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Un Message du President Génfral/A Message From the General Chairman

Bienvenue a Saskatoon. J'espzre que vous
serez tous satisfairs de la confrence et
1'universit® pendant votre sejour ici. C'est la
quatrieme Conference Nationale de la CSCSI/
SCEIO, 1e| trois precedenteu ayant eté
tenues a Vancouver an 1976, 3 Toronto at a
V}c:orin en 1980. J'at contiance que la
notre sera la meilleure.

La CSCSI/SCEIO ast une organisation de
petite envergure tout en 4tant tres
dynamique. FEn plus de tenir une conférence
tous les deux ans, nous publions un bulletin
et, en genernl. nous essayons de reunir del
chercheurs (Canadien et autres) interéssés
dans le domaine de 1'intelligence
artificielle. Nous sommes toujours a la
recherche de nouveaux membres et nous vous
invitons @ wus joindre si le coeur vous
en dic.

_ Une conférence comme celle-cil ne se
realise pas du jour au lendemain.
Plusieurs personnes doivent travailler
d'arrache-pled en vue de sa realisation et,
dans une organisation telle que la CSCSI/
SCEIO, ce travajil et fait strictement 2
titre volontaire. J'aimerais particuliere~
ment remercier Nick Cercone pour son
excellent effort a la conception du
programme et Brian Funt pour - sa remarquable
contribution a la publication de celui-ci.
Mille nerclsaucomitidu programme pour son
excellent travail d' evnluation des résumes.
" Font partie de ce comite: James Allen, Norm
Badler, Mike Bauer, Wayne Davis, Mark Fox,
B111 Havens, Hector Levesque, Charles Morgan,
John Hylpoulon. Zenon Pylyshyn, Reid Smith et
Doug Skuce. D'autres personnes ayant aidées
a la correspondance. a la prepnration des
doasiers, a la production des cartes
d'iden:ites, a la documentation technique,
a 1'inscription, a 1a traduction, etc.
comprennent Peta Bates, Dave Coforth, Blake
Ward, Marlene Colbourn, et Charles Colbourn
de l'université de la Saskatchewan, ainsi
que Josie Backhouse, Kathy Bootle et John
Cerdes de l'universitf Simon Fraser.
J'aimerais les remercier tous pour leur
fructueux efforts. La coopgration et
l'nssistance financiére fournies par les
deparcementc "Computing Science" des
univsraites Simon Fraser et de Saskatchewan
ont ete inestimables. Finalement nous en
savons gré au Conseil National dg la
Recherche Scientifique et due genie du
Canudn, au governement de la Saskatchewan

et & la ville de Saskatoon pour leur
precieuse contribution.

Gordon HcCa%}a.
Président Géneral,
Quatrieme Conférence Nationale

de la CSCSI/SCEIO

Welcome to Saskatoon. I hope you will
also get & chance to see something of tha
University, the City and the Province
while you are here. This is the Fourth
National Conference of tha CSCSI/SCEIO,
the othar three having been held in
Vancouver in 1976, Toronto in 1978, end
Victoria in 1980, I am confident it will
be the best one yet.

The CSCSI/SCEIO is e small organisation
as organisations go, but a vigorous ons.
In addition to hosting a biannual
conference, we also produce a newsletter
and in general attempt to bring together
researchera (Canadian and others) who are
interested in computational studies of
intelligence. We are alwsys looking for
new members and would invite you to join
us 1if you wish.

A conference such as this does not
just happen. Many people must work long
and hard in order to bring it about and,
in an organisation such as the CSCSI/SCEIO,
this work is strictly volunteer. I would
particularly like to thank Nick Cercone
for doing & superb job of putting together
the programme and Brian Funt for editing
the Proceedings. Many thanka to the
Programme Committee, who did yeoman
service in refereeing the papers; they
included James Allen, Norm Badler, Mike
Bauer, Wayne Davis, Mark Pox, Bill Havens,
Hector Levesque, Charles Morgan, John
Mylopoulos, Zenon Pylyshyn, Reid Smith
and Doug Skuce. Other people who helped
with the correspondence, envelope
stuffing, label production, technical
writing, registration, language
translation, etc., include Peta Bates,
Dave GCoforth, Blake Ward, Marlene Colbourn,
and Charles Colbourn of the University of
Saskatchewan and Josie Backhouse, Kathy
Bootle, and John Gerdes of Simon Fraser
University. I would like to thank all
of them for their efforts. The
co-operation and financial assistance
provided by the Computing Science
Department of Simon Fraser University and
the Department of Computational Science
at the University of Saskatchewan have
been invaluable. Finally, the
contributions of the National Sciences
and Engineering Research Council of
Canada, the government of Saskatchewan,
and the City of Saskatoon are gratefully
acknowledged.

Gordon McCalla,

GCeneral Chairman,

Fourth National Conference
of the CSCSI/SCEIO
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PARALLELISM IN PLANNING AND PROBLEM SOLVING:
REASONING ABOUT RESOURCES

David E. Wilkins

SRI International Artificial Intelligence Center

ABSTRACT

The implications of allowing parallel actions in a plan or
problem solution are discussed. The planning system should
take advantage of helpful interactions between parallel branches,
must detect harmlul interactions, and, if poasible, remedy them.
This paper describes what is involved in this and presents some
new techniques that are implemented in an actual planning sys-
tem and are useful in secking solutions to these problems. The
wmo-~t important of these techniques, reasoning about resourccs,
i3 emphasized and explained.t '

1. Introduction

This paper discusses problems faced by an automatic plan-
ping system concerned with detecting and responding to in-
tcructions in parallel branches of a plan. (This could also be
thought of as a problem solving system producing problem solu-
tions.) There are three aspects to this situation: recognizing
‘interactions between branches; correcting harmful interactions
that keep the plan from accomplishing its overall goal; taking
advantage of helpfu) effects on parallel branches so as not to
produce incflicient plans.

We shall consider a domain-independent planning system
that provides some formalism for representing the domain in
which the planning will be done {as well as the goals to be
aclhiesed by the planner). The system also allows for the repre-
sentation of operators. These nre the system's representation
of actions that may be performed in the domain or, in the
ease of hierarchical planners, abstractions of actions that can be
performed in the domain. A plan consists of partially ordered
goals and actions produced by applying operators to the initial
goal. Actions in the plan explicitly list their eflects, i.e., they
specifically state which relationships in the world model change
their truth value alter the action is performed. (This is part of
wbat Waldiager [8] has called the STRIPS assumption.) NOAH
{3}, NONLIN [5], and SIPE [7] are examples of such planners.

la this discussion, parallelism is considered beneficial. (Two
segments of a plan are in parallel if the partial ordering of the

¥ The research reporied here is supported by Air Force Office of Scientific
Rescarch Contract F49620-79-C-0188.

plan does not specify that one segment must be done before the
other.) In much automatic programming research the goal is to
produce a sequential program, so it is often easier to completely
order the plan (program) rather than reason nbout parallel in-
teractions. However, in multieffector environments parallelism is
preferable. For example, if there are two robot arms, plans that
use them in parallel to accomplish the goal are often preferred
to a scquential plan that could get by with only one arm (even
though it might take twice as long to accomplish). Our approach,
therefore, is to keep as much parallelism as possible and to reason
about the interactions that result from it,

2. Parallel Interactions

The canonical simple problem for thiokiog about paralle)
jntcractions in this coutext ia the three-blocks problem. Blocks
A, B, and C are on a table or on one another (only one block
may be on another at any one time). The goal is to achicve
{ON A B) in conjunction with (ON B C), thus making » three-
block tower. (lnitially the two goals are represented as being
in parallel.) To move the blocks there is 8 PUTON operator
(expresscd in the formalism of whatever planning aystem we wish
to tulk about) that puts OBJECT! on OBJECT?2. Its definition

" spucifies the gouls of making both OBJECT! and OBJECT? clear

belore performing a primitive move sction, (The table is sssumed
always to be clear and a block is clear only when no block is on
top of it.) This problem will be used below to provide examples
of interactions.

)if two branches of a plap are in parallel, an interaction is
delined to occur when a goa) that is trying to be achieved in
one branch (at any level in the hicrarcby) is made either true or
false by an action in the other branch. Since the actions in a
plan explicitly list their effects, it is stways possible to recognize
such interactions, (In a hicrarchical planner, however, they may
not appear until lower fevels of the bierarchy of both branches
bave been planned.) By requiring that a goal be involved in the
interaction, we attewpt to eliminate interactions that we do not
care about. For this to succced, the domain must be encoded so
that all importunt relationships are represented as goals at some
level. This will be discussed later.



The planper can possibly take advantage of a situation in
which a goal in one branch is made true in another branch (a
helpful interaction). Suppose we solve the three-blocks problem,
starting with A and C on the table and B on A. In solving the
{ON B C) paralle) branch, the planner will plap to move B onto
C, thus making A clear and C not elear. Now, while an attempt
is taade 1o move A onto B in the (ON A B) branch, the goal of
making A clear becomes part of the plan. Since A is not elear
ia the initial state, the planner may decide to make it true by
moving B from A to the table (alter which it will move A onto
B). 1o this cuse it would be better to recognize the belpful eflect
of making A clear, which bappens in the parallel branch. Then
the planner could decide 1o do (ON B C) irst, in which ease
both A and B become clear and the (ON A B) goal is casily
accomplished later.

The planner must decide whether or pot to sdd more or-
dering constraints to the plan to take sdvantage of such effects
on a parallel branch. Ordering the parallel branches sequen-
tially is the best solution to this problem because (ON B C)
must be dove first in any case, but in other problems an order-
ing sugzested to take advantage of helpful efects may be the
wrong thing to do from the standpoint of eventually achieving
ke oversll goal. In general, the planner ¢annot make such an
ordering decision without error unless it completely investigates
all the consequences of such a decision. Since this is not always
practical or desirable, plansing systems use heuristics to make
such decisions.

If an interaction is detected that makes a goal falsc in a
parallel branch, there is a problematic (i.e., possibly harmful)
interaction which may mean that the plan is not a valid solution.
For example, suppose the planner docs not recognize the helplul
iateraction in our problem and proceeds to plan to put B on
the table and A on B in the (ON A B) branch. The plan is
vo looger » valid salution (if it is assumed that one of the two
patallel branches will be executed before the other). The planner
must recognize this by detecting the problematic interaction,
Namely, the goa! of baving B clear in the (ON B C) branch is
made false in the (ON A B) branch when A is put onto B. The
planper must then decide how 1o rectify this situation.

As with helpful interactions, there is no easy way to solve
harmful interactions. llere too a correct solution may require

that all future consequeaces of an arderiag decision be explored.

Stratagems other than ordering may be uecessary to solve the
problem. For example, a new operator may perhaps need to be
applied av a higher level, Counsider the prablem of switching the
values of the two registers in a two-register machine, Applying
the registerto-register move operator creates a harmful inter-
action that wo ordering can solve, since a \_rnluc is destroyed.
The solution to this iuteraction involves applying » register-to-

memory move operator at a high level in order to store one of

the valucy 1ewporarily. Correcting many types of barmful inter-
actions e{iciently seems very difficult in & domain independent
planner - domain specific beuristics may be required.

3. Summary of SIPE System

The problem of paralle] interactions has been studied at
SR1 lnternational in the context of 3 domain-independent plan-
ning system. This section briefly summarizes the system and the
following section explains bow parallel interactions are handled,
Ann Robinson and | bave designed and implemented a system,
SIPE (System for Interactive Planning and Execution mouitor-
ing) [7], that supports both interactive and automatic planning.
At present, its automatic scarch is not very knowledgeable.
SIPE is designed to allow interaction with users who are able
to wateh (graphically) and, when desired, guide and/or control
the planning process, thus enabling the solution of much more
difficult problems than would be possible with the automatie
scarch. The system can keep many alternative plans in readi-
ness, each with the appropriate context, thus making breadth-
first or best-first searches casy to implement,

The system provides for representation of domain objects
and their invariant properties in a type hierarchy with inheritance.
Relationships among these objects that may change over time
are represented as predicates in first-order logic, with univer
sal quantification sllowed. Predicates are used to describe the
preconditions and effects of operators.

The system permils the posting of many types of con-
straints on the values of variables in a plan (e.g., specifying
that the eventual instantiation of the variable must have a cer-
tain value for a certain attribute, that it must be the same as
the instantiation of another variable, ete.). This allows partial
descriptions of objects to be built up so that the planner can
nccumulute iuformation before moking decisions. Constraints
help encode many things that would be hard to represent in the
predicate calculus language used for preconditions and effects.
Constraints are also used to represent information about paral-
le) interactions (see the next scction).

The planning is bierarchical; each goal and action can be
expanded into a more detailed multistep plan until the primi-
tive level is reacbed. Plans are represented as procedural nets
(similar to those in NOAI! [3]), their partinl ordering being en~
coded by successor links in the net. SPLIT and JOIN nodes in
the act ullow for parallelisam in plavs.

Operators represcnt sctions in the domuin or abstractions
of actions {that will eventuully be expanded st lower levels in

_ the hierarchy to actual actions). Operators can introduce new

variables, impose constraints upon new or old variables, and

represcut their instructions for expanding a node in a formalism



similar to procedural pets-namely, nodes with slots that are
‘pantially ordered by the links between them {see [3}). The slots
of a node will represent (among other properties), the name of
an actioa to be performed for an action node, the predicates to
be achieved for a goal node, the arguments to be used, and the
effects of performing the given action. SIPE allows arguments
of an action or goal node to be specified as “resources”, As we
shail see later, this is very useful for reasoning about parallel
interactions.

The eflects of actions must be appropriately defined in the
operators so the system cap use the STRIPS assumption to
determine the state of the world in the middle of the plan.
Predicates in the effects may contain universal quantifiers. SIPE
also permits specification of deductive operators; tightly con-
trolled deductions are performed automatically by the system.
This makes the encoding of operators much simpler, since, in
general, only the primary effect must be encoded in an operator
and most side effects can then be deduced from the primary
effect by using the deductive operators.

Many of the above features of the SIPE planning system
are cxtensions of previous domain-independent plabning sys-
tems. Among such extcnsions are the following: devclopment
of a perspicuous formalism for encoding descriptions of actions;
the use of constraints to partially describe objects; the crea-
tion of mechapisms that permit concurrent exploration of al-
ternative plans; the incorporation of heuristics for reasoning
about resources; use of quantifiers in the eflects of actions and
mechanisms that make it poasible to perform simple deductions
{thereby simplifying operator descriptions).

4. Handling Paralle! Interactions in SIPE

The SIPE system has produced correct paralle]l plans for
problems in four different domains {the blocks world, cooking,
aircraft operations, and a simple robotics assembly task). This
section describes new features and heuristics in the system that
aid in handling parallel interactions. These fall into four areas:
{1) reasoning about resources, which is the major contribution
of SI1°L3; (2) using constraints to generate correct parallel plans;
{3) explicitly representing the purpose of each action and goal to
help solve harmful interactions correctly; (4) taking advantage
of helpful interactions. Other planners have had some of the
features {e.g., NONLIN has features similar to the last two areas
mentioned), but SIPE develops these ideas with a diflerent em-
phasis. Our owp empbasis has been to represent the information
that must be reasoned about in a way that is natural to bumans
3o that the planper can be easily controlled interactively-thus
allowing more dificult problems to be solved.

OPERATOR: PUTON
ARGUMENTS: BLOCK1, OBJECT1 1S NOT BLOCKI;
PURPOSE: (ON BLOCK1 OBJECT1);
PLOT:
PARALLEL
BRANCH 1:
GOALS: (CLEARTOP OBJECT1);
ARGUMENTS: OBJECTI;
BRANCH 2:
GOALS: (CILEARTOP BLOCK1};
ARGUMENTS: DLOCK1;
END PARALLEL

PROCESS

ACTION: PUTON.PRIMITIVE;
ARGUMENTS: OBJECTT;
RESOURCES: BLOCKI;

EFFECTS: (ON BLOCK1 OBJECT1);

END PLOT
END OPERATOR

Figure 1
s PUTON operator in SIPE

4.1 Resources

In the follawing discussion, actual examples will be pre-
sented to show how resources help with parallel interoctions.
Figure 1 shows a PUTON operutor written in SIPE. The above
example of achieving (ON A B) and (ON B C) as a conjune-
tion shows how resource reasoning is helpful. Figure 2 depicts
a plan that might be produced by NOAH or NONLIN (or
SIPE without making use of resource reasoning) for this prob-
lem. Figure 3 shows a plan from SIPE using resources in the
operators. ‘

The forwalism for representing operators in SIPE includes
a means of specifying that sowe of the variables nssociated
with an action or goal actually scrve as resources for that sc-
tion or goal. Resources are to be employed during a particular
action and then released, just as a saw is used during a cutting
action. Reasoning about resources is & common phenomenon.
ft is & useful way of representing masy domsins, a patural
way for humuns to think of problems, and, consequently, an
important aid to interaction with the system.

SIPE hns specialized knowledge for handiing resources;
merely specifying that something is a resource causes the sys-
tem to check on resource availability and on resource conflicts.
It is often dificult or awkward to keep track of resources in
current planning systems (e.g., {3] {5]). Resource avmilability
in the latter would have to be axiomatited and checked in the
preconditions of operators, while resource conflicts would have
to be caught by the normal problematic interaction detector,
which is less cflicient (as we shall sec below).
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Figure 3

s plan with resources

One advantage of resaurces, therefore, is that they help in
the axiomatization and representation of domains. Declaration
of a resource associated with an action connotes that one
precondition of the action is the availability of that resource.
\Mechanisms in the planoiag system, as they allocate and deal-
locate resources, automatically ensure that these implicit precon-
ditions will be satisfied. The user of the planning system does
uot have to axiomatize as a precondition the availability of
tesources in the domain operators.

Another important advantage of resources is that they
help in early detection of problematic interactions on paraliel
branches. The system does not allow one branch to use an
object which is a resource in a parallel branch. In NOAH
and NONLIN, both original GOAL nodes are expanded with
the PUTON operator or its equivalent. This produces a plan
similar to the one shown in Figure 2, The central problem is
to be aware that B must be put on C before A is put on B
{otherwise B will oot be clear when it is to be moved onto C).

NOAH uud NONLIN both build up a table of multiple effects
(TOML) that tabulates every predicate instance asserted or
denied in the parallel expansions of the two GOAL nodes.
Using this table, the programs detect that B is made clear
in the expansion of (ON B C), but is made not clear in the
(ON A B) expansion. Both programs then solve this problem
by doing (ON B C) first.

SIPE uses its resource heuristic to detect this problem
and propose the solution without having to generate s TOME,
{SIPE does do a TOME-like analysis to detect interactions
that do not fit into the resource reasoning paradigm.) When
some object is listed in an action as a resource, the system
then prevents that particular object from being mentioned as
either o resource or an argument in any action or goal that is
in parallel. In the example above, the block being moved is
listed as a resource in the primitive PUTON operator because
it is being physically moved. Therefore, nothing in a parallel
branch should try to move it-or even be dependent on its



currenl location. This restriction is enforced by not allowing
a predicate on a paralle! branch to mention the resource. This
is a strong restriction (though useful in practice) and can be
avoided by using shared resources (discussed below). Thus, as
soon a3 the expansion of (ON B C) with the PUTON operator
i accomplished and the plan in Figure 3 produced, SIPE
recognizes that the plan is invalid since B is a resource in the
expansion of (ON B C) and an argument in (ON A B). This
can de detected without expanding the (ON A B) goa! at all
and without generating a TOME.

Not being able to refer to a resource in another branch
is sometimes too strong a restriction. SIPE also permits the
specification of shared resources, whereby the same object can
be a resource or an argument in a parallel branch if certain
conditions for the sharing are met. (Currently shared resources
are sharable under all conditions as the sharing conditions have
oot yet been implemented.)

Resources belp in solving harmful interactions, as well
as in detecting them, In these interactions no goal is made
false on a parallel branch; there is simply a resource conflict.
llowexer, if the resource availability requirements were axiom-
atited with predicates, an availability goal would be made false
on a parallel branch. Thus, resource conflicts are considered
to be problematic interactions. SIPE uses a heuristie for solv-
ing resource-argument conflicts. Such an interaction occurs
when a resource in one parallel branch is used as an argument
in another parallel branch (distinct from a resource-resource
conflict, in which the same object is used as a resource in two
parallcl branches). This is the type of conflict that occurs in
the plan in Figure 3, since B is a resource in the primitive
PUTON action and an argument in (ON A B).

SIPE's heuristic fof solving a resource-argument conflict
i to put the branch using the object as a resource before the
parallel branch using the same object as an argument. In this
way SIPE decides that {ON B C) must come before (ON A B)
in Figure 3. This is done without generating a TOME, without
expanding both nodes, and without analyzing the interaction.
The assumption is that an object used as a resource will have
its state or location ehanged by such use; consequently, the
associated action must be done first to ensure that it will be
*in place® when later actions occur that use it as an argument.
This beuristic is not guaranteed to be correct, but it has proven
wseful in the four domains encoded in SIPE. (The user can
easily prevent the employment of this heuristic by interacting
with the system.)

To take full advantage of resources, the system posts con-
straints. This capability is discussed briefly in the next section.

4.2 Constraints

Unbound variables in a plan can accumulate various con-
straints in SIPE, thus building up a partial description of the
object. (Constraints were first used in planning by Stefik in his
domain-specific planner MOLGEN [4).) This ia useful for tak-
ing full advantage of rcsources to avoid harmful interactions.
When variables that are mot fully lostantiated are listed as
resources, the system posts constraints on the variables which
point Lo other variables that are potential resource conflicts,
When allocating resources, the system then attempts to in-
stantiate variables so that no resource conflicts will occur, For
example, if a robot arm is uscd as a resource in the block-
moving operators, the system will try to use different robot
arms (if they are available) on parallel branches, thus avoid-
ing resource conflicts. If only one arm is available, it will be
assigned to bLoth parallel branches in the hope that the plan
can later be ordered to resolve the conflict, In this way many
harmful interactions arc averted by intelligent nysignment of

resources.

4.3 Solving Harmful Interactions _

The difficulty entailed in elimminating harmful interactions
has already been discussed, However, il the system knows
why each part of the plan Is present, it can use this informa-
tion to come up with reasonable solutiona to some harmful
interactions. Suppose a particular predicate is made false at
some node on oue parallel branch and true at snother node
on nnother parallel branch. Depeuding on the rationale for
including these nodes in the plan, it may be the case that the
predicate is not relevant to the plan (an extraneous side effect),
or must be kept permanently true (the purpose of the plan), or
must be kept only temporarily true (3 precondition for later
achievement of a purpose).

Solutions to a harmful interaction may depend on which
of these cases hold. Let us call the three cases side effeet,
purpose, and precondition, respectively, and analyze the con-
sequent possibilities, If the predicate in conflict on one branch
isa preconditibn, one possible solution is to further order the
plan, first doing the part of the plon from the precondition
on through its correaponding purpose. Once this purpose has
been accomplished, there will be no problem in negating the
precondition later. This solution applies no matter which of
the three cases applies to the predicate in the other conflicting
branch.

In case both conflicting predicates are side eflects, it is
immaterial to us if the truth value of the predicate changes
and thus no real conflict exists. In the case of & side eflect
that coullicts with a purpose, one solution is to order the plan
so that the side eflect occurs before the purpose; thus, once



the purpuse has beca accomplished it will remain true. When
both conflicting predicates are purposes, there is no possible
ordering that will achicve both purposes at the end of the plan.
The planser must use a dillcrent operator at a higher level or
plan to reachicve one of the purposes later. However, none
of the above suggestions for dealing with interactions can be
guaranteed to produce the best solution.

This has been a brief summary of SIPE's algorithm for
dealing with problematic interactions. Systems like NOAH
and NONLIN do similar tbings. However, SIPE provides meth-
ods for more precise and efficient detection. It should be
emphasized that many interactions that would be problem-
atical in the other systems are dealt with in SIPE by the
resource-reasoning mechanisms and therefore do not need to
be apalyzed. When interactions are being lnnlﬁcd, SIPE re-
quires that one of the confllicting predicates be a goal (not just
a side cfect) at some level in the hierarchy. In this way, in-
teractions between side eflects that pose no problems are not
cven detected. This requires tbat all important predicates be
recognited as goals at some level, which is easily done in SIPE's
bicrarchical planning sclieme. The system also distinguishes
between main and side cflects at each node in the plan. This
maker it easy to tell which predicates are of interest to us at
any level of the plan witbout looking up the hicrarchy (since

higher-level goals will become main effects at lower-level ace
tions).

SIPE also provides for exact expression of the purpose of
any goal in its operators. NOAH used a heuristic, according
to which the last node in an expansion was the purpose of the
expansion. Thisis not always accurate and in SIPE a node can
specily any later node in the expansion as its purpose. This
enables better analysis of problematic conflicts.

4.4 Changing Goals to Phantoms Through Linearisation

SIPE recognizes helpful interactions and will try to fur
ther order the plan to take advantage of them, although the
user can control this interactively if he wishes, If a goal that
must be made true on onc parallel branch is actually made
true on another parallel branch, the system will order the plan
»o that the other branch occurs first (if this causes no other
confllicts). The goal can then be changed to a phantom and
seed not be achieved.

NOAH was not able to tnke advantage of such helpful
effects. NONLIN did have nnbabilily to order the plan in this
way. This is an important ability in many real-world domains,
siace belpful side cflects occur frequently. For cxawple, if
parallel actions in a robot warld both require the same tool,
only one branch aeed plan to get the tool out of the tool box;
the other branch should be able to recognize that the tool is

already oul on the table.

5. Related Work

Much planning-like rescarch does not fit into the context
we have defined bere-because it is specialized to one domain,
because it does not make the STRIPS assumption, or because
it does not reason about parallel actions. For example, much
automatic programming research does not deal with paral-
lel actions or does not make the STRIPS assumption. The
STRIPS planner (1] itself does not deal with parallel actions.

The most relevant systems, NOAH and NONLIN, have al-
ready been compared with SIPE throughbout this paper. Both
NOAH and NONLIN find interactions by generating s TOME
(table of multiple effects). The TOME finds all interactions,
even harmless ones (i.e., those in which both predicates are
side eflects), work which SIPE avoids. SIPE also provides for
explicit designation of purpose for preconditions that NOAH
does not provide. NONLIN provides a similar capability with
its “goal structure”. The most significant improvement in
SIPE is the use of resource reasoning {and the ability to post
constraints), which averts many barmful interactions and en-
ables many others to be recognized quickly and solved. Neither
NOAIl nor NONLIN provides a similar capability,

8. Conclusion

\We have defincd the problem of parallel interactions in a
context that is not unique to SIPE. The difficulty of solving
Larmful interactions was discussed and a case-by-case analysis
of different situations presented. Ap actual planning system
was described that incorporates several new mechanisms able
to assist in dealing with the parallel interaction problem. The
most significant of these mechanisms is the ability to reason
about resources. Combined with the syatem's ability to post
constraints, resource reasoping helps the system avoid many
harmlul interactions, helps it recognize sooner those interac-
tions that do occur, and helps the system solve some of these
interactions more quickly.
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Abstract

A probabilistic model of problem solving un~
dar conditions of uncertainty is described. In-
formation gathering operators are introduced to
make feasible the solution of reasonably con-
strained, uncertain problems. The notion of re-
laxed solution plans is defined, based upon the
cxpected degree of goal space satisfaction. Our
nodel leads to a straightforward scheme for in-
cremental planning.

I. Introduction

Problem solving refers to activity undertaken
to reduce and eventually eliminate differences
between current and desired (or goal) situations.
T™ree basic types of problem-solving activity can
be distinguished: problem representation, solu=
tion determination (planning), and plan execution,
Traditional artificlal intelligence (AI) approaches
to problem solving tended to consider these acti-
vities as successive phases of the problem-solving
process. This proved appropriate for well-struc-
tured, puzrle-like problems. Recently, increased
attention has focused on applying AI solution
techniques to problems arising in real-world con-
texts. Such contexts confront an agent with un-
certalnty due to a variety of factors, including
imj.erfect interpretation of environmental infor-
mation, unreliable execution of ‘planned actions,
and unpredictable interaction with other agents
or natural systems, The uncertainty inherent in
real-world problem solving motivates considera-
tions of more complex control among the three
basic activity types.

Incremental planning refers to the inter-
leaving of plan execution with planning. 1In this
papex, we define a scheme for incremental planning
within a probabilistic model for uncertain problem
solving. The scheme majintains a minimum expected
probability of plan success, replanning when in«
sufficiently solved contingencies are encountered
during plan execution. :

* Research performed while author on leave at the
Artificial Intelligence Center, SRI International,
Menlo Park, California 94025, and partially sup-
ported by ONR Contract No. N00O0l4-81-C~0l1S5.

II. A Probabilistic Model for Uncertain
Problem Solving

Our probabilistic model is a straight-
forward generalization of the well-gtudied
notion of problem space. A problem space is a
four-tuple (Ss,0pP,cs,GS), where SS is the
state space, a set of allowable state descrip-
tions; OP is a set of operators, functions
mapping state descriptions to state descrip-
tions; cs is the current (or initial) state
description; and GS is the goal space, a subset
of SS. Problem representation activities gen-
erate a problem space representing a particular
problem; planning is carried out within the
resultant problem space. Heuristic methods to
guide solution search have been long-standing
topics of AI research. A heuristic search
method is admissible if it is guaranteed to
determine a minimum-cost solution to a problem,
if a solution exists, Admissible heuristic
search algorithms have been characterized in
terms of required properties of associated
evaluation functions [4].

An uncertain problem is represented in
terms of an uncertain problem space. We dao-
fine an uncertain problem space to be a six-
tuple (Ss,Uss,UOP,ucs,GT,ST). SS and GS are
as in the certain case. USS is the space of
uncertain states; ucs is the uncertain current
state. An uncertaln state is a set of compon=
ent state descriptions from 8S, with each com-
ponent having an associated probability such
that the sum of component probabilities is
equal to 1.0. UOP is a set of unreliable
operators, functions mapping uncertain states
to uncertain states. In (2], we discuss the
specification of unreliable operators as
Markov processes over state descriptions. Ap-
plying such an operator to an uncertain state
us yields the probabilistically weighted com-
bination of results over components of us. Our
uncertain problem space differs from the models
described for most Markov control problems that
assume stochastic operators but certain (i.e.,
completely observed, singleton) states (1,4]).

ST is the solution threshold, 0.0<ST<l.0.
With each uncertain state us we associate a
degree of goal space satisfaction, dsat(us),
equaling the sum of the probabilities of com=~
ponents of us that are also in GS. We initi-
ally define a solution to an uncertain problem




to be a4 scjuence of unrcliable operators uwol,...,
uok such that vok(...uol(ucs)...) = ugs with

dsat (ugs) > ST. The notion on is that a solution
transforms an uncertain current state into one
containing components that satisfy goal space cri-
teria with combined probability greater than or
equal to the solution threshold ST. A forward-
directed search algorithm can be readily defined,
halting when it selects a state us for develop-
ment such that dsat (us) > ST. i {2) we discuss
the specification of heuristic evaluation functions
that result in admissible search algorithms (in
terms of expected cost) for uncertain problem
solving.,

Our model as defined thus far would have
difficulty ylelding solutions to uncertain pro-
blems having normally constrained goal spaces and
reasonably high solution thresholds. Application
of an unreliable cperator can be expected to re-
sult in an uncertain state containing more com-
ponents with lower probabilities than that to
which the operator is applied. Furthermore, an
operator may result in goal-directed states for
some components and not for others; another oper-
ator may produce complementary results. The needs
to control state disunity and to realize pragma-
tic focusing prompt the addition of information
gathering operators (IGOPs) to our model. An
ICOP obtains information as to the presently ex-
isting environmental situation when performed
during plan execution. Application of an ICOP at
planning time distributes one uncertain state in-
to several uncertain states, each containing the
subset Oof components consistent with a possible
IGOP result, We assume that the possible results
of an IGOP serve to partition SS. Each result
has a probability equal to the sum of probabili-
ties of the components cansistent with it. Plans
containing IGOPs become rooted trees with uncer-
tain states as nodes, unreliable operators label-
ing arcs, and IGOPs labelling arc sets. Branch-
ing occurs when an IGOP is applied. The uncer-
tain current state ucs is the root of such plan
trees. -

Our original definition of uncertain problem
solution must be extended to cover plans contain-
ing IGOPs. A strict generalization is that a
solution is a plan tree with leaf set LF such
that dsat(lf) > ST for each leaf 1lf in LF. This
definition g quarantees that the final uncertain
state produced by any plan execution satisfies
the candition of our original solution definition,
However, it requires that a sufficient plan be
generated for every contingency without consid-
eration of likelihood. With each uncertain state
us of a plan, we can associate the probability

uprob (us) of its being encountered during plan
execution, equaling the product of prcobabilities
of IGOP results on the path between us and ucs
{(or 1.0 if none have been applied).

Let us now ‘relax' our original solution
definition to reflect the expected degree of goal
satisfaction: a solution is a plan with leaf set
LF such that SUM [ uprob(lf)*dsat(lf)] > ST, sum-
med over all 1f in LF, W& can assaciate with each
uncertain state us of the plan the value past{us)

Ml

equal to the expaected dugree of matiufaction
realized by the subplan having us as root. A
relaxed solution plan is such that psat{ucs)
> 5T. This relaxed solution definition allows

a plan to ignore unlikaely contingopncies whan
others have been solved to sufficlent degres.

Figure 1 presents a schematic solution
plan for an uncertain problem, illustrating
some of the notions {ntroduced above. The root
state ucs is at the bottom. IGOPas are repre-
sented by multiple arcs lesaving a state; the
probability of each IGOP result is indicated
in parentheses. Each node represents an uncer-
tain state us. The value of daat(us) is indi-
cated to the left of a node; that of pesat{us)
is to the right. The plan shown could be a
relaxed solution to an uncertain problem with
ST =,77. 1f the strict solution definition
were required, ST could be at most the minimumn
of leaf satisfactions (or .40). Issues of
determining relaxed solution plans in conjunc~
tion with the use of (parfect and imperfect)
IGOPs are discussed in [2]}.

We want to define a scheme that inter-
leaves planning with plan execution, requiring
only relaxed solution plans yet guaranteeing
sat{isfaction of the desirable property of our
original solution definition, that the uncer~
tain state us reached by plan axecution is
such that dsat(us) > sT.



I3I. Incremental Planning

Let us assume the existence of a planning
system for uncertain problems, activated by calling
PLAN (ucs,GS,ST,UOP, IGOP) with corresponding argu-
ments from an uncertain problem space; IGOP is a
set of available information gathering operators.
PLAN returns a plan with ucs as root satisfying
the relaxed solution definition given above. We
also azsume the existence of a plan execution sys=-
tem that is activated by calling EXECUTE(ustate,
plan) which exccutes the operator from ustate (un-
reliable or IGOP) that is indicated in Elan return-
ing as its value the resultant uncertain state in

plan.

Our incremental planning scheme is presented
below as procedure INCREMENTAL:

procedure mcmmu(ucs.cs ST,UOP, IGOP)
begin
ustate <- ucsy
current .plan <- PLAN({ustate,GS,ST,UOP,IGOP)

®While [ dsat(ustate) < ST ] do
beqin :
ustate - EXECUTE(ustate,current plan);

1f ([psat(ustate) < ST ) then
current plan <~ PLAN (ustate ,GS,ST,UOP, IGOP)
end
end.

INCREMENTAL replans whenever it encounters
an uncertain state us during plan execution such
that psat(us) <ST. In Figure 1, those states
marked by an 'x' would trigger replanning, assum-
ing ST = ,77. The scheme guarantees that current
plan always satisfied our relaxed solution defi-
nition and that, when INCREMENTAL halts, our ori-
ginal solution condition is met, 1In Figure 1,
those states marked by an 'o' correspond to possi=-
ble final states. Actually, PLAN need not always
find a plan such that psat (ustate) > ST. 1f the
state disunity of ustate were particularly high,
PLAN could just as well propose execution of a
single IGOP, forestalling search for a relaxed
solution plan until more were known as to present-
ly existing conditions.

IV, Example

In this section, we demonstrate application
of our notions by considering a simplified robo-
tics environment. 1In this real-world context, a
robot has the task of acquiring and then attach-
ing screws to an object that is being assembled.
The¢ robot can pick up a screw from a parts con-
tainer and screw it into a pre~drilled hole. We
model the posaible robot actions by the following
four operators, two unreliable, one reliable, and
ane an imperfect IGOP:

vop OUTCOME P (OUTCOME)
GET-SCREW HAVE (GOOD (SCREW) ) .8
(G-S) HAVE (BAD (SCREW) ) .2
PRE: NOT (HAVE (SCREW))
IN~SCREM IN(SCREW) .9
(1-%) NOT (HAVE (SCREW) ) W1

PRE: HAVE (SCREW)

op OUTCOME

DROP~SCREW NOT (HAVE (SCREW) )

(D~-8) . (reliable)
PRE: HAVE (SCREW)

IGOP ACTUAL RESULT P (RESULT)
TEST~SCREW GOOD (SCREW) GOOD 1.0
(T-8) BAD (SCREW) BAD .95
PRE; HAVE (SCREW) GOOD .05

The GET-SCREW operator represents the notion
that only BOS of the screws are good; we as~
sume they are acquired from a container that is
refilled frequently. The operator IN~SCREW in-
dicates the success that the robot has in at-
taching a screw that it has. We assume that if
the robot fails, the screw falls to the floor
‘and is swept away. Similarly, if the robot
drops a screw, it is removed from the context
(i.e., work station)., Note that our operator
definitions are incomplete, conveying only

main effects. The IGOP TEST-SCREW can be used
by the robot to evaluate a screw it has acquir-~
ed. The operator is imperfect, categorizing

a bad screw as good occasionally.

Consider the simplest plan for putting in
a screw, as shown in Piqure 2, HAVE, BAD, GOOD,
SCREW, IN, and NOT are abbreviated by H,B,G,S,
1 and N, respectively. This plan solves the
problem of having a screw in a hole with prob-
ability .90, the limit of IN-SCREW. However,
if we are interested in having a good screw in
a hole, our solution threshold could at most
be .72, for this plan to be considered a solu-
tion. The plan of Fiqure 3 improves upon
this solution threshold.

Figure 2
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In the plan of Figqure 3, if the robot sees
that it has a bad screw, it drops the screw and
then applies the plan of Figure 2. If the robot
believes it has a good screw, it continues by at-
taching that screw., Recall that a few bad screws
can slip by the inspection. This plan satisfied
the goal of having a good screw in a hole with
probahility = .854 (i.e., .81 * .88S + .19 * .72),
Note that the probability of having either type
of screw in remains at .90, as limited by the
reliability of the IN-SCREW operation. To improve
upon this, we would need to add an IGOP that can
assess wvhether a screw has gone in or not. Our
model can be embellished in a variety of ways to
better represent relevant aspects of robotic as-
sembly tasks. The principles of plan representa-
tion and evaluation would remain the same.

Incremental planning could be applied in
robotic assembly contexts to allow realization of
plans that repeat themselves as subplans, For
example, if our robot found that it had a bad
screw, it could simply drop the screw and submit
to replanning, generating the same plan that it
had initially (e.g., by recall). The robot would
continue to acquire screws until it believed it
had a good one, realizing an upper limit of reli-
ability of .885, Robotic assembly systems that
incorporate execution monitoring and adaptive
control represent a real-world application of in-
cremental planning that s currently receiving
considerable research attention.

V. Discussion

For only one type of context has ARI research
examined in any detail the interleaving of plan=
ning with plan execution. Game playing shares
with real-world problem solving the uncertainty
due to interaction of multiple agents. Searching
a game tree of poasible futures hefore every move
is consistent with an incremental planning per-
spective,. Racent plan~based approaches to chess,
as represented by PARADISE {5], better reflect
our notion of executing an extant plan until an
unconsidered contingency arises. Opponent move
generation could be modeled as an unreliable op-
erator, adding probabilistic factors to game plan
evaluation.

An incremental planning approach to the con-
trol of problem solving activities is particularly
appropriate to problems for which no complete sol-~
ution plan can be expected to be found or to pro-
blems which place strict time limits on the re-
sponse time of an agent. Playing a complex game
such as chess represents an example of the former
class of problems. Modern (electronic} warfare
presents problems in which quick reaction must be
made in response to possible threats by applica-
tion of imperfect sensors and unreliable counter-
measures. On a more everyday scale, driving a
car through a crowded city poses similar problems,
suggesting an interaction between a complected ab-
stract plan (a selected route) and incremental,
execution planning.

In this paper we have presented a general
scheme for incremental planning based upon a prob-

abi)igtic model of uncertain problem uolving.
Faldman and Sproull {3) discuss the notion of
incremental planning in decision-~theoratic
terms, In their model, actions ara reliable
and initial uncertainties are expressed as
probabilistic parameters of the environment.
Goals, actions, and planning activity are as-
signed utilities (or coats) and dacisions are
made to optimire expected utility. Their mo-
del could be extended to directly represent
uncertain states and include unreliable oper-
ators. Our incremental planning echeme could
ba extended to consider utility as well as
degree of goal space satisfaction when making
replanning decisions.

Incremental planning is just one of many
capabilities that will be required if AI sys-
tems are to deal effectively with problem
solving in real-world contexts.
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! Introduction

The problen of plan formation is central to the
enaeavor of Artificial intdliigence. Despite itz impcrance,
the field has stll not developed a unified plan generation
framework that can be customized to realistic domaing =
be 1t planring of machiung steps in a vared manufacturing
process or routing and scheculing for merchandising. or
planning corporate transactions to attain stated objectives.
Tne state of the art is such that each new application
recures specualized problem formuiation, design of
representaton. and design of planning procedures and
neunstics The task specific activiies often echpse the
rea.zauon of a general framework A scan of the hterature
reveals a coilecton of specific problem soiving attempts
for spacific gomans [1), [2) and a tew explorations of
general techniques [3]. There sull remains a need for
ceveloping an wnteractive general planning facility which can

oe customized for different tasks by incorporaung task--

specific planning metnods and task knowledge. It 1s still a
research queston how a variety of differant strategies may
be comomned into one

It Context and icop- of our ressarch

We have been studying plan generation in everyday
setungs [4], as an important component of the larger
prooiem of pln recognuon [5].  Plan Recognition s the
task of arnving at an nypotnesis about an actor’s plan
from ooservatons, Le descriptions of acuon performed by
the actor A “viable® plan hypothesis is required to be
se!f-consistent motvationally, consistant with the
coservauons., and weli-supported by the observations Plan
Recogrnition proceeds by a process we have charactenzed
as °"hypothesize and revise” The elicitation of an initial
hypotnesis can be dons in a8 number of ways = plan
generation from a goal attributed to the actor is one of
tmem [6].

From our studies we have gained an understanding of
now the human information processing system pians
rooustly w  the presence oOf sparse and wreliable
nformanon, and does trus under /imitations of processing
resources in tus paper we discuss some of the planning
tecnniGues caveloped to stuay human planning We have
ces.gned and mplemented a system. PLANX10. which
consists of a collecuon of these techniques. The
aiscussion 1s focused on the engineering 1ssue of how a
pianrung system may be orgamzed to work effecuvely in
large and realisuc task domains We include a small
exampie of plan generabon We have not carriad out a
large appiication yet. byt trus report marks the beginning of
owr concern with this important engineering queston

11} Other recent approaches

From an engineering point of view, several research
efforts have developed techniques and facilities that directly
address or indirectly bear on aspects of effecuve planning
in {arge and realistic task domains. We mention some of
the recent approaches to. {al generating and manipulating
large and complex plans; (b) handling large and complex
knowfedge bases. (c| operating with an incomplats world
mode! and/or knowledge bass.

Approaches for dealing with large and complex plans
include: (i) use of abstracuon in planning (7). (B8], [9).
[10]; (i use of plans with actions only partially ordered
over time [11]; (i} incremental planning and plan repar
(12]). {9]. [7], [13); tv) consideration of alternate plans
(14]). {7); v) opportunistic plannina [18); tvil distributed
planning [ 161, CIZF.' viil© use of axphcit resource~
declarations with actions [7]; (viil accounting for prepatory
and cleanup actions [7); and (ix) the postponement of
parameter seiection for actions until appropriate consirsints
heve been developed [2]), [7).

Approaches for handling large and complex knowledge

bases include. (i} using a distributed system of multiple
knowledge sources and resourca limited information
retrieval (17); and (il enrichment of the language of

interaction with the knowledge base [18).

One approach 1o cope with missing knowledge is 1o
allow assistance from an interactive user [7). A central
issue 10 working with incomplets knowledge involves the
use of partial gescriptions and object descriptions which
have no current refarent in the worid model; ie., phantom
ovjects (7], (2], [1a).

IV Components of common-senss plans

A complex task may involve the construction of plans
consisting. of a large number of actions, may hsve a
complex structure to the solution and may require a divarse
variety of knowledge in the task domain. Furthermors, the
knowledge will most ikely be incomplete and perhaps
inconsistent  Typically, current plan generators formulate
plans consisting of 3-20 actions. Large tasks may require
plans that include 10-200 actions. The principles of
Artificial intettigence [18) offer many usefu! engineering
ideas for coping with thus kind of search compiexity.
Rather than focus on search, our study has concentrated on
the structural complexity of commonsense plans. We have
decomposed a plan into three structural parts: the famihar
goal—-directed component, a prepatory componant, and a
normative actions component Each component includes
statements of goals to achisve as well as goais tO0 mantain



Figure 1: Components of an example commonsense pian

Preparstion Condition

Room i3 visibla.
Preparstion Plan \
Reach for match book,

Takea matchbook.
l Light match.

’ Light candla,
Take candle,

, achisves

maintains

Normative Components

Puff match.
Puff candla.
Carry back candle.

Assumptions sbout WM
Fred in living-room.
Lights are not shining.

Fred has access to candls.

Goa! Diracted Plan

Go to basement.

Approach fusebox.
Opan fusebox.
Flip clreult-breaker,

L }

achieves

Lights are shining.

Close fusebox.
Go to living-room.

Consider the exarmple in Figure 1. The primary
component containg & goal and & set of subgosls forrming s
partal oraer. The final acuon will have as goal the goal of
the entre plan, eg hghts are shinng The goal-~directed
actions raquire visibihity of the local area as a precondition
NG the preparaucn pian achieves this by ligntng 3 candle
ang ten agding other acuons to maintain this visibility, 1.0
by carryng the cangie to the basement Note that the
preparation condition 13 not 3 subgoal for any plan unit In
the primay plan but 1S 3 conditon that needs to be
acrweved and  mantained  throughout The normative
component nciudes actions which do not contribute to the

main goal, ratner, tnese actions anse from consideration of
me norms (e.g politeness; and conventions governing the
setung teg concerning safety and economyl and roles of
the actors leg customer, guestl.

We have rejected the design option of exiending eacn
acton with preparation conditions and normauve rules 1as in
[7)i 0 tavor of viewing e wnole plan as being dissected
nto components By adopting this strategy we seek to
recuce e structural complexiny of the overall plan and to
control tne complaxity ot the reasoning processes involved
N pannIng in the example plan, the same preparaton
conaition, wisibiity, 1 neeced tor every action in the goal-
arectea component It 1s more economical to let this
conasuon be planned for just once. If actions in the goai-
oreclted component {eg going to the basement falsify thg
preparation condilion, acuont may be added to maintain it
i8¢ tane the candlel Further, in a planning situation where

the construction of the goal-directed component requires
backtracking search, our design strategy pasys off. The
preparation actions are not involved during this stage, thus
search 1s simplified Note that the actions in the normative
component are temporally constrasined only weakly in
relaton to the actions in the main parts of the plan

V Types of knowlsdgs

Realistic  task domains require diverse types of
knowledge wn iarge amounts. There is a need to ensure
that increased knowledge is not a liability to the planning
process. In reafistic task domains we cannot make the
ususi assumptions about the ‘correctness” and
"compieteness” of knowiedge presentsd to the program.
Wa table the issue of correctness of the knowledge base,
tor now, and elaborate the consequences of having
incomplete knowledge. There sre two aspects to the
incompieteness: incompietaness in the specification of the
problem and incompleteness n the action knowledga.
Discussion can be simplified if we assume that the
statement of the goal to achieve/prevent/maintain is clear
and complete; but that it 1s difficult for us to provide a
compiete description of tha initial situation that includes a//
relevant intformation. Even if such completeness is possible
in principle. to insure it in large scale situations would be
tedious and thus error-prone. Consequently, planning
algorithms must be designed to make appropriste and
needed defaul/t assumptions about the inital situation by
appeal to general knowledge. These assumptions shouid be
explicit so that they can be evaluated as part of selecting
the solution from candidaiss.

13



Figure 2:

Precondition

[Given an action. retrieve its preconditions)
(POUR X (AGENT (PERSON Pl (FROM (CONTAINER €N
A
PERSON P (NMAND (CONTAINER CII)

In order for a person to pour from a contalner,

sihe must have 1t 1n hand.

Act-Select :
[Given a goal retrieve the actions that achiave it}
(OBUECT M (ACCESSIBLE (PERSON P
UOBEST M (WITHIN ICONTAINER C)))
(OPEN X (OF (CONTAINER C) {AGENT (PERSON PN
To gain access 10 an object that is
within & container, open the comainer.

Normally=True :

{Given an object description, determine if

1t is normally true.]
UG.ASS C (CLEAN YES) o
UG.ASS G (WITHIN [CONTAINER C (TYPE CABINETHN
n

It is pormally true that & glass In &

casinet is clean.

Examples of Rules

Qutcome .
(Given an action, retrieve its outcomes.]
HOPEN X (AGENT (PERSON P) (OF {CONTAINER C)h
(ICONTAINER C (CONTAINS (OBJECT ON)
{OBJECT O (ACCESSIOLE (PERSON PIN
When a person opens & contalner, any object within
the contsiner becomes accessible 10 himiher.

Act-Customize :
(Given an action, retrieve possible action refinements.}
WPOUR X UINTO (GLASS G)) (OF WATER)
{BOTTLE B (TYPE WATER-BOTTLEN
(POUR X (FROM (BOTTLE 8
To pour water Into a glass {from a water bottle,
pour from a water botlle.

Normatly-False

(Given an object description, determine if

it is normally false.}
UCONTAINER B (EMPTY YES)H
{CONTAINER 8 (WITHIN [CONTAINER R [TYPE REFI))
F)

It is normalily-false that a contsiner In

a refrigerstor is empty.

The use of cefaunt reasoning then leads us to formulate
expicrt snnotavons to be made of key planning decisions
All xnowliegge used by the plan generator is in the form of
Rule Sets. eacn with rules of a uniform declarative format
Soms of tmesa rule sets are. Preconditions, Outcomes, Act-
Select, Act-Customize., Normally-False, Normally-True
(see Figure 2) A rule consists of three parts —~ the first
pat s the Applicavility Test, the second part is the
Worlie Model Test. and te trwrd part s the Retrieved
Knowledge Knowledge stored in the rule may be retrieved
whie reasorung about some action or some descriplion,
wruch is calied the /invoking description.

For exampie. 10 selact an action that wouid achieve the
result that a given Object 1S mace accessible to the actor,
the ACT-SELECT rule set 1s used with an mvoking
gescriotion that maicates which object s 10 be made
accessDie 10 whueh actor The Applicability Test s
expacted 10 match the invoking description Then, Retrieved
Knowledge is rewsrned only if the World Model Test is
successful  Thus the Applicability Test serves 10 index the
rule. wneraas the World Mooel Tast taests the situation to
see if it 1s appropriate. and also determines the references
to objects in the world model ’

The Applicability Test, serving to index into the rule set.
can become expensive to use unless some orgamzauonal

prnciples  are used to provide sructuring 10 avold
vrrelevant searching and Jinheritance tor economy of
sxpression We have chosen to organize the rules

accorong to a single parual order relaton on the
applicapiity tests, the relanon of one aescription being
more specific than angther The gearch for relevant rules
sSWurts at the top and prunes any set of rules that are more
specitic than the one whose apphcability test fails (because
it 1s t00 specific) for the invoking description  The same
parual ordering relation 13 used for prowviding nheritance,
which allows great economy of expression, especially in
owr cescripton formalism, where a description can be
specuaized further to an  infiute number of other
cescriptons.  Organizing the rules by inheritance also eases
the problem of updating ruies economically

There are several ways of defining the relation of
MoreSpeclficThan among descriptions. Wae provide one
such realization, giving the syntax for descriptions idefined
in Figwre 3} and a briaf definition of the relaton A
description forrm containg a descr/ption which mantions
variables and an a//st mapping variables to sets of potential
values A description describes some object denoted by a
variable for a constant) called the root which is a member
of » class. For exampie, (FERSON P (INHAND (CONTAINER
CH) has the root variable, P, which is a member of the
class PERSON This object is further specified by a set of
relational restrictions, in this example. the person is
requred to be related to container C by the relation
INHAND. When several restrictions are given, the object is
to satsfy ali of them

Figurs 3; BNF Daefinition of “DescForm”

descform ::= (desc . alist)
desc ::= {class root [rspec ...])
class ::= class-name | class-conjunct
class-conjunct i1i= (class-name ...)
root ::= variable | constant
rspec :i1= (relation target ...)
target ::= root | desc
alist s:= (binding ...) | NIL
binding t:= (variabie value ...)
value si= instance | constant

Vh






Figure 6 Example of an ActionNode

ActionNode ACTIONNODE~-10
fescform (OPEN X (OF (CONTAINER CI
(AGENT (PERSON P))
WX OPEN=1) (C CABINETY) (P LUKE)
Outcome
Descform (CONTAINER C (OPEN YESH
{C CABINET 1))
Opportunity
Descform {CONTAINER C ICLOSED YES)
{((C CABINET 1))
Type TRUE
Support
State S1
Source NORMALLY-TRUE
Simulation §1 am> §2
Condition SUCCESS
Merit 5
Parent ACTIONNODE=-7
OrbLink
AndLink GQALNQODE-11
CreatedBy VERIFY-PRECONDITIONS

LastOperator SIMULATE~ACTION

PLANX10 aiso generates the P/an Graph (composed of
PlarnNoces! The Plan Graph has cross references with the
Goal Tres. and is bult upon the ActionNodes extracted
from the Goal Tree A p/an so/ution is gefined n terms
of PuanNodes [see Figura 7). The knowledge represented
by the Plan Graph proviges support for the plan critcs and
actvites outside of plan generation (e.g, plan execution,
pilan recogrution, plan revision.

For each acuon represented in the Goal Tree. there s a
PlarNoae representing 1t in the Plan Graph  The PLANOF
reiat.on connects 3 PlanNooge to an ActionNode The other
connections involving PlanNodes are gefined with reference
to tus ActionNode

e A PlanNode ACHIEVES a GoalNode, if the
GaalNode represents the primary goal of the
PlanNode’s associated ActionNoge.

e A PuanNode X ENABLES a PlanNode Y, if the
GoalNode that PianNode X ACHIEVES
represents a precondition of the ActionNode
assocuated wimn PlanNooe Y.

s A PlarNode X SUPPORTS a PlanNode Y, if one
of the side effects {te. an outcome other than
e prmary goasii of the Acuonfiode associated
with PlanNoce X sausfies a preconaiion of
the AcuonNooe associated with PlanNoge Y.

\

B. Planning operators

The plan construction acuons available in PLANXIO are
defined as operators A node operator is applied to a
node to extend and modify the problam solving graph (the
combined Goal Tree and Plan Graph). Plan critics are
provided to avaluate “global” aspects of tha probiem sgolving
agraoh  The critics are applied to subgraphs and psrform
evsluations and detect various types of conflicts between
parallel portions of a plan The critics are used for such
decision tasks as determining the “best” nodes for
expansion (ie., attention focus) and determining the ordering
constraints between the actions within a solution plan

Nods operators are shown in Figure 5 These
operators connect new nodes to the parent node and add
appropriate annotations, CUSTOMIZE~GOAL specializes a
GoalNode producing a disjunctive set of GoalNodes. Each
GoalNode represents an alternate refinement of the parent
goal with respect to knowledge of objects, places. and the
current situation. EXPAND-GOAL splits a conjunctive goal

into a conjunctive set of simple goals. SELECT-~ACT
creates a disjuctive set of ActNodes. These represent
alternate actions for achiaving a given goal CUSTOMIZE~

ACT creates a disjunctive set of ActNodes. Each ActNode
is an slternate specialization of the parent ActNods.
CREATE-ACTION  determines the preconditions and
outcomes given a particular action spacification (ActNode).
The slaborated action specification is ssszociated with an
ActionNode and a PlanNods. VERIFY~PRECONDITIONS
determines the status (true, false, unknown) of preconditions
with respect to a particular situation {i.e. model statsl. This
process may draw conciusions thst srs basad on
assumptions about the  situation SIMULATE~ACTION
extends the model state history to reflect the outcomas
and side—-effects of the action simulated [Figure 8 shows
the annotations generated during verification and simulation
of an action] At each step, the user is given tha option
of directing the planning program. PLANX10 can alsc be
run without user intervention

Vil Concluding remarks

PLANX10 is programmed in a 23-bit (extended)
addressing Lisp, ELISP, using the representation and
inference facility AIMDS [21], (22). PLANX10 has besn
used in. commonsensa task domains and in the domain of
corporate tax law {e.g. planning a sequence of tax free
actions to achieve a desired end suatel As OQur work
matures, we expect to report on experimental results in
selected large domains.
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Figure 7: Partally Ordered Plan Solution and example PlanNode

Goal 1 [(PERSON P (DRANK WATER)) . (P LUKE))

PlanNode=-1
Drink water,

/\

PlanNode~2 PlanNode~3
Take glass. Pour water.,
PlanNode=h PlanNode-5 PlanNode-6
Open cabinet. Take bottle. Open bottle.
PlanNode~7

Open refrigerator,

PLANNODE PLANNODE-4

Enables PLANNDDE-2

Achisves GOALNODE -4
IMOVE-08J O (ACCESSIBLE (PERSON P))
{(P LUKE) (O GLASS 1)

PlanQf ACTIONNQDE~T
(OPEN X {OF (CONTAINER C)) (AGENT (PERSON P))}
(X OPEN=~1) {C CABINET1) (P LUKER
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Planning Within First-Order Uynamic Logic
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wbstract’

This paper develops a version of first-order
dynaamic logic suitable for stating robot
planning problems. The bidirectional planning
algoritha developed by S. Rosenschein [12] is
extended to handle a subset of this Cfirst-order
logic, while retaining (provable) correctness.
Examples of hierarchical planning, disjunctive
and quantified goals, and zultiple plan
constraints are discussed.

1.0 Iatreduction

Planning systems based on theorem proving in
the situational calculus [5){8) offer a well
de’ined semantics Cor plans (namely, the
sezantios of first-order logle), a rich
vocabulary for describing world states, and a
provably ocorrect planning process, The popular
STRIPS-based planners [3]) neglect these features
in order to concentrate on efficient control of
the search through the state-space; state and
goal descriptions are limited to sets of
literals, which are added or deleted by action
operators,

Stanley Rosenschein [12) has formulated the
propositional planning problem in dynamic logic,
a modal logic developed for program verification
[61(10), and has given a complete bildireotional
search algorithm ("Bigress™) for synthesizing a

broad class of plans, including ones involving
disjunctive and conjunctive goals and
non-deterministic actions. As in the

situational calculus, correctness of plans {s

stated in terms of provability in a formal
language; a3 in STRIPS, plans are found by a
structured search through a space of state
descriptions.

In this paper, 1 define a first-order dynamic
logiec suitable for atating robot planning
problems, and extend Bigress to handle a 3ubaet
o? the language. Since state and action
Jescriptiona may contain disjunctive and
quanti’ied information, calculating the effect
o7 an action on a state (forwards or backwards)
13 a non-trivial problem. Teohniques Tor query
evaluation on first-order data bases are used to
determine the instances of the dynamic logic
axioms relevant to the caloulation of the
partigular regression or progression.

Perhaps the greatest efficiencies in search
can be obtained through the wuse of plan
hierarchies. This is commonly implemented (e.g.
ABSTRIPS [13] and NOAH [14]) by temporarily
hiding "“less important™ details from the
planning unit; when the details are filled in,
the plan may be in error and must be patched up.
The complexity of the patching process,
unfortunately, weakens our faith in the ultimate
oorrectness of the plan and the overall
efficiency of the strategy.

The dynamic logiec framework, on the other
hand, suggests an  exaqt hierarchy [(12].
Solutions to generalized planning problems,
containing plan parametersy, can be pre-computed.

I offer a simple example of provably correct
hierarchiocal planning.
2.0 The Language

A dynamic logio ia modal logio: a plan (or

program) is a reachability relationship over a
set of possible worlds. Where A is a plan, [(A]P
is true in a world I if P is true in every world

reachable from I by A . So [A]JP can be read,
"after A[ pn,
Many versions of dynamic logio have been

developed (see [2]); generally, assignment is
taken as the only basiec action, and programs
relate worlds with differing interpretations of

program variables. We are inatead most
interested in parameterized actions whioh affect
only the extensions of predicates (e.g. the
truth value of on(BLOCK9,TABLE) is changed by
the action pickup(BLOCK9)). 1 designed
Transparent Dynamic Logic (TDL) to express such
actions.

2.1 Syntax
TDL 1s an extension of function-free
first-order logic. An  "action symbol"” (e.g.

pickup) applied to a sequence of terms 1is the
simplest kind of plan which can appear inside a

[ ). Complex plans sre built up by sequencing
[a;8] and alternation [Pz=>A,B]) (meaning
1¥ P THEN DO A ELSE DO B). Formally:

Define the sets of symbols:

VAR
CON

variables
constants



PRED(K) = predicate symbols of arity k
(PRED(2) includes "=%)

ACT(k) = action symbols ol arity k

Let TERM3 = VAR U CON

The plans and well formed formulas of TDL are
defined recursively:

1. Where a ¢ ACT(k), t‘.....t ¢ TERAMS, then
a(t‘.....tk) ¢ TDL-Plans 4is an atomic action;
the ti's are its parameters.

2. ¥here P i3 a non-modal quantifier-free
TDL~M*®, and A,B ¢ TDL-Plans, then null, (A;B),
and (Paz>A,B) are TDL-Plans.

3. Wnhere p

PRED(k), Lireeoaty ¢ TERMS, then
p(t‘....tk)

TDL-W77s is an atomic proposition.

A, Where x € VAR, P,Q € TDL-Wffs, and A .
“DL-Plans, then ~P, (P v Q), ExP, and [A]P are
TDL-W?’s.

€
[4

A non-modal WwWff i3 one not containing a
sub®ormula of the form [A)., Define ¥, &, >
(implies), <~> (equivalent) in terms of E, v,
and = (not) as usual. A list of terms tk""'xn
1s o”ten abbreviated X.

Any plan can be put in "normal form®, where B
is in normal form i7:

1) B can be written A1;A2;...;An with at most
one Al not atomie; and

11) Such an AL is of the form (P==>B1,B2)
where P i3 an atomic proposition and B1 and B2
are in normal form.

2.2 Semantica

A structure for TDL includes a a domain of
individuals, a set of worlds, and an
interpretation for the action symbols. Each
world interprets the terms as members of the
domain, and the predicate symbols as predicates
over the doaaln. The meaning of a plan is
binary relationship over the set of worlds.

These notions are made precise in (7],
tncluding semantic conditions for plans to
referentially transparent {which allows
substitution of terms for variables in modal
formulas).

2.3 Axiomatica

The axioms and rules of inference include all
those for function-free, first-order logic with
equality and loop-free dynamic logic. P and Q
stand for any TDL-W’fs, x any variable, B and B’
any TDL-Plans, and A for any atomic aotion. We
write P{t/x) for P with t substituted for all
’ree occurrences o x, where {AJP{t/x}) 2
{A{t/x))P{t/x} (parameter substitution).

20

firat order

A1, All tautologies of propositional caloulus

A2, ¥x(P ->Q) ~>(¥xP ~->¥xQ)

A3. VxP ->P{t/x} , for any term t

A4, P -D>V¥xP , where x is not free in P

A5, ¥x(x=x)

A6, ty=t, “Oploaastyyees) =oplacayt,,ene))
any t1.c2 TLRMS, p PRED

modal

AT. [BY(P ->Q) ->([B)P ~->(B)Q)

A8, [null)P<->P

A9. [BI{B']P<~>(B;B']P

A10. {Pz=>B,B']Q<~>((P ->[B)Q) & ("P ->[B')Q))

transparency

A12, Vx[A)P ->[A)¥xP , x not a parameter of A
A13, ¥xy (xzy ->[A] x=y)

AU, VYxy (xdy ->[A] x#y)

A15. ~[A) false

rules of inference

R1. From P, P ->Q conclude Q
R2. From P conclude ¥xP
R3. From P conclude [A}P

Axiom A12, iho "Barcan formula® of modal
logic, 1lets usz derive a theorem for "pushing”
quantifiers through actions:

T1. K[{B]P ->{BIKP, where K is a sequence
of quantifiers (both E and V), and none of
the quantified variables appear in B.

3.0 Findipng Plana

Sinoe TDL incorporates firat-order loglo, it
is obviously not decidable. 1t is well known,
however, that the validity problem is decidable
for wffa which can be put in prenex form s0 that
all universally-quantified variables precede all
existentially-quantified ones [1]). We reatrict
our attention to a class of planning probleams
which can be solved using only first-order
reasoning about suoh "Y-~firat" wifs. Wa
classify wffs by their prenex form as “"¥-firat®,

‘WE-first®, "V-only®", or "E-only".

We review and extend the propositional
framework from [12).

A planning problem is a triple
<VOC, G, R(u(i))> oontaining:

1. VOC = <CON, PRED, ACT>, the vocabulary of
the problem, a finite subset of the symbols of
TDL.

2. Domaln axioms G, containing:

Gs, a finite aset of ¥-only non~modal
(static) axioms.



Gd, & finite set of dynamic
‘of the Zorm (¥X)(p ->[a(X'))q). X and X' are
lists of variables such that X contains X',
and p and q are non-modal quantifier~free

axiomy, each

Wlls,
The non-modal axioms Gs should be strong
enough to derive all non-modal theorems

darivable “roa G.

3. Plan constraints R(u(})), a finite set of
wf’s of the form (¥X)(r ~>(u(l))a), where r is
non-modal and ¥-only, s i3 non-modal and E-only,
and }§ 1s a distinguished set of variables ocalled
the “"problem parameters®, "u" is a special
action symbol vhich does not appear in VOC.

A 3olution is a plan B such that substituting
B “or u(l) in each plan constraint creates a
theorem derivable from the axioms (Gl-r ->[B)s
for each plan constraint), and the only ’ree
variables in B are problem parameters. H is the
®*inpat® to the plan.

For example, {7 R{u(H)) 1a

{ ¥n(block(n) ->[u(h)linbox(h)),
Vhx((“inbox(x) & x#h ->[u(h)]) inbox(x)) }

the constraint i1s to find a
block h

plan to put any
into the box, without putting anything

else in the box. ™e only 4input to the plan
will be the particular block to be moved.

The basic strategy of Rosenschein's planning
algorithm is as Tollows. We define the
atoongest provable posteondition of a non-modal

u”% r and an action A as a non-modal formula r/A
such that Gi-r ~>[A)r/A (r/A is g postcondition)
and Gl=r/A =>q whenover Gl~r ~>[Alq. Similarly,
the weoikedt proyable precondition of a wif s and

action A 13 a non-modal formula A\s such that
1-A\s ->[A)s and Gl-q =>A\s whenever
Gi-q ~>[Als.

Since }-¥X{(r ->[Bla) 17? }l-r ~>[Bls, we can

drop the quanti®iers which quanti’y over the
plan constraints. The algorithm first checks
whether each inttial state description

(antecedent in the plan constraints) implies the
corresponding goal description (consequence in
the plan constraints); 17 so, the search halts.
Otherwise, it non-deterministically chooses to
either insert a conditional branch in the plan
under construction, or to select a simple action
A, and either progress each initial state
deacription through it (calculating r/dA), or
regresses each goal state description through it
- (calculating A\s). The process 1s then
applied recursivaly.

In the “ollowing algorithm, braces < > are
used to coastruct lists of syntactic variables
or Tormulas. Where pre, and post, for 1<ign are
ayntactic variables ranging over &'ra. we write:

PRE for <pre‘. N pren>
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POST for <post,, ..., post »

PRE/A for <pre./Ay ..., pre_/A»
A\POST for <A\post., ..., ASpost >
PRE & T for <pre i Ty soey pron & T>
A solution to the planning problea
<V0C, G, R(u({))> where R(u(lf)) is

{ vx1 (r‘ ->(u(l)) 5,),

Vi (r =>u(i)) ) )

is found by calling
Bigrean(<r‘;...,rn>, <r1"""n>' null, null),

Bigression Algorithm #

Bigress(PRE, POST, leader, trailer):

IF G)-pre ->post for 14i<n THEN
HETURN{leader, railer).
CHOOSE:

CHOOSE <A, PRE/A> FROM LiveForward(PRE):
RETURN(Bigress(PRE/A, POST, leader;A,
trailer)).

CHOOSE <A, A\POST> FROM LiveBackward(POST):
RETURN( Bigress(PRE, A\POST, leader,
Ajtrailer)).

CHOOSE T FROM NonTriv(PRE):
RETURN( leader; C; trailer ) where

C = (P==>Bigress(PRE & T, POST, null, null),
Bigress(PRE & ~T, POST, null, null)).
end.
LiveForward(PRE):

RETURN { <al(t T ), PHh/u(t,,...,tk)> )
a ¢ AcT(k),%ti ¢ coN U, ang
for SOME 1, 1€i<n,
not Gl- pre ->prolla(t1,...,tk) }

i
LiveBackward(POST):
RETURN { <a(t ,...,t ), a(t ,...,t Y\POST> |
ac ACt(k) ti € CaN Ui, and

for SOME 1, 1£i¢n,
not Gi- a(tl,...,ck)\post1 ->poati)

NonTriv(PRE):

RETURN { p(t ,...,l ) | p e PRED(K),
ti € CON U H,%for SOME 1, 1<ign,
not Gl- pre, ->T
not Gl= prey ->*T }

By making the non~modal axioms strong enough
to generate all non-modal theorems, the stopping
test Gl-r =>s holds if and only if Gs =>(r =->s)
is a valid formula of first-order logio with
equality; the latter formula is ¥-first, and so
(as in the propositional oase) the test is
decidabls, The tests in LiveForward,

o ———

. Adapted from the single constraint,
propositional Bigress algorithm in [12].



LiveBacikward, and NonTriv, also only applied to
3-first Corsulas, serve to prune loops in the
search apace. For instance, if G!-r ->r/A for
every plan constraint, no solution need begin
with A, because A;B would satis®y the plan
coastraints only i the ahorter plan B would as
well.

8.0 Examoles *

BeZore discussing the progression and
regrassion operators in detall, we offer a
number of example problems that can be solved by
Bigress, but would prove difficult for STRIPS
and its more sophisticated deacendents.

Several boxes can hold various colored
stones, The ®dump® action transfers all the
stones that are in one box to another. The
static axioms describe basic facts which are
true in every state, and the dynamic axioms
describe (perhaps only partially) “dump®.

voC: CON: BY, ..., B3, 81, ..., St0
PRED: box, in, color
ACT: dump

Gs: box(B1), box(B2), box(B3)
B1#B2, B1/B2, ..., S9£510

Gd: ¥xyz((in(x,y) & box(z))
«>[dump(y,2)] in(x,z))

Vuxyz((in(x,w) & wiy)
=>{dump(y.z)] in(x,w))

Uﬁxy:(‘color(u.x)
«>[dump(y,z)) ~color{w,x))

The last two axioms are frame axioma: axioms
which describe concditions which are invariant
under an action [B]. STRIPS avoids explicit
‘raze axioms by aintaining a single model of
the world, with the understanding that any
proposition not explicitly deleted by an action
operator carries through ‘rom the previous
state. But an action like dump, which affects
an arbitrarily large number of objects, can (as
Waldinger ([16] notes) nullify any efficiency
advantage gained by such a strategy: the system
still has to check and possibly add or delete a
great many propositions.

Problem 1 demonstrates quantified,
conjunctive, and disjunctive state desoriptions
and goals, The plan constraint:

¥x {((¥y(color(y,BLUE) =>
{in(y,B1) v in(y,B2)))
& in(S2,B3)
«>[ul((eolor{x,BLUE) ->in(x,B2)) &
Ez(in(z,B1)))

which can be read, ®"given that gll blue things
are in either B! or 82, and S2 is in B3, get all
blue things in B2, and gsomethins 4in BI1® s

solved by:
dump(B1,B2);dump(B3,B1)

Disjunotions appear explioitly in the
conatrainta antecedent, and implicitly in the
implication in the conaeguence. "All blue
things are 1in B2" cannot be expressed by a set
of literals, as we have not invoked any ¥closed
world assumption® about the set of blue things,
nor need we have specifio oonstants to name
them.

Problem 2 1s a variant of the "register
exchange™ problem [16], and 1llustrates the
dispatch of Bigress's regressive search.

(in(S1,B1) & 1n(S2,B2))
->[ul(1n(S1,B2) & in(S2,B1))

The solution
dump(B1,B3);dump(B2,B1);dunp(B3,B2)

is found with no baoktracking.
LiveBackward(in(S2,B1) & 1in(81,82)) oontains
only dump(83,82) and dump(S3,81); other choices
are pruned, since the goal regresses through
them to false. Either possible choice leads
directly to the solution.

Straightforward linear planners (o.g.
original STRIPS, which tries to achieve each
conjunct of a conjunctive goal in sequence) fail
on this problenm, since & Tfirst step of
dump(B1,B2) renders the solution impossible, A
non~linear planner {e.g. NOAH [14]}, which
creates independent ‘subplans to achieve each
conjunct) finds that its subplans gan'y be
combined, and must replan. RSTRIPS ({16] 1is
famed for its similar regressive solution to
this problem; but in more complicated cases,
Bigresa's stronger handling of disjunctive goals
(as regressions are generally disjunctions)
could be more efficient.

Exampple 3: involving a non-deterministic
action, is a version of the ubiquitous "3-socks”
problem: how to find a pair of matching socks
in a dark room? Say S1,...,510 are blaock or
white socks, initially in B!; "tske" picks one
out at random, and "put"™ puts it in B2; the
goal 13 to have a matching pair in B2.

Gs:
¥xy(hold(x) =>~in(x,y))
¥x(sock(x) ~>
(color(x,BLACK) v color{x,WHITE)))
sock(S1), ..., sock(S10)

Gd:
¥x(in(x,B1)
->{take](hold(S1) v ... v hold(810))
¥x(in(x,B1) ~>[take)(hold(x) v in(x,B1))

¥x(in(x,B2) ->[takelin(x,B2))



¥x(hold(x) ->{put)in(x,B2))
Sxy(in(x,y) ~->{putlin(x,y))

L {CVH
(1n(S1,B1) v ... v 1n(810,B1)) ->[u}
Exy(in(x,B2) & in(y,B2) & xdy &
((color(x,BLAK) & color(y,BLACK)) v
(color(x,WHITE) & color(y,WHITE))))

Bigress grinds out the solution: dip into the
box just three times.

take;put;take;put;take;put

Of the other systems discussed here, only NOAH
can be programmed for "pick up a random sock";
but its weaker handling of disjunctive goals
would lead it to create separate subplars to try
to achleve gither ®"two black socks are in B2" op
"two white socks are in B2% -~ neither of which
can be realized under the given axiomatization.

5.0 Progression and Regresaion

The next task i{s to define the progression /
and regression \ functions. We concentrate here
on the former; regression is handled similarly
(see [7])). The Cfollowing algorithm is proven
carrect in detail ia (7], but with a hitch: in
certain cases 1’ nay not terminate;
pathological examples can be constructed where
the strongest provable postcondition (weakest
provable precondition) cannot be represented by
a Zinite length non-modal Tormula (see section
7.0).

The progression of a »state description r
through an atoaic action a(Z) using domain
canstraints O ta caloulsted in four steps. The
basic idea is find all the substitution
instances ¢7 the dynamic axioms for a(Z) whose
antecedents are implied by r. A simple exanmple
13 worked out 4in parallel to 4illustrate the
details,

Example: Calculate the first progression
found by Bigress in a forward search for the
solution to problem (1) above:

(¥x(color(x,BLUE) ->{in{(x,B1) v in{x,B2)) &
in(S1,83)) / dump(B1,B2)

Sten 1: Fora G(a(Zl)), the set of instances of
all the dynamic axioms ®or a, including A13 and
A'4 (the equality “rame axioms) with parameter
list 2.

Ex: G(dump(B1,B2)) =

{ ¥x((in(x,B1) & box(B2)) ->
{dump(B1,B2)) in(x,B2)),

Yux((in(x,w) & waB2) ->
[dump(B1,B2)) in(x,w)),

Vwx(“oolor(w,x) =>
[dump(B1,B2))~color(w,x)),

Vwx (wax ~>[dump(B1,B2)]} wax),
Y¥wx (wix ->[dump(B1,B2)] wéx) )

These formulas ara all derivable from G by
A3.

Step 2: Replace any free variables in r and
G(a(Z)) by new constants; oall Os and the
transformed veraions of r the “base formulas®,

Define a "query™ as an E-quantified non-modal
formula in disjunctive form. A "variant® of a
foroula is created by substituting various terms
for 1its E-quantified variables. An “answer® to
a query is a disjunotion of of variants of somq
of the disjuncts of the query, such that the
answer is derivable from the base formulas,

Form a query by taking the disjunction of the
antecedents of each formula in G(a(Z)), placing
E~quantifiers on the variables.

Ex: The base formulas are Just Cs and r
above. The query consists of five disjuncts!

Ex (in(x,B1) & box(B2)) v
Ewx (in(x,w) & w#B1) v i
Ewx(“color(w,x)) v

Ewx {xzw) v

Ewx (xdw)

Step 3: Generate and conjoin (at least) all
significantly different answers to the query.
Resolution with answer-extraction provides a
complete strategy for answer generation based on
theorem proving [4). The equality axioms
(A5<A6) ocan be simulated by by special rules of
inference, such as paramodulation (11,
Complete heuristics such as subsumption (2] can
be used to avold generating weaker and weaker
versions of the same answer {(e.g., don't
generate p(C) or p(x) v q as answers if p(x) has
already been generated). Disregard answers
derivable from Gs alone whioh are variants of
the frame-axiom antecedents.

Ex: Answers to the query include:

[1) ¥x((in(x,B1) & box(B2) v
(in(x,B2) & B24B1) v ~oolor(x,BLUE))
)
(2] (in(S1,B3) & B34B1)

We disregard answers such as "S1=S1" whioh
don't depend on r; their inclusion would
merely complicate the caloulation. The
notion 1is to try to avoid including in the
final postcondition facts which are already
in the domain constraints.

Step 4: Replace each variant p' in  the
conjunction of answers by the corresponding
variant q'; that is, where © i{s a substitution



“ang VX(p ->[2(2)1q)
that p'xpQ, let Q'=xq@.

a member of G(a{Z)) such

Free variables in the resulting formula take
on universal quantifiers. Finally, the new
constants introduced in step (2) are replaced by
the original free variables.

Ex: Th.vtrlnsforned formula yields:

¥x(in(x,B2) v in(x,B2) v “color(x,BLUE)) &
in(S1,B3)

as the final postcondition; or simplifying,

¥x(color(x,BLUE) ->in(x,B2)) &
in(S1,B3)
That this

forsula holds after dump(B1,B2)

follows from the [fact the given state
description 1implies the conjunction of
answvers (by the deduction principle of
first-order logic). Propositional modal

reasoning lets us combine the antecedents and
consequences of non-quantified instances of
the dynamic axioms Por a(Z); axiom A12
allows .the V-quantifier on x to be transfered
across [dump(B1,B2)].

Given that r is ¥-only and s E-only, r/A and
A\s are ¥-only and E-only respeotively as well.
Thus the Quanti®ier rules imposed on the
parameters of Bigress to ensure decidability of
the provability test G}- are malntained.

6.0 Hierarchical Planning

The search perZormed by a planner tends to
grow exponentially as the length of the solution
increases; the computational problem is
exacerbated by the very flexibility a purely
logical asystem allows in representing state
descriptions and actions. The dynamio logic
‘razework suggests an elegant and natural
framework “or the hierarchical decomposition of
a planning problem into smaller subtasks. *

A hierarchical planning problem is a tree of
single-level problems {12]., Higher level domatin
dynazic axioms are simply taken as lower level
plan constraints. 3Speci®ically, for each atomic
action a(Z) which appears in a solution to a
node <VO©,, Gy, R, (u(H))>, there is a child
problea (QOC w10 ".Gi(a(z))>. where AC"-.‘1 1
includes actions "more primitive than those In
ACT . Because the lower-level plan which
inpiauenta the higher-level action satisfies the

plan constraints derived “rom the higher-level
‘rame axioms, it is free ‘rom unexpected
side-elfects; and so the overall plan is

conatructed by simply plecing
lowast-level solutions.

together the

The {41 level planner can either solve for

the specific instances of the actions used by
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the higher-level plan, or gompute a more general

solution which takes the parameters of the
high-level action as {input. The relevant
theorem ia:

T2. Suppose <VOC, G, G*(a(Z))> has solution

B. Then for any substitution @ of terms for
variables, <VOC, G, 0'(a(20))> has solution
BG.

For example, take problem (1) above as a top
level planning problem, <VOC1, G1, Ri1{u)>. Neo
mention has been mads of how the dump action
actually transfers items from box to box. Level
2 introduces 8 robot that oan grab all the
objeots 4in a box, move from place to place, and
drop the items it's oarrying.

VOC2: CON2: (as above)

PRED2: box, 4n, robat, hold, color
ACT2: goto, grab, drop

Gs2: ¥ loo obj(in(loo,obJ) ->box(obj))
Gs contains ‘

¥loc(box(loa)
->{goto(1loc) Jrobat(loc))

¥ loc obJ{{(in(loo,obJ) & robat{oby))
~>[grablheld(1oa))

¥ logc obJ((hold(loe) v robat(obj))

=>[droplin(loc,0b]))
plus appropriate frame axioms for the three
aotions., ’
Rather than treat the constraint sets
G1(dump(B1,B2)) and Gt(dump(B3,B1)) as

specifying unrelated planning problens, the
planner can solve the more general problem

<VoC2, G2, G1(dump(y,z))>

whose three plan constraints are exaotly the
main and frame axioms in 0 for dump, and y and
2 are plan parameters,

From the solution to this problem,
gotoly);grab;goto(z);drop

T2 above lets us derive the appropriate plans to
implement  dump(B1,B2) and dump(B3,B1). The
overall solution is in the level 2 vogabulary,
and satiafies the level 1 plan constraints:

G2 l-¥x((¥y(color(y,BLUE) ->
(in(y,B1) v in(y,B2)))
& in(51,B3)) -
[goto(B1);grab;goto(B2);drop;
goto(B3);grab;goto(B1);drop]
" ((color{x,BLUE) ~>in(x,B2)) &
Ez(1in(z,B1))))
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INTERPRETATION BASED INTERACTION BEMWEFN LEVELS OF DETAIL

Roger A. Browse

Department of Computer Science
University of British Columbia
Vancouver, B.C. Canada V6T 1w3

ABSTRACT
This paper discusses the operations of a
computer vision system used to interpret line
drawings of body forms. Mechanisms are described
which permit {nteractions among information
obtained at different levels of resolution. These
mechanisms operate in a context of availability of

information which is similar to that of the human
vision system.

1, rm'mmm‘

Interaction between different levels of
detail (resolution or spatial frequency) play an
important role in computational vision. For the
most part, the operations {nvolving these
different levels do not relate to the scene domain
knowledge being used in interpretation (Hanson and
Riseman, 1974; Tanimoto, 1976).

On the other hand, Keuy (1971) and Shirai
{1973) have shown that each level of detail may be
geparately intecpreted and that the result of one
level may aid the interpretation of the other.
Rosenthal and Bajecsy (1978; Bajcsy and Rosenthal,
1980) Jdescribe how search for specific objects in
an image can be assisted by being able to predict
the Yevel of detail at which én object can be
located by exploiting the containment relation
between scene domain objects.

This paper describes the operations of a

computational vision system which permits

interpretation of images through cooperative
interaction among information obtained from more
than one level of detail. Tt has been previously
shown that this approach provides conpatibility
with aspects of human vision (Browse, 1981). This
paper outlines the system”s ability to reduce
interpretation possibilities by providing scene to
{mage domain mappings at two levels of detail.

2, SYST2M DESCRIPTION

The vehicle for this research is a system to
interpret line drawings of body forms. The
examples being used are taken from Eshknl and
wWachmann (1958) (see figure la). The design of the
system adheres to the idea that domain knowledge
should be declarative, and separate from the
interpretation methods (see Browse, 1980). As a
means of testing the adequacy of the scene domain
knowledge, it has bean translated into PROLOG, and
used to "prove” body forms {n a data base of image
assertions.

The most suitable scene domain based
interpretation schemes are found {n the schemata
based systems of Mackworth and Havens (1981;
Havens and Mackworth, 1980). Provision for a
recursive culng mechanism is an integral part of

schemata based systems. Thus the body form
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Primitive imxje elements are available at
different Yevels of detail. Blobs with
determinable character{stics are available from
the coarse levels of detail, while lines and line
connections are available from the fine detail

level,

28, Interpretation

Image primitives from any level can act as
cues to interpretation possibilities. For example,
a blob with certain proverties may suggest any of
a number of body parts (such as hand, foot, or
head), while a line connection of a certain type
may suggest particular views of a hand. This cuing
function 1is always one-to-many and thus the
organization of primitives is critical to
understanrling the image. In general, fine detail
image elements (lines) cue scene elements at the
fringe level of the component and specialization
hierarchies, whereas coarse detail image elements
(blohs)
node) in the hierarchies,

If only coarse level image elements were
being extracted, the systema could still effect
intecrpretation, and similarily for fine detail
image elements, though the resulting image
description would be richer {f the fine detailed
infocmation were used,

There are a number of ways that multiple
levels of interpretation can operate at the same

time, cooperating and sharing their ongoing

cue elements higher (towards the coot

tesults through a common scene domain
representation. By keeping the scene domain
knowledge specification ‘separate from the
interpretation process, it is possible to
investigate a number of such possibilities. The
following section describes a data-driven method

currently being consideced.

3. AN EXAMPLE OP MULTI~LEVEL INTERPRETATION

The interpretation process draws a sharp
distinction between the detection of an image
primitive (feature), and the analysis of {ts
relation to other elements (feature integration).
Within the information available at a time, the
system attempts to delay the integration step.
This provides a point of {nteraction between
levels of interpretation and it i{s also consistent
with the fact that {n human vision, features may
be deﬁected tapld].y.‘accurately, and in parallel
over a stimulus, whereas the integration of these
features requires the sequential application of a
attentional mechanism to the location being
integrated (Treisman and Gelade, 1980).

First of all, image primitives are extracted
from the coarse level of detail. Pach detected
primitive maintains a set of possible models of
which it may be a part. Before considering the
relations among these blobs, the fine detall area
i3 processed for its {mage primitives. Bach fine
detail primitive also has a set of possible models

{see figure 2).
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Figure 4. Model possibilities after across-level filtering

Each blob which lies within the fixation
area is processed in this way, resulting in a
significant reduction in the number of possible
{nterpretations for the primitive image elements.
For the exarple fixation shown in figure 1d4,, the
application of these two filtering. operations
eliminates 60% of the possibilities.

The next step involves the activation of
upper level models in a way similar to that of
Havens and Mackworth (1980). This model activation
considers the relations among primitives at each
level, and establishes the existence of more
complex scene concepts. In the periphery, blobs
may be interpreted as such general concepts as
“extremity® or “"upper~limb®". In the foveal area,
rore detailed interpretations are found, involving
specific body parts with restricted ranges of
three dimensional orientation.

Through the use of the specialization

hierarchy within the body model knowledge, the

more detaliled interpretation at the fovea may
propogate outwards to force {nstantiation of the
peripheral objects.
4. CONCLUSIONS

This paper has proposed the approach of
allowing iInformation from different levels of
detail to {nteract through a common goal of
interpretation, utilizing a common scene domain
knowledge. An exanmple data-driven Iinterpretation
method is provided which demonstrates a'
computational advantage to the approach, and which
also shows consistency with some established
aspects of human vision, Other {interpretation
schemes, using the same scene domain knowledge are
planned. These will consider the possibility of
inadequate segmentation at the coarse level of
detail, and will consider the development of
intelligent decisions regarding the subsequent
placement of the retina on the ambient array

representation.
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A Schemata-Based System for Utilizing Cooperating
Knowledge Sources {n Computer Vision

Jay Glicksman

Department of Computer Science
University of British Columbia
Vancouver, B.C. V6T 1W5

Abstract

Computational vision is difficult because of
ambigunus, incomplete, and inconsistent data. An
approach to these problems {s a system which
supports multiple {nterpretationsg, uses a worid
model, and incorporates several types of input
information. The data structures for a
schemata-based system having these properties are
described with some exarples of how they can be
employed, :

1. Introduction

Perception of real-world phenomena must start
with some iconic representation of the world.
Unfortunately, elements of the image relate to the
elements in the scene only through some unknown
mapping which {s confounded by the imaging
process. Pactors such as lighting, viewpoint,
exposure, the focal length of the lens, and
surface reflectance complicate the understanding
of the image. As individuals, the image elements
{pixels, edge elements, etc.) convey no meaning
funlike, say, words in text): the méaning can
emerge only during the perceptual process.

This leads to three undesirable situations
vhich mist be remedied if effective interpretation
is to take place. Ambiguous situations arise when
data can be interpreted in more than one way.
Incompleteness occurs when one does not have

enough data to conclusively support an

interpretation. Finally, {nconsistency {s the
result of uncovering evidence both for and against
an interpretation,

One way to resolve ambiguities is to add
sources of information to the original {mage.
Examples include range data (Nitzan et al., 77),
anl the

elevation data (Horn and Bachman, 78},

work on map-guided {nterpretation at SRI

(Tenenbaum et al., 78). Adding {nformation
sources has the advantage of augmenting the
system”s knowledge, but can lead to more
inconsistencies,

When interpretations can be matched to a
world model, incompleteness can often be
accommodated. Also, a wdrld model could

potentially resolve ambiquities and
inconsistencies in terms of what {s {mportant in
the model. In the aforementioned SRI system, the
map can. be considered a primitive world model.
More elaborate examples {include models of
geographic regions _(Bajcsy and Tavaknli, 73y
Ravens and Mackworth, 80).

Handi{ng inconsistent knowledge generally
requires a flexible system that permits multiple
interpretations and non-monotonic reasoning. Such
a system will form the best interpretation based

on the current context. Ambiguities could also be
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resolved by glving precedence to the most
contextually "reasonable” interpretation.

The Hearsay 1I speech understanding system
(Erman and Lesser, 753 Lesser and Erman, 77)
exhibits the type of flexibility needed to handle
inconsistent {nformation. Of particular note is
the use of knowledge sources which are specialists
in analyzing some part of the domain. They
provide the proper context to deal with incomplete
data. Knowledge sources are written vas
pcoductions in a production system.

Another current mechanism of similar
rodularity is based on units of schemata. Mapsee2
(Havens and Mackworth, 80; Mackworth and Havens,
81l) is an example of a schemata-based system using
a geographic world model. It f{interprets line
drawings as sketch maps. The following section
describes an extension of Mapsee2 which uses
several types of Iinput {nformation. In
particular, the extension supports the use of a
sketch map and a grey-scale image, each of which

can aid in the interpretation of the other.

2. A Reoresentation for Schemata

The data structures for the system being
developed (called Maids) are an extension of Maya
{Havens, 78), and use both Maya functions and the
base language, UBC Multilisp (Xoomen, 80). 1In
addition, Maids {ncorporates a number of ideas

from FRL (Roberts and Goldstein, 77a and 77b).

Schemata are the basic representation units

in Maids. They are composed of a list of
attribute-name and attribute-value pairs. There

are four distinquished categories of attributes:

LINKs, VALUEs, PROCEDURES, and CONFIDENCE.

The knowledge base is a collection of
intertwined schemata hierarchies, with
relationships indicated by LINKs. ‘Any number of
relations can be defined, such as LINKs to form a
specialization (or subset) hierarchy, a
decomposition (or subpart) hierarchy, and
ifnstances (to separate stereotype or generic
objects fram their potential realizations in the
scene), Instances can be used to explore several
possible interpretations without any commitment to
their ultimate existence.

VALUEd types provide a slot that may be
filled by a value. The slot can have expressions
assoclated with {t, such as a default or the
required attributes of the slot filler.
Furthermore, functions can be initiated when the
value s added, modified, removed, or needed.
This flexibility {is used to maintain the
consistency of the {nterpretation under
conaideration, and to spread the effects of
changes to the appropriate objects. VALUEA types
can be used with LINKs to generate property
inheritance (usually down a specialization
hierarchy). Knowledge sharing of this kind can
often compensate for incomplete data.

Procedura) attachment is a mechanism which
facilitates object-centred control of the
interpretation process. In this system,
PROCEDURES are invoked via pattern matching, the
primary meaagge-passtng utility in Maya.
PROCEDURES will typically exist for situations
where the schema 18 invoked as a model (top-down)

or to acocount for data (bottom-up). This facility
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can also be used to invoke procedures appropriate
to the context current at the time the schema is
entered.

The OONFIDENCE attribute is a nwnber used by
the glbbal scheduler to encourage evaluation of
the most promising interpretations. Associated
with this attribute is a schema-specific algorithm
to modify the confidence value whenever VALUES are
found for this object or its components, Using an
algorithm provides the flexibility to consider the
difficulty and importance of completing the
interpretation of an object as well .as the
probability of its existence.

Schemata are used to represent scene objects
in a task domain. Some examples in the geographic
domatn are roads, rlivers, shorelines, bridges,
river systems, towns, and road systems. The
schemata are combined {n decomposition hierarchies
(e.g., road systems are made up of roads, bridges,
and towns; towns are made up of buildings and
roads; and so on) and specialization hierarchies
(e.q., lékesrnres and coastlines are “types" of
shocelines). _

The hypothesis of this research is that the
combination of two interpretation tasks can work
to their mutual benefit. One might assume that
this would make the problem more difficult instead
of easier, However, the proper mixture of data
will resolve ambiguities without increasing
inconsistencies. Identification of features in an
image, such as roads, rivers, and bridges can be

guided by their presence in a sketch map.

3. An Exanple

A sketch map of Ashcroft, B.C. has been

interpreted by Mapsea2 (Havens and Mackworth,

1980; Mackworth and Havens, 198l). The Maya

schema which represents the unambiguous

representation of a bridge in the scene is in

Figure 1.

sidel: *chain-3
sidel-desct ((37 . 33)
(0.886914 . 0.461934) 54.1202)
side2: *chain-5
side2-desc: ((69 . 62)
(-0.918062 . ~0.396436) 47.918062)

regiona: (*reglon-1 *region-2 *region-3
*reglon-4 *region-6)
C/labels: {((*chain-3 . *bridge)
(*chain-5 , *bridge))
Q/models: ((*river~system *river-system-1)

(*road-system *road-system-1))

Pigure 1. *bridge-l1 an Instance of *bridge

Note that the slot fillers do not differentiate
between pointers to other schemata (eg. sidel) and
numeric values (eg. sidel-desc).

A stereotypical bridge schema can also be
written in Maids. Pigure 2 shows the blank data
structure with none of its slots filled.

In addition, there are functions associated
with this schema for top-~down evaluation,
bottom~up evaluation, and to instantiate the
bridge in a grey-scale digitized imyge when it has
been identified in the sketch map. The execution
of this Jlatter procedure will be followed to
indicate how schemata can be manipulated within
Maids.

The basis of the routine {s the following:
Regions in the appropriate area are sought that
could be interpreted as road or shadow. Then

edges are found in the samr area which cou'd
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value: nil tconfidence: nil

\if-added: {prog nil
{printldb ®*value added to sketch
map {tem = * %val))
S {f-removed: (prog nil
{patom “value removed fecom sketch
map i{tem = " {val))
tif-modi€ied: (prog nil
(patom "value modified in sketch
map iftem = * %val))

sketchmapitem:

ordeclist: value: ni) Soonfidence: nil
neighbourregions: value:r nil Sconfidence: nit
shadowregions: value: nil toconfidence: nit
roxiregions: value: nil Soconfidence: nil
a-part~of-> nil decarposes-to~> nil
{nstances-> nil ne{ghbours-> nil
confidence: ntl

oconf-alqg:

{(prog (1st)

{setq st (sgeta %name “decomposes-to))
{ocond ((null 1st) (return 0.0))
{{atom 1st) (return (sgetc 1st)))
(t (return
{quotient
(apply “plus
{mapcar )
“(lambda (n) (sgetc n))
1st))
(length “at))))))

Pigure 2. The Stereotype Abridge Schema

define the sides of the bridge (and possibly a

shadow). tWhile the procedure is interesting by
itself, it {s shown to illustrate the actual use
of the Maids schemata manipulation functions,

The next section conslats of brief excerpts
of ®pseudo-code® (and possibly responses from the
program which wil! be Indented and preceded by a
®*>") followed by an explanation of what is
accomplished., The schemata manipulation functions
vill be underlined throughout. The procedure is
entered with the variable SKETCHMAPSCHEMA bound to

the “*bridge~1" from Figure L.

| {€ (SKETOMAPSOEMA =

! (sgeta “tbridge °sxetchmapitem “yes “one
i ‘ (instances))

| {ceturn “alreadyexists))

A check to determine whether this schema has been

examined before., Sgeta searches from Sbridge down
the "instances® links looking for one instance
schema containing SKETCHMAPSCHEMA as {ts sketch
map item.

Inst = (snewl “Sbridge)
> create a new bridge instance: \bridge-l

| pl = (car (sgeta SKETCHMAPSCHEMA “sidel-desc))
| p2 = (car (sgeta SKETCHMAPSCHEMA “side2-desc))
} > pl = (57, 33)

> p2 = (69 ., 62)
Since Mapsee2 schemata are undifferentiated, get
attribute returns the value of slots. Pl and p2
are the locations of the midpoints of the bridge
sides.
| reglist = (pointstrips pl p2 %regmatfile 1.5)

> regions list = (130 1186 1629 9 1730 2018)
Pointstrlpé searches for all the regions
(generated from a region-merging algorithm) in
fregmatfile that are enclosed In a rectangular
strip whose corners are 1.5 units from pl and p2.
| orderlist = (ordinterp reglist Inst)
| > order 1ist = (Other Shadow Bridge Bridge
{ Other}
Orderinterp interprets the reglons and determines
if their interpretations are consistent witﬁ
regions around and over a bridge. Interpretations
include ROAD, WATER, URBAN, SHADOW, MOUNTAIN, amd
HILLS. The appropriate regions are added to the
"tbridge-1" schema in the slots "shadowregions®,
“roadregions®™, and “"neighbourregions®. The order
list shows the order of regions from pl to p2. 1In

this case they are Other, Shadow, and Bridge.

| (nputv Inst “ocderiist ocderliat)
Put the value of orderlist {n the VALUEd type of

the same name in Inst.
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| (sputc Inst “orderlist 100)

Put the confidence of orderlist at 100 (the
maximm) .

edgelist = (pointstrips pl p2 ledgematfile 1.3)
> edges list = (88 L1 205 206 241 242)

Finl al) the edge segments in the same rectangular
Edge
segments come from groups of zero~crossings of the

strip that was searched for reqions.

Laplacian of the Gaussian,

| {f {null edgiist)

) then (sfail-model Inst)

1f there are no edge segments then this model can
ot be cocrect.  So, remowe it and any of {ts
descendants from the graph.

| {f (notwithinrange edgeangle bridgeor fentation)
1 then (remove edge edglist)

| > edges list = (88 11 242)

Remove all edge segments that are not similar to
the orientation of the bridge in the sketch map
(wvhich is 67 degrees).

| forall i in edgelist

{ {adito edgelist

| (lineneighbours 1 -1.0 335 tedgeflile))

| > edges list = ((88 89)(10 11 12 13 14 15)
! (242))

Expand all the edge segments In edgelist to
include segments out of the rectangular strip that
are connected to and (n a similar orientation as
existing edge segments.

| (foceach group of edges I in edgelist

| (1inestats 1))

Linestats calculates the 1length of the edge
segments, the average contrast across the edge,

and the maximum contrast,

| (matchregionstoedges orderlist edgelist Inst)

Match the regions from reglonlist with the edges

in edgelist. One result of this {8 the creation

of a new type of schema--the \curlb schema. Each
Scurb schema containa the data concerning one edge

of the bridge. A special type of 3%curb {s

reserved for shadows. After this routine has

executed, the schemata shown in Pigure 3 will

exist,

conf-alg: (prog nil (return
(quotient
(a1 (sgetc ¥name “length)
{sgete %name “maxstrength)
(sgetc Sname “angles))
3)))

confidence: 83

Sconfidence 73
tconfidence 75

avgstrengths values 3,3
maxstrength: value: 3

length; value: 20 fconfidence 100
angles: value: (248 214) tconfidence 80
edgesegss values (88 89) fconfidence 100
type: value: shadow toonfidence 100
a-part-of-> tbridge-1

Figure 3a. Instance fcurb-l
ftitdndaetaeienesaeestatesseesceineent

confidence; 93
conf-alg: {prog nil ...

tconfidence 100
foonfidence 100

avgstrength: value: 96.33
maxstrength: value: 134

length: value: 54 toonfidence 100
angles: value: (90 37 79 45 90 27)
Sconfidence 80
edgesegs: value: (10 11 12 13 14 15)
) tconfidence 100
type: value: road tconfidence 100
a~part-of~> tbr{dge-1

Figure 3b, Instance %curb-2
FRRRRERERAORRORIRRDNRRORARI AR NNIRIE

confidence: 100
conf-alg: (prog nil ...

tconfidence 100
sconfidence 100

avgstrength: values 22,0
maxstrength: value: 22

length: value: 17 tconfidence 100
angles: value: (228) tconfidence 100
edgesegs: value: (242) tconfidence 100
type: value: road toconfidence 100
a-part-of-> ¥bridge~1

Figure 3c. Instance %Scurb-3
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The confidence algorithm is executed after the
l1ast value slot is filled by a call to sputc with
the appropciate flag set.

rivecreg = (sqetv “trivers “regions “yes

“valueonly “all “(instances))
> riverreg =» ((iriver-1 130 1058 943 874)

] {iriver-2 1750 2018 2095))
!
| forall regions r in neighbourcregionsa
| i€ r is in riverreg
| then (sadil Inst “neighbours River))
{ > neighbours = {triver-l Sriver-2)
Search through all the existing river schemata for
the reqglions they contain. T€ they match the
neighbouring regions of the bridge, add links to
the rivers from the bridge and vice versa.
| (stutv Inst “sketchmapitem SKETCHMAPSCHEMA)
| (soutc Inst “sketchmapitem 100 t)
| > value added to sketchmapitem = *bridge-1
Instantiation has suoceeded so add SKETCGHMAPSCHRMA
as the sketch map ftem for this schema, Set {ts
confidence to the maximum and propagate that fact.

Figure 4 displays the schema for tbridge-l at this

stage.
sketchmapitem: value: *bridge-l
1oconfidence: 100
tif-added: {(prog ...
i f-removed: (PTOg +u.
tif-modified: (Prog «..
orderlist: value: (Other Shadow Bridge
Br idge Other)
tconf idence: 100
neighbourreglons: value: (2018 1750 9 130)
tconfidence: 100
shadowreqions: value: (11848)
toonf idence: 100
roadreqions: valve: (1629)
1conf idence: 100
a—par t-of-> nit
decomposes-to~>  (fcurb-1 tcurb-2 Scurb-3)
ne ighbour s~> {Airiver-)l Vriver-2)
oonf {dence: 90
oconf-alqg: (prog {lst) ...

Pigure 4. Instance tbridge-l

This is just one way in which the functions

in Maids might be used. While only some of its
capabilities are shown directly, many of the
fumtions'referred to contain embedded calls to
other Maids functions. Appendix A lists the

complete range of schemata manipulation functions.
4. Discussion

The benefits of cooperating knowledge sources
arise because each source deals with similar
information in a different way. For exanple, in
sketch map analysis it is often inpossible to
decide whether the water is inside or outside of a
shore. However, the location of the shoreline in
the sketch map can guide the search for the
appropriate features in the grey-scale image.
Then, a simple pixel classification technique
applied to the grey-scale {mage will generally
suffice to discover which region corresponds to
water. Hence the interpretﬁtlon of each knowledge
source provides useful {nformation to aid in the
interpretation of the other source.

A critical aspect of this system is that the
schemata can accept and utilize knowledge from
cooperating sources of knowledge, This is
difficult sgince the data are usually in very
different forms. Even reconciling data from the
same source (such as region and edge data) can be
problematic. The modularity of the schemata along
with a flexible control strategy can bes usad to

overcome this problem.
5. Conclusions

Knowledge sources that can {ncorporate

{nformation from several types of input within the
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framework of a world model may be effective in
computational vision. This paper describes a

schemata-based system that {s testing those

claims.
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Appendix A,

Schemata

Schemata Manipulation Punctions

(SOBJECTY  VAILUED LINK PROCEDURE OTHER)
(SINSTANCES VALUED LINK PROCEDURE OTHER)

VALUED = attribute {8value S-exp
{(%confidence . number)
(Vdefault . S-exp)
(8if~added , form)
(dif~-modified . form)
(Vi f~removed . form)
(¢{f~needed . form)
{8required . predicate)))

Suffi{x Conventions

A—any Attribute
V—VATUED attributes
L—LINK attributes
I-~Instances
O--Objects

Fimcttons

1. (adi~link~inverse Ilink {nversej- adds link and
its inverse to $link-types,

2, (1fneed schema attri{bute)- evals the %if-needed
clause of attribute in schema.

3. (saddl schemal link schema2)- adds a link from
schemal to schema2 (and the inverse).

4, (sanylink? schemal schema2)~ determines {f there
is a path from schemal to schema2 using any
type of LINKs.

5.(sattr schema types)~ returns a 1i{st of the
attribute nameg of schema.

6. (sattrtype schema attrihute)~returns the type of
attribute in schema.

7.(sconsist)- makes a data base consistent by
adding and removing appropriate LINKs and
objects.

8. (screate (name})— creates a new stereotype
(object) schema.

9, {serasel {nstance {If-removed}
destroys {natance.

10. (seraseo object {splice?{)- destroys object
tafter user confirmation).

11. (sgeta schema attribute {inherit allorone
links})~ gets the value of attribute {n
schema.

12. (sgetc schema [attributef)- returns the
confidence value for a schema or a VALUEA
type attribute,

13.(8getl schema 1ink)~ returngs the schema(ta)
pointed to by link from schema.

14. (sgetv schema attribute {inherit type allorone
1inksl 1inks2})~- gets the value (or default)
of attribute (a VALUEA type) in schema,

15.{s1link? schemal schema2 1link)- returns the
length of the shortest path from schemal to
schema2, {f it exists, using only link.

16. {snewi object)-creates a new instance of object
and returcns its pame,

17. (splice schema Vink {inverse}}- removes all
LINKs from schema and splices them togethec.

18. (sprint schema)- pretty prints schema.

{splice?})~
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19.(spcintn schema link)- pretty prints the tree
structure under schema using link.

20, (sputa schema attribute {defn})- puts a new
attribute (with valuve defn) in schema.

21. (sputc schema {attribute cval spread?})-changes
the confidence value of the schema or a
valued attribute to cval.

22. ({sputcl schema attribute value oldconfidence
newoconf idence spread) ~-replaces oldconfidence
in the 1list of confidence values of
attribute (a VAWWE] type) in schema with
newoon f idence. ’

23, {sputv schema attribute value)-puts a new value
for attribute (a VALUEA type) in schema.

24.(sremovea schema attribute {If-removed})-
removes the definition of attribute fram

25, (sremowveal schema link)~ removes all LINKg fram
schema (anl the inverses),

26. (sremowvel schemal link schemal)- removes the
link from schemal to schema? (and the
twerse) .

27. {sremovev schema attribute)~ sets the value of
attibute (a VAIUED type} in schema to NIL.

28, (srestore {file})- restores all the objects in
file,

29.(ssave (file}}- saves all objects in file.

0. (ssprintn schema)~ pretty prints the graph
structure from schema using all LINKs.

1. (vcheck schema attribute value)- checks to see
if value meets the conditions in the
Srequired clause i{n schema.
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IMAGE RECONSTRUCTION FROM A FEW VIEWS

Richard Gordon and M.R. Rangara}

Quantitative Morphology Unit
Departments of Pathology and Radiology
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Winnipeg RIE OW3, Canada.

ABSTRACT

Streaks arise 1in computed tomograms for a
variety of reasons such as presence of high
contrast edges and objects, aliasing errors and
use of a very few views. The problem appears to
be an inherent difficulty with all
reconsatruction methods, including
back-projection (with convolution) and the
algebralc reconstruction technique (ART), We
found cthat a posteriori removal of streaks is
not very effective and can cause further
arcifacts. This paper presents results of a
nunber of variations of ART oriented towards
prevention of streaks. In parcticular, pattern
recognition of streaks during {terative
reconstruction and the use of directional
neighbourhood operations with ART are
considered. Reconstructions of test patterns
using the wvarious alpgorithms derived are
preseated and optimization of the parameters

involved is discussed. As good quality
reconstructions are achievable using very few
views, our methods can lead to a significant

reduction in radiation dose in x-ray computed
tomography. They are currently being used for
remote computed tomography via teleradiology
vhere a few radiographs acquired at different
angles are transmitted to & central computing
facilicy. They should also be useful In electron
microscopy of macromolecules and have widespread
industrial applications where only a few views
are obtainable for non-destructive testing.

INTRODUCTION

Streak-like
of reasons in

artifacts arise for a variety
reconstructions made from
projections., There have been a few studies on
the causes of such artifacts in computed
tomography and correction procedures to remove
streaks have also been proposed. For example,
Joseph & Spital (1981) describe the "exponential
edge-pgradient effect” and glive Fourler
deconvolution and ray sum correction methods to
eliminate streaks. The presence of out-of-field
objects (Huang et al, 1977) and opaque objects
leading to saturated rays (Morin & Raeside,
1981), movement of objects during scanning, and

the use of {acomplete projectlion data
(GCore & Leeman, 1980; Oppenheim, 1977) have also
been pointed out as sources of streaks 1in
reconstructions. Aliasing error caused by
inadequate sampling of the projection data 1is
yet another cause of streaking (Brooks et al,,
1979; Stockham, 1979). Although the software and
mathematics of reconstruction are knowm to have
this 1inherent weankneas (Hall, 1975; Hounsfield,
1977; Moran, 1976), the methods proposed to
overcome streakling have only been
post-reconstructive cleaning-up procedures (for
example, Henrich, 1980) and pre-processing of
projection daca (for example, Brooks et al.,
1979; Joseph & Spital, 1981; Morin & Raeside,
1981), Our initial attempts at processing the
reconstructions were in a similar spirit. We
used correlation measures for detecting streaks
and a varlety of linear and nonlinear operators
on the streaks, but did not obtain good results:
while detection of streaks wns enally performed,
the cholce of parameters for the operators was

tound to be difficult and plcture dependent and
the procedure often introduced further
artifacts,

We felt that a suitable modification to the
reconstruction procedure that would prevent
streaks from getting 1into the reconstruction
would be a better approach than trying to remove

them after they have already been introduced.
This paper presents infitial results of
variations of ART (Cordon et al., 1970) derived

with this approach in mind, In particular, the
use of directional neighborhood operations and
pattern recognition of streaks during the
iterations of an ART algorithm is considered.
Reconstructions of test patterns made from a
very few views using the new algorithme are
presented and optimizaction of the parameters
involved 18 discussed. As good quality
reconstructions are achievable with a very few

views, these techniques could lead to a drastic
reduction of radiation dose {In x-ray computed
tomography. They also permit transmission of
relatively few radiographic views for remote
computed tomography via teleradiology
(Rangaraj & Gordon, 1982). Since only a few
views can be obtained 1in many {industrial
applications of computed tomography, the
algorithms should be of considerable wuse in

non-destructive testing. They ehould also



find applications {n electron microscopy (Bender
et al., 1970), where electron beam damage of
macroaolecules limits the nuaber of wuseful
exposures, and thus views, that can be obtained.

THE ALGEBRAIC RECONSTRUCTION TECHNIQUE

The algebraic recaonstruction tehnique (ART)
is an iterative procedure vhich starts with an
initial estimate of the picture and updates the
pixels so as to satisfy the given projection
data. A brief description of ART froa a digital
picture processing point of view i8 given below;
for more detailed analysis of ART and other
reconstruction algorithms, see Gordon et al.
(1970) and Gordon (1974).

The image reconstruction problem can be
posed aa follows: GCiven a aet of projections
R(1,k) at angles ©,, for P views (1 = 1,..P),
each view having 2R + 1 rays (k = =-R,..R),
compute a plcture p(i,J) such that the raysums
S(1,k) of p(1,}) are as close to R(1,k) as
possible. The ART algorithm updates pixels
belonging to 1ndividual rays of a view to meet
the raysum criterion as

e - p%Lp + (R(l.k)-S“(l.k))/n(l.k)(
1)

vhere H(1,k) is the number of pixels in the ray
(1,x) and q refers to the iteration number. The
above operation performed over all views
constitutes one cycle, and a number of such
cycles will have to be executed before all
CAYysNumS are aet. A sultable convergence
criterion can be set up based on the error of
reconstruction defined as

ARE N NI L RO, IR N R(l.k).(z)

The {nfitial picture used {s usuvally a unlformfy
gray picture of {ntensity equal to the average
brightness of the picture, which may be computed
from the given projection data.

Equation (1) represents additive ART, so
called because the correction applied is
add{tive. As this can lead to negative values
being assigned to pixels, an additional
caonstraint 1s essential. This is done by setting
the pixel to zero whenever the value given by
Equation (1) is negative.

The multiplicative version of ART is
datined awp

p e, 1) - Yt DRI /S0,
(1)

which has the advantage that negative pixel
values are not encountered.

Six test patterns were used to evaluate ART
and the modifications-derived. The original test
patterns are given in Pigures la,2a,3a,4s,5a and
6a, (Figures la and 5a were acquired using a TV
camera and frame buffer; 2a is the negative of
ia; 4a was derivad from 2a by wsetting the
background to zero; and, 3a and 6a were created
by computation, All patterns are of size 101X101
pixels with a maximum of 256 gray levels),
Reconstructions of these patterns by additive
ART are given in Figures 1b,2b,4b and 5Sb; by
multiplicative ART 4in Figures 3b,4c,5c and 6b.
Only eight views at angles 61 = 20,40...140,160
degrees (measured along theé rays) were used,
with 220 raye per view., Figure 3c 1a the
reconstruction of 3a by multiplicative ART using
only four views at 30,70,110 & 150 degrees,
included to demonstrate the distortions caused,
The raywidth wae defined as

r. = max ( {cos(8,)} , 18in(8,)1 )
1 1 1 (4)

such that each ray crosses one and only pixel
per row or column, It {is seen that the
reconstructions have streaks at all projection
angles. While the streaks in the additive ART
reconstruction extend to the zero background in
Figures 4b and Sb, the multiplicative ART
reconstructions in Figures 4c and 5c are free of
this., Thia property, however, can be easily
incorporated into additive ART by forcing all
pixels belonging to rays with zero sums to
always remain at zero and excluding them from
ART computations (cf. Cordon, 1974).
Reconstructions computed with thie ‘convex hull’
feature included in additive ART are given {n
Figures 4d and Sd. Note that thig feature can
lead to an improvement only in cases where there
are rays with zero sums, In cases of low level
background nolse, this can be achieved by
thresholding projection data. The advantages of
using the convex hull are that the raysum
distribution is more accurate and some
computation 18 saved by keeping the labeled
pixels out of the reconstruction procedure.

FEATURES OF STREAKS

Linear streaks usually occur only along the
rays used in reconstruction, The most common
cause of setreaks 1s the presence of high
contrast edges and objects in the {mage. The
fundamental reason for streaking, howgver, 1is
that the reconstruction algorithms (both bsck
projection and ART) have a ‘smearing’ feature:
the raysum, or the correctfon in the case of
ART, 1is wspread out uniformly along the path of
the ray. Flgure le gives reconetructions of
Figure la after each view during the first cycle



of additive ART, where this feature is clearly

seen. While this may occur only 4in the first
cycle of ART, the streaks 80 introduced are
usually not corrected by the subsequent

fterations. The use of a very large number of
views tends to merge the streaks at different
angles and give a uniform background. When the
number of wviews used 1s small, as in our
experiments, the streaks remain obvious, as can
be readily seen in Figures 1b,2b and éb.

A study of the streak patterns in Figure 6b
points to two types of streaking mechanisms: the
smearing of the larger (whiter) raysums leads to
the broad streaks which are whiter against the
light background (transmission type), and, at
the edges of the high contrast objects, dark,
tangential streaks arise due to compensations
made In the background for whiter values
assigned to pixels at the boundaries of the
objects (compensatory type). While the
transaission type of streaks are easily smoothed
out by the use of a large number of views, the
compensatory streaks are not.

Treating the pixels of a ray as forming s
scan—line signal, we may characterize a streak
by a high autocorrelation between successive
pixels of the ray., This feature was used in our
initial studies to detect streaks. In one
procedure we tried, the reconstruction algorithm
vas made to skip the ray correction {f the new
values had first and second autocorrelation
coefficients higher than a fixed threshold. This
procedure, however, failed to prevent streaking.
Post-reconstruction processing of streaks so
detected by different linear and non-linear
contrast stretching operators, with
re-normalization to meet the raysum criterion,
also failed due to lack of information about the
coatrast limits of the picture. The result of
one such operation, defined as

p'(1,3) = p(1,9)/2 1f p(1,§)<mean

2p(1,3) 1f p(1,3)>mean

(where ‘mean’ fs the average vslue of sll pixels
aloag the ray considered) on the streaks {in
Figure b 1s given in Figure le, where it is
seen that such a procedure can produce further
artifacts (a ray being labeled as streak if the
first auto-correlation coefficient of the pixels
of the ray exceeded 0.99 or both the first and
sccond coefficients exceeded 0.97).

DIRECTIONAL NEIGHBOURHOOD AVERAGING

As linear streaks ordinarily occur only in
the directions of the rays used for scanning, we
felt that a suitable criterion based on pixels
belonging to adjacent rays, when incorporated
into the recoanstruction algorithm, would prevent

3

approach 1se a IHaear
as in Equation (1), with a
directional neighbourhood averaging which tends
to minimize the differences between pixels
belonging to ad jacent rays. This {s achieved by
making a pixel value tend to a welighted average
of {ta previous value and those pixels of {its
8-neighbourhood that belong to the rays on the
left and right of the ray passing through 1it.
Based on the above discusaion we define an error
measure

streaking. One such
combination of ART

Al (L, D= att, ) + (10 pYL, 1R
+ =0,

~(p(1, D+R(L,0-5%(1,K))/N(L, kD))

where the summations are over all pixels (1,J)
belonging to ray (1,k). Minimization of this

error measure with respect to p(i,j) for
{iteration q+l, gives the following algorithm:

pT(1,1) = max[0,A{C a(1,1) + (1-C) p(L, 1)
+(1-2{p31, ) + (R(1,0-53(1,0)/N(1,W))})

0<ACK],
(5)

Equation (5) is the SPART (Streak Preventive
ART) algorithm presented in Gordon & Rangaraj
(1981). Here, a(i,3) is the average intensity of
the immediate neighbours of p(i,3) that belong
to rays (1,k-1) and (1,k+1). Thess pixels are
always in the 8-neighbourhood of (1,3) when the
ray width 1@ defined as in Equation (4). The
weighting factor A determines the proportion of
averaging and ART to be used and the factor C
controlg the weight of the neighbours in
directional neighbourhood averaging. As can be
seen from Equation (5), A = O represents regular
ART. The value of the error defined in
Equation (2) may be expected to be larger for
higher values of A and C: a larger A will make
the contributfon of ART lesser snd s higher C
will {ncrease the effect of the neighbouring
pixels on the sveraging. Purther, the values of
A and C will together influence convergence of
the algorithm, Reconstructions of the patterns
in Pigures la snd 2a using Equation (S) are
given 1in Figures 1d and 2c, with A = C = 0.85.
It 18 seen that while streaking is prevented to
some extent in Figure 1d, contrast is lost:
Figure 1f gives a set of reconstructions of
Pigure la wusing the SPART algorithm with A
(horizontal axis) and C (vertical axis) at
0.1, 0.35, 0.6 and 0.85, Smaller valuas of A and
C were observed to lead to reconstructions with
streaks prevented to s lesser extent, but with
higher contrast.

algorithm failed in the case of
indicates that a uniform

The SPART
Figure 2c. Thie



smoothing 18 not desirable. Making C a function
of the local contrast, as

C = 1ai,P-pl1,N1/(al1,P+p(1,1))

ylelded the reconstruction in Figure 2d, which
does not show much improvement., In an attempt to

recover contrast, we gradually reduced the
veighting factor A for successive {iterations
down to zero, which resulted in the
reconstruction in Figure 2e, An {interesting

observation from this case is that streaks arise
even If a better estimate than a flat picture
(in this case a blurred reconstruction) is given
to ART.

A paint of note about the smoothing
performed by the SPART algorithm is this: the
operation is directional, being perpendicular to
tha ray considered. Thus post-reconstruction
blurring will not lead
standard {mage processing operators. Further,
the algorithm attempts to prevent streaks,
rather than just blur them by averaging. This is
demonstrated 1in Figure 1lg where results of
applicatton of the digital Laplacian operator (
see Rosenfeld & Xak, 1976) to Figures la,b and d
are given,

OPTIMIZATION OF NEICHBORHOOD OPERATIONS

From the results obtained from experiments
discussed in the previous section, 1t s
apparent that the neighborhood operations must
be more flexible and picture dependent. A
different approach, one of optimization of a
given cost function subject to a constraint, was
tsken. Let a(i,j) denote a linear combination of
the immediate neighbors of p(1i,j) which belong
to the rays to the left and right of the ray
passing through p(4,}). In order to prevent
occurrence of streaks, we may proceed to
iteratively minimize

B (LY - att, ¥
subject to the constraint
R p(i,1) = R(1,k)

where the summations are
belonging to ray (1,k).
method of undetermined
example, Burley, 1974)
algoritham:

over all pixels

Applying lagrange’s
multipliers (see, for
we get the following

pT (1, 9) = al1,) + (R(1,X) - ln(i.j))IN(l.kz6)

vhere the eunmation is over all a(i,))
associated with ray (1,k). The multiplicacive

to same results, with

b

version of
as

the above equation can be expressed

pIL(1,9) = alt, HROLK/E a1, ).
(7)

The important feature of the above algorithm 1is
that it tendas to keep the difference between
ad jacent ray scan-lines to a winfmum, satisfying
the raysum constraint at the same time. This
represents an improvement over SPART.

Initially we defined a(i,j) as the average
of all neighbors of p(1,J) belonging to rays
(1,k-1) and (1,k+1). Reconatructions using the
additive version in Equation (6) are given 1in
Figures 4e and 5e (with the coavex hull feature
described earlier); Figures 4f and 6c  are
reconstructions using the multiplicative version
in EBquation (7)., In an attempt to improve the
contrast in these reconstructions, the geometric
mean of the expressions in Equationa (3) and (7)
wasg tried, defined as

p (1, 1) = sqrel{als, HR(L,K)/Xal, )}

(P31, DROL,K SN, 0)).
(8)

Reconstruction of the test pattern in Figure 4a
using this version is given in Figure 4g. Notice
from the reconstructions in Pigures 4e,f and Se
that the last projection used (at 160 degrees
here) leaves a patchy appearance 1in that
direction. To overcome this "last view effect”,
the reconstructions obtained at the end of each
view were stored and then averaged during the
final {teration: the reconstructions 8o obtained
are given in Figures 4h and 5f.

In order to avoid loss of details, the
neighborhood factor a(i,J) has to be
appropriately defined at each location using the

information available at thsat cycle in such a
way as to prevent both streaking and
indiscriminate blurring of features, With these

considerations in mind we defined three contrast
measures to determine a(1,3§):

along = (lp_(1,3)-p(1,§)1 +

o (1, D-p(1, 1)/ (p_(1,9)+p, (1,§)+2p(1, 1))

across = (11(1,1)-p(1,3)) +

ic(4, D-p4, N/, D+e(L, D+2p(1, 1))

left~to-right=11(1,§)-c (L, N1/(1(1,3)+r(L,9))

where p(1,)) 18 2 pixel belonging to ray(l,k),
p_(1,§) and p+(1,j) are neighbors of p(i,])
along the ray scan-line (1,k), 1(i,3) 1is the

average of neighbors of p(i,j) belonging to ray



(1,k=1), and r(1,J) ia the average of neighbora

of p(1,§) belonging to ray (1,k+l). Note that
with the above definitions, the contrast
measures have a convenient range of O to 1. An

important feature simplifies computation: the
pixels wused are in the B8-neighborhood of p(1,]J)
vhen the raywidth is defined as in Equation (4).
Three options were provided in the definition of
8(1,§) using the above contrast measures:

if (across > liml) and {along ¢ 1lim2)
1. then { stresk }
if left-to~right > 1lim3
la. then { edge }
a(1,3)=nearer of 21(1,1) and v(i,]) to p(1,})
1b, else { hump }
a(i,3) = 0.5(1(1,)+r(4,3))
2. else { paoceed with ART }
a(1,3) = p'(1,9)

vhere liml, 1im2 and lim3 are thresholds defined
for the three coantrast measures to detect
streaks and edges in the reconstructed picture;
‘edge’ refers to a large difference across the
pixel as at the edge of an object; and ‘hump’
refers to a streak over a flat background, 1in
vhich case the middle pixel would be higher (or
lower) than bocth the left and right neighbors.
By setting the contrast thresholds to the
maximum possible value (1.0), the algorithm may
be forced to follow regular ART. To take maximum
advantage of the above operations, the initial
plcture for ART was computed from the first view
data only (by giving to each pixel the value
R(1,k)/N(1,k) appropriately), and the algorithm
was started with the second view. Figure 6d
glves the reconstruction of 6a using the above
criteria with renormalization using Equation (7)
(vith liml = 1im2 = 0.05, 1im3 = 0.2). The dark
streaks seen in Figure 6b are not present in
Figure 6d. Further, the backgound s more
unlform and the edges of the objects are sharper
than in Figure 6c. An optimized choice of the
thresholds should lead to an even better
reconstruction,

DISCUSSION

¥hen we use only a few views in
reconstruction from projections, we are dealing
with highly underdetermined equations {Gordon,
1974). For example, a 100x100 array with 8 views
represents 10,000 unknowns with around 800
equations (of the form R(1l,k) = ¥ p(1,})).
Standard algorithms, such as ART, select but one
of the infinite number of possible solutions.
What we are atteapting to do 1is find alternative
solutions to the equations (cf. Gordon, 1973)
vhich are free of the streaking artifacts
typical of ART and other algorithms. The
algorithas derived have demonstrated their
ability to select better aolutions to the same

us

set of equationa, The use of pattern recognition
and all available information about the Iimage
being reconstructed to build some intelligence
into the algorithm would make gelection from ths
sat of infinite golutions easier. Our work has
been progressing in this direction and methods
of improving performance of the algorithme

derived are being researched. The convargence
properties and effects of noise will aleo be
studied at a later ntﬁpe.
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FIGURE CAPTIONS

1. a)Pattern l; b) Addicive ART reconstruction;
¢) Streak processing applied to b); d) SPART
reconstruction (A=C=0,85),

1. e) View-by-view results of ART reconstruction
as in Figure 1b,

1. f) SPART reconstructions of la for A
(horizontal axis) and C (vertical axias) at 0.1,
0.35, 0.6 and 0.85.

1. g) Results of application of digital
Laplacian operator to la,b and d. Note absence
of streaks {n 1d.

2. a) Pattern 2; b) Additive ART; c) SPART
reconstruction (A=C=0.85); d) SPART with
variable C; e) SPART with sliding A,

3. a) Pattern 3; b) Multiplicative ART, 8 views;
¢) Multiplicative ART, & views.

4, a) Pattern 4; b) Additive ART; ¢)
Multiplicative ART; d) Additive ART with convex
hull; e) Reconstruction by Equation (6); f)
Reconstruction by Equation (7); g)
Reconstruction by Equation (8); h) Same a8 (g)
but with averaging during last cycle.

5. a) Pattern 5; b) Additive  ART; c)
Multiplicative ART; d) Additive ART with convex
hull; e) Reconstruction by Equation (6); f£)

Reconstruction by Equation (8) with averaging
during last cycle.

6. a) Pattern 6; b) Multiplicative ART; ¢)
Reconstruction by Equation (7) with averaging
during last cycle; d) Reconstruction using
Equation (7) with the three options for a(1,3).
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Abatract

Computerized Axial Tomography (CAT)
scans of logs reveal details of their
{nternal structure. We have determined
features vhich can be extracted and used
ag constrafnts in a computer program to
interpret CAT scan images of logs.

Introduction

A log entering a sawmill is seldom
perfect. It will have knots or rot inside
1t, and {t is not possible to ascertain
where these imperfections are buried by
simple visual inspection of {ts surface.
When the log 18 cut the knots and rot
become obvious, but by then it 1s too
late. If the fmperfections in a log could
be found before cutting ft, then {t would
be possible to cut around then.
Industrial tomography has been shown to
be a viable method for non~destructive
investigation of the internal structure
of objects (Ellinger 1979, Hopkins 1981,
Reimers 1980). In particular, tomography
of logs has shown that defects and other
aspects of interns]l structure are readily
discernible.

This paper describes a set of
features by which CAT scan images of log
cross-sections can be segmented into
reglons of knots, rot, clear wood
etcetera. These regions are identified by
features such as the length, strength,
and direction of growth rings, the
density of the vood, and the sudbjective
contours formed where a set of growth
rings i{s interrupted by @ hole or a
rotten region. Following Marr (Marr
1978), Barrow and Tenenbaum (Barrow
1978), and others we have looked to the
real-world domain to provide constrainte

~whichk 1limit the possible interpretations
of image features. First, the CAT
"scanning process, and the visible
features in a log cross-section will be
Jescribed, Next, the processing
‘methodology will be described, fncluding
primury feature extraction and, ot »
higher level, segmentation processing.
s Scans and Logs
T TComputerized Axial Tomography 1is a
well-developed medical f{maging technique
which 18 currently being applied in
non-medical areas., CAT scanning is a

mathod wheraby £ set of x-rays of a given
object is used to create a
cross-sectional density map. The output
of this proceas 1s s grsy scale image,
typically displayed on a TV monitor, with
the intensity value of any pixel
corresponding to the density of that area
of the scanned ohject.

CAT scans of logs exhibit readily
discernible features even to the
untrained observer. Figure 1 is & diagram
of the features which can be seen in a
typical CAT scan of a log. These include:
1. growth rings-~- diatinguished by their
high densfty and circular shape about
the center of growth,
holea, cracks, pitch pocketa~~
distinguished by their low denafity
(they appear as light regions in
sctual CAT scans),
knots~-~ distinguished by their high
denajty, roughly elliptical shape
(major axis pointing towsrds the
center of growth), and the fact that
knots tend to distort the growth
rings near then;
rot-~ distinguished by 1ts higher,
lower, or varied density, and the way
rotten arcas interrupt growth rings.

2.

Procesaing Methodology

Although the input to this system
from a limited domsin, the i{mages .
themeselves can vary greatly, Logs vary
across species. Also the water content
a log affects its CAT scan {mage.
Techniques such as statistical pattern
recognition, or
segmentation-by~thresholding will not
yleld consistent results in this
environment. They can, however, be used
at lower levels to extract simple
features. Knowledge-~directed
interpretation of the input image is
needed at higher levels of processing.
The image megmentation process divides
nicely into two phases, The first {s to
extract primary or simple festures. The
second 1s to uae these primary faatures
to determine the image regions
corresponding to the internal structure
of the log.
a, Primary Feature Extraction

Simple thresholding suffices to
determine the external boundary of
the log since the density difference

is

of






Migh-level Featurees

The primary featurea available
are the original density image, the
external boundary of the log, and »
set of edge elements. The
ctlassification of 1image regions
depends in large part upon the global
coatext provided by the growth rings,
This context dependency is not
arbitrary, for growth rings are a
strong visual cue for human
observers. Nefghbouring edge elements
having s{milsr characteristics are
linked together into curved line
segnents. Those which are concentriec
with the log boundary are generslly
growth rings. Since we know
approximately where the growth ring
Begments should continue we can try
to extend them Iin a manner similar to
that which Shirat (Shirai 1975) used
for finding lines 1in the blocks
world.

Another strong visual cue {s the
center of growth of the log. The bias
of the center of growth avay from the
geametric center of the log often
Csuses weak and closely packed growth
rings. The center of growth is
defined by the center of the set of
concentric growth rings. Any two
areas of obvioua, unperturbed
grovth-- as indicated by unfforn
growth rings-- can be used to locete
the approximate center of growth, It
is located where the perpendiculars
to the growth rings in each area
fntersect. This estimate of the
location of the center of growth can
be fmproved upop by repeating the
same process oo nearby unifora growth
areas which are closer to the center,

The primary features and the
center of growth are used to definme
and describe areas of clear wood,
knota, and rot. Concentric and
uniform growth rings are strong
evidence of clear wood. There may be
other regions of clear wood, but
{nd{cated by weaker evidence. Slow
tree growth and limited fmage
resolutlion csuse some areaas of clear
wood to appear to be of aslmost
uniform density. A region 1is
interpreted as clear wood 1f its
density {s uniform and similar to
that of established areas of clear
wood.

Regions which cannot be
classified ase clear wood muet contain
some defect which causes the growth
rings to become disconti{inuous. Our
afm {8 to clasaffy theae regiona as
kaots, rot, cracks, or holeas. The
boundary between these reglons and
clear wood 18 a&a eubjective contour
formed by breaks in the growth rings.
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Many characteristice indicate
that & region 18 & knot. Knots are of
high density, and roughly elliptical.
The major axis of this ellipse points
toward the center of growth. There 18
ususlly a ‘tail’ of high densfity (see
Figure 1) pointing {n the direction
of the center of growth, Knots slso
tend to perturb the growth rings near
them. Thus growth rings {n the image
which bend out of the circular
pattern are evidence that they are
near the boundary of s knot.

Rot causes 8 log’a cellular
structure to decay into a mass .
aimilar to packed sawdust. Since rot
occurs after the growth rings are
established, they do not bend out of
the ci{rcular pattern near the
boundary of the rot. The water
content within a rotten area may vary
#s well, causing reglions of higher or
lower density in the CAT scan image
(see Figure 1). Generally, rot is not
found in small pockets embedded in
clear wood, but rather in extensive
areas, often a complete quadrant of
the log., All thie means that in CAT
scans a region of rot can be
{dentified by the presence of
fragmented growth rings and widely
varying density,

Cracke and holes are ugually
small regfons. They are typically
bounded on all gides by clear wood.
They also exhibit a uniformly low
density thrcughout. Holes are
typically circular in nature, and
cracks run radially inward toward the
center of growth,

Computer Processing

Some reeults of the low-level
feature detection uperationa are shown in
Figurea 2 and 3. Simple thresholding
distingufahes low-density regions
corresponding to the external boundary of
the log, and holes, cracks, and some rot.,
Figure 2 shows the CAT scan of the log
and the threasholded ares. Figure 3 shows
the edge pointas resulting from the
application of an edge detector. The
growth ringe in asreas of sound wood and
the boundaries of knots asre readily
diecernible. Iun areas of rot, the edge
pointe indicate regions where the density
is rapidly changing. The fact that there
{8 no uniform direction to these edge
points 18 one indicator of rotten wood.

Summary and Puture Work

Knowledge of how the internal
structure of e log is formed constrains
the interpretstion of CAT scan image
features. A log’s boundary and growth

-rings provide a context for the

interpretation of local image regions.
{Preliminary computer work indicates that
|



the $oternal structural features of a CAT
scan of 8 log can be readily found. Our
current work is to incorporate this
knowledge into & computer program that
will classify local image regions of CAT
scana of logs.
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ABRSTRACT

The strategy of a rule based computer vision
pystem is dafined and analysed. The first aspect
involves determining the spatial order in which the
system will process an image. In addition, an
ordering has to be established among all the rules
included in the model. A global strategy is
achieved by dividing an image into areas of at-
tantion. These are processed in an order that
depends on their properties, as reflected by a set
of performance measures, computed for each area. A
local strategy is then dynamically evaluated within
¢ach area, to determine the order of analysis of the
regions and lines, as well as the order of applica-
tion of the rules to the data. Dynamic strategy
setting is formulated as a fuzzy decision~making
problem, whose solution depends on the performance
parameters for each of the areas in the image.
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1. INTRODUCTION

Setting strateqgy ias an important factor in
the design of a system, since it bears a direct
consequence on determining how it will function,

For a rule based system, this involves the funda-
mental issue of determining the order in which the
rules will be matchea against the data. In addition,
for systems that deal with complex data structures,
as is the case with a computer vision system, an
onk-ring must b lmpo:ced on tle data to o matehed,

For the rule based image scymentation systoem
described in [Levine and Nazif, 1982 a) both rule
ordering and data ordering are part of the system
strategy. The knowledge rules are matched against
the data stored in a short term memory (STM). This,
therefore, requires the system to know the order in
which the rules are to be matched. This is es=-
pecially important, when the data are such that more
than one rule can fire,

The data are composed of areas in tha image

that contain the regions and lines defining a seg~
mentation for that image. Once the order of the

rules is established, the system will start a
rule cycle by matching the conditions of a
specific rule tc specific data entrics. Thesu
conditions require that the features of a region,
line or arca be testod for the pruseonce of a
certain data configuration. Thus, the system
must know the specific region, line and area for
which this is to be done at any point in pro-
cessing. Conceptually, the system {s searching
the image for the occurrence of the data con-
figuration represented by & rule. It is the
order of that search that must be established
here. This translates to the problem of aelect-
ing which area of attention in the image to work
on at any point in processing, and specifying the
order, within this area, in which the regions
and lines are to be visited.

Image processing systems in the past have
not serjiously addressed the problem of determin-
ing the order in which an image is to be pro-
cessed. However, there ie ample proof that such
an ordering affects the results of the analysis.
This is evident, for example, in region growing
systems, in which initial regions are merged in
a pre~specified order to form larger regions.

It has been shown [Nazif and Levine, 1981) that
changing the order in which the regions are
merged will alter the configuration of the result-
ing regions in the final iegmencatlon. Thia is
true irrespective of the fact that the merging
criteria remain unchanged., Thus, this aspect of
setting strategy is an important ons, and in fact,
it is responsible for a lot of the errors in the
results of segmenting natural scenes using
existing segmentation systems.

The inclusion of focus of attention areas
in the data structure is significant [Levine and
Nozif, 1982 a). Thesc arcas gquido the aystom to
parts ot the image that should be procussed firut.
The systcm strategy ostablishes an ordor for tho
areas, as well as within the areas. Furthermors,
that order is not a fixed one. 1t varies from
one area to the next, according to the properties
of the data within each. We thus introduce the
notion of a dynamic data ordering in processing
an image. The implementation of such an ordering
will be described here in detall as part of the
system strategy,

In a more general sense, the strategy for
this system includes not only specifying the
order of data processing, but also the order in



which the procussing criteria embodied in the rules
is applied to the data. Unlike previous rule based
systems, this order will be shown to be a dynamic
one as wall. The system can actually vary the order
in which it matches its rules on the data, based on
the charactaristics of the data themselves. This
idea of & dynamic data driven rule ordering method-
ology is also a new one, and helps i1mprove both the
efficiency of computation and the quality of the
output.

In the next scections, we will define how the
strategy for the rule based segmentation system is
determined. To do this, we first define what the
elements that compose a strategy are., We then
formulate the problem of strategy selection as that
of a scarch within the space composed by these
elements, for the most appropriate strategy to use
for each data configuration. To solve this dynamic
scarch problem, we define performance parameters
that are evaluated by the system at different parts
of the image. They are used to detexrmine the
¢lements of strategy for each of these parts
individually. We will also introduce the constraints
that define the relation between the strategy
eluments and each of the performance parameters.

The framework for the solution is shown to be that
ot a decision-making process, in which decision
functions are evaluated from the performance para-
meters, and are then used to instantiate the system
strategy elements. The concepts of fuzzy set theory
serve as the design tool for this process., Fuzzy
logic will be used in representing the constraints,
duefining the objectives, and designing the decision-
making algorithm.

2. STRATEGY DEFINITION

It is seen from the abowve argument that in
order to dofine & strategy for the image procussing
rule based system, we need to answer two basic
questions:

(1) Where (in the image) do we go to next?
{(2) wWhat do we do when we get there?

The answer to the first question provides the means
for selecting the next data entry in the STM to
match the rules on. Within the context of the low
level processing system described here, two levels
of dava selection are indicated. A given strategy
should first detail the global method by which the
next area in the image is to be selected for pro-
cessing. It should then proceed to specify the
criteria for locally selecting the next region and
the next line in that area to be processed.

The answer to the second question also con-
stitutes part of the local strataegy. After the
next data entry to match on has been selected, be it
& reqion or a line, there still remains more than
one alternative. These correspond to the different
options provided by having more than one knowledge
source to instantiate, or in other words, more than

" one rule to match. Would it be better to match
REGION or LINE rules first? DO we give priority
to merging over splitting or should we do the
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opposite? For lines, do we first add new lingu
or delete existing ones? When do we move on to
the next region or line? 1In general, givun a
certaln data configuration, more than one rule
can match, and the question is: 4if this happens,
which rule should fire? Por rule based systems
this is known as the conflict resolution problem.
The local strategy within an area should also
provide the solution to this problem by specifying
an ordering on the rules to be matched. This
ordering will thus vary from one arca to another,
depending on the features that describe each
area., We will now proceed to define the local
strategy more precisely by analysing its basic
elements,

2.1 Local Strategy Elements

The information required in order to specify
the system behaviour within an area of attention
is organized into six basic elements, The local
strategy can thus be described by a state vector
with s8ix components, that are referred to as the
"elementg” of the local strategy. These are
selected to be independent entities, that
completely address the strategic aspects of the
problem. Each element can assume specific
"states™ that are attached to it by the system.
Following is a discussion of each element.

2.1.1 Region Path Strategy

This element of local strategy determines
which region to address next after processing the
current region, Two possibilities exist: either
a random selection of another region in the
current area of attention, or a selection based
on the features of the current and new regions.
The FOCUS OF ATTENTION process is the one
regponsible for obtaining the next region. It
does 50 by matching its own rules against the
data in the STM. It is the action of these rules
that determines the method by which the next
region is to be fetched., Different actions arxe
provided by the FOCUS OF ATTENTION process.

These correspond to the different states of the
region path strategy element. They include
getting the region with highest or lowest
adjacency value to the current region; getting
the adjacent region with the highest or lowest
area; getting the region that is encountered
when scanning the image in a raster scan,
starting at the current region; or getting the
region with the next highest region label. A
specification of the region path strategy is thus
equivalent to the selection of one of the above
options.

2.1.2. Line Path Strategy

The determination of which line comes next
is the same as in the case of regions, except
for the fact that the features used are different.
The FOCUS OF ATTENTION process can invoke one of
the following actions: getting the closest line
that is in front of, behind, or parallel to the
current line; getting the longest or shortest
line that is near the current line; getting the



line with highest or lowast gradient that is nenr.
the current line; getting the next line in a raster
scan; or getting the line with the next highest
label. When there is more than one line in front
{behind or parallel), the first three options will
get the one with the lowest distance from the currxent
line, The next four options, on the other hand,

will get the line with a specific feature, with
ruspect to the other lines.

2.1.3 Sequentjal/Paralle) Strategy

When a region is visited by the system, the
REGION ANALYSER matches it's rules on the features
of this region. If al) the conditions of a rule
match, the rule will fire, and an action will be
executed. This will result in the modification of
the current region. Once this is done, the system
has two recourses, It may again match the REGION
rules to the samé region, 8o that the same rule, or
others, may fire and further modify this region.
This can be repeated until no more REGION rules
match their conditions on the features of the current
region. Alternatively, the system can move on to
the next region, so that it will not visit the same
region twice until all the other regions in the same
area have been visited at least once each. The
first method produces a sequential order of pro-
cessing, whereas the second simulates parallel
processing.

2.1.4 Processor Priority

One of the queustions that arises during
processing is that of whether to process regions
or lines. The system is faced with this choice at
the end of every rule cycle. The process that
executes the choice is the SCHEDULER, whose meta-
rules can specify one of two actions: match REGION
rules, or match LINE rules,

2.1.5. Rule Priority

As with all) rule based systems, the order in
which the rules are matched constitutes an important
part of the system design. This affects both its
behaviour and its performance. With a rigid design,
rule ordering is embedded in the structure of the
system itself., A change in that ordering is
virtually impossible without major modifications.
This is not the case in production systems, where
the production rules are kept separate from the
processing modules of the syetem. Therefore, an
uvxplicit rule ordoring must bo uspecifiod in ordar
to carry out the rule matching process. This is
usually done by attaching priorities to the rules,
so that in case of conflict, the rule with higher
priority will fire. This priority can be explicit,
or it can ba implicit by the temporal order in which
the rules are matched. In both cases, the ordering
specified is static and cannot be changed during
processing. In fact, all rule based systems
developaed so far using the production system
approach have static conflict resolution

L]
Note that a line that is near another must be in
front, behind, or parallel to it.
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.xules also applies here.

msthudouloglies.,

The aystem described here implements a
dynamic strategy approach which implies a dynamic
change in the ordering of the rules. The systom
knowledge rules are classified into sets that
include REGION, LINE, and AREA analysis rules.

We observe that the previous strategy element,
that of process priority, does in fact establish
an ordering on the rules. It specifies whether
first to match REGION rules or LINE rules. 8ince
this is a dynamic process that changes from one
area in the image to the next, this results in a
dynamic ordering of the rules sats.

We now carxy the above argument one step
further, in order to establish an ordering within
each of the rule sets. Two strategy elements
result from imposing such an ordering, they are:
KREGION rule priority, and LINE rule priority.

2.1.5.1. Region Rule Priority

One way to order the rules is by their
actions, An ordering is imposed so that rules
with certain actions have priority over rules
with others. For REGION rules, two types of
actions are possible, merging and splitting.
Depending on the performance parameters that
describe a certain area, the system may impose a
priority for merging over splitting in that area,
or vice versa, A dynamic ordering of the rules
by their actions is thus established,

A further ordering of rules with the same
type of action is possible. This is done by
using the conditions associated with the rules
to specify priorities for rules having the same
action. One may argue that rules with a larger
number of conditions should have priority over
those with a smaller number. 1In the system
described here, conditions that take into account
both region and line information take priority
over those that consider only one or the other.
Unlike the action based ordering, this condition
based ordering is a static one, that can be
reflected in the order in which the rules are
matched.

Rules with the same type of action are
sorted according to their established priorities
prior to the commencement of processing. The
priority of the actions themselves remain to be
ostablishud dynamically according to tha data.
This dynamic strategy element can have one of two
states, namely, merging or splitting, depending
on which action will have the higher priority
setting.

2.1.5.2., Line Rule Priority

The argument described above for the REGLON
A dynamic ordering is
also imposed by the actions of the rules, and a
static ordering is imposed by the conditions of
rules with the same type of action. The types

of actions used are, of course, different. Again,
two types arc distinguishable, those that add ncw






fudicate the bBoevd tur adding or deleting more linus,

respectively. The sya-tem should thus select the
area with the lowest overall values for these four
parameters.

A parameter that reflects temporal order,
rather than performance, is required in order to
represent the second constraint mentioned above.
Consider the recency ratio for arua a given by

Number of areas visited since a was

. (2}

Total number of areas in the image
A high value of Rcl would indicate that the area has

not been visited recently, and thus is an eligible
candidate for processing.

Our global strategy, put in words, is to
select the area of lower region uniformity and
contrast, lower line connectivity and contrast, and
of higher recency ratio. Although we can express
each of these measures mathematically, the constraint
over each of them is not so well~-defined. The
format is a fuzzy one, since it only indicates that
a measure should be low or high., Furthermore, the
method by which the measures should be combined to
have an effaect on the final decisjon, yields another
source of imprecision. We know that an area should
satisfy as many of the constraints as possible, in
the best possible way. 1In practical situations,
each area will satisfy each of the constraints to
some degree. Thus, a precise mathematical function
of the measures could be formulated to produce a
combined effect. However, such a formula, involving
pultiplicative or additive effects, would be too
simplistic and too precise. This is because we only
have a fuzzy notion of what to expect. Too fuzzy,
in fact, to be represented by a single-valued
mathematical function. The cholce is thus better
described by using a linguistic framework, as
opposed to a multi-variable formula. This provides
the motivation for using the concepts of fuzzy set
theory in making the decision.

The performance parameters of equation (1)
were designed so that every measure would indicate
how well an area satisfies a particular objective.
A region uniformity measure of 0.8 for an area, for
example, indicates that we are B0\ confident that
the regions in the area are uniform. The same
applies to tha other region and line measures (note
that they are all normalized to lie in the intarval
{0,1)). The confidences required by the fuzzy
decision-maker can be derived directly from these
wmeasures, If the value of a performance measure
for an area is x, the amount of further processing
roquired to improve that measure is proportional to
1l - x. The recency ratio defined by equation (2)
provides a confidence value that is proportional
to an area's temporal eligibility,

For each area, M= 3m + 2 objectives are
defined, where m is the number of features of
regions and lines uscd for the evaluation, as
introduced by equation (l}. They correspond to all
m region uniformity, m region contrast, m line
contrast, one line connectivity, and one recency
ratio measures. Let A be the set of N areas in
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the amaget

A = [011 021 sens uN]' (1)

and Yl' YZ' ceet YM be the set of M objectivaa.
Following the notation in [Zadeh, 1976], we have
for each a,,
1
Y, =] Q-0 )/a, 0<k<n, (4~a)
k a i
4 i
Yo~ ]~ & /a,, mex<2m, {a-b)
] a i
A i
Yo = | (1 -0 /0, 2m< k < 3m,  (4-c)
3 ] a i
A i
Y = (L ~T })/a,, k = 3m + 1, (4-4}
k Ia ui i
Yk - ) Ra / ui ' k = 3m + 2, (4-e)

A 1
k
a
The function inside the integral
degree of membership of u1 in the

where U:, C:, H , and Tu' ara defined as per

equation (1).
indicates the

fuzzy set representing objective Yk.

The decision-making process takes place by
first computing the degree by which all areas
satisfy each of the M objectives. For a
particular objective k, this will correspond to
finding the fuzzy subset Y  over the set of areas

A: X
ik Y Yk
Yk [ u—‘— . r, ..... B ;“" ] (5)
1 2 N
The y are computed using equations (4~a) to
(4-e), depending on the value of k. The fuzzy

decision gset D {8 then computed from the M sats

of objectives, so that
- al al N
D Yl_ Y2 o« . YM ’ {6)
a d dN
or D =[ ;L P 32 ’e s e o ). (n
1 2 N
where
M
d = MIN (y, . (8)
i kel ik

Following the optimal decision rule,
will sclect arca aj ay tho noxt area

it

the system
to procoss,

N
d, = MAX

(a
] i=]

i 1. (9)

The maxi-min process of tuzzy decision-making

is glven by cquations (8) and (9)., The objective
that {s minimally satigfjed by an area i@ selected
to represent it, The arca with the highest value
for the latter will constitute the output of the
decision-maker.



3.2 Llocal Strategy Evaluation

Once the 9lobal strateqgy has selected an arocea
in the image, it remains to define the local
strategy within the area. 1In section 2, we des-
cribed the elements of local strategy, their states,
and how they can be adjusted by the system. We
have also introduced in this section, a performance
vector that can be evaluatad for different areas in
the image. The components of this vector have been
designed to moasure the quality of a segmentation
over an area, and thus provide the means for
adjusting the local strategy within that area. They
can do &0 by influcncing the individual strategy
vlements into particular states that are more
suitable for the data configuration in the area, as
represented by these parameters. The following
problem presents itself: Given a perforamnce
vector Pu for area a, how can we determine the

elements of the strategy vector E; for that area.

what we are actually looking for is the model F
represented by the “black box®™ in figure (2).

P er s F == s

- ol

Figure (2) \ Model for strategy evaluation

The constraints imposed on this model are
brought about by the manner in which each
performance paramcter affects each strategy element.
One can say that line analysis should have priority
over region analysis if the region mcasures of
uniformity and contrast are high, and the line
measures of contrast and connectivity are low.
This is an indication that the image needs more
line procussing than region processing. The
opposite is also true, and variations on the above
are possible., More splitting is needed at low
region uniformity and more merging at low region
contrast. Adding lines is preferable for low
connectivity arvas, while deleting lines is more
useful in smooth areas. A sequential strategy is
nore efficrent if the amount of processing left is
low, as reflected by high values for the region and
line measures. On the other hand, the more con-
servative parallel strategy is safer if the measures
are low, and if the number of regions and lines are
high. Bounded areas may invite region merging,
while textured areas allow for more line deletion.
The path strateqy is also affected by these con-
straints. While low region uniformity suggests
visiting larger regions first, low region contrast
suggests moving through high adjacency values.
Smaller size regions are more influential for
texture areas, while the opposite is true for smooth
aruvas.

These are just examples of the types of
constraints present, and are not meant to ¢onstitute
an exhaustive list. Clearly, not every performance
parameter affects every strategy element, at least
not to the same extent. Some constraints seem more
important than others. Two factors affect the
presence and relative importance of these con-
strainta: improving the efficiency of the com—
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putaLioin, and enhancing the quality of the ovutput
sagmentation.

A consistent relationship can be obtained
by generalizing the effects of performance pa-
rameters on strategy elements. This can be done
by explicitly naming the effect of every para-
meter on all the states of all strategy elements.
Two aspects can be coded: the direction of the
effect, and its magnitude. A performance pa-
rameter can promote the instantiation of a
particular state for one of the strategy elements
in one of two different ways. The higher the
value of the parameter, the more it would
advocate the choice of that state. This will be
termed a positive effect. The second and
opposite effect, when a lower parameter value
is more suggestive of the selection of the
affected state, is termed the negative effect,

Table (1) represents the direction of the
relation between performance parameters and
strategy elements. The "+" and "-" signs corre-
spond to the positive and negative effects,
respectively. An entry is included whenever the
direction of influence of a parameter on a state
is known, irrespective of the magnitude of that
influence. If no known effect exists, however,
the entry in the table is left blank.

As indicated previously, the extent by
which performance parameters affect strategy
elements is not constant. Some parameters are
more important than others for certain elements.

Sirategy Performance Faraseters
Elemants v c H T R L
Ad !
Jacency 3 - -
Largess - - *
Suallest . . -
8y Label - - *
Nearest * - *
Longest - * -
Bhortest * - .
Ssrongest + - -
Woaskept - * .
oy Label . * *
bequentisl * * * * - -
Paraliel - - - - - *
Regions - - * * - -
Lines * + - - - +
Nerge . - - - - -
Spliis - . - * - *
Aad - . + - * -
Delete . - - . - *

Teble (1) ) Effect of perforsance parsmeters on VYhe
states of strategy elements.



The relative influence of the parameters on the
elements will also depend on the type of area for
which the strategy is evaluated. Table (2)
sunmarizes this magnitude effaect. The entries in
the table code the influcnces into one of five
categories: very low (VL), low (L), medium (M),
high (H}, and very high (VH). Variation due to
area type is represented by including three values
(ane for each type of area), to indicate the
magnitude of the effect a performance parametar has
on each of the six elements of strategy.

Porfornance FParametere

Ssrasegy Ares
Eiveents Tupe [} < L] 7 L] 8
fNegiren »aoeth n n . . L] vi
Pawn texture L+ n L Yo ™ vi
Swrasegy bounded n v YL VL
Lime smooth o v 5 LJ i »
Pawn teiture Y. . N L] i v
sSwrategy bownded vt L n L] . L]
Paralle)/ smoosh L] L] L n n "
Sequential teatwre L L] L] L] ] H
bowunded n L n L] H ]
Process SRooth v " L] " vi v
Priority Senture " v » v L L
bounaed n n L H L vL
Region smooin v H L L+ H Y
Mules tentwre n v L L vH v
Prioraty bownded L] H L L+ VH vL
Lane smooth L i M i L]
fule Senture 9 8 H LL I vL vH
Praorivy bounded t L] ] 129 H
Table (2> : Codes that reflect the relative importance

of performsnce paraseters in detlersining the
various sirategy states in different areas

The concepts of fuzzy logic will now also be

extended to the problem of local strategy determina-

tion, Unlike the global strategy, more than one
d:cision is required. Six elements must be instan~
tiated in order to completely specify the local
strategy. Therefore, as many decisians are needed
to assign a state to each of these elements. The
model F is thus composed of six independent, yet
identical, decision processes, that can be executed
ih parallel. Each process involves the selection
of ocne of a finite number of states, and hence the

determination of one component of the local strategy

vector. The following analysis will apply equally
to each of the strategy elements.

Let the set of n states

for strategy element
Sj be given by

S; = Us;ye 80 e oo o8y 1

We can construct M fuzzy subsets of Si'

corresponds to one of M = 2m+3 parameters constitut-

ing an area's performance vector. Each subset will

have the form

" by
yk.l;k_“;_' §2'~--lsn N
il 12 in
1<k <M (1)

(10)

Each subset

where M is the degree by which performance

paramuter k satisfies the requirements of atate

) for strategy element i in the given area. Each
parametor ig evaluated as a numerical quantity
in the interval (0,1}. If a parameter has a
positive effect on a atate, then the higher the
value of that parametar, the more the degree of
satisfaction of that state with it, For a
negative effect, that degree would increase with
lower parameter values, If parameter k is found

to have a value Pk' then

Pk if k has a positive effect on }J,

vkj - (12)

(l-Pk) if k has a negative effect on j,
as specified by the entries of Table (1).

The decision objectives represcnted by the
M fuzzy subsets of equation (l1) can now be
computed from the performance parameters of the
area. They can then be used to compute a fuzzy

decision Bet D1 on the states of strategy element

i, so that

Y Y
il N2
Di-yl Yz -

where Yix is a quantity that raflects the

relative importance of parformance parameter Kk,
in determining atrategy element i, according to
Table (2). A positive power that is greater
than unity, will emphasize the influence of a
particular objective., A fractlonal powur will
have the opposite effact.

The last four strategy elements in Table
(1) are binary valued. The entries that are
positively supporting one state, are seen to
have a negative effect on the other state for
these elements. The firast two elements are multi~
valued, and each parameter can support more than
one state, in a positive or negative manner,
simultaneously. It is the integrated effect over
all parameters that tips the balance towards a
particular gtate. This is, of course, a mutually
exclusive process, sinca a strategy element can
only assume a single state at a time., The fuzgy
decision set D1 computed in equation (13),

provides the degree of satisfaction of the
decisjion-maker with each of the states of strateqy
elemant 4. The state with the maximum satis-
faction value ig chosen to represent that element
in the output strategy vector. This process is
repeated for all six strateqgy elements.

The model F in figure (2) can thus be
represented by a set of modules, each of which
computes the degree of satisfaction of each
strategy element state, with the current value of
each performance parameter, These are followed
by a maxi~min selection module for every element,
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Abstract

This paper describes a technique for matching
two images of natural terrain using a syntactic
pattern recognition approach., Points of interest
in an image are classified and a graph possessing
properties of invarfance 1s created based on these
points. A method for generating a grammar string
from the classified graph structure is presented
Local match analysis is performed and the best
global mactch 18 constructed. A probability-~of=-
match metrie is computed in order to evaluate the
global match and results demonstrating these steps
are presented,

Introduction

In order to match two images of natural ter-
rain, the differences between images must be ex-
plored. The images to be matched may differ in
viewing angle, lighting and weather conditions.
Based upon the application, the images may also
have been obtained with different sensors. As a
result of these variat{ons, matching image by cor-
relating the pixel {ntensity values 1is not effect-
ive in the presence of such large differences as
the partial obscurations that occur in natural
terrain because of varying perspective angles. An
alternate approach must be explored to solve this
prablem. )

This paper deals with the application of
syntactic pattern recognition as it pertains to
scene matching.- The goal of this work is to de-
vise a method for matching a sensed {mage with a
reference image. Because the sensed {mage may not
be contained in the reference image, a probablility
of match must be determined and a threshold select-
ed so that each sensed image can be evaluated in-
dependently.

‘The syntactic approach to pattern recognition
has attracted increasing interest in recent years.
Several texts have been published which present
syntactic recognition fundamentals (1-3). Many
articles dealing with applications to specific
areas have also been presented. Tal and Fu (4)
investigated class inference in relation to con-
text-free programmed grammars for syntactic pattern
recognition. Tsal (5) combined statistics with a
syntactic approach to recognize industrial objects.
Mohr and Masini{ (6) {nvestigated syntactic recogni~
tion as a strategy for scene analysis using know-
ledge directed recognition, Other methods have
also been explored (7-10). :

(0

Syntactic Pattern Anulysis Syutem

We can best understand the syntactic method
proposed here by comparing it with the standard
pattern recognition approach, which consists of
four basic operations, First, an acquired {mage
is input to a sensor, Second, some type of image
preprocessing such as segmentation or image en-
hancement is applied, Third, a set of predeter-
mined statistical features are extracted from the
image. Fourth, regions of the image are classi-
fied based on their statistical properties. This
method is i1llustrated in Figure 1.

tC1
-‘ﬂll-{iuuon }—Flnmllﬁo{ ::::‘:::mHiamnu}uiL

Fig. 1 Standard Pattern Recognition Approuach

The syntactic approach to the pattern re-
cognition problem consists of six distinct sec~
tions:

1, Point classification

2, Graph generation

3. Grammar string formation
4. Match analysis

5, String comparieon

6. Probability of match

These sc¢ctions have been combined to form the

Syntactic Pattern Analysis (SPA) system. The

SPA approach (Figure 2) combines spatial rela-
tionships and scene matching.,

NPV T POINT GRAPH L’ STRING MATCH
TR SICLASSIFICAYIDN OENERATION FORMATION ANALYEIS r—_]
‘ PROBABILITY
BIRING OF OECINON
COMPARIGON MATCH

Fig. 2 Proposed Syntactic Recognition Approach

1. Point Clasgsification

In order to work with point patterns, the
points of interest in an image must be identified
and classified into distinctive classes. The
classification process is two-fold. Firsc, the
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SENSED: * A8

C D*CADD"* D DE*

Ne25 FALSE POSITIVES = § NUMBER OF SAME = 24
Me=30 FALSE NEGATIVES = 1 TRANSFORMATIONS = 0
SNSM_FP_FN_-0S5T, | NS, . (26+¢30-6-1-0 o« (_24, .
PROBABILITY = ( = 1o 1——-—25—'93-64—-9) —5 0.837

Figure 5. String Comparison Probability Computation

because they will noticeably affect match per=-
formance. Flgure 4 demonstrates a scoring
criteria when a false positive is placed in the
sensed image. In this case, S4 would match Ré
and S5 would be disregarded,

REFERENCE SENSED MATCH SCORES
N ABCAC 11 ABCXAC S1 Rt 0909
2) ABED 2] ABED S2 A2 1.000
3 BCE 3l BCE S3 R3 1.000
4 CAE 4) CXE S4 R4 0444
5} ACD 5) XADE §5 R4 0.381%
6l CADD 6) ACDO S6 RS 1.000
N DODE NN CADD S7 R6 1.000
8) DDE S8 R7? 1.000

Figure 4. Match Analysis Scoring Criteria

5. String Comparison

A global match analysis {s performed based on
the local probability of match. The local pro-
abilities are computed for each substring in the
match analysis section to identify cthe best
sensed-to-reference substring match, Only those
probabilities which exceed a realistic threshold
are maintained. This approach is taken inorder to
analytically determine the best overall string
mitch, rather than take the first substring match
found, and is an excellent means of dealing with
the false negatives and false positives encounter-
ed. These false values would otherwise deterior-
ate the global match as 1t progressed through the
substrings. The individual substring probabilit-
ies are evaluated and the best overall match de-
termined. When the global match is complete, the
total number of false negatives, false positives,
and transformations are determined.

6. Probability of Match

ing FLIR imagery was performed.

The probability of match for the sensed
image as it relates to the rcferenced image is
calculated based upon the follow{ng non-normal-~
1zed equation:

N = the number of elements in referenced
limnge

M = the number of elements in seused image

NS = number of elements in the reference
image that were identically wmatched
in the sensed image

FN = the number of false negatives en-
countered

FP = the number of false positives en-

countered

T = the number of element transformations

encountered.

Probability  (N+M~FN-FP-.5T (NS)
of -
Match (N+H) L

The probability of match value is compared
to an experimentally determined threshold and a
decision made whether an exceptable match has
been found. In the case of matching multiple
sensed imagea to & referenced image, the image
with the highest probability would be the beat
match, based on the aforementioned criteria. An
example of a string comparison and 1its probabil-
ity 18 shown in Figure 5.

Classification Experiment

A classificacion experiment to demonstrate
the matching capabilicties of the SPA system us-
A reference



fmige was chosen (Figure 6) and a subimage corres~
ponding to & sensed image (Figure 7) was extracced,
Tha reference image was preprocessed and the fol-
lowing points of interest and associated classes
were generated: :

Point Llocatrion Claas Classification
(203, 14) A clutter
(176, 16) A clutter
(186, 62) c ) clutter
(107, 80) ‘ (o clutter
(226, B84) A clutter
(247, 89) A clutter
(154, 99) B clutter
(154, 111) B clutter
( 27, 164) A clutter
(19, 218) B clutcer
( 23, 255) C clutter
(241, 281) [of clutter
(210, 308) B clutter
(182, 217) T target
(265, 170) H haystack
(154, 194) H haystack

This procesa was repeated for the sensed iwage
ylelding the following point locations and class-
ifications:

Point location Class Classification

(17, 59) A clutter

( 13, 150) C clutter
(231, 126) Cc clutter

( 9. 63) B clutter
(200, 173) B clutter
(172, 62) T target
(144, 39) ] haystack
(255, 15) H haystack

For each classified point pattern, a convex
hull and a two-nearest-neighbor graph were gener-
ated. Figures B and 9 are the symbolic reference
and sensed graphs, respectively. Crammar strings
vere generated [or both graphs and the resulting
match {s indicated below,
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Reference Graph Sensed Gruph Match Scores
1) ABCBCHAAAC 1) ABCBCH S1-R1 0.43
2) ABCTH 2) ABCTH 82-R2 1.00
3) CBT 3) CBT §3-R3 1.00
&) BCT 4) BCT 84~R4 1.00
5) CHT 5) CHT §5-85 1.00
6) HHT 6) HAH S6~R6  0.44
1) ACA
8) AAC
9) AAC
10) CBB

Probability of Match = 0.72

Summary

The syntactic pattern recognition problem
has always been viewed as impractial in appli~
cation, based on the results achievable uaing
a atatigtical approach. In the field of acene
matching, this approach has led to systems which
are incapable of dealing with large changes in
perspective or noise-induced false negatives and
false positives., Additionally, no true means
of dealing with statistical misclassification
have been developed. This has resulted in the
occurrence of g high number of false alarms.

The Syntactic Pattern Analysis system addresses
these problems in an analytical manner and shows
exceptional promise for further work.
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AJSTRACT

A text-recognition algorithm is described
which uses a dictionary to carrect the substitution
errors of a Markov methad. Experiments were con-
ducted with the algorithm on texts of both conven-
tional and unconventional underlying statistical
structure. The letters comprising the texts were
of varying quality: well-written and badly written.
The performance of the algorithm is compared to its
complexity,

I. INTRODUCTION

A common error in OCR (Optical Character
Recognition) application is that of substitution:
a letter being recognized as some other letter,
In text-recognition, substitution error is extreme-
ly undesirable because it causes a spelling error
in the word being recognized, and even a low letter
error-rate can lead to a high word error-rate [5].
Cuite a few researchers (2], [3], (5], (7], (9],
(1), [11], 7], (18] have identified different
kinds of spelling errors and presented techniques
to correct such errors, For OCR application Hanson
et al. [5] used positional bimary N-grams in a
contextual postprocessor and succeeded in reducing
the word error rate substantially for a data base
of 6-letter words. However, the memory required to
store the binary N-grams is fairly large because of
the combinatorfal problem caused by the various
corbinations of positions for which the binary
N-gram are required.

This paper presents an algorithm to correct
some substitution errors in OCR application of text
recognition, It is a hybrid algorithm as it com-
bines the modified Vitebi algorithm (13] with a
dictionary recognition method [1], [4). Thus it
requires that the words to be recognized exist in a
previously compiled dictionary. The hybrid algo-
rithm is described in Section 1l. The algorithm
was experimentally tested on English texts of dif-
ferent statistical structures. The passages of
text were assembled by using handprinted letters of
varying quality. The experiments are described in
Section 1II, The conclusion from the experiments
are given in Section IV,

11. THE PROBLEM OF TEXT RECOGNITION

The text to be recognized consists of the
patterns of the characters. A set of measurements
(called the feature vector) is made on each pattern

«

H3G M8

Let X = XgsXysXpeereaX WX L be a sequence of

such feature-vectors (n»1) which are presented

sequentially to the recognizer. Let XO and Xt

be assocfated with the character 'f*, and X, to
X, with letters A to 2. X, to X thus form a

word in the text. Let P(X|X=Z) denote the prob-
ability of X conditioned on the sequence of
pattern classes A = A]'*Z""'*n'xn+l taking on

the values Z = Zo.Z].ZZ.....Zn.Zn+]. For simplic-

ity in notation, P{X|X=Z) shall be written as
P(X}Z). The probability of recognizing X cor-
rectly is maximized by selecting that sequence
of characters which maximizes the a posteriori
probability P(Z]X) or a monotonic function of it,
say log P(Z|X). By assuming that blanks are per-
fectly recognizable (that is, Z0 *Ia" 'B'),

that the feature-vectors are conditionally in-
dependent, and that letters in a word form a
Markov chain of order 1, it can be shown [13]
that maximizing log P(Z]X) 1s equivalent to
maximizing a{X,Z), where

_ n n+]
g(X,Z) = L log P(X;1Z4) + I log P(Z’IZ‘_]L
=1 =1

In the equation above, P(Xilli) is called the
11kelihood, and P(2,]Z, ;) is called the tran-
sition probability (the probability of Z1
occurring to the immediate right of 7, | in text).
Let g(X,Z) be called the score of the word Z.
Computing the scores of the 26" possible words,

requires 2n x 26" additions, which is about 48.3
million additions for an average word length of
4.74 {14], This is considered to be too high a
complexity. One_way to reduce this complexityis
to maximize g{X,Z) approximately; that is maxi-
mize g(X,Z) over only a selected subset of the

26" possible words. Different text recognition
algorithms may use different criteria in
selecting this subset.

Four such algorithms were compared on their
performance and complexity [12]. These four
algorithms were Noncontextual, Heuristic approx-
imation, Modified viterbi, and Uniform Pruning.
1t was concluded that for its complexity, the
Modified Viterbi Algorithms (MVA) gave the best
performance. Thus for the experiments fn this
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paper, 1t was decided to combine the MVA with a

Dictionary Algorithm (DA), see (1], [2], (4], [18].

The MVA has been completely described in [3].
Informally, it

So it is not being described here.
consists of d 21 alternatives (d is a heuristic)
being selected as candidates for each X{ in the
n-letter word.

of Xi
are pruned from consideration.

are retained,

the dictionary. The MVA and DA were combined in
{14] too, but here a further change was made. It

wis observed that the output from the MVA suffered
So the strings output

from errors of substitution,
by the MVA are searched for in the dictionary to
find the best match.
algorithm in now described below:

Algorithm E(Error Correcting Hybrid Algorithm )
El1. Recognize the input pattern sequence X by the

MJ/A.  The MVA outputs d (d>1) n-letter strings S].

Sye-«+4Sq such that S (1<icd) 1s the 1-'" most

likely string into which X can be recognized.
{Corment: The value of d is a heuristic and 1s
predecided by the user. Some typical values of d
ringe from 2 to S5, see [13].}

£2. Perform Steps E3 through E4 for i=1,2,....d.

£3. Search Si in dictionary.

ful recognize X as §; and terminate.

E4. Check the dictionary to see if there are words
If such

LI IR {m21) which are similar to Si'

words are found, recognize X as HJ {1<j<m) such
that w, is the most simile and then
termindte. {Conment: The measure of similarity
between tw0 words is well-described by Hull and
Dowling [6]. The criterion chosen for the
similiarity measure depends on the user. - The
criterion chosen for the experiments described in

this paper is very simple: Two n-letter words are

similar to each other if they differ from each

other by exactly ) letter; e.g. DUM8 and DUNB. If
Wy aNpe.. oW are similar to Si' then w. (lsjsm) is

the most similar to S1

of w, in text > probability of occurrence of Wi in

With this similarity measure,
"it was found desirable to skip this step for words

text for lsksm, k#j.

of length 2 or less, for intuitively obvious
reasons.}

€5. Maximize g(X,Z) over the n-letter words in the

dictionary; that is, recognize X as a word V if
g{X,7) is maximum for Z=Y. Then terminate.

{Comment: Note this step called the dictionary
algorithm(DA). It {s executed only if steps E3
and E4
d n-letter strings output by the MVA.}.

Thus the above algorithm combines the MVA

A path s then traced through the d
by n trellfs such that at each LN only the d most

Tikely letter strings ending with the d alternatives
Thus unlikely letter strings

In the DA based on
(1], 9(X,I) s maximized over the n-letter words in

Thus it corrects errors. The

If search is success-

if probability of occurrence

above failed in recognizing X for all the

- possible,
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(Step E1) with a DA (step E5). Let V(n,d) be
the complexity of the MVA for a word sfize of n
lettersand d alternatives, and let D(n) be the
corresponding complexity of DA. The mathematical
models of V(n,d) and D(n) are given by Shinghal
and Toussaint [14], and so they are not being
reproduced here. The mathematical models show
that 0{n) > > V(n,d). The magnttude of D{n)
fncreases rapidly with increasing size of
dictionary. It should be noted that whereas the
MVA is executed for all words in the text, the
DA 1s executed for only a fraction B of the
words in the text, So the complexity of the
hybrid algorithm can be written as V(n,d)+ 8 D{n).
The value of B is observed experimentally. To
reduce the compixity of the hybrid algorithm, {t
{s desirable to have the value of B as low as

It should be noted that the lower s
8, the fewer are the words in text for which the
DA 1s invoked.

A set of experiments in text-recognition
were simulated to observe the performance of the
hybrid algorithm. The experiments are described
in the following section.

I11. THE TEXT RECOGNITION EXPERIMENTS

To conduct the experiments, it was nec-
essary to assemble English language passages to
be used as texts for recognition. In this
section the assembling of the passages is des-
cribed first, and then the experiments.

The letters chosen to constitute the
passages were taken from Munson's [8] data-set,
which contains letters handprinted by 49 writers.
The patterns were size-normalized (15] on a 24
by 24 grid G, such that (;1_1 (1-th row and j-th

column of G) 1s equal to 1 for a dark point, and
it is equal to 0 for a white point. From each
pattern, a feature vector (x',xz.xa.....x“)

was extracted, such that

j=a+3 J=b+3
X - I I G »
L

where
a = %1, and b = 4((k-1)mod 6)41,

for 1 < k < 36. In the notes accompanying his
data-set, Munson identifies two of his writers:
one whose letters are "among the cleanest"; the
other, "amona the most difficult". These two
writers shall be respectively called the good
and bad writers. It was decided to use the
letters written by these two writers as two
separate testing sets for the experiments in this
paper. This was done to compare the performance
of Algorithm E on both well-written and badly
written letters, The data-set was then split to
exclude the two testing sets, and the recoanizer
was trained on the remaining letters,

Next, two English passages were assembled
to serve as texts to be recognized. The
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passages contained the occurrence of only 27
characters: ¥{blank) and the 26 letters from A to Z
(211 other symbols having been deleted). There was
one blank between any two words of a passage. The
first passage called the conventional passage
comprised 255 words (1096 letters) and was arbi-
trarfly chosen from a newsmagazine. The second
passage called the unconventional passage comprised
255 words (1093 letters) and was chosen from
Wright's Gadsby 19 ]. Although the most frequent-
1y occurring letter in commonly found English text
is the letter £ (16] Gadsby is a story of over
50,000 words without a single occurrence of that
letter., With the aid of the Chi-square test,
Siddiqui [15) has shown that the statistical dis-
tribution of letters in the unconventional passage
is significantly different from the distribution of
letters in commonly found English text. The
objective behind selecting the two passages of
these natures was to compare the performance of
Algorithm E on these passages, when however the
statistical information used by the algorithm had
been extimated from a corpora of commonly found
English text. Thus the passages assembled were
these: the conventional and the unconventional
passages using the letters written by the good
writer, and the same two passages using the letters
written by the bad writer.

Three experiments {one each with the MVA, the
DA, and the other with Algorithm E) were conducted,
using the assembled passages as texts to be rec-
ognized. The experiments are described below. The
recognition rates observed from the experiments are
given in Table 1. The values of 8 observed for the
Algorithm E experiment are given in Table 2.

EXPERIMENT 1: MVA

The experiment was conducted for d=2,3,4 and
S. Table 1 shows that the recognition rates are
generally the highest at d=3. For values of d
greater than 3, the change in recognition rates is
nominal, 1f at all, This holds true for both the
good and the bad writer.

EXPERIMENT 2: DA

Tebles 1 shows that the DA gives
wuch higher recognition rates than the MVA., The
hignest recognition rates are 99.91% (letters) and
99.612 (words) for the conventional passage written
by the good writer. The lowest recognition rates
are 96.07% {letters) and 92.55% (words) for the
unconventional passage written by the bad writer,

EXPERIMENT 3: Algorithm £

Algorithm £ was conducted for d=2,3,4, and §.
Table 1 shows that recognition rates stabilize at
d=3. For values of d greater than 3, the change in
recognition rates is nominal, if at all., However,
the recognition rates of Algorithm E are only
warginally different frum those of the DA. Table
2 shows that as d increases, the value of 8
decreases. For the good writer, the value of B at
a=5 is less than 0.07; for the bad writer it is
less than 0.19. As pointed out at the bottom of
Section Il, it is desirable to have low B, becuase
the lower is the value of 8, the lower is the
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complexity of Algorithm E.

Compared to the MVA,

Algorithm E displays much better recognition
rates, for a given passage and writer,

NOW IF THROUGHOUT CHILDHOOD A BRAIN HAS HO OPPOSITION ...

INPUT SEQUENCE:

HOW HE THROUGHOUT CHILDHOOD A BRAIN HAS MO OPPOSITION ...

QUTPUT SEQUENCE:

Figunre 1. The necognized cutput fonr a specimen {input sfring



TABLE 1

PERCENTAGE RECOGNITION RATE FUR PASSAGES

Unconventional Passage Conventional Passage
Good Writer Bad Writer Good Writer Bad Writer
Method Used Letter Word Letter Word Letter Word Letter Word
and Recog. Recog. Recog. Recog Recog. Recog Recog. Recog.
Value of d Rate Rate Rate Rate Rate Rate Rate Rate
MVA d=2 | 80.97 47.06 72.64 34,12 84.40 52.94 75.55 36.08
° d=3 ] 86.00 58,04 72.00 33.33 87.23 60.78 76.46 36.86
- d=4 ® " 72.28 34,12 " * 76.83 38.04
» d = 5 - - “ " o " n o
Algorithm€ d=2 | 96.98 90.98 95.88 89.80 96.44 91,37 95.7M 87.45
- d=3 | 97.44 93.33 95.97 87.84 96.72 93.33 94.80 86.67
ded ” . 95.88 87.84 97.08 oo 95.26 87.84
® d=5 ® " " " " " 94.98 87.45
Dictionary 98.17 96.86 96.07 92,55 99.91 99,61 97.81 93.33
Method
TABLE 2
VALUE OF B OBSERVED FOR ALGORITHM £
Unconventional Conventional
Vatue of Passage Passage
d
used. Good Writer Bad Writer Good Writer Bad Writer
2 0.1686 0.2318 0.1012 0.2196
3 0.0824 0.2078 0.0628 0.1765
4 0.0706 ! 0.1804 0.0471 0.1726
L) 0.0667 0.1804 0.0471 0.1686
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Iv. CONCLUDING REMARKS

It is seen that Algorithm € has a complexity
very much lower than the dictionary algorithm,
although their performance is nearly the same for
both the good and the bad writer and for both the
conventional and the unconventional passages
written by them. For a given passage, the recog-
nition-rates for the good writer are observed to be
higher thanforthe badwriter. The values of 8 are
consistently lower for the good writer than for
the bad writer. Thus the complexity of Algorithm
E is lower for the good writer than for the bad
writer. Munson has commented that the human recog-
nition rate of the characters in his database is
from 0.52 to 5.0%. This compares well to the
recognition rate of Algorithm E.
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ABSTRACT

This paper presents a framework for the

recognition of repetitive time varying
sfgnals such as electrocardiograma using
an expert system approach., A systenm

called CAA (Causal Arrhythmia Analyzer) 1is
being developed to realize this framework.
The “Ah system includes:
a) A stratified knowledge
description of the
knovledxs of electrophysiology
heart as well &8s the . o
kKngwledge of morphology of
{rnputs, where physiological
projected into the observable wave~shape
domain of EZGs. We use =a frame-basged
2enantic nelvwork with the use 0% explioit
<ral knowledge to describe causative
teaporal relations among underlying events
that emit observable aignals like ECGs,
angd
b} A control astructure for the recognition
0f repetitive time varying signals, which
uses causal knowledge to check ocausal
integrity among temporal knowledge units
(L.2., evaats) and also to expegt and
con’irm unseen events. This control
structure also utilizes similarity links
and other organizational primitives such
as J3-3 and part-92 hierarchies for {ts
attention wmechanism 4inherited from the
previously developed ALVEN (4 Left
VENtricle ¥all Mction Analysis) system
{Tsotsos 1980). The CAA system 4is being
implemsnted using a version of PSN
(Procedural Semantic Networks), [
knowledge representation language that has
been developed at the university of
Toronto [Levesque & Mylopoulos 1979].

base for the

svent
the
Shape
ECG wave
events are

in

1.0 INTRODUCTION

T"he main objective of this study is
establish a

to
‘ramework for the recognition
07 time varying signals of a complex
repetitive nature, svch as
electrocardiograma, using a knowledge
engineering approcach. To this end, an
expaert system called CAA (Causal
Ar-hythmia Analyzer) is being developed to
diagnose rhythm disorders (usually called
arrnythmias) in slectrocardiographioc

n

monitoring. We have chosen the arrhythmia

analysis problem because It is a domain
rich in temporal and causal
interrelationships. The arrhythoia
recognition problenm itself deserves

attention because the overall performance
of exi{sting ECG programs is at most 80¢%
reliable for abnormal ECGs despite efforts
since the late 1950's [Hagan 197§]). We
believe that a basic reason for this
unreliability is that current systems lack
underlying event knowledge to handle the
complexity inherent in cardiac rhythms,

To diagnose rhythm disorders of the
heart, the events 1in the underlying
cardiac conduction system must be exactly
determined from one or wmore streams of
observed bodysurface ECG signals [general
reference, Sharmroth 1976]. The final
objective of arrhythmia interpretation,
therefore, becomes the recognition of the
physiological and pathological status of
the cardiao conduction system, given one
or more surface ECG traoings. To
accomplish this, unlike other exiating or
proposed ECG systems, our system utilizes
knowledge of the «causal structure of
underlying physiclogical events in the
heart (what we call TMunderlying event
knowledge"). Based on this knowledge, the
system tries to determine the most likely

set (or sets) of underlying events that
explain the input wave signals. For this
purpose, the system introduces and uses

causal links extensively in the underlying
event knowledge base where various ocausal
relations and temporal oconstraints are
represented.

The causal 1inks in the CAA system play
an essential role in ocharacterizing a
complex event concept aggregated from
other more basic (component) concepts by
giving causal and temporal relationships
anong the component events. Hence, their
role is analogous toc that of structural
descriptions in a ocomposite structure
concept 4in the spatial domain, which
relate the component objects making up the
whole structure, Thus, using oausal links
in an event recognition problem, an
aggregated event can be recognized not
only by its component events, but also by
taking into oconsideration the 4integrity
conditions {mplied by the causal relations
that the ocompocnent events partioipate in.



There®ore, this study pursues (1) an
adequate representation for causal
knowledge, and also (2) a method whiach
effectively uses causality during the
recognition process. More specifically,
our goal is to investigate the
representation of causalities in a righ
temporal domain and to determine a control
structure that uses ocausal and temporal
knowledge in an integrated fashioa for the
expectation and the confirmation of
foregoing or following unseen events in
time.

Our representational approach to the
above goal 1is to conatruat a stratified
knowledge base that contains knowledge
about the waveloras of surface ECG
signals, the physiology of the heart that
explains abnormalities in events and
causalities, and the relationships that
may exist between surface ECG signals and
abnormalities in the heart, A frame-based
semantic network representation is used to
describe the CAA knowledge base. The KB
evolved from the previously developed
ALVEN system.

As for the control structure, ALVEN's
basic¢c control structure is also used and
extended to include the mechanisas which
facilitate; (1) the projection from
underlying events to observable shapes and
vice versa, (2) the expectation and the
¢confirmation of unseen events from known
events wusing osusal 1links, and (3) the
recognition of repetitive event sequencep
with beat-to-beat relationships.

From the Al viewpoint, therefore, the
CAA system is considered as an empirical
seaantic network system for event sequence
recognition, which includes (1) the
explicit description and use of causative
temporal knowledge, and (2) the use of a
stratified knowledge base structure with
inter~related distinot KBs.

A prototype CAA systenm is being
implemented using a versien o® P3SN
(Procedural Semantic Networks), a
knowledge representation language that has
been developed at the University of

Toronto [Levesque & Mylopoulos 1979),
PSN/2 (PSN level 2) now fncludes
similarlity links and IS~A/PART-OF

hierarchies in addition to the basic
primitives such as classes, metaclasses,
relations, functions, and programs
[Schneider 1978}, [Kramer 1980]).

2. Zhe Domain of Electrogcardiology
Abnormalities in heart function can be

viewed as characteristic deviations 1in
observable variables such as blood

pressure curves and electrocardiogranms
{ECGs). The ECGC 1s the record of
varistions in electrical potential
generated bYy the heart muscle and

projected onto the bodysurface.
“he ECG tracing i3 typically composed
0o? a series of waves designated as the P,

Q, R, 5, and T waves, and a series of
Segments and intervals between these
Wwaves, The Q, R and S waves are often
referred to a»s a group and oalled the QRS
complex, Fig-1 shows a typical standard
series of waves for one cycle of heart
beat,

egment T
T
v P-R S:L....._ SUSVEN
1nterval interval
K Q-T interval Z

Fig-1 Typicsl ECO Tracing for One Cardiag
Cycle ‘

The underlying physiological origin of
the ECG 4is the cardiac oconduotion system
that consists of the sinocatrial (S-A)
node, the atria, the atrioventriocular
(A-V) node, the bundle of His, the right
and the left bundle branches and the
ventricular muscle, where the oyelig
pacemaking impulse normally originates in
the S-A node and ends up at the ventrioles
as seen in Fig-2,

Atrial muscle

Bundle of His

(right § left)
Bundle Branches

A-V node

Ventricular

7. Muscle
NORMAL CONDUCTION SEQUENCE
S~A_nsad<;=?mri_a qA. -V _node Ventricles
) 174 U

Bundle of is™ Bundle Branches

.Fig~2 The Cardiac Conduction Systeam

The P 'wave and the QRS complex

represent the depolarization phases (i.g..
the initiation of muscular contraction) of
heart muscle «cells 1in the atria and the
ventricles, respectively, while the T wave
represents the rgpolarization phase (i.g.,



the recovery ol the cell to i{ts resting
state) 1in the ventricles. No electrical
expression 13 usually seen from. the
bodysurface Tor the activities of the S-A
node, the A-Y node, the bundle of His and
the bundle branches.

Arrhythmiss (disorders of the cardiac
conduction sequence or rhythm of cardiac
events) are caused by 1irregularities in
ispulse formation or oconduction in the
cardiac conduction system. The difficulty
in the computerized detection and
elucidation of most arrhythmias in ECQOs
lies basically in the wave identi®ication
problen,

Some major
recognition
follows,
(1) some kindas of signal shapes are not
always {dentifjiable due to low amplitude,
overlapping, defcrmation, nolse, eta.,
f1.2., the shape ({tself of a wave 13 not
3ufficient to {dentify {t, rather the
context among other waves is important,
(2) shape abnormalities and event
abnormalities do not uniquely correspond
with each other, rather they represent a
nany to many wmapping across the two
domains, and
(3) time varying repetitive behaviors of
the model auch as progressive shortening
0% event durations must be accounted for
in an extended temporal context,

As will be seen, the first 13 handled
by the wuse of expectation process about
event locations that relies on causal
links between events; the segmentation of
the osystem's knovledge base 1into the
underlying event KB and the observable
wave-shape KB alleviates the: second
sapping problen; the recursive oclass
de?initions with causal links address the
third complication.

3. REPRESENTATION QF XNQWLEDGE
3.1 Zypes of Domaig Knowledge

To represent the dlagnostic knowledge
o electrocardiography, several distinct
types of domain knowledge can be
discerned: ’
a) knowledge about the physiology that
explains aboarmalities in the heart
(underlying event knowledge),
b) knowledge about the form of surface ECG
signals (observable shape knowledge), and
¢) knowledge about human and machine
tnterventions such as additional
measureamenta and drug administration
(strategio knowledge).
Qur representaticonal approach to the
problem ©07 building such a system as CAA
ts to conatruct a stratified knowledge
base which contains an independent KB for
each type of domaln knowledge, with the

complications of our
problem wmay be listed as

relationships between concepts across
different KBs.

Among the KBs in such a osystenm, the
physlological KB is particularly

noteworthy since any abnormality in the
heart must be explained as a causal
phenosenon at the level of the cardiac
conduction system, although most of the
conduction system's behavior is not
observable in the ECG. This physiological
KB plays the role of describing not only
normal and abnormsl events in the heart,
(eaoh of which represents the aotivity of
a specific part of the heart), but also
the interrelationships among those events
such as causal dependencies and temporal
constraints. Examining the features of
the physiological KB, two causal aspects
of the proposed system have been found to
be of importance: .

(1) the representation of causal 1links
among events to naturally represent
complex causal interrelationships among
physiological events, and

(2) the estimation of non-observable event
parameters such as locations and durations
by using the context in whioh they can be
related to observable event parameters
through causal links.

3.2 Elements of the Representation

The representation used 4in the CAA
system 1is a frame-based semantic network
representation. Thus, the knowledge units
defined in frames are called glasses and
used to abstract various concepts at each
knowledge domain, g.g., glass CELL-CYCLE
of each portion of the heart muscls,
BEATing, and class BEAT-PATTERN of
consecutive heart beats,

Each instantiation of the above «c¢lass
concepts generates a glass-token or simply
token; thus, a tcken ‘"normal-beat of
John" is an instance of the class
NORMAL-BEAT.

The above instance-of relation is
extended to a relation between a oclass and
a = . For example, any
statistical data about class BEAT 1itaself
cannot be the attributes of any specific
beat instance. This i3 a rather important
distinction ¢that most medical expert
system do not make: ‘statistical
information, so commonly used in medical
disgnosis aystems, should be represented
as attributes of the class rather than of
instances of the olass. Furthermore, this
separation can be viewed as a default
mechanism, In disease oclasses for which
insufficlient 4information {is known to
diagnose them categorically [Szolovitz &
Pauker 1978), statistical information are
usually contained either in the definition
of the class, or wWith respecat to a
particular patient case. In such ocases,
however, metaclasses may be defined and
used as the default reasoning mechanism.

A class-frame consists of three kinds
of descriptors: the component descriptor,
the organizational descriptor, and the
link descriptor, The component descriptor
is made up of slotas filled with ocomponent
{(part) classes. The organizational

7}



descriptor 1inc¢ludes jf3-a and
phrases, which indicate the corresponding
parental concepts in these respective
organizational relations. The link
descriptor 1includes two types of 1link
i{nTormation: links and g¢ausal
1inks. Similarity 1links are associated
with <coamponent classes and used as an aid
in activating alternative parallel
hypotheses when exceptions ocour in the

inatance-gof

recognition 0f these components (Tsotsos
1981].
3.3 Representation of Cauaal Links

Rieger's CSA (Common Sense Algorithm)
system (Rieger and Grinsberg 1976 & 1977}
and Patil's ABEL system [Patil et al 1981)
are perhaps the best examples of current
causal representations. Rieger and
Grinsberg introduced several types of
causal links for the Mechanism Lab in the

Common Sense Algorithm system, and also
distinguished two types of causal flows:
gontinuous cavaality and gneshot

cayusality. Although their syntactic event
classi®ication is not applicable toc our
system, we adopted the ideas of continuous
and oneshot causal flows, and the idea of
gaving gonditiona. Patil and others

introduced a multi{i-~level causal network to

explain aggregated structures in diseases
such as diarrhea. Although the ABEL
system explains the aggregating process

’rom Dbasic physiological causal links to

more global causal links between disorder
events within one disease, it does not
seen to provide the causal links

classi®ied by the types of influenoe and
temporality. These latter concepts are
essential to describe time varying
phenomena as seen in the electrophysiology

of the cardlac conduction system.

3.3.' Features in a Causal Link

e regard a causal link as a

representation of causality in which we
may observe some flov of influence between
tuvo distinguishable events. We @may
characterize a8 causal link at least by the
following two features:
(1) the exjistential dependency of an
e®®”ect event on its cause event(s), f{.e.,
the feature that no effect events can
exist or happen without cause events, and
(2) the temporal constrainty between the
cause events and the effect events, f.e.,
the feature that the former must preceed
the latter in time, with a possible delay
time interval.

Wa should be aware that while a
link implicitly includaes a
constraint, the existence of a temporal
constraint does not necessarily mean a
cause-e®fect relationship between two
events, but it may strongly suggest the
existence o a certain underlying chain of
causal links,

As well as temporal constraints, there

could be other associated conatrainty with

causal
temporal

a4 cauzal link, Most
of this Ikind
any state

temperature,
the boundary time
consecutive events.

typical oaconstraints
are boundary conditions on
desoribing variable such a»

pressure or the potential at
point between two

3.3.2 Types of Causal Links

Caupsal 1links of the CAA system are

classified acocording to (1) types of
influenoce, and (2) types of temporal
oconstraints. The type of influence of a

causal link must be defined by the role of
the 1link, the type of dependency, and the
roles of partloipating events suoh as
cause, effeot, and ocondition. The type of
temporal constraints in a causal 1link |is

usually understood implicitly from the
meaning of the 1link, which 1implies the
temporal relationships between the
participating eventa in the link. In
addition, assoclated constraints on atate
variables may be attaohed to these ocausal
links.

Some useful one~shot type causal links
in CAA are the following:
(1) TRANSFER, TRANSITION -~ ocausal links

which describe state (or phase) change
from the preceeding event to the following
event 1in time involving a single subjeat;
TRANSFER indicates the subject normally
completes the preceeding state (event) and
changes into the following ostate; and
TRANSITION means the subject is forced to
terminate the current state and transition
into a new state.

(2) INITIATION, INTERRUPT -~ causal links
in which a causative event of one pubjeot
init{ates or interrupts an effect event of

another subJeot; In INITIATION, a
causative starting (or ending) event of
one subjeot triggers a new event of
another subject, and {n INTERRUPT, a

causative event of one subject interrupts
(and forces to terminate) an event of
another subjeot and make it transition to
a new state.

Note that since the above ocausal 1links
are one-shot type, the causal flow ooours
only once at the starting (or ending) time
of the causative event to ocease/start the
other events.

bomain Knowledge

The first example i3 a portion of the
1S-A hierarchy from the wave-shape KB of
CAA, to show how a generio (ahape) oconcept
can be apecialized into a specific concept
along this hierarchy.

3.4 Examples ef






1399 SAN_MATURE_PORWARD_CELL_CYCLE
¥ith
couponeants
depolarization:
SAN_MATURE_DEPOL_CELL_PHASE;
under~-repolarization:
SAN_MATURE_UNDER_REP_CELL_PHASE;
partial-repolarization:
SAN_MATURE_PART_REP_CELL_PHASE;
complete~-repolarization:
SAN_MATURE_COMP_REP_CELL_PHASE;
causal=links
transfer-"rom-depol-to-repol:
ending-event: depolarization;
starting-event: under-repolarization;

TRANSFER

transfer-rom-under~repol~to-part-repol:
TRANSFER

/% similar to the above %/
transfer-"rom-part-repol-to-comp~repol:
TRANSFER

/®* similar to the above ®/;;

end

In the above
subject (SAN:
state “rom one
TRANSFER links.

The above
CELL_CYCLE

causal 1links, a single
S-A node) is changing 1its
phase to another using

definition also shows a
consists o four kinds of
CELL_PHASEs: a depolarization cell-phase,
an under repolization cell-phase, a
partial repolarization cell-phase, and a
complete repolization cell-phase.

.0 CONTROL STRATEGY ggg RECOGNITION

Based on the ALVEN's control structure
in general, the control structure of the
TAAL system has been extended and developed
for three purposes:

{1) to explolt causal
events,

(2) to provide means of
acroass distinct KBs, and
(3) to recognize repetitive
sequences and to detect beat to
relationships.

8.1 Expectation and Confirmation through
fagsal Links

The task we

knowledge about

communication

event
beat

are considering is the
recognition of complex time-varying
events. The role of causal relationships
in such events is to provide local context
for their components or constituents,
1.2.. it 1is to produce expectatjions of the
properties of this aggregated event
backward or forward in time. The system ,
therefore, must look ahead or look back
for these causally linked component
events, starting with one or more
already-identified component events.,
Thus, causal links are used to locate the
tezporal positions of Mto-~be-observed"
events. That is to say, 17 there are
events that are causally linked, we can

generate the aroehabhle logaticqa of
intermediate and terminal oomponent eventsa

by looking: forward or baokward through
causal links from the locations of known
events,

In the above prooeass
oomponent events sometimes,
not observable as waveforms in the input
strean. In suoh a oase, the system will
supply these non~observable variablas
(such as event durations) with
appropriately estimated values using the
local oontext of the wevent. For this
purpose, the statiastical standard values
msust be defined through the metaclass of
each (oomponent) event. Sinoe the
metaclass defines the properties of the
class concept itself suoh as statistioal

the linked
however, are

and default values, the system refers to
this kind of metaclass knowledge when {t
faoces lack of information in the
recognition process.

On the other hand, the temporal
locations and the shapes of the expeoted
events must be confirmed if these events

observable counterparts in the shape
domain. This is the confimation pRrogeas
from the event domain to the =shape
(si1gnal) domain.

have

4.2 Regognition Steps -

Signal recognition starts with ploking
up some prominent shapes in an input
signal stream, whioh we name panchoring
shapes. Anchoring shapes can be easily
found in our ECG domain by finding the
steepest slopes in the signal, namely QRS
complexes. In general, the anchoring
shapes for a specific signal recognition
problem must be classified and described.
For this purpose, we have defined the
wave-shape KB which contains various
morphologies of 4input waveforms together
with their appropriate components and
generalizations,. As seen in the first
example of section 3.3, the wave-shape KB
defines class MAJOR_SHAPE as the anchoring

Inttial Stage

shape; thus, it becomes the IS-A parent
class of shape class QRST_LIKE_SHAPE and
the IS-A ancestar olass of olass

In this fashion,
knowledge olasses
PART-OF and IS-~A

WIDE_BIZARRE_QRS_SHAPE,
in the wave-shape KB,
are organized via the
relations.

We will examine
recognition in
following steps.

this
the

the
more

prooess of
detail in

-Initial Shape Analysis

When a3 series of osilgnal tokens are
given to the reocognition system, the
systeam first tries to find an anchoring
shape to astart the recognition with.
Suppose we have chosen QRST_LIKE_SHAPE for
the anchoring shape. As the firat step,
the syatem picks up a certain starting set
of signal tokens. Gradually posing
constraints to the generic QRST_LIKE_SHAPE

7€






clasy SLOW_BEAT_REPETITION
i3-a SLOW_BEAT_CYCLES
with
componenta
first-beat: SLOW_BEAT;
successive-beat: SLOW_BEAT_CYCLES;

eng

€laga SLOW_BEAT_REPETITION_UNIT
13-a SLOW_BEAT_CYCLES
wish

first-beat:

end

SLOW_BEAT;

Once beat patterns have been defined in
the above fashion, the recognition starts
with one of the beat hypotheses
established at the previous initiation
stage. Examining this first hypothesis,
the syatenm hypothesizes several beat
pattern classes that possess the same beat

class 1in their definitions, While the
system recursively generates successive
beat classes, the recognition proceeds one
beat to another along the time axis
repeating the expectation and the
con®irmation processes. In this
recognition, similarity links are

essential in the sense that the similarity
links between repetitive beat patterns
enable the hypothesis competition and
cooperation mechanism to work along with
the progress ol time, Also, the causal
links between consecutive BEAT classes

enable the system to verify the causal
relationships among corresponding
components on a beat-to-beat basis and

also estimate the periodicity of a series
07 beats a3 the whole. :

The ®inal arrhythaia interpretation
hypatheses will be determined a3 those
beat patterns that passed the criterion on
the overall matching scores calculated in
the adbove process.

5.0 CONCLUSIONS

) The basic design of the CAA system
- been completed and its fmplementation {is
underway using the PSN/2 language, We
have shown that the inclusion of causal
links in a frame-based semantic network,
along with the organizational primitives
IS«-A and PART-OF, has allowed us to tackle
the problem o7 reconstructing c¢omplex
electrophysiological event sequences froa
grass signal characteristics. This is
accomplished by defining the semantics of
causality and noting that it is these
semantics that can be used for the
generation of ~ expected signal
characteristics and other assocliated
events. More generally, the inclusion of
causal knowledge provides a context for
the recognition and reconstruction of
complex event sequences.

has
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Abstract

A Xkinematic chain with redundant degrees of
freedom and joint limits is to be adjusted to
bring its distal end to a specified position, For
example, the distal end of a human arm or robot
manipulator 1Is to be positioned. An algorithm
vhich uses perfect descriptions of reach,
(workspaces), 1is presented, and shown to be
correct. The constraint that the reach
descriptions be perfect is thean relaxed, and the
algorithm 1s geen to work for a certain class of
conservative approximations.

1. Introduction

A chain ia & sequence of rigid links, connected by
Joints. One end of a chain 1s designated the
proximal end. The proximal end of the proximal
link 18 connected, by a joint, to a reference link
fixed in a world coordinate system. The pedestal
of a manipulator {is an example of a reference
lieke. The other end of the chain, called the
distal! end, 13 free to move 1in space. In this
paper we consider the problem of positioning the
distal end of a chatn, Cht.

One application (s 1in graphic wmodelling and
evaluatioa of human environments, such as
wvorkstations or cockpits. A similar problenm
arises in the control of robot manipulators. In
this case, however, the problem 1s usually to
achieve a spoclfied position and orfentation for
the distal link. Human beings and other chordates
maust alsa solve thia problem repeatedly in thefr
normal activities.

The deygrues of freedom of a chain correspond to au
sct of Independent varlubles describing the ranges
of wotlon permitted by the jointa. The range of
vilues which may be taken on by each Joint
varfable 13 usually limited. “Allowable" values
for joint varfables and "allowable” conflgurations
are those which do not violate these limits.
Iadependence of joint variables lmplies that the
joint limits for one varisble do not depend on the
value of any other.

part by NSF grant
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Definftion: The workspace of a chain, Chi, la the
set of all points In space which may be reached by
the diastal end.

The dimensionality of the workspace depends on tha
number of joint variables of the chain, and the
relationship between succesive joints. 1f Chi has
n degrees of freedom, its workspace is an object
with dimensionality no greater than n. When the
number of degreecs of freedom 1s the sama as the
dimensionality of the workspace, the chain 1is
non-redundant.

1n the non-redundant case, there are only a small

nuaber of configurations of the chain which will
position the diastal terminal at any point in the
workspace. For a particular point, these

configurations msy be obtained by solving a systen
of n equations in n unknowns*, (n<=3), or by
applicatfon of fundamental geometric principles
(7.,8]. Since the algebraic and geometric
procedures for obtaining values for Joint
variables do not account for joint limits, it may
be neceasary to discard configurations which are
not allowable. By definition, the workspace |{s
the set of points which can be reached by at least
one allowable configuration.

If the number of degrees of freedom of a chain 1is
greater than the dimenaionality of its workspace,
the chain is redundant. This ia always the case
when there are more than three degrees of frecdom,
since the workspace 18 confined to physical space.
A redundant chain may reach most pointe in {te
workspace with any of an uncountable number of
configuratfons. This is easy to see, since a
small adjustment to one joint variable may usually
be compensated for by the others.

practical interest for
rcasons. External constraints, such ae
the avoldance of obstacles, may disallow tho fow
configurations in  which [} non~redundant
manipulator can reach a particular pofnt. Also,
redundancy allows for a small change to be mada in
the positon of the distal terminal by comparably
small changes in the chain degrees of freedom.
Thia is not necessarily the case for a

Redundant chains are of

several

* Typically, the equations relate the coordinates
of the distal end with the joint variables, which
are unknown.



noa~redundant chain with joint limits.

I1. Configuring Redundant Chains

Civen & chain with n degrees of freedom and fts
initial configuration, what adjustments should be
made to each degree of freedom In order to
poaition the distal end 1in a specified goal
position?

There are three equality constraints on this
system, arising from the triple of coordinates
used to define the goal position. If n, the

nuaber of degrees of freedom of
ie greater than three,
underconstrained.

the manipulator,
the system is

One approach to this problem is to attempt to find
a solution using only three of the n degrees of

freedoa. A generalization of this approach,
suggestad by Whitney {18) 1is to manufacture n-3
additional equality constraints, to obtain a
perfectly constrained system. Por example, the

position of one joint, relative to another, might
be specified. However, the {mposition of
permanent constraints limits the capabilities of
the manipulator, essentially defeating the purpose

of redundancy.

Another method is to {introduce an optimization
criterfon, and to tformulate the problemn as a
constrained optimization problem (1,57, This
probles has three non-linear equality constraints
and 2n linear inequality constraints, arising from
upper and lower limits on each of the n degrees of
freedom. 1f joint-limit constraints are ignored,
ft {s possible to attack the problem with the
method of Lagrange Multipliers (18). This method
proddcen a perfectly constrained system of
equations, which, {n general, must be solved
numerically. It 1is then necessary to guarantee
that the fterative proceess converges to a position
satisfying the joint limit constraints. One
possible method of doing this s by using a
penalty function, which increases the value of the

objective function as Joint varifable values
‘approach their limit [4].

We propose a different approach, which uses
tnformation about the workspace of the: chain and
some of {ta subchains. It will be assuwmed
inftially that perfect descriptions of these
workspaces are available. The {mplicatfons of
using less than perfect descriptions will be

examined subscquently.

111, An Algorithm for Ad justing Redundant Chains

Let wus fmpose a linear ordering on the joint
variables of the manipulator, and label them q[1]
through q{nl. For wimplicity, let us suppose that
. each joint has one degree of freedom, and number
them from the wmost proximal, to the most distal.
In this case ve can label each joint i with the
name of 1its Jjoint  variable, qli]. For
consistency, we label the distal terminal qfi+l].

)

An exumple {s shown {n figure 1I.

% a,
i
Chi,,
43
9
o Oﬁa
Chiz
Chi;
Figure 1
We will call the <chain Chif{l). The distal

subchain beginning with joint q[2], and extending
to the distal end is called Chi{2]. The next one,

beginning at ql3], 1s Chi[3], etc., up to the
degenerate distal subchain Chi[n+l) with =zero
degreee of freedom. The workspace of each chain

Chiln] 1a called W[n].

Algorithm Reach

1, If the pgoal point is not in the workspace of
the chain, W[l], then halt {mmediately and
report fallure.

2., Otherwise, adjust the first joint wvariable,
q{l], enough to bring the goal point within
W{2], the workspace of the next subchain. It
may be the case that no ad justment 1is
necessary, 1f the goal point 18 already within
wiz].

3. Repeat the last step for each remaining degree
of freedom, qli}, for each { up to n,
inclusive. Each adjustment effectively bringse
the goal within reach of the next subchain,
Chifi+1].

The algorithm will fail in step 1 if and only {f
the goal point 1s unreachable by the chain. In
step 2, in order for the necessary adjustments to
be made, it must be the case that there is always
an allowable value for the Jjoint variable to be
adjusted that will bring the goal within reach of
the next subchain. That is:

Theorem 1: If a point p is in W[i], then there fs

some allowable value of q{1] which will bring p
into W{i+1].

Proof: If the point p is within W[1], for 1 in
{1,n] then it is, by definition of the workspace,
reachable by chifil, in some allowable
configuration. Suppose that the value of the
joint variables in this configuration are v[i],

v{i+1], ..., vin] for variables qli]), qli+l}, ...,
qln}, respectively. Then, when q{i]=v[i], and the
Joint variables of subchain Chi[i+l] take on
values v{i+l},...,vin}, respectively, its distal
end will be at point p. But since p is reachable



by Chili+l), 1t 48 tn W{1+1).))

The procedure for sdjusting a joint varisble to
briag the goal potnt within reach of the next
subchain depends upon the nature of the joint.

The situation,
in figure 2.

for a revolute joint,

is depicted

Figure 2

Workspace W is rigidly affixed to the end of link

L. The Jjoint varisble, q, must be adjuasted by
some amount dq so that the workspace W envelopes
the goal point p. Let the minimum and maximum

values for dq, (which put p on the boundary of W),
be dqlmin] and dq{max]. The problem 1s simplified
by noring that there is a dual problem, shown in
figure 3.

Figure 3

Rere, we suppose that p is rigidly affixed to the
end of an imaginary link L°, and that W is fixed.
Now consider the adjustment, dq’, of L°, necessary

to bring 1t into the fixed workspace. Let the
minimus and maximum adjusments be dq’{min] and
4q° [max]. We see that dq’(min] has the same

G

magnitude as dqlein), but the opposite sense, and
likewise for dq’[max) and dqlmax). Moreover, we
sce that as the "1ink" L° moves, p sweeps out a
circular arc. Thus the dual problem, and hence,
the original problem, may be solved by finding the
intersections between this arc and the boundary of
the workspace. The values of dq at which the
intersections occur are the extremes of the range
of values of dq which bring the goal into the
workspace. If the workspace has concavities,
several such ranges may exist. Only ranges, or
parts of ranges which satisfy joint lmtte
restrictions are allowable.

The adjustment problem fa simpler for sliding
joints. In the dual to this problem, the goal
point p sweeps out a line segment rather than an
arc. The intersections between this segment and
the workspace boundary then give the extreme
values for the adjustment. For both revolute and
sliding Joint cases, the aolution to the
intersection problem depends on the way the
workspace {8 represented.

IV. Approximate Deascriptions of the Workspace

No method for computing the exact workspacs of an

arbitrary chain with Joint 1limits has been
publighed at this time [3,5,10,11]). One
apprxoximate method has been proposed by Kumar
{10,11} and Derby (3] independently. A similar
approach was proposed by Sugimoto and Duffy
[16,17]. Points on the boundary of the workspacs

for a manipulator with three or more degrees of
freedom are computed by finding the maximun
extension in a specified direction. By varying
the direction {ncrementally, a “shell" of points
which lie on the boundary may be found.

The algorithm propoaed 1in the last section
presupposed perfect descriptions of the workspscs
of each chain Chifl], ..., Chi{n]. What is the
consequence of using approximations?

In general, the conscquence {s thst Theorea Il no
longer holds, and the algorithm will not work.
Let W[i] be an approximation to workapace W{i].
It can no longer be guaranteed, in all cases, that
when a point {48 imn W[1], there will be some
adjustment to q{1) will bring it into W[i+l].

Suppose, however, that ths workspsce
approximations are conetructed in such a way so as
to guarantee that Theorem 1 holds, for svary
succesive pair, W[1] and W[i+l], Then, once a

workepace approximation which contains the point
ia found, the algorithm will proceed to the end.

The approximation to the last workspace, W[n+l],
had better be conservative, (that 1s, a subset of
W[n+l1]). Otherwise, when we get to the end, {t
may not be possible to position the distal end
properly. This requirement, in conjunction with
the requirement that the theorem be asatified,
implies that, for each 1, the approximation W[1]
must be conservative. The requirement thst all
approximations W[i] be conservative ls necessary,
but not sufficient. For example, we could even
construct conscrvative approximations W{i] and






This scrategy may prove useful 1n several
applications. Suppose that a robat conslats of a
manipulator on a wheeled base. The chain
representing the robot 1includes the degrees of
freedom of motion over the floor.®* When a goal s
to be reached, positioning and orlenting the
robot, and adjusting i{ts arm are sll handled by
the same procedure. Consider another application
of the algorithm Reach to some chain in a complex
linkage with a tree structure, like the human
body. The property stated above implies that the
reach operatiaon will not alter any parts of the
tree that really needn’t be disturbed. That is,
if an operation caused some link in the reaching
chain to be moved, the reach operation could not
have been performed without moving it. - This is
advantageous in the context of perforaing
simultaneous or overlapping tasks.

For a chain with three links, a closed-form
solution for joint variables may be evaluated very
quickly. For this reason, it may be desirable to
use such a solution for the final 1inks of a
redundant chain. 1In this case, the adjustment for
previous degrees of freedom may satill be found
using the algorithm Reach. The last three
iterations are slmply replaced by a procedure to
evaluate the closed-form solution.

The ideas inherent {n the algorithm Reach may, in

theory, be extended from the purely positional to
the position-orientation domain. Consider the
problem of positioning the distal 1link of a
manlpulator with a specified position and
orientation. A specification of position and
orientatfon in space has slx degrees of freedom;
thus each such specification may be viewed as a
vector In & six dimensional position-orientation
space. We define the p.o. workspace of a chain
as the set of all such vectors attainable by the
distal 1link. Given descriptions of the p.o.
workspaces of a chain and 1ts subchains, we could
perform a process analogous to the one described
for varkspaces. In practice, approximate
representation of objects of such high dimension
tend to be too large to be wuseful. No
descriptions of the p.o. wvorkspace, (as it s
defined here), have been published at this time
{10,15]}.

The algorithm Reach exemplifies a general
principle. A workspace describes one aspect of
the capabilities of a chain. A system can use
knowledge about 1ts own capabilities and the
capabilities of its subsystems to partition a task
ia accordance with those capablilities.

V1. Summary

We have presented an algorithm whereby a chain
with redundant degrees of freedom and joint limits
may reach a goal point with {ts distal end. A
linear ordering 1s 1mposed on the degrees of

* There are three degrees of freedom over a
surface: translation in two orthogonal directions
and rotation.

freedom. The algorithm umes {nformation about the
workspacus of the chain and {ts wsubchains to
determine the adjustments necessary for each joint
variable, in auccesion. 1t is required that the
representations used for workspaces be
conservative, and that when & point 1s in the {th
workspace, there {s an allowable value for tha ith
degres of freedom which will bring 1t into the
i+lst workspace.
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Abstract

Thls paper describes an archltecture to support
the design of large scale teaching systems, an arch-
ftecture which Is more general and sophisticated
than traditional computer assisted instruction (CAl)
frameworks and which has been developed with an
awareness of the issues raised by artificial intel-
ligence work on CA!. The architecture suggests
that course material can be represented at many
levels of detall using nested AND/OR prerequisite
graphs. This makes it relatively easy to construct
a course containing a variety of concepts to be
presented In various styles and at various levels of
cdetail appropriate to each concept and each student.
When a concept is not understood by a student, ap-
propriate remedial action can be taken without need~
ing to be explicitly pre-planned. Such remedial
action is dependent not only on the unlearned concept
itself, but also the student's performance so far
in the entire course. The framework is designed so
as to be easily modified, hence encouraging the
course builder to experiment with various versions
of the course. In fact, a long-term goal of this
research is to provide a highly interactive, flex-
ible course-writing environment for course designers.

1. Introduction

The eventual alm of this research Is to pro-
duce a very friendly environment for course design-
ers to use In bullding 2 course. The environment
should allow the course designer to easily construct
parts of a course and test them out; to monitor the
course parts in action; and to expand and modify
these parts as their strengths and weaknesses are
understood. Obviously the environment should be
interactive. In additlon nice graphics capabilities
{e.g. allowing multi-colours, providing the ability
to window through parts of a course, giving the user
a mouse Or joy-stick) would enhance the environment
substantially. Such a course-writing tcol would
compare (favourably) to traditional course-writing
languages {e.g. TUTOR or MATAL) much as a nice
LISP environment compares (favourably) to more
traditional programming languages (e.g. FORTRAN,
COBOL, or PL/1),

environ-
of prim-

The most crucial requirment of such an
ment is the provision of an appropriate set
itives which represent what a course is and which
the course designer uses to conceptualize a course.
These must be high level primitives if the designer

8y

is to be spared the tedium of explicitly speci-
fying every fast bell and whistle In a course.
They not only should consist of high level data
structures, but also high level control structures
In order that the deslgner can think about the
course In as non-procedural a fashion as possible,
Finally, they should be general enough to allow

a varlety of courses to be speclfied.

There seem to be two basic approaches to the
design of these conceptual primitives: (1) a
traditional frame-based approach to computer
assisted instruction (TCAt) and (i1} & more
knowledge based approach using some of the prin~
ciples developed In artificlal intelligence
work on CA! (ICAl). Lets Yook more closely at
these two approaches.

Traditlonal approaches to CAl contain at
their core an expllicit graph suggesting varlous
paths a student may take through a body of course
material. Although more recent ‘''generative"
approaches to CAl (Chambers and Sprechar (1980))
have led to some flexlbility In the way this
materlal is presented and tested, the need to
expllcitly predict control paths still leads to
courses which are quite rigld and hard to deslgn,
Moreover, many aspects of a good teaching system
tend to be lgnored, aspects which many Ai-based
systems attempt to take Into account.

SCHOLAR (Collins and Warnock (1974)), for
example, Introduces the concept of knowledge
representation to a teaching model. The SCHOLAR
system has access to a knowl!edge base of concepts
which allows It to In some sense "know' lts sub-
Ject domain of South Amerlcan geography. The
SOPHIE system (Brown, Burton and de Kleer (1981))
also has knowledge of its (clrcult design) domaln,
allowing it to detect bugs {n students' solutlions
to circult design problems. In BUGGY, Brown and
van Lehn (1980) Incorporate an entire theory of
bugs that students make In solving whole number
subtraction problems. Goldstein (1979) has de-
vised a structure called the ''genetic graph'' not
to represent paths through a body of course ma-
terial, but to represent the various approaches
a student takes when learning thase concepts,

The genetic graph forms the basis for a student
mode | .

All of these Al systems have In common the
fact that they severely limlt the subject domain
in order to manageably study their particular



epproach. The problem of how to represent a large
body of Interacting concepts has been downplayed.
Instead, '‘coaching' techniques for a particular
small domain have been developed. It is not obvious
how (or even if) these techniques can be extended to
larger subject domains, nor Is it obvious whether
tha techniques are well formulated enough to survive
the results of further investigation.

S0, we are left with the problem of choosing
between the traditional and artificlal Intelllgence
approaches as our basic paradigm for representing
the conceptual primitives of our system. We attempt
to steer a middle course between the two approaches.
As in traditional CAl, the basic structures being
represented revolve about a body of materlal to be
presented (rather than, for example, student model-
1ing or knowledge of the domain), but these struc-
tures are considerably more flexible and elegant
than those of TCAl. As In the genetic graph, a
student mode! {and student history) is kept, but it
is formulated in terms of how well a student is doing
on the course material and not in terms of his/her
evolving learning structures. Similarly, student
errors are diagnosed and the approprliate materia)
which is in error can be pinpointed, but, while this
diagnosis Is sophisticated, it Is by no means a
theory of bugs such as BUGGY constitutes for its
domain. Hopefully, further developments in.ICAl
will lead to generally agreed upon and widely ap-
plicable theories. This would allow a more useful
set of primitives to be incorporated into the course
"V".'\'l .‘.,‘:",““-.
St :’ Llivi:l.,[ LJ}L IHJJI; R [u Pl e
architecture to handle student models, knowledge
representation, etc.

In the next section of the paper an overview of
the course architecture is given, and this is fur-
ther elaborated In section 1. Section |V dis-
cusses our experiences with the construction of a
portion of a LISP course in the architecture. Sec-
tion V sums up what has been accomplished and how
it relates to the long term goals of the research.

11. An Qverview of the Architecture of a Course

11.1 AND/OR Structure

As in Peachey (1982)| course material s re-
presented in an AND/OR course graph (such as the one
shown in Flgure ) which displays part of a LISP
course). The nodes represent individual concepts;
“the links between nodes represent prerequisite re-
tationships (not flow of control). An arc connect~
links represents an AND relationship among the pre-
requisites implying that all prerequisites must be
learncd before the father node can be presented.
Otherwise, the prerequisites are ORed, suggesting
an alternate order of presentation at the same
level of detall. For example, in Figure | the pre-

lThls work expands on concepts developed in Peachey's

forthcoming M.Sc. thesis. Much of the basic arch-
itecture |s his; we extend the thesis work in the
arca of levels of detail within a node and the in-
teraction of the level of detail hierarchy with the
AND/OR structure. The development of the LISP
course is also new {Peachey's examples involved
teaching data structures and basic economics).
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requisite concepts for lambda-expressions are
elither the three concepts QUOTE, list manipulation
functions, and predicates; or, alternatively, the
two caoncepts multiple argument functions and sin-
gle argument functions.

The AND/OR structure has exactly the same sem-
antics as in STRIPS (Nilsson (1971)) except that
Instead of designating a node as ''solved', "un-
solved"', or '""unsolvable', It is designated as
‘‘learned", "unlearned'', or ''futile'. iInitially,
all nodes start off as '‘unlearned' - the task of
the automated tutor Is to gulde the student
through the course graph presenting each concept
{unti! It can be deemed '‘learned") keeping In mind
that prerequislites must be satisfled at any stagas,
Hence, In the LISP course, data structures are
presented first; then basic function calling not-
ation; then elther multiple argument functions
and single argument functions, or QUOTE, list
manipulation functions, and predicates; then
lambda-expressions; and finally recursion.

Once the last node (recursion in this case) Is
changed from '‘unlearned' to ''learned', the stu-
dent 1s deemed to have learned the entire graph.
Occasionally, a concept can be deemed to be un-
learnabhle in which case the corresponding node
is marked '"futile'’, Unless there are OR paths
through the graph, a futile node can block fur-~
ther progress towards learning the entire graph.
Hence, in the same way that [t is possible to

n solplny, <0
foiu i n;[

o TR e it L
have unsolvable prebiems in problem solving, so

it is possible to have a futlle learning situ-
atlon In thls course archltecture,

What advantages does the AND/OR structure
offer? The AND structure aliows a course de-
signer to very naturally encode the prerequisite
relationships of a course without necessarily im-
plying an ordering on the conjuncts. The OR
structure allows the designer to specify alter-
nate presentatlon paths in case certaln approach=
es prove Iinappropriate for a particular student
or simpley to provide variety in presentation style.
But, most importantly, the designer needn't worry
about flow of control, l.e. which node to present
next. The AND/OR rule {(that a node is unlearned
if any of its AND prerequisites are unlearned or
1f all of its OR prerequlisites are unlearned) can
be applied recursively to re-compute these fringe
nodes,

11.2 Node Structure

So far, the nature of a node has not been
speclfied. Each node contains the material nec-
essary to present and test the concept represent-
ed by the node. The designer has full flexibility
in presenting this material any way that suits the
material and the student. Thus, material could
be presented loosely In a very open-ended learn-
ing situration (such as a coaching envlronment)
or more prescriptively using a pre-specified text
with standard questions that test the comprehen=
sion of the text. The only commitment the arch-
itecture Imposes on a node Is that after present-
ing a concept to a student, there should be a Tist
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of nodes diagnosed as learned as a result of present-
ing the concept and another list of nodes diagnosed
as unlearned. The most common dlagnosis is that the
node itself is learned or (rarely) futile, although
occasionally It Is possible to determine that certain
previously learned concepts are shaky or certain con-
cepts further on in the course are already well un-
derstood, In any event, these lists are used to up-
date the status of nodes in the graph whereupon a
new fringe of unlearned nodes can be computed. Note
that this approach allows the pace of presentation

to be automatically adjusted to a particular stu-
dent's talents.

Strict node modularity is essential if sophls-
ticated courses are to be created, However, pro-
viding nothing more in a node would put a heavy
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progranming considerations

!

basics of LISP
Figqure 4 ~ A LISP Course

burden on the shoulders of the course designer.
So, the course designer Is glven the optlon of
creating nodes which are not consldered merely to
be primitive modules, but also can be broken Into
AND/OR sub-graphs at a lower level of detail.

for example, the recursion node in the graph of
Figure 1 could be further broken down into the
sub-graph of Figure 2, and the types of recursion
node in fFigure 2 could be broken down Into the
sub-sub-graph In Figure 3. In fact, Flgure |
itself could be a sub-graph contained in the com~
plete LISP course graph represented In Flgure 4,
To initiate the presentation of a given node,
then, merely Involves presenting the earliest
unlearned node In the sub-graph which ls contained
in that node. This rule can be applied recursively
down to some primitive '*hard wired' level.



11.3 Yhe Interaction Between AND/OR Structure
and Node Structure )

The interaction of the level of detall hierar-
chy with the AND/OR hierarchy is an important issue.
A further rule I8 introduced to handle this ~ a node
which has been '‘opened' Is unlearned if the last
node (the top-most node in these examples) of its
sub-graph is unlearned. Using this rule plus the
usual AND/OR rules It Is possible to determlne not
only a fringe of unlearned nodes, but also a level
at which to present the nodes, Normally this level
will be the most primitive leve! (since atl nodes
start off as unlearned), but the designer has the
option of specifying the last node of a sub-graph
as learned and hence can prevent any given node
from being opened. This gives the designer the ab-
ility to present various parts of the course at
appropriate levels of abstraction. It also allows
a concept that is being reviewed to be presented at
different levels of detail than it was the first
time through (this is possible because previous
nodes at any level of detail can be diagnosed as
unlearned).

So, by appropriately specifying nodes as
learncd or unlearned, the course desligner can set
up fast or slow, detalled or abstract courses for
a particular student. Alternate styles of pre-
sentation at the same level of detai) can even be
ensured by placing futlle Indicators on nodes along
certain OR paths forcing presentation of other paths,
These indicators are kept in an instantiated ver-
sion of the course graph which constitutes a stu-
dent model, The student model Is continuously up-
dated as the student goes through a course, thus
providing an ongoing model of the state of the
student's mastery of the course material. in
addition a student history is maintained to keep a
detailed outline of the actual sequence of nodes
presented and some detalls on student bechaviour at
vach node. The student history is used, among
other things, to provide variety when reviewing
the concepts of previously presented nodes = OR
paths unused on the earlier pass are taken the
next time through If possible.

111, Deralls of the Course Presentation
Methodology
111.1 Selecting the Node to Present

Assume that & particular sub-graph has been
chosen at the appropriate level of detall. AND/OR
semantics will provide a fringe of unlearned nodes
in the graph, The first problem is to select one
such node to present to the student.

Any unlearned fringe node with a futile node on
the path between It and the goal (last) node can be
eliminated from consideration since it will be Im-
possible to get to the goal node in any event. To
further refine the choice it is Important to realize
that there are two kinds of unlearned nodes: thase
that have never been presented and those that have
been presented but have been diagnosed as unlearned
after the presentation. In order to increase the
variety of nodes presented, all unlearned but pre-
viously presented nodes are rejected (unless no
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otheis are avallable). This ensures, for example,
that aiternative paths wi{ll.he chosen over pre-
viously unsuccessful paths. ‘It also ensures that,
even in the case of conjunctive subgoals, the
other conjunctive nodes wiil be chosen before
returning to the unsuccessful nodes. This may
allow the student to achleve a deeper understand-
Ing of the subject before once again trying some-
thing he or she had trouble with before.

If there are stll} many cholces, perhaps
they can be distinguished by how far they are
from the goal node. Nodes furthest from the
goal can be rejected. Finally, to choose between
any equijdistant nodes, Indicators associated with
the nodes can be examined. €ach node has two
kinds of Indicators: an Importance marker, In-
dicating how cruclal a node Is as a prerequisite
to another node; and a criticality marker In-
dicating how crucial a node is to the supernode
in which it Is contalned. In this context, only
the importance markers matter - the most Impor-
tant prerequisite will be chosen. {f the nodes
still aren't distingulshable, a random cholce Is
made .

Once a fringe node Is chosen, another

decision must be made: whether or not to open
the node.

111.2 Deciding Whether or Not to Open a Node

Deciding whether or not to open a node is a
non-trivial task. Obviously, primitive nodes are
not opened, but are Just presented as Is. Non-
primitive nodes are opened or not using a pro-
cedure that takes Into account the following
two factors. Flrst, the node Itself contains a
recommendation as to whether or not it should
be opened. Second, sub-nodes of the node are
examined in a more subtle way than Indicated In
11.3. The exlstence of lotg of unlearned nodes
of high criticality suggests the node should be
opened In order to present these concepts. The
lack of such nodes suggests the node should not
be opened, either because there are not many
sub-nodes of high criticality or they are already
learned. These factors are combined In a rather
arbitrary fashlion at present, a method which will
likely be subject to considerable change as ex-
perimentation wlith the system continues. Baslic-
ally, an evaluation function Is used to combine
the two factors. |In this function the first
factor dominates if most of the sub-nodes are
unlearned and unpresented. Otherwise the second
factor (the sub-node statuses) dominates the
decision.

Once a node is to be opened, two problems
arise: first, which node in the sub-graph to
choose (already discussed In [({.1); and second,
whether or not to present some or all of the
material at the current level of .detail and if
so whether to do it before or after the sub-
graph is presented,



181.3 Node Presentation Styles

in addition to possibly having a sub-graph, a
node can coatain "primitive' material to be directly
presented to the student, material that fn a sense
duplicates the content of the sub-graph but at a
higher level of detail. For the purposes of this
discussion it is convenlent to consider that this
materlal consists of two components: a presentation
part (called the '"blurb") and a testing part. Of
course, the materfal in many nodes will not have
this structure (e.g. testing and presentation will
be mixed or the node will provide a coaching envire
onment), In which case the discussion fs less ap-
plicable although some lessons can still be drawn
depending on the exact structure of the node.

Given that a node is not opened, there .are
three possibie presentation styles to consider:
(i) just give the blurb (i.e. decide not to test,
perhaps because this is not an important node or lIs
just being reviewed); {(1i) give both the blurb and
the test; or (ili) just test the concepts represent=
¢d by the node but don't glve the blurb (perhaps
because the node has been presented before but has
later been deemed unlearned).

tf a node Is to be opened, there are four
possible styles: (i) give the blurb, then expand
the node, and test the node on the way back out;
(ii) give the blurb, then expand the node, but don't
test it at this level at all; (iil) expand the node
and test it on the way back out, but don't give the
blurb at this level (presumably because the sub-
nodes have provided enough verbiage); and (iv) just
expand the node, but don't give the blurb or test
it at this fevel (presumably because the sub-nodes
have done these jobs). Styles (i) and (il) are
top-down styles; style (iii) is bottom-up; and
style (iv) makes no concessions to higher levels of
detail at all. Choosing among these is not easy,
although style (ii) seems most widely appropriate
because of {ts ability to give successively refined
overviews of the material without the tedium of
multiple levels of testing. We hope that further
enperimentation will provide more insights on
which styles to choose under which circumstances.

t11.4 After Presentatlion of a Node

After a node has been presented, a diagnosis
must be made as to what has been learned or not.
"This is usually done by the testing component (If
such exists In the node) on the basis of student
performance on the test. However, a more qualitat-
ive diagnosis process can be imagined, based on
‘‘over the shoulder' observations of the student as
he/she ‘'plays' with concepts presented In the node.

wWhen the node decides that a certain concept,
represented by some other node, Is not well under~
stood, it must come up with a number that indicates
the severity of the problem. Similarly, when the
node decides (more rarely) that some other node Is,
in fact, already well understood, it must come up
with a8 number Indicating how well comprehended the
concept represented by that node is. Such numbers
are used to appropriately decrease {or increase) a
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‘'learncd threshold' assoclated with the poorly

(or well) understood nodes. 1f this threshold
drops below a certalin number, the node Is diagnused
as untearned; If it rises above a ceértain number,
the node Is dlagnosed as learned (even [f it [s
unpresented as yetl); and if it drops off the bot-
tom of the scale, the node 1s diagnosed as futile.
Note that it is not necessary to reach a full di-
agnosis of some node all at once. For example, a
previously learned node can have lts threshold
decreased without yet making It unfearned. Future
diagnosls could continue to decrease confldence In
the student'’s understanding of that node's ex-
pertise until It finally slipped Into unlearned
status., In this way diagnoses can be accumulated
over time.

Minimally, the current node should keep con-
trol until It has reached a definltive dlagnosls
of itself (if not of any other nodes). Once such
a diagnosls is made, the node Is finlshed and the
learned, unlearned, and futile markers can be
propagated throughout the entire course graph.

111.5 Computing the New frlinge

The process of computing a new fringe of
unlearned nodes proceeds using basic AND/OR sem-
antlcs. |In essence any node with unlearned or
futile prerequisites Is ftself unlearned or
futile unless there Is an OR path without such
unlearned or futile prerequisites. In actuality
the process Is more subtle than this. [mportance
markers are taken Into account In deciding whether
to propagate an unlearned or futlle status - any
relatively unimportant prerequisites may not have
sufficlent weight to count.

Once the unlearned/futile propagation Is
done, it must be decided whether the whole sub-
graph Is learned (or futile). As mentioned In 1.3
If the last (goal) node of the sub-graph is learned
(or futile), then so is the whole sub-graph.
Once again, though, the whole process s more
subtle than this. Baslically, a sub-graph can also
be deemed to be learned (or futlle) If enough of
Its high criticality nodes are learned (or futile},
under the assumption that the other nodes aren't
significant contributors to the sub-graph status.
When a learned (or futlle) status Is given to the
entire sub-graph, then It Is also given to the
super-node contalining the sub~-graph, and the
whole propagation process can be repeated at the
higher level and so on recursively. Note that
the upwards propagation described here when com-
bined with the decision as to whether or not to
expand a node determines automatically a level of
detall at which to present portions of the course.

But, under the assumption that the upwards
propagation does not occur, a fringe must be com-
puted at the current level. A node is on the
fringe if there are nothing but unlearned nodes
on at least one path connecting It to the goal
node and f just previous to It (on all OR paths
to the source (first) node) there are nothling but
learned nodes. 1t is from the fringe nodes that s
new node to present can be chosen (see I11.1).



1¥. The LISP Course

The entire archltecture described above has
been implemented and we have begun the construction
of a LISP course using this architecture. Figures
1 -~ & give a flavour if the kinds of graphs present
in the course. Most of the “basics" node (Figure &)
has been Implemented at several levels of detall and
a preliminary version tested on a couple of students.
Unfortunately, bugs In the program prevented a ser-
fous evaluation of the usabillty of the course.
However, the course ltself was bullt In about 60
hours of {on and off) work over the busy fall term.
Given that some debugging of the course architec-
ture ltself was required as the LISP course was
bullt, this augers well for the usefulness of the
architecture to the course designer.

The LISP course, as designed so far, is not
perfect. Hany of the nodes are too wordy and lock-
step the student Into a relatively boring sequence
of fill~in-the-blank, multiple choice, or yes/no
questions {boring despite the fact that the
questions generated vary each time through a node,
thus at least providing some variety). But the
nodes which test functions {e.g. lambda expressions
in Figure 1) are not quite so mundane. The student
is asked to write simple lambda expressions to
achieve llst twiddling examples. We have im-
plemented a “smart'* EVAL to execute lambda ex~
pressions. It does a syntactic analysis of the
lambda expression, steps through the lambda ex-
pression explaining to the student what Is hap-
pening at each stage and allowing her/him to stop
and look around at each stage. A few standard
bugs are recognized, as well, in order to aid
diagnosis.

This Is just the first step in making the
whole course more sophisticated. For example,
ideas such as those In Fine (1977) will need to
be incorporated into the system to make it more
knowledgeable, Whether (or more likely how) to
sugment our architecture with such things as sem-
antic networks, pattern directed invocation
schemes, etc., will have to await more extensive
‘testing of the current architecture and course.

¥. Conclusion

In this paper we have discussed an architec-
ture for the design of fairly sophisticated courses.
The emphasis has been on providing controlled flex-
ibility to the course designer. The control Is
enforced through the rules for AND/OR prerequisite
structure as extended to many levels of detail.
Tne flexibility is provided through the modularity
of nodes which gives the course designer full
.scope at any node, notwithstanding the minimal
_interdependencies imposed by the above rules. Such
an architecture seems to provide the foundatlon for
‘a nice course writing environment. The AND/OR and
level of detall structure form the basis for power-
ful primitives which the course designer can em*
ploy directly; the modularity allows the course de-
signer to .incrementally refine and extend a course
without undue upheaval.

tt must be emphasized, however, that the
architecture Is Just the beglnning of a nice
course writing environment. |t needs to be extend-
ed to handle other facets of the teaching/learning
process - e.g. more sophisticated models of how
students learn, more sophisticated knowledge
representation techniques to allow the system to
do more self-analysis and make better Inferences,
etc. It needs to be embedded into a better Inter-
active environment where there are graphics that
allow sub-graphs to be displayed in separate win-
dows and open (revealed) or closed (hidden) at
wlll; with factllties that allow the student (or
course deslgner) to see the nodes belng expanded,
markers being propagated, etc.,; with system pro-
vided primitives for node creation, destruction,
and manipulation. A commitment to this architec~
ture suggest that this last, at least, should be

‘relatively easy and that the primitives can be

very powerful when compared to most course-writing
tools.

More esoterically, the course designer will
need trace facilitles, pre-packaged student models
representing varfous stereotypical students, and
perhaps, in order to test out a course, even ac-
tive procedures (sort of simulated students) which
could actually "take' the course. The teacher who
is monitoring a student will need to be provided
with better tools as well, These could Include
the ability of the teacher to be hooked to a
"'slave' terminal and from there to be able to
smoothly interrupt or direct both the student and
the course (e.g. to override the course in the
choice of material to present next). All of this
would be, of course, a huge amount of work and
would require the solution to a number of very
hard problems. Nevertheless we feel this is an
interesting start.
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1. INTRODUCTION

The UNIX Computer Consultant (UCC) is an expert
system currently under development at the Los Alamos
National Laboratory and at the Universily of Virginia. It
iz designed lo ald both novice and advanced users of the
UNIX operating system ia their use of the system.

UCC is far more powerful than the typical operating
systern help utility, which provides on-line retrieval of
only documentation of specifically named commands.
Thus, a user who does not know the name of the com-
mand he needs, or who needs information on tems other
than command-specific definitions (such as information
on the organization of the operating sysltem's file sys-
tem) cun get httle or no help from such a help utihty.
UCC, on the other hand, contains a sophisticated
retrieval facility that can key on a number of concepts,
including not only specific command definitions but also
logical operations without a given command (e.g.. listing
a text file) and concept definitions (e.g., a UNIX path).
Purthermore, UCC, unlike cxisting help systems, can
respond with a specific answer given a specific question

Hecause UCC is designed lo be a consultant for an
existing system, it is not integrated into specific utilities,
but rather exists as an independent subsystem on top of
the operating system. This ts in contrast to some sys-
tems that 1ncorporate user support facilities within the
utthity  While the direct integration approach shows
much prormise for help facilities lor newly designed sys-
tems, 1its applicability to existing systems (such as UNIX)
13 made difficult by the necessity of rewriting part of the
existing system, in addition to the entlire help factlity.
Furthermoro, such direct incorporation of help featurey
make the answering of queries not keyed on specific
commands very difficult

1.1. An Ovcrview of UCC

The UCC system consists of two major modules, the
[ront-end module and the UNIX knowledge base and
solver module. The major role of the fronl end is to
transtate a user's natural language query into the spe-
cially dedigned formal query language UCCquel and to
trunslate answers to UCCquel gueries back tnto natural
language. The role of the UNIX knowledge base and
solver module is to produce answers to the formal
LCCquel queries.

The front-end module accepls questions from users
such as "How do I list a directory file?" and calls a lcxical
analyecr to delete noise words from the question, con-
vert synonyms and tensed words to & standard token,
and identify unknown words. The tokenized question is
then parsed by an augmented transition network (ATN),
phrase by phrase, if an attempt to parse an entire sen-
tence fuils. The ATN produces three pieces of informa-
tion: a) the type of question; b) a template, called a case

Irame, describing the main oporating systum aclion
mentioned in the question; and c) a set of predicates,
derived from noun phrases, prepositional phrases,
adverbs, and other modifying phrases and clauses that
assert properties of entities referred to in the question
(such as files).

The parser passes f{ts output to a queory generator
which produces a) a formal query with a set of predi-
cates describing a function to be porformed by the
operating system; b) preconditions describing the Input
to that function; and ¢) postconditions describing the
function's output. The formal query will contain
unbound variegbles that must be Instantiated by the
knowledge base and solver module to answer the original
question.

The knowledge baso und solver module contsins
descriptions of UNIX commundy and conceptls, and a set
of propositional semantic definitions of commands simi-
lar to Hoare semantics {1]. The descriptions are used to
answer questions such as “What is a directory flle?" or
"What does 'Is’ do?” The formal semantic definitions are
used to answer questions such as “"How do 1 list a diree-
tory file?”

Once the variables in a query have been bound by
the knowledge base, then the instantlated query |Is
passed back to the front end to produce an angwer in
English for the user. The front end formulates an answer
by noting what type of question was asked, selecting an
appropriate template for an answer, and using a diction-
ary of predicate deflnitions to describe the relevant
parts of the tnstantiated query.

In this paper, we discuss briefly the nature of the
formal query language UCCquel, and then we detall the
process of transforming a natural-language query inte
UCCquel. In a future paper, wo will detuil tho workings of
the UNIX knowledge base and solver module.

2. QUERY MODEIING AND CLASSIFICATION

To understand the operation of the natural-languuge
front ond, 1t is first nocessary to undorstand the fornul
querios that (t {s to produce. In thts section, wo outlino
the nature of the varlous querlus thal are considored
_and show how they are represented In UCCquel.

2.1. Static Queries

Static queries are the most busic typu thal aro hun-
dled by UCC. A static query is one thal requests infor-
mation not involving gystem dynamics, and, expressed in
natural language, are typically ol the "What Is ... 7
variety. Examples includo "What is a pipe?” and "What is
a home directory?” In each case, a simple rotricval of a
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definiticn 18 aell Lthial 13 necessary. ln essence, a static
query is just a retrieval of the form “get {x | P(x)}"
(which is the lorm of a nonprocedural query to a rela-
tional database {2]). For example, "What is a pipe?
translates into the formal query “get {x | x is the
definiion of a pipe |.

All quertes in UCCquel are expressed in an LISP-like
notation. Our representation of this query looks like

(Find X
(Basic-object-description (“pipe”) = X)).

X is the free variable that must be bound in answering
the query.

22 Dynamie Queries

To be useful, UCC must also have the capability of
processing dynamic queries. These queries differ from
thewr static counterparts in that they decal with the
dynamic aspects of the UNIX operaling system. Exam-
ptes include "How do ] hist the contents of a file paged
and with page headers? and “What happens if ] try to
print a directory flle with the pr command?” In each
case, Lhe query deals with the determination or action of
a system command.

We may stll classily such queries as "get [xiP(x)}.”
provided we choose P appropriately. In the case of a
static query, P iy just a well-formed formula (wfl) in the
(ordinary) logic that describes the retrieval of concept
definitions  In the case of dynamic quertes, P must be
repltuced by a wiT in an appropriale dynamic logic
hecause we are now dealing with system dynamics. For
the purposes of UCC, the wusual propositional-style
semantics, commonly used in programming language
scmantic definition [1), provides a convenient frame-
work. A w{lin this style of scmanticy takes the general
form R} F |Q}. where R and Q are w{Is in an appropriate
static first order logic (known as the underlying base
logic), and F 1s an action that may change the truth
values of statemcnts in the base logic.

As a particular example, consider the query given
ubove “llow do ! list the contents of a file paged and with
page headers?' llere R is of the form "§x is a (generic)
text file” and Q is of the form “The contents of the stan-
dard hsung device i what the contents of the file §x was
betore the command, modified to be paged with standard
page headers.” Fis an unknown operator, to be found 1n
answering the query. In the retrieval, P(x) ts {R} X {Q}.

2.3 fYundamental Types of Dynamic Queries

A dynamic query of the form “get | x | P(x) {.” where
P = [R} F {Q]. may be placed into one of eight possible
classifications, depending upon which subsct of R, F, and
Q 13 known and which is not. In the initial implementa-
tion of UCC, only two of these will be considered.

.(1) K and Q are known, but F 1s not This is the genceral
structure of a "How do | ..." type of query und is
illustrated by the example tn section 2.2

R and F are known, but Q is not. This is the general
structure of a "What happens il ... 2?7 type of query.
As an example, once again consider “What happens
it ! try to print a direclory file using the ‘pr’ com-
mand?* Here R i3 "fx is o (guncric) directory file”
and F g "pr #x,” with Q to be lound

(2)

2.4. Secondary HResponses in Dynamic Queries

While the classification ol dynamic queries as out-
Linvd 10 the previous scction is a uselul guideline, it is
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nol alwuys complelely adequate. For example, consider
once again the query “How do ! list the contents of a file
paged and with page headers?' To answer this query
with R and Q as given in section 2.2, it is not suflicient to
simply supply the response "pr §#x.” because, for this
response to be correct, we must have that #x is a flle
that is currently readable by the user. In responding
with the answer, we must add this readability condition
to the preconditions R. We term such an addition a
secondary response. In the formalization of dynamic
queries in UCCquel, we always permit the addition of
appropriate secondary responses.

2.6. An Example UCCquel Query

Below ls displayed the UCCquel query for “How do |
list the contents of a file paged and with page headers?”

(Find (R1 F1 Q1)
(Dyn RF Q)
Define R
((Clauses
(Ble #x (type = “text")))
(addnecessary R1)))
(Define F
(( transform F1)
(logical (list-text-file))))
(Define Q
((Clauses
(contents(%Zuser-terminal)
= modifled (contents (timo (-1,filc(§x)))
(type = "text")
(paged = "yes")
(pageheaders = "yes")
(value slandard)){)
(addiniplicutions Q1))))

P1, F1, and Q1 are the variables to be bound in the
solution of the query. (Dyn R F Q) means {R} F {Q]. Flls
the fundamental variable to be bound and Is declared to
be a transform. P1 and Q! are to be bound to secondary
preconditions and postconditions, respectively. The
definitions of R and Q are wfls in our underlying loglc
known as the stalic definition logic. The “time(-1 ... )"
notation in the postcondition Q is used to ensure that the
value of the user terminal after the execution of the
command will be the contents of #x before the com-
mand. This is merely a shorthand and does not violate
the constraint that R and Q be statements in a static
logic; by sctting fx to a dummy file @x in the precondi-
tions and using file ®x Instead of time(-1.flle (§x)). we
can stay entircly within the constraints. The "logical ... "
part of the definition of F is indicating which case frame
was used in constructing the query, and will be men-
lioned again in the next sectlon.

2.8. Speciflc Queries

In the example query tllustrated above, the file to be
listed is not specified, and so is represented as a generlc
text flle, #x. 1I the user instcad had asked "How do 1 list
the contents of my flle /bin/paper paged and with page
headers?", the formulation would differ fundamentally in
that Jx would be replaced by /bin/paper. Also, the
assumplion that /bin/papcr is a text flle must be
dropped. Rather, it must be left to the knowledge base
to decide whether or not /bin/paper is listable.



3. THE INTERFACE BETWEEN THE USEit AND
THE KNOWLEDGE BASE

The front-end module 13 responsible for converting a
uscr's English questions into formal UCCquel queries and
formulating English responses. This process consists of
five levels ol analysis: lexical (or word), phrase, clause,
sentence, paragraph (or dialogue), and topic. Five major
data structurca are uscd by these fovels, including a dice-
Lionary, u sct of casu frames, contoxt registers, proedys
cate descriptions, and answer frames. We will examine
these levelr and data structures more closcly as wo fol-
low the front-end processing of the question "How do |
hist a file paged and with page headers?” This question is
the input to the front-end module and the output is the
UCCquel query given in section 2.5. Only the analysis of
a user's question will be discussed here;, we leave a dis-
cussion of the more straightforward process of generat-
ing an answer to a future paper.

1. Lexical Analysis

Lexical or word-level analysis is performed by a tok-
cniang routine. Each time it is called by the parser, it
scans the Enghsh question and returns the next token.
The tokenizer looks up words in the dictionary to see !
they are defined and replaces them with standard tokens
if they are lound. It catches multiword idioms and com-
mon noun-noun modification, such as "how do 1" or
“directory file”; {t also flags unknown words, identifies file
names when possible, replaces synonyms with a standard
root, and replaces tensed and pluralized words with a
standard tokea plus the fealures indicaling tense or
number.

The tokenizer uses a token definition stored in the
dictionary and a look-ahead mechanism to determine
what English words or UNIX file names should be grouped
into one token VWords with no dictionary entry are
passed along to the ATN because they may be names of
specific files

For example, given our sample question “How do |
st ...” the tokenizer would return the following tokens
{the $ designates a token): Shwd (representing the
phrase “how do 1), & (for "I"), Slist, Sa, Sfile, Swith,
Sphead (plural) (for page headers), Sand, and Spaged.

3.2 Phrasc-levol Analysis

Tokentzed questions are parsed, phrase by phrase,
using a grammar represented by an augmented transi-
tion network {ATN). ATNs are a standard tool for parsing
natural language {2]. Although other parsing techmques
have proved useful for parsing restricted English
questions [3.4], ATNs can parse statements that include
elhipsis and grammatical errors. :

UCC's ATN produces a parse tree for a question,
cither for a whole sentence or phrase-by-phrasc. 1L
uncovers and enforces syntactle rules and semantic con-
strainls within a phrase. Predicates are gencrated by
the ATN to represent the meaning of the phrases. These
predicates form the preconditions, {R], and postcondi-
ttons, {Q}. for dynamic queries.

The ATNs also select a smal! set of case frame candi-
dates that could correspond to the main action

described 1n a clause. Cuse frames and their role are
descernibed in the next section.

A pursce of our sample question would produce the
follawming results.

{1) Question Type: hwd (mcaning “how do ).

(2) Phrasc-level Semantics:

Noun groups: (NG1 {Ale #x) (type = “tuxl")
(puged = "yes"))
(NG2 (pageheaders))
Verb groups: (VG1 (verb list) (direct-object NG1)
(tense present))

Preposition groups’ {PG1 (with NG2) )
(3) Cusu Frames:
logical list-text-file)

loglical lisl-diroctory)
logical enumerate)

3.3. Clausedevel Analysis

The ATN parses the phrases in a question to produce
predicates describing the noun groups and preposition
groups. These phrases are grouped at the clause level
by a "case-frame-fitter.” Case [rames are templates
representing the main action of u clause and the consti-
tuents of the action, such as the actor and roceiplent of
the action; usually, they correspond te the main verb in
the clause.

Several natural-language understanding systems
have used case Irames to represent the action in a sen-
tence [2,5). For Schank and his coworkers, a small set of
conceptual case frames represcent all actions expressed
in natural language [5). In UCC, case frames correspond
to logical operations in an operating system, and they
form the main link betwecen English language operating
system concepts and the formal semantic definitions of
specific UNIX commands. Some have a direct correspon-
dence to UNIX commands, while olhera may be associ-
ated with several different commands that could be used
to accomplish the same logical operation.

For example, as shown in the last section, the verb
“list” could represent one of three case frames, list-
text-file, list-directory, or enumeration. List-text-file is
associated in the knowledge base with three UNIX com-
mands for listing a text file, "cat,” "pr," and “more.” The
case-frame-fitter must select one of the three possible
case frames using the parsed question and semantte con-
straints specified In the case frame, and the knowledge
base and solver module must declde which UNIX opera-
tor associated with the list-toxt-file case frams, “cat.”
“pr.” or “more,” {8 the appropriate answer lo the user's
question.

Case frames contaln defaull Information on precon-
ditions and postconditions assoclated with the logical
action represented by the case frame. They also spacily
slots to be filled from a user's question or [rom context,
and they provide semantic constraints on what informa-
tion can fill those slots.

In our example, the case-frame-fitter sclects the
list-text-file case frame because the direct object of
"list,” Identificd by the ATN as the noun group “a file,” I8
assumed to be & text file. The list-directory case frame
would have been selected If the objeat of "list”" had bean
a directory, and the enumeration case [rame would have
becen pleked il the object had been a noun group that
could be enumerated, such as "the number ol users
currently logged on the system.”

Once the list-text-file case frame is chosen, the
case-frame-fitter notes that the list-text-file specifies
that the question should contain phrases describing how
Lhe text is listed. ln our oxumiplo, the caso-frumo-fitlor
finds Lhe phrasey “puged and with page hoaders” und fiLs
these into slots that modily the description of the result
of the logical eperation list-text-file. This deseription
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cunstitutea Lhe postconditions, Q). For our example,
the preconditions will be the dirvct object of “hist™ or the
phrase "a fle” The case frame specifies thal the
precondilons muil be “contents (fie (Jx)(type =
“text”)).” and this is consistenl with the ATN's parse of
the noun group, “a file.” Since “a file” is parsed as an
indefinite noun group, the case-frame-fitter binds the
precondilions to be a generic file, Jx.

3.4. Senlencelovel Analysis

Once a case frame has been selected for each clause
in a question and the case-frame-fitter has formed {R]
and {Q] from the parsed phrases, then the "query-
generatar” s called to produce a formal UCCquel query.
For simple questions {(questions stated in one clause),
the formal query is essentially built by the case-frame-
fitter, and the query-gencrator has to onty verify it with
the user and pass it along to the knowledge base and
solver module. The formal query generated for our
example wag given in section 2.9,

The gquery-generator must integrate several clauses
into one formal query In the case of questions that are
stated in several clauses (such as "It I ..., then ... ?") and
questions stated in several sentences (such as “1 have a
dircctory file that I made read only. Why can't ] hist it?").
Sueh questions will produce scvera! instantialed case
frames, and the query-gencralor must build one query
out of them. Usually, multiple clauses serve the function
of furthur describing the preconditions of the aclion in
the main clause,

3.5, Dralogue® and Paragraph-level Analysis

Work with natural-language database systems and
expert consultants [2,6,7] has shown that users usually
ask several related questions and that the systern must
be eble to maintain & dialogue with the user and usc
intersentence (or paragraph level) context. UCC saves
conteatual information using “context registers” similar
to those used by Waltz [2] and by using clarification
dialogue

Context registers are push-down stacks with a short
Axed length. They hold information derived from previ-
ous questions and answers, such as the last case frames
relerenced, the pre- and post-conditions of previous
questions. and the subjects and objeets of previous ques-
tions  Ellipsis (massing portions of a question) and pro-
nouns are common in questions, and UCC must use the
case frames lo fill in thts information. 1f the case-
frame-Oter or query-gencrator finds that a portion of a
case frame or query s missing from a question, then
they consult the context registers to find the most
rccent prece of information that will satisty the semantic
constraints of the current question. For example, if the
uscr usks the question "How do | list a file? and then
asks “With page headers?”, UCC must resolve the cllipsiy
in the second question by popping off the most recently
‘used case frame and prcconditions from the appropriute
conlext registers.

UCC maintains a dialogue with the user by answer-
ing hus questions, saving the previous questions in con-
-text registers, and using clarification dialogue to verify
that a user's question has been correclly understoed. In
“our cxample, once the query-generator has formed the
query, it would verify the query with the uscer with the
“following dialogue.

UCC: Your query is understood as:
Find a command that accepts as input.
la. atext file.

und the command will produce output.
24 al your Lerminal

2b. has page headers

2¢. iy paged

1s this all right? (yes/no):
USER. no

Because the user responded "no,” UCC will reply
with the following

UCC: Do you wish to:
1. rephrase the question entirely?
2. change an item?

Enter §, 2:
USER: 2
_UCC: Which item(s), la, 2a, 2b, or 2c:
USER: R2a

UCC: What is the new condition?

USER: output goes to the spinwriter
UCC: Any other changes?

USER: no

UCC: Your new query is understood as ...

Once UCC has verified a query. it is shipped off to
the knowledge base and solver module to produce an
answer.

3.8. The Topic Level

Users usually ask several questions about a particu-
lar UNIX topic, such as questions about using the cditor,
manipulating files, or complling a program. To success-
fully parse and answer quéstions about a variety of
topics, the knowledge base, vocabulary, and case frames
have been partitioned into different topic areas. At
present, UCC contains information about only the file
system and the command language. We are experiment-
ing with a menu-driven system for switching betwcen
topics. Complex natural-language processing and ques-
tion answering require that questions have a limiled and
well-deftned context and that the case frames, vocabu-
lary, and knowledge base be partitioned by topica.

4. CONCLUSION

Natural-language fronl ends for database systems
have been In cxistence for several years as have exper!
consultant systems. UCC combines both of these lines of
rescarch into a singlo system that goes well beyond typi-
cal operating system help facilities to provide an expert
consultant with sophisticated natural-language under-
standing ability.

We have outlined the proccess of produclng a formal
query from a natural-language question and shown how
queries can be formally modeled in the UCCquel query
lunguage. UCC successfully bridges the gap belween
users' English questions and formal command deflnitions
by dividing the task into levels of analysis from lexical to
topie, and by partitioning the mujor data structures of
UCC by topic. In this way UCC achieves generality and
sophisicated language understanding over a broad range
of topics. It 18 intended Lhat UCC serves as & model for
tho design of expert consullanly for other operaling gyy-
tems and for systems thal, like operaling systems, con-
sist of colliections of processes.
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Abstract

As part of the inference system of a semantic
net. we ors buiding a resolution-based theorem prover
capable of drectly ‘resolving” not only complementary
pars of hterals such as lelephantiClyde), ~ealephantixjl but
also incompatible pars such as

|eiephant(Clyde)l, -animal(x)L

lelephantiClyde), canaryix))

[yellowiClydel. greyixil

lisort-of elephantiCiyde), ~{sort-of animallx]],

lisort~of tani(Clydel. ~sort-of browni{x]L

lisort-ot yellowlClyde), (sort-of blugixl}
Ws had ongnally expected to handie all such examples
of “extended resolution” by means of previously designed

efficiant algorithms for type tathces However, we ve
found that cern classas  of “colour resolutions”
lexemphfied by the last pair of literals above) do not

lenct themselves to lattice methods. instead, we have had
10 Augment ouwr representanon with another special group
of algoritms based on a three dimensional (hue, purity
and dustion) colowr space.

L Inroduction

A semantic net system in  which knowledge is
topically  organized around concepts has  been under
development at the Unuversity of Alberta for some years
ISchubert Goebal & Cercone 1978, Covington & Schubert

18801 The system s capable of automauc topical
cassihicaton and nsertion of modal logic Input sentences,
concept  and topic  orented retrieval, and property

wheritance of a rather general sort

Efforts are currently under way 10 extend the
nterence capabiites of the system, to enable it to
snswer some of the kinds of questions which people can
answer “without thinkng”. One type of inference which
has been under study s efficient inference of inclusion
and disjontness relationships in quasi-hierarchies of parts
or concepts ({types: Specialized data = structures and
a'goriyns have been designed for this' purpose (Schubert
1979, Papalaskaris & Schubert 18811 We view such
specuai-purpose mechanisms as essential adjuncts to any
general mforence system based on symbolic logic

Considar a system whose deducuve component is
rasoluion-based s ours will be - this happens to be
naural  since the topical classificaton and  retrieval
mechamsm  already requires propositions to be in modal
cause torm) The foliowing are some trivial deductive
probiems the deductive component may be faced with,
either i answernng user questions or In checking new
mnformgtion for inconsistency and redundancy:

1. Given knowledge: elephant(Clyde),
—~elephantix) V greyix)
Question: 1greyiClydel

2 Given knowledge: elephantiClyde),

7

plus knowiedge about types of
animals

Quest/on: ?animaliClyde)

3. Given knowledge: elephantiClyde),
plus knowledge about
animals
Questlon: ?canary(Clyde)

types of

4. Glven knowledge: yellow(Clyda),
~elephant(x) V greyix),
plus knowledge about colours
QOuestion: 7elephantiClyde)

Question 1 can be answered by resolving the
two complementary “elgphant” literals, with result
grey{Clydel. In a refutation proof, this would in turn
be resolved against the denial -grey(Clyde) of the
question The resultant empty clause )ustifies a “yes”
answer.

Question 2 could be answered by a series of
resolution steps that progress along the superconcept
sequence connecting “elephant” and "animal”; gu\ this is
just where we would like instead to invoke special
inferance methods for type lattices. From the theorem

prover's point of view, this should be & one-ste
inference: in  terms of a  refutation proof,
elephant{Clyde) i8 incompatible  with the denial
~animal{Clyde) of the question in much the same way

that complementary literals are incompatible, and should
yield the null “resolvent”. This idea can of course be
impiemented by recognizing “elephant” and “animal” as
elemments of a type lattice for which special algorithms
are available (e.g, McSkimin & Minker 1979, gchubert
1979, Papalaskaris & Schubert 1981} Similarly, it
should be possible to obtain s one step disproot for
question 3 by “resolving” the incompatible literals
elephantiClyde) and canary(Clyde). In question 4, one
‘resolving” step should recognize the incompatibility of
yellow{Clyde) and grey(x) and hence infer the
‘resolvent” -elephantiClydel, which then resolves in the
proper sanse with the question clause, to vyield a
negative answaer.

One .interesting question which arises about this
sort of ‘resolving” is whether it can be extended to
deal with /modilied predicstes such as “large animal”,
"dark brown™ end “"sort of brown" (or brown/sh.
Natural language, after all, provides a large repertoire
of predicate modifiers, and presumably any adequate
knowledge representation language must contain the
logical counterparts of at least some of these.

il. Predicates modified by hedges

We have concentrated our efforts on a
particularly troublesome modifier, namely “sort of”. It is
characteristic of this modifier (and of "hedges” in
general) that (sort—of P)x} fails to entail P{x); this is in

contrast with cases like {large Plx}, (typical Plix), and
(dark Pilx). Note however that we can take Pi(x} to
entail (sort-of Plix). For example, an elephant is



cerlanly 30/t of an elephant, aithough the maxims of
coopersuve conversation (specifically the quantity and
brevity maxims) umply that use of the hedge is
impcoper and therefore misieading if tha unhedged
precicate is known to apply {Grice 1975)

Let us reconsider tha lextended) resolution steps
postulated m examples {1} - {4) with some of the
predicates modified by sort-of. In example (1} the
standard  resolution {elephant(Clyde), -elephantix)] was
requred According to the assumed properties of
sort-of, the par [isort—of elephantiClyde). -elephant{x}]
18 compatibie while the pair [elephant(Ciydel,
~sort-of elephantix}) s not The latter incompatibility
1S easily odetected in two resolution steps given the
auom schema

~Pix) V (sort—of Plx),

which captures the entaiment postulated above No
methods other than standard resolution (in conjunction
with rules for applying schemata involving predicate
modifiers) appear 1o be required in this case

Example (2) called for “resolving® the pair
lelephantClyde).  ~arumaliClyde}l by  special lattice
memods, sO as to avoid the need for constructing
long resolunon chains. Now lisort-of elephant)iClyde),
~anmaliClydel]] are compatible, but [elephant(Ciyde),
~isort-of anmalkClyde)] plainly are not In fact 1the
stronger statement can be made that
{isort~of eiephant(Clydel, ~(sort-of animaliClyde}] are
incompatible. {The statement is stronger because by the
axiom schema for sort—of, it entails the incompatibility
of {e'ephantiClydel.  ~sort-of  animaliClydell}  This
ncompatibibity can  again be efficiently detected with
essentially the same latuce algorithms as were needed
for the unhedged case. along with the general rule
tat f P s superordinate to in a type lattice, then
isort-of Q) 1is incompatble with =~sort-of P} lie,
entails (sort-of Pil

For example {3), we observe that
lisort-of elephantiClyde), canary(Clydel} and
lelephantiClyde). (sort-of canarylClyde)] are incompatible
pars Given afficient methods for detecting
ncompaubility of type predicates P, Q. we can easily
detect these hew uncompatibilites as well, using the
rule tat (sort~of P), Q are incompatible whenaver P,
Q are Note. however that the strongar incompatibility
observed in exampls (2} now fails [{sort-of Pixl
isort-of Qix)) are compatible even when P, Q are
not. 3 tung can concesvably be both a sort of an
elephant and a sort of canary (consider myths and
fary tales). though the actual existence of such a
tung (even allowing prodigious advances in genetic
engneering) may be wildly implausible

The examples so far can inspire the hope that
the dala structwres and algorithms we have already
aeveloped for efficient detection of superordination
and ncompatibility relatonships i predicate taxonomies
are sufficient as well for detecting incompatibiliues of
hedged predicates This hope begns to falter,
however, as we proceed to example (4} Curiously
colowr predicates, which we might imagine to be
particularly “primitive” and more simply stuctured than
nominal  predicates, appear to Obey more complex
laws Not only is it correct to say that
lisort-of tan}iClyde). ~sort—of  brown)(Clydell for
sxample. are ncompatible, as in the strong analog of
example {2), but the svong analog of 4 now holds as
well n certan cases; for example, if Clyde is sort of
yelow (or yeliowish) he cannot be sort of blue lor
blversnl If thus ncompatibility held in all cases, there
would sull be no need for speciaized representations
of retationships among colour terms apart from those
which can be captured in a simple specialization fattice.
However, tis s not the case; while a colour cannot
pe both sort of yeliow and sort of blue. it can be
poth sort of yellow and sort of green. for example:
n some sense, this is because yellow and green are

more nearly compatible than yellow and blue

One possible solution is to augment the hasic
hierarchy with special "sort~of” finks. Ordinary links in
a specialization (IS~A) hierarchy indicaste subordination,
and the drrect descendants of a node are imphcitly
taken to be incompatible. The “sort-of* links would
exhaustively specify for each colouwr whether it can be
“sort-of" another colour.

One disadvantage would be the loss of the tree
structuwre; for example, thers would be two "sort-of”
links connecting “chartreuse” to yellow and freen
respectively, which sre on separate branches of the
basic hierarchy. Moreover, there would be very many
such links. The most serious problem, howsver, is thst
compatibilities and incompatibilities of new colour terms
could not be predicted For example, the mera
absence of any colour term with “sort-of" links to
both “blue” and “yellow”™ does not rule out the
possibility that there cow/d be a colour term with both
links.

This has led us to considar an approach which
introduces  “strong incompatibility” links  instead of
sort—of links (fig. 1. Two colours P, Q are taken to
be strongly incompatible just in case another colour
cannot be both “sort~of P" and “sort~of Q" The
resuitant ?r‘aph is rather pleasing and solves the
problem of predicting incompatibility of hedged colour
terms. .

However, each new type of link introduced into
8 graphical representation of colours seems to capture
only one type of relationship among colour terms. For
example, the strong incompatibilities sppear to provide
no explanation of the intuition that if 8 colour is
“sort~of scarlet” then it is not just “sort-of red”, but

simply red, whereas the analogous inference fails for

*sort-of magenta”. {Though magenta is a shade of red,
green

jellow

blue

orange purple

red

Figure 1: Strong incompatibihty Inks between
major colour terms. (The remaning 5 terms black,
brown, grey, white and pink can be added as
waelll.

‘y. v e



a “sort-of maganta® may be too far towards the

prple 10 be properly called red

IIl. The cuba mods!

led us to a thwrd kind of
representation, more speciazed sull than herarchies.
whuch takes quantitative account of the (perceived)
compositon of colowrs Those with experience in
pantng or computer graphics may be  familiar  with
trres dimensional models of colowr space. One of the
smplest models for representing colours as mixtures
of prwmtives s the colowr cube (fig 2} Starting in

Such subtieuies have

red

purple lack

b/g D

red brown

or
DI
(b)

Figuws 2 lal.bk Two views of the colour cube

Y3

grun
jdluw : blue
L]
)
1
i
]
red ‘ i fed
orange pus ple
y'/
w

L

Figure 3: Strong incompatibility links seen as
diagonals of the colour cube.

re

one corner (white) each of the edges coming out of
that corner is increasing in the intensity of a primary.
Any plane passing through the colour cube, paralisl to
one of the faces will be constant in one of the
primaries and will contan all proportions of the
remaining two. Thus the corners of the cube are: red,
orange, black, purple, blue, green, yeilow and white.

It is interesting. to note that the star shaped
graph of fig 1’ formed by the strong incompatibility
relations among the major colours, can be embedded
in the cube (fig. 3). Also, although there is 8 smooth
transition between any two colours, a given colour
term corresponds to 8 certain sub~volume inside the
cube. it becomes apparent that s criterion for strong
incompatibility is that the defining volumes for two
predicstes are not adjacent Similarly, two c¢olours are
ncompatible if the defining volumes e
non-overlapping

As one can appreciste from inspection of fig
2, defining the subregions of the colour cube
corresponding to the natural colours is not a trivial
task. (We are not concerned about exact parameters,
but we do need to do justice to the shapes of the
regions and their interrelationships in order to achieve
our inference objectives) Instead of working directly
with the primary values, we found it helpful to
re~-parameterize colours in terms of

pure colour component

purity =
pure coiour component + black component
pure colour component
" 1 - white component
and

diluton = white component

where )
pure colowr = 1 - white -~ black,

= maxired.blue,yeliow) — minired,blue,yeliow),



white = 1 - maxiredbius yeliow),
black = rrunired.biue,yeliow),

and all quantities are assumed to range from O to 1.

. A twd quantity is needed to define the hue of
the pure colour component We will not go into
cetwmls, since we have found the cube model to be
non-opumal for owr purposes. Despite its initial appeal,
and although it is as adequate as any model for
vescribing colours as additve or subtractive mixtures
of three primarias, it fails to include ail distinguishable
colours Surprising a8s thuis may seem, it is due to the
fact that any three primaries can  at best. produce
only part of the whole spactrum of hues (Judd 1963)
Of course. any graphics tool that we can use to
experiment with our modsl will employ three primaries,
but nonetheless we prefer to choose a mode! that in
theory could depict all distinguishable hues. Moreover,
we would like regions defining the natural colour
terms to be simpler than those in the cube modeal

V. The cylinder model

The cylinder model is similar in many respects
to other well known mode!ls Munsell 1969, Ostwald
1969 in that the hues are arranged in a circle around
some axis and hue is specified by angular
oisglacement The essential difference from the cube
mooel is that the chromatic l{rainbow) hues are no
longer viewed as composed of primaries, but simply
as particular angular positions relative to a reference
orection {say, scarlet. Purity and dilution, as defined
earier, are the other two dimensions. However, the
‘pre colour component is no longer reducible to the
citferance between the max and min of the primaries.
but simply represents the amount of single~hue colour
wtich has been “blended” with certan amounts of
black and white to produce the colour N question
Pursty 1s O on the axis and increases radially to 1,
and diution increases verucally (ie, axially) from 0 to
1. For purposes of graphical ilustration, it s natural
to shrink the top (white: surface of the cylinder to a
point In the resultant cone there are no paths of
zero colour gradient (see fig. 4}

' ilution
white '—\T difw

Figure 4: The purity-dilution~hue colour space,
llustrated as a cone.

The cylnder model not only encompasses all
colours. but in additon makes 1t possible to define
colowrs as regons bounded by surfaces which are
defined simply by keeping one coordinate fixed: ie.
colowr regions are pie snaped portions of cylindrical
anrul. Of course, m a representation which shrinks the
top surface to a pont such regons taper towards
me top (fig 5i .
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Flggre B: The cone model as partitioned by the
basic colour regions. Here the red and pink
regions are taken out to give a view of the
interior of the solid.

V. Inference methods

As emphasized earher, inference about colours
is only a part of 8 general inference system The goat
is to design a special purpose mechanism that, given

two literals — consisting of possibly hedged and/or
negated colour prodicates apphed to  unifiable
arguments - will determine whether they can be

resolved, ie, it will indicate when the literals cannot
both be true at once.

Going back to question 4 of the introduction,
ater resolving elephantiClyde) agannst -elsphantix) of
the second clause in the usual way, we are left with
grey(Clydel and yellow(Clydel -~ thesa asre the two
Iiterals supplied to the colour reasoning algorithm In
the model the predicates grey an yellow  will
correspond 1o non-overlapping regions 80 that
grey({Clyde} can be resolved against yellow(Clydel to
yiald the null clause, thus yieiding “-~elephant(Ciydel", in
a standard proof by contradiction

The following examples illustrate the same type
of reasoning as apphed to a stucturally different kind
of question

1. Given knowledge: tanix) V -elephantix),
~{sort-of brown)Clyde).
plus knowledge about colours
Question: ?elephant{Ciyde}

This states that all elephants are tan and that
Clyde is not sort of brown Since tan is a kind of
brown it ought to be possible to prove that Clyde is
not an elephant. Resolving tha negation of this
conclusion against ~elephantix) of the first clause we
obtain tan(Clyde). The literals to be resolved by the
colour reasoning algorithm are now “tan(Clyde)” and
"~isort-of brown){Clyde)". The defining region for tan is
included in that for brown, so -(sort-of browni{Clyde}
can be resolved against wn(Clyde), thus disproving
“elephant(Clyda)".



2 Given tnowledge: greylx) V =elephantix)
~sort-of brownliClyde),
plus knowiedge about colours
Question: leiephant(Clyde) )

This 13 very similar 10 question 1, but here
there 15 not  enough  mformation 1o  answer the
quesbon, snce the res iterals are greylClyde) and
~isort~of brownliClydel. R 1s clearly possible for Clyde
to be grey and not sort of brown Thus we cannot
resolve these clauses

The sbove examples indicate the need for:

1) a8 procedurs rel/ation which takes two colour
predicates A and B and determines the relation of
8 to A by comparing ther hue. purity and dilution
iNtervalg, .

2) a uble which states whather for a given relation
of B to A and corresponding modes a b (e,
hedged and/or negated or simple, as given by the
modifiers for A and B in the literals) the literals
can be resolved

wode ralation between A and B

RAB|Ala|Ada|PmE|Fe)

niapte simple resolve|resolive

simple heoged resolve

s'mple negated
-hadged

simple negated

neogea siaple resolve

nevged hedped resolve

necged negated
“heaged

heogea negated

negQated simple resolve(resoclve resolveiresclve

-nedged

negated hedged resolve|resolve|resolve

-nedged

neQatad negated
“neaged -neaged

negataso negated
“heagead

negated simpla resolve|resolve

negsited heoged resolve

negated nagated
~hedgedq

negated negated

Figure 6: This table determines whether two literals
can be resolved gwven the modes of each hteral and
the relation between the correspondng colour
predicates The relations, depicted graphically in the
tanle are “apart’, “adjacent’, “overlapping”, "included” and
“centre-inciuded.

The relation of B to A can bs one of the
following:

) “apart ~ iff one or more of the corresponding

intervals for A and B is not overlapping or
_ adjacent
(i) “adjacent” — iff ali of the intervals are adjacent

and possibly some but not all sre included or
overiapping

@i} “overlapping” — iff all are overlapping and possibly
some, but not all, are included

vt Cinciuded™ - iff il of the intervals of B are
included in A

v} Cincluding™ —~ iff ali of the
included In B

vl "centre~included™ ~ iff they are included snd none
of the corresponding intervals have common
endpoints

(i} “centre~including” ~ Iff they are Including and none
of the corresponding Iintervais have common
endpoints

intervais of A are

The table will contain one entry each for

““included” and “including” and for “centre-inciuded” and

1ul

‘centre-including® and the order in which the inputs
appear will determine the direction of the inclusion
Thus, when the table 18 queried the included predicate
will always be in the position of B. This is to avoid
repetitions.

consider “included” and
“centre~included” as separate cases is that they do
result in different resolving patterns. For example,
although both magenta and fire—engine red are special
cases of red and their regions ara thus included in
that for red, anything that is “"sort of fire—engine red"
is clearly red, but something that is “sort of magenta®
maybe too far towards the purple to be considered
red

The reason why we

Another distinction that must be made isg
between basic and non~basic colours. Detailed criteria
for “basicness” are listed and discussed in Kay &
McDaniei 1978, Mervis & Roth 1881 and Kay 1981
We take as basic the following 11 terms and no
others: black, grey, white, red, orange, yellow, green,
biue, purpte, pink, and brown o feel thers is
sufficient evidence in everyday usage to assume that
these completely partition the colour space. Non—basic
colours, such »as yellow—-green, navy, maroon etc,
sometimes he across boundaries and in any case
overlap one or more basic colours. Regions ocuppied
by non-basic colours sre generally smaller. A resuit of
this is that a// shades inciuded by & non-basic term
which spans two basic colours lie near the boundary
between these basic colours. Thus, for example. all
that is yellow-green is sort of yellow, yet not all that
is yellow is sort of yellow-green

These facts can be dealt with by pre—ordering
literal pairs 8A, bB before table look-up, in a manner
dependent on the basic or non-basic status of A and
B. Since basic colours always include non-basic ones,
rather than vice-versa, and to bs consistent with the
order already established for the inciuding case, the
non~basic term, if any, is taken to be B. If both are
basic or both are non—basic and the order is not
forced by an inciusion relstion, it is determined by
ranking the literals in a prespecified manner dependent
on ther modes & b, and taking the ‘lesser” of the
two literals as #A and the “greater” as bB. The
ordering we use for the input litersl modes to the
table is:

simple < hedged < negated-~hedged < negated

The algorithm can be summarized as follows:

Given clauses aAlx) and bBix} where A and B
are colour predicates and a and b are either
*sort~of”, "=, "=sort~of" or nothing. which correspond
10 “hedged’, “negated’, “negated-hedged” and “simpie”,



respecuvely, fwrst determina the relation between A
and 8

Let
basictx)=true ift x is one of the basic terms;
lessO y)=true iff x precedes y, as described:

Then proceed as follows

begin
r = relation{A Bl
ba = basiclA);
bb = basicB);
if r="centre-inciuded” or r="included’) then tablelb.arl
it (r="adjacent” or r="overlapping’ then
if ({ ba and bb) then table(b,ar)
elss if (ba=bb and lessib,a}l then. tablef.ar)
eise tabie(ab,r;
snd

Vi. Concluslion

We conclude
predicates which at

that there are classes of

first sesm to require no more
tan quasi~hierarchical representations, but on closer
examunation are seen to call for mora spacialized
representations of a quite different sort - in the case
of colours, a numerically coded “spatial® representation
The cyinder model we have proposed allows constant
ume compatibility checking of various hedged and
unnedged colour terms, minimizing the need for
combinatorial nference The model is also attracuve
for another reason the cofour cylinder could serve as
tne interface between the perceptual and conceptual
systems of a robot the required paramaters should be
quite easy to extract from the primary sensory data,
and once extracted. could easily be used to compute
an appropriate colowr label
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ABSTRACT

This paper s a flrst step towards the
computation of an inference based on language
use, termed presupposition. WNatural languages,
unlike formal languages, can be semantically
ambigquous. These ambiguities are resolved
according to pragmatic rules, We take the
position that presuppositions are inferences
generated from these pragmatic rules.
Presuppositions are then used to generate the
oreferred interpretation of the ambiguous
natural language sentence, A preferred
tnterpretation can be clrcumvented by an
explicit {inconsi{stency. This paper discusses

the appropriateness of wusing default rules
(Reiter {1980)) to represent certain common
examples of presupposition in natural language,

We bhelieve that default rules are not only
appropriate for representing presuppositions,
but also provide a formal explanation for a

precursory cons{stency-based
theory (Gazdar(1979)).

presuppositional

INTRODUCTION

The meaning of a natural language sentence
includes the Iinferences that can be generated
from the sentence together with knowledge about
the world and knowledge about language use. One
type of inference which can be generated in this
manner is called a presupposition, wWhat
typifies this kind of inference is that both the
sentence and its negation imply the same
presuppositions. Originally proposed to infer
the existence of a referent, it is now used to
define those inferences, generated from a number
of linquistic situations, which pass this
negation test. The following sentences show
some prototyplcal examples of presuppositions.
In each of these examples the positive
a-sentence entails and the negative b-sentence
presupposes the c-aentence.

(la) The present king of France is bald,
{lb} The present king of Prance is not bald.
{lc) There exists a present king of Prance.
{2a) Jack's children are bald.

{2b) Jack's children are not bald.

(2c) Jack has children.

(3a) Mary ia surprised that Fred left.
(3b) Mary is not surprised that Pred left.
(3c} Fred left.,

103

R. Reiter

Computer Science Department
Rutgers University
New Brunswick, NJ 08901

(4a) John stopped beating the rug,
{4b) John d4id not stop beating the rug.
(4c) John has been beating the rug,

This negation test led to one
definitions of presupposition;

of the early

If A and B are sentences then
A presupposes B iff
(i) A entails B, and
(11) -A entails B,

It can easily be seen that under a bivalent
asemantics this definition leads to the
unacceptable conclusion that B is a tautology.
This observation subsequently led to attempts
using multivalued semantics. Both Kempson (187%)
and Gazdar(1979) give examples in which this
semantics also fails to generate the appropriate
presuppositions. In parallel with these
attempts at a gsemantic definition of
presupposition, there were candidates for
pragmatic definitions as well. There were two
sorts of presupposition suggested, First,
speaker presuppositions are those that the
speaker assumes the 1listener knows, Becond,
“plugs, holes, and filters" (categories of
lexical items and the connectives and, or, and
if...then, which stopped, permitted, and
filtered out presuppositions) were considered in

Karttunen(1973,1974) as explanations for the
presuppositional behaviour of compound
sentences. Both of these approaches are

convincingly argued against in Gazdar (1%79).

The persistent theme in these early
attempts by linguists at defining
presuppositiona, as summarized in Kempson(1975},

Wilson(1975), and Gazdar (1979) was that
presuppositions are entailments of the sentence
(and context in the case of the pragmatic
definitions). Gazdar(1979) makes a major shift

when he argues that presuppositions should be
defined In terms of consistency rather than
entailment, His arguments centre around the
other main issue for linguists, the projection
problem: given the presuppositions of a simple
sentence, which ones survive the embedding of
this sentence in a more complex sentence, More
generally, how does the context affect a

sentence's presuppositions,

of this contextual sensitivity
interpretation, (4c)

An example
follows: Under a "normal”



in the example above can be ®"inferced® from
(4b). But this inference is not an entailment
since (4b) can be placed in a context which does
not allow this inference.

(4d) John did not stop beating the rug
because he hadn't started.

Rence, a presupposition of a sentence is
consistent with that sentence, but when the
sentence {s placed in a larger context, the
presupposition may be inconsistent; hence it can
no longer be inferred. Presuppositions i{nvolve
notions of {ncomplete knowledge and consequently
non~-monotonic systems of logic,

We essentially agree with Gazdar's
approach; however we feel that his solution ({s
somewhat ad hoc 4in that {t is not a suitably
formalized theory. 1In addition his theory uses
a moda) sentential logic, We prefer a first
order representation of sentences, Also aocme of
the questions that he poses cannot be answered
within his framework, in particular: why are the
lexical and syntactic sources of presuppositions

as they are, In all fairness it should be
pointed out that Gazdar{l979) 1is primarily
interested in convincing the linguisatic

community of a certain pragmatic solution to the
projection probleam,

The main issue for us is the representation

of presuppositions and the inferencing
mechanisms required for generating these
inferences in a coherent fashion., In doing so

we feel that our representation can provide the
extra insight needed to answer the above
question, In particular, we view
presuppoaitions {n a more general sense: as
inferences generated in the absence of complete
knowledge., Our proposal is intended to provide
the reguired formalism but keeps the essence of
Gazdar's theory intact,

This paper presents a framework for
representing presuppositions of asserted

declarative sentences.

REPRESENTING PRESUPPOSITIONS USING DEFAULT RULES

This paper has a twofold purpose:

(1) to provide a computational mechanism for
computing presuppositions,

(2) wo furnish a formal explanation for a
portion of the presuppositional theory
in Gazdar (1979).

In reference to (1) the only other attempts
to compute presuppositions of natural language
utterances have been Joshi and Weischedel (1977)
and Kaplan(1979). Since the algorithms
contained therein are based upon a theory of
presupposition (Karttunen(1973,1974)), which has
been refuted by Gazdar (1979), these approaches
are no longer serious candidates for computing
presuppositions,

LT

In reference to (2) the theory of
Gazdar (1979) uncouples the generation of
(potential) presuppositions from the checking of
thelr consistency. In contraat, our theory
represents each potential presupposition by a
default rule, The proof theory for default
logic provides the consistency checks required
by Gazdar,

This is a novel use of default rules as a
representational device. Reiter (1980) was
motivated by a desire to represent beliefs about
incompletely specified worlds. HRe also pointed
out that default rules could be used to
represent prototypical situations. The novelty
of the current application is that we are using
default rules to represent preferred
interpretations of ambiguous lingulstic forms,

A default rule 1is a rule of inference
denoted
a(X) s MB(X
w(X)
where qa(¥X), B(X), w(X) are all first order

formulae whose free variables are among those of
X = x1,...,xm, Intuitively, a default rule can
be interpreted as “Por all individuale
%l,00.,xm, If qo(X) {8 belileved and if g(x) is
consistent with our bellefs, then wi(X) may be

belleved®. (Reliter(1980))
Some examples should point out the salient
features. The first example will be given ({n

some detail in order to describe the inferencing
that leads to the preferred interpretation
(Wilson(1975)) of an ambliguous lexical item (or

syntactic construct in later examplen),
(Kempson (1975) uses the term natural
interpretation.) Our solution is to represent

the preferred interpretation of an ambiguous
linguistic form as the inferences obtained as a
result of deducing the consequent, w(X), of a
default rule. The formal definition of *“a
presupposition of a preferred interpretation® ia
then the consequent of a default rule.

Example 1 - Btop

In this example e represents an event, and
tl and t2 are time parameters meant to represent
times relevant to the event, e. FEven though a
proper represention for continuous actions has
yet to be obtained let us assume here that the
following meets our requirements for a
definition of "stop":

(Etl t2).tl,t2 & DO(e,tl) &
~D0(e,t2).

STOP (e) <~—f

That s, for our purposes, an event stops {iff
there is a time tl at which the event was being
done and a later time t2 at which the event was
not being done., We can then generate the
definition of "not stop” by a simple negation to
obtain






Jahn tegrets that Mary came to the party.
John does not regret that Mary came to the
party.
Under normal clrcumstances, both of
sentences imply that

these

Mary came to the party.
We need the following axiom schema:
FACTIVE(P) & P(x,#) => g (%)

where ¢ is any proposition. In addition, we

propoae the following default rule schema to
provide the necessary presuppositions of
factives:

1 M

PACTIVE(P) & ~P (x,d)
&

where ¢ is a proposition. Suitable instances of
these sachemata for the above example would take
REGRET for P, John for x, and COME {Mary,partyl)
for ¢d. Note that the knowledge base must
contain the linguistic fact FACTIVE (REGRET).

Thua in {ts positive occurrence, the
factive verb entails its complement, whereas in
its negative, the factive verb presupposes its
complement, This presupposition can be blocked
in a context that blocks application of the
default rule. FPor example

John does not reqret that Mary came to the
party because she didn't come,

Pormally, we view this sentence as providing the
information
~COMB (Mary,partyl)., (**®)

Prom (**) and a sultable instance of the axiom
schema (*) we are able to deduce

~REGRET (John ,COME (Mary,partyl}).

Moreover, the given fact blocks the
application of the default rule schema thereby

(a*)

preventing the derivation of the "normal”
presupposition COME (Macy,partyl).
Example 4 -~ Pocus

Two methods of focusing parts of sentences

which produce presuppositions are: (1) a
syntactic method called clefting (clefts and
pseudoclefts), and (2) an intonational method
called contrastive stress,

Clefts and pseudoclefts. We do not define
these two notions; instead we give an example
which points out their important features.

Cleft of “John came (did not come).”t
It was (not) John who came.
Presupposition: Someone came.
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raeudocleft of "John wanted (did not
the dog.*:

What John wanted was (not) the dog.
Presupposition: John wanted something,

want)

Contrastive astress, Normal streas occurs
at the end of & sentence, but any of the
constituents in a sentence can be streased with
certain presuppositional consequences. If we

have the normally stressed

Bill did not wreck this truck.
this could be represented as
~WRECK {Bi11,truckl).

But we need some method for representing focused
{tems wherever they occur. We will use
A-abstracted predicates as in Nash-Webber and
Relter (1977). The representations (disregarding
tense) for the focused sentences are thent

Cleft; It waa not John who came.
~{rx COME (x) 1John
pseudocleft: What John wanted was not the
dog.
~{Ax WANT (John,x) }dogl

Contrastive stresss Bill d4id not wreck this
truck.
{(Underlining signifies
gtress.)

~[ax WRECK (x,truckl) JBill
We propose the following pragmatic rulet

alaxg(x) v s M(EYIE(Y).

(Ey)# (y)
The presuppositions for each of the above
focused sgentences would then be generated
appropriately, Por example, given

Bill 4id not wreck this truck.
which 18 represented as
- [\ x WRECK (x,truckl) 1111
we can derive the presupposition
(EY)WRECK (y, truckl)
that ls,

Someone wrecked this truck.

CONCLUSTON

This paper regards presuppositions as
inferences derived partly from pragmatic rules
(conventiona of language use), and discusses the
suitablility of using default rulea to represent
such rules, The preferred interpretation of an

ambiguoua 1lexical item or syntactic constrict
can then be inferred using the derived
presuppositions.
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