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Un Message du President · Gf,n~ral/A Message From the General Chairman 

Bienvenue a Sask.atoon. J'espere Que YOUS Welcome to Sask.atoon. l hope you will 
aerea toua aatisfaits de la conffrence et also get a chance to see aomething of the 
l'univeraire pendant votre aejour ici, C'eat la University, the City and the Province 
qu.atrieae Coaf,rence Natiooale de la CSCS1/ while you are here, Thia 1• the Fourth 
SC£10, lea troia pr~cedentea ayant ~te _ National Conference of the CSCSI/SCEIO, 
tenues a Vancouver en 1976, a Toronto et a the other three havina been held in 
Victoria en 1980. J1ai confiance que la Vancouver in 1976, Toronto in 1978, and 
n~tre aera le mellleure, Victoria in 1980. I am confident it will 

La CSCSI/SCEIO eat une organisation de be the beat one yet, 
petite eovergure tout en ~tant tres ,, The CSCS1/SCEIO 1a a small organiaation 
dyn&raique, £n plus de tenir une conference ae organisations go, but a vigorous one. 
tous les~d~ux ans, nous publions u~ bulletin In addition to hosting a biannual 
et, en general, nous essayons de reunir des conference, we also produce a newsletter 
chercheura (Canadien et autres) interessea and in general attempt to bring together 
dans le do111aine de l' intelligence researchera (Canadian and others) who are 
artificielle. Noua aommes toujours a la interested in computational studies of 
recherche de nouveaux membres et nous vous intelligence. We are alwaya looking for 
inviton• a '11:lus joindre ai le coeur vous new membera and would invite you to join 
en dit, ua if you wish. . 

Une conf:rence coane celle-ci ne se A conference such ae this does not 
r~alise pas du jour au lendemain. just happen. Many people must work long 
Plusieurs personnes doivent travailler and hard in order to bring it about and, 
d'arrache-pied en vue de sa r~alisation et, in an organisation ouch ae the CSCSI/SCEIO, 
dana une organisation telle que la CSCSl/ this work is ~trictly volunteer, l would 
SC£10, ce travail et fait strictement a particularly like to thank Nick Cercone 
titre volontaire. J'aimerais particuli~re- for doing a superb job of putting together 
ment remercier Nick Cercon~ pour son the prograoune and Brian Funt for editing 
excellent effort a la conception du the Proceedings. Many thanks to the 
programme et Brian Funt pour sa remarquable Programme Committee, who did yeoman 
c·ontribution a la publication de celui- ci . service in refere eing the papers; they 
Hille 11>ercil au comite du programme pour eon included James Allen, Norm Badler, Mike 
excellent travail d'evaluation des resum~a. Bauer, Wayne Davie, Hark Pox, Bill llavena, 
Font pa _rtie de ce comit~: James Allen, Norm Hector Levesque, Charles Horgan, John 
Badler, Mike Bauer, ~ayne Davis, Mark Fox, Hylopoulos, Zenon Pylyehyn, Reid Smith 
Blll Havens, Hector Levesque, Charles Horgan, and Doug Skuce. Other people who helped 
John Hylpouloa, Zenon Pylyshyn, Reid Smith et with the correspondence, envelope 
Doug Skuce. O'autres personnes ayant aid~es stuffing, label production, technical 
~ la correspondance, ~ la pr,paration des writing, registration, languags 
dossiers, a la production des cartea translation, etc,, include Peta Bate•, 
d'identit~s, a la documentation technique, Dave Goforth, Blake Ward, Harlene Colbourn, a l'in9cription, a la traduction, etc, and Charles Colbourn of the University of 
co.mprennenc Peca Bates, Dave Coforth, Blake Saskatchewan and Josie Backhouse, lulthy 
Ward, Marlene Colbourn, et Charles Colbourn Bootle, and John Gerdes of Simon Fraser 
de l'universite de la Saskatchewan, ainsi University, I would like to thank all 
que Josie Backhouse, Kathy Bootle et John of them for their efforts. The 
Cerdes de l'univeraici! Simon Fraser. co-operation and financial assistance 
J 'aimerais les remercier tous pour leur provided by the Computing Science 
fructueux efforts. La coop,ration et Department of Simon Fraser University and 
!'assistance financiere fournies par lea the Department of Computational Science 
d;partementa "Computing Science" dee at the University of S.nskatchcwan have 
univereit~s Simon Fraser et de Saskatchewan been invaluable. 'Finally, the 
ont ~t, ineatim.ables, Finalement noua en contributions of the Notional Science• 
savons gr: au Conseil National~ la and Engineering Research Council of 
Recherche Scientifique et due genie du Canada, the government of Saskatchewan, 
Canada, au governement de la Saskatchewan and the City of Saskatoon are gratefully 
et• la ville de Saskatoon pour leur acknowledged. 
precieuse contribution. 

Gordon HcCalla, 
President ce'n~ral, 
Quatrieme Confe'rence Nationale 

de la CSCS1/SC£IO 
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PARALLELISM IN PLANNING AND PROBLEM SOLVINGa 

REASONING ABOUT RESOURCES 

David E. wtlkln• 

SRI International Artificial Intelllgenca Center 

ABSTRACT 

The implications of allowing panllcl action., in a plan or 

pn,blrm solution arc disc~. The pl:rnning syskm should 

tale ad,-:anl:,~ of helpful intuaction, between p:uallel branches, 

mu,t Jetttt bumful interactions, and, if possible, remedy them. 

Thi:o p:.p<"r dcscrihes wb:.t i, involvt-d in this and. prc,ent., &ame 

new tttbni,1ucs tb:it a.re implcmenteJ in an actual planning sy$­

trw :inti att ~dul in s«king solutions lo the~ problems. The 

1110,t im port:.nt of tbrse trcbnique,, re:uoning about tt,ourccs, 

i• rwpL . ..,,i,ccl and expl:.incd. 1 

1. Introduction 

Tbi:t P3pu discu~ problem, faced by an automatic plan• 

ning ,y,trm conccrntd with detecting and r"ponding lo in• 

trraction, in panllel br:u,cbn of a pl:.n. (Thi, could nl,o be 

1 hought of au a problem solving sy,tcm producing problem ,olu• 

1io11:o.) There arc three aspects to this situ:i.tioa: recognizing 

·in1rr:,,c1ions between bn.ncbe,; correcting harmful interaction, 

aht keep the pl:,a from accompli,bing iu overall goal; taking 

aJu,na :ige of helpful effects on pa.r:illcl branches no as not to 

pr<><lu,e inefficient plan,. 

\\'r ,b:,11 coa,iJer a domain-intlependent pl:rnning ay,tcm 

1L:.1 pnniJc, some formalism for representing the domain in 
•liich abe pl:.noing will be done(:>.! well as the goal, to be 

:icLir,rJ by the planner). The system also allow, for the reprc­

... n1:.1ion of oprraton. Thoe u-e the ,y,tem', reprcscntation 

of action, abat m:,y be pcrforwcd in tbe tlowain or, in the 

c»e of bicran.-bical pl:i.nncn, abstractions of actions that can be 

p.-rlormeJ in the dom:i.in. A plan con,bts or pa.rtially ordered 

goaJ, and action, produccd by applying operator, to the initial 

goal. :\ction, in tbe plan explicitly list their effect.,, i.e., they 

sp«i6ca.lly Slate which relationship, in tbe world model change 

tlarir truth ,:Jue alter the action i, performed. (Thi, i, pa.rt or 

• bat \\"a!Jiager (eJ b:i.s c::i.llcd the STRIPS a.,.,uwption.) NOAII 

(:1J, :,.:o~I.I~ (SJ, and SIPE (7) a.re exam pl" or ,uch planners. 

la tbi, Ji,cussion, para.lltli,m u considered beneficial. (Two 

wgmenu or a plan are in pa.ralld if tbe pa.rtial ordering of the 
1 Tbe r.-ucb r<p.,tlcJ bcre u 1upporled b7 Air Force Office ol Scienlific 
kon.rch Cvntracl F~QG!»-7~C-0!88. 

plan docs not specify that one &egment must be done before tbe 

other.) In much automatic prognmmiug research the goal la to 

produce a ~quential program, ao it is often easier lo completely 

order the plan (program) rather than reason ubout parallel in­

tcractiooa. llowcver, in multief?eclor euvironmenta parallc:liam i1 

preferable. For example, if there arc two robot arw1, plaru that 

~ thew in parallel t.o accomplish the goal arc o~en preferred 

to a sequential plao that could gel by with only one IIJ'm (even 

though it might take twice a., long lo 11ccomplish). Our approach, 

therefore, i, to keep a., much pa.rallclism u possible and lo rea,oa 

about the interactions that result from it. 

2. Parallel InteractloH 

The canonical simple problem for thinking about parallel 

iutcra.ctions in thi, coutcxt is the three-blocks problem. Dloek, 

A, B, aod C a.re on a table or on ooe another (only one bloek 

m:i.y be on another at any one: lime). The goal ls to acbicn 

(ON A B) in conjunction with (ON B C), thus making a three­

block tower. (Initially the two goola arc represented a, being 

in parolld.) To move the blocka there 11 a PUTON operator 

(expresocd in the formalism or whatever planning system we wlab 

to talk about) that puts OBJECT! OD OJIJIWT2. It• definition 

sp.:cilie, the goal, of ma.king both OUJECTI and 0BJECT2 clear 

Ldorr pcrforwiog a ·primitive move action. (The table ie 11111umed 

alw:i.y~ to br dear :ind a block is clear only when no block i1 011 

top of it.) Thi, problem will be u,cd below lo provide examplea 

of interactions. 

Jr two br:i.nchcs or a plan are in parallel, an lnteractloo It 

defined lo occur when a goal that i1 trying to be achieved In 

ooe branch (at nny level in the hierarchy) ie made either true or 

false by an action in the other branch . Since the actiona in a 
plan explicitly list their el?ccu, it is alwDye pos,ible to recogni&e 

auch iutcractiona. (In :i. hicr:irchicol pla.nner, however, they ma7 

not appear until lower levels or the hierarchy of both branchn 

have been plonucd.) Dy requiring thot a goal be involved io lhe 

interaction, we :i.ttcwpl Lo eliminate inter11clion1 tbol we do not 

care about. For this lo eucceed, the domain mu.st be encoded 10 

that nll important relationships are represented u goal, aL 1ome 
lc,·el. This will be discussed later. 



Tb.- .,laoD.-r no po.s,ibly tale advantage or a situation in 

wbicb a gi>al in ooe braocb i1 made true in another branch (a 

hclprul intenction). Sup~ we solve tbe thrre-blocl.s problem, 

11&niog witb A and Con tbe table and 8 on A. In solving the 

(0!11 n C) parallel branch, the planner will plan to move B onto 

C, 1bu1 making A clear and C not clear. Now, while an allempt 

i:t lb&dt to move A onto 8 in the (ON A 8) br&nch, the goa.l or 

making A tlear btcomt1 part or the plan. Sinc.e A is not clear 

ia the initial atate, the plHncr ma, decide to make it true b7 

moYiog D rrom A to the table (after which it will move A onto 

R). lo thit u.ae it would be beucr to !'ffopi1e the hclprul eaect 

ol m;i.Ling A clc:u, •bicb h:\ppeos in the pa.nllcl branch. Then 

tbt pL>nncr could dttide 10 do (ON 8 C) 6nt, in which case 

liotb A and D become clear and the (ON A B) goal is easily 

.:w:rowpli~hed later. 

The pbnntr mu,1 dccidc whether or not to add more or­

dc:rint roMtr;i.ints 10 the plan to t:i.ke advantage or such efrccu 

011 a p;u-a.llel bra.ncb. Ordering the pa.rallel branche, sequeo• 

ti::1111 is tbc best solution to this problem btcause (ON B C} 

mu,1 be done first in aoy case, but in other problems ao order­

ing ,ui;:;n1tJ to tah adnotage or bclprul effects may be the 

"rong thing to do from the standpoint or cvrotually achieving 

ti.<' onrall goal. lo gcoenl, the pfaoncr cannot make aucb an 

or,l<"riug drci~ioa without c1Tor unless it completely iove:,tigatC3 

all tbt roo.uqucoccs or ,ucb a dcci,ioo.. Since this is not alway, 

pr.vi ic;J or Je,ir:i.blc, plaooing systems use heuristics to make 

,u<'h ,ltti.,ioos. 

rr ao int.-ractioo is detected that mak" a goal raise ia a 
p.'lnlld bnnch, tbuc is a problematic (i.e., p<Wibly barmrul) 

io1n:u1i0D which may mun that the plan is not• valid solution. 

ror cum pie, suppo,e tb.- planner docs not rccogoize the bclprul 

io1cr.c1ioa in our problem ud procCflls to pl:i.n to put B on 

,tbe taLlt ud A oa B in the (ON A B) branch. The plan is 

nu loa,er a nliJ ool111ioo (ir it i1 usumcd tbt.1 one or the two 

1•:ora11~1 br:,,ncbu will be uccuttd heron: the otbcr). Tbe pl:i.aner 

mu,t ttcocni1e I bis by detecting the problcm:1tic inter:1ction. 

~amdy, the go:,,! or b:i.viog B clear in the (ON B C) branch is 

mt.Je false ill the (OS A D) bnocb when A i, put onlo B. The 

pb11atr m.ut then decide bow to rectify tbi, situation. 

l 

As with helpful iatenctioos, there is no easy way to solve 

b:i.rwful ioter:utioiu. lien: too a torn:ct solution may require 

1h:i.1 all rutun con.cqueoca or an ordering decision be explored. 

S1r;a1a,eiu1 other tb:i.n ordering may be necrss:iry to aolvc tbe 

problem . For example, a new operator may perhaps need lo be 

a11plinl al • bis;b<'r Ind. c ·oiui,ler the proLlcw or awitcLing the 

"''""' ur tlie two reci,1.-n ia a two-r.-cisl<'r wnchiac. Applying 

1be ,..,i,ter-to-regi11cr moYC oper:itor crn1c1 a harmful inter­

:,,ctioo that no ordering can solve, since a value is destroyed. 

Tbr , olution to 11.ia iuter.ctioo involves npplyinc a rcgislcr•l<>­

mciuory move opt'ra1or at a bii;b level in order lo store one or 

tl,e valuo lewpoprily. Correcting many types or harmful inter· 

actions efficiently sc.-ma very difficult in a domt.io iodepeodenL 

planner - domain specific heuristics may be required. 

a. Summary or SIPE Sya\ern 

The problem or parallel ioter'actioos bu been etudied at 

SRI loterntiooal in the context or a domain-independent plu• 

ning system. This section brieOy aumm arius the aystem and the 

following eectioo explain, bow parallel iot.eractioaa are bt.ndled. 

Aoa Robinson and I bave dC3igoed aod· implemented a ayatem, 

SIPE (System for Interactive Plaooiog and' Execution mooit.or• 

ing) (71, that supvart.s both interactive and automatic planning. 

At present, it.a automatic acarch is not very li:oowledgeable • 

SIPE is dC3igoed to allow interaction with user, who are able 

to watch (graphically) and, when desired, guide t.od/or control 

the planning process, thus enabling the eolutioo of much more 

difficult problem, tban would be possible with the automatic 

search. The system can keep many alternative plane in readi­

nc'9, each with the appropriate context, thus making breadth• 

first or ~st-first aearcbea easy to implement. 

Tbc system provides for reprc,cotation or domain object.a 

and tbeir invariant properties io a type hierarchy with inheritance. 

Relalioo,hip, awoog these objects that may change over time 
arc ,.-presented ~ predict.Les io first.-ordcr logic, with univer­

sal quaotilicatioo allowed. Predicates are used to describe the 

preconditions and cfJecta or opcrnton. 

The sysLem permit.a tbe posting or many typea or coD· 

straiots OD the values or variablC3 io a plan (e.g., speciryiDC 

that tbc eventual io,taotiatioo or the variable must have a cer­

tain value for a certain •ttribute, tb•t it must be the nme M 

tlac iastaoliation or another variable, etc.). Thia allow, partial 

tlcscriptioos or object.I to be built up M) that the planner can 

uecuruulutc i11form11tioa bdoro milking decl1i0D1. Con,tralnt.a 

h<'lp encode many tlaio~ that would be hard to represent in the 

predicate calculus language used for preconditions and efJecte. 

Constraints ue alao used to represent information about pt.ral­

lel ioteraclioos (see the next section). 

The planning is bicrarcbical; each goal and action e&D be 
cxpnnded into a more detailed multislcp plan until the primi­

tive level i, reached. Pl1101 are represented u procedural Dell 

(similar lo Lhose io NOAII (3]), their partial ordering being en• 
coded by succc•sor links iii tbe net. SPLIT and JOIN nodes in 

tlac net allow for parallcliow io plan,. 

OperaLors r<'prc•cot acLions in the domain or ab1traction1 

of actions (that will eventually be expanded at lower level, in 

tbe hierarchy to actual actions). Operators can introduce new 
variaLlca, iwva•c constraiul, upon new or old variables, and 

represent tLcir in,Lruclion, for expanding a node io a formalism 



aimil;ii lo procrJural Dcts-namely, noJrs •ith slots that are 

'p;ani:illy onlettd by the linls bet•·een them (see [3]}. The alots 

or a Dode will ttpresent (among othn propertics), the n:ime or 

an :act ion to be pt'rrormed for an action node, t be predicates to 

be achie\·ed for :a goal node, the arguments to be used, and the 

rlJrcu or pt'rforming the given action. SIPE allows arguments 

or aD a.rlioD or go:J Dode to be specified u •ruources• . A, we 

shall sec l:attr, this is nry userul for reasoning about parallel 

in1u:.c1iou. 

The cll'ecb or a.rtions mu.st be appropriately defined in the 

Opc'nton ao the systcm can u.se the STRIPS ~umption to 

detcrmine the al:ite or the worid in the middle of the pl:in. 

PrrJic:atn in thc cllttts may cont:ain univenal quantifien. SIPE 

;wo permits specification of deductive opera.ton; tightly con• 

trolled drJuctions :are performed automatically by the system. 

This mal:cs the encoding of operaton much simpler, since, in 

gcnu:J, only the prim:i.ry elJect must be cncoded in an operator 

:ind mo:.t side cllecl.3 c:in then be deduced rrom the primary 

dl'«t by using the deductivc operaton. 

~bny or the abovc features or the SIPE planning system 

an utrnsions or previous domain-independent planning ays­

lrnu. Among such cxtc:n.sion, arc the following: c.lcvdopment 

of a pt'npicuou.s rormalism for encoding dcscriptions or actions; 

1he u..e or coasfraials lo partially describe objects; the crea­

tion ur m«baai,m, 1h:a1 permit concurrent exploration or al• 

1crn:a1ivc pla.ns; the incorporation or heuristics for reaM>ning 

:.bout re,ourccs; u.se of qu:uitifien in the elrccts or actions and 

m«h:aai.,ms that ma\:e it pos5ible lo perform simple deductions 

(thucby simplifying opcr:itor dcscriptions). 

,. H-dliag Parallel Interaetloaa la SIPE 

The SIPE s,rstcm has produccd correct parallel plans for 

problem, in rov dill'crent domain., (the blocl:s world, cooking, 

airer:ah opc-ratiou, and a simple robotics iusembly taul:). This 

wrtion describes ncw rcaturn and heuristics in the aystem that 

aid in h:aa<lling parallel intcr:ictions. These fall into four arc:is: 

(I) re:asoning about rcsourecs, which is the major contribution 

of Sll'I-:; (2) u.sing constraints'° i;eacr:atc cornet parallel plans; 

(3) explicitly rcprescating the purpose of each action and goal to 

btlp SQ)n harmfol intenctions correctly; (4) taking advantage 

of helpful interaction.,. Other plaaaen have had ,ome or lhe 

fnl1&rn (c.,., NONLIN ha.s feat urn aimila.r to the l:ist lwo are:is 

meatioaed), bul SIPE develops lhC3e idea., with a difJcreot cm• 

ph»is •. Our own cm pbasis h:i.:s btto to represent lbe information 

th:al mw,l be rc:a,oncd about in a way that is natural lo humans 

kl that ,be planner can be c:uily controlled interactively-thus 

allow inc more difficult problems to be solved. 

3 

OPEl<ATOR: PUTON 
ARGUMENTS: DLOCl<t, ODJECTI IS NOT DLOCl<l; 
PURPOSE: (ON DLOCKI OBJECT!); 
PLOT: 

PARAUEL 
DRANCll 1: 

GOALS: (CLEAfITOP OUJECTl); 
ARGUMENTS: ODJECTl; 

DRANCH 2: 

GOALS: (CLEARTOP DLOCKl); 
ARGUMENTS: DLOCKI; 

END PARALLEL 

PROCESS 

ACTION: PUTON.PHIMITIVE; 
AIIGUMENTS: OBJECT!; 

RESOURCES: DLOCKl; 
EF'F'ECTS: (ON [lLOCKI OBJECT!); 

END PLOT 
END OPERATOR 

F'igurc I 

a PUTON operator In SIPE 

4.1 Rcaourcca 

In the following di~cu,sioo, actual examples will be pre,. 

sented to show how rc110urces hdp '!'ith parallel iutcrnc tiona. 

Fii;ure I 8bows o PUTON operator written in SIPE. The above 

example of achieving (ON A B) and (ON B C) a., a coujunc• 

tion ,bow, how resource rea.,oning i, l1elprul. Figure 2 depicta 

a plan thal might be produced by NOAH or NONLIN (or 

SIPE without making u,e of resource reuoning) for this prob­

lem . Fii;ure 3 shows a plan from SIPE using tt!OllrCC3 in lhe 

operaton. 

The forwalism for reprc.enlinc operaton in SIPE includea 

a means of specifying that some or the variables associated 

with· an action or goal actually serve a.s resource, for that ac• 

tion or goal. Resources are lo be employed during a particular 

action and then relcascd, just as a aaw ie uscd durioc a cuttinc 

action. Reasoning about resources is a common phenomenon. 

r, is a ~cful way or reprcaenting many domains, a natural 

way for humans to think or problem•, and, consequently, aa 

important aid to interaction with the eyatem. 

SIPE has apecializeJ knowleJge for handling re,ourc"; 

merely specifying thal something is a resource causet the ,, .. 

tem to check on resource avai111bility and on resource conflicla. 

ll is often difficult or awkward to keep track or reaourcea in 

current planning aystcms (e.g., [3) [SJ). Reaource availability 
io the lattcr would have to be axioruatiied and checked in the 

prt't'ouditioua or opnaton, w bile rc,ource confiicu would have 
lo be caui;ht by tbe normal problematic interaction detect.or, 

which is ll'ss efficient (a.s we ahall ecc below). 



CLIAR A 

.IOIN l'UTA 
ON I 

CLIAR I 1,r1CTl1 
IONAII 

ll'LIT 
ICLEAR II JOIN 

CLIAR I 

l'UTI 
JOIN ONC 

CLEAR C EFFECTS : ION I Cl 
ICLEAR Cl 

Fi1ure I 
• plaa wi1bou1 r•eou, .. 

SPLIT 
CllAR I 

AROUMENTS_: I 

.CLEAR C 
AROUMENTS: C 

PUT ON IC 
AIIOUMENTS: C 
fl ESOU ACES: I 

JOIN 

Fi1ure a 
• plaa wilb reoou, .. , 

One adnn1:1,c or resources, there fore, i, that the7 htlp in 

t be :uiom;atiaatioo aod repr~otation or domains. Declaration 

or a rnouru -i:itcd with an action connotes that one 

prrcondi1 ion or the action is I be av;ul:ibility or tb:at resource. 

\lccb:ani,m, in the: planning 171te111, a.s they allocate and dtal• 

locate rnourct"S, autooutiully ensure that these implicit prc:con· 

,lit ion, will be: ntis6ed. The user of the planning 17sum don 

1101 ban to axiom:itiie aa a ·precondition the anil:ibility of 

rnourc:n in the domain operators. 

Ano1her important adn.otage or resourcn is that they 

help in culy detection or problematic inter:u:tioos on p:irallel 

bnnchn. The sysiem doo not :illo• one branch lo use an 

objN:t which is a rt30urc:e in a puallel bnnch. In NOAII 

a.,I NONI.IN, both orii;io:11 GOAL node, :ire cxp:indcd with 

lbe l'llTON operator or iu tquiv..leot. Tbi, produce, a plan 

aimilar 10 thr oor ,hown in Figure 2. The: central problem is 
1<1 Le a•att that D must be pul on C bc:fott A is put 011 D 

(otherwise B will not bc: clur when it is to be moved onto C). 

4 

NOAII aud NONLIN Loth build up a table or multiple e1Jecl1 

(TOME) that tabulat.n every predicate: i111tance as.,erted or 

denied io the parallel exparu1ioru1 or the two GOAL nodes. 

Using tbi, table, the programs detect that B is made clear 

in the expansion of (ON D C), but i, made not clear in the 
(ON A B) expansion. Doth program, then aolvc: thie problem 

by doing (ON B C) 6nt. 

SIPE ll3ea it.a resource heurietic to detect thia problem 

and propose the aolution without ho.viog lo generate a TOME. 

(SIPE does do a TOME-like analysis to detec:t iot.eraction1 

that do oot fit into the resource reasoning paradigm.) When 

some object is listed in an action a.s a resource, the ay,t.em 

then prncnta that particular object from being mentioned u 
eitli~r a r~ource or an argument in aoy action or goal that is 

io parallel. In the example above, the block being moved i1 

listed n.s a reeource io tbe primitive PUTON operator bccau11e 

it i, being physically moved . Therefore, nothing in a parallel 

branch ehould try to move it-or even be dependent on it• 



curnol loca1io11. This rntriction is enforced by ool allowing 

a prec.licate on a parallel br.uich 10 meatioa the resource. Tbi1 

is a 1troag rntriction (though usdul ia practice) and can be 

avoiJnJ by 1Uing 1h:t.red rcsourco (Ji.,c~ed below). Thus, u 

aoon u tbe up:uisioa or (ON BC) with tbe PUTON oper:itor 

is accomplished and tbe plan ia Figure 3 produced, SIPE 

rttogniat's thM &he pl:in is invalid 1ince Di, a resource ia tbe 

opansioa or (ON D C) and an argument in (ON A D). Thi, 

nn de detected without expanding the (ON A B) goal at all 

and without gntrating a TOME. 

Not being able to refer to a resource in another branch 

is somt'timo too strong a rotriction. SIPE also permits the 

sp«i6cation or shared resource,, whereby the same object cau 

be a roouree or au argument in a parallel branch it certain 

conditions tor the sharing arc met. (Currently shared resources 

arc ,h:>.r.lble under all conditions n.s the aharing conditions have 

not yct btta implemented.) 

Rc.ourcu Lclp in ,olving harmful interactions, a, well 

:u in detecting them. lo thc:,.e interactions no goal is made 

(al,e on a paral lel branch; there i, simply a resource conflict. 

llowenr, it the rbOurce availability rNJuirements were axiom• 

atizrd with prcdicatn, an avail:ibility goal would be made false 

on a parallel hr.inch. Thus, resource con8icts are considered 

to be problematic interactions. SIPE uses a heuristic for solv­

ing r~ourcc-argument cooOicu. Such an interaction occun 

• bra a rN<>urce in one parallel branch is used a, an argument 

in another p:>.r.lllcl branch (distinct from a rt'30urce-resource 

coaOict, ia which the s:i.me object i, u,rd .u a resource ia two 

paralld branches). Thi, i, the type or conflict that occurs ia 

the pl:ia in Figure 3, since B is a resource ia the primitive 

f>UTO!II action and :ui argument in (ON A B). 

Sll'l::'s heuristic rot sol_ving a resource-argument con8ict 

is 10 put the branch using the object· as a resource before the 

p:ar.alll'I branch ming the same object as an argument. la this 

way SIPF. decides that (ON BC) must come before (ON AB) 

ia Figure 3. This i, done without generating a TOME, without 

npaaJiag both 11odn, and without analyzing the in~ractioa. 

The a»umptioa is that an object used a, a resource will have 

it, state or lcxation cb:uigcd by auch use; consNJuently, the 

as.scxi:ucJ action must be done lint to ensure that it will be 

"in pl:ace" w bu later actions occur that use it a, an argument. 

Tb~ heuristic~ not gua.r.antecd to be correct, but it bu proven 

mdul ia the rour domain, encoded in SIPE. (The user can 

ir:uily pnnn& the em.pl_oymcot or this heuri3tic by interacting 

with tbe 1ystem.) 

To take run advantage or resources, the ay1tem po:sll COD• 

11raints. Thu npability i, discussed briefly ia the next section. 

4.2 Con1tralnb 

Unbound variablca in a pl11n can accumulate nrioua coo• 

1tr11int, in SIPE, thus building up a partit.l dcacriptioo or the 

object. (Constraint.a were first used in planning by Stc6k in hi.t 

domai11-apeci6c planner MOLGEN (4).) Thia ia uacful ror tak• 

iog full advantage or rcsourcca to avoid harmful interaction,. 

When vari11Llc1 ti.int arc not fully io1laotiatcd nre listed u 

resources, the ayotcm poata constraiota oo the VllJ'iables which 

point to other variables that are potential resource con8ict1. 

WLea nllocatiag resourcea, tLe aystem tLcn attempll to in-

1tantiate variables ao that no resource conflicts will occur, For 

exnmple, if a robot arm ia used a, a resource in the block• 

moving operators, the system will try to use di!Tcrent robot 

arms (if they arc available) on parallel branches, thus avoid­

ing reoourcc cooOicta. tr only one arm is available, it will be 

asoii;ned to both parallel branches in tbe l,ope tht the plaa 

can later be ordered to resolve tLe cooOict. lo lLi• way many 

harmful interactions arc averted by intelligent 11.•"ignmcnl or 

resources. 

4,S Solving Harmful Interact.10111 . 

The difficulty entailed in eliminating harmful interaction, 

bas already ~co discussed. llowevcr, if the syatcm know• 

why each part or tbe plan la present, it can use tbla Inform .. 

tion to come up with reasonable aolutiona to aome harmful 

interactions. Suppose a particular predicate i, made false at 

aomc node oo oue parallel brirnch and true at another node 
on nnother parallel branch. Dcp<'udini; oo the rationale for 

including tbr.ie nodca in the plan, it may be the case that the 

predicate io not relevant to tLe plan (an extraneous aicle elJect), 

or must be kept permanently true (the purpo,e of the plan), or 

wu,t ~ kept only temporarily true (a precondition tor later 

achievement or a purpose). 

Solutions to a harmful interaction may depend on which 

or these cases hold. Let ua call the three casca aide effect, 

purp!)Se, and precondition, respectively, and analy&e the con­

acqucnt possibilities. tr the predicate in conflict on one branch 

i, a prcconJition, one ponaiLle aolutioo ia lo further order tho 

plan, Grot doing the part or the plnn rrom the precondition 

oa through ita corresponding purpose. Once this purpose bu 
been accomplished, there will be no problem io negating tbe 

precondition later. Thia aolution appliea no matter which or 

the three cases applies to the predicate in the other conftictiog 

branch. 

In case both conftictiog predicate• arc aide ell'ect.a, it ie 

immaterial to ua if the truth value of the predicate eban1et 
and thus uo rnl conOict exi,ts. lo the case of a aide caect 

that co110ict1 with a purpose, one eolutioo is to order the plan 

so that the 8idc cacct occurs before the purpose; thlll, once 
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1lw, poupo.e bu I.tu &ccomplishNI h •ill remain true. Whn 

botb coaftic1in, pr'Nlicates a.,c purposea, there is no possible 

onlcn11, tha1 will uhien both purposes at the end or the plan. 

Tl.f' r,l:011atf 111u,1 U><' a dilkttnl o~ratpr at a hi,her level or 

pin 10 rucbien one or the purpo,a later. llowevcr, none 

of the .abon 1aaestion.s for dealing with ioter:ictions can be 

11uuutrNI to prod)lct lhe bnt 1olu1i0D. 

Thia ba.t bttn a brid 1ummuy or SIPE'• algorithm for 

JuJiD, with problematic interac:tiona. Syatem1 like NOAH 

and NONLIN doaimil:i.r thinp. However, SIPE provide, meth­

od, ror more prttix and efficient dctcctioa. · 11 ehould be 

rmphui1rd that maD,J inter.actions that would be problem• 

atinl in the other system, are dealt with in SIPE by the 

r.:>0ul'l'e-rn.'Wloin, mttb3.ni,m, and tbcrerore do not ncrd to 

be aoalJ1NI. Wbco iotcr&ctions are being anoly1ed, SIPE re­

quir.-s 1h1 one or the cooOicting predicates be a ,oa! (not just 

a side clT«1) at 110me lcvd in the hirra.rchy. In this way, io­

ta:.ctioo, betwttn side e!Iecu that ~ no problems arc not 

cHD dctttted. Thi, rt-quires that all important predic:>.tn be 

rrcor;nitcd :u goal, at tome level, which i, e:uily done io SIPE'• 

hicrucbical pL\Dnin, scLcmc. The system also distinguishes 

bctwccn m;,io and side e!Icct.s at each node in tbc plan. This 

a,:.l,... it c:uy to tell which predicate. llJ'e or interest to u., at 

~n, Intl of the plan 1"ithout looling up the hierarchy (since 

hi,bcr•locl eoal1 will become m:i.in elrect1 11 lower-level ac• 

lion,) . 

SIPE :i.ho pn>Yidc, for u:ict expression or tbc purpose or 

&.11)' goal in its opc,rlton. NOAII used a heuristic, according 

10 ,. bich 1.be l:ut node: io an expansion wa., tbe purpose or the 

up~n,ion. Tlii, is not alway, accurate aod in SIPE a node can 

,p,:ciry any 1:.tn node in tbe exp:i.nsioii as it~ purpose. Thi, 

cn:iLlcs better analysis or problematic conflicts. 

,., Chancing Coal• to Phantom, Tb rough LlnearisatloD 

SIPE r«o,:ai1u btlprul ioternctioo, and will try to fur-

1brr orJtr the plan to talc: adv:int:i.ge or tbem, 111hhough the 

u'\Cr un control this interactively ir .he wi,be,. Ir a go:il that 

rou , 1 ~ m~e true: on one parnllel brancL i, actually made 

1rur on anotbtr p:>.nlld branch, the system will order the plan 

"° that the othrr branch occun lint (if this causes oo other 

conflicu). The go.J ca.n then be changed to a pba.olom and 

at..J not be ubievcd. 

l'\0.\11 •as 1101 able to lake advant:i.ge or auch helprul 

rlfr<u. NONLIN did have an ability lo order the plan in this 

•a.7. Thi, is an important a.bility in many re:i.1-world domains, 

>iocc l.,·lprul ,i.tc tU«u occur rrc,1ucn1ly. For cxawple, ir 

par:i.llrl action., in a robot world Loth require tbe same tool, 

onl1 one branch nttd plan to get the tool out or the tool box; 

the other hu.nd1 1bould be able lo recogni&c that the tool is 

already out on the table. 

6. Related Work 

Much plaoni'!g-like research dpe, not 61 into the context 

we have dellned here-becall5e it i, epecialir.ed to one domain, 
because It doea not make the STRIPS utumptlon, or becauee 

it d~ not reuon about parallel actiou. For example, mucb 
automatic prop-•mmiog research does not dc:1111 witb para&. 

lel action, or doea not make the STRIPS usumption. The 

STRIPS planner (1) itselr does not deal with parallel actiou. 

T,he most relevant ayatems, NOAH and NONLIN, have al­

ready been compared with SIPE throughout this paper. Both 

NOAll 11nd NONLIN find interaction, by generating a TOME 

(table or multiple effects). The TOME find.a all ioteractioo,, 

even harmless ones (i.e., those io which both predicatea l!-'e 

aide effect..,), work which SIPE avoid,. SIPE also provide, ror 

explicit dc.ignation or purpose ro~ precon,dition, that NOAH 

docs not provide. NONLIN provide, a similar capability with 
its "goal structure". The most aigni6c.aol improvement in 

SIPE is the use or resource reasoning (and tbc ability to post 

constraints), which averts many ha.rmf\11 interactions and CD• 

ables many others to be recogniied quickly and eolved. Neither 

NOAH nor NONLIN providu a aimila.r c11p1bility. 

6. Conclu,i,on 

We have defined the problem or parollel interactions iD a 

context that is not unique to SIPE. T.hc difficulty or aolvinc 
Larmful interactions wa.11 discu,scd and a cose-by,ca.,e an1ly1il 
or dilJerent situatioDJ presented. An actual planoin, 1y1tem 

wiu described that incorporates several new m«hanism, able 
to a.,sist in dealing with the parallel interaction problem. The 

most ,ignilicaat or these mechanism, is the ability to reason 

about reaourcee. Combined with the ey1icm'a ab\lity to poet 

constraiiite, resourc.c reasoning hclpa the 1y1tem avoid many 
h:irmful interactions, helps it .recogoiie aoooer those interM:• 

tioo, that do occur, and helps the ayatem eolvc eome or these 

interactions more quickly. 
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INCRDLENTAL PLANNING IN A PROBABILISTIC MODEL FOR UNCERTAIN PROBLEM SOLVING 

Arthur H. Farley* 
o:>mputer and In format ion Science Department 

University of Oregon 
Eugene, Oregon 97403 

Abatrect 

A probabilistic model ot problem solving un­
der conditions of uncertainty ill described. In­
!onn.ition gathering operators are introduced to 
111.lke feasible the solution o·f reasonably con­
strained, uncertain problems. The notion of re­
l"""d solution .pl&n"s is defined, based upon the 
expected degree of goal space satisfaction. Our 
e>Odel leads to. straightforward scheme for in-
cremental planning. · 

I. Introduction 

Problem ,iolving refers to activity undertaken 
to reduce and eventually eliminate differencea 
bch1ecn current and desired (or goal) situati.ona. 
~r ... basic types of problem-solving activity c&n 
be distinguished, problem representation, solu­
t1on. determination (planning), ·and pl&n execution. 
Traditional Artificial intelligence (All approaches 
to problem solving tended to consider these acti ­
v1ties as successive phases ot the problem-solving 
process. Thi• proved appropriate for well-struc­
tured, pu.a~le-like problems, Recently, increased 
attention has focused on applying Al solution 
techniques to problems arising in real-...orld con­
texts. Such contexts confront an agent with un­
~rtainty due to• variety of factors, including 
1~1 ,ci rfect interpretation of environmental infor­
..... ~~on, un~eliable execution ot·planned actions, 
"1\d unpred~ctable interaction with other agents 
or n·aturt.l 11ystem.s. The ·uncertainty inherent in 
real-world problem solving IDOtivates con~idera­
tions ot 1110re coa,pler control among the three 
basic activity types. 

Incremental planning refers to the inter­
leaving of pl&n execution with pl&nning. In this 
paper, we define a scheme for incremental planning 
within• probabilistic model for uncertain problem 
solving. The scheme IIIAintaine a minimum expected 
probability of plan eucces e, replanning when in­
sufficiently solved contingencies are encountered 
during pla.n execution. 

• Research performed while author on leave at the 
Artificial Inte lligence Center, SRI International, 
H.enlo Park, California 94025, and partially sup­
ported by ONR Contract No. N00014-8l - C-Oll5. 
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I"I. A Probabiliatic Hodel for Uncert-ain 
Problem Solving 

Our probabi'listic model is a straight­
forward generalization of the .well-studied 
notion of problem space. A problem space is a 
four-tuple (SS,OP,cs,GS), where ss is the 
state space, a setof allowable state descrip­
tions, OP is a set of operators, function• 
mapping state descriptions to state descrip­
tions, Si!_ is the current (or initial) state 
description, &nd GS is the goal space,~set 
of SS. Problem representation activities gen­
erate a problem space represent-ing a particular 
problem, planning is carried out within the 
resultant .~roblem space. Heuristic methods to 
guide solution search have been long-st&ndi.n9 
topics of AI research. A heuristic search 
method is adntissi"ble if it is guaranteed to 
determine a minimum-cost solution to a problem, 
if a solution exists. Admissible heuristic 
search algorithms have been charact.erized in 
terms of required properties of associated 
evaluation functions l 4 ) , 

An uncertain problem is represented in 
term.a of an uncertain problem space. ,we da­
fine an uncertain problem space to be a six­
tuple (SS,USS,UOP,ucs,GT,ST). SS and GS are 
as in the certain case. USS is the space of 
uncertain states I ucs is the uncertain .current 
~- An uncertarn-state ie a set of compon­
ent state descriptions from SS, with each com­
ponent having an ·associated probability such 
that the sum of component probabilities is 
equal to l. 0. UOP i ,s a set of unreliable 
operators, function• mapping uncertain states 
to uncertain states. In [2}, we discuss the 
specification of unreliable operators as 
Markov processes over state descriptions. Ap­
plying such an operator to an uncertain state 
.!!!_ yields the ·probabilistically weighted com­
bination at results over components at us. our 
uncertain problem apace differ• from th;-models 
described for most Markov control problems that 
assume stochastic operators but certain (i.e., 
completely observed, singleton) states [1,4). 

ST is the solution threshold, O.O<ST<l.O, 
With each ·uncertain state .us we associate -a 
degree of goal space satisfaction, dsat(us), 
equaling the sum of the probabilities of~om­
ponents of us that are also in GS. We init·i­
ally define"a solution to an uncertain problem 



to be • acq,u,rn.::e ot unr .. li4hl~ opuratora uol, ••• , 
uok such that uok( ••• uol(uca) ••• ) •~with 
dsat(.!!.2,!_) !. ST. The notion is that a solution 
tra.nsforms an uncertain current state into one 
containing COlll(>Ot\cnts that satisfy goal space cri­
teria with combined probability greater tha.n or 
equa.l to the solution threshold ST. A forward­
directed aea.rch algorithm can be readily defined, 
halting when it selects a state us for develop­
ment such that dsat(us) > ST, Iil°[2) we discuss 
the specification ofheuristic evaluation functions 
that result in admissible sea.rch algorithms (in 
terms of expect,ed cost) for uncertain problem 
solving. 

Our IIIOdel as defined thus far would have 
difficulty yielding solutions to uncertain pro­
blelllS having normally constrained goal spaces and 
reasonably high solution thresholds. Application 
of an unreliable operator can be expected to re­
sult in an uncertain state containing more com­
ponents with lower probabilities than that to 
which the operator is applied. Furthermore, an 
operator may result in goal-directed states for 
some components and not for others; another oper­
ator may produce complementary results. The needs 
to control state disunity and to realize pragma­
tic focusing prOlllpt the addition of information 
g3thering operators (IGOPs) to our model. l\n 

IGOP obtains information as to the presently ex­
isting environmental situation when performed 
during plan execution. Application of an IGOP at 
plAnning ti.al4 distributes one uncertain state in­
to several uncertain states, each containing ·the 
subset of cocnponents consistent with a possible 
IGOP result. We asswne that the possible results 
of an IGOP serve to partition SS. Each result 
has a probability equal to the SUIII of probabili­
ties of the components consistent with it. Plans 
containing IGOPs become rooted trees with uncer­
tain. states as nodes, unreliable operators label­
ing arcs, and IGOPs labelling arc sets. Branch­
ing occurs when an IGOP is applied. The uncer­
tain current state ucs is the root of such plan 
trees. 

Our original definition of uncertain problem 
aolution nust be extended to cover plans contain­
ing IGOPs. A strict generalization is that a 
solution is a plan tree with leaf set LF such 
that dsat(lf) > ST for each loaf lf in LF. Thia 
definition""guara.ntees that the fi;;-;l uncertain 
atate produced by any plan execution satisfies 
the condition of our original solution definition. 
However, it requires that a sufficient plan be 
generated for every contingency without consid­
eration of likelihood. With each uncertain state 
us of a plan, we can associate the probability 
-:-prob(usl of its being encountered during plan 
executioo, equaling the product of probabilities 
of IGOP results on the path between us and ucs 
(or l.O if none have been applied). 

Let ua now 'rela.x' our original solution 
definition to reflect the expected degree of goal 
aatisfaction1 a solution is a plan with leaf set 
u· such that SUM ( uprob (lf) •dsat (!.fl I ,!_ ST, sum­
-d over a.l.l lf in u. Wecan associate with each 
uncertain state ~ of the plan the value past(~) 

') 

11q11al to the expected degr11u s,t u11ti.,f<>Clio11 
realized by the subplan havin9 ue as root. A 
relaxed solution plan is such thit peat(.!!£!_) 
> ST. This relaxed solution definition allowu 
a plan to ignore unlikely contingonciee whon 
others have been solved to sufficient degree. 

.4 

Fif,Ul"e l 

Figure 1 presents a schematic solution 
plan for an uncertain problem, illustratin9 
some of the notions introduced above, The root 
state ucs is at the bottom. IGOPs are repra­
aented"t;y multiple arcs leaving a state, the 
probability of each IGOP reuult is indicated 
in parentheses. Each node represents an uncer­
tain state ua. The value of daat(u1) i• indi­
cated to th;-left of a node, that of paat(.!!!!_) 
is ~o the right. ':'ho plan shown could be a 
relaxed solution to an uncertain problem with 
ST • .77. · If the atrict 1olution definition 
were required, ST could be at moat the minimum 
of 1eaf satisfactions (or .40). Issues of 
determining relaxed solution plans in conjunc­
tion with the use of (perfect and imperfect) 
IGOPs are discussed in (2). 

We want to define a scheme that inter­
leaves planning with plan execution, requiring 
only relaxed solution plans yet guaranteeing 
satisfaction of the desirable property of our 
original solution definition, that the uncer­
tain state us reached by plan execution 11 
such that dsat (.!!!_) > ST. 
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111. lncr~awntal PlA1tning 

Let. I.IA •••umc t.he ex.iat.ence pf a planning 
sy.t.ea for uncert.ain problelllS, activated by calling 
PLAN(~,CS,ST,UOP,IGOP) vith corresponding argu­
aenta froa &n wicert.ain problem apace, IGOP i• a 
••t. of available infonnat~on gathering operatora. 
PLAN ret=• a pl.an wit.h ~ as root aatiafying 
tha relaxed aolution definition given above. We 
alao assume t.he existence of a plan execution sys­
tea that i• activated by calling EXECUTE(ustate 
plan) which executes the operator from ustate<-'.m­
reliable or IGOP) that is in~icated in p1an, return­
ing aa it.a value the resultant uncertain state in 
pllU\. 

Our incremental planning scheme is presented 
bel~ as procedure INCR£.'tENTAL: 

procedure INCRD\£NTAL(ucs ,GS ,ST ,UOP, IGOP) 
begin --

ustate <- ucs, 
~t ,plan <- PLAN(ustate,GS,ST,UOP,IGOP)1 
~~ile I dsat.(ustate)~l do 

begin ~~-

usta.te - EXECUTE (ustate,current plan)1 
If [psat (ustat.e) < ST I then 
current pla.(I <- PLAN (~,GS,ST,UOP,llDP) 

end 
end. 

INCREMENTAL replans whenever it encounters 
Alt uncertain state us during plan execution such 
that put (~) < ST. In rigure 1, those states 
11.Arked by an 'x' would trigger replanning, assum­
ing ST • • 77, The scheme. guarantees that current 
pl.in always satisfied our relaxed solution defi­
nition and that, when INCREMENTAL halts, our ori­
ginal solution condition is met. In Figure 1, 
t hose states m.,.rked by an 'o' correspond to possi­
ble f1nal states. Actually, PLAN need not always 
find a plan such tha.t put (ustate) > ST. If the 
atate disunity of ustate were parti;;-ularly high, 
PL>..~ could jUat as well propose execution of a 
single lCOP, forestalli.ng search for a relaxed 
aolution plan until inare were known as to present­
ly ex.iating conditions. 

IV. £x.uaple 

111 thia aection, ve demonstrate application 
of our notion• by considering a simplified robo­
tics environment. In this real-1o10rld context, a 
robot has the t.ask of acquiring and then attach­
ing acre.,. to &n object that is being asuell\hled. 
The robot c&n pick up a screw from a parts con­
tainer and screw it into a pre-drilled hole. We 
l:!Odel the pouible robot actions by the following 
four operators, tvo unreliable, one reliable, and 
one &n ~rfeet. ICOP: 

~ 
err-SCREW 

(G-S) 
PR.ti_ NOT(HAVE(SCR.EW)) 

IN-SCRDI 
u-s, 

Pr.£: HAVE (SCRDI) 

OUT.COME 

HAVE(GOOD(SCREW)) 
KAVE (BAD (Sciu::w)) 

IN (SCREW) 
NOT(HAVE(SCREW)) 

P ( Ot.rrCOHE) 

.e 

.2 

.9 

.l 

10 

~ 
OROP-SCJU:W 

(0-S) 
PRE, H~VE(SCR.EW) 

IGOP 

OUTCOME 

NOT(HAVE (SCREW)) 
(reliable) 

~ 
TEST-SCREW G<?C>D(SCREW) 

(T-S) BAD(SCREW) 
GOOD 
BAp 
GOOD P~1 HAVE(SC~ 

P ( Rl::SULT) 

1.0 
.95 
.05 

The GET-SCREW operator represents the notion 
that only BO\ of the screws are good, we aa­
sume they ar~ acquired from a container that is 
retil~ed frequently. The operator IN-SCJU.'W in­
dic!ltes the success that the robot has in at­
_taching a screw that it has. We assume that if 
the robot fails, the screw falls t~ the floor 

' an'd is swept away. . Similarly, if the robot 
drops a screw, it is removed from the context 
(i.e., work station). Note that our operator 
definitions are incomplete, conveying only 
main effects. The IGOP TEST-SCREW can be used 
by the robot to evaluate a scre,w it has acquir­
ed. The operator is imperfect, categorizin.g 
a bad screw as good occasionally. 

Consid.er the simplest plan for putting in 
a screw, a, shown in Figure 2. HAVE, BAD, GOOD, 
SCREW, IN; arid NOT · ~re abbreviated by H,B -,G,S, 
I and N, respectively. This plan sol veil' the 
problem of having a screw in a hole with prob­
ability .90, the limit of IN-SCRE\:i. Howev.er, 
if we are interested in having a good screw in 
a hole, our solu.tion threshold coul,d at most 
be • 72, for this plan to be considered a solu­
tion. The plan of Figure 3 imprtives upon 
this solution threshold. 

Fi&:ire 2 

G-S 

(N(H(S)} (1. ))1----111fH(G(S)) 
lH(B(S)} 

Fip;ure 3 

1-S 

(.8)~I(G(S)) (.72~ 
(.2) i(B(S)) (.16) 

N(l(S)) ( ,1) 

I-S 

H(B(S)) ( .015) I(B(S)) (.014) ( H(G(S)) (.985tluI(G(S)) (.886~ 

/ N(I(S)) (.1) 

G (.81) 

fll(G(S)) ( sf\ 
.. "lH(B(S)) (2)J< T-S 

8 ( . 19) 

. '-
0-S 

(H(B(S)) (l.~1----111{t~(H(S)) (l.j} ... 



In the plan of Figure 3, if the robot aeea 
tl\4t it hlUI ab.ad acrew, it. dropa the acrew and 
then appliea the plan of Figure 2. If the robot 
believe• it haa a good acrew, it continue• by at­
taclu.ng that acrev. Recall that a few bad acrewa 
can slip by the inapection. Thia plAn aathtied 
the 9041 ot having a good acrew in a hole with 
proha.bility :::s .854 (i.e., .81 • .885 + .19 • .72). 
Note that the probability of having either type 
of screw in remains at .90, as limited by the 
reliability of the IN-SCJU:W operation. To improve 
upco this, we would need to add an ?GOP that cAn 
assess whether a screw has gone in or not. Our 
model can be embellished in a variety of ways to 
better represent relevant aspects of robotic as­
sembly tasks. The principles of plan representa­
tion and ev&luation would remain the same. 

Incremental planning could be applied in 
robotic assembly contexts to allow realization of 
plans that repeat themselves as subplans. For 
ex.a,nple, if our robot found that it had a bad 
screw, it could simply drop the screw and sul:mit 
to replanning, generating the same plan that it 
had initially (e.g., O'J recall). The robot would 
continue to acquire screws until it believed it 
had a good one, realizing an upper limit of reli­
ability of .88S. Robotic assembly systems that 
incorporate execution monitoring and adaptive 
control represent a real-1o10rld application of in­
cr~mental planning that is currently receiving 
considerable research attention. 

V. Discussion 

For only one type of context has AI research 
ex.a.m.ined in any detail the interleaving of plan­
ning with plan execution. Game playing shares 
with real-1o10rld problem solving the uncertainty 
due to interaction of multiple agents. Searching 
a game tree of possible futures before every move 
is consistent with an incremental planning per­
apective. llacent plan-baaed approach•• to ch•••, 
as represented by PARADISE (5], better reflect 
our notion of executing an extant plan until an 
unconsidered contingency arises. Opponent move 
generation could be 11\0deled as an unreliable op­
erator, adding probabilistic factors to game plan 
evaluation. 

An incremental planning approach to the con­
trol of problem solving activitiea is particularly 
appropriate to problems for which no complete sol­
ution plan can be expected to be found or to pro­
blems which place strict time li.Jnits on the re­
sponse time of an agent. Playing a complex game 
such as chess represents an example of the former 
class of problems. Modem (electronic) warfare 
presents problems in which quick reaction must be 
made in response to possible threats by applica­
tion of imperfect sensors and unreliable counter­
m.,asures. 0\ a more everyday scale, driving a 
car through a crowded city poaea similar problems, 
suggesting an interaction between a completed ab­
stract plan (a selected route) and incremental, 
execution planning. 

ln this paper we have presented a general 
scheme for incremental plAnning based upon a prob-

II 

abdi,;tic model of uncertain problem uolvirag. 
Feldman and Sproull (3] diocuaa the notion of 
incremental planning in dociaion-theoretic 
terms. In their model, action• are reliable 
and initial uncertainties are axpreaaed aa 
probabilistic parameters of the environment. 
Goala, actions, and planning activity are aa­
aigned utilitie• (or coats) and decision• are 
made to optimize expected utility. Their mo­
del could be extended to directly represent 
uncertain states and include unreliable oper­
ators. our incremental planning scheme could 
be extended to consider utility ae well aa 
degree of goal space satisfaction when making 
replAnning decisiona. 

Incremental planning is just one of many 
capabilities that will be required it AI aya­
tema are to deal effectively with problem 
solving in real-world contexta. 
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I Introduction 

The problem of plan formation is central to the 
endeavor of Artifici,J Intelligence. Despite ;!:; ,:r.;;c:-... ~c. 
tne f,eld nu sti ll not developed a unified p lan generation 
fr~ewon. tlVt can be custom,zed to realistic domains -
be rt planning of mach,n.ng steps on a var,ed manufacturing 
process or routing and scneouling for mercnandos,ng. or 
po.vv,ong corporate transactions to aru,n stated objectives. 
The sute of tne art is such that each new application 
recuires spec~hzed problem formulation. design of 
represenuuon. and de s,gn of planning procedures and 
neJost,::s. The Usk specific activities often echpse the 
ru.,uuon of a gene,., framework. A scan of the literature 
revuis a coilect,on of specific problem solving attempts 
for spec,f,c domains [ 1). (2) and a few explorations of 
gener.i tecmiques (Jl Thora st ,11 rema,ns a need for 
oeve,op,ng an onteract1ve general planning faci lity which can 
ce c;ustom1zed for different usks by 1ncorpora11ng usk- · 
spec:if ,c pt.nning methods and task knowledge. It ,s still a 
resevcn question how a variety of different strategies may 
be comooned onto one 

II Context and acopa of our research 

We hllve been studyong plan generation in everyday 
serungs (4). as an important component of the larger 
procoem of plan recogn,t,on (5]. Plan Recognition os tne 
usa ot ¥nvong at an hypotnes,s about an actor's plan 
trom ooservauons. Le. descroptoons of ac11on performed by 
tne actor A "viable" p lan hypothesis is required to be 
self-consistent mot,vat,or\llly. consistent with tne 
ccservatJons. and well-supported by the observations. Plan 
Recognition proceeds by a process we have characterized 
as "hypothesize and rev,se· The el icotat,on of an ini11a1 
hypotMesos can be don, ,n a number of waya - plan 
generation from a goal attr ibuted to the actor is one of 
tnem [6) . 

From our studies we have gained an understanding of 
now the hu'Nn information processing system plans 
rObYstly ,n the presence of sparse and unrehable 
onfonn.11tJon. and does tn,s une1er limitations of processing 
resOYr::es. In tn,s p&per we o,scuss some of the p lann,ng 
tecnn,c;ues aeveloped to stuay human p1ann,ng We have 
oes.gneo and implemented , system. PLANX10. which 
cons,sts of • collectJon of these tecm,ques. The 
a,5euss,on ,s focused on the ~ngin~ring issue of how a 
p,a,-n,ng system fflily be organ12ed to work effectively 1n 
l¥ge .Jnd ruhstic Usk domains. We include a small 
ex~1e of plan generatJon We have not carried out , 
L¥ge ,pphcat,on yet bvt this report marks the beg,nn,ng of 
°"" concern with this ,mporunt eng,neerong question 

., . 

Iii Other recent approachH 

From an engineering point of view, sevi,ral research 
efforts have developed techniques and facilities that directly 
address or indirectly bear on aspects of effective planning 
on large and realistic task domains. We mention some of 
the recent approaches to: lal generating and manipulating 
large and complex _p lans; lb) handling large and complex 
knowledge bases; tc) operating with an. ,ncomplote world 
model and/or knowledge· base. 

Approaches for dealing with large and complex p lans 
include: Iii use of abstract ion 1n planning (7). [Bl (9). 

C 1 O); Iii) use of plans with actions only partially ordered 
over time [ 11); (iiil incremental planning and plan rep11r 

C 121 (9). [7). [ 13); livl consideration of alternate plan, 
C 14). (7); M opportun_i_stic plannina [ 1 ~); lvil distributed 

p lanning [ 16]. ( 12J; tv111 · uH of explicit reaource· 
declarations with action s (7): lviiil accounting for prepatory 
and c leanup actions (7); and (ix) the postponement of 
parameter se lection for act ions until appropriate constr,,nta 
h~ve been developed (2), (7). 

Approaches for handling large and complex knowledge 
bases include: lil using a distributed system of mu1t1pl1 
knowledge sources and resource limited information 
retrieval ( 17); and liil enrichment of the language of 
interaction with the knowledge base [ 1 Bl. 

One approach to cope woth missing knowledge is to 
allow assist.ince from an interactive uaer (7). A central 
issue to working with incomplete knowledge involvH the 
use of partial descriptions and object description, which 
have no current referent in the world model: i.1 .. phantom 
obJ~cu C7). C2l C 14). 

IV Componenta ot common·HnH plane 

A complex task may invo lve the construct ion of plans 
consisting of a large number of actions. may have • 
comple>< structure to the solution and may require I diverae 
variety of knowledge in the task domain. Furthermore. the 
knowledge will most hkely be incomplete and perhap1 
inconsistent Typically. current plan generators formulate 
plans consisting of 3 · 20 act1on1. Large tasks may require 
p lans that include 10- 200 actions. The pronc,plos of 
Artificial Intelligence ( 19) offer many useful eng,neer,ng 
ideas for coping with this kind of search complexity. 
Rather than focus on search. our study has concentrated on 
the structural complexity of commonsense plans. We have 
decomposed a plan into three structural parts: the familiar 
goal-directed component, a prepatory component, and a 
normative act,ons component Each component includea 
statements of goals to achieve u well u goals to ma,ntairt 
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Flgwe I: Components of an example commonsense plan 

Preperetlon Condition 

Rooa 11 visible. 

Preparation Plan 

Reach for match book. 
Take a,atchbook. 

Light match, 
Light candle, 

(T)IJim•im 

Aaaumptlon1 about WM 

Fred In living-room, 
Lights are not shining. 
Fred has acce11 to candle, 

Goel Directed Plan 

Go to basement. 
Approach fusebox, 

Open fu1eboa, 
Flip circuit-breaker, 

achievt111 

Lights are shining; 

Normetlve Component• 

Puff match, I Juff t cancs-1 e. 
L___L__j1rry back candle, 

Con1,c:1er the aomple in Figure 1. The primary 
component conu,ni I go11 and I set of subgoals forming 1 
Plf'l1.a1 ora«. The f11Ut l 1ctton will have as go11 the 9011 of 
~ entlfl plM\. e.g. lights are 1h1n1ng The goal-directed 
1c11on1 require v,s,b,lity of the local ,re, u I precondition 
,no !NI prepar1t,on pi.an 1ch1eves this by 1tgn11ng I candle 
ano tnen 1ad,ng otner 1ct,ons to ma,nu1n this visibility. 1.e 
Dy c:vry,ng me c.anale to thl buement Note that the 
prep.a,11,on condition 1s not I subgoal for any p lan unat 1n 
tne primary p l.an but 11 1 cond1t1on that needs to be 
.acn.avea and m,,nuined trw'Ougnout The normative 
component includes 1ct1on1 which do not contribute to the 

m.ain goal. ramer. tnese 1ct1ons arise from cons1der1t1on of 
Irle norms le.g politeness, and convenuons governing tne 
aemng 1e.g concern,ng ufety and economy! and roles of 
!Tie actors leg customer. guest!. 

11\/e have reiected the des,gn option of extending each 
.ct,on w1m preparation conditions and normative rules 1as in 

(7)1 in favor of 111ew,ng me wnol1 plan as be,ng dissected 
lf'lto components By aaopting this strategy we seek to 
recuce me struc'b.Xal comp1e1uty of the overall p lan and to 
control Ille complax,ty of tne reason,ng processes 1nvol11ed 
on pi.inning tn tna ex.ample plan. tne same prepara.t,on 
cono,t,on. v,s ,b,hty. ,s neeoea for every action in the goal­
o,rectaa component It ,s more economical to let this 
CC)t'l(11'llon b1 pl.lMed for J\lSt once. If 1ct1ons in the goa1-
011ec1ea component 11 9 go,ng to the basemenu h lsify the 
p,-epar.atJon cond111on. act•':'"' may be added to ma,nta,n it 
1e g 11 .. e 11'141 c.andl1L F~er. in a planning s,tuat,on where 

tlo1e fusebox. 

~• <• 1;v1a,· ,o~. 

the construction of the goal- directed component requires 
backtracking search, our design 1tr1tegy pay1 off. The 
preparation actions are not involved during this stage. thu1 
search is simplified. Note that the actions in the normative 
component are temporally constrained only weakly in. 
re lation to the action, in th1 main parts of the p lan. 

V Typea of knowledge 

Realistic task domains require diverse ty~I of 
knowlttage 1n large amounts. There is I need to ensure' 
that increased knowledge is not a liability to the p lanning 
proceu. In realistic task domains we cannot make th1 
usual assumptions about the ·correctness· 1nd 
·completeness· of knowledge presentsd to the program. 
We tab le the issue of correctness of the knowledge base. 
for now. and elaborate the consequences of having 
incomplete knowledge. There are two upect& to th1 
incompleteness: incompleteness in the specif ication of the 
problem 1nd incompleteness 1n the action knowledge. 
Discussion can be simplified if we assume that the 
statement of lhe goal to achieve/prevent/maintain is clear 
and complete; but that it 1s difficult for us to provide a 
complete description of the initial situation that includes •II 
relevant information. Even if such completeness is possibl1 
in principle. to insure it in large scale situations would be 
tedious and thus error-prone. Consequently, p lanning 
algorithms must be designed to make appropriate· 1nd 
needed aefaulr assumptions about the initial situation by 
appeal to general knowledge. These assumptions should be 
explicit so that they can be evaluated as part of selecting 
the solution from cand1dau1s. 
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Figure 2: 

Precondition 
[G,ven an a;tion. retrieve its precond1t1onsJ 

Examplea of Rulea 

Outcome; 

I~ X !AGENT IPERSON Pll !FROM ICONTAINER Clll 
T 
IPERSON P 1Jt+1Allll) ICONT AINEA Cllll 

In o,d•r lo, • ~rsan to pour from • conralMr, 
SIM must hlv• II ,n !land. 

Act-Selec:t : 
[G,ven a ~ retrieve the actions that achieve it.) 

U08.ECT I.I 1ACCESS1B1.E !PERSON Plll 
UOIU:CT 1,1 (WITHIN ICONT AINER Cllll 
COPEN ll. IOF ICON'! AINER Cll (AGENT IPERSON Pllll 

To gain «ce" to an ob1ect that is 
within a container, open the container. 

Normally-True 
[G,ven an obiect description. determine if 
,t is normally true.J 

IIG:.ASS (; (CLEAN YESll 
UG...ASS G IWITHIN !CONTAINER C (TYPE C.AB INETlllll 
TI 

It is f)(Jrmally true that • glass In a 
c~iMt is cle1m. 

The use of oefault reasoning tnen leads us to formulate 
exphCtt arnouitions to be m.ide of key p l&nning decisiona. 
All 11.now1eoge used by tne p lan generator is in the form of 
Rul • Sers. ucn w,tn ruies of a uniform declarauve form.it 
Some of these rule sets are. Preconditions, OutcofTltls, Act­
Stt l ,ci. Act-Cusromi:rtt. Normally-Fals•, Normally-Tru• 
(see F,g..re 2l A rule consists of ttvee pans - the first 
pan ,s tne ApplicllOiliry Test. the second pan is the 
wont: Moattl T1tst. and tne tr\Jrd part ,s the Rellittved 
/Cnowl«191t. Knowledge stored in the rule may be retneved 
wt'llle rusOl'llng ibout some action or some description. 
wnicn is called the invokinr; descriprion. 

For example. to select an action that would achieve the 
rel\Jlt that a g,ven ob1ect ,s m.ioe accessible to the actor. 
tr'I ACT-SEL.r:cT rule set 1s used with an invoking 
oescr~t,on tn,t ,no,~1u wtuch obiect ,s to be made 
.a;:ess:::ire to wtucn .aetor The Applicao ility Test ,s 
eapeCleo to matcn the ,nvok,ng descraptron. Then. Retrieved 
Knowledge is returned only if the World Model Test is 
successful Thu, tne Applicab•llty Teat Hrvu to index the 
ru1e. wnerus the World Mooer Test tests the situation to 
see 1f 1t 1s appropr~te. and aiso determ,nes the references 
to obiects in ttWI world model 

The Applic.bihty Test. serving to index into the rule set. 
c:¥1 oecome expensive to .use unless some org.an1ut1onal 
prrnc:,pies are used to provide strucru11n9 to avoid 
OTelevant searcning and inher,tance tor economy of 
expression We have chOsen to organize the rules 
~ora,ng to a single partial order relation on the 
applic;ac,11ty tasu. the relation of one aescrapt1on being 
more specific ,,..,, ,no~ T>it> search for relevant rules 
starts at tne top and prunes any set of rules that are more 
spec.it,c th¥I the one whose applicability test fails (because 
,t ,s too specif1Cl for the invoking description The same 
p¥t1.i ordering relation ,s used for pro111d1ng 1nhent1nce. 
"""'c:,, allows great economy of expression. especially in 
o., oescnption formalism. where a description can be 
spec..uzea funner to an infinite number of other 
oescr,pt,ons. Organizing the rules by inheritance also eases 
!he p,oblem of up<Utmg rules economicall y. 

(Given an action. retrieve its outcomea.J 
UOPEN X IAGENT (PERSON Pl) (OF (CONTAINER Clll 

((CONTAINER C ICC:,NTAINS IOBJECT Ollll 
!OBJECT O !ACCESSIBLE (PERSON Pllll 

Whtm a p,,rson op1,ns a contaln,r, any ob/act within 
the container Ncomi,s acc11sslbl11 to hlm/hllr. 

Act-Customize : 
[Given an action. retrieve possible action refinements.) 

!!POUR X UNTO (GI.ASS Gil !OF WATERII 
UBOnLE B CTVPE WATER - BOnLEIII 
(POUR X (FROM (BOnLE Bllll 

To pour wau,r Into a glass from a water bott/a, 
pour lrom a wi,ti,r botll•. 

Normally·-Falae ; 
[Given an object description. determine If 
it is . normally f alse.l 

UCONT AINER B IEMPTV VESll 
((CONTAINER B (WITHIN (CONTAINER R (TYPE REF)))I) 

fl 
It is norma//y-lalse that a contalni,r In 
a 1ef1igerator is empty. 

There are several ways of defining the relation of 
MorttS,,.clflcThan among descriptions. W• provide one 
such realization, giving the syntax for descriptions (defined 
in Figure 31 and a brief definition of the relation. A 
dHcrlptlon form conta1n1 a dHcrlptlon which m1ntion1 
vanables and an al/st mapping verlablu to 11111 of potential 
v.aluea. A description describes some object denoted by a 
variab le lor a constant) ca lled the root which is a member 
of a clua. For example, (PERSON P IINHANO (CONTAINER 
Clll has the root variable, P, which is a member of the 
c lass PERSON. This object Is further specified by a set of 
relational restrictions. in this e><ample. the person is 
required to be related to container C by the relation 
INHANO. When uveral restrictions are given. the object i1 
to ut1sfy all of them. 

l'l11ure :I: BNF Oefinltlon of ·ouc:Form" 

descform : :• (desc • a 11 st) 

desc : :• ·(clan root [rspec ... )) 

class ::• class-name I cla11•conjunct 
clas1-conjunct 11• (cla11 - name .•• ) 

root ::• variable I constant 
rspec . : :• (rel at Ion target ... ) 

target ::• root I de1c 
a I i st : : • (b Ind i ng • , • ) I NI L 

binding 11• (variable value ••• ) 
value 11• Instance I constant 
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Figure •: Example AKO H1er~chy 

08J£CT . 

r\OVABLE-OBJ CONTA INER 

CLASS BOTTLE 

lner• •• dimensions over whieh we t)av1 defined 01r 
p..bai oroer of MoreSpecif1cllan A description can be 
spec~hnd by lil using • subclass name to denote c lan 
l"n4mo..-st>1p lbued on .an exp1ic1t AKO 11 kind of) h1er1rchy; 
SH F,gure 41. eg using GLASS r1tl'ler than CONTAINER. or 
US1"'i1 me c~ss-con junct ""10VABLE-OBJ CONT AINERl rather 
tn,n CONT AIN!:R; liil using a consunt rather than I variab le; 
,,,,1 by 1od1ng moo re lational restnctions; hvl by specia lizing 
v1curs,v11y1 an embedoed cescript1on. 1.9 by using 
,BO"n'Lf C !OPEN YESll on p lace of !CONTAINER Cl In 
100,t,on to tneae local factors -of tne specificity re lation. 
tnere 11 'tl')e g1oci.1 factor of repetition of 111ri1bi1 names. 
~or uamp11 !PERSON P UNHAND !CONTAINER C 
10WNE.D8Y !PERSON F'lllll 1s more specific than !PERSON P 
,:l\rtANQ 1CONT AIN£R C IOWNEOBY l?ERSON Clllll. Thia 
oefll'\it,on of tne pvt~I oroerong ia I subsuntoal enrichment 
of me usUIJ AKO type of atrucw,1119 and onheriance in 
vogue. 

VI PLANX10 

In this HCtJOr\. we describe ~ implemented p lanning 
system. PLANX10 lsee [20) for a more oetailed 
oueropt1onl We hive oes1gned ,n explicit .nnotated g~I 

trH M"ICI pUlr'I gr.apn on wrui:n me program keeps track of 
1U own p,oo,em solving 1ct1v1ty. Tnus. full state 
..,+orm,tion for the p l.aM1ng process c:,n be s.iyed The 
....-.outed 11rvcv11 also allow ua to incorporate d1s1robut1d 
p1.ann1n9 and ,ncremenu1 pl.ann,ng method,. Funn11rmore. tne 
ume ,11'Y"o()tat,on s=t1re ,s used to make explic it record 
o f 1uump11ons about the presence or absence of objects 
ar\d 1tn..ctur11 °' fl.llCt1ona1 propenies of such ob1ects in 
tne tnito.al aitu.a:tion The structure of ttte .nnotated tr.tee 
reflects Ina g~l-1ubgoa1 Structure o f tne p1an. as well 1s 
tne r,,erarchl~ oepenoenc1ea among the planning decisions 
and ,s~ti~ 

A p,rt1cuwr pllrv'long algorittvn it designed u , 
collec:tlOt'I of plM)nlng ·meta-actions· that seiect,vely focus 
,nentJon on p,ru of the p~ graph and go.al tree and 
ea.tend or revise them. .User-guidllnr. .. ;~ ~ svcl' "let.a­
&CllOI\ PI..ANX10 is Ible to Pl.!n with partia l oescnptions of 
actions and ocjecu. as well as w ,th phantom ob1ects. 
:.va1u.11Jon ·of , p,rt11I constraint description ,s represented 
w •tn llrl .ahSl That 1s. tne 1hst associated w1tn. a . description 
reptesentS the Hts of ~d1d1te instances Ice.. variab le 
b,no,ng,l wn.Ch utisfy the consua,nts of ioe (possib ly 
P¥l!.all oner1ptJon The selection of a p1rncu1~ c1nd1date 

PLACE SUB STANCE 

~ 
WAT~R WI.II£ 

SINK COUN TER 

instance can be postponed until appropriate constraints have 
been developed If information needed for p lanning is 
unavail.ible. PLANX10 is still capable of generating i parti1·1 
or skeletal p lan If at , later t ime new re levant informat ion 
i, ml!de available. the p l~ can be enriched ~d/or revised. 

A.. Annotat,d Goal TrH and Plan Graph 

The Goa/ TrH is constructed with three t yp.es of Tree 
Node,a: Goa/NO</•, ActNodt1, and ActlonNod11. The no_dtl 
are cr eated .yia the ,pplication of an operator to 4 node; 
the node operators ,re d11cribe.d in the ne!(t subsection. 
The node t ypes represent different stages in the .p lan 
generation process from goal to subgoal. [See Figure ·~.) 
The Tree Nodes. ,re interc!Jnnec-ted in two ways - a 
PAREN T/PAIUNT,OF r•l•tlons/1/p and .1 two le,ve l O~·ANO 
llnlc1g11. [Figure 6 illustrates an ActionNode.J The OR­
ANO linkage his the characteristic thai if I Node i1 re­
exp1nded (generating new i;:hild Nodes), ttle goal-subg_oal 
structure i, !Tlllintaintd without modifying ·any previously 
established links. 

Figure 15: Node Op,rator Mappings 

NODE-OPERATOR Domai n ••> Rang, 

CUSTOM I ZE-COAL Coa lNode ••> GoalNode 
EXPAND-COAL GoalNo~e ••> Go1INod1 

SEL~CT-ACT 1 GoalNode '!'8> ActNode 
CUSTOMI ZE-ACT 1 ~ctNode ~•> ActNode 
CREATE-ACT I ON ActNode ~~> ActionNode 

VERIFY-PRECONDITIONS I Act l onNode ••> Act i onNode 
CREATE-SUBGOAL ActionNode .. > CoalNode 

SI MULATE-ACTION ActlonNode •• 

-. ----------------------------------------------~-
·NOTES: 

CREATE-ACTION al•o createa a PlanNode, 
•• SI MULATE-ACTION doea not create any Nodes. 

1~ 



Figura 6: Example of an Act,onNode 

ActionNocl• ACTIONNOOl-10 
Oucfo,.. coPEN X IOF !CONTAINER Cll 

Dute-• 
OescFor• 

Opportunity 
Oe1cFor• 

Type 
Support 

State 

!AGENT !PERS~ I'll) 

UX oPEN• II IC CABINET ll IP LUO(EJI 

!CONTAINER C !OPEN Y£Sll 

UC CAB !NET Ill 

ICONT AINER C !CLOSED YESll 

ICC CAB 1Nl;T Ill 

TRUE 

S1 
Source NOR/UL LY-TRUE 

S2 Simulation S1 ••> 
Condition SUCCESS 
l'lerit 
Parent 
Orlink 

s 
ACTIONNODE-7 

AndLlnk GOALNODE-11 
Cre1ted8y VERIFY·PRECONOITIONS 
L1!tOper1tor Sll'IULATE•ACTION 

Pl.ANX10 also generates the Plan Gr11p11 !composed of 
PlanNooesl. The Pl.in Graph has cross references with the 
~ Tree. and is bu,it upon the Act1onNodes extracted 
from tne ~I Tree. A pl11n SCJlvtion is oef,ned ,n terms 
of P1¥>1\4odu (see Figure 7J. The knowledge represented 
by tnt Pi.in Graph prov,oes support for tne ptan crn,cs and 
~v,t,es outside of pl.in generation le.g.. plan execution, 
Plan recogrut,on. plan rev,1,onl. 

For each actJon represented in the Goal Tree. there ,s 1 
Pillnl'lloo• representing 1t in the Plan Graph. The PLANOF 
re1at,on connects a PlanNooe to an Act,onNode The otner 
C:OIYleC'llons involving PW'Nooes are oef,ned w1tn reference 
to tn, s Act,orJ\lode: 

• A PIMlNode ACHIEVES a GoalNode. if the 
~!Node represents the pri~ry gOill of the 
PlllnNode' s assoc~ted Act,onNooe. 

• A Pw-.Node X ENABLES a PlanNode Y. if the 
~INodt that PlanNode X ACHIEVES 
represents a precond11,on of the Act1onNooe 
assocuned wrtn PlanNooe Y. 

• A P!anNode X SuPPORTS a PlanNode Y. if one 
of tnt side effecu li.e.. an outcome other than 
tnt prmary goa;; of tne ActJonNode associated 
11111tt1 PtarNooe X ut1sf111 a precono,uon of 
tnt Ac:tJo~ooe associated with P1anNode Y. 

B. Planning operatora 

The plan construction ac11on1 available 1n PLANXIO arc, 
oef1ned as operator,. A nod• operator is applied to a 
node to extend 1nd modify the problem 1olv1ng ~aph IUlt 
combined Goal Tree and Plan Graph). Plan critic• art 
provided to evaluate "globar asp1ct1 of the problem solving 
graph. The critic, art applied to 1ubgraph1 and perform 
ev11ua11on1 and detect var1oua tvP•• of conflict, between 
par,llel port1on1 of a plan The crit1c1 ,re u11d for auch 
011c1s1on tuks II determ1n1ng Ult "btsl" nodts for 
expansion (te .. attention focusl and determining the ordering 
constraints between the actions within a aolution plan 

Node operators are shown in Figure !5. ThtH 
oper11ors connect new nodes to the parent node and add 
appropri1te annotations. CUSTOMIZE- GOAL specializes a 
GoalNode producing a disJunctive nt of GoalNodea. Each 
Goa!Node represents an alternate refinement of the parent 
goal with respect to knowledge of objects. pt1c11. i nd the 
current situation EXPAND-GOAL splits I coniunctive go11 
into • conjunctive set of simple go,11. SELECT-ACT 
creates a disjuctive set of ActNodea. These represent 
alternate actions for achieving a given goal. CUSTOMIZE­
ACT creates • disjunctive set of ActNodes. Each ActNodt 
is an alternate specialization of the p,rent ActNodt. 
CREATE- ACTION determinH the precondition, and 
outcomes given a particular action specification (ActNodeL 
The elaborated action specification is assoc,ated with an 
Act1onNooe and a PlanNcidt. VERIFY-PRECONDITIONS 
determines the statua ttrue. false. unknownl of precondition• 
with respect to I particular situauon (i .e. model 11,tel. This 
proceu mav dr,w conclu11ons that ,re baaed on 
assumpt1on1 1bout the 11tuat1on. SIMULATE• ACTION 
extends the model 1t1t1 history to reflect the outcomu 
and side-effects of the action simulated. [Figure B show• 
tne annot.1t1ons generated during verification and simulation 
of an action.] At each step, tne user is given the option 
of directing the planning program. PLANXIO can 1tso bt 
run without user intervention 

VII Concluding remark• 

PLANX10 is programmed in 1 23-bit le><tandedl 
addressing Lisp. ELISP. using the representation and 
inference facility AIMDS [21 J. [22) PLANX10 has b .. n 
used 1n. commonsense taak dom11n1 and in thll domain of 
corporate tax law le.g., planning I aequence of ta>< free 
actions to achieve a desired end state) As our work 
matures. we e><pect to report on e,cperimental results in 
se lected large domains . 
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Figure 7: P~lly Ordered Plan Solution and example PtanNode 

Goal 1 [ (PERSON P (DRANK WATER)) • (P LUKE)) 

PlanNode•2 
Take gins. 

PlanNode•3 
Pour water. 

PlanNode-lt 
Open cabinet. 

PlanNode-S 
Take bottle. 

p '1 anNode•7 
Open ·refrigerator. 

PLANNODt PLANNOOE•4 
Enables 
Achieves 

PlanOf 

PLANNOOE-2 
C.OALNOOE·lt 

Ul.40Ve-OBJ O !ACCESSIBLE CPERSON I'll) 

CI P LUl(EJ CO GLASS 111 

ACT IONNOOE•7 
COPEN X COF CCONT AINER en CAGE NT !PERSON Pl)) 

ClX OPEN- 11 cc CABINET 1l CP Luo<en 
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Pl anNode-6 
Open bottle. 
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Planning Within F1rat-Order Uynamio Logic 

Henry A, Kaut& 

Department or Computer Scienoe 
University or Toronto 
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.. bstraot · 

Thia paper develops a version or rirat-order 
dynaa1c logic suitable ror stating robot 
planning probleas. :he bidireotional planning 
algoritha developed by S. Rosenschein [12] is 
extended to handle a subset or this r1rst-order 
logic, while retaining (provable) correctness, 
Exam ples or hierarchical planning, disjunctive 
and quantiried goals, and multiple plan 
constraints are discussed, 

1.0 Ioteodwc:t1on 

Planning systems based on theorem proving in 
the situational calculus [5][8] orrer a well 
de~ined semantics ror plans (namely, the 
semantic• or rirat•order logio), a rioh 
vocabulary ror deacribing world states, and a 
provably oorrect planning process. The popular 
S".'RlPS-bued planner:, [ 3] neglect the:se reat.ures 
in order to concentrate on erricient control or 
the aearcb through the state-apace; state and 
goal descriptions are limited to sets or 
literals, which are added or deleted by action 
operatora. 

Stanley Rosenachein [12) has rormulated the 
propo,1tional planning problem ·1n dynamic logic, 
a •odal logic developed ror program verirication 
(6](10], and has given a complete bidirectional 
sea~ch algorit hm (•Bigresa•) ror synthesizing a 
broad class or plans, including ones involving 
disjunctive and conjunctive goals and 
non-determ1n1st1c actions. As in the 
situational calculus, correctness o~ plans is 
stated in terms or provability in a ronnal 
tang\lage; as in STRIPS, plans are round by a 
st~uctured search through a space or state 
descriptions. 

ln this paper, l derine a rirst-order dynamic 
logic suitable ror stating robot plann1ng 
problems, and extend Bigress to handle a subset 
or the language. Since state and action 
Je~cr1ptlons may contaln dlajuncLlvu and 
4ul&nU r led inronnation, calculating the errect 
or an action on a state (rorwards or backwards) 
1s a non-trivial problem. Techniques ror query 
~valuation on first-order data bases are used to 
determine the instances or the dynamic logic 
axioms releva.nt to the calaulation or the 
partlaular regression or progression. 

Perhaps the greatest errioienaiea in aearoh 
oan be obtained through the usa or plan 
hierarchies, Thia ia oommonly implemented (e.g. 
ABSTRIPS [13] and NOAH [14)) by temporarily 

• hiding •1eaa important" details rrom the 
planning unit; when the details are rilled in, 
the plan may be in error and must be patched up, 
The complexity or the patching prpoeu, 
unrortunately, weakens our raith in the ultimate 
oorrectneas or the plan and the overall 
erriciency or the strategy. 

The dynW11io logia rramework, on the other 
hand, auggeats an ~ hierarohy [12], 
Solutions to generalized planning problems, 
containing .121.an parameters, can be pre-computed, 
l orrer a simple example or provably correct 
hierarchical planning. 

2.0 Ill.c. Language 

A dynBJDiO iogio ia modal logio: a plan (or 
program) is a reachability relationship over a 
set or possible worlds. Where A is a plan, [A]P 
is true in a world l ir Pis true in every w6rld 
reachable rrom I by A. So [A)P can be read, 
•arter A, P". 

Many versions or dynamic logia have been 
developed (see [2]); generally, assignment ia 
taken as the only basic action, and programs 
relate worlds with differing interpretations or 
program variables, We are instead moat 
interested in parameterized actions which arreot 
only the extensions or predicates (e.g. the 
truth value or on(BLOCK9,TABLE) ia ohanged by 
the action pickup(BLOCK9)), I designed 
Transparent Dynamic Logic (TDL) to express suoh 
actions. 

2. 1 Sxn.U.l. 

TDL is an extension or runcticn-rree 
rirst-order logio. An "action symbol" (e.g. 
pickup) applied to a sequence or ·terms 1a the 
simplest kind or plan which can appear ina1de a 
[ ], Complex plana are built up by sequencing 
(A;B] and nltornatlon [Pz:>A,B) (monnlng 
u· p THl::N DO A t;Wil:: DO b). formally: 

Define the aeta or symbols: 

VAR:: variables 
CON: constants 



~h~U(k) • prddicat~ symbols or arity k 
(PRE0(2) includes • a •) 

A'=T(k) a action symbols o~ arity k 
Let ':£RMS • VAR U CON 

The plans and well rormed rormulas or TDL are 
derined recursively: 

1. Where a cACT(k), t 1, ••• ,tk, TERMS, then 
a(t.

1 
•••• • t.k) , TOL-Plans h an .llS2m1l:. A.!:.U.Qni 

the t1•s are its parameters. 

2. Where P la a non-modal quant1r1er-rree 
TDL-W!"!', and A,B, TOL-Plans, then null, (A;B), 
and (Paa)A,B) are TDL-Plans. 

3. Where p, PRED(k), t 1 , ••• ,tk < TERMS, then 
p(t 1, •• • tk), TOL-Wr~s is an~ orooo~ltlon. 

,. Where X ( VAR, P,Q ( TDL-wrrs, and A< 
TOL-Plans, then -p, (P v Q), E.ir:P, and [A]P are 
TDL-wrrs. 

A non-modal wrr is one not containing a 
subrormula or the rorm [A]. Define V, &, - > 
(implies)• <- > (equivalent) in tel"'llla or E, v, 
a~d - (not) as usual. A list or terms tk, ••• ,xn 
is orten abbreviated ,l. 

Any plan can be put in •normftl rorm•, where B 
1, in normal rorm 1r: 

1) 8 can be written ll;A2; ••• ;An with at moat 
one Ai not atoaaic; and 

11) Such an A1 is or the rorm (P == >Bl,82) 
w.be!"e P is an atomic proposition and 81 and 82 
are 1.n nonnal ror11. 

2.2 Semant.1c:, 

A structure ror TDL includes a a domain or 
individuals, a aet or worlds, and an 
interpretation ror the action symbols. Each 
world interprets the t enns as members or the 
domain, and the predicate symbols as predicates 
over the domain. '.he meaning or a plan is 
binary relationship over the set or worlds. 

These notions are aade preoise in [7], 
includin& semantic conditions for plans to 
rererentially transparent (which allows 
substitution or terms ror variables in modal 
ronnulu). 

2.3 &xlomottcs 

Tbe a.xlocas and rules or inrerence include all 
those ror runction- rree, r1r,t-order logic with 
equality and loop-:'ree dynamic logic •. P and Q 
stand ror any TDL-wrr,, x any variable, Band B' 
any TDL-Plans. and A ror any atomic action. We 
write P(t/x} !or P with t substituted ror all 
rree occurrences or x, where [A]P(t/xl a 

[A(t/x)]P(t/x) (parameter substitution). 
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rirst order 

A 1. 
A2, 
A3, 
All, 
A5, 
A6. 

All tautologiea or propoaitional calculus 
Vx(P ->Q) - >(VxP ->VxQ) 
VxP ->Pit/xi , ror any term t 
P ->VxP, where x 1a not rree in P 
Vx(x:x) 
t,=t2 ->(p( •• • ,t1•···> - >p( ••• ,t2····>> 

any t 1,t2 TERMS, p PREO 

modal 

(B](P ->Q) ->((B)P ->[B)Q) 
[null]P<- >P 
[B][B•]P<->[B;B 1 ]P 

A7, 
AB. 
A9. 
A10. [P ==>B,B')Q<->((P ->[B]Q) & ( - p ->[B']Q)) 

t°ransparenoy 

A12. Vx[A]P ~>[A]VxP, x not a parameter or A 
A13, Vxy (x:y ->(A) xsy) 
A111, Vxy (x~y ->[A) xly) 
A 15. ·[A) ralse 

ruloa or inferenoe 

R1. From P, P ->Q oonclude Q 

R2. From P conclude VxP 
R3, From P conolude [A]P 

Axiom A12, the "Barcan rormula" or modal 
logic, leta ua derive a theorem ror "pushing" 
quantiriers through actions: 

Tl, K[B]P ->[B)KP, where K is a sequenoe 
or quantiriera (both E and V), and none or 
the quantiried variables appear in 8. 

3.0 Finding f.l.aJl4 

Sinoe TOL inoorporatea r1rat-order logic, 1t 
11 obvioualy not deoidable. lt 1a well known, 
however, that the validity problem is decidable 
ror wrra which oan be put in prenex rorm ao that 
all universally-quantiried variables precede all 
existentially-quantiried onea [1], We reatriot 
our attention to a oleaa or planning problema 
which oan be solved using only r1rat - order 
reasoning about auch "V-rirat" wrra, We 
claas1ry wrra by their prenex rorm as "V- r1rat", 

·"E-rirat", "V- only", or "E- only". 

We review and extend 
framework rrom [12). 

the 

A planning problem ia 
<VOC, G, R(u(.11))> containing: 

propositional 

a triple 

1. 
the 
TDL, 

voe E <CON, PRED, ACT>, the vocabulary or 
problem, a rinite aubaet or tha aymbola or 

2, Domain axioma G, containing; 

Ga, a rinite aet or ¥-only non-modal 
(static) axioms. 
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I 
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Gd, a r1nite set or dynamic axioms, eaoh 
·o r the !"oni (Vl)(p ->[a(l.')]q). 1. and 1' are 
llata or variables 1uo~ that 1 oontaina 1', 
and p and q are non-mod'al quanti rier-rree 
... ~~ .. 

The non-llOdal axioms Gs should be strong 
enouah to derive all non-modal theorems 
derivable :"rOII C. 

3. Plan constraint, R(uOl}), a finite set or 
v!'!"s or the rona (VX.)(r ->[u(H.)] s }, where r is 
noo-lllOdal and V-only, s 1s non-modal and E-only, 
and li 13 a distingui!!hed set o.r variable:, oalled 
tbe •problem parameters•. •u• is a :special 
action symbol \Jhich doe, not appear 1n VOC. 

A ,olutioa is• plan B such that aub:stitut1ng 
8 !'or u(li) 1n each plan con:straint create:, a 
theorem derivable rr001 the axioms (Gl-r ->[B):s 
~or each plan con!ltraint), and the only rree 
va:-iable!! in Bare problem parameters. li i:s the 
•1nput• to the plan. 

For example, i!" R(u(Ji)} .1a 

Vh(block(h) ->[u(h) )inbox(h)), 
Vhx((-inbox(xl & x{h ->[ u(h)J -inbox(x)) 

the constraint 1s to rind a plnn to put any 
block h into the box, without putting anything 
el!!e in the box . The only input to the plan 
will be the particular block to be moved. 

':"he basic strategy o!" Ro~en!!chein':s planning 
algorit hm 1, a, !"ollows. We derine the 
~~ ~~ ~tconditUl.[l or a non-modal 
wr~ rand an action A a, a non-modal rormula r/A 
,~ch that c:-r -> (A)r/A (r/A is A postcondition) 
~nJ o:-r/A •>Q when~ver Cl-r -> [A)q, Similarly, 
the w~1kc~L orovabl: orccondlt1oa or a wrr sand 
act1on A is a non-modal rormula A\s !IUCh that 
c:-A\s ->[A )s and Gl-q ->A\s whenever 
G :-q ->(A ]s, 

Since l-Vl(r ->[B]s) 1rr 1-r ->(B)s, we can 
dr-op tbe quanti~iers which quantiry over the 
pla~ constraints, The algorithm r1r,t checks 
whethe~ each initial state description 
Ca~tecedent in the plan constraints) implies the 
corresponding goal description (consequence in 
the plan constraints); i~ so. the search halts. 
Otherwise, it non-deterministically chooses to 
either insert a conditional branch in the plan 
u.~der construction, or to select a simple action 
A, and either progress each initial state 
desc~iption through it (calculating r/A), or 
r egresses each g~l state description through it 

· (calculating A\s). The process is then 
applied recu.r,ively. 

ln the ~ollowina algorithm, braces 
u.3ed to construct lists or syntactic 
or ~onaulas. Where pre and post ror 
syntactic variables ranAing over O~r,, 

< > are 
variables 
I.ii.in are 
we write: 

2 I 

PO~T ror <poet
1

, ••• , postn> 
PRE/A ror <pre 1/A, ••• , pre IA> 
A\POST ror <A\poat 1 , ••• , A~poat > 
PRE & T ror <pre 1 & T, ••• , prenn• T> 

A solution to the planning 
<VOC, 0, R(u(Ji))> where R(u(.11)) is 

VX1 (r1 ->[uC.11)] e
1
), . 

VXn (r
0 

->[u(ii.)l •n> 

is round by calling 

problem 

Bigress(<r 1; ••• ,rn>' <r1, .•• ,en>' null, null). 

Bigression Algorithm e 

.lligress(PRE, POST, leader, trailer): 

IF GI-pre ->post ror 1.{1~ THEN 
RETURN!leader;trailer). 

CHOOSE: 

CHOOSE CA, PRE/A> FROM LiveForward(PRE): 
RETURN(Bigress(PRE/A, POST, leader;A, 

trailer)). 

CHOOSE <A, A\POST> FROM LiveBackward(POST): 
RETURN( Bigress(PRE, A\POST, leader, 

A; trailer)) • 

CHOOSE T FROM NonTriv(PRE): 
RETURN( leader; C; trailer ) where 

C: (P ==>Bigress(PRE & T, POST, null, null), 
Bigress(PRE & -1, POST, null, null)), 

end. 

Liveforward(PRE): 
RETUHN I <11Ct. 1 , ... ,t.k), PHt:/u(t. 1,, •• ,tk)> 

a c ACT(k), ti£ CON U .11, and 
ror SOME i , 1.ii~, 
not GI- pre1 ->pre1 /a(t 1, ••• ,tk) ) 

LiveBackward(POST): 
RETURN { <a(t 1 , ... ,tk), a(t 1 , ••• ,tk)\P0ST> I 

a ( ACT(k). ti £ CON u Ji, and · 
ror SOME 1 , 1.ii.i,l, 
not GI- a(t 1, ••• ,tk)\post1 ->posti) 

NonTriv(PRE): 
RETURN { p(t 1 , ••• , tk) I 

t1 £ CON U .11, ror 
not GI- prei ->T 
not GI- prei ->-T 1· 

p £ PREO(k), 
SOME 1, 1~, 

By making the non-modal axioms atrong enough 
to generate all non-modal theorems, the stopping 
test Gi-r ->s holds ir and only ir Gs ->(r ->s) 
is a valid rormula or rirst-order logic with 
equality; the latter rormula 1a 11-rirst, and ao 
(as in the propositional oase) the teat is 
decidable. The testa in L1veforward, 

• Adapted rrom the single constraint, 
propo~itional Bigress algorithm in [12), 



L1veBackvard, and NonTriv, also only applied to 
V-rtrst roraulas, serve to prune loops in the 
searcb space. For instance, ir Gl - r ->r/A ror 
every plan constraint, no solution need begin 
v1tb A, because A;B would sat1s!"y the plan 
constraints only i~ the shorter plan 8 would as 
well. 

-.o Enmpl,a 

Be~ore discussill& the progression and 
regression operators in detail, ve o~rer a 
number o~ example problems that can be solved by 
B1gress, but would prove d1~ricult for S,RIPS 
and its aore sophisticated descendents. 

Several boxes can bold various colored 
stones. The •dump• action transfers All the 
stones that are in one box to another. '!'he 
static axioms describe basic racts which are 
true in every state, and the dynamic axioms 
describe (perhaps only partially) "dump•. 

voe: CON: B 1, • , , , B 3, S 1 , ••• , S 10 
PRED: box, 1n, color 
ACT: dump 

Cs: box(B1), box(82), box(B3) 
81i1B2, 81iB2, •• , , S9ilS10 

Gd: ¥xyz((in(x,y ) & box(z)) 
->(dump(y,z)] in(x,z)) 

¥wxyz((in(x,w) & vily) 
- >[dump(y,z)J in(x,w)) 

¥wxyx(·color(v,x) 
•>[dump(y,z)J ·oolor(w,x)) 

'!'he last two axioms are ~ ~: axioms 
wn1ch describe con~itions which are invariant 
under an action [8). S7RIPS avoids explicit 
~rame axioms by ~aintaining a single model o~ 
the world, with the understanding that any 
pl"Qposition not explicitly deleted by an action 
operator carries tr.rough ~rom the previous 
state. But an action like dump, which arrects 
an arbitrarily large number or objects, can (as 
Waldinger [16) notes) nullify any erticiency 
advantage gained by such a strategy: the system 
still has to check and possibly add or delete a 
great many propositions. 

Problem 1: demonstrates quantified, 
conJunotlve, and disjunctive state descriptions 
and goals, '!'he plan constraint: 

¥x ((¥y(color(y,BLUE) -> 
(in(y,81) v in(y,82))) 

& in(S2,B3) 
->[u)((color(x,BLUE) - >in(x,82)) & 

Ez(in(z,81))) 

llbicb can be read, •given that .Ill. blue things 
are 1n eitber 81 or B2, and S2 is in B3, get .ll.ll. 
blue tbings in 82, and ,ometh1ng in e1• is 
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solved by: 

dump(B1,B2);dump(B3,B1) 

Disjunctions appear expl1o1tly 1n the 
constraints antecedent, and 1mplioitly in the 
implication in the oonaequenoe, •All blue 
thinga are in B2" cannot be exprea•ed by a sat 
or literals, as we have n.o.t.. invoked any •oloaed 
world aasumption" about the aet or blue things, 
nor need we have apeoir1o oonatanta to name 
them. 

Problem z is a variant or the "register 
exchange• problem [16], and 1lluatrates the 
dispatch or Bigreas•a regressive aearoh. 

(in(S1,81) & in(S2,B2)) 
- >[u](in(S1,B2 ) & in(S2,B1)) 

The solution 

dump(B1,B3);dump(B2,B1);dump(B3,B2) 

1a round with no baoktraok1ng. 
L1ve8aokward(1n(S2,B1) & 1n(S1,B2)) oontaina 
.Q.Q1Y dUJ11p(S3,S2) and dump(S3,S1) I other ohoioea 
are pruned, ainoe the goal regreaaea through 
them to ralse, Either poaaible ohoioe leads 
directly to the solution , 

Straightrorward linear planners (e .g. 
original STRIPS, whioh tries to achieve eaoh 
conjunct or a conjunotive goal in sequence) rail 
on this problem, a inoe a tirat step or 
dump (B1,B2) renders the solution impossible, A 
non- linear planner ( e.g. NOAH (1~). whioh 
creates independent ~ubplana to achieve eaoh 
oonjunot) rinda that ita 1ubplano .wi.a.!J,. be 
combined, and muat replan. RSTRIPS [ 16] ia 
ramed ror ita aimilar regressive solution to 
thia problem; but in more complicated caaea, 
Bigresa•a stronger handling or disjunctive goal1 
(as regressions are generally disJunotion1) 
could be more err1oient. 

Example 1: involving a non-determiniatic 
action, ia a version or the ubiquitous "3-sooka• 
problem: how to rind a pair or matching aocka 
in a dark room? Say S1,.,.,S10 are blaok or 
white socks, initially in B1; •take" pioka one 
out at random, and •put" puta it in B2; the 
goal . is to have a matching pair in 82. 

Gs: 
Vxy(hold(x ) ->·1n(x,y)) 
Vx(aock(x) -> 

(color(x,BLACK) V oolor(x,WHITE))) 
aock(S1), •• • , aock(S10) 

Gd: 
h(1n(x,B1) 

->(take)(hold(S1) v • • • v hold(S10)) 

Vx(in(x,81) - >[take)(hold(x) v in(x,B1)) 

¥x(in(x,B2) ->[take)in(x,B2)) 
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,x(bold(x) ->[put)1n(x,B2)) 

V..:y(tn(x,J) ->[put)ln(x,y)) 

I (11): 
(1n(S1,~tt Y ••• Y 1n($10,B1)) ->[u] 

txy(in(x,82.•) I, 1n(y,82) I, dy & 
CCoolorCx,•BUt:IC) & oolor(J,BLACk-)) Y 

(oolor(x,IIHI,E-) & oolor(y,WHITB)))) 

11,.-.11 arinda out the 1olution1 dip into the 
box Ju.st three times, 

take ;put ;take ;put; take .;put 

or the other systems discussed here, only NOAH 
can be .prosrammed ror •pick up a random aock•; 
but its weaker handling or disjunctive goala 
would lead 1t to create separate subplans to try 
to achieve .tl1htt •two black socks are in B•2• 2r. 
•two white soc~ ar• 1n B2• -- neither or which 
can be r•al1zed under the t1ven axiomatiz•tion. 

5.0 fcogcc3~1on w lluccs:,ion 

The next task is to der1ne the progression / 
and Nigreaaion \ ~nctioha. We concentrate here 
on the !'or111er; regression 1s handled slmilarl.y 
(see [T]). 'l'be rollowing algorithm is proven 
correct in detail -in ('r), but wi'th a hitch: in 
certain cues 1t. · may not terminate; 
pathologioal examples can be constructed where 
the strongest provable postcondition (weakest 
provable precondition) cannot be represented by 
a !'inite lensth non-modal !'ormula (see section 
... 0). . 

'l'be prog~ession or a state description r 
tbrouab an atomic action a(l.) using domain 
oonatra1nta O 1a calculate'd in !'our ate.pa, 'ihe 
bas1c idea 11 !'ind all the substitution 
lnHances c!' t •he dynamic axioms !'or a(l) whose 
antecedent, are implied by r. A simple example 
is worked out in parailel to illustrate the 
detlli ls. 

Example; Calculate the r1rst prosression 
!'ound by Bigress in a rorvard search ror the 
solution to ~roblem (1) above: 

(Vx(color(x,BLUE) ->(in(x,B1) v in(x,82)) & 
1n(S1,BJ)) / duaip(81,82) 

~11 
all UICI 

A Ill (the 
11st ,Z.. 

fora G(a(Z)), the aet or instanoea o~ 
dynaaic axioms ~or a, including A13 and 
equality rrame axioms) with parameter 

-'.l_: G(duaip(B1,B2)) a 

Vx((1n(x,B1) & box(B2)) -> 
(dump(B1,B2)) 1n(x,B2)), 

Vwx((in(x,w) & wiB2) -> 
(dump(·B1 ,B2)) in(x,w)), 

2) 

Vwx(-oolor(w,x) -> 
[dulDp(B1,B2))-oolor(w,x)), 

Vwx (wax ->(dump(·B1,B2)) wax'}, 

Vvx (wilx ->[,11ump(B1,B2)] wilx) ) 

Theae rormulaa a·re Ul derivable rroa O by 
A). 

~ l: Repiaoe any rree var1abl11 1o r and 
O (a(Z.)) by new oon11tant1; oall 01 and the 
transformed ·version, 'or r the "bua rormulu•. 

Derine • •query• u an E-quantiried ·non-modal 
rormula 1n dis~unotive rorm. A •variant• or a 
rormul'a is created by 11ubstituting various terms 
tor ita E-quantir1ed variables. An •answer" to 
a query ia a disjunction or or variants or .D.l2lllA 
or the diajunct11 or the quer¥, 11uoh that the 
answer 111 derivable rrom the base formulae, 

Form a query by taking the disjunction or the 
anteoedent11 or each rormula in O(a(l.)), placing 
E-quantiriere on the variables, 

.£¥,i The base formulas are Juat 011 and r 
above. 'l'be query oon11iat• or rive disJunot11 

Ex (1n(x,B1) r, box(B2)) v 
Ewx (in(x,w) & wi/81) v 
Ewx(-color(w,x)) v 
Ewx (x=w) v 
Ewx (xilw) 

~ }: Generate and conJoin (at least) all 
signiricantly different inswera to the query, 
Resolution with a~swer-extraotion provide• a 
complete strategy r·or answer generation baaed on 
theorem proving [4). The equality axioms 
(A5-A6 ) can be eimulated ~Y ~y apeoial rule, or 
inrerenoe, auoh aa parimodulation [11). 
Complete heurlatiOa such as aubsumption (2) oan 
be used to avoid generating weaker and weaker 
versions or the same answer (e.g., don't 
generate p(C ) or p(x) v q as answers ir p(x ) baa 
already been generated). Di11regard answer11 
derivable rrom Ga alone which are variants or 
the frli.llle-axiom antecedents. 

~: Answers to the query 1nolude: 

[1] Vx((1n(x,B1) & bo.x(B2) v 
(1n(x,B2) & B2i1B1) v -color(x,BLUE)) 

& 
(2) (in(S1,B3) & 83i1B1) 

We disregard answers such as "S1:S1" which 
don't depend oh r; ttteir inclusion would 
merely complicate the calculation. 'l'be 
notion is to try to avoid including in the 
final postco'nd1tion raota which are already 
in the domain constraints. 

~ .!I.: Replace eaoh variant 
conjunction or .answers by the 
var1ant q'; that ia, whure Q is a 

p' in the 
corresponding 

11ub11t1tution 



and VX(p - >(a(l))q) a member or G(a(I)) such 
t.bat p•apQ, let q•aqQ . 

Free ,ariables in the resulting ronnula take 
aa uni,ersal quantifiers, Finally, the new 
constaots introduced in step (2) are replaced by 
the original rree variables, 

1&: Tbe transronned rormula yields: 

¥x(1n(x,B2), in(x,B2), -color(x,BLUE)) 6 
1n(.S 1,83) 

as tbe f'inal postcondition; or simplirying, 

Vx(color(x,BLUE) ->in(x,B2)) l 
in(S1 ,B3) 

Tb.at this ron1ula bolds arter dump(B1,B2) 
rollovs rrom the ract the given state 
description implies the conjunction or 
answers (by the deduction principle or 
rirst-order logic), Propositional modal 
reasoning lets us combine the entecedents and 
consequences or non-quantified instances or 
the dynU1ic axioms for a(l,); axiom A12 
allows .the V-quantifier on x to be transrered 
across [dump(B1,82)), 

Gi,eo that r is V-only ands E-only, r/A and 
A\a are V-only and !-only reapeotively aa well, 
'!'bus the quantifier rules imposed . on the 
paraaeters or Digress to ensure decidability or 
the provability teat GI- are maintained. 

6.o tticcocohtool rioootoc 

Tbe search performed by a planner tenda to 
crow exponentially as the length or the solution 
increases; the computational problem is 
exacerbated by the very rlexibility a purely 
logical system allows in representing state 
descriptions and actions, The dynamic logic 
framework suagests an elegant and natural 
framework ror the hierarchical decomposition or 
a planning problem into smaller subtasks, 

l hierarchical planning problem is a tree or 
a1ngle-level problems [12), Higher le~el domain 
dyn.mic axioas are simply taken as lower level 
plan constraints. Specifically, ror each atomic 
action a(.1.) . which appears in a solution · to a 
node <VCY.:1 , G1 , R1 (u(.ll.))>, there is a child 
prcblea (VOC .,,Gi+1,Gi(a(l,))>, where . AC'\ 1 includes actions more primitive than those 1n 
AC~ • Because the lower-level plan whioh 
implements the higher-level action sattsries the 
plan constraints derived rrom the higher-level 
rrame axioms, it is rree rroai unexpected 
side-errects; and so the overall plan is 
constructed by simply piecing together the 
lowest-level solutions. 

Tbe 1+1 level planner can either solve ror 
the spec1ric instances or the actions used by 

~he higher- level plan, 
solution which takea 
high-level action as 
theorem ia: 

or oompute a more general 
the parameters or the 
input. The relevant 

T2. Suppose <VOC, O, o•(a(Z.))> haa 
B. Then ror any substitution g or 
variables, <VOC, O, o•(a(ZQ))> hae 
BQ. 

11olut1on 
term11 ror 
eolution 

For exlllllple, take problem (1) above aa a top 
level planning problem, <VOC1, 01, R1(u)>, No 
mention haa been made or how the dump aotion 
actually transrera items rrom box to box. Level 
2 introduces a robot that can grab all the 
objects in a box, move rrom plaoe to place, and 
drop the itema it'a carrying. 

VOC2: CON2: (aa above) 
PRED2: box, in, robat, hold, color 
ACT2: goto, grab, drop 

Gs2: V loo obj(1n(loo,obj) - >box(obj)) 

Os conta1na 

Vloo(box(loc) 
->[goto(loc)]robat(loo)) 

V loc obj((in(loo,obj) & robat(obJ)) 
->[grab)hold(loo)) 

V loo obj((hold(loo) v robat (obj) ) 
->[drop)in(loo,obj)) 

plus appropriate rrame axioms ror the three 
aotiona, 

Rather than treat the oonatra1nt aeta 
O 1(dump( B1 ,B2)) and 01 (dump(B3,B 1)) aa 
specirying unrelated planning problem11, the 
planner can aolve the more general problem 

<VOC2, G2, 01(dump(y,z))> 

whose three plan constraints are exactly the 
main and rrame axioms in 01 ror dump, and y and 
z are plan parameters. 

From the solution to thia problem, 

goto(y);grab;goto(z);drop 

T2 above leta ua derive the appropriate plana to 
implement dump(B1,B2 ) and dump(B3,B1), The 
overall solution 1a in the level 2 vocabulary, 
and aatiariea the level 1 plan oonatrainta1 

G21-Vx((Vy(color(y,BLUE) -> 
(in(y,B1) v in(y,B2)) ) 

& in(S1 ,83)) - > 
[goto (B1);grab;goto (B2);drop; 
goto(B3 ) ;grab;goto(B1 ) ;drop) 

· ( (color(x,BLUE) ->in(x,B2)) & 
Ez( in(z,B1)))) 
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Tb• aearcb involved 1n f'indtn& II hiih'-ievel 
2-nep· plan and a low-le'vU 11-ste·p . ptan -1a 
order• o!' •aan1tude l·h• thari ti11it neid ( d to 
clireotlJ ayntlle:slr:e· the bverall solution'. '· 

,.o .l troblcmot1ca·J.: ~ 

Th• quantlrUr-oriler t'UUa are riot. .sul1la 
auH'ic1ent to guarani•• t.enlinat.1oil or the 
anawer-generatlon pro'oesa 1il the progression or 
rigre:u1on runctionli ; Ut11o'U,h v't adaiit o·n1y i 
rtn1t-e nuilber ot consUnt tenu Cana no 
t'unoUona), arb1trlir1ly long aign1 !'1cant ansvt~i 
contalnin& (V.quanti !'1ed} llal'iibles oan lr"1H in 
the preaeno• or •reour,-1ve• d·omain axiO'iia. For 
e1.iaple, lat O contain 8nly: 

h:y Con(x,y) - ·>above(z,y)) 
Vzya ((oo(x,y) & ilbo've'(y,c)) ->above(,x,t)) 
Vxt (·on(x,y) ->[ f ] ~oh(x,y)) 

lllot.e that with this a:Uoalattiatiob, ti 1a Mt 
provable trail ·o that 
·above(l1,l2) - >[ a ]·above(l1,K2). In att~mpting 
to calculate - ab'ovelKt',12)/a, the an:,wer 
generation pl"()ce;, 1:, !iowid · to proliut>·e •ail 
1n!'1n1 te series or an,wer:, corresponding to th-e 
!'act that the strongut p"r'o-iabll!i postcondition 
o!' ·ahove(IC1,t2) can only be written all th6 
1nl'1D1te conjunction 

· on (l 1, 12) 
& Vx c·on(ll,x) v ·on(x,k2)) 
& \lxy (·on(l;,x) v ·on(x,y~ v ·on(y,K2)) 

' 
The duiage oan ,be repaired 1n thl present 

caae by augmenting d with ll rrii.rbe axiom rbr 
·above, so that ·above(l1,k2) .U. a postcondition 
wt1ich tapl1e3 each conjunct o~ the above 
uprtission. :'be exact conatraints on G to 
prevent :such problem:, lo the general case remain 
a top1o of current work, It ia 1mp~rtant to 
note, however, that even it' thl answlr 
generation proceal u:,ed by / and \ 18 
1neo•pleti, any solut1ona round by Btgrea:, will 
still be provably correct, although, o!' course, 
some an:,wers may be lost. 

e.o Conc111,31ons An1i Eiten,s1011:i 

!be l!Jstu ducr1bed bas not yet beeit 
lapte•ented here at Toronto. The liorld doesn't 
need anotber progr11111 that solve, bloc~ atack1ns 
pl"'Oble11s; ao incrementally extensible theory or 
plannlng is more interesting. This , paijer 
describes ao early step in this process. Ita 
••Jor oootr1but1on 1s to provide a first-order 
langUAge ror planning and a provably ciorrect 
aethOd ror handling pf'ogreSsion and r egression 
1D a complu voi"ld. 

1rr1cieac1 coas1derat1oas llduld pro~ably 
pr-ec•lude a direct implelliend.tion or all the 

rrame axioala, and demand' a apeo1ai treatment or 
thi equality predioi:te, 

[T] euggeatll how B1'greai ooul<I use "rormal 
ObjeO'ta• [15] to reauc6 iearo!l t1'.••· 

An importan't et urn,s:on b the i noorpor•uon 
or ioopa -- neoebary, tor ,xaaifjle, 1r th'e dump 
aot1on ii to be i~l>Hmi!ntia by • lbw leve'l: pltn 
1-ilvolving ll robot inovi-ng objel!tt oflf at a time. 
11uch work fieeda to be dtJ'il'e on th• tiierarch1oal 
piannlng bpebU I viz! vnat aharaot«rize• • 
•s;ood 11 l\ierarchfolil decomposition or a t>N>blem 
domain? How much ll1etaii can thct hierarchy 
au11preae', wtiU:e *voiding b•d 1nte'ract.1ona 
between aubplana? How exaotly oail a dynamio 
hierarchy (as in t14) ) be ror~alized in dynamic 
logic? 
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IC:Jer A. Browse 

Department of Ccnputer Sclenoe 
unlvecalty of British Cblurrbia 
Vancouver, B.C. C4Mda V6T 1W5 

This paper discusses the operatlons of a 
QOC11PJter vis ion system used to interpret line 
drawirqs of bofy forll'l!'l. Mechanisms are described 
which permf t interactions among in format ion 
obtained at different levels of resolution. ThP.se 
mechanisms operate in a context of availability of 
information which is similar to that of the human 
vision systen. 

Interactlon betveen different levels of 

detai \ (resolution or spatial frequency) play an 

iq:iortant role ln o::rtp.Jtatlonal visia,. For the 

1110St part, the ope rat ions involving these 

dltferent levels do not relate to the scene daMin 

knowledge belrq used in interpretation (Hanson. and 

Riseman, 19741 Tanilroto, 1976). 

On the other hand, Kelly (19711 and Shirai 

(197ll have shown that each level of detail may be 

separately interpreted and that the result of one 

level NY aid the tnterpretatlon of the other. 

Rosenthal am Bajcsy ( 1978; Bajcsy and Rosenthal, 

1980) desct"ibe how search for specific. object!! in 

an iff\119e can be ass lsted by beirq able to predict 

the , r.ve l of detail at which an object can be 

loc;ated by explottirq the containment relation 

between scene dom.l in objects. 

This paper describes the operattons of a 

co111putational vision system which permits 

interpretation of images through cooperative 

interaction anong information obtained from more 

than one level of detail. It has been previously 

shown that this approach provides c:onpatlbility 

with aspects of human vision (Bro.rse, 1981). Thia 

paper outlines . the aystem~a ability to re<1uce 

interpretation possibilities hy providing !!CCM to 

image dorMtn mappings at t,.10 level s of' i,etall. 

'ttle vehicle for this research is a system to 

interpret line drawings of body forms. The 

e><amples being used are taken tran P.:ohko1 arv, 

WachmaM (1958) (see figure la). 'T'he design of the 

system adheres to the idea that domain knowledge 

should be declarative, and separate from the 

interpretation methods (see Browse, 1960). Aa a 

means of testlrq the adequacy of the scene domain 

knowledge, it has been translated into P!Otoei, and 

used to "prove" body forms in a data base of image 

assertions. 

The most su 1 table scene doma ln based 

interpretation schemes are found tn the echel1\lta 

basec1 systems of Mackworth and Haven11 (19811 

Havens and Mackworth, 1980). Provision for a 

recursive culng mechanism Is an integral part of 

schemata ba!'led system9. Thus the body form 
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la. 1.b. 

figure i. display of body--forin at different feve] 8 of ~tatl 

k riovl edge has been transiatei, into a 

rt"presentation suitable foe such operatlons which 

ts rlc:h tn component ahd specfa11zatlbn 

hierarchies. 

2A. l llVll<Je Opera tt ONI 

le. 

,. ) ine drawing is ill?,Jt as tn f lgure la, 

vtth the ald of a 1ight pen on a graphics 

tenitnal. Subsequently an image pyramtd is 

developed. with each stage lri the pyramtd 

representing a different level of c3etail isi!e 
r igurea la to le). The P'{ramid represents the 

ent ire .urblent array. but at Arr/ tnstant during 

interpretation. rine detail information is 

av.a llable in a small area or the lrMge, wlth a 

SI.Ir rourrli.rq area of coarser infoC1Mtion in a way 

arialogous to the availablllty of lnfofmatibn to 

the human eye (see figure ldl. figure ld. informatl6n a:ia il a ble wtthin fixation 

2J 
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Primitive iauge elements are available at 

differeflt levels of detail. Blobs with 

deten11inable characteristics are available from 

the coarse levels of detail, llhile lines and line 

oonnections are available frca the fine detail 

level. 

2B. Interpretation 

Image pclmitives from any level can act as 

cues to interpretation possibil itles. For exanple, 

a blob with certain pr~rties may suggest any of 

a nunber of body parts (such as ham, foot, or 

head), while a J ine connection of a certain type 

11\lY suggest particular views of a hand. 'Mlis cuing 

function ls always on-to-many and thus the 

organization of primitives is critical to 

understaming the image. In 9eneral, flne detail 

image elements (lines) cue scene elements at the 

fringe level of the ccnp:ioent and specialization 

hierarchies, whereas coarse detail image elements 

(blobs) cue elements higher (towards the root 

node) in the hierarchies. 

If only coarse level irnaige elements were 

being extracted, the system ooul.d still effect 

interpretation, and s imilarily for fine detail 

iaage elements, though the resu) ting image 

description would be richer tr the fine detalled 

infocmatlon were used. 

There are a nU110er of ways that nultlple 

levels of interpcetatlori can operate at the Sa.rrP. 

th,e, cooperating an<i shairlng their ongoing 

resu) ts through a common scene domaiin 

representation. By keeping the scene domain 

knowledge specification separate from the 

interpretation process, it ii possible to 

investigate a nUJTber of such possibilities. The 

following section describes a data-driven method 

currently being considered. 

3. AN EXAMPLE OF MUL'l'I-f..EVEL IN'l'ERPRF:TATIOO 

The interpretation process draws a sharp 

distinction between the detection of an image 

primitive (feature), and the analysis of its 

relation to other elements (feature integration). 

Within the information available at a ttnc, the 

system attenpts to delay the integration step. 

This provides a point of interaction between 

levels of interpretation and it ls also consistent 

wl th the fact that in human vision, features may 

be detecte<.l rapidly, aocurately, and in parallel 

over a stim.1lus, whereas the integration of these 

features requires the sequential application of a 

attentional mechanism. to the location being 

integrated (Treisman and Gelade, 1980). 

First of all, lmage primitives are extracted 

from the coarse 1 eve 1 of deta l t. Each detl!!Cted 

primitive maintains a set of possible noclels of 

which tt may be a part. Before considering the 

rel ationa anong these blobs, the fine detall area 

is processed for its image primitives. Each fine 

detail primit{ve also has a set of possible nodels 

(seo figure 2). 
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Figure 2. Hodel posg,ibllities a,t two levels Ci>f de:tail 

The illl<l'Je hierarchy structures may pr011ide 

the knowledge that some set of tine level 

primitives correspond with some coarse level 

primitive. In this case, two types of preHmlMry 

interpretation fl ltering may take place. 

l. S\noe the set of fine level primitives llllSt 

belong to the same model, inconsistent 

I 

\ . 

!extremity 
neck 
r.hooJMor 
hlpsl 

(hanc! 
foot 
lower leg 
~) 

interpretation possibilities may be elimtnated (as 

shown in figure 3). 

2, Interpretatton at the coarse level ITl.lst be the 

same, or a generalizat,f.en of, the intel'.pretation 

at the ,f.ine level. There'fore noce incx::inslstent 

poss-\ bil i ti.es can ·be ·e1>1mlilna ted .(as shown in 

figure 4). 

{ ttPf.le r 
~ 
ham 
foot 
lower legJ 

{wp~r er,n 
hand 
for,t 
)ower legl 

Figure 3. Mo:Jel posslbllitles after within-level filtering 
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Figure 4. Model posslbllities after across-level filtering 

Each blob ·which Hes within the fixation 

area is processed in this way, resulting in a 

significant reduction in the nurrber of possible 

Interpretations for the primitive irrage elements. 

For the exant)le fixation sl-o.m in figure ld., the 

appt teat ion of these two fllterlng operat Ions 

ell~inat~ 60\ of the possibilities. 

The next step involves the activation of 

upper level rrodels in a way simi tar to that of 

Havens and "b:kworth (1980). 'rtlls rrodel activation 

considers the relations arrcng primitives at each 

level, and establishes the existence of nore 

complex scene ccncepta. In the periphery, blobs 

may be interpreted as such general. ooncepts as 

•extremity• or •upper-lirrb•. In the foveal area, 

n:>re detailed interpretations are found, involving 

specific body parts with restricted ranges of 

three dimensional orientation. 

Through the use of the specialization 

hierarchy within the body m:idel knowledge, the 

more detailed interpretation at the fovea may 

propogate outwards to force instantiation of the 

per iphera1 objects. 

4 • CXN:UJS IOOS 

This paper has proposed the approach or 

al )owing information f.rom different levela of 

deta i 1 to interact through a common goal of 

interpretation, uti Uzing a camon scene daiiain 

knowledge. Ari exarrple data-driven interpretation 

method is provided which demonstrates a 

caiputatlonal arivantage to the approach, and which 

also shows consistency with some established 

aspects of human vi Rion, Other interpretat I.on 

schemes, using the same scene <bnain knowledge are 

planned. 'ltlese will consider the possibility of 

inadequate segmentation at the coarse level of 

detail, and will consider the development of 

intelligent declsionR regarding the subsequent 

placement of the retina on the ant>ient array 

representation. 
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Abstract 

O::rip.Jtational vision is difficult. because of 
ambiguous, lnoorrplet.e, am fnoonslstent. r,ata. An 
approach to these problems is a system which 
supports ll'LlJ t.lple interpret.at.ions, uses a world 
model, and iocorporat.es several. types of input 
in!ormat.ion. The data structures for a 
schemata-based system having these properties are 
described with SIOITle exanpl.es of how they can be 
errployed. 

1. lnt.roduct la, 

Percept.la, of real~rld phenomena nust. st.art 

vi th some iconic representation of the world. 

~l'octunately, elements of the ill\i}C}e relate to the 

elel!lf!f\t.s in the scene on,.y through son-e unkno.-in 

aapping which is confounded by the imaging 

process. Factors such as lighting, viewpoint, 

exposure, the focal length of the lens, and 

surface reflectance cait>J icate the uooerstanding 

of the ilnage. As individuals, the ill\i}C}e elements 

(pixels, edge elements, etc.) convey no meaning 

(unlike, say, vocds tn text): the meaning can 

eeerqc, c:,nly during the perceptual process. 

This leads to three undesirable situations 

llhich nust be remedied if effective interpretatia, 

is to take place. Anbiguous situations arise when 

data can be interpreted in rrore than one way, 

Incompleteness occurs when one does not have 

enough data to conclusively support an 

interpretation. Finally, inconsistency Is the 

result of uncovering evidence both for and against 

an I nterpretat Ion. 

One way to reBolve arrblgulties ts to add 

sources .of information to the original IJl\i}C}e. 

Examples incluiie range data (Nitzan et al., 77), 

elevation data !Horn and Oachnun, 78), arrl the 

work on map- guided Interpretation at SRI 

(Tenenbaum et al,, 78). Adding Information 

sources has the advantage of augment Ing the 

system's knowledge, but can lead to more 

inconsistencies, 

When interpretations can be matched to a 

world model, incompleteness can often be 

accommodated. Al so, a world model could 

potentially resolve ambiguities and 

inconsistencies in terms of what ts lnportant in 

the l!Ddel. In the aforementioned SRI system, the 

map can . be con!iidered a prlmltive world m::>del, 

More elaborate examples include models or 

g~oqraphic regiona (Bajcay and Tavak"H, 7J1 

Havens and Mackworth, 80), 

Handling inconsistent knowledge generally 

requires a flexible system that permits nultiple 

interpretations and non-rronotonic reasoning. Such 

a system will form the best interpretation based 

on the current context. Arrhigulties OOllld also be 
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cesolved by giving precedence to the most 

contextually •ce.l.SOnabte• interpretation. 

The Hearsay II speecti understanding system 

(Erllllll'\ and Lesser• 7:ir Lesser ard Erman, 771 

uhlblts the type of flexibility needed to handle 

lncooslstent tnformatton. Of partlcuJar note is 

the use of kl'¥)Wll!O;}e sources which are special hits 

in analyzing some part of the danain. They 

prOlflde the pr~r context to deal with incarp1ete 

data. Knowledge sources are written aa 

pcoductlons in a production system. 

Another current mechanism of similar 

II0'1u1 ar l ty is based on uni ts of schemata. Mapsee2 

!Havens ard Hackworth, BO: Mack""°rth arrl Havens, 

Bll ls an exarrple of a schemata-based system using 

a geographic world !l'Odet. It interprets 1.ine 

drawings as sketch maps. The following section 

describes an extension of Mapsee2 which uses 

several types of input information. In 

part lcular, the extension supports the use of a 

sketch map and a grey-scale image, each of which 

can ald in the interpretation of the other. 

2. A Repc-tation 'or Schemata 

The data structures foe the system betng 

devel~ (called Mair:1sl are an extension of Maya 

!Havens, 781, and use both Maya functions and the 

base language, uac MultUisp (ICoanen, BO). In 

addition, Maids incorporates a mmber of ideas 

t'rCIIII f"RL (Roberts and Goldstein, 77a and 77bl. 

Schemata are the basic representation units 

in Maids. They are composed of a list of 

attribute-name and attribute-value pales. '11lere 

are fwr distinguished categories of attributes: 

LINKS, VAUJEs, PRXEI:XJREs, and CCNF'IDEl-lCE. 

The knowledge base h a collection of 

intertwi·ned schemata hierarchies, with 

re lat lonshipa indicated by LINKs. ''Any nwrber of 

relations can be defined, such as LINKs to form a 

specialization (or subset) hierarchy, a 

decomposition (or subpart) hierarchy, and 

instances (to separate stereotype or generic 

objects fran their potential realizations in the 

scene) , Instances can be used to explore several 

possible interpretatlons without any cortrnitment to 

their ultlrnate existence. 

VALUEd types provide a slot that may be 

filled by a value. The slot can have expressions 

associated with ft, such as a default or the 

required attributes of the slot filler. 

Furtherrrore, functions can be initiated when the 

value is added, modified, rerroved, or needed, 

This flexibility is used to maintain the 

consistency of the interpretation under 

consideration, and to spread the effects of 

changes to the appropriate objects. VAUJEd types 

can be used with LINKs to generate property 

inheritance ( usually down a specialization 

hierarchy), Rnowledge '&haring of this kind can 

often oorrpensate for incarplete data. 

Procedural attachment ta a mechanism which 

facilitates object-centred control of the 

interpretation process. Il\ this system, 

PR<X::EIXJREs are invoked via pattern matching, the 

primary message-passing utl 11-ty in Maya, 

PROCEDURES will typically exist for situations 

where the schema is invoked as a ll'Odel (top-down) 

or to account for data (bottan-upl • Thie facility 



can alao be used to lnvoke procedures approprlate 

to the context current at the t lme the schema la 

entered. 

The CXNPIIECE attrlbute ls a nunber used by 

the global scheduler to encourage evahiatlon of 

the IIIOISt pcanlslr¥3 interpretations. A.-;soctate<1 

vith this attribute is a schema-specific algorithm 

to IIOdify the confidence value whenever VAUJEs are 

!OUM for this object or its carponents. Uslng an 

algoclthm provldes the flexibility to consider the 

difficulty and importance of completing the 

interpretation of an object as well as the 

probabi llty of its existence. 

Schemata are used to represent scene objects 

in a t.a.sk danatn. Sane exarrples ln the geographic 

dom.a ln are roads. r Ivers. shorelines. bridges, 

river systems, towns, and road systems. 'nle 

schemata are carbined in deooop:>5ltion hierarchies 

(e.g •• road systems are made up of roads, bridges, 

and towns; towns are made up of buildings and 

roads1 and so onJ and specialization hierarchies 

(e.g., lakeshores and coastlines are •types• of 

shorelines). 

The hypothesis of this research is that the 

col!blMtion of two interpretation tasks can work 

to their ffll.ltual benefit. One might assume that 

this would make the problem nore difficult instead 

of eas ler. AoweYer, the proper mixture of <lat.a 

vi 11 resolve ambiguities without increasing 

inconsistencies. Identification of features in an 

h1age. such as roads, rivers, and bridges can be 

gulded by their pre!'ieOCe in a sketch map. 

J. An E><anp)e 

A sketch map of Ashcroft, B.C. has been 

interpreted by Mapsee2 (Havens and Hackworth, 

19801 Hackworth and Havens, 1981). 'nle Maya 

schema which represents the unambiguoua 

representation of a bridge in the scene la in 

Figure l. 

sldel: 
sidel-desc1 

slde21 
side2-desc: 

regions: 

C/labels1 

Qll!Odels: 

*c:haln-3 
11!17 • HJ 

(0.886914 0.4619)4) 54.1202) 
*chain-5 
I (69 • 62) 
(-0.918062. - 0,)964)6) 47.918062) 

(*region-! *reglon-2 *region-J 
•reglon-4 *region-6) 

((*chaln-3 . *bridge) 
(*chaln-5. *bridge)) 

((*river- system •river-system-1) 
(*road- system •road- system-1)) 

Figure 1. *brldge-1 an Instance of *bridge 

Note that the slot flllers do not differentiate 

between pointers to other schemata (eg. sldel) and 

nu11¥?rlc values (eg. sidel-desc). 

A stereotyplcal bridge schema can also be 

written in Maids. Figure 2 shows the blank data 

structure with none or its slots fille<'I. 

tn addition, there are functlon'3 associated 

wlth this schema for top-down evaluotlon, 

bottom-up evaluation, and to instantiate the 

bridge in a grey-scale digitized image when it has 

been identified in the sketch map. '!tie execut ton 

of this latter · procedure will be followed to 

irrllcate how schemata can be manlpulated within 

Maids. 

The basis of the routine is the following: 

Regions In the appropriate are.i are sought that 

coui d be interprete<1 as road or shadow. 'Itien 

edges are fountl in the eann area which oould 
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ocderli•t1 

value1 nil \ccnfidenoe1 nl 1 

\if-added: (prog nil 
(prtntlb •value added to sketch 

IMP ltl!ffl • • \val) I 
llf- renovedr (prog nil 

(pal:Xlm •value renoved from sketch 
map iten1 • • \val) I 

lif-rrodifled1 (prog nil 
(paten •value rrtxHfled ln sketch 

map item•• \val)) 

Mi ghbour: req l ons 1 

sh.ldoJteq ions: 
ro.xlreq iMS: 

valuer 
valuer 
value1 
value: 

ni 1 
nil 
nil 
nil 

lccnfidenoe1 nil 
lccnfldence1 nil 
\confidencer nil 
\confidence: nil 

a-part-of-> 
l ns u.noes-> 

nil 
nll 

&oarposes-to-> nil 
ne.lg'iboors-> nu 

oonfldence, nll 
con!-alg: 

(prog Ost) 
I setq 1st ( sgeta I name .. deoarposes-to) l 
(c:ond ((nuJl 1st) (return 0.0)) 

l(atan 1st) (return (sgetc 1st))) 
It (return 

(ql.)()t lent 
(ar:pl.y '"plus 

(rMpcar 
'"(larrtx'la (n) (sgetc n)) 
1st) l 

(length ~ stll l Ill 

Figure 2. The Stereotype \bridge Schema 

dP.fine the sides of the bridge (am possibly a 

sharb.il. While the procedure is i.nterestlng by 

itself, it Is sho.ln to illustrate the actual use 

of the Maids sche!Mta manipulatia, functlais. 

The next .nectlon oonslsts of brlef' excerpts 

of ·psad:>-oode· lam possibly responses from the 

pcoqcara which wi 11 oo lnne!nte<i an<i pr~e<'I by a 

•>•1 followed by an explanation of w.hat is 

acx:i::rrtl 1 tshed. 't1le schem'l ta man l pu lat la, functions 

will be urderl lned throughout. The procedure is 

~tered with the variable SKE't'CHMAPSO!E'-V\ bound to 

the ••brl~e-1• frcrn Figure t. 

l t ISl<E'!O~ • 
(sqeta '"\bridge • .. ><etchmapitem '"yes '"one 

.. ( ln!!tanceii) I 
(return 'alreadyexlatsl) 

A. checl( to detec111lne wheth4!!r this schetn.'l hal'S been 

examined before, Sgeta searches frorn \bridge down 

the • insta.nces• links lqoldng for one in,;tanoe 
I 

schema oontaining S~ as its sketch 

IMt • (snewi '"\brid\1.el 
> create a n~ brid\J, instances lbridge-1 

pl• (car (age.ta s~ -~idel-desc)l 
p2 • (car (sger s~ '"•i~e2-desc)) 

> pl • (5 , ll) 
> p2 • (69 , 62) 

Since Mapsee2 schemata are und.i fferentiated, .9,!! 

!_ttribute returns the value of slots. Pl and p2 

are the locatlons of the midpoints of the bridge 

sides. 

I reglist g (polntstrips pl p2 lregmatfile 1.5) 
I > regions Hst • ( lJO 1186 1629 9 1750 20181 

Pointstrlps searches for all the regions 

(generated from a reg.ion-merg.lng a :lgorlthm> in· 

\regmatfi le ~t are enclos~ in a rectangular 

strip whose corners are 1.5 units from pl and p2, 

orderlist • (ordinterp reglist Inst) 
> order 11st • (Other Shadow Bridge Bridge 

Other I 

Orderlnterp interprets the regions ~nd rletermlnes 

if thelr Interpretations are consistent with 

regions aroum and over a bridge. Interpretations 

lnclooe ION), WATER, URBAN, SHAIXW, M:XJNTAIN, and 

HILLS. The appropriate regions are aMed to the 

"lbridge-1• schema in the slots "shadowreglons•, 

•roadregions•, and •nelghl:xx.Jrregions". The order 

1 ist shows the order of regions from pl to p2. tn 

this case they are Other, Shadow, and Bridge. 

I I~ IMt 'ordccl let ocriorll11tl 

~ the yalue of orderlist in the VAWEd type of 

th~ same nall'P. in Inst. 
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I (~ Inst 'orderl 1st 100) 

M the _£Onfidtmce of orderl lat at 100 (the 

I edgelist • (?)int.strips pl p2 \edgematfiJe l.5) 
> edges list• (88 11 205 206 241 2421 

Fin1 al 1 the edge segrrents in the same rectarqular 

str lp that was searched for reg ions. Edge 

segments come fra11 groups of zero-crossings of the 

Laplaclan of the Gaussian. 

I if (null edglistl 
I then (sfail-rrodel Inst) 

tf there are no edge segrrents then thls rroc1el can 

n:3t be cocrect. So, retT"CVe it and aey of l ta 

descendants frcm the graph. 

1f (notwithinrange edgeangle brldgeorientation) 
then I r enove edge edg lis ti 
> edges list• (88 11 2421 

Remove all edge segrrents that are not similar to 

the orientation of the bridge in the sketch map 

(wt\lch is 67 degrees). 

forall t in edgelist 
(a&ito edge] ist 

(lineneighbours i -1.0 JS ledgefilell 
> edges list• 1(88 89) (10 11 12 13 14 15) 

(2421) 

£:xpaM al 1 the edge segments in e<lgelist to 

lncll.rle segments out of the rectangular strip that 

are cx,nnected to arv1 ln a simllar orientation a~ 

existing edge segments. 

I (foceach group of edges i tn edgelist 
I I l lnestats ii) 

Linestats calculates the length of the edge 

segirents, the average contrast across the edge, 

ard the ma.xi111.1111 contrast. 

I (11\lt.chregionstoedges orderlist edgellst Inst) 

Match the regions fran regionlist with the edges 

in e<i<Jei 1st. One result of this ls the ere.it ion 

of a new type of schema-the \curb echem<1. Each 

\curb schema contains the data concern.lng one edge 

of the bridge. A special type of \curb la 

reserved for shatiows. After this routine has 

executed, the schemata shown in Figure J will 

ex lat. 

)7 

conf-alg1 (prog nil (return 
(quotient 

oonfidencer 

avgstrengthr 
maxstrength: 
length: 
ang1es1 
edgesegsr 
type: 

a-part-of-> 

(add (sgetc \narre 'length) 
(sgetc lnarre "maxstrength) 
(sgetc \name 'n~lesl) 

3))) 

value1 3.!I \contlc1ence 7~ 
value1 s Icon f i<lenc:e 75 
value: 20 loonfidence 100 
value1 (248 214) Icon fl dence 80 
valuer 188 89) \confidence 100 . 
value: shat1ow \confidence 100 

lbrldge-1 

Figure Ja. Instance \curb-1 

lllltlltttlltlllllllltllltttlllllltllt 

con f l<lence 1 
oonf-alg: 

avgstrength: 
maxstrength: 
length : 
angles: 

e<:}g e seg 8 r 

type: 

a-p,u t-of-> 

93 
(prog nil 

vaiue: 96.JJ loonfic'lence 100 
value: 134 loonfinence 100 
value: 54 \confidence 100 
value, (90 57 79 45 90 27) 

lconfidenoe 80 
valuer 110 ll 12 13 14 15) 

loonfidenoe 100 
value: road Icon fic'lence 100 

lbrldge-1 

Figure 3b. lnstance lcurb-2 

• ••••••••••••••••••••••••••••••••••••• 
confidence: 
oonf-alg: 

avgstrength1 
IMXStrength: 
length: 
angles: 
edgesegs: 
type: 

a-part-of-> 

100 
(prog nll 

vaJue: 
value: 
value, 
value: 
value: 
value: 

22.0 
22 
17 
(228) 
(242) 
roan 

lbrldge-1 

loont'i<lence 100 
lconfldence 100 
lconfMence 100 
\confidence 100 
lconftdence 100 
\confidence 100 

Figure Jc. Instance lcurb-3 
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The confld= a1goclthm la execute<'! after the 

last value a1ot la fi 1 led by a call to ~ wlth · 

the Af'PC(lPC ia te flag set. 

tlverreg • (sgetv *\rivers ·reg ions •yes 
·valueonly • all • I instances) I 

> rlverreg • (l\rlver-1130 1058 943 8741 
l\river-2 1750 2018 209511 

toca1J regions r in neig'lbourreqlons 
it r la in rlverreq 
then (sa.-\'!1 Inst 'neighbours River)) 

> neig.~hours • (lriver-1 lrlver-21 

Search through all the existlr¥J river scheoota for 

the regions they contain. tf they match the 

nelghbourilY] regions of the bridge, atid .!.inks to 

the rivers frcn the bridge arvi vice versa • 

(snutv In.c;t 'sketchm:1pi tern SKETOr,w>SO!OIAJ 
(!rnUtc: Inst 'sketchrrllpitem 100 ti 
--> va'ue a.1nc<l to s'<etchmapitem • *bridge-1 

a.s the sketch rr.1p item for this scherM. Set its 

confidence tD the rr.,xlnum and propagate that fact. 

Figure 4 displays the schaM for \bridge-1 at this 

aketchrMpl tenu 

ocdt!rl 1st: 

neighbourreqlCXlS: 

a-part-of-> 
~a-t.o,.> 
neighbours-> 

conf ldence: 
oon~-a\g: 

value: •be ldge-1 
\confidence: 
\l f-a<ir1ecl : 
\lf-renoved: 
\if-rrodified: 

100 
(prog 
(prog ••• 
(prog • • • 

vallll'!: (Other Shadow Bridge 
Br lrlge Other I 

\confidence: 100 
value: ( 2018 1750 9 1.301 
\confidence: · 100 
value: (11861 
\confidence: 100 
value: (1629) 
loonfldencer 100 

nil 
(\curb-1 \curb-2 \curb-3.1 
(\river-1 \river-21 

90 
(prog (lst) ••• 

Figure 4. ln.-1t.ance lbddge-1 

Th ls ls just one way in whlch the functions 

In Malrie might be used. While only 80lre of Its 

capabill ties are shown directly, many of the 

functions refe·rred to oontaih entiedc'led cal.la to 

other Maids functions, Appendix A 1 lets the 

CXlll'plete range of schemata m.tnipulation functions. 

4. DiscuBsion 

'Itie benefits of cooperating knowledge sources 

arise because each source deals with similar 

inf.ormation in a different way. For exanple, in 

sketch map analysis it la often fopossible to 

decide whether the water is inside or outside of a 

shore. However, the lbeation of the shoreline in 

the sketch map can guide the search for the 

appropriate features in the grey-sca1e illl<l9e. 

Then, a simple pixel classification teclmique 

appl led to the grey'-scale image wil:1 generally 

suffice to discover whlbh region corresponds to 

water. Hence the interpretation of each knowledge 

source provides useful inforrMtion· to aid in the 

interpretation of the other source·. 

A critl.cal aspect of thbi system is that the 

schemata can a=ept and utUize kno,dedge fran 

cooperattng sources of knowledge. This ia 

difr.tcu1t since the data are usual1y in very 

different forrm. Even reoonc:Uing data {ran the 

same source (such as regi6n and edge data) can be 

problematic. 'Itie nodularity of the schemata along 

with a flexible control strategy can be used to 

overcx:me this problem. 

5. Conc1usions 

Knowled.ge sources that can incorporate 

information fran several types of input within the 

3() 



fr~k of a wocld node\ may be effective in 

c::anputational vision. This paper describes a 

schemata-based system that is testing those 

claias. 
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Apperrlix 'A. Schemata Manipulation Functions 

Schemata 

(ICBJF.X:"n VN.mD LINK PRJCEOORE omERI 
( I INSTANCEI VMlJEO LWK Pro:::EOORE cmtERI 

VMlJEO • attribute (lvalue S-exp 
(lloonfidence, nunberl 

(l<'.lefau1t. S-expl 
(lif-added. form) 
(llf-nnd i(ied. form) 
(llf-rerroved, form) 
(llf-needed. form> 
(%required. predicat.e)ll 

Suffix Conventions 

'A~any 'Attribute 
V- VAf1JFJl attributes 
L--LINK attributes 
I-Instances 
0--objects 

Functlon11 

1. (aM- J.ink-inverse J ink inverse) - adds link and 
its inverse to llink-typee. 

2. (ifneed schema attribute)- evals the \if-needed 
clause of attribute in schema. 

3, (saddl schemal link schema21- adds a link from 
schema! to schema2 (and the inverse). 

4.(sanylink? schemal schema2 ) - determines lf there 
ls a path from scherMl to schetM2 usi03 any 
type of LINKs. 

5. (sattr schema types)- returns a list of the 
attrihute na~s of schema. 

6. (sattrtype schem11 attrlbute )-returns the type of 
attribute l.n schema. 

7.(sconsistl- makes a riata base oonslstent by 
a<'.lrHng and rerroving appropriate LINKs aoo 
obiects. · . 

8. (screate {name/) - creates a new stereotype 
(obiectl schema. 

9.(serasel instance {If-removed/ {spllce?/1 -
destroys lnRtancf. 

10.(seraseo ob:ject spllce?II- destroys object 
(after user confirmation). 

11. (sgeta schema attribute { inherit allorone 
I inks/) - gets the value of attribute tn 
schema. 

12. (sgetc schema {attribute/I - returns the 
conf.ldence value for a schema or a VAU!Etl 
type attribute. 

13. (sgetl schema 1 Ink>- returns the schem.,(tal 
pointed to by 1 ink from schema. 

14, Cegetv schema attribute { inherit type al.lorone 
1inksl links2 /) - gets the value (or default) 
of attribute Ca VAWEd type) in schetM, 

15. (slink? schemal schema2 linkl- returns the 
I ength of the shortest path from scherMl to 
schema2, if it exists, using only link. 

16. (snewi object)-creates a new instance of object 
am returns its nanw,, 

17. I spl lee schema l Ink { inverse I) - rerroves all 
LtNKs from schema an<'! spi lees them together. 

18.(sprint schema)- pretty prints schema. 
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19. (spclntn schema ltnkl- pretty prints the tree 
structure urv\er schema using \ink. 

20. (sputa schema attribute {defnll- puts a new 
attribute (with value defnl in schemll. 

21.(S?Jtc schetM {attribute cval spread?ll-changes 
the confidence value of the schetM or a 
valued attribute to cval. 

22. (sputct schema attribute value oldconfldence 
newcx:n!idence spread)-replaces oldconfldence 
in the Ust of confidence values of 
attribute la VMlJEd typel in sche!M wtth 
newoon f ldeooe. · 

2.3.(sputv scheflla attribute value)-puts a new value 
for attribute (a VAilJEr1 type) in schetM. 

24.Caremovea schema attribute {If-removedll­
remove11 the definition of attribute fran 
sc:hfflia. 

25. (srem:,veal adlCfM link.I- renoves au LINT<s from 
· schemll Cam the inverses) • 
26.(sreirovel schem.,t link schema21- renr::,ves the 

1 ink from schemal to schema2 (and the 
'"Wersel • 

27. CsrfflO\leY schema attribute)- sets the value of 
att lbute (a VJ\JlJ!:D type) in schema to NIL. 

28.(srestore {fllell- restores all the objects in 
file. 

29.(ss.!v-e {filell- saves all objects in !ile. 
30. (ssprintn schema)- pretty prints the graph 

structure frcrn schema using all L!Nl<s, 
31. (vcheck schP.ma attribute value)- checki, to see 

it value meets the conditions in the 
\required clause in schema • 

ljQ 
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ABSTRACT 

Streaks ariae in computed tomograma for a 
variety of reaaona such aa presence of high 
contrast e.!ges and objects, aliasing errors and 
use of a very few views. The problem appears ·to 
be an inherent difficulty with all 
reconstruction methods, including 
b.ick-projection (with convolution) and the 
algebraic reconstruction technique (ART). We 
found that .! posteriori removal of streaks is 
not vary affective and can cause . further 
artifacts, 'n\1a p.aper present• result• of a 
nu,iber of variations of ART oriented towards 
prevention of atreak1. In particular, pattern 
recognition of streaks during iterative 
reconstruction and the use of directional 
neighbourhood operations with ART are 
considered. Reconstructions of test patterns 
using the various alr,orithms derived are 
pre~enteJ and° optimization of the parameters 
involved is discussed. As good quality 
reconstructions are achievable using very few 
views, our methods can lead to a significant 
reduction in radiation dose in x-ray computed 
tomography. · They are currently being used for 
remote c~puted tomography ~ia teleradiology 
where a few radiographs acquired at different 
an~lea are transmitted to a central computing 
f~cillty, They should also be useful in electron 
aicroscopy of macromolecules and have widespread 
industrial applications where only a few views 
are obtainable for non-destructive testing. 

INTRODUCTION 

Streak-like artifacts arise for a variety 
of reasona in reconstructions 1118de from 
projections. There have been a few studies on 
the causes of such artifacts in computed 
tomography and correction procedures to remove 
atreaka have also been proposed. For example, 
Joaeph ~ Spltal (19ijl) dc~cribc the "cxponentlal 
eJi:e-11raJient ef feet" and glvc Fourler 
deconvolutlon and ray sum correction methods to 
eliminate atreaka. The presence of out-of-field 
object, (Huang et al. 1977) and opaque objects 
leading to saturated rays (Morin & Raeside, 
1981), aovement of objects during scanning, and 
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the uae of incomplete projection data 
(Gore & Leeman, 1980; Oppenheiru, 1977) have also 
been pointed out aa sources of streaks in 
reconstructions, Aliaaing error caused by 
inadequate sampling of the projection data h 
yet another cause of streaking (Brooks et al., 
1979; Stockharu, 1979), Although the software and 
mathematics of reconstruction are known to have 
this inherent weakness (Hall, 1975; Houn1<Held, 
1977; Moran, 1976), the methods proposed to 
overcome streaking have only been 
post-reconstructive cleaning- up procedures (for 
example, Henrich, 19·80) and pre- processing of 
projection data (for example, Brook• et al,, 
1979; Joaeph & Spital, 1981; Morin & Raeside, 
1981), Our initial attempt, at procea1ing the 
reconetructione were in a similar spirit. We 
used correlation meesures for detecting 1treak1 
and a variety of linear and nonlinear operators 
on the streaks, but did not obtain good results: 
while detection of 1<treake wus eilfflly performed, 
the choice of parameters for the operator• wa1 
round to be difficult and picture dependent and 
the procedure often introduced further 
artifact a. 

We felt that a suitable modification to the 
reconstruction procedure that would .£!event 
atreaka from getting into the recon1truction 
would be a better approach than trying to remove 
them after they have already been introduced, 
Thie paper presents initial result a ot 
variations of ART (Gordon et al,, 1970) derived 
with this approach in mind, In particular, the 
use of directional neighborhood operstione and 
pattern recognition of streaks during the 
iterations of an ART algorithm is considered, 
Reconstructione of test patterns made from a 
very few views using the new algorithm• are 
preiented and optimization of the parameter, 
involved is discussed, As good quality 
reconstructions are achievable with a very few 
views, these techniques could lead to a drastic 
reduction of radiation dose in x-ray computed 
tomography. They also pennit transmission of 
relatively few radiographic viewe for remot~ 
computed tomography via tcleradlology 
(Range raj & Gordon, 1982). Since only a tew 
views can be obtained in many industrial 
applications of computed tomography, the 
algorithms should be of considerable use in 
non-destructive testing. They should also 
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f l11J .ippltcatlona in electron microscopy (Be 'nder 
et al., 1970), where electron beam damage of 
a.acr<><aoleculea limit• . the number of useful 
exposures, and thus views, that can be obtained. 

TliE ALGEBRAIC RECONSTRUCTION TECHNIQUE 

The algebraic reconstruction tet1nique (ART) 
ta an iterative procedure whtch starts wlth an 
lnttlal e1tim.ate of the picture and updates the 
pixels so as to satisfy the given projection 
data. A brief descrlptlon of ART frOC11 a digital 
picture processing point of view ts given below; 
for aore detailed analyaia of ART and other 
reconstruction algorithms, see Gordon et al. 
(1970) and Cordon (1974) . 

The 111.age reconstruction problem can be 
poae<I aa follows: Clven a aet of projectiona 
R(l,k) at anglea 91 , for P viewa (l • l ••• P), 
each view having 2R + 1 rays (k • -R •• ,R), 
compute a picture p(i,j) auch that the raysuma 
S(l,lc.) of p(i,j) are as close to R(l,lc.) as 
possible. The ART algorithm updatea pixe.la 
belonging to individual rays of a v'iew to meet 
the raysum criterion a, 

p q+I ( 1, j) • p q( 1, j) + (R( l ,lc.)-Sq( l ,lc.))/N(l ,lc.) 
(I) 

where N(l,k) ta the number of pixels in the ray 
(l,k) and q refera to the iteration nun,ber, The 
abov.. operation performed ov·er all views 
conatltut .. a one cycle, and a nU1Dber of such 
c ycl .. a will h~ve to be executed before all 
rAY•""'• are •at, A suitable converRence 
crlt.,rlon can be 1et up baaed on the error of 
r~conatructlon defined aa 

The Initial picture used 1• usually a uniforml'y 
gray picture of intensity equal to the average 
brightness of the picture, whlch may be computed 
froo, the given projection data. 

Equation (I) represent• additive ART, so 
called ~cauae the correction applied is 
additive. A5 this can lead to negative values 
b~lng asaigned to pixela, an additional 
constraint is essential. This la done by setting 
the pixel to zero whenever the value given by 
Equ.:atlon (I) ia negative. 

The •ultiplicative version of 
J•flnotJ a, 

ART h 

(3) 

whhl, has the advantage that negative pixel 
valuew are not encountered. 

Six test patterna were used to evaluate ART 
and the modi fica tlons ·derived. The original te11t 
patterns are given in Figures ,la,2a,3a,4a,5a and 
6a. (Figures la and 5a were .acquired uaing a TV 
camera and frame buffer; 2a 11 the negative of 
111 4a was derived from 2a by aatting the 
background to zero; and, 31 and 6a were created 
by computation, All patterns are of size 101Xl01 
pixels with a maximum of 256 gray levels), 
Reconstructions of these patterns by additive 
ART are given in Figure, lb,2b,4b and 5b; by 
multiplicative ART in Figure, 3b,4c,5c and 6b, 
Only eight views at angles 91 • 20,40, •• 140,160 
degrees (measured along the rays) were used, 
with 220 raya per view, Figure 3c ia the 
reconstruction of 3a by multiplicative ART using 
on1y four views at 30,7·0,110 & 150 degrees, 
included to demonstrate the distortions caused, 
The· raywid th wa a defined a, 

(4) 

such that each ray crosse1 one and only pixel 
per row or column, It is seen that the 
reconstructions have streak& at all projectioq 
anglea. While the atreaks in the additive ART 
reconstruction extend to the zero background in 
Figures 4b and 5b, the multiplicative ART 
reconstructions in Figure, 4c and Sc are free of 
thia. Thia property, howeve,r, can be easily 
incorporated into addic.ive AR:r by forcing all 
pixel• belonging to raya with zero sums to 
always remain at zero and excluding them from 
ART computations (cf, Cordon, 1974), 
Reconstructions computed with thia 'convex hull' 
feat~re included in additive ART are given in 
Figures 4d and 5d. Note that thi1 feature can 
lead to an improvement only in cases where there 
are rays with zero auma. In caaea of low level 
background noise, thia can be achieved by 
thresholding projection data. nie advantages of 
using the convex hull are that the rayaum 
distribution is more accurate and some 
computation 1a aav.ed by keeping the labeled 
pixels out of the reconstruction procedure. 

FEATURES OF STREAKS 

Linear streaks usually occur only along the 
raye used in reconstruction. The moat common 
cause of streaks is the presence of high 
contrast edges and objects in the image, The 
fundamental reason for streaking, how~ver, is 
that the reconstruction algorithms (both back 
projection and ART) have a 'smearing' feature: 
the rayaum, or the correction in the ca1e of 
ART, 1a 11pread out unif1>rmly along th11 path of 
the ray. Figure le gives reconatructiona of 
Figure la after each view during the first cycle 



of •JJltlve ART, wt ,~re thl• feature la clearly 
seen. While thil may occur only in the firat 
cycle of ART, the streaks ao introduced are 
usually not corrected by the subsequent 
lteratton1. the use of a very large number of 
views tend1 to merge the streak1 at different 
angle1 and give a unifonD background. When the 
number of views used ia small, as in our 
experlaent1, the streaks remain obvious, ae can 
be readily seen lo Figures lb,2b and 6b. 

A 1tudy of the 1treak patterns in Figure 6b 
point• to t\lO types of streaking mechanisms: the 
111earing of the larger (whiter) ray1um1 lead• to 
the broad atreaka which are whiter against the 
light background (transmission type), and, at 
the edge, of the high contrast object•, dark, 
tangential streaks arise due to compensation• 
made in the background for whiter value• 
assigned to plxela at the boundaries of the 
objects (coa,pensa tory type). While the 
transml11ion type of streaks are easily smoothed 
out by the use of a large number of views, the 
cOl!lpensatory &treaks are not. 

Treating the pixels of a ray aa fonDing a 
acan-line signal, we may characterize a streak 
by a high autocorrelation between successive 
pixel• of t he ray. This feature was used in our 
initial studies to detect streaka. In one 
procedure we tried, the reconstruction algorithm 
waa made to skip the ray correction if the new 
values h.ld flrat and second autocorrelation 
coefficient, higher than a fixed threshold. Thia 
procedure, however, failed to prevent streaking. 
Post-reconstruction processing of streaks so 
detected by different linear and non-linear 
contraat stretching operator•, with 
r..-nona.alia:ation to meet the raysum criterion, 
al10 failed due to lack of information about the 
contrast limits of the picture. The result of 
one 1uch operation, defined as 

p'(i,j) • p(i,j)/2 

2p(i,j) 

if p(i,j)<mean 

if p(i,j})mean 

(where • .. an' 11 the average value of all pixels 
along the ray considered) on the 1treaka in 
Figure lb 11 given in Figure le, where it is 
seen th.It 1uch a procedure can ·produce further 
artifacts (a ray being labeled as streak if the 
firat auto-correlation coefficient of the pixels 
of the ray exceeded 0.99 or both the first and 
second coefficients exceeded 0.97). 

DIRECTIONAL NEIGHBOURHOOD AVERAGING 

A1 linear 1treak1 ordinarily occur only in 
the direction, of the raya u1ed for ,canning, we 
felt that a 1uitable criterion based on pixels 
belonging to adjacent rays, when incorporated 
into the reconstruction algorithm, would prevent 
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strt:,1k i11g. One such approach la a l l11cur 
combination of ART •• in Equation (I), with a 
directional neighbourhood averaging which tends 
to minimi&e the difference, between pixel, 
belonging to adjacent ray,. Thi• la achieved by 
making a pixel value tend to a weighted average 
of its previous value and those pixela of it, 
a-neighbourhood that belong to the ray• on the 
left and right of the ray paa1ing through it. 
Based on the above discussion we define an error 
meaaure 

A(l(pq+l(i,j)-(C s(i,j) + (l-C) pq(i,j))} 2J 

+ (1-A)(l(pq+l(i,j) 

-(pq(i,j)+(R(l,k)-Sq(l,k)) /N( l,k))} 2
J 

( i. j) 
thil 
for 

where the aummstiona are over all pixel, 
belonging to ray (1,k). Minimization of 
error measure with respect to p(i,j) 
iteration q+l, gives the following algorithms 

pq+l(i,j) • max(O,A{C a(i,j) + (l-C) pq(i,j)) 

+(l-A)(pq(i,j) + (R(l,k)-S\l ,k)) /N(l ,k))) 

0 < A,C < l. 
(5) 

Equation (5) la the SPART (Streak Preventive 
ART) algorithm preaented in Gordon & luingaraj 
(1981). Here, a(i,j) is the average 1nten1ity of 
the immediate neighbour• of p(i,j) that belong 
to rays (l,k-1) and (l,k+l). Theaa pixel, are 
alway• in the 8-neighbourhood of (1,j) when the 
ray width ia defined a, in Equation (4). Th• 
weighting factor A determine, the proportion of 
averaging and ART to be used .and the factor C 
control• the weight of .the neighboura in 
directional neighbourhood averaging. A• c•n be 
seen froa Equation (5), A• 0 represent• regular 
ART. The value of the error defined in 
Equation (2) may be expected to be larger for 
higher values of A and C: a larger A will make 
the contribution of ART les1er and a higher C 
will increase the effect of the neighbouring 
pixela on the averaging. Further, the value, of 
A and c will together influence convergence of 
the algorithm. Reconstructions of the pattern• 
in Figures la and 2a using Equation (5) are 
given in Figures Id and 2c, with A• C • 0.85. 
It is seen that while streaking is prevented to 
some extent in Figure Id, contrast is loat: 
Figure lf givea a set of reconstructions of 
Figure la using the SPART algorithm with A 
(horizontal axis) and C (vertical axil) at 
O.l, 0,35, 0.6 and 0,85, Smaller value• of A and 
C were observed to lead to reconstruction, with 
streak• prevented to a lesser extent, but with 
higher contr11t, 

The SPART algorit hm failed in the ca11e of 
Figure 2c, Thie indicates that a uniform 
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aaoothln& la not dealrable. Haking C • function 
of tha local contraat, •• 

C • la(i,j)-p(i,j)l/(a(t,j)+p(t,j)) 

ylaldad the raconatruction in Figure 2d, which 
do.a not ahow auch improvement. In an attempt to 
recover contraat, we gradually reduced the 
~lghting factor A for succe1slve iterations 
do1o1n to zero, which resulted in the 
reconstruction in Figure 2e. An interesting 
obaaniatlon froca thla case 11 that atreak1 arise 
even if a better estimate than a flat picture 
(In thia ca1e a blurred reconstruction) ls given 
to ART. 

A point of note about the smoothing 
performed by the SPART algorithm is thia: the 
operation ls directional, being perpendicular to 
tlwt ray considered. Thu9 po.at-reconstruction 
blurring will not lead to saaie results, with 
st.andard hnage · processing operators . Further, 
the algorithm attempts to prevent streaks, 
rJther than just blur them by averaging. This is 
demonstrated in Figure lg where results of 
application of the digital Laplacian operator ( 
see Rosenfeld~ Kak, 1976) to Figures la,b and d 
are glvien. 

OPT1H1ZAT10N or NElCHIIORHOOD OPERATIONS 

Froia the results obtained from experiments 
diacu1 1ed in tlu! previou1 section, it la 
app,arent that the neighborhood operations must 
~ more flexible and picture dependent. A 
different approach, one of optimization of a 
glveo cost function subject to a constraint, waa 
taken. Let a(i,j) denote a linear combination of 
tlw lamedlate neighbor• of p(i,j) which belong 
to the r•ys to the left and right _of the ray 
~aalng through p(i,j), In order · to prevent 
occurrence of atrieak1, we IIAY proceed to 
iteratively alniaize 

2 I ( p(i,j) - a(l,j) ) 

subject to the constraint 

I p( 1, j) R(l ,k) 

where the aummatlons are over 
belonging to ray (1,k). Applying 
aethod of undeteralned multipliers 
exJ~ple, Burley, 1974) we get the 
algorltlw: 

all pixels 
Lagrange's 

(see, for 
following 

pq+l(l,j). a(l,j) + (R(l,k) - Ja(i,j))/N(l,k) 
(6) 

..t.ere the &U1Ul8t10D 11 
aaaociated with ray (l,k). 

over all a(t,j) 
nie multlpllcatlve 

versio11 of the above equation can be expresNed 
a, 

pq+l(i,j) • a(i,j)R(l,k)/1 a(l,j). 
(7) 

The important feature of the above algorithm ia 
that it tend• to keep the difference between 
adjacent ray scan-line, to a minimum, 1atiafyin& 
the rayaum constraint at the aame time. Thh 
represent, an improvement over SPART. 

Initially we defined a(i,j) a1 the average 
of all neighbor, of p(i,j) belonging to ray, 
(l,k-1) and (1,k+l). Reconstructions u1ing the 
additive version in Equation (6) are giv1n in 
Figure• 4e and 5e (with the convex hull feature 
described earlier); Figures 4! and 6c are 
reconstructions using the multiplicative version 
in Equation (7). In an attempt to improve the 
contrast in these reconstructions, the geometric 
mean of the expressions in Equation• (3) and (7) 
was tried, defined as 

pq+l(i,j) • sqrt[{a(i,j)R(l,k)/!a(i,j)} 

{pq(i,j)R(l,k)/Sq(l,k))), 
(8) 

Reconstruction of the test pattern in Figure 4a 
using this version is given in Figure 4g. Notice 
from the reconstructions in Figures 4e,f and 5e 
that the last projection used (at 160 degree, 
here) leaves a patchy appearance in that 
direction. To overcome this ,;last view effect", 
the reconstructions obtained at the end of each 
view were stored and then averaged during the 
final iteration: the reconstructions ao obtained 
are given in Figures 4h and 5f. 

In order to avoid loss of detail,, the 
neighborhood factor a(i,j) ha1 to be 
appropriately defined at each location u1ing the 
information available at that cycle in 1uch a 
way a, to prevent both 1treaking and 
indiscriminate blurring of features. With theae 
considerations in mind we defined three contraat 
measures to determine a(i,j): 

along• (lp_(i,j)-p(i,j)I + 

lp.(i,j)-p(i,j)l)/(p_(i,j)+p+(i,j)+2p(i,j)) 

across• (ll(i,j)-p(i,j)I + 

lr(i,j)-p(i,j)l)/(l(i,j)+r(i,j)+2p(i,j)) 

left-to-right•ll(i,j)-r(i,j)l/(1(1,j)+r(i,j)) 

where p(i,j) is a pixel belonging to ray(l,k), 
p_ (i,j) and P+(i,j) are neighbor• of p(i,j) 
along the ray scan-line (l,k), 1(1,j) 11 the 
average of neighbor• of p(i,j) belonging to ray 



(l,k-1), and r(t,j) 1• the average of neighbor• 
of p(l,j) belonging to ray (l,k+l), Note that 
vitb the above deftnitlon1, the contraat 
aeaaure1 have a convenient range of Oto 1, An 

important feature simplifies computation: the 
pixel, uaed are in the a-neighborhood of p(i,j) 
when the rayvidth la defined aa in Equation (4), 
Three option, w,ere provided in the definition of 
a(i,j) using the above contrast measures: 

if (acro11 > ltal) and (along< 11m2) 
1. then { atreak) 
if left-to-right) 111!13 

la. then ( edge) 
a(l,j)•oearer of 1(1,j) and r(i,j) to p(i,j) 

lb. el•• {hump} 
a(i,j) • O.S(l(i,j)+r(i,j)) 

2. else ( p~oceed with ART} 
a(i,j) • p (i,j) 

where liml, lim2 and lim3 are thresholds defined 
for the three contrast measures to detect 
streaks and edges in the reconstructed picture; 
'edge• refers to a large difference across the 
pixel aa at the edge of an object; and 'hump' 
refers co a streak over a flat background, in 
which caae the middle pixel would be higher (or 
lower) than both the left and right neighbors, 
Ry setting the contrast thresholds to the 
maximuro possible value (1.0), the algorithm may 
be forced to follow regular ART, To tnke maximum 
advantage of the above operations, the initial 
picture for ART was cocnputed from the first view 
data only (by giving to each pixel the value 
R(l,k)/S(l,k) appropriately), and the algorithm 
was started with the second view. Figure 6d 
gives the reconstruction of 6a using the above 
criteria with renormalization using Equation (7) 
(with 11ml • 111112 • 0.05, lim3 • 0.2) , The dark 
atreaka seen ln Figure 6b are not present in 
fl11ure bJ. furthar, the hockr.uund la more, 
unlfor• anJ the eJ!:es of the objects are sharper 
th.In in Figure 6c, An optimized choice of the 
threaholda should lead to an even better 
reconstruction. 

DISCUSSION 

\/hen we use only a few views ln 
reconstruction fr<><1 projections, we are dealing 
vith highly underdetennlned equations (Cordon, 
1974). For example, a IOOxlOO array with 8 views 
repreaents 10,000 unknowns with around 800 
equations (of the form R(l,k) • I p(l,j)). 
Standard algorithms, auch as ART, select but one 
of the infinite number of possible solutions. 
What we are attempting to do is find alternative 
aolutlons to the equations (cf, Cordon, 1973) 
which are free of the streaking artifacts 
typical of ART and other algorithms, The 
algorithm• derived have demonstrated their 
ability to select better solutions to the same 

set ot e4uationa. The uee or pattern recognition 
and all available information about the imag1 
being reconatructed to build some intalligence 
into the algorithm would make selection from the 
set of infinite solution• ea1ier, Our ·work haa 
been progressing in this direction and method• 
of improving perfonnance of the alaorithm1 
derived are being researched, The conv1rgenc1 
properties and effects of noiae will al10 be 
studied at a later ataje• 
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FIGURE CAPTIONS 

1. a)Pattern l; b) Additive ART reconstruction; 
c) Streak processing applied to b); d) SPART 
reconstruction (A•C•0.85), 

I. e) View-by-view results of ART reconstruction 
as in Figure lb, 

1, f) SPART reconstructions of la for A 
(horizontal axis) and C (vertical axis) at O.l, 
0.35, 0.6 snd 0.85. 

1, g) Results of application of 
Laplacian operator to la,b and d, Note 
of streaks in ld, 

digital 
absence 

2, a) Pattern 2; b) Additive ART; c) SPART 
reconstruction (A•C•0.85); d) SPART with 
variable C; e) SPART with elidinn A, 

3. a) Pattern 3; b) Multiplicative ART, 8 views; 
c) Multiplicative ART, 4 views. 

4. a) Pattern 4; b) Additive ART; c) 
Multiplicative ART; d) Additive ART with convex 
hull; e) Reconstruction by Equation (6); f) 
Reconstruction by Equation (7); g) 
Reconstruction by Equation (8); h) Same as (g) 
but with averaging during last cycle. 

5. a) Pattern S; b) Additive ART; c) 
Multiplicative ART; d) Additive ART with convex 
hull; e) Reconstruction by Equation (6); f) 
Reconstruction by Equation (8) with averaging 
during last cycle. 

6, a) Pattern 6; b) Multiplicative ART; c) 
Reconstruction by Equation (7) with averaging 
during last cycle; d) Reconstruction using 
Equation (7) with the three options for a(1,j). 
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Feature Conatrainta for Computer Interpretution !!.!_~!.£.!..!!Image•!!.!_ ~ 
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Abatract 
Computerised Axial Tomoaraphy (CAT) 

acana of log, reveal detail, of their 
internal 1tructure. We have determined 
feature• which can be extracted and u1ed 
a• con1tra1nta in a computer program to 
interpret CAT ,can image, of log,, 

lotroductfon 
A log entering a 1awmill 1a 1eldoa 

perfect, It will have knot, or rot tn1ide 
it. and it i, not po11ible to ••certain 
where the1e 1mperfectton1 are buried by 
a1mple viaual 1n1pection of its surface, 
When the log i1 cut the knot• and rot 
become obvioua, but by then it 1• too 
late, If the imperfection, in a loa could 
be found before cutttna it, then it would 
be poaaible to cut around them, 
Indu1trlal tomography h11 been ahown to 
be a viable method for non-destructive 
lnve,tigatton of the internal atructure 
of object• (Ellinger 1979, Hopkins 1981. 
Reiaer, 1980), In particular, tomography 
of log, haa 5hown that defect, and other 
~•p.,cta of internal structure are readily 
JJacernible. 

Thia paper deacribee a 1et of 
feature, by which CAT ecen imase• of 101 
croaa-aectiona can be aegmented into 
regions of knot•• rot. clear wood 
etcetera, Theae region• are identified by 
feature, 1uch a, the lenath, atrength, 
and direction of growth ring,, the 
denaity of the wood. and the 1ubjective 
contour, formed where a 1et of growth 
rings 11 interrupted by a hole ors 
rotten region, Following Marr (Marr 
1978), Barrow and Tenenbaum (Barrow 
197e). aod othera we have looked to the 
real-world domain to provide con1trainta 
whtc~ limit the poasible interpretation, 
of iaage features , Firat, the CAT 

· acanning proces1, and the visible 
feature• tn a log cro11-1ection will be 
Jeacrtbed, Next, the proce111ng 
'•ethodoloay will be deacr1bed, including 
prlaury f.,atur" l.'Xtruction and, at 11 

higher level, 1egmentat1on procea11ng, 
f_ ~ and Logs 

Computerized Axial Tomography 11 a 
well-developed medical imaging technique 
which 1• currently being applied in 
noo-medlcal area•, CAT scanning 11 a 

••thod wheraby & ••t of x-r•y• ~fa aJven 
object ta u,ed to create 1 
croa1-aectional den,ity map. The output 
of thi• procea1 1• • aray acale image, 
typically diaplayed on a TV monitor, with 
the intenaity value of any pixel 
correaponding to the den1ity of that area 
of the acanned o~ject, 

CAT acan, of loge exhibit readily 
di1ceroible features even to the 
untrained observer, Figura 1 is a diagram 
of the feature• which can be aeen tn a 
typical CAT acan of a log, Theae include, 
1, growth ringa - - d11tingui1hed by their 

high density and circular shape about 
the center of growth. 

2, hole•, crack,, pitch pocket1-­
dJ1ttngut1hed by their low density 
(they appeAr a, light region, in 
ectual CAT 1cana), 

3. knot,-- dt1tinguiahed by their high 
den11ty, roughly elliptical 1hape 
(major axia pointing toward, the 
center of growth), and the fact that 
knot, tend to di1tort the growth 
rtng1 near them; 

4, rot-- d11tingutahed by its higher, 
lower, or varied denaity. and the way 
rotten ar .. aa interrupt growth rings, 

Proceaa1ng ~odology 
Although the input to thta ay1te11 1• 

from a 11mttad domain, the taaae• , 
the111elve1 can vary greatly, Loa• vary 
aero,, 1peciea, Al,o the water content of 
a log affect, ita CAT ,can image. 
Techntquea 1uch as 1tatt1t1cal pattern 
recognition. or 
1egmentat1on-by-threahold1ng will not 
yield conaiatent result, tn this 
environment, They can, however, be u1ed 
at lower level, to extract 1tmple 
feature•, Knowledge-directed 
interpretation of the input image ia 
needed at higher level, of proce11tng, 
The image aegmentation proce,1 divide, 
nicely into two phaae•, The fir1t 11 to 
extract primary or 11mple faaturea, Th, 
aecond 11 to u1e theae primary feature, 
to dct~rminr the imftQC reQion• 
correMponding to the internal atructure 
of the log, 
a, Primary Feature Extraction 

Stmpl~ thresholding aufficea to 
determine the external boundary of 
the log 1ince the den,tty difference 
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betwe e n air and wood is so 
pronounced, 

A standard edge-detection 
operator (Marr 1979) provid es a set 

of edge points. Clearly, growth rings 
generate edge ele me nts , as do cracks, 
hol es, and knot s. 

CENTER 
OF 

GROWTH 

ROT INSECT HOLE 

Figur e 
CAT scan image of a log, 

Figure 2 
The cross-hatc h ed areas correspo nd to regions of 

low d e n sity s uperimpos e d on th e original image. 
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b. Htih-levcl Fcaturca 
The prfaar7 featurea available 

are the ortainal denaity image, the 
external boundary of the log, and a 
aet of edge eleaenta. The 
claaa1ficat1on of image regtona 
depends 1n large part upon the global 
contest provided by the growth rtnga, 
Thta contest dependency ta not 
arbitrary, for growth ringa are a 
atrong viaual cue for human 
obaervera. ~e1ghbour1ng edge element• 
having atatlar characteriatica are 
linked together into curved line 
aegaenta. Thoae which are concentric 
wtth the log boundary are generallJ 
growth ringa, Since we know 
approximately where the growth rina 
aegmenta should continue we can trJ 
to extend them in a manner afm1lar to 
that which Shirai (Shirai 1975) uud 
for finding lines in the blocka 
world, 

Anothe~ atrong vleuul cue ta the 
center of growth of the log, The biaa 
of the center of growth nway from the 
geometric center ot the log often 
causes weak and closely packed growth 
ringa. The center of growth ts 
defined by the center of the set of 
concentric growth rings, Any two 
areas of obvious, unperturbed 
growth-- aa indicated by uniform 
growth rlnga-- can be used to locate 
the approximate center of growth, It 
ta located where the perpendiculara 
to the growth rings in each area 
interaect, Thia eatimate of the 
location of the center of growth cen 
be improved upon by repeating the 
aaae proceaa on nearby uniform growth 
areaa which are cloaer to the center, 

The priaary featurea and the 
center of growth are used to deflae 
and describe areaa of clear wood, 
knota, and rot, Concentric and 
un!fora growth rlnga are strong 
evidence of clear wood, There may be 
other reglona of clear wood, but 
indicated by weaker evidence, Slow 
tree growth and limited iaage 
reaolutlon cauae aoae areaa of clear 
wood to appear to be of almoat 
unifora denait7, A region ta 
Interpreted aa clear wood if ita 
denait7 ta unifora and aiailar to 
that of eatabliahed areaa of clear 
wood, 

Reg1ona which cannot be 
claaa1f1ed aa clear wood auat contain 
aoae defect which cau1ea the growth 
ringa to becoae diacontinuoua, Our 
aia 1• to claa1if7 theae regions a1 
knot a, · rot, crack•, or hole a. The 
boundary between the1e region• and 
clear wood 11 a aubject1ve contour 
foraed by breaka in the growth rings, 

Hany character1at1ca i ndicate 
ll, .. t • reaton 11 a knot, knota are of 
high denaity, and rouahly elliptical, 
The major ax1a of thia allipae point, 
toward the center of growth, There 11 
uaually a 'tail' of hi&h density (aee 
Figura 1) po1nt1n& in the direction 
of the canter of arowth. Knota al10 
tend to perturb the arowth rtna• near 
them, Thua grow~h ringa in the imaae 
which bend out of the circular 
pattern ara evidence that they ara 
near the boundary of a knot, 

Rot cauaea a log'a cellular 
atructure to decay into a maaa 
similar to packed aawduat, Since rot 
occurs after the growth rings are 
eatabl1ahed, they do not bend out of 
the circular pattern near the 
boundary of the rot, The water 
content within a rotten area may vary 
•• well, cau11ng regions of higher or 
lower denalty in the CAT acan image 
(see Figure 1), Generally, rot ta not 
found 1n amall pocket, embedded in 
clear wood, but rather in extenaive 
areas, often a complete quadrant of 
the log, All this aeana that In CAT 
scan• a region of rot can be 
identified by the pre1ence of 
fragmented growth ringa and widely 
varying density, 

Crack• and hole• are usually 
amall region,, They ara typically 
bounded on all 1ide1 by clear wood, 
They 1lso exhibit a uniformly low 
density thr~ughout, Holes are 
typically circular 1n nature, and 
cracka run radially inward toward the 
center of arowth, 

Computer Proceaatns 
Some reaulta of the low-level 

feature detection Qperationa are shown in 
Figures 2 and 3, Simple thresholding 
diat1ngu1ahaa low-denatty region• 
correapondtng to the external boundary of 
the log, and holea, cracka, and aome rot, 
Figure 2 1howa the CAT acan of the log 
and the threaholded area, Fiaure 3 ahowa 
t he edge pointa re1ult1ng from the 
application of an edge detector, The 
growth ringa in areas of aound wood and 
the boundar1e~ of knota are readily 
discernible, I~ areas of rot, the edge 
point• indicate regions where the denaity 
is rapidly changing, The fact that there 
ta no uniform direction to these edge 
points ia one indicator of rotten wood, 

Summary and Future Work 
KnowTedge of howthe internal 

atructure of a log i1 formed conatraina 
the interpretation of CAT scan image 
features, A log'o boundary and growth 

· r1nga provide a context for the 
. Interpretation of local image regions, 
1 Preliminary computer work indicate, that 
I 



tbe 1oteroal atructural feature• of a CAT 
acao of a loa can be readily found. Our 
current work 1a to incorporate thia 
koowledae 1oto a coaputer program that 
will claaatf7 local image region• of CAT 
acaoa of loaa. 
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ABSTRACT 

The atratt19Y ot a rule based computer vision 
•ystc,a is dd!ined and analysed. The first aspect 
involves determining the spatial order in which the 
system will process an image. In addition, an 
ordering has to be established among all the rules 
included in the model. A global strategy is 
achieved by dividing an image into areas of at­
tention. These a.re processed in an order that 
d.epends on their properties, aa reflected by .a set 
ot performance measures, computed for eac h area. A 
local strategy is th!ll\ dynainically evalua·ted within 
each area, to determine the order o! analysis ot the 
reqions and lines, as well as the order o! applica­
tion of the rules to the data . Dynamic strategy 
setting is formulated as a fuzzy decision - making 
problem, whose solution depends on the performance 
parameters for each of the areas in the image. 
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l• INTRODUCTIOO 

Setting strategy ia an important factor in 
the design o! a system, since it bears a direct 
consequence on determining how it will fW1ction, 
For a rule b4sed system, this involves the funda­
aental i,isue of determining the order in which the 
n.ales will be matcheo against the data. In addition, 
for systems that deal with complex data structures, 
~sis the case with a computer vision system, an 
ur,l.·ri•uJ au::t be imtwi:~~" on ti~: d.,t ; , to 1~, m. ,t.t:114:d. 

t'or th,., rulu bused im..igc sc9ID<.!nt.itiou t1ystcm 
OCdcribed in (Levine and Nazif, 1982 a) both rule 
ordering and data ordering a.re part of the system 
strategy. "nle knowledge rules are matched against 
the data stored in a short term memory (5TH). This, 
th.irefore, requires the system to know the order in 
which the rules are to be matched. This is es­
;>ecially ilnportant, when the data are such that more 
than one rule can fire. 

The d4ta are composed of areas in the image 
that contain the regions and lines defining a seq• 
mentation for that image. Once the order of the 

rules is established, the 11yett1m will ut11rt a 
rule cycle by matching the conditione ot a 
specific rule tc specific data entriua. 'l'h'"'" 
conditions require that the features of a region, 
lino or aro11 be teutod tor the pru,uwco ot a 
certain data configuration. Thus, the system 
must know the specific region, line and area for 
which this is to be done at any point in pro­
cessing. Conceptually, the system is searching 
the image .for the occurrence ot the data con­
figuration represented by a rule. It is ths 
order of that search that must be establ ished 
here. Thia translates to the probl6m ot select­
ing which area of attention in the image to work 
on at any point in procoasing, and npecitying tha 
order, within thi·s area, in which tho regions 
and lines are to be visited. 

Image processing systems in the past have 
not seriously addressed the problem of detennin­
ing the order in which an image ia to be pro­
cessed. However, there i& ample proof that such 
an ordering affects the results ot the analysis. 
This is evident, for example, in region growing 
systems, in which initial regions are merged in 
a pre-specified order to form larger regions. 
It has been shown [Nazif and Levine, 1981) that 
changing the order in which the regions are 
merged will alter the configuration of the reeult­
ing regions in tho final 11·ogmontAtion. Thh h 
true irrespective of tho tact that the merging 
criteria remain unc.hanged. Thua, this aspect ot 
setting strategy ia an important one, and in tact, 
it is responsibl-e for a lot o! the errors in the 
results of segmenting natural ecenea using 
existing segmentation systems. 

The inclusion of focus of attention areae 
in the data st~cture is significant (Levine and 
Na zif, 1982 aJ. These areas guide tho system to 
1->arts ot the imago that should bo 1>rocu11ued firi~t. 
The system strategy oatabllohos an ardor for tho 
areas, as well as within the areaa. Furthermore, 
that order is not a fixed one. It varies from 
one area to the next, according to the properties 
of the data within each. We thus introduce the 
notion of a dynamic. data ordering in processing 
an image. The implementation of such an orderin9 
will be described here in detail as part of the 
system otratcgy. 

In a more general sense, the strategy tor 
thia uyuttm includes not only specifying the 
order ot data proceeeing, but alto the ordar in 
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whi<.h lh~ ~10<;~~ain9 criteria embodied in the rulea 
ia ap~lied to the data, Unlike previous rule based 
ayateaa, t.hia order will be ahown to be a dyn&mic 
one as well. nie system cAn actually vary the order 
in which it aatchea ita rulea on the data, based on 
th• characteristics of the data themselves, '11\ie 
idea of a 4ynanuc data driven rule ordering 111ethod­
ology ia alao a new one, a.nd helpa improve bot.h the 
•fficiency of computation and the quality of the 
output. 

In the next sections, we will define how the 
str&tegy for the rule based segmentation system is 
detenuned. To do thia, we first define what the 
elements that c;0111pose • strategy are. We then 
fonnulate the problem of strategy selection as that 
of ,a ae.lrch with.in the space composed by these 
el<:Jll<!nt.s, !or the most appropriate strategy to use 
for each data configuration , To solve this dynamic 
search problem, we define performance parameters 
that 11re evalu11ted by the system at different p·arte 
of the i11>A9c. They 11re used to determine the 
.:lcments ot strategy tor each of these part11 
i11d1v1dually. We will also introduce the constraints 
til.lt dc!1ne the r,, lation between the strategy 
e h ·,,,.,nts and each of the perfonnance parameters. 
Th e fr=cwork for the solution is shown to be that 
o ( a dcc1sion-tn..1k1n9 process, in which decision 
fun c tions are cv~luated from the performance para­
~~ters, a.nd arc then used to instantiate the system 
s tr3tegy elements. '!1lo concepts of fuzzy set theory 
s~rvc as the design tool for this process. Fuzzy 
loglc will be used in representing the constraints, 
t1,!frn111q the objectives, and designing the decision­
nu.~ing algorithm. 

l • STlv\ttGY Off! NIT ION 

It is seen frOlll the above argument that in 
or.Joor to dotine ,a atr&tegy tor the im39e processing 
rule based system, we need to answer two basic 
q....,stions: 

(ll Where tin the image) do we 90 to next? 

(2) What do we do when we get there? 

The answer to the first quest.ion provides the means 
for selecting the next data entry in the STM to 
a.>tch the rules on. Within the context of the low 
level processing system described here, two levels 
of data selection are indicated. A given strategy 
6hould first detail the global method by which the 
next •re.a in th41 image i a to be selected for pro­
cessing. It should than proceed to specify the 
cr1teri.a for loc•lly selecting the next region and 
the next line in that area to be processed. 

nie an,iwcr t.o the second question also con­
at.i wtes put of the local strategy. After the 
ne•t data entry to match on ha.s been selected, be it 
a region or• line, there still remains more than 
on,: 4lto,mat.ive, These correspond to tho different 
options provided by having more than one knowledge 
aouroe to instantiate, or in other words, ll>Ore than 
one rule to match, Would it be better to match 
IU:GION or UNE rules first? Do we give priority 
to me rging over splitting or should we do the 

oppo~iu,? For lines, do we firet add new lir11,11 
or delete existing ones? When do we move on to 
the next region or line? In general, 9ivun a 
certain data configuration, more than one rule 
can match, and the question is, if thie happenw, 
which rule should fire? For rule based ay1te11111 
thie ie known as the conflict resolution problem. 
The local strategy within an area should aleo 
provide the solution to thie problem by 11pecifyin9 
an ordering on the rules to be 111Atched. Thia 
ordoring will thus vary from ono aroa to another, 
depending on the features that describe each 
area. We will now proceed to define the local 
strategy more precisely by an11lyaing ita basic 
elements. 

~ Local Strategy Elements 

The in.formation required in order to specify 
the system behaviour within an area of attention 
is organi~ed into six basic elements. The local 
strategy can thus be described by a state vector 
with six components, that are referred to as the 
-elements- of the local strategy. These are 
selected to be independent entities, that 
completely address the strategic aspects of the 
problem. Each element can assume specific 
"states- that are attached to it by the system, 
Following is a discuss1on of each element. 

2.1.1 Region~ Strategy 

'11\is element of local strategy determines 
which region to address next after processing th• 
current region. Two possibilities exist, either 
a random selection of another region in the 
current area of attention, or a selection based 
on the features of the current and new regions, 
The FOCUS OF ATTENTION process is the one 
responsible for obtaining the next region. It 
does so by matching its own rules against the 
data in the STK. It is the action of these rules 
that determine• the method by which the next 
region ie to be fetched. Different action, are 
provided by the. FOCUS OF ATTENTION procesa, 
These correspond to the different states of the 
region path strategy element. They include 
getting the region with highest or lowest 
adjacency value to the current reg.ion, getting 
the adjacent region with the highest or lowest 
area; getting the region that is encountered 
when scanning the image in a raster scan, 
starting at the current region, or getting the 
region with the next highest region label, A 
epecification of the region path etrategy 1• thue 
equivalent to the selection of one of the above 
options. 

~- Line Path Strategy 

The determination of which line comes next 
is the same ae in the case of regions, except 
for the fact that the features used are different, 
The FOCUS OF ATTENTION p11ooess can invoke one of 
the following actions, getting the closest line 
that is in front of, behind, or parallel to the 
current line1 getting the longest or shortest 
line that is near the current line1 getting the 



lin• wit.h hiyh,u1t or lowd5t gradient t.hat ia near• 
the current line, gt0ttin9 t.he next line in a raster 
scan, or getting the line with the next highest 
label. WbeD there is more than one line in front 
(bo,hind or p&rallel), t.he first three options will 
get the one with the lowest distance from the. current 
line . The next four options, on the other hand, 
will get the line with a specific feature, with 
n,apect to tho other lines. 

.!:.!.:.l Sequential/Parallel Strategy 

llhen a re<Jion is visited by the s ystem, the 
IIEGION ANALYSER 111Atchea it's rule• on the feature• 
of this region. If all the condition• of a rule 
111atch, the r\lle will fire, and an action will be 
executed. This will result in the modification of 
the current region. Once this i11 done, the system 
has two recourses. It may again match t.he REGION 
rules t.o the same region, so that the same rule, or 
other~. m.iy fir~ and further modify this region. 
This can be repeated until no more REGION rules 
llldtc:h their conditions on the features of the current 
region. Alternatively, the system can move on to 
the next region, so that it will not visit the same 
region twice until al 1 the other regions in the same 
area have been visited at least once each. The 
first method produces a sequential order of pro­
cessing, whereas the second simulates parallel 
processing. 

2.1.4 Processor Priority 

One of the questions that arisee during 
proce&sing is that of whether to process regions 
or lines. The system is faced with this choice at 
the end of every rule cycle. The process that 
executes the choice is the SO!EDULER, whose meta­
rules can specify one of two actions: match REGION 
rules, or match LINE rules. 

~- Rule Priority 

As with all rule based systems, the order in 
which the rules are matched constitutes an important 
part o! the system design. This affects both its 
behaviour and its performance. With a rigid design, 
rule ordering is embedded in the structure of the 
system itself. A change in that ordering is 
virtually impossible without major modifications. 
This is not the case in production systems, where 
the produc~on rules are kept separate from the 
processlng IDOdules of the system. Therefore, an 
.. xpllcit rule ordua-ill<J mu .. t I.lo upociriud in oa-dor 
t.o carry out the rule matching process. Thia is 
usu.1lly done by attaching prioritie s to the rules, 
so that in case of conflict, the rule with higher 
~riority will fire. "nlis priority can be explicit, 
or it can be implicit by the temporal order in which 
the rules are matched. In . both cases, the ordering 
specified is static and cannot be changed during 
processing. In fact, all rule based systems 
developed so far using the production system 
approach have static conflict resolution 

• 
Note that a line that is near another must be in 
front, behind, or parallel to it. 

.,.,thv..Julogies. 

The system described here iq>lt:mentx a 
dynamic strategy approach which implies a dynamic 
change in the ordering of the rule•. The syutom 
knowledge rules are classified into sets that 
include REGION, LINE, nnd AREA analyaia rules. 
We observe that tho previous strategy element, 
that of proceaa priority, doea in !act ••tabliah 
an ordering on the rules. It apecifie• whether 
first to match REGION rules or LINE rulea. Since 
this ia a dynamic process that changes from one 
area in the image to the next, thia result• in a 
dynamic ordering of the rulss aets. 

We now carry the above argument one .step 
further, in order to establish an ordcrlng within 
each of the rule sets. Two strategy element• 
result from imposing such an ordering, they are, 
kEGION rule priority, and LINE rule priority. 

2.1.5.l. Region Rule Priority 

One way to order the rules le by their 
actions. An ordering is imposed so that rulea 
with certain actions have priority over rules 
with others. For REGION rules, two types of 
actions are possible, merging and splitting. 
Depending on the performance parameters that 
describe a certain area, the system may impose a 
priority for merging over splitting in that nrea, 
or vice versa. A dynamic ordering of the rules 
by their actions is thus es tablished. 

A further ordering of rules with the same 
type of action is possible. This is done by 
using the conditions associated with the rules 
to specify priorities for rules having the sn11111 
action. One may argue that rule1 with a larger 
number of conditions should have priority over 
those with a smaller number. In the aystem 
described here, conditions that take into account 
both region and line information take priority 
over those that consider only one or tho other. 
Unlike the action based ordering, this condition 
based ordering is a static one, that can be 
reflected in the order in which the rules are 
matched. 

Rules with the samo typo of action are 
sorted according to their established prioritie• 
prior to the convnencement of procesein9. The 
priority of the actions themselvca remain to be 
outllhliwh<id dynamicolly occordin9 t.o tho dot.a • 
This dynamic strategy element can have one of two 
states, namely, merging or splitting, depending 
on which action will have the higher priority 
setting. 

2.1.5.2. ~ Rule Priority 

The argument described obove for the R£GlON 
. rules also applies here. A dynamic ordering ie 
also imposed by the actions of the rulea, and a 
static ordering is imposed by the conditions of 
rule& with the aame type of action. "nlo typea 
of actions u~ed are, of course, different. Again, 
two types arc distinguishable, those that add new 

'f 
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lines, &nd those that deletu e,usting ones. The 
!oraer includes actions that insert, extend, and 
join lines, while the latter includes those that 
dulete a l ,ine and •urge two lines into one. The 
two at,ltea o! thia elellkmt ot dyn~c st~atagy , 
vill thua be reterrod to as the add and, delete 
a ta tea. 

'nli.s concludea our d.iac:uaaio,n ot tl)e verioua 
el .. enta ot the local atreteqy o( the syste•. · Theee 
eleeents can be dynAlllically modified to reflect any 
required c:oml:>ination of atatea [Levine and Nazi!, 
1982 b). Pigure (l) aunmarizes the strategy elements 
and thllir possible statea. 
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J. STRAttGY 0£'!1:llXINATION 

Ho.:,uuring pcdonn=~ i11 a key !dctor in pro­
vid1ng a feedback path by w!1ich a system can modify 
its strategy during processing. Elsewhere, we intro­
duc~ a set of segmentation meas ures which serve as 
performance parameters for the system [Levine and 
Naz1f, 1982 b). These measures collectively take 
1n1:0 account unitorr1ity within regions, contrast 
•cross regions, as well as making provision for 
line:; and texturc. They havl! the additional property 
ot be1nq dynamic, in the sense that they ref l ect the 
~tate of the segmentation at any point in time . 
wi,cn ev.ilu.ited oV\lr e.ich area of attent1on in the 
•"'•'J~, they conatitutc a per!onnance vector, whose 
utllity in detenn1ning local and global atrategi~s 
w111 ~come apparent. ·· 

'nle perfonnance vector for each area in the 
i ... ge will include cOC>ponenta tor region unilonnity, 
reg1on contrast, line contrast, line connectivity, 
nwr.ber of regio~, and nWJ\bcr of lines. Note that 
the first three components are computed per feat ure 
1n the 1m.age. For black and white images, each 
cocnponent can be computed for the grey level 
1nta:nsity of regions and lines. For color images, 
each component will contribute three elements, to 
the perfo=4nce vector, on" for each color channel 
1nunsity. In general, the unifor11U.ty and contrast 
of other features of regions and l1nes can be added 
to th" performance vector. For m such features 
the purfon>Ance vector P for ar.:a a will have ' 

a 

H L Jm•J components, and is given by 

p 
a 1 1 t/1"1 ~l m 

Ua,···• a'Ca•···• ~·Ha•····"a'Ta' 
Ra,Lal' ' Ill 

where .u
0

1 , c
0
i,, an A. Hai • i ..., a.re r"9 -.';'I) ~ - .tonnity, 

region contrast, and line contrast mee•urea for 
feature i in area a, Tai• ~h~ line con~eqtivity 

measure for a, Ra ~d La are th~ n~er ot regiona 

and lines in a, respectively. Each area a will 
be represented in the strateg,y determination. 
proc:esi by its performance vector P and 

0

ita 
type 'a· . ,a 

The strategy of the rule, based system ia 
determined in two steps, First, a global strategy 
evaluation scheme selects the next area ot 
attention in the image. Once this is done, the 
local strategy used by the system within the 
selected. area must be computed. This section 
deta.ils t;he methodology for determining the 
system strategy at both levels. A solution for 
global strategy determination is presented in the 
form of a fuzzy decision-making process .' For a 
detailed introduction to the fundamentals of 
fuzzy logic:, the reader is re.fer red to [Zadeh, 
1973; Zadeh, 19761 Gaines, 1976), and the 
recent bibliography on the sub j ect and related 
applications given by [Gaines ~n.d Kohout, 1977). 

The conatraints t hat govern the choice ot a 
particular local strategy, and define the giobal 
utratcgy tor area ooloction , will, bo Q!31!Cribed, 
The fact that these constrain~s are themselves 
fuz~y in nature, will be shown to be t he reason 
for using fuzzy logic, rather than other standard 
decision-making methodplogies. The proble• of 
evaluating the local strategy is posed in the 
form of a "black box" model with specific inputa, 
outputs, and guiding constraints . The same 
principles used for global strategy selection are 
also used to solve for the local strategy rDOdel. 

3.1 Global Strategy Evaluation 

Before determining the local strategy 
within an area in t he image, t he area must be 
selected. A global process snould examine all 
available areas in t he i.;,agu; ·~nd · aeloc:t, based 
on their properties, the most appropriate one. 
One global strategy is to select the area that: 
Ci) is in ' more need, of f~rther processing, and 
(ii) has boen lesa recently vi»ited by the 
system. An area's need for processing is 
reflected by its performance parameters. The 
first four parameters ·described !n equation (1) 
serve this purpose fully. The amount of 
additional region processing that an area 
requires is reflected in how low the region 
uniformity and contrast measures are. ~ values 
of line connectivity and contrast measu~s 

* Areas are classified as smooth, textured, or as 
bounded by closed lines, see [Levine and Nazif, 
1982 a]. 



iudL..:.&t-.; U,~ lh .. 1-.J tv,· .,.,J..11ny CJC d1,;ldtiny lhOru 1111uu, 
respectively. Th" ay~t.em should t.hus select the 
.iuea with the lowest overall values for these four 
pa.ramet.era. 

A para.meter that reflect.a t.emporal order, 
rather thanperfonnanoe, is required in order . to 
represent the second constraint mentioned Above. 
Consid.,r the ro,cency r.atio for ar..ia a given by 

R 
a 

Number of areas visited since a was ti) 

Total number of areas in the image 

A high value of R
0 

would indicate that the area has 

not been visited recently, and thus is an eligible 
candidate tor processing. 

Our global strategy, put in words, is to 
select the area of lower region uniformity and 
contrast, lower line connectivity and contrast, and 
of higher recency ratio. Although we can express 
each of these measures mathematically, the constraint 
over each oft.hem is not so well-defined. The 
fonnat is a fuzzy one, since it only indicate s that 
a measure should be low or high. Furthermore, the 
inethod by which the measures should be combined to 
have a.n effact on the final decision, yields another 
source of imprecision. We know that an area should 
satisfy as many of the constraints as possible, in 
the best possible way. In practical situations, 
each area will satisfy each of the constraints to 
some degree. Thus, a precise mathematical function 
of the measures could be formulated to produce a 
combined effect. However, such a formula, involving 
11ultiplicative or additive effects, would be too 
silll()listic and too precise. This is because we only 
have a fuzzy notion ot what to _expect. Too fuzzy, 
in fact, to be represented by A single-valued 
114thematical function. The choice is thus better 
dcscri~d by using a linguistic framework, as 
opposed to a multi-variable formula. This provides 
tha IIIOtivation for using t.he concepts of fuzzy set 
theory in aa.king the decision. 

The performance parameters of equation (1) 
were designed so that every measure would indicate 
how well an area satisfies a particular objective. 
A region unifonuity 11>easure of 0.8 for an area, for 
e:xample, indicat.es that we a.re BO\ confident that 
the ngions in the area are unitoxm. The same 
.applies to tho other region and line measures (note 
that they are all normalized to lie in the interval 
(O,l)). The confidences required by the fuzzy 
decision-malter can be derived directly from these 
measures. If the value of a perfonnance measure 
for an area. is x, the amount of further processing 
ruqui n,d to iaprovo thAt a,easure is proportionill to 
l - x. The recency ratio defined by equation (2) 
p.rov1des a confidence value that is proportional 
to an area's temporal eligibility. 

For each area, M • 3m + 2 objectives are 
defined, where m is the nwnber of features of 
regions and lines used for the evaluation, as 
1ntroduced by equatiCl'I (1). They correspond to all 
• region uniformity,• region contrast, m line 
contrast, one line connectivity, and one recency 
ratio ineasures. Let A be t.he set of N areas in 

A (]) 

and Y
1

, Y
2

, ••• , YH be tho aot at H ot.,jcc;tivu11. 

Following the notation in (Zadeh, 1976), wo havu 
for each ai, 

y • L (1 - J< ) /ai • O <k <;m, 
k ai 

y - L (1 
d"-m m<k<2m, - l/ai' k Qi 

y .. J (1 
k-2m 

)/a
1

, 2m< k < 3m, - H k ai 

y .. 
k 

A 

t (1 - T )/ai' 
Qi 

• J R / 
A 0

i 

k • 3m + 1, 

k • 3m + 2, 

(4-a) 

(4-b) 

(4-c) 

(4-dJ 

(4-e) 

where J< ck 
a' a' 

equation (1). 
indicates the 

H~, and T
0

, aro uofincd AD pur 

The function inside tho integral 
degree of membership of ai in the 

fuzzy set representing objective Yk. 

The decision - mak_ing process tuke11 placo by 
first computing the degree by which all areas 
satisfy each of the M objectives. For a 
particular objective k, this will correspond to 
finding the fuzzy subset Yk over the set of areu 
A: 

y -k 
(5) 

The yik are computed using equations (4-a) to 
(4-e), depending on the value of k. The fuzzy 
decision set Dis then computed from the H sety 
of objectives, so that 

D - yl n y2 ('I ()y 
H 

(6) 

or D •[ ~ d2 ,. .. ~ I' 
al a2 aN 

(7) 

where 
M 

d - HIN ( yik ). 
i k•l 

(8) 

Following the optimal decision rul..i, the My11tem 
will soloct area aj au tho next <>roil to procoss, 
if 

(9) 

The maxi-min process of tuzzy deci11ion-making 
is given by uquationu (8) and (9). The objective 
that is minimally satisfied by an area is oelectod 
to represent it. The area with the highest valuo 
for the latter will constitute the ouq,ut of the 
decision-maker. 
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Ll ~ Str•l~gy £valuAtion 

Once t.he glob~l strAtegy haa selected an ~co, 
in t.he illA(Je, it rem,tlns to define tjle local 
at.rAt.eqy vith.in the area. In sectiqn 2, we !Se11-
c:ril:>ed t.he el-nts of local st.ra~gy, their states, 
And how thtry can be edjusted by the · system. i,ie 
ha1r11 also introduced in this section, a performance 
Yl!Ctor that CAn be evaluated for diffen!nt areas in 
the i1u9e. The components of this vector have been 
dtlaigned to moasure the quality of a iiegmentation 
over an ar", and thus provide the means f.or 
&.djuat.ing tho local strategy within that area. Th•Y 
c.in do so by influencing the individual strategy 
uleaenta into particuiar states that are more 
s uitable for the data configuration in the area, as 
repre~e nted by these parameters. Ttle following 
problem..;>reaenta itself, Given a perforamnce 
vector P for area o, how can we determ~ne the 

Q 

el.,,,,cnUi of the strategy vector S
0 

for that area. 

What ""' are actually looking for fa the model J" 
represented by the "black box• in figu_re (2). 

I L --,. ---=C>, F ------C-- S 
k t______J . .. 

The constraint.JI imposed on this model are 
brought about by the manner in which each 
perfonnAnce parameter affects each strategy ~lement. 
One can say that line a.naly~is should have priority 
ov-er region analysis if the region measures of 
unifonuty and contra.st are high, and the line 
measures of contrast and connectivity are lo~. 
nus is an indication t .hat the image needs 100re 
llne proc.::ssing than region processing. The 
oppos 1 te is also true, and variations on the above 
are possible. Hore splitting is needed at low 
ru91on uni!ornuty and more ine ,rging at low region 
contra.st. Adding lines is preferable for low 
connectivity anias, while deleting lines is more 
useful in smooth areas. A sequential strategy is 
11\0re efftcumt if the AJDOunt ol processing left is 
low, as reflected by high values for the region and 
line 11.asurea. On the other hand, the _more con­
•ervat1ve parallel strategy is safer if the mea.sures 
are low, and if the number of regions and lines are 
high. Bounded areas inay invite region merging, 
while textured areas allow for 1DOre line deletion. 
The path strategy is also affected by 1:hese con­
•traints. While low region wiifonn.ity suggests 
visiting largeJ' regions first, lo.., region contra.st 
s uggest.a 1>0ving through high adjacency values. 
SIIJ.aller size regions are lll()re influential for 
texture areas, while the opposite is true for smooth 
.. ruas. 

These are just exAJ!t)les of the types of 
CX)nstraints present, and are not meant to constitute 
an e&hauative list. Clearly, not every ~rformance 
pualllo8t.er attects every strategy ele.ment, at least 
not to the s=e extent. Some constraints seel!I more 
.import.ant .than others. '1\.lo factors affect the 
presence and relative importance of these con­
strainta1 improving the efficiency of the corn-

putatiu1,, and enhancing .ttw q'lalil;y of tho output 
sogJTIUlltation. 

~ consistent relation5pip can be obtained 
by 9ener4lizing !Jle effects of perforinanco pa­
ram41 ,p,rs on 11trtte1;1y 111~ement11. 1!hf11 c~ be done 
by explicitiy n~ng tpe etfept o, ppry par~­
ll)etf~ on all the states o, a~l atrat~gy elements. 
'J\olo aspects can be co~ed, the direction of th~ 
111tt,i::t, and ita ma9nit44e. ,.. perfoC111an~ pa­
rameter can prqmoh th,i iry!!t~ti4tion ot a 
particulµ 11tate for Of!e pf the etriategy elements 
in pne of . t!of() different l!lay,. ·'rt!I! bJgll§r th!t 
value of the pa,:ame,ter, .the JllOre it would 
adv.ocate the cl)9ice or' th4't state. Thie will be 
tenned a positive effect. Tl:> p a~co.n4 and 
opposite effect, when a lower par~eter value 
is more s,ug,ge11,tive of tl}e 11elec,tion ,Qf the 
affected state, ip tenned the ne.gatiye effect. 

Table (1) represents the direction of the 
re~otion petween performance p~rametere and 
strategy elements. Th.e "+" and "-" 11igns .c_prre• 
spond ,to the positive and negativ_e effects, 
,:pspect ively. An entry ia included whenever the 
dir-ection of influence pf a paramete,: on a state 
is knoi,m 1 irrespective of the magnitude of that 
influence. If no known effect .exists, however, 
the en.tey in the table is lef,t bJ.ank. , 

As indicated previously, the extent by 
~hich perfonnanG:e paramet.ers affj!c;t strategy 
elements is not .constant. Some parameter~ are 
more import411,~ than others for c.ertain elements. 
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The rel&tive influence of the parAJneters on the 
el-enta will &lao depend on the type of are• for 
which the strategy is evalu&ted. TAble (2) 
sl.Zll&4rizes · th1s ~agnitude effect. The entries in 
the tAble CX)dc the influences int.o one of five 
c&tegorieaa very low (VL), low (L), medium (HI, 
b.i9b (Hl, And very high (VH). Variation due to 
•rea tyi:i- is represented by including three valuaa 
(one for each type of area), t.o indicate the 
aagnitude of the effect a performance parM>et.er haa 
oa e•ch of the six elements of strategy, 
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The concepts of fuzzy logic will now also be 
ext .. nded to the problem of local strat.egy determina­
tion. Unlike the global strategy, rnore than one 
d..!cision is requi.red. Six elements must be instan­
tiated in order to completely specify t.he local 
strategy. Therefore, as many decisions are needed 
t.o assign a state to each of these elements. The 
nodel Fis thus composed of six independent, yet 
identical, decision processes, that can be executed 
1n p.uallel. Each process involves the selection 
of one of a finite numl><!r of states, and hence the 
~termination of one component of the local strategy 
vector. The following analysis will apply equally 
to each of the strategy elements·. 

Let the set of n states for strategy element 
Si be given by 

Si· l sil' si2' • • • ·• sin). (lO) 

We can construct K fuzzy subsets of Si. Each subset 

corresponds to one of H • 211>+3 parameters constitut­
ing an area's performance vector. Each subset will 
have the form 

y -k 
1Jk2 

si2' 

llkn 
s. 

1n 
I' 

(ll) 

where IJkj is the degree by which perfot,nance 

paramuter k satisfies the requirements ot atatc 
j for atrategy element i in the given area. Eacb 
paramotor is evaluated as a numorical quantity 
in the interval (0,1). It a parameter haa a 
positive effect on a state, then the higher the 
value of that parAJneter, the more u,e degree ot 
satisf&ction of that atato with it. For a 
negative effect, that degree would increase with 
lower parameter values, If parameter k is towid 
to have a value Pk, then 

Pk if k has a positive effect on j, 

)Jkj - (12) 

(1-Pk ) if k has a ne gative effect on j, 

as specified by the entries of Table (1). 

The dec ision objectives represuntod by the 
H fuzzy subsets of equation (11) can now be 
computed from the performance parameters of the 
area. Tiley can then be uaed to compute a f.uzzy 
decision set Di on the states of strategy element 

i, so that 

y y 
D • y il () y 12 () 

i 1 2 
(13) 

where yik is a quantity that reflects the 

relative importance of performance parameter k, 
in detennining strategy element i, according to 
Table (2). A positive power that is greater 
than unity, will emph1>sizo tho influonco ot o 
particular objective. A fractional power will 
have the oppos ite effect. 

The last four strategy elements in Table 
(1) are binary valued . The entries th1>t are 
positively supporting one state, are seen to 
have a negative effect on the other state for 
these elements,· Tho first two eloments are multi­
valued, and each parameter can support more than 
one state, in a positive or negative manner, 
simultan-eously. It is the integrated effect over 
all parameters that tips the balance towards a 
particular state. This is, of course, a mutu1>lly 
exclusive process, sinco a strategy element can 
only assume a single state at a time. The tuz~y 
decision set D

1 
computed in equation (13), 

provides the degree of satisfaction of the 
decision-maker with each of the states of strategy 
element i, The state with the maK!mum aatie­
faction value is chosen to represent that element 
in the output strategy vector. This process is 
repeated for all six strategy elements. 

The model Fin figure (2) can thus be 
repcesented by a set of modules, each of wnich 
computes the degree of satisfaction of each 
strategy clement state, with the current value of 
each performance parameter. These are followed 
by a maxi-min s~lection module tor every element. 



_!. CONCLlJSIONS 

ln the previous ;ections, we have discussed 
t.ha variOl.lS factora involved in setting the 
strategy of our ru!e based i11LA9e proc~ssing system. 
We '}ave demonstrated the d.ifficult.i.es involved 1n 
9ettin9 such a co~lex yet versatile syatem to 
f,.inct.ion in an optilllized fashion. To do thia, we 
haw analyzed t.he •Ya.um strategy into bas.i.c, well 
defined, and lndepcndent elemcmta, t.hat can acquire 
a number of finite and specific atates. Next we 
defined • set of para~ters that .measure the 
perfoma.noe of the ; ysu,ai, as reflected by the state 
of the ';'Utput at any point during processi~9. A 
a,o&!l is then introduced that uses these parameten 
in evaluatinq decision functions that allocate 
at.Ilea to the various strategy elements, thus 
defining a specific strat.egy for the system. 

nie s olution pi:oposed involves a novel 
"{>proach to both rule-ordc ring in .i rule based 
production aystum, and data ordering in image 
proces oi ng systems. nie system is designed to 
.. 11ow for dy.nam.ic setting of its rule matching 
pr1orltiea and its focua of attention scheme. A 
pool of focus of attention areas are generated 
according to certain criteria embedded in rules 
that are designed for this purp~se. Perfonnahce 
p.1.ra...,ters are subsequently computed for each area, 
based on the initial segmentation status wit.hin 
that area. n..ese parameters are StOr1'd and 
dyn.>.m..ically updated during processing, so tha~ they 
c:an cont1nuously and appropriately represent each 
area at any ti111e. Once an area is selected, the 
system proceeds to define the local strategy within 
that .1.rea. It eva luates decision functions that 
reflect the effect of the performance parameters 
of the •rea, on each of the individual strategy 
• l.,...unt.a. 80th locAl and global uvai uations employ 
.. fuzr.y set duciaion•NJdn9 111et.hodoloqy to account 
for the inh.orent imprecision in the conbtraints 
repre~ent.ing the relation .between the data and the 
resulting decisions. 

The key factor in creating a dynamic strategy 
1s the Ability to dynAmically ~asure the state of 
th• ••gmentation, and consequently obtain an 
indication o! th• diatance tr~ the final goal 
[~v1ne and Nazif, 1982 b). By implementi ng 
such a stratogy ln our rule baaed image processing 
system, we an, aorving a dual purpose. Pirst WO 

o,n¥U(O! etficient pCOC<!SSing by · modi·fying the areas 
in .an appropriate order. 'nle second goal is to 
m1nill\ize the segmentation errors by selecting the 
t~bt rules at the proper point. in the computation. 

C .. .uncs, B. R., Foundations of Fuzzy R..>asoning, Int. 
J. l'l.!n- 14..lchine Studi es, Vol. B, 1976, pp. 623-668. 

G41nca, B. R., ICohout L. J. , The Fuzzy Decade I A 
B1bl1ography of Puzzy Systems and Closely Related 
Topics, lnt. J. K4n-Machine Studies, vol, 9, 1977, 
;.,p. 1-68. 

Lcv1ne, H.O., , Nazi!, A., An Experimental Rule Based 
System for Testing Low Level Segmentation 

5'.) 

Str .. L"gi es, in "Hul ti-Com.put.er Jtchi tuc;t~.~"'" and 
Image Processing, Algorithms 411d Programs", 
L. u·hr and K. Preston, (eds.,.. Aca°demic Press, 
N.Y., 1982 a. 

Levine, H.o., NAzi..f, A., Pu·rtorm~ce Measurement 
arid Strategy Ev.alpation for Rul~ . Saeed Image 
Segmenfau~n, 'i'R-82-1, _,<;:omputt.~ ~~-ion' ~d 
Graphics Lab,, Department of E~ectrical En9., 
McGill Univer11ity, Ha:ch 1982 b. 

Niltif, A., Levine, H.O., A R1.H.e Based Low Level 
Segmentation System, s·eventh Canadian Man• 
Computer Communication Society Conference, June 
ld-12, 1981, Waterloo, Ontario, Canada. 

Zadeh, . t.. ~-. Outline of A New Approach to the 
An~lysis of Complex Systems and Decision 
Processes, IEEE . Trans. Systems, Man, ·and 
cybernetics, Vol. SMC-3, No. l, Jan. 1973, pp. 
20.:44_ 

Zadeh, L.A., A Fuzzy-Algorithmic Appr~ach to the 
Definition of Complex or Impreci~e Concepta, 
lnt. ;J. of Man-Machine Studies, Vol. 8, 1976, 
pp. 247-291. 



Syntactic Pat tern Analysis Aa A He1111s of Scene M11tching 

John F, Gilmore 

Martin Marietta Orlando Aerospace 

Abstract 

This paper describes a technique !or matching 
two images of natural terrain using a syntactic 
pattern recognition approach, Points of interest 
in an image are classified and a graph possessing 
properties of invariance is created based on these 
points. A method !or generating a grammar string 
fro• the clasai!ied graph struct ure is presented 
Local match analysia ia perfonned and the best 
global match ia constructed. A probability-of­
match metric is computed in order to evaluate the 
global match and results demonstrating these steps 
are presented. 

Introduction 

In or.der to match tvo images of natural ter­
rain, the differences betveen images muat be ex­
plored. The images to be matched may differ in 
viewing angle, lighting and weather conditions. 
Based upon the application, the images may also 
have been obtained with different sensors. As a 
result of these variations, 1114tching image by cor­
relating the pixel intensity values is not effect­
ive in the presence of such large differences as 
the partial obscurations that occur in natural 
terrain because of varying perspective angles. An 
alternate approach must be explored to solve thia 
problem, 

This paper deals with the application of 
•yntactic pattern recognition as it pertains to 
scene L3tching .• The goal of this work is to de­
vise a method for matching a sensed image with a 
reference image. Because the sensed image may not 
be contained in the reference image, a probability 
of match must be detennined and a threshold select­
ed so that each sensed image can be evaluated in­
dependently. 

The syntactic approach to pattern recognition 
has attracted increasing interest in recent years. 
Several texts have been published which present 
syntactic recognition fundamentals (1-3). Many 
articles dealing with applications to s pecific 
.areas have also been presented_. Tai and Fu (4) 
investigated class inference in relation to con­
text-free programmed grammars for syntactic pattern 
recognition. Tsai (5) combined statistics with a 
syntactic approach to recognize industrial objecta, 
l-1.)hr and KA1ini ( 6) inve1tigated i yntactic rocogni• 
tion as a strategy for scene analysis ~sing know­
ledge directed recognition, Other methods have 
a lso been explored (7 -1 0). 

( Cl 

Syntactic Pattern Anulyui11 SyHtcna 

We can best understand the syntactic method 
proposed here by comparing it with the standard 
pattern recognition approach, which consists of 
four basic operations, First, an acquired image 
is input to a sensor. Second, some type of image 
preprocessing such as segmentation or image en­
hancement ia applied, Third, a set of predeter ­
mined statistical features are extracted from the 
image. Fourth, regions or the image are classi­
fied based on their ststietical properties. Thie 
method is illustrated in Figure l. 

fll"'OCI 
OtCll,ON 

Fig. 1 Standard Pattern Recognition Approach 

The syntactic approach to the pattern re­
cognitioh problem consists of aix distinct sec­
tions: 

1, Point classification 
2, Craph generation 
3, Grammar string fonnation 
4. Hatch analysis. 
5. String compariaon 
6. Probability of match 

Theee auctions have been combined to form the 
Syntactic Pattern Analysis (SPA) oyetem. The 
SPA approach (Figure 2) combine• spatial rela­
tionships and scene matching, 

INll'VT ,oi,-f ...... 
CLAS11, 1CATIOH OUlllllliATIOH 

ITIUNQ 
,o-.MATtON 

,,,oeA .. LITY 
Of 

MAJCH 

MATCH 
AAIAL'f'JII 

Fig, 2 Propoaed Syntactic Recognition Approach 

1. Point Classification 

In order to work with point pattern•, the 
point, of intere1t in an image mu1t be identified 
and classified into distinctive cla1ae1. The 
classification process 11 two-fold, Firat, the 
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iLlis<' ill prqiruc~,is.,J l<> identify and segment 
area• th~t are deemed claasif~•ble. Pnce theap 
region• have been 1egmented, • ••t of feature& ia 
detenained for each. Baaed upon ,ho.w we ,11 each 
fe.1ture 1e.t compares with a pr~4etennincd aet Qf 
feature vector,, a regi<?,D ia classified as a tree, 
field, haystack, river, iake, 111i,n;0ad.e object, 
moving object, or c~utter, reatures used in t~i~ 
claaeificatioo ioclude perimeter, area, · height, 
llidth, Euler numbe.r,i, text.ure, contrast me1111ures, 
and iotenaity momenta, Once ide.nt Hied, a repre-
1enFat1ve location point 1uch as t~e centroid 1, 
cho~eo for each region~ 

The second phase of the classification procesa 
deala with those regions which ~ave been classi­
fied as clutter. Because t~e majority of i~agea 
encountered contain a relanvely sm4ll numb-er of 
nonclutter poJnts, an effort is made to identify 
three subclasses oC clutter, A sµbse~ of the 
orlglnal feature values from each region is sub­
mitted to a K-mcan~ classifier. The K-mean1 
3)gorlthm is based on the minimization of a per­
furm.ince . index, in this case the sum of the 
squJred distances bel~een all points in a cluster 
dulll.lln and the cluster ce11ter. · With K set to a 
value of three, the algorithm will iteratively . 
produce three distinct subclasses of clutter. 
~hen all of the subclasses have been identified, 
th., centroid of each region is chosen as the re­
presentative pulnt location f~r that region. 

2. Gr.tph f.cn,•r_atlon 

After all of the points of interest are 
chsslfied, they are analyzed in terms of graph 
generation. The application requires symbolic 
graphs possessing properties invariant to trans-
1.Hlon, rotation, and m..1gnlficiltion. Large 
ch.Jn~o,• in pe?rspective hayu a dralJliltic effect on 
the symbolic gra~h and therefore ~ust also be 
aJdressed. A nearest-mean algorithm has been 
developed to han~le perspective changes in two 
dlmenelona. Further development of thia method 
•h~w~ promise in dealing with the turcc-dimcn­
sional world. 

Craph generation ia a two-phase process in­
volving both the internal and external graph 
1tructure, An internal g_ra11h representative such 
•• the two-neareat-nelghbor1 is applied to the 
classified points o( interest. The external huil 
is chosen when all of the points have been pro­
cessed. The boundary hull or the convex hull are 
the only two choices available. The boundary hull 
traces the perlmt:ter or th·e internal structure, 
record1ng each node classification as it pro­
gresses. The hull is completely determined when 
the initial starting point is re-encountered. 

The coovex hull algorithm tests a series of 
three point, for convexity. If a point is deemed 
co be part of the hull, it is recorded and a path 
from the last convex point is constructed (11). 
By combining the internal and external gra,phs of 
a point pattern, a &ymbolic representation of the 
original image 1• created. 
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3, Gr. .... 11dr Gener at ion 

Synq1ctic processing d.f.ctatea that lht< 
aymbolic graph.a gener,a.ted lrom tho;: poi.nt pultcrn11 
be tra,nafor,me.d into a gro(lllllar .iitring formation. 
Ope me.thod · of accomplishi.ng thi• is to aelect a 
node and make a clockwise sweep of ,all po.s,sible 
circuits tl:J,at flow throu.~h the given node, iach 
circuit would be recorded indtvidudly u • 
11tring of point clasalficaticm• , Thia proceu h 
repeated for all of the node• in the graph baaed 
on three prlorltie•1 

o First, the hull riodea are recorded as 
a circuit. 

o Seco~d, all subgraphs with at least one 
hull node are analyzed, 

o Third, all subgraphs with no hull nodes 
are identified. 

An example of the 
is shown in Figure ) • 
formed by this method 
and, as such, possess 
capabilities. 

granunar extraction process 
The string grammars 

constitute regular grammara 
rotatiqnal image matching 

C 

ABCDEF 
II A.BA, CD B, E F C, F·AA, f At 

Ill A 1J C 

Figure ). Prioritized Grammar E~traction 

4. Hatch Analysis 

A qne-to-one subgramrnar comparison of. the I 
sensed-grorranar string to the reference-granunsr J 

string is performfd in the match a11a-lysis. Pro-: 
ductiona of the regular grammar are possible due : 
to point misclassification but are recorded as 
transformations instead because of the unique 
applicati~n of the grammar. These transforma­
tions are hierarchical in nature; that is, a 
moving object may be classified aa a man-made 
object but a man-mad·e object wtll never trans­
form to a moving object. P.articular attentioo 
is paid to the number. o.f false ne-gatives and 
false positives encountered by each local match 
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Figure 5. String Comparison Probability Computation 

because they will noticeably affect match per­
formance. Figure 4 demonstrates a scoring 
criteria when a false positive is placed in the 
sensed image, In this case; S4 would match R4 
and S5 would be disregarded, 

REFERENCE SENSED MATCH SCORES 

11 ABC AC 1) ABCXAC s, Al 0.909 
2 ) ABED 2) ABED S2 R.2 1.000 
3 ) BCE 3) B C E SJ R3 1.000 
4) CA E 4) C XE S4 A4 0.444 
51 ACD 51 XAOE S5 A4 0.381 
61 CADD 61 ACO S6 AS 1.000 
71 ODE 71 CAOO S7 R6 1.000 

81 ODE S8 A7 1.000 

Figure 4. Hatch Analysis Scoring Criteria 

5. String Comparison 

A global match analyaia is performed based on 
the local probability of match. The local pro­
abilities are computed for each substring in the 
11.1tch analysis section to identify the best 
sensed-to-reference substring match. Only those 
probabilities which exceed a realistic threshold 
are 111.aintained. This approach is taken in order to 
analytically determine the best overall string 
111.:ltch, rather than take the first substring match 
found, and is an excellent means of dealing with 
the false negatives and false positives encounter­
ed. These false values would otherwise deterior­
ate the global match as it progressed through the 
substrings. The individual substring probabilit­
ies are evaluated and the best overall match de­
terained. When the global match is complete, the 
total number of false negatives, false positives, 
and transformations are determined. 

c.: 

6. Probability of Hutch 

The probability of match for the s,.meed 
image as it relates to the referenced image ie 
calculated based upon the following non-normal­
ized equation: 

N the number of elements in referenced 
. image 

H the number of elements in ocnacd image 

NS~ number of elements in the reference 
image that were identically matched 
in the senaed image 

FN • the number of false nei:atives en­
countered 

FP • the number of false positives en­
. co untered 

T the number of element transformations 
encountered. 

Probability 
of 

Hatch 

(N+H-FN-FP-.5T) • 

(N+H) 
llill 
(N) 

The probability of mutch value is compared 
to an experimentally determined threshold and a 
decision made whether en exceptable match has 
been found. In the case of matching nwltiple 
sensed images to a referenced image, the image 
with the higheat probability would be the beet 
match, based on the aforementioned criteria. An 
example of a string comparison and its probabil­
ity is shown in Figure 5. 

Classificstion Experiment 

A classification experiment to demonstrate 
the matching capabilities of the SPA system us­
ing FLIR imagery waa performed. A reference 



l-..1 .. wa• cho,"'° O'igur" 6) and a »ub Image corre»­
pondin& to a aenaad i,uga (F~aure 7) ~a• e.xtracted, 
The rafarenc• 1,uge vaa preproceaaed and the fol­
loving point• of 1·ntereat and associated cl•t.•e• 
were generated: 

Point Location 

(20), 14) 

(176, 16) 

(186, 62) 

(107, 80) 

(226, 84) 

(247, .119) 

(154, 99) 

(154, 111) 

( 27, 164) 

( 19, 218) 

( 2), 255) 

(241, 281) 

(210, 308) 

(182, 217) 

(265, 170) 

(154, 194) 

A 

A 

C 

C 

A 

A 

B 

II 

A 

B 

C 

C 

B 

T 

H 

H 

Claa.atfication 

cluttel' 

cluttel' 

cluttel' 

clutter 

clutter 

clutter 

clutter 

clutter 

clutter 

clutter 

clutter 

cl u.t t er 

clutter 

target 

haystack 

haystack 

Thia procesa wa~ repeated for 'the sensed image 
yield Ing the follo.wlng point l .ocations and class­
if le.at ions: 

17, 59) 

13, 150) 

(231, 126) 

9, 63) 

(200, 17)) 

(112. 62) 

(144, 39) 

(255, 15) 

A 

C 

C 

B 

8 

T 

H 

II 

Clnsst fl cation 

clutter 

clutter 

clutter 

clutter 

clutter 

target 

haystack 

haystack 

for each classified point pattern, a convex 
hull and a two - nearest-neighbor graph were gener­
ated. Figures 8 and 9 are the symbolic reference 
anJ aMnaed graph•, respectively. Grammar strings 
were generated Cor both graphs and the resulting 
aatch 1• inJlcated below, 
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kefcrcncc Graeh Sens«d Craeh Hatch Scurcti 

l) ABCBCHAAAC ·l) ABCBCH S,l-P.l 0,4.5 

2) ABCTH 2) ABCTH S2-R2 1.00 

3) CBT )) . CBT S3-Rl 1.00 

4) ,BCT 4.) ,acr S4-R4 1.00 

5) CHT 5) CHT S5-S5 1.00 

6) IOIT 6) HAH ·s6-R6 0.4.4 

7) ACA 

8) MC 

9) MC 

10) CBB 

Prob_abillty of Ma.tch • 0. 72 

Summary 

Toe eynt.actic .pattern recogni.ti ·on problem 
has always been viewed ae ,imp.ractial .in appli­
ca.tJo,n, based o.n the reeul ,te achievable using 
a e.tati,etiq1·l a.pprooch, In ,th.e f,ield 9.f ecene 
matching, th-is approac,h hiiS ,ed to systems w):iich 
are incapa.bl,e. of 9eaU.ng .wi,cl,l l,!!,r.ge c,h;ange,11 in 
perep.ect'tve o.r n.Qise-induced f•jlla.e negati,vee and 
fals.e posi,tiv,e_s, ",Addition.ally, i;io t,rue mean.a 
of dealin,s w;t.i;):i ,s ,t,atiet,1,cal ,mi.s.cl.a.s.s;l;.f,lcation 
hav,e been devel_o,pe\l. T.his ha" resulted in the 
oc,currence ,of 8 hig,h num.ber of fail_e.e al-11rms, 
Th,e Syn,tac t _i ,c ,:i'.a Hern Anal ye,is !1¥,&·tem alf.d re sees 
these problem,& i ,i;i an anal.y,tical manl'\er and shows 
exc~ptionsl promi!l.e .for further ,\olork, 
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Figure 6. Reference Image Figure 8. Symbolic Reference Graph 

B C 

~igure 7. Sensed Image 
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H 

Figure 9. Symbolic Sensed Graph 
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A3STRACT 
A text-recognition algorithm is described 

which uses a dictionary to correct the substitution 
errors of a Markov method. Experiments were con­
ducted with the algorithm on texts of both conven­
tional and unconventional underlying statistical 
structure. The letters comprising the texts were 
of varying quality: well-written and badly written. 
T;,e perfonnance of the a 1 gori thm is compared to its 
complexity, 

I. INTRODUCTION 
A common error in OCR (Optical Character 

Recognition) application fs that ·of substitution: 
a letter being recognized as some other letter. 
In text-recognition, substitution error is extreme­
ly undesirable because it causes a spelling error 
in the word being recognized, and even a low letter 
error-rate can lead to a high word error-rate [5]. 
Cuite a few researchers (2), [3], (5), [7], (9), 
(10), (11), (17), (18) have identified different 
kinds of spelling errors and presented techniques 
to correct such errors. For OCR application Hanson 
et al. [5] used positional binary N-grams in a 
contextual postprocessor and succeeded in reducing 
the word error rate substantially for a data base 
of 6- letter words. However, the memory required to 
store the binary N- grams is fairly large because of 
the combinatorial problem caused by the various 
co,r.binations of posHions for which the binary 
N-gram are required. 

This paper presents an algorithm to correct 
some substitution errors in OCR application of text 
recognition. It is a hybrid algorithm as it com­
bines the modified Vftebi algorithm (13) with a 
dic,tionary recognition method (1), [4]. Thus 1t 
requires that the words to be recognized exist in a 
previously compiled dictionary. The hybrid algo­
rithm is described in Section II. The algorithm 
was experimentally tested on English texts of dif­
ferent statistical structures. The passages of 
text were assembled by using handprinted letters of 
vdrying quality. The experiments are described fn 
Section III. The conclusion from the experiments 
are given in Section IV. 

II. THE PROBLEM OF TEXT RECOGNITION 
The text to be recognized consists of the 

patterns of the characters. A set of measurements 
(called the feature vector) is made on each pattern 

(.(. 

Let i • x0 ,x1,x2, ••• ,Xn,Xn+l be a sequence of 
such feature - vectors (n~l) which are presented 
sequentially to the recognizer. Let x0 and Xn+l 
be assoc-lated with the character ')5', and x1 to 

Xn with 1 etters A to z. x1 to Xn thus fonn a 

word in the_text. Let P(XII•Z ) denote the pro~­
ability of X conditioned on the sequence of 
pattern classes I• A1,A 2, •.. ,An,An+l taking on 
the values f • z0 ,z1,z2, ... ,Z

0
,Zn+l. For slmplic­

it,t in notation, P(XJI•!) shall be written as 
P(XI!) . The probabl ity of recognizing X cor­
rectly is maximized by selecting that sequence 
of characters which maximizes the a__P.osterlori 
probability _l:(f!X) or a mono~onfc -function or1t. 
say log P(ZJX). By assuming that blanks are per­
fectly recognizable (that fs, z0 • Zn+l • ·~·), 
that the feature-vectors are conditionally fn­
dependent, and that letters in a word form a 
Markov chain of order 1, ft can be shown (13) 
that maximizi!!_g log P(ZIX) fs equivalent to 
maximizing g(X ,Z) , where 

n n+l 
g(X,Z) • i: log P(XilZi) + i: log P(ZilZ1_1). 

1" 1 i•l 

In the equation above , P(X 1 IZi) is called the 
likelihood, and P(Z 1!z1_1) is called the tran­
sition probability (the probability of z1 
occurring to the frm1edfate right of z1_1 in tex~. 
Let g(X,Z) be called the~ of the word!. 
Computing the scores of the 26° possfble words, 
requires 2n x 26n additions, which 11 about 48.3 
million additions for an average word length of 
4.74 (14) . This is considered to be too high a 
complexity. One way to reduce this complexity ls 
to maxfl!)_i~_e g(X,f) approximately; that fs maxi­
mize g(X,Z) over only a selected subset of the 
26" possible words. Different text recognition 
algorithms may use different criteria In 
selecting this subset. 

Four such algorithms were compared on their 
performance and complexity [12). These four 
algorithms wer~ Noncontextual , Heuristic approx­
imation, Modified Viterbi, and Uniform Pruning. 
It was concluded that for its complexity, the 
Modified Viterbi Algorithms (MVA) gave the best 
perfonnance. Thus for the experiments 1n this 
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paper, it was decid~d to combine the HVA with a 
Dictionary Algorithm (DA), see [1]. [2), (4). (18). 

The MVA has been completely described in 03). 
So 1t is not being described here. lnfonnally, fit 
cons 1s ts of d 21 a•l tern at 1 ves ( d 1's a heuri's t 1 c) 
being selected as Cdndfdates fol' each X1 in the 
n• 1 et ter wol'd. A path h then traced through the d 
bin trellis such that at each x1 • only the d most 

likely letter strings ending with the d alternatives 
of x1 are, retained. Thus unlikely letter strings 

are pru~ed from consideration. In the DA based· on 
(1), g(X,!) is maximized over then-letter words 1n 
the dictionary. The MVA and DA were combined in 
(14) too, but here a further change was made. rt 
w1s observed that the output from the MVA 1uffered 
from errors of substftution. So t.he strings outpu,t 
by the MVA are searched for in the di'ctionary to 
find t he best match. Thus it corrects errors. The 
algorithm in now described below: 

Algorithm Etf!:ror C~rrec;ting Hybrid Algorithm) 

El . Recognize the input pa.ttern sequence X by the 
MIA. The ~1VA outputs d (dl.l) n-letter strings s

1
, 

Si•···•Sd such that s1(1~i~d) is the i -th most 

1 l~ e ly string into which X can be recognized. 
{'.;or.-ine nt : The value of d is a heuristic and is 
predec I ded by the user. Some typ1C'a 1 va 1 ues of d 
r1nge from 2 to 5, see (13).} 

[2. Perfonn Steps E3 through E4 for i •.1,2, ..• ,d. 

E3. Search Si in dictionary. If search is success­

ful recognize X as Si and tenninate. 

E4. Check the dictionary to see if there are words 
w1,w2, ... wm (l!Ql) which are similar to Si. If such 

words are found, recognize X as w~ (1 .·,J~.rn) such 
tnJt w is the most slmi ldr to S ~and then 
tcnntdte . {Corm:ent: The measur~ of ~m_!_la rity 
betwee n two words is well - described by Hull and 
Dowling [6]. The criterion chosen for the 
~ lm1J_i_d.!:J.ly_ meHure depends on the user. · The 
cr1ter1on chosen for the experiments described tn 
'this pdper is very simple: Two n- l etter words are 
~j~ ila~ to each other if they differ from each 
other by exactly 1 letter; e.g. DU~~B and DUNB. If 
,-. 1 ,w2 , ... wm are similar to Si, t hen wj (l~jiJTI) i-s 

the most similar to Si ff probability of occurrence 

of wJ in text> probability of occurrence of wk in 

text for 1.dsin, klj . With this similarity measure, 
· it was found desirable to skip this step for words 
of l ength 2 or less, for intuitively obvious 

· reasons.} 

ES. Maximize g(X,Z) over then-letter words in the 
dictionary; that is, r~c2.9nize X as a word V if 
g(X,Z} is maximum for Z•V. Then tenninate. 

, {Corrrnent: Note this step cal led the dictionary 
a 1 gori thm( DA}. It h executed on ly if steps E3 
.ind E4 above failed in recognizing X for a•ll the 
d n-letter stri ngs output by the MVA.}. 

Thus the above algorithm combines the IWA 
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(Step El) with a DA (step ES). Let V(n,d) be 
the complexity of the MVA f.or a word size of n 
tettersand d alternatives, and let D(n) be the 
corresponding complexity of DA. The mathematical 
models of. V-(n,d.}. and D(n), ar,e given by Shinghal 
and Touss·aint [1'4], and so they ar.e no,t being 
reproduced here. The mathemat1'ca1 mod.els show 
that Dtn) > > V(n,d). The magrtttude 6f D(n) 
Increases rap,idly with increasing size of 
dicUonary. It should, be noted that whereas the 
MVA is exec_uted for a l1 words i,n the text. the 
DA fs executed for only a fraction B of the 
words in the text. So the compJ,ex1ty of the 
hybrid algorf.thm can be wr11tten a.s V(n,d)+ B O(n) .• 
The va 1 ue of ll 1-s observed exper1 men ta 1 ly. To 
reduce the complxlty of the hybrid algorithm, it 
i·s des 1 rabl e to. have the v.a 1 ue of B as 1 ow as 
possible. It should be noted that the lower 1s 
B, the fewer are the words in text for which the 
DA is invoked. 

A set of experiments in text-recognition 
were simulated to observe the perfonnance of the 
hybrid a 1 gori thm. The experJ.ments are described 
in the following section. 

Ill, THE TEXT RECOGNITION EXPERIMENTS 

To conduct the experiments, it was nec ­
essary to assembl e English language passages to 
be used as texts for ~ecognition. In this 
section the assembling of the passages is des­
cribed first, and then the experiments. 

The 1 etters cho,sen to cons t,1-tute the 
pas sages were ta-ken from Mun·son' s [8] data -set, 
which contains letters handprinted b.v 49 writers. 
The patterns were size-normalized [15) on -a 24 
by 24 grid G, such that Gij (i -th row and j-th 

column of G) is equal to 1 for a dark point, and 
it is equal to O for a white point. From each 
pattern, a feature ve-ctor (x_

1
,><z -,x

3
, .••• • x.36 ) 

was extracted, su.ch that 

i =a+3 j=b+J 

I: I: Gij' 
i•a j•b 

where 

a " 
k-1 

4L6 J+ 1, and b • 4((k- l)mod 6)+1, 

for 1 s k ~ 36 . In the notes accompanyf ng hf s 
data-set, Munson identifies two of his writers: 
one whos_e letters are "among the cleanest-"; the 
other, "amonci the mos't difficult". These two 
writers sha11l be respectively cal>led the good 
and bad writers. l't was decided to use the 
1 etters wri Hen by these two writers as two 
separate testing sets for the experiments . in this 
paper. This was done to compare the performance 
of Alqorithm Eon both well -written and badly 
written letters. The data -set was then split to 
exclude the two testing sets, and the recoQnfzer 
was trained on the remaining letters. · 

Next, two EnQlish passages were assembled 
to serve a,s texts to be recogniz·ed.. The 
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p•ssages contained the occurrence of only 27 
characters: ~(blank) and the 26 letters from A to Z 
(all other symbols having been deleted). There was 
one blank between any two words of a passage. The 
first passage called the conventional assa e 
comprised 255 words (1096 etters and was arbi­
trarily chosen from a newsmagazine. The second 
passage called the unconventional assa e comprised 
255 i.ords (1093 letters an was chosen rem 
Wright's Gads~y D9 ). Although the most frequent­
ly occurring etter in co111T1only found English text 
is the letter E [16) Gadsby is a story of over 
50.000 words wTthout a single occurrence of that 
letter. With the afd of the Chi - square test. 
Siddiqui [15) has shown that the statistical dis­
tribution of letters in the unconventional passage 
is significantly different from the distribution of 
letters in cOITlllOnly found English text. The 
objective behind selecting the two passages of 
these natures was to compare the performance of 
Algorithm Eon these passages, when however the 
statistical information used by the algorithm had 
been extimated from a corpora of corrrnonly found 
English text. Thus the passages.assembled were 
these: the conventional and the unconventional 
passages using the letters written by the good 
writer. and the same two passages using the letters 
written by the bad writer. 

Three exptrirnents {one each wit~ the MVA, the 
DA, and the other with Algorithm E) were conducted, 
using the assembled passages as texts to be rec­
ognized. The experiments are described below. The 
recognition rates observed from the experiments are 
gi ven in Table 1. The values of 8 obs erved for the 
Algorithm E experiment are given in Table 2. 

EXPERIMENT 1: HVA 

The experiment was conducted for d=2,3,4 and 
5. Table 1 shows that the recognition rates are 
generally the highest at daJ. For va l ues of d 
greater than 3 0 the change in recognition rates is 
nominal. if at all. This holds true for both the 
good and the bad writer. 

EXPERIMENT Z: DA 

Tables 1 shows that the DA gives 
lllUCh higher recognition rates than the MVA. The 
hignest recognition rates are 99.91% (letters) and 
99.61: (words) for the conventional passag~ written 
by the good writer. The lowest recognition rates 
are 96.07! (letters) and 92.551 (words) for the 
unconventional passage written by the bad· writer. 

EXPERIMENT 3: Algorithm E 

Algorithm E was conducted for d=2,3,4, and 5. 
Table l shows that recognition rates stabilize at 
d•3. For values of d greater than 3, the chan9e in 
recognition rates is nominal. if at al 1. However, 
the recognition rates of Algorithm E are only 
c11Jr9inctl ly di ffercnt frum those of the DA. Tilb l c 
2 shows that as d increases. the value of 8 
decredses. For the good writer, the value of 8 at 
acS is less than 0.07; for the bad writer it is 
less than 0.19. As pointed out at the bottom of 
Section II. it is desirable to have low 8, becuase 
the lower is the value of B. the lower is the 
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complotty of Alqorfthm E. Compared to the MVA, 
Al9orithm E displays much better recognition 
rates, for a given passage and writer. 
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TABLE l 

PERCENTAGE RECOGNITION RATE FUR PASSAGES 

-·--
Unconventional Pa ssage Conventional Passage 

Good Writer Bad Writer Good Writer Bad Writer 

Method Used Letter Word Letter Word Letter Word Letter Word 
and Recog . Recog . Recog. Recog Recog . Reco9. Recog. Reco9. 

Value of d Rate Rate Rate Rate Rate Rate Rate Rate 

HVA d•2 80.97 47.06 72 . 64 34 . 12 84.40 52.94 75 , 55 36 .08 . d• J 86 . 00 5B . 04 72.00 33 . 33 87 .23 60.78 76.46 36.86 . d•4 . . 72.28 34 . l ~ . II 76:83 38.04 

· I . d•5 . . . II II II II II 

Al 9orl thm E d• 2 96 .98 90.98 95 .88 89.80 96.44 . 91.37 95.71 87.45 . d•3 97.44 93 . 33 95.97 87.84 96.72 93.33 94.80 86.67 . d•4 • • 95 .88 87 .84 97 .08 II 95.26 87.84 . . d• 5 . • . M • II 94.98 87.45 
0 I c t i onary 98.17 96 .86 96 . 07 92 .55 99 .91 99 . 61 97 .81 93 . 33 
~ethod 

l 

··I· TABLE 2 

VALUE OF a OBSERVED FOR ALGORITHM E 

Unconventional Conventional 
Value of Pa ss age . Pa ssage 

d 
used . Good Writer Bad Writer Good Writer Bad Writer 

2 0. 1686 0.2318 0. 1012 0.2196 

3 0. 0824 0.2078 0.0628 0.1765 

I 
4 

I 
0.0706 ! 0.1804 0.0471 0. 1726 

5 0.0667 0.1804 0.0471 o. 1686 
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IV. CONCLUDING REMARKS 
It is seen that Algorithm E has a complexity 

~ery much lower than the dictionary algorithm, 
although their performance is nearly the same for 
both the good and the bad writer and for both the 
conventional and the unconventional passages 
written by them. For a given passage, the recog­
nition-rates for the good writer are observed to be 
higherthanforthebadwriter. Thevalues ofa are 
consistently lower for the good writer than for 
the bad writer. Thus the complexity of Algorithm 
Eis lower for the good writer than for the bad 
writer. Munson has corrmented that the human recoq­
n1tion rate of the characters in his database is· 
from 0.5% to 5.0:. This compares well to the 
recognition rate of Algorithm E. 
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HIS:'RAC'!' 

:'hi, paper present, a rramework tor the 
recogn1t1on or repetitive time varying 
signals such as electrocardiograms u,ing 
an expert system approaoh. A system 
called CAl (Causal Arr hythmia Analyzer) is 
being developed to realize this rramework. 
:'he ~AA system includes: 
a) A strat1r1ed knowledge base ror the 
d~scription or the underlvin~ ~ 
lLll.2..l!.~s..t o~ electrophy111ology in the 
he a !" t a II we 11 a, the ob~ e .. ya-bl c .:tliil 
~~ o~ morphology o~ ECG wave 
inputs, where physiological ev~nts are 
p!"oJected into the observable wave-shape 
do~ain or E~Gs. We use a Crame-ba~ 
u~antic net1,1ork with the u:ie o~ explicit 
~~ lulowledgc to describe ca usative 
teopo!"al relation, among under1y1ng events 
that emit observable signals like ECGs, 
and 
b) A control structure ror the recognition 
o~ repetitive time varying signals, whioh 
uses causal knowledge to check causal 
lntegrlty among temporal knowledge units 
<1.~ .. events) and al110 to expect and 
con'ir1 unseen events. This control 
:structure a 1 so u t.111 :u, :11 m 11 a r 1t y llo.lt:1. 
and other org-nizational primitives such 
as~ and part-o~ hierarchies ror its 
attention aechanism inherited rrom the 
previously developed ALVEN (A Lert 
V~Ntricle Wall Hotton Analysis) system 
(:'sotsos 1960). !he CAA system is being 
Lapleaented using a version or PSN 
(Procedural Semantic Networks), a 
~nowledge representation language that has 
been developed at the university or 
!oronto [Levesque, Hylopoulos 1979). 

t.o IN:'IIQDUCTION 

!he aain objective or this study is to 
establish a ~ramework ror the recognition 
o~ tiae warying signals ot a complex 
repetitive nature, such as 
electrocardiograms, using a knowledge 
engineering approach. To this end, an 
expert system called CAA (Causal 
Ar~bytbaia Analyzer) is being developed to 
diagnose rhythm disorders (usually called 
arrnythmias) ln eleotrocardiographic 
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monitoring. We have chosen the arrhythmia 
analysis problem because It 1, a domain 
rich 1n temporal and causal 
interrelationships. The arrhythmia 
recogn1i1on problem 1t~elr deserves 
attention because the overall perrormanoe 
or existing ECG programs is at moat 80S 
reliable tor abnormal ECGa despite ettorta 
since the late 195 0 's ( Hagan 1979), We 
believe that a basic reason ror thi1 
unreliability ia that current aystema lack 
underlying event knowledge to handle the 
complexity inherent in cardiac rhythms, 

To diagnose · rhythm disorders or the 
heart, the events in the underlying 
cardiac conduction system must be exactly 
determined rrom one or more streams ot 
observed bodysurrace ECG signals [general 
rererence, Sharmroth 19·76], The rinal 
objective or arrhythmia interpretation, 
therefore, becomes the recognition or the 
physiological and pathological status or 
the cardiao cond uction sy.st;.e,m, given one 
or more surrace ECG tracings. To 
accomplish thia, unlike other existing or 
proposed ECG systems, our system utilizes 
knowledge or the causal structure or 
underlying physiological events in the 
heart (what we call "u.nd,erlying event 
knowledge• ) . Baaed on this knowledge, the 
system tries to determine the most likely 
set (or sets) or underlying events that 
explain the input wave signals. For this 
purpose, the system introduoes and uses 
uii~ 1..1.n..lu!. extensively i ,n t ,he underlying 
event knowledge base where various oauaal 
relailons and temporal constraints are 
represented. 

The causal links in the CAA system play 
an essential role in characterizing a 
complex event concept aggregated rrom 
other more baaic (component) concepts by 
giving causal and temporal relationships 
among the component events. Hence, their 
role is analogous to that or structural 
descriptions in a composite structure 
concept in the spatial domain, which 
relate the component objects making up the 
whole structure, Thus, using causal links 
in an event recognition problem, an 
aggregated event can be ~eoognized not 
only by its component events, but also by 
taking into oona1derat1on the int1grity 
conditions implied by the causal relations 
that. the component events participate in, 



There~ore, this study pursues (1) an 
adequate representation ror causal 
knowledge, and also (2) a aethod wbioh 
errectlYely uses causality during the 
recognltion process, Hore apecirlcally, 
our goal ia to investigate the 
representation or causalities in a rioh 
teaporal doaain and to determine a control 
structure that uses causal and temporal 
knowledge in an integrated raahion ror the 
ezpectation and the oonrirmation or 
roregoing or rollowing unseen events in 
tiae. 

Our representational approach to the 
aboYe goal ia to conatruot a atratiried 
knowledge base that contains knowledge 
about tbe waveroraa or surrace ECG 
signals, the physiology or the heart that 
explains abnormalities in evenia and 
causalities, and the relationships that 
may ezist between surraoe ECO signals and 
abnoraalities in the heart. A rrame - based 
semantic net~ork representation is used to 
describe the CAA knowledge base, The KB 
evolved rrom the previously developed 
ALVEN system. 

As for the control structure, ALVEN'a 
basic control structure is also used and 
extended to include the mechanisms which 
rac111tate; (1) the projection rrom 
underlying events to observable shapes and 
Yice versa, (2) the ezpectation and the 
conriraation or unseen events rrom known 
events using causal links, and (3) the 
recognition or repetitive event sequence~ 
with beat-to-beat relationships. 

From the Al viewpoint, thererore, the 
CAA system is considered as an empirical 
semantic network system ror event sequence 
recognition, which includes (1) the 
explicit description and use or causative 
temporal knowledge, and (2) the use or a 
strattried knowledge base structure with 
inter-related distinct KBa. 

A prototype CAA system is being 
iapleaented using a version c~ PSN 
(Procedural Semantic Networks), a 
knowledge representation language that has 
been developed at the University or 
~oronto [Levesque & Hylopoulos 19~9], 
PSN/2 (PSN level 2) now includes 
s1milarlity links and IS-A/PART-OF 
hierarchies in addition to the basic 
primitives such as classes, ,metaclasses, 
relations, runctions, and programs 
[Schneider 19~6], [Kramer 1960). 

2 • .:h..l:. Domain lL! Electroca..e.diologx 

Abnormalities in heart runction can be 
viewed as characteristic deviations in 
observable variables such a, blood 
pre,,ure curves and electrocardiograms 
(ECGs). The ECG is the record or 
variation, in electrical potential 
generated by the heart muscle and 
projected onto the bodysurrace. 

7he ECG tracing la typically oompo5ed 
o~ a aeries or waves designated as the P, 

Q, R, ~. and T waves, and a ,oer1es or 
segmenta and intervals between theae 
waves. The Q, Rand S wavea are orten 
rererred to as a group and oalled the QRS 
complex, Fig-1 showa a typioal standard 
series or wavea ror one oyole or heart 
beat. 

P-R 

P-R 
interval 

R 

S-T 

S-T 
---rii te rval 

Fig-1 Typical ECO Treeing ror One Cardts9 
Cycle 

The underlying phyaiologioal origin or 
the ECG ia the oardiao oonduotion syatem 
that consists or the sinoatrial (S-4) 
node, the atria, the atrloventrioular 
(A-V) node, the bundle or Hia, the right 
and the lert bundle branches and the 
ventricular muaole, where the oyolio 
pacemaking impulse normally originates in 
the S-A node and ends up at lhe ventricles 
a3 seen in Fig-2, 

Atrial 

S· A node 

A·V noJc 

N'.)~LAJ. mNIXJCTJON SEQUENCE 

S-A node =$>Atria:!/ A-Y node Vcntri c1es 
~ -) 1r 

B und 1 e of II is - B.,.1.._m ... d ..... 1.,.(:__...B..,r;.urn,..c .. ·h..,,c..,s 

,Fig-2 The Cardiac Conduction Sy~tem 

The P wave and the QRS complex 
represent the ~l.AcJ...~~1.1.sul phases (1,A,, 
the initiation or muaoular oontraotion) or 
heart muscle cells in tho atria and the 
ventriclea, renpeotively, while the i wave 
representa the DLllQ.l..a.rizatton pha3e (1,A,, 



t~e recovery or the cell to 1ta resting 
state) in the ventricles. No eleotrical 
expression la usually seen rroa the 
bodyaurrace ~or the ~ct1vit1ea or the S-A 
node, the A-Y node, the bundle or His and 
the bundle branches. 

Arrhythaias (disorders or the cardiac 
conduction sequence or rhythm or cardiac 
events) are caused by irreguleritiea in 
l•pulae rormation or conduction in the 
cardiac conduction system. The dirrioulty 
in the computerized detection and 
elucidation or aoat arrhythmias in ECOa 
lies basically in the wave ident1~1cation 
problem. 

Some aajor complications or our 
recognition problem may be listed as 
follows, 
(1) soma kinda or signal ahapea are not 
always 1danti~labla due to low amplitude, 
overlapping, derormation, nolae, etc., 
1·~·• the shape ltaelr or a wave is not 
au~ricient to ldentlry it, rather the 
context among other waves la important, 
(2) shape abnormalities and event 
abnormalities do not uniquely correspond 
with each other, rather they represent a 
many to many mapping across the two 
domains; and 
(3) tiee varying repetitive behaviors . or 
the modal such as progreaalve shortening 
o~ even~ durations must be accounted ror 
in an extended temporal context. 

As will be 1een, the rtrat 11 handled 
by the use or expectation process about 
event locations that relies on causal 
link, between events; the segmentation or 
the system's knowledge base into the 
underlying event KB and the observable 
wave-shape lB alleviates the second 
aappina problem; the reour~1ve class 
de~1nitlons with causal links address the 
third co~plication. 

3.1 ~ 51..f. QQJn.1.1.o. Knowledge 
To represent the diagnostic knowledge 

o~ electrocardiog~aphy, several distinct 
types or domain knowledge oan be 

,discerned: 
a) knowledge about the physiology that 

lexplaina abnormalities in the heart 
(underlying event knowledge), 
bl knowledge about the rorm or aurraoe ECG 
slgnals (observable shape knowledge), and 
cl knowledge about human and machine 
intervention, such as additional 
measurements and drug administration 
(strategic knowledge). 

\ Our representational approach to the 
problem o~ building such a system as CAA 
ls to construct a stratified knowledge 
base which oontaina an independent KB ror , 
each type or domain knowledge, with the 
rel a tionships between concepts across 
dl~~erant KBa. 

Among the lBa in 
physiological KB 

such 
1a 

a system, t ·he 
particularly 

notewvrthy e1nce any abnormality in the 
heart muet be explained as a c~usal 
phenomenon at the level or the oardiao 
conduction ayatam, alt~oµgh moat or the 
conduction ayatem•a behavior is not 
observable in the ECG. Thia phyaiological 
KB playa the role or deeoribing not only 
normal and abnormal ~v~nta in the heart, 
(eaoh or which rapreaenta the activity or 
a apecirio part or the heart~, but aleo 
the interrelation~hipa among thoae eventa 
such as cauaal dapendenoiea and temporal 
oonatrainta. Examining the reaturea or 
the physiological K~, two oauaal aapeota 
or the proposed ayatem have been round to 
be or importance: 
(1) tbe representation or oauaal linka 
among aventa to naturally represent 
complex causal interrelationahipa among 
physiological events, and 
(2) the estimation or non-observable event 
parameters such as locations and durations 
by using the context in whioh they can be 
related to observable event parameters 
through causal linka. 

3.2 Element; Q! ~ Reoce,eotation 
The representation used in the CAA 

system is a rrame-based semantic network 
representation. Thua, the knowledge unita 
derined in rramea are called cla,se; and 
used to abstract various oonoapta at each 
knowledge domain, ~-£•,~CELL-CYCLE 
or each portion or the heart muacle, .a.lA.l..a. 
BEA Ting, and ~ BEAT-PATTE~N or 
consecutive heart b~ata, 

Each instantiation or the above claaa 
concepts generates a cla;;-tokon or aimply 
~l thus, a token "norm~l-beat or 
John• ia an 1n;tango g__t the olaaa 
NORMAL-BEAT. 

The above inatanoe-or ra~ation ia 
extended to a relation between a olaaa and 
a meta-cla;;. For example, any 
atatistioal data about olaaa BEAT itaelr 
cannot be the attributes or any apeoir1c 
beat inatanoe. Thia is a rather important 
distinction that moat medical expert 
ayatam do not make: a,tatiatioal 
inrormation, ao commonly used in medical 
diagnoaia ayatema, ahould be represented 
as attributes. or the class rather than or 
inetanoaa or the olaaa. Furthermore, this 
separation can be viewed aa a derault 
meohaniam. In disease clasaea ror which 
insurrioient inrormation is known to 
diagnose them categorically (Szolovitz & 
Pauker 1978), atatiatical inrormation are 
usually contained either in the der1nition 
or the claae, or with respect to a 
particular patient oaae. In auch caeea, 
however, metaclasaea may be derinad and 
used as the derault reasoning mechanism. 

A claaa-rrame conaista or three kinda 
or descriptors: the component descriptor, 
the organizational descriptor, and the 
link descriptor. The component deaoriptor 
is made up or alota rilled with oomponent 
(part) claaaea. The organizational 

]J 



~escriptor 1nclJd~a ~ and 1.n.tlc~:::..!l.! 
phrases, which indicate the corresponding 
parental concepts in these respective 
organi~ational relations. The link 
descriptor includes two types or link 
in~ormation: ,1m1lac1ty ~ and cau~al 
.l..J..:llu.. Similarity links are associated 
with compon e nt classes and used as an ald 
in activating alternative parallel 
hypotheses when exceptions occur in the 
recognltlon o~ these components (Tsotaos 
1981]. 

3.3 Reore,enta.t...1.o..n .QI. cau,al 1.1..n..ls.-'. 
Rieger's CSA (C~mmon Sense Algorithm) 

system (Rieger and Grinaberg 1976 & 1977) 
and Patil's ABEL system (Patil et al 1961] 
are perhaps the beat examples or current 
causal representations. Rieger and 
G~inaberg introduced several types or 
causal links ~or the Mechanism Lab in the 
Com~on Sense Algorithm system, and also 
distinguished two types or causal flows: 
continuou, cau,altty and 2.n..!:..!!.!Uu.. 
~1.l..1...tl'..• Although their syntactic event 
classi~ication la not applicable to our 
system, we adopted the ideas or continuous 
and oneshot causal ~low~, and the idea or 
eating condition~. Patil and othera 
introduced a multi-level causal network to 
explain aggregated structures in diseases 
such as diarrhea. Although the ABEL 
system explains the aggregating process 
~rom basic physiological causal links to 
mo~e global causal links between disorder 
events within one disease, it does not 
seem to provide the causal links 
classi~ied by the types or in~luence and 
temporality . These latter concepts are 
essential to describe time varying 
phenomena aa aeen in the electrophysiology 
o~ the cardiac conduction system. 

3.3.1 Features in a Causal Link 
We regard a causal link as a 

representation or causality in which we 
may observe some ~low or in~luence between 
two distinguishable events. We may 
characterize a causal link at least by the 
rollowing two reatures : 
(1) the ext,tential dependency or an 
e~~ect event on its cause event(s), ~.~ •• 
the reature that no e~rect events can 
exist or happen without cause events, and 
(2) the temporal con,tra1nt3 between the 
cause events and the errect events, 1.~ .• 
the 'eature that the rormer must preceed 
the latter in time, with a possible delay 
tlae interval. 

We should be aware that while a causal 
link implicitly includes a temporal 
constraint, the existence or a temporal. 
constraint does not necessarily mean a 
cause-e'rect relationship between two 
events, but it may strongly suggest the 
existence o~ a certain underlying chain or 
causal links. 

As well as temporal constraints, there 
could be other p,,oc1ated con~traint3 with 

a cau~al link. Hoat typical oon~trdlnL~ 
or thia kind are boundary conditlona on 
any state deaoribing variable such ae 
temperature, preaaure or the potential at 
the boundary time point between two 
consecutive eventa • 

3.3.2 Typea or Cauaal Llnka 
Cauaal linka or the CAA syatem are 

olassiried aooording to (1) typea or 
1nrluenoe, and (2) types or temporal 
oonstrainta. The type or 1nr1uence or a 
causal link muat be derined by the role or 
the link, the type or dependency, and the 
rolea or participating ovente suoh aa 
cause, erreot, and condition. The type or 
temporal constrainta in a causal link ia 
usually understood implicitly rrom the 
meaning or the link, which lmpliea the 
temporal relationships between the 
participating events in the link. In 
addition, asaociated oonstrainta on state 
variables may be attached to these cauaal 
links. 

Some uaerul one - shot type oaueal link• 
in CAA are the rollowing: 
(1) TRANSFER, TRANSITION -- oaueal links 
which describe atate (or phaae) ohange 
rrom the preceedlng event to the rollowing 
event in time involving a aingle subject; 
TRANSFER indicates the subject normally 
completes the preceeding state (event) and 
changes into the rollowing state; and 
TRANSITION means the subject ia roroed to 
terminate the current state and tranaitlon 
into a new atate. 
(2) INITIATION, INTERHUPT -- cauaal linka 
in which a cauaative event or one aubJeot 
initiatea or interrupta an erreot event or 
another eubject; In INITIATION, a 
causative atarting (or ending) event or 
one subject triggera a new event or 
another aubject, and in INTERRUPT, a 
causative event or one subject interrupta 
(and rorces to terminate) an event or 
another aubJect and make it transition to 
a new state. 

Note that ainoe the above oauaal links 
are one-shot type, the causal rlow oooura 
only once at the starting (or ending) time 
or the oausative event to cease/start the 
other events. 

3.4 Example3 o..r llo.llu11n ~nowledge 
.ll..tl..cJ:. ;,e o t a t 1 o n 

The rirst example ia a portion or the 
IS-A hierarchy rrom the wave - shape KB or 
CAA, to ahow how a generic (shape) oonoept 
can be specialized into a speoiric concept 
along this hierarchy. 

7': 



.:-

Et:G_SIUPE 
J,:' IS. 

,j' \\ 
HAJOR_ShAPE HINOR SHAPE 

Ii r- rr -
QIS,_LI~E_S~&PE ISO~ATED_HINOR SHAPE 

II ~,P_LIKE SljAPE 
1'"'-ISOL_NOJSE_HINOR 

NOI3E_k&JOR cdNSECUTIVE_HINOR_SHAPE 
~~FLUTTER SHAPE 

~FIBRILLATION_SHAPE 
CONSEC_NOISE_HINOR 

_pRsT_LllE_SHAPE 

WIDE_Q~SrAL[;f ~~ \~ENT_T 

SLlH_Q,-~Hf.Al~· INON i~ 8_ R;---: POSITIVE '!' 
rt " ,, T ~--1 -

•1: ..._ OR;~('' . - -·; ~l!IVERTED_T 

,
1
. / .r . ·. ABNORHAL_T 

1.:- . et C. 

5"."U1DARD_QRSi_SIIAP£ ~ ·, ,, ,,_\ 
WIDE_BIZARRE_ORS_SHAPE ~\ 

TALL_WIDE_BIZARRE_QRS_SHAPE 
etc. · 

P_LIKE_SHA~ 
-~;'111r 1i . . 

&N:'EGRADE_P ,t Bf!.OAD~P 1, ~ HIGH p . I' ;, - . -
RE:ROGRADE_l> N~RRO P ~ HED p 

BIPH&SlC_P \ . LOW=P 

S7&ND&RD_P _SHAPE .: ~ 
BROAD_ HI0H_P_SHAP£ -~ , 

~ETROGRADE_NARROW_P_SHAPE 
etc. 

An exaaple using the part-or structure 
or concept, in the phy,iological domain 
rollov,. :he underlying event KB cont~in, 
the rolloving generic concept, each or 
vhicb corre,ponds to each de,cription 
level (part level) or the p~ysiological 
knowledge. The~e concept, are: 
(1) the CELL_ PHASE generic concept 
de3cribes each pha3e or ce~l activity and 
13 temporally a part or a CELL CYCLE 
concept; - · 
(2) the CELL_CYCLE generic concept 
indicate3 the cell activity or a ,mall 
portion or a part or the heart and become, 
a part or an ACTIVI,Y . concept; 
{))"."he ACTIVl"."Y generic concept 
the activity or one part or the 
a, the atriu• and tbe A-V node 
par,t in a BEA T concept; 

rtipre11ents 
heart such 
and takes 

7S 

(4) the ~EAT generic concept 
single conduction sequence 
and 111 a component Qr a 
concept; 

de11cribes & 

or the heart 
BUT_PATTERN 

(5) the BEAT_PATTERN generic concept 
de11or1be11 the ba11io 11egm.ent or a cardiac 
rhythm and 111 a part or a PATTERN_SERIES 
concept; and 
(6) the PATTERN_SERIES concept deacribe1 a 
periodic aeri~11 or rhythm aegment1 
(BEAT_PATTERN11). 

Using 11pec1al1zed concept11 rro~ the 
above generic cqnc~pt11, ve are able to 
repre11ent any speciric phy111ologioal event 
in our cla11s-rrame · rormalism. For 
example, the following ola1111 derinition 
repre11ent11 a normal conduction z,equenoe in 
the heart. (The dot "·" notation in a 
slot mean, the part concept 11pec1r1cat1on 
as used in ALVEN.) 

~lLll. SINUS PACING BEAT 
l!llh - -
~n..e..n..u 

sano de -cycle: 
SAN_HATUR~_CE LL_ CYCLE; 

jltri um -activity: 
A TR_M.A TUR E_FOR WAR D_A C'i'l V ITY i 

avnode-activity: 
AVN_MATURE_fORWARD_ACTJVITY; 

lv-activity: 
LV_HATURE_FORWARD_ACTIVITY1 

av-interval:· ........ , ... ; 
/ 1 other component derinition11 

rollow here •••••• : •••••••• •; 

UJ.!.;, a 1 - 11 o k;, 
sanode-atrium - propag~t~on: INITIATION 

tl.!.L: a t 1 v s: - tlS1.1..o. &.:. umt. : 
sancde-cycle.depc+arization; 

;,tartio&-s:vs:ot: 
atr1um-activity.upper-oe~l-oyole. 
depolarization;; 

atri um -avnode-propagation: INITIATION 
cav~at1vs:-s:nd1ng ~JU.~: 
atrium-activ1ty;l6~er-oell-oyole. 
depolarization; 

;,tactin-s:vent: 
avnode-activity.upp~r-oell-oycle. 
depolarization;; 

avnode-lv-propagation: INITIATION 
/ 1 11imilar to the above ,1;; 

The above cau,al links give the 
causative sequence or impulse propagation, 
where the depolarization phase or one part 
or the heart triggers the depolarization 
phase or the next part. 

The cla1111 name11 u11ed in t~e 11lot11 or 
the above cla1111 rrame muat be derined 
independently elaewhere, 11uob a11, 



~ SlN_HlTURE_FORWlRD_CELL_CYCLE 
lt'..ll.h 
co~oonont3 

depolarisation : 
SlN_HATURE_DEPOL_CELL_PHASE; 

under -re polarization: 
SAN_HATURE_UNDER_REP_CELL_PHASE; 

partial-repolarization: 
SlN_HATURE_PlRT_REP_CELL_PHASE; 

coaplete-repolarization: 
SlN_HATURE_~OHP_REP_CELL_PHASE; 

cau3a1-11nks 
trans~er-rroa-depol-to-repol: TRANSFER 
ending-event: depolarization; 
,tarting-event: under-repolarization; 

transrer-rrom-under-repol-to-part-repol: 
TRANSFER 

!• similar to the above •1 
transrer-~rom-part-repol-to-comp-repol: 
TRANSFER 

/& similar to the above•!;; 

In the above 
subject (SAN: 
state ~rom one 
TRANSFER links. 

causal links, a single 
S-A node) is changing its 
phase to another using 

The above derinition also shows a 
CELL CYCLE consists or rour kinds or 
~ELL:PHASEs: a depolarization cell-phase, 
an under repol1zation cell-phase, a 
partial repolarization cell-phase, and a 
complete repolization cell-phase. 

Based on the ALVEN's control structure 
1n general, the control structure or the 
~AA system has been extended and developed 
ror three purposes: 
(1) to exploit causal knowledge about 
events, 
(2) to provide means or communication 
across distinct KBs, and 
()) to recognize repetitive event 
sequences and to detect beat to beat 
relationships. 

•.1 Expectation !.o.O. Conr1rmat1on through 
~au,al ~ 

The task ve are considering is the 
recognition or complex time-varying 
events. The role or causal relationships 
in such events is to provide local context 
ror their components or constituents, 
i.~ .• it is to produce expectation, o~ the 
properties or this aggregated event 
backward or rorward in time. The system , 
tbererore, must look ahead or look back 
ror these causally linked component 
events, starting vith one or more 
already-identiried component events. 
Thus, causal links are used to locate the 
temporal positions or •to-be-observed" 
events. That is to say, i~ there are 
events that are causally linked, we can 

generate the ~b.AJL\..A .l.Jl.01tlon4 or 
intermediate and terminal component eventa 
by lookirig rorward or backward through 
oauaal links rrom the looattona or known 
eventa. 

In the above prooeaa the linked 
component eventa aometimes, however, are 
not obaervable aa waverorms in the input 
atream~ In auoh a oaae, the ayatem vill 
aupply these non-observable variable• 
(auch aa event durationa) with 
appropriately eatimated values uaing the 
local context or the event. For th11 
purpoae, the statiatioal atandard valuea 
must be derined through the metaolaae or 
each (component) event. Since the 
metaolasa derinea the properties or the 
clasa concept itaelr auoh aa statiatioal 
and derault values, the system rerera to 
this kind or metaclaas knowledge when it 

racea lack or inrormation in the 
recognition proceaa. 

On the other hand, the temporal 
locations and the ahapea or the expected 
events must be conrirmed ir these eventa 
have observable counterparts in the ahapa 
domairi. This la the .l:JUl!.ima.1.1.9.n Q~~ 
rrom the event domain to the ahape 
(signal) domain. 

q.2 Recognition ~CJ2..4 - Initial Stage 
Signal recognition starts with picking 

up some prominent shapes in an input 
signal stream, which wa name ~C111&. 
~~. Anchoring shapes can be easily 
round in our ECG domain by rinding the 
steepest alopea in the aignal, namely QRS 
complexes. In general, the anchoring 
shapes ror a apecirio aignal recognition 
problem muat be olaas1r1ed and described, 
For this purpose, we have derined the 
wave-shape KB which oontaina various 
morphologies or input waverorma together 
wi~h their appropriate components and 
generalizations. As seen in the rirst 
example or section 3,3, the wave -s hape KB 
derines class MAJOR_SHAPE aa the anchoring 
shape; thus, it becomes the IS-A parent 
class or shape class QRST_ LIKE_SHAPE and 
the IS-A anoeater olaas or olaaa 
WIDE_ BIZARRE_QRS_SHAPE. In this raahion, 
in the wave-ahape KB, knowledge classes 
are organized via the PART - OF and IS-A 
relations. 

We will examine the prooeas or this 

]( 

recognition in more detail in the 
ro116wing steps. 

-Initial Shape Analysis 
When a aeries or aignal tokens are 

given to the recognition system, the 
system r1rat triea to rind an anchoring 
shape to siart the recognition with. 
Suppose we have chosen QRST_LIKE_SHAPE ror 
the anchoring shape. Aa the rirat atep, 
the aystem ploka up a oerta1n starting aet 
or signal tokens. Gradually posing 
constraints to the generic QRST_ LIKE_S HAPE 
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cl•aa. the ayate• tries to 1dent,ry the 
token aet to be a specialized QRST complex 
wave shapea such •• STANDARD_Q~ST_SHiPE 
and WIDE_NON_BIZARRE_QRST_SHAPE, Th.* 
~oc,.u and ot\ange or attention m,echaniaa 'or 
the ALVEN aystea is used to rind the b~at 
aatohl~g shape hypotbesea ~o ~he anqhoring 
ahape in tbe signal domain (Tsotaoa 1981), 

• Association Procesa rroa the Obaervable 
Wave-shape 18 to tbe Underlying Event KB 

Once . the shape hypotheses are reached 
(1pecialized QRST complex waves), the 
syatea aust loo~ !or the source events or 
these shapes, wbicb are non-observable in 
the 11gnal doaain, T~1a ~nderlying event 
seeking proceaa associatea each shape 
concept with its several underly1~g event 
classes. Tbis o,~oc1at1on across the two 
domains can b~ real~zed 1n the rollowing 
~a:,hlon. Suppose we have a shape 
hypothesis with a sta ndard QJS duration 
such as STANDARD QRST SHAPE. Since ·w• 
know either a noi'-•i°l lert ''ventricular (LV} 
activity, a self decay LV activity 
(escape), or a sel! decay in . the buridle or 
Hts, may generate the normal QRS shape and 
du~atlon, we de~ine tbe association path 
a, 

STlNDlRD_QRS,_SHlPE 
:--> 'LY_HA7URE_F6RWARD_ACTIVITY 
:--> LV_hlTURE_FOCUS_UPLV_ACTIVITY 
:--> LV_HATURE_COHPLETE_DECAY_ACTIVITY 

Sl•ilarly, 1r the shape has a wide . and 
non-bizarre QRS complex, it will be 
aa,oc iat ed witt\ 

LV_P REH 1 i'UR E_FOR W_A RD_A Ci I VI TY, and 
LV_PREH.lTURE_Focus_UPLV_ACTIVITY. 

The basic 1dea or this 
to maintain the list or 
project this recognized 
counterpart in the signal 

asaoctation is 
the events which 

shape as the 
doma.1n. 

-Exploring Probable Global Eventa rrom a 
Local Eve~t 

A~ter associations have activated 
physlologtcal event hypotheses, each event 
hypothesis tries to rt nd - a set or global 
event classes each or which possesses the 
original event hypothesis as a component 
eve nt. We call this process the 
LUl.loc.Al.lo.n. or global events. These 
explored global events such as various 
8EA7 event:, are the events to be 
hypothesized next. 

One example · is the exploration 
~rom LV_HATURE_FORWARD_ACTIVITY 
to (I) S1N U$_PA(:!NG_BEAT (normal) 

(2) PH.EMATURE_A,RIAL_BEA, (atrial 
~OCUS) 

(3) AV_NODAL_BEA7 (A-V nodal roous) 

- Expectation and Conrirmation Processes 
Using Causal Links 

Now that we have explored probable BEAT 

eve~ts, ror each BEAT event, we muat try 
to check the credib\~ity or these event, 
by instantiating their component eventa 
(mainly ACT~VITY events ror parta of the 
hear,t}. Thia instantiation starts with 
the known eventa whloh were associated 
with the establis~ed shape hypotheaea 
sl~oe the starting and the ending time, 
oan be determined rrom those or the ahape 
hypotheses, Sinoe oauaal linka include 
temporal conatrainta between causally 
related component eventa, tbe ayatem oan 
estimate the timea ot ,to-be-observed• 
eventa r,rom tile known eventa using theae 
oauaal rel,~ionahipa:· ¥e Jasume that 
average duratlona or eventa a~e given 
through their metaclaaaea; therefore, the 
system can eaaily expect the probable 
temporal looations or all the events whioh 
are causally related to the ~nown eventa. 
We 9all this prooeas the expeotatioQ 
process. 

The locations and the shapes or the 
expected events must be · oonfirmed if these 
events have observable counterparts in the 
signal (shape) domain, Thia oonricmatioQ 
~~ rrom the event domain to the 
signal shape domain is similar to t~e 
previous association .process whioh worka 
in the opposite dir~ction. Ir one (or 
more) or the oonrirmatlon processes raila, 
the corresponding global hypothesis raile 
and must be withdrawn. ' · · 

In ECO recognition, the location and 
the shape or the p ' wave mus,t; be expected 
and conr1rmed, both or whioh are very 
dirrerent according to the explored BEAT 
hypotheses. 

-Final Beat Hypotheses at the Initiation 
Stage 

We have a aet or eligible BEAT 
hypotheses at the end or the initiation 
stage. each . or which has passed the 
criteria on the matching anl integrity 
scores (certainty ractor) about each BEAT 
cl as.a. 

4 • 3 Re Pet 1 t 1 v c: 1!..t.u B.~s.n.1.U!ll llAu 
To diagnose ' a arrhythmia, its 

repetitive behavior in a seriei or BEATs 
must be recursively derined. In the 
rollowing simpiiried example, a repetitive 
pattern or (imaginary) SLOW_BEATs is 
derined in three class rramea, 

Note that the recursion is done through 
claas SLOW_BEAT_CYCLES, which is the IS-A 
parent or t;he last t~o repetition classes. 

~ SLOW_BEAT_PATTERN 
l!.ll.b. 

~ponent;, 
initial-beat: NORMAL_SINUS_BEAT; 
)eat-cycles: SL OW _BEAT_CYCLES; 
r1nal-beat: NORHAL_SINUS_BE~T; 

.QlU1 
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~ SLOW_BE1T_REPET1TI0N 
~ SLOW_BEiT_CtCLES 

tl.Ul. 
~a.uu 
~1rst-beat: SLOW_BEAT; 
successive-beat: SLOW_BEAT_CYCLES; 

.s:..n.d. 

~~~ SLOW_B£1T_REPETITION_UNIT 
~ SLOW_B£1T_CYCLES 

l!.ll.b. 
component;, 
~1rst-beat: SLOW_BEAT; 

.s:..n.d. 

Once beat patterns have been derined in 
the above rashion, the reoognition starts 
with one o~ the beat hypotheses 
established at the previous initiation 
stage. Examining this rirst hypothesis, 
the system hypothesizes several beat 
pattern classes that possess the same beat 
class in their derinitions. While the 
systea recursively generates successive 
beat classes, the recognition proceeds one 
beat to another along the time axis 
repeating the expectation and the 
con~irmation processes. In this 
recognition, similarity links are 
essential in the sense that the similarity 
links between repetitive beat patterns 
enable the hypothesis competition and 
cooperation mechanism to work along with 
tne progress o~ time. Also, the causal 
links between consecutive BEAT classes 
enable the system to veriry the causal 
relationships among corresponding 
components on a beat-to-beat basis and 
also estimate the periodioity or a series 
o~ beats as the whole. 

The ~inal arrhythmia interpretation 
hypotheses will be determined as those 
beat patterns that passed the c~iterion on 
the overall aatching scores calculated in 
the above process. 

5.0 CONCLUSIONS 

The basic design or the CAA system has 
been completed and its implementation is 
underway using the PSN/2 language, We 
~aye shown that the inclusion or causal 
links in a rrame-based semantic network, 
along witb the organizational primitives 
IS-A and PART-OF, has allowed us to tackle 
the problea o~ reconstructing complex 
electrophysiological event sequences rrom 
gross signal characteristics. This is 
accomplished by derining the semantics or 
causality and noting that it is these 
semantics that can be used ~or the 
generation or expected signal 
characteristics and other associated 
events. Hore generally, the inclusion or 
causal knowledge provides a context ror 
the recognition and reconstruction of 
complex event sequences. 
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Abstract 

A \ineaatic chain with redundant degree• of 
freedom and joint limit• is to be adjusted to 
bring It• distal end to s specified position. For 
eiuaple, the distal end of • human arm or robot 
manipulator la to be positioned. An algorithm 
which uses perfect descriptions of reach, 
(workspaces), ts presented, and shown to be 
correct. The constraint that the reach 
descrlptlona be perfect la then relaxed, and the 
algorltha 1• seen to work for a certain class of 
conservative approximation&. 

1, Introduction 

A chain la a sequence of rigid links, connected by 
Joints. One end of a chain is designated the 
proximal end ·. The proximal · end of the proximal 
link. ts connected, by a joint, to a reference link 
fixed In a world coordinate system. The pedestal 
of a manipulator ts an example of a reference 
link, The other end of the chain, called the 
distal end, ls free to move in space. In thie 
paper we conaider the problem of positioning the 
distal end of a chain, Cht. 

One .application ta in graphic muJelllng und 
evaluation of human environments, such aa 
worlr.stations or cockpits. A similar problem 
arlsea in the control of robot manipulators. In 
this case, however, the problem Is usually to 
achieve a apeclfted position and orientation for 
the distal link, Human b~lngs and other chordates 
auat also solve thla problem repeatedly in their 
normal activities. 

The d .. 11r,,cs of freedom of a chain corret1pond to u 
act of Independent varlublt!s dcMcrlbtnc the ranges 
of aotlon permitted by the joints. The rnnge of 
v.slue-s which may bl! taken on by ea.ch joint 
variablo, l:i usually limited. "Allowable" values 
for joint variables and "allowable" cont!gurat Ions 
are those which do not violate these limits. 
Independence of joint variables Implies that the 
joint limits for one variable do not . Jepend on the 
value of any other. 

~~~~~~~~~-~----------------------------
Thia worlr. wa1 supported In part by NSF grant 
number HCS-078-07466. 
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Definition: The workapace of a chain, Chi, 11 the 
set of all points in space which may be reached by 
the distal end. 

The dlmenaionaltty of the workspace depends on the 
number of joint variablea of the chain, and the 
relationship between eucceslve joints. lf Chi haa 
n degrees of freedom, its workspace la an object 
with dimensionality no greater than n. When the 
number of degrees of freedom la the same aa the 
dimensionality of the workspace, the chain la 
non-redundant. 

In the non-redundant caae, there are only a small 
number of configurations of the chain which will 
position the distal terminal at any point in the 
workspace, For a particular point, these 
configurations may be obtained by solving a ayetem 
ot n equations in n unknowns•, (n<•3), or by 
application · of fundamental geometric principle, 
(7,8). Since the algebraic and geometric 
procedures for obtaining values for joint 
variables do not account for joint limits, it iuy 
be necessary to discard configuration• which era 
not allowable. By definition, the workspace 1• 
the set of points which can be reached by at least 
one allowable configuration. 

If the number of degreea of freedom of a chain 11 
greater than the dimensionality of lt1 workapace, 
the chain is redundant, Thia la always the caae 
when there are more than three degrees of freedom, 
alnce the workspace la confined to physical epace, 
A redundant chain may reach moat pointa in lta 
workapace with any of an uncountable number of 
configurations. Thia la easy to aee, since • 
t1mall adjustment to one joint variable may usually 
be compensated for by the others. 

Redundant chains are of practical lntere1t for 
aevoral r~aaon1. External constraints, such ae 
the ovoidance of obstacles, mny disallow tho fow 
configurations In which u non-redundant 
manipulator can reach a particular point. Also, 
redundancy allows for a small change to be made In 
the positon of the distal terminal by comparably 
small changes In the chain degree• of fre~dom. 
Thie la not necessarily the case for a 

• Typically, the equations relate the coordinate, 
of the distal end with the joint variables, which 
are unknown. 
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noo•reJunJant chain wlth joint limits. 

Il. Contla11rlnB Redundant Chalna 

Ct,ren a chaln with n 
1n1t1al conflguratlon, 
aade to each degree 
po11tlon the d11tal 
poeitlont 

degree• of freedom and lta 
what adjuetmente ehould be 

of freedom in order to 
end ln a epeclfied goal 

There are three equality conatrainte on thie 
ayatea. arialn& from the triple of coordlnatee 
uaed to define the goal poeltion. I~ n. 'the 
n.uaber of degreu of freedom of the manipulator, 
le greater then three, the eye tea 11 
underconatralned, 

One approach to this proble• le to attempt to find 
a eolutlon u11ng only three of then degree• of 
freedoa. A generallzatlon of this approach, 
auggeated by \./hltney I 18] .1• to manufacture n-3 
additional equality constraints, to obtain a 
perfectly con1tralned ·1y1tem. For example. the 
poaltlon of one Joint, relative to another, might 
be apeclfled. However, the imposition of 
per .. nent constraint• llalte the capabtlltlea of 
the 11,o1ntpulator, essentially defeating the purpoae 
of redundancy. 

Another method 1• to Introduce an optimization 
crlterloo, and to formulate the problem aa a 
constrained optimization problem [I,~). Thia 
problem ha• three non-linear equality constraints 
and 2n linear inequality conatralnta, arialng from 
u·pper and lower limlt1 on each of the n degrees of 
freedoa. lf jolnt-ltmtt constraints are Ignored, 
It 11 posalble to attack the problem with the 
a.=thod of Lagraage Multlpliera (18). This metho'd 
produ·ce1 a perfectly coastralned system of 
equ~tlon•, whlch, In general, must be solved 
nulll<!rlcal 17, 1t 11 then neceaaary to guarantee 
that the ltaratlve rroce1• converge• to a po1ltlon 
••tlafylng the jolnt lialt conatralnt1. One 
posslbla aethod of dolng thla ls by uslng a 
penalty func:tlon, which lncrease1 the value of the 
objective function a, joint variable values 

•. appr~ch their llalt (4). 

We propoae a different approach, whlch uses 
lnfors.ttlon about the workapace of the · chaln and 
,o_ of tu 1ubchalna. lt wlll be as11.umed 
lnlttally that perfect descriptions of these 
worksp•cea are available. The Implications of 
ualng le•• than perfect descriptions will be 
e1<.1alned subsequently. 

' I I I. An A.lgorltha for Adjusting Redundant Chains 

let ua lapoae a linear ordering on the joint 
variable• of the manipulator, and label thee q(l] 
through q(n). For tlmpllclty, let us suppose that 

, each Joint has one degree of freedom, and number 
thea froa the aoat proximal, to the moat distal. 
ln thl• caae we can label each joint I with the 
name of 1ta joint variable, q[I). For 
consiatency, we label the distal terminal q[l+l). 

Oo 

An exJmple ta shown in flsure I, 

·-------------..------------
Chi1 

Figure 

We will call the chain Chi I 1 J, The dl'stal 
subchain beginning with joint q[2], and extending 
to the distal end ls called Ch1(2), The next one, 
beginning at ,q (3]. 1s Chi (3). etc., up to the 
degenerate distal subchain Chi[n+l) with aero 
degree• of freedom. The workspace of each chain 
Chl[n) ta called W[_n), 

Algorithm Reach 

1, If the goal point is not in the workspace of 
the chain, W[l), then halt Immediately and 
report f allure, 

2, Otherwise, adjuat the firat joint variable, 
q[l), enough to bring the goal point within 
W[2), the workspace of the next subchain. It 
may be the case tha·t no adjustment ta 
necessary, ff the goal point is already within 
W[2). 

3, Repeat the last 1tep for each remaining degree 
of freedom, qlf J, for ·each i up to n, 
incluaive. Each adjuatment effectively bring• 
the goal within reach of the next 1ubchaln, 
Chi [1+1). 

n,e algorithm will tail in atep l if and only lf 
the goal point · le unreachable by the chain. In 
atep 2, tn order for the neceaaary adjustment• to 
be made, it must be the caee that there is alway• 
an allowable value for the joint varlab'le to be 
adjusted that will bring the goal within reach of 
the next subchain, That 111 

Theorem I: lf a point e la in W(i), then there la 
aome allowable value of q[i) which will bring e 
into W(i+l). 

Proof: If the point E. la within W[i), for i lo 
[l,n) then it is, by definition of the workspace, 
reachable by Chili), in some allowable 
configuration. Suppo1e that the value of the 
joint variables ln this configuration are v(i], 
v[l+l), ••• , v[n) for variables q[i], q[i+l], ,,,, 
q[n), respectively. Then, when q[l)-v[l), and the 
joint variables of subchain Chl[i+l) take on 
values v(l+l), ••• ,v(n), rcApcctlvely, tta dlatal 
end will be at point£.• Rut 1ince .e_ le reachable 



by Ch ti I -t I ). It h In W ( I+ I 1-1 I 

The procedure for •dJuattns a joint v•rl•ble to 
brio& the goal point within reach or the next 
aubch•ln depend• upon the nature of the joint. 
The aituatlon, for a revolute joint, i• depict~d 
to figure 2. 

Ftsure 2 

Wor\r.ap•ce Vi• rlsldly affixed to the end of link 
L. The joint variable, q, muat be adjusted by 
&oae amount dq ao that the workspace .W envelopes 
the goal point .f.• Let the minimum •nd maximum 
VAlues for dq, (which put .e. on the boundary of W), 
be dq(eln) and dq[maxJ. The problem ls simplified 
by noting that there Is a dual problem, shown In 
figure 3. 

2. 

Figure 3 

Here, we auppoae that .e. 1• rigidly affixed to the 
end of ao imaginary link L', and that W ia fixed . 
Sow conaider the adjustment, dq', of L', neceaaary 
to bring it into the fixed workspace. Let the 
minimum and maximum •djusment1 be dq'(mln) and 
Jq' [m.1x). We see that dq' (min) has the 1ome 

Cl 

masnlludc aa dq(ein), but the oppoalte aenae, nnJ 
likewl1e for dq'(max) and dq[max). Horeovar, we 
aee that aa the "link" L' movea, £ aweepa out• 
circular arc. Thu• the dual problem, and hence, 
the original problem, may be aolved by flndlns the 
intersection• between thia arc and the bound•ry ot 
the workspace. The value• of dq at which t he 
Intersections occur are the extremes of the ranse 
of values of dq which br ing the goal into the 
workapace, If the workapace h•• concavitlea, 
aeveral auch ranges may exiat, Only rangea, or 
part• of range• which eatlafy joint limit 
reatrlctiona are allowable. 

The adjustment problem i• simpler for eliding 
jolnta. In the dual to thi• problem, the goal 
point .e. sweeps out a line segment rather than an 
arc. The intersections between thla segment and 
the workspace boundary then give the extreme 
valuea for the adjustment. For both revolute and 
sliding joint cases, the solution to the 
intersection problem depends on the way the 
workspace is represented, 

IV, Approxlmate Deecrtptlon11 of the Workspace 

No method for computing the exact workapaca ot an 
arbitrary chain with joint limits has · bl!en 
published at this time (3,5,10,11), One 
apprxoximate method has been proposed by Kumar 
(10,11) and Derby (3) independently. A aimilar 
approach was proposed by Sugimoto and Dutty 
(16,17). Pointa on the boundary ot the workspace 
for a manipulator with three or more degrees ot 
freedom are computed by finding the maximum 
extension in a specified direction. By varying 
the direction incrementally, a "shell" of points 
which lie on the boundary may be found. 

The algorithm proposed in the 
preauppoaed perfect deacrlpttona of 
of each chain Chi(ll, ••• ,'Chi(n). 
consequence of using approximation•? 

hat section 
the work1p1ca 
What h the 

In genera 1, the consequence 11 that Theorem 1 no 
longer holds, and the algorithm will not work. 
Let W(i) be an approximation to workapace W(i), 
It can no longer be guaranteed, in all cases, that 
when a point Is in W(i), there will be 11ome 
adjustment to q(i) will bring it into W[i+IJ. 

Suppoae, however, that the workapace 
approximation, 1r1 constructed in 1uch • way 10 •• 
to guarantee that Theorem 1 hold•, for avary 
succesive pair, W[1) and W(i+l). Then, 
workspace approximation which contains 
1• found, the algorithm will proceed to 

once e 
the point 
the end, 

The approximation to the last workspace, W(n+l), 
had better be conaervative, (that ta, a 1ub1et of 
W[n+l)). Otherwise, when we get to the end, It 
may not be possible to position the diatal end 
properly. Thia requirement, in conjunction with 
the requirement that the theorem be ,atified, 
implies that, for each 1, the approximation W(i) 
must be conservative. The requirement that all 
approximations W(l) be conservative 1, necessary, 
but not sufficient. For example, we could even 
construct conservative approxlmotion1 W[i) and 

• V 
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W(l+I) whlc~ ~re disjoint, 

Now, •Ince we begin the algorithm with the 
approxi&1te won.»pace W(I), rather that W(l), the 
algorltl>a will lmmcdlately indicate failure for a 
aoal point belonging _to W[l) but not to W[l), aa 
well aa for poiota oot in W[l). The algorithm 
will, however, produce a correct aolutlon for any 
&oal polnt ln W(l), 

Reach will work with any aet 
workapace approxlmatlona 

lo au ... ry, algorithm 
or conaervatlve 
Vl[l), •••, V(n+l) 
aatlafy Theorem 1, 
for point• ln W[l). 

vhosa succeaetve p1ir1 
The algorithm vill work only 

A full dl1cua1ton of the construction of 
workspaces 11 beyond the scope of thia paper. 
However, we wtll 111.1ke a few point& relating to the 
r~qulr~mentl eatabllshed above, 

Con1lder ftr1t workspace, of dimenalonality Iese 
than three, Since these workspaces exist in three 
dtaenslonal apace, they conaiat entirely of 
boundary points, For example, a two dimensional 
workspace 11 a surface patch. The only 
co nservative approximations to that patch are lta 
aubaet1, llut obtaining such an approximation ta 
typically no •lmp ler than obtaining an exact 
description,* We conclude that the concept of 
co nservative approximation la not uaeful for 
worksp~ce1 of lower dlmenaionality, 

lt 11 not until the workspaces reach the 
dimensionality of the apace in which they are 
imbedded that they come to have interiora. In 
this case a conservative approxim,atlon ls any aet, 
all of who1e pointa are interior to or on the 
buunJary of the work1pace, For example, a 
polyhedron enclosed In the work1~ace might serve 
as• useful conservative approximation, 

lne 1>ethod1 for approximating workspace discussed 
e.trl!er [3, 10, I I I are obtained by maximally 
extending the chain in ID4ny different direction,, 
n .. , 1 ..... Jl,1ta tcmr,t,1tlon la to join cnch surfnc" 
p~lnt found In this way to · it1 nearest neighbors 
by 10..e triangulation scheme, then;by obtaining a 
polyhedral approximation, But such an 
,1pproxi .. tion ta not gua·ranteed to be 
con•ervJtlve, ln fact, 1lnce workspace• ar~ not 
necessarily convex objects, ft Is ~ot immediately 
apparent how deep a cavity might lie between 
directions in whlch the maximum- extension 1s 
kn<>'ln,- Moreover, even If it 18 possible to "pare 
down" auch an ap proximation to gua_rantee its 
lnclualon within the tt'Ue workspace, the 
relationship ~tween each pair of auccealve 
workspace approxlut Ion• ·W(I) and W( 1+1 I le not 
guar~nteed to BJtl~fy the condition required by 
lneore111 I, 

~---~~~-~~~~~~-~~-------------------
* Ve Ignore aubaets consisting of scatterings of 
iaolated polnta or curve1, To be useful for our 
purposes, an approximation 1hould have the eame 
dla.enalonality as the approximated object, 

Consider a different approach to the computation 
of workBpace, , We begin with W(n+l), the 
workspace of the degenerate chain Chi[n+l), which 

h • aingle point, The.n, each succeaive workspace 
W(1 J 1a computed on the b.aafa of the laat 

workspace, W[i+l), and t~e parameter• of the joint 
' q(i) and the link which diatinguiah the two, The 
parameter• moat commonly u!ed in the robotic• 

literature are due to Denavit and Hartenberg [2), 
We may thlnk o"t W(i) aa _ the volul!le •wept out by 
~(1+1) aa q(i) variea over it• range of allowable 
valu!Sl (aee figure 4), 

Fig1,1re 4 

Further discussion of algorithms of this type 
appears in the author's ' Ph,D, thesis propo1al 
(9). Gupta and Roth [6) have applied this 
approach to manipulators wi'th unreatricted 
revolute joints, 1n order to compare workspace• of 
manipulators with al_ternative duign·, ', For 
application to control, thi1 general approach to 
the computation of workspace• ha1 e major 
advantage, We comput"e each workspace 
approximation W[t) in terms of W[i+l), If the 
operation of sweeping W[i+l) can be done 
conservatively, so that no "ex_tra" apace 11 
included, then W[i) and W[f+l) will satiafy the 
conJ It I on rcquJ red hy Th.,orcro I, Moreover, a I nee 
we begin with an exact deairiptlon of W[n+l), 
which ·1s just . a point, then W[n) and all 
subsequent workspace approximation• will be 
conservative, These are exactly the conditions 
required for algorithm Reach to .work, 

V. Extensions 

The algorithm Reach was not completely specified, 
in the following sense, We showed that we could 
alwaya adjust a joi~t variable to bring the goal 
point into the nexi worksp~~e; but we never 1tated 
exactly which adjustment would be cho,sen, The 
strategy which comes to mind immediately h to 
choose the smallest satisfactory adjustment, If 
this strategy is used, the configuration resulting 
from the algorit~m will hav~ the p~operty that 
joint variables at the end of the imposed ordering 
are ulway6 favored for · aJjustroent, If the 
ordering cho8ei1 is · proximal to di&tal, thh means 
that no joint will be moved unless the goal cannot 
be reached with the remaining, more distal portion 
of the chain, ' 



Tbia atrategy ,uy prove uaeful in aeveral 
appltcatlona. Suppose that a robot conalata of a 
aanipulator on a wheeled base. The chain 
repreaentlna the robot include• the degree• of 
freedoaa of motion over the floor.• \lhen a goal la 
to be reached, positioning and orienting the 
robot, and adJuatlng lta arm are all handled by 
the aaae procedure. Conaider another application 
of the algorltha Reach to some chain In a complex 
llnlr.aae with • tree atructure, like the human 
body. The property stated above impliea that the 
reach operation will not alter any parta of the 
tree that really needn't be dtaturbed. That ls, 
if an operation caused some link in the reaching 
chain to be moved, the reach operation could not 
have been performed without moving it. Thia ta 
advantageoua lo the context of performing 
simultaneous or overlapping taska. 

For a chain with three linka, a closed-form 
solution for joint variables may be evaluated very 
quickly. For thld reason, 1t may be desirable to 
use such a solution for the final links of a 
redundant chain. ln this case, the adjustment for 
previous degrees of freedom may still be found 
using the algorithm Reach. The last three 
iterations are simply replaced by a procedure to 
evaluate the closed-form solution. 

The Ideas Inherent ln the algorithm Reach may, in 
theory, be extended from the purely poatttonal to 
the position-orientation domain. Consider the 
problem of positioning the distal link of a 
awnlpulator with a specified position and 
orientation. A specification of position and 
orientation In ~pace has alx degrees of freedom; 
thus each such specification may be viewed as a 
vector ln a six dimensional position-orientation 
apace. Ye define the p.o. workspace of a chain 
as the set of all such vectors attainable by the 
dtatal link. Given descriptions of the p.o. 
workspaces of a chain and Its subchain&, we could 
perform a proces~ analogous to the one described 
for workspaces. In practice, approximate 
representation of objects of such high dimension 
tend to be too large to be useful. No 
description• of the p.o. workspace, (as ft Is 
defined here), have b~en published Rt this tlme 
( 10, l 5 ] . 

The algorftha Reach exemplifies a general 
principle. A workspace describes one aspect of 
the capabilities of a chain. A system can use 
knowledge about its own capabilities and the 
c•pab!lltlea of It• aubsyatema to partition a task 
in accordance with thoae capabtlltlea. 

VI. Summary 

We have presented an algorithm whereby a chain 
with redundant degrees of freedom and joint limits 
in.ty reach a goal point with its distal end. A 
linear ordering ia imposed on the degrees of 

• There are three degrees of freedom over a 
aurface: translation In two orthogonal directions 
and · rotation. 
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freedom. The algorithm uses lnforiutlon about the 
workspace• of the chain and Its aubchalna to 
determine the adjuatments neceaaary for each joint 
variable, in eucceaton. lt la required that the 
representation• used for vork•pacea be 
conservative, and that when a point la In tha Ith 
workapace, there la an allowabla value for the 1th 
degree of freedom which will brina it into th• 
I +I at workspace. 
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Abstract 

This paper describes an architecture to support 
t"- design of large scale teaching systems, an arch• 
ltecture which Is more general and sophisticated 
than traditional computer assisted instruction (CAI) 
frarne,,oorks and which has been developed with an 
awareness of the Issues raised by artificial Intel­
ligence work on CAI. The architecture suggests 
that course material can be represented at many 
levels of detail using nested AND/OR prerequisite 
graphs. This makes It relatively easy to construct 
a course containing a variety of concepts to be 
presented In various styles and at various levels of 
cetail appropriate to each concept and each student. 
I.hen a concept Is not understood by a student, ap­
propriate remedial action can be taken without need­
ing to be explicitly pre - planned. Such remedial 
action is dependent not only on the unlearned concept 
itself, but also the student's performance so far 
in the entire course. The framework Is designed so 
as to be easily modified, hence encouraging the 
course builder to experiment with various versions 
of the course. In fact, a long - term goal of this 
research is to provide a highly interactive, flex­
ible course-writing environment for course designers . 

I. Introduction 

The eventual aim of this research Is to pro­
duce a very friendly environment for . course design­
ers to use In building a course. The environment 
should allow the course designer to easily construct 
parts of • course and test them out; to monl.tor the 
course parts In action; and to expand and modify 
these parts as their strengths and weaknesses are 
understood. Obviously the environment should be 
Interactive. In addition nice graphics capabllltles 
(e.g. al lowing multi-colours, providing the abl llty 
to window through parts of a co·urse, giving the user 
a ...:>use or joy-stick) would enhance the environment 
substantially. Such a course-writing tool would 
compare (favourably) to traditional course- writing 
languages (e.g. TUTOR or HATAL) much as a nice 
LISP environment compares (favourably) to more 
traditional programming languages (e.g. FORTRAN, 
COBOL, or PL/I). 

The most crucial requlrment of such an envlron­
~icnt is the provision of an appropriate set of prim­
itives which represent what a course is and which 
the course designer uses to conceptualize a course. 
These must be high level primitives if the designer 

Is to be spared the tedium of explicitly speci­
fying every last bell and whistle In a course. 
They not only should consist of high level data 
structures, but also high level control structures 
In order that the designer ~an think about the 
course In as non-procedural a fashion as possible. 
Finally, they should be general enough to allow 
a variety of courses to be specified. 

There seem to be two basic approaches to the 
design of these conceptual primitives : (I) a 
traditional frame-based approach to computer 
assisted Instruction (TCAI) and (11) a more 
knowledge based approach ~sing. some of the prln• 
clples developed In artificial Intelligence 
work on CAI (ICAI). lets ·Jook. more closely at 
these two approach••· 

Traditional approaches to CAI contain at 
their core an explicit graph suggesting various 
paths a student may take through a body of course 
material. Al though more recent "generative" 
approaches to CAI (Chambers and Sprecher (1980)) 
have led to some flexlbll lty In the way this 
material Is presented and tested, the need to 
explicitly predict control paths still leads to 
courses which are quite rigid and hard to design. 
Moreover, many aspects of a good teaching system 
tend to be Ignored , aspects which many Al-based 
systems attempt to take Into account. 

SCHOLAR (Collin~ ~nd Warnock (197~)), for 
example, Introduces the concept of knowledge 
representation to a teaching model. The SCHOLAR 
system has access to a knowledge base of concepts 
which allows It to In some sense "know" Its sub­
ject domain of South American geography. The 
SOPHIE system (Brown, Burton and de Kleer (1981)) 
also has knowledge of Its (circuit design) domain, 
allowing It to detect bugs In students' solutions 
to c I rcu It des I gn prob I ems. In BUGGY, Brown and 
van Lehn (1980) Incorporate an entl re theory of 
bugs that students make In solving whole number 
subtraction problems. Goldstein (1979) has de­
vised a structure called the "genetic graph" !!2!_ 
to represent paths through a body of course ma­
terial, but to represent the various approaches 
a student takes when learning these concept5, 
The genetic graph forms the basis for a student 
model . 

Al I of these Al systems have In comi~n the 
fact that they severely I lmlt the subject domain 
in order to manageably study their particular 
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•ppro•ch. The problem of how to represent• l~rge 
body of lnleractlng concepts has been downp-layed. 
ln1uad, "coaching" technique, for a particular 
small domain have been developed-. It is not obvious "°"' (or even If) these techniques can be ·extended to 
larger subject domains, nor Is It obvious whether 
the techniques are well formulated enough to survive 
the results of further Investigation. 

So, we are left ·with the problem of choosing 
bet-en the. traditional and artificial lntell lgence 
approaches 11 our basic paradigm for representing 
the conceptual primitives of our system. We attempt 
to steer a middle cour1e between the two approaches. 
Al In traditional CAI, the basic structures being 
represented revolve about a body of material to be 
presented (rather than, for example, student model· 
I Ing or knowledge of the domJin), but these struc· 
tures are considerably more flexible and elegant 
than tho1e of TCAI. As In the genetic graph, a 
s.tudent model (and student history) Is kept, but It 
is formulated in terms of how well a student Is doing 
on the course material and not in terms of his/her 
evolving learning structures. Slmllarl~, student 
errors are diagnosed and the appropriate material 
~hich Is in error can be pinpointed, but, while this 
di•gnosis is sophisticated, It Is by no means a 
theory of bugs such as BUGGY constitutes for Its 
d~in. Hopefully, further developn~nts In . ICAI 
wi 11 lead to generally agreed upon and 1-4ldely a·p-
pl icable theories. This would allow a more useful 
set of primitives to be incorporated into the course 
. ' · 1 -· 1 - ' , - t , 11, I ' ' I ' II . 
) .. t ; ~ j I I ~ ._ . ..i l : ; .,. '. 1.,; .J I ~ , ,/ .. l: f l d i -. ... _; 

architecture to handle student models, knowledge 
representation, etc. 

In the next section of the paper an overview of 
tlwe course architecture Is given, and this Is fur· 
ther elaborated In section Ill. Section IV dis· 
cusses our experiences with the construction of a 
Portion of a LISP course in the archit_ecture. Sec· 
,tlon V sums up what has been accomplished and how 
It rel•tes to the long term goals of the research. 

II. An Overview of the Architecture of a Course 
' - --- - - ---
11. I ANO/OR Structure 

, As In Peachey (1982)
1 

course material Is re-
,presented In an ANO/OR -course graph (such _as the one 
shown in figure 1 wh I ch d I splays par-t of a LI SP 
course). The nodes represent Individual c·oncepts; 

, the links between nodes represent prerequisite re· 
latlonships (not flow of control) . All arc connect · 

, links represents an ANO relationship among the pre· 
requisites Implying that all prerequisites must be 
learned before the father node can be presented. 

' othcrwi,e, the prerequisites are ORed, s uggesting 
an alternate order of presentation at the same _ 
level of detail. for example, in figure I the pre-

1Thls work expands on concepts ·developed In Peachey's 
· forthcoming H. Sc. thesis. Huch of the basic arch­

itecture ls his ; we extend the thesis work In the 
area of levels of detai I within a node and the in­
teraction of the level of detail hierarchy with the 
,\NO/OR uruc.ture. The developn..:nt of the LISP 
course is also new (Peachey's examp les Involved 
teaching data structures and basic economics). 
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requisiic concepts for lambda•expresslons are 
e l th~r the three concepts QUOTE, I 1st manipulation 
functions, and predicates; or, alternatively, the 
two concepts multiple argument functions and sin­
gle argument functions. 

The AND/OR structure has exactly the same sem· 
antics as In STRIPS (Nilsson (1971)) except that 
Instead of designating a node as "solved", "un· 
solved", or "unsolvable", It Is designated•• 
"learned", "unlearned", or "futile". lnl-tlally, 
all nodes start off as "unlear.ned" - the task of 
the automated tutor Is to guide the student 
through the course graph present l ng_ each concept 
(until It can be deemed "learned") keeping In mind 
that prerequisites must be satisfied at any stage. 
Hence, In the LISP course, data structures are 
presented first; then basic function calling not• 
atlon; then e i ther multiple argument functions 
and single argument funct ions, or QUOTE, list 
manipulation functions, and predicates; then 
lambda-expressions; and finally recursion. 

Once the last node (recursion In this case) Is 
changed from "unlearned" to "learned", the stu• 
dent Is deemed to have learned the entire graph. 
Occasionally, a concept can be deemed to be un· 
learnable In which case the corresponding node 
ls marked "fut I le". Unless there are OR paths 
through the graph, a futile node can block fur­
ther progress towards learning the entire graph. 

~~~:e: 10J1~iJ~a~ r1: Fit Hr, r;~1

1~'1n:~
0

r~ 

have unso vab e prob ems tn prot em so v ng, so 
It Is possible to have a futile learning situ• 
atlon In this course architecture, 

What advantages does the AND/OR structure 
offer? The ANO structure allows a course de• 
signer to very naturally encode the prerequisite 
relationships of a course without necessarily Im­
p lying an ordering on the conjuncts. The OR 
structure allows the designer to specify alter· 
nate presentation paths In case certain approach• 
es prove Inappropriate for a particular student 
or slmpley to provide variety In presentation style. 
But, most Importantly, the designer needn't worry 
about flow of control, I.e. which node to present 
next. The ANO/OR rule (that a node Is unlearned 
If any of Its ANO- prerequ i sites are unlearned or 
If all of Its OR prerequisites are unlearned) can 
be applied recursively to re-compute these fringe 
nodes.-

11.2 Node Structure 

So far, the nature of a node has not been 
specified. Each node contains the material nec • 
essary to present and test the concept represent· 
ed by the node. The designer has full flexibility 
In presenting this material any way that suits the 
material and the student. Thus, material could 
be presented loosely In a very open-ended learn­
Ing slturatlon (such as a coaching environment) 
or more prescriptively using_ a pre-specified text 
with standard questions that test the comprehen· 
slon of the text. The only conv-nltment the arch­
itecture Imposes on a node Is that alter present· 
Ing a concept to a student, there should be• list 
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of nodes diagnosed as learned as a result of present· 
Ing the concept and another 11st of nodes diagnosed 
as unlearned. The most conrnon diagnosis ls that the 
node Itself ls learned or (rarely) futile, although 
occasionally It Is possible to determine that certain 
previously learned concepts are shaky or certain con­
cepts further on in the course are already well un­
derstood. In any event, these Ii sts are used to up­
date the status of nodes in the graph whereupon a 
new fringe of unlearned nodes can be comput~d. Note 
that this approach al lows the pace of presentation 
to be automatically adjusted to a particular stu­
dent's talents. 

Strict node modularity Is essential If sophis ­
ticated courses are to be created. However, pro­
viding nothing more In a node would put a heavy 
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burden on the shoulders of the course designer. 
So, the course designer .Is given the option of 
creating nodes which are not considered merely to 
be primitive modules, but also can be broken Into 
AND/OR sub- graphs at a lower level of detail. 
For .example, the recursion node In the graph of 
Figure I could be further broken down Into the 
sub-graph of Figure 2, and the types of recursion 
node In Figure 2 could be broken down Into the 
sub-sub-graph In Figure 3. In fact, Figure 1 
Itself could be a sub-graph contained In the com­
plete LISP course graph represented In Figure 4. 
To Initiate the presentation of a given node, 
then, merely lnvolves presenting the earliest 
unlearned node In the sub - graph which Is contained 
lri that node. This rule tan be appl led recur51vely 
down to some pr 1ml t Ive "hard wl red" I eve I. 
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11.) Thc lnter;oct Ion Beh,.,en ~ Struct·ure 
~nd Node Structure 

The inter.action of the level of detail hierar­
chy with the ANO/OR hierarchy is an Important l1sue. 
A further rule It Introduced to handle th·ls • e node 
which has been "opened" Is unlearned l'f the lest 
node (the top-most node In these examples) o'f I ts 
tub-graph Is unlearned, Using this rule plus the 
u,u.al ANO/OR rules It Is possible to determine not 
only a fringe of un.learned nodes, but al10 a level 
at which to present the nodes. Normally this level 
will be the rrost primitive level (since an nodes 
st.art off as unlearned), but the designer has the 
option of specifying the last node of a sub-graph 
as learned and hence can prevent any given node 
from being opened. This gives the designer the· ab-
111 ty to present various parts of the course at 
appropriate levels of abstraction. It also allows 
a concept that is being reviewed to be presented at 
different levels of detail than It was the first 
time through (this Is possible because previous 
nodes at any level of detai I can be dtagnosed as 
unlearned). 

So, by appropriately speclfyl'ng nodes a, 
learned or unlearned, the course designer c11n set 
up fast or slow, detailed or abstract courses for 
a particul•r student. Alternate st~les of ~re­
sentation at the same level of detail can ev.en be 
en,ured by plJclng futl le Indicators on nodes along 
certain OR paths forcing presentation of other paths. 
These indicators are kept in an Instantiated ver­
sion of the course graph which constitutes a stu· 
d,ent model. The student model Is continuously up­
dated as the student goes through a course, thus 
providing an ongoing rrodel of the state of the 
student's m,ntery of the course material. In 
.addition a student history ls maintained to keep a 
det•iled outline of the actual sequence of nodes 
pre,ented •nJ ,ome detal 1, on uu·dcnt behaviour at 
cJch node. The student history is used, among 
other things, to provide variety when reviewing 
the concepts of previously presented nodes - OR 
p•th, unused on the earl ler pas~ are taken the 
next time through If possible. 

Ill. Details of the Course Presentation 
Nethodolo~ ~~~ 

Ill.I Selecting~ Node _!2. Present 

Assume that• particular sub-graph ha~ been 
chosen •t the a ppropriate level of detail. ANO/OR 
,emantlcs will ~rovlde a fringe of unlearned nodes 
In the graph. The first problem is lo select one 
such node lo present to the student. 

Ally unlearned fringe node with a futile node on 
the path between It and the go•I (last) node can be 
el i•inated from consideration since it will be Im­
possible to gel to the goal node In any event. To 
further refine the choice it is Important to realize 
that there are two kinds of unlearned nodes: tho~e 
that have never been presented and those that have 
been presented but have be·en diagnosed as unlearned 
•fter the presentation. In order to increase the 
variety of nodes presented, all unlearned but pre­
viously presented nodi:s are rejected (unless rio 
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oth~, s are available). This ensures, for ekample, 
that alternative paths wfll , be chos~n over pre­
vlou~ly unsuccessful patll~. ·· r, ·also ensurei. that, 
even in \he case o.f. CQnjunqJve s:ubgoals, the 
other conjunct Ive nodes ·wl F .b~ chosen before 
returning fo the unsuccessful ·nod,s, This may 
•I low the student to achieve a deeper understand­
Ing of the subject before om;:e again trying some· 
thing he or she had trouble with before. 

rf there are still many ctto1ces, perhaps 
they can be d Is t I ngu I shed by how far they are 
from the goal node. Nodes furthest from the 
goal can be rejected, Finally., to choose between 
any equidistant nodes, Indicators· associated with 
the nodes can be examined. Each node has two 
kinds of lnd'lcators·: an Importance marker, In· 
dlcatlng how crucial a node Is as a prerequisite 
to another node; and a criticality marker In­
dicating how crucial a node Is to the supernode 
In which It Is contained. In this context, only 
the Importance markers matter - the most Impor­
tant prerequisite will be chosen. If the nodes 
still aren't dlstlngurshable, a random choice ls 
made. 

Once a fringe node Is chosen, another 
decision must be made: whether or not to open 
the node. 

111.2 Deciding Whether E.!:.~.!2. Open!!_~ 

Deciding whether or not to open a node Is a 
non-trivial task. Obviously, primitive nodes are 
not opened, but are just presented as Is. Non­
pri·mitlve nodes are open~d or not using a pro­
cedure that takes Into account the fo11owlng 
two factors. First, the node Itself contains a 
recofllTlendatlon as to whether or not It should 
be ope·ned·. Second, .sub-podes of' the node •re 
examined In a more subtle w~y than Indicated In 
I I.). The existence of leftw ~f unlearned nodes 
of h)gh criticality suggests the node should be 
opened In order to present these concepts. The 
lack of such nodes suggests the node should not 
be opened, either because there are not many 
sub-nodes of high critical lty or they are already 
learned. These factors are combined In a rather 
arbl trary fash'lon at present, a method which wl 11 
1 ikely be subject to consld~rable change as ex· 
perlmentatlon with ·the system continues. Basic· 
ally, an evaluation function Is used to combine 
the two factors. In this function the first 
factor dominates If most of the sub-nodes are 
un·learned and unpresented. Otherwise the second 
factor (the sub-node statuses) dominates the 
decls'lon. 

Once a node Is to be op_ened, two problems 
arise: first, which node In the sub-graph to 
choose (atready discussed In Ill.I); and second, 
whether or not to present some or all of the 
material at the current level of ~etall and If 
so whether to do It before or after the sub­
graph is presented. 



111,3 ~Presentation~ 

In addition to possibly having a sub-graph, a 
node can cont a In "pr iml t Ive" mater I a 1 to be d I rect I y 
presented to the student, material that In a sense 
duplicates the content of the sub-graph but at a 
higher level of detail. For the purposes of this 
discussion It Is convenient to consider that this 
111aterlal consists of two components: a presentation 
part (cal led the "blurb") and a testing part. Of 
course, the material in many nodes will not have 
this structure (e.g . testing and presentation wlll 
be ml .. ed or the node wl II prov I de a coach I n·g env Ir­
onn,ent), In which case the discussion Is less ap-
pl lcable although some lessons can still be drawn 
depending on the exact structure of the node. 

Clven that a node ls not opened, there ,are 
three possible presentation styles to consider: 
(i) just give the blurb (i.e. decide not to test, 
perhaps because this is not an important node or ls 
just being reviewed); (Ii) give both the blurb and 
the test; or (iii) Just test the concepts represent­
ed by the node but don't give the blurb (perhaps 
because the node has been presented before but has 
later been deemed unlearned). 

If a node Is to be opened, there are four 
poulble styles: (I) give the blurb, then expand 
the node, and test the node on the way back out; 
(ii) give the blurb, then expand the node, but don't 
test it at this level at all; (ill) expand the node 
and test it on the way back out, but don't give the 
blurb at this level (presumably because the sub­
nodes have provided enough verbiage); and (Iv) Just 
expand the node, but don't give the blurb or test 
it at this level (presumably because the sub-nodes 
have done these Jobs). Styles (i) and (II) are 
top-down styles; style (iii) is bottom-up; and 
style (Iv) makes no concessions to higher levels of 
detail at all. Choosing among these is not easy, 
although style (II) seems most widely appropriate 
because of Its abll lty to give successively refined 
overviews of the material without the tedium of 
inultiple levels of testing. We hope that further 
experimentation wlil provide more Insights on 
which styles to choose under which circumstances. 

111. ii After Present at Ion of !. Node 

After a node has been presented, a diagnosis 
must be made as to what has been learned or not . 

· This is usually done by the testing component (If 
such exists In the node) on the basis of student 
~rformance on the test. However, a more qualitat­
ive diagnosis process can be imagined, based on 
"over the shoulder" observations of the student as 
he/she "plays" with conc:epts presented In the node. 

When the node decides that a certain c:oncept, 
represented by some other node, ls not well under­
stood, It 111ust come up with a number that indicates 
the severity of the problem. Similarly, when the 
node decides (more rarely) that some other node ls, 
in fact, already well understood, it must come up 
with a number Indicating how well comprehended the 
concept represented by that node is. Such numbers 
are used to appropriately decrease (or increase) a 
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"learnc:d threshold" as1oclat11d with the poorly 
(or well) understood nodes. If this threshold 
drops below a certain number, the node ls diagnosed 
as unlearned; If It rises above a certain number, 
the node ls diagnosed as learned (even If It Is 
unpresented as yeti); and If It drops off the bot­
tom of the scale, the node Is diagnosed as futile. 
Note that It Is not necessary to reach a full di ­
agnosis of some node all at once. For example, a 
previously learned node can have Its threshold 
decreased . without yet making It unlearned. Future 
diagnosis could continue to decrease confidence In 
the student's understanding of that node's eK­
pertlse until It finally slipped Into unlearned 
status. In this way diagnoses can be accumulated 
over time. 

Minimally, the current node should keep con­
trol until It has reached a definitive diagnosis 
of Itself (If not of any other nodes). Once such 
a diagnosis Is made, the node ls finished and the 
learned, unlearned, and futile markers can be 
propagated throughout the entire course graph. 

I I I . 5 Compu t I ng .!h!:. New Fr I nge 

The process of computing a new fringe of 
unlearned nodes proceeds using basic AND/OR sem· 
antics. In essence any node with unlearned or 
futile prerequisites ls Itself unlearned or 
futile unless there Is an OR p~th without such 
unlearned or futile prerequisites. In actuality 
the process Is more subtle than this. Importance 
markers are taken Into account In deciding whether 
to propagate an unlearned or futile status - any 
relatively unimportant prerequisites may not have 
sufficient weight to count. 

Once the unlearned/fut I le propagation Is 
done, It must be decided whether the whole sub­
graph Is learned (or futile). As mentioned In 11.J 
If the last (goal) node of the sub-graph 11 learned 
(or fut I le), then so Is the whole sub-graph. 
Once again, though, the whole process Is more 
subtle than this . Basically, a sub-graph can also 
be deemed to be learned (or fut I le) If enough of 
Its high critical lty no~cs are learned (or futile), 
under the assumption that the other nodes aren't 
significant contributors to the sub- graph status. 
When a learned (or futile) status Is given to the 
entire sub-graph, then It Is also given to the 
super-node containing the sub-graph, and the 
whole propagation process can · be repeated at the 
higher level and so on recursively. Note that 
the upwards propagation described here when com­
bined with the decision as to whether or not to 
expand a node determ i nes automatically• level of 
detail at whlch · to present portions of tho cour1e. 

But, under the assumption that the upwards 
propagation does not occur, a fringe must be com­
puted at the current level. A node Is on the 
fringe If there are nothing but unlearned nodes 
on at least one path connecting It to the goal 
node and If just previous to It (on all OR paths 
to the source (first) node) there are nothing but 
learned nodes. It ls from the fringe nodes that a 
new node to present can be chosen (see I I I. I), 
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The entire archhecture described above hH 
been Implemented and...., have begun the con,tructlon 
of a LISP course uslrig thl, architecture. Figure, 
I - , give a flavour If the kinda of graph, preseni 
In the course,. Host of the "bulc:s" node (Flgur'il 4) 
ha1 bffn Implemented at ,everal leveh of detal I and 
a preliminary version tested on a couple of 1tudent1. 
Unfortu~tely, bug, In the program prevented a ser• 
lous evaluation· of the usability of the course. 
~ver, the cour,e lt,elf was built In about 60 
hours of (on and off) work over the bus,y fall t11rm. 
Given that some debug gt ng of the course arch I tee· 
ture Itself was required as ~he LISP course was 
built, thi1 augers well for the u1efulne,, of the 
architecture to the course designer. 

The LISP course, as designed so iar, I~ not 
perfect. K.lny of the nodes are too wordy and lock· 
step the student Into a relatively boring sequence 
of fill - In-the-blank, multiple choice, or yes/no 
Questions (boring despite the fact that the 
questions generated vary each tifllt! through a node, 
thus at least providing some variety). But the 
nodes which test functions ('e.g. lambda expressions 
in Figure I) are not quite so mundane. The student 
is asked to write simple lambda expressions to 
achieve list twiddling examples. We have tm­
plee..:nted a "smart" EVAL to cxecu,te lambd·a ex-
1iren ions. It does a syntactic ana,lysl\ of. the 
la~bda expr~sslon, steps through the lambda ex• 
press ion explaining to the student what ls h~p­
peni ng at each stage and al lowi·ng her/him to stop 
an~ look aroun6 at each stage. A few standard 
!:lugs ,He recogni~ed, as well, In order to a,ld 
diagnosir.. 

This Is Just the first step In making the 
whole course more sophisticated. For example, 
ideas such as ~hose In Fine (1977) will need to 
be incorporate.d into the sy,,tem to make, It more 
l..n0wledgeable. llhether (or more 11,kely hO"I) tO 
.augr:..:nt our a.rchl tect•ure wl th suc-h things as sem­
•ant ic networks, pattern directed, invocat,lon 
schcm.!S, etc. wl 11 have to awa,i t more ex tens Ive 
~ citing of the cur;ent -architecture and course. 

'.v. Conclus Ion 

In this paper - have dls·cussed an archltec­
~ure for the design of fairly sophi~tlcated courses. 
the emphuls has been on provld.ing controlled f'le1<· 
iblllty to the course designer. The control ls 

,enforced t,hrough the rules for AND/OR prerequl·slte 
structure as extended to many, l~Mels of detail. 
The flexibility is provided through tl)e modularity 

,of nodes which gives the course: designer ful I 
,scope at any node, notwithstanding t.he minimal 
, interdependencies Imposed by the above rules. S,uch 
an architecture seems to provide the found~~lon for 
.a nice course writing environment. The, AtlO/OR and 

' level of detal I structure form the basis for power-
ful primitives .. hich the course d_eslgner can em· 

1
ploy .directly; the modularity allows the course de­
signer to , incrementa.l ly refine and· extend a course 
.. ithout undu,e upheaval . 

It must be emphasized, however, that the 
arch( lecture ls Just the beginning O"f a nice 
coune writing environment. It needs to be extend­
ed to handle other facets of the teaching/learning 
proceu - e.g. more sophisticated models of how 
1tudenti learn, more sophisticated knowledge 
representation technique, to al low the system to 
do more 1e l'f-an11 l·y1 h and make better Inference,, 
etc. It needs to be embedded l~to a better Inter· 
active environment where there are graphics that 
al low sub-graphs to· be displayed l·n separate win­
dows and open (revea·led) or closed (hidden) at· 
will; with facl'lltles that allow the uudent (or 
cour1e designer) to see the nodes !>elng expanded, 
markers being propagate,d, etc.; with system pro­
vided prlmltlvo1 for node creation, de,tructlon, 
and manipulation. A commitment to this archltec· 
ture suggest that this last, at least, should be 

' r~latlvely easy and that the prtmltlves can be 
very powerful when co.mpared to most course-writing 
tools. 

More esoterically, the course designer will 
need trace fac 111 t l·es, pre-packaged student mode Is 
representing· various stereo•typl'cal students, and 
perhaps, In order to test out a course, even ac­
tive procedures (sort of simulated students) which 
could acttial ly "take" the course . The teacher who 
Is monitoring a student will' need to be provided 
with better tools as well. These could Include 
l:he ab( l'I t·y of the teacher t·o be hoo.ked to· a 
"slave" terminal and. from there to be abl'e to 
smoo.thly Interrupt or direct bo·th the student and 
the course ('e.g. to ove,rrl.de the course In t·he 
choice of material to present next). All of this 
wou l.d be·, of course, a ' huge amount o,f wo·rk and 
wouJd requi're the solut·lon to a Aumber of very 
h.ird problems. Ne,ve·rtheless we f'eel this Is an 
Interesting start. 
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1. INTIWDUCTION 

The UNIX Computer Consultant (UCC) Is an expert 
system currently under development at the Los Alamos 
!'.ational Laboratory and al the University of Virginia. It 
l:1 designed lo aid both novice and advanced users of the 
UNIX operating system m lhetr use of the system. 

UCC ls far more powerful than the typical operating 
system help utility, -..h ich provides on-line retrieval or 
only documentation or specifically named commands. 
Thus. a user who does not know the name of lhe com­
mand he needs, or who needs information on Items other 
than command-specific definitions (such as Information 
on lhe or6 aru2al1on of the operating system's file sys­
tem) cun .:ct little or no help from such o help ul1l1ly. 
t.:CC, on lhe other hand. contains a sophist1c£1led 
rctricv<1l f<1cilily lhal can key on a number or concepts, 
10clud1ng not only speci(lc command deflrut1ons bul also 
lo61cal operations witho ut a given command (e.g .. listing 
a text fue) and concept definitions (e.g., a U1'1X path} . 
}'urlhermore. UCC, unlike existing help systems. can 
respond with a specific an.;wer given a speci fic question. 

Because UCC is designed lo be a consultant for an 
e:.1stin6 system, it is nol mlegraled into spec i(lc utilities, 
bul rdlher cx1sls as an independent subsystem on lop or 
the opcr ... Ltng system. This 1s in contrast lo some sys· 
tcms that mcorporale user support facilities within lhe 
ut1hly While the direct integration approach shows 
much promise for help raciltlles for newly designed sys· 
tem,. its oppl1cabihly to c,: 1sting systems (such ns lJNIX) 
i, m.:i.de d1rT1cull by lhe nec es sity of rewriting p<1rl of lhe 
ei.1sltni; system. in add1llon lo the entire help rac1hly. 
~·urtt.crmoru. such d1rccl 1n corpor<1tlon or help ko.Lurcs 
m<1kc the answering o'. queries not keyed on specific 
commands very dirT1cull 

I . I. An Overview or UCC 

The UCC system consi~ts or two major modules, the 
fronl·end module and the Ul's!X knowledge base and 
solver module. The major role of the rront end ls lo 
lr.1nslate a user's nalur<1l language query into the spc· 
c ,-,lly designed !ormill query language UCCqucl and lo 
tr<1nsl,,tc answers Lo UCCqucl q11eries b,,ck lnlo lli.lturul 
langu<1g e. The role or the UNIX knowledge b<1se and 
solver. module is to produce answers lo the formal 
UCCqucl queries . 

The tronl·end module accepts questions from uscrii 
such as "!low do I hsl a directory file?" and culls a lexical 
,1n.:.lyL.:r to delete noise words from lhc question, con· 
verl synonyms and tensed words lo a standard token, 
and 1denl1fy unknown words. The tokenized question 11 
then parsed by an augmented transition network (ATN), 
phr..se by ' phrase, If an attempt to parse an entire sen­
lcnce fu1ls . The AT:-; produces lhrcc pieces or lnforrna­
lion : a) the type or question; b) a template , call ed a case 

frame, de~crlbln& lhe m11.ln opurullni wywlum ucllon 
mentioned In lhe question; and c) a ael or predlcatea, 
derived from noun phrases, prepositional phrasea, 
adverbs, and other modlfylna phrases and clausea that 
assert properties or entitles rercrred lo In the question 
(such as rues). 

The p·arser passes Ile output to a query generator 
which produces a) a formal query with a set of predl· 
cates describing II function to be porrormed by the 
operating system; b) preconditions describing the Input 
to that function; nnd c) postconditions describing lhe 
function's output. Tho formal query will contain 
unbound vnrlnbles that must be lnslunl1nlcd by lhe 
knowledge base and solver module lo answer the original 
question. 

The knowledge boso und solver modulo contains 
descriptions of UNIX com111und~ and· concepts, 1,nd 11 sol 
of propositional semantic definitions of commands slml· 
lar lo Hoare semanllcs ( 1 ] . The descriptions arc used to 
unswer questions such as "Whul ls II dtroclory fllo?" or 
"What docs 'ls' do?" The formal semantic defin itions arc 
used lo answer quc8llons such as "How do I llsl a d irec­
tory file?" 

Once the variables In II query have been bound by 
the knowledge base, then the lnstonllated query 1, 
pas:ied back to lhe front end lo produce un unswcr In 
English for the user. The tronl end formulates an answer 
by noting whal lype of question was asked, selecting an 
appropriate template for an answer. and using a dtc.:llon­
ary or predicate dcflnlllons lo duscrlbo tho ro lovanl 
parts of the 1nslanllalcd query. 

In this paper, wo discuss brteny tho nature or tho 
formal query language U(;Cqucl, and lhun wu dutall Lho 
process of tronsformlnll a natural-languni:o query Into 
UCCquol. In a future pupor. we will dclull tho workings or 
Lhe UNIX knowledge base und solver module. 

2. QUERY MODEIJNG AND CI.A!>Slt1CA1'10N 

To understand lhe operation of tho naluraHangu11gu 
front end, tl IH -flrul nocettuury to undorsland tho formul 
querlos thal ll ls to produce . In lhls eoctlon, wo oulll no 
the no.lure of the varloue quorlos that arc considered 

. and show how they aro rcp,·cscnlcd in UCCquol. 

2.1. Slallc Queries 
Stallc queries ure tho most bo.slo lyl'o Lhul nru hun· 

died by UCC. A static query ls one that requests Infer· 
matlon not Involving system dyn11mlcs, and. expressed in 
natural language, are typically of the "What ls ... ?" 
vurlely. Examples lncludu "Whol Is a pipe?" und "Whal is 
a home directory?" In each coso, a simple rolrlcvul or a 
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del1n1L1c.n 11 .JI lt1dl I·• ncce~sa.ry. In essence, e st1>lic 
query la JU.:.l i. retr 101141 or the form "eel Ix I P(x)f' 
(whlcb la lhe form or a nonprocedura:l query to e rela· 
t1onal dalab4Se [2]). For example, "W·hal Is a· pipe?" 
tra.nsl4tU Into the formal query "gel l:x I x Is lhe 
det\rulion or a pipe j. 

All queries In UCCquel are expressed in an LISP·like 
notation. Our representation or lhi-s query looks like 

(t\nd X 
(l1As1c-object·descripUon ("pipe") = X)). 

X 11 the free variable that must be bound an onswerln& 
the query . 

2.2.. Dynamic Querio. 

To be useful , UCC must also have the capability or 
proccn1(l£ dyn<1mic queries. These queries dilTer from 
thcll" static counlerpArts In that they deal with the 
d)·n.imic aspects or the UNIX operating system. E><am· 
pies include "!low do I hst the conLenls or u file paged 
And w1lh p .. g.e hedders?" and "What happens if I lry lp 
print a d,reclory t\le with the pr commend?" In eocb 
cdse, the query deals wllh the delerminal1on or oclion or 
" system command. 

'tic may sl11l ct .. sstry rnch queries es "get lx:P(x)I," 
provided we choose P appropriately. In the case o! a 
,l.,l1c query, P 1s Just a well-formed formula (wlT) In the 
(urd 1n .. ry) logic lh,1t de~cnbes the relnevul or concept 
dcnn,t,ons In Lhe case or dynamic queries. P must be 
rcpluc1.:d by a wlT 1n on approprto.1lc dynum1c logic 
hrc,,u;;c we arc now dealing wtlh system dynamics. For 
lht· purposes or UCC, the usual propos ilional· slyle 
St· mdnt 1CS, commonlr used in programming language 
scmunl1c dcnn1l1on I], provides a conven ient frame· 
.. uric A w(T in Liu~ style or ~cmanlic~ l<1kc~ -the gcncrul 
rllrm IHI r IQ!. "here Hand Q arc wtls tn an appropriate 
~t .. t 1c t\rst order logic (known all the under lying base 
lo,-:,c). ,md r 1s en action lhat may change lhe lrulh 
v .. due:1 or slc1lemenlll in the base logic : 

A• a parl1cul11r c,cample. consider lhe query givon 
ubo~c "!low do I hst the contents o! a fi le p..1gcd and with 
p<1.;:c hc .. ders?" llerc H 1s or the form ''Hx is A (generic} 
tci,;t tile" 11nd .Q Is or the form "The contents or the slan· 
d .. rJ li sl1n.;: device 11 what the contents or the ti le jx WdS 

before the comm4lld, mod 1tlcd lo be po.1ged wilh standard 
' pa.:c hc.idcrs ." risen unknown op(,rator, lo be round in 

,,n,,.~nn.;: the query. In the rclr1eva.l, l'(i.:) 1s !·I!( X IQ !. 

2 .3 tuodemeot.ti.l Types or Dynamic Queries 

A dynamic query or the form "get! x I P (x) I," where 
P = IHI r !QI. may be plAced into one or eight possible 
cl<lhinc .. t1on s. dependtnj! upon which s ubset of R. F. and 
Q 1s known and wb1ch is nol. In lhe initial 1mplcmenla· 

"taon or UCC. only two or these will be considered. 

( l) H And Q arc known. but r 1s not Th is 1s the general 
structure or A "llow do I .. . " type or query und Is 
1l lu strol.led by the example tn section 2.2. 

(Z) H and r are known, but Q is not. Th is is the general 
~truclurc or ol. "Wh.it h<lppens 1! ... ?" l•ypc or query . 
As An examplu, once ag,,in consider "\'ihat happens 
,r I try lo pnnl II directory nlc using the 'pr' com· 
n1o.1nd"" llcrc l( i~ "j>i is .i. (i:cncnc) directory ftlc" 
.. nd r 1>1 "pr /i,;," with Q lo be found . 

' 2.4. !iecondo.ry Responses in Dynamic Queries 

"ll'h1le the class1ncat1on or dynamic queries as oul · 
. ltnod 1n the previous section is a useful guideline, il is 

not o.lw ... yb <.;ompletely adeq411,le. For eit11,mple, cor,sidcr 
onco 11.g,lin the query "How do l li11t the content,; or o file 
paged and with page headeri;?" To answer this query 
wllh R and ~ as g,iven In section 2.2, It Is not sufficient to 
simply suppl:)' the response "pr .fx," becauae, f,or thla 
res·ponse lo be .. correct, we must have fbat #.x 11 a t\le 
that is currently readable by t:he mer. ln respond•ing 
with the answer, we must add. ~t.141 read'abllity c·ondltion 
to the precondlUona R. We term .such an addition a 
secondary response. In llhe formalization of dynamic 
queriea In UCCquel, we always permit the ·addition of 
appropriate aecondary roaponsea. 

2.b. An Example UCCquel Query 

Below la displayed the l:JCCquel query for "How do I 
l!Hl the contents or a Ale paged and with page headers?" 

(Find (Rl Fl Ql) 
(Dyn RF Q) 

(Ji)et\ne R 
(.(Clausea 

(file jx (type = "lext"))) 
(addnecesse.ry Rl))) 

(Define F 
(( transform Fl) 
(logical (llst· texl-flle)))) 

(Dct\ne Q 
((Clauses 

( contents(7.usc r ·lc rm in al) 
= modified (contcnls (limo (· l ,Clle(Nx))) 

(type = "Lexl") 
(paged = "yes") 
(pageheaders = "yes") 
(value standard))l) 

(addimpliculions QI)))) 

Pl, Fl, and Ql are the variables to be bound in the 
solution or the quety. (Dyn R •· Q) me11,nH IRI F IQ!. Fl la 
the fundamental variable to be bound and Is declured lo 
be a transrorm. Pl ond CU a-re lo be bound lo secondary 
preconditions and postconditions.. respectively. The 
definitions or J( and Q are wffs In our underlying logic 
known as the static det\nlllon logic. The "lime(-1 ... )" 
note.lion In lhe postcondition Q is \,\sed lo ensure that the 
value ot the user terminal a!Ler t·he execution ol lhe 
command will be the contents or Nx before the com­
mo.1nd . This Is merely a i;horth11,nd and doas not vlolalo 
the conslr11lnt that R and Q be statements In a static 
logic; by setting #X to a dummy file @x in the precondl· 
lions and using file @x instead or Ume(-1 ,flle (•Hx)) , we 
can stay entirely wiHlin the constraint'B. The "logical ... " 
part or the definition ot F is lndicnling which case rrame 
was used In constructing the query, and wlll be men· 
lioned again In the next section. 

?.3 

2.6. Specific Querlea 
In the example query Illustrated above, the file to be 

listed is not specified, and so is represented as a generic 
tcxl file, Hx. It the user Instead had 11sked ' 'How do I list 
the contents or my Ole /bin/paper paged and with page 
headers1", the formulation would di!Tcr fundamentally in 
that /jx wou ld be replaced by /b·in/papcr. Also, lhe 
assumption lhal /bin/paper ls a lexl flle musl be 
dropped. Halhcr, It must be left lo the knowledge buse 
lo deelde whether or nol /bin/paper is listable. 



3. TIit.: INTt:lti'ACt.: Ut:1,H;t:N 1'11t.: USt.:H AND 
n n; KN OWU:I>G E DASE 

Thu rronl-end module as responsible for converlang a 
u,icr's Engltsh qunlions anlo formal UCCqucl queries und 
tormulaltni English responses. This process consists or 
t\ve levels of Analysis: lexical (or word). phrase, clause, 
1enlence. paragraph (or dialogue), and lopic. Five mojor 
d.alt1 1truclurca <Ha u,c,I t,y lluau luvcls . 111d11J1ni; a J1c· 

11011 .. ry, 11 lcl or c,uo fro1111c~. conloKl r,•i; 1slcrH, pn,J1• 
c .. tc dc»cnpl1ons. and Answer frame~ . We wall ex.imane 
these levu l1 and dAl4 1lructuru moro closely as wu fol­
low lhe rront-end proces51ng or the queslion "How do I 
ltsl a tile paged and with page headers?" This queslion Is 
the mpul lo the front-end module and the output Is the 
UCCquel query given In sect ion 2 .5. Only the analysis ol 
a user's question wi ll be discussed here; we leave a dis ­
cussion or the more stra ightforward process or generat­
ing a n answer lo a ruturc paper. 

3. t. Lexical Analysis 

l.ex1cnl or word- level analysis is perrormcd by a lok­
cnuang routine. Each time il is called by the parser, it 
~c .. ns the Bngltsh question and returns the next token. 
The tokent:lCr looks up words in the diclionary to see 1r 
they Are defined And replaces them with standard tokens 
tf lhey arc round. IL CAlches mulltword idioms a nd com­
mon noun-noun mod1f\culion, such as "how do I" or 
~d1reclory file"; It also flags unknown words . ldenlitles file 
n.,mcs when possible, rcp !accs synonyms with a standard 
root, And replaces tensed and pluralized words with a 
st .. ndard token plus the realures indicating tense or 
number. 

The lokeruzer uses a loken definition stored in lhe 
d1cl1onury And a look-ahead mechanism lo determine 
•h.ll Bnglish "'ords or UJ\IX r,te names s hould be grouped 
mto one token. 'Words with no d1ct1onary entry are 
pa.ssed o.long lo lhe ATN because they may be names of 
•pec1(1c t\les 

}'or example, given our sample question "How do I 
llst . .. . ~ lhe tokenizer would return the following tokens 
(lho: S dcsa.-:nales a token): Shwd (rcprcscnlang the 
phr4Se Mhow do I"), It (!or "I"), Slist. Sa. Sflle. Sw1th, 
liphcad (plurc,I) (for page headers), Sand. and Spaged. 

:S.2. t'hra.o-Levcl Analysla 
1'okenazed questlons are parsed, phrase by phrase, 

usan,-: a grammar represented by 11.n nugmenled tr11nsl­
l1on network (ATN). ATSs ue a stande.rd tool ror parsing 
nalural language [2). Although other parsing techruques 
have proved useful lor parsing restricted English 
c;ueslaons [3.4]. ATl',s c11n parse statement s that include 
ell1ps1s and grammatic .. ! error:; . 

UCC'1 ATN produces a parse tree !or a qucsl1on, 
cilhcr tor a "'hole scn lencc or phrasc·by· phrusc. ll 
uncoven and enforces syntacllc rules and semanllc con­
slraanl s withan a phrase . Predicates are generated by 
lhc ATS lo represent the meaning ol the phrases . ThcMe 
pro,d1c .. lcs form the preconditions, IHI. and postcond1-
l1ons. IQ!. for dynamic queries. 

The ATNs dlso selo,ct a small .. sel ol case lrame candi­
d4les lhat could correspond to the main action 
described an a clause. Cuse lramos und lhc1r ro lo aro 
Jc,.cribcll tn lhc m.:xt t1ccl1on . 

A p,,rsc ol our s .. mplc question would produce lhc 
lollo.,mg results. 

(1) Quo:st1on Type: hwd (m camng "how do I") . 

(2) Pl,ru,..: ·l.evcl Sem11ntlc1: 

Noun groups: (NG! (nl c llx) (type= "luKl") 
.(puged = "yed")) 

(NG2 (pagehcader,)) 
Verb groups: (VG\ (verb 11,t) (dlrecl-objecl t.Lil) 

(tense present)) 

Preposition groups~ (PG 1 (with NG2) ) 

(3) Cu110 t'nunu,: 

~

loglcal llst-texL-nlu) 
toatcal li•l-dlroclory) 
logical enumerate) 

3.3. Clause-I.eve! Analyala 
The ATN parses the phr11Nes In a question lo produce 

predicates describing lhe noun groups and preposition 
groups. These phrases arc grouped al the clause Jovel 
by a "case-rr11me-flller." Case frames are lcrnplatos 
representing lhe main t1cllon or 11 clause 11nd tho con~ll­
lucnts of the action. such tis lhe uctor and roec lplenl of 
lhe acllon; usually. they correspond lo lh" main verb In 
lhc clause. 

Sever11l natural-language understanding systems 
have used case rrames lo represent lhe action In a een­
lcnce [2,5] . For Schank and his coworkers, a small sel ol 
conceptual case rrames represent all actions expressed 
In natural language [5 ]. In UCC, case frames correspond 
lo logical operations In an operatln£ system, and they 
form the main lank between F.ngllsh language operating 
system concepts and tho formal semantic deflnltlon1 of 
speclnc UNfX commands. Some have a direct corrcspon· 
dence to UNIX commands, while others may be aNsocl­
ated with several different commands that could be used 
lo accomplish lhe earne toi:lcal operation. 

For example, as shown In lhe 111st section, the verb 
"llsl" could represent one of three case frames, ll!rt­
lexl-flle, List-directory, or enumeration. List-tcxt-nte I• 
associated In lho knowledae base with throe UNIX com­
mands .for listing a text rue, "cal," "pr," and "more." The 
case-!rame-t\lter must select one or lhe throe possible 
case rrames using tho parsed question and semantic 0011-

straanls specified In lhe case rrame, and the knowledge 
base and solver module must decide whieh UNIX opera­
tor associated with the llsl-lex l -tllo case frame, "cal," 
"pr." or "more," Is the 11pproprialc answer lo lhe uucr'1 
question. 

Case frames conl11ln dor11ult tnrormallon on procon­
dillons 11.nd postconditions associated with tho logical 
11.cllon represented by lhe case rrame . They 11tso apeclfy 
s lots to be filled from a user's question or from context, 
and they provide semantic constraints on what lnlorma­
lion can nit those s lots . 

In our example, lhe cnse·frame-flller selects the 
list-tcxl-flle case rrame because lhe direct object or 
"!Isl," ldcnlifJcd by tho ATN us tho noun croup "11. Ola," 11 
assumed lo be a text nte. The list-d irectory case frame 
would have been selected Ir tho object or "ll sl" had been 
a directory. and the cnumerulion case frame would have 
been picked II lho object hud boon a noun group lhut 
could be enumerated, such as "the number of users 
curre.nlly logged on lhe system." 

Once the llsl-text-flle case Ira.me Is chosen, the 
cAsc-lrame-fJller notes lhul lhu lial·loxt-nte apoc1ne1 
th"l lhe question should conluln phruaos dcscrlbln11 how 
the l<:xt ts listed . In our oxuniplo, Lho cuso-rrumo·Ollor 
(Inds lhc phruscs "pui;cd und w1lh pu,:o huudorw" und m, 
these Into slots that modily the dc!lcrlplion or the rosult 
or the togicul opcr..,lion li ~L-lc xt · flle . This descrlpllon 



,..,n.t1lul1.:• lh1.: po~lcond1l1on:1. IQJ . For our ei.:ample, 
lhc preco11J1l1ons •111 be lhe dirccl obJecl or "h,il" or lhe 
phr.i~c -. nle ." The case framo speciftes lhal lhe 
prc:conJ1l1on1 n1iul be "conlc nl11 (file (#K}(lypo = 
~lexl")).- and thls 1s consislenl wilh lhe A'T'N'1 parse or 
lhe noun &roup, "a rue." Smee "a nle" is parsed as an 
i.ndenrute noun aroup, lhe cue-rrame-1\tler binds the 
precond1t1on1 to be a &enerlc !\le, Ix. 

3.4. Seolaoc•·Lnel Analyal• 
Once a cue rrame has been selected for each clause 

tn • question and lhe case-rrame-ntler has formed IRI 
and IQ! from the parsed phrases, then the "query· 
i:cner4lor" Ii c.i.llod lo produce a formal UCCquel query. 
ror simple quesllon1 (questions ale.led In one cli.luse), 
the formal query is essentially built by lhe case-rrame· 
loller, und lh~ qucry-gcncr.ilor h.i,i lo only verify 1l "1lh 
the user and p.iss ll along lo the knowledge base and 
solver module . The formal query generated tor our 
e xAmplo w,,s given in sccl1on 2.~. 

The query-generator must integrate several clauses 
into ono formal query In the case or questions lhat are 
s t .. ted m sever.ii clauses (such as "If I ... , then ... ?") and 
quc:sl1ons slated in several sentences (such as "l have a 
d_1r<·<:lory ftle thAl l made read only. Why can'l I hst IL?"). 
:--.u~ h question$ will produce several lhsl unllaled case 
rr,,mc~. and the query·generalor must build. one query 
uul ol them. Usui.llly, multiple cl.iuses serve the funclion 
or lurlhcr describmi;: the precond1t1ons of lhe action In 
t hc m,,m clau,e. 

:!.~. Dillloguc· and Pnrlll!raph-1.cvcl Analysis 

\fork with nulural · languago database systems 1rnd 
upcrl consultant, [2.6.7] has shown that users usually 
11sk sHcral relaled questions and that lhe syslem must 
b~· <1hlc lo mc1.intam 11 dialogue with the user and uso 
inlcrscntence (or paragraph level) context. UCC saves 
conte).lu.i.l information using "context registers" similar 
lo lho1e used by Waltz [2) and by using clariflcalion 
_d,.i.lo~uc 

Conlexl register, arc push·down ,Lacks with Ii lihorl 
nHd leni: th. They hold m!ormat1on derived rrom prcvl· 
ou,i quc,;llons And answers, such as lhe la s t case rrames 
rcrerenced. the pre· and post·cond1tions or previous 
:qu,·sltons . and the ~ubJecls ;,mt objects or previous ques· 
loons 1:111ps1:1 (mi,smi: purt,ons' of " question) and pro· 
noun,i are common In questions. and UCC must use the 
cas.• fr,,mcs lo fill In ltu:i mform.ition . U lhe case· 
lr.irnu·nttcr or qucry·i:eneralor nnd~ thul a portion or a 
c,,se tr.imc or query 1s missihi; from a question, then 
they consult lhc conlclil registers lo find the most 
recent piece o! intorm1H1on th.it will salisty the semantic 

. con slr,unls of the current quesl1on . For ci.ample, If the 
user ,uks the question "!low do 1 list II file?" ond then 

/asks "W1lh page headers?", UCC musl rcoolve lhc ell1ps1s 
1n lh11 second question by popping o/T the most rccenlly 

!used c.i.s11 frdme and prccond1llons from the appropriule 
contc"l registers. 

UC.:C.: maml,.u~ d d1.iloguc wilh lhc user by ... 11 s,ve r · 
m,: tu~ quc;t1ons. saving the previous questions in con· 

' text registers. and usm;: clarification dialogue lo verity 
th.it a user's question hu~ been correctly underi;lood. ln 

· our c1'<1mplc, once the qucry ·i:cncr.ilor has formed the 
query, IL would verily the query wilh lhe u:,;cr with th e 

' !ollo.,mi: d1<1loi:ue . 

' UC.:C : Your query Is understood as: 
t'md a c omm<1nd that a.cccpls as Input. 
la . a lcxl m.,_ 

~- .. 

1.11,d lhc command will prod4ce output. 
2 .. at your terminal 
2b . has page headers 
2c. is p.ii:cd 

Is lhis all right? (yes /no) : 
lJSl::R. DO 

Because lhe user rosponded "no," UCC will n,ply 
with the follow1n& 

UCC: Do you. wish lo: 
1. rephrase lhe quesllbn entirely,? 
2. change an Item? 

Enter 1, 2: 
USER: 2 
UCC: WhJch ll.em(s)·. la, 2a, 2b, or 2c: 
USF:R : 2a 
UCC: Whal Is the new condlllon? 
l'.JSEH: output goes lo the splnwrller 
UCC: Any other changes? 
USER: no 
UCC: Your new query Is understood as ... 

Once UCC bas verified a query, ll is shipped otr lo 
lhe knowledge base and solver module lo produce an 
answer. 

3.6. 1'hc l"opic Level 
Users usua.lly ask several questions about a p11rl1cu· 

lnr UNIX topic. su.ch ns qucslions aboul using lho edilor, 
manipulalihg tiles, or compiling a. program. To success· 
fully parse and answer questions aboul a variety or 
topics, the knowledge base, vocabulary-, and case frames 
have been partil1oned Into ditrerent topic areas. Al 
present, UCC conl'ains in!brrllalion about only the tile 
system 1rnd the command language. W'e are experiment· 
ing with a menu-driven system fbr swllchlng belween 
lopic!s. Complex nalural-langua·ge processlhg and ques­
tion answering require that questions hav.e a limited and 
wcll·dotlned context and that ~he case frames, vdcabu· 
lary, and knowledge base be parllt'loned°by toplca. 

4 . CONCJ.USJON 

Natural·l11nguage tronl ends tor du.labase syalcma 
have been In ex istence for severul years as have expert 
consullanl systems. UCC combinell bolh or these llnca or 
re~o.irch Into a slni;lo syslom lhal i:oos well boyond typl· 
cal operating system help tacil1lies to provide ari ex:r,erl 
consultant with sophisticated natural-language under· 
standing ability . 

We have outlined lhe process or' producing a formal 
query rroin 11 nalural-111ngua,::e question and shown how 
queries can be formully modeled In the UCCquel query 
lun,::uage . UCC succcssrully bridges the g~I> between 
users' English queslions and formal command definllions 
by div1don,:: lhc tusk inlo levels or unulysis from lcxicol to 
topic, and by parlilioning lhc mujor dala structure:. or 
UCC by topic In this way UCC achieves generality and 
sophisicated language understanding over a broad range 
or lop1c11 . IL Is intended lhat UCC servos aa a model tor 
lho design or c.:xperl consullanl11 for olhcr operating 11ys· 
lcms 11hd !or systems lhul, like operating syslemll, con· 
sisl or collcel1ons or processes. 



b. AC~OIWI..IWGUt;Nl'::> 

The authon would ltku lo 11cknowledge the conlrtbu· 
lion of DaVJd Slolls, Andrew Lacy, Kelton flmn. 11nd John 
Taylor to the developmenl and tmplemenlalion of UCC. 

IL R.t.:n:JU:N CES 

[ 1) Alagac, S. and M. Ar bib, TJ&. 0.s,gn oJ Welt· 
Stn,,clvnd and Con-•cl Prograrru:. Springer-Verlag, 
1978. 

[2] 'Wa.llz, D .• -An English Langu11ge Queslion Ansering 
System for a Large Relallonal Database," CACJ.I, 21, 
7, 1978, pp. 526-539. 

(3) 

[ 4] 

(5] 

[6] 

[7] 

96 

tt ... 1·1·1,, 1.., "U11er Ortenlcd D,,lu Huse ~11cry will, 1111. 
Hobol Natural Language Query Sy~Lem," /nternu · 
tinnal Journal o/ Man-Machine Studies, 9, 1977 . 

Jlcndrtx, G., E. Sacerdolt, D. Sag11lowtcz. nnd J. Sto· 
cum, "Developing LI Natural Languaee Interface lo 
Complex Datu," ACM 1'ran.sac:tions an [)utal.ia.u S1111· 
toms, 1978. 

Schank, R., "ldenllficallon of Concepluallzallona 
Underlying Natural Language," Computer Madill• o/ 
ThDugh.l and Languag•. R Schank and K. Colby, 
eda., 'W. H. Freedman and Company, 1973. pp. 167· 
246. 

Shortli/Te, E ., Carnput.,r·JJased Madical Cow:ulta­
tinns: MYCIN. American Elsevier, Now York. 1976. 

Michie, D. (ed.), Expert S y s tums in th.• Micro El•c· 
Ironic Ag•. Edinburgh Univcrslly Pren, Edinburgh, 
1079. 6. 



I 
I 

lnferehoe, lnoompellble Predlcat111 and Coloilra 

Mary Angell Pap1laskeri1 Lenhart K. Schubert 

COl'Yl)uting Science Department 
l.kuveraity of Alberta 

Ahatraot 

Aa p¥t of the inference ayatem of a semantic 
Ml ~ •e building a resolution-based theorem prover 
~e of directly "resolving· not only complementary 
~ ,ra of literals SUCh as felephant!Clydel. "'llephant(x)l but 
also inc0ffl)1t1ble p.,ra such as. 

(elephlnt!ClydeL ~anim.ili K)l 
felept\Nlt!Clydel. canarybtll 
(yeliowiClydel. groy(Kll 
hsort-of elephanu!Clydel. '"'isort-of ,nim.i lKxll 

• ltsort- of tanllClydel. "'isort- of brownllxll 
l{sort- of ye llowHClydel. !sort-of blueHKll 

We. had on9,n.1Uy exp~cted to handle all such examples 
of '"tended resol\Jt,on by means of previously designed 
eff.c,ent 11gor,ttvns for type lan,ces. However, we have 
found th.It ceru.n ct1sse1 of · colour ·reso lutions· 
texe~hf ,ed by the list ~ir of literals above! do not 
lend themselves to l1tt,c11 methods. Instead. we have hid 
to augment our represent1t1on w ith another special group 
of 119ornrms based on • tlYee dimensional thue, purity 
~ d11ut1onl co104.r space. 

L lntroduc1lon 

A aemanbc net system in which kllOwledge i1 
top,cAJty orgMllzed arO\lld concepts his been under 
development 11 the Urwers1ty of A lbertJI for some years 
tScho.ibert. Goebel & Cercone 1979. Cov,ngton & Schubert 
19801 The syatem is c1p1ble of automatic topic1I 
c1us,f 1~t1on Ind onsertion of modal lc:>g1c input sentences. 
concept and topic oriented retneval. and property 
merouonc:e of I rather general sort. 

Efforts are ctSrently under way to extend the 
inf.-ence capati ,1,t,es of the system. to enable it to 
answer some of the kinds of questions which people can 
.tnswer ·without lh1nkll'lg·. One type of inference which 
his been under study ,s efficient inference of inclusion 
.and d,s1ointness re lationships in quasi- hierarchies of parts 
or concepts ltypesl. Speciali2ed data structures and 
1'90l'1trms h.lve been des,gned for this · purpose (Schubert 
1979. P~l.1Skar1s & Schubert 1981 ~ We view such 
apec,a1 - purpos111 mechanisms as esaent,al ad1unct1 to anv 
g_eneral inference ayltem bued on symbolic logic. 

Ccons1der e system · whose deductive component ia 
resolution-based las ours will be - th,s happens to be 
rui.u-i.J since the topiul classif ication and retrieva l 
mechllnosm already requires propositions to be in modal 
c1.iUse f0<ml. Th., following are some trivial deductive 
prob1oms the deductive component may be f.aced w ith. 
c,,ther on ar,swering user questions or 1n checking new 
111form.t1on for inconsistency and redundancy. 

\ G,.,,n knowl«Jg,: elephant(Clydel. 
~elephant(K) V greytxl 

o-s11on: 7greytClydel 

~. Given knowledgt!: elephanttClyde). 

':7 

plus knowledge 
animal• 

about 

Qut1stlon: 7 animaltClydel 

,3. Wvt1n knowled9t1: elephanttClydel. 
p lus knowledge about 
linimals 

Question: 7canary(Clydel 

4. Glvt1n knowledge: yellow(Clydel. 
~elephant(xl V grey(x) . 

types 

tvpes 

plus knowledge about coloura 
Question: 7elephant(Clydel 

of 

of 

Question 1 can be answered by resolving the 
two complementary "elephant" literals. with result 
grey(Clydel. In a refutation proof. this would in turn 
be r.esolved against the denial ~grey(Clydel of the 
question. The resultant emptv clause Justifies a ·yes" 
answer. 

Question 2 could be answered by a series of 
resolut ion steps that progress along the superconcept 
sequence connecting "elephant" and "animal"; but this ia 
just where we would like instead to invoke special 
inference methods for type lattices. From the theorem 
prover's point of view. this should be a one - ster. 
inference: in terms of a refutation proo • 
elephanUClydel i1 incompatible with the denial 
~animal!Clvdel of the question 1n much the ume way 
that complementary li terals are ihcomp1tible. and should 
yield the null ·resolvent". This idea can of course be 
implemented bv recognizing "elephant" and ·animar u 
elements of a type lattice for which special algorithm, 
are available le.g, McSkimin & Mink er 1979. Schubert 
1979. Papal1skari1 & Schubert 1981 1. Similarly, it 
should be possible to obtain I one step disproof for 
question 3 by "resolving· tt,e incompatible literal, 
elephlnt!Clydel and canary!Clydel. In question 4, one 
·resolving• step should recognize the incompatibility of 
yellowtClydel and grev(K) and henc·e infer the 
·resolvent" "'elephanttClydel. which then resolves in the 
proper sense w ith the question clause. to yield a 
negative answer . 

One interesting question which arises about this 
sort of "resolvinlf is whether it can be extended to 
deal with modified predicates such as "large animal", 
"dark brown· and ·sort of brown• (or brown/sh). 
Natural language. after ill, provides i large repertoire 
of predicate modifiers. and presumably any adequate 
knowledge representation language must contain the 
logical counterparts of at least some of these. 

II. Predicate& modified by hedgea 

We have concentrated our efforts on • 
particular ly troublesome modifier, namely "sort of". It la 
characteristic of this modifier land of "hedges· in 
general) that (sort - of PIM fai ls to entail P(x); this is in 
contrast with cases like (large PHxl. (typical Pltxl. and 
tdark PHxl. Note however that we can take P(x) to 
entail (sort-of P)(x). For example. an elephant is 



ceru1nay .w,r ol .an elephant. altnough the maxims of 
cooperat111e con11erut1on (spec1f1cally the quantity ,nd 
brevity ma11tmsl imply thllt use of the hedge is 
,rrc:>roper ,net therefore misleading if the unhedged 
p,-eo1cate is known to apply (Grice 19751 

Let us reconsider the (extended! resolution steps 
postulated 111 examples Ill - (41 w ith some of the 
predicates modified by sort-of. In 811ample Ill the 
sund¥d resolution lelephant!Clydel. -elephant(111) was 
required According to the assumed properties of 
son-of. the pa,r l1son-of elephantJIClyde l. -e lephantlxll 
1s compatib le whi le the pair (elephanUClydel. 
"'lsort-of elephant)(x J) is not The latter incompatibility 
as eu,ly oetected in two resolution steps gi11 en the 
axiom schema 

;>(xJ V (sort-of Pllxl. 

which ~tures the entailment postulated abo11e No 
methOds other than standard resolution (in conjunction 
w ith rules for applying schemata invo l11ing predicate 
mod1f,ersJ appear to be required in this case. 

Example (21 called for ·resolving· the pair 
lelephanttClydel. -arumal(Clydel) by special latt ice 
metnOds. so u to avoid the need for constructing 
long resolution chains. Now (!sort-of elephantllClyde). 
-an,mallClydell are compatible. but (elephant!Clydel. 
"'\sort-of an1malHClydeJ) plainly .-e not In fact the 
stronger sutement can be made that 
(Ison-of elephantJtClydel. -<sort-of animalHClyde)J are 
onc~atible. iThe st.itement is stronger because by the 
ax iom schema for sort-of. it entails the incompatibi lity 
of fe'ephantlClydel. "'\sort-of animalHClydelll This 
oncompat,b il1ty can again be efficiently detected w ith 
essent,all y the same lanice algorithms as were needed 
for tne unhedged case. along w ith the general rule 
tt\at ,f P ,s superord,~te to Q in a type lattice. then 
tsort-of OJ is incompatible with --<sort-of Pl (i.e .• 
ent.ii ls tsort-of Pll 

For 811ample 131. we observe that 
llsort-of elephant)(Clydel. canarytClydel) and 
(elephanUClydel. (sort-of canaryHClydell are incompatib le 
pa,rs. Given efficient methods for detecting 
nc~tJb1lity of type predicates P. a. we can easily 
detect tnese new · incompatibil1t1es as well. using the 
rule tnat tsort-of Pl. Q are incompatible whenever P. 
Q .re Note. however that the stronger 1ncompatibihty 
observed ,n example (21 now fail s: ((sort-of P)(x). 
tsort-of O ll xll are compat ible even when P. Q are 
not a thing can conctt1111tbly be both a sort of an 
elephant and a sort of canary (consider mythS and 
fairy talesl. though tne actual existence of such a 
tnong 1e11en 111ow,ng prod,g1ous 1d11ance1 in genetic 
eng•neerongJ may be wildly implausib le. 

The examples so far can inspire the hope that 
the o,~ structures and algorithms we -have already 
oeveloped for efficient detection of auperord,nation 
¥\d ,nco~t1b1hty relat ,onsh1ps 1n predicate taxonomies 
are 1Yff1c1ent as well for detecting incompatibiht1es of 
hedged pred1c.1tes. This hope begins to flllter. 
hOweve,-, as we proceed to example (4) Curiously 
co•our predicates. which we might imagine to be 
part,cu!M"ly "prim,tive· and more simply structured than 
nominal predicates. appear to obey more complex 
laws Not only is it correct to say that 
1,sort-of tanltClyde). --<sort-of brownHClydel) for 
example. are incompatible. as in the strong analog of 
example (21. but the strong analog of 4 now holds as 
we lJ n certain cases; for example. if Clyde is sort of 
ye:1ow (or ye llowish) he cannot be sort of blue (Or 
blve1st\l If tnts incompatibil ity held in all cases. there 
would st, 11 be no need for speciahzed represent.itions 
of relationships among colol.l' terms apart from those 
which CMl be captured in a simple specialization lattice. 
However. this ,s not the case; whi le a colour cannot 
De botl'l sort of ye llow and sort of blue. 1t can be 
Doth sort of ye llow and sort of green. for example; 
on 1ome 1en1e. tt111 i1 bec,uae ye llow and green are 

mor e n11arly compat ib le than yellow and blue 

One possible solution 11 to augment the ba51c 
hiera, chy with special "sort-of " links. Ordinary links 1n 
, specializat ion US-Al hierarchy indicate subordinat ion. 
and the d orect descendants of a node are lmphcitly 
taken to be incompatible. The ·sort-of" links would 
exhaustively specify for each colour whether It can be 
·sort-of" another colour. 

One disad11antage would be the 1011 of the tree 
structure; for example, there would be two ·,ort-of" 
links connecting "chartreuae· to yellow ,nd green 
respectively. which are on separate br1nches of the 
basic hierarchy. Moreover. there would be very many 
such links. The most serious problem. howe11er. i1 that 
compatibilities and incompatibilitiea of n11w colour term, 
could not be predicted. For example. the mer e 
absence of any colour term w ith ·,ort-of" link• to 
both "blue· and "yellow" doe, not rule out the 
possibihty that Uiere could be a colour term with both 
links. 

Thia has led us to consider an approach which 
introduces ·strong incompat ibility· links instead of 
sort-of links (fig. 11. Two colours P. Q are taken to 
be strongly incompatible just in case another colour 
cannot be both ·sort-of P" and ·sort-of a·. The 
resultant gr_aph is rather pleasing and solves the 
problem of predicting incompatibility of hedged colour 
terms. · 

However, each new type of link introduced into 
, graphical representation of colours seems to capture 
only one type of relationship among colour terms. For 
example. the strong incompatibilities appear to provide 
no explanation of the intuition that If a coloix la 
·sort-of scar let" then it is not just ·sort-of red", but 
.simp ly red. whereas the analogous inference fa ils for 
·sort-of magenu·. (Though magent.i is a shade of red. 

bl U.(. 

purple 

reel 

Figure 1: Strong incompatibility links between 
major colour terms. (The remaining 5 terms black. 
brown. grey. white and p ink can be added es 
well) 

',, .. 
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a ·r.on-ot m;igonu· nuy be too f¥ towards the 
purple to be properly ca lled red) 

Ill. The cube model 

Such wbllet1H have led us to a third kind of 
rep,esenut,on. m0<e spec~llzed still than h,erarchie1. 
wnic:n tM.es quanrir.ative .accolflt of the ,(perceived) 
t~s1t,on of colours Those with experience in 
pa,nting or computer gr.aph,cs may be familiar with 
tnree d,mensi~I models of colour space. One of the 
s,mplest models for representini, colours as mixtur~s 
of pr11TUt1ves 11 the colour cube (fig 2). Starting 1n 

( b) 

f igure 2 (al.Cb): Two v,ews of the colour cube 

9rttl''I 

Figure 3: Strong incompatibility links seen as 
diagonals of the colour cube. 

one corner (white) each of the edges coming out of 
that corner is increasing in the intensity of a primary. 
Any plane passing through the colour cube. parallel to 
one of the faces will be constant in one of the 
primaries and will contain all proportions of the 
remaining two. Thus the corner s of- the- cube are: red. 
orange. black. purple. blue. green. yellow and white. 

It is interesting, to note that the star shaped 
graph of fig. 1; formed by the strong incompatibility 
re lations among the ma jor colours. can be embedded 
in the cube (fig. 3). Also. ;ilthough there is a smooth 
transition between any two colours. a given colour 
term corresponds to a certain sub-volume inside the 
cube. It becomes apparent that a criterion for strong 
incompatibility is that the defining volumes for two 
predicates are not ad11cent Similarly, two colour, are 
incompatible if the defining volumt1 are 
non-overlapping. 

As one can appreciate from inspection of fig. 
2. defining the subregions of the- colour cube 
corresponding to the natural colours- 11 not • · trivial 
task. /We are not concerned about exact parameters. 
but we do need to do justice to the shapes of the 
regions and their interrelationships In order to achieve 
our inference objectives.) Instead of wor.king directly 
with the primary values. we found it helpful to 
re-parameterize colours in terms «;>f 

purity = 

• 

and 

pure colour component 

pure colour component + black component 

pure colour component 

1 - white component 

dilution • white component 

where 
pure colour • 1 - white - black. 

"' max(red.blue,yellow) - min{red.blue.yellow). 



... nite • 1 - ~"ll'ed.blue.yellowl. 
blo. • ffllll(red.blue. yell owl • 

.-.d all q..iantities •• assumed to range from O to 1. 

A third quMtity is needed to define the hue of 
tr'9 pu-e colour component We will not go into 
details. sr,ce we have found the cube model to be 
non-optimal for our pcrposes. Despite its initial appeal. 
and althOugh it is as adequate as any model for 
oescnb1ng colours u additive or subtractive mixtures 
of three prim¥ies. it fails to include all distinguishable 
colo.rs Surprising as trus may seem. it is due 10 the 
fact tnat any three primar ies <:Jin. at best produce 
only p.rt of the whOle spectn.m of hues JJudd 19631 
Of coisse. any graphics tool that we can use to 
experiment with our model w ill employ wee primar ies. 
but nonemeless we prefer to choose a model that in 
rt>eory could depict all distinguishable hues. Moreover. 
we would lik e regions defining the natural . colour 
terms to be simpler than those in the cube model. 

IV. The c:ylinder model 

The cylinder model is similar in many respects 
to Otl'\el" we ll known models (Munsell 1969. Ostwald 
19691 in that the ~es are arranged in a circle around 
some axis and hue is specif ied by angular 
01s;:::acement The essential difference from the cube 
mocer is that the chromatic 1rainbow) hues are no 
longer 111ewed as composed of primaries. but simply 
as par11cu1ar angular pos itions re lative to a reference 
cirect1on 1say. scar letJ. Purity and dilution. as defined 
ear lier. are the other two dimensions. However. the 
·pure co lois component'" is no longer reducible to the 
c ,fference between the max and m,n of the primaries. 
bo..t s,mply represents the amount of single- hue colour 
which nas been "blended.. with certa in amounts of 
oiack ano white to produce tne co lour ,n question 
Pur,ty ,s O on the axis and increases radially to l . 
M\d dilution increases vertically li.e.. ax ially) from O to 
1. FOf" purposes of graph,ca l illustration. it ,s natural 
to SIYll'll<. tne top lwh,te, surface of the cy linder to a 
poll'lt In the resultant cone there are no paths of 
zero colo.r gradient (see fig. 41 

i di I v.:t·,on 
wh·,t.e ~ 

Figw• .it: The pi.rity- dilution- hue colour space. 
1llustnted ,s I cone. 

The cyhndef model not only encompasses 1 11 
colours. but in addition makes it possible to define 
co,o.rs u regions bO<l\ded by surfaces which are 
oefined s1rT4>ly by keep,ng one coordinate f1xe_d; _le .. 
cola., regions are p,e snaped portions of cyllndncal 
anruJ1. Of coi.rse. in a representation which stvinks the 
top s...-face to I poll'll such regions taper towards 
me top (f,g 5 1. · 

100 

Figure 15: The cone model as partitioned by the 
basic colour regions. Here the red and pink 
regions are taken ou.t to give a view of the 
interior of .the solid. 

V. Inference methods 

As emphasized ear lier. inference about coloura 
is only a _part of I general inference system The 11011 
1s to design a special purpose mechanism that, given 
two literals - consisting of possibly hedged and/or 
negated colour predicates applied to unifiable 
arguments will determine whether they can be 
resolved. i.e.. it will indicate when the literals cannot 
both be true at once. 

Going . back to question 4 of the introduction. 
alter resolving elephant(Clyde) against ~elephllnt(x) of 
the second clause 1n the usu.al w1y, we are left with 
grey(Clydel and yellow(Clydel thesa are the two 
literals supplied to the colour reasoning algorittvn In 
the model the predicates grey and yellow 1111111 
correspond to non-overlapping regions 10 that 
grey(Clyde) can be reso lved against yellow(Clyde) to 
yield the null c lause. thus yielding ·~elephanUClydel", In 
a standard proof by contradict ion. 

The following examples illustrate the same type 
of reasoning as applied to I stucturally different kind 
of question: 

Given lcnowl edgt1: tan(x) V ~elephant(K). 
~tsort-of brownl(Clyde). 
plus knowledge about colours 

Quesrion: 7elephant(Clydel 

This states that all elephants are tan and that 
Clyde is not sort of brown Since um ia I kind of 
brown it ought to be possible to prove that Clyde ia 
not an eleph1nt R11&olving the negation of this 
conclusion against ~elephant(x) of the I 1rst clause we 
obtain tan(Clyde). The litertls to be ruolved by the 
colour reasoning algorithm are now ·t11nlClydel and 
·~1sort-of brownl(Clyde)". The defining region for I.In ia 
included in that for brow!\ so ~(sort-of brown)(Clyde) 
can be resolved against un1Clyde). thua disproving 
"elephant(Clyde)". 
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2 Giv•n l.nowl«J(ltl: grey(1d V --e lephant(11). 
-.. , ort-of brown)(Clydel. 
plus knowledge about colours 

0-#ion: 7elephant1Clydel 

This 1s very S11TUIM to question 1, but here 
._. 11 not enough information to answer the 
quest,on. U1Ce the res~ literals ate gre11(Cl11del and 
--<sort- of brownkClvdel. It 11 clearlv possible for Clvde 
to be grey and not ,on of brown Thus we ca,viot 
t eaolve these cl.-uses. 

The above uamplea ind1c1te the need for: 
-11 e p<ocedure r•l•t,on which takes two colour 

p,ed,c1tes A and B and determ,nu the re lation · of 
B to A. by comp1ring their hue. puritv and di lution 
intervals. . 

2l I Ul:>le which suites whether for I given relation 
of B to A. and corresponding modes a. b (i.e.. 
hedged and/or negated or simple. as given bv the 
mo<11f,or1 for A and B in the literals) the literals 
CM'I be resolved 

- r• l•t Ion between A and I 

• II ®®~ ~ ~ !AfID] 
at111ple .,..., .. ,. •• o ... ,. r•solve 

.. .., .. ,.,.OQed resolve 

• •-.pie "•geted 
· hectu•d 

a1aple "•gated 

·-" atac:,1• r•solve 

h•~d hec>Qed reaolve 

.,.<><;Jed negate-d 
• heOg•d 

hedged negated 

n•o• ted a laJJI• r"eaotve resolve re101ve resolve 
- he<>ged 

neoated hedged resolve reso l ve re101ve 
·heaoed 

n• o•'•d negated 
· h•<JiJ•d .. h•ttQ•d 

f"-.gAt•d ~•ted 
.. heOgeO 

neo•t•d Ila.pie r e so l ve resolve 

... Qated ~ re•olve 

n<eU4led neg•t•<J 
-nec;g.CI 

negated negated 

fig~• 6: This Uble determines whether two literals 
Cir\ be resolved g,ven the modes of each literal and 
tne rei,t,on between the correspond,ng colour 
pred,cates The re1~11on s. depicted graphicallv in the 
u::,1e are · apart·. ".idjacent". · over lapping·. "included" and 
· centre - ,ncluded". 

The relation of B to A cm be one of the 
following 
(ii "apart" - iff one or more of the corresponding 

intervals fo< A and B i1 not overlapping or 
adjacent 

lill "ad jacenr - iff all o.f the intervals are adjacent 
and possiblv acme but not all are included Of' 
overlapping 

liiil ·overlapping" - lff all are overlapping and possiblv 
some, but not all. are included 

(iv! "included" - lff all of the interval, of 8 •• 
Included in A 

M "including· - lff 111 of -the interval, of A •• 
Included In B 

(vi) •centre-Included" - lff thav are Included and none 
of the corresponding intervals have common 
endpoints 

lviil "centre- including" - lff thev· are Including and none 
of the corresponding Intervals have convnon 
endpoints 

The table will contain one entry each for 
· "included" and "including· and for ·centre- included" and 
"centre - including· and the order in which the inputs 
appear will determine the direction of the inclusion 
Thus, when the Ulble is queried the included pred1c1te 
will always be in the position of 8. This is to avoid 
repetitions. 

IUI 

The reason whv we consider "included" and 
"centre - included" as separat.e cases is that the\/ do 
resl,!lt in different reso lving patterns. For e1<ample, 
although both magenta and fire - engine red are special 
cases of red and their regipn~ are thus included in 
that for red. anything that is "se>rt of fire - engine red" 
is clearly red, but something that is "sort of magenta· 
mavbe too far towards the purple to be cpnsidered 
red. 

Another distinction that ml.!st be made ii 
between basic and non- basic colours. Detailed criteria 
for "basicness· are list13d and discussed in Kav & 
McDaniel 1978. Mervis & Roth 1981 and Kav 1961. 
We take as basic the fo llowing 11 terms and no 
others: black, grey. white. red. orange, yellow. green. 
blue. purple, pink. and brown We fee l there is 
sufficient evidence in evervdav usage to assume that 
these completely partition the colour space. Non- basic 
colours. such as vellow-green. r'IIV\I, maroon. ate .. 
sometimes lie across boundari11 and in 11'\I case 
overlap one or more basic colour~. Region, ocuppied 
bv non- basic colours are generally l"'!lller. A result of 
this is that a// shades included b\l I non- basic term 
which spans two basic colour, lie near the boundar\l 
between these basic colour s. Thus, for uample, all 
that is yellow- green is sort of yellow. yet not all that 
is yellow is sort of vellow-green. 

These facts can be dealt with b\l pre-ordering 
literal pairs aA, . bB before table look-up. in a manner 
dependent on the basic or non-basic status of A and 
B. Since basic colours alwavs include non-basic ones. 
rather than vice-versa. ind to be consistent with the 
order alreadv · established for the including case. the 
non-basic term, if any. is taken to be B. If both are 
basic or both are non- basic and tt,e order 1s not 
forced by an inclusion relatjon._ . it is determined by 
ranking the literals in a prespec1f1ed manner dependent 
on their modes 1. b. and taking the "lesser" of the 
two literals 15 aA and the "greater" as bB. The 
ordering we use for the input literal modas to the 
table is: 

simple < hedged < negated-hedged < negated. 

The algorithm · can be summariz.ed as follows: 

Given clauses aA(xl and bB(K) where A and B 
are colour predicates and a and b are either 
· sort - of" "~· "~sort - of· or nothing, which correspond 
to "hedged", . "negated''. "negated- hedged" and "simple". 

.. ' 



respectJvely. f,nt detormme the relation between A 
and a 
Let 

b.asidx):true iff x is one of tho basic terms; 
less(x.y)z true iff x precedes y. as described; 

Then proc:oed as follows: 

begin 
r .. relation(A.81; 
b.l :• tuisiclAI; 
bb :• buic'81; 
If tr•·contre-included'" or r•·inctudod"l then UbleCb.a.rl; 
If 1,...· adiacont" or r=·ovorlapping") then 

If I ba and bbl then tablelb.a.rl 
else If (ba=bb and less(lb.all than . ta!:)leCb.a.rl 

else Uble(a.b.rl; 
end 

VI. Conclusion 

We conclude that there are classes of 
pred,catos which at first seem to require no more 
~ quasi-h,erarehical representations. but on closer 
examuut1on are soon to ca ll for more special ized 
representations of a quite different sort - in tho case 
of colours. a numerically coded ·spatial" representation 
The cy l,nder model we have proposed allows constant 
time compatibility check.ing of various hedged and 
~edged colour terms. m inimizing the need for 
combinatorial inference Tho model is also attractive 
for another reason tne colour cy linder could servo IS 
tne interface between the perceptual and conceptual 
systems of a robot; the required parameters should be 
quite easy to extract from the primary sensory data. 
and once extracted. could easily be used to compute 
an appropriate colour label 
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The Repreaentation of Presupposition• 
Uaing Dehulta 

R.B. Mercer 
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Thia paper i• • flr1t step towards the 
coaputatlon of an inference baaed on language 
.!!.!!• teni~ presupposition. Natural languages, 
unlike foraal language,a, can be semantically 
ambiguous. These ambiguities are resolved 
accordinq to pragmatic ~. We take the 
poaition that presuppositions are inference• 
generated from these pragmat_ic rule1. 
Prrsupposltlons are then used to generate the 
nreterred lnt<'rpretation o,f the ambiguous 
natural language sentence. A preferred 
interpretation can be circurovented by an 
e>epliclt inconalatency. Thia paper diacuaaea 
the appropriateness of using default rules 
(Re 1ter (1980) J to represent certain common 
exa~plea ot presupposition in natural language. 
we believe that default rule• au not only 
appropriate for representing presuppositions, 
but al,o provide a formal explanation for a 
precursory consi,tency- based presuppositional 
theory (Gaadar(l979)). 

lNTROOUCTION 

The aeaning of a natural language sentence 
includes the inferences that can be generated 
from the Bl'ntence t09ether with knowledge about 
the world and knowledg,e about language use. One 
type of inference which can be generated. in this 
a.snnar is called a presupoositl.on. What 
typitiu this kind of inference is thai: both the 
sentence and its negation imply the same 
presuppoaltlona. Originally proposed to infer 
the exlatence ot a referent, it ia now used to 
detine those inferences, generated from a number 
of lingui s ti c 1ituatlons, which pass this 
n~ation test. The following sentences show 
aoae prototypical examples of presuppositions. 
In each of these examples the positive 
a- aentence entails and the negative b-'senl:ence 
presupposes the c-sentence. 

Cla) The present king of France is bald. 
Clb) The preaent king ot France ia not bald. 
Cle) There exlata a present king of France. 
C2a) Jack'• children are bald. 
(2b) Jack's children are not bald. 
C2c) Jack has children. 
(la) Mary ia su~prised that Fred left. 
()bl Mary la not surprised that Fred left. 
(,Jc) Fred left. 

IOJ 

R. Reiter 

Computer Science Department 
Rutgers Unlveraity 

New Brunswick, NJ 08903 

(4a) John stopped beating the rug. 
(4b) John did not atop beating the rug. 
(4c) John has been beating the rug. 

Thia negation teat led to one of the early 
definitions of presuppositions 

If A and Bare sentences then 
A presupposes B lff 

(iJ A entail• B, and 
(ill _.,. entall1 s. 

It can easily be seen that under a bivalent 
semantics this deHni tlon lead1 to the 
unacceptable conclusion that Bis a tautology. 
This observation subsequently led to attempt• 
using multivalued semantics. Both Kempson(l975) 
and Gazdar (1979) give example,1 ,in which thh 
semantics also falls to generate the appropriate 
presuppositions. In parallel with these 
attempts at a semantic definition of 
presupposition, there were candidates for 
pragmatic definitions as well. There were two 
aorta of presupposition suggested. Firat, 
speaker presuppositions are those that the 
speaker assumes the listener knows. Second, 
"plugs, holes, and tilters• (categories of 
lexical items and the connectives and, or, and 
if •• ,then, which stopped, permitted, and 
filtered out presuppositions) were considered in 
Karttunen(l973,1974) as explanations for the 
presuppositlonal behaviour of compound 
sentences, Both of these approaches are 
convincingly argued against in Gazdar(l979 ) . 

The persistent theme in these early 
attempts by linguists at defining 
pr,esuppositiona, as summarized in l<empson(l975), 
Wilson(l97S), and Gazdar(l979) w,as that 
presuppositions are entailments of the sentence 
(and context in the case of the pragmatic 
definitions). Gazdar(l979) makes a major shift 
when he ·argues that presupposl-tlons should be 
defined in terms of consistency rather than 
entailment. His arguments centre around the 
other main issue for linguists, the projection 
problem, given the preauppoaiti'ona of a simple 
sentence, which ones survive the embedding ~f 
this sentence in a mor,e complex sente,nce. Hor,e 
generally, how does the con,text affect a 
sentence's presuppositions. 

An example of this contextual sensitivity 
follows, Under a •normal" interpretation, (4c) 



tn the eaaaple •bove c•n be •inferred• froa 
(4bl. But thia inference ia not an entailment 
ainc:e (4b) can be placed in a context which doea 
not Allow thia inference. 

(4d) John did not atop beating the rug 
becauae he hadn't started. 

Bence, a presupposition of a aentence la 
consiatent with that sentence, but when the 
sentence ia placed in a larger context, the 
presuppoaitioa aay be inconaiatent1 hence it can 
no longer be inferred. Preauppositions involve 
notions or incomplete knowledge and consequently 
non--.:inotonic systems of logic. 

We essentially agree with Gazdar•s 
approach, however we feel that hia solution la 
som..,hat ad hoc in that it is not a suitably 
formalized theory. In addition his theory usea 
a l!Odal sentential logic. We prefer a firat 
order representation of sentences. Also some of 
the questions that he poses cannot be answered 
within his framework, in particular1 why are the 
lexical and syntactic sources of presuppositions 
as they are. In all fairness it should be 
pointed out that Gazdar(l979) ia primarily 
interested in convincing the linguiatic 
cocmnunity or a certain pragmatic solution to the 
projection problea. 

The aain issue for us is the representation 
of presuppositions and the inferencing 
aechanilllaS required for genereting theae 
inferences in a coherent fashion. In doing so 
vot feel that our representation can provide the 
extra insight needed to answer the above 
question. In particular, we view 
presuppositions in a more general sense, as 
inferences generated in the absence of complete 
knowledge. Our proposal is intended to provide 
the required for.alism but keeps the essence of 
CazdAr's theory intact. 

Thia paper present• a 
representing presuppositions 
declarative aentences. 

framework for 
of asserted 

IU:PRESl'NTJNG PRESUPPOSITIONS USING DErAULT RULES 

Thia paper has a twofold purpose, 

(1) to provide a computational mechanism for 
computing presuppositions, 

(21 to furnish a formal explanation for a 
portion of the presuppositional theory 
in Gazdar(l979). 

In reference to (1) the only other attempts 
to compute presuppositions of natural language 
utterances have been Joshi and Weischedel(l977) 
and Kaplan(l979). Since the algorithms 
contained therein are based upon a theory of 
presupposition (Karttunen(l973,1974)), which has 
been refuted by Gazdar(l979), these approaches 
are no longer serious candidates for computing 
presuppositions. 

ln reference to (2) the tho,ory ot 
Gazddr(l979) uncouple• the generation ot 
(potential) preauppoeitions from the checking of 
their consistency. In contraat, our theory 
repreaenta each potential presupposition by • 
default rule. The proot theory tor detault 
logic provides the consistency checks required 
by Gazdar. 

Thia ia a novel use of default rules aa a 
repreaentational device. Reiter(l980) waa 
110tivated by a deaire to represent beliefs about 
inOOlllpletely apecified world•. He alao pointed 
out that default rules could be u1ed to 
repreaent prototypical aituationa. The novelty 
of the current application 11 that we are using 
detault rules to represent preterred 
interpretations of ambiguous linguistic forms. 

A default ~ la a rule of interence 
denoted 

ci (x) 1 HS (ii) 
w(1) 

where a(i), . 6(1), w(il are all firet order 
formulae whose free variable• are among thoae of 
x • xl, ••• ,XIII. Intuitively, a default rule can 
be interpreted aa •vor all individual, 
xl, ••• ,XIII, if a(x) is believed and it B(x) la 
consistent with our beliefs, then w(x ) may be 
believed•. (Reiter(l980)) 

Some example• should point out the 1aliant 
features. The first example will be given in 
some detail in order to describe the inferencing 
that leade to the preferred Interpretation 
(Wilson(l975)) of an ambiguous lexical item (or 
syntactic construct in later examplea). 
(Kempson(l975) usee the term natural 
interpretation.) Our solution ia to represent 
the preferred interpretation of an ambiguous 
linguiatic form aa the inference• obtained as a 
result of deducing the consequent, w(x), ot a 
default rule. The formal definition of •a 
presupposition of a preferred interpretation• la 
the~ the consequent of a default rule . 

F.xample l - Stop 

In this example e representa an event, and 
tl and t2 are time parameters meant to represent 
times relevant to the event, e. Even though a 
proper represention for contlnuoua actions haa 
yet to be obtained_ let uo assume here that the 
following meets our requirements for a 
definition of •stop•, 

STOP(e) <--~ (Etl t2).tl,t2, DO(e,tl) , 
-,DO(e,t2). 

That is, for our purpose&, an event stops 1ft 
there is a time tl at which the event was being 
done and a later time t2 at which the event was 
not being done. We can then generate the 
definition of •not stop" by a simple negation to 
obtain 



~P(el 4--> (tl t2) , (tl , t2 • DO_(e,tl)) -> 
DO(e,t2). (*I 

ror thi• particular ex1111ple the 4efault 
rule for •not atop• would be 

,-5TOP(e) 1 H(Et)D0(e 1t) 
(Bt)DO(e,t) 

Thia default rule now playa a crucial role 
ln 9eneratl119 the preferred interpretation. If . 
E 1• an e•ent and .,.STOP(!) ia given, tor examp1, · 

Jahn did not atop beating th, rug. 

than u•in<J the default rule va can deduce 

Oalnq thia inference, (*I, and the given fact 
~P(!), we can alao deduce 

(Et).DO(E,t) , (t') •. t,t' -> DO(B,t'), 

t h.tit is, there is i;,oa,e thie at wh.ich the event B 
was bainq done and it continue• to be done at 
all future timea . Thia matches our intuition• 
about the preterred interpretation of · •not 
stopping E". 

On the other hand, 

John dld not atop beating the rug becauaa he 
was never doing it. 

uaea the ·~ause clause• to indicate the extra 
quaUtlcation 

(ti .-PO (BF.A'I'-RUG (John) ,tl 

Oaing thi• qual,fication and (*) we can deduce 

-pT()P(BEAT-RUC(John)), 

a• required. Now t he default rule cannot be 
invoked becauae it• conaiatency condition la 
vlolated by the qualification. 

r.•a•ple 2 - Crlterlal and Noncriterlal 
pro1?4:rties 

In thia e•AJ11ple we . look at a type of 
ledc,i l preauppoaition which · ia baaed on the 
decldlng criterion for a lexeme'• meaning . Say 
then for purpose• or thla exaaple, that the 
detlnltlon ot •bachelor• la represented by the 
tollO\ling first order aentencea 

BACHELOR(x) <--~ K.l.LE(x) , ADOLT(X) , 
.....v.AAIED (X) 

Then the negation of "bachelor• would bea 

-.OACHELOR ( x ) <- -~ -y\ALE (X) V -,ADULT (X) V 
MARRIED(X). 

Thu s it the knowl edge base contained, 

,os 

MALE(John) 
ADULT (John I 

and it waa aubaequently provided with the 
knowle~ge that 

-,BA<;:HBLOR (JQl)I)) 

then it woul~ be poaaible t.o derive 
HARRIED(John) fro• the definition of 
-,BACHELOR(x). But if either of the flut two 
formulae are absent the definition of 
-,BACHELOR(x) ia inadeqyate to d~duce any of the 
remaining d,iajuncta. When · ua,d in a normal 
manner, however, •not a bachelor• typically 
mean• •a married ~dult male" vhether or not 
ADULT(x) and MALE(x) are ! priori knowledge. 
Being married or not married ls then the typical 
criterion used to decide one•a bachelor statue. 
The noncriterial parta of the definition have 
been referred to as the presuppositions of the 
lexical item. Hence the noncriterial parts of 
the definition are entailed in the positive and 
presupposed in the neg.ative u11ea of the lexeme. 
Thia knowledge of noncriterial patta of 
definitions of lexemes would thus be part of the 
knowledge base and could be represented aa, 

NONC(BACHELOR,MALB) 
~NC(BACHELOR,ADULT) 

In the same manner as Example l, we capture the 
pragmatic r4le for generating presuppositions in 
the follO\liog default rule ~1 

-,P(x) 'NONC(P,Pl) IM Pl(x) 
Pl(x) 

Hence in situations w~ere 'the age and sex of the 
non-bachelor are ~ot knovn, the age and sex can 
be presuppoaed. Por ex11111p~e 

Hy cou,ln ia not a bachelor. 

~uld be represented as, 

-,BACHELOR(cl) , (*) 

One Instance of the default rule achema above 
ha 

,13.a.CHELOR (cl) , NONC (B.a.C!IBLOR ,MALE) t H MALE (cl) 
MALE(cl). 

which would gener~te MALE(cl) and similarly a 
aecond instance wo~ld give ADULT(cl). Hence 
these are the presupppsitions of -,BACHELOR(cl). 
From (*l, these twQ default consequencea, and 
the definition of -,l3A~!iELC:>R, the desired 
MARI\I!D(cl) can be derived. 

Example 3 - Factive verbs 

Factives are a eubcategory of verbs vhich 
can take a relative clause and which pres~ppose 
that clause, that is, normally imply the 
relative clause whether the verb is negated or 
not . For example 



Jann ,egreta th•t Hary C4llle to the party. 
John doea not regret that Mary came to the 
party. 

Onder nonul circumstances, both of these 
aentences imply that 

Mary cue to the party. 

We need the folloving axiom schema1 

FACTIVE(P) • P(x,,) -> - (•) 

where - is any proposition. In addition, we 
propose the following default rule schema to 
provide the necessary presuppositions of 
factivesa 

FACTIVE(PI , -.Pix,~) 

where - ls a proposition. Suitable instances of 
these scheiaata for the above example would take 
R...."'GRET for P, John for x, and COME(Mary,partyl) 
for ~. ~ote that the knowledge base must 
contain the linguistic fact FACTIVE(REGRET). 

Thus in 
factive verb 
its negative, 
complement. 
in a context 
default rule. 

its positive occurrence, the 
entails its complement, whereas in 
the factive verb presuppose• it• 
This presupposition can be blocked 
that blocks application of the 
For example 

John does not regret that Mary ·came· to the 
party because she didn't come. 

roraally, ve view thia sentence as providing the 
inforaation 

-IX'IHB (Mary ,partyl). 

Proa 1••1 and a suitable instance of the axiom 
scheaa (*) we are able to deduce 

-iU;:CRt:T (John ,COKE (Mary ,partyl)). 

Moreover, the given fact (**) blocks the 
application of the default rule schema thereby 
preventing the derivation of the •normal• 
preauppoaltion COME(Hary,partyl). 

rxample 4 - Pocus 

TwO aethods of focusing parts of sentences 
which produce presuppositions are1 (1) a 
synt.actic aethod called clefting (clefts and 
pseudoclefts), and 12) an intonational method 
called contrastive stress. 

£!!!!! ~ pseudoclefts. We do not define 
theae two notions, instead we give an example 
which points out their important features. 

Cleft of •John caae (did not come).•, 
It was (not) John who caae. 

Presupposition: Someone came. 
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~seudocleft of •John wanted (did not want) 
the dog.•, 

What John wanted wae (not) the dog. 
Preeuppoaition1 John wanted eornething. 

Contrastive stress, Normal etreaa occura 
at the end of a~encs, but any of the 
co.natl tuents in a sentence can be streesed with 
certain presuppositional consequence•. If we 
have the normally stressed 

Bill did not wreck this truck. 

this could ·be represented as 

"?'IRECK(Bill,truckl). 

But we need some method for repreeenting focused 
items wherever they occur. We will uee 
A-abstracted predicates as in Nash-Webber and 
Reiter(l977). The representatione (disregarding 
tense) tor the focused eentences are then, 

Cleft1 It was not John who came. 
,(AX COME(x)lJohn 

Pseudocleft1 Whet John wanted waa not the 
dog. 

,(AX WI\NT(John,x)Jdogl 
Contrastive stress, Bill did not wreck this 

trui:ik. 
(Underlining signities 
stress.) 

,bx WRECKlx,truckl) )Bill 

We propose the tallowing pragmatic rule, 

,[Axpl(x) ]u I H(Ey)pl(y). 
(EY)!J (y) 

The presuppositions for each ot 
focused sentences would then be 
appropriately. For example, given 

the above 
generated 

!!!.!!, did not wreck this truck. 

which ia represented as 

,(Ax WRECK (x,truckl) )Bill 

we can derive the presupposition 

(Ey)WRECK(y,truckl) 

that ia, 

Someone wrecked this truck. 

CONCLUSION 

Thia paper regards preauppoaitiona as 
inferences derived partly from pragmatic rules 
(conventions of language use), and discuuea the 
suitability of using default rules to repre1ent 
such rulee. The preferred interpretation or 1n 
ambiguous lexical item or syntactic construct 
can then be interred u1in9 the derived 
presupposition,. 
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