often assumes a
uniform surface and known illumination so that
changes in image irradiance can be reliably re-
lated to surface material (i.e., ground cover).
Computer-based remote sensing has been most
successful for wheat and other crop inventories
the prairies of North America where, indeed, the
ground is flat and changes in image irradiance are
due principally to changes in ground cover, It is
also not surprising that these same techniques
applied to forest inventory in British Columbia do
very poorly since changes in image irradiance are
dominated by changes in surface. shape (i.e., local
topography) [23]. '

in

Methods for assigning surface properties to
image features in a single view embody assumptions
about surface shape, surface material and illumi-
nation conditions, To decal explicitly with these
factors, it is necessary to understand how images
are formed.

Developing the Image Irradiance liquation

Four factors interact to determine image ir-
radiance. They are: imaging geometry, incident
il1lumination, surface photometry and surface topo-
graphy. The imaging geometry determines the pro-
jection of three-dimensional scene coordinates
onto two-dimensional image coordinates. Without
illumination, there can be no image. Incident
illumination is characterized by the spatial and
spectral distribution and state of polarization of
radiant cnergy falling on the scene. Surface
photometry determines how light reflects off a sur-
face. It is determined by the optical constants
of the material and by its surface microstructure.
(Surface microstructure is surface detail which is
too fine to be resolved in the image but which
nevertheless alters the way light is reflected).
Surface topography is surface detail which is
within the resolution limits of the image sensor.
It characterizes the gross object shape relative
to the viewer.

Four imagcs of sphoro-llke objocts {llustruto:
an image of a full moon in which there is no chage
in image irradiance as a function of surfuce topo-
graphy; an image of a shiny coloured billiard ball
showing a component due to specular reflection; an
image of a flat white ball showing characteristic
Lambertian reflectance; an image of a pollen grain
obtained with a scanning clectron microscope (SEM)
showing a non-intuitive yet easy to interpret
pattern of shading.

An image irradiance equation can be developed
to relate the geometry and radiometry of image
formation [10, 15}. The rcflectance map, origina-
ted by Horn, allows image irradiance to be written
as a function of surface orientation in a viewer-
centred coordinate system. The reflectance map
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uses the gradient space, popularized by Nuffman (4]}
and Mackwor ' h (6] to represent surface orientation.
The reflectance map provides a uniform representation
for specifying the surface reflectance of a given
material for a particular light source, object sur-
face and viewer geometry.

In computational vision, the image irradiance
equation is used to help analyze what is seen, Un-
fortunately, the reflectance map itself is not in-
vertible since surface orientation has two degrecs of
freedom and image irradiance provides only one
measurement, In order to determine the underlying
scene, additional information must be provided.

Recent work has explored how constraints on sur-
face curvature can simplify the analysis. Surface
arientation can be determined locally for planar sur-
faces forming trihedral corners [10] and for develop-
able surfaces and generalized cones [15]. These re-
sults help to delineate shape information that can b2
determined from geometric measurements at object
boundaries and shape information that can be deter-
mined from intensity measurements over sections of
smoothly curved surface.

The image irradiance equation also helps to
analyze what isn't seen. Recent work on binocular
stereo matches zero-crossing segments from a left
und right view of a scene [13). (Zero-crossing seg-
ments are the basic assertions of Marr's level one
representation, the primal sketch), Specific surface
properties are attributed and matched to produce a
depth map at the level of the raw 2 1/2-D sketch.
These depth values must be interpolated to produce
the full 2 1/2-D sketch. The image irradiance equa-
tion constrains the surface interpolation in regions
where there is an absence of zero-crossing segments.

In remote sensing, the image irradiance equation
has been used to predict variations in image irradi-
unce due to a known topography. This fucilitates
image rectification [24] and helps to delineate
changes in ground cover from topographic affects in
arcas of rugged relief [23}.

Photometric Stereo

Another way to provide additional constraint is
to obtain multiple images. A novel application of
the image irradiance equation is the technique called
photometric stereo [16}. Binocular stereo determines
range by relating two images of an object vicwed from
different directions. If the correspondence between
picture elements is known then distance to the object
can be calculated by triangulation. Unfortunately,
it is difficult to determine this correspondence.

The idea of photometric stereo is to vary the inci-
dent illumination between successive images, while
holding the viewing direction constant. It is shown
that this provides sufficient information to decter-
mine surface orientation at ecach image point. Since
the imaging geometry is not changed, the correspon-
dence between image points is fixed. The technique
is photometric because it uses the radiance values
recorded at a single image location, in successive
views, rather than the relative positions of dis-
plavad features.

hotomctric sterco is casily implemented.  The
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$terco computation, after un Initiul colibration
step, 1s purely local and may be lmplemented by
table lookup, allowing real-time performunce.
Photometric stereo is a practical scheme for en-
vironments, such as industrial inspection, in
which the nature and position of the incident
illumination can be controlled. [25]

Image Analysis and Scene Analysis

One thing that secems to make computational
vision difficult is the fact that many different
kinds of knowledge can influence the interpreta-
tion of an image. Humans, for example, are good
at recognizing the identity of a famlliar face in
a photograph. The step from image to interpreta-
tlon seems immediate. Intermcdiate stages seem
beyond introspection.

An important question to ask concerns how
much of the interpretation is forced by the image
and how much can be attributed to the influence of
prior knowledge and expectation. This is a diffi-
cult question in human perceptlon because it is
impossible to separate one effect from the other,
At best, one might characterlze human vision as
the interaction of diverse, partially complete and
highly redundant knowledge sources.

In computational vision, it has been useful
to make the distinction betwecen image analysis and
sceno analysis. The purposc of image analysis is
to produce a symbolic description of the "impor-
tant” intensity changes in an image. (Needless to
say, it is difficult to define "important"). The
purpose of scene analysis is to produce a symbolic
description of scene features sccording to some
externally defined goal.

The exact boundary is often a matter of taste.
For some, it is the distinction between bottom-up
(data driven) and top-down (model driven) inter-
pretation. For others, it is the distinction be-
tween domain independent and domain specific in-
terpretation. Tt seems, however, that both imuge
analysis and scene analysis roquire genoric know-
ledge of imaging and the scene domain. This know-
ledge includes properties of sensors, luws of
physical optics and constraints on possible con-
figurations in the world.

wWhile the exact boundary is unnecessary to
define, it is nevertheless clear that it has moved.
One consequence of early work in the blocksworld
was the view that descriptions produced by image
analysis were fundamentally impoverished. Emphasis
shifted to obtaining additional constraint by the
downward flow of knowledge from the sceno domain.
Current work demonstrates that image analysis is
capable of producing rich and full descriptions
by the upward flow of construint at lcvels analo-
gous to the primal sketch, the raw 2 1/2-D sketch,
the full 2 1/2-D sketch and 3-D models. Tmage ir-
radiance mcasurcments carry a great deal of useful
information about the underlying object scenc.
Image analysis attempts to exploit this fact.



A Case for Image Analysis (The Blocksworld Revisited)

In blocksworld vision, the distinction between
image analysis ond scence analysis scemed clear. The
purpose of image analysis was to produce a line
drawing of the underlying scene. That is, image
analysis converted the array of image irradiance
mcasurements into a symbolic description equivalent
to a list of 4-tuples, where each d-tuple represented
the coordinates of the two end points of a line seg-
ment. The purposo of scene analysis was to inter-
pret the line drawing in terms of the underlying
objects and relationships between objects in the
scene. That is, scene analysis grouped line segments
into regions and regions into bodies, determined the
identity of the objects and determined relationships
betucen objects nnd groups of objects.

Most of the published literature in blocksworld
vision is in the domain of scene analysis [1-8].
That is, one presumes from the outset to start with
a line drawing. (The argument that people do very
well at interpreting line drawings is not relevant
here. The problem, defined for computational vision,
is to go from images to surfaces). It was of minor
concern that programs to produce the required line
drawinyg were of modest success at best.

It is instructive to exumine why simple line-
finding programs fail, First, not all edges in the
scene produce intensity changes in the image. De-
pending on the orientation of the planes which inter-
sect and on the position of the light source, image
irradiance may be constant across the edge. Second,
edges in the scene produce different kinds of inten-
sity changes in the image. Intensity changes vary in
sign, magnitude and spatial extent. Often, intensity
medsurements 3¢ross an edge show values outside the
range of values determined by the planes which inter-
sect to form the edge. Thus, finding line segments
with 2 simple "edge-detection' operator fails. In-
stead, most prugrams embody multiple operators, one
optimal for each kind of intensity change that has
been catalogued,

In ecarly work, no attempt was mode to interpret
the different kinds of intensity changes. One was
never sure whether the image was responding to some
physical characteristic of the scene or merely demon-
strating some artifact of the sensor.

In current work, we can do more. First, the
quality of image sensors is now high enough that we
can be sure that the image is responding to physical
characteristics of the scene. Second, using the re-
flectance map and the observation that surface orien-
tation Is rarely discontinuous in the real world
{i.¢., there is likely to be a slight rounding of tho
edge where two planes mect) one can interpret inten-
sity profiles across lines in terms of the underlying
edyes semantics (i.e,, convex, concave, obscuring,
crack, shadow, etc.). A paper by llorn includes an
excellent discussion of edge imperfections [10].

Horn presents his results modestly without drawing
conclusions beyond the work actually done. T, how-
ever, would like to pose the following as an open
question:

The problem of producing a line drawing
trom the image of a blocksworld scene is
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the same as the problem of producing 8
labelled line drawing (i.e., a line
drawing for which the underlying cdge
scmantics - convex, concave, obscuring,
crack, shadow - has been identified).

It seems that in order to produce any line
drawing it is necessary to have already determind
the underlying edge semantics. In retrospect, it
seems that the line drawing is an impoverished
description, It is ridiculous to describe a
variety of intensity changes and then throw this
description away in order to begin with an un-
labelled line drawing. At the very least, image
analysis can produce a partially constrained
labelling of the line drawing if it can produce a
line drawing at al11. The conclusion that emerges
is that image analysis ought to produce as rich a
description as possible of the intensity changes
in an image. Assertions about the presence of in-
tensity changes is crucial, But, so are asser-
tions about the size, magnitude and spatial extent
of those changes. The research strategy that
emerges is to exploit as much as possible the in-
formation contained in image intensities. That is
not to say that scene analysis is neither neces-
sary nor important. Rather, it argues that a
boundary between imauge analysis and scene analysis
cannot be drown until one knows exactly what can
or cannot be determined directly from image
intensities.

Conclusions

Computational vision has developed its own
paradigm for research. A better understanding is
emerging concerning the representations required
at different levels of visual processing and con-
cerning the specific knowledge sources and con-
straints that contribute to the descriptions pro-
duced at each level.

At the same time, computational vision con-
tinues to resort to stylized worlds for its devel-
opment. The image irradiance equation, based on
the reflectance map and the gradient space, is a
powerful theoretical tool indicative of the grow-
ing maturity of the field. Research issues can be
identified and studied in isolation, in the right
stylized world. Difficulties that arise in styl-
jzed worlds will certainly be present in more com-
plicated real-worlds. 1In practical applications,
such as industrial automation or remote sensing,
it is important to be able to estimate the nature
and magnitude of these difficulties and to suggest
configurations in which they are minimized.
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