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PREFAC E 

At the f ir s t co nfe r ence o f the 
Cana di an Soc i e t y f or Computation a l Stud ies 
of Int e ll igence he ld in Van couve r j n 1976 , 
i t was dec ided th a t the organi zation would 
hold a na t i on a l mee ting e ve r y oth e r year. 
Th e obj ec tives o f the conf e r ences are t 0 
fos t e r th e de ve lopm ent of Artifi c ial 
Int e lli ge nce and Cogn i tive Science in 
Cana da and t o prov i de a f orum f or th e North 
Amer i can AI Commun i t y during years wh en no 
Interna ti ona l Joint Con fe r en ce i s he ld. 

Many peopl e h av e he lp e d t o make th e 
Second Na t iona l Co nfe r e nce poss ibl e . Te d 
El cock was cha irm an of t h e Progra mm e 
Co mm i tt ee wh ich a l so i nc lude d J . S . Br own , 
Go r don McCa ll a , Je rry Hobb s , St even Zucke r, 
a nd Ray Re it e r. Al an Ma ckwor th k indly 
ag r ee d to give the key not e addr ess . Th e 
De pa rtm ent of Comput e r Sc i e nce a t th e 
Univ e r s i ty of Toront o and it s chairman , 
J . N. P. Hum e , provi ded us with a base of 
opera ti ons . Pam Li nn ema nn, Te r esa Mi ao 
a nd Winni e Gree n go t u s ove r a dm i nis tr a t ive 
hu r dl es. Gordo n McCall a pr e pa r e d th e 
proceed i ngs . Th e cover des i gn is by 
Ma ri o Ca r va j a l t hro ugh th e co ur t esy of 
Gag~ Educat i ona l Publi s h i ng Ltd. Al ex 
Bo r g id a and th e De par tm e nt o f Comput e r 
Sc i e nce stud ent s J. All e n, R. Cohen, 
M. Horri gan, H. Levesq ue , C. Reason, 
P. Schn e i der , J . Tsotsos and H. Wo ng co n 
trib ut ed i deas a nd peopl epower wit hou t 
whi ch t hi s co nfere nce could never have 
bee n he l d. Many warmes t tha nk s to a ll of 
th em. 

C. Raymond Pe rr a ult 
Ge ne r a l Chai rm an 

PREFACE 

La Soci e t e Cana di enn e des Etudes 
d'Int e lli ge nce pa r Ordinate ur dec ida a so n 
pr emi e r c on gr es qu i eut l ieu a Vanco uver 
en 1976 d'organi se r de t e ll es ren contres 
tous l es deux ans . Le but de ce s r eunion s 
es t de promouvoir l' ep anou issement de l a 
r e ch e r che en l'Int e lli ge nc e Arti f i c i e l le 
e t e n Sci ences Cogn i tives au Canada, a in s i 
qu e de f ournir A ce tte commun aute un fo rum 
nord- ame ricain t haque annee ou n' aur ai t 
p as li eu un e co nfe r e nc e i nt e rnat io na l e . 

La t enu e de ce de ux j ~me c on gr es a urai t 
e t e impo ssi bl e sans l a coopera ti on d 'un 
gr and nombr e de pe r s onn es . Te d El cock a 
coordonn e l es effo rt s du co mite r espo nsabl e 
du progr amm e . J. S . Brown, Gord on McCa ll a , 
J e rr y Hobb s, St eve n Zuc ker , e t Ray Re i ter 
e n ont au ss i fai t pa rti e. Al an MHckwo 1·t h 
a ge nt i ment co nse n t i a serv ir de co nf6ren
c i e r i nv ite. Le departemen t d'in fo rm a t i qu e 
de l'Universi t e de Tor on to p a r l a voix de 
s on dir ec t e ur, J .N .P . Hume, nous a fo ur ni 
une base d'op era t ions. Pam Li nn emann , 
Te r esa Mi ao e t Winni e Gr ee n nous ont ajdes 
s ur mont er un e kyr i el l e d' obstacles 
admin is tra ti fs . Gord on McCa ll a est 
r es pon s abl e de l a p rep a r a t io n de ce vo lume. 
Le gr aphiqu e de l a co uvertur e es t de Mari o 
Ca rva j a l, gr acie use t e de Gage Edu ca ti ona l 
Publi s hi ng Ltd. Al ex Bor gi da ai nsi q ue l es 
e tudi ant s J. All e n, R. Co he n , M. Horriga n, 
H. Leves que, C. Reason , P. Sc hn eider, 
J. Tso t s os , et 1-1. \\lo ng on t cont ri buc l e ur 
i mag in a tion, l e ur t e mp s , et l e ur la beur . 
J e l es e n r eme r cie t ou s . 

C. Ray mond Per r ault 
Directe ur 
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SLEUTH: AN INTELLIGENT NOTICER 1, 2 

Dr. Steven Rosenberg 

Ma ssac hu setts Institute of Technology 
Artificial Intelligence Laboratory 

Abstract 

Traditionally, programs in AI hav e 
t1s ccl mi c ro - worlds with completely defined 
c,c m:rnti cs. ~Inst real wor'ld domai ns differ from 
thc s r micro - worlds in that they hav e an 
incomplete fActual cl.atabase which chan2es over 
time. llncl c r s tanding - in these domains can be 
thour.ht of c1s the generation of plausible 
i n f c r c n r c s h h i c h a re a·b 1 e to us e t he fa c t s 
c\Viiil;ibJc, c1 11cl r es pond to changes in them. 

A t r c1 cl i t i o n a 1 r u 1 e i n t e r p r e t e r s u c h a s 
Plann e r ca n be extended to construct plausible 
inf e r e nces in these domains by A) allowing 
a s s ump t i on s t n be ma de i n a pp 1 y i n g r u l es, 
rP ~, 111 tin g in s implificatio ns of rule s which can 
he 11 s r·(l in ,111 in co mpl ete database; B) ~!onitorinr, 
the a11trreclent s and consequents of a rule so that 
in fr r r nrc s c.:i n be maintain ed over a changing 
d.:i I a \,.1 ~. r. 

Tl1 r rc s ul ting c hain s of inference provide a 
clyn;imic d e s cription of an event. This allow s 
general rc.:isoning processes to be u sed to 
1111 clrn l .:inc\ in clomain s for which l a r ge numbe r s of 
Sc hrma - Jik c t e mplate s have seemed the best model. 

Pa rt I 

_Jn t ro'111 r tio11: Supp ose that you -we re a farmer, ancl 
Cil,ll 1-:rr k r nu mu s t make de_cisions about your 
1,:Jlf'.1t . cr op h,1s ed on the the price you - expect to 
,;Ct for it. You formulate the hypothe sis to 
ro11r s cl f: "wi 11 the price of wheat rise?" ·in 
m,1king lhi s clrci s ion you have available a strea m 
o f r on s I ii n ti r c ha n g i n g i n f o rma t i o-n rang i n g f r om 
~cc kl)' r rpnrts o n j lobal demand to your own 
l-11011"1 ecl,:e a bout the weather and state of your 
c r o p . A s ii n a i d i n ma k i n g y our d e c i s i o n y o u_ 
h'Oll]Cl ] ik e to know Whenever these facts can be 
organi ze d into a descriptive sce n~rio ~hich 
s up r o r t s r our hypo the s i s.. 

/, '/'/,i_, rr .,rrirrl, u:n., ~"l'f1nrl,•d in rnrl hy /IHP/1 ·,,nnlrn"I NOIHl/1 -

7!i - C- Oli1:I . 

2. Thi ., rf' .<f'nrrl, u:n .< nid,.d . /, ._y mlln_y fruitful rm11,rr.,n1ia11., u,ith 

1/,r mr111hrr., nf tl,r Ill /nh, f"'rlfru./nr/y /rn Cn/d,1ri11 1t11d Jim 

Stn11 .,_r;,./,1_ 

1 

This i s a task which cal'l Int e llig e nt 
Noticing. It i s the sort of thing that we all clo 
1d1 e neve r we fol low reports of develop-fng eve nt ,, 
s uc h a s e le ct ion campaigns. It is a type of t;1 s k 
1d1ich can be clifficul t to do when the amount nf 
informat ion available is 'large a nd change s 
freq u en tl y. For i n stance, i f you were ch ,Hg e cl 
with preparinR the Pre~ident•s · 9aily n ews 
s ummary, you would ha.veto read hundr eds of 
r e port s eac h morning, and analyz e them in 
s ufficient detail to summari ze only- tho se part s 
which we re r e levent to the pr es ident' s concerns. 

In this paper I will discuss the des i Rn of ;i 
pro g r a m, SJ e uth, for perfor min g in t e l I i~ c nt 
noti c in g. The program's intend ed r o l e i s tn 
se rv e a s a consultant to a (lecisio n ma ke r, hr 

se rvin g as an int e lli ge nt not.ic er. Sl e uth' " 
purpose i s to r ecogn_i ze eve nt s in common s e n se 
domain s which s upport the hypoth eses it i s g iv e n, 
a ncl to keep th ese sce nario s current 1<1hi I e t he 
information c ha ng es. Ideally, Sleuth s houlcl hr. 
s nrnrt e nou g h to alert us only when clisparatc 
pi eces nf information can be conn ec ted in a 
pL1u sahl e sce nario. Thus SI euth mu s t be more 
pm-' crf ul than a keyword_ type o( syste m. Sleut l1 
mu s t hr able to make inference s sn- th;it th e 
numher nf f;il se alarms g iv en i s low. 

Gene r a l I s s ues in Int e lli gent ~nt i c ing 

" Co mmon s ense domain s" ar e th e r r.il l i,;or lcl 
clomain s 1,hich everyo ne · und e r s tands; wh i c h cl on' t 
requir e great problem so lvin g s kill s . rnmmon 
se nse clnm.:iin s s hare certain feature s . They arc 

Al In co mpl ete 
P.l lln s tabl e 

Ther ;ire incomplete becau se not al l th r. 
inform;i ti on 1,: e might nee d in ord~r to m,1~c ,111 

inf ercnre i s available at a particular timr.. For 
i11c,tc1nc e , if you mu st decide if the price o f 
1d1C' ilt i :. going to rise, you may kno~ only th e 
s upply, ancl not the demand for wheat. Th e y arc 
un s table s inc e the particular s ub set of 
information available can c ha nge fairly rapidly 
in the r ea l world. This gives repre se ntation s of 
the se domain s a feature of in stab ility . 
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Each week the farmer will receive diff ere nt 

report s concerning his wheat crop. Each of th ese 

may affect hi s calculations concerning the price 

o f 1, hea t. Ho weve r, si nce the variou s reports 

arrive a t diff e r e nt times, at any one time s ome 

pi eces of information necessary for makin g a 

ctici s ion may be missing. 

Knowled ge based approaches to under ~tanding in 

co mm on se n se domains have focused on the use of 

frame s or s cripts (Cull ingford, 1977; De Jong, 

19 77 ; Rrig e r, 19 77) .. This has been a s uccessfu.l 

ap pro ac h in domains with well str uctur ed 

se manti rs in whic h new information can be vi e we d 

a s i n s t a ntiatin g s tatic frames. 

ll o11r\·e r, for complex eve nt s it is i mp·oss i bl e 

tn gi\'e ,,tilt i c desc riptions which enco mpass a ll 

a l t.ern .1 ti \'CS. In tel I i ge nt noticing ha s a prob! e m 

s olvin R flRvor In that the goal is to try a nd 

crr.qt e .1 pla11 sa bl e s cenario out of whatever 

piec es of inf o rmati o n. happe.n to be available. 

Th e dc s i Rn o f Sl e uth extends traditional problem 

s olving i!pproac hes to common se nse domain s. It 

tr ys to pr ov id e a mo re unifi e d view of problem 

s olvin g a nd co mm on se.n se under s tandin g by 

co n s id cr in R the creat ion of eve nt de sc riptio n s 

fr o m a Ri \'e n set of asse rtion s to inv o lv e a 

se ri es n f inf e r e nces which link these asse rti o n s 

in s upp n rt of so me central hyp,ot hes i s. The 

ju st ifiration for t hi s dynami c view of event 

in s t a nti at i on d e ri ves fr om a n exa mination of t he 

prop e rti e~ of c omplex event s. 

/\l E\·rnt s have f11zzy bound a ri es. 

(on s id r r a c omplex 

i ll\' , I s i o n of J. eha non. 

till ,, r\·e nt ? h'e co ulcl 

eve nt , s uch as t he recent 

What are the compo ne nt s o f 

d e fin e it as co ns i st ing of 

,t l 1 a r 111 e cl c 1 a s hes between I s r a e l i force s a n cl 

ralr s t· ini a n s a ft e r I s ra e li troop s crossed t he 

hordcr. Jl m:eve r, so me peo pl e might al so includ e 

t l1 c p rev i ous raicl in to I s rael which provok ed the 

inva c, io11. h e could go eve n further, and expa nd 

nur d rsr ri ptio n to in clude the Unit ed Natio n s 

mer.1 i ll f. :, on t l1e in vas ion, the attitude of Syria, 

n r eve n the eve nt s that l ed to the c r eat ion of 

th e ·r .1 lr s tini an r ef ugees. There i s no fixed 

clef i n i I i On Or ~. in g l e fr a me for th i S e \I e n t. I. i I; e 

111 .1 n )' o t h Pr s i t ha s f u z z y b o u n cl a r i e s . LI s i n R 

inf rrr:n,rs t o I ink t he available f acts yie ld s a 

d )' n a 111 i c d r s c r i p t i o n f o r a n e v e n t . T h e 
"l·, 011ncl.1rie :; " ca n be exte nd e d at will by making 

furtl1r-r infrr c nc es to in c lude more facts. 

H) l:\'rnt.s ilre not "things". 

Fo r r x a mp l e , cons id.er I s. r a e 1 i v e r s u s 

l'al es t.inian cl csc ription s of th e inva s ion. 

lnf e r c nr e pro cesses are flexibl e e nou g h to 

capture thi s di s tinction by applying diff e r e nt 

rul es of inf ere nc e to so me initial hypoth es is to 

rr nrr a t r diff e r e nt c hains of inf e renc e linking 

ell ffercnt se t s of a sse rtion·s in support of the 

2 

same ce ntral hypothesis. 
C) Eve n ts have variable instantiations. 

For any particular kind of event, a different 

s u\Jse t of features may · be missing for eac h 

in s tance. By u s in g chains of ·inf e rence to 

con n ect assertions we can eva luat e the 

plausibility of any particular event de s cripti o n 

without nec essa rily having to s pecify befor e hand 

all acceptable partial lnstantiatJons. 

D) Anything could be rel'evant. 

If we i g nor e plau s ibility, .we can create an 

event d esc ription with a lmo s t any set o f 

a ssert ion s . For exa mpl e , if we follow .s port s ,: e 
mi g ht po s tulat e a sce nario in which th e Texas 

Ril ngers win t he worlcl series. We do not wa nt to 

cxc l ucl c s uc h far f e tched sce narios a. priori from 

th e range of poss ibilities. Indeed, we wi s h t o 

do ju s t t he o ppo s ite. We would lik e to r eta in 

t he ability to create event descr:iption s which 

involv e a give n se t of facts, and th e n j ud Re 

1,•hcther t he sce na rio i s pl a us ibl e o-r not . Thi s 

nllo1v s 11 s to adj u s t the false alarm rate to 

co rr es pond to th e expected uti 1 i ty- of· t l1 e rc s ul t. 

Thrr r arc spec ial JHO?l e ms in r ecog ni z in g ;i n 

evr n t which ar i se from it s eise n tia ll y dynami c 

na t ur c . f or in s La nce the assertions co mpri s in g n 

pa rti c ul ,H even t may be added to the d atabase 

on·r a pe ri ocl of time. Thi s correspond s to fa c t 

that evr nt s occ ur se qu e ntiall y over time. 

Seq ue nti a l in :;tant i a ti on of an eve nt ca n l ea d t o 

prohl c m~ .. 

Al Curr e nt assertions may become ob s ol e t e, 

cha nge or lle d e l eted before t he final compo ne nt s 

of th c d esc ription i r e added to the datah ase. An 

ne nt .cle s cript.ion i s built on s hiftin g s a nd s , s o 

t o s pr.1k , a nd in ge ne r at in g th ege d esc rip t i o n s wr 

11111 s t hr a hl c t o r es pond t o t hese c han ges . 

P.l r.o nclitionr1 .lit)' in th e r ec ogniti on process. 

ldtrr c 1·.'r go cl c pe ncl s on what ha s go ne before. For 

exam pl e , in a condition call~cl Fr ost Hea vin g , a 

scquen,e of thaw s a nd s ub s~qu e n t frGezes ca n tcar 

t lir root s of the wint e r wh ea.t c r op. If hm1cve r, 

a t ha1·.' i s fnl l owed b y apother thaw, t~c next 

fr rnr 1d 11 not damage the roots. Co nsrq ur ntl y, 

tlw orclrr in ~:hi c h t he freezes a nd tha,: s oc c ur i s 

.i11 ::. t as important a s th e numb e r. Some ho,., wr mu s t 

~rep a h i s tory of th e calcu l a ti o n. Thi s ,1111 

.1Jlm: 11 s to cl r t er min e which f ea tur es to attend t o 

hasc cl on tl1 e f ea tur es we have a l r eadi sec 11. 

Part I I 

In thi s sect ion wi ll discuss ho1v a 

tr acliti o n.11 rea s oning prog ram, s uc h ilS Pl a nn e r, 

ca n ll c ex t. e ncl e cl for u se in a domain ,.' ith 

i ncn mpl ct.e information. Con s id e r, for exa mpl e , 

11 01·: a f.1 rmc r, (l et ' s ca ll him Farme r ~la c Dona lcll, 

mi g ht go i1ho11t makin g weekly dec i s ion s co nce rnin g 



hi s crop of wheat. He formulates the hypothesis: 
""' ii·! the price of wheat rise?" . If he can 
ge ne rat e a sce nario from available information 
which s upports this hypoth.esis, he will adopt one 
set of farming s trategies; -if not, a nother. If 
Farme r Macdonald ha s a consultant program which 
re s r111ble s Planner ( Suss man·, Winograd, a nd 
Charniak, 1971), he mfght formul'ate the problem 
a s fol l ows: 

(Thgoal (price - increase wheat) $?T) 

Thi s 5:oal i s a hypot he s i s about the state of 
the wor ld . Th e con s ultant mak es inference s o n 
th e current se t of a ssertions to see if an eve nt 
cl csrr iptinn s upportin g it can be generated. h'e 
ran define an e vent as being a set of asse rtion s , 
ju ,, 1i ficd h y rule instances, which s upport s ome 
central h )' poth es i s. If far mer · MacDonald' s 
a ss i s t a nt know s the following theorems a nd 
asser tion s , it will be ab le to co n s truct a 
p 1 a u s i h 1 e c li;i i n of i n fer e nc es: 

<T hco ns e Thml <x) (price- incr ease $?X) 
<Thor CT l1goa l (S up pl y-& - de mand $?X) 

<T hgoa l (Spec ula tion $?Xl)l 

<Thcon s c Tllm 2 (x) (Suppl y-& - Dema.nd · PX) 
(T li e o ml 

( <Thand (T hgoa l supply $?~) 

(Thgoal dema nd $?X ) 
(T hgoa l carrtover $?X) 

(greate rp (carryover x) 
(( s upply x) - (d ema nd xl)))) 

CTl1 ,1s ~. r rt Supply Wh eat 180 ,000,000 bu s he l s ) 
CT has :; c rt. Dc ma ncl Wheat 170,000,000 bu s he l s l 
CT ha ss c rt Ca rr ro ve r Wh ea t l S, 000, 000 bu s he l s ) 
<T l1 i1 ss n t o lcl - s uppl y wheat 182,000,000 bu s·he l s ) 

Tl1111l :; pf'c ifi es th a t to s how a pric e in c r ease 
fo r 1,: h ril t, e ith er of two s ub goa l s can b e 
,1 t te mpt ed. The fir s t s ubgo.a l specifies a patte rn 
1v hi c h matr hc s t hat of Thm 2. Thm2 wUl s uccee d 
onl y if th e cliffere nce be twee n s upply and cle milnd. 
i s g rt·f! t e r thi s ye!lr t ha n la s t. If so, Thml 1dll 
~. 11 r,rrcl. !\ pri ce in c r ease for wheat i s inf e r e cl, 
,11HI F;i r111 e r ~la c donald can in crease hi s wheat 
pl ;i n ti n,: :c,. <No t e that we a r e s implifyin g the 
cl ec i ,, i o n pro cesses of a far mer; he has not 
l oo ked ;it cl e m~ncl for a lter nate crop~ ; wh e th e r 
h i s prnclu c tion cos t s on wh ea t have go ne u.p; no r 
what s ort of grow in g seaso n i s predicted. 
l·lm.'cve r , our purpo se i s not to s how how Pl a nn e r 
rc1 n he use cl in farming, but to illu st rat e so me 
l imit a tion s of Pl a nn er. ) We can · illus trate t hi s 
1:rc1p ll icly a s fo llow s: 
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Wheat Price Increase? 

i 
tCarryover - (Supply - Demand) 

/ I ~ 
Demand Carryover Supply 

Curr e nt de ma nd for wheat is reported weekly by 
t he U.S. D. !\., based on dome s tic r e port s, a nd 
sa tellite ob se rvation s of foreign l a nd s . Eac h 
week , as farm e r Macdonald reads hi s news l et t er , 
he mark s ex i s tin g a sse rtions as old, and add s new 
on es . 

A) Curr e nt information is markecj a s old, or 
erased: 

(Thgoal (de mand wh ea t $?X)) 
(Thassert (old demand wheat $?X)) 
(Thera se (d e ma nd wheat $?X)) 

Bl New info r mation i s asserted: 

<T hc1s s e rt: <cl e mand whea t 180,000,000 bu·s he l s l 

Suppo se that the nex t week, due to ve r y fo u .r 
ll'eat hcr in ce ntra l As i a, no sate llit e photo s arc 
take n. As ,1 r es ult, t he ~. S. D. A. i ss ues no nn: 
de ma nd statist ic s . How e ver, t he o ld d r: ma ncl 
va lu e s lrnve a lr ea dy bee n e rased. Thi s time, 11·111:: n 
t l1 e co ns ul t c1 nt t hin ks about th e pri ce of ~;hea t, 
t il e pr ev iou s inf e r e nces woulcl fail, s in ce no 
As s e rtion mAtchin g t he pattern for (Demand h' heAt 
FXl ,,: nulcl he fo und . 
pr o\'iclrs a s trat eg y. 
t he cl ;it;i basc , Planner 

For s·uc h cases , Pl a nn r r 
I f an assertio n i s not in 

wil l try and pr o~e it: 

(Thcon se Tilm 3 (x) (de ma nd $7X) 
(Thr oncl <<Thancl (thgoa l domes.t ic - de ma nd xl 

( thgoal forei gn- de ma nd x)) 
<Pl us (clomes tic - cl e mAncl x) 

(for e i gn- clema-ncl xl n l) 

Theo r r m :1 s tat es t hat to cl ecluc e clcmilnd f o r i1 

co mmorli t y, fine! t he foreig n ancl cl omf:,,.ti c c\r 111 .11lCl 
f o r t hi ~ cn mm ocl i ty, a nd acid th ese to ge th er . I f 
ther e a r c a s se rtion s f or for e i g n and cl omrstic 
r1 f:' 111 ,1 ml , t h i s t he ore m w o u l cl s u cc er rl. H n ,.: r v c r , 
s inc e t.lw totA I de ma nd r epa rt e e! by t he U. S.D.i\ , 
i s b!l s r cl c,n t he missi ng es timates of f o r e i g n 
cl c m,111 cl, Th m 3 w i ,11 a l so fa i 1. I n t h i s ca s e , i f 
t h e r e a r c n o o t he r me t h o cl s f o .r p r o v i n g t 11 e 
mi ss in g assertio ns, the con sulta nt mu s t g ive up . 
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Thi s pr ese n ts a fair l y brfttle mec ha n is m for 
cleal Ing 1-i th cl omai ns which s hare the propertie s 
of incample1 e ness a nd in stability. If the needed 
a s s e r t i on s a r c not i n t he ct a ta ba s e, ,a n d : f t hey 
ra nn o1 he infer ecl, the consultant w·ill fail. It 
1d ll fai l , l1m:eve r, not nece·ssari.ly becau se it l s 
1vro11 g, hut hrcause ~ot en.ough · information exists 
to 111.:i~e inf e r e nces. People are not quite so 
hri1· 1J f· rr.:i,, oners, si nc e they often cannot 
pos trnnf' d rc i s ion s until more knowledge · is 
il\'ili l a hlr . l'nr ex;imple, Farmer MacDonald mi ght 
r r,1,.0 11 th .:i t as J ong a·s the sttpply of ~: heat is 
dec r c,1,,i ng, it will be worthwhi.Je to pl a n t mor e 
r r ~: .:i r ct I r s s o f cl e m a n cl • ( N o t e : I a m n o t 
s u5:,:es tin g t lrnt this is t he "best" decision; 
mr r e l y t IHI t i t i s a p J au s i b 1 e . cl e c i s I on, fl n cl 
repre se nts the sort of flexible reasoning which 
people are r.:ipable of.) Bj being willi ng to make 
a,,:, umpt ions, Farmer Mac Dorta lei is ab l e to u se a 
form of .:i r1ile which can operate on the 
infornvition availab l e. Ive might express thi s hy 

mocl i fy i ng TJ1m 2 to: 

(Thcnn se Tilm 2J\ (x) (Suppl y-.&-de mand $?X) 
(T hco ncl ( (T J1 .:i ncl (Thgoal s11ppl y $?X) 

(T hgoa l demand $?X) 
(Thgoal carryover $?x)) 

(gre.:iterp (carryover xl 
((s11pply x) - (demand xl))) 

(The! se 

<Thor 
(Thgoal supply- decrease S?X) 
(T hgoal demand - in c rea se S?Xll))l 

I f t he f 11 J 1 s e t of. ass er t i .o n s co n c e r n i n R 

s uppl )', clr:ma ncl and ·carryover are ·11n availah l e , 
Tm ,'J\ 1101.; ,, t1 ,:Rests e l t her trying to. prove that 
:, llppl y lr a s clccreased, or demand· has increased. 
Ry c r c,q tin R goa l s that require only a s ub set of 
t he assertio n s t hi\t our ·original theor em 
r rq11i r rct, Thm2A s tarts to· captu.re our notion of 

!J.'..!s.:.._J:.!_!1) l:.!l f i Ca t i O n , 
Thm )J\ d ocs not quite capture our intuiti o ns 

cl hn11t si mp! i fication s. A r.ul e s hoµld g ive advice 
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about whi c h other t heore ms can functio n in it s 
s t ead as simplif i cations. We can then choo se to 
us c t h i s adv i c e or not, de p e·n d i n g on our. 
s trateg y. Ry treating si mp lifications like ot he r 
goa 1 s in Thm 2J\, we J oose t hi .s intuit ion. Mor e 
i mp orta ntl y, whil e we can ex pres s s.i mpli ficatio ns 
of r ul es as t heore ms of the sa me soit as oth e r 
t h e o r e m s , t he y a r e n o t e q. u i v a 1 e n t t o o t h e r 
co n se qu e n t th e or e ms. A sl mpli fi'catio n is not 
use d as a s ub -goa l · in insta nti ating a theorem. 
ln stecld i t replaces t hat t heorem and is a n 
cllterncltive method for proving that theorem' s 
goa l S ,ri1•r11 1/,n rn11rlitin11nl drr.u.m.,1n11r.r., nf 111i.<.<ii1 ,r 

n111~r~rlr111., . The simplifications , for the purpo ses 
of making inferences, are considered eq uival ent 
to t h e origi n al t heore m under the give n 
cl rc um sta nces. 

A rul e ·ca n have more than on e proced ur a l 
co 1111t erp!!rt. Part of PlRnner's contr ihuti on t o 
thr notion of pattern directed invoc!ltion of 
rr1lc s ll' RS the in s i g l1t that a rule has hot h 11 

conseq ttr' nt clncl clntecedent meaning. The se c.:in hr 
expre ss ed clS two classes of t heorems, clntcrcclent 
cl JHl ron :s cq urnt theorems, . which can be i nvokecl hr 

cti ffrrr ·nt p,1tterns. Ive ca n extend thi s cl f 11r thr-r 
step h)' postulating t hat a rule ha s ano tl1er 
bu ndle of pr oced ur al count erparts correspo ndin g 
to i ts s implification s. 

1\ct ua llr, these simp lifi catio ns will s imply he 

other t hcorems. 
t h ese ot h er 
s implification s , 

However the· knowedge of wl1rn 
theorems can be u se d as 
and which theorems ran he · us ccl 

mu st he r ep r ese nted. Sleuth ccln he vie.:ed cl S .:in 
intrl 1 i !,:r nt interpreter which can m.:ike u s r of 
thi s mrtak nmd eclge to substit u te si mpler t11eorrm s 
for cl rnl e 1·: l1i c h fil il s. The appropriate place tn 
s prrif)' this metak nowl eclge i s in a separate cl;i ss 
of tl ieo r cms. e.g. 

(Tilco nsc Tilm 2 (x) (supp l y-&-de ma nd PXl 
(Thconcl 

( (Tirand (Thgoal . (supply S?Xl) 
(Thgo,qJ (clemilnd $?Xl l 
(Tllgoal (carryover $?Xl l) 

trreaterp (carr)'over x) 

(( supply xl - (clcm;i nd xllllll 

CTha s,,11m F! Tllm~ A (x) <S uppl y- &- rlemand $?X) 
(Tll ,:nil l (s uppl y- decrease $?X)) 
(Tilcavc,qt (Default $?X))) 

(Thassume Thm4R (X) (Sttppiy - &-Demand $7X) 
(Thgoal (demand - increase $?X)) 
(Thea vr,q t 

(Tlln ot (T hgoa l (s11pply - increa se S?X) l l)) 

h'c 11 011• introctuce a new class of theore ms, s uc h 
clS TJ1m ~A clncl B, indicated by t he J ;i he l TJ1 ass 11mc. 



The se theorems contain information concerning 

s implifications and assumptions .. A Tha ss umption 

will s pec ify A) a goal; · theorems satisfying this 

goa l can function as a simplification; Bl the 
assumptions involved in using that si-mplificati'on 
(ex pr essed as a caveat). 

For instance, in Thm4A, proving a decr ease. in 

s upply ca n function as a· simplification of Thm2. 

Sinc e no assumptions are specified in - the Caveat, 

t h e s e c il n b e i g n o r e ct·. T h i s 1 s e x p 1 i c i t 1 y 

e xpre ssed in the caveat as a . default. If in stead . 

11·_e u se the goa l of an increase in demand as a 

s imJlifi ca ti on, as in Thm4B·, we must take ac·count 

of the caveat that s uppli mu s t not haye tncr eased 
for thi s s implification to be.va·lid. 

h'h e n Thm 2 fails, the con s ultant can choose to 

m<1ke assumptions which will a ·11ow a 

s implifi cat ion to s ucce ed on the a sse rtion s which 

are available, by u s ing Thm4A ·or B. A rul e and 

it s a ss ociated s impl'ifications are related 

throug h the set of assumptions the y e mbody. Wh e n 
Fa rm e r M!!cDonald d ec ide s to . i gnore the de ma nd for 

wheat, he i s doin g s o beca use he i s willing to 

a ss um e tlrnt if de ma nd changes, it will not change 

in a dir ec tion whi c h would invalidate hi s proof. 
By maki ng exp ! i cl t this notion of ass umption s, we 

ca n ex t e nd the li st of options ·available in using 
a th eo r e m to ac hi eve a goal. 

Aft er Thm 2 fails, si mplifications wi ll be 
co n s icl erecl, a nd Thm4A Found. Thm4A first tries 

to satisfy t he goa l CThgoal Supply -decrease $?XI. 
No assert i o n mat c hin g t hJ s pattern exists. 
Hn1,1evf'r, a theorem, ThmS , ca n be u sed to prov e 

t hi s a sse rtion. 

(Thcqn sc Thm S (x) (Suppl y-·ctecrease X) 

CT hco ncl C (Thand (Thgoal Supply X) 

(Thgoal old -s upply X)) 

(Thcond ((greaterp (old- s upp.ly x) 

(supply x)) Tl)))) 

The ,·n lue for old -s uppl y was one of the init-ial 

se t of fo ur assertions give n to the consultant. 
S i n cc c u r r c n t s uppl y a.n d o 1 d - s upp 1 y · a re known, 

ThmS 1d 11 ~. ucceed, and suppo rt the hypoth es i s of 
hi g her wheat prices. 
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Domestic+Foreign 

'\ L ,v 
Suppl y-dec["" ' ' ' Domestic f(orri,rn 

Old-s uppl y 

Thi s c hain of inf e rences results in a less 

pl a u s ibl e sce nario than on e requiring n o 

s implifi cat ion s. 

Ive may want to exa min e ·a nd save our sce narios. 

There are se veral reason s for this. · We ma y 1-;a nt 

to know what assertions and theorems have bee n 

u se d, if we evaluat-e the evidence at a l at.er 

time. If our hypothes is i s s tabl e, we may want 

to mait1tain a r e pr ese ntat.i on as the information 
it i s ba sed on chan ges. In a rel.ation.al database 

t her e a r e ma ny ways to repr ese nt even t s. \, e 

co uld, at eac h step , s imply assert th e necessa r}' 

informa tion. How e ver, for each inf e r e nce ma d e 
t he r e are potenti a lly man y kinds of information 

we may wi s h to save. For exa mpl e , we may wi s h to 
indi cate the theorems u sed in inf e rin g a n 

assc rtio·n, the assertion·s these theorems u se , a s 

well as knowl e dge about which theorems failed. 

To r e present this, we ca n a nno ta t e eac h 
infer e nc e . Annotation consists of a n organized 

se t of assertions of attributes of a lab e l e d 
in s tance of a s t e p in an inf e rence. e.g. 

(Tha sse rt annotation! goal (pric e- incre ase 
wheat)) 

(Tha ssc r t a nnota ti on! t heo r e ms 
(f (Ca rryove r - (Supply - De ma nd)) l l 

CTha sse rt annotation! as se rtion s 
(Carryover . Supply De mand)) 

Part II I 

Tlie o utcome of an int e llig ent noti c in g atte mpt 

in s upp o rt of a hypot hes i s 'is a set of an notatccl 

a ss ert i o n s a nd in sta nces of the9rems. The 
a nn otatio n available at a ny g i ve n time _repr esc n t 

the con s ult ant's "understa nding " of th e cl o ma in . 
As th e clilt a base chan.ge s , Sleuth will try a ncl 

mai nta in it s hypotheses. This will be ref l ectecl 



in .the changing set of annotation associated with 

each hypothesis . Sleuth assumes ~upport . for an 

hypothesis is conditional on the assertions 

available at the time it was first considered. 
Hence this s upport must be monl·tored and changed 

as the database changes. 

Sl e uth extends the concep.t of rule 

int e rpr etation by making. the maintenence of goals 

a function of the interpretation of rules. 

Sleuth cl oes this by giving e.ach active .rule the 

a u t o n o 111 y t o r e s p o n d t o c h a n-.g e s i n i t s 
e nvi r on mc nt.. As each rule is inter,pr·eted, Sleuth 

creates a n associated Sentinel for that instance 

of the rule. T h e s e n t i n. e 1 g i v. e s t h e r u 1 e 

instance the knowledge of how to respond t-0 

changes in its antecedents or conse1uents. The 

re s ult i s the mainteoence of hypotheses through a 

met hod nf local autonomy. 

R.r 11 si ng s e ntin e l s, Sleuth exte nds the ba s ic 
idea nf a rul e which is evaluated successfully lf 

its antec edents are satisfied at the initial time 

of e v;il u ation. A rule instance mu st be 

co n t in11ou s ly e nabl ed while it is . used- in s upport 

of s ome hypothe s is. Before describ~ng senti ne l s 

we mu s t first co nsid er under whi·ch conditions we 

wi s h 1"11r rule in s tance to be active. 

1) An i n stil nce of a rule u.sed in support of 

"o me h y po1h esis must continue to have its 

rnnclitinns met while that hypothesis is 
SUCCC S~, f ul , 

~ l \,r u rn extend this to theorems which fail. 

Th ese ran al s o . be monitored~ as long as the 
hypot h c ~ i s i s s ucc essful. Failed rules may 

s uccrecl r1 1 s ub sequent times, · if the n-ece ssary 

anterccl e n t s are asserted or ,proved. 
3> Thi s n otio n ca n be exte nd ed one step 

f urt11 n. The hypothesis may have initially 

f;ii l(' cl. lln,:ever, the goal of eva·luating that 

il)'ll otl1 es i s i s maintained. 1n t hat case, the 

theorem ,, attempted are stil l active,. al though no 
e vent cl cscription or s cenario exists. If, at a 
lat. e r tim e , t h ey can succeed, · they will 

rei1ctivi1te th e atte mpt. 

Tllf'rr:fnrc 1-.1r can define an active instance of a 

r11le il S being any instance for which a nnotation 

exi s ts. 
Srntin e l s we re first developed by myself a ncl 

.T im Str1 11 s f i r lcl as an aid in instantiating frames 

a ncl ilUtomAti n g 't he rer.ognition of simr l e 

~.e qt1enrc s of e vents within a changing databa s e, 
t1 s in g FRI. (Robert s and Go ld stein, 1977). Sleuth 

exte nd s thi s by associating Sentinels with the 
inl. CrJHPtation of rules, and by making . this t1 s e 

of ~e nlin e l s a property of the rule interpreter, 

rather th/ln a task for . the user. A se ntinel . 

as s ocir1ted 1dth a rt1le instance will look like: 
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Goal:Whcat Price Increase ~~~~~ Sensor 
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Era s e Se ntinel s Erase Annotation Invoke Goal 

A se ntinel ha s se n sors which report to it. 

(Sensor => Sentinel). A sensor has a two part 

concli tion. The first part, a tri,gger, is a demon 

1d1irh rcsoncls to changes in the patt ern that 

trigger s it. For example, in the following ca s e, 
the tri!;ger responds to any addition or deletion 

of patt r. rn s involving the wheat s upply. Tl1 e 

~. e n s or then tests the pattern agai n s t s ome 

criterion. For in sta nc e,, this sensor is only 

inter e st ed in assertions concerning curr e nt wheat 

s upply. 

\, heat Supply for AprU.J 

Se nsor / 

~ - -Triggert:: ~ 
I.:,., 

/, 

Test:Currr111 wl,rnt m,,,,ly?- -

~ Se ntinel~ 
'-J rrn.,r. old wp1,ly 

A se ntin el ca n hav e severa l se n s or s which 

r e port to it . The se ntin e l is sati sf i rcl whe n 

somr. arbitrary logical conjunction· of its s ensor s 

s ucceed. Although for the task of maintaining 
hypothr s c s more comrlex relations are not neccl ccl, 

a se ntin e l has t h e capacity to cvaluat e 

c o 11 <I i t i on a I re l a t i on s a mo n·g i t s sen so r s , a n cl e v c n 

to r c mo\' e r11rr ent se nsor s ancl pl a·ce ne w ones a s ,1 

rr s on~c to these co nditi onal co ns tt'aint s . 

Suppl y De mand CarryC'v e r 

l 1 l 
Se nsor Sensor Se nsor 

~ Sentinel ~ 

Thr: s r. n sors function a s t ri gger s for the 

s entinel, ivhich is "data driven". A senti ne l a nd 

it s " en s or s are theorems whi c h are created for ii 

s pec ifi c purpo s e. Unlik e ot her . theorem s in th<" 
clataba se , t hey have a limitec;I lif es pan. A 

se ntin e l cr1n c hoo se to erase it s e lf a nd i 1 s 



se n s or s upon compl et ing it s goa l. For · the 
c u rre nt: task, se ntinel -s are not r ~quir ed when 
t he ir assoc iated rule in ~ta nce is no long er 
active. In this case, the sentinel will e r ase 
it. se l f. 

Sin ce t he re will be several as pects of a rul e ' s 
c nvir o mr,nt we wi s h monitor ed, we can create a 
c lu ste r of se ntinel s, ea ch of which ·i s 
r es p o n s ibl e for on e as~ect, s uch as the 
a nt.r,ceclc nts . Each s·entlnel i.n the cluster wi 11 
know abo ut th e o t her se ntin e l s, If any on e 
,, ucccc(ls, t he other se ntinels in the cluster wil 1 

be a bl e to e ra se themselves •. 

/ Se nsor 
Se n tin e !~--~------ -t • 

""'Se nsor 1 
Se 11 tin e 1 ------------ Se nsor 

1 
-----------~~Sensor _ -7Sc nti nc l~ -

Sensor 

Sl e u t h c r ea tes, for eac h instance of a rul e, a 
c l11 s ter of se ntinel s wh.ich monitor t he rul e ' s 
c1 n tccc cl c nt s , goa l s , and annotation while t.h e rul e 
i s act iv e. 

Le t s ex;:i min e what happe ns with a s ucc essf ul 
r ul c h' il e n i ts se ntin e l i s triggered. 

'.~ucc;1,:ssFUf, /WU•: !INT) SliNTINl•: 1, 

C:onl : Wh en , l'riN' l11rr<'n.<<' - ~ - - - - - - - ~ Se nso r 
I 
I 

r ca rr rove r - (Supply - Dema nd) 

-/// I ~. 
/Jrmn11rf Carryove r Supply 

",,~ l / ~ 
Se nsor--- --.------ ~Se ntin e l 

"' Ern ~c Se ntin e l s 
~ l 

Erase Annotat i on Invok e Goa l 

I 11 cl i v i cl u a l r u I e s w i I I s u c c ·e e d o r f a i 1 i! s a 
fun c tion of their antecedents. Wh e n ·a s uc cessf ul 
rul r~' s r1 nt ccc cl ent s change, it s se ntin e l wi 11 be 
1 ri~:gc r ccl. \, he n t his happe ns t he · se ntin e l ca uses 
t il e g oc1! t he rule wa s' s uppor ti ng to be re
rvaluat·ccl. It removes the old ·a nn otation, a s new 
a nn o t at i on i s created fot: the ne w eva luation of 
t l1 c g0a l. At t hi s poi nt th e se ntin e l ca n e ra s e 
i U,c l f. (i'< ote: A se ntin e_l causes a goa l to be 
r c - c v;iJ uat ecl. There ts no constraint that Sl e u t h 
mu st use th e sa me rul e again. However , in thi s 
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and the following exa mple s , · it is, assumed that 
there have bee n no other chinge~'i n the s t a t e of 
the sys tem that would cause another rule to be 
se lected first.) 

If the rul e ' s goal changes,. perhaps because we 
arc no lon ge r interes t ed in the hypoth esis it 
s upport s, th e sentinel will also be trig ge r e d . 
In t hi s case we cto not wish to re-evaluate th e 
goa l. The se ntin e l wil 1 r emove it se lf a nd erase 
t ll e a s s o c i a t e cl a n n o ta t i on . Thu s. t he r u I e 
in s tance will no lon ger be active, s in ce no trac e 
of it ~.' i 11 remain. 

Now l et ' s con s ider how this loca.l assoc i at i on 
of rul e instances with se ntinels can g ive ri se to 
the ri g ht g lobal behavior. The following 
r e pr ese nts the state of our deductlon so far: 

Goal:W heat Price Increase?~---~-----~ 
1' 

I 

1Carryove r -.., 
/ 

./ 
./ 

./ 

I 
I 

(S upply - De mand).~ha ssume 

J ~ -
/.)(',nr,11rl 

1' 
Ca rryover Supply 

I 
I 
I 

Goa l : Demand 
1' 

I 
I 
I 

Deman cl 

I 
Domes ti c 

' 
Domestic+Foreig n 

' ' ' 

L s,pp(y ~dwease 

I 
Old -s upply 

Suppo se t hat a failed ru l e now is . capab l f' o f 
:. ucccecli ng, through its mis si ng a nt ece~le n t be in g 
,, s s c r t e cl. For i n s tan c e, th e mi s s· i n g for c i 1, n 
d e m;i ncl f o r 11'11 eat ca n. be asserte d. Thi s wo uld 
tri~ger the se ntinel associated with that rule 
in s tan ce: 



Goal:Wheat Price 
1' 
I 
I 

j'Carryover 
/ 

I (Supply - Demand)~~-~Thassume 

,, ,, 
; 

IJr mn 1111 
1' 
I 
I 

/ 

I ~ · 

Canyom Supply~ 

Goa l: Demand Se nsor----, Suppl']"'°'"" 

Old -supply 

1' 

r.rfl.<I? flllllOlntio11 

rr.·n .,.,rrt ,rnn I 

r.rn.<I? cr11ti11rl 

Thi s 11·i1'1 trigger the associated se ntinel to 
P. ra~. e the annotation for · this rule· instance, 

rea sse rt t he goal as so'meth'.i-ng to be proved, and 
t h e n to erase itself. This time the rul e 
succeeds, re s ultin g in a proof of the · missin g 
clcmancl for 1•:heat. This will in turn trigger the 

se ntin el associated with the rule instance of 
which the mi ss ing demand is an antecedent: 

F1111.1w Rum succr,;1,;os 

r ---· 
Goal:~hcat Pri ce Increa se? Sensor 

T 1 
I "'"~" ~r111111rl 

"""""' Cmyom Supply : ~ 

\' ',~sL~l- _I Thasme 

Goal,'""' "" L Supply-Jnoasc 

1 I 
Oemancl Domes tic+Foreign 01~ -s upply 

I ~ 
Domestic Foreign 

Thi s se ntinel repeats the actions of the prior 
se ntin el. Ho wever, in erasing the a nnot ation, it 
erases the record of the assumption made. This 
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will trigger the sentinel on the rule which is a 

simplificat·ion. Since the use of a 
simpitfication is cond-itional on another rule 
failing, the sentinels associated with theo,rems 
use cl as simplifications monitor the annotation 
recording that failure, so that they will know 
when the si mpli fication is no longer required. 
They wi 11 then respond to the erasure of this 
annotation by erasing the annotation for the 

si mplification. 

FIIIU\D Rum SUCCIUWS 

Goal, '"eat rlce lomase? 

tCarryover - (Supply ..: Demand) ----71'/,n.011.m 

/ r ~ l 
De mancl Carryover Suppl~ Sensor 

T JIL ____ : 
Goal: [)emand j Supply-decrease 

T : 
De m;incl Domest ic+Foreigni /Old -supply 

I ~ .. ,-v 
: Sensor----~Sentinel 

- - ,,,,.. ;rn.llir. nnnotntinn 

[)omest ic Foreign 

l?rfl.<1? ~r11ri11rl 

If Tl1m2 again failed due to a mi ssi n g 

antcccclcnt, Sleuth would once more try a 
s implification. Since the formerly mi ssi ng 
antec.e cl e nt for demand is known, Thm 2 s ucceeds, 
ancl rc s ul ts in the fol lowing final proof tree: 

f,'/11/.IW RUI./•: SUCC,.:/WS 

(;oal: h'h e;it !'rice Increase? 

T 
'f'Carryover - <Supply - Demand) 

/ I ~ 
Carryover Supply 

Goal: De m/Incl 

T 
"'"f "'' '"""~e.!go 

Dome stir Foreign 

In this next example, the missing antecedent 



for whea t demand is asserted, al though _ the rule 
involved (Thm2) has already "succeeded" by using 

a s implification. This will trigge~ the sentinel 
a ssociated wit~ the rule· instance of Thm2: 

IINTfi:Cf,;n,.;NT 11SSJ<:R1'IW 

J 
Go11l:h'h r at Price lncrease? --- --4 _Sensor 

1' 
I 
I l 

fCarryov e r -~ (Supply - Demand) r - 7 sentinel 

/ 
~ · ""i: f!rn .•r n111wtntin11 

~ !~":;:: ,:~;:""' 
De 1~n~ ' , Carrf°v/er S~plply 1 - · 

I , I I . 
;:I \Y' I 

: Se n s or- - - - - - _ _} Tl,n .irnmt' 

"""!"""""' ·LS">PIHtceJ, 
~ I 

Demand - no mc s tic+Foreign Old - supply 
'-

'-
' , . 

' Do me s 1- i c Fnrd,rn 

11·1i c 11 Tl11n1. i s r e -.e valuat ed it s ucce ed s without 

r ec n11r :;r tn f' ith e r u s in g a s implification or 

t.r y in ,: l o pr ove th e now not mi ss in g ant e c ed e nt. 
Thrr e i ~, no f' Xpli c it mec hani s m r e spon s ibl e for 
r c m o v i n f t 11 e n o w u n n e e d e d r tl'l e i n s t a n c e s . 

I 11 s t c,1cl, h)' e ra s in g it s annotation, Thm 2 tri gge r s 

th e se ntin e l s a ss ociated with the s ubgoal of 

pro v in g cl r ma ncl, and the s implification: 
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/INTF,C/WRNT /ISSl.:RTIW 

Goal:Wheat Price Increase? ~ ~ ~ ~~~~ 

r 
1'Carryover - (Supply - Demand) ---- ~Tl,nmwrn 

/ I "~ ~/ 
De~nd Carryover Supply R sersor 

I r - - _J 

I I ..'.J 
Gnnl:IJ,.,,.n11d--~Sensor-- - -, 1 Supply - decrea s e 

T : l I 
De mancl Dome s tic+Foreign : I , Old-supply 

I "", 1 
' _"-. 

Dom e stic f,'nrf'i,r11 ', 

~ ens~ . Sensor __ "_. -"-~sentin e l 
I ·

1

1 t ~rn.,r nnnnl'ntion 

Se ntin e l~ - - - - .....J _I'm .,., u111i11f'I 

f'rn.,;,r nnnntniion 

rrn .,r _,,.111i11f'/' 

Ro th the se -se ntinels, since their r e a s on f o r 
rx i s tin g i s gon e , e ra se the aT)notation, /Incl th e n 

e ra s e the mse lv es . This r esult s in th e foll owing 
fin 11 l s tat e : 

IIN1'1':C/W1':N1' IISS1':R'/'IW 

Goal: Wh eT Price Increa s e? 

tCarryover· -

/ 
T,,1, ~ ,a, 

De mand Carryover Suppl y_ 

Thu s , unn ee cl ecl rule in s tanc es wi l I kn ow wh e n 
to H' mO\'C th c m5e lves. Throug h lo ca l propa ga ti o n, 

t 11 c r r pr c se n tat i on r es p on ct' s to c h an g e s i n t 11 e 

ava il a bl e clilt a ba s e . 

Cn n~equ e ntl y, inte lli ge nt noticin g i s a d yna mi c 

proc e s s. Onc e att e mpted, it i s- lo u !}ly cl a ta -

clri vc n. Th ese chan ges will r e in vo k'e til e goa l o f 

inf e rencin g , which c an then proc e ed in a go al 

cl r i v c 11 f a s 11 i o n . 0 b. s o 1 e t e p a r t s o f t h e 
r !:' pr e se ntati on are able to - r e move th e mse l ve s by 

noticin g l oc al chan ges in the e nvLronm c nt. 

S leuth, n n ce g iv e n a g oal, will att e mpt to 

r c c o g n i z e t h i s e v e n t w he n e v e r t h e cl a t a h a s c 

ro ntain s th e ri g ht s e t of a s s; e rtion s . Se ntin e l s 
se t in th e int e rpret a ti o n of rul es h' ill 
i n cl i , . i cl ll a l l y c a l l S l e u t h t o r e - e v a l u a t e 

parti c ular go al s . <Thi s c an be contra s t e d t o 

Do y l e ' s Truth Maint e n~nce syst e m for ma intaining 



I 
·\ 

I 

I 

I 

. I 

contexts of assertions. (Doy'le, H/77.)) Sleuth 

will develop new ways of suppoTting its 
hypoth eses in response to these local calls for 
re-evaluation. Once applied, each senpnel has 

the autonomy to respond. to changes in the 
database. These changes propagate, through a 

method of local autono~y. 
The current version of Sl_euth is programmed in 

FRL, il frnmc representation lan_guage (Roberts and 
Goldstein, 19 77). FRL does not c0ntain the 

patt e rn dir ected invocation of rules as a feature 
of the lan g uage. The current design iteration 

involves transfering Sleuth .. from FRL to a 
Planner-like language as described in this paper. 
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A Test-bed for Developing 
Support Systems for Information Analysis . . 

Jim Stansfield. 

M. I. T. AI Lal>. 

Fast effective 'decision makJng is necessary 

in many important activities. ··complex dynamic 

situations that require control make huge demands 

on the decision maker to consid~r large aroounts of 

information. This is the case in. many areas of 

decision making including politics, economics, 

defense, business and medicirie. Although data 
base systems allow easy access to masses of ·data, 

considerable processing must be done before an 

analyst can use the data effectively. I am 

designing Support Systems to relieve an 

Information Analyst of the burden of these· tasks 

and leave him free to concentrate his expertise 

where it is most needed. The point of ~iew is 
that analysts organize . the ·data around "menta·l. 

models" of tl)eir problem area. It follows that a 

support system that can manipulate structures 

corresponding to these models will be better able 

to assist an analyst. The domain being used is 

the analysis of supply, demand and price of 

commodities. In this paper I describe · a program 

written in FRL (Frame Representation Language) 

[Roberts and Goldst'ein, J977] which models a 

commodities situation and I di!\CUSS re.presentation 

and reasoning in frames sy!jtems. Commodities 

markets are an information-rich real-world system 

in which practical decisions are continually being 

made. Moreover, there is a wealth of data readily 

available about the current commodity situation 

and a large background of literature concerning 

the theory and mechanism. A model of commodities 

markets is an excellent test-bed for djveloping 

support systems. 

There are many reasons why an intelligent 

interface between an analyst and his data is 

desirable. First, the information an analyst 

receives may be incomplete, inaccurate or out of 

date. He may . wish to check his sources, .extend 

his information search, or bring old information 
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up to date by estimation. A. s.up1)o .. rt system can 

make this practical, Second, t.he tnformation 

relevant to any particular goal of th~ analyst 

must be sifted out. To do ~his, a support system 

needs to know about the problem solving methods 

used by the analyst even if it is unable to solve 

the ·problem .itself. Thir.d, implicaUons of the 

data are needed. A support system could · make 

inferences and provide an analyst with a complete 

picture of his situation allqwing him to make 

quicker decisions. This requires the system to 

maintain theories about what can happen in its 
area of expertise. Finally, an analyst would like 

to check the repercusiions of his decisions. 

These are often subtle and counter-intuitive as 

illustrated .by the behavior of economic systems. 

By describing a situation as. a dyni,lmic .. model, th1! 

expected consequences of a decision ·can be 

forecast. 
The commodities domain inclu.des · primary 

producers, storage managers, exporters, 

speculators and other agents. Each has a range of 

possible actions. . For example, a farmer is able 

to produce, store and sell a variety of crops. He 

can choose how much to plant and when to harvest 

and sell. These actions are specific to him. A 

farmer is also in a position·to'tell ~he state of 

the crop before other participants and he has 

other private information such· as the progress of 

the harvest or when farmers will sell. On the 

other hand, speculators are ex~ert. in estimating 

the impact of supply and demand f~ctors upon 

price. Their decisions will affect the price of 

futures and indirectly control the behavior of 

storage managers and farmers. Some ~peculators 

may put more weight on certain information than 

others and so have different plans. The way ,the 

commodities market reacts to news depends on its 

state as well as the news. Thus, an·analyst 



should consider information about the situations 

and plans of the participants in order to 

determine the effect of news about a new grain 

sale or a dock strike. 

Developing an analyst's support system with 

the capabilities me~tioned is ari ambitious goal. 

This paper describes the framework being used and 

illustrates it with a prototype program. whtch 

achieves a small ~art .of the desired expertise. I 

first describe the framework show1ng how the 

expertise fits into it. Then I describe the 

prototype program and explain how it will be 

extended . Finally, I sketch some of the 

developments that were needed to reprnsent rules 

and constraints in FRL . The framework for support 

systems is shown in figure 1. It is orgariized 

using the acronym ART which stands f~~ Analyst, 

Reporter and Test-bed. 

I 

r:1 
t:j 

USER 

A ANALYST 

R REPORTER 

T TEST-BED 
MODEL . 

: I 

' 

HYPOTHETICAL 

MODELS 

MODELLING BASE 

Figure 1. The ART architecture. 

The first component, the Test - bed, is a 

simplified world model which can t;,e used to 

generate behavior and reports for an ~nalyst and 

is easier to work.with than the real world. A 

test-bed takes the place of the real world and the 
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·user is assumed to have incomplete information 

,about it. 

Reporter 

a real 

The user's info~mation comes from the 

which generates reports resembling· those 

analyst receives including 

incompletenesses, estimates and conflicts ~ The 

Analyst works as an assistant to the user and 

gathers information relevant to the user's ·goals, 

make inferences fol' him and test out his theorie.s 

and decisions •. Its role is to assist the u~er in 

making sense of data about the model world. 

Two flows of informati-0n connect the 

components of an ART system. c6mmands flow 

downward from the user toward the test - bed and 

descriptions of the test -bed's behavi-0r flow back 

up to the user. The command chain allows the user 

to request information from the.analyst. Requests 

may be for a simple report, an analysis of a 

situation, or to ask the analyst ·to examine the 

consequences of a hypothetical event. The analyst 

remembers these user goals until .the time that it 

can complete them. Some goals m<JY be ongoing 

requests to monitor particular information .. To 

carry out all or part of a request, t~e analyst 

needs information about the world which it obtains 

by asking the reporter. Requ,es ts for reports are 

generated from rules specifying the type of data 

needed for an analysis and fr.om the analytical 

inference JT)echanism through subgoals which are 

immediately reporta'ble . This illustr·ates that, to 

select relevant data for the user, the analyst has 

to know s omething about the expert' s 

problem-solving methods. The reporter has a 

repertoire of methods for finding reports and 

keeps a check - list of the particular reports the 

analyst component is waiting for. In summary, 

commands pass down the comman·d chain giving rise 

to goals which are stored in the analyst and the 

reporter. They determinw what data flows upwards. 

The analyst acts as a filter to giv~ the user only 

relevant information and as an organizer to 

provide possible models describing the state of 

the world. 

The development of test-bed models is based on 

the viewpoint that decision-making situations can 

be considered as dynamic interactions between sets 

of agents each with i ts own views, e~pec,tations, 

goals and resources . In a political situation, 

the agents may be nations, economically they may 

be businesses and in the commodities world they 

include producers, storers, users and speculators . 

Each agent has a state and a strategy) and his 



behavior depends on the interaction bet~een his 

strategy and his current situ..ation. For example, 

a farmer may decide to sell if he needs to make 

room in his stare for the upcbroing harvest. The 

strategies are executed b:y a mpdelling system to 

determine a ~et of actions for the player which 

produce changes in the model, If the exicution 

cycle is repeated the (lgents interact :since each 

one now behaves according to the state of the 

world which has arisen from previous actions of 

the others. From this viewpoint, test-b!)d models 

have a psychological aspect which makes them 

different from many simulation situations. They 

model the rule-based behavior of a set of 

interacting agents. Some concepts however have 

been adapted from dynamic simuation (Forrester, 

1962) and an FRL-bas~d v~rsion of the basics of 

Forrester's simulation system has been written . 

Test-beds have important advantages. First 

they clearly define the limits of the domain being 

studied . Lack of such a clear def,inition .makes it 

very difficult to keep the domain contained. 

Second , the analyst part of the system can use the 

same modelling system that the test-bed is based 

on. This c learly defines the space of po~sible 

models and t.h e analysis p·roblem b.ecomes 

well-defined. Third, the test-bed ian be used to 

examine the performance of the system. As the 

test-bed world is exactl y known ihe accuracy of 

the analyst's hypothe ses based on reports · can be 

meas u re d exactly. Suuport systems can be 

developed for an increasingly complex· set of 

test- beds allowing expertise to be extended 

gracefully. 

Th e analyst component is npt just a 

modelling system si nc e its job is to . assist the 

user in determining the state of the world from 

reports . However , this can be seen as 

constr uc ting a model to fit soroe data so the 

analyst mu st be an expert in building and 

discussing models. It uses a set of hypothetical 

models of the agents in the world and chooses 

appropriate ones based on reported information. 

These are assembled into a model of the entire 

situation and the alternative comb.inations are 

presented to the user with supporting 

explanations. At the -tim.e of writing., · the 

model -building aspect of tl)e analyst i.s still 

being planned. 

1 3 

The Prototype System.· 

The prototype system consists of a simple 

test-bed model and a basic reporter and. analyst. 

The reporter and analyst are ad hoc LISP programs 

embodying a few simple rules·. The repprter 

produces reports about a fixed set of situations 

and these reports trigger. analytical rules. which 

print out simple analyses.· There is no provision 

for the user control described ab'ove and the 

analyst does not yet consider hypothetical models. 

The prototype test-bed consists of a system 

which supports .models, and a two player game 

running in that system. Th~ game is· ~etween a 

producer of wheat and a user. · Each harvest time 

the producer's inventory ts increased by the 

production for that season. His _goal is to sell 

his inventory throughout the year and end with 

clear storage ready for the next harv·est. He 

sells to a market by offering .. quantitjes of wheat 

at the current market price. The user has some 

storige, and wheat is removed from this at a 

constant rate ttiroughout the season. He makes 

bids to the market to replenish his store . The 

producer's strategy -is to sell more when the price 

is high and less when it js low. ·T~e user does 

the opposite, · buying more when the price is low . 

At the beginning of each season both the producer 

and user are given expected prices . These 

correspond to their opinions about the ma~ket and 

determine how they know when the price is good. 

Here is an example of the game. Computer 

output begins with a"•", user replies begin with 

">", and comments are in italics. 

The game begi~s with a phase in which frame 

structures are set up to represe nt the ·pluyers and 

the market. They are initialized.in a ,dialogue 

with the user . 

• This is a two player game between a producer of 

whea t and a user : It i!i just before harvest. 

How long is the season? 

> 6 

• What is the inventory of the producer at time O? 

> 20 

• What is the inventory of the user at time O? 

> 60 

• What is the market price at time 07 

> 25 

• Its a new season. The carryover is 80 :0. What 

is the production? 
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> 300 
* What price does the produ.cer expect? 

> 26 

* What is the demand? 

> 200 
* What price does the us·er expect 7 

> 24 

When the game is prepared, rules are invoked to 

produ·ce reports on the state of the system. The 

reports are given to the analyst which uses ·rules 

describing the players to make a forecast of the 

future behavior. I have rewritten the output in 

better English. 

* REPORTER: There is a surplus of 180~ 

ANALYST: This will tend to make prices fall. 

The· effect is large. 
REPORTER: Farmers expect the price to ri'se. 

ANALYST: They will hold onto their crop. This 

will tend to make prices rise. The effect is 

small. 
REPORTER: Users expect the price to fall. 

ANALYST: They w:t.11 wait to buy. This will tend 

to make prices fall. Th~ eff~ct is small. 

The model is nmo run for.one cycle and the results 

are printed out. 

* PRODUCER 

INVENTORY: 320 

DESIRED- SELL-RATE: 53.3 

EXPECTED-PRICE: 26 

USER 

INVENTORY: 60 

USAGE-RATE: 33.3 

EXPECTE D-PRICE: 24 

PRICE AT TIME 0 = 

PRODUCER OFFERED 

USER BID 

AMOUNT TRADED 

PRICE FALLS TO 

2.5 

51.2 

32 

32 

23.8 

Next the reporter gives a bulletin describing a 

change in the situation, an~ the an«lyst forecasts 

the cons equences. 

* REPORTER: The price has fallen below the users' 

expected price. 
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ANALYST: Users' will incr~ase th~ir buying 

pressure. 

After the model has been rvnning for several time 

cycles, statistics fo·r this period are printed 

out . We can see that the price fel .l due to ·the 

large supply and at the end of t.he season,. in 

period 5, there was still a sizable carryover. 

User's initially refrained from buying but began 

to increase their inven-tory as the price fell 

below their expecta.t ions. 

TIME PRODUCER2 USER3 MARK£T4 

INVENTORY INVENTORY PRICE 

0 320.0 60 .. 0 '25.0 

1 288.0 58.7 23.8 

2 254.4 58.9 ll3.0 

3 219.6 60 .4 22.3 

4 183.7 63 .. 0 21. 7 

5 146.9 66.5 21.3 

6 409 .3 70.7 21.D 

7 347.1 66.3 21.5 · 

8 283.3 63.4 21.9 

Table 1. 

The first part of the protocol is a dialogue 

with the user in which a game is set up. A game 

is represented as a frame structure which has a 

GAME frame at top level and includes slots for the 

P.roducer, the user and the market. The produc~r 

is an instance of a generic PRODUCER frame and 

similar situations hold for the user and the 

market. The top-level frame for the game is shown 

in figure 2 in a simplified form. 

GAMEl 

SEASON $VALUE 6 

PRODUCER $VALUE PRODUCER2 

USER $VALUE USER3 

MARKET $VALUE MARKET4 

TIME $VALUE TIME-0 

Figure 2. The top-level game frame. 

The generic GAME frame knows how to ask the 

user how to set up a new gam.e. During this 

process it needs to set up a new PRODUCER fra.me. 

Since the generic PRODUCER frame knows how to set 

up a new producer, not all of th!! setup work is 

done by GAME. Knowle.dge about setting up any 



frame is attached to the corresporiding generic 

frame either in a special slot or in each slot of 

the frame under an $AJK facet. The system also· 

provides standard setup procedures and is able to 

check that constraints hold true for the answers 

to its questions to the user. The setup 

mechanisms and the constr~int handling _ mechanisms 

are discussed elsewhere [ Stansfield 1977]. In the 

example game, the producer and user were set up 

with just an initial inventory -and a stiategy. · 

The program chose their strategjes . by default. 

I< 
CALL REPORTER 

I 
CALL ANALYST 

I 
EXECUTE Pl,AYERS I -
EXECUTE MARKETS 

I 
EXECUTE CHANGES '-

Figure 3 . The Execution ·Cycle. 

The system repeatedly e~ecutes the cycle of 

operations shown in f.ig_ure_ 3. At .the beginning of 

the cycle it checks if it is a new season which 

triggers questions to update the .·system. The 

r e porter is called next and applies a set'of rules 

which examine the state of the test -bed. These 

may instai:itiate action s to produce short reports 

which are passed on to t·he analys.t . The analyst 

has a set of rules de~cribing market behavior and 

player behavior . Using -the reports, it applies 

its rules and produc~s ' statem~nts about the 

behavior that can ·be expected from the ,ystem and 

the reasons for ~hi5 behavior . . Next, the players 

strategies are executed giving rise to offers and 

bids which are placed in 1;he market. The market 

is executed and the offers and bids become trades 

and pr ice changes . Offers, 'bids, and· t·rades .are 

all represented as frames giving buyer, seller , 

price, and date . The market executes trades to 

produce change descrfptions tha-t corr11s-pond to 

cha_nges in the inventories of the p·layers . 

The producer, the market, and the user are 

arranged in the chain shown in figure 4. The 

behavior of any element in ttie chain affects the 

adjacent elements giving rise to feedback loops . 

There are two negative fee-db_ack loops. The 

producer increases his sales as the :price rises 
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which in turn makes .the price fall. The user 

increases his demand if the price falls ~nd this 

makes the price rise. Feedback loops are 

important determinants of _system behavior inasmuch 

as they make simple cause and effect de·scriptions 

of behavior inadequate. 

-- -> ---> 
<--- <-- .; 

Figure 4. The example·game arrangement. 

Figure 5 shows the arrange~ent of in-fluences 

that make up the producer's stra~egy. Total 

supply for the season ~etermineJ his ~esired 

selling·rate each cycle since.his goal is to clear 

his storage. His d.esired selling · rate is one 

factor in determinirig how much he offers at any 

time. If he desires to sell more · each month he 

clearly m~st offer more. The other determinant is 

the difference be-tween his e~pected· price and the 

actual price. A plus sign on an arrow in the 

figure means that if the factor at-the tail of the 

arrow increases, it will cause an increase in the 

value at the head. ,A minus sign means· that a 

positive change will cause a·decrease . The arrow 

from the amou·nt offered to the market price is 

part of the market structure . 

Season's~ Desired selling Amount 
supply + ra,te ~ offered 

I 
Expected pric'e · 

minus market price . 

/ -\ 
Expected price Market 

price 

Figure 5. The producer model: 

To see how this works, .examine : the first 

entry in table I . From the setup data the season 

length is 6 and the supply is 320 . This implies a 

des ired se 11 ing rate of 53 per -cycle. Since the 

expected price is 26 but the market price is only 



25 the producer decided to hold back and offered 

less than 53. The us.er only bid for ~Z uni ts 

however, so only 32 were· traded .. Deman.d was 

insufficient. 

A similar diagram would i\lustr~te the. user's 

strategy. His desired buying rate is ·determined 

by the demand rate per cycle for the season. In 

th is case, a r.ise in the expected price causes a 

rise in the amount bid for a.nd thi-s cau·ses a rise 

in the price due to the increased demand. 

The market is an interface between the 

producer and the user. Since different amounts 

are offered than are bid for·, it provides a 

mechanism for equalizing these. The· price of the 

market is adjusted to reflect the diffe.rence in 

buying and selling pressures.· When buying and 

selling pressures are equal, the price will not 

change. It must be remembered th.at this is a 

feedback situation and a· change in price will 

affect both of these pressures. f'igure 6 

illustrates the two feedback loops involved in a 

market situation. 

Market price 

T 
Amount bid m'inus + 

amount offered 

!\ 
Amount bid Amount offered· 

Figure 6. The market feedback · structure. 

Each m.odel comp·onent re.presents a large 

number of ·players as a group. They have the sa~e 

strategy but their expectations and decisions are 

distributed. A component of the model with an 

expected price of 25 represents a group of players 

with similar strategy whose mean expected price is 

25. This is necessary.if the system is to model 

the collective behavior of participants in the 

commodities world. Whenever a group of 

participants can be divided into two classes with 

different st ra·teg ies, such as · optimists and 

pessimists, or risk takers an~ risk avoidefs, two 

components can be used to model them. 
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Extending the n,odel. 

The prototype system modelled a simple 

commodities situation and.its analyst component 

embodied only a few an•ly~ic ru\es. This section 

describes how ·the scenario can be e~tended and 

discusses the kind of analysis that will be 

needed. 

The next version of the test-bed will include 

four types of agent which are, producers, storers, 

consumers and speculators. They will interact by 

means of two marketsi a cash market an~~ futures 

market . The cash market is u~ed to buy and sell 

the actual commodity and the futures matket to 

trade f~tures contracts. This situatio~. although 

only twice the number of component types · than 

before, allows many more .strategies and covers 

many situations in the real commodities world. 

There will also be a four or five-fold 

increase in the number of possible strategies for 

an agent. A farmer will have to makl decisions 

about planting, storirrg, harvestirig and selling 

and will also make an estimate of the expected 

price . The basis for such decisions are his 

current state including acreage and available 

storage~ and some information about the rest of 

the system and about the weather. For example, 
·' 

harvesting time depends. -0n whether the crop is 

ripe, how much needs to be harvest, whether the 

crop is susceptible to wind .·damage and wh.ether it 

is dry enough for the machinery to work. Harvest 

time is also a crucial time since much of the crop 

flows to m~rket and speculators m~st watch 

developments to estimate prices and quality·. 

In order to analyze situations involving 

several agents the analyst n~eds rules to describe 

them. Such a rule-based model of an agent is 

different from the test-bed's ~odel since it is 

used to reason about the agent rather. than to 

execute a model of him. in the prot~type these 

ru 1 es were embedded in a simple LISP program. 

Future analys·ts will b-e written using rules 

implemented. in FRL. Rules will b.e. in· the .form of 

productions whose condition is some state of 

affairs that ~he agent reacts to and whose action 

is the con~equence of that state. ·simplified 

versions of the rules embodied in the prototype 

are shown below. 



Producer 

Producer expects price· rise . ->. Producer holds 

Produc er holds stock -> Selling pressufe less 

Harvest is near and insuffic.ient storage 

-> Producer.clears storage 

Producer clears storage -> Selling pressore more 

Market 

Selling pressure higher 

Buying pressure high~r 

-> PrJce tends to fall 

-> Prite tends to rise 

Rules can be used iTI several ways. If the 

reporter gives the ahalyst information which 

matches the condition of a rule in one of its 

farmer models, then that mo~el can be hipothesized 

as applying. The consequence of the ·rule ran be 

expected and if it occurs it will ·support the 

hypothesis . Alternatively, rules can be used from 

right to left . If the reporter giv~s information 

about a farmer's actions which corresponds t'c, the 

right hand side of a rule then the analyst can 

hypothesize that the rule ~ay be attri~ute~ to the 

farmer and that he is reacting . to a state of 

affairs corresponding to ·the lefi hand ~ide of the 

rule. Again, several rules may fit and multiple 

hypotheses may be carried forward .. 

The modeling rules embody the· common·.-sense 

knowledge an analyst has about the ·actions. of 

agents in his world. From a person's actions we 

can sometimes infer . the plans he is executing, the 

situation he is re sponding to and his intentions. 

Indeed, this abiiity in peolpe is .crucial to their 

effective communication. The analyst uses rules 

to mimic this and to fill out a picture of.the 

world from partial information. 

PRICE FELL 25 -> 23.8 

\;i"" TRADED = 32 

AMOUNT BID = 32 

/ 
SUPPLY= 32-0 

AMOUNT OFFERED - 5l.2 
I 

I 
= 53.3 

FARMERS HOLDING FARMERS EXP. PRICE= 26 

Fi11ure 7. Analysis trace. 

1 7 

Figure 8 shows an example of chaining .or 

rules that falls within th~ context of the session 

with the prototype presented earlier. ~uppose the 

reporter said that the price· ·fell, th!! amount 

traded was 32 and the years supply ~as 320 . It is 

possible to deduce from this that farmers expect 

the price to rise. Since the price fell, the 

producers were offering more than the users bid 

for. The users therefore filled their ·orders and 

must have bi~ for 32. The price fall of 1.2 and 

the amount bid of 32 corresponds to an offering of 

about 51. But the average sale need to· clear the 

total supply is 53.3 since there are 6 cycles per 

season in the model. So farmers were ho'lding 

back. This means they expect the price to rise. 

Clear}y this is a simple analysis based on a 

few rules. However, analysis such as this will 

come into play in the extended ·system. For this 

reason, I am developing a representation for rules 

in FRL and discuss this next. 

Frames. ---

The system is implemented using FRL, a frames 

based language written in LISP. I have extended 

this for setting up frame structures by d.ialogue 

with a user, for representing events as clusters 

of frames and (or reasoning. A simple FRL frame 

represents an item and :has of a set of properties 

of that item . A PERSON frame ~ay have the 

properties HEIGHT and NAME and eac~ property may 

have a value. F.rames . form a hierar.ch·y ·, so the 

frame for a particulir person, PERSON!, will be 

lower in t~e hierarchy than the generic PERSON 

frame which will be lower than the ANIMAL frame. 

Inheritance is an important prop.erty of the frame 

hierarchy. Lower frames inherit information from 

the more general frames higher up. This is a 

powerful organizing princip,le for in.formation. 

Procedures can be attached to a .slot of a frame to 

accomplish various actions. An if-added procedure 

triggers when a new value is added to the slot so 

that the new information can be processed. 

Requirements check values before they are accepted 

and can call compla,int mechanis.ms if . they are 

violated. I !-needed procedures ar .e used to 

calculate values of slots from other information. 

All . these proc edures are inherite·d in the frame 

hierarchy just as values are. This means new 

concepts can be defin,ed as generic frames 

I 
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containing sets of properties and· pro~edures to 

handle them. 

Representation. 

When the an~lyst component is written in· 

terms of rules) it will use rules similar to 

production rules. The left. hand side will be an 

event or combination of ~vents arid the right hand 

side will be an action -or statement .which is a 

consequence of that event occur~ing. It was 

necessary to define event-like concepts in frames. 

A representation scheme ·based o.n the ·facilities of 

FRL was applied to business eve·nt.s .from the 

commodities world such as •selling", •exporting" 

and "exchanging". Concepts are repres-ented as 

clusters of frames ·and there are primitive events, 

such as "changing", which describe modifications 

to a frames data-base . A_"changing~, for example, 

might describe a change in the value of a 

particu.lar slot of some frame at i.l particular 

time . Further event types are constructed from 

the primitives by specialization and a~gregation. 

To specialize an event type, another is created 

below it in the frame hierarchy with extra 

knowledge attached in the form of procedures and 

values. One specialization ·of "changing" is 

"growing" where the HEIGHT ~lot of a specified 

frame is changed. Aggregation is a . way to build 

new event types by putting together several 

others . A new aggregation. inclu:des a .set of 

constraints that specify how . the compon!lnt events 

are arranged in any particular instance. For 

example, "exchanging" is a simple aggregation 

composed of two "transferring~ events between the 

same two parties but in opposite directions. 

Aggregation and specialization can be freely 

applied to aggregates and specialization and an 

infinite variety of new· co.nc·eµts can be defined. 

Although events are constructed from 

primitives as in conceptual dependency [Schank, 

1975]. our representation· scheme is different in 

many respects. 

its primitives 

level. Also, 

An event need not b'e reduc.ed to 

but may be treated at a higher 

specialization highlights the 

differences and similarities between events in a 

clear way. 

In both representation and reasoning I have 

taken a different approach from KRL [Bobrow and 

Winograd, i977]. KRL.is a large complex system 

and perhaps unwieldy to· apply since it addresses 
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very many representation issues. In contrast,· I 

began with a simpler core system '!Ind ha.ve built on 

it as the application required. 

Constraints. 

Reasoning about frame structures·is needed 

for the analyst component of the supl)Ort system. 

Rules can act as constraints between the. values· of 

a s~t of slots in a frame structure. A co~straint 

watches over a domain of· slots. When any domain 

slot is altered, the rule is invoked and applied 

to the domain. Rules are made gen~ral by placing 

their triggers as if-added p~ocedures in slots of 

generic frames. Because of inheritance, a rule 

then applies to any instance of the generic frame. 

There are two cases, simple constraints and 

complex constraints. Simple-constraints have all 

their domain slots within a sin~le generic frame. 

Such a constraint handles the SUPPLY, CONSUMPTION 

and CARRYOVER of a crop forecast frame, making 

sure that SUPPLY minus CONSUMPHQN equals the 

CARRYOVER. The triggers are added to slots in the 

generic CROP-FORECAST frame . Each instance of a 

crop forecast is then subject to t_he rule. Any 

new information about supply, consumption ar 

carryover will invoke the rule. Simple 

constraints are discus.s·ed in . earlier papers 

[Stansfield, 1977; Rosenberg, 1977]. 

The complex case constrains slots .which are 

spread over a group of frames . . One frame is 

considered central and domain slots outside it are 

called outliers. An example is the HARVEST frame. 

The AMOUNT of a HARVEST eve~t is its ACREAGE 

multiplied by the YIELD of the FIELD harvested. 

The YIELD slot is an outlier since it belongs to 

the FIELD frame. This frame 'is not even known in 

a particular instance until the FIELD slot of the 

HARVEST is given a value. 

Comp 1 ex c on s t r a i ~ ts re q u i re two n e w 

mechanisms, a reference mechaRism and an 

identification mechanism .. Each outly,ing slot is 

associated with a corresponding auxilliary slot in 

the central frame. The auxilliary slot of HA~VEST 

is a YIELD slot to hold the yield of its field. 

Reference triggers are set up so that whe.n a value 

is added to the FIELD slot the auxilliary slot 

will be identified with the YIELD slot of the 

FIELD. By this metho<;I , a compleic s.entinel is 

reduced· to a simple sentinel and any .rule can be 

defined within ·a st.ngle generic frame. . The 



calculations are done within that frame using 

auxilliary slots as temporary variables. 

Directions. 

Frame·s - based semantics and constra,ints will 

both be used in developing t .he . rules of the 

Analyst component , of ART. The current test - bed 

will be extended to provide a Q.tlalitatively rich 

repertoire of behavior for the Analyst to deal 

with. Several experiments will be possil>le ·with 

the proposed version. of the system. Since it will 

be rule based it will be possible t~ interact with 

an expert analyst to determine a set ·of rules 

which will help him in hls analysis. It will also 

be possible to try interfacing the systam. to 

actual commodities news rathe·r than a test-bed 

model. 
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UNIFICATION FAILURE 

Philip T. Cox 

Department of Computer Science 
University of Waterloo 

Waterloo, Ontario 

Abstract: The problem of determining whether or 
not a set of expressions is unifiable is of key 
importance in many applications, mechanical theorem 
proving in particular. Consequently, the unifica
tion problem has been studied intensively. A re
lated problem of equal importance in theorem proving 
and other applications which use unification, has 
received little attention; namely, the problem of 
what to do when unification fails. In a recently 
proposed deduction system, the first step in solving 
this problem is to find out why unification has 
failed. We describe a method for accomplishing 
this step. 

1: Introduction 

There are many applications in which the pro
blem of unification plays an important role: mech
anical deduction is probably the best known of these 
applications, and has caused intensive study of 
unification since Robinson presented his Resolu
tion Principle and unification algorithm in 1965 
(10]. A problem which has received little atten
tion, however, is the problem of what to do when 
unification fails. 

When a mechanical theorem-prover is searching 
for a proof, there is usually a variety of actions 
to be performed: the system must choose the sub
problem to work on next, then choose one of several 
solutions to it. At some point in every search for 
a proof, however, it usually happens that the 
system fails to solve a subproblem because two lit
erals cannot be unified. The system must then 
"backtrack" to some earlier point in the search, and 
attempt an alternative solution to a previously 
solved subproblem. The usual backtracking strategy 
employed is to return to the last point in the 
searc h at which there exists an untried alternative 
solution. This may not be the correct place to try 
an alternative, however, and although the correct 
point will eventually be reached, much effort will 
meanwhile be expended in exploration of irrelevant 
areas of the search space. 

When a nonunifiability arises, the object of 
backtracking is to remove this nonunifiability. The 
exhaustive technique described above investigates 
only one of several ways of removing it. This 
limitation results from the fact that most theorem 
provers apply the unifying substitutions to the 
clauses in the proof; this makes it difficult to 
locate any of the sources of a unification failure 
except the obvious one used in exhaustive back
tracking. In a new deduction system proposed in 
(6,7], substitutions are not performed: instead, 
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each application of a deduction rule produces a set 
of constraints (a "constraint" is an unordered pair 
of expressions); and the set of all constraints 
produced in the construction of the proof is checked 
for unifiability. If it is not unifiable, all its 
maximal unifiable subsets are determined, one of 
these subsets is selected, and exact backtracking is 
performed by removing those deductions which pro
duce constraints not in the selected subset. In 
what follows, we describe the process of determining 
the maximal unifiable subsets of a set of constraints. 

2: Preliminaries 

In this section, we give a few familiar defin
itions and define notation. 

2.1: Graph Theory 

Our notation and definitions for the concepts 
of graph theory follows [4] with a few minor ex
ceptions. 

2.1.1: Definition: A directed graph G is an 
ordered pair < V(G) ,E(G) > where V(G) is a 
nonempty set of vertices and E(G) £ V(G) x V(G) 
is the set of arcs. If e = (u,v) is an arc 
then e is said to join u to v, to leave u 
and enter v, and u and v are called the tail 
and head of e respectively. We will abbreviate 
"directed graph" to "digraph". 

2.1.2: Definition: 
of a digraph G if 

A digraph D 
V(D) £ V(G) 

is a subdigraph 
and E(D) £ E(G). 

2.1.3: Definition: If G is a digraph, a directed 
walk in G of length n (n~l) is a sequence 
v1 ,e1 ,v2 ,e2 , ... ,en,vn+l whose elements are alter-

nately vertices and arcs, such that ei = (vi,vi+l) 

for 1 s i s n. and are called respec-

tively the origin and terminus of the walk. A 
directed walk is said to be closed if its origin 
and terminus are identical. A directed walk is 
called a directed path if for all i and j 
(1 s i s j s n+l), vi= vj implies either i = j 

or i = 1 and j = n+l. A directed cycle is a 
closed directed path. We will denote the set of 
arcs on a directed walk W by E(W). 

2.1.4: Definition: A labelled digraph G is an 
ordered triple < V (G), E (G), I (G) > where V (G) is 
a nonempty set of vertices, E(G) £ V(G)xI(G)xV(G) 
is the set of arcs and I(G) 



is the set of labels. If e = (u, £,v) E E(G), £ 
is called the label o f e. All the concepts defined 
in 2.1.1 to 2.~re defined in exactly the same 
way for labelled digraphs. 

Since we consider only directed graphs we 
will usually omit the word "directed" and the prefix 
"di- ", using "graph", "walk", "subgraph" , etc. 
instead of "directed graph", "directed walk" , 
" subd igraph" etc. 

2.2: Language 

2.2.1: Definition: An alphabet is a triple 
(V,F,degree) wher e V,F are mutually disjoint 
nonempty sets of variables and function symbols 
respectively, and degree is a function from F 
to the nonnegative i ntegers . If degree(f) = m 
for some f E F we say that f is of degree m. 

2.2.2: Definition: An expression over an alphabet 
is: 
either (i) 

or (ii) 
a variable 
a string of the form f() where f 
is a function symbol of degree 0. Such 
expressions are called constants. The 
constant f() is usually abbreviated 
to f. 

or (iii ) a string of the form f (p1 , ... ,pn) where 

f is a function symbol of degree n > 0, 
and p

1
, ... ,pn are expressions . 

An expression which is not a variable is called a 
term. 

2. 2. 3: Definition: If p and q are expressions, 
then q is a s ubexpression of p if: 
either (i) q = p 

or (ii) q is a subexpression of pi for some 

i (1 :;; i :;; n) where p f(pl'"''pn). 

If q is a subexpression of p and q is a term, 
then q is called a subterm of p. 

We use the notions "substitution", "application 
of substitution" and "unifiability" with their stan
dard meanings. We do, however, extend the latter 
two of these as follows: 

2.2.4: Definition: If E is a set of expressions, 
€ is a set of sets of expressions and 6 is a 
substitution, then we define the application of 6 
to E and e denoted E6 and € 6 respectively by: 

E6 = { e6 I e E E} 
e6 = { F6 F E C} 

2.2.5: Definition: If t is a set of sets of 
expressions, then e is said to be unifiable iff 
there is a substitution 6 which unifies every 
member of e. e is called a unifier of t. 
2.2.6: Definition: A constraint is an unordered 
pair of expressions. An expression p is a sub
expression (or subterm) of a set of constrain-;;--C 
iff there is a constraint { q, r} E C such that p 
is a subexpression (or subterm) of r. 

2.2.7: Definition: If C is a set of constraints 
and c

1 
s C, then c

1 
is said to be a maximal uni-

fiable subset of C iff c
1 

is unifiable and c
1 

is not properly contained in a ny other unifiable 
subset of C. 
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3. The Baxter Unification Algorithm 

Our method for finding the maximal unifiable 
subsets of a set of constraints is based on a uni
fication algorithm due to Baxter [2,3] , which oper
ates in two stages. The first (transformational) 
stage detects unification failure resulting from an 
attempt to unify subterms beginning with different 
function symbols, as in P(x,x) and P(a ,f (y)) 
for example. The second (sorting) stage detects 
failure resulting from an attempt to unify a vari
able with a term in which it occurs, as in P(x) 
and P(f(x)). 

The transformational stage of the algorit hm 
manipulates two sets: a set S of constraints 
which is initially C, the input set of constraint s, 
and a set F which is a partition of the set of 
subexpressions of C. F is initially FIN' the 
partition in which each class contains one and only 
one subexpression. This algorit hm either halts 
with unification failure, or halts returning the 
partition FOUT which is unifiable iff C is 

unifiable. In what follows, we use [p]F to denote 

the class in F which contains the subexpression 
p of C, and write p = q mod F iff (p]F = [q]F. 

When F 
[p] for 

algorithm 
S < -- C; 

is understood from context, we will write 
[p ]F. 

TRANSFORM(C); 

F < -- FIN; 

while S "' r/J 

do Delete a constraint { P
1

,p
2

} 
if [pl] "' [p2] 

from S· , 

then if [p
1

J contains a t erm 

fl (qll, · · · ,qlm) 
and [p 2] contains a term 

f2(q21,···,q2n) 

then if fl "' f2 

then [unification fails; 
stop 

el.se[add to S the pairs: 
--~ qll ,q21 } ' ·'' ,{ qln' q2n } 
Replac e [p1 ) a nd [p2 J by 

[p1] u [p2) in F 

If TRANSFORM(C) succeeds, it outputs a parti
tion FOUT which has the property that a ny two 

terms in the same class begin with the same func-
tion symbol. 

In the sorting 
structed such that 

defined as follows. 

stage, a digraph 
V(D) = FOUT and 

Suppose FOUT 

D is con
E (D) is 

has m classes 

containing terms, and let t
1

, ... ,tm be terms 

representing these classes. Suppose also that 
ti= fi(pil'''''pini) for 1 :s i :;; m, then: 

E(D) = { ( [ ti],[pij]) 11 :;; i :;; m, 1 :s j :;; ni} 

Given FOUT' D is unique (i.e. independent of 

which terms we choose to represent the classes 
in FOUT). 



3.1: Theorem: A set of constraints C is unifiable 
iff TRANSFORM(C) succeeds producing partition 
FOUT' and the digraph D constructed from FOUT 

has no cycles , 
For examples, and proofs of the above results, 

see [2 ,3 ]. 

4: Detec ting and Locating Nonunifiabilities 

The unification algorithm described above 
halts at the first sign of nonunifiability. A set 
of constraints, however, can be nonunifiable for 
more than one reason, so since we wish to determine 
all sources of nonunifiability, we modify the 
transformational stage so that it continues to 
merge classes of the partition even though they 
may contain terms beginning with different func
tion symbols. Similarly, in the sorting stage, 
we must enumerate cycles rather than aimply detect 
them. See [ 6 ] for omitted proofs. 

4.1: Transformational Stage 

The modified transformational algorithm mani
pulates three sets: the sets S and F which 
are the same as in TRANSFORM(C), and a set P 
which is a partition of the set of subterms of C, 
and is initially PIN' the partition in which each 

class has one 
denoted FOUT 

unifiable iff 

we denote by 

the subterm t 

member. The output partitions are 
and POUT' and as before, C is 

FOUT is unifiable. In what follows 

< t > 
p 

of 

the class in p containing 

iff < t1 >p = < 

we write < t > 

C, and write t 1 = t 2 mod P 

When no ambiguity is likely, 

< t > • 
p 

algor ithm CLASSIFY(C); 
S < -- C; 

F < -- FIN; 

p < --

while 

do Delete a constraint {pl, p2} from S; 
if [pl ] "' [p2] 

then T < -- [pl]; 

while T contains a term 
tl = f(qll'''''qln) 

do Del ete from T all terms in 
< tl >; 

if [p2 J contains a term 

t2 = f(q2l'"''q2n) 

The following two lemmas state important pro
perties of CLASSIFY, and show a relationship bet
ween CLASSIFY and TRANSFORM which will later be 
strengthened. 

4.1.2: Lemma: (a) For any two terms sl and S2' 

sl and S2 are in the same class of POUT iff 

61 and S2 are in the same class of FOUT and 

sl and a2 begin with the same function symbol. 

(b) If two terms f(pll'''' ,Plm) and 

f(p21••••,P2m) are in the same class of POUT' 
then for each i (1 s i s m) pli and p2i are 

in the same class of FOUT' 

4 .1. 3 : Lemma : 

(a) If TRANSFORM(C) succeeds returning partition 
FOUT' then there is an execution of CLASSIFY(C) 

returning partition FOUT' and in each class of 

FOUT' all terms begin with the same function symbol. 

(b) If TRANSFORM(C) fails, then there is an exe
cution of CLASSIFY(C) returning partition FOUT' 

where some class of FOUT contains terms beginning 

with different function S·ymbols. 

4.1.4: Example: Consider the set of constraints 
C as follows: 

¢
1

: { G(s,z), G(v,F(y,y))} 

¢
2

: {u , F(y,G(s,z))} 

¢
3

: {u, F(H(w),G(x,r))} 

¢ 
4 

: { F (H (H ( u) ) , H ( u) ) , F (H (H ( v) ) , v) } 

¢
5

: {v, F(y,y)} 

The output partitions of CLASSIFY(C) are: 

= {{ u,v,s,z,x,r, 
F(H(w),G(x,r)), F(y,G(s,z)),F(y,y), 
H(u), H(v)}, 

{H(H(u)), H(H(v))}, 
{ y 

G(s,z),G(v,F(y,y)), G(x,r), 
H(w)}, 

{ F (H (H ( u) ) ,H ( u) ) ) , F (H (H ( v) ) , v) } , 
{ w} } 

= {{ F(H(w) ,G(x,r )), F(y,G(s,z)), F(y,y)}, 
{H(u), H(v)}, 
{H(H(u), H(H(v))}, 
{G(s,z), G(v,F(y,y)), G(x,r)}, 
{H(w)}, 
{ F(H(H(u)) ,H(u)), F(H(H(v)) ,v)} 

then Add to S the pairs: -'4-'-'.;:;2_:_""T--'h-'-e_A-'-u-"t-'-o--'-m""a-"t-'-o_n_f_o_r_a_C_o_n_s_t_r_a_i_n_t_S_e_t_ 
{ qll ,q21}'' '' ,{ qln'q2n}; 
Replace < t

1 
> and 

< i:2 > by 

< t
1 

> u < t
2 

> in P 

Replace [p1 J and [p2 ] by 

[p
1

J u [p
2

J in F 
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CLASSIFY(C) divides the set of subexpressions 
of C into classes of expressions which must be 
unifiable for C to be unifiable: therefore, if 
two terms t

1 
and t

2 
begin with different func-

tion symbols and occur in the same c lass, then C 
is not unifiabl e . By inspecting each class, we 
can discover every suc h pair of incompatible terms. 
We now introduce a mechanism for determining why 
two incompatible terms are in the same class: that 
is, for finding all the constraints responsible for 



this situation. 

4.2.1: Definition: If C is a set of constraints, 
denote by M(C) the set of all function symbols 
occurring in C. We then define: 

degree(C) max degree(f) 
f € M(C) 

and N(C) ={i Jl !, i !, degree(C)} 

4.2.2: Definition: If C is a set of constraints, 
then A(C) is a labelled, d irec t .ed graph, where: 

V(A(C)) = { pJp is a subexpression of C} 
I(A(C)) = Cu (M(C) x N(C)) 
E(A(C)) = TRANS(A(C)) u PUSH(A(C)) u POP(A(C)) 

where TRANS(A(C)), PUSH(A(C)) and POP(A(C)) are 
mutua lly disjoint sets of arcs defined by: 

TRANS(A(C)) ={ (p1 ,¢,p2) J {p1 ,P
2

} = ¢ € c} 

PUSH(A(C)) ={ (p,(f ,i ),t)J p and tare subexpres-
sions of C, 
t = f(p1 , ... ,pn)' and 

p = pi for some 

i E {1, ... ,n}} 
POP(A(C)) ={ (t,(f,i),p)J p and tare subexpres

sions of C, 
t = f(p1 , ... ,pn)' and 

p = pi for some 

i E{ l, ... ,n}} 

If e = (p1 ,label,p2) E E(A(C)), we denote by 
-1 

e the ordered triple (p
2

,label,p
1
). Then 

(e-l)-l = e; e E TRANS(A(C)) if and only if 
-1 

e E TRANS(A(C)); and e E PUSH(A(C)) if and 
-1 only if e E POP(A(C)). 

Note that A(C) can be regarded as a finite 
nondeterministic, pushdown automaton [1], where 
V(A(C)) is the set of states, (which we will also 
refer to as vertices of~, andsubexpressions of 

C), and the transition function is defined in 
the obvious way by the arcs. The npda A(C) has 
unspecified initial and final states; input alpha
bet C; and pushdown alphabet M(C) x N(C), which 
we will henceforth refer to as Z. Accordingly, we 
call A(C) the automaton for C, and make the 
following definitions. 

4.2.3: Definition: If X is any finite set, a 
word of length n over X, is any sequence of e l e;;;-ent s 
of X •of length n. The word of length O is 
denoted by ¢; the set of all words of positive 
length over X by x+: and the set of all words 
over X by X* . We will denote the length of a 
word x by JxJ, and denote concatenation of 
words by juxtaposition. 

4.2.4: Definition: If a E C*, y E Z*, and 
p E V(A(C)), then (p ,a,y ) is called a config
uration of A(C), and p,a and y are called the 
state, input and stack of the configuration 
respectively. 

4.2.5: Definition: If e € E(A(C)), we define a 
relation F e=i on the set of configurations of 
A(C) as follows: l et e = (p1 ,label,p2), then 

(q
1

,a1 ,y
1

) J-e~ (q
2

,a
2

,y2) if and only if: 
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(i) ql ~ pl' q2 a P2 

and (ii) (a) if e € TRANS(A(C)), and label 
then a1 ¢a

2 

(b) 

(c) 

if 

then 

Y1 Y2 
e € PUSH(A(C)), and 
label= (f,i) E Z 
a1 a2 
Y2 (f,i)yl 

if e € POP(4(C)), and 
label= (f,i) E Z 

then a1 a2 
Y1 = (f,i)y2 

4.2.6: Definition : An alternating sequenc e of 
n+l configurations and n arcs of A(C): 

(pl,al,yl),el,(p2 ,a2,y2), ... ,(pn,an,yn),en' 

(pn+l'an+l'Yn+l) 

is called a chain of length n in A(C) from 
(p1 , a1 ,y1 ) to (pn+l'an+l'Yn+l), if and only if: 

(pi, ai,yi) J-e-J (pi+l'ai+l'yi+l) for all 

i € {l, ... ,n}. 

4.2.7: Definition: For each integer n?O, we 
define a relation J-n on the set of configurations 
of A(C) as follows: 

( i) ( v ) J O ( v ) if and only if pl,al"l - Pz,a2"2 

(ii) if and 

only if there is a chain of 
A(C) from (p1 ,a1 ,y1) to 

length n 
(p 2,a2,y2) 

j- 1 I-We abbreviate as , and also define 
relation J- * on the set of configurations 
A(C) as follows : 

(pl, a l,yl) I-* (p2,a2,y2) 

in 

the 
of 

iff (p
1

,a
1

, y
1

) j-n (p
2

,a
2

,y
2

) for some n? O 

When two t erms are unified, their correspond
ing subexpressions are also unified as stated in 
Lemma 4.1.2 (b). Hence the process of unification 
of a set of constraints defines an equivalence 
relation on the s ubexpress ion of C c haracterized 
by the part ition FOUT' As it happens , we can 

also characterize this equivalence relation by 
considering certain chains in A(C), and through 
this characterization, we can show the uniquene ss 
of FOUT and POUT' and prove the exact rela tion-

ship between TRANSFORM and CLASSIFY. 

4.2.8: Definition: If p and q are two s ub
expressions of C, then p is sa id to be at t ac hed 
to q in A(C) if and only if for some a E C*, 
(p,a,¢) J- * (q,¢,¢). We denote this p "" q mod C. 
We a lso say that p is at tached to q ~ 
word a. It is easy to show that "" mod C is an 
equivalenc e relation. 

4.2.9: Lemma: For any set of constraints C, if 



FOUT is an output partition of CLASSIFY(C), then 

p = q mod FOUT iff p ~ q mod C. 

4.2.10: Corollary: The output partitions FOUT 

and POU of CLASSIFY(C) are unique: that is, 
indepen!ent of the choices made during execution. 
Because of this result, we henceforth refer to 
FOUT and POUT' output by CLASSIFY(C), as FOUT (C) 

and POUT (C). 

Proof: The uniqueness of FOUT is obvious from 

lemma 4.2.9, and implies the uniqueness of POUT 

by lemma 4.1.2 (a). D 

4.2.11: Corollary: TRANSFORM(C) succeeds, re
turning part it ion FOUT if and only if 

CLASSIFY(C) returns partition FOUT where each 

class of FOUT contains at most one class of 

POUT' 

Proof: 
4.1.3. 

By applying corollary 4.2.10 to lemma 
D 

Note that corollary 4.2.11 establishes the unique
ness of the output of TRANSFORM(C) and of the 
digraph D, henceforth denoted D(C). 

4.2.12: Example: The automaton for the set of 
constraints of example 4.1.4 is illustrated in 
figure 1. By inspecting the classes of FOUT(C) 

given in example 4.1.4, we see that x = u mod FOUT' 

so by lemma 4.2.9, x ~ u mod C. Figure 2 shows 
a chain demonstrating this attachment. 

4.3: The Unification Graph for C 

Recall that if the transformational stage of 
the Baxter algorithm succeeds, the resulting parti
tion is used to construct a digraph which must be 
topologically sorted. Similarly, from the output 
partition FOUT(C) of CLASSIFY(C), we construct 

a labelled digraph U(C). 

4.3.1: Definition: If C 
the unification graph U(C) 
directed graph, where: 

V(U(C)) = FOUT (C) 

is a set of constraints, 
for C, is a labelled, 

I(U(C)) = M(C) (definition 4.2.1) 

and the arc set is defined as follows. Suppose 
there are m classes in P ouic) , and let 

t 1 , ... , tm be m terms such that < ti > = < tj > 

if and only if i = j. Suppose 
ti f .(p

11
, ... ,p. ) for 1 s i ,,; m, then: 

1 1ni 

E(U(C)) = { ([t i ], fi, [p ij l)jlSi Sm, l Sj Sni} 

Note that U(C) is unique in view of lemma 
4.1.2 (b). 

4.3.2: Lemma: If TRANSFORM(C) succeeds, then 
D(C) has a cycle if and only if U(C) has a 
cycle. 

We may now prove the correctness of our 
modified version of Baxter's algorithm. 
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4.3.3: Theorem: A set of constraints 
unifiable if and only if every class of 

C is 
FOUT(C) 

POUT(C), and U(C) contains at most one class of 

has no cycles. 

Proof : By theorem 3.1, C is unifiable if and 
only if TRANSFORM(C) succeeds and D(C) has no 
cycles. 

By corollary 4.2.11 and lemma 4 .3.2, TRANS 
FORM(C) succeeds and D(C) has no cycles if and 
only if every class of FOUT(C) contains at most 

one class of POUT(C), and U(C) has no cycles. D 

4.3.4: Example: Figure 3 illustrates the unifi
cation graph for the set of constraints C of 
example 4.1.4. Note that by Theorem 4.3.3, C 
fails to be unifiable for two reasons: some 
classes of FOUT contain more than one class of 

POUT' and U(C) has cycles. 

4.4: The Failure Location Process 

Theorem 4.3.4 allows us to determine whether 
or not a set of constraints is unifiable: in the 
case when they are not, it also shows us all the 
sources of nonunifiability due to clashes between 
incompatible terms, and due to cycles. We now show 
how this information can be used to guide the 
investigation of the automaton in order to deter
mine which constraints cause these nonunifiabili
ties. 

We have already established that attachment 
in the automaton corresponds to equivalence under 
the output partition FOUT of CLASSIFY. By 

finding words which attach incompatible terms, 
therefore, we can find those subsets of the 
constraints which cause these terms to be attached. 

In this section, we also find that there is a 
similar correspondence between cycles in the unifi
cation graph, and "loops " in the automaton; where 
loops are chains roughly equivalent to closed 
walks in a directed graph. 

There is in general an infinite number of 
chains demonstrating the attachment of a pair of 
terms, and an infinite number of loops. However, 
it turns out that we can limit our attention to 
chains and loops with certain properties, and that 
the class of such chains is finite. 

4.4.1: Definition: A chain from a configuration 
(p,a,¢) to a configuration (p,¢,y) where Y"-¢, 
is called a loop on p with value a in A(C). 

The next three results establish the rela
tionship between walks in U(C) and chains and 
loops in A(C). 

4.4.2: Lemma: If C is a set of constraints and 
U(C) contains a closed walk from [p] to [p], 
then there is a loop on p in A(C). 

As one travels along a chain, the automaton's 
stack increases and decreases a number of times 
before it reaches its final value. For each ele
ment on the final stack, however, there is some 
configuration on the loop which is reached from 
the previous configuration by adding this stack 
element, and is such that the stack is no shorter 
in any subsequent configuration. The states of 
these "plateau" configurations are the subject of 
the next lemma. 



· 1 

4.4.3: Lemma: If (p1 ,a1 ,y1),e1 , •.. ,en• 

(pn+l'an+l'Yn+l) is a chain in A(C ) such that 

y1 =¢,and Yn+l = ( fm,jm) ..•. (f1 ,j 1), then there 

are m un i que states q1 , ••• ,qm' m stacks 

a 1 , .•. ,am, and m integers i 1 , ... ,im such that: 

(1) 1 <i <i <, .. <i :sn+l 
1 2 m 

(2) qj=pi.' a j=yi for l :s j :s m 

(3) q, is J term be~nning with f., for 

(4) 

(5) 

J J 
1 :s j :s m 

hk I ~ I a. I for k ~ i . , 1 s j s m 
J J 

if m > l, ([qj],fj , [qj -l ] E E(U(C)) for all 

2 :s j s m 

(6) [qm] = [pn+l] 

(7) ( [ql ],fi, [pl]) E E(U(C)) 

An obvious consequence of lemmas 4.4.2 and 
4.4.3 is: 

4.4.4: 
A(C) 

Coroll ary: 
has a loop. 

U( C) has a closed walk iff 

4.4.5: Definition: If A(C) has a loop 
(pl,al,yl),el'''' ,en,(pn+l 'an+l'Yn+l)' where 

Jyn+ll = m, then the m states q1 , ... , qm de

fined in lemma 4.4.3 are called the characteristic 
states of the loop. For each characteristic state 
qk, we define a loop on qk called the ~-canon-

ical form of the original loop, as fo llows. Sup
pose qk = p., then IY.I ~ IY .I for i ~ j. 

J i J 
Therefore, for each i ~ j, we can write yi i n 

the form Siyj for some Si E Z*. Also, al = ca. 

for some C E C*. Then the qk -canonical form of 

the original loop is: 

(p .,a.c,S. ),e., ... ,e ,(p +l'c,S +l),e1 , 
JJ J J n n n 

(p2,c'y2Sn+l)'e2, ... ,e j-l'(pj,¢,yjSn+l)' 

which is a loop since Sj = (J, and yjSn+l"' r/J 

(sinc e Yn+l = Sn+lYj and Yn+l"' ¢). 

Note that: 

{ ¢J¢ occurs in a1 } = { ¢J¢ occurs in ajc} 

J 

We now t urn our attent ion to certain restricted 
classes of chains and loops. 

4.4.6: Definition: A chain in A(C): 

(pl,al,yl),el, ... ,en,(Pn+l'an+l'Yn+l) 

is said to be semi-simple if and only if for all 
i and j such that 1 s i < j s n+l , either 
p4 "'pJ, or Y. "'Y .. The above chain is said to 

i i J 
be simple if and only if it is semi-simple, and 
for all i and j such that either 1 :s i < j < n+l 
or 1 < i < j :s n+l: 

if 

then 
pi pj 
3k E { i+l,,,, ,j-1} such that: 
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4.4.7: Definition: A loop in A(C) is said to 
be fundamental iff all its canonical forms are 
simple. 

4.4,8: Definition: If p and q are subexpres
sions of C and there is a simple chain from 
(p,a,¢) to (q,¢,~) for some a EC*, then p is 
said to be simply attached to q by a in A(C). 
It is easy to verify that simple attachment is an 
equivalence relation. The reader should note that 
simple attachment implies attachment but not vice 
versa. 

It happens that the number of chains demon
strating that two expressions are simply attached 
is finite, and that the number of simple loops in 
A(C) is also finite. These facts are consequences 
of the following lemma: 

4.4.9: Lemma: 
chains in A(C) 

Let 6 be the set of all simple 
for which the stack of the initial 

configuration is ¢, and the input of the final 
configuration is ¢. Then 6 is finite. 

The following result shows that we can indeed 
restrict our attention to simple chains and funda
mental loops when we wish to separate incompatible 
terms and break cycles. 

4.4.10: Lellllila: 
(a) If there is a chain of length n in A(C) 
from (p,a,y) to (q,b,a), where either p"' q 
or y "'a, then there is a semi-simple chain of 
length Sn in A(C) from (p,c,y) to (q,b, a ), 
for some c E C*. 
(b) If A(C) has a semi-simple chain of l ength 
n that is not simple, then A(C) has a simple loop 
of length < n. 
(c) If A(C) has a loop, then A(C) has a 
fundamental loop. 

We now have all the machinery necessary to 
describe t he process of finding the maximal uni
fiable subsets of a set C of constraints. In
formally, the process is as follows. 

We find all pairs of incompatible terms which 
are in the same class of FOUT(C), and find all 

cycles of U(C) [8,9 ,11 ] . We then find all words 
which simply attach incompatible terms, and for 
each cycle find the value of a corresponding 
fundamental loop. 

4.4.11: Definition: If L is any finite set, 
denote by J3(L), the set of all Boolean expressions 
over L constructed without complementation. If 
B E :B(L) , denote by [ B] the function from 

z1 -- > { 0,1} defined by: 

[O] (L
1

) 0 for all 1
1 

c L 

[ l ](L
1

) 1 for all 1
1 

c L 

[£ ](11) 0 iff £ ~ 11 

[B1+B2](L1 ) [B1 ](L
1

) + [B2 ](L
1

) 

[Bl·Bz](Ll) [Bl](Ll) [B2](Ll) 

4.4.12: Definition: If C is a set of constraints 
we define several sets as follows: 

(i) If p and q are subexpressions of C: 
ATTACH(p,q) = {a lp is simply attached to q by a} 

(ii) CONFLICT = {{ p,q} I [p] = [q] and < p > "' < q>} 
(iii) For any subexpression p of C: 
LOOP(p) = { aJ3 a simple loop on p with va lue a} 

(iv) For any arc e E E(U(C)): 
TAIL(e) = {tit begins with f, 

where e = ([t],f,[p])} 



(v) CIR= set of all cycles of U(C) 

(vi) Let H be the assertion defined by: 

H(§') iff for all k E CIR, en E(k) "' (/J 

Then let COVER be any subset of E(U(C)) 
fying the condition: 

!COVER! = min lei es E(U(C)) 
and H(e) 

Clearly if CIR = (/J, COVER = (/J, 

satis-

4.4.13: Definition: We now define several 
Boolean expressions over C as follows: 

+ (i) If a E C , Bw(a) l: ¢ 
¢ occurs 
in a 

(ii) If p and q are distinct subexpressions of C: 

BA(p,q) = 1 
[I Bw (a) 

if ATTACH(p,q)=(/J 
otherwise 

a EATTACH(p,q) 

It is easy to show that if a E ATTACH(p,q) then 
a"'~. so that Bw(a) is defined. Also, by lemma 

4.4.9, ATTACH(p,q) is finite. 

(iii) if CONFLICT=(/) 

[I BA(p,q) otherwise 
{ p,q}ECONFLICT 

For\ ;ny s[Iubexpression p i;:O:P\p) 

Bw(a) otherwise 
a ELOOP(p) 

Again, it is easy to show that if a E LOOP(p), then 
a"' (/J, so that E(a) is defined; and by lemma 4.4.9, 
LOOP(p) is finite. 

(v) For any e E E(U(C)): 

[I BL ( t) 
t ETAIL(e) 

Note that 

(vi) 

TAIL(e) "' (/J. 

1 

(vii) BUNIF = BCON°BCYC 

4.4.14: Lemma: If cl 

[Bw(a) ] (C1 ) = 0 if and 

C c, and -
only if 

if COVER = (/J 

otherwise 

a E c+ , then: 
+ a E c1 

4.4.15: Lemma: If c1 ~ C, and A(C1 ) either has 

a loop, or has a chain that is semi-simple but not 
simple, then [BUNIF] (C1 ) = 0. 

Proof: If A(C
1

) has a semi-simple chain that is 

not simple, by lemma 4.4.lO(b), A(C1 ) has a loop. 

If A(C
1

) has a loop, then by lemma 4.4.lO(c), 

A(C
1

) has a fundamental loop. Suppose this loop 
+ has value a E c1 . Since A(C1 ) is a subgraph 

of A(C), this loop is also in A(C). Let 
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q
1

, ..• ,qm be the characteristic states of this 

loop, then by lemma 4.4.3, there is a closed walk 
[q1 J,e1 , [q2], •.. ,[qm],em,[q1 ] in U(C). Either 

this walk is a cycle, or some subset of its arcs 
form a cycle, In either case, for some 
j E{l, ... ,m}, ej E COVER and qj E TAIL(ej) by 

lemma 4.4.3 condition (3). Since the loop in 
A(C) is fundamental, its qj-canonical form is 

simple, so that Bw(b) is a factor of the product 

BUNIF where b is the value of this canonical 

form. Also: 

{c lc occurs in b} ={c lc occurs in a} S c1 
so that [Bw(b)] (C1 ) 0, by lemma 4.4.14 

[BUNIF](Cl ) = 0 0 

C c C then: 1 - , 4.4.16: Lemma: If 

[BUNIF] (Cl) = l iff c
1 

is unifiable. 

Proof: 

(A) Suppose c
1 

is not unifiable, then by 

theorem 4.3.3 we have two cases: 

case(a): There exist subexpressions p and q 
such that p = q mod FOUT(C1 ) and 

p 1 q mod POUT(c1). By lemma 4,2,9, p ~ q mod c1 , 

so there exists a chain in A(C
1

) from (p,a,(/J) 
* to (q,(/J,¢) for some a E c1 , so by lemma 

4.4.lO(a), there is a semi-simple chain in A(C1) 
* from (p,b,(/J) to (q,(/J,¢). Note that b E c1 . 

We have two cases: 

(i) Suppose this chain is simple. Since A(C
1

) 

is a subgraph of A(C) the chain is in A(C); and 
by lemma 4.1.2(a) since p and q begin with 
different function symbols, p 1 q mod POUT(C) 

{ p, q} E CONFLICT 
and b E ATTACH(p,q) 

Therefore *Bw(b) is a factor in the product BUNIF' 

But b E c
1 

, so by lemma 4.4.14: 

[B)b) ](c1) 0 

[BUNIF] (Cl) O 

(ii) If this chain is not simple, then by lemma 
4.4.15: 

[BUNIF] (Cl) = O 

case(b): U(C
1

) has a cycle. In this cas e, by 

corollary 4.4.4, A(C
1

) has a loop, so by lemma 

4.4.15: 

[BUNIF] (Cl) = O 

(B) Now suppose that [BUNIF] (C 1) 

have two cases: 

case(a): [BCYC] (C1 ) 0. 

0. Then we 

In this ca se, for some subexpression p of C, 
there*is a simple loop in A(C) on p with value 
a E C , such that [Bw(a)](C1) = 0. It is easy 

to show that a"' (/J, therefore a E C+, so by 



./ 

lennna 4.4.14 a E Cf, so that the simple loop on p 

is in A (C
1

) . Consequently, U(C
1

) has a cycle 

(corollary 4.4.4), so that by theorem 4.3.3 cl is 
no nun if iable. 

case(b): [BCON](C1) = O. 

In this case, for some subexpressions p and q 
of C, p = q mod FOUT(C), p 1 q mod POUT(C) , and 

p is simply attached to q by a EC* in A(C), 
where [B (a )] = 0. It is easy to show that a "' r/J , 

w + . 
therefore a EC , so by l emma 4.4.14, a E Cf so 

that p is simply attached to q by a in 
A(C1). Hence p ~ q mod c

1 
so by lemma 4.2.9, 

p = q mod FOUT(C1 ). But p and q begin with 

different function symbol s by lemma 4.1.2(a), 
so by the same lenuna p 1 q mod POUT(81). There-

fore by theorem 4.3.3, c
1 

is nonunifiable. D 

If B is a Boolean expression constructed 
without complementation, then there exists [SJ a 
un ique (modulo commutativity of Boolean sum and 
product), sum of products expression B' with the 
properties: 

(a) No product in B' subsumes any other product 
in B', 
(b) No product in B' contains repeated vari-
ables. 
(c ) B' defines the same Boolean function as B. 

Also, for any two Boolean expressions B
1 

and 

B
2

, [B
1

] = [B
2

J if and only if B
1 

and B
2 

define the same Boolean function. 
We may now prove the main result. 

4.4.17: Theorem: c
1 

is a maximal unifiable sub

set of a se t of constraints iff c
1 

= C- { ¢
1
,,,,, ¢n} 

where ¢1 ... ¢n is a product in BUNIF 

Proof: 

(A) Suppose c1 =C-{¢1 , ... ,¢n} where ¢1 ... ¢n 

is a product in BUNIFn 

Then [¢1···¢n](Cl) =iU1 [¢i](Cl) 

= 1 since ¢i i c1 for l Si Sn 

cl is un ifiable (lemma 4.4.16). 

Now suppose Cl'::. C2, and c2 is unifiable, 

then there exists a product ml. "11\ in BUNIF 
such that: 

mi i c2 for 1 $ i $ k 

mi i cl for 1 $ i $ k 

{ml'"'•ll\} '=.{¢1, ... ,¢n } 

If these sets are not equal, then the product 
m1 ... mk subsumes the product ¢1 ... ¢n' which is 

impossible. Therefore {~, ... ,11\} = {¢1 , ... ,¢n}, 
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so that c
1 

= c2 . 

c
1 

is a maximal unifiable subset. 

(B) Suppose c
1 

is a maximal unifiable subset of 

c. Let c1 = C- { ¢1 , ... ,¢n}. Now [BUNIFJ (C1) 1, 

since c
1 

is unifiable. Therefore there exists 

a product m1 ... mk in BUNIF such that: 

k 
illl[mi ] (Cl) = l 

mi i cl for 1 s i s k 

{ml'"'•ll\} ::{¢1'"''¢n}. 

Let c
2 

= c- { m1 , ... •11\}. Then 

unifiable by (A), and c1 '::. c 2 . But 

maximal unifiable subset, so that c 2 

i;1 .•. ¢n is a product in BUNIF 

c2 

cl 

= cl 

is 

is a 

D 

4.4.18: Example: For the set of constraints C 
of example 4.1.4, by investigating FOUT(C) and 

POUT(C), we find that the set of incompatible 

terms is: 

CONFLICT= {{F(H(w),G(x,r)), H(u)}, 
{ F(H(w) ,G(x,r)), H(v)}, 
{ F(y ,G(s ,z)), H(u)}, 
{F(y,G(s,z)), H(v)}, 
{F(y,y), H(u)}, 
{ F(y,y), H(v)}, 
{G(s,z), H(w)}, 
{ G(v,F(y,y)),H(w)}, 
{ G(x,r), H(w)} } 

The se t of cycles of U(C) is: 

CIR= { ([uJ, e1 , [yJ,e2 , [u]) , ([u],ey,[u])} 

Of the two possible "coverings" for CIR, we choose: 

COVER = { e
1 

,e
7

} 

So the sets of states of A(C) which must be 
investigated for loops is: 

TAIL(e
1

) = { F(y,y), F(H(w) ,G(x,r)), F(y,G(s,z))} 

TAIL(e ) = { H(u), H(v)} 
7 

By investigating the automaton A(C) (figure 1) 
we obtain the following: 

ATTACH(F(H(w),G(x,r)),H(u)) 

ATTACH(F(H(w),G(x,r)),H(v)) 

ATTACH(F(y,G(s,z)) ,H(u)) 

ATTACH(F(y,G(s,z)),H(v)) 

ATTACH(F(y,y),H(u)) 

ATTACH(F(y,y),H(v)) 

ATTACH(G(s,z),H(w)) 

ATTACH(G(v,F(y,y)),H(w)) 

ATTACH(G(x,r),H(w)) 

={¢3¢4¢4} 

= { ¢3¢4¢4¢) 

= { ¢2¢4¢4} 

= { ¢2¢4¢4¢4} 
= { ¢ } 

4 
={¢4¢4} 

= { ¢2¢4¢5¢5¢4¢3, 

¢2¢4¢5¢2¢3} 

= { ¢3¢2¢5¢4¢2¢1, 

¢3¢4 ¢5¢5¢4 ¢2¢1} 

= { ¢3¢4¢5¢5¢4¢3, 

¢3¢2¢5¢4¢3} 



N 
00 

F( H ( H (1')),v) 

( F, l i 

F( H (w ),G(x,r )) 

The automaton A(C) for the set of constraints C of our 
example. Note that to simplify the diagram we have 
used a single arc to represent a pair of arcs e, e-1 
of the automaton. 

Figure 1. 

State 

X 

G(x,r) 

F(H(w),G(x,r) 

u 

F(y,G(s,z)) 

G(s,z) 

G(v,F(y,y)) 

V 

H(v) 

H(H(v)) 

F(H(H(v)),v) 

F(H(H(u)),H(u)) 

H(H(u)) 

H(u) 

u 

Stack Input 

!/J ¢3¢2¢1¢4 
(G,1) ¢3¢2¢1¢4 

(F,2)(G,1) ¢3¢2¢1¢4 
(F ,2) (G,l) ¢2¢1¢4 
(F ,2) (G,1) ¢1¢4 

(G,1) ¢1¢4 
(G,1) ¢4 

!/J ¢4 
(H,1) ¢4 

(H,l)(H,1) ¢4 
(F ,1) (H , 1) (H,1) ¢4 
(F ,1) (H,1) (H,1) !/J 

(H,l)(H,1) !/J 

(H,1) !/J 

!/J r/J 

Figure 2. 
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LOOP(F(y,y)) = { ¢1¢2¢4¢5} 

LOOP(F(H (w),G (x,r))) = ¢ 
LOOP (F(y,G(s,z)) = { ¢2¢4¢5¢1 } 

LOOP(H(u)) = { ¢
5

¢1¢2 , ¢1¢2} 

LOOP (H(v)) • { ¢
4

} 

We obtain the Boolean sum of product s over C: 

B~NIF = ¢4¢1 + ¢4¢2 

Tperefore C has two maximal unifiable subsets, 
namely: 

{¢2,¢3,¢5} 

and {¢1,¢3,¢5} 
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IF(H(l-l(u)),H1u)), F(H(l-1( 1l ),1)i 

The graph U(C) for the set of constraints C 
of our example. Each vertex is a class of 
FOUT(C), and the sets within each vertex 

are the classes of POUT(C). The arcs are 

labelled with function symbols according to 
the definition of U(C); also, integer labels 
1, ... ,7 are attached in order that we can 
refer to t he arcs as e

1
, ... ,e

7
. 

Figure 3. 
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Expressions 
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Abstract We present a technique for dea ling with 
constrained-variable instances of clauses similar 
to Gilmore 's method. Rather than perform ~atura
tion over H, however, we show how the basic calcu
lation can help guide the exploration of H. The 
theor em proving process then consists of 1) f orm
ing some constrained copies of input clauses, 
2) calculating a cover expression and 3) if a 
proof has not been found, using the cover expres
sion to pick new instances of clauses. The last 
part is the main point of departure from prior 
constrained variable methods. We also present a 
complexity analysis of covering and relate an in
complete ground case strategy to a form of unit 
r eso lution. 

I. Introduction 

We pres ent a new me thod for automated theo
rem proving that is currently being studied with 
an int eractive program. The method is equivalent 
to Gilmore's method [6] in the ground case and 
i s r e lated to Prawitz' me thod [12] in the genera l 
cas e . Some of th e interesting features are: 

A. for the ground case 

i. each clause is used once in the calculation 
of a covering expression and th en discarded, un
like r eso luti on and matrix methods where a clause 
may have to be us ed for several resolutions, ex
t ensions or matrix r eductions; 

ii. for a satisfiable set of ground clauses the 
re s ult is a concise description of the kinds of 
cl a us es that would have to be added to obtain un
satisfiability; ( this point is crucial for the 
general case); 

iii. the ground clauses can be used in any order; 
there is never any backing up or undoing of a cal
culation that has already been performed, and 
thus one can say ther e is no "s earch" involved. 

B. for the genera l case 

i. replicas of the input clauses are us ed (i.e., 
constrained variabl e copies rll); this gives a 
momentarily fixed set of literals so that the 
ground cover calculation can be performed ; 

ii. after a replica has participated in the basic 
cover calculation, only the literals ne ed be saved 
for possible fu ture ma tings; no record of which 
literals be long to which replicas need be k ept; 
only one copy of a litera l need be saved r egard-
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less of how many replicas it occurs in; 

iii. in relation to remark A. ii above, when not 
enough r eplicas have been taken to form an unsat
isfiable set of instances, the cover express ion is 
used to help choose n ew replicas and substitutions. 
We point out that the search process in the gen
eral case is concerned solely with finding the 
unsatisfiable instances. Once thes e have actually 
been found, remark A.iii from above applies. Res
olution, on the other hand, combines the search 
for instances (unification) with a search for a 
demonstration of unsatisfiability (forming a re
solvent). 

In [6], Gilmore proposed calculating the DNF 
of c

1
&e

2 
... &Cn for a set c

1
, ... , en of clauses. 

He then proposed to form successive saturations 
of this DNF matrix over the Herbrand Univers e , H. 
Among the mor e serious disadvantages of this ap
proach are that 1) the normal conversion from CNF 
to DNF l eads t o r edundancy among the disjuncts 
and 2) there is generally littl e guidance in 
searching through H. To he lp overcome these di s
advantages, we propos e starting with an initial 
set of inst anc es , pe rforming a different but 
similar transformation and then using the result 
to he lp choose the n ex t set of replicas. Note 
that the new approach l eaves the input clauses as 
c lauses, the often more natural form. Second, 
the modifi ed convers ion will produc e DNF's which 
are minimal in the s ens e that no individual dis
junct is impli ed by r emaining ones. Finally, we 
make heavy us e of the fact that the disjuncts of 
the modifi ed DNF represent a minimal set of 
clauses which, if added to th e current se t of 
replicas, will produce unsatisfiability. More
over, the representation is in a form tha t can 
be compared directly to the input c l aus es to de
termine appropriate new instances. 

We assume the reader is familiar with first
order l ogic and resolution. We begin with the 
ground case and describ e the cover calculation. 
We then discuss how we currently use the covering 
idea in a first-order, interactive theorem prover. 
Finally we make a brief comment about the computa
tional complexity of the ground case. In what 
follows, we us e a slightly different notation 
than DNF, namely we reverse the signs and don't 
writ e the literals themselves. The sign reversal 
a llows a more direct comparison of the cover 
expressions with input clauses. 
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II, The Ground Case 

Let a set S of ground clauses be given and 
let the atoms in S be p

1
, ..• ,pn. A term is a 

string of n symbols, each symbol either+, -, or 
0. An expression is a set of terms. The covering 
expression for a clause D = d , v d , v .•. v d , , 

il i2 im 
1 ~ i. 

l 
~ n, is the set of terms 

OOOs•. 0000 .•. 00 
il 

OOOs. 0 .. , Os'. 0 ..• o 
il i2 

OOOs. O ••. Os. 0 ... Os'. 0 ..• 0 
il i2 i3 

OOOs. 
il 

0" ,S. o ... ". '' 'Si 0 .•. 0 s ' 0 ... 0 
i i2 

wheres. is the sign of 
J 

sign. Note that -(d. 
il 

to: 

m-1 m 

d. and s'. is the opposite 
J J 

v ... v di) is equivalent 
n 

-d V d.&-d, V ,., V d.& .. , d, &-d. , 
il il i2 il im-1 im 

The covering express ion, then, contains one t e rm 
to represent each of the above disjuncts. The 
cover exp r ession of a clause Dis denoted by C(D). 

Examples. Let n = 6 

C (p
2

) 0-0000 

C(-pl v p6) = +00000 -0000-

C(pl v -p
3 

v p
4

) = -00000 +o+ooo +o--oo 

Definitions Two t erms conflict if one contains 
a + and the o ther a - in the same posi tion. If 
two terms sand t do not conflict, then their 
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intersection s*t is the term calculated position 
by position according to the following:+*+=+, 
-*- = -, +*0 =+and -*O = - The product s*t of 
two covering expressions Sand Tis the set of all 
terms u such that u = s*t, sin Sandt in T and 
sand t do not conflict. 
Example. Let C be the c laus e p

1 
v p

3 
and let D 

be the clause - p
3 

v p
4

. Then C(C) = -000 +0-0 

and C (D) = Oo+O 00-- and C (C)*C (D) = - o+O - 0- 
+0-- (+0-0 and Oo+O conflict). It often happens 
that two terms in an express ion are exac tly 
alike except in one position, for example ++- o++ 
and +++o++. In such cases, the pair of terms are 
replaced by the single term with a O in the dis
agreeing position, e.g., ++Oo++. Such an opera
tion is called a merge and is equival ent to apply
the rule p&A v-p&A = A. We note that* is commu
tative and associative. We therefore, extend 
the notion of a cover express ion so that the 
cover of a set S = [C

1
, Cn} is given by C(S)= 

C (c
1
)i<C (C

2
)* ... *C (Cn), 

We now relate covering terms and expressions 
to a tree structure which we call the standard 
tree (of order n). We are still considering 
sets of clauses over the Boolean variables 
P1,Pz, ... Pn· 

Definition A standard tree of order n is the 
binary branching tree of depth n in which 
1. the clauses attached to the two level 1 nodes 
are p

1 
and - p

1 
and 

2. if C. is the clause attached to a l eve l i 
i 

node n then the clauses attached to the two 
l eve l i+l nod es d escended from n are Ci v Pi+l 

and Ci v -pi+l' 

· For example, the standard tr ee of order 3 i s 
s hown below. The leaf nodes have been numbered 
for reference . 



Definition The set of l eaves covered by a term t 
is th e set of all l eaves of the standard tre e 
whose a ttac hed clauses contain pi i f the symbo l 

in position i oft i s + and -pi if the symbol in 

position i i s-. The set of l eaves covered by an 
expr ess i on Eis the union of the set of l eaves 
covered by the t erms of E, and i s denoted by K(E). 

Example. Suppose n=3. Then relative to the above 
figure 

K(+o+) consists of l eaves 1 a nd 3 
K(Oo+) consists of l eaves 1, 3, 5, and 7 
K(+-- -00) consists of l eaves 4 thru 8. 

Not e tha t the covering terms are like the 
"p ebbl es " us ed by Paterson and Hewi tt [ 11] to 
close off a tr ee . 

We have the fo ll owing theorems: 

Theo rem 1. Le t S be a set of c l a uses whos e a t oms 
are amo ng p

1
, ... ,pn. 

onl y if S s ub s um es a ll 
t ree of order n. 

Sis unsatisfiable lf a nd 

the l eaves of the stand ard 

Th eor em 2. The se t of l eaves covered by the inter
s ec tion of two t erms sand tis the inters ection 
of the set covered bys a nd the se t cover ed by t. 

Theo r em 3. The set of l eaves covered by C(D) 
where Di s a c l ause i s th e se t of l eaves NOT s ub 
s umed by D. 

Theor em 4 . Th e s et of leaves covered by C (D)~<'C (E) 
is th e se t of l eaves not s ub s umed by e ither D or 
E . 

Theor em 5 . Sis unsatisfiable if and only if C(S) 
i s empty . 

We now r eiterat e one of the main fea tures of 
ground cover ing. Fr om Theo r ems 1 and 4 we have 
that if Sis sati sfiab l e, C(S) t e lls which le aves 
of t he t ree have been l ef t unsubsumed--tha t i s , 
in a sens e , what kind s of c l a uses are missing 
from S. This wil l pl ay an imp ortant r o l e in the 
nex t section. 

We c l ose thi s section with an exampl e of a 
set of cl auses and the ca l culation of its cover . 
PRODUCT COVER is the product of th e cover s of a ll 
the c l auses up t o tha t point. We us e p, q, and r 
to avo id writing s ub scrip t s , and drop v. 

Claus e Cl ause Cover Product Cover 

p q r -00 +-0 ++- -00 +-0 ++-
-p -q -r +00 -+O --+ + - 0 ++- -+0 --+ 
q - r 0-0 O++ + - 0 -o+ 
p -q -00 ++0 -o+ 
-p r +00 -0- empty 

Not e that a mer ge occurred in the third l ine . 
There is no r eso lution, mode l e liminati on, linear , 
GC or linked conjunct r efuta tion of the above set 
of clauses that do es not us e at l eas t one of th e 
claus es more than once for a resolution, ex tens ion, 
or conj unct node. If we consider the se t of jus t 
the first 4 claus es, we have a sa ti sf i abl e se t. 
The product cover after the first four c l auses 
have been used i s not empty, and indicates that we 
need a c l a use s ubs umming - p r in order to ge t un
satisfiabi lity . Finally, note t hat th e first two 
claus es processed have on l y tautologo us resolvents. 
Whil e s uch are normally discarded in r esolution, 
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they pose no particular probl ems for covering. 

III. The Genera l Cas e 

We propos e to us e the above s cheme as the 
truth- f unct iona l unsatisfiability t est in the 
bas ic replica-method for th eor em proving . Such 
a method has the format: 

1. Form a set of r eplicas of the input c l a us es. 
2. Unify some of the lit erals or otherwise de t 
ermine some s ub s titutions for the constrained var
iables. 
3. Tes t for truth-functiona l unsatisf i ability . 
4. I f the te s t succeeds, stop; otherwise, add 
new replicas and/or s ubstitutions and go to 3 . 

The l ast s t ep i s the crucial one. Cov-
ering express i ons provide a convenient form for 
ana l y zing what new replicas to form, unlike o ther 
replica methods or even resolution in general. 

We begin with a trivial exampl e to illus
trat e the basic app roac h. Suppose S has 3 claus es, 
Pa, -Px Pf(x ), and -Pf(f(a)), and s uppose we 
start with one replica of each. Taking th e lit 
er als in the orde r they appear be low, the r eplicas 
and the covering expr ess i ons are : 

Claus e Claus e Cover Pr oduct Cover 

1. Pa - 000 - 000 
2. -Pv/f(v1) o+oo 0--0 -+00 ---0 

3. -Pf(f (a )) ooo+ -+o+ ---+ 

Now the object is t o produc e the empty cover, 
i. e., to ann i hil ate all the t erms . The first 
term in t he above cover c an be annihilated by 
mating litera ls 1 and 2 , i. e ., Pa and Pv

1
, by 

s ub s tituting a for the cons t rained variab l e v
1

, 

making litera l s 1 and 2 id entical. Then a t erm 
like -+0+ is se lf-con f l ic ting because if the s ub 
st itution had been made befor e the cover were 
ca l cul ated and only, say , lit eral 1 had been kept, 
s uc h a t erm would never have been forme d in calcu
l at ing the product. After making t he s ubst itution 
we have a product cover -x-+ where the x i ndicat es 
that lit era l 2 has now become id entic a l to some 
o ther lit er a l. No oth er s ubstitutions are pos
s ible, so we now look for anothe r replica. The 
l eaf indicat ed by the r ema inin g t erm is 
-Pa -Pf(a) Pf(f(a)). If we can fi nd a r eplica 
tha t s ub s umes this, we will be don e . Of course 
t he appropriate rep lica i s -Pf(a ) Pf ( f (a )). 

Generally, it will not be the case that some 
s ub set of literals i n an un s ubs umed l eaf wi ll 
have a common ins tanc e with a ll of a n inp u t 
c l ause. For exampl e, if th e third input clause 
above had been -Pf ( f ( f (a))), the un s ub s umed l eaf 
would have been - Pa -Pf(a) Pf(f(f(a))), The 
best we could have done wou ld have been t o t ake 
replicas tha t had 1 lit e r a l in common with t he 
uns ubs umed l eaf --e ither -Pf(a) Pf(f( a )) or 
-Pf(f(a )) Pf(f(f(a))), I n e ither case, adding 
s uch a new r eplica (with a new litera l) wo u ld 
aga in l ead to a cover expression whose ind i cated 
leaf was fully s ub s um ed. 

The basic me thod, then, is t o start with 
some replicas, calcu l ate a covering expr ess i on , 
and t hen use tha t expr ess i on to guid e the choice 
of new replicas or s ubst itutions . We make some 
comments. 



1. One can make wrong choices of replicas and 
substitutions; so there is definitely " search" in 
the general case; however, the search is confined 
solely to discovering the correct instances of 
the input clauses, and not to examining Boolean 
r e lations among thes e instances; in r esolution
bas ed me thods, the formin g of instanc es (by uni 
fication) is intimately bound to the examination 
of the Boolean r e lations. 

2. Wh en two r eplica lit erals ar e mad e equal, 
only one copy is saved; moreover, only one copy 
of a literal is needed regardless of how many 
clauses contain that lit e,al; exc ept for proof 
r ecover y , no r ecord need be kept o f which cla us es 
contain a literal; lit erals ar e k ept only to help 
choos e new replicas. 

3. Most importantly , it app ears tha t one can 
apply mor e analys es to the choic e from amon g a 
number o f possibl e new r eplicas bec aus e the entire 
instanc e of the new claus e is pres ent, unlike 
binary r esolution; this r emark applies equa lly 
we ll t o hyper- and UR-r eso luti on, a nd r epr esent s , 
in the authors' vi ew, a distinct pot ential advan
t age o f thes e me thods over bina r y res olution. 

We a r e currently experim enting with an int er
active FORTRAN pro gram a t Ar gonne Na tiona l Lab 
based on the a bove me thod. We pre f e r int er active 
a t thi s point in ord er t o expe riment and de t e rmine 
po s sibl e effective heuri s tic s t o use with thi s 
t echnique . Becaus e the progr am i s int er active it 
will no t be poss ibl e t o comp a r e our r esults with 
thos e of mor e we ll - deve l oped, full y automa t ed 
progr ams . Th e bas ic command in the pr ogr am i s 
SGST, L, n wh e r e Lis a lit er a l numb er and n i s 
an int eger. Thi s command form s common ins t anc es 
be tween s ub se t s o f the clauses indic a t ed by the 
covering expr es s i on and input cla uses in which n 
lit eral s in the input cl ause a r e unma t ed. It 
then di s play s these unma t ed lit era l s and, i f the 
use r des ires , the ins t ances o f the input c l auses 
thems e lves , (The name SGST stands for " suggest"; 
one way of int erpr e ting the dat a tha t is dis
pl ayed i s a s sugges tions o f the fo rm "if yo u want 
t o prove L, try t o prove one of the foll owing lit
er a ls , .. "). The us er then choos es from amon g 
the in s t anc es . The progr am performs some t es t s 
automa tica lly -- 1. it r e j ects t auto lo gi es , 2. 
i f the semantic f l ag i s on, it r e j ec t s ins t ances 
whos e unma t ed lit er a l s do not have f a ls e in
s tanc es , 3, it per forms demodul a ti on. The user 
can choose from among the r emaining s ugges tions ; 
we currently use such informa tion as 1 . t he 
numb er of support ed liter a ls us ed, 2. the s truc
ture of the t erms , 3. th e numb er o f inst anc es 
yi e ldin g the s ame s uggestions, e tc. 

At the mom ent we ar e confining our experi
ment s t o Horn s e t s ; this a llows a heuri s tic 
which i s a na logous to the emphasis on unit s in 
r es olution, name l y , we add inst anc es o f onl y unit 
c l auses . In thi s case , th e covering express i on 
serves bas ically as an effici ent r ecording mechan
ism for constra in ed UR r eso lution [10]. 

The probl em us ed in the exampl e i s Theor em HS 
in [ 10 ] , that "l es s-than- or equa l" is trans itive in 
Henkin mod e l s i. e ., Q(A,B) and Q(B,C) imply, Q(A,C). 
The ax ioms and comput er di a l ogue a r e list ed in the 
App endi x . 
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IV On the Computational Complexity of Ground 
Covering 

The time complexity of any new algorithm for 
refuting unsatisfiable ground sets is of interest 
because of the close r e lationship to the NP-com
plet e problems. (S ee Cook [21 and Karp f9]), 
That is, P=NP if, and only if, ther e exists a 
sound and complet e polynomial time al gorithm f or 
r e futing unsatisfiabl e se ts . 

Cook and Reckhow 13] have investigat ed the 
question of the exist ence of a super proof syst em 
for the t autologies of the propositional calculus . 
A proof s ys t em n i s s up e r if ther e ex i s t s a po l y 
nomial p such that for every tauto l ogy x th er e is 
a proof of x in n no longe r than p( l x \), whe r e 
Jx\ is the numb er of symbols in x. Reckhow s howed 
tha t NP i s closed und er compl ement a ti on if , and 
only if, the r e ex i s t s a sup e r proo f sys t em. The 
exist enc e o f a supe r pr oof s y s t em doe s not imply 
P=NP, since the mere ex i s t ence o f a s hort c erti 
ficat e o f t autologyhood does no t imply that the 
cert i fic a t e can be found in a s hort (po l ynomial ) 
amount of time . Of c ours e, a proo f tha t no s up e r 
proo f sys t em ex i s t s would i mply PiNP , s ince Pi s 
clos ed und er c ompl ementation . 

We study the compl exi t y of cover ing by try 
ing to show tha t a g i ven co ver ing s tra t egy i s no t 
a s up er pr oof sys t em. I f the s trategy i s sound 
and c ompl e t e , then s uch a res ul t impli es that t he 
s tr a t egy has non- po l ynomi a l time comp lexity , but 
the l a tt er r esult would no t imply the f ormer . 
The l ength o f a pr oo f us ing a cover ing s trategy 
will be the numb er of t erms gener a t ed dur ing th e 
covering re fut a tion of an un sa ti sfiab l e se t . 

1. Two non - po l ynomia l s t ra t egi es 

It i s no t dif f i cult t o f ind a covering 
s tr a t egy tha t r equires mo r e th an a po l ynomi al 
numb er of s t eps . The fo l lowin g a l gorithm i s tha t 
used fo r th e gr ound case in th e c urren t impl emen 
t a tion of c overing (see Hensc hen and Evange li s t 
r 7J). 
- Algorithm 1. Simpl e scan. 

Me thod. Read the input as give n without a t 
t empting to so rt the c l auses . 

Theor em 1. Simpl e scan cover in g is no t a 
s up er pr oof system. 

Proof. (Outline ) The complexity o f a ny cov
erin g str a t egy increases s harpl y when l a r ge num
ber s o f pa irwi se -di s j oint c l a uses a r e processed 
in se quence . Thi s phenomenon occ ur s because the 
covering expr ess ions assoc i a t ed with pa irwise
di s j oint cl aus es ar e a lways comp a tibl e . Eac h 
memb er T of th e infinit e family o f unsa tisf i ab l e 
s e t s first given by Tse i ti n [ 13 ] conta ins l arge 
numb ers o f pairwi se -di s j o int c l auses . Thus , we 
give these clauses in se quence t o Al gor ithm 1 
f o llowed by the r es t o f the ~ l a uses in T , which 
i s s uf f i cient t o fo r ce the simp l e scan met hod 
into non - po lynomi a l behavi or. 

Coroll ar y 1. Simpl e scan has non- po l ynomi a l 
time compl exity . 

Al gorithm 1 i s in e ffici ent, bec ause it i s 
not we ll enough inform ed t o avo id inter sectin g 
cons ecutive pa irwise-di s j oint cl auses . The nex t 
a l gorithm seeks eff ici ency by avo iding pa irwise
di s j o int c l a us es whenever poss ibl e. 



Algorithm 2. Mod e l-direct ed coverin g. 

Me thod . Pick an initial clause arbitrarily. 
Choos e as the nex t clause one that eliminates as 
poss ibl e mode ls the larges t number of l eaves in 
the associated semantic tree . 

Theo r em 2. Mod e l-di rect ed covering is not a 
super proof sys t em. 

Proof. (Outline ). Again, we us e Ts e itin's 
formul as . The exist enc e of exponentially long 
s nakes (chordl ess cycles) in the n-cube, from 
which the fo rmulas a r e d er ived , a llows us to force 
Al gor i thm 2 into exponentially long proofs . (S ee 
Danze r and Klee [41 on the l ength of snakes in 
the n-cube ). 

Corol l ary 2. Mod e l-dir ected covering has non 
po l ynomial time complexity. 

Mode l-di rec t ed covering was designed t o di s
cover quickly the unsatis f iable k erne l of a set of 
c l auses and will be most ef ficient on se t s tha t 
are no t minimally unsa ti sf iabl e . The sets o f 
formul as described by Tse itin are min i ma lly unsat
i s fiabl e and because of the l ong s nakes in the 
graphs from which they ar e derived, contain long 
chains of formulas tha t are no t pairwis e- disj oint 
c l aus es but, a t th e same time , do not interac t 
strong l y e nough t o bound the l engths of proofs by 
a polynomial. 

2 . An incompl e t e strategy 

In an a tt empt t o und ers t and the natur e of 
covering better, we cons ider the fo llowing hi ghly 
cons tra ined version: 

Algo rithm 3. K-bound ed cover ing. 

Me thod. Choose t he n ex t claus e using a ny de
sired s t ra t egy. The only constraint i s that no 
mor e t hank terms may be ge ne rated at eac h s t ep, 
for some cons t ant k. 

Note tha t k is a bound on the numb er of terms 
not on 
the 

& 

generated by the inters ection process and 
the number of terms r equir ed to repr esent 
clauses. For exampl e , the pyramids P = x 

n n 
& . •• & (x l v -x ) & (x 2 v -x l v -x ) n- n n- n- n 

(x
1 

v -x
2 

v . •. v - xn) & (- x
1 

v -x
2 

v . .. v -xn) 

are r efut ab l e by 1-bound ed covering but require 
2 

O(n) terms to represent t he c l a us es . 

I t is c l ear that i f k-bound ed cover ing were 
comp l e t e for some constant k , then Al gorithm 3 
wo uld be a s up e r proof system . Unfortuna t e ly, 
this is not the case. Let L denot e a ll the 2n 

n 
clauses over n vari ab l es. 

Lemma 1. The sets Ln require a t least n-1 

covering terms t o be generated a t some point in 
their refuta tion. 

Proof. (Outline ) Use the proof technique 
of Pat erson and Hewitt [111 that demonstrated tha t 
lo g N pebbl es are required t o close off a tree of 
N nodes . 

Cook 121 has given a technique for replacing 
any CNF formu l a F with a 3CNF (no mor e t han 3 lit
era l s per c l a use ) formula F' s uch that Fis unsat 
isfiabl e if, and only if, F' is unsati sfiable. 
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Th e id ea i s to us e distinct dummy variables to 
r epresent excess liter a ls in each claus e. Further, 
F' can be construct ed in a numb er o f steps no 
grea t er than some polynomial in the l ength of F. 
Le t L'n be the translation of Ln into 3CNF using 

Cook's algorithm. 

Lemma 2. The sets L' require at l eas t n - 1 
n 

covering t erms, a lso. 

Proo f (Outline ) Covering the l eaf clauses 
in the semantic tr ee associated with Ln is equiv -

alent to covering the corresponding s ubtr ee s in 
the much l arge r tree assoc i a ted with L'. Thus, 

n 
a t l east as many t erms will be r equir ed. 

The pr ecedin g l emmas give us the desired 
r esult. 

Theor em 3. For each constant k, there ex i sts 
an infinit e family o f unsa ti sf i ab l e se t s of 3CNF 
clauses not r e futable by k-b ound ed covering. 

Corollary. 3. K- bounded covering is not a 
super proof system. 

Le t AUGUNIT be the family o f se t s of claus es 
refut able by unit r eso lution (see Chang and Lee 
[ 11) augment ed t o allow a ll r eso lutions that pro
duc e unit c laus es as well as those tha t use unit 
c l auses. Le t lCOV be those se t s refutab l e by 
1-bound ed coverin g . 

Theorem 4. AUGUNIT=lCOV. 

Proof (Outl ine ) The case AUGUNIT c lCOV i s 
obtained by a str aight fo rward s imulation of 
augmented unit r eso lution by 1- bound ed covering . 
For the case lCOV c AUGUNIT, we use induction on 
the number of cl aus es. The cen tra l idea i s t o 
s how that the DNF c l ause impli ed by the s ing l e 
covering t erm after processing j claus es i s prov
ab l e by a ugment ed unit resolution oper a ting on 
the same j clauses. 

Theo r em 5. lCOV is po l ynomi a lly dec idable. 

Proof (Outl i ne ) By the fact that AUGUNIT 
is po l ynomi a ll y decidable . (S ee J ones and 
Laaser 18] for the compl ex i ty of UNIT). 

The time compl exity of k-bound ed covering is 
sti ll und er i nves tiga tion. It is poss ibl e that 
the se t KCOV is NP- compl e t e (cl early, KCOV is in 
NP). We conj ecture, however , t ha t it i s not. In 
fact, we be l ieve that it i s r e l a t ed t o the bound 
ed r eso luti on of Galil [51 as fo ll ows: 

Conjec tur e p(k)-bound ed r eso luti on can sim
ul a t e k-bound ed cover ing for some polynomial p. 

On e goa l for f utur e researc h is t o s how t hat 
unr estrict ed covering i s not a super proof sys t em . 
We are currently a tt emptin g to r eac h this goa l 
in th e fol l owing way: 

Conjectur e Unr estrict ed co ver in g is not a 
s up er proof sys t em. 

Proposed method of proof. A mor e carefu l 
ana l ysis of the number of covering t erms required 
for r efuting the se t L' for s uff ic ien tly l arge n 
may s how tha t exponen tY a lly long proofs are r e
quired. 



We a ls o hop e to study such topics as 1) r ep
resentation of covering as a lan guage r ecognition 
probl em for finit e-state automata (this r epresen
tation appears t; avoid the complexity inherent 
in proc essing consecut ive pa irwise-di s j oint 
clauses us ing the covering expression representa 
tion), and 2) using dummy variables to represent 
s ub express ions, like thos e of extended r eso lu
tion (se e Tseit in 1131). 
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Appendix 

The problem in this exampl e is the theorem 
that "less-than-or-equa l" is t ran si tive in Henkin 
Mod e l s, We give be l ow commentary about the axioms 
as wel l as the input for the program and the inter
active dialo gue for t he actua l comput er run. 
Qx,y means x ~ y, Px,y ,z means x /y = z, and R 
stands for equal ity. Eis the small es t e l ement 
of the structure, D the larges t. In this run we 
used a mode l of the axioms · and hypotheses con
t aining 5 e l ements, E<A<B<C<D, Wi th this option, 
SGST rejects suggestions that do not have false 
i ns t anc es and r epor t s the numb er ;r-these r e jec
tions and the number of t au tologo us s ugges tions . 
The proof of this t h eorem requires the us e of one 
equa lity axiom. When equality ax ioms are pr esent 
and participate in a normal reso lution search , 
they t end to produce l arge numb ers of reso l vents . 
The mod e l in this run e l i minated pract ically 
al l of t hese except the one needed for the pr oof . 
We a lso used demodul a tion of t erms in s ugges tions. 
We us ed an option of SGST in our pro gram that 
li s ts only the unma tched litera l s in the n ew 
s uggest ions without listing the entir e c l ause ( s ) 
that produced the s uggestion. For space consid
era tions we abbreviate some of th e program ' s 
clerica l responses. 

appendix cont inued on following page 



The input to the program consists of the following: 

INCL 
-Q (VlV2) P (VlV2E) / X S y iff x/y E 
-P (VlV2E) Q (VlV2) / 
-P (VlV2V3) Q (V3Vl) / 
-P (VlV2V4) -P (V2V3VS) 
Q(EVl)/ 

x/y S X 

-P(VlV3V6) -P(V6VSV7) -P(V4V3V8) Q(V7V8) / 
Eis the small est 

(x/z)/(y/z) s (x/y)/z 

- Q(VlV2) -Q(V2Vl) R(VlV2)/ 
Q (VlD) / 
P (VlV2F (VlV2)) / 
-P(VlV2V3) -P(VlV2V4) R(V3V4)/ 
P (VlDE)/ 
P (EVlE) / 
P (V lVlE) / 
P (VlEVl)/ 

x s y and y :,;; x imply 
Dis the largest 
closure 
well definednes s 
Theor em 1. x /D 
Theor em 2. E/x 
Theor em 3 . x / x E 
Theor em 4. x /E = x 

E 
E 

X = y 

a ll the equality ax ioms for P, Q, R, and F 

Q (AB)/ d eny trans itivity 
Q (BC)/ 
-Q(AC)/ 
I 
COPY, 
COPY, 
COPY, 
COPY, 
COPY, 
COPY , 
COPY, 
COPY , 

5 
7 
8 

10 
11 
12 
13 
14 

COPY , 24 
COPY, 25 
COPY, 26 
END 
R (F (V lD) E) / 
R (F (EVl)Vl) / 
R (F (VlVl)E) / 
R (F (VlE )Vl) / 
I 

COPY, N causes a new constrained instance of claus e N to 
be formed. 
In this exampl e we start with instanc es of the 
unit s only . This caus es no r estriction becaus e 
SGST int ers ects all the t erms of the cdvering 
expr ession anyway. 

Clause 14 i s R(VlVl) 

Clauses 24-26 a r e the three units of the denial. 

These ar e the demodul a tor s c orr esponding 
t o Theor ems 1- 4 abo ve . 

there fo llows her e t ables de fining a mod e l o f the above axioms plus Q(AB) and Q(BC) 
which c ontains 5 e l ement s -- E <A< B < C < D. 

We now pr esent the actua l dia logue with commentar y . Use r input i s in l ower ca s e , compute r 
r e spons e in upper case . Lit er a ls a r e numbe r ed in the order in which they a r e ent e r ed into 
the sear ch space vi a e ither the COPY command (see ab ove input) or the TRY command (s ee be l ow), 

r ead input 
s gs t , 11, l 

2 TAUTOLOGIES 14 SEMANTIC REJECTS 

SUGGE STIONS 
1 -PACE 
OK 

try l 
NEW LITERAL IS 12 
sgs t , 12 , 1 
3 TAUTOLOGIES 4 SEMANTIC REJECTS 
SUGGESTIONS 
1 -RF(AC) E 

OK 
t ry 1 
NEW LITERAL IS 13 
sgs t, 13, 1 
0 TAUTOLOGIES O SEMANTIC REJECTS 
SUGGESTIONS 
1 - QF (AC)E 
2 -PF(AC)EE 
3 -PxDF (AC) 

r ead the input clauses, demodulator s , and mode l . 
11 i s QAC f r om the denia l - QAC 

Program f ound 2 t autol ogi es a nd 14 s ugges tions 
that f a il ed the semantic t es t . These wer e mos tly 
uses of e qua lity ax ioms tha t a r e no t r e l evant t o 
the proo f. On l y one s ugges tion rema ins . 
TRY adds the necessary new lite r a l s and updat es the 
cove ring express i on. 

Again th e semantics rejec t ed a l o t of po t entia l 
uses of equa lity ax i oms wi t h only one s ugges ti on, 
the ri ght one. 

No he lp fr om semantics her e . 
The r eason is tha t now a ll of t he s ugges t ions 
are sayin g the same thing in di ffe r ent fo rms. 
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4 -PExF (AC) 
5 -PxxF (AC) 
6 -REF (AC) 
OK 
try all 
NEW LITERAL IS 
NEW LITERAL IS 
NEW LITERAL IS 
NEW LITERAL IS 
NEW LITERAL IS 
NEW LITERAL IS 
OK 
sgst, 14, 1 

14 
15 
16 
17 
18 
19 

TOO MANY SUGGESTIONS 

try, 15, 1 
NONE 

try, 19, 1 
NONE 
sgst, 10, 1 
2 TAUTOLOGIES 
SUGGESTIONS 

1 SEMANTIC REJECT 

1 PBCE 
OK 

try 1 
NEW LITERAL IS 20 
sgst, 20, 1 
3 TAUTOLOGIES 41 SEMANTIC REJECTS 
SUGGESTIONS 
1 -PEF(CB)F(AC) 
2 -PBCF (AC) 
3 -PBDF(AC) 
4 -PABE 
5 -PEF(DC)F(AC) 
OK 
try all 
NEW LITERAL IS 21 
NEW LITERAL IS 22 
NEW LITERAL IS 23 
NEW LITERAL IS 24 
NEW LITERAL IS 25 
PROOF FOUND. LAST 
1 -QAB PABE 

9 24 
end 

REQUIRED INSTANCE IS 

Try all of the suggestions at once. 

The program stops looking after a certain amount of 
space is us ed up. 

15 y ields nothing new 

None of the others yi e ld s anything new. 

At this point we go back and try another hypothesis, QBC. 

Note, semantic r e jection app li es only if unp aired 
litera l is negative . Otherwise, as is the case her e , 
a s ugges tion based on axioms and true hypotheses 
could never be found. 

At this point, all the gro und literals required for 
a refutation are present, and only one more instance 
of an input clause is needed. The missing instance 
fully s ubsumes the covering expression and involves 
literals 9 and 24. 
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Abstract 

Goal-directed language generation is a decision process, 

drawing on knowledge about the phrases, words, etc. which 

could correctly express the speaker's intentions. Fluent 

speech must be planned. This entails being able to examine 

what one knows and to make inferences from it. This paper 

first sketches the generation process, showing where and how 

this knowledge is used. Then it presents the data structure 

that is used for encoding "how to say it" information. It is a 

schematic representation, which linguistic routines will 

interpret either as a procedure for constructing an English 

phrase or as descriptive data, depending on what is needed at 

the time. 

Introduction 

Language generation is not a simple process. II is not 

merely a matter of the speaker taking a representation of 

what he wants to say, looking up each of its tokens in a 

"mentalese to English" dictionary and then writing down the 

phrases in order. Natural language are a special purpose 

representation with detailed and complexly constrained 

grammars. They .involve modes of representation that are 

(presumably) not used in ordinary thinking: serial presentation, 

the indication of relationships by morphological markings, etc. 

The "natural" translations of the tokens in a speaker's message 

are often mutually ungrammatical, making language generation 

a problem in planning. 

The complexity goes beyond the problems of translation. 

What one actually tells an audience is different in quantity and 

quality from what one thinks to ones self. Not being telepaths, 

an audience has to be given adequate descriptions of whatever 

the speaker wants to refer to; they should hear only 

This . report describes research done at the Artificial 
Intelligence Laboratory of the Massachusetts Institute of 
Technology. Sup~ort for the laboratory's artificial intellience 
res:arch 1s provided in part by the Advanced Research 
Proiects Agency of the Department of Defence under Office of 
Naval Research contract N00014-75-C-0643. 
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"relevant" information. Their reactions and inferences must be 

taken into account; arguments must be presented carefully. 

General maxims and discourse conventions exist and the 

speaker must follow them if he is to be understood. 

Language generation - defined here as the process that 

takes place between the point when the speaker has decided 

what to say and the completion of a suitable English text - is 

best characterized as a decision making process. The speaker 

uses his special purpose knowledge to inform a series of 

decisions about which words to use, which constructions, what 

intonation, etc. To model the generation process in humans, or 

to build a computer program to be a "mouthpiece" for some 

computer program "speaker", requires characterizing the kinds 

of knowledge involved and specifying how it should be 

represented and where and how in the generation process it is 

used. What decisions must be made? What do they depend on? 

When are they made? 

Over the last several years, I have developed a model of 

language generation. II is accompanied by an operational 

MacLISP program which provides its formalization and the 

beginnings of a practical uti lity. Operating alone, the program 

takes proofs or individual formulas in the predicate calculus as 

its input "messages" and renders them in English. II is 

presently being adapted as the mouthpiece of two advisor 

programs [Genesereth 1978][Goldstein ~]. The model and 

program cover a good deal of territory, only a small part of 

which I will be able to discuss in this paper. The design of the 

generation grammar and the main process is given in 

[McDonald 1978b]. Implications of the model as a 

psycholinguistic theory are discussed in [McDonald 1978a]. A 

thorough specification of the model and a defailing of the 

implemented grammar will appear_ shortly in [McDonald in 

preparation]. 

A speaker knows how !..Q. describe the objects, relations, 

states, etc. that he will want to refer to. This knowledge is 

much more than just an association between tokens in his 

mental representation and English words. It is context 

sensitive - descriptions vary with who the audience is and 



what has been said before. It interacts in a sophisticated way 

with the grammatical processing - choices are automatically 

added or omitted according to grammatical strictures, and 

output is readily customized to meet its syntactic context. 

And, as we will see, this knowledge is not only used but 

examined and reasoned about. 

This paper is about the structure of this knowledge in 

my program. How does it appear? What does it do? How is it 

inter leaved with the rest of the processing? The first half of 

the paper will sketch the model as a whole and motivate the 

position of this " lex icon" within it. The rest of the paper will 

present the representation for "entries" in the lexicon and 

illustrate how they are used. 

Generation as Decision-makin,g 

There are an unimaginably large number of things we 

could talk about and a larger set of ways for expressing them 

in language. When we speak (or a computer program writes) 

we are, in effect, making a selection from that space of 

choices. More precisely, we are making a ser ies of choices 

which, combined, pick out one text or utterance. This is a 

useful way to conceputalize the process because it suggests 

we look for specific "decision-makers", each possibly using 

different kinds of ev idence and operating at different limes 

according lo how their decision effects the full text . 

In studying generation, researchers have always divided 

the process inlo two parts: first deciding "what to say", then 

deciding "how lo say that message" The first we can label 

"cognitive reasoning", the second "linguist ic reasoning" The 

two processes are taken lo rely on different kinds of 

knowledge, to use different predicates to interogate ii, and 

generally to employ a different sty le of reasoning. For 

example, we might worry about telling our mother about our 

new "roommate" and try to anticipate how she would react. 

That is cogn iti ve reasoning. Once we decide to do ii, we worry 

if we can cont inuall y describe them in the passive and thereby 

avoid us ing that crilica l pronoun. Thal is lingui st ic reasoning. 

My generation program only does linguist ic reasoning. 

Its starl ing point is a "message" provided by some other 

program - the "speaker", for which it then finds an 

appropriate, translaling text. The message is a representation 

of what the speaker wants to say, expressed in whatever 

formalism the speaker prefers. As the program will be doing 

ill the lingui st ic reasoning and it does not operate until after 

the decision on what to say, this design implies that the 

construction of a message does not depend on any linguistic 

data (e.g. on how a word is pr.onounced or whether a pronoun 
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will be used). To a first approximat ion, this appears to be 

true. Poets and diplomats may turn out to be exceptions, but 

at the present stage of research, a bicammeral process 

clarifies the probl~m and simplifies research. 

The program puts no explicit requirements on the form 

of a message. There is no interlingua. Instead, for each new 

speaker program, a new "lexicon" is written. A lexicon is a 

translating dictionary. It records how the linguistics program 

is to interpret the tokens and relational structures that might 

appear in a message. It is where the overall system's "how to 

say it" knowledge is stored, since this information is exactly 

what the program needs in order to "read" an input message 

as a potential nalur~I language text. 

· In the systems I am developing, messages are given as 

set of statements. For example: 

(is-true? A) 
(assumed-true A) 
A = (supports 86 83) 
focus = 83 

The program has to know how these statements are related 

linguistically (they may well have been generated 

independant ly by different parts of the speaker program). It 

then has to know how to decide what natural language form(s) 

to use to render them as one coherent utterance. 

This information is provided entirely by the lexicon, in 

this case a lexicon for the Blocks World. The statements in 

this message, and general ly so in all the systems under 

development, have the form: 

(relation-i 11rg I 11rg2 ... ) 

where any of the arguments may be relations themselves. 

Compounds statements - data base assertions - frames - etc. -

are built up recursive ly from other statements, down lo the 

leve l of the systems primitive objects. 

The le xicon has an entry for each relation and primitive 

object lhal the speake r program might include in its "message 

language". Some of these "message elements" will denote 

goal s - speech-acts to be performed like is-true? - which will 

be expressed as a polar question. Some will denote altitudes, 

e.g. assumed-true. These will effect how the main goal(s) is 

rendered. The use of "=" is a mela-synlactic device: used first 

to show that the argument to the two relations is the same 

object; and then to mark the binding of a "discourse - level" 

state variab le. The focus fixs one of the degrees of freedom in 

the rendering of the "content" support assertion. 86 and 83 

both denote blocks. The lexicon has one entry for "blocks" in 

general, which then refers to the "speaker internal" data 

structure for each particular block and uses its properties to 

pick a realization strategy. With the present lexicon, this 

message becomes: "the green block is supported by the red 



one, isn't it1' 

Constructing the Text 

A generation grammar can be viewed as specifying a 

(tremendously large) space of possible utterances. One could 

encode the message to text generator as a grammar-based, 

augmented transition network (for example see [Wong 1975)), 

however that design is very inefficient, as it is a topdown 

search through the entire grammar. (For other difficulties with 

the use of ATN's in generation see [McDonald in preparation].) 

The more direct technique is to let the message 

translate itself. This can be done with a syntax-directed 

design that reads through the statements and embedded 

relations of the message. ·Each element of the message, 

through it s lexical entry, will contribute a phrase or modifier to 

the eventual final text. Just as the message is a compositicm 

of sma ller message elements, the text that renders its intent 

into Eng li sh will be· a composition of smaller texts contributed 

by the elements' lexical entries. 

Of course, while the interpreted message is the driving 

force of the procedure, the grammar must also be taken into 

account. Its role is to specify what constructions may be 

se lected. II restricts the choices of the main, message-driven 

process to be grammatically consistant with the choices it has 

already made. It also performs the low- level, detailed actions 

which the language requires but which are automatic and not 

used to convey meaning, such as agreement and morphological 

adjustments lo verbs and pronouns. In order to make this 

possible, a thorough syntactic, constituent structure 

descr iption of every phrase is constructed as well as just the 

phrase's words, and words themselves are morphologically 

specia li zed only as they are being spoken. 

* * * 
Roughly speaking,. each element of the message 

corresponds lo one decision, i.e. what phrase is to render that 

element. The program is designed as a distributed process -

therefore there is no a priori record in the lexicon or the 

grammar of when these decisions are to be made. The needed 

organization follows from the following two stipulations of the 

design. 

( 1) The process is lo be incremental. No one 

decision-maker should have to specify more detail than 

necessary. If, for example, we have a relation with two 

arguments, like (support 86 83), then its entry will select, e.g., 

a clause with the verb support, but it will only insert the two 

arguments - untranslated - into slots in the constituent 

structure of that clause. It will not presume to refine them 
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further. Left-right, sequence oriented linguistic phenomena, 

such as pronominalization, may well effect how the arguments 

, to support are ultimately realized. Since the lexical entry for 

support, from its vantage point, can only appreciate 

hierarchical, conceptual relationships, it cannot make decisions 

that "hidden" grammatical phenomena may affect. 

In the same vein, the clause which that entry selects is 

only minimally specified. The support relation may be being 

used for many different purposes in the message as a whole: 

modifier, topic, etc. Each of these would place it in a different 

grammatical context, where it would have to be 

morphologically specialized to fit its role. As the entry 

shouldn't need to anticipate these requirements - they are 

quite general - it se lects an underspecified clause structure 

and the background grammatical process will later refine as 

required. 

(2) All decisions are indelible. Once a word or phrase 

has been selected, or a word spoken (printed out) it can not 

be t aken back. This has the immediate implication that the 

needed decisions must be made in a particular order, i.e. no 

decision can be made before all the other decisions which it 

may depend upon have been made. These dependancies fall 

into three categor ies: (a) those due to the role of the element 

in the message - what relation contains it; (b) dependancies 

due to where it will appear in the sequence of the final text; 

and (c) "global" references to it from other statements (e.g. 

focus = 83 creates a dependancy on the (support 86 83) 

relation, since it adds an additional linguistic role to those it 

must alr·eady play). 

These classes of dependancies lead directly to the 

needed ordering of the decisions, or, to put in another way, 

they determine the order in which the entr ies of the elements 

of a message are to be consulted. To wilt : first examine the 

statements of the message. Determine which are "content" 

elements, and which dictate another element's role (e.g. to 

define a question), or give "stage directions" (as in maintaining 

continuity of focus). These later statements will ca ll for 

"g lob al" rea li zations - side-effects on how the content 

elements are rendered. Cluster them with their affected 

content elements and then proceed to process the lexical entry 

of the conceptually dominant content element. 

That entry makes its decision and returns a surface level 

linguistic structure which embeds the arguments of that 

element as const ituents within ii. The program now shifts from 

reading the message to reading this new linguistic structure. A 

simple interpreter will walk through its nodes and 

subconstituenls, dispatching to grammatical routines indicated 

by the names of the nodes, names of their constituent slots 
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(see below) or grammatical features attached to them. This is 

the source of a "background" grammatical process. 

Whenever a constituent is an embedded message 

element , it s entry is processed and the linguistic structure that 

is returned replaces the element and is then recursively 

walked in turn. This surface structure representation, with the 

interpreter, is a totally adequate slate description of the 

process - completed structure and spoken words behind the 

interpreter and planned linguist ic structures and the remaining 

embedded message elements in front of it. 

* * * 
Lei me move directly lo an example. Consider this very 

simp le message, a single formula in the predicate calculus. 

(This is the first line of a proof of Russel's "barber p.1radox" -

the assumpt ion which will be shown lo lead lo a contradiction.) 

J(x) barber(x) /\ V(y)[shaves(x,y) .. ~shaves(y,)] This message is 

processed by a lexicon with an entry for each logical 

connective and special, schematic, entires for each predicate 

and default variable category (i.e. x and y denote people). 

They render that formula as : "There is some barber who 

shaves everyone who doesn't shave himself." 

Now let me redisplay the formula as a tree of named 

subformulas. This is the way in which the program actually 

sees it, and ii highlights its hierarchical nature. 

existentia18 (x, ) 
~ 

conj? ( ty"' 
' -0, 

predicate I (x) universal6 ( . / . v 
iff5(~ , ~ 

predicate2(x,y) predicate2(y,y) 

There is only one statement in this message, a content 

item, exislenlial8( ). Therefore the process begins by 

consulting the entry for existenlials (see below). I will go 

through this derivation quickly, emphasizing when choices are 

made and roughly what they are. 

The entry for ex istentials must select a phrase - a 

linguist ic context - in which it s argument, conj?, can sucessfully 

be rendered. The "mathematical" phrasing, "for some x, .. ." has 

this property, but ii is a "less fluent" phrasing than say, 

"There is an x which ... ". The entry will look al conj?, or rather 

al the lexical entry for conjunctions, and "ask ii" whether the 

more fluent phrasing is possible. The answer will be "yes" and 

this constituent structure is then returned and instaled as the 

process's state description. The interpreter for data-directed 

processing now starts al the top node - a formal node, ttopt. 
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ttopt 
[top 1] 
clause I 

~ 
[subj) [pred] 

ther~ 

[vg][obj I] 
BE conj? 

Names enclosed in brackets, [], are the names of 

cannonical locations in the consitiluent structure. Names in 

italics are English words, embedded in the surface structure 

but not yet spoken - "spoken" text will appear in a line just 

below the tree. Syntactic nodes are given unique names based 

on their category. Names in bold-face are message elements. 

Such constituents are actual ly special data structures which 

represent those instances of those elements in the planned 

surface structure. This will be explained later. 

The interpreter now moves down through [lopl), the 

first constituent of the utterance. The name "lopl" signals to 

the grammar (vi a a dispatch by the interpreter) that this is the 

start of a new sentence - the next word will · now be 

capitalized. Moving into the clause causes the interpreter to 

rebind a series of grammatical status variables. (See [McDonald 

1978b] for further discussion of how the grammatical 

processing operates.) Inside any node, the interpreter 

examines each of the nodes constituents in turn from left to 

right. Here, [subj] cont ains the word there. Whenever a word 

is reached, ii is sent lo a morphological subrout ine for final 

contex tual adjustments to its print name and then printed out 

on the console. 

"There .. ." 

9 
ttopt,1 
[lopJ.:) 

~ 
[sl{\>iJ [pred) 

thern 

[vg][objl) 
. BE conj? 

The next constituent, the clause's predicate, contains a node. 

The interpreter recurses and moves to that VP's constituents. 

The [ vg ) ("verb group" fo llowing Halliday) constituent initiates 

considerab le amount of grammatical processing, as the 

information needed to fix the form of the verb's tense is 

located and centrali zed. This includes checking the number 

and person of whatever is the [subj]. The word there is 

actually an indirect pointer. When it was instaled as the 

subject, the instaling grammatical routine added a link lo the 

[obj 1) constituent. Therefore the question is "forwarded" to it. 

Since conj? is an embedded message element, the question is 

answered by consulting its lexical entry. 



Now at [obj 1 ], conj7's entry is processed. Conjunctions, 

in issolation, could be rendered either as "real" conjunctions: 

"X, Y, and Z", or as specifying multiple properties describing 

one object - in this case the variable x. This specificat ion 

could then be rendered either as a clause or a noun phrase. 

However, once a linguistic context has been established, the 

degrees of choice open to the conjunction entry (or to any 

entry) may be rad ically reduced. This instance of conj7 is the 

[objl] const ituent of clause!. Here it must be rendered as a 

noun phrase. The entry for conjunctions will build a noun 

phrase by using it s first conjunct to create the [determiner] 

and [head] and making subsequent conjuncts into modifiers. It 

does this schemat ically since it does not want to presume on 

how the entries for those con juncts will actually render them. 

Since Conj7 is the conjuction of predicate! and universal&. the 

[objl] slot now looks like this, with the second conjunct 

attached as a property to this "instance" of predicatel. 

[obj 1 J 
1---------1 qualifier : universal5 

predicate I 

Predicate! stands for barber(x). The lexical entry for 

barber marks it as denoting a "category", something that may 

be rendered as a head noun or classifier. This causes the 

predication to be interpreted (by the entry for predicates) as 

focused on the variable as an object rather than on the 

predication as a relation. That entry, see ing that this instance 

is in a "nominal" context, initiates the construction of a noun 

phrase using the noun from the entry of barber as its head, 

and deriving the determiner from the quantifier used for the 

var iab le. (in a "clausal" context, it would have constructed a 

predicate-nominal) The noun phrase building process notices 

the affixed property and makes it a constituent. 

[obj I] 

~ --. 

[det][mods] [head] [quals] 
some barber universal5 

The interpreter moves through NPl 's constitutents and 

has some and barber spoken. The null constituent, [mods] 

("prenominal modifers") is ignored. The [quals] slot 

("postnominal qualifiers") is associated with grammatical 

rout ines for forming relat ive clauses when required (a qualifier 

might alternatively be a prepos ition group or verb group). 

Since relatives are (optionally) signaled by relative 

pronouns, these routines must know how, e.g., universal& is 

going to be realized before the interpreter actually reaches it. 

This can be read from its entry as we will see. Relative 

pronouns are grammatically "bound" to the object that the 

noun phrase derives from, in this case the variable x. The first 

instance of x in the phrase that rea lizes universal& will be 
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supressed as part of the grammatical signature of a relative 

clause. The form of the relative pronoun depends on the 

grammatical re lation of that first instance of x to the clause it 

is in - "subject" or "oblique" case. Again, we need to know 

something about universal5 before we otherwise would get to 

it, and again, its lexical entry can be designed to supply the 

answer without actually building any linguist ic structure. 

Leaving aside for this paper how . the relative clause 

forming routines operate, let us proceed. The relatives routine 

generates who, then the interpreter reaches universal!i. Its 

entry has a choice between "literal" and "fluent" constructions, 

much like the entry for exislentials. It must examine the 

potential linguist ic renderings of its arguments to see it they 

will fit the requirements for the fluent form, else ii takes the 

liter al choice. As, in fact, the fluent choice can go through, (i.e. 

we can express the quantification through the determiner on 

the sub ject of a "subject-predicate" construction) I wi ll move 

right on to iff5 which directly replaces universal& in the [quals] 

slot. 

The entry for biconditionals has a similar spread of 

cho ices, and it s cho ice is dependant (1) on the potential of its 

arguments, and (2) on "rhetorical" context. It has a fluent 

construction based on interpreting the right -hand side of the 

bicondilional as restr iction on the variable it shares with the 

left-hand side. The right -hand side then becomes a restrictive 

relative. However, this reading omilts explicit mention of the 

"only if" aspect of the biconditional. An additional strategy, 

triggered by a rhetorical indicator can add that phrase. 

Another indicator will se lect a "reduced" reading, useful in 

making an argument: "if X then Y, and if Y then X". This 

instance is unmarked, and we gel this result. 
0-->--, 

. [objl] 

~ 
[cfet]t:mods] [h~adf[qwals] 
s~me barb~ 

[subj][pred] 

x~ 

[vg] [objl) 
shaves 1---------1 predicate2(y,y) 

y 

" .. . some barber who" 

The grammar routines turn the instance of x in [subj] 

into a trace (in Chomsky's sense) when the interpreter reaches 

it. The rest of the surface structure is rendered in almost 

exactly the same way as the parts described so far. 

One remark: the final instance of y will be 

pronominalized and then made into a reflexive by the 

morphology routine. Besides its surface structure plan, the 
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program maintains a time-organized record of what message 

elements have been mentioned so far, with an abbreviated 

discription of the grammatical circumstances. As part of its 

operation, the interpreter first checks each message element 

that it reaches to see if it has been spoken before. If it has 

not, the interpreter goes directly to its lexical entry; if it has, 

then it goes instead to a grammatical subroutine for 

pronominalization. This subroutine will construct a high-level 

description of the relations between this instance and its 

anaphor, plus a notation of other mentioned message elements 

with which it might be confused, and then makes a heuristic 

decision to use a pronoun or not. If it decides not to use a 

pronoun, the decription plus a notation of wh}' a pronoun was 

inappropriate is made available to the element's entry. 

The things you you need to do with a lexical entry 

The primary "mission" of an entry is to record which 

linguistic forms could potentially be used to render elements of 

its type, plus the contextual conditions that select between 

them. These conditions can include: (l) internal details of the 

relation's arguments; (2) "global" restrictions introduced by 

other message statements; (3) the linguistic potential of some 

argument, e.g. whether it will be a noun phrase or a clause 

with a certain subject; (4) the discourse situation - has the 

element been mentioned before; (5) the grammat ical context -

what kind of constituent is this instance of the element. 

The st ipulation that the generat ion process be (l) 

incremental and (2) indelible has the effect of requiring the 

program to know things about the eventual linguist ic form of a 

message element before it can legitimately be constructed. 

This information must be available from an element's lexical 

entry or else readily computable in the current context. This 

is a "secondary mission" which the entry representation must 

support. It includes: 

(A) For organizational purposes, a short, highlevel 
description is needed of the element's eventual form. The 
syntactic category of the to be created node: NP, prepg, etc. 
will suffice. This is used in planning how to position elements 
with respect to each other and to the established sur face 
structure. 

. (8) The need to choose among alternatives can call for 
applying linguist ically oriented predicates to a relation's 
arguments, e.g. "possible-nominal", "predicate-about()", or more 
involved questions like "what will be eventual, default position 
of x in the unmarked rendering of universal6?". 

(C) Ungrammatical possibilities should be automatically 
ruled out of an entry's list of possible realizations once the 
position of each instance of its element type within the 
planned surface structure is fixed. 
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(D) Part of an entry's realization strategy can include 
"forcing" the rendering of one or more of the arguments it 
embeds. It may preempt all or part of the decision process of 
the argument's entry so as to insure that an otherwise free 
choice goes the way that fits best with its intentions. 

(E) Every relation type will have an "unmarked" 
rendering which is suited to expressing the content of that 
relation as it is usually intended. However, a speaker program 
can choose to use its data for other purposes, e.g. as a 
modifier, or in conjunct ion with a statement like focus • 83. 
This usage calls for applying a "transformation" to the entry's 
se lect ion, but before actually constructing any linguistic 
structure since syntactic structure may not be changed one 
created. Rather, tr ans formed instances are to be generated 
directly in their new form. 

Realization strat~gies 

A lexical entry, when used to construct a phrase, ma~.es 

one or more linguistic decisions. These are decisions to create 

certain syntactic nodes, to fill certain of their consitituent slots 

with certain English words or argument elements, or to add 

grammatical properties to the existing plan. All such actions 

are a part of the program's gr~mmar. They are formalized as 

"rea li zation strategies" Operationally, a rea li zation strategy is 

an object much like a function. It is appl ied to a set of 

arguments, whereupon it cor;,structs a new constituent 

structure of the specified type embedding those arguments or 

modifies an existing structure supplied as one of its arguments. 

An entry wi ll record that it may select such and such a 

strategy if certa in te sts are met. That record may then be 

used to symbo lically determine what the entry constructs by 

examining the stored schema that defines the strategy. This 

schema always has at least two fields, a "phrase" and a "map" 

(It may other fields annotating its grammatical features, what 

sort of thing it is useful for, etc .. ) For example: 

CLAUSE-OBJ I 
phrase (basic- clause () 

predicate (vp-obj I () )) 
map ((first . mvb) 

(second . subj) 
(third . (pred obj I)) ) 

This indicates that the realization strategy named 

"clause-obj l ", when applied to three arguments, will construct 

and return two syntact ic nodes: the first a clause using the 

consitutent schema named "basic-clause",i.e. {[subj) [pred]}; 

and the second a verb phrase using "vp -objl" - {[vg] [objl]). 

The verb phrase fills the [pred] constituent slot of the clause. 

To find out what would be the disposition of the strategy's 

arguments, its "map" field is interpreted. The map associates 

arguments (named by their order) with const ituent slots in the 

phrase. 



· When reasoning about entries and their decisions, 

realization strategies are accessed in their schematic form by 

specially written procedures. When they are being used in 

their primary function - to actually build linguistic structure, 

ei ther a general interpreter is used (particularly when 

debugging) or a "strategy compiler" is run as the program is 

loaded and efficient LISP routines are used instead. 

the Design of an Entry 

In the first implementation of this model, strategies and 

entries both were encoded as LISP functions. The flexibility of 

a procedure makes it a good implementation : hoice in just such 

an ear ly point in the research when one is sti ll unsure of what 

information will have to be encoded and of how it will be used. 

But, writing a procedure is a craft. When encoded 

procedurally, the information in the lexicon must be copied 

again for each new linguistic predicate. This work is 

redundant, errors are easily made, and the technique for 

creating new entries is harder to describe to potential users of 

the system. 

In general, the answer to these problems is to develop a 

declarative, schematic representation. (1) The common 

procedural "glue" is extracted and consigned instead to a set 

of interpreters and compi lers specialized for each different 

use of the material. (2) The different kinds of information 

within one of these objects can be named and distinguished 

within the schemata, making them easi ly accessible to routines 

that would want to reason about them. 

The specification for a lexical entry that is given just 

below is the spec ification of what must be entered by the 

human designer. That structure is expanded when the 

program is actually loaded to be the more fleshed out 

structure that we will see short ly. It is important as a matter 

of human engineering to cut down the designer's "make work" 

load as much as possible by letting all the predictable 

construction be done automatically. Names in angle-brackets 

are non-terminals to be defined or are self -explanitory. 

Square-brackets enclose optional material. The star (*) is 

Kleene star. 

44 

<lexical-entry> ::• 
(def-entry <name> <list of 1rr;ument n1me1> 

<body> ) 
<body> ::• <decision>* 
<decision> ::• ( [<name>] 

[<skeleton>] 
[local variable bindinr;s] 
<filter>* ) 

<filler> ::= ( <any contextual predicate>* <~hoice> ) 
<choice> ::• <name of I sub-entry> 

I <an editing action on the list of str1ter;ies> 
I <strategy-application> 

<strategy-application> ::= 
( <strategy name> <list of arguments> ) 

<skeleton> ::= ( skeleton <strategy-application> ) 

The overall form of an entry is a call to the read-time 

construction function, def-entry, which does all the 

cross-indexing needed to compile the entry's ultimate form. 

An entry's decisions are named according to the particular 

linguist ic form involved. Noun phrases, for example, can 

involve independant decisions for their head noun, determiner, 

and modifier constituents. Clauses can involve one decision to 

fix verb phrase type and a set of other decisions to add 

adverbial or adjunctive modifiers. The named decision is the 

handle that the entries for "globally realized" message 

e lements use to add to or preempt the decisions of a content 

element's entry. 

Conceptually, the decision making process involves 

evaluating a decision tree of predicates against aspects of the 

current context, with the strategies as its leaves. The decision 

tree formal however, while it is a good design for a procedure, 

needs to be unbundled if it is to be reasoned about. In this 

declarative design, making a decision is formalized as a 

"filtering" operation on list of possible strategies. To make a 

decision, an interpreter will evaluate all its filters and then 

e lect the first strategy remaining in the list. 

Each filter consists of a conjunction of predicates. The 

generation model makes no a priori restr.ict ions on the kinds of 

predicates allowed. It does however make some kinds of 

information more accessible than others (cl . [McDonald 1978a] 

for more discussion). II all the predicates evaluate as true, 

then the filter's "choice" is taken. It may be the name of a 

"sub -entry", i.e. another block of filters which this one was the 

gale to. In the predicate calculus lexicon for example, the 

decision of how to interpret quantification as a determiner is 

shared between the entry for predicates and the one for 

issolated variables via a "sub -entry". Otherwise the choice 

could be either the applicat ion of a specific strategy by name, 

or else an editing instruction which reorders or deletes names 

from the list of possible realization strategies. 
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Below is the entry of the Blocks World lexicon for the 

relation support. 

(def-entry support (under over) 
skeleton (clause-obj! support under over)) 

This is a simple case, and it can be written simply through 

defaults implemented by def-entry.· It makes no decision, that 

is, every instance of support rendered by this entry will go 

into the same linguistic form. The two arguments are named 

"under" and "over" for the convenience of the human designer 

- unfortunately the interpreter can not appreciate them except 

for the ir order. 

Be low, is the structure that "def-entry" builds (omitting 

a compiling operat ion). The default decision is named 

"clause-matrix" because the indicated skeleton realization 

strategy buil ds a clause. Unbeknownst to the support 

st11temenl, other statements in a message might be intended as 

mod ifiers to it. They would be grouped as "clause-modifier" 

decii:.ions, impl icit in the construction of any clause 

Not ice that while the designer may not have had any 

more comp lex ideas of how the relation could be rendered, the 

grammar automatically adds possibililes just because the 

se lected strategy, "clause-obj 1 ", bui lds a clause which is a 

member of a particular transformational family. (This use of 

"transformation" is closest to Harris's usage.) 

SUPPORT 
type lex ica l -entry 
realization class loca l ;versus "global" 
system-status interpreted ;vs. "compiled" 
arguments (under over) 
will-be clause 
skeleton (clause -obj 1 support under over) 
decision structure descriptor clause-matrix 
matrix 

(will-be clause 
strategy-set ( (c lause-obj 1 support under over) 

(passive-by _phrase) ) 
filler-set 

[details ni l 

)) 

global ( focus_on_object->passive ) 
potential-realization nil 
discourse nil 
context nil ] 

The fi ller set is organized by the domain of the 

predicates for the convience of later reasoning routines. The 

des igner did not spec ify any filters, only a default. Def-entry 

added focus_on_objecl->passive and the corresponding 

passive-by _phrase strategy on its own by acting on a general 

grammatical principle that otherwise unmarked clause structure 

should be sensitive to discourse focus. Only the name of the 

filter has to be entered since it is common to many entries. 

The filter is a LISP predicate. Its act ions are suffic iently 

idiosyncratic that, given that ii is otherwise annotated, it is 

exped ient to leave ii encoded as a procedure. 
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FOCUS_ON_OBJECT->PASSIVE 
type filter 
filter-type global 
predicate 

(cond (focus ;is there a current focus? 
(let ((obj (obj 1-of ske leton))) 

choice 

,-defines and initializes the variable obj 
;obj-of reads a strategy's map 

(cond ((eq obj focus) (return t)) 
(t (return nil))) ))) 

(select - sir ategy 'passive-by _phrase) 

Evaluating linguistic predicates for planning purposes 

The precise way in which a formula of a predicate logic 

is encoded often is the result of an unspoken convention for 

translating from English to logic. The conjunction of barber(x) 

and universa16 above, for example, is just a conventional way 

to encode the type of the variable and does not play a real 

role in the formal manipulations of the proof. A generation 

lexicon in this domain often should "second-guess" the 

encoders of the logic and try to recover the fluid linguistic 

forms that they were very likely working from. 

A case in point is the entry for universally quantified 

formulas: 

(def-entry universal (variable formula) 
( (variable->simplex-NP variable subformula) 

(embed-quantifier variable)) 
(*default* (for- x-proposition subformula)) ) 

(Here again there is only one decision to be made and the 

outler parens are omitted.) The f luid choice, checked for by 

the linguistic predicate variable->simplex-NP, expresses the 

quantification via the choice of the determiner of the right 

top level NP within the clause. For example, V(x) man(x) -t 

mortal(x) meets this properly and can be rendered: "all men 

are mortal". Other formulas, such as V(x) lov.er(x) -t 

loves(world, x), can not be put in that form without extensive 

transformations and changes in subordination - something that 

this entry would not want ·to be responsible for. These will be 

rendered w ith the "safe", mathematical form. 

In Eng lish, what the predicate variable->simplex-NP does 

is lo go through the set of possible strategies of the 

clause-matrix decision of the subformula. Its conditions are 

sat isf ied if the map of al least one of the strategies indicates 

that the variable will ultimately be a direct constituent of the 

top level clause, i.e. [subj], [obj 1 ], or [obj2). It also notes 

which is the relevant instance of the quantif ied variable inside 

the subformula, and, via a standard device in the entry 

interpreter, rebinds variable lo that value. 



Instances: recording and preempting decisions 

Once the decision is made to "embed the quantifier", how 

is it to be implemented? Since its target, the first y in iff5 -

shaves(x,y) .. ~shaves(y,y), is not the next element in the 

surf ace structure interpreter's "path", there must be some 

means of record ing this decision until the proper time. This is 

done through the use of special data structures representing 

"instances" of message elements in the surface structure plan. 

An instance is a scratch pad, a working data structure 

that ex ists only for the life of the plan. Instances are needed 

simply because whenever there is more than one reference in 

a plan to an element from the speaker's domain, say x or 

shaves, they may need to be treated differently. Propert ies, 

for example, are attached to distinct instances of a message 

element , not to the element itself. When the entry for a 

certain type of message element is processed, its predicates 

refer to the situation of particular instance of that element at 

a particular si te in the constituent structure. 

The instance structure for each element in the message 

is created at the beginning of the process. It is initi ally very 

sparse, and is augmented each time a decision is made that 

effects it s message element, e.g. when it is positioned in the 

surface st ructure, or whenever a predicate in one of its filters 

is eva luated by a li nguist ic predicate "probing" its possible 

rea li zat ions. Strategy induced side-effects,· like the decision to 

"embed the quant ifi er", effect instances by specially marking 

them. 

This is the instance structure for the "y" of shaves(x,y) 

just after embed-quantifier(variable) is run. (Recall that variable 

was bound to just that instance when the predicate 

var iable->simplex-NP "found" it.) The strategy acts by 

"preempt ing" the NP-determiner decision of this instance. 

INSTANCE-37 ;a gensym 
type inst ance -of - a-msg-elmt 
self y 
global -entanglements nil 

;this is a collection site at which to position globally 
;realized message elements until the content element they 
;effect is reached. 

location-in-surface-structure nil 

NP- head (status untouched 
filters-evaluated nil 
new- filters nil 
current-phrase basic- NP ;the default 
current-map ((person . head)) ,-ditto 

) 

NP-determiner 
(status preempted 
filters-evaluated nil 
new-fi lters ni l 
current-phrase nil ;inherited from NP-head 
current- map ((every. det)) 

) 
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Embed-quantifier has ( 1) determinered which quantifier 

word to use, and (2) marked that instance of y so that the 

normal deliberation of the "issolated-variables" entry is 

preempted and its choice used instead. 

Transformations and grammatical context 

This same technique of writing "overriding" 

spec ificat ions into an instance structure is used to implement 

transformations and the "pruning" of realization strategies to 

fit the grammat ical context. 

A transformation is an operat ion on an instance's 

current-map. A globally realized statement like focus • 83 

triggers a filter which is not checked until after the basic 

shape of the clause has been decided upon, i.e. after the 

current-phrase and current-map have values. The act ion of, 

e.g., passive-by_phrase is to transform current-phrase to 

"clause-byob j" and sw itch the map: [subj) ~> [byobj], [objl] 

• > [subj]. Since this operation uses only a linguistic 

vocabulary, it can be used generally. 

Grammatical procedures are r un by the interpreter 

according to the details of the const ituent structure plan as it 

wa lks through it. As part of their act ion, they will augment 

re levant instances with special purpose f ilters which have the 

effect of removing from consideration any strategies that 

would be ungrammatical in that context. 

For example, the logic lexicon will render conjunctions of 

predicates over the· same variables as either clauses or noun 

phrases. Red(B6) /\ supports(B6,B3) can become either "the 

red block supports the green one", or "the red block 

supporting the green one". But in a "clausal" context the noun 

phrase rendering must be blocked (for example when its used 

to describe a state: "when .. ."). The clause render ing can go 

through in nominal contexts because various nominalization 

transformations are avai lable and would be applied by the 

background grammar process. 

The block can be effected by the addition of this f ilter 

to the context field of the new-filters of the instance. 

BLOCK-NP 
type filter 
filter-type context 
predicate "true" 
choice (remove '(np)) 

;i.e. remove from the list of possible strategies any 
;that lead to constituent structures dominated by a node 
;with that feature. Any filters that only lead to such 
;strategies are pruned with the same action. 
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* * * 
This paper has tried to sketch the design of part of an 

extensive research project. The generation lexicon m_ust 

coexist with a grammar, various process interpreters, and 

message-building conventions, none of which can be discussed 

in this short a space. The technical report in preparation 

should give all the facets of the design a through presentation. 

The "meta-level" princip!e that motivates the design of 

this lexicon and of the model generally is a reaction to the 

ext reme interact ion that ex ists among the knowledge elements 

involved in natural language generation. take it to be 

impossible, from an engineering standpoint, to design and 

implement unitary, fixed procedures to perform the generation 

process. Instead, the input and momentary state description 

must be used to determine what action to take dynamically. 

This requirement lends itself to the use of schematic 

represent a lions and interpreters which react to the 

description languages developed to organize the grammar, the 

lexicon, and the intermediate stales of the process. 
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Abstract 

This paper deals with the orgar.ization of 
semantic properties of nouns and their use in the 
determination of case role acceptability. By only 
examining si mpl e hierarchical inclusion properties, 
natural language systems have been unable to deal 
with metaphoric language use. The research 
outlined here is an investigation into the use of 
general methods for the determination of case 
fulfillment. These methods include a mo re flexible 
use of the hi erarchica l relationships represented 
in the system, and the methods also use the 
contents of other case-frames. These methods 
develop the degree of freedom necessa ry for the 
acceptance of metaphoric language. Other 
interest ing propert ies of the system are described 
which also argue in favour of this approach to the 
organization of semantic knowledge . 

Motivation 

A major challenge in the development of a 

semantic component of natural language analysis is 

to represent knowledge in suc h a way that it will 

be useful in determining the meaning of input 

sentences. In addition to their use in describing 
sentence meaning, case grammar constructions have 

been used successfully to organize semantic 

knowledge. In particular, the use of cases 
provides insight into constraints that are 
important in establishing the roles played by noun 

groups. For example, the positioning of noun 
groups and the existence of certain prepositions 

can serve as constraints. However, the semantic 
properties of the noun group itself are of major 
importance in determining its acceptability as a 

case filler. The semantic requirements for case 

filling (often ca ll ed selectional restriction 

rules) are usually specified as positions within a 

hierarchi ca l breakdown of nouns. These requirements 

are often quite strict ly applied. The research 
described in this paper is an investigation of more 
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fle xible methods of determining case role 

acceptability. The remaindure of this section 

demonstrate s the restrictions which have been 
imposed upon natural language analysis through 
the strict use of hierarchical properties. 

One step in developing a case system for a 

verb is to examine its range of use . As an 
example, consider a few of the different nouns 

which can occupy the object position for the verb 

"to play" (restricted to the musica l sense). 

Dick plays Beethoven. 
Dick plays the piano. 
Dick plays The Moonlight Sonata. 

Each of the above sentences could actually be 

describing the same event, with s lightly 

differing emphasis. There are essentially two 
ways of introducing simple hierarchical properties 

as the case role fulfillment requirements for 

this object positionl. 

1) Develop several different s ub -meanings . For 

the above example : 

PLAYl (object must be COMPOSER) 
PLAY2 (object must be MUSICAL-INSTRUMENT) 
PLAY3 (object must be MUSICAL - PIECE) 

The advantage to this approach is that 

semantic properties and case requirements can 

be represented and processed in a uniform way. 
The disadvantage is that the verb's meaning 

has been fragmented: PLAYl is no more closely 

related to PLAY2 than it·is to JUGGLEl. 
2/ The other, more frequent, approach is to 

develop a specialized case system for the verb, 

1A third possibility of introducing all-encompasing 
semantic properties such as "playabl e" has been 
ruled out for obvious reasons. 
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which indicates all the specific roles that are 
played by each possibily appearing noun type. 
Thus for the verb "to play", there might be, in 
effect, a case "composer". The advantage of 
this approach is that the meaning is centralized 
but the disadvantage is that the processes 
involved may be specific to each verb . 

These two approaches differ in their shifting 
of emphasis from centralization of meaning to 
uniformity of processing, but they are also similar 
in an important way. The methods both involve a 
very direct pre-programming of permissible sentence 
meanings. It is important to develop a means of 
representing sets of acceptable meanings, 
particularly for clearly defined natural language 
interface programs. But sharp distinctions among 
semantic requirements do not exist in natural 
language use. Many researchers (Collins and 
Quillian 1972, Bobrow 1975, Wilks 1977) have 
pointed out that the breaking of semantic 
requirements {preferences) is the rule, not the 
exception. Any system which is to successful ly 
understand natural language must take into account 
the freedom with which metapho ric language use 
enters into ordinary speech. 

Prototypes 

The research outlined here considers the 
possibility that the organization of knowledge, 
rather than its content, is primarily responsible 
for determining the breadth of meanings which the 
system can accept. Thus, the form of knowledge 
representation has been simplified to permit a 
more direct examination of organizational aspects. 

The knowledge has two parts, prototypes and 
hierarchi es. Prototypes are si mpl e subject-verb
object triples which represent selectional 
restrictions upon the subject and object positions 
for the given verb. For example (HUMANS DRINK 
LIQUIDS) is a prototype which indicates that DRINK 
expects (or may accept) a HUMAN subject and a 
LIQUID object. They are called prototypes because 
they are intended to represent language-use 
experiences to which the comprehension process 
appeals in order to understand a new input. 

Accompanying the prototypes is a hierarchy of 
semantic properties from which the selectional 
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restrictions may be satisfied. For exampl e: 

~IQUID 

MILK WATER 

The goal of the processes which use this type 
of knowledge is to identify those pieces of 
knowledge which pertain to an input form which is 
also given as a subject- verb -object triple. This 
goal, and the form of the knowledge seems reasonable 
yet arbitrary. so , befofe continuing to show the 
ways in which prototypes are processed, the relation 
between prototypes and real-world knwoledge will 
be examined. As a result, the connection between 
the hierarchies and the prototypes will be more 
firmly established, and the goal of the processor 
will be justified. In addition, an organization 
of the prototypes will be introduced . 

Consider the following simple representati on 
of real-world knowledge about the relation "drinks": 

DRINKS TOM 
SAM 
SPOT 
RUFF 
BOOTS 
PUFF 

MILK 
TEA 
WATER 
MILK 
MILK 
WATER 

The use of such knowledge could be enhanced 
with a specification of the extent of the domains. 
A template such as (ANIMALS DRINK LIQUIDS) could be 
used as a preliminary test upon the use of the 
relation. Or, even better still, consider the 
following partitioning of the relation: 

DRINKS TOM MILK SPOT WATER BOOTS MILK 
SAM TEA RUFF MILK PUFF WATER 

· t · · · r 
(HUMAN DRINK LIQUID) T (CAT DRINK LIQ UID) 

.._ (DOG DRINK LIQUID) 
' t /' 
(ANIMAL DRINK LIQUID) 

~IQUID 

~ILK'\T~WATER 

PUFF 



This shows a hierarchy of semantic categories to 
which the domain individuals have been assigned, 
and templates which represent the properties over 

which the partition has been made. These templates 
are, in fact, the prototypes described earlier. 

The hierarchical categories can be thought of as 
types, to which assignments are made, and then 

prototypes contain knowledge about the application 

of these types to the relation, the result of which 

is an indexing scheme 

The generalizations about semantic categories 

that are contained in the prototypes are quite 

distinct from intensional knowledge (or 

generalizations about real-world knowledge). 

For example, the intension : 

(X)(HUMAN(X) (EY)(LIQUID(Y) DRINKS(X,Y)) 

is still real-world knowledge, and not knowledge 

about the semantic categories involved in the 

partitioning of the relation. 

It is useful to view prototypes in this way 
because it points up their organization into 
layers of generalization. For example: 

(ANIMAL S INGEST FOOD-SUBSTANCES) 

/ "" (ANIMALS DRINK LIQUID) (ANIMALS EAT FOOD) 

/ ------(HUMANS DRINK LIQUID) (DOGS DRINK LIQUID) 

This organization of prototypes serves as a 

means of allowing a match between an input and a 

prototype at any level of generalization. In 

addition, it provides a quick way to filter out 

possible prototypes. 

For si mple retrieval of extensional facts, 

the prototypes could be used as a straightforward 

indexing scheme . For more complex question 
answering, the match of a prototype to an input 

could contribute towards the development of a 
form to be evaluated for an operation upon a data
base, as in Woods' procedural semantics (1968) . 

It is a reasonable assumption that, regardless of 

the application, it would be useful to identify 
those prototypes which match an input. This idea 

is extended to the notion of knowledge 

identification : for a given input, a number of 
prototypes may have some relevance, one of which 

i s distinguished as a target prototype of the 
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matching proces s. For example: 

input : DICK PLAYS BEETHOVEN 
target: HUMANS PLAY MUSICAL-INSTRUMENTS 
others: MUSICAL - INSTRUMENTS EMIT MUSIC 

COMPOSERS WRITE MUSIC 
BEETHOVEN IS COMPOSER 
DICK IS HUMAN 1 

Knowledge Identification 

Knowledge identification works context-free 

over the prototypes and hierarchi es to provide 

knowledge which pertains to the input . No attempt 

has been made to structure this knowledge into a 

meaning representation. Access to, and structuring 

of, real -world knowledge i s an application 

dependent aspect of language analysis, which could 

hopefully operate more easily subsequent to a 

knowledge identification phase. 

For an input triple, the processor examines 

the prototypes in the system, sea rching for one 

which can act as a target. Because the prototypes 

are hierarchically organized, the initial search 

concerns a relatively small number of highly 
generalized prototypes. These generalized 

prototypes are provided as the po ssi bilities for 
the input verb. After such a prototype ha s been 

located, it may be instantiated with the aid of 

the semantic categories of the words used in the 

subject and object po s itions of the input . For 

example, for the input TOM DRINKS TEA, a prototype 

such as (ANIMATES CONSUME FOOD-SUBSTANCES) might 

be initially considered, and of course, TOM and 
TEA meet the requirements. Afterwards, a more 

specific prototype might be used, such as (ANIMALS 

INGEST FOOD-SUBSTANCES), or eventually (HUMANS 

DRINK LI QUIDS) . 

This example demonstrates another aspect of 

the process involved, that o'. determining the 

acceptability of a prototype as a target. 
Generally , a prototype can be a target if each of 
its subject, verb , and object components traces 

to the subject, verb and object of the input. In 

most cases the verbs must be identical , but some 

leeway is provided for the other two components. 

This section provides a sample of the tracing 

conditions which will permit some metaphoric 

lThe example shown here is a condensed form of the 
output from the imp'lementation (see Browse 1977). 
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language use. 

A. Tracing via hierarchical inclusion 

As described in the first section, case role 
fulfillment is usually determined by simple 
hierarchical inclusion properties. This is a 
major means of tracing, and one which provides 
all the literal meanings that the system can 
accept. For the above example: 

input : TOM ORINKS TEA 
target: HUMANS DRINK LIQUIDS 
others : TOM IS HUMAN 

TEA IS LIQUID 

B. Jumping in hierarchies 

Sentences such as: 

John drank in the sunshine. 
My car drinks gasoline . 
The sargeant barked. 

are all acceptable because of a close hierarchical 
connection between the verb which is used, and the 
verbs which could be substituted to develop a 
literal meaning. These connections are given in 
the connections between the prototypes. 

(ANIMALS COMMUNICATE) 

/ "' (HUMANS TALK) (DOGS BARK) 

In processing an input such as (SARGEANT BARK nil) 
an initial, generalized prototype (ANIMALS 
COMMUNICATE) will be acceptable on the basis of 
the hierarchical connections between the subjects 
of the input and target (tracing method A above). 
However, the system will fail to instantiate 
either of the more specific prototypes. 

If the system were allowed to branch to a 
prototype whose verb differs from the input, but 
to one for which the subject traces easily, then 
one could obtain: 

input : SARGEANT BARKS 
target: HUMANS TALK 
others: TALK and BARK are both COMMUNICATE 

SARGEANT IS HUMAN 
This particular jump in the hierarchical 
organization suggests a similarity between the 
given act of barking and the known act of talking . 

On the other hand, the system could be 
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required to branch for instantiation strictly 
according to the input verb, and the rules for 
tracing the subject could be extended to include 
moving up and then down the hierarchical 
orga~ization of noun concepts. For example: 

input : SARGEANT BARKS 
target: DOGS BARK 
others : SARGEANT IS HUMAN 

DOG and HUMAN are both ANIMALS 

. ANIMAL 

DOG 

SARGEANT 

This type of jump in the hierarchy suggests a 
similarity between SARGEANT and DOG rather than 
a similarity between the acts of talking and 
barking . 

These operations involve an important part 
of metaphoric language use, particularly in 
personification . 

C. Tracing through other prototypes 

Sentences such as: 

Sam read Shakespeare . 
Jan drank the cup. 

are acceptable not because of any hierarchical 
relations between the objects that were expected 
for the verbs and the ones that were given, but 
because of other relations. For example, for the 
input JAN DRINKS CUP, the prototype (HUMANS DRINK 
LIQUIDS) will be considered, and could be accepted 
if some other prototype links CUP to LIQUID . 
This is the case if the system has a prototype 
such as (CONTAINERS CONTAIN LIQUIDS), providing 
CUP is an instance of CONTAINER. 

input : JAN DRINK CUP 
target: HUMAN DRINK LIQUID 
others: JAN IS HUMAN 

CONTAINERS CONTAIN LIQUIDS 
CUP IS CONTAINER 

In the above example, it is important to note 
that not only was the technique of using another 
prototype involved in the tracing, but, as a sub
trace, hierarchical inclusion was used (CUP IS 
CONTAINER). This points up the recursive nature 
of the application of such rules in accepting 
prototypes. 



consider again : 

input : DICK PLAYS BEETHOVEN 
target: HUMANS PLAY MUSICAL - INSTRUMENTS 
others : DICK IS HUMAN 

MUSICAL - INSTRUMENTS EMIT MUSIC 
COMPOSERS WRITE MUSIC 
BEETHOVEN IS COMPOSER 

The long trace between BEETHOVEN and MUSICAL

INSTRUMENT involves the use of other prototypes 

twice , and hi era rchi ca l properties once . 

The processor i s "cooperat ive" , that is, it 
assumes that all inputs are meaningful, and 

attempts to find the appropriate target and 

traces. If an input i s meaningle ss relative to 

the prototypes which the system contains , it might 

a long and obsc ure trace. Thus it i s essential 
that the mo st direct methods, yielding literal 

meanings are tried first, and that some cutoff 

point be estab li shed for the length of traces. 

Beyond Thi s Format 

Many of the interest ing categories of 
metaphoric language involve accessing some fact 
which connects two concepts, but those connections 

cannot always be analyzed within the rest ricted 
format of the prototype system as described above. 

Simil e does not involve s ubst itution of 

one concept for another, bu t i s rather a direct 

statement of s imil arity . For example: 

He ran like ligh t nin g. 
Th e birches stood like frozen fea t hers. 
Hi s hair was like snow. 

It i s interesting to notice that properti es 

other than hierarc hical categories are mo st 

often accessed in the use of s imil e. For the 
simile "hair like snow" , it i s only one property 

that hair and snow share that is of interest . It 

seems as if these types of properties are not 
appropriate to permit direct s ubstitution , such 

as "he combed hi s snow" . On the other hand , 

non-s ubstitution comparis on vi a si mil e seems 
to point up differences, rather than si mil arit i es 
between hi erarc hi ca ll y related concepts . For 
example "hi s dog was like a ho rse" alludes to t he 

size difference. 

Metonymy, or t he referring to an accompaniment 

rather than t he object itself, most often involves 
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knowledge which ca nnot be represented in s impl e 

subj ect- verb-object prototypes . Some exampl es are: 

The Whitehouse i ss ued a denial. 
The Yankees fear Bench ' s bat. 
The town heard the trumpet blast. 

The last sentence requires knowledge s uch as 
(HUMANS LIVE (in TOWNS)) to allow the acceptance 
of a target prototype such as (HUMANS HEAR SO UNDS) . 

Synecdoche i s a spec ia l kind of metonymy which 

refers to the part in stead of the whol e or vi ce 

versa. For exampl e: 

our daily bread. 
All hands on deck. 
My wh ee l s broke down . 
Here come s the Navy. 

This i s a common type of meta phori c l anguage . Th e 

frequency of this type of metaphor suggests that 
the PART- OF relat ion may require a spec ial status 

alon g with the IS -A relation in the development of 

meanings . This al so l eads to the poss ibility of 
other re lations, s uch as causality, being s ingl ed 

out . Extending this to the limit , and converti ng 

all prototypes into network relations, would 
develop a strong s imil arity to the system proposed 

by Collins and Quilli an (1972 ) . A more productive 

direction might be to represent all relations, 

including IS-A as prototypes. 

Discussion and Conclusions 

The use of stri ct requirements for fulfillment 

of se l ect ional restrictions during the process of 

recognition of meaning ha s been shown responsible 

for a difficulty in dea ling with the type of 

everyday metaphoric word - use which is important to 
natural language. Thi s paper suggests some s impl e, 

uniform operations over an orga ni zat ion of known 

l anguage- use s ituat ions which ca n provide the basis 

for understanding those metaphors . Yet the only 
knowledge stored in t he system i s litera l meanings , 
and t hus t he knowl edge associated with any 

particular verb is centralized. 

In order to exp lore those possibilities, 
severa l si mpl ifications have been made. The roles 

that noun s play in meaning have been reduced to 

only subj ect and object. The specification of 

these roles co uld be extended into a full case 
system. Processes have been described which 
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contribute towards the development of meaning for 
inputs. The fact that these processes operate 
context-free should not be taken as a belief that 
sentence meaning can be derived from word meaning 

alone. However, the identification of a relevant 

set of known language-use templates could be a 

useful context-free step. 

Several observations can be made concerning 

the type of organization and use of knowledge in 

the sys tern of prototypes. These observations 

point up speculative aspects of the usefulness 

of such a system. 
During the matching proce$S, prototypes not 

only serve as targets, but also can be used as the 

knowledge necessary to permit the acceptance of 

some other target. For example: 

input: JAN DRINK CUP 

target: HUMAN DRINK LIQUID 
others: JAN IS HUMAN 

CONTAINERS CONTAIN LIQUID 
CUP IS CONTAINER 

input: BOTTLE CONTAIN BEER 
target: CONTAINER CONTAIN LIQUID 
others: BOTTLE IS CONTAINER 

BEER IS LIQUID 

Note that CONTAINERS CONTAIN LIQUID appears both 
as a target and as tracing information. It follows 

that for any given prototype, new shades of meaning 

of the verb may be introduced through the addition 

of knowledge which has no direct relation to the 
verb itself. This is a seductive idea in that it 

coincides with intuitive notions about how humans 

manipulate knowledge. 

Prototypes are retained at several levels of 

generalization. This provides the basis for the 
development of meaning only to a desired level of 

instantiation . Clues directing the instantiation 

could come from either the context, or other parts 
of the sentence or discourse. 

It is not a coincidence that this system 

provides possibilities for the examination of 

questions relating to learning. Learning and 

comprehension are two side of the same coin, and 

while both problems need not be dealt with at the 

same time, at least a degree of compatibility 

should be maintained. Language learning must 
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involve the ability to develop generalized 
knowledge about the extent of word use from more 
specific knowledge. Not much can be said about 

the actual process of generalization, but the types 

of processes described which use prototypes do 

contribute towards an understanding of what the 

goals of such generalization processes might be. 

The application of each type of rule for 

tracing the subjects and objects of an input to a 

prototype provides successively more obscure 

understandings 1 • A measure of this obscurity 

could provide a criterion for the inclusion of 

inputs as new prototypes . Completely straight

forward inputs (for example, an input identical to 

a prototype} would not need to be included, and 

inputs requiring very obscure tracing would also 
not need to be included . However, those falling 

in the mid-range of being novel, but not too 

obscure could be incorporated . 

The notion of matching an input to a target 
prototype corresponds well to the Piagetian idea 
of "assimilation", which is the processing of 

experiences to conform to existing methods for 

dealing with the environment (see Piaget 1952, 

1954). Moore and Newell's MERLIN {1974) uses a 

process of matching which permits assimilation of 

one concept to another, whereas the approach 

outlined here deals with the assimilation of 
simplified sentences. In addition, the criterion 

for incorporating new inputs on the basis of their 

familiarity also corresponds to the Piagetian 

notion of "accommodation" (or changing of existing 

methods), which operates to reduce the effort 

required in future assimilation tasks. 

Primitive semantic categories are often 
jus tified in terms of the properties of the objects 
being categorized . The connections between 

hierarchies and the system of prototypes suggests 

that semantic categories are connected to their 
use in partitioning relations. Thus a direction 

has been indicated for a more uniform specification 

of these two aspects of knowledge. 

The system described here provides insight 

lA simple weighting scheme was used in the computer 
model ( Browse 1977) for which the match in vol vi ng 
the lowest measure usually provided the intuitively 
best target. 



into the po ss ibilities for a natural language 
understanding system which could accept inputs on 
the basis of developing their meaning rather than 

recognizing their meaning. The result is a 

uniform processor which permits metaphoric 

language use, while at the same time centralizes 

the knowledge contained about verbs . 
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ABSTRAC'.i' 

The use of extended semantic networks (more 
accurately called pro~osition networks) for 
representing and organising factual knowledge in a 
machine is reported. Proposition networks possess 
expressive power akin to higher-order and modal 
logics while retaining the mett,odological 
advantages of earlier (semantic) network 
formalisms. Preliminary steps havP bePn taken to 
imbue them with an organisational structure which 
facilitates the efficient concept-based access of 
facts relevant to an arbitra.ry query. The notion 
of a topic predicate will form the basis for the 
development of a topic hierarchy organisation which 
can be superimposed on a proposition network in 
order to classify topically-related propositions 
into similar categories. 

1. Introduction 

Extended semantic networks (more accurately 
called proposition networks) are particularly well 
suited to serve as a notational basis for a 
state-based natural language representation 
paradigm (vide Cercone and Schubert, 1975; Cercone, 
1975). Certainly a rather different representation 
might .be adopted to meet specific needs in specific 
applications of semantic networks. · Also a 
different or more extensive set of propositional 
operators might be formulated. For example, the 
following operator ("subconcept") may well be 
useful in representing the essential meaning 
relationships among concepts: an n-ary relation 
P(xl, ... ,xn) is a SUBCONCEPT of an n-ary relation 
Q(xl, ... ,xn) if (Axl) ... (Axn) [P( xl, ... ,xn) => 
Q(xl, ... ,xn)]. Thus " crow" is a subconcept of 
"bird" (i.e., crows are necessarily birds), 
"drinks" is a subconcept of "ingests " (i.e., if x 
drinks y then x necessarily ingests y), etc.. The 
point is that this operator and other compound 
operators can be expressed in terms of the basic 
network notation. 

A variety of issues in the representation of 
informal knowledge could raise additional 
notational problems. Examples are the handling of 
vagueness, events, the lexical meanings of complex 
concepts, and overall knowledge organisation. 
Beyond these relatively static issues lie the more 
dynamic issues of actual language interpretation 
and generation, plausible inference, learning, and 
the interplay between procedural and factual 
knowledge. Clearly any questions about 
representation raised by these ~roblem areas can 
only be answered in the context of particular 
approaches towards the solutions of the problems 

55 

themselves. One such approach is discussed in 
Cercone (1975). 

The construction and interconnections of 
propositions, the basic structural unit, comprise 
~he network. To attain efficient access of facts 
relevant to an arbitrary query, the knowledge 
encoded in proposition networks must be organised. 

.Schank (1975) remarks "We can see at once that a 
· [h ierarchical] organisation wi 11 not work for verbs 
or for nouns that are abstract or for nouns that do 
not easily submit to standard categories (such as 
.teletypes) " . Nevertheless "drinks " can surely be 
thought of as a subconcept of "ingests" and while 
some categories (teletype) would be difficult to 
fit into a SINGLE hierarchy, they certainly can be 
fitted into various hierarchies (machine, 
transducer, communications system, etc.). We can 
easily impose a hierarchical 
(subconcept-superconcept) structure on top of the 
general concepts in memory (as shown in Figure 1) 
as a heuristic device. 

Our approach to organising the knowledge encoded 
in proposition networks centers around the concept 
,Jf a topic predicate. Briefly, topic predicates 
are higher order predicates which will be used to 
classify first order predicates into different 
categories much like first order predicates 
classify individuals. Topic predicates will be 
structured into a topic hierarchy which corresponds 
to a higher order type hierarchy. Whereas 
individuals (e.g., Clyde, ball37) occupy the lowest 
position in standard type hierarchies, in the topic 
~ierarchy that position will be occupied by 
first order predicates. An instance of such a 
topic hierarchy will be i nt erposed between each 
network concept and its related propositions in 
order to provide a secondary indexing scheme for 
the concept-indexed propositional knowled!,!e, The 

.topic hierarchy approach is illustrated throughout 
sections 3 and 4. 

The Symbol-Mapping problem is described as the 
problem of providing fast access to propositions 
relevant to a query, and the advantages of a topic 
hierarchy solution over some other solutions (e.g., 
·McDermott, 1975b) are discussed in section 3.2. A 
brief discussion of the notation and representation 
utilised follows immediately. 
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2. Represe nting Knowledge in Proposition Networks 

The results of semantic ana lysis of natura l 
language utterances can be represented in 
proposition-based semantic networks (Schubert, 
1975). The proposition network is a notation for · 
re presenting meaning. This notation encodes any 
proposition that can be expressed in natural 
langua ge . In addition, distinctions between 
utterances with distinct meanings and between 
distinct readings of ambiguous utteranc es are 
preserved. For example, the sentence "Al 1 dogs 
chase some cat" has two possible meanings; our 
approach easily encod es either reading (see 
Schubert, 1975 for details). Furthermore, 
judgments of truth and falsity about natural 
language utteranc es appear to correspond 
appropriately to truth and falsity in the formal 
representation. The network notation can be viewed 
as a computer-oriented logic notation with 
concept - based indexing of propositions. 

Semantic networks have proven utility as 
propositional representations in l ang uag e 
understanding (Cercone 1975; Schubert 1975; 
Schubert et al. 1978b; Schank 1972), concept 
learning programs (Wins ton 1970), ded uct ion 
(McSkimin and Minker 1977), and in psychological 
cognitive theories (And erson and Bower 1973; 
Wilson, to appear). 

2.1 Notation 

The nonlinear fashioning of proposition networks 
presents special problems with respect to the 
representation of logical connectives, quantifiers, 
descriptions, modalities, and certain other 
constructions. These constructions are often 
useful and sometimes necessary to explicate the 
meaning of complex concepts. Schubert ( 197 5) has 
propo sed systematic solutions to these problems by 
extending the expressive power of (more or less) 
conventional semantic network notation. Woods 
(1975) independently made a series of similar 
proposals . Only the e l ementary part of the 
Schubert formalism, as much as is needed to clarify 
any misconceptions that may arise from the figures 
used in this paper, is explained. 

In the network notation, the distinction betwee n 
labels designating storage locations and labels 
designating pointers to storage locations requires 
clarification. This distinction is us ed by 
Quillian (1968) to designate "type nod es " (unique 
storage locations) versus "toke n nodes " . Th e 
notation can be mad e uniformly explicit as in 
Figure 2. Here "parent-of", which corresponds in 
some notations to a token node, designat es a type 
node (as suggested by Winston, 1970). All 
encircled nodes correspond to storage locations and 
all arrows to addresses of storage locations. What 
formerly were token nodes are now called 
"proposition nodes " ; they serve as graphical nuclei 
for propositions as a whole. 

The ex plicit notation of Figure 2 can be 
uniformly condensed for visual effect as 
illustrated by Figure 3. Of course such a tactic 
is unnecessary for machines; exp licit propositions 
underlie this abbreviated form. 
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In Figure 2, A, B, and PRED are mere 
distinguishing marks. They are analogous to 
parentheses or commas in the Predicate Calculus in 
that they serve to relate denoting terms 
syntactically; they are non-denotative themselves. 
Whenever possible they will be chos en to be 
suggestive, but they could be chosen as numeric 
lab e ls as well ( as McDermott (1976) apparently 
suggests). 

One advantage of the explicit notation of Figure 
2 is that it works for n-ary (n>2 ) predicat es. The 
sentence "John gives the book to Mary" involves 
"gives" as a three place predicate, as 
diagrammed in Figure 4. Figure 4 is appea ling 
because of the significance we can attach to the 
l abe ls ' agent ', 'obj ect ', and 'recepient '. 
Nevertheless, Figure 4 is not a graphical analog ue 
of "case-struct ur ed" gramm ars. Cases are not 
viewed as " conceptua ll y primitive binary relations" 
as Fillmore (1968) and researchers influenced by 
him, not ably Schank (1972), view them. See Cercone 
and Schubert (1975) and Bartsch and Vennemann 
( 1972) for a further discussion of cases. 

In the proposition network time can be used in 
two modes - 'inst antaneous' and 'int erval '. In the 
instantaneous mode a proposition may have either a 
fixed or variable moment (duration) of time. The 
interval mod e replaces a "moment " with a time 
interval. A time interval may be omitted in 
contexts where it would normally appear in order to 
simplify propositions representing mor e endurin g 
properties (e.g., being a gir l, a car, etc.). The 
omission is a matter of notational expediency; any 
change involving metamorphosis, such as a girl 
becoming a woman or a caterpi llar becoming a 
butterfly, would require exp licit rendering of time 
dependencies. 

Temporal relations can be established using 
these definitions of instantaneous and interval 
time. Tenses are built from more elementary 
temporal relations. If we restrict our view of 
time to a set of e l ements (time points) and a 
relation that partially orders them, we can define 
binary temporal relations similiar to those of 
Bruce (1972) or Schank et al. (1973). 

The use of time in the representation of states, 
actions, and events is briefly discussed in the 
next section. Temporal considerations concerning 
the representation of complex concepts and the 
mea ning of words are presented in Cercone (1975). 

Some final notational co nv ention s by way of 
introduction need to be made. To avoid confusion , 
predicate names will be designated by lower case 
letters and markers by upper case l etters. Other 
conventions that are used include: so lid loops for 
propositions, individual concepts, and 
existentially quantified concept nodes; broken 
loops for universally quantified concept nodes; 
solid lines to link propositional constituents to a 
proposition node; dotted lines for scope dependency 
links joining univ ersa lly quantified nodes with 
de pendent exis tentially quantifi ed nod es; and 
dashed lines for linking logical operators and 
connectives with proposition nodes. Observe the 
performance of proposition networks in handling 
states, actions, events, and intentionality. 



2.2 States, Events, Actions, 
Causes, and Intentions 

Recognising th at "actions" ia Schank's (1972) 
sense are essentially states rather than events is 
important, since it leads to a uniform view of all 
(true ) event s as se que nces of states. This 
recognition has bee n we ll document ed in Cercone and 
Sc}:lubert (1975) . Th e issue of identifying " actors " 
of events doe s not ar is e , nor is it necessa ry to 
delineate the spurious boundary betwee n "passive " 
and "dynamic " states. 

Tempor a l ex pressions are important to the 
meaning of utterances, serving for example to 
structure events. Neverthel ess in other 
representations, partic ul ~rly Schank ' s (1972) 
Conceptual De pe nd ency networkb, aspects of time are 
handl ed as a quantificational apparatus. Schank's 
u se of the co ncept ua l tenses 'time l ess ' and 
' continuin g ' illustrate this . Drawing infe r e nces 
can be problematic if time is allowed to ass ume 
this protean character. For exampl e, r.he use of 
the conceptual t ens e 'timel ess ' to denot e "habitual 
ac tions" as in the statement " John sells cars" 
fails to acknowledge the progressive aspect " is 
selling" which is concerned with th e state and not 
the disposition. Surely th ere may hav e been a time 
wh en John did not sel l car s and a time when he may 
not sell cars . We fare no better, unfortunat ely , if 
we say "John now sel l s cars " r e porting an inc id e nt 
of behaviour instead of an evo lving pattern of 
behaviour since "now" sets no temporal boundari es 
(vid e Strawson, 1959). Within a particular approach 
to representation we can, however, artificially 
contrive bound a ries for "now" or, at worst, defend 
some doctrine for the i nde f initeness of ordinary 
language with regard to time (the latter being 
unsatisfactory for our purposes) . 

In the s t ate-bas e d approach time is regarded as 
the only situational ( cf . McCarthy and Hayes, 
1969) or contextual variable that needs to be added 
to action propositions. This is in contrast to 
Anderson and Bower (1973), Rumelhart e t al. 
(1972 ), and Schank et a l . (19 73), who add loc a l e 
as well as time to the basic dimensions of events. 
But locale is not a proper t y of events as a whol e, 
but rather a (frequently tim~-dependent) prope rty 
of the partici pa nt s in an event. For exampl e, in 
"John is watching a circling hawk" it is ' John and 
the hawk who hav e locations, not th e ev e nt . 

We now illustrate our representation of states 
and events. We regard any condition which can hold 
momentar ily (blue, moving, running, etc. ) as a 
"st a t e". Accordingly, any atomic proposition which 
is based on a time-de pendent predicate is a " state 
proposition". Figure 5 shows two concurrent state 
propo si tion s: something (th e redness of th e sun) 
was increasing throughout s ome ti.me interval and• 
something e lse (the distance be twee n th e sun and 
the hori zon) was decreasing throughout the same 
time inte rval. Actually there are two additional 
state propositions conc e rned with the ex istence of 
unique values of redness and distance at all 
moments of time within the time intervPl of 
interest, these have not been mad e explicit s ince 
they can be taken to be implicit in th e r ed ness and 
distance relations. 
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"Events" involve a c han ge in sta te as " the l ast 
l eaf f e ll from th e tree " illustrates. The 
definitive c haract e ri s ti c of state changes is th e 
following : if a system has prope rty A at time ti, 
and prope rty Bat time t2, th en A-->B is a change 
of state if and only if A and Bare mutually 
exclusive properties, e.g., A= so lid, B=liquid; 
A=round, B=rec tangul ar. In fact a state att ribut e 
such as colour which can assume variou s v-a lues may 
be c onsist e ntly de fin ed as a set of mutua lly 
exc lusive prope rties, eac h member of the set heing 
r egarde d as a value of the attribute. Thi s admits 
both qualit at ive attributes such as colo ur as we ll 
as quantit a tive attributes such as location. 
Figure 6 shows a simple event involving a single 
change of state of a " sys t em" with one compon ent 
(Mary). Th e time relation "th en" implies immedia t e 
succession of the two ti.m e int erva l s. Our 
r e pres entation of one of Schank ' s s t a nd a rd 
sentences i s shown in Fi gur e 7. An ex pl anatory 
para phra se is the following. " Some unknown mod e of 
be haviour of John caused some object to move 
quickly toward Ma ry. Sub seq ue ntly the object 
r eac hed Mary and exe rt ed a · force on her. " Note that 
we hav e a state and an event here, viz. John' s 
unknown state and th e event of th e obj ect moving 
toward Mary and striking her . Th e causal 
connections be twee n John's state and the ensuing 
even t does not ma ke John' s s tat e part of that 
event. Only exc lus ive and s ucc ess ive s t a t es of a 
particul a r sys t em of objects form event s. A 
natural inference would be that John int ention a lly 
hit Ma ry, i. e ., that the missing state of John !·s 
that he was trying to bring about the event 1n 
question . We would represent "t rying" by the state 
predicate " x has ac tive goal y at tim e t". 

An import a nt consequence of our very broad 
conce ption of states is th at new compl ex states 
(modes of be haviour) can be de fin ed in terms of 
even ts involvin g primitiv e or already defined· 
states. Th e time of occurrence of these events may 
ex t e nd some distanc e bac kward and forward from th e 
moment a t which the new s tat e is de fin ed to hold . 
Compl ex dynamic states such as walking, running, 
dancing, tumbling, flickering, etc., ca n be 
constructed in terms of mor e e l ementa ry states. 
Th e constructions are necessar ily as compl ex as the 
s tates they describe . Complexity can result from 
th e intricat e coordination of several simult aneous 
activities ( e .g. "rolling" exp r esses rotation and 
translation at coordinated rates), or from compl ex 
time d e pendencies (e.g. fli c kering), or fr om both 
( e .g. "walking" or ev en "building a snowman"). 

In previous representations ( e . g. , Schank, 1972; 
Wilks, 1973) complex conc e pts, s uch as walking, 
were incompletely "d e fin ed" in dictionari es. 
Presumably these dictionary entries were not 
intended to capture full meanings as we seem to 
underst and them, but only those as pect s whi c h are 
mo st essential to langua ge under sta nding and 
(immediate) infe r enc e . Neverthe les s, much mor e 
information will s ur e ly be r equire d to matc h the 
human ability to describe concepts and reason about 
them or even to adequately compre hend " ordinary" 
discours e. The state-based formalism c l ear ly allows 
for th e formation of mor e compl ete meaning 
representations. At the same time, it is ca pable 
of accomodating large amounts of information about 
complex concepts without . loss of comput a tiona l 
efficiency in the use of those concepts. For a 
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det a iled exam pl e illustrating this point, see 
Cercone (1975). 

3. Organising Knowledge in Proposition Networks 

3.1 Semantic Network Organisations 

As original l y conceived by Quillian (1968), the 
characteristic concept-centred organisation of 
semantic networks does not address 
repres entation issues but rather focuses 
primary co ncern with organising knowl edge for 
effective use. Subsequent semantic ne twork 
notations have been deve loped in an ind e pendent 
and application specific manner ( e . g ., Anderson 
and Bowe r, 1973; Winston, 1970) often 
indicating a disdain for classical 
propositional knowl edge representati0ns suc h as 
the predicate calcu lus . The re sulting ef forts 
have gene rally been found to be epis temolo gically 
inadequate (in th e sense of McCaLthy and 
Hayes, 1969) and expressively wea k with r es pect 
to standard logical r e pre sentations. Mor eove r, 
they have oft en blurred the i mportant 
distinction be twee n th e representational and 
organisational aspects of ne twork devices. 

Early efforts by Shapiro (1971) to imbue 
networks with increased logical power ex plicitly 
documented thi s distinction by contrasting " sys t em 
relations", "it ems ", and "it em re lations". In 
Shapiro' s MENS (MEmory Ne twork Struct ure) data 
structure, system r e lations were us er defined 
pointe r s us ed for structuring it ems and item 
relations into proposition s and for indexing 
propositions via their item participants. Schubert 
(1975) further clarified the distinction by 
demonstrating that a logical representation couc hed 
in network form could offer the advantages of a 
classical ·propo si tional representation (e.g ., be 
formally i nt er pretabl e and expressively adequate ) 
while r eta ining the me thodological advantages of 
the associative ne twork organisation. In addition, 
his notation clearly indicated that an 
"intelligent" ind ex ing scheme coupled with a 
database of logical formulae could ind eed be 
co.nsidered to be a kind of semantic ne twork. 

The basic di s tinction be twee n the propo sitional 
content of a knowl edge database and the access 
mechanism to that content has rec ently be en not ed 
by Bobrow and Winograd (1977). Th ey state : "In 
most existing AI systems (and mod e ls of human 
memory) there is an und e rlying ass umption that 
there is a single set of data linkages , used both 
for retrieval and for matching and deduction ... ". 
They go on to say "We believe that the presence of 
'associative links ' for r e trieva l is an additional. 
dimension of memory structur e whi c h is not 
derivable from the logica l structure being 
associated". 

We wish to emph asize the organisational aspects 
of proposition ne tworks, in the tradition of 
Quillian (1968) and in the spirit of Hayes (1977b). 
As Hayes (1977b) writes, "If someone argues for the 
superiority of semantic networks ove r logic, he 
must be referring to some other property of th e 
former than their meaning". Th e correspondence 

,between proposition networks and logic has bee n 
mad e; the meaning of a given ne twork is id entical 
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l ogical with the meaning of the e quival e nt 
expression. The object of our immediat e attention 
is that struc tur e whic h remains after paring th e 
propositional conte nt from a proposition ne twork, 
i.e., the indexing structure whic h provides 
co nc e pt - bas ed propo si tion access. 

With the ge ne ral focus on t he organisational 
as pects of proposition netwo rks, we continue ~ith a 
brief survey of some recent organisationa l trends 
within AI and then e laborat e on th e structure 
and use of a topi c hi erarchy mec hani sm. 

Th e recent fervour to deve lop organisationaJ 
th eories of knowl edge ( e .g . , Ab e l son, 1973 ; Schank 
and Ab e lson, 197 5; Minsky, 1975; Mylopoulos e t a l., 
1975; Bobrow and Winograd, 1977; Goldstein and 
Rob e rts, 1977) i s characterised by th e des ire to 
cluster related knowledge into " chunks ". Id eal ly, 
these "chunks " should reduce t he computation 
required to isol ate knowl edge re l evant in a 
partic ula r cont ext. 

Anticipat i ng such higher-level organisations, 
Bobrow (1975) asserts: "P red icate ca l c ulus and 
semantic network representions t end to impose on l y 
a loca l organisation on the world " . However, both 
the concept-centred organisation of ne tworks and 
many of the logical tools of pr edicat e ca l culus are 
ev id ent (albeit implic itly) in many of th e recent 
knowl edge organisation systems ( e . g., Bobrow & 
Winog rad, 197 7). For exampl e, in reference to th e 
GUS system (Bobrow e t a l., 1977) Kay 0976) r e por ts 

now t he co nte nt s of these slots in the 
dialog frames (and in l ots of other frames th at 
exist in th e system) are typi ca ll y other frames. 
These structure recurse to great de pth. Of course 
they are not simp l y tree structures, but they are 
circ ul ar a nd point to one ano t her ; they're 
networks". Further, Hayes (1 977a) provides a 
translation of th e "main feat ur es " of KRL-0 into a 
many-sorted predicat e logic, which he t akes to be 
the " external meaning" of KRL expressio ns. 

The remaining sa lient feature of frame-like 
systems is simp ly the idea of grouping pi eces of 
knowl edge wh ic h ma y be useful for und ers t anding a 
particular conce pt or situation. ' Hayes (1977a) 
explains that a frame may be viewed as an n-ary 
relation betwee n i ts e lf and it s slots, which 
themselves may be viewed as binary relations and 
unary predicates (vide Bundy & Wielinga, 1978). 
One could t herefore represent a frame within the 
proposition network notation. The major diffe r e nce 
betwee n the " frames " view and the network vie w is 
one of fun c tion vers us structure, as not ed by 
Schubert et a l. (1978 a ): "A memo ry structure is 
regarded as a frame becaus e of the kinds of 
knowledge and capabilities attrib ut ed to it, rath e r 
than becaus e of any specific structural 
prope rtie s". 

Of course deciding what knowledge to associat e 
with a frame can be done only in the cont ext for 
which that organis a tion will be used . Be low we 
deve lop an organisation of concept properties 
in the general context of the so-ca lled 
"symbol-mapping problem" ( named by Fah lman, 
1975) . A topic hie rarchy organisation will provid e 
a mea ningful structure for associating eac h concept 
with knowl edge " about " that concept. 



3.2 Symbol-Mapping in the Proposition Network 

The ubiquitous notion of structuring general 
properties of concepts to facilitate their 
inheritance by related concepts and individuals has 
bee n not ed by many writers ( e.g ., Reiter, 1975; 
McDermott, 1975a; Moore, 1975; Mylopoulos et al., 
1975). The main issue of effective ly accessing all 
known concept properties via a newly instantiated 
individual is inherent in the ques tion posed by 
Fahlman 0975): Wh e n told a fact like " Clyde is an 
Elephant", how can a system quickly and e ffi c i ently 
provide access to all known Elephant properties 
via th e newly created concept "Clyde"? 

Fahlman (1975) proposes a nove l solution in 
which an efficient inheritance of properties scheme 
is based on a network of parallel hardwar e 
elements. Each element represents either a relation 
( e .g., "IS-A") or a conce pt (e. g., Clyde, 
Elephant) and is capable of storing "marker bits" 
which can be propagated through the network in 
parallel. The relations shared by two nodes can be 
found by "marking" the nodes in ques tion, 'Ind then 
broadcasting the "markers" through the network and 
noting which relation nodes rec e ive intersecting 
"marker" signals. 

Those who have not despaired of a serial 
solution have concentrated on concept-based 
indexing to provide efficient access of concept 
properties. For example, McDermott (1975b) suggests 
organising concept properties into "pa ckets" or 
"cont ext " vis a vis the programming language 
constructs available in CONNIVER (Sussman and 
McDermott, 1974) or QA4 (Rulifson e t al., 1972). 
When the assertion "Clyde is an Elephant" is made 
a new index entry is created which links "Clyde''' 
to the packet containing all known "Elephant" 
properties. Of course access to the "El e phant" 
packet does not e nsure efficient access of an 
arbitrary "El e phant" property within the packe t; 
McDermott (1975a) notes that the issue of how 
to access packets internally is related to the 
issue of "shallow" versus "deep" binding 
(vide Moses, 1970) . 

Moor e (1975) proposes a scheme which structures 
asserted properties around a hierarc hy of types 
( e .g., Elephant IS-A Mammal IS-A Animal ... , etc. ). 
A list of subsuming types is attached to eac h 
instantiated constant or variable, e.g., the 
elephant named "Clyde " might have the attached type 
1 ist 

PHYSOB - ALIVE - ANIMAL - MAMMAL - ELEPHANT. 

The pattern matcher is augmented with a type 
checker which e nsur es that an individual matches 
only those properties which may be lega lly inherit 
from subsuming types. In this case, since "Clyde" 
is an instance of type "El e phant", he may inherit 
any property true of Elephants, Mammals, e tc. 
Moore recognises that the key to the pattern 
matcher's efficient operation depends on how the 
data base of properties is indexed. He tentatively 
suggests that assertions be grouped in hierarchical 
buckets indexed by type . This corres ponds to the 
subconcept-superconcept organisation for networks, 
suggested in Section 1. 
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Symbol-mapping in a proposition network is 
greatly aided by imposing a subconcept-superconcept 
hierarchy on the network concepts. Within the 
proposition network, one concept is a superconcept 
of another concept if th e set of properties 
attached to the former is a subset of the 
properties attached to the latter. Therefore 
"mammal" is a superconcept of " elephant" since the 
Rer of "mammal" properties is a subset of the set 
of " elephant " properties . 

After asserting "Clyde 1s a n elephant", the 
colour of Clyde can be found as follows: the 
concept node "Clyde" is accessed, and the attached 
propositions are scanned sequentially for one which 
indicates the colour of Clyde. Should one not be 
found, Clyde's immediate successor 1n tre 
subconcept-superconcept hi erarc hy 1s accessed 
( e.g ., e lephant), and its attached proper ti es are 
again searched sequentially for a colour 
proposition. This process continues until either 
all the existing superconcepts' proposition s hav e 
been checked, or a colour proposition has bee n 
found. Notic e that the subconcept-superconcept 
structure simply guides an exhaustive search for a 
colour propert y attached to each of the 
superconcept classes of whi ch Clyde is •a member. 
It does not increase the efficiency of locating 
rel evant information about the colour of Clyde. 
Certainly we would rath er ask th e question "Is 
there a co lour proposition attached to Clyde?", and 
if the answer is no, proceed up the 
subconcept-superconcept h ierarc hy asking th e same 
question of each successive s uperconce pt. 

3.3 Topic Organisations 

Subconcept-superconcept hierarchies provide an 
organisation for associating knowledge with a 
concept, but that knowl edge itself remains 
unstructured. In order to efficiently answer 
queries like "What is the colour of Clyde?", the 
knowledge about eac h concept must also be 
organised. 

We propose that the first order knowledge about 
a concept (i. e., attributes or properties ) be 
classified by second order predicates called topic 
predic a tes. Subtopic-supertopic relationships 
between topic predicates will define a topic 
hi erarchy which will classify first order 
predicates in the same way that standard 
subconcept-superconcept hi erarch i es classify 
individuals. For example, consider the 
"APPEARANCE" topic illustrated in Figure 8. Except 
for the l eav es, all nodes of the hi erarchy are 
viewed as second order predicates . Th e first order 
pr edicate "striped " is classified as an instance of 
"PATTERN" which in turn is a subtopic (i.e., second 
order subconcept) of "APPEARANCE". The first order 
predicates appearing as leaves inherit the 
properties of their superiors in the topic 
hi erarchy. 

In Figure 8, notice that the first order 
pr edicate "shiny" appears as an instance of both 
"TEXTURE" and "COLOUR", thus providing two 
viewpoints of the same predicate. In general, the 
topic organisation ne ed not be strictly 
hierarchical in order that predicates may be 
classified under multipl e topics. Our first 



implementation of topic hiera r chies (Goebe l, 1977) 
pe rmitt ed pr edicat es to be ranked as to th e ir 
"d egree of r e levanc e" in th e topics und er whi ch 
th ey wer e classified. In an attempt to combine a 
f uzzy logic mod e l of vagueness with a probabilistic 
mod e l of uncertainty, relevance rankings were 
specified as c umul a tive prob ability distributions 
over de g rees of re l evance. Although it is clear 
that some measure of re l evance is useful in 
specifying which of several possible viewpoints is 
most relevant , we are now skeptical of the approach 
of Goebe l (1977). An a lterna t e approach for 
r e presenting degrees of relevance is provided in 
Schubert (1978). 

Topic hiera rchies are designed to impose a 
classification on eac h ne twork concept's associated 
knowledge in order to provide efficient access of 
topic ally-re l evant propositions fot a n arbi trary 
que ry . To implement such an indexing sc heme, an 
instance of the topi c hierarchy called a topic 
access skeleton will be attached to each incividual 
or type concept in the network. Only tho se 
topics und er which knowl edge has been classified 
will be instantiated in any particular topic 
access s ke l eton. For exampl e, Figure 9 gives 
the "APPEARANCE" topic access skeleton for 
"Cl yde " after asserting "CLyde is pink" and " Clyde 
is s potted". Additions to a concept ' s topic 
access skeleton are signalled by the appeara nce of 
a topically classified predicate in an input 
proposition. Wh en a proposition about "Clyde" 
i nvolves a predicate appearing as a l eaf of 
t he "APPEARANCE" topic hierarc hy, that 
proposition is inserted in the corresponding 
position i n Clyde's "APPEARANCE" topic access 
ske l eton. 

Now reconsider the symbol-mapping pro blem 
ass umin g that th e propositions attac hed to each 
concept are classified by an appropriate topic 
hi erarchy. A search for the colour of Clyde begins 
by accessing t he " Cl yde " concept, but rat her than 
looking at eac h propo s1t1on sequential ly , the 
"COLOUR" topic of Clyde can immediately be checked 
for a co lour propo si t ion . If this fails, eac h of 
Clyde's superconcept nodes (i.e., e l ephan t, mammal, 
etc. ) are searched in exact l y the same fas hion. If 
the topic access skeletons attac hed to each concept 
are approximat e l y ba l anced, the access t i me for a 
classified proposition about a particular concept 
will be a pproximate ly propo rtiona l to the loga rithm 
of the number of propositions "known" abo ut th at 
conce pt. The combined organisational power of the 
subconcept-superconcept hierarchy and the topic 
hi erarchy s hould provide for a significant 
reduction in proposition access time. 

4. Utili sing Knowl edge in Proposition Networks 

Once a propo s ition is obtained from the 
interpretative program (Cercone, 1975), the conce pt 
nodes in t he proposition are created unless they 
are fo und in the syst em's internal conc ep t 
dictionary. An unquanti fied arg ument is assumed to 
be the name of a n individua l concept, and if it 
do es not exist, it is created as specified. All 
qu antified argument s are ent ered as new variables 
of the a ppropriate type (i .e., existential or 
universa l) . Predic ates may be optionally created 
as recogni sed, or predefined and verified upon 
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input. A f unct iona l notat ion is provid ed which 
permits reference to an individual concept 
by its participation in an atomi c ne twork 
propo si tion . For exampl e, th e expression 

(fa th er-o f Fred) 

is a functional reference to Fred' s fath e r , whoever 
he may be. This facility works only for existing 
nodes; un reso l ved functional references do not 
cause the creation of new nodes. In ge nera l, the 
decision to crea t e a new nod e will require a 
ca ut ious approach, si nce indiscriminant 
creation of new nod es could quickly l ead t o data 
bas e inconsistency. For exampl e, if the 
proposition 

(Sally sis t er-of Fred) 

has been asserted , the functiona l references 

(father-of Sa l ly), (father-of Fred) 

refer to the same father, bu t reasoning is r equired 
to recognise this fac t in order to refrain from 
creating two new individual concepts. 

The system facilitates the use of arbitrary 
t opic h ierarc hi es by permitting the explicit 
i nsertion of suptopic-supertopic r e l ations. For 
exampl e, the " APPEARANCE" topic hierarchy of Figure 
8 would be defined as follows: 

[APPEARANCE s upertopic-of COLOUR TEXTURE PATTERN ] 
[COLOUR supertopic - of ye l low p i nk green ] 

[TEXTURE superto pic-of shin y rough smoot hl 
[PATTERN supertopic-of striped spotted checked]. 

The experimental implementation of Goebel (1 977) 
uses a simp l e proposition classification sc heme 
based on the recog n ition of individuals (e.g., 
Clyde, peanut37) and type concepts (e.g., elephant , 
mamm al, anima l) in input propositions. For exampl e, 
the asser tion "El e ph ants are grey" would be 
c l assified under the "COLOUR" topic in t he 
" APPEARANCE" topic access s ke l e t on for the 
" e l ephant" co ncept . A detailed descri ption of a n 
a utoma t ic classification mec hani sm based on the 
logica l form of propositions is given in Schubert 
e t a l. (19 78b ). 

A retrieval request for topically classif i ed 
propositions is specified as a concept name 
fo ll owed by a topic name. Th e request 

Clyde;A PPEARANCE 

would retrieve a ll the c l assified "APPEARANCE" 
propo si tions a bout "Clyde " . Clear l y, this facility 
co uld form th e basis for a sophisticated 
question-answering system. 

5. Discussion 

We conclude with a s hort assessmen t of the most 
sa lient features of this r esearch a nd a b rief 
indication of what we consider to be promising 
di rections for further research. We have argued 
e l sewhere ( see Sc hubert et a l. , 1978b) that 
primitive representations for fac tua l knowledge are 
c umb ersome and unneccessary, si nc e the furt her the 



reduction to primitives is carried, the more 
computation bound the resulting representations 
become. Clearly, ours is a nonprimitive 
representation and the mini-impl ementations 
developed in Cercone (1975) and Goebel (1977) lend 
credence to that c laim. 

Although we have repeatedly stressed the 
distinction between re pres entations and 
organisations, we now note that a topic hierarchy 
is simply a relational structure which can of 
course be represented within the proposition 
network . This approach would allow a system to 
reason ABOUT topics. We believe that existing 
knowledge representations which do not initially 
(or ever) make s uc h a distinction ( e . g., McCal l a, 
1977) can avoid need l ess complexity with such an 
approac h . 

One cannot overstress the advantages of a 
logical approac h to developing and investigating 
knowledge representations and orgqnizations. For 
a further exampl e, observe th e clarity of the 
approach g iven to the inheritance of properties 
by Reiter (1975) in compari so n to those 
of McDe rmott (1975b) or Moore (1975). Also 
note that the second order nature of topic 
organisations provid e a we ll-defined notion of 
"knowl edge about knowledge". This should provide 
important clues to the problem of identifying 
and using different "l eve ls" of knowledge. 

We hav e concentrated on examples of topic 
hi e rarchies for knowledge of attributes or 
properties, but similar organisations could be 
constructed for other kinds of knowledge, 
e.g., knowledge about actions. Note that an 
organisation similar to a topic hierarchy has 
been employed by Schank (1972) to organise primary 
inferences associated with hi s primitive action 
concepts. For examp l e, Schank's abstract transfer 
primitive "ATRANS" may be viewed as a supertopic of 
the first order predicates "buy", "sell", 
"t rade", etc.. One of the "pi eces" of knowledge 
associated with "ATRANS" which is inherited 
by the first order conc epts is the fact that 
some object has changed possession. 

Hopefully, the logical flavour of th e topic 
hi erarc hy a pproach will provide a unifying 
framework in which to view current and future 
organisations of propositional knowledge. 
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Capturing Linguistic Generalizations 
In a Parser for English 

Mitchell Marcus 
MIT Artificial Intelligence Laboratory 

This paper will discuss some aspects of a grammar 
Interpreter called PARSIFAL, which Is based upon the 
hypothesis that a natural language parser needn't simulate 
a nondeterministic machine. This "Determinism Hypothesis" 
claims that natural language can be parsed by a 
computationally simple mechanism that uses neither 
backtracking nor pseudo-parallelism, and In which a.II 
grammatical structure created by the parser Is "Indelible" In 
that It must all be output as part of the structural analysis 
of the parser's input. Once bullt, no grammatical structure 
can be discarded or altered In the course of the parsing 
process. 

The paper will focus on one aspect of PARSIFAL In 
particular: that simple rules of grammar can by written for 
this Interpreter which elegantly capture the significant 
generalizations behind such constructions as passives 
(including constructions involving "raising"), yes/no 
questions, imperatives, and sentences with existential 
there. (The first two of these constructions will be 
discussed in this paper; the latter two will not.) These 
rules are reminiscent of the sorts of rules proposed within 
the framework of the theory of generative grammar, despite 
the fact that the rules presented here must recover 
underlying structure given only the terminal string of the 
surface form of the sentence. The component of the 
grammar interpreter which allows such rules to be 
formulated is motivated by the Determinism Hypothesis; 
thus, the ability to write such rules provides indirect 
evidence for the hypothesis. This result also depends In 
part upon the use within a computational framework of the 
closely re lated notions of annotated surface structure and 
trace theory, which derive from the recent work of Noam 
Chomsky; e.g. (Chomsky 73]. 

This ability to capture generalizations, coupled with 
the fact that the grammar rules for PARSIFAL are written in 
an English-like formal language called PIDGIN, has an 
important practical implication: that a grammar of English 
written for this parser can be highly perspicuous. 

This parser serves as part of a natural language 
understanding system which serves as front end for the PAL 
personal assistant program at the MIT Al Laboratory, which 
Is an extension of the NUDGE system documented in 
(Goldstein & Roberts 77]. The first version of the PAL 
system has just been completed, it is documented In 
[Marcus forthcoming], [Bullwinkle 77]. The PAL system Is a 
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prototype appointment scheduler; the current version can 
handle requests such as "I want to schedule a meeting with 
Ira in his office at 2 p.m. next Wednesday. It should end at 
4 o'clock." 

The rema inder of this paper will sketch the 
structure of the parser, discuss how that structure Is 
motivated by the "Determinism Hypothesis", and sketch 
severa l examples of grammatical generalizations that can 
be captured within this framework. 

Before proceeding with the body of this paper, two 
other important properties of the parser should be 
mentioned which will not be discussed here; they are 
discussed at length in (Marcus 77]: 

1 )The structure of the grammar interpreter 
constrains its operation in such a way that, by and large, 
grammar rules cannot parse sentences which violate either 
of two constraints on rules of grammar currently proposed 
by Chomsky as universals of human language, the Specified 
Subject Constraint and the Subjacency Principle. 

2)The grammar interpreter provides a simple 
explanation for the difficulty caused by "garden path" 
sentences, such as "The cotton clothing is made of grows in 
Mississippi." Rules can be written for this interpreter to 
resolve local structural ambiguities which might seem to 
require nondeterministic parsing; the power of such rules, 
however, depends upon a parameter of the mechanism. 
Most structural ambiguities can be resolved, given an 
appropriate setting of this parameter, but those which 
typica lly cause garden paths cannot. 

The Structure of PARSIFAL 
PARSIFAL maintains two major data structures: a 

pushdown stack of incomplete constituents called the active 
node stack, and a small three-place constituent buffer which 
contains constituents which are complete, but whose higher 
level grammatical function Is as yet uncertain. 

Figure 1 below shows a snapshot of the parser's 
data structures taken whi le parsing the sentence "John 
should have scheduled the meeting." . Note that the active 
node stack in shown growing downward, so that the 
structure of the stack reflects the structure of the 
emerging parse tree. At the bottom of the stack Is an 
auxiliary node labelled with the features modal, past, etc., 
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which has as a daughter the modal "should". Above the 
bottom of the stack Is an S node with an NP as a daughter, 
dominating the word "John". There are two words In the 
buffer, the verb "have" In the first buffer cell and the word 
"scheduled" In the second. The two words "the meeting" 
have not yet come to the attention of the parser. (The 
structures of form "(PARSE-AUX CPOOL)" and the like wlll be 
explained below.) 

The Active Node Stack 
S 1 (S DECL MAJOR S) / (PARSE-AUX CPOOL) 

NP : (John) 
AUX1 (MODAL PAST VSPL AUX)/ (BUILD-AUX) 

MODAL : (should) 

The Buffer 
1 : WORD3 (•HAVE VERB TNSLESS AUXVERB PRES 

V-3S) : (have) 
2 : WORD4 (•SCHEDULE COMP-OBJ VERB INF-OBJ 

V-3S ED=EN EN PART PAST ED) : (scheduled) 

Yet unseen words: the meeting . 

Figure 1 - PARSIFAL's two major data structures. 

The constituent buffer Is the heart of the grammar 
interpreter; It Is the central feature that distinguishes this 
parser from all others. The words that make up the parser's 
input first come to its attention when they appear at the 
end of this buffer after morphological analysis. Triggered 
by the words at the beginning of the buffer, the parser may 
decide to create a new grammatical constituent, create a 
new node at the bottom of the active node stack, and then 
begin to attach the constituents In the buffer to It. After 
this new constituent Is completed, the parser will then pop 
the new constituent from the active node stack; If the 
grammatical role of this larger structure Is as yet 
undetermined, the parser will Insert It Into the first cell of 
the buffer. The parser Is free to examine the constituents 
in the buffer, to act upon them, and to otherwise use the 
buffer as a workspace. 

While the buffer allows the parser to examine 
some of the context surrounding a given constituent, It does 
not allow arbitrary look-ahead. The length of the buffer Is 
strictly limited; in the version of the parser presented here, 
the buffer has only three cells. (The buffer must be 
extended to five cells to allow the parser to build NPs In a 
manner which is transparent to the "clause level" grammar 
rules which will be presented In this paper. This extended 
parser still has a window of only three cells, but the 
effective start of the buffer can be changed through an 
"attention shifting mechanism" whenever the parser Is 
building an NP. In effect, this extended parser has two 
"logical" buffers of length three, one for NPs and another 
for clauses, with these two buffers Implemented by allowing 
an overlap In one larger buffer. For details, see [Marcus 
77].) 

Note that each of the three cells In the buffer can 
hold a grammatical constituent of any type, where a 
constituent is any tree that the parser has constructed 
under a single root node. The size of .the structure 
underneath the node Is Immaterial; both "that" and "that 
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the big green cookie monster's toe got stubbed" are 
perfectly good constituents once the parser has 
constructed a subordinate clause from the latter phrase. 

The constituent buffer and the active node stack 
are acted upon by a grammar which Is made up of 
pattern/action rules; this grammar can be viewed /JS an 
augmented form of Newell and Simon's production systems 
[Newell & Simon 72]. Each rule Is made up of a pattern, 
which Is matched against some subset of the constituents 
of the buffer and the accessible nodes In the active node 
stack (about which more will be said below), and an action, 
a sequence of operations which acts on these constituents. 
Each rule is assigned a numerical priority, which the 
grammar interpreter uses to arbitrate simultaneous matches. 

The grammar as a whole Is structured Into rule 
packets, clumps of grammar rules which can be . activated 
and deactivated as a group; the grammar Interpreter only 
attempts to match rules In packets that have been 
activated by the grammar. Any grammar rule can activate a 
packet by associating that packet with the constituent at 
the bottom of the active node stack. As long as that node 
is at the bottom of the stack, the packets associated with 
it are active; when that node Is pushed Into the stack, the 
packets remain associated with It, but become active again 
only when that node reaches the bottom of the stack. For 
example, In figure 1 above, the packet BUILD- AUX Is 
associated with the bottom of the stack, and Is thus active, 
while the packet PARSE-AUX Is associated with the S node 
above the aux iliary. 

The grammar rules themselves are written In a 
language called PIDGIN, an English-like formal language that 
Is translated Into LISP by a simple grammar translator based 
on the notion of top- down operator precedence [Pratt 73]. 
This use of pseudo-English Is similar to the use of pseudo
English In the grammar for Sager's STRING parser [Sager 
73]. Figure 2 below gives a schematic overview of the 
organization of the grammar, and exhibits some of the rules 
that make up the packet PARSE-AUX. 

A few comments on the grammar notation Itself are 
in order . The general form of each grammar rule Is: 

{Rule <name> priority: <priority> In (packet> 
<pattern>--> <action>} 

Each pattern is of the form : 

[ (description of 1st buffer constituent>] [<2nd>] 
[<3rd>] 

The symbol " =", used only in pattern descriptions, Is to be 
read as "has the feature(s)" . Features of the form 
11 •<word)" mean "has the root <word)", e.g. 11 •have" means 
"has the root "have"". The tokens "1st", "2nd", "3rd" and 
"C" (or "c") refer to the constituents in the 1st, 2nd, and 
3rd buffer positions and the current active node (I.e. the 
bottom of the stack), respectively. (These tags will also be 
used in the text below as names for their respective 
constituents .) The symbol "t" used In a pattern description 
Is a predicate that is true of any node, thus "[t]" Is the 
simplest always true description. Pattern descriptions to be 



matched against the current active node and the current S 
are flagged by 11 ••c 11 appearing at the beginning of an 
additional pattern description. The PIDGIN code of the rule 
patterns. should otherwise be fairly self-explanatory. 

Priority Pattern Action 
Description of: 

let 2nd 3rd The Stack 
PACKET1 

5: [ J [ ] --> ACTION1 
10: [ [ ] --> ACTION2 
10: [ ] [ --> ACTION3 

PACKET2 
10: ] --> ACTION4 
15: --> ACTION6 

(a) - The structure of the grammar. 

{RULE START-AUX PRIORITY: 10. IN PARSE-AUX 
[=verb]--> 
Create a new aux node. 
Label C with the meet of the features of 1st and pres, 

past, future, tnsless. 
Activate build-aux.} 

{RULE TO-INFINITIVE PRIORITY: 10. IN PARSE-AUX 
[ =• to, auxverb] [=tnsiess] --> 
Label a new aux node inf. 
Attach 1st to C as to. 
Activate build-aux.} 

(b) - Some grammar rules that initiate auxiliaries. 

Figure 2 

The parser (i.e . the grammar Interpreter 
interpreting some grammar) operates by attaching 
constituents which are in the buffer to the constituent at 
the bottom of the stack; functionally, a constituent is in the 
stack when the parser is attempting to find its daughters, 
and in the buffer when the parser is attempting to find its 
mother. Once a constituent in the buffer has beer:, 
attached, the grammar interpreter will automatically remove 
it from the buffer, f illing in the gap by shifting to the left the 
constituents formerly to its right. When the parser has 
completed the constituent at the bottom of the stack, it 
pops that constituent from the act ive node stack; the 
constituent either remains attached to Its parent, If it was 
attached to some larger constituent when it was created, or 
e lse it falls into the first cell of the constituent buffer, 
shifting the buffer to the right to create a gap (and causing 
a n error if the buffer was already full). If the constituents 
in the buffer provide sufficient evidence that a constituent 
of a given type shou ld be initiated, a new node of that type 
can be created and pushed onto the stack; this new node 
can a lso be attached to the node at the bottom of the 
stack before the stack Is pushed, If the grammatical 
function of the new constituent is clear when it is created. 

This structure is motivated by several properties 
which, as is argued in [Marcus 77], any "non
nondeterministic" grammar interpreter must embody. These 
principles, and their embodiment In PARSIFAL, are as follows: 
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1) A deterministic parser must be ot leost part/ally data 
driven. A grammar for PARSIFAL is made up of 
pattern/action rules which are triggered when 
constituents which fulfill specific descriptions 
appear in the buffer. 

2) A deterministic parser must be able to reflect 
expectations that follow from the partial structures 
built up during the parsing process. Packets of 
rules can be activated and deactivated by 
grammar rules to reflect the properties of the 

· constituents in the active node stack. 

3) A deterministic parser must have some sort of 
constrained look-ahead facility. PARSIFAL's buffer 
provides this constrained look -ahead. Because the 
buffer can hold several constituents, a grammar 
rule can examine the context that follows the first 
constituent in the buffer before deciding what 
gram :iatical role it fills in a higher level structure. 
The key idea is that the size of the buffer can be 
sharp ly constrained if each location in the buffer 
can hold a s ingle complete constituent, regardless 
of that constituent's size. It must be stressed that 
this look-ahead ability must be constrained in some 
manner, as it is here by limiting the length of the 
buffer; otherwise the "determinism" claim Is 
vacuous. 

The General Grammatical Framework - Traces 
The form of the structures that the current 

grammar builds is based on the notion of Annotated Surface 
Structure. This term has been used in two different senses 
by Winograd [Winograd 71] and Chomsky [Chomsky 73]; 
the usage of the term here can be thought of as a 
s ynthesis of the two concepts. Following Winograd, this 
term will be used to refer to a notion of surface structure 
annotated by the addition of a set of features to each node 
in a parse tree. Following Chomsky, the term will be used to 
refer to a notion of surface structure annotated by the 
addition of an e lement called trace to Indicate the 
"underlying position" of "shifted" NPs. 

In current linguistic theory, a trace is essentially a 
"phonologically null" NP in the surface structure 
representation of a sentence that has no daughters but Is 
"bound" to the NP that fi lled that position at some level of 
underlying structure. In a sense, a trace can be viewed as 
a "dummy" NP that serves as a placeholder for the NP that 
ear lier filled that position; in the same sense, the trace's 
binding can be viewed as simply a pointer to that NP. It 
should be stressed at the outset, however, that a trace Is 
Indistinguishable from a normal NP In terms of normal 
grammatical processes; a trace Is an NP, even though It Is 
an NP that dominates no lexical material. 

There are several reasons for choosing a properly 
annotated surface structure as a primary output 
representation for syntactic analysis. Whlle a deeper 
analysis is needed to recover the predicate/ argument 
structure of a sentence (either in terms of Fillmore case 
relations [Fillmore 68] or Gruber/Jackendoff "thematic 
relations" [Gruber 65; Jackendoff 72)), phenomena such as 
focus, theme, pronominal reference, scope of quantification, 
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and the like can be recovered only from the surface 
structure of a sentence. By means of proper annotation, It 
is poss ible to encode In the surface structure the "deep" 
syntactic Information necessary to recover underlying 
predicate/argument relations, and thus to encode In the 
same forma lism both deep syntactic relations and the 
surface order needed for pronominal reference and the 
other phenomena listed above. 

Some examples of the use of trace are given in 
Figure 3 immediately below. 

(la) What did John give to Sue? 
Obl What did John give t to Sue? 

I I 
(le) John g~ve what to Sue. 

(2al A book was given Sue. 
· (2b) A book was given Sue t. 

I 
(2cl V gave Sue a book. 

(3al John was be I ieved to be happy. 
(3b) John was believed Cs t to be happy] • 

I I 

Figure 3 - Some examples of the use of trace. 

One use of trace is to Indicate the underlying 
position of the wh-head of a question or relative clause. 
Thus, the structure built by the parser for 3.1 a would 
Include the trace shown in 3.1 b, with the trace's binding 
shown by the line under the sentence. The position of the 
trace indicates that 3 .1 a has an underlying structure 
analogous to the overt surface structure of 3.1 c. 

Another use of trace Is to Indicate the underlying 
position of the surface subject of a passivlzed clause. For 
example, 3.2a will be parsed Into a structure that Includes a 
trace as shown as 3.2b; this trace Indicates that the 
subject of the passive has the underlying position shown in 
3.2c. The symbol "V" signifies the fact that the subject 
position of (2c) is filled by an NP that dominates no lexical 
structure. (Following Chomsky, I assume that a passive 
sentence in fact has no underlying subject, that an 
agentive "by NP" prepositional phrase originates as such In 
underlying structure.) The trace in (3b) Indicates that the 
phrase "to be happy", which the brackets show is really an 
embedded clause, has an underlying subject which Is 
identical with the surface subject of the matrix S, the 
clause that dominates the embedded complement. Note 
that what is conceptually the underlying subject of the 
embedded clause has been passivlzed into subject position 
of the matrix S, a phenomenon commonly called "raising". 
The analysis of this phenomenon assumed here derives from 
[Chomsky 73]; it is an alternative to the classic analysis 
which involves "raising" the subject of the embedded 
clause into object position of the matrix S before 
passivizatlon (for details of this later analysis see [Postal 
74]). 

Some Captured Generalizations 
The remainder of this paper will sketch a few 

examples of grammar rules that explicitly capture, on nearly 
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a one-to- one basis, the same generalizations that are 
typically captured by classical transformational rules. The 
central point of what follows is that the availability of the 
buffer as a workspace, In conjunction with a grammar 
written in the form of pattern-action rules, makes possible 
several techniques for writing simple, concise grammar rules 
that have the net effect of explicitly "undoing" many of the 
generative grammarian's transformations with much the 
same elegance. 

One caveat should be stated at the outset: Not all 
grammatical processes which are typically expressed. as 
single rules within the generative framework can be so 
captured within the grammar for this parser, or, I believe, 
any other. Such processes include the general phenomenon 
of "WH- movement", which accounts for the structure of 
WH-questions and relative clauses (at the least), and the 
problem of prepositional phrase attachment. Thus, while 
there is a wide range of grammatical generalizations that 
can be captured within a parsing grammar, it must be 
conceded that there are important generalizations that 
cannot be captured within this framework. 

There are several techniques made possible by the 
buffer that will be used repeatedly to capture linguistic 
phenomena within fairly simple rule formulations. They are: 

1) The ability to remove some constituent other than 
the first from the constituent buffer, compacting the buffer 
and reuniting discontinuous constituents. In natural 
language, it is often the case that some third structure 
intervenes between two parts of what is intuitively one 
constituent . In most parsers, special provisions must be 
made in the grammar for handling such situations. As will l:>e 
demonstrated below, the buffer mechanism makes this 
unnecessary. 

2) The ability to place a trace by Inserting It Into 
the buffer rather than by directly attaching it to a tree 
fragment . As will be sketched below, this yields a simple 
analysis of passivization and "raising". 

3) The ability to Insert specific /ex/cal items Into 
the buffer, thereby allowing one set of rules to operate on 
only superficially di°fferent cases. As figure 4 below shows, 
many grammatical constructions in natural language are best 
analyzed as slight variants of other constructions, differing 
only in the occurrence of an additional specific lexical Item 
or two. Given the buffer mechanism, such constructions can 
be easily handled by doing a simple insertion of the 
appropriate lexical Items Into the shorter form of the 
construction, "transforming" the shorter form into the longer 
form, allowing both cases to then be handled by the same 
grammar rule . 

1 (a) ail the boys 
(b) all of the boys 

2(a) I helped John pick it up. 
(b) I helped John to pick It up. 

Figure 4 

In what follows below, examples will be given 
which illustrate points ( 1) and (2). 



Example 1 - Yes/No Questions 
In the grammar for this parser, the analysis of a 

yes-no question diffe rs from the analysis of the related 
declarative only in the execut ion of two ru les for each 
se nt e nc e type: declaratives trigger the two rules s hown in 
figure 5a be low, and yes-no questions trigger the two ru les 
shown in 5b. Th e differences between the rules for 
declaratives and y es-no questions are underlined in fig. 5. 

{Ru le DECL-S in SS-START 
[=np] [=verb] - -> 
Labe l C dec l, ma jor. 
Deactivate ss-start. 
Act ivate parse-subj.} 

{ RULE UNMAf1KED-ORDER 
IN PARSE-SUBJ 

[=np] [=ve rb] --> 
Attach~ to c as np. 
Deactivate parse-subj. 
Activate parse-aux.} 

DECLARATIVES 
(a) 

{Rule Y /N -Q in SS-START 
[=auxverb] [ =npJ --> 
Label C ynguest, major. 
Deactivate ss-start. 
Activate parse-subj .} 

{RULE AUX- INVERS ION 
IN PARSE-SUBJ 

[=auxverbJ [=npJ --> 
Attach 2 nd to c as np. 
Deactivate parse-subj. 
Activate parse-aux.} 

YES-NO QUESTIONS 
(b) 

Fig ure 5 - Ru les for yes-no quest ions and declaratives. 

What is s urpris ing about these rules is that t hey 
obv iate the need for the grammar to contain spec ial 
provis ions to handle t lie discont inuity of the verb c luster in 
yes-no questions. Consider the fo llowing sentence, 

( i) Has John scheduled the meeting for Wednesday? 

One of t he aux iliary pars ing rul es t hat s hould be tr iggered 
during t he course of the analysis of this sentence is t he 
ru le PERFECTIVE, shown below in figure 6. This ru le w ill 
attach any form of "have" to the auxi liary and labe l the 
auxil iary with the feature perfective if the fo llowing word 
(implicitly a verb) has the feature en. It would seem t hat 
some provi s ion must be made for t he fact t hat in a yes-no 
quest ion t hese two words might be separated by t he 
subject NP, as in (i) above where the verb " scheduled " 
(whic h does carry t he feature en, s ince en is 
morpholog ica lly realized with this verb as "-ed") does not 
fo llow "has " , but rather follows an interven ing NP. As we 
s hall see immediately below, however, no specia l patch is 
needed to hand le t his discont inuity at all . 

{RULE PERFECT IVE PRIORITY: 10. IN BU ILD-AUX 
[ ="have] [=en]--> Attach 1st to c as perf. Label c perf .} 

Figure 6 - The PERFECTIVE ru le requ ires contiguous verbs. 

Let us now trace through the initial steps of 
pars in g (i) and see why it is that no changes to the 
auxi liary parsing rules are required to parse yes-no 
questions. 

We beg in with the parser in the state shown in 
figure 7a below, with the packet SS-START active. The rule 
Y /N -Q matches and is executed, labelling S 1 7 with features 
that indicate t hat it is a yes - no question, as shown In figure 
7b below. (The buffer, not shown again, remains 

68 

unc hange d.) Th is step of the parsing process is quite 
analogous to the analys is process for declaratives. 

C: 

1 : 
2: 
3: 

The Act ive Nod e Stack ( 0 . deep) 
S17 ( S) / (SS-START) 

The Buffer 
WORD134 ( • HAVE VERB AUXVERB PRES V3S) : (Has) 
NP43 (NP NAME NS N3P) : (John) 
WORD136 ( •SC HEDULE COMP-OBJ VERB INF-OBJ 

V- 3S ... ) : (scheduled) 

Yet unseen words : a meeting for Wednesday? 

( a) - Before Y /N -Q has been executed. 

The Act ive Nod e Stack ( 0 . deep) 
C: S 1 7 ( S QUEST YNQUEST MAJOR)/ (PARSE-SUBJ) 

(b) - The Active Node Stack after Y /N -Q is executed. 

Figure 7 

The packet PARSE-SUBJ is now active, and ru le 
AUX-INVERSION matches and is executed; it attaches NP43 
to S 1 7. After AUX- INVERS ION has been executed, the 
gra mmar in te rprete r notices t hat NP43 is attached and it 
therefore removes NP43 from the buffer. But now that the 
subject of the c lause has been removed from the buffer, 
the pieces of the v erb c luster "has schedu led " are no 
long er d iscontinuous, as the word "has" is now in the. 1 ~t 
buffer ce.11, and " scheduled" is in the 2 nd ce ll. Th is IS 

s hown in figure 8 below. In effect, t he rule AUX-INVERSION, 
mere ly by pickin£1 out the subject of the c.lause'. has 
"undone" t he s ubj ect / aux iliary "inversion" which signals 

the presence of a question. 

C: 

1 : 
2: 

The Active Node Stack ( O. deep) 
S 1 7 (S QUEST YNQUEST MAJOR) / (PARSE- AUX) 

NP : (John) 

The Buffer 
WORD1 34 ( " HAVE VERB AUXVERB PRES V3S) : (Has) 
WORD 136 ( •SC HEDULE COMP-OBJ VERB INF-OBJ 

V-3S ... ) : (scheduled) 

Yet unseen words : a meeting for Wednesday ? 

Figure 8 - After AUX- INVERS ION has .been executed. 

From t his s imple example, we see that the ability 
to attach const it uents in other than the f irst place in the 
buffer to t he current act ive node, in conjunc tion with the 
fact t hat attachment causes a node to be removed from the 
buffer , compact ing t he remaining contents of the buffer, 
allows a key genera lizat ion to be captured. Most 
int erestingly, the removal of t he sub ject NP in this case 
w as not specif ically stipulated by t he grammar ru le, which 
merely specif ied t hat t he second NP in the buffer was to be 
attached to t he dominating S. The de letion followed Instead 
from general principles of the grammar interpreter's 

. operation. This latter point is crucial; given a simple 
statement of the structure of yes-no questions in English, 
the proper behavior follows from much more general 
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principles. 

Example 2 - Passives and Raising 
In this section, I w ill very briefly sketch a 

grammatica l solution to the phenomena of passlvlzatlon and 
"rais ing" [Postal 74], sentences In which what seems to be 
the subject of an embedded complement Is passlvlzed Into 
t he subject posit ion of the higher clause. This analysis, I 
be lieve, is simpler than that demonstrated by Woods within 
his c lass ic paper on the ATN formalism [Woods 70), In that 
( 1) noth ing like the register mechanism of the ATN and the 
re lated SENOR and LIFTR mechanisms are needed for this 
solution; and (2) the register resetting Involved In Woods' 
solution is not needed here. 

Let us begin with the parser In the state shown In 
figure 9 below, in the midst of parslng the following 
sentence: 

The meeting was scheduled for Wednesday. 

The ana lysis process for the sentence prior to this point Is 
essentially parallel to the analysis of any simple declarative 
with one exception: the rule PASSIVE-AUX In packet BUILD
AUX (shown In figure 11) has decoded the passive 
morphology in the auxiliary and given the auxiliary the 
feature passive (although this feature Is not visible In figure 
9). At the point we begin our example, the packet SUBJ
VERB Is active. 

The Active Node Stack ( 1. deep) 
S21 (S DECL MAJOR) / (SS-FINAL) 

NP : (The meeting) 
AUX : (has been) 
VP:+ 

C: VP1 7 (VP) / (SUBJ-VERB) 
VERB : (scheduled) 

The Buffer 
1 : PP14 (PP) : (for Wednesday) 
2 : WORD162 (•. FINALPUNC PUNC) : (.) 

Figure 9 - Partial analysis of a passive sentence: 
after the verb has been attached. 

The packet SUBJ-VERB contains, among other rules, the rule 
PASSIVE, shown In figure 1 O below. As I will show In the 
next section, this rule by itself Is sufficient to account for 
many of the phenomena that accompany clause-level 
passivlzatlon including the phenomenon of raising. The 
pattern of this rule is fulfilled If the auxiliary of the S node 
dominating the current active node (which will always be a 
VP node If packet SUBJ-VERB Is active) has the feature 
passive, and the S node has not yet been labelled np
preposed. (The notation 11

•• C" Indicates that this rule 
matches against the two accessible nodes In the stack, not 
against the contents of the buffer.) The action of the rule 
PASSIVE simply creates a trace, sets the binding of the 
trace to the subject of the dominating S node, and then 
drops the new trace Into the buffer. 
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{RULE PASSIVE IN SUBJ-VERB 
[ 0 c; the aux of the s above c Is passive; 

the s above c Is not np-preposed] --> 
Label the s above c np-preposed. 
Create a new np node labelled trace. 
Set the binding of c to the np of the s above c. 

Drop c.} 

Figure 1 O - Six lines of code captures np-preposlng. 

The state of the parser after this rule has been executed, 
with the parser previously in the state In figure 9 above, is 
shown in figure 11 below. S21 is now labelled with the 
feature np-preposed, and there Is a trace, NP53, in the first 
buffer position. NP53, as a trace, has no daughters, but Is 

bound to the subject of S21. 

The Active Node Stack ( 1. deep) 
S21 (NP-PREPOSED S DECL MAJOR)/ (SS-FINAL) 

NP : (The meeting) 
AUX : (has been) 

VP:+ 
C: VP 1 7 (VP) / ( SUBJ-VERB) 

VERB : (scheduled) 

The Buffer 
1 : NP53 (NP TRACE) : bound to: (The meeting) 
2 : PP14 (PP) : (for Wednesday) 
3 : WORD162 (•. FINALPUNC PUNC): (.) 

Figure 11 - After PASSIVE has been executed. 

Now rules will run which will activate the two 
packets SS-VP and INF-COMP, given that the verb of VP17 
is "schedule". These two packets contain rules for parsing 
simple objects of non-embedded Ss, and Infinitive 
complements, respectively. Two such rules, each of which 
utilize an NP Immediately following a verb, are given In figure 
1 2 below. The ru le OBJECTS, in packet SS-VP, picks up an 
NP after the verb and attaches It to the VP node as a 
simple object. The rule INF-S-START1, In packet INF-COMP, 
triggers when an NP Is followed by "to" and a tenseless 
verb · It Initiates an infinitive complement and attaches the 

' "W NP as its subject. (An example of such a sentence Is e 
scheduled John to give a seminar next week".) The rule 
INF-S-START1 must have a higher priority than OBJECTS 
because the pattern of OBJECTS is fulfilled by any situation 
that fulfills the pattern of INF-S-START1; If both rules are In 
active packets and match, the higher priority of INF-S
START1 will cause it to be run instead of OBJECTS. 

{RULE OBJECTS PRIORITY: 10 IN SS-VP 

[=np) --> 
Attach rst to c as np.} 

{RULE INF-S-START1 PRIORITY: 6. IN INF-COMP 
[ =np] [=•to,auxverb] [=tnsless] --> 
Label a new s node sec, lnf-s. 
Attach 1st to c as np. 
Activate parse-aux.} 

Figure 1 2 - Two rules which utilize an NP following a verb. 



While there is not space to continue the example 
here . in detail, not e that the rul ~ OBJECTS will trigger with 
t11 e pmse r in the s tate shown in figure 11 above, and will 
attnch NP53 as the object of the verb "schedule. OBJECTS 
is thus tota lly indifferent both to the fact that NP53 was 
not a rcnular NP, but rather a trace, and t he fact that NP53 
did not or igin ate in the input str ing, but was placed into the 
buff er by grammatica l proce;;ses. Wh ether or not this ru le 
is executed is absolutely unaffected by differences 
betwe en an ac tive sentence and its pass ive form; the 
ana lys is process for either is identical as of thi s point in the 
parsin9 proc ess . Tl1us, the ana lys is process will be exactly 
parall e l in both cases after the PASSIVE rule has been 
execute d. (I remind tl1 e reader that the ana lysis of passive 
assumed above, fo llow in g Chomsky, does not assume a 
proc ess of " agent deletion", " subject postposing" or the 
lik e. ) 

Example 3 - Passives in Embedded Complements 
The reader may have wondered why PASSIVE 

drops t he trace it creates into the buffer rather than 
imme diately attaching the new trace to th e VP node. As we 
will see be low, such a formulation of PASS IVE also correctly 
ana ly zes pa ss ives like 3b above which involve "raising", but 
with 110 additional comp lex ity added to the grammar, 
correc tly capturing an important genera li za tion about 
En9 li sh. To s how the range of the general iza tion, the 
example which w e will inves tigate in this section, sentence 
( 1) in figure 13 be low, is y et a lev el more complex than 3a 
abov e; its analys is is shown schematic ally in 13.2. In this 
example there are two traces: the first, the subject of the 
e mb edd e d c lause, is bound to the subject of the major 
c lause , th e second, the object of the embedded S, is bound 
to the first trace, and is thus ultimate ly bound to the 
s ubject of the higher S as well. Thus the underlying 
pos ition of the NP "tl1e meeting" can be vi ew ed as being 
the object position of the embedded S, as shown in 13.3. 

( 1 )The mee tin g w as believed tq have been scheduled for 
W edn es day. 

( 2)The mee ting w as believed [sf to have been scheduled 
t for W e dnesday) 

(3) v believed [ s v to have schedu led the meet ing for 
W e dnes day]. 

Figure 1 3 - This example shows s imple passive and ra is ing. 

We be~Jin our example, once again, right after the 
ru le MVB has been executed, attaching "believed" to VP 2 0, 
t he curre nt active node, as shown in f igure 14 be low. Note 
t hat the AUX node has been labelled passive, a lthough this 
feature is not shown here. 
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C: 

1 : 
2: 

The Active Node Stack ( 1. deep) 
S22 (S DECL MAJOR) / (SS-FINAL) 

NP : (The meeting) 
AUX : (was) 
VP : ,l. 

VP20 (VP) / (SUBJ- VERB) 
VERB : (believed) 

The Buffer 
WORD166 ( • TO PREP AUXVERB) : (to) 
WORD167 ( • HAVE VERB TNSLES:: AUXVERB 

PRES ... ) : (have) 

Figure 1 4 - After MVB has been executed. 

The packet SUBJ- VERB is now act ive ; the PASSIVE 
rul e, conta ined in this packet now matches and is executed. 
This rule, as stated above, creates a trace, binds it to the 
sub j ect of the current c lause, and drops the trace into the 
first ce ll in the buffer. The resu lting state is shown in 

f igure 15 be low. 

C: 

1 : 

2 : 
3: 

The Active Node Stack ( 1. deep) 
S22 (NP- PREPOSED S DECL MAJOR) / (SS-F INAL) 

NP : (The meeting) 
AUX: (was) 
VP: ,l. 

VP20 (VP) / (SUBJ- VERB) 
VERB : (be lieved) 

The Buffer 
NP55 (NP TRACE) : bound to : (The meeting) 
WORD166 (•TO PREP AUXVERB) : (to) 
WORD 16 7 ( • HAVE VERB TNSLESS AUX VERB 

PRES ... ) : (have) 

Yet uns een words : been schedu led for Wednesday . 

Figure 15 - After PASSIVE has been executed. 

The rule SUBJ-VERB is now triggered, and 
deac tivates the packet SUBJ-VERB and activates the 
pa cke t SS-VP (which contains the rule OBJECTS) and, s ince 
"b e lieve " takes infinitive comp lements, the packet INF
COMP (which conta ins INF-S-START1 ), among others. Now 
th e patterns of OBJECTS and INF-S-START1 will both match, 
and INF-S-START1, shown above in figure 27, will be 
execlited by the interpreter since it has the higher priority. 
(Note once again that a trace is a perfect ly normal NP from 
the point view of t he patte rn matching process.) This ru le 
now creates a new S node labe lled infinitive and attaches 
the trace NP55 to the new infinitive as its subject. The 
resulting sta te is shown in figure 16 below. 



The Active Node Stack ( 2. deep) 
S22 (NP-PREPOSED S DECL MAJOR) / (SS-FINAL) 

NP : (The meeting) 
AUX: (was) 
VP :,!, 

VP20 (VP) / (SS-VP THAT-COMP INF-COMP) 
VERB : (believed) 

C: S23 (SEC INF-S S) / (PARSE-AUX) 
NP : bound to: (The meeting) 

The Buffer 
1 : WORD 166 (•TO PREP AUXVERB) : (to) 
2 : WORD 16 7 ("HAVE VERB TNSLESS AUXVERB 

PRES ... ) : (have) 

Yet unseen words: been scheduled for Wednesday . 

Figure 16 - After INF-S-START1 has been executed. 

We are now well on our way to the desired 
ana lysis. An embedded infinitive has been initiated, and a 
trace bound to the subject of the dominating S has been 
attached as its subject. 

The parser will now proceed, exactly as In earlier 
examples , to build the auxiliary, attach it, and attach the 
verb " scheduled" to a new VP node. After the ru les that 
accomplish this have been executed, the parser is left in 
the state depicted in figure 1 7 below. (Note that for the 
sake of brevity, only the 3 bottommost nodes in the active 
node stack will be shown In this and all successive 
diagrams.) The infinitive auxiliary has been parsed and 
attached, and VP21 is now the current active node, with 
the verb "scheduled" as main verb of the clause. Again, 
the auxiliary has been assigned the feature passive by the 
auxi liary parsing rules, although this is not shown in the 
figure below. 

C: 

1 : 
2: 

The Active Node Stack ( 3. deep) 

VP20 (VP) / (SS-VP THAT-COMP INF-COMP) 
VERB : (believed) 

S23 (SEC INF-S S) / (EMB-S-FINAL) 
NP : bound to: (The meeting) 
AUX : (to have been) 
VP:,!, 

VP21 (VP)/ (SUBJ-VERB) 
VERB : ( scheduled) 

The Buffer 
PP15 (PP) : (for Wednesday) 
WORD174 (•. FINALPUNC PUNG):(.) 

Figure 1 7 - After parsing the auxiliary and main verb. 

The packet SUBJ-VERB, containing the rules 
PASSIVE and SUBJ-VERB, Is now active. Once again 
PASSIVE's pattern matches and this rule Is executed, 
creating a trace, binding it to the subject of the clause, 
(which is in this case itself a trace), and dropping the new 
trace into the buffer. This is shown in figure 18 below. 
Note that In this figure, as in earlier figures, the lexical NP 
which is the transitive closure of the binding relationship is 
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shown for each trace. 

C: 

The Active Node Stack ( 3. deep) 

VP20 (VP) / (SS-VP THAT-COMP INF-COMP) 
VERB : (believed) 

S23 (NP- PREPOSED SEC INF-S S) / (EMB-S-FINAL) 
NP : bound to: (The meeting) 
AUX : (to have been) 
VP : ,!, 

VP21 (VP)/ (SUBJ-VERB) 
VERB : (scheduled) 

The Buffer 
1 : 
2: 
3: 

NP57 (NP TRACE) : bound to: (The meeting) 
PP15 (PP) : (for Wednesday) 
WORD174 ( •. FINALPUNC PUNG) : (.) 

Figure 18 - After PASS IVE has run on the lower c lause. 

The remainder of the parsing process proceeds in 
a fashion s imil ar to the simp le passive example discussed 
above; the rule OBJECTS will attach the trace NP57 as the 
obj ect of VP 21 , and the parse will then be completed by 
grammatical processes which will not be discussed here . 
The tree struc ture which results Is shown in figure 1 9 
below. (For the sake of brevity, most features have been 
deleted from this tree.) A trace is indicated in this tree by 
giving the terminal string of its ultimate binding in 
parentheses. 

(NP-PREPOSED S DECL MAJOR) 
NP: (MODIBLE NP DEF DET NP) 

DET: The 
NBAR: (NS NBAR) 

NOUN: meeting 
AUX: (PAST V13S AUX) 

PASSIVE: was 
VP: (VP) 

VERB: believed 
NP: (NP COMP) 

S: (NP- PREPOSED SEC INF-S S) 
NP: (NP TRACE) 

(bound" to: The meeting) 
AUX: (PASSIVE PERF INF AUX) 

TO: to 
PERF : have 
PASSIVE: been 

VP: (VP) 
VERB: scheduled 
NP: (NP TRACE) 

(bound• to: The meeting) 
PP: (PP) 

PREP: for 
NP : (NP TIME DOW) 

NOUN: Wednesday 
FINALPUNC: . 

Figure 1 9 - The final tree structure. 

We have seen that the simple formulation of the 
PASSIVE rule presented above, interacting with other simply 
formulated grammatical rules for parsing objects and 
initiating embedded infinitives, allows a trace to be 



attached either as the object of a verb or as the subject of 
an embe dded infinitive, whichever is the appropriate 
analysis for a r1iven grammat ical situation. The PASSIVE rule 
is formula tecl in suc h a way that it drops the trace \t 
creates into the buffer, rather than attaching the trace 
somewhere in particular in the tree. Because of this, later 
rules, olready formulated to trigger on an NP in the buffer, 
will analyze sentences with NP-preposing exactly the same 
as those witl1out a preposed subject. Once again, we see 
that the avai lability of the buffer mechanism is crucial to 
capturing this generalization; such a generalization can only 
be stated by a parser with a mechanism much like the 
buffer used here. 

Conclusion 
Th is paper has demonstrated that the structure of 

PARS IFAL, in conjun ction with the computational usage of 
the notion of traces, allows the formulation of linguistic 
r1en era li zations within the context of the grammar 
interpreter, resu lting in simple, perspicuou:; rules of grammar 
which handle comp lex lingu istic phenomena. The perspicuity 
of the grammar is increased by the fact that each of these 
rules conf lates different linguistic situations; thus, after 
t he passive rule has run the parsing of actives and 
passives is identical, after the aux-inversion rule has run, 
the parsing of declaratives and yes/no questions is 
id entica l. And fina lly, the perspicuity of these ru les is 
increased by the fact that they are expressed in a concise 
pseudo-English grammar language. 

In conclus ion , let me briefly recapitulate the major 
points made above: 

Of the structures that make up the grammar 
interpreter, it is the constituent buffer which is most central 
to the resu lts that are presented in this document. For 
example, because the buffer automatically compacts upon 
the attachment of ~he constituents that it contains, the 
parsing of a yes/no question and the related declarative 
will differ in one rule of grammar, with the key difference 
restricted to the rule patterns and one line of the rules' 
actions . The yes/no question rule explicitly states only 
t hat the NP in the second buffer cell should be attached as 
the subject of the clause. Because the buffer will then 
c ompact, auxiliary parsing rules that expect the 
subconstituents of the verb c luster to be contiguous will 
then apply without need for modification. 

Another important source of power Is the use of 
traces, espec iall y in conjunction with the use of the buffer. 
Especia lly important is the fact that a trace can be dropped 
into the buffer, thereby indicating Its underlying position in a 
factorization of the terminal string without specifying its 
position in the underlying tree. From this follows a simple 
formu lation of passive which accounts for the phenomenon 
of "ra ising". The essence of the passive rule - create a 
trace, bind it to the subject of the current S, drop it Into the 
buffer is noteworthy in its s implicity. Again, the 
avai lab ili ty of the buffer yields a very simple solution to a 
seemingly complex lin guistic phenomenon. 
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Ab s tr act 

Interactive Information Systems (II Ss) 
such as credit-card verifi ca tion and 
airline reservation can be viewed as 
knowledge-based sys t ems that us e th e ir 
knowledge fo r question-answering and 
reasoning. Th is paper de scrib es TAXIS, a 
languag e for the design of such systems, 
that is b ased on semantic networks and 
enables the designer of an IIS to t ightly 
integrate dat a a nd procedures. 

1. Introduction 

We a r e interested in th e des i gn of 
interactive information systems (II Ss ) 
which are ch aracte r ized by the ir require
ment fo r handling large volume of transac
t io ns that are s hort , very predictable and 
updat e i ntensive. Common exampl es of s uc h 
systems include credit -card veri fica tion , 
airline and hot e l reservation, point - of
sale inventory control and electronic funds 
transfer. A main feature of s uch systems 
i s their use of a database (usually i n 
secondary memory) for mai nta i ning and 
accessing i n formatio n. 

Our approach to ISS design is to inte
grate useful con cept s from Data base Manage
ment and Progr amming Languages usi ng AI 
t echnique s re l ated to the problems of 
knowledge repres e ntation and the de sign, 
o f knowledge-based sys tems. Specifically, 
from Database Mana gement, we have selected 
the relational mode l of data. From 
Pro gramming Languages, we have adopted th e 
idea of a bstrac t data types. Most 
importantly, fro m AI, we hav e used th e 
techniques and constructs of semantic net
works and in particular, the proce dur a l 
semantic network model developed in 
[Leves que 77 ]. The product of our work is 

* Aiken Computation Lab., Harvar d University. 

a language for II S design that is simpl e 
in struct ure and (we believe) will be 
efficient when implemented. 

It is true that semanti c network s 
have been used before i n mod el ling data
bases [My lopoulo s et al . 76 ] , [Rouss opoulos 
76 ] , [Won g & Mylopoulos 77 ] . Wh a t ha s be e n 
l acking is a n integration of pr ocedural 
aspects of appl ica tion programming with 
data structur ing aspec t s of da ta mod e lling. 
Pe rform ing this integration i s a major 
theme of our work. 

Designing a n II S primarily involves 
creati ng a mod e l for an enterprise. A 
program in thlslanguage consists o f a 
defi nit ion of the database (i. e . th e 
information) that th e sys t em will ma i ntai n 
for the enterprise over long periods of 
time and a definition of tran sac tions (i.e., 
pro ce dures ) that can b e invoked to alter 
the information in the database. 

Our l ang uage is called TAXI S (pro
nounc e d tak'-siss), a pro gr ammin g language 
for designing interactive information 
sys t ems.t In the ne x t sec tion, we sketch 
the mai n features of TAXIS; th e reader is 
r eferred to [My lopoulo s et al. 78a ] for a 
full description. In sec tions 3 a nd 4, we 
explore the relationships betwe e n semantic 
networks and the design of II Ss. 

2. A Language for II S Design 

2 .1 Classes, Tok e ns and Properties 

A class is a co ll ec tion of obj ec t s 
s hari ng common properti es. Th e instances 
of a class are its tokens. Collectively, 
c l asses and tokens are ca ll ed objects. 
One way to describe objects i s by their 
properties. A property is a name d 
relation fro m a s ubj ec t to a valu e a nd is 
use d to relate classes or tok~ The 
name of the property is its attribute. 
For illustrative purposes, we will use a 

t "TAXIS " (Tai;; l a) is a Greek noun that means order, as in "Law and order", or class a s in 
" social class" or "university class". The word "taxonomy" is a derivative o f "taxis". 
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graphical notation to specify properties: 

subject attribute), value 

For example, a class s uch as PERSON can 
have properties such as name, address, age 
and phone 11, 

name PERSON-NAME 

(=- address ADDRESS-VALUE 
PERSON AGE-VALUE age 

phone # -- PHONE-VALUE 

Note that the values of the properties 
name, address, ag e and phone# are them
selves classes. A token (instance) of 
PERSON now must have the four properties 
defined for PERSON. 

john-smith 

name---< 

address --1 

age ---< 

I SMIT!-!, JOHN I 

'13, PAUL ST.' 

14 

phone# --1 1234567 

Note that the values of john-smith's pro
perties are (and must be) tokens of the 
value classes of PERSON. 

This example illustrates a very 
important difference between properties of 
a class and the corresponding properties 
of its tokens. In the former, the proper
ties provide information about the 
structure of its instances, while the 
latter specify facts about a particular 
instance. We call the properties of classes 
definitional and those of tokens factual; 
notationally, definitional properties will 
have arrow links while factual ones will 
have flat arrow links. 

TAXIS has seven "types" of classes, 
each of which can only have certain "types" 
of properties. Below, we describe three of 
these class types in detail: Relation, 
Transaction and Exception. 

2.2 Relation 

A Relation class resembles a database 
relation (a la Codd) and has tuples as 
tokens. It can have three types of proper 
ties: key, r-attributes and operations. 
For example, we might choose to model 
students as a Relation class, called 
STUDENT. Suppose STUDENT has r-attributes 
student#, student-name, department and 
degree-program. The key property of a 
Relation class is a subset of r-attributes 
that uniquely identifies all tokens in the 
class, for example, student# in STUDENT. 
Operation properties are transactions that 
can be applied to tokens of the class. 
Every Relation class has available thre e 
sets of relational operators to manipulate 
tuples, sequences of tuples and entire 
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relations; these operators are predefined 
as operation properties of every Relation 
c lass. Additional operation properties 
can be defined by users (an example appears 
later). For Relation class STUDENT, then, 
we have 

STUDENT E 
student#~ STUDENT-NUMBER 

s tudent - name - NAME-VALUE 
department ~ DEPT-VALUE 

degree-program•DEGREE-VALUE 

The classes STUDENT-NUMBER, NAME-VA LUE, 
DEPT-VALUE and DEGREE-VAL UE a re all of 
type Domain . A Domain class is a collec
tion of atomic tokens with some associated 
operations. For example, INTEGER is a 
Domain class, whose tokens are all the 
integers and whose operations are the 
usual arithmetic operations. The under
lined r -a ttribute, student# i s selected 
as the key property of STUDENT . 

Th e syntacti c program representation 
of STUDENT and its properties are: 

relation STUDENT with 

end 

key: student#: STUDENT-NUMBER 
r-attributes 

student#: STUDENT-NUMBER; 
student-name: NAME-VALUE; 
department: DEPT-VALUE; 
degree -program: DEGREE-VALUE; 

For conciseness, we will not present the 
syntax for classes and properties, but 
will use the graph notation throughout. 

A particular token of STUDENT is an 
instance of the Relation class with 
factual properties corresponding to the 
definitional properties. 

F-
student # ---< 43210 

student-name__, 'SMITH,JOHN' 
john-smith department ------J 'CSC' 

degree-p rogram---l 'Ph.D' 

As described so far, properties can 
only be binary relationship. TAXIS 
actually permits properties to have more 
than one subject. Such properties are 
called complex. For example, suppose 
that in addition to STUDENT, we define a 
Relation class called COURSE. To specify 
the property "students can be enrolled in 
courses through the transaction ENROL
STUDENT", we may associate it with the 
class STUDENT and/or with the class COURSE. 
That is, ENROL-STUDENT is no less a 
property of STUDENT than of COURSE. We 
use the term complex property to denote a 
property with multiple subjects (in this 
case, 2). 



STUDENT ---
enro l_-=:::r:::,> ENROL-STUDENT 

COURSE - - -

The property enrol is of type "opera
tion". Operation properties associate 
operations with the data in the database 
very much in the style of abstract data 
types. However, the mechanism of complex 
properties does not require the objects to 
be partitioned (often artificially) into 
independent abstract types, a notable dis
advantage of languages such as CLU [Liskov 
and Zilles 74 ] and ALPHARD [Wulf et al. 76]. 

2.3 Transaction 

Transaction classes hre essentially 
procedures. The tokens of a transaction 
class ar e invocations of the transaction, 
like procedure activations. 

There are three main types of proper
ties that make up the body of a trans act ion: 
prerequisite, action and result. In 
addition, a transaction has as properties 
the usual components of a procedure such as 
parameters, local variables and 
returned values. Prerequisites, action and 
result properties take as values Expression 
classes. Standard expression constructs 
much like ELl [Wegbreit 74] are provided; 
among them are repeat - loop, if - then-el se, 
exit constructs and boolean expressions. 
A transaction is executed as follows: 
first, all prerequisites are checked; if 
all are satisfied, then the actions are 
executed; finally, all result s are tested 
and if they are satisfied, then the transac
tion returns. For example, the ENROL
STUDENT transaction above might have a pre
requisite check-required-courses to check 
if the student has taken all the required 
courses of the courses/he wants to take . 
The action is to incorporate the enrollment 
into the database, and the result (say) 
always returns true (no check). 

check-required- CONFIRM -
courses PREREQ 

ENROL-

~ 
insert - ADD -S TUDENT STUDENT student 

true - result TRUE 

CONFIRM - PREREQ, ADD-STUDENT and TRUE are 
Expression classes which specify the codes 
of the prerequi site, action and result 
properties of ENROL-STUDENT. 

2. 4 Exceptions 

An Exception class in an abnormal 
condition that can be detected during the 
execution of a transaction. The only type 
of properties an Exception class can have 
is status properties which describe the 
state of the sys tem when the exception is 
raised. For example, an Exception class 
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called REQUIRED - COURSE-NOT-TAKEN can he 
defined for the situation where a student 
did not take all the required prerequisite 
courses of a course; the status properties 
of this class are (say) the student, the 
courses/he wants to take and the course 
s/he did not take but was required to take. 
A token of an exception class is created 
when a prerequisite or a result of a 
transaction returns an object other than 
true . For example, if the prerequisite 
check-required-courses of transaction 
ENROL-STUDENT has failed, then an exception 
token of REQUIRED-COURSE -NOT-TAKEN is 
raised. 

ENROL-STUDENT-- check-required-course

CONFIRM-PREREQ~-exc-

REQUIRED-COURSE-NOT-TAKEN 

The responsibility of handling the excep
tion raised belongs to the invoker of the 
transaction that discovers the exception. 
In the example, exception REQUIRED-COURSE
NOT-TAKEN is handled by the caller of ENROL
STUDENT (another transaction or a 
secretary). Exce12tion handlers are tran
sactions that decide what to do with the 
exception (ABORT is the default). 

2.5 The ISA Hierarchy 

The main facility for organizing 
classes is the ISA hierarchy. ISA is a 
binary relation that captures similarities 
among classes. The s tatement, X ISA Y 
(sometimes written x $ y) means every 
instances of class Xis also an instance 
of class Y. For example, suppose we 
define a class GRAD-STUDENT $ STUDENT. 
The important characteristic of ISA is its 
rules for inheriting properties: 
GRAD-STUDENT $ STUDENT implies GRAD-STUDENT 
has the same five properties as STUDENT. 
If desired, we can re-define some of the 
properties of STUDENT for GRAD-STUDENT. 
For example, since graduate students only 
receive graduate degrees, we might re
define the degree -program of GRAD-STUDENT 
to be GRAD-DEGREE-VALUE. This kind of re
definition i s restricted by the rule that 
the new property value must be ISA related 
to the original value. In our example, 
it must be that GRAD-DEGREE-VALUE $ DEGREE
VALUE. 

Additional properties can be defined 
for GRAD -STUDENT, that are not defined at 
all for STUDENT. For example, GRAD
STUDENT can have an additional property 
advisor, whose value is PROFESSOR. 
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STUDENT 
~/-

t-
GRAD- r-

STUDENT \_ 

student ff ------ STUDENT-NUMBER 
student-name --- NAME-VALUE 

department 

degree-program 

degree-program 

DEPT-VALUE 

- DEGREE-VALUE 
1i' 

GRAD-DEGREE 
VALUE 

advisor - PROFESSOR 

In our notation, we us e 1 to represent the 
ISA relationship. If A ~ B, then we say 
that A is a specialization of Band Bi s a 
generali za tion of A. The restriction on 
redef1n1t1on of properties of specializa
tions is the same for all class types. 

The ISA hierarchy provides the 
structure for the organization of a TAXIS 
program. Suppose we want to org~nize 
ENROL transactions . We begin, say, with 
the general transaction , ENROL-STUDENT, 
which enrols a student in a course. We 
might then produce a specialization of 
ENROL-STUD~NT, ENROL - GRAD, which enrols a 
graduate student in a course. Since 
ENROL-GRAD~ ENROL-STUDENT, the prere
quisite, action and result properties of 
ENROL-STUDENT are inherited by ENROL-GRAD. 
As in the case of Relation classes, proper
ties of transactions can be redefined and/ 
or augmented in specializations. An 
example is that ENROL-GRAD can have an 
additional prer equi si te to check that the 
student is only taking graduate leve l or 
senior level courses. Also, assume that a 
graduate student must obtain permission 
from his/her supervisor: 

ENROL- check-required- -- CONFIRM-PREREQ STUDENT co ur ses 

1 obtain- PERM-EXP 

C 
permission -

ENROL - grad-or-senior GRAD course CHECK - COURSE 

The prerequisite check-required-courses 
is augmented in ENROL-GRAD by two mor e 
prerequisites. 

. The ISA relationship between Tran 
saction classes (and Expression classes) 
is defined by the language (not by the 
programmer, as in other class types); 
essentially, if T and T' are Transaction 
(Expressions) classes, then T ~ T' if T 
has "at least as many side-effects" as T' . 
The ISA relationship between Transaction 
(and Expression) classes are very interest
ing and we hav e only partial so lution to 
the problem of defining it. 

Exception classes can also be relat ed 
through ISA. For example, we might have 
REQUIRED-COURSE -NOT-TAKEN ~ ENROL-FAILURE. 
An exception handl er can handl e an instance 
of REQUIRED -COURSE -NOT - TAKEN or it can 
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"ge nerali ze " the exception and treat it as 
an instance of ENROL-FAILURE, in which 
case, a mor e 'general ' repair actio n is 
attempted. Hence, organizing exception 
classes into a hierarchy gives the 
designer the flexibility of handling an 
exception at different level of abstraction. 

2.6 Other Features of TAXIS 

Space limitations prevent us from 
describing th e use of all of the classes 
and their properties. Below we li s t a few 
mor e features. 

In addition to classes and tokens, we 
defi ne a third level of desc ription, 
called metaclasses whose instances are 
classes. So, for examp le, Re l ati on is a 
metaclas s whose instances are all the 
relation classes. Commands are defined 
for traversing the system at th e level of 
metacl asses. An IIS des ign can use these 
command s to explore the definitional 
propertie s of a c l ass and th e ISA hierarchy 
of classes. For exampl e, SUB [ CJ returns 
a sequence whose elements are all the 
immediate s pecia li zatio ns of class C. 
PROP[CJ returns a se quence whose elements 
are all the attributes of proper tie s with 
subject class C. TAXIS also allows the 
exis tence of variables which take property 
attributes as values and ca n therefore be 
use d along with PROP to exp lore a TAXIS 
model in run-time. 

Th e reader is referred to [Mylopoulos 
e t al. 78a) for a complete de sc ription of 
TAXI S and an exte nd e d example of an IIS. 
A condensed ver s ion of this document will 
appear in [Mylopoulos e t al. 78b). 

3. Semantic Networks and TAXIS 

TAXIS treats an IIS as a collection 
of classes interrelated through properties 
(binary relation s hips) and organized into 
an ISA hi erarchy. In this se nse, TAXIS is 
nothing but a "toned - down" language for 
the creation, modification and search of 
semantic networks. Because of its special
ized application area (design of IISs) 
TAXI S is in several ways different from a 
ge ner al-purpose semantic network formalisms . 
Below we li s t some of the most important 
differences between TAXIS and a particular 
semantic network formalism (hereafter 
referred to as SNF) described in [Levesque 
77), [Leve sq ue and Mylopoulo s 78), which 
served as the starti ng point for the design 
of TAXIS. 

(a ) In the SNF a semanti c network is 
allowed to have an arbitrary number of 
description levels. In other words, a 
semantic network may include an object A1 which is an instance of an object A2 
which, in turn, is an instance of an object 
A

3 
etc. In TAXIS we have restricted th e 



number of levels of description to three 
(tokens-classe s- metaclasses ) . This was 
done partly in order to enhance the effi
ciency of IISs designed in TAXIS and 
partly because it was felt that it is 
rarely useful to have more than three 
l eve ls. 

(h) SNF distinguishes two types of defini
tional properties: structural and 
assertional ones. Structural properties 
describe the internal structure of a class, 
e.g. the r-attributes of PERSON mentioned 
earlier would all be treat e d as s tructural 
properties. Because of the ir use, 
structural properti es do not have th e ir 
own semantic s (i.e. are not classes with 
their own proper tie s and posi tion on the 
ISA hierarchy). Asse rtional properties, on 
the other hand, define binary relationships 
between classe s but are themselves treate d 
as classes (e.g . PARENT-OF could be treated 
as a binary relationship with PERSON as 
domain and co- domain). In TAXIS all 
definitional properties are structural, and 
assertional properties can only be defined 
indirectly through relation classes. 

(c) New classes can be created dynamically 
in SNF. This is not allowed in TAXIS where 
the collection of classes, metaclasses, 
their properties and their ISA hierarchy 
are all fixed at run - time. This means that 
users of the IIS cannot modi fy its basic 
structure. If the designer of the IIS 
wants to modify it, s/he can do so only by 
augmenting the definitions of new classe s 
to those that already exist and then 
recompiling the entire svstem. Of cour se, 
this restriction to TAXIS wa s introduced 
with run-time efficiency and conceptual 
simplicity in mind. 

(d) SNF trea t s expression classes like all 
other classes by defi ning an internal 
structure for them. In TAXIS every 
expression class is treate d as atomic and 
its semantics are determined by the 
expression associated with that class. 
This restriction simplifies the conceptual 
framework of TAXIS as we ll as its 
implementation. 

(e) In TAXIS, unlik e SNF, there exis t 
different types of classes (e.g. domain, 
relation, transaction, exception) and 
properties (e.g. key, r-attribute, 
operation). Th ese types were introduced 
primarily in order to aid the designer of 
an IIS describ e hi s system in TAXIS. 
Thus, the designer can take it for granted 
thats/he will use domain, relation, tran
saction and exce ption classes which have 
particular features that make them suitable 
for representing different aspects of an 
IIS. If SNF wa s use d instead of TAXIS, th e 
concepts of domain, relation, transaction 
and exception class would probably have to 
be defined befo r e proceeding to th e details 
of the design. SNF is a "genera l purpose" 
representation language whereas TAXIS is a 
"sp ec ial purpo se " one. 
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(f) A complex prop erty a llows one to 
relate mo re th an one subject to a commo n 
property. This adds expressive power to 
other semantic networks where only binary 
relations are allowed. Mor e importantly, 
ISA hierarchies of a compl ex property's 
subject classes can be used to induce an 
ISA hi e rarchy of the property's value class. 
In a STUDENT-ENROL-COURSE model, we have an 
operation property " enrol" with two 
subjects, it s value being a trans action 
ENROL - STUDENT. 

STUDENT ~ -~--
enro.l > ENROL-S TUDENT 

COURSE ---

One of th e prerequisit es of ENROL-STUDENT 
is to check tha t th e s tudent has taken a ll 
the required pr e requisite courses s/he 
wants to take. Suppo se we now specia li ze 
STUDENT and COURSE by adding subclasses 
UNDERGRAD -STUDENT and UNDERGRAD-COURSE. 
By th e inher it anc e rule, the property 
enrol s hould also be a property of 
UNDERGRAD-STUDENT an d UNDERGRAD-COURSE. 
Now suppose tha t an undergraduate student 
cannot take mor e than S undergraduate 
courses. In TAXIS, such special cases can 
be mode ll e d by adding an additional pre
requisite to the property value (a tran
saction) associated to the particular s ub 
classes in the ISA hierarchies of the 
subjects. In our example, the ENROL
STUDENT transaction associated with 
UNDERGRAD-STUDE NT and UNDERGRAD-COURSE is 
supplemented by an additional pre requisite 
("a student cannot tak e mor e than S 
courses"). That is, a new transaction 
(call it ENROL-UNDERGRAD-IN- UNDERGRAD
COURSE) is created which is the same as 
ENROL-STUDENT but with an additional pre
requisite. 

STUDENT 

UNDERGRAD 
STUDENT 

ENROL-STUDENT 

nrolf> ENROL- UNDERGRAD -
/ IN-UNDERGRAD-

/ COURSE 
UNDERGRAD-

COURSE 

In general, given a comple x property among 
N subject classes associated with a pro
perty value class V, an ISA hierarchy of 
Vis induced whose appearance reflects the 
cross product of the ISA hierarchi es of 
the N subject classes. This induced 
hierarchy of V can be constructed quite 
easily, becaus e at any one time, one need 
only look at a certain combination of the 
subclasses of the subjects and specialize 
the inherited V class by adding and/or 
redefining the associated properties. Using 
the se conc epts, TAXIS provides structuri ng 
mechanisms that control the explosion of 
de taile d specification of an application, 
because, a t any one time, a special case 
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always has a unique proper spot on the 
induced ISA hierarchy. 

(g) TAXIS offers exception - handling faci 
lities based on control structures 
described in [Wasserman 77] which have been 
integrated into the framework of classes, 
properties and the ISA relationship. 

The concept of exception organization 
and handling can make the operations of 
semantic networks more robust and provide 
a way of ensuring reliability of the 
knowledge base. Organizing exceptions in 
ISA hierarchies allows one to ,deal with 
errors in a flexible manner. For example, 
suppose we have the following ISA hierarchy 
of exceptions. 

REQUXRED-COURSE -NOT-TAKEN s 
ENROL - FAILURE s INTEGRITY-VIOLATION 

The amount of exception handling in TAXIS 
can vary from none at all to every possible 
kind of exception. In the former case, 
every exception is generalized to an 
instance of INTEGRITY-VIOLATION; the system 
default (e.g. ABORT) is used uniformly. 
In the latter case, a handler is associated 
with every exception class and handling 
of these exceptions can presumably be very 
different from one to another. To the 
designer of IISs, this organized way of 
exception handling is obviously useful, 
since in many large applications, as much 
as 30% or more of the actual code is 
dedicated to their detection and handling. 

(h) SNF factors programs into a single 
prerequisite, a single action and a single 
result. TAXIS extends this idea by treat
ing prerequisite, action and result as 
property typ_es and therefore allowing for 
programs ~several prerequisite, action 
and result properties . This capability 
helps the programmer factor out a tran 
saction into as many units ass/he sees 
fit, with each unit being a property of 
the transaction. Once defined, these 
units can be inherited and/or refined by 
classes lower down on the ISA hierarchy 
of transactions. 

4. Conc lusions 

A programming language offers its 
user a point of view in helping him/her 
formulate his/her ideas into a coherent 
program. TAXIS offers a view based on 
the idea that an IIS is a knowledge-based 
system, not just a program. This view is 
realized by the framework of classes, 
properties and the ISA relationship in 
terms of which all TAXIS constructs are 
described. We believe that the result is 
a programming language particularly helpful 
to its users in the design, debugging and 
maintenance phases of their projects. 

Because TAXIS is designed with 
reliable IISs in mind, we are forced to be 
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quite careful and relatively formal in 
defi ning it. We believe it is pos s ible 
to formalize the set of constructs in TAXIS 
to the point of proving "correctness" of a 
model (in the s pirit of [Hoar e 69)); we 
have started a project on formalization of 
TAXIS, see [Wong 7 8 J. In the future, we 
may be able to define the notions of 
"correctness" of semantic networks quite 
rigorously. 

TAXIS is defined as an applications 
programming language, h ence it s compila
bility (without run-time interpretation of 
a semantic network) is an important goal. 
A similar goal may be applied to other 
semantic network formalisms. These seman
tic network 'compilers ' should be much 
more efficient than the intrinsically slow 
interpretive way of using semantic networks 
- the traditional approach. While this 
compilability property has the advantage of 
efficient execution, it also has the draw
back of limiting the ability to create 
new classes 'on the fly'. This compi la 
bili ty requirement ha s forced us to 
consider only those applications areas 
wher e ther e is no need to create new 
classes in run-time. II S de sign is such 
an application area. TAXIS is aimed at 
one particular application area (here we 
don't mean a particular 'microworld' such 
as Blocksworld, but application types 
such as IISs) . Hence this allows us to 
pick useful classes and constructs to model 
s uch an area. The use of a semantic net
work formalism for the s pecifica tion of 
particular kinds of knowledge bases has 
enabled us to refine such formalisms by 
introducing particular types of classes 
which can only have particular types of 
properties. This specialization process 
allows us to design a sma ll language (i .e., 
with a small set of constructs), at the 
expense of expressibility (i.e., lack of 
generality). However, this appears to be 
an important step in using representations 
of knowledge in particular application 
areas. We feel that there is a lot to be 
learned from such applications. They 
provide chall enges to a representation 
formalism that l ead to refinements and 
enrichments of the formalism it se lf. As 
we have s hown, these enrichments often are 
as valuable to the general knowledge 
representation research community as they 
are to the application area that spawns 
them. 
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1.0 1\BSTRACT 

An investigation of s0me of the 
issues involved in the organization of 
knowl edge in semantic networks is 
presented. The investigation is ln terms 
of a procedural semantic net work formalism 
developed by H. Levesque [Levesque 77a] 
although the ideas put forward have 
application in most other semantic network 
formalisms. The main ideas include the 
generalization of the ISA hierarchy, 
inheritance in this hierarchy, the 
treatment of programs as examinable 
objects that can participate in an ISA 
hierarchy, and the retention of 
consistency in the definition of classes. 

2.0 TNTR0DUCTION 

Representation of knowledge is a 
major problem in many areas of Artificial 
Intelligence. Based upon research by the 
author in [Schneider 78], this paper 
investigates certain problems of a 
particular representation of knowledge, 
the procedural semantic network (PSN) 
formalism developed by H. Levesque 
[Levesque 77a] [Levesque and Mylopoulos 
781. The problems generally involve 
inadequacies of the tools for organizing 
knowledge (ISA hierarchies, structures, 
etc.) in the PSN formalism. They include 
the inability of ISA hierarchies to form 
acyclic graphs instead of just trees, the 
problem of inheritance in such extended 
hierarchies, the inability to ensure that 
classes and relations are consistent, the 
inability to assign an object to a class 
depending upon its attributes, and the 
inability to inherit fragments of programs 
along the ISA hierarchy. 

These problems are at least partially 
overcome through modifications and 
extensions to the PSN formalism which 
together produce a new formalism called 
the extended PSN (EPSN) formalism. These 
modifications and extensions are, in 
general, designed to increase the power of 
the EPSN formalism to organize knowledge 
into hierarchies, classes, and structures. 

81 

They further retain the desirab l e 
properties of the PSN formalism including 
consistency of the formalism, flexibility, 
extensibility, self-examinability, 
modifiability, and modularity. 

Although the notion s in the EP3N 
formalis m are based specifically on th e 
PSN formalism, most of th e m are also 
relevant to any semantic network formalism 
and, in fact, to representation languag es 
such as KRL [Winograd a nd aobrow 76 1 a nd 
FRL [Roberts and Goldstein 77]. 

3.0 THE PSN FORMALISM 

The PSN formalism is an approac h to 
the representation of knowledge that uses 
a procedural framework to define the 
semantics of semantic network based 
systems. That is, programs define actions 
in the formalism and represent aspects of 
the domain being mod el led. What follows 
is a brief discussion of the PSN 
formalism. More detail can be found in 
[Levesque 77a) or [Levesque and Mylopoulos 
78]. 

All entities in the PSN formalism are 
called objects. Th ere are definite 
ob~ects, akin to constants; indefinite 
obJects, akin to variables; and 
assertions, used in relations. There are 
four important subsets of definite 
objects, namely classes, relations, 
programs, and contexts. 

A class is a collection of definite 
objects sharing common properties. The 
objects in the class are the class's 
instances and may themselves be classes. 
The semantics of a class are defined by 
four programs attached to the class. The 
class's instantiator program makes an 
object an instance of the class. Its 
terminator removes an object from the 
class. Its generator generates all the 
instances of the class. Finally, the 
class's recognizer checks whether an 
object is an instance of the class. 
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A relation is a mapping from one 
class , its domain, to a nother, its range. 
Re lations have assertio ns which form t he 
extension of t he relation. There are four 
programs attac hed to relations, called the 
asserter, eraser, accessor, and tester, 
which perform roles a nal ogou s to the four 
progr ams attached to c l asses. 

A program is a specia l kind of class 
who se instances (ca ll ed processes) are 
progr am activations a nd can be exec uted in 
the formalism. These programs and 
processes are used to define th e semantics 
of classes and relations. A context is a 
s pecial type of relation which is used to 
define the visibility of objects and to 
associate indefinite objects with their 
v a lues. 

A class may define structural 
attributes for its instances (e.g. 
students have an age ) a nd then instances 
of this c las s have a val ue fer this 
structural attribute (e.g-.~~John is 25 
years old). Structural attrib utes and 
t heir values form the major part of the 
definition of objects. A class may also 
define asserti onal attributes for its 
instances (e.g. students take courses ) 
and then instances of this class may have 
values for this assertional attrib ute 
(e.g. John takes CSC374F a nd CSC334S). 
Assertional attribute values are 
assertions between the object and other 
obj ects. They do not form part of the 
definition of obj ects but are used for 
incidental properties. 

In the PSN for malism every object is 
an instance of some class or relation. 
Those classes whose instances are class0s 
or r~l~tions are called metaclasses. 
Metaclasses are very i mportant beca use 
they define the attributes of t heir 
instances (name ly the classes a nd 
relations) which, in t urn, define the 
attributes of all objects. The basic 
me taclasses are "CLASS", "RELATION", 
"PROGRAM", and "CONTEXT" whose instances 
are the classes, relations, programs, and 
contexts of the formalism respectively. 
The attributes defined in metaclasses are 
given values in classes or relations, thus 
allowing classes to both have attribute 
values (e.g. average age of students ) and 
define attributes for their instances 
(e.g . a st ud ent's age ) . 

Classes and relations participate in 
an ISA hierarchy which for ms a tree. An 
instanc e (assertion ) of a class ( relation ) 
is also an instance (assertion ) of that 
class's (relation's) ISA ancestors. 
Attribute definitions of both kinds are 
inherited by ISA descendents because of 
the subset property of the ISA hierarchy 
mentioned above. These definitions may be 
modified in ways that restrict the 
possibilities allowed for instances of the 
subclass. 
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The structural attribu t e values of a 
class he lp d e fin e th e class. Thu s it 
makes sense for its s ubclasses to inh e rit 
these values. However, to allow fo r 
flexibility in th e PSN formalis m th ese 
inherited values may be OJerridd e n by th e 
subclass. On th e oth e r hand asser tional 
attribute values are not part of th e 
class's or relation ' s definition a nd thu s 
th e re is no reason to inherit th e m along 
the ISA hi erarchy. 

Thus the ISA hierarchy serves as an 
abstraction mechanism, where ISA c hildr e n 
are specializations of th e ir ISA pa r e nts . 
Abstraction is also provid ed by th e 
structural attributes wh e re the details o( 
objects are hidd en in their structural 
attribute values. 

Programs form a large part of th e PSN 
formalis m since they are used to define 
the sema nti cs of c lasses and re l at ion s. 
Programs are classes a nd thus th e y can 
define structural attributes for th e ir 
instances (processes ) . These attribute s 
are used as progr am variables by th e 
processes. There are four structural 
attributes d e fined in "PROGRAM" which a r e 
used to defin e programs. Th ese a ll tak e 
values which are program forms a nd are 
defined in the formalis m. First, th e re is 
the prerequisite which is a logical 
expression which is exec uted wh e n a 
process of the program is created a nd mu st 
evaluate to "true" or the process will not 
be executed and th e call which created it 
will fail. Second, there is the body 
which co nstitutes th e main actions or 
calculations executed by processes of the 
procedure. Third, there is the effect 
which contains actio ns to be executed if 
the execution of the body does not fail. 
Fourth, there is the complaint which 
contains actions or remedies to be taken 
if the body fails. 

Since programs are classes they 
participate in the ISA hierarchy. This 
means that programs inherit the four 
structural attributes defined in "PROGRAM" 
from their ISA parents. This aids in 
constructing new programs especially for 
use as programs attached to a class or 
relation. Often the programs attached to 
a subclass differ only in one part from 
those programs attached to its ISA parent 
a nd making them subprograms of the 
parent's programs allows these changes to 
be easily made. 

Programs are divided into three basic 
types. These are procedures, whose bodies 
perform actions such as creating or 
destroying objects; functions, whose 
bodies return objects or sequences of 
objects as value; and predicates, whose 
bodies return "true", "false", or 
"unknown" as value. These three types are 
set up by having three subclasses of 
"PROGRAM", namely "PROCEDURE", "FUNCTION", 
and "PREDICATE" which contain the 



necessary modifications to the definitions 
in "PROGRAM". 

Now the four programs attached to 
classes and relations are just structural 
attributes defined in "CLASS" and 
"RELATION" respectively. Instantiators, 
terminators, asserters, and erasers are 
all procedures; generators and accessors 
are functions; and · recognizers and 
testers are predicates. This means that 
the semantics of classes and relations 
(except for a few basic programs) can be 
defined, accessed, and modified in the 
formalism. 

Contexts form another large portion 
of the PSN formalism. A context is a 
special type of relation which is used to 
associate indefinite objects with their 
values. As mentioned above, contexts are 
also used to create a context hierarchy 
(as in [Sussman and McDermott 72] or 
[Hendrix 75]) which controls the 
visibility of objects and actions. If an 
object is created or any other action is 
performed this is only visible or 
effective in the context in which it was 
performed and its descendents in the 
context hierarchy. 

A context can give values to those 
indefinite objects which are visible in 
the context which it interprets, called 
its structure. Furthermore, contexts have 
a default which is another context and 
objects which can be given values in the 
context inherit values from this default 
context. The structural attributes of a 
class use this mechanism in the following 
way: if "C" is a class then it will have 
an attached context, called its part 
context, where the objects which form its 
structural attribute definitions are 
created. If "C" is a subclass of another 
class, "B", then its part context will be 
a child of "B"'s part context in the 
context hierarchy so the objects defined 
in "B"'s part context are visible in "C"'s 
part context. 

Then an instance of "C", say "c", 
will have a local context whose structure 
is "C" 's partcontext. The structural 
attribute values for "c" are just the 
values in its local context. The default 
for "c"'s local context is "C"'s part 
context so "c" inherits defaults from "C". 
Further, if "c" was a class or relation 
and had a subclass or subrelation "d", 
then "d" would have a local context whose 
structure would be "C"'s structure and 
whose default would be "c"'s local context 
so that "d" would inherit "c"'s structural 
attribute values. This is how inheritance 
along the ISA hierarchy actually works in 
the formalism. 

In summary, the PSN formalism is an 
object centred formalism based upon 
semantic networks which uses procedural 
attachment to define the semantics of 
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classes or relations. Since each class or 
relation is ultimately completely 
responsible for its own semantics, this 
leads to an ACTOR [Hewitt 7 3] style 
representation tempered by an inheritance 
mechanism which makes it easier to 
construct new objects and share 
information. 

4.0 THE EPSN FORMALISM 

4.1 Hierarchies And Inheritance 

The EPSN formalism extends the PSN 
formalism in a number of piaces, 
particularly by allowing the ISA hierarchy 
to be a directed acyclic graph. Thus a 
class in the EPSN formalism can be an ISA 
child of two or more other, unrelated 
classes. 

The inheritance of structural 
attributes along the ISA hierarchy is a 
major part of the PSN formalism and the 
generalization of the ISA hierarchy 
produces several problems with respect to 
this inheritance. The definition of a 
structural attribute for a class is the 
definition of an indefinite object (which 
is akin to a variable) in a special 
context associated with the class. As 
shown in Figure 1 (where "sex" is a 
structural attribute definition (SAD) for 

a age+-~~~~C--~ ~~NUMBER 

name-+-~~~~a'-'--~~~STRING 

MALE 

G;J 
i 

John 

restrict >[sex=male] 

~'John Smith' 

. 1* Figure 

* In the figures INSTANCE-OF relationships 
are represented by single, unlabelled 
arrows; ISA relationships are represented 
by double, unlabelled arrows; and other 
relationships or links are represented by 
single, labelled arrows. Also rectangular 
boxes enclose structural attribute 
definitions of classes or objects defined 
in a structure and irregular boxes enclose 
the structural attributes of objects and 
objects used in valuors. 
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"PERSON") such objects have an identifier, 
(here "sex"); have an associated class 
(h ere "SEX") which defines the valuis~the 
attribute may have in instances of the 
class; may have a default (here "male") 
which is used in instances if no value is 
given; and may have one or more 
restrictions (as in the class "MALE" of 
Figure l) which further restrict the 
possible values in instances. It is 
possible for ISA children (for example 
"MALE") to modify the associated class or 
default and to add ne w restrictions. 

Now suppose a class is an ISA child 
of two other classes (as "CHILD-TAXPAYER" 
i n Figure 2 is an ISA child of both 
"DEPENDENT-TAXPAYER" and "CHILD"). This 
class should inherit SADs fr0m both of its 
ISA parents without favouring either. 
This works out fine for SADs present in 
only one of the parents (such as 
"net-income" which is present only in 
"DEPENDENT-TAXPAYER"). In these classes 
this SAD is inherited as is and may be 
modified as outlined above. 

TAXPAYER 
{wife, ... } 

age re-
str1.c [age>l 7] 

net-
income...,.._a--~DOL~AR

AMOUNT 

Figure 2 

DEPENDENT 

However, if the parent classes have 
SADs that have the same identifier but are 
not identical then problems arise. The 
child class must inherit a SAD which is 
some combination of the SADs in the 
parents. For SADs with differing 
restrictions this combination is easy 
since it is natural to just further 
restrict the possible values for the SAD 
of the ISA child by accumulating the 
restrictions. Thus the SAD "age" for 
"CHILD-TAXPAYER" has two restrictions; 
one restricting the age to be less than 21 
and one restricting it to be greater than 
17. As above, the ISA child may add new 
restrictions. 
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For SADs with differing associated 
classes much the same sort of solution is 
required. For example, the SAD 
"rel ationship" of "CHILD- TAXPAYER" should 
have the associated class "{son,daughter)" 
since this is the intersection of the 
associated classes ({son,d aughter) and 
{wife, husband, son ,daughter}) in its ISA 
parents. However, most classes are not 
sets (i.e. cannot be described by simply 
listing their extension) and in these 
cases some construct similar to 
intersection must be used. 

For this and other purposes the EPSN 
formalism defines the meet of a set of 
objects from an ISA hierarchy as that 
object which is an ISA descendent of all 
of the objects in the set and is an ISA 
ancestor of all other objects with this 
property. such classes are the greatest 
(in the partially ordered set defined by 
treating the ISA links as a cover 
relation) class less than the classes 
being combined and thus are th e ISA 
hierarchy equivalent of meets in a 
lattice. Since the meet is an ISA 
descendent of the classes being combined 
it inherits attributes from all of them. 
However, this does not mean that a meet 
automatically has as instances the 
intersection of the instances of the 
classes that form the meet. 

In the EPSN formalism meets are given 
names that consist of the names of the 
classes forming the meet concatenated 
together with '&'s separating them. Thus 
in Figure 3 "DEPENDENT&TAXPAYER" is the 
meet of "6EPENDENT" and "TAXPAYER" and 
"CHILD&TAXPAYER" is the meet of "CHILD" 
and "TAXPAYER". It is not necessary to 
set up these meet classes beforehand; 
they are created, if necessary, when 
referenced by their name or needed for the 
inheritance rules. This significantly 
reduces the work required to create large 
and deep ISA hierarchies. 

DEPEnENT~ TAXPIT"R 
CHILD DEPENDENT&TAXPAYER 

~ILD&TAXPAY~ 

Figure 3 

Thus the associated class of an ISA 
child's SAD is the meet of the associated 
classes of the SADs in its ISA parents. 
Of course, the· ISA child may modify the 
associated class to be an ISA descendent 
of the inherited associated class thus 



further restricting its possible values. 

The situation for defaults is a bit 
different. Suppose the defaults in the 
ISA parents are objects that do not 
participate in an ISA hierarchy (i.e. are 
neither classes nor relations). In this 
case there is no reasonable way of 
producing a compromise default if the 
defaults in the parents are not identical. 
It seems that the only solution is not to 
inherit any default at all. Thus, in 
Figure 2, there is no default for 
"relationship" in "CHILD-TAXPAYER" since 
the defaults in its ISA parents are "son" 
( in "DEPENDENT-TAXPAYER" ) and "daughter" 
(in "CHILD") which are n0n-identical and 
do not participate in an ISA hierarchy. 
If a default is desired then a default can 
be given in the ISA child (e.g. "son" 
could be used . as the default in 
"CHILD-TAXPAYER"). 

If the defaults in the ISA parents do 
themselves participate in the ISA 
hierarchy then there is a logical default 
to be inherited by the ISA child. This is 
the meet of the defaults in the parents. 
This makes sense since the. meet is 
analogous to the intersection of the 
defaults and follows the general idea of 
restricting the SADs in ISA children. If 
this is not what was desired then it can 
be changed to any other valid value. 

so far the discussion has centred on 
inheritance of SADs by subclasses of 
classes. Instances of classes can also 
inherit information; in particular, an 
instance of a class inherits the SADs of 
the class as structural attributes which 
can be given values (SAVs), If no value 
is given then the default of the SAD is 
used as a value and if there is no default 
then "unknown" is used, For example, 
"John• in Figure 1 has SAV 'John Smith' 
for his structural attribute "name", 
inherits the default "male" for his •sex", 
and has an "unknown" "age". It must be 
noted that before an object can have a SAV 
it must inherit the corresponding 
structural attribute by virtue of being an 
instance of a class that has a 
corresponding SAD. 

Now the instances of a class may 
themselves be classes or relations and 
participate in the ISA hierarchy. Since 
the SAVs of an object constitute the major 
portion of its definition they should be 
inherited along the ISA hierarchy, This 
inheritance can become very complicated 
when the ISA hierarchy becomes 
complicated. For example, consider Figure 
4 where "RELATION", that class in the EPSN 
formalism whose instances are relations is 
partially defined. The instances of 
"RELATION" have a "tester" structural 
attribute whose value is a predicate which 
determines if two objects are related by 
the relation . "RELATION" gives a standard 
default, "stdtester", for this structural 
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attribute. Also shown in Figure 4 is 
"SYMMETRIC - RELATION", an ISA child of 
"RELATION", whose instances are supposed 
to be symmetric relations. 
"SYMMETRIC-RELATION" accomplishes this by 
changing the default for "tester " to 
"symtester" which contains the testing 
appropriate for symmetric relations. 
"RELATION" also defines the structural 
attributes "domain" and "rang e " which are 
the domain and range of relations. 

RELATION¢=:::=:=:===========sYMMETRIC

-=---,PREDICATE RELATI0N 

t i t~tester 

range symtester r • CL\S 
HUSBAND=====~\============~}SPOUSE 

PERSON~~~~--1-

Figure 4 

This looks fairly straightforward; 
instances of "RELATION" will be relations 
and instances of "SYMMETRIC-RELATION" will 
be symmetric relations. However, consider 
the situation for the relations "SPOUSE" 
and "HUSBAND" as shown in Figure 4. 
"SPOUSE" is a symmetric relation and 
"HUSBAND• is a non-symmetric sub-relation 
of "SPOUSE". Since "HUSBAND" is a 
sub-relation of •sPOUSE" it should inherit 
"SPOUSE"'s •domain" and "range". However, 
"HUSBAND" is not a symmetric relation so 
it should not inherit "SPOUSE"'s "tester" 
but should instead inherit "stdtester" 
from "RELATION". The problem is to devise 
an inheritance scheme which will perform 
correctly in this and other complicated 
cases, 

The EPSN formalism solves this 
problem by using two SAVs. The 
inheritable SAV is derived in the same 
manner as the defaults of SADs. It is 
specified by the "value" links in the 
figures, 1s inherited along the ISA 
hierarchy in exactly the same way as the 
defaults for SADs, and can be modified by 
"value" links in the ISA descendents in 
the same fashion. Thus "SPOUSE" has no 
inheritable SAV for "tester" and thus 
•HUSBAND" also has no inheritable SAV for 
"tester" whereas "SPOUSE" has the 
inheritable SAV "PERSON" for both "domain" 
and "range" and these are inherited by 
"HUSBAND" so that it has the correct 
domain and range. 
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The actual SAV is the SAV that is 
used in the object. If there is no 
inheritable SAV (as determined above) in 
an object for one of its structural 
attributes then the actual SAV in that 
object becomes the default from the class 
of which the object is an instance or 
becomes "unknown" if there is no such 
default. Thus "SPOUSE" has as actual SAV 
for "tester" the symmetric tester 
"symtester" from "SYMMETRIC-RELATION" and 
thus "HUSBAND" has the regular tester 
"stdtester" from "RELATION", as required. 

If there is an inheritable SAV for 
the structural attribute and this SAV 
participates in the ISA hierarchy then the 
actual SAV is the meet of the inheritable 
SAV and the default for the structural 
attribute. This rule allows modifications 
to be made to "symtester" in "SPOUSE" by 
putting the changes into its lnheritable 
SAV and then in "HUSBAND" having these 
changes inherited and applied to 
"stdtester". This should be possible 
since "stdtester" and "symtester" should 
be similar programs. For details on how 
this could work out see the section on 
programs. 

Finally, if there is an inheritable 
SAV which does not participate in an ISA 
hierarchy then this becomes the actual SAV 
no matter what the default is. This is 
the case for objects such as numbers or 
other simple objects. 

The idea behind these complicated 
inheritance rules is not only to solve the 
problem given above but also to make it 
possible to construct very complicated ISA 
hierarchies with a significant amount of 
interaction. An EPSN implementation could 
presumably take care of such complex 
processing automatically, leaving the user 
with a relatively simple and natural task. 

4.2 Structures And Valuors 

The EPSN formalism redefines the 
contexts of the PSN formalism as two 
separate concepts. In the EPSN formalism 
structures are used to support the 
visibility of ot _. ?cts and valuors are used 
to give values to indefinite obJects. For 
a valuor to be able to give a value to a n 
ind e finite object this object must be 
defined in the structure which is linked 
to the valuor via an "interpret" link. 

For example, "Structure-!" in Figure 
5 defines two objects, "age" and "John". 
Because "Valuor-1" is linked to 
"Structure-!" via an "interpret" link it 
can give a value to the indefinite object 
"age" (and does so, giving it the value 
"29") • 
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!tructure-1-.~~~~~~~- Structure-2 

John 
PERSON SEX: 

I 
male 

Figure 5 

Both valuors and structures 
participate in an ISA hierarchy . These 
hierarchies replace the context hierarchy 
of the PSN formalism, and inheritance of 
definitions of objects and values for 
objects along them is performed in e xactly 
the same manner as for SADs and SAVs, 
respectively. Thus "Valuor-2" in Figure 
5, since it interprets a structur e which 
is an ISA descendent of "Structure- !", can 
give a value to "age". Further, since it 
as an ISA descendent of "Valuor-1", it 
inherits the value "29" from "Valuor-1". 

In fact, structures and valuors are 
used to formally implement the inheritance 
of SADs and SAVs. (So it is actually the 
case that inheritance of SADs and SAVs is 
defined in terms of inheritance in 
structures and valuors and not vice 
versa.) The main reason for separating the 
two uses of contexts is to support this 
inheritance in a cleaner manner. Even 
though contexts are split into two parts 
when dealing with classes, if a full PSN 
context is required it can be created 
since a context is defined to be a 
structure plus a valuor that interprets 
the structure. 

4.3 Programs 

There are also important extensions 
and modifications in the EPSN formalism to 
the programs of the PSN formalism. 
Programs are basic to both formalisms 
since they are used to define the 
semantics of classes and relations. One 
of the modifications to programs in the 
EPSN formalism comes as a result of a 
restriction on indefinite objects. In the 
EPSN formalism the value of an indefinite 
object may not be -changed in a valuor once 
it has been given some~value in that 
valuor. Since indefinite objects are used 
as program variables and processes each 
have a valuor to hold their values this 
means that program variables can only be 



given one value which may not be later 
changed. This may seem to be a serious 
restriction but all that it means is that 
EPSN programs have to be written in a 
style closely akin to functional or 
applicative programming [Tennant 76]. In 
this style binding variables to values is 
very closely associated with flow of 
control. A style similar to that 
necessitated in the EPSN formalism is 
advocated in [Levesque 77b]. 

However, the most significant 
modification to programs is the change in 
the method of constructing forms (the 
constructions which make up the four parts 
which comprise a program). In the PSN 
formalism these four forms are each a 
single block of code which can be only 
inherited by subprograms without 
modification. Thus, although the division 
of programs into four p~rts allows 
inheritance of each part separately, to 
modify one of these parts usually requires 
that the entire part be rewritten. 

In the EPSN formalism a form is a 
context in which several blocks of code 
are defined. This results in programs 
similar to those in [Mylopoulos et al 78]. 
For example, "FORM-7" in Figure 6 contains 
three blocks of code identified by 
"first", "second", and "third". Note that 
"second" is special in that it is an , 
indefinite object. To execute this form 
the three blocks of code are executed in 
the order determined by the "subsequently" 
links (which need not form a total order). 

~--- - I 

FORM-7 

first 
[John:= new PERSON) 

1subsequently STATEMENT 

second==-------+-'==~[John$age<-22) 

!subsequently 
third 

[CLASSES:John->CSC374) 

FO -8 
valu~ 

second-- - -----+--- ~,[John$age< - 25] 

third 

tsubsequently 
fourth 

CLASSES:John->CSC492) 

Figure 6 
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In the case of "FORM- 7", which is a 
statement (i.e. a form that performs 
actions), this is all that is required to 
specify how to execute the form. In the 
case of conjectures (forms that return 
truth values) the value of the form is the 
result of 'anding' together the values of 
the enclosed blocks of code. Again the 
order of execution, since it is possible 
for the blocks of code to have 
side-effects, is specified by 
"subsequently" links. In the case of 
expressions (forms that return objects or 
sequences of objects) the enclosed code 
blocks each contribute one object to the 
sequence, the order being determined by 
the "subsequently" links. 

This division allows more complex 
inheritance of program parts to take 
place. The inheritance is precisely that 
described above for inheriting objects 
defined in contexts and values for them 
along the ISA hierarchy. Thus "FORM-8" in 
Figure 6 has four parts. The parts with 
identifiers "first" and "second" are 
inherited without change from "FORM-7". 
The part with identifier "second" is also 
inherited from "FORM-7" but it is an 
indefinite object and has been given a new 
value in "FORM-8" (namely 
"[John$age< - 25]"). The part with 
identifier "fourth" is created in "FORM- 8" 
and not inherited. "FORM- 8" also has 
three "subsequently" links, two inherited 
from "FORM- 7" and one created in "FORM- 8"~ 
so that its parts will be executed in the 
order "first", "second", "third", and 
"fourth". 

This inheritance scheme allows for 
easy modification and addition to forms 
and thus allows easy construction of 
slight modifications of programs. These 
slightly modified programs are especially 
useful in constructing the programs that 
define the semantics of classes and 
relations. 

4.4 Cons istency 

One of the major problems in the PSN 
formalism is the possibility of creating a 
class or relation and designing the four 
associated programs that define its 
semantics in such a way that the class or 
relation is inconsistent. For example, it 
is possible to write instantiator and 
recognizer programs for a class in such a 
way that the recognizer will not recognize 
objects that were supposedly made 
instances of the class by the instantiator 
as instances of the class. 

The EPSN formalism partially 
alleviates this problem by including 
s everal metaclasses that define particular 
types of consistent classes. The two that 
are the most prominent are stored classes, 
classes that explicitly store data 
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allowing them to recognize as instances 
those objects which have been instantiated 
into the class or are instances of the 
class's ISA sons, and intensional classes, 
classes that have as instances those 
objects which belong to the class's ISA 
parent and also satisfy some boolean 
condition. A class that belongs in either 
of these types of classes can be 
constructed very easily and with no chance 
of creating inconsistencies. A stored 
class is just made an instance of the 
metaclass "STORED-CLASS", placed into the 
ISA hierarchy, and later given instances 
while an intensional class is made an 
instance of the me tac lass 
"INTENSIONAL-CLASS", placed into the ISA 
hierarchy, and given a boolean condition 
which specifies its instances. 

However, many classes do not fall 
into either of these categories and are 
therefore not guaranteed consistent in ihe 
EPSN formalism. Nonetheless, most of 
these are modifications of the above 
categories and thus can be easily 
constructed with little possibility of 
creating inconsistencies. 

Another possible cause of problems in 
the semantics of classes and relations 
occurs when an ISA descendent's associated 
programs do not correspond with those in 
the ISA ancestor. For example, if one 
piece of the instantiator has to be 
changed then, in the PSN formalism, a 
large chunk of the code may have to be 
rewritten and this may introduce an 
inconsistency. The problem is alleviated 
in the EPSN formalism (but certainly not 
eliminated) by allowing such changes in 
parts of programs to be easily and 
naturally specified, thus reducing the 
possibilities of errors and . resultant 
inconsistencies. 

5.0 CONCLUSION 

The EPSN formalism is an attempt to 
solve some of the problems in the PSN 
formalism, primarily to increase its 
powers in the organization of knowledge . 
To this extent it appears to be fairly 
successful. It contains solutions to 
several problems of the PSN formalism. 
The ideas present in these solutions can 
also be used to advantage in the 
organization of knowledge in other 
formalisms based upon semantic networks, 
especially those which attempt to include 
procedures in the formalism and use them. 

The main contribution of the EPSN 
formalism is its generalization of the ISA 
hierarchy of the PSN formalism and its 
specification of inheritance rules for 
structural attribute definitions and 
values in this generalized hierarchy. 
This makes it much easier to create large, 
complex hierarchies and to create 
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modification s of existing objects in t he 
hierarchy. The idea of creating meets in 
such hierarchies further aids in th e 
creation of complicated hierarchies by 
allowing the user to specify only th e 
basic classes in the hierarchy and hav e 
the dependent classes available when 
needed. 

Programs have been modified in the 
EPSN formalism so that a program is 
composed of four parts (as in th e PSN 
formalism) which are then each composed of 
several pieces that are executed in a 
specified order. These pieces are 
inherited by ISA children of the program 
and more pieces can be added and c e rtain 
pieces may be changed in the ISA child. 
This allows easier manipulation of 
programs and much easier organization of 
programs in hierarchies so that the 
definition of semantics via program s is 
easier for complex ISA hierarchies than 
was the case in the PSN formalism. 
Programs are defined within the formalism 
and thus the interpreter can be specified 
almost entirely within the formalism (as 
in LISP or the PSN formalism). 

However, there are some areas that 
should receive further research. The area 
of consistency in the definition of the 
semantics of classes and relations is not 
solved adequately. Although th e EPSN 
formalism does not allow exceptions in any 
of its inheritance rules, often a 
controlled violation of these rules is 
desired and an investigation of how to 
allow this is definitely desirable. Also, 
an actual implementation of the EPSN 
formalism, probably in LISP, would be a 
useful task and has already been started 
on a tentative basis. 

In spite of these unsolved problems, 
the EPSN formalism has made several 
advances especially in the organization of 
knowledge. And, because the formalism, 
like LISP, allows extensions and revisions 
to its basics, it can be easily extended 
or amended to include the solutions 
developed in subsequent work. 
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ABSTRACT 

This paper is concerned with how a first order 
data base might be structured in order to guarantee 
finite computations at query evaluation time. It 
turns out that this question is intimately connected 
with the following: In t he design of a ctata base, 
which knowledge should be represented intensionally, 
and which extensionally? This paper provides a 
criterion for extensional representations which, if 
fulfilled, assures finite computations during the 
evaluation of queries. 

The paper also explores ways of proving that 
all queries will yield finite computations. This 
leads to an appropriate notion of proving the cor
rectness of a data base. 

1. INTRODUCTION 

The concern of this paper is with deductive 
question -answering over first order data bases, and 
how such data bases might be structured in order to 
provide efficient evaluation of queries. There 
appear to be two distinct notions of "structuring " 
current in AI: 

1. Structuring as indexing. For example, a data 
base is so structured if one can readily access 
all relevant information about block33 (per
haps with respect to some context). Semantic 
nets typically provide for this kind of struc
turing. 

2. Structuring as the appropriate choice of re
lations with which to model some domain of 
interest. For example, if the relations 
chosen form a hierarchy of some sort, then 
this hierarchical structure can be exploited 
to reduce redundancy in the representation e.g. 
relations lower down in the hierarchy will typ 
ically inherit all properties of those above 
them. IS-A hierarchies are a class ic example 
of this kind of structuring. Similarly, for 
"primitivi sts" like Schank [Schank 1973] the 
choice of a particular set of primitives will 
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impose a certain structure on the data base. 

There is a third notion of structure which 
appears not to have been articulated within the AI 
community, and which this paper explores. This 
notion concerns the possibility of infinite search 
paths during deductive question-answering . For 
a variety of reasons, such infinite paths are un 
desirable : 

1. In those cases where all answers to a query 
are to be returned, the entire proof tree must 
be searched [Reiter 1977, 1978a] 

2. Even when only one answer suffices, the entire 
proof tree must be searched in those cases 
where a query has no answers. 

In this paper, we adopt as a data base structuring 
principle that no infinite search paths be allowed 
to arise. 

A different notion of structuring concerns the 
distinction between intensional and extensional 
representations of facts in a data base. Loosely 
speaking, an extensional fact is something quite 
specific , I ike "Blockl supports block2" while an 
intensional fact has some generality to it, like 
"All men are 1110rtal 11

, or "Every supplier of parts 
supplies all their subparts ". This distinction is 
by no means limited to first order representations. 
Under the so-ca 11 ed "procedura l representation of 
knowledge", procedures correspond to intensional 
facts. Once this distinction between intensional 
and extensional representations is made , a natural 
question arises when designing a data base for a 
given domain: Which information should be repre
sented intensionally, and which extensionally? As 
we shall see, there is an intimate relationship be-
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tween thi s structuring quest ion and the is s ue of 
structuring a data base so that infinite deductive 
paths cannot arise. Specifically, provided that 
certain sub-extensions of suitably designated re
lations are extensionally represented, all deductive 
paths will be finite. 

Finally, we shall see that there is an appro
priate notion of proving the correctness of a data 
base, where "correct" is taken to mean "a 11 deduc
tive paths will be finite". What this involves is 
proving that certain recursive intensional facts, 
which might conceivably lead to infinite deductive 
searches, actually yield finite search trees. 

2. FORMAL PRELIMINARIES 

We shall be dealing with a first order language 
having the usual logical symbols (quantifiers, prop
ositional connectives), predicate signs, constant 
signs, but no function signs. The formulae of in 
terest are called twffs (typed well formed formulae) 
which are just like ordinary first order formulae 
except that all variables are typed . For example, 
in an inventory domain, such a twff might be 

( x/MANUFACTURER) (y /PART) ( z/PART) MANUFACTURES ( x ,y) 
A SUBPART(z,y) J SUPPLIES(x,zJ (2. 1) 

i.e. Every manufacturer of a part supplies all its 
subparts. The restricted universa l quantifier 
(y/PART) may be read "For every y which is a part". 
The restrictions MANUFACTURER and PART are called 
~. and are distinguished monadic predicates . If 
Tis such a type, then (X/TJW is an abbreviation for 
(x)T(x) J W. We shal I also require the notion of a 
restricted existential quantifier (Ex/T) which may 
be read "there is an x in T11

• (Ex/T )W is an abbre
viation for (Ex)T(X) AW. We denote by ITI the set 
of all constants which satisfy the type T. Thus, 
IPARTI might be {gadgetl, widget3, bolt49, ... }. In 
general, a twff has the form (q 1x1/T 1) ... (qnxn/Tn)W 

forn~Owhere (qixi/TiJ is \xi/Ti) or (Exi/Ti)' W 
is any quantifier- free ordinary first order formula 
with free variables x1, ... ,xn (containing no func
tion signs) and T1, ... ,Tn are types. Notice that 
twffs may not contain function signs. They may, and 
usually will, contain constant signs. 

A data base is any set of universally quanti
fied twffs . If DB is a data base , let EDB be the 
set of ground literals (literals with no variables) 
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of DB . EDB will be called the extensional data 
base . The intensional data base is defined to be 
IDB= DB - EDB. Intuitively, the EDB is a set of 
specific facts like "John Doe teaches Calculus 103", 
while the IDB is a set of general facts like "All 
widgets are manufactured by Foobar Inc." Notice 
that only universally quantified twffs are per
mitted in a data base. We preclude twffs involving 
existentially quantified variables since such vari 
ables lead to the introduction of function signs 
(Skolem functions) and it is not clear how to genet"
alize some of the results of this paper to take in 
to account arbitrary functional terms. Examples of 
data base twffs are (2.1) above, as well as: 

"All widgets are manufactured by Foobar Inc." 
( x/ WIDGl:T) MANUFA CT UR ES ( fooba r, x J 
"If block x supports blocky, then y does not sup-

port x." 
(xy/BLOCK)SUPPORTS(x,y) J ~s uPPORTS(y,xJ 
"Acme supplies part33 . " 
SUPPLIES(acme,part33) 
"Block A supports block B." 
SUPPORTS(A,BJ 

Of these, (2.1) and the first two twffs above are 
in the IDB. The last two are EDB twffs. 

A~ is any existentially quantified twff, 
for example 

"Who supplies widgets?" 
(Ex/SUPPLIER)(Ey/WIDGET)SUPPLIES(x,y) 
"Which block supports block A?" 
(Ex/BLOCKJSUPPORTS(x,A) 
"Who manufactures both part33 and blue widgets?" 
( Ex/MANUFACTURER) ( Ey/lH DGET) MANUFACTURES ( x ,part33) 

A MANUFACTURES(x,y) A BLUE(y) 

Although we treat only existential queries in this 
paper, it is possible, under suitable conditions, 
to "reduce" the evaluation of arbitrary queries 
(i .e . those involving both existential and univer
sa l quantifiers) to the evaluation of existential 
queries [Reiter 1977] so there is no loss in gen 
erality in assuming only existential queries. 

Although this paper is not concerned with 
techniques for query evaluation, there are a few 
observations which must be made: 

1. Typically, a query is answered by finding a 
proof of it using the data base as premises. 



The resulting instances of one or more of the 

existentially quantified variables of the query 

provide an answer to the query. 

2. In general, the data ba se will be so large that 

these proofs must all be top down, correspond

ing to some form of backward chaining or con

sequent mode of reasoning, beginning with the 

given query. (In theorem proving jargon, this 

corresponds to linear deduction with a clause 

of the query as top clause.) Now a serious 

problem with such top down reasoning is that 

certain intensions can lead to infinite deduc 

tion paths . For example, c. transitive rela

tion like subpart: 

(xyz/PART)SUBPART(x,y) A SUBPART(y ,z ) (2.2 ) 

:i SUBPART(x,z) 

will lead to such an infinite deduction path 

for any goal of the form SUBPART(a,b) whenever 

a i s not a subpart of b. 

Our goal in the next section is to characterize 

those data bases for which such infinite deductive 

searches might arise, with the ultimate objective of 

structuring a data base in such a way as to guaran 

tee finite deductive paths. 

3. RECURSIVE DATA BASES 

Notice that the intension (2.2), which can lead 

to an infinite deductive search, has the clausal form1 

r
1 

v L2 v c1, r2 v L3 v c2 , r3 v L4 v c3, ... , (3 .l) 

Ln v q v en 
for 1 i teral s Li ,L1 such that Li o = L1o for some 
typed unifier2 a, i =l, ... , n. Following [Lewis 1975 ], 

we call such a sequence of clauses a cycle. We shall 

say that the IDB is recursive iff it contains a 

cycle. 

To see why cycles can lead to infinite deduc 

tion trees, consider an attempted refutation of the 

literal L1. By an appropriate seq uence of resolu-

1 When twffs are converted to clausal form their 
quantifiers are removed. Si nce all information 
about variable types is contained in the quanti 
fiers, we assume that with each variable of a 
clause is associated its type . If x is a clausal 
variable , we shall denote its type by T(X). 

2 Since terms (vari ables and constants) have types 
associated with them, the ususa l uni fication al 
gorithm [Robinson 1965] must be modifi ed to en
force type consistency . For details see [Reiter 
1977]. 
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tion operations on the clauses of (3.1) we can de

duce a clause 

(C 1 v c2 v ••• v en v L1Jµ 

whereµ is a substitution with o as an instance of 

µ. Hence L1µ unifies with L1 and we might cycle 

through (3.lJ again with no assurance that this 

cycling cannot continue indefinitely. 

It i s intuitively clear that if a set of 

clauses is cycle - free, then no infinite deductions 

can arise . In [Lewis 1975 ] just s uch a result i s 

proved . Now in general we cannot expect the IDB to 

be cycle - free. In what follows, we shall propose 

techniques for neutra li zi ng the infinite recursive 

computations resulting from cycles in the IDB. 

4. EXTENSIONAL COMPLETENESS AND RECURSION REMOVAL 

In this section we propose a condition which, 

if satisfied by an appropriate literal of a cycle, 

has the effect of cutting the recursive deductive 

searches which would otherwise obtain from that 

cycle . 

4.1 Extens ionall y Complete Li tera l s 

Suppose L( xJ with free variabl es x=x 1, . . . ,xn 

is a literal of clause C. L(x) is sai d to be ex

tensionally complete with respect to C iff for 

every tuple of constants c E !T (x1)1 X ... x IT(xnJI, 

either L(c J E EDB or L(c J E EDIL Intuitively, if 

L( x) i s extensionally complete with respect to C, 

then C can contain no information about L( x ) , since 

all s uch information is present in the EDB. At 

best, C specifies new information about some other 

literal of C in terms of the complete information 

that we already have about L(x). Thus, we can ex

pect that in a resolution proof it is redundant 

ever to resolve upon L( x) except with a unit of the 

EDB. The following result confirms this intuition 

for linear resolution proofs [Loveland 1970], which 

are most commonly used in deductive question 

answering. The reader is assumed familiar with the 

literature on resolution theorem proving . If Q is 

a query, denote by Q the set of clauses of the 

negation of Q. 

Theorem 4 .1 

Suppose that a data base DB i s sa ti sfiable, 

and that DB u Q is unsatisfiable. Then there is a 
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(typed) linear refutation 1 of DB U Qwith top clause 
in Q with the property that if a clause C E IDB is 
used as a far parent in this refutation, and if 
L E C is extensionally complete with respect to C, 
then Lis not the literal of C resolved upon. More 
over, if L' is a descendant of Lin this deduction, 
then the only resolution operation in which L' is 
the literal resolved upon is one in which L' is re

solved away against a unit of the EDB. 

Proof: 

Let S = DB u Q and let SG be the set of ground in
stances of the clauses of S over the Herbrand uni 
verse (which consists only of the constant signs of 
the data base s ince no function signs are permitted) 
where each such ground instance is the result of 
substituting constant signs for variables consis
tent with the types of these variables. Clearly, 

SG is unsatisfiable since DB u Q is. Now let LG be 

obtained from SG by deleting from SG each non EDB 
clause subsumed by a unit of EDB. LG is unsatisfi
able and since DB is satisfiable, there i s a linear 

refutation D from LG with top clause a ground in
stance of a clause of Q. Now suppose C E IDB and C 
contains a literal L which is extensionally complete 
with respect to C. Then if CG is a ground instance 
of C and LG the corresponding ground instance of L, 

either LG E EDB or LG E EDB. By the construction 

of LG' it follows that CG E LG iff LG E EDB. More
over, no other clause of LG other than LG itself 
can contain LG. Hence, in the linear deduction D 

from LG' CG can serve as far parent only if LG is 
not the literal of CG resolved upon . This estab
lishes the first claim of the theorem in the ground 

case. Now if CG serves as a far parent, then LG 
will occur in the resolvent so formed. Since no 

other clause of LG other than LG itself can con
tain LG, it.follows that the only way to resolve 
upon LG in the rest of the deduction is by resolv
ing it against LG E EDB. This establishes the 

1 Since all variables are typed, the usual theory of 
resolution theorem proving must be modified to ac
commodate typed unification (Footnote 2 ,secti on 3). 
Details for a restricted form of linear resolution 
may be found in [Reiter 1977l. It should be noted 
that the proof of Theorem 4.1 requires the",
completeness assumption" of [Reiter 1977] , namely, 
for all types 1 and constants c, one of ,(c} or 
T(c) holds i.e. c is known to satisfy or fail to 
satisfy type 1. 
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second claim of the theorem in the ground case. 
The general case follows by a suitable lifting argu

ment. 

informally, Theorem 4.1 says that there are 

top down proofs of a query in which extensionally 
complete literals need only be resolved against the 
EDB. lheorem 4. 1 can be proved for quite restric

tive linear strategies [Reiter 1977]. 

4.2 Extensionally Normalized IDBs 

Suppose that the IDB contains a cycle of the 
form (3.1). Suppose further that any one of the 

literals Li' Li i=l, ... ,n i s extensionally complete 
with respect to t he clause in which it occurs. Then 
by Theorem 4.1 neither that literal nor any of its 
descendants in a linear deduction need ever be re 
solved upon except with a literal of the EDB. This 
means that the recursive chain of resolution opera

tions which, for this cycle, might lead to an infin 

ite deduction tree ha s been cut'. 

We shall say that an IDB is extensionally nor
mali zed iff for every cycle of the form (3.1) it is 
the case that one of the literals[., L'. i=l, .. . ,n 

l l 

is extensionally complete with respect to the clause 
in which it occurs. We can summarize our observa

tions thus far: 
If the IDB is extensionally normalized, then no in
finite linear deduction trees can arise, provided 
extensionally complete literals are resolved on ly 
against units of the EDB. 

Notice that this result deals only with linear 
deductions which use only the clauses of IDB . It 
does not necessarily hold for the clauses of IDB u ~ 
since IDB u Q may not be extensionally normalized 

even when IDB is. 

Example 4.1 

IDB: (x/T}P(x) v R(xJ 
Q = (Ex/,)P{ x) A R\x) 
Then IDB is extensionally normalized, but 
IDB U Q = {{x/T)P(xJ v R( x), (x/T )P(x) v R\x}} 

which i s not extensionally normalized. 

Theorem 4.2 

If IDB is extensionally normali zed, and query Q has 

the form (Ex 1!-r 1) ... (E x/ 1nJLfor some literal L, then 
no infinite linear deductions can arise in evaluat
ing Q provided extensionally complete literals are 



resolved only against units of the EDB. 

Proof: 

Q consists of a unit clause[. Since the result of 

adding a unit clause to an extensionally normalized 

set of clauses is still such a set, IDB u Q is ex
tensionally normalized . 

For the next result, we shall require the 

notion of query evaluation under the closed world 
assumption [Clark 19/8, Reiter 1978b]. Under the 

closed world assumption, certain answers are ad

mitted as a result of failure to find a proof. 

Specifically, if no proof of a ;-iositive ground lit
eral exists, then the negation of that literal is 

assumed true. This can be viewed as e1uivalent to 
implicitly augmenting the given data base by all 

such negated literals. In contrast, the open world 

assumption corresponds to the usual first order ap

proach to query evaluation e.g. [Minker 1978]: Given 

a data base DB and a query Q, the only answers to Q 
are those which obtain from proofs of Q given DB as 

premises. Under the open world assumption no sig

nificance is attached to failure to find a proof . 

The distinction is closely related to that between 
logical negation and the "negation" operator of 
procedural languages for artificial intelligence 

e.g. PLANNER [Hewitt 1972]. 

_Under fairly general conditions [Reiter l978bJ 
closed world data bases need explicitly represent 

only positive facts. Negative facts are not repre

sented, but are inferred, when required , by de 

fault. For many domains of application, closed 

world query evaluation is almost mandatory, since 

the number of negative facts in overwhelmingly large 

- too large to be explicitly represented. For ex

ample, in a data base for an airline flight schedule, 

all flights and the cities which they connect will 
be explicitly represented. Flights and the cities 

which they do not connect will not be so represented. 
Instead, failure to find e.g. an entry indicating 

that Air Canada flight 103 connects Vancouver with 
New York will permit the inference that it does not . 

An atomic query has the form (!:x 1/T1) . . . (Exn/Tn)L 
where Lis a positive literal. The basic result we 

require about closed world query evaluation is the 
following [Reiter 1978b]: 

An arbitrary query Q can be evaluated under the 

closed world assumption by decomposing it into atomic 
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queries, each of which is evaluated on the given 

data base under the open world assumption. 

This result, when coupled with Theorem 4. 2 yields 
the following : 

Corollary 4.3 

If the IDB is extensionally normalized, Q is any 
query, and query evaluation is in closed world mode, 

then no infinite linear deductions can arise in eval

uating Q provided extensionally complete literals 

are re solved only against units of the EDB . 

Corollary 4.3 completely eliminates any concern 

about infinite computations during query evaluation 

for closed world data bases, provided the IDB is ex

tensionally normalized. For open world query eval

uation this is not the case, except for one literal 

queries in which case Theorem 4.2 provides the nec
essary assurance . In general, then, for open worlds 

and arbitrary queries, extensionally normalized IDBs 

do not guarantee finite computations. Nevertheless, 

it is clear that such IDBs reduce the possibility of 

infinite computations and hence provide a valuable 

heuristic for open world deductive question-answering. 

5. STRUCTURING A DATA BASE: INTENSIONS VS. EXTENSIONS 

In principle , at least for some data bases, 
there is no need for an IDB. All information could 

be stored in the EDB. What an IDB provides is a 

space saving mechanism: information which might 

have been explicitly stored in the EDB is instead 

implicitly contained in the IDB and must be re 

trieved by deduction. In general, one would want 

an intensional representation of certain facts only 

when the corresponding extensional representation 

would be unfeasibly large . What we have here is a 

classical space- time computational trade-off, where
by the more information one stores in the EDB the 

less time, on the average, one requires to answer 

queries. There are two extremes on this space-time 
(or better, extension- intension) spectrum. At one 

extreme, all information is represented extension
ally . At the other, a minimal extension is main
tained and most information is represented inten

sionally . In general, one pays a high price for 

this latter extreme despite its minimal space re
quirements since one must then expect a recursive 
IDB with the attendant infinite computations we 

have come to expect from such data bases. What 

seems to be required is an appropriate balance be-
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tween both extremes in which there is an optimal 
division of the information content of the data 
base into extensional and intensional components. 
We believe that the concept of extensional comp
pleteness, when exploited to cut cycles in the IDB 
(Section 4.2), provides a handle on this optimal 
extensional vs . intensional division of information. 
Specifically, we propose to represent enough infor
mation extensionally so as to render the IDB ex
tensionally normali zed. 

In order to fix tnese ideas, we shall consider 
the process ot designing a data base. At some poin t 
one must choose a set of relations wnicn are to rep
resent the relationships among the individuals in 
the domain being modeled. For example, if the do
main 1s some form of inventory, then the indivi~uals 
of the domain wi 11 be parts, suppliers, manufactur
ers, etc. and relations like 

PART(x} - xis a part 
MANUFACTURER(x} - xis a manufacturer 
SUPPLIES{x,y) - supplier x supplies party 
SUBPART(x,yJ - part xis a sub-part of party 
etc. 

are likely to be of concern, and will all be members 
of a presumably larger fixed set of relations which 
are all deemed to be relevant to the class of quer
ies which may be posed for any inventory domain. 
The next step in the design process is to determine, 
and ap~ropriately represent, the semantics of the 
domain i.e. the relationships which hold among the 
relations like PART, SUPPLIES, etc. Thus, the fact 
that the relation SUBPART is transitive is part of 
the semantics of the inventory domain and we repre
sent this by 

{xyz/PART )SUBPART( x,y) A SUBPARl(y,z) 
=> SUBPARTtx,z) 

( 5. 1) 

The following might also reflect the semantics of a 
particular inventory domain: 

"Every manufacturer of a part suppl ,es all its 
sub-parts" 

{x/MANUFACTURER)(yz/PART)MANUFACTURES(x,y) (5.2) 
A SUBPART{z,y) => SUPPL!ES(x,z ) 

"Acme manufactures all parts it supplies." 
(x/PARTJ SUPPLIES(A,x) => MANUFACIURES(A,xJ (5.3) 

When all such semantic properties of the domain have 
been determined, we have a candidate IDB. The ques-
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tion now arises: What information do we represent 
in the EDB? While we have no genera l answer to 
this question, we can provide a guideline based 
upon the results of Section 4.2 i.e. we want to rep
resent eno ugh information extensionally so that the 
IDB is extensionally normalized. This involves the 
following steps : 

1. Determine the cycles of the IDB, a decidable 

problem. 
2. For each such cycle, choose a literal L which, 

if it were extensionally complete with respect 
to its clause, would cut the cycle. 

3. Suppose L chosen in 2. is a literal in the 
predicate sign P. Represent extens ionally as 
much of P's extension as is required to render 
L extensionally complete with respect to its 
clause in the cycle. 

To see how this structuring principle might be 
applied in practice, consider first the intensions 

(5.2) and (5 .3 ) above. These form a cycle which 
can be cut in any of four different ways, namely by 
extensionally representing the relation 
MANUFACTURES{x,y) and its negation if the data base 
is open world) for all manufacturers x and parts 
y, or by extensionally representing SUPPLIES{x,z) 
etc . The optimal choice would be to make 
SUPPLIES(A,x) extensionally complete with respect 
to (5.3) i.e. extensionally represent the relation 
SUPPLIES (A ,x ) - all parts supplied by Acme (together 
with parts not supplied by Acme if the data base is 
open world). 

The intension (5.1) forms a cycle by itself. 
To cut it, we must extensionally represent the re
lation SUBPART(x,y) for parts x and y, in which 
case (5.1) becomes redundant since then each of its 
literals will be extensionally complete with re 
spect to {5.1) . Of course, one should not take too 
literally the need to represent the full extension 
of the subpart relation. In actual fact, it is 
sufficient to represent a "minimal" extension and 
to have available procedures which, given parts p1, 
and p2, can decide whether or not SUBPART(p 1,p2} 
holds . For example, if SUBPART{p.,p. 1) holds, 

1 1+ 
i=l , ... ,n-1, then it is sufficient to extensionally 
represent these n-1 facts. There is no need to ex
plicitly represent, say, the fact SUBPART(p1,pn) 
since one can easily define a procedure to deduce 



this from the facts explicitly s tored . Moreover, 
there is no commitment to any particular exten 
sional representation for the subpart relation. 
Certainly, it need not be as a set of literals, or 
as an array . More likely, some sort of tree 

structured representation would be best. In this 
conne'Ction, notice that the subpart relation has 
additional properties to simple transitivity. It 

is asymmetric: 

(xy/PART)Sl/BPART(x,y) ::, ,SUAPART(y,x) 
It is irreflexive: 

(x/PART)~SUBPART(x,x) 

(5.4) 

(5. 5) 

All these properties strongly suggest that an op
timal extensional representation will be tree 
structured, coupled with appropriate procedures 
for inferencing, in which case the intensions 
(5.4) and (5.5) need not be present in the IDB. 

In general, many relations can be expected to 
possess special properties which, if represented in 

the IDB, will render it recursive. Our view is 
that such relations must instead be represented ex

tensionally. Moreover, specialized data represen 
tations and inference procedures must be devised 
for each combination of properties possessed by 
such a relation. For example, an assymmetric, 

transitive, irreflexive relation like SUBPART will 
require quite different data representations and 

access methods than an equivalence relation. 
Lindsay, in [Lindsay 1973] makes essentially this 

point, in describing the work of Elliott 
[Elliott 1965] . Elliott's thesis considers nine 
properties, like transitivity, asymmetry etc. 
which a relation may possess, and classifies re
lations in terms of all possible meaningful com
binations of these nine properties, these being 32 
in number. For each of these 32, he proposes suit
able extensional representations and access methods. 

6. OTHER FORMS OF RECURSION REMOVAL 

Although the process of filling in the exten
sion of a suitably chosen predicate sign can always 
be invoked to cut a cycle in the IDB , this can oc
casionally be too drastic a remedy. In what follows 
we shall discuss certain far more economical 
approaches to the elimination of infinite deductions 
caused by cycles. While these approaches lack the 
full generality of that of Section 5, conditions 
under which they apply can be expected to arise fre -
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quently, which is why we feel they merit some atten ~ 
tion. In those cases where they fail to apply, the 

method of Section 5 can be invoked. 

6. 1 Checking for Duplicate Subgoals 

Consider the following possible intensions for 

the inventory domain: 

11 A 11 widget suppliers supply gadgets, and vice 

versa. 11 

(x/SUPPLIER)(y/WIDGET)(z/GADGET)SUPPLIES(x,y) (6.1) 

=> SUPPLIES(x,z) 
(x/SUPPLIER)(y/GADGET)(z/WIDGET)SUPPLIES(x,y) (6.2) 

::, SUPPLIES(x , z) 

As suming that widgets are disjoint from gadgets, 
neither (6.1) nor (6.2) is, by itself, a cycle but 
the two together define a cycle. For simplicity, 
assume a definite IDB 1 and closed world assumption, 
in which case a conventional subgoaling or back
chaining proof procedure will do for query 
evaluation [Reiter 1977]. Consider an attempted 
proof of SUPPLIES( a ,B) where a and Bare terms with 
types SUPPLIER and WIDGET respectively. Then the 

effect of the cycle (6.1) and (6.2) will be to gen 
erate the following infinite deduction sequence, 

where -+ denotes "current subgoal": 

-+ SUPPLIES( a , B) ,( a ) SUPPLIER ,( B) WIDGET 

-+ SUPPLIES( a ,y) ,(y} GADGET 

-+ SUPPLIES( a ,w) , (w) WIDGET 

-+ SUPPLIES( a ,u) , ( u) GADGET 

-+ SUPPLIES( a ,v) ' , (v) WIDGET 

Clearly there is no need to continue th~s deduction 
beyond the third subgoal, s ince the fourth is sim
ply a renaming of the second. 

It follows, in general, that we need only 
equip the theorem prover with the capacity to de
tect duplicate subgoals in order to truncate cer
tain infinite deduction paths. Although we omit 
the details here , it should be clear that there is 
a simple sufficient condition on cycles which 
guarantees that a duplicate subgoal detector will 
truncate the infinite deduction paths which might 
otherwise arise. Hence, we can determine in ad
vance which cycles of the IDB lead to finite 

1 A data base i s definite iff each of its clauses 
contains exactly one positive literal. 
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deductions. For these cycles there will be no need 
to appeal to the extension filling techniques of 
Section 5. 

6.2 Special Cases 

In some instances, the particular structure of 
a cycle, together with certain special i zed knowledge 
that is available about the relations of the cycle · 
can be exploited to prevent infinite decuction 
paths. As an example, consider the intension 

"All parts suppli ers al so provide sub-parts for 
those parts." 

(x/SUPPLI ~R ){yz/PART )SUBPART( z,y) 
"SUPPLIES(x,y) J SUPPLI ES(x,z) 

(6.3) 

As before, assume a definite IDB and the closed 
world assumption so that we can appeal to a conven
tional subgoaling proof procedure for query evalua
tion. Consider an attempted proof of SUPPLIES(a,B) 
for terms a and B. Then the effect of the cycle 
(6.3} will be to generate the following infinite 
deduction sequence: 
+ SUPPLIES(a,B) 
+ SUBPART{B,y1) ~ SUPPLIES(a,y1) (6 .4) 
+ SUBPART(B,y1) "SUBPART(y1,y2) "SUPPLIES{a,y2} 
+ SUBPART(B,y1) "SUBPART(y1,y2) "SUBPART{y2,y3) 

"SUPPLIES{a,y3) 

It is clear that the theorem prover is trying to 
establish a transitive chain B,y1 , ... ,Yn with 
respect to the subpart relation such that 
SUPPLI ES( a,yn ) holds. Now suppo se that, for some 
n >1, one of these subgoals succeeds, i.e. there 
are parts p1, ... ,pn such that 
~SUBPART(B,p1) "SUBPART(p1,p2) 

"· ··" SUBPART(p l ,p ) "SUPPLIES (a,pn) n- n 
Then, since the relation SUBPART is transitive, 

~ SUBPART(B,pn) "SUPPLIES(a,pn) 

which is an instance of the subgoal (6 .4) . Hence , 
we conclude that there is no need to generate any 
of the subgoals following (6 .4 ) so that the cycle 
(6.3) will not generate an infinite deduction path. 
This observation leads to the following special 
case of recur·s ion removal : 
If the IDB contains an intension of the form 

(X/T1)(yz/T2)(v/a)T(z,y,v) "P(x,y,v) J P(x,z,v) 
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where Tis transitive in its first two arguments, 
then in any subgoaling proof procedure one need 
never recurse on this intension. 

For another example of a special case of re
cursion removal, consider the following intension: 
"If an employee belongs to the dental plan, then so 
does his (her) s~ouse." 

{x/EMPLOYEE)(y/HUMAN)DP(x) 11 SPOUSE (x,y ) ~ DP(y) 

As before, consider a subgoaling proof of DP( a ). 

+ DP( a ) 

+ DP(x1)" SPOUSE(x1,a) 
+ DP(x2)" SPOUSE(x 2,x1) 11 SPOUSE(x1,a} 

It is clear from the semantics of the spouse rela
tion (Everyone has at most one spouse), that the 
third and subsequent subgoals in this infinite 
sequence are irrelevant . In general, then, we have 
the following special case of recursion removal: 
Suppose the relation R is commutative, and for any 
x there is at most one y such that R(x,y). If the 
IDB contains an intension of the form 

(x/T1)(y/T2)(v/a )P{x ,v) "R(x,y) J P(y ,v) 

then in any subgoaling proof procedure one need 
never recurse on this intension. 

It is easy to see that the same result holds, 
if, instead, the relation R has the property that 
if R(x,y) then for no z do we have R(z,x). 

As a final example, consider the ubiquitous 
blocks world, in particular the following recursive 
axiom which captures part of the definition of the 
ON relation in terms of the "directly supports " 
relation: 

(xyz/BLOCK)ON(x,y) "SUPPORTS(y,z) J ON(x,z) (fi . 5) 

Assume further that SUPPORTS (not ON) is extension
ally complete with respect to this axiom so that 
for all blocks b1 and b2 the system knows whether 
or not b1 directly supports b2. Again, consider a 
subgoaling proof of ON(a,B): 

+ ON(a,B) 
+ ON(a,y} " SUPPORTS(y,B) (6 .6 ) 

Since SUPPORTS is extensionally complete, we can 
discharge or fail to discharge the second conjunct 
SUPPORTS(y,B). If the latter, then the attempted 



proof of ON(a,B) fails and we are done. Otherwise 
this conjunct can be dis charged, say with block b1 
for y and we are left with the subgoal 

+ ON( a,b1) 

We can repeat this same process with this subgoal . 
It is not difficult to see that for a world with n 
blocks, this process of recursively back chaining 
into (6 .5 ) must terminate after at most n-1 back 
chaining operations. 

It i s important to observe that the proof that 
(6.5) will not yield an infinite deductive path re
lies upon the order in which conjuncts in the con
junctive subgoals generated are discharged. Spec
ifically, the proof requires that in conjunctive 
subgoals like (6 .6 ) , the literal SUPPORTS(y,B) be 
discharged first. In other words, termination is 
dependent on the theorem prover realizing an appro
priate control structure. In general, then, we can 
expect that termination proofs for recursive axioms 
will be control dependent; we shall need to use our 
knowledge of the consequences of following certain 
deduction paths to appropriately control the action 
of a theorem prover. This observation strongly 
suggests the need for a suitable control language 
which would be used to prevent the theorem prover 
from straying [Hayes 1973]. Such a language , if 
sufficiently expressive, would provide a uniform 
facility for representing special cases of termina
tion like those of this section. 

. 7. ON PROVING THE CORRECTNESS OF A DATA BASE 

The treatment of special cases of Section 6 
suggests an alternate view of the structuring 
principles which we have been proposi ng . For what 
they amount to is proving the correctness of a data 
base, where "correct" is taken to mean "a 11 deduc
tive paths will be finite". Such proofs may be as 
simple as appealing to the extensional complete
ness of certain predicates, as in Section 5, or as 
complex as the proof that (6.5) terminates . We 
want now to argue that "termination" is the only 
appropriate notion of "correct" in this context. 
For it is difficult to imagine a more succinct and 
perspicuous specification language than that of 
first order logic . According ly , a first order data 
base is a specification of some domain and there is 
no need to prove that it is a correct specification 
with respect to one in some more elementary speci -
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fication language. Moreover, by definition, the 
answer to a query is obtained from a first order 
proof of that query so, assuming that the under
lying theorem prover is correct, the correctness of 
the answers returned cannot be doubted. These ob
servations leave just one correctness property open 
to question, and that is wh ether an answer will al
ways be forthcoming i.e. whether "the data base 
terminates". One way of viewing this paper then 
is as an extended argument in favour of proving the 
correctness of data bases. In addition, we have 
proposed a few techniques for appropriately struc
turing a data base so as to make such proofs 
possible. 
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THE GENETIC GRAPH 
A REPRESENTATION FOR THE EVOLUTION OF PROCEDURAL KNOWLEDGE1,2 

Ira. P. Goldstein 
Artificial Intelligence Laboratory 
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Cambridge, Ma. 02139 

Abstract 

I shall describe a theory of the evolution of rule-structured 
knowledge that serves as a cornerstone of our development of 
computer-based coaches. The key idea Is a graph structure 
whose nodes represent rules, and whose links represent various 
evolutionary relationships such as generalization, correction, and 
refinement. I shall define this graph and describe a student 
simulation testbed which we are using to analyze different 
genetic graph formulations of the reasoning skills required to 
play an elementary mathematical game. 

Keywords: Information Proc.essing Psychology, Learning, 
Knowledge representation, CAI, !CAI, Al. 

Outline 

I. A Learner-based paradigm for AICAI research Is evolving. 
2. The genetic graph has evolutionary roots In AICAI research . 
3. Wumpus serves as an experimental domain. 
i. The genetic graph formalizes the syllabus. 
5. Genetic graphs are being explored via student slmu·lations. 
6. The genetic graph is a framework for a theory of learning. 

L A .Learner-based Paradigm for AICAI is evolving. 

The l970's has seen the evolution of a new generation of 
computer-aided Instructional programs based on the Inclusion of 
Al -based expertise within the CAI system. These systems 
surmount the restrictive nature of older script-based CAI by 
supplying "reactive" learning environments which can analyze a 
wide range of student responses by means of an embedded 
domain-expert. Examples are AICAI tutors for geography 
[Car70]. electronics [Bro73].. set theory [Smi75], Nuclea_r Magnetic 
Resonance spectroscopy [Sle75], and mathematical games [Bur76, 

•Go177a]. 

However, while the inclusion of domain expertise Is· an 
advance over earlier script-based CAI, the tutoring theory 
embedded within these benchmark progr.ams fot convey.Ing this 
expertise Is elementary. lh particular, they approach teaching 
from a subset viewpoint: expertise consists of a s~t of facts or 
,rules. The student's knowledge Is modelled as a subset of this 
.knowledge. Tutoring consists of encouraging the growth of this 
subset, generally by Intervening In situations where a missing 

.fact or rule is the critical ingredient needed·to reac.h the correct 
answer. 

This is, of course, a simplification of the teaching process. 
It has allowed research to focus on the critical task of 
representing expertise. But the subset viewpoint fails to 
represent the fashion in which new knowle~ge evolves from old 
by such p_rocesses as analogy. generalization, debugging, and 
refinement. 

This paper explores the genetic g!!Jili as a framework for 
representing procedural knowledge from an evolutionary 

vlewpoint.3 thereby contributing to the movem~nt of AICAI 

from an expert-based to a learner-based paradigm. 

2. A graph representation of the syllabus has roots in 
AICAI research. 

Scholar [Car70], the earliest of the AICAI tutors, employed 
a graph (semantic net) representation for declarative facts about 
geography. The graph. however, encoded only domain specific 
relationships; it did not embody a series of progressively ~ore 
refined levels of geography knowledge linked by various 
evolutionary relationships. 

SOPHIE-I [Bro73]. the next major AICAI milestone, was 
an expert-based system for the more complex domain of 
electronic troubleshooting. · SOPHIE-I compared a student's 

I. This research was supported under NSF grant SED77-19279. 
2. This paper has evolved from many fruitful conversations 

with members of my Cognitive Computing Group at the MIT_ 
Al Lab and with members of John Seely Brown's ICAI group at 
Bolt, Beranek and Newman. · . · 
3. A potential confusion m terminology may occur here. The 

term "genetic" Is oflen equated with heredity. However, I use It 
here In Its older sense, namely, the genetic method Is the study of 
the origins and development of a phenomena. This paper Is an 
exercise in Genetic Epistemology. the study of the origin and 
development of knowledge. This enterprise has been articulately 
advocated by Piaget [Pla70], who considers It the foundation on 
which psychology should be based. 
i . There are other dimensions to this paradigm shifl that 

Include: (I) more sophisticated modelling of the student's 
knowledge and learning style [Bur76, Bro77a, Go178a], (2) 
widening the communication channel from student to teacher via 
natural language interfaces [Bur77], and (3) developing a theory 
of teaching skl11s [Col75]. Goldstein and Brown [Gol78b] 
provide an overall perspective. 
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Fig. 1. An Interaction with the Wumpus Game 

You are at ·cave 15 with neighbors 4, 14 and 0. 
Brrr.l There is a draft. You are near a ptt. 
What now1 

/> 4 

You are at cave 4 with neighbors 15, 14 and 2 .. 
Brrr.l There ts a draft. Squeak! A bat ts 
near. What now? 

2> 14 

0 

14 

I\ 
--6) G)--2 

BRR BRR, SQ 

( El) Mary, it isn't necessary to take such large risks with pits. There ts m_ulttple evidence of a ptt ln 
cave 14 which makes it quit~ likely that cave 14 contains· a pit. It ts less likely that cave O contains a 
ptt. Hence, we might want to explore cave O Instead. Do you want to ,take back your move1 

troubleshooting hypotheses for an electronic circuit with that of 
its embedc;led expert and offered advice when the student's 
analysis went astray. It employed a procedural rather than a 
network representation for its electronics know.ledge, but this 
representation was largely a black box. SOPHIE-I did not have 
access to a detailed, modular, human-oriented representation of 
troubleshooting . skills. Nor did it have a representation for the 
genesis of these skills. 

SOPHIE-2, now under development, will incorporate a 
modular, anthropomorphic representation for the expert's 
knowledge [Dek76]." This structured expertise serves as a better . 
foundation for expert-based tutoring, but still is not a m~el. of 
how the student evolved to that level of competence. 

BUGGY [Bro77a], a program for building procedural 
models of a student's arithmetic skills, does incorporate. both a 
graph representation for the basic skills and some evolutionary 
relationships. The basic skill representation Is a graph with 

· links representing the skill/subskill relationships. The 
evolutionary component consists of "deviation" links to- "buggy" 
versions of the various. sk-ills. 

BIP-11 . [Wes77], a tutor for programming skills, again 
employs a network for the basic skill representation, but 
embodies a different set of evolutionary relationships. There are 
links . for representing analogy, generalization, specialization, 
prerequisite, and relative difficulty relations: The BIP-l'I skill 
network, however, does not include deviation links nor define an 
operational expert for the programming domain. Rather it 
employs author-supplied exercises attached to the relevant skills 
In the n·etwork.5 

The genetic graph Is a descendant of these network 
representations. Its nodes are the procedural skills of players of 
varying proficiency and Its links . include the analogy, 
specialization, generalization and prerequisite relations of BIP-H 
and the deviation relationships of BUGGY. 

3. Wumpus serves as an experimental domain. · 

Designing coaches for the maze exploration game Wumpus 
[Yob75] has proven to be a profitable experimental domain 

because the game exercises basic skjlls In logic and probability. 6 

The player Is initially placed somewhere in a warren of caves 

with the goal of slaying the Wumpus. The difficulty In finding 
the beast arises from the existence of dangers in the watren -
"bats, pits and the Wumpus Itself. Pits and the Wumpus are 
fatal; bats move the player to a random cave elsewhere in the 
warren. But the player can infer the probable location of 
dangers from warnings he receives. The Wumpus can be sensed 
two caves away, pits and bats one cave away. Victon re$Ults 
from shooting an arrow into the Wumpus's lair; defeat if the 
arrows are fruitlessly exhausted. 

In 1976 we developed WUSOR-1 [Sta76], an expert-based 
coach. Skilled play was analyzed in terms of rules such as these: 

Positive Evidence: A warning implies 
that a danger is in a neighboring cave. 

Elimination: If a cave -has a warning and 
all but one of its neighbors are known to 
be safe, t_hen the danger is in the 
remaining neighbor. 

Multiple Evidence: Multiple warnings 
increase the likelihood that a given cave 
contains a danger. 

As fig. I illustrates, WUSOR-1 explained a rule if Its 
employment would result In a better move than the one chosen 
by the student. 

5. MALT [Kon5], a tutor for machine language programming, 
does include an "expert" for problems composed from a limited 
set of skills and solved in a tutor-prescribed order. However, 
MAL T's syllabus of skills are related only by the probability 
with which MALT includes them In a system-generated problem, 
and not by any evolutionary links. Hence, MALT does not have 
BIP's ability to choose a problem based on Its evolutionary 
relationship to the student's current knowledge state. 
6. Our group Is also .exploring evolutionary epistemologles for 

other domains ranging from elementary programming to 
airplane flying. 
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WUSOR-J was insensitive to the relative difficulty of the 
various Wumpus skills. In 1977 we took our first steps toward an 
evolutionary epistemology with WUSOR-ll [Carr77a], wherein 
the rule set was divided into five subsets or phases representing 
increasing skill at the task. · . 

Phase J:, Ru.les for visited, unvisited and.fringe caves. 
Phase 2: Ru.les for possibly dangerous, deftnttely dangerous 
and safe caves. 
Phase J: Ru.les for single versus multiply dangerous caves. 
Phase 4: Ru.les for "possibility sets", i.e. keeping track of tlie 
sources of dangers. · 
Phase .5: Rules for nu.mcrical evidence. 

The tutor did not describe the rule of a particular· level of play 
until it believed the student was familiar with the rules of the 
preceding levels.7 

These phases constituted a coarse genetic ep'istemology, 
better than the completely unordered approach of WUSOR -I, 
but still far from a detailed platform on which to build new 
knowledge from old in the student's mind. WUSOR-III, now 
being implemented, addresses this limitation . It has evolved 
from WUSOR -11 by defining a set of symbolic links between 
rules that characterize such relationships as analogy, refinement, 
correction, and generalization. The result is that the "syllabus" 
of the coach has evolved from an unordered skill set to a gentile 
graph of skills linked by the_ir evolutionary relationships. 

4. The genetic graph formalizes the syllabus. 

The "genetic graph" (OG) formalizes the evolutiQn of 
procedural rules by representing the rules as nodes and their 
interrelationships as links. In this section I discuss four of these 
relationships -- generalization/specialization, analogy, deviation/ 
correction, and simplification/refinement -- and show the 
explanatory leverage they supply by allowing variations on the 

basic Wusor-11 explanations.a · 

R' is a generalization of R if R' is obtained from R by 

quantifying over .some constant.9 Specialization Is· the inverse 
relation. In the Wumpus syllabus, for each trio of specialized 
rules for bats, pits and the Wumpus, there is usually a common 

generalization In terms of warnings and dangers.to Fig. 2 
illustrates such a cluster for rule 2.2 which represents the 
deduction: "a warning implies that the neighbors of the current 
cave are dangerous .. " 

R' is analogou.s to R If there ex ists a mapping from the 
constants of R' to the constants of R. This is the structural 
definition employed by Moore and Newell tMoor73]. Of ,course, 
not all analogies defined In this fashion are profitable. However, 
the GG is employed to represent those that are. Fig. 2 illustrates· 
analogy links between the specialization trio of R2.2. The· 
similar nature of the dangers of the Wumpus world make this 
kind of densely linked cluster common. As fig. 3 shows, 
identifying such clusters provides teaching leverage by providing· 
multiple methods of explanation . (one per link) . for each 
constituent rule.II · 

R' is a refinement of R if R' manipulates a subset of the 
data manipulated by R. Simplification is the Inverse relation. 

This relation represents the evolution of a rule to take account of 
a finer set of distinctions. The Wumpus· syllabus contains five 
major refinements corresponding to the five Wusor-11 phases. 
Fig. 2 illustrates the refinement of the rule RI.I through pt,ases I, 
2 and 3. Fig. 3 shows a refinement-based explana.tion. 

R' is a deviation of R if R' has the same purpose as R but 
fails to fulfill that purpose in some circumstances. C,orrection is 
the inverse relation. Deviations arise naturally in learning as the 
result of simplifications, overgeneralizations, mistaken. analogies, 
and so_ on. Whi.le any rule can have deviant forms, the. GG ls 
used to record the more common errors.12 · 

A deviant Wumpus rule is: "If there is multiple evidence 
that a cave contains a pit, then that cave definitely contains a 
pit." The debugged rule includes the additional condition that 
there is only one pit in the warren. The c;leviation has a natural 
genetic origin: it is a reasonable rule in the early stages ·of 
Wumpus play when the game is simplified by the coach to 
contain only one of each. danger. 

7. [Carr77b] describes the mechanisms by which it estimated the 
student's position in the syllabus. 
8. The GG also supplies modelling ieverage [Go178al. A 

procedura 1 model of the student can be constructed in terms of 
the regions of the GG with which the student has . displayed 
familiarity. The GG does not solve the ermrmous difficulties· 
which exist in inducing student models (discussed in [Carr'77b, 
Bro77c]. but it does provide another source of guidance: the 
evolutionary links of the known regions suggest which skills the· 
student will acquire next. 
9. This is a standard predicate calculus definition, applied here 

to quantifying over formulas representing rules rather than 
logical statements. 

· 10. In one version of Wumpus, the wumpus warning propagates 
only one cave. In this case, bats, pits and the wumpus are 
exactly analogous. In more complex versions, the Wumpus is no• 

•longer exactly analogous. Hence, the analogies to bats .. and pit 
rules are in fact restricted cases or outright deviations. We 
represent this in the GG !;!Xplicitly. thereby giving the coach an 
expectation for the traps the student will encounter. 

II . There are many difficulties in generating explanations not 
solved by employing a GG: when should the coach interrupt, 
how often, how much should be said, which variation should be 
chosen? The utility of the GG is only to Increase the range of 
possibilities open to the tutor. • 
12. The deviant skills recorded in the GG account for errors 

arising from the correct applicati<m of incorrect rules. There is 
another class of errors arising from the ~ application of 
correct rules. These are errors arising from such causes as the 
.occasional failure to check all preconditions of a rule, the 
misreading of data, or confusion in the bookkeeping a.ssociated 
with a search process. Sleeman [S1e77] explores some errors of 
this class in his construction of a coach which analyzes a 
student's description of his algorithm. Sleeman's coach, however, 
does not have a representation for deviant .or simplified versions 
of the algorithm· to be tutored: indeed, he assumes that the 
student ls familiar with the basic a~gorithm. A possible 
extension of his system would be to include a GG representing 
evolutionary predecessors of the skilled expert. 
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Genetic Link s 
R • refinement 
A • analogy 
G •generali zation 
S • s pec i a I i za t ion 

N • neighbors of the 
current cave. 

W-II EXPLANATION 
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Fig. 2. A Reg!on of t°he Genetic Graph 
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Fig. 3. Variations on an Explanation 
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IT ISN'T NECESSARY TO TAKE SUCH LARGE RISKS WITH PITS 

GENERALIZATION 

E2: MULTIPLE EVI
DENCE IS MORE 
DANr.EROUS THAN 

S:Nt.LE EVIDENCE 
FOR ALL · DANGERS, 

ANALOGY 

El I WE HAVE SEEN 
THAT HUL Tl PLE EVI

DENCE FOR !!Ali IS 

MORE DANGEROUS 
THAN SINr.LE EVI

DENCE, 

HERE THERE IS MULTIPLE EVIDENCE FOR A PIT IN lq AND 

SINGLE EVIDENCE FOR ll. HENCE, WE MIGHT WANT TO EX

PLORE 0 INSTEAD, 

REFINEMENT 

E4• IN THE PAST, 
WE HAVE DIST IN -

GU I SHED BETWEEN 
SAFE AND DANGERO US 
EVIDENCE, NOW WE 

SHOULD DISTINGUISH 

BETWEEN SINGLE AND 

HULT I PLE EV I DENCE 
FOR A DANGER, 

EI . is the WUSOR-11 explanation triggered by a move to cave 14 of fig. I. 
E2, EJ and E4 art proposed WUSOR·/11 variations generated lry 
explaining a rult in terms of tts· evoluttona.ry relatives. 
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Again, the geneUc link supplies explanatory power. 
Suppose the student has just transitioned from games with one 
pit to games with multiple pits and is in the situation of fig .. i . 
If he moves to cave 0, ES is inferior to E6 as an explanation as It 
fails to address the probable cause of the student's difficulty, 
namely a belief that cave O is In fact safe from pHs. 

5. Genetic graphs are being explored in a student 
simulation testbed. 

The Wumpus CG currently contains about 100 rules and 

Fig. 4. A Correction Based Explanation 

<Situation as illustrated 

4> 0 

O · location of player 

Q • riaited c•-• 

E5: Ira, we needn't risk a pit. Cave 3 is safe. Hence, we 
might want to explore cave 3 Instead. 

E6: Ira, we needn't risk a pit. Cave 3 Is safe. If there were 
only one pit, cave O would also be safe. But tn tltls game 
there are 2 pits .. Therefore wt cannot bt ctrtatn that the 

. pit is in 14 and O ts safe. Hence we mighf want to 
explore cave 3 Instead. 

300 links.13 We are currently testing the reasonableness cif this 

.graph by means of a "Student Simulation Testbed". Ii In this 
testbed, the performance of various simulated students, defined 
In terms of different regions of the GG, is being examined .. 
These students correspond to different evolutionary states. Fig. !i 
Is the comparative trace of two students corresponding to 'the 
mastery of phases 2 and 3 respectively. 

Expert-based CAI allows only for the definition of. 
"computer students" formed from subsets of the expert's sklHs. 
The power of the CG to broaden the tutor's understanding of 
the task Is evident from tht testbed: the GC permits not .only the 
creation of subset students, but also students formed from 
specializations, deviations, and simplifications of the . expert's 
rules. 

6. The genetic graph is a . framework f.or a theory of 
learning. 

This paper has explored the construction of new 
knowledge in terms of a genetic graph. Implicit in this 'structure 
Is the following view of learning: new rules are constructed from 
old in terms of processes corresponding to the individual links. 
However, the graph does not describe a unique evolutionary 
path. One learner may rapidly acquire a generalization, another 
may first build several specializations before constructing the 
generalization, while a third may never acquire the 
generalization. Hence, the tutor should encourage this 
idiosyncratic construction of new knowledge by' giving ·advice 
appropriate to the learner's current knowledge state (position in 
the graph) and particular style of learning (preference f<;>r 
particular links). The redesign of the Wumpus coach to employ 
the guidance of the CG to more closely approximaie this ideaf 
tutoring behavior is a major thrust of our current research 
activity. 

The GG is, of course, only a framework for a theory of 
learning. Hard questions about learning remain to be studied: 
When should a learning strategy be applied? How a.re profitable 
analogies, generalizations and refinements to be detected? When 
should . pcirtions of the graph be forgotten? However, the graph 
as It stands Is sufficient to formalize the relations between items 
of knowledge in a syllabus so as to improve the tutoring capacity 
of an AICAI system. · 

Nevertheless, It must be stressed that the evolutionary 
relations discussed here remain both underspecified and 
Incomplete. · There are many kinds of analogies, generalizations, 
and corrections. There are also other kinds of evolutionary 
process.es for acquiring knowledge: learning by being told, 
learning by induction, and learning by recombining pieces of old 
rules In new ways. 

Furthermore a syllabus of procedural skills should cont.ain 
various kinds of knowledge orthogonal to the evolutionary links 
between rules including (I) meta-knowledge of the relations 
between rules, e.g. planning knowledge regarding their 
sequencing, (2) foundational knowledge regarding. the dfclaratlve 

13. These statistics are based on an explicit representation .. of 
each generalization, its specializations and ·their · common 
deviations. It is possible for the graph to be less extensive if 
procedures for generating common deviations and specializations 
are supplied. This is the approach we shall eventually em.ployi 
Specializations are simple to generate. Deviations are su_ggested 
by the common bug types enumerated by such work as my own 
analysis of Logo programs [Gol7!i], Sussman's analysis of Blocks 
world programs [Sus75], and Stevens and Collins's study of bugs 
In causal reasoning [Ste77]; or they can be induced, for simple 
cases, by analyzing the student's performance [Se17i, Col7!i, 
Bro77b). However, my current' research strategy has been to 
make the graph explicit, in order to understand its form. The
next stage will include· the extension to e)lpanding the graph 
dynamically. · 
Ii. The .testbed serves other purposes as well. Computer 

students can be used to test the modelling and tutoring of 
teaching ·systems [Carr77il, Sel77, Wes77). They can also serve as 

· models of real students, and hence can yield Insight for a huma_n. 
teacher observing their performance [Bro77a, Gol77b]. 
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Fig. 5. Divergent Behavior of Two Computer Students . ,.. .. -, 
••• • ••••• I \ 
f BAT+ : ( BAT2 } 

r--------------,....,.,...,.,,,_-------------\ •. t I 

1~:: 1---------tl. ..................... ·.·.: ...... ~.~~~. 
SMELL • "'- ; ,,Wt ,tw,J,r;•,sl<,lii\•,.'N\ tr! .•.af!.~':":". f\~ 

")g._..~F~r-· C PIT1 

w" • .,JI ,--------~------------------------·-----------~ • ,,,,. I. ~y Pr"~(t'r Sing l t' tv ldencf' .1r W tM.JSt_rlsk b~tsl 

······phase 2 

-- - --phase 3 

. ~. -
'(,c)' 
( ,..11 

J \._.. 
..... , .... , r--.... . . ' 

:' BAT+ ': \/ BATl \ 
• • I ·. . ' .. ······ ....... ..._,_../ 

The "WHY" messages are· printed by the student simulator as the 
rules defining a student are executed, The comments inside cave 
boxes represent hypotheses of the simulated student regarding 
that cave. The balloons reflect the differing hypotheses of the 
two students regarding bat evidence fQr cave~ J and H. 

The phase · 2 student (dotted path) does no.t know the multiple 
evidence heuristic. Hence, he does not realize that cave J is to 
be preferred over cave H. While 'he understands that they both 
risk bats, he make~ no further distinction. Thus, he randomly 
selects from these two pos.sibilities, unfortunately choosing the 
riskier H. The phase 3 student (dashed pa·th) reco.gnizes multiple 
<BAT2l evidence as more risky than sing I e <BATll evidence and 
therefore selects the safer cave J. 

This figure is a composite of ·the grap,hic output for the two 
students. The testbed only executes a single student at a time. 
It does not generate balloons nor place the "WHY" messages on the 
Warren i t se If. 

facts which provide ju~tification, (3) historical knowledge 
regarding the past uses of Ji rule, i.e. the examples from which It 
'1lay have been induced, its failures and successes, and (4) 
organizational knowledge which groups rules concerned with a 
common concept, e.g. all the rules concerned with a given 
Wumpus phase. Supplying these kinds of knowledg.e in turn 
allows a deeper analysis of the genesis of the basic skills, ·since 
the evolutionary route may: Involve (1) the gradual debugging of 
their planning structure, (2) the refinement of a declarative 
foundation with new rules created by deduction from this 
foundation, (3) the inductibn of rules from examples,15 and (of) 
the acquisition of rules ih groups. [Gol78a] discusses these 
extensions. 

In a more developed evolutionary epistemology, all c,f these 
extensions must be considered. The payoff for this labor Is that 
each new evolutionary relationship provides further tutoring 
leverage. 

15. Self's Concept Learning Program [Sel77) embodies a set of. 
heuristics for inducing a rule from examples .. These heuristics 
might be used as guidelines to relate examples to a rule by 
"induction" links. The tutor could employ such links to ascertain· 
when tutoring leverage might be gained by suggesting to the 
student that an induction is poss.ible. (Setrs Concept Teaching 
Program acts only by constructing examples, it never offers 
explicit advice about the possibility of an induction.) 
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ABSTRACT 

The low- l eve l vision problem has two compon
ents: the development of representations for the 
information content in images and the development 
of algorithms for computing descriptions ir, terms 
of those representations. This paper concentrates 
on the algorithms and their use of consistency to 
reduce the effects of ambiguity and noise. In 
particular, when the vision problem can be decom
posed into networks of local problems, relaxation 
labeling processes, with their explicit us e of 
consistency criteria , naturally arise. Examples 
of relaxation labeling processes for refining low
level descriptions at both singl e and multiple 
(hierarchical ) levels of abstraction are presented, 
together with theoretical results relating relax
ation and consistency to histogram peak selection. 

1. INTRODUCTION 

Vision can be seen, from an information pro
cessing point of view, as the process of abstrac
ting useful scene descriptions out of raw inten
sity arrays. The specific content of such descrip
tions, as well as the representational formalisms 
within which it can be posed, are, to a certain 
extent, problem or goal specific. That there 
should be many different representations, some of 
which are (essentially) stable, follows from the 
complexity of the visual process. Or, to put this 
another way, the fantastic number of final descrip
tions potentially recoverable from every image 
i mplies an organization of visual processing into 
modular, interacting stages. Then, each possibil
ity eliminated from an earlier stage prunes an 
entire subtree of possibilities from later ones. 

In this paper we shall concentrate on the low
level (or early ) stages of visual processing. The 
two central problems facing designers of systems 
for accomplishing this are (i) the development of 
representations that make the useful information 
explicit, i.e., deciding precisely what needs to 
be represented, and (ii) the development of algor
ithms for computing descriptions in terms of these 
representations. Our primary emphasis will be on 
algorithms, although we shall make some general 
remarks about the form of these representations. 

The more general motivation behind this paper 
is to study the computational aspects th.at are 
common to many of the different algorithms now avail
able for visual processing. The common thread 
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through these algorithms , which arises in many 
different forms, is the use of consistency to 
counteract the effects of ambiguity and noise. 
In the next section we review some common low
l eve l features and measurement s aimed at their 
detection. This introduces a decomposition of 
the g lobal feature-detection problem into many 
local o nes, which provides the beginnings of a 
structure on which consistency criteria can be 
posed and sets the path toward a discussion of 
cooperative algorithms designed to use these con
sistency criteria. Surprisingly, when consistency 
i s present initially, the complex cooperative 
algorithms are shown to reduce formally to simp l e 
peak-se l ect ion processes. Finally, the distribu
tion of the consistency computation across hier
archical systems is described. 

2. LOW-LEVEL FEATURE DETECTION 

The most common low-level features are direct
ly related to patterns of intensity values. For 
example, an edge feature signals the border 
between two areas of differing intensity, while a 
line feature signals a thin pictorial area of one 
intensity flanked on both sides by constant areas 
of different intensities. The importance attri
buted to features such as these rests, in part, on 
our ability to interpret line drawings as readi ly 
as gray-level images. More generally, however, 
they point toward representations designed to 
capture all of the relevant information that is 
encoded in the intensity values. 

The first stage in computing the presence of 
intensity features has traditionally been to 
perform a measurement over the image. Because of 
the local nature of many of these features, and 
because of the computational expense required in 
evaluating global measurements, these measurements 
have mainly been local. Their explicit form is a 
mapping from a s mall domain of intensity values 
into a number, and Rosenfeld and Kak (19 76 ) discuss 
many of the designs that have been attempted. 

The problem with these local measurements 
arises in the interpretation of their response: a 
strong response may be s ignaling the presence of 
the indicated feature; however, it may also be 
arising from a nois e configuration. On the other 
hand, a weak response may derive from the proper 
configuration. Single-step descision procedures 
that correctly determine the presence of image 
features on the basis of one local measuremnt have 
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been notoriously difficult, if not impossible, to 
design. 

The principle cause of this difficulty is the 
non-unique s tructure of the measurement operator 
(a specific response may arise from many different 
intensity configurations ) coup l ed with the pres
ence of noise in the image. The situation is 
equivalent to that of controlling a system in the 
presence of noise which, control theory has shown, 
requires feedback (Zucker, 1977; Astrom, 1970). 
One possibility for feedback is from higher-level 
goals" or expectat ions (Shirai, 1975; Freuder, 
1976); however , these systems, with their insepar
able mixture of domain-specific and general-purpose 
knowledge, are not extensible to other, less
specific , situations. 

A second, less restricting form of feedback 
can be obtained from the structure of the neighbor
hood surrounding the feature operator. Two such 
neighborhoods are immediately evident: the sur
rounding intensity values and the neighboring 
feature-detector responses. Local detectors of 
various sizes can be used to capture the surround
ing intensity structure, with decision rules based 
on all of their responses. Marr (1 976 ), for 
example, has developed elaborate rules for parsing 
detector responses into various LINE, EDGE, 
EXTENDED-EDGE, and SPOT assertions, but his system 
must still refine these assertions by subsequent 
processing. 

Because information is available outside of 
the immediately local neighborhood, another class 
of techniques, based on cluster analysis, have 
been proposed (Hanson and Riseman, 1978; Schacter, 
Davis and Rosenfeld, 1977). In these techniques, 
information about spatial relationships is sacri
ficed in the hope that the distribution of the 
quantities of responses will be sufficient for 
selecting regions homogeneous in the relevant fea
ture. The problems with these techniques are well 
known, especially in terms of their one-dimensional 
counterpart, histogram peak selection. They 
include the difficulties inherent in specifying 
threshold selection criteria as well as determin
ing which feature should be histogrammed. While 
they do work in some specialized circumstances 
(e.g., Prewitt, 1970) only large computational 
expenditures have yielded systems that perform 
reasonably in more general ones (Ohlander, 1975). 
As we show in Section 5, however, certain circum
stances in which they should work can be specified 
precisely, although a cooperative algorithm is 
required to do this. 

Pyramidal data structures (Klinger and Dyer, 
1976; Tanimoto and Pavlidis, 1975; Hanson and 
Riseman, 1978; and Levine and Leemet, 1976) have 
been s uggested as a data structure in which feed
back between neighboring feature~detector responses 
can be accomplished efficiently. However, in a 
sense pyramids define the allowable computations in 
terms of a specific architecture, rather then 
determining the relevant computations and then 
fitting an efficient architecture to them. Thus 
while they do work well for some problems, more 
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general interactions are necessary for the proper 
feedback of information and the iterated cycle of 
comparison and adjustment that this implies. More 
general iterative techniques for structuring this 
interaction are described in the next section. 

3. RELAXATION LABELING PROCESSES 

The low-level vision problem, as we have been 
posing it, is the computation of a description of 
the information contained in the intensity array 
that explicit l y represents its useful content. 
This description can be formed in terms of asser
tions attached to various pictorial positions, 
and it is these assertions that will serve as 
input to later stages of processing. The dis
cussion in the previous section reviewed the diffi
culties involved in attempting to do this solely 
on the basis of individual feature detector 
responses, but it also began to point toward the 
observation which motivated the techniques that 
we shall now describe. The relevant observation 
is that the context in which every feature detector 
is situated can be used to disambiguate its 
response. It leads to networks of local processes, 
call ed relaxation labe ling processes, that cooper
ate and compete with one another until locally 
consistent descriptions are obtained. 

Relaxation labeling processes (RLP' s ) attempt 
to reduce ambiguities in the set of labels attach
ed to nodes in a graph (Zucker, 1976). For the 
low-level vision problem, the nodes in this graph 
could indicate pictorial positions, with the arcs 
connecting ne ighboring pos itions. The labels would 
indicate the s tructural assertions, with the 
necessary feedback provided through compatibility 
relations. 

These compatibilities allow each label set to 
be adjusted in a direction that makes it more 
consistent with all of its neighboring label sets. 
The adjustment is accomplished by manipulating 
certainty factors attached to each label. These 
certainty factors are important for low-level 
vision applications because of the continuous 
nature of much of the knowledge being represented 
and because they provide an ordering over the 
possible labels for each node. 

The specification of an RLP requires a speci
fication of the graph structure , the set of 
possible labels, the compatibility functions, and 
the initial labeling for each node. Denoting the 
set of labels for node i by Ai' and letting pi (A) 

indicate the certainty (or, loosely, the probabil
ity) that label A i s correct for node i, it is 
updated according to the rule: 

where 

and 

K+l 
p. (A) 

l. 

E c .. 
l.J 

p~(A) 
K 

[l+qi (A)] 
l. 

p~(A) [l+qK{A)] 
(1) 

E 
AEA . l. l. 

l. 

E c. j E r .. IA,A') p~(A') 
j£Neigh(i) 1 A'EA. l.J J 

J 

1 . 



The c . . terms weight the total influence that a 
l. J 

particular ne ighbor j can have on i; for uni form 
influence, c .. = 1/M, when node i has M neighbors, 

l.) 

j = 1, 2 , ... ,M . The r ,.( ).. , )..' ) terms indicate the 
l.J 

compatibility that label)..' on node j has with 
l abel).. on i. They take values in the range 
(-1 ,1], where - 1 indicates perfect i ncompatibility 
and +l indicates perfect compatibility. Since 
they need not b e symmetrical, it is often conveni
ent to think of them as f unctions of the condition
a l probabilit i es p, . ()..I)..'). Rule (1) is evaluated 

:L) 

in paralle l over each labe l on each node, and then 
iterated until a fixed point is achieved (for a 
study of these fixed points , see Zucker, 
Krishnamurthy , and Haar, 1978). In this way the 
l ocal context is used to iterative l y approach each 
l ocal l abeling decision. 

4. LABELING ORIENTED LINE SEGMENTS 

Our first application of RLP's returns to 
the kind of problem discussed in Section 2: inter
preting the response of l ocal feature detectors. 
The · specific problem that we shall consider is 
that of asserting the presence (or absence) of 
unit LINE segments (Zucker , Hummel, and Rosenfeld, 
1977 ) . The raw feature detector responses are 
supplemented by a model for good continuation of 
lines, and it is this model that structures the 
local consistency-based feedback. 

The label set , i.e., the set of possible asser-
tions, is 

LINE (OR 1) 
LINE (OR 2) 

A. 
]. 

LINE (OR 8 ) 
NO-LINE 

Bvery point in the image corresponds to a node to 
be labeled, and each node is connected to its 
eight nearest neighbors. Since we will eventually 
want to group these LINE segments into long lines 
and curves , orientation is represented explicitly 
in eight quantized steps. Also, t he local l ine 
detectors are evaluated at eight orie ntations. 

Each of the nine labels is associated with 
every node, and their initial certainty factors 
are obtained by scaling the featu re detector res
ponses into (0,1 ] . These initial certainty va lues 
represent one source of information for the RLP. 
Establishing them effectively translates t he 
intensity-encoded information in t he i mage into 
the initial state for an orientation-based RLP. 
The rules for updating certainties on the basis of 
orientation are derived from the second informa
tion source, the compatibi l ity functions, which 
take the form (for good continuation between LINE 
orientations ) : 

ri j ()..,).. ' ) = cos [a"-SJ cos (w[a",-S ]) (2) 

where a" is the angl e (i .e., orientation ) of label 

).., a", is the angle of)..' , and Sis the angle an 

imaginary vector from i to j makes with the stan
dard reference. (w will be discussed shortly ) . 
The compatibility between LINE and NO-LINE labels 
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also varies sinusoida lly: 

r .. (A,)..') = -cos (2 [a,-S ]) 
l.) A 

where a).. and Sare defined as above. The compati

bility between two NO-LINE l abels is 1.0. ' 

Thew term in ( 2) is necessary for a more subtle 
reason. In general, the label set, graph struc
ture, updating rule, and compatibility function s 
may define a n RLP with a bias toward particular 
labelings. While this may refl ect the relevant 
semantics in some domains, it is inappropriate for 
a general-purpose line process. Zucker a nd 
Mohammed (1978 ) have s hown that if : 

E c. . E r .. ( ).. , ).. ') = CONST , 
j l.J ", l.J 

then a homogeneous RLP , s uch as the one we are 
describing here, will not contain a bias forcer
tain labels. Thew terms in (2) are adjusted to 
satisfy this conditio n . 

Zucker et al. (1977 ) contains examples of an 
RLP very similar t o this one successfully labe l ing 
the lines a nd curves in several satellite images. 
To s how the empiri cal limitations of s uch a pro
cess, Fig. 1 contains an exampl e of this RLP 
operating on a very noisy synthetic image. Note 
that the diagonal line in thi s image is destroyed, 
a nd that the short horizontal line is joined to 
the vertical one. A more powerful hierarchical 
system, whi ch hand l es this i mage properly , wi l l be 
described in Section 6. 

5. RELAXATION AND HISTOGRAM PEAK SELECTION 

If we ass ume that the compatibilities are 
re l ated by a linear f unction of the underlying 
conditional probabilities , i.e., if 

c
2 

constants, (3) 

or if we define our RLP directly in t erms of 
conditional probabilities, then we can obtain an 
updating rule anal agous to (1) by substituting 
( 3 ) into (1): 

P~+l()..) 
]. 

p~()..) { Ee .. l: p,, ( ).. I)..' ) p~ ()..' )} 
]. j l.J )..' l.) J 

K K (4 ) 
l:p. ( ).. ) {l:c .. i:: p .. ()..I)..') p,()..' ) } 
" i j l.J )..' l.J J 

A simple ana l ysis of this new rule reveal s the 
connection between re l axation and histogram geak 
selection. In particular, if we interpret p. ()..' ) 

J 
as the probability that label)..' is correct for 
node j given the local measurements on j, then 
the inner term 

i:: p,. ( ).. I)..' ) p~ ( )..' ) = p, P IE.) 
)..' l.) J ]. J 

is a formally correct estimate of the probability 
that).. is correct for i (assuming that there are 
onl y two nodes of interest in the process, i and 
j). Then, if this estimate p . ()..IE . ) were perfect, 

]. J 



I 
, I 

• • , I 

i.e., if p, (A jE .) = p , (A) , r u le (4 ) would reduce to: 
]. J ]. 

P~+l (A) 
]. 

(5) 

This r ule clearly terminates with 

p~(> ) " \ 

0 max (p, (A )) 
1 

]. 

lim AEA, 
K--><x> ]. 

0 otherwise 

(6) 

In other words, relaxation formally reduces to 
selecting the label whose initial probability was 
maximum, i.e., to histogram-peak selection. 

The circumstances under which relaxation is 
equivalent t o histogram peak selection can be 
generalized from those above. The essential 
requirement is that the neighborhood contributions 
be in the same order (i.e., consistent with) the 
current label orderings. More formally, if for 
each node i = 1,2, ... , I, an ordering over the labels 
A £A. exists such that 

ct ]. 

then we require (Zucke r and Mohammed , 1978) 

for the algorithm to behave as in (6). E indicates 
a conditioning on the total neighborhood evidence, 
i.e., the updating term: 

It is clear from the results in the previous 
section (Figure 1 ) that relaxation is not just per
forming maxima selection, otherwise a number of 
initially strong, but incorrect, labels would have 
been established. Rather, the above analysis 
suggests that there are two essential components to 
the relaxation computation. The first is an adjust
ment toward local consistency, while the second 
selects the most consistent labeling. When consis
tency is present initially, then relaxation reduces 
to the second computation. 

6. HIERARCHICAL RELAXATION SYSTEMS 

The decomposition of the feature detection 
problem in Section 4 was a spatial one. That is, 
t he establishment of LINE assertions was accomplish
ed by a network of local processes which, when taken 
together, were attempting to establish a spatially
consistent pattern. There is a second necessary 
kind of consistency in vision systems, however, that 
derives from a different representational decomposi
tion. This decomposition organizes representations 
into levels of abstraction, as we discussed in the 
introduction, with the consistency requirement now 
holding between descriptions at neighboring levels 
(providing they project onto the same set of spatial 
positions). For example, the high-level description 
of a chair must be consistent with the underlying 
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line description, which, in turn, must be consis
tent with the underlying intensity distribution. 
Consistency of the first kind, i.e., spatial, will 
be referred to as being horizontal, while consis
tency of the second kind will be vertical (Zucker, 
1978). 

The same relaxation structure that we have 
been using for achieving horizontal consistency 
can also be used for achieving vertical consis
tency. The only differences are in the structure 
of the graph, which now spans levels, and in the 
compatibility functions. Letting A denote a labe l 
attached to node i at one l eve l of abstraction, 
and L denote a different label attached to node I 
at a neighboring level of abstraction, then the 
interaction between them will be governed by 
compatibility functions of the form riI(A,L). 

Furthermore, if there is a reasonably complete 
description at the level of I, then a second hori
zontal process (in addition to the one at the 
level of i) could be established there as well. 
With all of these processes running concurrently, 
information could propagate both horizontally and 
vertically to simultaneously disambiguate the desc
riptions at both levels (Figure 2). In other 
words, the loca l neighborhood over which consis
tency is evaluated has grown from a circle, which 
was the case for a single horizontal process, to 
a sphere. 

As an exampl e of a multi-level relaxation 
system, we shall build upon the line labeling RLP 
introduced in Section 4. That system was a hori
zontal RLP for labeling unit LINE assertions, and 
the next step is to group these unit LINEs 
together to form long lines and curves. The tradi
tional method for accomplishing this is with a 
sequential tracking algorithm (e.g., Horn, 1974); 
however, such sequential methods are notoriously 
sensitive to noise. Rather, we shall formulate 
the grouping as a second RLP that attempts to join 
pairs of neighboring LINEs together. More precise
ly, if we define a link between every pair of 
neighboring pictorial positions that have moder
ately certain LINEs associated with them, then the 
RLP will attempt to label these links as either 
CONNECTED or NOT-CONNECTED (or, equivalently, as 
LINK or NO-LINK). Thus we have a hierarchical 
RLP system with two horizontal processes (one at 
the LINE leve l and one at the LINK l evel ) and two 
vertical processes (one in which LINE labe ls influ
ence LINK labels, and one in which LINK labe l s 
influence LINE labels). The system of descrip
tions is hierarchical because there i s a contrac
tion over position: each LINK label spans two 
LINE labels. 

There are three additional groups of compati
bility functions necessary for this hierarchical 
system: one for the horizontal link process and 
two for the vertical processes. Furthermore, in 
order to separate the information sources used at 
each level, the horizontal link process was 
designed to use the intensity information contained 
in the underlying pixels. (Recall that the hori
zontal LINE process used orientation information). 
More specifically, if LINK,. spans pixels i and j, 

l.J 
and LINKjk spans pixels j and k, then the 

compatibility between them is defined to be (in 



conditional probability terms): 

p(LINK .. ILINK.k) 
1.) J 

(1 - IInt(i) - Int(k) ll 

X 0,4 + 0.3, (7) 

where Int(i) and Int(k) are the normalized inten
sities at points i and k. Such normalization is 
necessary for the above expression not to be a 
function of the dynamic range of intensities for 
different systems, and consists simply in scaling 
all intensities into [O,ll, with the mean inten
sity set to 0.5. The restriction of (7) to the 
range (.3,.71 is necessary so that intensity 
differences do not drive LINK labels to certainty 
in one step. Also, note that two LINKs are neigh
bors in the horizontal process if they span the 
same pixel and the angle of continuation between 
them is greater then or equaJ. to 90°. 

The first vertical RLP allows information 
about current LINK labels to influence the under 
lying LINE labels. This downward inf~rmation flow 
is based upon orientation consistency, i.e., 

riI(LINEJLINK) = cos (w [aLINE - a LINKl), (8) 

where w is again set to meet the criterion in 
Section 4. To scale these compatibilities into 
the same form as (7), we set 

r . (;\,L) + 1 

I 1.I 
piI (A L) = -E-[r-.-(-A-,L-)-+-1) 

A iI 

(9) 

The second vertical RLP uses current LINE 
labels to influence LINK labels, with each link 
seeing only the two underlying LINE nodes as its 
neighbors. The compatibility function contains 
two terms combined as a product, the first relating 
orientations as in (8), and the second relating 
intensity information according to: 

Pu (LI Al INT= (1 - IInt(i) - Int(k) ll x 0.5. 
(10) 

With this new form, when the intensity difference 
is small the intensity contribution approaches 
0.5, leaving the consistency determination to the 
orientation component. 

In order to take advantage of all of the 
information sources simultaneously, without 
possibly introducing oscillatory behaviour between 
them, it is necessary that all processes are run 
concurrently (Zucker, 1978). To accomplish this 
we used a modified form of the updating rule (1): 

P~+l (;\) 
l. 

This new 

1 + a E 
j 

where 

s. 
J 

and 
a = c .. 

1.) 

form 

S, 
J 

1 
J 

is 

"' 1T 

j 

(11) 

obtained from the approximations: 

(1 + as.) "' 1T (1 + s. ) a 
J j J 

(J is a variable denoting the 
degree of node i). 
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While there are many advantages to this form 
of the updating rule, s uch as an invariance to 
linear errors in heuristically chosen compatibi l 
ities (Zucker and Mohammed, 1978), its princ i p l e 
advantage here is that all node and label depen
dencies are grouped into a single term, p ,. (;\I;\' ), 

1.) 

rather than into separate terms for node and label 
dependencies, as in (1). Thus the different 
processes can now be combined as a simple product 

K 
QH (;\ ) 

p~+l (;\) 
p, (;\) Qv (;\) 

l. 
(1 2 ) 

l. E p~ (A) QH (;\ ) QV (;\) 
"- i 

in which the horizontal and vertical contributions 
are: 

QH (;\ ) 1T E p, . (A I A') p~(;\')} 
jE:HN(i) ;\' 1.) J 

QV(;\) 1T E piI (A IL') K (L ' )} 
IE:VN(i) L' 

PI 

The result of running this hierarchical sys
tem on the noisy image in Fig. 1 is s hown in Fig. 3. 
Note that now the image is labe l ed properly. Thus 
the hierarchical system, using intensity and orien
tation information, is more robust in the presence 
of extreme noise than the pure horizontal process. 

7. MODELS FOR COMPATIBILITY FUNCTIONS 

The emphasis in this paper has been l argely on 
the structure of algorithms for computing visual 
descriptions, rather than on the content of visual 
representations. Nevertheless, it was necessary 
to specify a particular vision problem, that of 
line and curve labeling, in order to define 
processes completely enough for concrete study. 
This specification defined the symbolic structure 
of the RLPs, i.e., the label sets, the neighborhood 
relations, and the compatibility functions. In 
this section we consider a more general form for 
compatibility functions, those that are functions 
of the image, as well as some of the potential 
foundations from which compatibilities may be 
derivable that would require them. 

The label sets for RLPs define the space of 
representations over which t hey are meaningful, 
such as t he space of lines and curves. The 
internal structure of this space is reflected in 
(or defined by) the compatibi l ity functions. Thus 
the curves that we considered had two structural 
components: one that followed a good continuation 
of orientation and one that followed a good contin
uation of intensity. Each of these components was 
complete in itself, and both were mutually consis
tent through the vertical compatibility functions. 
Each defined a stable RLP that extended the other 
through cooperation and competition. However, 
they were constant for all images, thus requiring 
that the image-specific data enter the process 
through the initial certainty factors. 

A more general situation is to al low the 
specification of the internal structure of the 
representational space to be variable, perhaps 
depending on the image or a different knowledge 
source, rather than a constant. Then the compati
bility functions would also be variable and the 
precise notion of consistency would be data (or 
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alternate knowl edge-source ) dependent. 

To study one way in which image data could 
enter the compatibility functions, we developed an 
RLP for labe ling INTERIOR, EDGE, and NOISE points 
in noisy images (Zucker and Leclerc, 1978; for an 
EDGE labe ling process more like the LINE process 
that we discussed, see Hanson & Riseman, 1978). 
The des ign philosophy behind the process is that 
ne ighboring INTERIOR points should not have large 
inte ns ity differences be tween them, that EDGEs 
s hould follow intensity differences, and that 
NOISE points should correspond to isolated inten
s ity differences . Thus tbe compatibility func
tions are image dependent, and they were impl e
mented as simpl e functions of neighboring inten
sity differences. For example, an INTERIOR 
label would s upport a neighboring INTERIOR label if 
their intensity difference were smali (with respect 
to the average intensity), but would detract 
s upport if the difference were large. An exampl e 
of this process is s hown in Figure 4, Note that, 
s ince sufficient image information is in the 
compatibilities , the initial certainty factors c~n 
a ll be set to uni form values. Thus both the a 
priori and the a posteriori data enter in the same 
manner. 

There are certainl y many other knowledge 
sources necessary for the specification of repre
sentational domains that are richer than those 
considered here. These sources could fit together 
in a cooperative environment much like the one 
described in Section 6, perhaps augmented with 
adjustable compatibilities. Other sources that 
have been shown to admit this kind of representa
tion include subjective contours (Ullman, 1976), 
stereo fusion (Marr and Poggio, 1977), and surface 
orientation (Woodham, 1977; Horn, 1974; Mackworth, 
1973). Furthermore, Barrow and Tenenbaum (1978) 
have conjectured that many intrinsic scene charac
teristics, such as surface reflectance , orientation, 
distance , and illumination could be computed in a 
similar fashion. These studies suggest the excit
ing possibility that detailed models for the 
structure of the physical world could be deve l oped 
which could then be used to derive the compatibi lity 
functions exactly. Such compatibilities would 
certainly have elaborate interdependency structures. 

8 . CONCLUSIONS 

While the processes of low- l eve l vision have 
been studied a great deal, these studies have 
tended to be disparate and problem-dependent. 
There are universal themes, however, and these 
themes include the use of various forms of prob l em 
decomposition to deal with complexity and the use 
of consistency to deal with ambiguity and noise. 
Taken together, these themes imply that low-leve l 
vision systems could be modeled as networks of 
local processes whose intercommunications are 
governed by local consistency relations. 

Relaxation labeling processes embody this 
kind of structure, and several of their applications 
in low-level vision were described in this paper. 
Two of these indicated different representational 
decompositions, one across spatial positions at a 
single l evel of abstraction, and the other across 
l evels of abstraction but over a single pro j ected 
spatial position. Together they describe a type of 
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canonical structure for representations in whi ch 
the abstract flow of information, both horizonta lly 
and vertically , can be studied. 

When a representational system admits such an 
organization, or when it forms a hierarchy, then 
the decomposition suggests that local neighborhoods 
s hould be viewed as spheres , e ncompassing both 
neighboring spatial positions and neighboring 
descriptions at adjacent levels of abstraction. 
Then consistency can be achieved both horizontally 
and vertical l y with information flowing to supple
ment partial results everywhere. 

The formal analysis that we did revealed 
that relaxation, in addition to achieving local 
consistency, was also computing local maxima . 
This s uggests an important difference between con
tinuous relaxation processes , s uch as the one 
considered here, and discrete ones: cont inuous 
relaxation orders consistent hypotheses , whi l e 
discrete processes do not. In general, however , 
understanding the precise computation that a dis
tr ibuted system such as relaxation is performing 
is extr emely difficult, and much remains to be 
done. This increased computational understanding , 
coupled with a better understanding of the repre
sentation of visual information, should l ead to 
the development of more functional vision sys t ems. 
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Fig. l a: A (16xl6 ) image containing three 

crossing lines and one short line, 
p lus additive gaussian noise. 
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ITERATION 1 ITERATION 5 

ITERATION 10 ITERATION 20 

Fig. lb : Horizontal LINE RLP operating on the image in Fig. la. The maximum LINE assertion 
is displayed at each position with an intensity proportional to its certainty. 
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fig.2: Information flows in the hierarchical system for line labeling and grouping. 
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ITERATION 1, LINE LEVEL ITERATION 1, LINK LEVEL 

ITERATION 5, LINE LEVEL ITERATION 5, LINK LEVEL 

ITERATION 20, LINE LEVEL ITERATION 20, LINK LEVEL 

'Fig. 3: Hierarchical system operating on the image in Fig. la. The LINK process is displayed together 
with the underlying LINE labels. Note that the uncertainty in the LINE labels has been removed 
by the LINK process. 
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·Fig. 4: An RLP for labeling EDGE, INTERIOR, and NOISE points. The INTERIOR labels are displayed 
as boxes, and the EDGE labels are displayed with the appropriate orientation. The original 
image consisted of three nested squares. 
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PHOTOMETERIC STEREO: A REFLECTANCE MAP TECHNIQUE 

FOR DETERMINING 

OBJECT RELIEF FROM IMAGE INTENSITY 

Robert J. Woodham 

Artificial Intelligence Laboratory 

Massachusetts Institute of Technology 

Introduction 

Work on image understanding has led to a need to 

model the imaging process. One aspect of this concerns the 

geometry of image projection. Less well understood is the 

radiometry of image formation. Relating the intensity values 

recorded in an image to object relief requires a model of the 

way surfaces reflect light. 

A reflectance map is a convenient way to incorporate 

a fixed scene illumination, object photometry and imaging 

geometry into a single model that allows image intensity to be 

related directly to surface orientation. This relationship is not 

functional since surface orientation has two degrees of freedom 

and image intensity provides only one measurement. Local 

surface topography can not, in general, be determined by the 

intensity value recorded at a single image point. In order to 

determine object relief, additional information must be 

provided. 

This observation has led to a novel technique called 

photometric stereo in which surface orientation is determined 

from two or more images. Traditional stereo techniques 

determine range by relating Images of an object viewed from 

two directions. If the correspondence between picture elements 

is known, then distance to the object can be calculated by 

triangulation. Unfortunately, it is difficult to determine this 

correspondence. The idea of photometric stereo is to vary the 

direction of the incident illumination between successive views 

while holding the viewing direction constant. This provides 

enough information to determine surface orientation at each 

picture element. Since the imaging geometry does not change, 

the correspondence between picture elements is known a priori. 

This stereo technique is photometric because it uses the 

Intensity values recorded at a single picture element, In 

successive views, rather than the relative positions of features. 
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The Reflectance Map 

The fraction of light reflected by a surface in a 

given direction depends upon the optical properties of the 

object material, the surface microstructure and the spatial and 

spectral distribution and state of polarization of the incident 

light. A key photometric observation is: 

No matter how complex the distribution of incident 

illumination, for most surfaces, the fraction of the incident 

light reflected in a particular direction depends only on 

the surface orientation. 

The reflectance characteristics of an object material 

can be represented as a function 4> ( i, e, g) of the three angles 

i, e and g defined in figure I. These are called, respectively, the 

incident, emergent and phase angles. The angles i, e and g are 

defined relative to the object surface. 4>(i,e,g) determines 

the fraction of the incident light reflected per unit surface area, 

per unit solid angle, in the direction of the viewer. 

If the equation of a surface is given explicitly as: 

z = f(x,y) 
then a surface normal is given by the vector: 

[af(x,y)/ax,af(x,y)/ay,-1]. 

If parameters p and q are defined by: 

p = ar(x,y)/ax 
q = ar(x,y)/ay 

then the surface normal can be written as [ p, q, -1]. The 

quantity ( p, q) is called the gradient, and gradient space is the 

two-dimensional space of all such points ( p, q ). Gradient space 

is a convenient way to represent surface orientation. It has 

been used In scene analysis [Mackworth 73). In image analysis, 

It Is used to relate the geometry of image projection to the 

radiometry of Image formation [Horn 77). 
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Image forming systems perform a perspective 

transformation [figure 2(a)). If the size of the objects in view 

is small compared to the viewing distance, then the perspective 

projection can be approximated as an orthographic projection 

[figure 2(b)). Consider an image forming system that performs 

an orthographic projection. To standardize the imaging 

geometry, it is convenient to align the viewing direction with 

the negative z-axis. Assume appropriate scaling of the image 

plane so that object point (x,y,z) maps onto image point 

(u, v) where: 

U = X 

V : y. 

An important simplification inherent in the 

assumption of an orthographic projection is that the viewing 

direction, and hence the phase angle g, is constant for 311 object 

points. Thus, for a standard light source and viewer geometry, 

the fraction of incident light reflected depends only on gradient 

coordinates p and Q. 

Further, suppose each object point receives \he same 

incident illumination. Then, the amount of the incident light 

reflected in a particular direction depends only on the surface 

orientation. The assumption that the size of the objects is 

small compared to the viewing distance allows one to relate the 

amount of light reflected per unit solid angle in the direction 

of the viewer directly to image intensity. Thus, for the given 

imaging geometry, for a given distribution of incident 

illumination and a given object material, the image intensity 

corresponding to a surface point with gradient ( p, q) is unique. 

The reflectance map R( p, q) determines image 

· intensity as a function of p and q. A reflectance map captures 

the surface photometry of an object material for a particular 

light source, object surface and viewer geometry. It explicitly 

incorporates . both the geometry and radiometry of Image 

formation into a single model. 

If the viewing direction and the direction of incident 

illumination are known, then expressions for cos ( i ), cos ( e) 

and cos( g) can be derived in terms of gradient space 

coordinates p and q. Suppose vector [ Ps, qs, -1] defines the 

direction of incident illumination. Then: 

cos(i) = 
1 + PPs + QQs 

/ 1 + P/ + q/ /1 + p2 + Q2 

1 
cos(e) = 

Ji+ Pz + qz 
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These expressions allow one to transform an arbitrary surface 

photometric function cl> ( i, e, g) into a reflectance map function 

R(p,q). 

Reflectance maps can be determined empirically, 

derived from phenomenological models of surface reflectivity 

or derived from analytic models of surface microstructure. One 

simple, idealized model of surface reflectance is given by: 

cl>a(i,e,g) = p cos(i) 

This reflectance function corresponds to the phenomenological 

model of a "Lambertian" reflector which appears equally bright 

from all viewing directions. Here, p is an "albedo" factor and 

the cosine of the incident angle accounts for the foreshortening 

of the surface as seen from the source. The corresponding 

reflectance map is given by: 

A second reflectance function, similar to that of 

materials in the maria of the moon and rocky planets, is given 

by: 

cl>b(i,e,g) = p cos(i)/cos(e) 

This reflectance function corresponds to a surface which, as a 

perfect diffuser, reflects equal amounts of light in all directions. 

The cosine of the emergent angle accounts for the 

foreshortening of the surface as seen from the viewer. The 

corresponding reflectance map is given by: 

Reflectance maps are independent of the shape of 

the objects being viewed. To emphasize that a reflectance map 

is not an image, it is convenient to present R( p, Q) as a series of 

"iso-brightness" contours in gradient space. Figure 3 and 

figure i illustrate the two simple reflectance maps Ra ( p, Q) and 

Rb ( p, Q) defined above. 



Reflectance Map Techniques 

Using the reflectance map, the basic equation 

describing the image-forming process can be written as: 

l(x,y) = R(p,q) (1) 

This equation has been used in image analysis to explore the 

relatiomh.ip bet.ween .image intensity and object relief. 
Determmmg object rehef from image intensity is difficult 

because ( l) Is underdetermined. It Is one equation in the two 

unknowns P and q. In order to determine object relief, 

additional assumptions must be invoked. 

Reflectance map techniques help make these 

assumptions explicit. For certain materials, such as the material 

of the maria of the moon, special properties of the reflectance 

map simplify the solution [Horn 75] [Horn 77]. Other methods 

to determine object relief from image intensity embody 

assumptions about surface curvature [Horn 77] [Woodham 77]. 

"Simplified" surfaces have been proposed for use in computer 

aided design [Huffman 75]. When properties of surface 

curvature are known a priori, these can be exploited in image 

analysis [Woodham 78]. This is useful, for example, in 

industrial inspection since there are often constraints on surface 

curvature imposed by the drafting techniques available for part 

design or the fabrication processes available for part 

manufacture. One purpose of these studies is to deepen our 

understanding of what can and can not be computed directly 

from image intensity. 

Other reflectance map techniques use ( l) directly to 

generate shaded images of surfaces. This has obvious utility in 

graphic applications including hill-shading for automated 

cartography [Horn 76] and video input for a flight simulator 

[Strat 78]. Synthesized Imagery can be registered to real 

imagery to align images with surface models. This technique 

has been used to achieve precise alignment of LANDSAT 

Imagery with digital terrain models [Horn &: Bachman 77]. 

Photometric Stereo 

Photometric stereo is a novel reflectance map 

technique which uses two or more images to solve ( 1) directly. 

The idea of photometric stereo is to vary the direction of 

incident illumination between successive views while holding 

the viewing direction constant. Suppose two images I 1 ( x, y) 

and I2(x,y) are obtained by varying the direction of incident 

illumination. Since there has been no change in the imaging 

geometry, each picture element (x,y) in the two Images 

corresponds to the same object point and hence to the same 

gradient ( P, q ). The effect of varying the direction of incident 

illumination Is to change the reflectance map R( p, q) that 

characterizes the imaging situation. 

Let the reflectance maps corresponding to 11 (x,y) 

and I2(x,y) be R1 (p,q) and R2(p,q) respectively. The two 

views are characterized by two independent equations: 
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I
1
(x,y) = R1(p,q) (2) 

I
2

(x,y) = R2(p,q) (3) 

Two reflectance maps R1(p,q) and R2(p,q) are required. 

But, if the phase angle g is the same in both views (i.e., the 

illumination is simply rotated about the view vector), then the 

two reflectance maps are rotations of each other. 

For reflectance characterized by Rb ( p, q) above, ( 2) 

and ( 3) are linear equations so that two views are sufficient to 

uniquely determine surface orientation at each image point 

(provided the directions of incident illumination are not 

collinear). Here, ( 2) and ( 3) suggest that a 90° angle between 

the directions of incident illumination would be optimal for 

photometric stereo. 

In general, equations ( 2) and ( 3) are nonlinear so 

that more than one solution is possible. One idea would be to 

obtain a third image 

I 3(x,y) = R3(p,q) (4) 

to overdetermine the solution. 

For reflectance characterized by Ra ( p, q) above, 

three views are sufficient to uniquely determine surface 

orientation at each image point [Horn 78]. Let 

I = [ I 
1 

, I 
2

, I 3]' be the column vector of intensity values 

recorded at a point ( x, y) in each of the three views (' denotes 

vector transpose). Further, let 

n1 = [n11,n12,n13l 

n2 = [n21,n22•"23l 

n3 = [n31•"32•"33l 
be unit vectors which point in the direction of the three 

positions of the incident illumination. Construct the matrix N 

where: 

N = 21 n22 n23 

31 n32 n33 f 11 n12 n1~ 

Let n = [n 1,nz,n3 ]• be the column vector corresponding to a 

unit surface normal at (x,y). Then, 

I = p N n 

so that, p n = N-1 I 

(provided the inverse N- 1 exists). This inverse exists if and 

only if the three vectors n 1, n 2 and n 3 do not lie in a plane. 

In this case, 

p=ln- 1 11 

n = (l/p)W 1 I 

and 

(5) 



Unfortunately, since the sun's path across the sky is planar, this 

simple solution does not apply to outdoor images taken at 

different times during the same day. 

Equation ( 5) suggests that three mutually orthogonal 

directions of incident illumination would be optimal for 

Lambertian reflectance. In any stereo technique, however, there 

is some trade-off to acknowledge. In photometric stereo, 

choosing a larger phase angle g leads to more accurate 

solutions. At the same time, a larger phase angle causes a 

larger portion of gradient space to lie in the shadow region of 

one or more of the sources. A practical compromise is achieved 

by using four light sources and a relatively large phase angle. 

Solutions are accurate and most of gradient space lies in 

regions illuminated by at least three of the sources. Three 

image intensity measurements overdetermine the set of 

equations and establish a unique solution. 

The images required for photometric stereo can be 

obtained by explicitly moving a single light source, by using 

multiple light sources calibrated with respect to each other or 

by rotating the object surface and imaging hardware together 

to simulate the effect of moving a single light source. The 

equivalent of photometric stereo can also be achieved in a 

single view by using multiple illuminations which can be 

separated by color. 

Photometric stereo Is fast. It has been developed as 

a practical scheme for environments in which the nature and 

position of the incident illumination is known or can be 

controlled. Initial computation is required to determine the 

reflectance map for a particular experimental situation. Once 

calibrated, however, photometric stereo can be reduced to 

simple table lookup and/or search operations. 

Applications of Photoinetric Stereo 

Photometric stereo can be used in two ways. For a 

given image point" ( x, y ), equations ( 2) and ( 3) can be used 

to determine the corresponding gradient ( p, q ). Used in this 

way, photometric stereo is a general technique for determining 

surface orientation from image intensity. Figure 5 illustrates 

the reflectance map contours obtained from synthesized images 

of a sphere using a three source configuration. 

For a given gradient ( p, q ), equations ( 2) and ( 3) 

can also be used to determine corresponding image points 

(x,y) . Used In this way, photometric stereo is a general 

technique for determining points In an image whose 

corresponding object points have a particular surface 

orientation. Figure 6 illustrates the image intensity contours 

120 

obtained from synthesized images of a sphere using a three 

source configuration. 

This latter use of photometric stereo is appropriate 

for the so called industrial bin-of-parts problem. The location 

in an Image of "key" object points Is often sufficient to 

determine the position and orientation of a known object tossed 

onto a table or conveyor belt. 

A particularly useful special case concerns object 

points whose surface normal directly faces the viewer. Such 

points form a unique class of image points whose intensity 

value is Invariant under rotation of the incident illumination 

about the view vector (i.e., a change in direction of i11umination 

which preserves the phase angle gl. Thus, it is possible to 

locate such object points without explicitly determining the 

reflectance map R(p,q) . Whatever the nature of the function 

R(p,q), the value of R(O,O) is not changed by rotation about 

the gradient origin. Figure 7 repeats the example given in 

figure 6 but for the case p = 0, q = 0. 
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Figure 1 Defining the three photometric angles 1, e and g. The incident angle 1 is the angle between the 

Incident ray and the surface normal. The view angle e is the angle between the emergent ray and the 

surface normal. The phase angle g is the angle between the incident and emergent rays. 

y 
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Or~o9,-o.ph1c.. Pro,iec.:hon 
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Figure 2 Characterizing image projections. Figure 2(a) illustrates the well-known perspective projection. 

[Note: to avoid image inversion, it is convenient to assume that the image plane lies in front of the lens 

rather than behind it.] For objects that are small relative to the viewing distance, the image projection can 

be modeled as the orthographic projection illustrated In figure 2(b). In an orthographic projection, the 

focal length f ls Infinite so. that a ll rays from object to image are parallel. 
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Figure 3 The reflectance map R
8
(p,q) for a Lambertian surface illuminated from gradient point 

p5 = 0. 7 and q 5 = 0 .3 (with p = 1.0). The reflectance map Is plotted as a series of contours (spaced 0.1 

units apart). 

Figure 4 The reflectance map Rb( p, q) for a perfect diffusing surface Illuminated from gradient point 

p
5 

= 0. 7 and q
5 

= 0 .3 (with p = 1.0). The reflectance map Is plotted as a series of contours (spaced 0.1 

units apart). 
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Figure 5 Determining the surface orientation (p,q) at a given image point (x,y). Three (superimposed ) 

reflectance map contours are intersected where each contour corresponds to the intensity value at (x,y) 

obtained from three separate images (taken under the same imaging geometry but with different light 

source position). I 1(x,y) = 0.942, I 2(x,y) = 0.723 and I3(x,y) = 0.505. 
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Figure 6 Determining image points ( x, y) whose surface orientation is a given gradient ( p, q ) . Three 

(superimposed) Image Intensity contours are intersected where each contour corresponds to the value at 

( p, q) obtained from three separate reflectance maps. (Each reflectance map characterizes the same 

imaging geometry but corresponds to a different light source position.) R1 ( p, q) = 0. 974, 

Rz(p,q) = 0.600 and R3(p,q) = 0.375. 

12 3 



. I 

. I 

y 
~.o 

X 

-~.o 

Figure 7 Determining image points whose surface normal directly faces the viewer. Three (superimposed) 

image intensity contours are intersected where each contour corresponds to the value at ( 0, 0) obtained 

from three separate reflectance maps. (Each reflectance map characterizes the same imaging geometry but 

corresponds to a different light source position.) Note that the reflectance map value at ( O, O) does not 

change with light source position (provided the phase angle g is held constant) . 
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ABSTRACT 

This paper overviews and discusses a 
model representation and control 
structure for a high level component of a 
computer vision system. The high level 
stage is characterized by the necessity 
t o solve subproblems containing large 
search spaces, diverse and large sources 
of knowledge, and requiring 
non-deterministic (possibly in error) 
decisions made at various levels in the 
analysis. The high level stage adopts 
the concept of competition and 
cooperation as a basic paradigm for the 
system vision strategy. The system uses 
a relational database together with a 
relational algebraic sublanguage as an 
accessing mechanism to both the long and 
short term memories. Current knowledge 
about the particular picture under study 
is stored in the Short Term Memory which 
is designed as a communication channel 
between the different sources of 
knowledge of the system. The Long Term 
Memory contains all the relevent 
information (syntactic, semantic and 
pragmatic ) about the class of scenes 
under analysis. 

1 • INTRODUCTION 

This paper introduces a particular 
approach to the problem of computer 
vision, that is, the problem of 
segmentation and interpretation of two 
dimensional pictures which are 
projections of three-dimensional scenes. 
We have adopted a methodology in the 
design that stresses the development of 
modular processes, each of which is meant 
to deal with a major vision subproblem. 
These subtasks or modules should be able 
to conununicate with each other in order 
to implement feedback and to cooperate in 
achieving an overall goal. As shown in 
figure 1, the system consists of many 
independent sources of knowledge which 
cooperate through a conunon data structure 
(short term memory) to achieve their own 
individual processing goals. 

At the input, the color picture is 
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segmented into regions containing pixels 
whose primary features (such as color and 
texture) are similar using a pyramidal 
region growing method described in 
(Levine 78 ) . This method is based on a 
shared nearest neighbor clustering 
technique (Jarvis et al. 73 ) modified by 
a connectivity requirement and applied 
through a pyramidal data structure 
(Tanimoto et al. 75 ) . It is relatively 
insensitive to absolute thresholding, and 
all pixels at every level of the pyramid 
are examined in parallel and not in a 
prespecified order. This low level 
processing stage of the analysis can be 
looked upon as a means of reducing the 
number of individual entities to be 
analyzed at the higher levels, thereby 
facilitating data handling and storage. 
Typically, it may result in a comoression 
from the 128 x 128 pixels in the input 
(red, green and blue intensity planes) to 
the order of one to two hundred regions. 
The latter are then the input to the 
higher processing stages. 

Beginning with these regions, 
Section 2 deals with the short term 
memory which embodies the current 
knowledge about the oicture under 
consideration. Section 3 briefly 
discusses the relational algebraic 
sub language which is employed in 
conjunction with the relational database. 
This type of data structure is used to 
implement both the Short Term and Long 
Term Memories, the latter discussed in 
Section 4. Finally, Section 5 describes 
the high level processor which is 
concerned with the interpretation 
strategy for achieving the system goals. 

2. SHORT TERM MEMORY (STM) 

Due to the diversity of the various 
sources of knowledge needed to analyze 
comolex natural scenes, as well as their 
dynamic interaction, the vision system 
must be modular in nature. This implies 
that each source of knowledge should be 
designed as a module that has access to 
the necessarv information for achieving 
its processing tasks, as well as the 
results (often partial) from other 
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sources. Each module should be able to 
transmit its own conclusions regarding 
the scene under consideration to the 
other parts of the system. This allows 
for the possible parallel operation of 
the different sources as well as the 
ability to develop the system in stages. 
Because of these requirements, and 
motivated by the HEARSAY speech 
understandinq system (Reddy et al., 73a, 
73b, Lesser et al. 74), the Short Term 
Memory (STM) in figure 1 was introduced 
as a bvffer or communication channel 
between the different sources o~ 
knowledge. This memory facilitates the 
desired interaction by allowing each 
source to transmit (broadcast) its own 
results, and to have access to both the 
information about the scene under study 
and all the deductions made by the other 
sources of knowledge. To achieve this, 
each new source needs only be aware of 
the overall STM structure and the 
communication languaqe to and from the 
STM. Because of the modularity property, 
it is not affected by the previously 
installed sources or the removal or 
reformulation of some of them. we note 
that each source of knowledge may define 
a specific data structure (in our case 
relations) to provide and communicate 
specific information (e.g . the occlusion 
analyzer). 

The STM is designed and implemented 
as a relational database (Shaheen 78) 
that maintains information about the 
scene such as the current segmented 
regions and their associated feature 
descriptions (see Relation 1). Structur al 
relationships, as embodied by topological 
constraints among the regions, are also 
included (see Relations 2 and 3). In 
addition, associated with each region is 
a list of possible interpretations as 
deduced by the different modules of the 
system (see Relation 4). These lists of 
interpretations are ordered to reflect 
the current state of knowledge, as well 
as the focus of attention of the 
analysis. 

The region features and the 
structural relationships prevailing among 
the reqions are generated by the feature 
analyzer shown in figure 1. This module 
has access not only to the basic image 
planes (red, green, blue and texture 
description), but also to the pyramidal 
data structure generated by the low level 
processor (Nazif 78). Moreover, it is 
capable of generating new regions by 
merging other regions and then updating 
the appropriate STM relations. 

The order of the regions in the STM 
is important as it controls the focus of 
attention of the high level processor. 
The latter scans the STM and examines the 
first region it finds satisfying specific 
conditions described in Section 5.2. The 
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hypotheses associated with this region 
are tested and their corresponding 
confidences are updated to reflect the 
current overall knowledge about the 
scene. The STM regions are then 
reordered, thereby directing the system's 
attention to a different part (region) of 
the scene under study. 

3. RELATIONAL ALGEBRAIC SUBLANGUAGE 

A relational algebraic sublanquaqe 
has been defined and implemented to act 
as an accessing mechanism to be used by 
the different modules of the system 
(Shaheen 78). Such operations as JOIN, 
PROJECT and RESTRICT, together with UNION 
and INTERSECTION, are avail~ble to be 
used bv the sytem modules or by the human 
operator. during both the learning and 
experimentation stages. A detailed 
introduction to the relational database 
and the algebraic sublanguage can be 
found in (Date 74). 

The usage of the relation~! 
algebraic sublanguage facilitates and 
guarantees the independence and 
modularity of the system modules. I~ 
also relieves the individual modules of 
the task of database administration and 
the problems associated with a particular 
physical storage device for the knowledge 
base. Each module can define temporary 
or permanent relations without 
interfering with the other modules. This 
is because all system relations are in 
the third normal form (Date 74), thereby 
providing an adequate level of data 
integrity. This data structure 
simplifies the task of the designers of 
the different modules as it pertains to 
the available computer resources. The 
only knowledge required by them are the 
particular relation formats and the 
relational algebraic sublanguage. 

4. LONG TERM MEMORY (LTM) 

The Long Term Memory is also a 
relational database that contains all of 
the relevent information ( syntactic , 
semantic and pragmatic) about the class 
of scenes under analysis. Initially we 
have concentrated on pictures which can 
be analyzed on the basis of two 
dimensional models and do not require the 
third dimension which provides the depth 
information. A method of using monocular 
depth cues to compute the n~cessary three 
dimensional information is under study 
(Rosenberg 78). The data regarding the 
world models and their constituents are 
entered into the Long Term Memory by 
means of a learning phase • They are 
accumulated by computing ( with the aid 
of the h..man operator ) different object 
features over a set of representative 
images of the visual world under study. 
The attributes of each object ( or part 
of an object) in the world model are 



entered into the relation OBJECT 
~TTRIBUTES. By object (or part of an 
object) we do not only refer to entities 
that are generally quite well defined by 
their shape, such as a "door" or a "car", 
but also to items such as "sky" or 
"ground" whose boundaries need to be 
delineated in each image. LTM relations 
exist to inform the system modules, such 
as the hypothesis initialization module, 
of the distinguishable features of each 
object as well as the acceptable 
variations in these features. 

Conceptual classes such as 
QUALIFYING, LOCATIONAL, JOINING, 
INTRUSION, DIVISION and CONTAINMENT as 
described in (Firshein 71), may be 
defined by a set of relations (see 
Relations 5 and 6). Contextual cues 
about the visual world under study are 
used by the different modules of the 
system to achieve their processing goals. 
As an example, consider the LOCALIZING 
conceptual class, or as it is often 
referred .to. the complexity predicate 
(Firshein 71), which is shown in Relation 
6. It can be extremely powerful in 
limiting subsequent search after a 
particular object (or part of an object) 
has been recognized. Most probably it 
would be used in conjunction with 
information appearing in other relations 
such as, for example, constraints about 
spatial relationships (e.g. the fact that 
the "sky" may be adjacent and above the 
•roof" but cannot be adjacent to a 
•door"). These constraints are coded in 
a specified format and stored in 
different LTM relations. 

The above LTM relations are employed 
by the system in directing the processing 
of the various sources of knowledge of 
the system. In general, they consist of 
tuples. where each tuple T is a 
conditional statement composed of zero or 
more condition elements (constraints) and 
zero or more action elements. The 
hypothesis tester uses a group of these 
relations to evaluate and update 
interpretation confidences of the region 
under considerat!bn. We refer to such a 
condition-action group as a rule, and 
note that it includes information 
regarding syntactic, locational and 
relative position constraints. The 
latter specify and determine the 
compatibility of each hypothesis of a 
region Rx with the beat available 
interpretation for the regions in its 
immediate neighborhood. For example, a 
relation is used to store spatial 
constraints which are matched against an 
input pattern. Here, matching implies 
that the system is able to verify the 
hypothesis ' that any two regions R1 and R2 
with interpretations I1 and I2 are 
compatible (i.e. satisfies all of the 
constraints associated with the rules 
that contain I1 and I2 as adjacent 

objects). In case of a match (R1 and R2 
are compatible), the hypothesis tester 
executes an action associated with the 
matched constraints, which tends to 
increase the confidence of the tested 
pattern. The hypothesis tester is 
described in more detail in Section 5.1. 

Another set of relations in the LTM 
is used to direct the focus of attention 
of the system. In general, they specify 
an action or a set of actions to be 
excuted in certain situations. The 
situation-action pair, also termed a 
rule, is specified as a conditional 
statement in the form of: 

S(C1 ••• Ci. •• Cn1) ---> (A1 ••• Aj ••• Am1) 

where Ci is the i-th condition element 
and Aj is the j-th action to be excuted 
provided n1~0 and m1)0. 

The focus of attention module finds 
the first situation in the LTM that 
matches the current knowledge about the 
scene (STM knowledge) and excutes its 
associated actions. We note the 
importance of the order of the 
situation-action pairs in the LTM 
relations. Of course, other more 
intelligent search strategies for a 
matching situation may be introduced. 
Here we should also point out that 
default action• are excuted when no other 
situation is true. This is specified by 
having an action associated with a null 
situation (situation with zero 
conditions) as the last situation 
examined. The situation-action pairs are 
used to specify heuristic PLANS, activate 
other system modules or update the 
current knowledge about the scene. The 
following are some examples of these 
situations and their associated actions: 

(i) If •door• was the best 
interpretation of the current region 
Rx under consideration with 
confidence Cx greater than some 
threshold, and region Rx contains 
some other region Ry, then the 
action of the system would be to 
increase the . confidence of the 
hypothesis indicating that region Ry 
is a •doorknob•. 

(ii) If two adjacent regions have 
the same best interpretation (e.g. 
•sky•) with confidence greater than 
some threshold, then the system's 
action would be to activate the 
merging module as well as the 
feature analyzer to update the 
appropriate relations. 

Section 5.2 describes 
structure in light Of 
and the effect on the 
of the system. 

the system control 
this set of rules 
focus of attention 
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A significant aspect of this 
approach is that the knowledge base (LTM) 
can be easily edited to change any of 
these relations (e.g. contextual cues, 
spatial constraints, condition-action and 
situation-action relations) thereby 
providing the system user w .th a powerful 
experimentation tool for testing 
different strategies and approaches. 

5. CONTROL STRUCTURE 
and 

INTERPRE·rATION STRATEGY 

5.0 Initialization 

The high level processing stage 
starts by generating a number of 
hipotheses for each region. The object 
hypothesizer is initially invoked to 
obtain a preliminary set of hypotheses 
(interpretations) for each of the regions 
in the STM. Using an exhaustive search, 
these are considered independently as 
candidates for matching with objects in 
the LTM in order to generate a set of all 
possible hypotheses about each of the 
regions. Use · is made of various LTM 
relations that describe the 
distinguishable features of each object, 
as well as the acceptable variations in 
these features, to determine all the 
possible hypotheses about the region·. 
Hypotheses (interpretations) for each 
region, together with their respective 
matching confidences, are entered in the 
STM in decreasing order with respect to 
their confidence. Moreover, the regions 
in the STM are also ordered using any 
feature (e.g. area, position or 
intensity) initially specified by the 
system user. This allows the user to 
direct the focus of attention of the 
system by specifying which region should 
be examined first by the system (e.g. the 
largest region or the brightest region). 
Starting with this region, the analysis 
proceeds using the hypothesis tester and 
focus of attention modules as will be 
described in Sections 5.1 and 5.2. 

5.1. Hypothesis Tester 

The high level processor employs the 
concepts of competition and cooperation 
as a basic paradigm for the system vision 
strategy (Arbib 75). The system uses the 
competition between the possible 
hypotheses for a particular region and 
the competition and cooperation between 
the immediate neighbors of the region in 
order to achieve a global compatible 
interpretation of all of the regions. 
Basically, it employs local information 
from the immediate neighborhood of a 
region to obtain a global understanding 
of the whole scene (Zucker 76, 78, Waltz 
72). 

.Assume that region Rx is the region 

on the top of the STM. Let us define the 
following 

Ix (k) 

ex (k) 

Rj 

IRj 

CRj 

ARj 

SRj 

J (Rj ,Rx) 

is the k-th interpretation 
of regain Rx where 1)k)n (n is 
the number of - - active 
interpretations of region Rx); 
is the confidence of the k-th 
interpretation of Rx; 
is the j-th immediately 
adjacent region to Rx where 
1~j>m (m is the number of 
actjacent regions); 
is the current best 
interpretation of region Rj ; 
is the confidence that region 
Rj is interpreted as object 
IRj; 
represents the attributes of 
region Rj; 
represents the structural 
relationships associated with 
region Rj; 
represents the adjacency of 
region Rj to region Rx, defined 
as the ratio of the common 
boundary of Rj and Rx divided 
bv the total perimeter of Rx 
(O~J(Rj,Rx)~1). 

As described in Section 4, the 
rules are of the condition-action type. 
First, the system considers the best 
interpretation of each of the neighboring 
regions of Rx (IRj), their confidences 
(CRj), the adjacent regions' attributes 
(ARj), and the structural relationships 
with respect to region Rx and to the 
other regions (SRj) . Using these data, 
together with the attributes of region 
Rx, the hypothesis tester (figure 1) 
examines the compatibility of the 
interpretation of region Rx as object 
Ix(k) with its immediate adjacent 
regions' current best interpretaion IRj. 
This is accomplished by applying all the 
constraints associated with 
interpretations Ix(k) and IRj as adjacent 
objects . If all of these constraints are 
satisfied, the action of the system is to 
increase the confidence Cx(k) of region 
Rx as being object Ix(k), otherwise Cx(k) 
is decreased, as will be shown later. 
This operation is achieved by the 
hypothesi s tester which tests the 
validity of of the different hypotheses 
about region Rx and updates them to 
reflect the influence of its immediate 
neighbors . The interpretation list of 
region Rx is then reordered on the basis 
of decreasing confidence. An 
interpretation of region Rx may be 
deactivated (not considered in subsequent 
examinations of the region) if it is 
found to be incomoatible with the 
neighboring regions (e.g. its confidence 
is less than some threshold). At a 
certain point in the analysis, each 
region will be left with one active 
hypothesis which is the best possible 
compatible region with its adjacent 

128 



regions. If more 
exists, the 
interpretation 
confidence. 

than one interpretation 
system employs the 
with the highest 

Analytically, the system ex~mines 
each interpretation Ix(k) of region Rx 
and all the other scene knowledae as 
described above to calculate ~Cx(k) as 
follows: 

Acx(k)= 
J=n 
'L 
j=1 

6. . J(Rj,Rx) • C 
JX Rj 

where 0..,, is set to 1 if the hypothesis 
tester un is able to verify the 
compatability of regions Rx and Rj 
interpretations as objects Ix(k) and IRj 
using the constraints in the LTM 
relations and the current knowledge about 
the scene under study: otherwise &~ is 
set to -1. 

The new unnormalized confidences of 
the different interpretations of region 
Rx are defined as: 

• ACX (k) 
Cx(k)=Cx(k). (1+ ~~~~~~~--

These are then normalized as follows: 

• 
ex (kl 

Cx(k)=~~~~~~~-

~ I ~x(kil 
k=1 

If any of the interpreation 
confidences is found to be less than some 
threshold (i.e. Ix(k) is voted to be 
incompatible with its neighbors), 
interpretation Ix(k) of region Rx is 
deactivated. That is, it is not 
considered in the subsequent examinations 
of region Rx. 

After the hypothesis tester updates 
the interpretation confidences of region 
Rx, the focus of attention module 
examines the current knowledge about the 
scene (i.e the STM knowledge with the now 
updated information about region RX) to 
direct the next processing stages and the 
co...rse of action to be taken to achieve 
the overall processing goal o! the 
system. 

5.2. System Focus of Attention 

The analysis described in Section 
5.1 is always followed by the activation 
of the focus of attention module. As 
described in Section 4. this module 
operates within a control framework 
called recognize-act cycle. First it 
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scans the set o~ situations specified in 
the LTM in attempt to find the situation 
that has all of its conditions satisfied 
with respect to the current knowledge in 
the STM. It then excutes all of the 
actions associated with the satisfied 
situation. In most cases the conditions 
are expressed in terms of the best new 
interpretation of region Rx (top region 
on the STM), its attributes, structural 
relationships and global knowledge about 
the scene. The actions may be one or 
more of the following: 

i- Reordering of the regions in the 
STM to direct the system foc~s of 
attention to a different part of the 
image. This is achieved by moving the 
regions to be examined (i.e. the regions 
in that specific part) to the top of the 
STM. 

ii- Updating some other region 
interpretaion using the LOCALIZING 
conceptual class (Relations 6) after a 
particular object has been recognized 
with some degree of confidence. 

iii- Executing the safest merge, that 
is, finding if any of the adjacent 
reaions has the same object 
interpretation with a confidence greater 
than some threshold and then merging 
these reqions with region Rx. Merging 
regions will also activate the feature 
analyzer to update region boundaries and 
to calculate the new attributes of the 
region as well as its structural 
relationships to other regions already in 
the STM. This new information is then 
inserted into the appropriate STM 
relations. 

iv- Implementating a PLAN which is 
stored as a procedure or matching another 
set of situation-action rules. This 
allows for a hierarchical structuring of 
the control. 

v- Feeding back to the low level 
processing stages. 

In case the STM has not been reordered 
by any of the . actions defined above 
(i.e. action i was not triggered), the 
high level processor moves region Rx to 
the bottom of the STM. In addition, it 
places all the immediately adjacent 
regions of Rx at the top of the STM in an 
increasing order of confidence, thus 
allowing the least confident immediate 
neighbor of region Rx to be the first 
region to be examined next using the more 
confident interpretations of its 
surrounding regions. 

To ensure the propagation of the 
interpretations of the region Rx and its 
associated confidences before the system 
re-examines Rx, a fixed length queue is 
introduced to maintain (remember) the 



last Ng ( t he queue length) regions 
examined by the system. Hence region Rx 
will be inserted in the queue and the 
first element (region ) of the queue will 
be deleted. The system then proceeds to 
consider the next region on the top of 
the STM, Rx'. This region is compared 
with the elements of t he queue. If Rx' 
already exists in the queue, the next 
region in t he STM is taken. The process 
is repeated until a region Rx' is 
selected from the STM which does not 
exist in t he queue. This technique 
controls the frequency of examination of 
each region in t he STM. It also allows 
each region's updated interpretations to 
affect the other regions' interpretations 
before they get updated. In other words, 
the effect of t he identification of 
region Rx as object Y with a certain 
confidence will affect directly its 
adiacent neighbors Rj and we should allow 
this effect to propagate to the regions 
not in the i mmediate neighborhood of Rx 
before · re-examining Rx. This also 
prevents incorrect local interpretations 
in part of the i mage from directing the 
system towards an incorrect global 
interpretation. 

The length of the queue, Ng, will 
determine the size of the region 
neighborhood that will be affected by the 
local information before being influenced 
by the global understanding. As the 
length of the queue approaches the number 
of regions in the STM, the system will go 
through an analysis of most of the 
regions before returning to a particular 
region. On the other hand, if the queue 
length is zero, the system may (in 
certain situations) continue examining a 
set of regions in a small part of the 
image using only local information. The 
queue length is a focus of attention 
parameter determined by the user 
depending on the vision strategy being 
pursued. 

This module also monitors the 
changes with time in the confidences of 
the various regions. Define ~P to be: 

t+1 
f:>P 

where 
t+1 
Cx(k) 

t 
Cx(k) 

I t+1 t I 
C (k ) -C (k ) 

k=n .. ~ 
k•1 

is the updated k-th 
interoretation confidence of 
region Rx (region on ton of 
STM). 

is the old interpretation 
confidence fo~ the same 
interpretation of reqion Rx. 

If t:;.P is not equal to zero, the 
process continues as described above. But 
if AP is equal to zero during the last Nt 
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region examinations (N t is t he number o f 
regions that has more than one 
interoretaion ) , the process is stopped 
and each region is labelled with its 
current bdst interpretation. 

The above process will continue 
until each region has a unique 
interpretation compatible with the global 
scene understanding. However, it can 
also be stopped at any stage, yielding 
the best set of interpretations for the 
different regions in the imaqe at t he 
time. 

6. CONCLUSION 

In sununary, the previous sections 
have described the high level components 
of the computer vision system. Due to 
the diversity of the various sources of 
knowledge needed to analyze complex 
natural scenes, as well as their dynamic 
interaction, the modularity of the design 
has been emohasized. This also allows 
the incremental development of such a 
complex system. The Short Term Memory, 
which is implemented as a relation,: l 
database, was introduced to work as a 
buffer between the different sources of 
knowledge. A relational algeb_aic 
sublanguage has been defined to serve as 
a commmunication language and accdssing 
mechanism between the system modules. 

The high level processor is d ,c signed 
as a knowledge driven system with two 
types of rules, condition-action and 
situation-action. These conditions or 
sets of conditions and t heir associated 
actions are stored in the relational 
database as part of the w~rld model. 
They form the contextual cues, 
constraints, and PLANS used by the system 
in the segmentation and interpretation 
processes. The rules may be easily 
changed using the relational database 
editor wnich in turn, gives the user a 
very powerful tool for experimentation. 

An important aspect of the operation 
of the high level processor is that of 
the focus of attention. This concept is 
employed to direct the analysis to 
various parts of the picture according to 
well defined criteria and parameters. I n 
this way, it is possible to test 
different vision strategies. 

The computer vision system described 
above embodies the paradigm of 
competition and cooperation. We have 
tested it with the problem of image 
segmentation and interpretation of color 
outdoor Pictures. The preliminary 
experimental results have been 
encouraging and an extensive analysis of 
the performance of the system is 
presently underway. 
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Figure 1. A Knowledge-Based Computer Vision System 
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Region No. 

1 

i 

----- -
Region X 

------
1 
1 
5 

C C V V M M Area Perimeter 
X y X y X y 

2 100 110 15 19 1 1 45 42 1077 

Relation 1: Region Attributes 

(F
1

, F
2

, and F
3 

are the average attributes used in the 

description of region color (red, green and blue, or 

I, Y and Q, or I, Hand S). 

-----
Region y 

-----
11 
12 
12 

M 
X 

M 
y 

- --- -
Region X 

- -- --
1 
1 
2 

209 

-----
Region y 

- - -- -
2 
4 
3 

i j i j 

Relation 2: X ABOVE Y Relation 3: X LEFT-OF Y 

1 33 



. i 

----- --------
Region No . No. of Active I(l) C (1) I (2) C (2) I (3) C (3) 

Interpretations 

----- -------- - -- --
1 3 sky 0.65 roof 0.27 cloud 0.08 
2 2 sky 0 .83 roof 0.17 
5 1 roof 0.95 

i n Ii (1) Ci(l) ,, '.') f ') Ii (3) Ci(3) 

----- -------- --- --- --- --- --

Relation 4: Region Hypotheses and Their Confidences 

------ ------
Object X Object y 

------ ------
wall door 
wall window 
door doorknob 
sky clouds 

Relation 5: X CONTAINS Y (CONTAINMENT) 
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----- ----- ----
Obj ect X Object Y 

Minimum Maximum 
In View In View 

----- ----- ----

wall house 2 2 
door house 1 any 
window house 1 any 
doorknob door 1 1 

Relation 6: Complexity Predicate 
(QUALIFYING: PART-OF) 



THE EXTRACTION OF PICTORIAL FEATURES 

A.H. DIXON 
THE DEPARTMENT OF COMPUTER SCIENCE 
THE UNIVERSITY OF WESTERN ONTARIO 

LONDON, CANADA 

Yoshiaki Shirai demonstrated the feasibility 
of the following paradigm for scene analysis: 
that the construction of an interpretation for a 
scene should guide the location of search and 
the type of operations performed on the grey 
level data [ 6 ] . This paper combines Shirai's 
paradigm with some special procedures for pro 
cessing digitized images from a television 
camera into a system which demonstrates a general 
methodology for the recognition of pictorial 
features. A side benefit of this approach is 
that it encourages economical use of storage, 
fast execution, and distributed processing. 

The extraction of meaningful information 
from the television camera image can be 
characterized by four major tasks: 

1. initial simplification of picture content 
through image partitioning, 

2. extraction of visual cues, 

3. aggregation of visual cues into putative 
pictorial features, 

4. verification and refinement of dominant 
hypothesi zed pictorial features. 

While computations involve every point in 
the image, they compute only local properties 
and therefore only a small portion of the image 
is stored at any one time. An important 
feature of the system should be its ability to 
verify hypotheses about the existence of par 
ticular features by re-examining sample grey 
levels from the camera. The result of the 
initial computations is a list of some of the 
features of the scene. These are used by a 
"higher" level system to propose ways of 
searching for further features with a "second 
look". New features are integrated with pre 
viously di scovered features in succeeding 
"looks" until no new features are found. 

This procedure is not intended to find all 
the pictorial features of any given type. On the 
contrary, only those features for which strong 
evidence has been obtained by two different 
detection procedures, namely aggregation and 
verification, are hypothesized. In keeping with 
the overall scene analysis paradigm, a function 
of the construction of an interpretation is to 
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predict the location of weaker pictorial features, 
using both the present state of the interpreta
tion and knowledge about the scene domain . 

Conceptually, each task can be viewed as a 
separate computational procedure requiring as 
input the results of the previous task and 
generating the inputs for the next task. The 
interpretation of scene can then guide the 
feature extraction processes by selection of an 
appropriate task supplemented by the necessary 
inputs which may have been already generated or 
subsequently modified. Moreover, if each 
process is an independent modul e, then alternate 
methods for performing a task can be selected. 

To demonstrate the methodology with an imple
mentation, a simple and familiar family of scene 
domains has been used; namely those domains where 
the primary pictorial features are associated 
with straight edges. While this assumption does 
not affect the overall paradigm, it does suggest 
the importance of finding ways of characterizing 
other pictorial features. 

IMAGE PARTITIONING 

The role of the "first look" at the scene 
should be to determine, as quickly as possible, a 
sufficient set of visual cues to enable subsequent 
procedures to generate a partial description. 
This description would then guide more intensive 
analysis of certain parts of the image where 
closer scrutiny was required. This closer 
scrutiny could be obtained through use of avail
able hardware such as a zoom lens on the camera, 
or by the selection of. alternate procedures for 
examining the grey level data in a particular 
area. 

The coarse analysis usually involves par
titioning of the image into windows of uniform 
size and then performing some computation on each 
window. An adaptation of a line parameterization 
technique previously described by O'Gorman and 
Clowes [ 3] and Duda and Hart [ 2] has been 
developed to generate visual cues through image 
partitioning. This procedure allows for the fast 
aggregation in a matrix of all the local evidence 
for contrast boundaries. Every point in the 
image is associated with some local neighbourhood 
of pixels upon which a computation is performed. 
One such computation approximates a directional 



derivative at the associated point, if the grey 
level matrix is viewed as a surface, or function 
of two variables. Under this interpretation an 
unique line can be associated with each point. 
Each entry (p,8) on the matrix corresponds to 
the collection of points associated with a line 
oriented at an angle e from the horizontal, and 
at a distance p from some fixed point in the 
image. 

Rather than apply this technique to the 
entire image, it is applied to each window in 
a uniform partition of the image. Local evi
dence at a particular polnt (x,y) is determined 
by applying a set of convolution masks to a 
region centred at (x,y). Each convolution mask 
covers a rectangular neighbourhood of points. 
These points are partitioned into two sets and 
the magnitude of the difference between the mean 
grey levels of each set is computed. The mask 
yielding the largest magnitude determines the 
orientation e of the local evidence for an edge. 
The distance, p, is given by eq.(l), 

p = x cose + y sine (lj 

and the magnitude is added to entry (p,8) of the 
matrix. After the set of masks has been applied 
to each point of the window, the largest entry 
and its position in the matrix determines the 
location and orientation of the dominant vi sual 
cue for an edge passing through the window. 

It is evident from this a lgorithm that the 
visual cues correspond to measures of evidence 
for straight edges in the scene. It does not 
include mechanisms for generating evidence of 
curved edges. On the contrary, curved edges are 
viewed as a sequence of short straight edge seg
ments and the existence of such edges would 
generate corresponding visual cues. 

The result of this algorithm is the genera
tion of one visual cue for each window in the 
uniform partition of the image. The selection 
of only the dominant visual cue for each window 
avoids the issue of deciding whether an entry in 
the rho-theta matrix is significant at the 
expense of finding fewer edges. Since the goal 
is the extraction of edges sufficient to guide 
further analysis of the scene, we need only find 
enough edges to perform this task successful ly. 

CLUSTERING OF VISUAL CUES 

The complexity of an algorithm for grouping 
together independent visual cues depends on the 
scene domain. Being able to exploit knowledge 
about the scene is even more important when 
there are few visual cues such as those pro
duced by the image partition method above. In 
fact, it seems evident that there are not enough 
visual cues to be able to propose putative edges 
with any confidence unless some simplifications 
are inherent in the scene. It is here that the 
restriction on the scene domain is exploited. 

The visual cues of two windows which are 
8-adjacent are placed in the same cluster if their 
respective orientations and locations are consis
tent with belonging to a common straight edge. 
One such constraint is that the orientations be 
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nearly the same. 

The role played by the location or "rho 
value" of a visual cue in determining whether 
two windows should be grouped together depends on 
the relative positions of the adjacent windows as 
well as the common orientation. As an example, 
two horizontally adjacent windows would not 
normally be associated with a common edge if the 
orientation of the respective visual cues were 
vertical. However, if an edge in the original 
scene were coincidentally near the boundary 
between two windows, it would provide contribu
tions to the rho-theta matrices of both windows. 
This is because the app lication of a convolution 
mask to a point near the boundary of a window 
will include points outside that window. For 
this reason the relative locations of visual cues 
within adjacent windows are interpreted in the 
context of the nature of the adjacency (horizontal, 
vertical, or diagonal). 

The perpendicular distance between two 
parallel lines corresponding to the visual cues 
is computed and compared to the amount that a 
convolution mas k overlaps the boundary of a 
window. Two adjacent windows are said to belong 
to the same cluster provided the respective lines 
associated with their dominant visual cues are 
parallel and sufficiently close together. 

HYPOTHESIZING AN EDGE 

A cluster of visual cues may be interpreted 
as supporting evidence for a straight edge pas
sing through the windows associated with the 
cluster. A point which lies on the edge segment 
contained within each window is computed from the 
orientation and location of the visual cue. To 
the se t of point s a line is fitted which provid es 
a first representation of the edge. This 
"hypothesized edge" defines a trajectory along 
which an appropriate tracking algorit hm can 
examine the original camera image to verify the 
existence and refine the position and orientation 
of the edge. In particular the endpoints of the 
edge are located. This provides information 
which was not previously available from the rho
theta procedure, being only roughly defined by 
the two windows furthest apart in a cluster. 

The rho - theta procedure has been used by 
Clowes to construct line drawings of scenes in a 
puppet world . Hi s algorithm saved the location 
of all contrast boundary points contributing to 
each entry in the rho-theta matrix . The hypo
thesis of an edge in the scene then required 
that sorting and merging algorithms be applied to 
sets of points associated with adjacent entries 
of the matrix. Additional procedures were 
employed to decide whether matrix entries defined 
one or more edges. 

No re-ordering of a set of points is required 
in this implementation, since a tracker is used 
instead. The tracking algorithm proposed selects 
the three most significant visual cues from a 
cluster. As mentioned previously, a putative edge 
has already been predicted by a least squares fit 
to all the visual cues associated with the cluster. 
A convolution mask oriented parallel to the 



predicted edge is applied along a path perpendic
ular to the edge and through points associated 
with the three strongest visual cues. From this, 
three points are found which purportedly lie on 
the predicted edge. The tracker now verifies the 
existence of an edge through these three points 
by proceeding in both directions from the middle 
point through the other two until no discontin
uities are detected for a consecutive number of 
attempts. The essence of this method is similar 
to that proposed by Lerman and Woodham [ 4] and 
provides an accurate means of determining end
points since tracking begins in an area where 
the edge is most strongly defined. 

IMPLEMENTATION 

The methodology suggests a natural division 
of the scene analysi s process into two systems. 
One system deals with the sampling and manipula
tion of grey level data and the compression of 
that data into meaningful units which have been 
called visual cues. The second system integrates 
these units into an interpretation and dlrects 
further sampling and manipulation of the grey 
level data. Because of the small volume of infor
mation exchanged between the two systems, it was 
appropriate to implement the system on two 
computer facilities, one dedicated to image 
processing (an INTERDATA 7 / 32 minicomputer), 
and one responsible for maintaining an internal 
representation of knowledge about the scene 
domain (a DECsystemlO timesharing facility). 

The present implementation of the image 
sampling system consists of a collection of sub
programs for performing the four major tasks 
described at the beginning of this paper. A 
supervisory program within the image sampling 
system is responsible for dispatching requests 
from the scene interpretation system. A request 
to perform a particular task or sequence of 
tasks is made by sending the name of the routine 
together with an appropriate set of parameters. 

The present objective of the scene inter
pretation system is to construct a complete 
line drawing for the scene which does not 
conflict with evidence obtained from image 
sampling . It is therefore possible for 
several alternate line drawings to be con
structed when the scene consists of edges which 
are difficult to detect directly. This is 
because the constraints for accepting the 
hypothesis of the existence of an edge have been 
considerably relaxed . The image sampling system 
can "hallucinate" edges in places selected by 
the scene interpretation system provided there 
exists no evidence in either the image or in 
the knowledge base about the scene domain which 
would contradict such an assumption. 

The initial starting point for the construc
tion of a line drawing by the scene interpretation 
system is a collection of line segments presented 
to it by the image sampling system. A partial 
line drawing is constructed by merging appropriate 
collinear line segments and by connecting line 
segments which appear to have a common vertex. 
The criterion for defining a common vertex is 
simply that the endpoints of two line segments be 
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within a given distance from one another, rela
tive to the actual lengths of the line segments 
involved. 

The partial line drawing is used in con 
junction with knowledge about the nature of 
edges in the scene domain to formulate hypo
theses about the location of missing edges. The 
present system is modelled after Shirai [ 6 ] 
and the first goal is to find the outside bound
ary of the aggregate of objects forming the scene 
so that concave and convex vertices can be dis
tinguished. Using Shirai's algorithm edges are 
proposed and a task request is made to the image 
sampling system for verification. The results of 
verification can be "confirmed", "rejected", or 
"undetermined", the last category corresponding 
to the situation where the edge was not found but 
no conflicting evidence was found either. An 
example of evidence for "rejection" might be a 
contrast boundary oriented differently from the 
predicted edge. 

The scene interpretation system must decide 
whether or not to assume the existence of an 
"undetermined" edge. The design of heuristics 
for making such decisions is an area of future 
research. Presently only two simple strategies 
have been explored. When "undetermined" edges 
are "rejected" the system performs as Shirai's 
algorithm would. This means that unless all 
edges are strongly defined, a complete line 
drawing cannot be constructed. When "undeter
mined" edges are interpreted as "confirmed", 
complete line drawings are almost always con
structed although not always "correctly". 

The source of the difficulty is the order in 
which edges are proposed by Shirai's strategy. 
To avoid the possibility of accepting a large 
number of "undetermined" lines, the results of 
any circular search must be "confirmed". This 
does not preclude the possibility of confirming 
the existence of two "undetermined" edges 
obtained as extensions of a concave vertex. At 
present, an "undetermined" edge is assumed to be 
confirmed if the average contrast is reasonably 
close to an adjustable threshold. The average 
contrast is one of several values returned by 
the image sampling system and used by the scene 
interpreting system to determine the results of 
verification. Although not implemented, a more 
satisfactory approach might be to initially · 
accept as "confirmed" the existence of both 
extensions of a concave vertex and then subse
quently to "clean up" the completed line drawing 
by using knowledge about the scene domain to 
reject unlikely lines. 

SUMMARY 

The partial line drawing generated can be 
completed using procedures similar to those 
proposed by Shirai [ 6 ]. Of particular interest 
is the fact that the constraints for accepting 
the existence of an edge can be considerably 
relaxed. In effect, the system can "hallucinate" 
edges in selected places providing there exists 
no evidence in the image or in the knowledge 
base about the scene domain which would contra
dict such assumptions. By using domain 
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dependent knowledge to interpret the partial 
line drawing, predictions can be made about the 
existence of other edges. Such predictions can 
then be verified by subsequent "looks" at the 
scene. 
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ABSTRACT 

Today, millions of people are learning 
to ski in just a few days instead of the 
months it took to learn twenty years ago. In 
this paper, we analyze the new methods of 
teaching skiing in terms of a computational 
paradigm for learning called increasingly 
complex microworlds (ICM) . Examining the 
factors that underly the dramatic enhancement 
of the learning of skiing led us to focus on 
the processes of simplification, debugging, 
and coaching. We study these three processes 
in detail, showing how the structure of each 
is affected by the basic skills required to 
perform a task, the equipment involved in its 
execution, and the environment in which the 
skill is executed. Throughout, we draw 
parallels between the process of learning to 
ski and learning computer programming and 
problem-solving. 

Our goal is to achieve insight into the 
complex issues of skill acquisition and 
design of learning environments - - especially 
computer- based ones -- through the analysis 
of the intuitively understandable domain of 
ski instruction . 

1 . INTRODUCTION 

The most effective use of computers for 
education is to support active learning 
environments in domains that previously had 
to be learned statically . While some work, 
though not nearly enough, has gone into 
developing particular environments, much less 
has gone into clarifying the general issues 
that a ffect the acquisition of a skill i n a 
complex environment.(1) Our own wor k ha s led 

(1 ) Although one would ex pect r esearch in the 
fields of task analysis and behavioral 
objectives to be relevant , it has not been . 

139 

us to believe that a thorough analysis of 
skill acquisition is necessary to augment our 
intuitive understanding of the subtleties 
involved in designing the next generation of 
learning environments . 

In this paper, we examine the learning 
of an extremely complex skill, skiing, 
through the language of computational 
learning environments. We have two goals. 
One is to explicate the remarkable advances 
in the methods of teaching skiing, which have 
greatly reduced the time required to learn to 
ski . The other is to analyze the features of 
the highly successful skiing learning 
environment in an attempt to articulate the 
fine grain structure of a theory of learning 
environments and to identify principles to 
guide the design of computer based learning 
environments. 

The paradigm on which we shall base our 
examination of the teaching of skiing is 
called "increasingly complex microworlds" 
(ICM) , In this paradigm, the student is 
taken through a sequence of environments 
(microworlds) in which his tasks become 
increasingly complex. In the analysis of 
skiing, the aspects of the ICM paradigm we 
will stress are simplification, debugging, 
and coaching , Throughout the discussion, we 
will also point out how the learning 
experience (as viewed from the ICM paradigm) 
has been implemented in skiing by three 
fundamental components of the learning 
experience: the basic skills required to 
perform a task, the equipment involved in its 
execution, and the environment in which the 
skill is executed. The analysis of skiing 

This is in part due to the lack of a precise 
computational theory of teaching and 
learning, and in part to the lack of 
appropriate languages for discussing the deep 
structure knowledge representation of a 
domain. 
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raises a host of generai questions that 
should be asked when designing learning 
environments based on the ICM paradigm, For 
example, which kinds of simplification can 
stand in isolation, and which require 
explicit coaching to prevent the induction by 
the student of false models that later must 
be unlearned? Throughout our analysis, we 
shall .draw parallels to skiing from the 
domain of learning environments that teach 
computer programming and problem-solving. 

2. Why Skiing? 

Skiing is an extremely complex skill, to 
learn and to perform. It is representative 
of an important class of real-time control 
skills (or data driven skills), where error 
correction is essential in order to cope with 
deviations and sudden changes in the expected 
environment . However, . highly successful 
methods have been developed to teach skiing. 
This is not true for most other complex 
skills. These methods suggest criteria 
necessary to design successful learning 
environments for other complex skills.. In 
addition, skiing provides an intuitively 
understandable domain, with which many people 
have personal experience . (2) Even nonskiers· 
·can relate the examples used in learning to 
ski to other physical skills, such as 
bike- riding. 

2.1 Skiing as a Success Model 

Skiing is an instance of a success model 
(Papert 1976); it is an example of the 
successful acquisition of a complex skill. 
In skiing, the conditions of learning are 
more important than the total time or mere 
quantity of exposure . This implies that the 
teaching of skiing has evolved into a highly 
successful instructional process. The two 
main uses of a success model are: 

1. to identify the features that make it 
successful 

2. to abstract these features and try to 
transfer them to less successful 
learning situations. 

We do not have a complete theory to explain 
why the learning process in skiing we.s so 
dramatically enhanced during the last twenty 
years, but we are convinced that the 
following features were of great importance: 

o Redefinition of teaching goals 
o Improved equipment 
o Access to new environments 
o Better teaching methodologies and 

conceptualizations. 

(2) Our knowledge and insights about skiing 
are drawn primarily from one of the authors 
(Fischer) who has worked as a part-time ski 
instructor for many years. 
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We are aware that other factors 
influence the learning process besides the 
ones we investigate in the following 
sections. All ski areas have many expert 
skiers around, so that learning can take 
place according to the medieval craftsman 
~ . This enhances the ability of the less 
experienced skier through interaction with 
bhe more experienced one. 

The person learning to ski is highly 
motivated. Skiing is fun. It provides a 
wide variety of experiences; every run is 
different from the previous run. Skiing is 
good exercise . It provides a nice change in 
the life style of many people . In addition, 
societal pressures contribute to the 
motivation to learn to ski, Being a skier is 
fashionable . We will ignore the problems of 
motivation in this discussion and will assume 
that the learner is motivated. Although 
motivation is clearly an important 
consideration in the design of learning 
environments, we shall not address it in this 
paper . 

We must also note a few of the negative 
aspects of skiing : it is expensive, it is 
time- consuming, and it can be dangerous. For 
these reasons, the task of identifying the 
aspects of skiing that make it a success 
model becomes even more interesting. 

2.3 The ICM (Increasingly Complex 
Microworlds) Paradigm Applied to Skiing 

The acquisition of a complex skill is 
difficult when the starting state and the 
final state are too far apart. Good learning 
environments, structured according to the ICM 
paradigm, provide steppingstones or 
intermediate levels of expertise so that 
within each level the student can see a 
challenging but attainable goal. In skiing, 
technological advances and the methodologies 
built around these advances make it easy to 
get started. This · means that practice (a 
task within an intermediate level) is not 
considered a form of torture that must be 
endured before the learner can enjoy 
excellence. 

As an example of the ICM paradigm in 
skiing, consider a novice learning to ski. 
The student begins on short skis over smooth 
terrain. The short skis allow him to develop 
rhythm, and they make it easier to turn and 
get up from a fall. The smooth terrain 
limits his speed and reduces the danger. As 
the student gains ability within these 
constraints, he is given slightly longer skis 
and steeper, more complex slopes until he is 
using full length skis on uncontrolled 
slopes. At each step, the microworld in 
which he must perform is made increasingly 
complex. 



We should point out that the ICM 
paradigm may be usefully applied to sports 
other than skiing. A large body of knowledge 
about skill acquisition is available in the 
literature of different sports. The authors 
of textbooks for these sports supply a great 
deal of knowledge about the critical 
components and essential steppingstones for 
the complex skills they describe, as well as 
awareness of the most common problems and 
special exercises to eliminate them , 
However, these authors often lack a 
conceptual framework that would allow them to 
generalize their knowledge or to structure it 
according to different criteria. 

We would like to acknowledge the work by 
Austin (1974). He analyzed the skill of 
juggling in terms of a computational metaphor 
and used the resulting analysis to develop 
novel methods of teaching juggling. In our 
work, we seek to analyze the process of 
learning to ski within the framework of the 
ICM paradigm, with the goal of expanding the 
paradigm. 

3, Aspects of a Theory of Simplification 

One of the major design decisions within 
the ICM paradigm is choosing or generating 
appropriate microworlds. The primary means 
of generating alternative microworlds is 
through simplification. This section 
describes a taxonomy of knowledge, methods, 
and heuristics that could serve as a basis 
for evolving a theory of simplification in 
the learning process. 

Simplifications are possible in each of 
the three major components of the learning 
process: the~ required to perform a 
simplified version of a task, the eauipment 
involved in executing the task, and the 
environment in which the task is executed. 
Often it is not just one of the components, 
but their synergistic interaction, that leads 
to powerful learning microworlds. 

3,1 The Basic Skills 

The designer of a learning environment 
can select some beginning microworlds for 
developing particular subskills in isolation . 
Some of the basic physical skills of skiing 
can be taught without skiing. Students can 
thus develop these subskills without having 
to deal with the interactions and side 
effects of the whole aggregate of subskills. 
Examples would be : learning a certain 
rhythm, strengthening certain muscles, and 
improving the mobility of certain parts of 
the body . At a more advanced level, a trick 
skier may practice his somersaults into a 
pool or on a trampoline. 
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Great care must be taken to choose a 
microworld in which the simplified skill is 
isomorphic in its most important components 
to the final form of the skill ( see Section 
3,5), In juggling, the skill of 
ball- handling can be practiced with one or 
two balls. This develops the necessary 
subskills of tossing and catching, as well as 
hand-eye coordination. However, the easiest 
form of three- ball juggling, called cascade 
juggling, can't be simplified to an 
isomorphic two ball juggling (see Austin, 
1974). 

3.2 The Equipment 

The best known example of a 
simplification of equipment in skiing is the 
graduated length method. In this method, a 
beginner skier is started on short skis. As 
the student becomes proficient, his skis are 
gradually lengthened to (whatever may be 
considered) full length skis. Short skis are 
used as transitional objects in the learning 
process . They make it easier to get started 
and make early success more likely. At the 
next level, the shorter skis are not needed 
anymore. An interesting perspective on the 
hand- held electronic calculator may be to 
view it as a transitional object in learning 
mathematics. Similarly, the computer may 
serve as a transitional object in learning 
how to build cognitive models. 

It is interesting to ask why it took so 
long for someone to think of using short skis 
in the learning process. For one thing, 
skiing itself changed. Twenty years ago, 
people wanted to ski fast in straight lines 
for which longer skis are better. Nowadays 
the final state of expert skiing involves 
making many turns (which is facilitated by 
short skis). For another thing, teaching by 
the graduated length method requires a 
different instructional organization. To be 
economically feasible, the new method needs 
large ski schools where students can rent 
short skis instead of buying them, so they 
can be returned after they are no longer 
needed . The economic consideration that has 
hindered exploration of transitional objects 
in learning will not be as important in 
computer-based learning environments, because 
the transitional objects are symbolic 
structures. 

Short skis are not the only 
technological improvement in the equipment 
used in skiing. Safety bindings reduce the 
fear and eliminate the catastrophic 
consequences of wrong behavior, therefore, 
supporting an active approach to mastering 
new challenges. (In an interactive computer 
system, the "UNDO" command supports a similar 
type of exploration because it reduces the 
risk involved in making errors.) Ski tows 
and gondolas provide access to new 
environments in the form of moderately steep 
and wide glaciers with snow conditions suited 
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to the early phases of the learning process. 
In addition, they increase considerably the 
time that people can actually spend skiing, 
A parallel improvement in computer 
programming is the development of 
time-sharing systems and languages that 
reduce the amount of time a student spends 
waiting for his program to be run. 

3,3 The Environment 

Skiing (as we have pointed out before) 
is an aggregate of subskills. A major aid in 
learning any complex collection of skills is 
the opportunity to practice the subskills 
independently. We must design or find 
microworlds structured to allow a l~arner to 
exercise particular skills. For the beginner 
in skiing, gliding and stopping are two 
essential subskills that have to be learnt1, 
But stopping cannot be practiced without 
gliding, and gliding is dangerous unless you 
know how to stop (in Simon's words (1969), 
~he system is only nearly decomposable). The 
problem can be solved by choosing the right 
environment : 

----gliding----) 

(increasing speed) 

t 
gliding ----) 

(decreasing speed) 

.llQ. subskill for stopping 
is required 

This example leads us to state: ~ 
decomposability of a skill is a function of 
the structure of the environment as well as 
of the skill itself. 

Modern ski areas have made another 
important contribution to the simplification 
of the environment. They provide the novice 
with ~onstant snow conditions. A beginner 
can first learn to maneuver well on packed 
slopes without having to worry about the 
variabilities of ice or deep powder. In 
learning to play tennis, the ball shooting 
machine provides a similar form of 
simplification. Having a supply of nearly 
constant balls removes some of the variables 
from the process of learning a stroke. 

The wide variety of slopes in a large 
ski area has another important impact on 
learning, It allows the coach to choose a 
microworld dynamically according to the needs 
of the learner; this eliminates the need to 
force every learner through the same sequence 
of microworlds. 
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3,4 Simplification's Dependency on Top-level 
~ 

Technological improvements have 
eliminated certain prerequisites for skiing, 
that is, they have simplified skiing by 
removing inessential parts. It is not 
necessary any more to spend a whole day of 
hard physical exercise in order to gain a 
thousand meters of elevation to ski one nice 
run. The goal of skiing is gliding downhill 

successfully, not getting stronger muscles 
and a better physical condition by climbing 
uphill for several hours. If climbing were 
one of our top level goals, the use of 
gondolas and chair lifts would hardly be an 
appropriate simplification towards the 
acquisition of these skills. Clarifying the 
top level goals may imply a different 
standard of measurement for the hierarchical 
ordering of the subskills and a corresponding 
change in the sequence of microworlds. 

The importance of clarifying top-level 
goals can also be seen in programming. As 
computing becomes cheaper, concerns about 
machine efficiency will be replaced by 
concerns about cognitive efficiency, how to 
facilitate the understanding and writing of 
programs . This change in perspective 
requires new conceptualizations and 
methodologies, which will lead to a new set 
of simplifications for the acquisition of the 
skills of programming and problem solving 
( Fischer 1977) • 

3,5 useful versus Possible Simplification 

The range of possible simplifications is 
much larger than the range of useful 
simplifications. The designer of a learning 
environment must look carefully at what each 
microworld does for the overall goal. 
Several possible uses for a microworld come 
to mind. A microworld: 

0 

0 

0 

0 

Makes it easier to begin learning a 
skill by creating the right entry 
points 
Accelerates the acquisition of a 
skill 
Provides intermediate 
goals/challenges that are (and seem 
to be) attainable 
Provides practice of the important 
subskills in isolation, allowing the 
common bugs to occur one at a time 
instead of in bunches 

A complicating factor in choosing 
microworlds is that non-monotone 
relationships often exist between 
simplifications of the microworld and the 
corresponding simplifications of the task. 
Using a moderately steep hill to practice is 
a useful simplification for the following 
reasons: 



o Is easier to control speed. 
o The student doesn't have to make big 

turns and can stay closer to the 
fall-line. 

o The student doesn't have to lean away 
from the hill with his upper body 
(which appears to be counterintuitive 
for many people and increases their 
fear). 

The interesting fact is that this is not a 
monotone relationship: If the hill is too 
flat, it may be impossible to attain enough 
speed to turn. Another example of this sort 
is that skiing is difficult on a slope with 
big mogels, but, in making turns, small 
mogels can be very helpful. 

3.6 The Danger of Oversimplification 

Skiing is representative of an ~.mportant 
class of real-time, data-driven control 
skills. This means that a sudden, unexpected 
change in the environment requires high-order 
error correcting and debugging skills to cope 
with the deviations. If the microworlds are 
too friendly (which may serve well in getting 
started) they may suppress the development of 
these higher-order skills. The skier must 
learn to cope with icy spots and rocks that 
lie hidden under soft snow. 

Developed ski areas themselves 
constitute a simplification, because they 
close avalanche areas and keep the skier away 
from cravasses, they pack down slopes, they 
rescue people if they get hurt, etc. This 
implies that people skiing only in these 
areas never acquire the planning and 
debugging knowledge they need to move around 
in more hostile environments. One danger of 
working with simplifications is that they may 
lead to unjustified extrapolations. One task 
of a good coach is to reduce the level of 
protectiveness gradually (not all ski areas 
eliminate the need for stopping) and lead 
people to the right new challenges. There is 
another danger: Learning to perfect the 
performance in one environment, such as 
packed slopes, may reduce the willingness of 
a skier to practice in powder, because the 
difference in his performance between the two 
environments may be too great. 

Both of these dangers can be seen in 
efforts to teach computer programming that 
start with BASIC. The linear nature of a 
program in BASIC and the small size of 
solutions to typical introductory problems 
often lead students to develop debugging 
strategies that will not generalize to large 
programs. One such strategy is to step 
through a program one statement at a time. 
Some students also resist leaving friendly 
(albeit limited) BASIC environments, in which 
they can adequately solve small problems, for 
the complexities of data declarations, 
functional decompos ition, and advanced 

143 

control structure statements. Note that 
these extrapolations are not ones intended by 
those who have designed the learning 
environment. They arise from simplifications 
made to create the microworlds in BASIC. 
Understanding the inappropriate 
generalizations that can develop in each 
microworld is one of the tasks facing a 
learning environment designer. 

4. DEBUGGING 

4.1 The Importance of Debugging to the ICM 
Approach 

As a student moves from one microworld 
to one at next level of complexity, he may 
need to modify his knowledge in several ways: 

o New subskills may be introduced that 
must be mastered (skiing over 
mogels) . 

o Changes in the environment may 
require new interactions between 
skills (gliding and stopping ) . 

o Some skills that were idiosyncratic 
to a microworld may have to be 
unlearned. 

While a designer should strive for 
simplifications that reduce the chances for 
incorrect generalizations, this is not always 
possible nor necessarily desirable. In 
skiing, an instructor has the problem of how 
to deal with the poles. Even though they are 
quite important for the advanced skier, the 
only major skill a beginner need learn is to 
carry them so that he won't hurt himself. 
While practice without poles would prevent 
formation of any inappropriate skills, 
empirical evidence suggests that eliminating 
the use of poles is not a useful 
simplification. Even if they are used 
incorrectly, the poles still support balance 
and mobility, and it is apparently easier to 
unlearn an incorrect use of poles than to 
incorporate the poles into a learned skill 
without using them from the beginning. The 
goal of a sequence of microworlds is not to 
remove all chances for misconceptions, but 
instead to increase the possibility that the 
student will learn to recognize and correct 
his own mistakes. 

4.2 Nonconstruct i ve Versus Constructive Bugs 
- Implications for a Piagetian Environment 

An important characteristic of a 
Piagetian environment (Papert, 1978) is the 
notion of a constructive bug: the learner 
gets enough feedback to recognize a bug, to 
determine its underlying causes, and on this 
basis, to learn procedures to correct the 
bug. This notion is sharply contrasted with 
the notion of a "nonconstructive" bug, where 
a student may recognize he is wrong but not 
have the necessary information to understand 
why. 
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The critical design criterion for 
selecting the right microworld may well be 
finding an intermediate microworld that 
transforms nonconstructive bugs into 
constructive ones. From the domain of 
skiing, examples of environmental support for 
such a transformation follow: 

o If the skier leans too much to the hill 
with his upper body, a change to a 
steeper hill will indicate this to him, 
because he will start sliding down the 
hill. 

o If he holds his knees too stiffly, 
trying to stay on the ground while 
skiing over a bumpy slope will point 
out his inflexibility. 

o If he doesn't ski enough on the edges 
of his skis or if he makes turns too 
sharply, a slope with soft snow, where 
he can observe his tracks, will 
indicate where each of these conditions 
are occurring. 

In all of these cases, the microworld is 
chosen to allow the s tudent's previous 
experience to be used to debug the new task. 

A good coach knows a large number of 
specific exercises (micro-microworlds) 
designed to transform nonconstructive bugs 
into constructive ones. These exercises are 
goal-directed toward certain bugs. His 
expertise must include the ability to 
distinguish the underlying causes (which may 
be hidden and indirect) from the surface 
manifestations of the bugs. To mention just 
one example·: lifting up the end of the inside 
ski in a turn provides the skier with the 
feedback that most of his weight is on the 
outside ski (where it should be). Exercises 
of this sort (which provide the basis for 
self- checking methods) are of vital interest 
and are essential in teaching and learning a 
physical skill (for examples, see Carlo, 1974 
and DVSL, 1977) whereas in the cognitive 
sciences, research in self-checking methods 
is still in its infancy (see Brown and 
Burton, 1978). 

Another way to turn nonconstructive bugs 
into constructive ones is through the 
appropriate use of technology. The most 
obvious example is the use of a video camera, 
which helps the student to compare what he 
was doing to what he thought he was doing. 

s. Coaching 

Acquiring a complex skill, even when 
supported by a good learning environment and 
appropriate technology, does not eliminate 
the need for a good coach . The introduction 
of simplifications increases the importance 
of a coach. He must be able: 

o To make sure that within each 
microworld the right subskills are 
acquired, instead of ones that would 
later have to be unlearned. 
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o To design the right exercises, provide 
the right technology, and select the 
r ight micr oworlds to turn 
nonconstructive bugs into constructive 
ones. 

o To perform a task in the student's way 
in order to maximize the student's 
chances of recognizing his bugs. 

o To mimic and exaggerate the behavior of 
the students. 

o to explicate his knowledge in terms the 
student can understand and execute. 

The following example may be used to 
illustrate the need for executable advice. 
Many books are written from the instructor's 
point of view. The student often receives 
advice (in the book or on the ski slope) that 
he cannot execute . An example of such advice 
is, "Put your weight forward, 11 given to 
skiers who don't know where their weight is. 
The instructor tells the student the "what" 
without telling him the "how" and without 
providing him with knowledge or procedures to 
translate the "what" into the "how". 

Let us give another example of the 
distinction between executable and observable 
advice. When skiing in powder snow, the 
advice, "Your ski tips should look out of the 
snow", is observable by the student. That 
is, the student can see whether his ski tips 
stick out of the snow or whether they are 
buried below the· surface. But the advice is 
not directly executable. The corresponding 
executable advice would be "Lean backward," 
(or "Put your weight backward", if he knows 
how to shift his weight. This advice is not 
directly observable. The interesting 
dependency relationship is that the "what" 
can be used to control the "how." The change 
in language from "how" to "what" as a process 
becomes understood, characterizes the 
movement from machine to higher-level 
programming languages. 

Let us mention briefly a few other 
important aspects of coaching . The coach 
must: 

o Draw the borderline between free and 
guided exploration (free exploration 
in a dangerous environment could end 
up with the student in a cravasse or 
an avalanche) 

o Decide when to move on to avoid 
simplified versions of the skill that 
cause bad habits 

o Be aware that coaching is more 
important at the beginning of the 
acquisition phase then later on 
because a conceptual model must be 
created, entry points must be 
provided, and self-checking methods 
must be learned (to overcome the 
problem that it is hard to give 
yourself advice) . 



6. ~spects of a Theory 

There is no doubt that a theory of 
simplification, debugging, and coaching would 
provide us with better insight into the 
complex issues of skill acquisition and 
design of learning environments. We hope 
that OU~ observations, examples, and 
conclusions are a first step toward this end. 
We believe that a theory of this kind will 
not be reducible to one or two general laws· 
that is, we won't be able to characterize ' 
such a theory with a few theorems. We expect 
that the difficulties encountered in 
constructing a crisp theory in the domain of 
learning environments will be similar to 
those encountered, for example, in developing 
a theory of semantic complexity, (Simon 
1969). ' 
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Abstract 

Knowledge structuring is the process by which a set of 
partial, unrelated concepts are combined (related) to form a 
unified strudure. The structuring process creates a 
hierarchy of concepts and relations that cover the original 
set. Examples of knowledge struclures described here are 
classification druclures (e.g., phylogenetic classification of 
mammals), and implication str uctures (e.g., evidence 
supporting the hypothesis "strategic thre.it"). The concept 
of an "Exo-critcrion" is introduced to guide the structuring 
process. A Knowledge Structuring System current ly under 
development is described, including three knowledge 
acquisit ion ll')ethods: Introspection, Question-asking, and 
Experiment at ion. 

1. Introduction 

This research invest igates the transformation of 
Information into knowledge. Information is ·technically 
defined as unrelated units (e.g., far.ts, concepts, objects, etc.) 
-- unrelated in the !;'enr.e that no conceptual lin~,r. (e.g., "is-a", 
"part-of", '.'owns", etc., ) exist among them. Knowledge is the 
result of structuring inform11tion. Structuring can be viewed 
as the construction of relations and concepts, usually 
hierarchical, that combine inform11tion into coherent 
structures. For examplll, the following is a set of inform11tion 
units: !Chipmunk, Rhino, Ga?.elle, Lion). An example of 
structuring this information is the phylogenetic hierarchy 
normally employed in zoological te)(ts. The root concept of 
this hierarchical structure is Mammal. Thi5 is not the only 
possible structuring. There ex ist an infinite number of 
po!rnible structuring5 dr.pendent on the rear.on for 
structur ing. A phylogenetic structuring describes 
evolutionary (ancestry) rnlations via a classificatory 
hinrarchy. Another, totally dilfercnt, hierarchy could be 
composed bar.cd on survivability methods. Figure I depicts 
such a hierarchy. The samn information as found in the 
phylogenetic r.tructure is operated upon but different and 
J>OSsibly,· new relations and c:oncepts are used. 

The bar.le princ.iplc ir. that structure generation can be 

1 This work was supported in part by the Defense 
Advanced Researr.h Projnds Agency under contract no. 
F.44620 .. 73 ~C-0074 and monitored by the Air Force Office of 
Sc:ientific Research, and by Grant MCS77-0:l273 to The RAN() 
Corporation from the National Sc:ience Foundation. In 
addition, the authour was partially supported by a National 
Research Council of Canada Postgraduate Scholarship. 

17 April 1978 
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adequale ly modnlled ar. being r,uided by wme critel'iort. A 
criterion is a point of view or a proposed application of the 
information. The structuri11g process is not limited lo the 
Information-knowledge tnmsform11tion, but can be applied to 
the restructur ing of knowledr,e dependinr, on the criterion. 

Little rnse~rch has been don!! lt1 thir. dirnction. It, most 
systemr., lh!! criterion ir. implicitly dnfined. l.earninr, prograrnr. 
(Samuel, 1963; Winston, I 970; Michalr.ki, 197/l; H11yes -Roth, . 
1976; Fox & Hayes -Roth, 1976; Fox & Reddy, 1977; 13uchanan 
& Mitchell, 1977) arc I ailorecl to thP.ir dom11i11. Funclionr. that 
construct and rate clr.scriptions reflect thr. specific learning 
problem. The ln arning of diflerr.nt descriptions, bar.eel on 
dif(erent perr.p.edives of the r)"mP. exemplars requires a 
mAJOr c:hange 111 the alr,orithm . Other i,ystemr. rnay be 
general but lack the cri terion mechimir.m, thus flou11eh!ri11g in 
their· c:omputiilion. To combnt lh!! combinatorial choice of 
inferences to draw, system5 such as HEARSAY-II (Erman ll.· 
Lesser, 1975; Er man, 1977) ur.e a F Or.IL$ of Attention 
(Hiiye~ .. Roth & Lesser, 1977) mechanism. AM (Lenat, 1976) 
uses ;in Agenda combined with local hr.uridics that rnte tho 
inferences. In both car.cs, the rnting function or heuri5tics 
arr. built into tho system. In contrast, tho knowledge 
structuring system's criter ion is a paramr.ter which is 
external to the system and can be easily changed. We call 
this an Exo .. Critcrion System. 

In c:ontrnsl, Numerical Ta)(onomir.ts (Sokal & Sneath, 1963) 
in the construction of C'lassification struclurns have !~ken the 
view that simil ar ity mear.urr.s should br. used which are 
baped solely on . numeric.al methodr. .<e.g., ,dur.ter analysis) 
usme as many ob1ect atlributes ar. posr.iblr.l., The only way 
numr.rical taxonomy may biirs thr. classes constructed is to 
apply user -defined we ights to the attributes. This is a 
crude, 3unmarH1ne~bl~ appro)(i~a.t ion of . an e)(.o-criterion 
system' . The crilerion 1s 1mphc1tly provided by the user 
through the weights. 

The followinr, doscribes further the cone ept of knowledge 
structuring and illw,trnles it using two diverse !!)(amplos. 
The rest of the paper oullines the design of tho knowledge 
structuring r.ystem (KSS) currently under dr.velopmont. 

1 Michal5ki's system allows the user to specify different 
simplif ication functions (crileria) for each task. 

2one of the problems common to these methods is the 
inability to ur.e nominal or ordinal information in mear.urcs. 

3Given that lhC!re is a l;iqie number of objects to classify 
and each has a larr,e number of attributes, the number of 
weights to be defined is overwhelming. In addition, weight 
consistency between attributes is difficult to enforce. 
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FIGURE l: SURVIVABILITY CLASSIFICATION OF MAMMALS 

Survivability 

~ 
Successfully living in ones environment 

Successfully living in Water Successtu lly living on land 

jJ 
Successfully overcome danger and find food on land 

Successfully attack danger and 
find food on land 

~ 
Surprise attack Obtrusive ly attack 

Successfully flee danger and 
find food on land 

What characteristics of the mammals allow 
them to carry out the particular kind of attack 

The concept "survivat is defined as an action 

The case "environment" is further specified 
as "land" or "water" 

The main action, "successfuily living" is further 
specified as "overcoming danger and find food" 

The ·main action of the concept is further 
specified as "fleeing" or "attacking". 

Two types of attack have been specified 

The information, mammals, are examined for 
characteristics that allow it to carry out the 
different types of attacks. This relies on 

. causal relations between attributes and actions. 

FIGURE 2: Partial Derivation of Knowledge Structure for criterion "Survivability". 
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2. Knowledge Structures 

Up till now, the differcnc:e between information and 
know!P.dne har. been dre~r.ecl. ([ach piew of information is 
a primilivH unit lac.kinr, any connection to othClr inform.ilion 
primitives. ) In fad, informAtion primitives arr. separnte, 
incl1!pendenl, but internall y !druc.turnd; i.e., lhr.y arc li tt le 
pit!~ cs of wlrnl I am techni cally callinr, knowlcdr,e. Thal is, 
each in form,1tion unit is a K110111lcdf(c Stmcturo (KS) 
c.onl ai11ing variow; types of relationi,. The f ac. ility of c.ognition 
afforded by com.idering a slructurn lo be a simple 
infornrnlion unit ir. exactly that of ahi; lractinr, lhe descr iption 
of a complex ob jcd. Viewing a KS ar. an infornrnlion unit 
r.erves to recluc.c thC! complr.xily of lho druc:luring l ar.k. 
Hence, knowl<-idne structurinp,, it1 1hr. r.enr.e ur.ed here, lakes 
KS r; and rnl al er. thC!m by superimposing a r; lrudurn, thereby 
c:rr.aling a new Know lcduc Slructurr.. 

KS,, am condructed via c:omplr.x symbolic processing of 
inform ation uriil s to der ive re lations th at arr. abslrnd in 
n.il urc. A new know Ir.due !,lrudurr. can be vi ewed as a level 
2 KS, i.e., Ksf2], which was c.rcalcd by !druclurinp, KSs of 
level I, i.r.., Ks f l )!, . This definition ir. recur r. ivc. A Ks[~~) can 
bf! dcfit1C!d that trea ts Ksf 2] as information unit s. This is 
intuitively p lr.a!dnr, as we eac h form mulliplr. hicrarr.hi r.s to 
slructurr. our · inform.it\on, ear.h hierarchy emphasizing a 
clifferr. nl rnlalional typl! . 

In the knowledge dructuri11g task, the sys lem ir. presented 
with i11fornrnl1on unit s th at am KSs of varying dr.grees of 
complr. xily, and 011ly partially def ined. The system must view 
eac:h KS ar. a r. imple i11formAlion unit to be rel ated to olhor 
unit s, but mus I' have access to thr. internal structure . of each 
unit (KS) when decidinr, upon the relationships. 

If knowledge is represented in graph form, as implir.d 
above, infornrnlion unilr. can be defined as a nodes, and 
structure as arcs rn lalin& the inform,,tion units. Any 
sub -uraph is a knowledge r.tr ucture. A node that represents 
and rnp lac:es a KS sub ··graph ir. il lr.o an infornrnlion unit . This 
new node c:an be rc laled to other nodl!s in the graph. This 
is exac tly what happcnr. in the rccursi•,c struclurine of 
knowl~~dge d!!scr lb!!d Above. Every KS can be An informAl ion 
unit, And every informillion unit a KS. Part of the knowlcdue 
structuring task is to create new relations among nodes. 
H!mc:c the numbnr of por.sible KSs is unbounded. 

Knowledge strudurit,g can be cir.fined ar. the se lr.c lion of 
interns ling KSr; from Rn i11finilc spRr.e Rnd the construct ion of 
new KSs upon those chosen, via tho ·attachment of relRlions. 
Thi s definition p,enerali7.cs from lhe concep t learning .tasks of 
Windon (1970) and Hayes -Roth (1976) in that hierarchies of 
abdradions are formed. The flORI of ~.nowledee structuring 
is to take infornrnt ion units, which arc lhr.mr.e lves romplox 
(multi - level), and to relate. them through hierarchies of 
(sometimes new) re lat ions and c:oncepl s. 

How is one to decide the inleresl ingnesr. of a KS, new or 
old, or choor.e the relat ions with which to lie informAlion 
unif!; tor.ether? Again tho exo··cr iterion is appe11led to. For 
example, the phylop,enelic cl11ssific11t ion of rnArnmals requires 

lwhile most structures arc not hier11rr.hi<:al, they 11re loose 
hi r.rarchies because of this layered approach to bui lding 
knowledue structures. The ex istence of mill..UP. lr. hierarchies 
lndicater. infor mation n,;iy be slruclurr.d in more than one 
way depending on the re l11t ions used which depends, in turn, 
on the criterion. 

that each informAlion unit (e.p;. , li on) be a complr. x r. lruclurn 
c:ontaini11g data i;uc:h ar. phy~ir,al c:harnrter i!;l icr.: (colour 
heir,ht, wP.ip,ht), ealine lrnbil s, lrnbital, etc. A c.hoice must be 
n\adP. of wh·at sub .. d ruc:lurr.s wilhin 1hr. mfirn11111l r.' KSs to use 
to ca talyse the slr uc:lurinr, procer.s. The choice is dependent 
upon how the sub -concepts inferentiall y rt?lale to the 
cr it erion. Tho relations used to structurn the information 
units are · alr.o dependent upon the criter ion. In the 
phylogentic examplr. the relation is A c:IAss hierarchy. 

3. Examples 

Fir,uro 1 is a sl rudur inp, of rn.irn111111!; b;ir.cd on RI tributes 
nf!cc~i;ary for their surv ival. The root nod,?, SIIRVIVARIL ITY, is 
the cril t?r ion of the hir? rarc hy. Upon ex;irninal ion we dir.covcr 
that thc sinr,le word SlJRVIVARJllTY docs not suff ice ar. a 
crilmion. There exir. l tn,my fundi!lllr?nt;illy different 
r.truclurw; d1!pendenl on the cr il1?rion t ypC! ;ind SIJRVIVAllll ITV 

i r. not spec ific cnoueh to rr.d11c.e tlrn 11mbiguily. In thir. cRsc, 
the implicit crilNion ir.: "to £11sr.iu,_ lhCl 111/llllmalr. wilh respect 
lo the attributes that lend to their survivability." Thus the 
slr uclurr. type i r. a Cl,u .,ifi.cntior, . The !.lruclurinr, process as 
depicted in Fit:urn 2 can be descr ibC!cl ar. the further 
spec ification of lhCl crilN ion into conjunct ive and disjunctive 
sub - c:rileria combined with causal relations between nrnmm11I 
attr ibutes and specif ic act ions. 

The slructuri11g process relics heavily on thr. further 

specificat ion of cases I _ If we define SIIRVIVAf!ll lTY as: 
"SUCC[SSFIJLI V LIVING IN ONE 'S [NVIRONMl:NT," [INJRONMl:NT car, be 
f urlhcr specified as I.ANO or Wf\Trn: "SlJC:C[SSfULI.V LIV[ ON 
LANO" or "SUCCf.SSFIIU.V LI VE IN WflTFII". H(!nce two sub-classes 
have been sp(!c ifi l!Cf. Specifica lion c:onlinues until a r.equence 
of rn lalions ir. found conrrnc.tine thr. wb ··crilcrion (rlass 
concept ) and, infornrnl ion unit. Specifically, a chain of 
itifernnces (e.p;., causal, anceslrnl, etc.) rc lalinr, mammal 
attribut es to a r.ub -rr ilf?r ion rnur. t be con!,lrucled. This chain · 
may be al an arbilr ary level of ab!,lr action depcndi11r, 011 the 
dom11 i11 information ava il .ible. For ex;illlple, c.onccpl s such as 
"appe ndane" and "r.lrikine" arc less specific (more abstract) 
than "pawr," and "c·law inr,". 

The re sulting hicrarr.hy can be evaluated structurally by 
how well the classes part ition Iha informAlion, and 
seman tica ll y by how a class rolR!es to the c ril crion. 

Another example of knowledr,e r. lrucluri11g occurs in 
strategic analy!.is. A strnlegic analyst peruses informAlion 
em;rnating from somo country and dcdcfcs whether that 
count r y 's aclionr. compri!;c a r.lratep,ic threat (e.g., the 
bui ldinfl of nuclear bombs). l.arrie quanlilir.s of infornu1tion 
must be reviewed (e.g., nowr.paper reports). The it1form11tion 
Is interprnted with respect to its slrnter,ic imporl 1111ce. The 
Interpretation process is C'a lled 1y11thcsis. Figure 3 dr.picls a 
hierarr.hy that synl hcsi7.cs it1dividually uninteresting 
information lo support a !.lrategic threat inlcrprel;ilion. The 
synthes is proc.ess can viewed as anolhr.r form of knowlr.clge 
strucluri_ng. The criter ion i!;: "TH[llf. r><JSTS fl STRATEGIC THR[Al" 

The structuring prob lem is to see if lhe information Implies 
the !,trategic throat . This type of structuring is called 
lmpl.ica.ti<>n. Fieurn 4 illw,tr'ates a parliRI clr.rivalion of tho 
slructur iti[l. Asain hcavy ur.e is m11dr. of caso-spClcificalion. 
But in an implicative structur ing, emphasis is placed on the 

1cases in a concept arc the slots whose interpretat ion is 
similar to that of cases in Fi llmore ( 1968). 
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FIGURE 3: Synthesis of information to support "Strategic Threat" . 
Strategic Threat 

~ 
There exists a strategic threat 

There exists objects capable of destroying the country 

3 missi les capable 
of destroying the 
country 

i 
3 nuclear submarines 
capaole or aestroying 
the country 

~ 
3 bombers capab le 
of destroying the 
country 

3 a submarine _ Nuclear fuel 

Build a 
submarine 

Submarine crew 

i 
Naval crew 

Port Materials 
Construction 

t t 
Increase steel 
Production Coastal Town 

Pooulatiori increase 

t 
Naval Academy 
Enrollment up 

Must buy uranium 

Uranium prices 
increase 

The original, ill-defined criterion 

The criterion is further specified 

Strategic threat is further specif ied as an action 

The agent case "objects", is furtt:,er specified by 
three types . 'the specification is constrained by the 
action of the agent. 

On the left, the sub-criterion is furt her spec if ied, on 
the right the pre-condition of nuc lear fue l is depicted. 

The rest is a brief out line of the causa l requirements 
of each concept in the structure. 

FIGURE 4: Structuring of news u·sing "Strategic Threat" criterion. 
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elaboration of Causal and Co-rnlational pre-conditions (e.g., 
IF [prc-c:ondilion] THEN [po!;l··condit ion]). This is due to the 
prndomitrnnce of cau!ia lity -explAining nodns In the tarllet 
knowlr.dge struclurn. 

Struc:lurn evaluation re lies upon pre-condition sat isfaction 
in cau!,al · rnlalionr., imd thn r.emanlic rnlalionr.hip between the 
causal relation and lhn criterion. 

An import ant charnctr.rintic of a11 exo-criterion knowledge 
structuring sy!dem is it allowt- the synthcsl7.ation of the same 
informillion from more llrnn one view (criterion). This allows 
the ter,li11g of alternate interpretations of the same 
information. For exampln, the system could be re-run with 
the criterion of "r.lrnngthening mr.rchanl shipping". 

Ther.e examplns ill1.mtrnte two types of knowledge 
strudurns: The fin! · ir. a c'4s.tifi.c:otory structure which 
rcquirns the i11fo~m11tion covered by a cl11ss to reflect the 
clasr. description. The mr.mbern of a clar.r. induced partition 
por.sesr. similar attributes that am interesting with respect lo 
the criterion. lhe r.ncond ir. an imp!ic'ltive stmctara. 
Inform11tion is combi11cd bar.eel on its causa l necessity In 
explaining the c.rilerion. The construction of causal cha ins 
relating infornrntion to criteria requires a problem-solving 
capability similar to I hose found in (Nowell & Simon, 1963; 
1972), (Fikes & Nil!,son, 1972), and (Sacerdoli, 1975). 
Plausabln causal and infemnt ial sequences al various levels 
of al>!;lr action must be constructed and 1111alysed to relate 
information and crilnria. 

Both strudurn types roly upon the samr. moclrnnismr.. Two 
inference mr.chani!ans have proven useful. The firnt is 
concept spccifi.cation. By further specifying 11br.tract terms 
within a concept, new c-.onc:epts am created mpresenl ing the 
new sub .. c:l;iss (sub-r.rilorion). This specification is 
constrained by the contexl -scmsilivity of the case being 
specified; what role the slots play relative lo the concept ii 
is part of. The second mechanism is the elaboration of pre 
and post-c:ondilions of causal and co-relations . This is a 
searr.h based mnchanlsm that examines concepts that already 
exid in the knowledge bar.e. 

Underlying · these r.lructures is a representation of 
knowlr.dge that facilitates the representation and 
manipulation of arbitrary concepts. A c.onccpl must 
encompar.s the semanli.cs of a criterion and preserve its 
intrinsic ambiguity. The process of structuring in the 
examplns can be viewed as tho roduc.lion of criterion · 
ambiuuity by r.peciflcation and c:ausal 11nalysls. 

4. A User's View 

The knowledge structurit,g r.yi;lem Is desip,ned to be 
lnterndive; 11llowlng the user to define the criterion and 
information to be used in the structuring process. A naturnl 
language interface is not anticipated as ii is beyond the 
scope of thin rnsearch. A minim11I interf11r.r. will be provided. 
The u!;er mu!,1 express inform11tion to be added in concept 
form. It is anticipated that II certain portion of Information 
requested by the system will be specific enough lo reduce 

.. the complnxity of this interface. The system will provide 
help facilities describing existing concepts, slots, rules, etc. 

The system can be viP.wed as an investigator. Once given 
the criterion, and the partially des·cribcd information, the 
system m11y ask tho user dirnded questions to augment Its 
knowledge b1rne. The method of knowledge acquisition by 
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questions is dc5cril)(!d in Section 8. An important ar.sumpl ion 
is that the know ledge bar.e u!;ed in slruclurinr, lacks, initially, 
the large amounts of knowledge necessary lo carry out the 
structuring. It is up to the sy~lem lo 11cqui rn this knowledge 
using the mr.thodr. available to it (Sr.e Section 8). 

As the system Ir. used, the know ledw~ base grows. The 
structurlt,g process is not simpliri1id by 1hr. accumulation of 
moro knowledue. The struct uring process shifts from 
dir.coverit,g new re lat ions among conwpts (infornrnt ion, 
cr iteria) lo deciding which re lations r.hould be emphar.izcd 
and which should be ignored. The bal~nc:e of know ledge 
ar.quisition and focused sr.arch wi ll be inver.liui1ted in various 
applications. 

The proces!dng of the !;y~lem can be divided into l hme 
calegorir.s. The fin.I, ffottom Up Theory /-lypothr.sizntion, 
analyses the infornrnlion units to be slrnclumcl io c.male 
c:onc:epls that dr.scribr. (clar.sify, synlhcsi7.e, etc.) r.ubr.els of 
them. The analysin can be ind1?pcnclcnt nlHl/or dependent 
Lipan the c:i· it cr ion. Somo mechani!;mr. w;r?d in the analysis 
am: simi lar it y· mear.ures (e.g., c:luder_ analy!dr., inlerferr.nc.e 
mate.bing), morphological similarity, and imalogical analysis 
bet w~en c.oncepls. 

The r.ccond category of proc.er.sing, Top Daum Theory 
Hypothe$ization, carrir.s out the (;earch process depicted in 
section 3. Given a cr iter ion concept, new concepts are 
created and old ones instantiated dur ing l hn !;earch process. 

The third category, Discovc,ry, augments the know ledge 
bar.e vi,1 thrne mechanismr.. The fir~! is /ntrnsp!!ction. During 
the knowleclue ba!;e searr.h, porliom, of conc:cpls arr. found 
to be empty. By compar ir.on lo olhC!r concepts (e.g., 
analogical, samr. super·-type, morphological similarity, etc.) 
these holes can be fillr.cl. If knowledge c;111nol be dr.clucecl 
vi,1 Introspective analy~is, a second mr.chanism, 
qwi.ttion··Cl$king ir. used. A question is asked of the ur.cr and 
the provided information incorporntcd into the concepts. The 
third mechanism Is Experimentation. This mechanism 
experiments with concepts lo clincovcr their causal 
rnlationshipr.. By mirnipulating an episode in which the 
concept of intere!.t is found, rr. lalionship(; can be di!;cerned. 
These three mr.chimirimr. 11m further described in section 8. 

These different c:alegorir.s of procc!,ses elaborate a 
hierarchir.al - like slrudurn em11nating from the criterion to 
enc:omp.ir.5 the information. Elaboration msulls in the 
creation of new concepts and instantiation of concepts 
alrnady contained in the knowledr,e liase. These concepts are 
pl,1ced in a system working space. lhe criterion and 
inform11tlon to be slruclurnd am also placed !hr.re. The final 
structuring is a subr.ct of concepts and rolations in the 
working spac~. 

5. Building l(_nowledge Structurna 

As described above, many types of procesr.inr, arc 
required. The building of a ~.nowlr.dge structuring system 
requires not only the execution of these processes, but tho 
strategies required to apply them. An implir.alory structuring 
may rnquirc strategies and mechanir.mr. different from those 
in a classificatory structuring. The approach taken hero for 
strategy roprnscntation and execution, and general system 
coordination Is derived from produdion sydem architectures 
(Ntiwell, 1973; Lena! ~ .. Mc:Dormoll, 1977) and HEARSAY- II 
(Er man & Lesser, 1975; Er man, 1977). 
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Strntcgy infornrntion Ir. rr.prr.sented ft!; rules. r.imilar to 
nrnla ··rules {Davis & [3uchanan, 1977). At any instance, only 
a !a1br,et of all ru les in the !,ystem arr. 11dive -- their 
condit iom, can be ln!,pected. Wt! ch!scribl! ail 11c:tive rules Ar. 
being enclor.cd by a window. Only rules in the window Are 
active. The ritiht-·h,rnd idcfo of a rule m;iy acid or remove 
rules from thir. window (activate, de-acti1Jate respective ly) 
(Fox, 1977). Associated with the window is a set of 
memories to which information mAy be 11dded, modified, or 
removed hy the ru les. A window and its assotiated 
memories c:ompri!;e a system. 

Rules may create new systemr.. The creation of a new 
sy!,lem rr.quirns the r,pec ific.1tion of what rules am to be 
placed in the new window initially, what memories to be 
created, and what information pl.ired in the r,e memor ies. In 
addition, a limited amount of rnsourc:cs m;iy be altoc ated for 
prowssinr, i11 the nr.w r,ystPm. Co11i,urnption of the rnsourrcs 
caui,es a reltirn to a prcVipecified !;ystcm. A r,oal m.iy be 
specified i11 addition to or instead of resourres; attainment of 
the &Oat also caw,er, a return. A r,ystem ir. either r.:,spended 
or dr.stroyed when it creates a new active i,ystem. 

In add it ion to rules and r.yslemr., there exid a set of 
data-·ac.livaled knowledue !,Ollrtef, · whose invocation is 
determined by their pre-conditions (Sec (Errnan & lc$ser, 
1975; Erm,m,. I 977) for a dnscriplion of knowlr.dne r.ourrns 
and thr.ir prn-·condil ion:, i11 HE/\RSAY·· ID: The rules i11 a 
s·y'.dem'~; window can activ11le or dc-11ctiv11te a knowlr.clr,e 
!,ource 's prn-c ondil ion, I hus controlling what knowledge 
sources c1111 bn itwo~.r.d. Durit1[l 1111 active system's execution, 
thn sy~sle.m'i; rules clncicln what knowlcclr,e sources to 
ac:livalc and the .imount of rcsourres to expend; they then 
initiate the cl;itil··clirnclcd processing. 1h.1t is, once the 
knowtc~due sourcct, arn chosen and a cost-limit determined, 
thr. knowledue sourer.!, ilrfl executed i11 a HEARSAY-·like 
dat a·-dirnctcd f md1ion wdnp, d;it a i11 the active system's 
memories 1, until the resources 11m consumed. 

The motiv11tion behind creatinr, multiple! !,yslcms is to 
facilitate attention fornssinr,. The knowtedr,e structuring 
system mw,t be able to torus dynamically upon a few 
c:onc:epts with a subset of know Ir.clue sources wilhi11 the 
structure beinr, built while suspending but maintaining its 
other intere sts. This is achieved through .the creation of an 
active system with only those concepts in the memories and 
knowledge !,ources active. 

The knowledge i,ourres rnrrently under development arc: 
Concept-Specification: Further r.pecilies slots within a 

Bottom·-Up: 

Sc:out: 

Prune: 

Class: 

concept lo create 11 new, more specific 
cone.cpl. 

Crnates ilb!,lractions of concepts using 
various methods. 

Searches for a ch;ii11 of rolations 
bctwem, two concepts. 

Removes conc:epls from the knowledge 
struc:turn that do not pl11y any Si[lnficant 
part (e.g., dnad end inference chains). 

Measures how well a concept acts as a 
classification concept in the knowlr.dge 
structure. 

1 A knowledge source may add data not only to active 
nrnmori1?s, but to suspended sy!,temr.' memories as well. 
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Implicate: 

Introspection: 

Question-Ar.king: 

MElMam1s how WP. ii a c.onc:cpl acts as an 
Implication cone.cpl in the knowlr.dge 
structurn. 

Ac.quires 
inference 
bar.c. 

knowledcg1: by utili7.ing 
rules within the knowledBe 

Ac.quires knowledge by a:,king the user 
very r,pecific questions. 

Experimentation: Acquires knowledge by creat ing and 
mwrnt inr, cxpurime11ts upon episodes 
reprnsenled in the know ledBe bar.e. 

The application of these modules requirns r,ome sort of 
strater,y. The followinp, is an example of a :,imple strategy. 

1. Expr.nd x resources on concept r.pccification 
focused on the cr iterion. 

2. Exp!!nd y resources on bolto111··11p concept 
formation focu!;cd on the information units. 

3. Expr.nd z resources Scouting for palhs between 
criterion deriv!!d concepts and inforn111tion unit 
dr.rived concepts. 

4. Combine dir.joint sub-structures (island-dr ive). 

5. Prune concepts in know ledge !,lructurn. 

6. Rate concepts as Cl.1ss ilication (or Implication) 
nodr.s in the knowledge structure. 

7. Apply 1 ··6 on porlions of infornH1tion and 
criterion not yet related. 

During the · running of the system, rulri l would create a 
n·ew ac:live sy:,_tem with the criterion placcil in a memory and 
concept-specification being the only knowledge source 
activated. The knowteclr,e source wouid fire 011 the cr iterion 
and any c:onc:epts ii derives from the crilerion, creating a 
hierarchy of c:rilerion-l;asecl concepts. The system would 
rr.turn to the initiating system once its resources WP.re 
consumed. 

6. Knowledge Representation 

A key issue involved in creatinp, a knowledge intensive 
system In thr. knowledtic roprcse11talio11. :icclion 3 Bives 1111 
idea of the diven:ity of information to be w,cd. Arbitrary 
definitions at different levels of abr,tract ion and ambiguity 
must be represented. Hinrarchies of categories, 
transfornrntions, ac:tions, and c.a11!;al relations are needed. 
The following i5 a brief lid of knowledge types to be 
represented: 

1. object, attribute, value triples. 

2. struclurnl rnlations. 

3. c:ausal relations. 

4. lime relations. 

5. multipln levels of ab!,lract ion in both data and 
procedure. 



6. typ<1 hiernrchie5. 

In addition, we must ar.comodale and assimilate new 
information (Moorr. & J\k?well, 1973) (Simon, 1977). 

The approach lr1~,!H1 hr.ru ir. tho mclciing of diverse 
· approaches to knowlr.dge roprosr.nl al ion anci its use. To 

begin with, the primary unit of ropresenlation ir. the Concept. 
It Ir. f.i milar to Sch()n111 (!3nrflett, 1932), Frames (Minsky, 
1975), 13eingr, (Lena!, 1975), Concepts (Lema!, 1976), and 
U11its (Bobrow and Winograd, 1977). It combines Fillrnoro's 
( I 968) Case Form ;ipproar.h, which appe;irr. in Schank's 
( 1 975) Conceptual Dcpcndenc:y rnpresenlation, with a lexical 
level representation. The case form approach allowr. the 
reprnsentation of concepts r1t the level of deep strucluro, 
which allows c:omparir.on belwef:!n concepts. On the other 
hand, lexical infornrnlion ir. r.lored, cnilh ling lexical 
comp.irir.ons and nrnnipulation of lexical conc:epts. Eac:h 
concept is Typed. The type provides the slots (farnls, car.es) 
thc1t an! in the conc:ep t (e.g., ir. - a inheril enc.e), And they aro 
filled with lexical inform11tion. There is no limit to the 
nurnbr.r of lypc!s. Each type ir. defined by ,mother concept. 

In most r.yslemr;, the slots In a rnnc:epl am system 
primitives. Fle xibi lity in ar.comocialion, assimilation, mAlching, 
and manipulation is allowed when r. lot names arc thr.mselves 
concepts. This idea ir. r. imilar lo what is found in lv1orlin 
(Moore and Niiwell, 1973) and AM (Lenal, 1976). 

One . can manipulate concepts c1r. dedarnlive 
representat ion!;: nrnlc hinr, and manipulalinr, c:oncepls, building 
new concepts, etc. But there is the prococl11ral aspect to this 
reprnscnlalion. Tho concept '°!;orl" could be represented 
dr.claralively by !;latins a precondition, ;i list of elements, and 
post-c:ondilion, a sorted li st of elements, alonr, with other 
Information like the type of elemr.nts . A proc-edurnl definition 
can alr.o be attached to the "sort" concept. This allows the 
sort concept to be applied (In the Lisp sense) to a list of 
elemr.nts, with 1hr. output of the application, a sorted list. 
Ear:h concept has <1r.r.oci.1led with it both a declarative and . 
procedura l description, where applicablr.. 

In addition to the regular . !dots found in a concept, there 
are mela-rler.criplion!;. Meta-descriptions occur in two formG. 
The fin,t are· descriptions A!;socialed with eatl1 slot, which 
provide lnfornrntion about what fills tho i;tot. The following 
arr. the standard slot mela··descriptions: 
Restrict restrict tho typos of information that 

may fill a r.lot. 

Default 

To -Fill 

lf-·Filled 

default filler for empty r.lots. 

dirncls system in how to fill slot If 
empty. 

initiates "slde -eflecl" proc.ossin& when 
slot is filled. 

The second type of mr.ta-descriplion is concerned with tho 
relalion!d1ips belwef:!n the r.lols, and infonn.ilion concernin& 
the concept ar. a whole. For example, information as: to why 
the concept war. created and by what knowledge source, 
what !dots sem;mtically modify or restrict othr.r slots, what 
slots further ·specify other slots in a typo hiornrchy, or rules 
for Gpec.ificat ion or application. The following aro tho 
standard roncept meta .. descriplions: 
Capply: the procedural definition of tho concept. 

Restrict: what slot restricts tho specification of 
another. 
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Modify: what slot modifies tho interpretation of 
another. 

Preclude: what !dOl5 furl hN defirrn r. lots hi&hr.r in 
the typo hir.rarr:hy. 

Elaborate: rules specifying what slots to elabornte 
in concepl-specific:ation. 

Hir.tory: why and hy whom tho concept was 
crea ted and/or modifind. Used to focus 
search. 

Ctaf.s: what clar.r. the concept ir. a mr.mber of. 

. Fspcc: whnl concept lhir. concept is a further 
specification of. 

An imporl;inl feature of any knowledr,e rnpre$enlation, 
larce ly icnornd by most r.ystemr; to dale, is 1hr. !;lorage of 
i11form.1tion necr:H,!,ary to oplimi,c sec1rch c111d knowlr.dge 
acquisition. Initially, thn r;earr:h and knowledr,e acquir.ition 
rules will be quite general. As experience is eained 
f.!ruclur inr, informAlion, the c:ontex l sensitivit y of the rules 
will be recop,niwd rind r.tronr,er heur ir.lics construded. This 
requires the dornue r111d iurnly!iis of empirir.al data. Eeacl1 
concept will r.lore records of its u!;e in search and knowledue 
acqui5ilion. This data will be an;i ly~ed by various mr.lhods, 
some of which are: · 

- Eac:h concept ir, compor.ed of one or more types. 
All concepts of the sarnr. lypC! can be analysed 
for commonalities in the empir ical data. This is 
stored i11 1hr. concept for that lypr.. This 
c:ommonrtlity (ab1,lrac.lion) analysis can recurse 
up throuuh the type hierarchy. 

- We frequently find c.erl11i11 lines of rcM;onin& 
(sequence of c:oncepls) U!;eful i11 the slructurin& 
process. U!d11g tho nr.twor~. modr.l method 
desc:ribud in (Fox & Hayes .. ffolh, 1976) those 
sequences can be discovered. Honc:e new 
search rules will be constructed. 

7. Search and Context Mllintcnance 

Search, as depicted in ronc:epl-specifiral ion or scouli11P, 
knowlr.-dp,e sources, ir. a key elr.mr.nl in the system's 
processing. Given a crilcrion and information lo be 
structured, the system must search for Interesting 
re lationship!; between the two. In the survival examplr., 
search (conccpt-spccific:alion) wr1s alonp, 1hr. type hierarchy 
of cases in 1hr. c:rilerion concept. The dcrir.ion ar. to what 
path lo expforo from a concept ir. dependent upon the 
system'r; Global Search Con.text, and the concept's Local 
Search Contcxi. Local search context is !,pecified by rules 
altac:lwd to r.ac:h concept and tho restriction and modification 
mnta-der.c.riplions a111011i: ~lots. 

Local e:ontexl · Is depr.ndr.nl upon the conrepl undr.r 
investiuation. It is incl!!pendc!nl of the rr.ar.oninu that led lo 
thr. comddnration of thAt conc-epl. For examplr., the 
surv iv ab ility examplr. refers to the word "Attack". Thir., in 
il!,elf, is a concept. Altar.hod lo ii m.1y be a local !;caret, rule 
that points out that the inslrumr.nl of tho ;iltack may be of 
interest. Alr.o, the mr.ta .. cJer.c.riplion Restrict slot r.pr.cifies 
that the instrument restricts the typo of action. Therefore 
the instrument should be specified before the method of 
attac:k. The search could then invostii:ate the concept(s) 
ar.sociated with the Instrument case. 
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The need for a p,loba l r.ea rd1 co11text in Speech 
Und1!n.l andinr, . Sysl emr. h;1 r. been exprcsM,d by l.esr.er and 
Er ma11 ( J 977 ). The df!Cl!.io11 ,w to what porliom, of a c:onc:ept 
should be atlend1!d to is clepend1!nl upon how ii relates to it s 
global con text. This context ir. not only defined by tho 
sequcnc:e of' concep ts lh itl led to the concept under 
cons ii.foration (i .e., its a11cestorr. in a hierarchy) but by 
concepts in other 

1 
p;1rnllel br.rnches of tlrn cr iterion 

elaborat ion hiernrchy . 

Two modes of p, lob ,il contex t com,truction occur in the 
r,urv iva l c~xa mpl r.. The fin;! is a r. ide effect of the cr il nr ion 
el r1 borat ion by concep t spec ifirat ion. "SllC:CISSrlJU V IITTIIC:K 
01\NGrn /\Nil fJNO FOOD ON LI\Nll" i!, a new concept crna ted In the 
elaborntion procesi,. It dir.play(; the rn;iin concept of the 
ori(',ir;al surviv_ab ilily crit er ion combined with the specifics of 
the particular el.ibor ;ilion of the cr it er ion. The global 
context is incorporntcd durinr, the concept's creation. The 
d1!cision as to what portion of the concep t to irwestigate is 
dependent upon it s "importance" in thir. concept. The ad ion 
(verb) ir, of importance parlin ll y duP. to the emphnslr. placed 
on it by the modifir.r "succesr.fully" and ii pivot;il position in 

· the concept. H1mc.e, it is of interest and ir. investigat')d 
further. The global context is implicitly brought to bear 
during the dec:ir.ion. 

The second mod!! rn lies upon the sy!dem dyr.1amicall y 
bu ilding a context rnpresent .it ion indnpencll!nt of the concept 
under investigation. Continuing the survival ex;implr., the 
fir!d type of r,lobal context led to considerinn the roncepl 
I\TTAr.K, then the loc.11 context sa irl to irweslir,ate the 
" ir1rdrumr.nt" of atlackinr,. Tlie realm of po:;isib lc instruments 
i r. VM;I. It can only be pruned by knowing the origirrnl 
context of the c;onc:epl ATTAC:K. Thal is, the attack -is 011 land 
and the atlackee is possibly clnnr,crour.. Othe r information 
such as whether the attacker and al l;ic:kee arr. .111 imate would 
be ur.eful. This information war. not expl icitly carri11d along 
in the i,earch. At this point in the structuring process we 
are lookinn for rr.lation!;, possibly caus;il in nature, between 
attack and the information to be r.truc.tured (mAmmals). 

8. Knowledge Acqui$lion 

It is obvious from these examplr.s, that the creation of A 
knowleclr,e structure requires a large amount of dom.iin 
knowledge. For examplr., the structuring c,f mammals bar.eel 
on survivability rnquire s not only knowledne of physical 
charncteristics but what part they pl.iy in the animals 
survival, e.fl,, a keen !,cnse of smr. 11 for rlelficlit,8 .in enemy. 
This knowledne is initially separnte from the information to 
be r;trudurncl. Not only Is the .imount of knowledr,e [:real, 
but trrn infernnces drnwn am romplr.x . Suppose we were to 
des ir,n a. system to r.trucl ure information ;incl/or know lecti:e, 
at1d provide it with a know ledge bar.e and inference 
generntor. One could never cir.fine, a priori, the knowledr,e 
necessary for suth a lar.k. Nor could one foresee the 
knowleclt:e needed in other applications of the system. The 
quantity, diversity, and ob!;curily (to the s>•slem designer) of 
the knowledr,e, require'> that the system dynamically acquire 

1 The process of elaboralir1g the criterion does not result 
In a true hierarchy but a dructure whor.e underlying form is 
hierarchical and contains "fu?.Zy" nodes. That is each node 
has inference paths (mostly dead ends) ru1111ing off in many 
di red ions. 
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the knowleclue re levant to the tar.k. 

An itnport ant problnm immediate ly ar i1;es: How does a 
sys tem focus it s acquisition of knowlectne? The -solution is the 
critorion. II is lhci key piece of informat ion w;ed in rating 
what knowledge to acquire. The closer the rr. lationship 
between know lecl[:e And the crilorion, tho hir,her the rnt ing. 
In a sense, the c:rilerion biases tho comp11l at ion of the 
system. 

During the . !,earth proceVi, many !, loh (comepts) are 
fo und lo be empty. One of lhr. mP.clrnnir.rn for fillinr, those 
slots is introspection. This mr.(11,mir.m ir. implr.rnrrnled by 
atlac:hinp, knowledge ar.q11isilion rules to !dots in a concept, 
describing wlfore in memory the proper inform,1tion (other 
c:onc:epls) may f)(! found. In ;:iddilion to rulr. s, dr.cluclion 
concepts and ana logy mr.cha11ismr. nlAy be employed. 

A second mr.thod of acquiring know lP.dgC' is 
q 11.f! .<tion··asking. Slot rcl;iled ru lr.s can be r.mbr.clded to a!;k 
the w,cr dirnclcd q11r.slion! •. The v11 lur. of a quest ion in 
acqu1rn1g relevant knowlecinc is dep!'ndenl upon it s 
sp(!c ificily. A que.~tion's r,pec ifir.ily depr.ml!, on the comept's 
abdradion level (e.g., IP.vel in type hiernrr.hy) ;rnd i;r.arrh 
context. The conc:ept "action" nrny r;pr.c ify quest ions al lhn 
Ir.vet ot' object, agent, indrurnr. nt, etc., while the ronc:ept 
"attack" may have rules (c.ombincd wi th CY.pr.cted case filler 
lyp(!s) !;pecific enour,h to ar.k: "what weapon was m,ed ar. the 
lnstrurnr.nt of atlac:kin[:." Ulili7.inp, the context nwch11nisms 
descr ibnd in Sr!c.lion 7, dr.lailr.d q1wslions Ciln IH! M;ked. 

Another mr.chanism for gu irl inr, the formation of questions 
req11irn s the ability to solve~ prob lr!mr. at variour. leve ls of 
abi;lrnction. Con!,idr.r the r.urv iv 11I exillnp lr al the point of 
trying to rnlale "attack" to one of the mamm.ilr.. The 
r,y:, lem's knowledge base may not ronlain information 
r,pec ific enour,h to rnlale 1hr. two. Thal is, the pri!sent slate 
of tho knowledr,e bM,e is not dorMir, !,pecific. It may know 
nothing about mammal!, al tile king with c.lnw~, teeth, tails, or 
guns. £3ul it m.1y have iltl abs tract description of the concept 
"attack", which m;iy be defined ar. "the application of force to 
overcomP. another object." The analysi:; of force application 
cou ld le ad to: "movrimr.nt or m;1nipul;ilion of objeds." 
Contimr inr, lhir. analy!,ir., the mamnrn l m;iy be ab!,lrnclly 
related to "atlatk". The system could then a!;k r.pccific 
questions based on this atn,tracl analysir. to eli cit domain 
knowledne. For examplr.: "c.an the Mm of the rn;1mmal be 
viewed as An objnct that can apply forc,? 1 ", "ls the force 
applied grnat enough to ovcrrornr. the opponent'~ force 
mnchanir.m::;?" ck. 13y building an abi;lract chain of 
inference~., relatioM, etc. that connect two ro11cepts of 
Interest, quesliom, can be posed to elicit the dom;iin specific 
information. 

The r,equences of abdrac:I re lations can also be built by 
analogy. If the sy:;fem ha!; an exarnplr. of attacking in 
anothr.r domail\, then by trave ling up the type hierarchy, the 
attack exarnpln can be described at an abstract level. The 
seque11c:e of aln;frilct co11rnpls can be used In 
question -asking in the same way lhill the abstract sequence 
is derived by problem .. !;olving. 

[,:.porinumto.ti.on is a third method of knowledr,e 
acquis ition. It appearn to be A very powerful method thAI 
has yet to be seriously investigated in the ArlificiAI . 



lntPlliu.1inc.e community 1. Thir. mr.c h,mir.m r.xpr.rlmr.nts with 
ep ir,oclri~. ,rnd conrept:, to cfo;c.over their CA U!;at rnlationr.hips. 
By rnrmipulatinp, an epir.ocle in which the concept of interest 
ir. found, mlation!d1ip!; c.an be cli!;cerned. For r.xamplr., if WC'! 

am inve,;tir,;iting the surviva l c:lu11'..1cterir.tic s of a ga7.cllr. we 
may have an epir.od11 in which the nrnmmal exhibit s its 
!;urvival ;ib ililie s: "A gazelle ir. lr;ivelling through a forest. It 
io beine; slall1ed by a lion. The r,azelle slops, lift s its head 
and runs away, escapinr, from tho chmr,er." This cpir.ode Is 
suff icient ly v.ir,ur. tl1At it docs not indicate thP. attributes of 
the p;;izelle that facilitated its rewr,nition of and escape from 
d;inr,cr. f3y experimenting wilh the epir.oclr., the interesting 
charnctcrir.t icG can be unveiled. If it ir. thou[lht the gazelle's 
heari11r, .illowPd ii to cl1!1ed the lion then the cpir.odc can be 
rerun (either internall y or by ar.king the w;er) and changed 
by putting ear .. mulfs on the gazelle. The outcomr. of the 
epir.oclc (gazclle'r. death) will inform the sy:,tcm whether 
hearing wa:; a key factor. The in;ibility to build a11Ct maintain 
an internal model sufficient to uirry out E•xpcrimr.n ts iG not 
an impediment. The question -a!;kin[l facility dir.cur.scd above 
suffic.e5. Hy por.inr, the propr.r q1mstionr., lhe system user 
can carry ouf the aclur1I experiment and re lay the results. 
Hnnc:e a powerful question- asking ability lays tho 
ground-work f?r experimentation. 

9. Structu,·c, Evaluation 

Given that the cri lerion determines the lype of structure, 
it ir, alr.o 1he crilcr ion that is w;cd 1o evalifate hypothesized 
structures. The ques1ion is: How is the criterion integrated 
into tho ev;i lua1ion process? 

There arc two types of evaluation techniques. The lint is 
constructi,,c. Con!;\ructive 1ec:11niqucs arc w;ed in the ac1ual 
construction of the knowlr.clue structurr.. They are 
dcpr.11d1int upo11 the rnlalions ur.ed. For !!xampir., if a clar.s 
relationship is U!ied, it may be bar.eel on the similarity of 
allribu1es between inform,1tion unit s. The dedsion as to 
what attributes arc diagnostic i!i bar;cd on the attribule's 
relation to the criterion. In many 1n11mmalr., the ex ir.tencc of 
hair mr1y not be a ur.cful c:lassification, relative. lo the 
survival criterion. 

The inferences th11t arc used to hypothesize possible 
structures are subjec.t to ev;ilual ion. In most other systems, 
inferences have (at most) f.taiic ratings assoc.iated with them. 
The combinine; of information requirns tho c:ombining and 
evaluation of these mull iplr. inferences (Shortliffe, 1975; 
Dud11 &• Hart, I 976; Hayes -Roth ct al., 1977). The use of 
dynamically defined lnfercnrc · ratings (by re lation to the 
criterion) provides ur. wil h the power we need to mear.urc 
knowlcdue structures wdng diflernnt criteria. 

The sec.one! evaluation technique is operative. It is an 
evaluation of a structure based on Its aclw1I perlornurncc. If 
a knowledue structurn w11s created to modr.l the university 

lrhe Molgen project (Stefik 8.• Martin, 1977) is an attempt 
at the autotirntion of pl.inning genetic experiments. Both lll'O 

similar . in that they have to pl_;m the experiment but they 
differ in that a knowlr.clge structuring sy:;tem attempts to 
extrnct dependency lnformAtion implicitly contained in tho 
epir.ode. Thi s requires the rocor,nition of the portions of the 
epir.ode that pertain to tho currnnt knowledne Acquisition 
goal, the construction of an experimentation goal, and then 
constructing an experiment. 
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enrollment' foreca!;tinr, ·procesr., then its performanc.c, I.e. 
prndict11bility, wo1~1ld be an oper11tive (,valirntion. Operative 
techniques c:an be r.r.lernal or internal lo the system. In the 
ex1ernal c:ase, the sys1em must produce a knowlr.clge 
structure, give it to thr. ur.er, then evalualc1 lhe perlorm1111ce 
results and c:hange tho it accordln[lly. 

We call the internal c:.ise er.pcrimr.ntati.on. Experimentation 
tal1e~; any structurn, hypothe sis, or rnlation 1111d !£r.ts ii in a 
c:IO(;ed, r.ontrollr.d environmrrnl. UnclN 1he r.y~temr. dirndion, 

the cnv ironmr.nt and/or the hypothesis beinr, te!;ted (e.g., a 
g;izelle detects danp,cr by llfiaring it) can be d1a11e;ed. By 
v..riow; technique$, theorir.s can be corroborated or rejected. 
In the survival of mammalr. example, an P.pi!;odr. where a 
mAmmal in in a dangerow; situation would he run and rn -run 
to see what attributes of the mammal are pcriinent for its 
surviva l. Placing the mammal near water, 0,1 a rocky hill, in 
day or night, all may be imporl,rnt environnrnntal c:hane;es 
U!;ecl to ferrnt out necesr.ary attributes. Experimen1alion 
actually hridr,es two area!; of c:onc:ern. It is used as an 
evaluation technique, and a!; a mr.thod or knowleclr,c 
acquisition. Ear.h test inc:rear.cs the r.ystem's knowledge of 
the mammal. 

10. Summary 

We have i11troduc.ed the conc:epl of K110111w.dffe Stmcturin11 
as the proc~ss that e;eneratcs hnowledffc by combining 
information previoll!dy unrelated, or by rreating allernale 
structures for (prnviowdy structured) know ledue. ThP. key . 
factor i11 the k,nowl0dge strncluring proce~s is the criterion. 
The number of different potential struc:l urings is larue: Its 
selection is guided by the criterion. Generality is attained by 
making the rriterion a system parameter, resulting in 11n 
Exo .. Critc,·ion System. 

Two types of problems, clar.r. ification and implication have 
been · examined using the knowledue struduring parndi[lm. 
They clemon!;trnte the need for exo .. criterion knowledge 
struclur inn (;ystemr.. 

A knowlr.due structuring sy~tem requires a robust 
knowl0dne representation. In our approac:h, we have built 
upon the labour!; of others. Interesting nddilionr. 11re the 
integration of empirir.al information for lcarninr,, the melding 
of tho declaralivn and procedur11I approach to 
rnprnsent at ion, and the use of c:onc:epl meta ··dcsc.riptions. 

Of part iculAr interest lo lhir. research is the study of 
knowleclue structuring mechanisms. In par ticular, tho 
focu:;i11n of search in large knowledge bases by mr.ans of the 
criterion. We believe that search is a bar.ill mr.chanism, upon 
which the knowledge sources are dependent. 

Criterion guided knowlcclne acquisition is the second 
knowlr.clge structuring mechanism. This work ilwestigates 
acquir.it ion via introspection, quest.ion-asking, 
experimentation. Two of the underlying mr.rhanisms are 
conc:ept-specification for creating sub -crilcirie and (abstract) 
problcm .. solving as II bar.is for question-asking. 

LA!;tly, II should be omphar.iied that the process of 
knowl0dne structuring and thn integration of an exo-criterion 
is a necessary step In tho evolution of Artificially Intelligent 
systen1G. 
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Abstract. Only llrnited attention has been given to 
clevelopinu Al systems tlrnt con represent for 
themselves the prohl0ms that they are llsked to solve. 
PH"632, the system discussed In this paper, Is a 
i>rocluctlon system that models the behavior of an 
expert physlclnt In solvl11u textbook physics problems; 
as with other skilled textbook physics problem 
solvern, a slw1lflc1111t amount of Its effort Is directed 
townrd problem reprnsentntlon. Tho system Is driven 
by a plctorlnl representation of n problem; It 
extensively reworks the representation before 
generating the equations that enable It to solve the 
problem. 

I. INTRODUCTION 

Clearly the way In which a problem Is 
represented Is a significant foctor In the ease with 
which It c:nn be solved [Nowell nncl Simon, 1972; 
Simon, 1975); and for the most part, when nn Al 
system Is designed, the deslg11ors expend 
conslclernblc effort looking for on 01>tlmal problem 
ret>rnsentntlon schenm. In this pnper, we describe a 
system, PH"632, that can represent problems for 
Itself 111 11 way thnt fncllltntes Its subsequent work on 
those problems. The system models the performance 
of a skllled physlclnt 011 slmple me1chanlcs problems. 
We wlll not be co11cernecl here with the psychologlcol 
validity of our model (see Larkin (197711; 1977b)); 
rnther, we wlll assume that our model captures, at 
leBst grossly, the basic problem solving strategy of 
th.e expert and will be concerned prlrnarlly with the 
utlllty of the problem reprmrnntotlons Implied by the 
strategy. 

A skllled physicist solvl11g a slmple textbook 
problem ordlrrnrlly ml'lkes use a sequence of four 
representations: Given an l11ltlal statement of the 

1 This work was supr>ortcd 111 p11tt by the Defense 
Advnncr.cl Roscrnrch Projects Agency 
(F44620"73-C-0074) and Is monitored by the Alt 
Force Office of Scientific Research. 
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problem In E11{1ilsh, tho expert re"rnprnse11ts the 
problem as a picture; the picture co11tol11s Just those 
ob Jects mo11tlo1wcl In the problem statement encl 
cllsplays tholr relatlonshlpi; lo one another. Then the 
expert develops a third rnprenentntlon co11slstl11g 
exclusively of "physics entitles" (eg, systems, states, 
forces, energies). fl11nlly, the expmt represents the 
problem as a set of equations whose solution will yield 
the answer to · the problem. While It Is obvious that 
the flrnt and last of those representations are 
necessary 111 order for n problem to be solved, the 
utlllty of the two l11terrnedl11te reprnsentntlons may be 
less clear. In this paper we wlll focus · 011 two 
questions: ( 1) 111 what ways do the l11tcrmcdlBte 
tet>rnsentotlons facllltnte problem solving? (2) What 
knowledge Is required to construct and then make 
effoctlve use the second of these lntermedlllte 
representations? 

Severn! l11cllvld11als ere enonned 111 research 
tlrnt pnrollr:ils our ow11. Hoyos nnd Simon's 
UNIJrnST/1.NI) system [1974) models the behavior of 
humans In the task of 1>roblom rn1>resentotlon, end 
Novak [1976; 1977) and do Kleer (1977) havo each 
clevclopr.d n physics probl0m solvlnu system that 
constructs multiple problem representations. Novak's 
system, ISSAC, which Inputs Enullsh text stating a 
problem nncl tlrnn solves tlrn problem, Is prlmarlly 11 

study In nnturnl le11uuane 1111derstondl11g. Most of his 
effort w11s spent 111 showh1u how n statement of a 
physics problem can be mapped Into a "plctorlal" 
encodll1g composed of l11stontlatecl 11 cono11lcnl object 
frnmes"; by obstrnctl11g from the lrrnlevant details In 
the problem statcmEmt, his system Is able to put the 
problem 111 a form that makes solvhig rclatlvoly 
straightforward. In de Kleer's system, NEWTON, 
knowledge Is roprosentcd 111 a way that enables the 
system to attack problems of varying dlfflculty with 
different problem solvl11g stroteules. The system first 
attempts to solve n prohlem using 11 q1111lltatlve" 
knowlecl(Jc; If the problem cannot be solved using only 
ctLfolltatlve knowlmlge, the system uses Its 
"quantitative" knowledge. PH"632 Is given a pictorial 
reprnsuntatlon similar to that oeneratcd by Novak's 
system; It constructs a qualltotlve representation -- a 
second l11termmllllte representation -" that greatly 
slmpllfles Its subsequent quantitative analysis. 



· I 

In tho next section, we consider In morn detall 
tlw dlffnrnnt prohlom reprnsontotlons used by a 
sklllml physlclr.t nnd provlclo somEi Justlflcntlon for the 
two lt1torrnodl11te reprnsentntlons. In the thltci section, 
we clescrlhe how knowl0elne Is rnprnsentecl In our 
system nnd lndlcntn how the . system uses Its 
knowledoe to construct nnd use the qualitative 
rnprniwnlnllon. In the four1h sec:tlon we examine In 
sorno detoll tho behavior of our system on a sample 
problem. Flnnlly, In the fifth sec:tlon, we discuss two 
of tlw weaknesses of our system ns currnntly 
l111pl8111011tecl: Its lnnhlllty to rnak e effoctlve use of Its 
knowledge when It encounters problems of an 
unfomlllar type nnd Its lnnhlllty lo refine Its knowledge 
on the basis of Its experience. 

II . THE PROBLEM REPRESENTATION STRATEGY 

As we lndlcntnd In the prnvlous section, an 
expert physlclr.t typlcnlly mukes use of four different 
rnprnsentntlons ns he solves a textbook physics 
problom. To lllur.trnto thesn representations we will 
use a problem taken from 1-lrlllldny ond Resnick [ 1966, 
pp . 126- 127]. Tho flrnt representation Is the one 
given In tho book: 

Block B In Figure 9 wel~1hs 1 60 lbs. The 
coefficient of static frh; tlon between block 
and table Is 0.25. Find the max imum weight 
of bloc:k A for which the system will he In 
e.qulllbrlum. 

Figure 9 

If the problem stotement were not accompanied 
by a picture, then the expert would construct, as a 
second reprmwntntion, his own picture displaying the 
e ssentlnl nlermmts of the problem sltuntlon and then 
would make a fow notes on his sketch Indicating 
relevant quantities and their values. Since a picture 
Is already provided for this problem, all that the 
expert does In this cnse Is copy tho picture and ndd a 
tow notes. Tho expert would produce a sketch llke 
that In Figure Oa. 
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A 

Figure 9a 

The expert would then cmnnuc In a qunlltntlve 
anolysls of tho problem and this would result In his 
constnrctlnu n third rn1mrnentntlon contnlnlnu only 
11 physlcs entitles". The expert would henln by 
selecting an approach to the problem (le, a set of 
physics prlr1clpl8s); for this problem, force prlncl1>les 
would Im the moot likely cnndldnte. Then he ml~1ht 
make sonw Inferences obout block O (that It Is acted 
on by four forces: tension to the right, friction to the 
left, ornvlty down, normal force up). Because block B 
is nn Instance of n fnmlllnr system type (n block at 
rest on a horlwntal surf11c£l ), the expert would 
probably not arid nnythlnu to his sketch.2 But the fact 
that the tension forr.c on block B cannot he directly 
related to known or desired quantities would guide his 
attention to 11 second system lnvolvil10 this tension 
force - - the Juncture of the three strlnos. This 
system Is sufflclenlly complox that he would probably 
clrnw a "free-body" dlngrnm of It. This would result In 
a sketch like that In Figure 9b. 

f T~ //,r 
T 

T& 
~""'/ e 

Tn • 

LA 
Figure 91> 

2 It may he that the expert actually postpones his 
analysis of familiar systems until he begins to 
oenernte equntlons; we think It Is more likely, 
however, that the systems are nnaly;mcl, but not 
drown because the Information lnfcrreci Is easily 
rnmomberecl. We will return to this question In 
section IV when we descrll>e how PH-632 deals 
with familiar systems. 



Tho frnc~Mhody dlanrnrn shows the directions of the 
two tension forc(!s (TA and Tn) due to the strlritis 
attached to blor.l:s A and B, os well as the horlwntal 
onrl verUcnl components (Th nnd T v> of the dl11gonal 
tension fore<! clue to the~ strlnu ottached to the wall. 
llw fact thnt the verl'lcol component, T v• cannot be 
cllrnctly related to known or desired quantities would 
oulde the export's attention to block A; but again, as 
with block 13, no frneMbody dlagrnm would be drown 
since block A Is nn Instance of n fnmlllar system type 
(a hantilll!J block). 

flnnlly the export would construct a fourth 
rnpresentntlon of the problem by writing a set of 
eq11ntlons; each of the equat ions below would be part 
of this quantitative representation: 

Because forc€!s l>11l11nce on the Juncture: 

Because block B Is Rt rest: 

where f Is the frictional forco on block B. Comblnlrig 
the preceding, and relating the component forces T v 
and Th to tho magnitude of the total tension force T 
clue to the slanted string: 

f = T (cos 9); WA=T(slnl) 

where WA Is the weight of block A. Using the fact 

thllt 8 Is 45 clegrnos, and f equals the coefficient of 
static friction, µ., tlrn~,s the normal force which here Is 
equal to the weight of B: 

WA= 40 lb 

Sklllml physicists almost lnvmllihly use nll four 
of the rnprnsentntlons lllustrntcd nbovo (the English 
problem statemont, the labeled sketch, the sketch 
containing physics entitles, nnd the eq1rntlons). Our 
Interest Is In the utility of the two lntormodlate 
representations. It Is not difficult to Infer plausible 
reasons for tho foct that the expert reMrepresents 
tho problem pictorially. Much of the difficulty with 
mechanics problems lies In 1mclerntondlt1g the spatial 
rnlatlonshlp11 of the objects Involved; a plcturo 
provlde11 a way of re1mrnent1110 this lnform11tlon 
compoctly MM so thut nll of the Information necessary 
for· solving the problem 111 lmmecllatoly avall11ble. 
Momovor, much of the Information that Is t1lve11 In a 
typical Enollsh problem statement Is lrrnlevant; In 
mechanics problems only a few attributes of objects 
·(en, mass, orientation, texture of surfoces) are of 
Interest. Thus, the 1>lctures that are drawn can be 
highly stylized MM a small set of symbols can be used 
to represent all of the objects Involved. 
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13ut why does the expert spend a slonlflcant 
amount of his time c:onstructlnn what we arn cnlllti[I ll 

qualitative rcprinwntatlon? Th!!rc are ot least three 
rnnsons: Flrnt, by rlolno so tlw expert con quickly 
determine the np1>roprlatnnc-!SS of a pnrtlcular 
approoch to a problem. After constructlno n frne-body 
dlrigrom, for examplo, he con check whether what he 
knows about tho motion of n system Is consistent with 
the forces act1t10 on It. Secondly, before a mechnnlcs 
problem cnn be r.olvecl, the forces or energies nt work 
must be dlr,c:overed 1111d somohow rnpresentecl. Since 
tlw spotlnl rnlatloti'shl1rn among tho forces or eneroles 
nlwnys hns sl[llliflconce and since the force or energy 
lnf'orm,:1tlo11 c:nn be rnpresentecl with n smrill set of 
symbolr,, n highly styll7.ed plctorlol rnpresentntlon of 
this knowl8df1P- Is opproprlote. Third, the problem can 
be attacked In o wny that minimizes the possibility of 
tho exp1Ht lrncomln[I confused or dlstrnctecl. By 
deco11pll11u the discovery of the forces or energ ies 
from tho gerwrn tlon of r.quatlons, the expert rnduces 
tho amount of Information that he must attend to ot 
any one tlmo; oftor nddlnu force or energy Information 
to his sketch, he can forget about It since It Is 111 a 
semlMpermanent and easily rntrlevable form. 

111. PH-632: REPRESENTATIONAL ISSUES 

In this section we turn from genernl comments 
about how sklllod physicists solve mocl111nlcs problems 
to n conslderntlon of the reprnsentntlonnl Issues that 
nrlr.e when one tries to lmplenwnt a system that con 
use the experts' problem solving strntegy. After 
l>rh~fly dl:;c:usslnu the way In which problems olven to 
PI-IM632 arn encoded, we consider, In some detail, the 
way In which PHM632's knowledge of physics Is 
roprnsentcd. 

PHMfl32 Ir, provided with 11n encocllno of the 
picture of the problem It Is to solve. Thouuh It docs 
not Itself generntc the plctorlol reprnsentatlon (le, It 
Is not a naturnl l11nuuane undorntoncllng system), 
Novak's work hns shown how such II rnprnsontatlon 
can he constructed. Uslnu the labeled sketch, 
PHMfl32 constructs a qualitative reprnsentntlon ancl 
then oenerntes the necessary equntlons and solves 
them. The problem cler,crl1>Uo11 that PH-632 Is olven Is 
encoded as sets of attribute value pnlrs . The 
descrlpl:lon consists of thrne kinds of entitles: ( 1) 
objr?cts, (2) contacts between polrs of objects, and 
(3) notes contnlnlnu quantitative l11form11tlon nhout the 
objects. These ent itles contain only that knowledge 
that could be oenern tccl hy a naive perceiver (le, by a 
1>arcept11al system with no knowledge of physics). 

Assoclt1ted with each object Is an Indication of 
whether It has mass, whether It Is movlnu (nnd If so, 11 

clescrl1>th>n of the motion), what other objects It Is In 
contact with nnd the direction of the contact, and Its 
cnnonlcol type (eg, block, string, spring). For the 
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somplo problem nlvnn above, PH-632 Is given the 
following description of block B: 

NAME 
TYPE 
SUBTYPE 
MASS 
MOtlON 
CONTACT 

131.0K·B 
OB,IECT 
131.0CK 
YES 
NO 
(RIGHT smNG1 CNTCT1) 
(OOWN TABLE CNTCT2) 

Block B Is In contact to tho right with the object 
nnmr:1d STl~l"G 1; Information about the nature of this 
contact Is c:ontoilwd In the contact ent ity, CNTCT1. 
CNTCT2 c:ontol11s Information about the contact 
between block A and the object, TABLE, which Is 
unclernoath It. 

Assoclntcd with each contact are the names of 
the two ohjr.c:t11 l11volvr.d, tho cano11lcnl type of the 
contact (r.g, hook, surfocn), nnd for surf'nce contacts, 
the orlontntion of the objects and their texture (eg, 
rouqh, smooth). PH··032 Is given the followl11g 
description of CNTCT2 : 

NAME 
TYPE 
SUBTYPE 
OB,11 
013,12 
QlJAI.ITY 
or~IENTA TION 

CNTCT2 
CONTACT 
SlmFACE 
(BLOK-B 01.0CK) 
(TAlll.E SlJHfACE) 
ROUGH 
(RIGHT LEFT) 

CNTCT2 Is the contact between the two objects, 
· bfoe:k B (whose subtype-> Is block) nnd TABLE (whose 

subtyj>H ls surfnce). The texture of the two adjacent 
surfoces ls rouuh and their orlr:111tatlon Is horl?.Ontal. 

Aiisoclntod with the notes Is the knowledga of 
whnt rs de:.lrncl, what ls given, and the value (If 
known) of each given. PH-632 Is provided with the 
following description of what ls given and whet Is 
desired In problem 9: 

NAME 
TYPE 
DESIRED 
GIVEN 

CRITICAi. 
MASS 

ANGLE 
MS 

PHl39 
NOTES 
(MASS 131.0K-A) 
(MASS 131.0K-13) 
(ANGLE smNG2) 
(MS CNTCT2) 
(MASS 131.0K-A MOTION) 
(Bl.OK-A M<A>) 
(ALOK-B 1 GO) 
(SrnNG2 45) 
(CNTCT2 0.25) 

The mass of block A Is what Is desired. The mass of 
block 8, tho nnnle of STnNG2 (the strlno attached to 
the wnll), and tho coefficient of static friction 
between block B nnd the~ tnble nre nll given. 

In choslng II scheme for representing PH-632's 
knowledue of how to solve mechanics problems, we 
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were oulr.led by thrne llapects of the behavior of the 
human expert. first, as we have nlrnady l11dlcntcd, 
tlrn expert 11wk1rn extensive use of pencil and paper 
Ill nll stones of his problom solving. Ills set of 
sketches Is a semi-permanent, auxiliary momory 
contnlnlnu chunks of lnformritlon tlrnt cnn be quickly 
accessed. PrnHunwbly tho expert makes use of this 
nrnmory In order to llmlt tho nmount of Information that 
ho hns to nttc1id to nt any onn time. Socondly, the 
ex1rnrt 11pp1rnrs to have his knowledge organl7.ed 
hlernrchlcolly. Ha tnkes tho some ucnernl approach to 
nil textbook 1110(:hnnlcs problems; le, he selects n set 
of physic s prl11c:lpler., c:onstruc:ts physics entltlos, and 
tlwn 11enerntos eq11ntlons. Within cnch of those 
sta~rcs thorn Is c:onslclernhlo consistency across 
problems of tho snnio type~; If for example, ho Is usht(t 
force principles cl11rl11g his qunlltatlve analysis, he will 
consider <lnc:h oh jcct In tho picture, looklnu for tension 
forces nncl frlctlonul forces thnt nc:t on thnt object . 
Thlrri, tho expert's cholc:e of whnt to do ot any olv1rn 
mo111r:111t nppernrn to be almost complotely dependent 
on tlrn pecullarltfos of the portlculnr problem belno 
consldernel. Thouoh tho ratio of knowh:~ctoe thnt the 
expert has nvallal>le to knowlectoe he uses Is very 
hloh, tho knowledne used Is ordlnorlly Just tho 
knowled~1e 1wciclecl tor the problem at lrnnct. For 
rnosons that we will devolop below, we decided that 
Plt .. (i32 should l>e lmplcmontecl as o production 
system [NowP.11 ond Simon, 1972; Newell, 1 973; 
Wntmm,m nnd ltny1rn-r~oth, 1978]; tho particular 
production system nrchltecture thnt we have used Is 
called OPS2 (Forgy nncl McDermott, 1977; Newell, 
1977; McDermott, 1978]. 

An OPS2 production system consists of a 
collection of productions held In production memory 
nncl n colloctlon of assertions held In working 
memory. A production Is II co11clltlonnl stn tomont 
compor.ed of 7oro or morn condition elements and 7.ero 
or more action elemrn1ts. Condition elements are 
templates; when each can IH~ matched by 011 elcnw11t 
111 worklno momory, the production contnlnlno them Is 
said to lrn l11stn11tlntud . An lnstnntlntlon Is 011 ordered 
pair of a production ond the elements from working 
nwmory thut satisfy the conditions of the production. 
Tho production system lnterprnter operates within a 
control frnmework called the rec:09nlrn-t1ct cycle. 111 
rec:0~1nltlon, It find:. the lnstontlntlons to lrn executed, 
nncl 111 nctlon, executes 0110 of them, performing 
whntevnr nctlons occur 111 the nctlon side of the 
procll1c::tlo11. Thn rnco1111lrn·t1ct cycle Is repented until 
e ltlH-lr no production cnn be lnstnntlntod or an action 
elenmnt nxpllcltly stops the processing. Reco9nltlon 
coll be divided Into match nnct conflict rnsolutlon. Ill 
match, the lnlerprntm finds tho conflict set, the set 
of nll lnstnntlntlo11s of productions that are satisfied 
011 the currnnt c::yclo; OPS2 Is hnplenmnted 111 such a 
wny that tho tllm1 11eodod to compute the conflict set 
Is C?ssentlnlly Independent of the sl7.e of production 
momory (irne Forgy [ 1977]). In conflict resolution, It 
selects (on the bosls of n few simple rules) 0110 
lllstnntlotlon to execute (see McDermott and Forgy 
[ 1978]). The actions that con be performed Include 



nclcllnn elements to nnd deletlt1u elemm,ts from 
worl:inn memory nnd httllcllnn new productions 
c:ompmHHI of el0ments In worklnn memory. In ndclltlon, 
oporntlons cnn ho P<Hformod on a scratch pad 
mernory contolnlnu the cleticrlpllon of the physics 
problem 1><~111(1 worl:od on. Given the name of nn 
P.ntity, tlw system con view It; this results In the 
cler.crlpl"h>n of thnt entity lrnln(I deposited In working 
memory. Tlw system cnn scnn for 1111 entity satisfying 
n pnrtlnl de:icrlpt:lon; If It finds such nn entity, the 
nnmo of that ontlty Is deposited In worklnr1 memory. 
The syst em cnn nlso sketch new entitles on Its 
scrntch pnd memory fllHI modify c-,xlstlnu entitles. 

Pl·l -fl.32 's production mr:1111ory contains nbout 
300 productions. With n few exceptions, each of 
those productions 1111s ns orw of Its condition elemonts 
tho cfer.crl1>llnn of n uoal; tho set of productions that 
hnvo the sn mE1 uonl condition element comprlr.e 11 
method. f>l·H 'i32 hos nhout 40 methods; some of 
theac? consist of only o few productions: others 
consist of 20 or 30 productions . By oruanl2i11u the 
system's knowlednc 111 this way, we effectively 
confine Its nttentlon to Just that knowledt1e which Is 
associated with tho uoals that It has not yet 
achieved. Tlwre Is, of cournn, n clanger hi dolno this: 
tho sy~.tem may hove knowlodne somewhere 111 
production momory that Is re levnnt to a p11rtlcular oonl 
but lnucc:er,slhlo hcr.nuse It Is not nssoclntocf with the 
system's currnnt oonl. Wo huve r1uarcfecf at1n l11st this 
by orgnnl2in{1 the mothocls hiornrchlcnlly. The system 
has a few very ~1enernl mE1thocls that uenernte 
suhoonls; the mothocls srn1sltlve to those ooals 
(lc1wrn tc more specif ic sul>nonls, ancl so on. Since 
knowledge can ho put l11to a m~1thod at nny level of 
th is hlornrc:hy, knowledge that has relevance to many 
cllffernnt nmthods Is slrnply assoclntocf with n very 
general nmthod. Knowlecloe thnt tho system has that 
Is relr:ivnnt to nlmor.t all of Its mothocls Is associated 
with a mE1thod whoso productions have 110 goal 
condition element. 

Ot1r choice of a reprnsontatlon for PH-fi32's 
knowlocft1c has proved ncleq1111to; It has enabled the 
system to construct and make effective use of both a 
qunlltntlv•? ·nnd n qunntltotlve repmsontatlon. As we 
montlonud, our choice wns guided by three aspects of 
tho behavior of the hurnan expert. Flrnt, llko the 
human expert, our system makes extensive use of Its 
scrntch pncl momory. Since PH-632 can quickly 
access tho lnformr~tlon 111 this memory, It can reserve 
working momory for lnforrnatlon that Is currnntly of 
Interest. This lmpll~1s that tho only procl11ctlo11s that 
are sntlsflecl on II particular cycle are ones that are 
rnlevnnt to tho currnnt situation. When some entity In 
tho scrn tch pnd momory 11c1cHlr. to be attonclocl to, 
Pl·Hla2 con view that entity; tho clescrl1>tlo11 of this 
entity wlll then drive tho proc:esslnu for n while - - 1111tll 
some othor entity needs to be nttonded to. Soconclly, 
our m~ithocl hlornrchy provides the stabll1.l11g Influence 
that Is llficessary In order for the system to make 
effective use of Its multiple re1>msentatlons In the 
face of conslclernble variation among problems. Since 
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tlw system Is nlwnys opcrntl11u within the context of 
somE1 gool, tho pnrticulnr suhqools thnt It cnn 
uenernto nre hlnhly constrnlrwd; It can ncncratc only 
thono subuoals that can bo of holp In nchlevlnu the 
currn11t uool. 13y nssoclntlnu knowledoc with the 
mothod whose level of {ICIHHolity oncompnsscs nil 
expected uses of tho piece of knowleclne, tho system 
hns nccess to nil of the knowlcclne that might Im 
usP.fui In nny situation. Finally, the recounl;e-flct 
cycle provlr.les n control structure that makns the 
system contlriunlly rnr.ponslvn to the currn11t state of 
the picture. Although nwthods Impose n structum 011 
production momory, tho mothods tlrnmsolvor, have no 
lntmnal structure. A mothocl Is Just n colk?ctlon of 
productions; ench procluctlon Is an autonomous rule 
lncllcntlnu wlrnt nocclr. to Im rnnmrnberecl or clone 
within thn context of a p11rtlcttl11r uool given some 
nspect of tlrn picture that Is currnntly of Interest . 
When n method Is bel11u used, It Is orcllrrnrlly tho cnse 
that severnl of ·thnt rnothocf's productions flrn before 
tho r1ool Is achieved. 13ut the pnrtlculnr sequence of 
flrlnus Is not wrlttnn Into the mothocl; It Is determined 
by the knowledge In working nwnmry Indicating what Is 
currnntly of Interest. 

IV. PH~632: PERFORMANCE 

In thli; section wo will cieGcrllrn the lrnhnvlor of 
Pl·l-632 on the· snmplo problcrn clescrllrncl above. We 
will focus on thoGc aspects of the system's behavior 
that show tho acfvnntngos of tho qunlltatlvo 
rnprnscmtntlon. After descrlbl11u how the system 
a·ttncks and solves the sample problem, we will 
rn-oxamltm the ndvnntnner. of using n qunlltotlve 
representation In morn cfetall than we did In section II. 

The flrnt thing that rH-fl32 does when It Is 
given n problem Is select nn approach to try. for 
problem 9, It chooses to try force prlnclt>lcs.3 Given 
this choice, It scans the picture for 1111 object with 
mass 1111d finds hloc:k B. Since It recog11i2es block f3 as 
n fnmlllar system typo, It bulldr. 11 producJlon 
nssoclntlnu with block A the knowledge of what forces 
net on that system. In other words, s ince block B Is 
nn oh ject with mrrni; on n ro119h, horlwntnl surf nee, It 
storns In production memory tlm knowledge that block 
B has four . forces acting on It -- a tension force, a 
frlctlonnl force, a normnl force, 1111el a grnvltntlonal 
force. From this pol11t on, whenever It looks at block 
8, alont1 with seelnu the attributes of block B, It w ill bo 
rnmlndcd thnt those four forces net on block B. Thus 
tho offect of Its quick nnnlysls of block 8, Is 
essentially the snmo ns Its morn extended an11lysls of 
less fnmlllar systems; Instead of subsequently 
referrlnu to a free body dlngrnm In order to remind 

3 Since the sy};tem's knowledge Is currnntly limited to 
nwchnnlcs, Its choice Is between force principles 
and energy prl11cl1>los. 
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Itself of this system Information, It simply recalls the 
Information storncl 111 Its production m1:1mory. Pl-1"632 
cduld, of course, have drawn a free body clh1grnm 
rn lher than storlno the Information In production 
momory; we opted for production bulldh1g because 
eximrts s1:1ldom genernte free body diagrams for 
slmplo iiystems. flt tho same time that It builds the 
produr.tion, It deposits In worklnu m1:1mory the 
knowledge that the tension force Is potentially 
problematic, le, that It Is problematic unless It can 
somohow be rel11tecl to tlw {livens In the problem. 
PH"632 then looks for a system which Interacts with 
block B that can account for this tension force. 

It finds tho Juncture of the thrce strlnus (the 
only system that Interacts with block B). Since 
PH"632 does not rncounlze this system ns a fnmlllar 
typH, It "clrnws" on Its scratch pad memory a system 
entity ( n free body cllnnrnm). Before trying to 
cllr,cover the forces acting on this system, It 
constrncts the following descrlt>tlon: 

NAME 
TYPE 
JUNCTUl~E 

PREF"DIR 

10011 
SYSTEM 
srnNG3 

. srnNa2 
srnNG1 
DOWN 
RIGHT 

The system attribute Pllff"DIR (prnferrccl "dlrection) 
Indicates that the forces act111u In that direction and 
tho opposite one ore the forces that PH"632 should 
concern Itself with flrnt; In this case (because the 
system Is a Juncture), both horizontal and vertical 
forces are equa lly sl9nlflcant. 

After deflnlno the system entity, PH"632 
determines what forces are actlnu on the system In 
the prnforrnd direction. When It Infers a force, It 
creates a force entity and nlso acids a clescrlt>tlon of 
the force to the system entity. Here, the first force 
that Pl·Hl32 finds Is the forco due to STRNG2 (the 
string attached to the wall). The entity that It 
creates looks !Ike this: 

NAME 
TYPE 
ON 
FROM 
SUB.TYPE 
DIR 

10012 
FORCE 
10010 
srnNa2 
TENSION 
(UP RIGHT) 

Whenever PH"632 finds e force that Is neither p11rnllel 
nor. perpendlculer to the preferred direction, It creates 
two additional force entitles that are the horlwntnl 
encl vertlcnl components of th11t forco. Thus, In this 
case, two componont force entitles wlll be created as 
well ,rn force entitles for the tension forces along the 
other two strings. After PH"632 has found ell five of 
the forces In the preferred directions, the system 
entity looks !Ike this: 
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NAME 
TYPE 
JUNCTURE 

PREF-DIR 

FORCE 

10011 
SYSTEM 
srnNG3 
srnNG2 
srnNa1 
DOWN 
RIGHT 
(TENSION I.EFT 1001 2) 
(TENSION (IJP RIGHT) 10013) 
( COMPONENT UP 10014) 
(COMPONENT FIIGHT 10015) 
(TENSION DOWN 10016) 

Each of tho forces Is identified hy type, dlrnctlon, and 
name. 

After the system entity has heen extended to 
Include nll of the forces pnrnllol to the preferrnd 
directions, PH"632 checks for nnomoll0s (In this cMe 
for · Inconsistencies between forces and motion). In 
probkirn 0, all systems are nt rest and each force Is 
balonced by nt least one force In the opposite 
direction. Thus PH"632 concludes that the force 
lnfornfatlon . thut It hos uenerntml Is phwslhlo and 
continues with Its onfllysls. The second stage In the 
analysts Involves clrnck lno to make sure that Its 
sulnwquent quontltntlvo nrrnlysls will be fooslblo. 
Spocltlcnlly, It c:lrncks whethm tlrn forces uenerntocl 
cnn ho relfltocl to qttontitk!S given In the problem 
statomont. J>H .. 632 first chocks to make sure that 
the compon(lflt forcns arn 1111problomatlc. It cloos this 
by looklnu at the notes . entity to see whether the 
anqle of STRNG2 Is olvon; since It Is, the component 
forces are unproblematic. There remain the two 
tension forc11s cltt e to STRNG 1 oncl STllNG3. The force 
clue to STBNG 1 Ir, cllr,c:overed to he unproblematic 
s ince It can he trnced hock to block 8. Thus the only 
potentlnlly problematic force Is the tension force clue 
to STBNG3. PH"632 looks for a system which 
Interacts with the Juncture that can Account for this 
tension force. 

It finds block A. As with block B, It recounlrns 
block A as a fllmillar system typo (a hanu1t1u block) 
and so It hulld:; a production containinu the knowledt1e 
thnt block A hns two forces acting on It "" 11 tension 
force nncl n nrnvitotionnl force. Of thf1se, only the 
tension force Ir, potentinlly problematic, ond It Is 
qulckly dlr.covornd to be unproblematic since It can he 
trncod hnck to tho J11nct11rn. Thus, all three of the 
systems In the problem have been conslclerncl, and all 
of the forces havo been occountocl for . 

Although PH"632 often concludes Its qualltatlve 
annlysls nt this point, It performs o second test for 
anomollos 111 the common case of n problem nhout A 

"crltlcnl value" (a value chnrncterlr.tic of so1111:1 
chnnoe of behavior In tho problem situation). In 
problem 0, for exnmplo, tlrn qunntlty cleslrncl Is "the 
maximum weight of hloc:k A for which the system wlll 
be In eq11lllbrl11m 11

1 le, the weight tlrnt Is critical In 
cletermlnlll[I whether or not the blocks movo. Thus 
PH"632 makes one final chec:k on the adequacy of the 



npproach It Is tryil1(1. It considers two cases: block A 
with a very small mnss, and l>loc:k A with a vory lnroe 
mor,s. It rnosons thnt If thf1 mass of hlock A Is small, 
them th() force It exertn on the Juncture will be small, 
oncl the force thnt tlrn Juncture exerts on block 8 will 
lrn snrnll. Slncci the tension force on block B Is 
opposed hy n ff'lctlonnl force, If the tension force Is 
small, block O will IH~ nt rest. But If blpck O Is at rest, 
block A will he nt rest. A similar chain of reasoning 
ennbles It to conclude that If the mass of block A Is 
largo, block fl. wlll Im In motion. 

At this point, PH-632 Is sufficiently certain that 
th1c1 force prhu:lples approach to the problem will work 
thot It lwohrn Its qunntltntlvn analysis, 11 process that 
Is strnlohttorword lrnc:nuse the forces acting on each 
of 'the sys t ems hove nlrendy boon found. PH-632 
scans the picture for n system; It finds the free body 
cllanrnm for the Juncture and so starts with that. 
Uslnu · the l11forrnatlo11 In the free body dlagrnm, It 
gencrotos the followlnu equation: 

NAM[ 
TYl'I: 
SYSTEM 
EQUATION 

10022 
NOTES 
(10011) 
( + ( COMPONENT RIGHT IOO 15) 
- (TENSION LEFT 10012) = 0) 

Tlwn, uslnu both the free body cllngrnm nnd Information 
ulv1rn In the notes, It replnces, In so far as It can, 
qunntltles In the equntlon thnt are neither known nor 
deslrnll with known quantities. In this case, all It con 
do Is rnplr1co the component force .. It does this by 
tewrlthig the oquntlon: 

NAME 
TYi'!: 
SYSTEM 
EQUATION 

10022 
. NOTES 

(10011) 
(+ (COS 45) 

• (TENSION (UP RIGHT) 10013) 
- (TENSION LEFT 10012) = 0) 

It ttmn gerwrntcs n second equation using the free 
body dlagrnm of the Juncture and combines this 
equation with the flrnt. Aftnr generating a third 
eq11otlon using the Information about block B that Is 
stornd In Its production memory, uenerntlng a fourth 
equotlon using the Information It hns about block A, 
and doing a little alf1ebrn, It Is left with a single 
equation. Uslnu the notes, It re1>lnces the symbols In 
the equation with the actual values of the quantities, 
simplifies the equation, and In left with: 

NAME 
TYl'I: 
SYSTl:M 
EQUATION 

10022 
NOTES 
(BLOK"B BLOK-A 10011) 
(+ (M<A>) = + (40.0)) 

PH"632 takes about 400 cycles to solve this problem. 

In section II, we gave throe rooso11s why a 
strntogy that Includes qualltntlve analysis of the Initial 
picture Is preferable to one that goes directly to 
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quontltntlvo annlysls. Hnvlnu considered In somo 
detall tho behavior of PH-632 on a sample problem, 
we con now provide a more complete Justlflcotlon for 
this strntogy. 

The flrnt rn<1so11 we gnvo for using the strntogy 
Is that It provides a wny of checking, flt various 
staqes during the qu111itntlvo 1111nlysls, the 
approprl11teness of n pnrtlculor set of physics 
prllu:lplr:rn for somo problem. In problem 0, for 
exBmplo, Pll-632, ns It devnlo1>s Its understanding of 
eflch of tlm systems, testi; for onomoller. nnrl then 
tests the fenslblllty of Its npproach. When PH-632 
rnconnl7.ns som~1 object ns n fllmlllnr system type, It 
knows thflt thnt object will poss both tests -- le, 
hnvlli{I the requisite chnrocterl:,tlcs Is port of whnt It 
m~ians to be n fnmlllar system typD. For unfnmlllar 
systems, th~1 flnomollos test Is porforrnod 11s soon as 
al~ of the forces parnllel to n prnfP.rrncl direction hflve 
been uenerntorl; this test ennbles PH-632 to 
determine with vory little analysis whether Its 
description of the system is plausible. If this test 
foils, PH"632 cnn be rnnso1111bly certnln that It hos 
drown on lncorrnct Inference from the picture, or tlrnt 
the plr.:turn does not nccurotely represent the 
problem, or thnt the problem Is the work of a 
nwlevolent jokestcr. The fe<1slblllty test Is perform~1d 
oftur PH-632 gc.rnmntes tho rernalnlnn forces acting 
on the system; this test enables PH-632 to determine 
wlwther the Information ulven In the problem 
statomont (11s r.nc:octect In tho notes entity) Is 
sufficient for solving tho problem using force 
principles. If this test fnlls, PH- 632 con be 
rnnsonnbly certnln thut force prlnc:lples (nt leost by 
themselvo:i) fire ln11cinq11nte. In somo problems, 
Information Is ulv,~n that ennhles a third test to be 
made - - a test that cleterrnlnes whether the 
lnternctlons flmonu the systems Is plausible. In 
problem 9, for example, the problem st11tomont Implies 
that the sl?.e of the mrrns of block A determines 
whether or not blocl: A will move. To test whether the 
qunlltntlvo repreiwntntlon supports this Implication, 
PH-6a2 exnmlnes tlm lntornctlons nmonu the three 
systems. As with the flrnt test, If th is - test falls, 
PH"632 can be rnnsonnhly certnln that there Is 
somE1thl11g the matter with Its representation of the 
1>roblem. 

The second ronson for using the strntegy Is 
that by reprnsentlnu the physics entit les (eg, systems 
and forces) plctorlnlly, PH-632 has easy access to 
prec:lr.ely the Information thflt It needs to chock the 
pltrnslhlllty of the system lnteroctlons during Its 
q11nlltntlvo nnolysls 11nrl to 9enernte equntlons during 
Its qunntltntlvo nnnlysls. Wlmn PH-632 checks, In 
prohkim 9, to determine whether the welf1ht of block A 
affec:ts Its motion, It flrnt views block A, sees that 
block A Interacts with the Juncture, then sees thflt the 
Juncturn Interacts with block B, find sees thflt there Is 
a frictional force on block B. This Is essentially all 
thflt It hos to do to determine that the systems 
Internet In n plnuslble fashion. Likewise, when It 
generates equations, It simply views a system, writes 



nn eq1111t lon cont11 lnlnu the forces t1111t act on the 
system In a prnfern?<I d irection, rnplnces the forces 
that oro ne ither olvon nor cleslrncl with other 
qunntltles, nnd tlwn v iews another system. 

The third rnnson for ustno the strntcoy Is that 
It lmlps keep PH-032 from her.omlnu confused or 
cl lstrnc:tml. In 1>robl0m n, whother or not n q1111lltatlve 
n?pt1rnc11totlo11 Is r.onstructecl, the systems nnd the 
forces actlt1n on them have to l>e found . Thus If 
PH-632 had to sotv,~ tlw problem without constructtno 
physics entitles, It woulcl nfHHI to kec-!p a larue amount 
of Information In Its worktno memory. One llkely 
consE!qttence of this Is that proclttctlons with 
compet1t1u or Incons istent oools woulcl sometimes be 
satisfied ot tho same time. This would make It difficult 
for PH-032 to behave In o coherent way. 

V. UNDERSTANDING AND LEARNING 

We nllLtdecl In the lnlrocluctlon to two serious 
wenknesses of Pl-1-632 : Its lnohlllty to make effective 
use of Its knowledne when It encounters problems of 
nn ttnfnrnlllnr typt) oncl Its lnohillty to refine Its 
knowledge on tho host:, of Its experience. The first of 
these Is a problem of unclernt11nclll1u, the second, a 
problem of lenrnlnu. Because PIHl32's knowleclne Is 
rnprns(!nted proc:(Hl11rnUy (le, lwcause PH-632 has no 
Iden of whut It _ will do In fl portlcuhir situation until It 
sees whnt It hos done), It hos no wfly of knowing wllflt 
It Is going to do next. One l111pllcntlo11 of this Is that If 
It octs 111 11n unfnmlllnr sltuntlon (one for which It has 
no · rule for how to hehavo), It cannot do anythlno; 
since It has no Iden of whnt Its methods con 
nccompllr.h,. It cannot acc:ommoclnte one of the 
methods It does hove to the unfnmlllar situation. If 
some of Its knowledne worn encoded declarntlvely (so 
that It could exRmlne the consequences of ustno one 
or other of Its m~ithods), flncllnu a m~ithod that ml~Jht 
help i11 an unfamiliar situation, find finding a mapplno 
b1~twcrnn what It Wflnts and what the method will 
provide would be relntlvely strnlghtforward. But If 
extensive declnrntlvn oncodlnu were provided, many 
of the nrlvontaor-Js of using fl procedural 
roprnsentntlon would he lost. 

PH··032's dlfflculty with learning sterns from the 
same source. One of our rensons for selecting a 
proc:edurnl rnprnscrntatlon wns to fncllltate lonrnlnn; 
find ill one lmportnnt respect the representation Is 
supportive. Since PH-632's behavior Is strongly 
clrlvt?ll by tho picture tllflt It elaborates, each of Its 
1>roductlons Is autonomous In the sense tllflt a 
production nood not know nnythlng ahout the other 
productions -- neltlwr tho conditions under which they 
will fire nor which productions hove olrnndy fired. All 
that Is necessary In order for the system to extend 
Its knowledge so thflt It c:an cope with unfnmlller 
situations Is that a few productions be added to 
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production memory. If this worn nil tlrnt there were to 
loarnlno, learnlno would he ensy for PH-632. But a 
system that can lenrn must Im able to do more th11n 
Just extend thc-i domain of Its knowledne. Much of our 
work with PH-632 hfls Involved rnvlstno the 
productions tlrnt It does hove as Its behavior shows 
those productions to ho lnnclequote ( en, they f lrn 
when they should not, tlwy do not flrn when thoy 
should). When severnl productions ore sotlsfled at 
tho same time, thnt production will flrn which Is 
satisfied by the lnruest number of mont rncPnt 
e lements . Thus In ortlor for, the system to acquire 
productions that portinlly re pince · or extend the 
domain of a portlcular production, It neecls to know the 
conditions tmder which that production Is evokcct.4 But 
that knowledge Is not avallnhlc In a procedural 
rnpnrnentotlon. 

llw npprouch thnt wn ore toklnu to overc:ome 
tlwse two wenknesses lnvolvns oclrltnu n small omount 
of knowleclrJr-J to tlw system thflt describes the 
nmthods that It has. When tho system ocqulrns a new 
1m1thod, knowl0clne nbout that nwthocl Is flssoclntecl 
with n production thnt contains the mothocl's nonl 
condition elemont. Thia knowledne should help to 
overcome both wenknesscs. When the system 
encountcrn nn unfamiliar situation, various mothod 
description productions cnn bo ovokod by hnvlnu tho 
system (1enornto cle:.crlt>llons of oonls tllflt orn similar 
to Its currnnt uool. When a mothocl description 
production flrns, n subset of the conditions which must 
lrn sntlsflPcl In order for tho productions comprl:;lnu 
tlrnt mothocl to be evoked nrn cleposltecl In worl:lng 
momory. This ennl>los the system to establish a 
mapplll!J betwoon tho concl ltlons tl111t flch111lly obtain 
nnd the conditions thnt must obtoh1 In orclcr for one of 
Its nmthocls to bo usocl. ThCl system con also make 
usr. of tho mothocl do:.crlpllon productions when It 
cllscovern that 0110 of Its productions Is In need of 
rnfhwmont. A method clescrl1>tlo11 production, by 
providing the system with o subset of relevant 
conclltltms, will rnrnblo It to l>11lld n now production (to 
l>flrtlnlly mask or to C!Xtend the faulty production); the 
new production will c:ontoln this subset of condition 
elenwnts touether wlth a few additional elements that 
distinguish It from the production that It rnflnes. 

VI. CONCLUDING REMARKS 

Our discussion of PIHi32 has focussed on two 
thinus. Our main concern hns been with the way In 
which tho system rnprnscnts the problems t1111t It Is 
given. It starts with a "plctorlnl" description of o 
problem find tlwn durlnu tho qttnlltatlve sta(le of Its 
anfllysls constructs a rnpresentotlon that contains all 

4 For morn extended cltscusslons of the problems that 
t1rlse In trylnu to Instruct 1>rocluctlon systems, see 
Davis [1977] find nychener and Nowell [1978]. 



of tho knowlr:icl r,o thut cnn ho lnfmrncl from the lnl t lal 
plcturn 11sl11n n set of relrw1111t physics prlnclplos. 
Only ofter ll ho s nwde the l11ferencc1s explicit does It 
nenernte tho tiq1111tlons thot will enohlo It to solve the 
problem. Thorn 11ro three reasons for clolli(I the 
q1111 ll tflt lvn nnolysls: ( 1) tho system con quickly f ind 
nn oppronc: h to tho problem that Is likely to succcwcl , 
(2) by rnr~klri(I Its ln fcmnc:es explicit, It has lmmecllBto 
ocr:ess to nll of the knowledge flbout n pnrtlcular 
system thnt It nceclr. ot nny olven tlmH clurtno Its 
suhsoq 11 ent annlysls; and (3) by maktno the 
knowleclr,e enslly rntr levn hle, the amount of 
knowloclr,e that It hu s to ottencl to ot ony one t lmo Is 
small, oncl thus It Is unlll< ely to hccomo cllstructecl or 
confused. We hove nlso foc:ussccl on tho way In 
which f>H-(i32 rnpre:;cnts lt:i knowlecl9e of how to 
solve nwchfl nics prohlerns. PH-032 Is lmplenwntocl flS 
fl production system. Since? It stores Its knowleclr,o of 
the probl81ll It Is workln(f on In Its scrntch pod tn(lmory 
In fl plctorlnl form, It cnn focus Its nttontlon on a small 
port of tlw problrnn without hnvtnn. to worry that It Is 
ne~1l8c:tl110 sonw lrnport·,rnt piece of lnforrnat lon . Since 
It Is conccrnwcl with only n small amount of Information 
at any one tlmo, tho productions that flrn are always 
re levant to Its lrnnwcl lnto Interest . Thus Its behavior Is 
coherent, hut nlso highly responsive to the 
pecullarltles of the problem. 
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Abstract 

This paper describes a re,present·ation for mathematical 

k.nowlcdgc that includes illustrative and heuristic aspects as 

well as logical elements. Three item I relation pairs -

results / logical support, examples I constructional derivation, 

concepts I pedagogical ordering -- establish three representation 

spaces for a mathematical theory: Results-space, Examples

spacr, and Co nce.pts-space. In addition to intra -space 

relations, this paper introduces the dual idea, an inter-space 

relation, which is used to represent an ,ntuttve notion of 

association amongst items. An epistemological classification of 

items based on their roles in th~ understanding of .mathematics 

is developed. A brief overview t~ included of how these ideas 

have been applied to teaching situation£ and the design of 

interactil/e environments for professional and neophyte 

mathematicians, and how they could be applied to programs, 

such as non-resolution theorem provers, that need to retrieve 

and manipulate mathematical knowledge. 

I. Introduction 

To understand mathematics one must know much more than 

the deductiv e details of definitions, axiom&, and t~eorems and 

their proofs. A mathematici;m or stuc!ent who is in command 

of his subject u ses other resources such as: the stock of 

examples he finds useful, and their organization; certain 

ru les of thumb or heuristics, some telling which are good 

ideas to try and oth ers warning him of trouble; items 

noteworthy for their s implicity, ubiquity or generality. In 

studyin g and solving problems, he has a sense of what to use 

and when to use it, and what is. worth rememlrering. He also 

has images of how all his knowledge hangs together. In 

short, he -knows and uses a great deal ·more than purely_ 

logical deductive knowledge. 
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This paper is concerned with this other, often extra-logical, 

knowledgr. that is critical to understanding. It reports on a 

study to und e rstand the understanding of mathematics, in 

order to improve how we learn, teach, and do mathem.a tics 

[IO]. The aim is to develop a conceptual framework in which 

to talk precisely about the knowledge actually involved in the 

understanding of mathematics. This goal is largely 

epistemolog ica I, but it is a prerequisite to trying to mechanize 

or support that understanding. 

2. Examples, Results and Concepts 

Examining how ma.thematicians use and explain. their 

knowledge of mathematics makes it clear that there are at 

least three categories of information necessary to represent 

.mathematical know ledge: results which contain the 

· traditiona l logical aspects of mathematics, i.e., theorems and 

proofs; exam ples. which contain illustrative material; and 

concepts, which contain mathematical definitions and pieces of 

heuristic ad vice. 

Just as results can be organized by the r~lation of logical 

rn.pport in which A - -> B means that result A is used to 

prove resu lt B, examples and concepts can also be structured 

by relations. 

2.1 Examples-space 

Examples can be ordered by the relation of constructional 

dai11qtion in which A --> B. means that example A is used to 

construct example B. For instance, the Cantor set Is 

constructed from the· unit Interval by the process of "deleting 

middle thirds" [17): 



. I 

i 

.j 

drjinr uq1unce of sets by deleting midd.le thirds: 

the unit interval: o ________ _ 

delete (1/3, 2/3): o __ _ 

delete (1/9, 2/9), (6/9, 7/9): O_( )_ ( )_ ( )_I 

etc. 

limiting set is the Cantor set 

"Cantor functions" and other "generalired" .Cantor sets can 

a lso be constructed from the unit interval and the Cantor set 

[5). [16). 

The following sequence of examples from arithmetic 

illmtrntes how a collection of examples can be organized 

according to its constructional relations. It · starts with the . 

natura I numbers N. These beget the integers Z (by closure 

with respect to subtraction), which beget the rationals Q (by 

forming quotients), which beget the rea I numbers R (by 

completion of Cauchy sequences), which beget the complex 

numbers C (by algebraic ciosure). Many more examples 

needed in number theory, such as the Gaussian integers Z[i], 

the fi.eld of integers modulo a ·prime Z/pZ, and the p-adic 

numbers ~· can also be tied in.to this organization according 

to their constructional dependencies: 

N 

+ 
z 

/i~ 
Z[i] Q Z/pZ 

~ '- + 
R -~ 
+ 
C 

The p-adic numbers have arrows coming from both Q and 

Z/pZ since either can be used to construct ~- (~ can be 

constructed from Q by completion with respect to a metric 

just like the construction of the reals R from Q, or from Z/pZ 

by an algebraic construction involving "inverse limits" [3]). 

The point is that there are two co~structtonal routes leading 

to ~· and thus a directed graph, not simply a directed tree, 

is needed to show the relations. 

Some genera I properties of examples worth noticing a re: (1) 

pictures are an integral part of examples; (2) constructions 

a re like procedures; (3) the pictures need not be static, in fact 

those shown for the Cantor set are merely one fr.\.me from a 

sequence. 
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2.2 Concepts-space 

Concepts include formal 11nd informal ideas, that is, 

definitions and heuristics. A concept can be expressed either 

as a declarative statement, the familiar formulation of most 

mathematical definitions, or as a procedure or the result of a 

proce\:lure. Some concepts are more naturally expressed in 

declarative form, while others, such as Gaussian elimination 

and Newton's method, are more naturally expressed as 

procedures. Some concepts can be expressed either way, such 

as the concept of "eigenvalue" which can be expressed as the 

>. of Ave>.v [7] or as a root of the characteristic polynomial 

det(A - >.I) " 0 [19). 

Concepts can be structured by the pedagogical ju_dgement 

that one should know about concept A before concept B; this 

relation is ca lied pedagogical ordering. Sometimes It simply 

reflects the fact that concept A enters into the definition of 

concept B, at other times, expository tastes . 

In this way, the three item / relation pairs -

examples I constructional derivation, results / logical · support, 

and concepts I pedagogical ordering -- estabhsh three 

representation spaces: Examples-space, Results-~pace and· 

Concepts -space. They are best shown. as directed graphs 

where the direction matches the predecessor -successor 

ordrring inherent in the relations. 

3. The Dual Idea 

A theory item is related to other items in its representation 

space through the space's predecessor-successor relation. In 

addition it is related to items outside -of its representation 

space. The dual idea concerns these i·nter-space relations. 

Specifically, dual items are defined as follows: 

The dual items of an example are: the 

ingredient concepts and results n·eeded to 

discuss or construct tt, and the concepts and 

results that are su·ggested by It. 



The dual items of a result consist of: the 

examples motivating it, the conci;pts needed to 

state and prove it, and the concepts and 

examples that are der.lved from It. 

The dual items· of·a· concept are: the examples 

motivating it, the results hying the 

groundwork for it, and the examples 

illustrating it and thi: results proving things 

about it. 

The dual idea thus associates to each Item elements from the 

other two representation spaces: 

dll.al( an example) = {results), {concepts) 

dll.al( a result) = {examples), {concepts) 

dll.al(a concept) = {examples), {results). 

The subset of examples in the dual set of .an item Is called the 

examples-du.al, the subse.t of results, ·the results-dv.al, and the 

subset of concepts, the concepts•dual. 

Dual items can also be categorized into sets of items which 

preced e the item in the understanding or development of a 

theory, the pre-dual, which c~me after the Item, the post-dual, 

and which have neither a strong "pre" or "post" navor. To 

use Polya's words, some pre-dual items are "suggestive", and 

some post-duai items, "supportive" [15). 

If two ite~s share common dual. items, they are said to be 

related throttgh the dual idea . . Dual relations are found 

throughout mathematics : concepts of countability and 

measure zero are related via the Cantor set; the examples of 

the rea I and the p-adlc numbers are relati:d via the concept of 

completion; Pythagoreas' Theorem and the .Law of Cosines 

via an example of a right triangle; concepts of continuity and 

differentiability via the absolute value function; .examples of 

ellipses, circles, parabolas, and· hyperbolas via the concept of 

conic sections; concepts of stability,' roots of unity and 

iteration via the example of xn.o. 

Relation via the dual Idea is useful because It captures a way 

In which we associate items that are not closely related In the 

sense of the in -space relations, but which we easily link In our 

understanding. Dual relations tie the three representation 

spaces back together. 
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4. Epistemological Classes 

. Different items play different roles in our understanding. By 

grouping together items that serve similar and _noteworthy 

functions, we establish epistemological clases. Since an item 

may serve more than one role In. one's understanding, these 

classes are not necessarily disjoint. . 

4.1 Epistemological Classes .of Examples 

For instance, when we learn a theory for the first time, there 

are certain examples which we can underst,\nd Immediately. 

These perspicuous examples get us started in a new subject 

by motivating basic definitions and results, anq setting up the 

right kinds of intuitions. We call these start-up examples. 

The following is a summary of the use of the "circle and 

lines" start-up example in the study of curvature of plane 

curves as presented by Spivak [181 

We begin by considering circles and.· tines. We can 

agree that circles curv~ and that lines don't. 

Furthermore, small circles "curve more" than large 

circles. (Thi s is consistent with our observations 

about lines, which are .a limi.ting case.). We observe 

therefore that curvature is inversely related .to the 

radius. So we say that for circles, the curvature is 

the reciprocal of the radius. Now what about more 

general plane curves? Well, we lift our circle-line 

definition to the general case t,.y fitting circles onto 

the curves: 

This simple example is a start-up example because it easily 

leads us to the formulation of the oscula.ting circle definition 

of curvature. It provides a strong pictorial representation for 

curvature (circles) and an approach (the osculating circle) for 

calculating it. 

A good start-up example sh.ould have the following 

properties: (I) it motivates funda.mental concept.s; (2) It can 

be understood by itself; (3) it Is projective In the sense that it 

can be generalized; and (i) It provides a simple and 

suggestive picture. 
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Refncnce examples, another Important. clas-s cif examples, are 

examples that we refer to repeatedly throughout a theory. 

They provide a common node through which many results 

and concepts a're linked via the dual idea. ·For instance, R 2, 

the real plane, is used as an ·example throughout all of real 

analysis; one invariably investigates concepts and results In 

this example to understand how they work. In number 

thr.ory -- algebraic as well as elementary -- one always looks at 

the integers Z. Throughout his books, Polya refers to certain 

standard reference examples; for instance · In the domain of 

p lane geometry, he repeatedly uses such triangles as isosceles, 

equilateral, and isosceles -rig ht triangles (15]. Reference 

examples are used as standard c.-ses to check out one's 

understanding. 

Model examples are generic examples. As paradigms they 

suggest to us the essence of a result -or concept. For ex.ample, 

models for set inclusion and right triangles are: 

Notice. that the specific measurements in these pictures are 

unimportant; wnat counts Is that they capture·-the essence of 

the situation . 

Because of their generic nature, model · examples are closely 

related to "without loss of generality" arguments. For 

instance, the model examples for conic sections are usually 

pictured as having their major axes aligned with the x- and 

y-a xes (see any calculus book such as Thomas [20)); these 

diagrams are completely general because one can always use 

coordinate transformations (translation, rotation) to change 

variables so that the axes are Jndeed so c\ligned . 

Model examples are nexible and mar:ilpulatable structures 

which summarize and suggest the expecta~ions and 

assumptions about results and concepts. They usually must 

be fine-tuned to meet the specifics of a problem. For Instance, 

the triangle model can be specialized to be a 3-4-5 right 

triangle, a i!i-45-right or any- other type of r~~h~ trtangle. 

Counter-examples show a statement Is ·no.t true or sharpen 

distinctions between concepts. Some counter-examples are 

also used as reference examples, such as the .Cantor set which 

is .used throughout measure theory after it's Introduction as a 

counter-example to show that sets of measure zero need not 
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be countable (8). Other counter-examples are used once to 

establish a point and are not developed furthe.r; because 

these have a very limited use i.n the theory, our memory of 

th em is often very short-lived. 

In summary, some important epistemological ·c1asses of 

Examples-space are: start-up examp,les, ref~renct examples, 

model examples, a rid counter-tx(lmples. · 

4.2 Epistemological ClaSS!!S of Con.cepts 

Concepts -space has two major epistemological classes in 

addition to the class of definition~: .mega-principles and 

counter-principles. These other classes contain the heuristic 

advice that we use while working in a theory. 

Mega -principles (M P's) provide kernels of wisdom in the 

form of powerful suggestions or generally valid statements. 

They often state what is reasonable to expect. For instance, 

Polynomial time means reasonable time is a mega-principle 

from complex ity theory. Others paraphrase definitions, such 

as Continuity means you can draw· the function without lifting 

your pencil, a mega-principle familiar to most calculus 

students. The M P(n=2): Try ·the 2-by-2 case offers powerful 

adv ice in the study of. matrices.· Another extremely useful 

piece of ad vice is MP(0/1) which suggests trying special cases 

involving only O's and l's. Thus some MP's provide 

imperatives or advice while others give an Idea of what to 

expect. Mega-p rinciples express broad "flavors" of a theory 

that are often remembered long after the details have been 

forgotten. Like model examples, they provide broad, 

suggestive descriptions and expectati.on·s. 

Counter-principles (CP's) are cautiQm against possible sources 

of blunders or troubles. For instance, everyone knows about 

the CP: Watch out for division by 0. The dv CP from 

calcu lus -- when changi.ng the variable tn tntegrq.tton, don't 

forget to calculate the new differential: dv .. v'(x}dx -- is a 

word of warning familiar to all calculus st4dents. CP's are 

th e distillations of many results, cou"ter-examples, 'and failed 

attempts. Like counter -examples they add focus to our 

intuitions and serve to keep us from p.ursulng potentially 

unproductive lines of thought. 

4.3 Epistemological Classes of Results 

Results-space also has several epistemological classe.s of Items, 

of which we mention only: baste, culminating, and 

transitional results. 



Ba.1ic usu/rs e~tablish elementary, but important, properties of 

co ncept s a nd ex amples. For exa mple, the ·resu lt : >. ts an 

eigen 11a/ur of the matrix A tjfdet(A->. l)mO Is a remit basic to 

the study of eigenva lues. It relates the ·proce<(.ural .formulation 

(solving the characteristic equa.tion.) with the declarative 

definition of the eigenvalue conce·pt. Other basic result~ link 

concepts with examples, such .as: The outer measure of an 

interval is its length. 

Culminating results are th !! goal results towards which the 

theory driv es.· To see if a result Is a culminating result one 

asks, "if thi s resu lt is omitted , has \he main point of the 

th eory been missed?" If the answer Is yes, the result Is a 

culminating result. For instance, the Fundamental Theorem 

of Algebra is a culminating result of·hlgh school a lgebra 

courses and th e Fundamental Theorem of Calculus Is a 

culminating result in calculus. Culminating results are often 

equiva lency or classification results such as .t he theorem 

showing that all real vector spaces of a given dimension are 

isomorphic. 

TransUional results provide logical. stepping-stones or bridges 

between results. They are not as important as culmi-natlng 

results in one's understanding. Many results· that are given 

the label lemma fall into this category. 

There are many analogies between the· epistemological classes: 

model examples, mega-principles, and culminating results are 

a ll importan t items within their categories; counter-examples 

and counter-principles serve a limiting function; basic results 

and start-up examples provide easy starting points In a 

theory . 

5. The Repre~entation 

The foregoing sections have mentioned the following sorts of 

knowledge which are needed to understand a mathematical 

theory: 

(1) Know ledge of the items themselves.: for each we 

know its statement, diagram, proof, construction or 

procedural formulation; 

(2) Knowledge of t_he Individual representation 

spaces, such as predecessor-successor relationships; 

(3) Knowledge of Inter-space relations, such as the 

dual Idea. 
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In addition, th ere Is also know.ledge of how a particular 

theory ties in with other theories. 

These are the key ingredients in building our representation 

for a mathematical theory . We ;have already discussed (2) 

a nd (3). We sha ll now summa ri ze some of the information 

needed in the description of an Individual Item In order to 

understand it. 

In d ecidi ng wh a t knowledge about examples, results and 

concepts to represent, it is evident that all three types share a 

g rea t many similar ities. For instance, each has a. declarative 

aspect: for a concept, Its formal mathematical · definition ; for 

a result, its (if-then) statement; for an example, a caption, 

describ.ing what it shows. Each has a procedural aspect: for 

a concept, its procedural formulation; for a result, its proof; 

for an example, its construction. Also; each has sets of 

"pointers" to other · items through its intra -s pace 

(predecesrnr / sucessor ) and inter-space (dual) relations. In 

addition, each item has a worth ratin~ (from no to four ,:<'s 

indicating its importance), an ID, a NAME, and its 

epistemological CLASSes. Thus, we represent all ttiree·by the 

same fundamental structure with a few particular fields 

modified to reflect specia l fea tures depending on the type and 

epistemological class of the item. Figure I shows some of the 

fields in the representation " for the Cantor set example 

(in stead of pointers or ID's, we show the name -or quote the 

statement of entries In the various pointer fields ). (The 

· complete item framework is pescribed in [IO].) 

Once we have decided on this representation scheme, to 

o rganize our mathematical knowledge in a particular domain 

in terms of it, we must make several judgments. For ins tance, 

to build up a representation for the arithmetic examples of 

Section 2, we must first choose the representation space for an 

item (e.g., Q, the rational numbers, could alterna tively be 

presented as a definition), and second ly, the item must be tied 

into its chosen space by determining its predecessors and 

successors (e.g., Q points back to Z, and ahead to R and ~ ). 

Thirdly, we must link an item to Its dual items (e.g., Qcan be 

linked to concepts of division, completeness, density, and 

cardinality, and to results on the Irrationality of 2112, and the 

Archimedian properties of the ~eal line). Fourthly, we can 

order the dual items. While the specific representation we 

build clearly reflects certain personal; pedagogical,. historical 

or esthetic biases, the representation scheme we have 

presented is perfectly general. 

While our representation In fact Is embedded In a very large 

semantic network , it differs from other representations such as 
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Figure I. Elements of the rep_resentation for the Cantor· set. 

IDEJ33 
RATING•) ,:, 

CLASS Reference, Counter-example 
NAME Cantor Set 

STMNT 

DEMON· 
STRA· 
TION 

PICTURE 

SETTING R 
CAPTION The Cantor set ls an example of a 
perfect,' nowhere dense set that has measure zero. 
It shows that uncountable sets can have measur11 0. 

AUTHOR standard 
MAIN-IDEA Delete "middle-thirds" 
CONSTRUCTION 

0. Start with the unit interval [O, I]; 

I. From [0, I], delete the middle third (1/3, 2/3); 
2. From the two remaining pieces,, [0, 1/3] & [2/3, I), 

delete their middle thirds, (1/9,. 2/9) & (6/9, 7/9); 
3. From the four remain pieces, delete the middle 
thirds; 
N . At Nth st.ep, delete Jr.om the 2N·l pieces the 
2N · I middle thirds. 

The sum of the lengths'of the pieces removed ls I; 
what remains is called the Cantor set. 

0, ________ _ 

o ___ _ 

O_( )_ ( )_ ( )_ I 

Limiting set is Cantor set 

REM AR KS Cantor set is good for making things 
happen almost everywhere o.r almost nowhere. 

LIFTIN GS Construction of general Can.tor sets. 

IN-SPACE POINTERS: 
BACK Unit Interval 
FORWARD Cantor junction; General Cantor sets, 

2-dimensional Cantor set 

DUAL-SPACE POINTERS: 
CONCEPTS: countable, measure zero, geometric series 
RESULTS: "Perfect sets are uncountable", 

"Countable sets have measure O" 

BIBLIOGRAPHIC REFERENCES: 
See Gelbaum and Olmstead for general Cantor sets . 
See Royden for Cantor Junctions. 

PEDAGOGUES (Rudin,9) , (Hoffman, 12) 
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[9] in that it' distinguishes several types of items ·· results, 

examples and concepts ·· and several types of relations ·· the 

intra -space relations of the three represe~tation spaces and 

the dual relation. In particular, we recognize and use the 

constructiona I relations between examp·les. 

6. Applications 

The ideas presented in this paper have been used to teach a 

freshman mathematics cours~ at· MIT. The purpose of this 

course was two-fold : (I) to teach and explore the important 

theory of eigenvalues, such as the perturbation theorems from 

Ortega [I'.']; and (2) to make young mathematicians· aware of 

the ingredients and processes in understanding mathematics. 

The results of this experiment were extremely encouraging: 

the students became excellent' ques_tion ~askers and displayed a 

great deal of maturity and poise in their .attempts to prove 

and understand new mathematics. Ats·o, the epistemological 

ideas presented in this paper se_emed quite natural for them. 

They used the epistemologyy and representation both to keep 

track of old knowledge arid to help generate new knowledge 
[12). 

The epistemology and representation summarized Jn this 

paper also serves as the basis for the design of two interactive 

systems, the GROK KER SYSTEM (GS) and the GROK KER 

LEARNING ADVISOR (GLA) [10). GS is a proposed 

interactive system that allows its user to retrieve and 

manipulate information in a spontaneous stream-of-impulse 

way. The interaction takes place at a graphics CRT. GS has 

seve ral mod es govern ing the CRT display which are 

designed for different user tasks. For instance 'there are three 

perusal modes which allow the user to view. a single Item, an 

individual representation space! or ·a n three spaces at· once. 

The main classes of functions In GS are: (I) field Junctions 

which allow the user to e)l tract information from the fields of 

the data structure of'individual items; (2) epistemological 

junctions which allow the user to investigate epistemological 

relations between items; (3) pedagogical Junctions which allow 

the user to follow the exposition of a partlculu pedagogue; 

and (i) perturbative Junctions which allow the user to vary 

the statement of an item and have GS return Items closely 

related to the perturbed item. 

GS can be augmented by the advsior program GLA. The 

purpose of the combined GS/OLA system is to help neophytes 

understand mathematics and to learn how to understand. It 



forms its adv ice from its epistemological knowled,ge, its own 

model of expert understanding, and Its· assessment of the 

user's current level of understanding. · 

Such a system could enter into partn.ershlp with theorem 

provers, or analogy- or concept-generating programs [2], [9]. 

that need to use previously established mathematics. GS has 

many of the facilities desirable as support' for such· programs 

[t]. GS could make it easy for them retrieve and manipulate 

ma therna tica I knowledge and oould guide. their search for 

relevant knowledge. GS/GLA would also Invoke such 

programs to prove statements that arls.e .through user queries 

and perturbations of the GS/GLA knowledge base. 

For instance, in advising a non-resolution theorem prover 

(NRTP) in its efforts to prove a proposed theorem, GS /GLA 

could advise the NRTP to: (1) try out the proposed theorem 

in the special case of a reference or model example and use 

this instantiation as evidence -- for or against' -- the theorem 

in much the same way as Gelernter's program [6]. used a 

"diagram filter", i.e., a model example, ill the domain of 

geometry; (2) custom tailor a model example to the specifics 

of the proposed theorem and examine how the theorem 

"works" in this case, and then bootstrap from this special case 

to the proposed theorem; (3) find examples for the proposed 

theorem and then consider other. theorems that share these 

examples, and in particular, check if the proposed theorem 

car be proved by methods lifted from these other (e-xample

dua I) related theorems; (4) look for an'.d invoke MP's and 

CP's that apply to the proposed theorem; (5) find two or 

more items in a predecessor/successor chain of examples or 

concepts and try to abstract the procedural Information 

inherent in the links; (6) look for counter-examples In the 

collection of known reference and counter-examples. 

7. Conclusions 

In this paper we have preser:ited a stru.cture for representing 

our knowledge of mathematics and have singled out 

noteworthy classes of items in It. We have examined several 

types of relations betwee.n items .in ·our mathematical 

knowledge. The analysis has provided. a vocabulary and 

framework in which to talk about mathematics. This 

representation can be used to d e fin e a data base and 

functions which could be used by other programs that need 

to deal with mathematical knowledge and to support 

mechanization of certain mathematical tasks. 
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BACON.I: A general di$covery $ystem* 

Pal Langley 
Oupnrlrnr.nl of l'!:yc:holony 
CArnecie ··tvle ll on lJniv~rr.ity 

Piltsbuq:h, Pennsyr1t,rnia 

1. Introduction 

111 -recent year!: r!!$earclicrr. i11 arlificial i11!ellip,e11c:e have 
produced a numb(!r of !;ystemn for . carr>·i11r, out scientific 
dhcovery. The progn11nr. inc luclc D[~J[)fl/\1. ([lucha11an, 
Sulherlrrnd, 11ml rcine11b,1un,, 1969; reir,enba11m and 
Lederlwrr,, 19 / J ), mrda ··DLNl)fl/\l. (f]uchm,an, reine11baun,1 

a11el Sridharan, J 972), MYCIM (l)avb, 8ucl,anan, and Shortliffe, 
1972), and AM (Lena!, J 976). The li5I in i111prossive, and 
gives hopf! lhnl Al ir. arrilfing at a true undenlanding of 
dir.COl/ery proc (!Sf.CS. 

It, thin pap(!r I descrii)(! 131\CON.l, a general dir.covery 
sy~lem. The program unes a r,ener11I representation aml a 
smitll numb1?r of hcmir.!ics lo dine.over 1111 impre ss ive range of 
empirical laws. Thus BACON.I in general in the saniu sense 
th Al N11well, ShAw, and Simon'!: ( 1960) Genurnl Problum 
Solver war. general. It Alna har. much in common with the 
General Ruic Inducer proposed by Simon and Lea (1974). An 
earlier, lr.s!: cenernl ven:ion of 81\CON.l WAS reported in 
Langley ( 1978). 

I begin by presenting a !;ample protocol of how. one mirth! 
go abCJut dinc.o'lering an empirir.al law, in thir. case K1?plr.r's 
third law of pl;rnet;iry motion. I then considN 131\CON.l's 
ropro,sent c1tio1, of data, hypCJI he set., and hcurir.tics. Noxt I 
outtir,e tho slructurn of the pror,rnm al\CI ronr.ider its 
heurir.tics In morn detc1il. I follow with BACON.l's solutions 
of some familiar dincovr.ry ta!:ks. Finally, I consider both tho 
generality and the llmitalions of the currnnt system. 

2, A aample protocol 

In 161·9, Kepler ;innounc:cd hir. third law of planetary motion 
-- the cuhc of a p/011c>t 1s chstoncr. frnm the mn wa.s 
proportional to /.ts pcii,:,c/ sqnorml. This law can be restated 
11s dj / p2 = c, where din llrn dir.lanc.e, p the period, and c 11 

com;tant. How mir,ht one dir.cover f.Uc.h a law? Below I give 
a r:an,pln protocol tl1AI draw!> upon some very sirnplo 
heurlr.tlcs: 

1. look for con!;lancir!s and (:oneraliw if you find 
one; 

2. H the vttlues of two ;illributes r,o up tor,ett,er, 
con!dder their r al io; 

3. if 01,e ;,llributc'r, v.ilue" p,o up as 1111olher's go 
dow11, consider their produd. 

'Thin pnr,N wnr, IUJll'III lt>cl in parl by Grant 111:!il!i- ?.?.02 l from lh, 
N'Aticm•I Sci4-nr~ F nu11:l•titor~ in r,nrl hy /\RPI\ Cirnnl f4ri020-73-C-0074, And In 
pArl by ft grant frc;m lhn /\lfted P. Sloon r our~l•fir,n I woukl lik• In thank H. 
A. Simon, Eric Jrohnr-~n, -Boh Nn,t,,,,, And M•rohali Atlu for mony of lh, id~H 
preeentod In lhi• pnr,N. 
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The value of lhe r.: o hcuri!;licr. can Iler.I be r.ccn ir, their 
operation. Thr. three planeli; con!drl1?l'<'d below, A, 13, 1111d C, 
obey a vr.rr,lon of KE!plnr's law wlrnrn llw c:omda11t ir. 1. 

PLANET A 
DISTANCE? 
*1.0 
PERIOD 7 
*1 .0 
PLANl:T, B 
DISTANCE? 
*4.0 
PERIOD 7 
*R .O 
PLANET C 
DISTANCE? 
*9.0 
PERIOD 7 
*27.0 

. DISTANCE ANI) PERIOD SEEM TO GO UP 
TOGET!lf.R . 

TUE SLOPES AREN'T CON!JTI\NT SO J'I.L CONSIDtR 
THE ll/1. TIO or DIST /\NCC AN() PERIOD 

WHAT SHOULD I CALL IT? 
*<linl11nco-over-perlod 

Hern the !a:icond hourii:lic ha!; been i!pplied. The dir.lanre 
and the pC?riod have bc!en·ob!,P1·vc-:d to incn!a!;e logdher, and 
a 11ew attribute dl?fitwd fl!; lhnir rillio ir. ron!;id(!red. ~!xi, Its 
value5 am calculated. 

TUE VAI.Ut OF Tiff. DISTI\NCF.·OVER-PERJOD IS 
0.33333333 WHEN TH!: PI.I\Nl:T IS C 

THE VAI.UE OF THE DISTI\NCC·OVtR·l'ERIOD IS 
0.5 Wlil:N Tift PLANET IS 13 

THE VAI.Ut OF TIIE DISll\NCE·OVER·PERIOD IS 
1.0 WHEN TlfE PLANET IS A 

DISTANCE SEEMS TO GO UI' AS 
DISTANCE·OVER· PERIOD GOES DOWN 

THE SLOPES AREN'T CON!iTI\NT SO l'I.L CONSIDER 
rnF. l'RODIJCT or DISTI\NCC AND 
DJST /1.NCE·OVF.R-l'ERIOD 

WHAT SHOULD I CALL IT? 
*dint 1111c o-squ or n d·ov nr ·period 
THE VAi.LIE OF TIIF. 

DIST I\NCE·SQLJARF.D·OVF.R·l'ERIOD IS 1.0 
WHEN TUI: PLANET IS A 

THE VALUE OF TIIE 
DISTANCC·SQLJl\11F.D·OVl:R· l'ERl0D IS 2.0 
WHEN TliE l'LANET IS B 

TUE VALUE OF TIIE 
DISTANCt-SQUAllF.D .. OVl:R·PCRIOD IS 3.0 
Wlil:N Tift PLANET IS C 



DISTANCE-ovrn-rrn10D Stf:MS TO GO Uf> AS 
[)1Sl ANCt-SQUMrn-ovrn -rER IOD GOl:S 
DOWN 

By thir. point lhe third lrnurl!;lic: hM; lwe11 ;ippiied twir.e. Two 
morn cOn('(~pts h;i ve been drdincd, / 2/ p ,md c13 / p2. The 
latt'er of the se ir. the mn\;I n?cenlly fornwd, a11d it is time to 
examinn it s v.i i11c:~. 

TIIE VALUE or THE 
DIST ANCE-CUl3E()-OVER-rERl0D .. 5QUARED IS 
I .0 WHEN THE 1'1.ANET IS C 

THE VAI.UE or THE 
DIST /\,NCE-ClJBf:O .. OVJ:R•rrn100 .. 5ouARr.o IS 
I .0 WHEN THE PLANET 15 13 

TIIE DIST /\,NCE-ClJl3EO .. ovrn-rERl0D .. 5QUARED 
MAY Al.WAYS BE EQlJAI. TO I .0 

THE VA I.UE or THE 
DIST ANCt-CUBf,O .. ovrn-rrnrno .. :;ouARED IS 
I .0 WHEN THE Pl.ANET 15 A 

THE HYPOTHESIS Al.SO woro:s WHEN THE Pl.ANET 
IS A 

Fitrnll,., the lint heuri?.li r lrni; paid off, for the new attribute 
d 3 / p· has a co11d,111t 11;i l1w fo1· two of the pl;i11el s. This led 
our dir;r.overer to prnpor,e that the ;if l ribu le har. thir. va lue 
for ,111 plH11el s. Upon loo~.inr, Hf the third pl;inet, he finds thin 
does !;eern lo be llw u1i;c1. Morr. rnmAin!; to be done in 
ter.t Ing the hypot heidr., but the nrnin work in dl!;covering 
Kepler's third law h11!; been cornpl1!1ecl. 

3. BACON.l's reprnsentation 

As the reader m;iy have P,llP '.,sP d, 1hr. ;ibovc~ protocol w<1r. in 
fact generntcd by the n/\COl11.l progrnm. or courr.e, l.3/\CON.1 

. was not clesir,ncd fo procl11ce fluc?nf Enr,lir,h; I have r,ivcrn It 
thn abi lity to r,enernle !,i111p ln proloc.olt, only to help 
demy~tily thr. p<1lh it trnve lr, tow;inh dit,covery. Bulow I 
attempt to cli'!rify the nature of the program still further by 
conidc:foring thn reprn sentalion!; it ur.es for its data, its 
hypothe ses, and it s heuri?,tiu;. 

3.1. The repreoentation of data 

BACON. I reprnsents its data In termr. of i!!!..l.i! ill!,!,terr.. A 
· data clui;ter ir. a se t of 11ttribufe .. v11iue pain; linked to a 
common node; ii represents " series of ob,,ervalionr. lh<1I 
have occurrnd tor,cthr.r. The pror,ram· l111ow$ about two 
typc,s of .ittribulc!r., l!)Qt1pc111d,_~!..1.l ;111d UQ~i~l!J.!. The !;y!dem 
har. control oven ind11pendC1nt attributer.; ii ran VMY their 
values and obr.erve the results. The resullr. comdst of the 
values of the dcpench:nl aflributer.; the~e am what the 
system is tryinu to exp l:iin. 

The program 11lr.o know$ that it can mal1e genernli7.alions 
about the valuns of clepenclnnt attributes, but lhAI 
lndr.pendent altribute .. vil lue pain; c:an be used only for 
conditions on those genernliz afion!;. Fir.urn I <1 showr, some 
data dui;\err. fr;r a lradilio11<1I c-oncept <1ll<1inment task. In 
this cM;e, the concert is red. Them <1rn I hrr.e independent 
attributes, si.zo, co/.o,·, and shapo, and one dependent 
attribute, the feedlu1ch. 

Much of OACON.1 's power comn•s from it s Abi lity to define 
higher level attributes in tr.rmr. of more primitive ones. For 

example, the progrnm t1111 c rn;ite a t1ew ottribule which Is the 
product, the rntiQ, or the ll11eM rnmbination of two exist ing 
attributes. II can alr.o cr!!ale an attribute whose value 
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equatr. thn Vil lue of another Attribute !®s!!.!.\Q ?, or r.ome 
othnr nurnbnr. 

The i;y!'lem ar.kr, the pror,n1111111r?r for the namni; of lhr. se 
new ;itlrlbutns .ind trn;it s thr?rn lil1e any olhr.r; tlwy urn be 
Ufied lo d(!fine 1ww ;iltrlbutnr; ils well, !,Cl the proc.es!; Is 
rc1c un.ive. Th(! gene mt ion of hir,lwr leve l nl tribu te s allows A 

pandmonious n!prw,enf;i lion of li)r. cl;il;i; ii allows nor111,1ily 
c:omp lr.x rule s lo bo d;itcd ;ir. r.imp le co11!di111ciei,. I r.how in 
Fig um ?.A . two clat ;i c lwd on; whirh olwY. V.cip ler\; ~hird law. 
The three hir,hnr lt!VC·:I attributes, i/ / p, i' / p, nnd d· / p2, are 
represented In the r,ame f;ir.hion as the ;ittribules which 
define them. 

<•l 

(bl 

lorgn rod lergo · bl, .. 

red (condition) bl.,. (condilinn) 

yoe (gnuronlir~tic,nl M (o,,..r•liufinnl 

ficurn I. .<al So..., detn cll11,tnrs for fhn conc•pt red 
(bl Hypothotii1 ciutlors for the conc•pf red 

3.2. The repreoentatic,n of hypothnseu 

BACON.I represents hypothr.~r.s in m1Kh the s<1 11H! way as 
Its data. An bypolhr5\r~ ~.1 11 ~'. !F•J: ir. alr;o 11 set of 1111~.ed 
allribute .. v<1h1e' pairn. Somn of tlw se p,,ir?; are mA1·ked as 
ge11er<1 li ;i11tiom,, whih? ollwr!; am mAri'.ed a!; £Ondiljonr. on 
those gcnerali;u1tion:;. Thw; 1hr. pror,rHm r,pecifies <111 rules it 
diGcovers as conr.lanc ies, alonr, with the condil ion!; under 
which those con!;lanc ier, hold. The sy:; lem makes no 
dlr.tit,c.tlon bntween primitive <111cl highr.r level attributes in 
Its hypotheses. 

It, Figurn I b I give~ two h>1polhr. sir. ch1!,l(')rr, cir. scribing the 
ruin 111 the c.oncept Alf;ii111,1r.11t f;1 !,h mr.11tin11r.cl above!. One 
cluder expli1lt1!; c<l!;e~ w lwrn 1hr. {1?crl/,ach ir. yes, whi le the 
other explair,i; the 110 rnsponi;er.. fir,urr. ?.b show$ " sing le 
hypothesis clu!;ler for Kep it?r's third law. On ly one cluster is 
neeclud sinc:e the con!.tanc.y hole!!; for <111 of tho data being 
considered. 

3.3. The repreoentatlon of heurl$tic11 

BACOf{ I Is it11plemr.11ted in I he procl11cfio11 r.ys tem lr111r,uar,e 
OPS2 (For&y And tvlcl)ermoll, J 977). The heurit,tics of 
BACON.I, which I call !:Qfl!.!l!!.!fu'.. ~lg_!_r.dorr., arr. implr.m~nted 
as ors2 productions*. Tlm~e C011!;1!il01A set of conchl1011s 
describing a general pattern · that mAy be found i11 data, <1nd 

*These produc I ions male h <1p,;i in!;t conf ip,urntiohs of chit a 
!ind hypothesis c.lU!;tert. CIU!,terr. arr. represented as 
valuc .. <1ltrlbule .. noclu lriplns, ear.h of which IG an elemnnt In 
tho OPS2 working mnmnry. 
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an . ar;r;ociated ;idion; thiG ;idion rn.~ulls in either the 
formulHtion or qtrn lifi rntion of ii r,enr.ra li ;iation, or tho 
definition of A hir,hcr levr.1 attribu!f!. I clir.cuss these rules 
morn fully 111 tho rwxt r;cction. 

Procluclion t;ystemr. trnv<~ been sur,gr.r.,ted as a general 
sc lwmr. for rnodelinr, comrlr.x thour,ht procr.sscs by N,iwell 
and Simon ( 1. 97?); thr.y h111w lid eel R nurnbr.r of arlvant;iues, 
sonrn of which ;irn pflrlit.ul;Hly releva11t lo dir.covery 
sy st~in,r;, Flrd, procludio11 r;yidemr; c:;irry out a parnllel 
f;earc:h for I hC! c1ppropriate production to fire; thir. seems 
especia ll y w;eful for r;ea rrhinr, a larr,e r.et of data · for 
c:om,timc:ies and lrnndr.. Snoncl, procluclion syslemr. ilrA 

data .. drlvcm, ,rncl 1111y cll!;wv<-:1·y r,yid<'lm tnu!; I clrrnrly be 
rcsponidvc~ to the! d;ila it is tryinr, to exp lain. Finally, 
produc:lion sys tems rnprnsent knowledge in re latively 
Independent structurns. Thi s ir. a11 impor!M1! advantage to 11 

dir.covery system, for It mr.ans that knowlr.dr,c (e.g., in terms 
of uenernli;rnliom, ;incl hlr,hnr lr.vc!I concept~) c:an bo added 
i11c:rnmenlally and dill l11tcrncl in rc ,wonablo ways. 

4. An overview of BACON. i 
The !3ACON.1 program currnnlly consi!,ls of 74 OPS2 
productions. These can be dividP.d into five tMjor sets: 

1. a SP.I for setll11p, up and rurrninc: n lac.lorial 
dc si11t1 to ga!hP.r d;ila; 

2. a !;cl lo dctec:I rep,u l;irilir,s in lhP. data 
rn llr,clecl by lhC! firid and fourth !;els, 

3. a sci that chr.cks for rnpP.titionr. in the hinhor 
levcil 11tlrlbutes rarr,gHded by tho r;ocond i;et1 

4. a !,el that calculAler, lhC! values of tho hinhor 
lcvr.1 c1tlributes propoi;ed by 1hr. i;econcl set; 

5. c1. !;P.t to !er.I p,enP.rn li ;iationr. !,ct forlh by the 
second set. 

The firnt and filth r.c ts am d anclnrcl mr.chanisms in 1111y 
dlr.cov~iry r;yi.tcm, ;rncl very !.itni lar c.ompo11n11ts tnAy bo found 
In Simon and Lea's (I 9711) GR! progr;un. The third set Is 
simply a check for looping. The rnal innovations lie in the 

.. second and fourth r.P.ts, thounh tho notion of hinhor levol 
concepts Ir, U!;ed exlenr.lvr.ly in l.enal'r. ( I 977) AM system. 

I diocu!;s iill of llm comro1wnts i11 more detail below. In 
Figure 3 I present a top ·· lr,vcd flow char! of the BACON.! 
sys tem. This dP.p;irt s t;omr.wlrnt from lhC! r.land11rd formalism 
in order to better !dmulRte thn flow of control In the 
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proctuc:tion f;yidetn. The d1Art doc !; 1101 ha,.'C·l lln explicit i;!,QQ, 
but lhP. progrnm 111111 !; wlwn it ha!; complr!lr.cl gathr.ring its 
set of prlmitlvci data. 

fic111e 3 Top,ltovol ffow_ chart of 01\CON.1 

4.1. Gathering dBta 

This !,el of 20 production,, ar.ilr. the w;er 11 nurnbr.r of 
que1:;lions about tho lw;k thn 1;yidem ir. to r.olve. The r.y!dem 
asks for the dcpcnchinl ;i11cl i11clrircndr)11! allributes i1wolvcd. 
For i11drircndnnt ;illrib11tcr., ii 11r;~,f. if thr.y am !!l!.r:'rv;il or 
noti1ina l r.<:c1 lr. . If inte rval, it Md1s for a ra tr,r,r. sted fir!:! val tm, 
11 ta1gger.led incrnmrrnt, ;my limit r. 011 the pni;r.i blci values, and 
a !a1guested nurnbf!r of ob!;cirv;i tioni; for lhir. attribute. If 
nominal, ii anl1s for a liGI of thn r1llributr'r. possib lr. v11lues. 
No quoslionr. c1rn 11skr.d 11bo11t the rlep!!nclnnt r1ltributes' 
valtJ!!$. 

Ar, tho procluctioni, gel this inform~tion, !hoy to11Glrt1d a 
eel of morn r.pNific prod11ctin11i. lo c At'l'y c11it thn oxpr.ri111011t. 
Wher, all tho attribute~. lrnve b!'e11 comdr!r.red and ;ill tho 
nec.csr;ary production!, addcid, tlw •;yi,tcm br.ginr, it s ctatc1 

. c:ollrnlion. The dRtil is rnllr.c !eel through II trnctilional 
fadorlal clr. idr,n. Initially the fir!d inclripe11cle11I allribute Is 
var incl whi le the otlwrr. arr. held conr,t;ml. ·1 hen thn v;ilue of 
the r,ec.oncl atlribtt!P. ir. c·h;inr,ecl, and 1hr. fin! ir, cycled 
throunh ar,c1i11 it1 thir. nC!w context. Thir. rontinues until all 
tho valuflr. of the r.ec ond 11tlribul e h11vr. br.i•n ryC'ir.cl throur,h. 
At thin point tho third atlribute ir. modifi1id, lhn 11bovc cycle 
Is rnpc.alecl, and so on. 

For most of 1hr. liisl1s !3/1.COI.J.l can handle, lhC!re is only 11 

single indepcnd1int 11ttribute. 111 thir. r.pecifll <:ase, the valuP.s 
of tho ;illribute are c.y<.lr.cl through once a11el lhe !,ydem Is 
finished collec.ling it s d11ta . /1.lonn wilh a r,IVC!t1 combination 
of lndepcndcml altributr, .. value p11ir!;, 1hr. r.yi,tem 1wks for the 
value of ec1c:h'dependent attribute. 

The r,e l of produc.llon!, c omdrndod for c:Mrylnr, out the . 
dat c1 collec lion c11n bC! i11te1Tt1pl0cl by lllC! r.ol of productions 
ro$ponrdble foi· rnp,11 larily dr)IP.Ction. If both are true, tho 
rcgularlly clelecllon prod11clio11i, win out over the data 
genP.rntion production,, on tho OPS?. conflict rosolulion 
prir,cipln$. II a rnp,ulMlly b found, a r,enr.rnli;i11tion is mAde 
or a hip.her level attribute is con!dclNecl. If a ncncrali;ialion 
lo rnade, tho testing procluc lion!; c 0111pr1re iii, prediction .to the 
existing dnt ii. If c1 hir,hor lr.vr.l 11ttrib11!r) is formr.cl, ii · is 
ter,ted for rndundanc y; if It i!; a now c:0 11cc:pt, Its values am 
ct'l lculatecl and tho ror,ularit~· clnlP.c.ton: ux11m inP. these . 

Evr.nt u;illy, the Gy~ tetn 'G iit!P.nlion rr.lurn s to it s initial gonl 
of collecting data, c111d it continuns ar. ii nothi11g has 
happened. The currnnt verr.ion of 13ACON.1 does not use the 
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hypc,theses ;me/ concepts It lonm; to help ii !;earch the cfRIII 
i;par.c lnle lllgcrntly. The onr. c?xccplion otcurn when a 
c:oMI 1111c:y Ir, found alonr, m1 Interv al cfimr.nr,ion1 in thin caso, 
lhC! syidem can Jump ahead to look for a periodic 
relationship. 

4.2. Discovering regularities 

The scc.ond !;cl of 20 procf11dioni; am rn$pOnsib lo for 
fimli11g rngulflrilil!s in lhn dat;i cnllr.clcd by the firr.t r.ol. The 
syid0m'r; rngularity d11tP.c.ton; c:a11 bC' divided Into a set of 
£9Df!.ill1£Y. 1frJ~don1 and a r;ct of trnnr! tlt.!flI!QrJ!. The first 

of ll1C! SC! c-an d!!ill with c!ilher rwminal or 11111nr.rical data, aml 
leads to lhC! poi,tulrillor, of gr. 1wrn li ;u1lio11r. and rondlllons on 
those se rwra li;rnlion!; . f3/\COl~.1 's lrnrdc ronsla11c:y detector 
c:an bu parnphrw;ed In Enr,li!,h m; 

If n11 nttf'i/111.t<? lro .! thr. mm,, 11nl1tr. or.Mss a 
1HL.rnhe1· of cfoto r. /11 .,tt?t·.,, 

then hypothe.,izc thot tlw nrtribu.tt? always has 
that 11al1tr.. 

Note that lhir, is simp ly ;i rr. $lal1i rnr.11t nf 1hr. lrndilional 
indudivH ir\ferr.nre nrt,n howr.vc-:r, whe11 combined wilh lho 
ab i'llly 16 define? hir,lwr loved allribul es, ii gai11s In pow!!r 
considerably. The prngrnm'r; hr.uri!ilit for finding c:ondilions 
It; nearly iJ!; i;J1nplr.; ii m;iy he rnr, I ,iled ~!; 

If yoiL arr. lnolri11ff for .ct co11di.tion on a 
rre1wl'<lliz11t ion, 

and tho f(ellel'<tlization is l/'Cl.(l in (1, number of 
cfoto dHSlt'I'.<, · 

and nt t r·i.bu.t·t? a /ms va l1tc v i II I hoso same data 
.clH,(lt'I' ,<, 

and tlw (It?ll<ll'oli1.11tfon is falrn in a 11wnbn1· of 
other dn.ta clastt!I'.<, 

and nttr-ib1Lit? a docs 1101 have 11<1l1Le 11 in those 
data clustt?rs, 

then propose tho nttril>11t<1 .. 11al1rn pni1· a .. 11 as n 
condition. on tha grmeraliza.tio11 . 

BACON . .l 's trnnd d<!kdorn opernle 011iy 011 numerical data. 
Sotirn of thc8e notice dim ct or irwerso rr.lalions . bot ween 
attribute$, r.tKh an the produc.lion 

If tho 11alur. of nttri/>1!11? al r1ocs 11p n., tlro 11alull 
of ott ribute a2 goes ltp in ct ,urn,.l>cr of data 
c4,tstcrs, 

then propose a direct re/ci.tionship botwoon al and 
a.2, 

and cnlc11.ln tc tho slope of n I with r·f!.<poct to a2. 

This produdion workG in conjunction with related trend 
detedorr. that furlher 1111alyzr. the d;1ta, ~uch as 

11nd 

If thorn is a clirnt!t 01· i.1111r.1·.to rr./ntio1u/1ip botwoon 
attl'i.b1tt<1s al a11d n2, · 

and tho slope of al wi.tlr rf!.,pcr.t to a2 /.s a 
consl'an.t 111., 

than prnpos·e that a new nttrib1tto, al · rn·a2, bo 
defi.rted. 

If t ha,·o i.s o cli.rcct rr./otionship l>otwoon attribute 
al a11d o2, 

and tho slnpc of n 1 111i.t Ir l'f!S/,rct to a2 is 11ot 
consta11t·, 

· and the 11al1LM that foci to tlrn rli.scovcry of this 
t1·e1id wcrl? nll positiva, 

then p1·oposo that a new attributt?, ;1l/a2, be 
· defined. 

Sjmilarly, an ln'vcrr.o rn lation wi ll load to lhc construction of 
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an altribule for al .. 11rr12 (which sumrnarir.es a llnr.ar 
relaliom;hip) or im r1ltributc for ah1?.. Olher combinations 
occur with diflcronl !dp,m; for a 1 r111d 112. 

The abov<~ produdio11r, lr.ild to atlribulcs which · mAy be 
ge11orA li icd over; howr.vc-:r, hir,hr.r lrvci l ind1!pcndcrnl 
atlrlbutw, 111Ay alr,o lw dPli11NI. ()11r. suhcr.1 nf the trend 
d11tectorn looks for p11rioclic rnlalio11!; in 11,r. data whr.n the 
sy!ilem rrnedt; R condilion; lhw, r. lr!11cl lo the co11!;trudion of 
modulU!, ·11llrlbutcs. The major production 11111y he r,lilled as 

If you aro lnohi11rr for n condition on n 
gancrnli.zation, 

o.n,1 tlw genr.rnl.i,ntion i.s lni.e i11 n 1111111/:,er of 
cl<tta chuters, 

and t./rnrr. is nn oqnal i 11tm·11a I p l>ct wi•nn. t ho.rn 
data clastors olonrr nttributc a, 

then propose thnt n nr.111 nttril>utc, a 111ocl11io p, bo 
clt!finC!d 

A similar rule C"a11 Ir.ad lo lhe conslrnttion of linear 
co111bi11;iliol1!; of i11depo11ch!nl 11tlributcir. . Once !;uch c1tlribules 
arn dnflrwd ;ind thr.ir valuer, exm11i11r.d, thr. condition duteclor 
car, dincover their rnlation to ;1 gr.1wrn lir.11 ti o11. 

Once a d11pcnde11t d:ita lripl!! ir. found to R[lrcc wilh r111 
hypo I ho sh;, It Is mAI k0d a(; r:.>:1~!i!j11C?d. If morn prim itive 
triple s woro U!,r.d in 1hr. rnlr:1.1ialin11 of thir. lriplr., lhr.y am 
r.itnilarly mArked. The rnr,11IArit y d!!lcc lor!; 111,11c h only 
analm;f ~~lllH.l!J~'~! cl11ta triplns, (;O 110 co11fwdon br.twcon 
dlfleront rule s Ir. produced. 

Sonrntirncs a q11alifi1!d ge11c,r~li n 1lion ir. confirmed, but it 
failr, to explain all l11r.l1111te $ of 1hr. r,enerniilalion, r;i11<e they 
do not !,c1tisly All of lhn cnndilion!;, In lhir. CR!,e, a ,,cw 
hypothnsir. i!; addnd which mnkei, 1hr. r, ame prncliction, a11CI a 
set of dir.junclive c:ondilion r. i~ r. r.111Thed for. Onre thir. 
hypothesis i$ confirmed, if there rnmai11 other leftover 
triples, yet 11110thnr hypothr. sir. ir. addr.d, a11<I r.o on until all 
trlplns with thin atlrib11te --v11iue JHtir lrnve been n111rked ar. 
e)(plal11ed. 

4.3. Checking dlmenalons 

The third i;cf of 12 producliom, chr.c~, to (;ee if a newly 
suggested produd or rnlio is idr.ntic al wilh an r1lrcady 
ei<ir;ling conc-!!pl. For ex,unplr., r.uppose lh!! system has 
d11finfld r1 nnw altribulH, d/ p, in tcrmr. of the primitive 
attributer; d 1111d p. If II find!; p and cl / p arc lnvorr.cly 
related, It will c:onr.ider a new attribute, ,,·c/ / p. 01 course, 
thio Is equivi!lrrnt to cl, but 131\CON.l clocs11·1 ~.now this sinC'e 
the tl11?11nings of It s hinher lnvC!I ntlribulr.s ;,rn opaque to ii. 

Accordingly, 1hr. identity -- chr.ckinr, productions cr1lculate 
the di111e11!;ionalil y of 1hr. nr.w ;,llrib11te . . If this is 1hr. r.,11110 
ea the dl111r111sionr1lily of an r.xir.ting ;il1ribul c , r.ither primitive 
or higher levc-?I, th!! 11r.w c rmc r.pt ir. rnjllckd. Alr.o, a tnA.rker 
Is added to 111r.mory tellinr, 1hr. syr-lem to icnore this 
parliculnr rnmbinalion in the futurn. 

If no identity ir. found, lh!! syslem accepts 1hr. new 
concept and c:alcul;iler, its values. Thir. check irr performed 
only for· products 1111d ratios; ii is in;,ppropririlc for linear 

· combinatiom,, sit1C'e lhr.$e r1rn fornrnd only when tonstant 
slope$ am found. A c ompnrnblr. lc !;I is roi: t.ible for modulus 

. concepts, but l_s not ltnplemnnled. 

4,4, Calculating hlthP.r level values 

The fourth r.ct of 10 produc.tions lake thn hinhor level 
concepts which par.s tho rcpclilio11 C'heckj ;111cl the values of 



!hf! attr ibute,(; defininp, llwm, itllCI w,e lhe sr, to calr.ul;ite the 
v;.i lue of tho new ;itlrii:>ulP. /\ i,r-parate prnduclio11 ir. w,ed 
for f!,H h lyp(! of hi1:hr,r lrvtd c1 llribut e. !11cl11decl 111 fhi r. set 
am procluc I ion'.; which dt,c icfo wlicllwr ;i new attribu te 15 
indr,pencl1,11f or rl1,ppncJr,nf. If all 1hr afl ribu le5 nwkinr, if up 
am indPpr,ncl1,nl, tho 1ir,w cmHert i!, mMl1r,d lndopt,nde11t ar. 
wdl; otlwrw i'.;e it i!, m111ked Hf; clepr•11dont, ,llld c:a11 be ur.ed In 
generali, a lion!,. 

· Thff procluc.tio nr, for ca lrulati11r, va li.1 (!5 win out over those 
for clnla c:o ll r,c.lion ; a!; won a!; the v.1 h1 t, of a higher ·· level 
attribu te U'll.l be c.alru lal ccl, ii '.,','.,ill. bo. Thn on ly excep tion to 
thir; rule occ.ur!; if fl rqgul:irily ir. d1dr.cfecl ,1mo11p, the now 
va luE!s. 111 l.hir; _- c.ar;r,,. -a gr.nrrnli ,alion or · i;fill hir,her level 
attri b ut ,; Ir. fornwd ,mcl rln,dl wi th. Only after this new 

· cle v1-,lo1>1iw11t i!; t ii~.e n tare of docs tho r.y:dem return to its 
old c:ompu t at ion!, . · 

4.5. Testing hypothr.ses 

Tlw final set of 12 prnclut lioi'I(. ir. . rni,po,,!,ibln for tcstit1p, 
gencrali,afion!, r,enr!l·,ifpd hy the . rer,ularily defection 
production!,. Wlwn a ge11<'1'Hli;u1lio11 ir. find m11cle, a counter 
Is c:i-r,,drc•d and !,et to 7.cro. A !,el of prr.exir.finr, le$I 
prod1Jcfion~ then comr,;irn lhe kt1ow11 dnla to tho 
ge twrn li ;rn tion. 

F<tr eac:h ar,rnemr.nl thr.y find, lhr.y inc:rnmr.nt the counter 
by one and the d;it a lripli, i~ milr~.cd ar. r.xpl.1inccl; if the 
counter rn ,,c: lws four, lhe hypolhw.i r. ir. RC:tcplecl and tho 
!;yidem 111ovc·:'.~ 011 lo ollw,· mnllrr!,. llowcwc·• r, if a dHIA triple 
is found lhnl di!; .~p, ,r!e!; wilh 1hr. gcnerali;,;ilion, 1hr. counter Is 
reset lo zero · and a p,on l ir. !;cl up lo qualify tho 
ge11cra li ;rnfion. Thir. r,ive~ contro l b;ic:k lo the rer,u larily 
dctecton; which, hop!!lully, will di!;c ovcir 11 c.o11dilio11 on tho 
getu!ra ll , ;iii on. 

When a cond il ion llilr; hcr.n found, one of the lest 
prod1Jdio11!; addi, A new r,e l of le st procluc:fionr, which 
lnc:orpornte know lr.cl1:e of lho new tondilion. Ther.e .mask the 
o ld procl11ctiom, (through llw ors2 co11flict reso lution rule$) 
with rer;)Jcc.f to lhe currnnl hypolheslr.1 1hr. morn r,enerAI 
produc.tion!, ncvcir have Any lhfll[l lo say about thin 
genernli;rnlion ar,ai11. 

The new produc.fionr, ler.f the revl!,ecl hypolhesir. i11 much 
the r.a llll? . way th11t lhe fir!;f ones did, except that they 
con!ddcr only _ tl1C1 f,e dal il c lu!;IC'l' r. which !•ati!ify the new 
cbnclil ion. 11 the qualified hypothesis fils enough clHfa, ii /$ 
conflrrned1 If ·another counterex;imple Ir. reached, a new 
qmdil ion in fmmd, a new i;el of !er.I productiotis ir. added 
which tnAsk fhr. IRsl !,rt, and the c.ydr. br•gins anal11. This 
continll!!S ·until the hypothe sir, is confirmr.d or until 110 ur.eful 
cond itions c:an be found to qualif y a faully r:enerali7.alion. 

5. Some examplos 

E3clow I Ir ac.e BACON. I'!• dl!;covery pal h in lwo envirnn1111?nts. 
The firnt c.onlaim; dal11 for the conccpl Allr1inmr.nt tirnk 
nic,ntioned r.;1rll1?r, In whith the fr.cdl)(Wh i~ yes if lhc color lo 
rnd, at1cl no when 1hr. col.or Ir. l>lw1. Thr. ~ccond har. data for 
a !,et of pla11eh which ob(,y an lnverr.c sq11arn law, od2 ~ I, 
where o Ir. the ac:ce l1?r11t io11 and rl in the di!;lai,ce from the 
sun. 

The flrd tm,k clrnw!' upon IJACON.1 'i, co11dilion dr.tec·torr.1 
tho second clrnw,; upon the lrnnd cl1!1ec:forr. for direct and 
ltwen;e rc lallomd1ipr.. /\nolhr.1· l;1 r.h which I do not describe 
hero, l!?ller 5Nf t1e11w r.xfrnpolAtio11, w;r.s bolh of thoso, 110 

well as llrn lrnnd dr.t,ntor!; for rwr loclic rn l11fionshlp~. All of 
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these lm;ks clrnw upo11 lhe core of t3ACOl•J.l, 1hr. con!,tancy 
detector. 

c~, lar111 hi ... ,mall blue 

1qu1,e · nfl 

(bl 

Fitura 4. (111 l11itiol cl1t11 ch, ,t1111 in thn cnnr•pt 1tlainm1nt run 

(bl lnili11I hypothnniM clusto, in thn cone.pt att1in011nl run 

5.1. Concept attainment 

In the c.oncepl afl;iinmr.11t f ;l!il·,~ IJACOIH ir. tolci nhout 
thrr.e nominal i11clep!,ndr ,n t nl lribuks, .<i1c, color, a11CI s/inpo, 
and the va lu!,s eac:h can l ili'.r. II ir. alr.o i11formr.cl of lhe 
sit1g le chipendonl aflribu le, 1hr. fccd/,nclt . 1 he !,yi;fem l)(!ginn 
by r.y!;lem,1fira ll y ex;im ining combi11;ilion!: of the fhrne 
attributer.. Si nce If w11r. givC!11 .1 i .rn a!, 1hr fir!d af lri bule, if 
Initia lly con5ider r. a lar(lri l>/,w .H/1t<1rr, a11cl I lwn a sm.oU l>/.ae 
1qnoro. The cl11la clui,IN!; for lhw,r. m~y bet !,r.e 11 111 Figure 
4a. Sinrn the fccclh,ich for bolh of lhr.i,e ir. no, the !;y~fem 
generali ,cs by building 1hr dnla c 111',lcr in f"ir:urn llb. 

BACON.I 11oxt c:on!drlr,rr. a /11,·rr,. ,-,,rf sq 11<1 r-r. n11CI a rn101/. rm{ 

squorn; the data clu!,lcrr. for llw!.e am i.hown in Fir.urn 5a. 
Thi5 lime the feedbach ir. yes. Thir. caur.r:,s the progrnm to 
set up A gonl to qualify lh fir!;I hypothrsi r., a11d thi r. goal ir. 
almor.t imnH!dlatP.ly !;~ f i!;f iPd. ·r hr, conclil ion - finding 
procluc-tion proper.es thnl lhe fo<'ri l><>C.'h i!; 110 if 1hr. co/.o,- 16 
b/mi. BACON.1 itlr.o seer. thnl the f, ?r.dlrnch ir. r.0111r.li111es yes, 
Wncl finclr. that · the color bei11p, rrd i!; a good concli li o11 for fhi6 
gencrall7.11fion. 130th hypofhe•.,ir. clw, l r.rr. are given in Figuro 
5b. 

(1) 

YOI 1quart YH 1qu1re 

(bl red (coriclitlonl blut (condltlftn) 

no <,,,,..,1tiufion) 

Fisura 5. (~l 1,fo,,, d1t11 clu~lort f,0111 th11 conc•pt ,ttain'"nf run 
(bl Final hypoth111it clu,1011 1•,,..11t1d by BACON. I 
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So lc1r ,ill v..i lilc,; of th e fcctlhndt have b£'cn cxplnincd, l~ul . 
13/\CON.t ir. 1101 yd rr?ady lo arccpl ii !, hypothe ses. Two 
rnorn cl ala c lw,t en; n,u?;I lw found that anrcc with each rule 
bcfol·c it w ill Im co11fide11I. The comi>i1,alio11s large blue 
cirde a11cl .11110/.l bhw cfrr.f,, do thin for 1hr. firr.l hy.polhesio, 
a11cl the combirrntio11i, lo.rye rnd circle and ~111.0/.l rnd c/.rcle do 
II for 1hr. sr. cond. 13ci lh hypotheses 11m accepted, and 
procluc lion!, ,He flddr.cl lo tire !;yidern'r; permA11c11t mr.mory 
which will Int II make pn?cllction!; in llw fulurn. The progrnm 
continues lo gather data, makinr; prndiclio11s and verifying 
them r1 lonr, the way, until ii !, IM.lori 11I desir,n is c.ompleled. 

5 .. 2. Thi?! Inverse square law 

111 the !,ccond t ar,11, BACON. I I!; r,iven 011e lnd<?pendenl 
allr ibulH, the 11,w1c of a planet, and two clepcrnd1rnl 
attr ibut e(,, a for the acce leration, and rl l c,r the di?;la11cc from 
the !,Un. The pror,r11m exmnine~ the values of tlie latt er 
attributes for thrr.e planets, a11d it s trend delcclorr. notice 
lhnl the · value?~ of a i11c.rnc1r,r. as the vahw~ of cl decrcar,e. 
Tho slope of a with rw.p(?ct to cl ir. ca lculated, lnrl 11,iG Is not 
con!,t.mt. The Initi al cli1ta clu,ler!; can be r;f?C!l1 in Fin·urn 6. 

4 

fl 

0.'5 

Fif.lllO 6 Ontn ch11,ta11 utinfyinc ftn in1·~•1t 1quart law 

Tho relationship is irwer!,e ,md the values por.ili1Je, so a new 
attribute, a ·d, ir, d1?filwd. 1 hr. dirnr.nrdonaiily of this attribute 
Is unique, !;O Its v;ilue s of lhir, allribule arn calculnted, a11CI a 
new trond if. cl1?tP.cled. ·rhe attributes n and ad seem lo be 
dirndly rntaled; the i,lopes vary, and w a new concept, 
ad/a, is c.onsidured. However, after r.ome c.alCLIIAtion, 
8/\CON.1 rcalil.cs this attribute is equivalent lo d, and rejects 
It. 

Now 1.111olher dirnd 1elaliord1ip is found, between d and 
ad; the 'attribute o·od, or oi', is defined and its values 
calc:ulatecl. The va lues of both ad ancl oi' can be !lecn i11 the 
extended d;ita C'lui,l cn; r,iven in Fir,urn 7. The new attribute 
ad?. in found lo have · a co11i.ta11i value of l for two of the 
data c:lu!dcrr.. /\ gcncr11lil.rilion ir. mnde and tested. Two 
more d;ila ch.1!,tcrr. am found 11ml obey the law, And no 
e-xceptions. · The rulr. ir. ;icceplecl ,111cl a procluc.lion is built 
for maklnn prnclictioni,. The sy~tem examines tho rcmAining 
plat1ols, Ancl those fit ;ir. well, r.o ii r.lops. 

2 4 

A 

O.!I 

ficurq 7. Ilic"'• i.v,1 clalft for th, inverao 1quare law 

6. Gr.nerallty of thr. system 

I have dir.cw;sed thrne l;i!;ils BACON.I can so lve -·· 
Kepler's ihird law, r;lrnpln concept allai11mrrnl, and the i1werr.e 
!lquarn law. The ·pror,rnrn 11ho !,uc:ceedr; 011 a number of 
la!,ks lt1 whicl1 tho lilws arn of ii per iodic 11alurc. 

6. l. Pcrl<1dlc' dl$covery tar.ks 

One of I he periodic I il!,i'.:; 13ACON . .I can ha11dl11 ir. an 
a11alor,uc of the lnllrir ,.eq11r,nc.r. r.xlrarolalion lar;i1s found 011 
lnkllir,enc:c lei.ts. 1hr,•,e w;e •.eq11o nc:c1<:; lil1r-, r E. T F T G --. 
8/\COM.1 mur;I r<?prn';ent lhi!, r,eq11e11ce ar, 7.0 5 20 6 7.0 7 --; 
It mu!.I roplnc:c 1hr. letter!, with their position in the alphabet 
becau!;o it cannot rr.pre!,enl the next re l~lion between 
ad jarcnl lellen;. A r.r.cond i!, the cl11 !,!; of !,cqucncer, !,luclied 
by Kl;ihr and Wallace ( 1970), !, uc.h iJ!; l>/w, .<q1J.or·e, rcrl circlt!, 
rod sqtLorn, burn circ:/e, f'(1(/ sq/Jorn, rnrl cirr.l<>, bhw sq11arn, - -. 
lt1 thin r.xmnplP. !hr.re, ill'(! two dr?pendenl allribuler., color and 
shape, who~.e valuer. Ml! norninnl: al~o, lllf' perioclir.itics for 

.. each attribute ilrr, dillcrnnl. 
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B/\CON.1 can ;ilr.o handle seq11cnce r, in which the 
periodicity ii, lonr,cr a11cl t,ornr. of thr. values nm rr.pcaled 
within the period. /\n e~;irnpl1, ir. the !,C?q11c11ce of rei.;s 011 
which the <:.ma i11?!.I di!;l1 rw;I'.. in the Towc~r ol lfonoi puzzle. 
Them art! thrne P"ff·'• the initi,1/ P"ff, the, r1oal pcrr," and the 
ot/rnr pcff. The !,cqucnc e for a five cli!;l1 problem is ini.tial, 
goal, 11011l, oth,,,·, oth,•r, i11itinl, inili,tl, 17001. 17oal, .... . 111 each 
of the5e t ard1s, the pror,rnrn rnpr nse1\t r. 1hr. position In the 
seque11C'e a!, the !dnr,lr? i11dep1?11clenl allrib11tc. 

Firrnlly, Ciardnr.r ( l 969) ha !; rli!,Ul!,?,ed ;i r 111 1.~ of dir.covcry 
ta r,l1s c: ;ill r. d Pa1 lrc•rn (,. lr1 lhr. se lat,l·.s thorn. 11m two 
lt1cleponcltml v·~~-1;;i;1~-;;-; I hr. rnw 1111d I he c:oh1mn, each of 
which can vary from l to 6. ·1 he p,on l i!, to find somr. rule to 
predict lhe nomirrnl .symbol .ir.~ocialccl with carh rornbinalion, 
and the rule is oflrin periodic in n;ilurn. llACON.l can solve 11 

nurnbor of Pnl tern!< t At;l1s. 

6.2. Generality of the heuristics 

Thur., 8/\CON. t can ,,o lve 6 c l;isr,P.!, of di!;covcry l;ir.ks, if 
one groups the two. power l,1ws logelhr.r. t,,1,ornover, nearly 
the f.amr. prod11clio11r; ill'!? w,r.d i11 the r,ol ulion of every type 
of task. Of coun;r., there 11r1! r,ornr. exceptions to thir.. 

In Its dlncovcry of power lnws !;urh ar. d·\ /,,2 ~ c, !hr.re Is 
110 U!;e of the heurl!;lir.n for clir.tavcrinr; periodicity or fi11ding 
condition!;, Sitnilfll'ly, 111 mo~I of 1hr. !,cq11c:11ce exlrnpolation 
tar,ks no w,e i[, nrnde ol the inveri;c• and clirncl re lation 
deteclorr,. /\nd '.l procludio11:, wen? addt?d to en11ble the 
syidcm to solve-: somr. of the P,illcrn~ lard•,s . 

The g~ncrnl rule, however, i~ 11ml mod of the heuri!il ics 
arc ur.ecl most of the limr.. /Incl i,onw, like the co11d11nc:y 
dr.teclor And the procludion!, for lcr.linp, hypotheses, am 
ur;ecl in All c.at,r.s. Alon[\ with their r.irnp li 1. il y, lhir. sur,gesls 
lhAI they ;irn truly ge1wral rulf!s lhnl a11y dincovery r,yslem 
miaht use profilably. It alr.o sui:i.;e~.ts that BACOf~.l is a 
g~n~rn! dincovery syidem in the r.arnn r.enr.e that GPS was a 
genernl problem i;olver. 

7, Limitations of the system 

We have 
considerable 

seen th;il 
generalit y. 

the 13ACON.l program exhibits 
Moreover, it achieves this 



generality through the w;r? of a r.rna ll 11utnber of simple 
heuri!;li cr;. I lowc vcr, lhr! i;y!demr; does have se rious 
lltnitr1lions, and below I wnrdder !;o,nr. of ii~ drnwbarks. 

7. i. Restricted repr0Gentatic1n 

,Wh,1' am the imrlir ;1 I iom; of 13/\COt{l '!; clat a and 
hypc,ttw sir. clui;tcr rcprn :; cnlaliom;? Ro~trictinr, the data lo 
altrlh11te ·-vr1luo pair!; rnc ,1 n~; lhnt n?laliom; belw<'!OQ 
strudurn s c·a1111ol be rnpr1?1,c11lrd. For r.xJmplr., one c:annot 
exprnsi, r111 ;illribulr? for the di!;t nncc bclwf.'!11 two objects. 
Ni?ilhnr 0111 onn d1? al wilh morn comrlr.x co11rnpls occurring 
in natural l;inr,unr,c which lnl:c n 11111nbor of arguments, r.11c.h 
an p,ivr or !]jJ. 13/\COM. l '!, rrpn? sent at ion c a11 be exlt.111dotl 
eaid ly 1ino1.1p,h, bul il s lwu1i!;lic ?; arn de5ip,ned to deal 
exclw;iw!ly will! clilla ;111cl hypo llw i, ir. clw,l er r;, and ;i1·n not w 
eard ly mocliri1?cl. · 

A rnl<1lecl r; horlwminr. li,is iii the nalurn of 13/\CON.l '.s 
hir,her levci l c-onc:epts. So far, all of the se hav!! been 
nurnnrical in naltll'I!. [v1111 wi lh an il llribul e-value 
reprn r;e nt afion, ii i~ po!;~;ibl1! lo dr.fi1w highr.r leve l nomi,rnl 
att1·il:nile5, 111 t ermr; of co11j1111ct,. illHI di!;j1111<:ts of other 
E1tlrlb11te .. vHl1.11-? p;,iirn. 111 fad, !; uch a!; ability is notesr;ary if 
the :;ystem is ever to carry out !;c ientific c-lasr.ification. An 
exlemdon 11lonr, thr.se li11r.5 ir. po~r.ible while retaining tho 
pro15r,,11n's r11ait1 hquridics, and I!; a prior II y for future 
research. 

7.2. Noise 

The currnnt £3/\CON.1 opnralcr. on perfect data. Sinc:e 
roa l .. world data in r1CJir.y, ii would be nire if tho program 
could ha11dle it ar. wcdl. ~~difyi11r, the !;y:dem to cie11I with 
excoptiom; would be fairly !,lrnir,htforward, $Ince only tho 
testlnn prowdurns need lw c.l1;111r,ed. Tho Mw test 
produc:lions would ar.cept ilt1 hypolhr.si~ if the rntio of 
conf irminr, to dir.confinninr. data w11r. above a cerliiin v11lue, 
and if a minimum ,,umber of data 1lwdcrr. had been r.x11minr.d. 

Alteril1r, £3/l.COM.l to l1 a11elle rnndom noir,e in il s numerical 
data would be more rompl iu1ted. 111 thin car.e, the rer,ularity 
dcledon. thr.mr,elve~ wou ld have lo br. clrnnr,ed. A partial 
so lution minht lie in rr.· -rnprn sc?ntinr. the va luc!s of attributes 
an Interval!!_ Instead of ruiJfili. /\ C'Omda11c y detector using 
thlo roprnsunt c1tion mit1ht be 

If tho lntervaln for 1111 attribute 9vcirl'.!12 Across 11 

number or data clw.terr., 
·· I I then hypothosi?.e that 1hr. v11 lue of the attribute 

alway:, f.alln within tho 1hr. avcirnr,e of those 
h1tcrvalr.. 

' I. 
Thi$ is a promir.i11r, palh to · r.xplorc, but lho str11tcr,ies for 
dhte·rmini ng thr. id;rn of 1hr. l11l r.rvi1 I rnmaii1 lo be spec ifir.d. 

I , 

011ce an hypothesis har. been formr.d, tho sy!dem might 
calct:,late the values of a nr.w at tribute dr.fi11ed ar. the 
difference between tho 11llribulr.'s v111iJes ;md the 
hypotho si,ed value. Thir. w l11li o11 ii; especi11lly illtractive, 
since it taker; advantar,e of !3/\CON.l'!; r;lrong point -- Its 
l'tbility to c:On!d rue;! hir,hcr level ill tributes. 

7,3, Searching the dota spoce 

As closcribod e;ir li1?r, B/\CCMI collec:ts its primitive dAII• 
throuuh a strninhtforward factori;il deslnn strategy. But II 
might U!;e the. dli;covc-iries ii har; made up to a c:ertain point to 
l1;t 1.t gath(!r cfata more ciflec.lively. For examplr. , if the 
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sy:,t~m were te!dinB 1111 hypo lhesi•; wi th condition!; 011 ii, lhr.n 
It mi~ht examine only lho•·,e dnla cl11!,lf'rr. i,11 li r. fyi11g the 
c:ondil io.n!;, /\lr.o, if hir,hr.r li? vd incl1?p1•11cl!'11I at lribulc r. have 
been defined, the proRrnm mir.ht con'.;iclc:r v11ryi11e their 
value5 111 plRce of the oritiinal ,ill1·ib11tc ri' Villuer,. 

8. Concluoions 

111 thin papnr I outliiwd 13/\COIJ.l, a prod11r.lio11 r;y'.de m lhat 
dlnr..overf. ernpirirnl l::iw'.;. f rlw.( 1 ib(' rl 1hr. r,yslem'5 
rnpro1;e11tatio1, nf ch.ta ,rnd hypollw•.c?r. , and I expl,iinncl Iha 
heutidfcs tl!;ed itl ii!; di!;COVC·: ry prOCC !,S. J r.howerl ihat 
.BACON:.l ':; bchavio.r con'.;i!;led of 5 mnjor rnmpo11onts· · -
g·11thrirhig primitive dril;i, di!;ro,;cri11g rc!R11lnrili1it; in lhir; d;it il, 
·thnc'kinr. for loop~; in hi t1 llf!r lr.vcd <DIH<'pi',, .r alculal inr:' the 
v~lues of hip,hnr l1! vcd illlrilrnlr•!;, n11d lr.·i. ti11c hyp(>lhe s(!s. 

·1 sour. ht to . dP.sc.rilrn thf! !;ys l em'i, !, l r;ilcg ir. , ,.till furlhr.r 
. by c:ovc-~rinu in wmr. dl't ;i il ii!, '.;o l1dio11!, lo lwo t;i !d1s. I alr.o 
out lirwd thn rnmrii11i11r, I ,,,;11 :; 13/\COl,J. I r ~11 wive, i111d 
prnsentecf the evidence for ilr. r,c:11Nalily. Finally I pointed 
out the pror,hun'r; lil11it;ilin11!; in ·r!!fll"C? ,,c11li11r, cone.cpl,, 1111d 
relations, in cl1?ali11[1 with 11oir,r., ;ind in •;r:an.hi11r, lhe dal11 
spacP.. At the same timr., I rnri<h? r,on1r. !;t lP,('.C?slionr; for luluru 
rcsoarr.h. 

In conclui;ion, thn 13/\r.ON. I prop.nun ha!; id1ow11 both 
genernlily a11d simpll r. il y. lly in1plir.alio11, the r!!prnsent;ition 
of data a11d hypolhesc?5 i11 lennr. of hip,hi>r lcv11 I concept s, 
and tho represent at ion of heuri!;licr. i11 lcnm, of procluction 
rules are fruitful li11!! S to t>t1r!;Uc?. ~fany ch,1llr.nr,es lie ahr.acl, 
but the success to elate sur_:r,r.~ I~ lhat 1hr. p;ilh ir. a promir;ir1g 
one. 
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LEARNING STRATEGIES BY COMPUTER! 

Yuichiro Anzai 
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A c.ognltive sys tem needs a urnlr.py, i.e., a well
organized se t of procedural knowledge, for effic ient ly 
solving a complex problem r,o lving t ask. How such a system 
acquires sir il fegies through exper ience is a fundamental 
question for artificial intelligence, because efficient 
procedures for artificial intelligence sys1ems reduce 
practically limit ed execution time to a cons iderab le extent, 
but are not always avai lab le before encounter ing the task. 
Work on acqusition of procedural knowledfle, mostly done as 
piecewise rule learning (e.g., Buchanan & Mitchell, 1977), Is 
quite important in this se nse. Strategy learning, however, 
has a character ist ic that r ules generated should be 
oq~anized as a strategy through a problem solving task. 
Little work' has been done for comruterized strali,gy 
learning, and we stil l need an intens ive study on how 
strategies are represented in, and learned by, humans and 
computers. 

Along thi s direction, the author has developed a 
theoretical explor at ion (Anzai, 1978), an exper imental 
ana lysis (Anzai & Simon, 1977), and construction of 
computer programs · for modelling processes and 
repr-e senlation of strategy learning. The well -known Tower 
of Hanoi puzzle was used for the exper iment, because ii can 
be solved by var ious str ucturally different strategies 
(Simon, 1975). 

Following the ' theoret ical and exper imental studies, this 
pa·per presents the third and fina l par t of the work, a 
detailed report on stra tegy learning behavior of a computer 
program written in an adap ti ve production system language 
ca lled HAPS. The program· was written for discovering 
strateg ies In the five -disk Tower o( Hanoi problem, and the 
current version has succeeded in learning three very 
different kinds of strategies successively while so'lvlng the 
problem six times from the Initial situation; Structure of the 
.Program Is general, and it is now being extended to learnin& 
strategies in anot her problem domain. Many ideas are 

This resea rch w;:ir. r,uppor led by Researr.h Grnnl MH-
07722 from the National ltl!ililute of Mnntal 1-w.alth. The 
1wthor apprecif1ter. P11 t 1. anp,ley, f3ob ~kches, DnvP. Noves 
and fforlwrt Simon for tlwir helpful comments on thlr. work. 
The a11thor'5 pre sent addrnsr. is: Departmnnl of 
Adrnlnir.t mt ion Enr,ineer i11c, l<1iio Unlveroity, 3-14-1, Hiyoshi, 
Yokohama, Japan. 
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· embedded in ii, but the ba~ic hypo thes is is simple: 
stra tegies are learned lhrour, h repeatedly solving the same 
problem, and productions newly generated will be used 
extensively for learning new r, l rateg ies. 

The paper fir5t summari ze.s briefly results from the 
theoretica l and experimental analyses. Then, as a main part 
of the paper, It de5cribes computational result s of strategy 
learning in the Tower of Hanoi problem. La5t, ii mentions 
fmpllcat)on of the work and its re lation to other works. 

Revie~ of Theoretical !!..tl.c! Exper imental Analyses 

The theory propo~ed (Anzai, 1978) asserts that 
strateg ies ·can be learned through repeated solution of the 
same problem. Initially a system does not always have 
information about what st ale is "good", but usually has 
general heuristics for detecting a "bad" situation; e.g., 
returning lo a previously visited ·state is bad. So generally 
learning begins ·with co llecting "bad" instances by heuristic 
search, and proceeds to ii mtnir-pnllrrn ~,rn1nny by creating 
rules for avoiding genera tion of the bad instances. Then, 
after. heuristic se~rch is made more eff icient by the newly 
g13~erated ryles, , iearning aclvances toward a mr.n1u-r.11d~ 
w·111nny by co llect ing "good" instances and creat ing rules 
for generating subgoa ls. Finally the system learns a 
wnrki11,r-Jnru,nrd ~lrnlr1r:r which generates merely a 
sequence of a small number of operators that can be applied 
successively to the initial knowledge stale. The sequence 
may be obta.ined by discovering some pattern in sequential 
structure of previously used operators. 

Also a represent atlonal scheme is presented In the 
theoretical exp loration (Anza i, J 978) as a hierarchical 
adaptive production sys tem. (HAPS) th at incorporates 
subroutine and recurs ive ca ll s of productions, and an ability 
to ·create new productions. Formally, HAPS is a LISP-based 
Interpreter for hierarchical ad11plive production systems 
w ith a single working memory (WM). A HAPS program 
consists of WM, which is an ordered se t of li sts, and • 
hier archically and rewrsively struct ured se t of productions. 
With Its hierarchical structure, a HAPS program for strategy 
learning reflects generally a strategy learn ing process that 
consists of various subprocesses such as heuristic search, 
rule Induction, rule generation, stale transfer In a problem 
space, and so on. Each subprocess may be represented by 
a subroutine In the program. 

I . 

I 
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The cxper ltrwntal rer.ultr, (Anzai & Simon, 1977) for 
strat egy lear ning by a hum;in in the five -disk Tower of . 
Hanoi problem clear ly rdlect the ilbove theoretical 
frnmework. In the experiment, a hum;in subject who had 
never solved the problem tried to find good so lution 
procedures by solving the puule four times repeatedly. 
Starting with heuristic se;irch and planning future moves, 
the sub ject finally succeeded in learn ing iwo strategies like 
the annl rrrnninn and i1111rr -dirrr.1rd «nnl rrr.vr.dn11 
slml<'gi,,., referred to by Simon (1975). In the experiment, 
learn ing each stra tegy \\fas guided by a mixture of 
previously learned r,lrateg ies: one of those strategies was 
retrieved and used whenever needed. 

Computational Results of Stratggy Learning 

The current version of the progn1m includes 164 
productions before learning. Mechanisms for learning 
strategies, det;iiled in /\nz;ii (1978), are embedd€r:l in the 
program. Computat ion proceecfr. jw.t as indicated by the 
mech,misms. The prop.mm tn.1de six runs r, uccess ively from 
the initial disk configur.ition. II generated 13 new 
productions, ,md le;irne d thr ee different stralegies: a move 
pattern stralP.gy, a rne;ins -end~ strategy, and a working
forward strategy. Amonp, the thirteen generated 
p·roduclions, seven were w,ed for the first strategy, four 
were for the second, and the remaining two constitute a 
part of the third stra tegy. 

<Hu11 I> 

The program tried to collect bad mo 11es using heuristic 
search, induced conditions for avoiding those moves, and 
generated produtlions for avoiding them. The size of trees 
generated during the heuristic search process became 
smaller and ·sm;i ller, which implies that the search was made 
·more and more eff icient during Run 1 by generation of new 
productions. Fig. 1 illustrale i, dyn;imic beh;ivior of the tree 
search. In the figure, (X Y Z) denot es a disk configuration: 
disks In X are on Peg A, disk'> in Y are on Peg 8 and disks In 
Z are on· Peg C. For Ins! ame, (12345 NIL NIL) means that 
the configuration is such that Disks 1, ... , 5 are on Peg A, 
and no disks are on Pegs B and C. We assume I.hat Peg A is 
the initial peg and Pee C is the goal peg. Each tree in Fig. I 
grows from a root node, which is an actual configuration. 
Configurations in trees are irnnai11nry ones. At any moment, 
the system retains inform11tion about past, current and 
Imaginary prob lem st ates. 

The system Includes productions for finding a legal 
move, and an evaluation heuristic that Inking disks off the 
Initial peg ls good. Using them, In the lint tree search with 
the root node of ( 12345 NII. NIL), two good successive 
moves were generated: (MOVE I PEGA PEG[3) and (MOVE 2 
PEGA PEGC). (MOYE X P Q) denotes movine Disk X from Peg 
P to Peg Q., /\pplying these two move operators generated 
the disk configurat ion (34~i l 2)2. Fig. J shows that this 
configuration, as a root node, generated a large search tree. 
ln this part of the search process, three new productions 
for avoiding poor moves were created. As an example, let 
us describe how the first new produc.t ion was acquired. 

At the conf iguration (PEGS (3 4 5) (1) (2)), a subroutine 
for finding a legal move generates an imnni11nry move, 
(!MOVE 1 PEGB PEGA). It is then applied to generate a new 
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imagined disk configuration, (IM/\GE ( l 3 4 5) NIL (2)). The 
system does not decide if it w;is a good rnove or not, and 
the search is made further . The r,am!' r,ubrout ine then 
happens to generate (IMOVE l PEGA PEC;B), This provides 
another Imagined c·onf igur11t ion 1 (!MAG[ (3 4 5 ) (1) (2)). Now 
since the new imaginary configurat ion Ii. the same as the 
current real one, (PEGS (3 4 5) ( l) (2)), the system detects 
return to a previpusly visited state by a pattern detecting 
product ion: 

(PEGS SA SB SC) (IMAGE SA SB SC) --> (DEP (BAD))3. 

An atom headed by S denotes c1 variab le. Then, 
triggered by (B/\D) which was DEPo!;ited in WM, a 
subroutine4 for collecting inform;ition re levant to stor ing 
(BAD) works to eenerale a knowledGe element, (GOT (2 
PEGA PEGC) ( 1 PEGB PEGA) ( I PEGA F'[(;B)). This implies 
that tt1e two Imaginary moves (IMOV[ 1 Pf.GB PEGA) and 
(!MOVE 1 PEGA PEG£3), c1ncl the p;d move (PASTMOVE 2 
PEGA PEGC) might be responsible for c;iusing the return to 
a previous stale. 

After the GOT information is obt;1i11ed, the system 
continues tree search. The depth of search is limited to 2. 
Jhuf>, here cpntrol is given back lo the node ( 1345 NIL 2)5 

~hown ,In Fig. 1. At this node, the 1,ubro11tine for finding a 
legal move generates (CAN 1 PEGA PEGC) ~s a legal move 
not yet tried. Bui actually, before generating this move, 
based on (IM/\GE ( l 3 4 5) NIL (2)) and (GOT ... ), the 
system generates: 

(COND (PEGS ( l 3 4 5) NIL (,>))), (COND 
(PASTPASTMOVE 2 PEG/\ PEGC)), (COND (PASTMOVE l 
PEGB PEGA)), (CONO (ABSFNT (TRIED I PEGA PEGB ( 1 3 
4 5) NIL (2)))) and (ACTION (D[P (TRIED I PEGA PEGB 
(1 3 4 5) NIL (2)))). 

The first COND ir. derived from the current disk 
configuration. The second and third CONO:., and the ACTION 
are from the argument of GOT. The fourth COND Is a 
modified copy of the ACTION. 

At this point, r,pecific values in the CONOs and ACTION 
are sub5lituted by vari;iblf'<,, And then a new production Is 
generated by juxtaposinp, the arguments of CONOs in the 
condition side ;ind putting the argument of the ACTION In 
the act ion side. The production is named <NI>, and shown 
In l;able 1. Semanl it definitions of production elements 
appearing In this p;1per are given in Table 2. 

. After generating <Nl>, the sydem continues tree search, 
fin,I by applying a le[.\al ;ind applicable move, (CAN l PEGA 
PEGC). 

2 In the program, this configuration is represented as (PEGS 
(3 4 5) (1) (2)). 
I 

3 Actually this Is a simp lified version of the production in 
the program. 

4 Note that the pattern detecting production involves no 
information About move operators. Tlw subroutine is a 
knowledge-based mechanir,m for caus;il inference: it picks up 
recently applied operators, based on state information in the 
production. 

5 Corresponds to (IMAGE ( 1 3 4 5) NIL (2)) in the program. 



Fig. I Heuristic se;irc.h process in Run I 
(" ~s" dP.notes P.X fNni!I proc P. ss. 
"--" denotes inf c rn;il oroccss.) 

(12345 NIL NI ll 
I 

••> (2345 1 NIL) ••> (345 1 2) ••> (345 NIL 12) ••> 
I \ 

<2345 1 Nill (1345 NIL 2) (345 NIL 12) 
I / I \ \ 

{345 1 2) 
very good 

(345 1 2l (345 NIL 12) (1345 2 NIL) (45 3 12) 
bad I good ver1,1 good 

(345 1 2) 

••> {45 3 12) 
I 

(145 3 2) 
I 

C145 23 Nill 
good 

••> (145 3 2) ••> 

' (45 13 2) 
I \ 

(145 3 2) (45 3 12) 
I bad 

{45 3 12) 
bad 

bad 

(145 23 NIL) ••> (45 123 NIL) ••> 
\ 

(45 123 NIU 
' \ (245 13 NIL) (5 123 4) 

good ver1,1 good 

••> (5 123 4) ••> (5 23 14) 
\ 

••> (25 3 14) ••> (125 3 4) ••> 
I I \ 

(5 23 14) 
I 

(45 123 NIU 
I 

(125 3 4) cannot 
I 

(25 3 14) (45 23 1) 

I 
C125 NIL 34) 

good good 
Cl45 23 NIU 

bad 

••> U25 NIL 34) 
I 

••> (25 1 34) ••> (5 1'234) 
I 

(25 1 34) 
I 

'{5 1 234) 
ver1,1 good 

(5 NIL 1234) 
I 

<NIL 5 1234) 
Run ter111inatlon 

Table I Productions learned by program 

I. Productions learned In Run I 

<Nl>, (PEGS SA SB SC) (PASTPASTMOVE IX IP IQ) 
(PASTMOVE SY SR SP) (ABSENT (TRIED SY SP SR IA 
SB SC)) --> (DEP (Tf~IED SY SP SR SA SB IC)) 

<N2> (PEGS SA SB SC) (PASTPASTMOVE IX IP IQ) 
(PASTMOVE SY SR SP ) (AfJSENT (TRIED SY SP IQ IA 
SB SC)) --> (DEP (TRIED SY SP SQ SA SB SC)) 

<N3> (PEGS SA 813 SC) (PASTPASTMOVE IX IP IQ) 
' (PASTMOVE SY SP SR) (ABSENT (TRIED SX SQ SP IA 

SB SC)) --> (DEP (TfllED SX SQ SP SA '88 IC)) 
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<N4> (PEGS IA SB SC) (PASTPASTMOVE SX SP IQ) 
(PASTMOVE SY SR SQ) (AOSENT ( TRIED SY SQ SP IA 
SB .C)) --> (DEP (TRIED SY SQ SP SA SB SC)) 

<N5> (PEGS SA SB SC) (PASTPASTMOVE SX SP IQ) 
(PASTMOVE SY SR SQ) (ABSENT (TRIED SY SQ SR IA 
SB SC )) --> (DEP (TRIED SY SQ SR SA SB SC )) 

<N6> (PEGS SA SB SC) (PASTPASTMOVE SX SP · IQ) 
(PASTMOVE SY SR SP) (AllSENT (TRIED SX SQ IP IA 
SB IC)) --> <DEP (lRIED SX SQ SP IA SB SC)) 

<N7> (PEGS SA SB SC) (PASTPASTMOVE SX SP IQ) 
(PASTMOVE SY SP SR) .(AOSENT (TRIED SY SR IP IA 
18 IC)) --> (DEP (TRIED SY SR SP SA SB SC)) 



.' I 

I 
I 

. I 

II. Product ions le11rned In Run 3 

<N8> (PEGS llA sn SC) ((;()A l 8X Sf' SR) (•EQUAL sx (flOP 
SP SA SB SC)) (tL[SS (•lOP lirl SA SB SC) SX) 
(A13SFNT ((;OAL (*NEXTSMALLER SX SR SA SB SC) SR 
(*OTHER SP 81< : f'EGA PEGB PEGC))) --> (DEP (GOAL 

(*NEl(TSMALLER SX SR SA SB SC) m (*OTHER SP SR : 
PEGA PFGB PFGC))) 

<N9> (PFGS SA 8F3 SC) ((;OAI. SX SP SQ) (•[QUAL SX (flOP 
sr 8/\ lH3 SC)) (tL[SS (t.TOP EQ 8A SB SC) SX) 
(ABSFNT (GOAL (tNf XI '.,MAILER .SX SQ SA SB SC) SQ 
( ~{lTI IER SP SQ : f'EG/\ PCGn f'EGC))) --> (DEP 
<GOAL (*NEXl SM/\1 LUI SX SQ SA SfJ SC) SQ (•OTHER 
SP SQ : PEG/\ f'rGll f'[c;c))) 

<NlO> (PEGS 8/\ Sil SC) (GOAL SX SP 8Q) (• LESS SX (tTOP 
SQ 8A 8£3 $C)) (t l ESS (*TOIJ SP ~A SB SC) SX) 
(ABSENT (GOAL UNLXTSM/\Ll_[R SX SP SA SB SC) SP 
(*OTHER SP 8Q : f->t(;A PFGfJ f'EGC))) --> (DEP 
(GOAL (*N[XTSM/\LI ER SX SP SA 8£3 SC) SP (tOTHER 
SP SQ : PEGA f'EGll PEGG))) 

<NJ 1> (PEG$ SA sn SC) (Al!S[NT GOAU (PASTMOVE sx SP 
IQ) --> <DEP (GOAL (t.NEXTSMALLER SX (*OTHER SP 
SQ : PEGA P[C;f! f'Lf;(";) SA 8Fl SC) (*OTHER SP SQ : 
PEGA PEGB PEGC) SQ)) 

Ill. Productions learned in Run 5 

<Nl 2> (PEGS SA SB SC) (Af3SENT (GOAL (*NEXTLESS 2) 
(*OTHER (*XTR3 (PGOAL 2 SQ SR)) (*X TR4 (PGOAL 2 
SQ Sfm : PEGA pL(;(3 f'EGC) srm (ABSENT (GOAL 2 
SQ Sfl)) (AOSCNT (GOAL (tN[XTSt--1/\UER ? SQ SA SB 
SC) SQ (*Olllrn (tX m:i (l'GO/\L 2 8Q IHI)) (•XTR4 
(PGOAL 2 SQ SR )) : P[GA PEG13 PLGC))) (PGOAL 2 SQ 
SR) (*P- ON 2 SQ SA SB SC) --> (DEP (GOAL 
(tN[XTL[SS 2) (tOTll[R (tX TR3 (f'GOI\L 2 SQ SR)) 
(*XTR4 (rGO/\L ? ,RQ SIil) : PfG/1 f'fGB PFGC) SR)) 
(DEP (GOAL 2 8Q SR)) (()Lfl (GOAL ( •N[XTSMAL LER 2 
SQ 8/\ SB 8C) SQ (tnHrn (tXTR3 (PGOAL 2 SQ SR)) 
(tXTR4 (PGO/\L ? SQ Sfm : PEGA PEGB PEGC))) (REM 
(PGOAL 2 SQ 811)) 

<N 13> (PEGS SA SB SC) (/\IJSENl (PGO/\L (tNEXTL ESS SX3) 
(*OTHER (*XTR3 (P(;O/\L SX3 SR SQ)) (*XTR4 (f'GOAL 
11X3 Sf~ SQ)) : P[G/\ f'EGO ru;c) SQ)) (ABSENT 
(GOAL SX3 lm 8())) (/\f3S[NT (PGOAL 
(tNEXTSMALI rn 8XJ SH 81\ 8ll SC) Sfl (tOTHER 
(tXTR3 (PGOAL SX3 lm SQ)) (tXTR/J (PGOAL SX3 SR 
SQ)) : PEG/\ PEGn f'FGC))) (i'GOAL 8X3 SR SQ) (*P
ON SX3 SR SA St.l SC) (tLESS 2 SX3) --> (DEP 

(PGOAL (tNEXTl.LSS 8X3) (~OTHIR (tXTR3 (PGOAL 
8X3 SR SQ)) (tXTR/J (f'GO/\L SXJ SR SQ)) : PEGA 
PEC!l PEGC) 80)) (DIP (GO/\l SX3 SR SQ)) (DEP 
(PGO.I\L (•NEXTSM/\1 Lrn SX3 Sil SA SB SC) SR 
(tOTHER (*XTR3 (P(;OAI 8X3 SH fiQl) (*XTR4 (PGOAL 
SX3 SR SQ)) : PEGA f'F:GB PEGC))l <REM (PGOAL SX3 
SR SQ)) 

Table 2 Semantic definitions of produdion elements 

A, Predicat'es 

(*EQUAL X Y) is true iff X and Y are equal express ions. 
(*LESS X Y) Is true ill X and Y are numbers and X is less 

than Y, or X is a number and Y is NIL. 
(*P-ON X P A 8 C) is true iff X > l, and all 1, ... , X are 

inc luded · in A if P " PEGA, in B if P O F'EGO, or in C if P • 
PEGC. 

(*PSHAPE I' A H C) i~ true iff A is f'SIIAJ>Ed if P ~ PEGA, B Is 
PSHAPEd if P " PEGf3, or C is PSIIAl'Ed if P = PEGC. X is 
PSHAl'Ed if! X ~ ( 1 ... k) for somr. inter.er k > 1. 

B. Function!; 

(*Nl:X"ll .E~iS X) n1turnc. llw inter.er one less than X. X must 
he an 'int eger IHl'((er tlti111 [. 

(*NfXI SM/\l.l.[11 X f' A 13 C) nit urns the nutnbcr next smaller 
than X in the llut A if I' " !'EGA, 13 if f' tt f'EGB, or C if P 
tt PEGC. X nr.cd not be i11cl11clr.cl in thr. c:orrnsponcling 
Ii Gt A, B, or C. If no i; uc h numtrnr exir;tr;, NIL ir. mt urned, 

(*O'I Hl:R I ,I K ... : r Q H .. . ) rr.turnr. a11 elemcrnt among I J 
K ... olliC!r titan I' Q H .... The 11u111ber of 1, .I, K, . , , 
mw;f bn cix,H.lly 011<1 lrii,i; th;in thr. m,mbcr of P, Q, R,.,, 
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Only dcitinilioni; 1wre:c1;ary for undr)rr.!11ndine T,,blr. 1 
and otlter not,ilion'., appe;irinr. in thir. p11per art? li sted. 
The original Hl\l'S inc orpor Htri; i;o111r. more predicates, 
f unc lions and ;irl ion!;, . 

(:4:TOJ> P A B,C) rnturns thr. leftmor.t r.lc1nr.11t in the lid A if P 
e PEGA, in 13 if P ,. f'[(;fl, cir i11 C if P ~ l'EGC. If the list 
(I\, B or C) ir. NIL, Nil. is rnl11rned. 

(~Xllli X) ret1!rns X'r; Hh element countinr, from Ir.ft: I ~ 1,. 
.. '6. 

C . .l\dioni; 

(()EP X A f3 C ... ) drpor,il!; into Wt,.! i1 Ii!;! X after A, B, C, .. 
: , arn P.xr.culed. A, ll, C, ... ar11 c;illr.cl r,ubstitutio11s. A 
sulrntilution har. the form: (YI .I K ... : I' QR ... ). Its 
exec ulion nrnani; that i111)' of P Q H ... other than I J K, 
.. is iaibt,titutEid into i111)' occurnnc<i of Yin X. 

CHEM X ABC ... ) rnmovc> r, from Wt,.! ;my occurnncr. of X in 
WM all!?r ~ubr. titulion!;, /\, B, C, ... , arn exr.cuted. 

D. Niigalivci condit ionr; 

(ABSENT <Ii!;! >) i,; triw ill <fir.I > matchr.s no clemr.nt in WM. 
(Al3SEN1 <11 tom:>) is true ill 110 li st headed by <atom:> exists 

in WM. 



The sys tem continued heuri stic search in this way, but 
gave up solv ing when ll1e cfak configuration (IMAGE NIL (5) 
( 1 2 3 4)) ·was im11gincd. It was done by a .heuristic 
introduce d jur; I for making the sys tem quit a tedious trial 
and-crror 5e;irch on the half way. 

Afler produclion5 fir ed 914 limes, thi s transfer of the 
biccesl disk lo Peg B wa s detecfod ;ind Run 1 was 
l ermimi l ed. During th11l time, seven productions were 
crea ted. They are listed in Table 1. Thr. table shows that 
structure of lhe new productions involves some 
commonalities: <N I > is similar to <N5> and <N7>, <N2> similar 
to <N4>, and <N3> to <N6>. It Is bC'c a use they were 
genera l ed by the 5ame mechanism. Productions in the first 
c l;iss are for avo idiw: immedi ate loop move s. Productions in 
the second c;ilegory are u~.cd for avo iding two -step moves 
of the same disk. Productions in the third are for avoiding 
return to the peg on which the disk was put in the next - to 
most-recent past. It is ear,y to see lt1at some conditions in 
those productions arc rcdundm1I: we can define a smaller 
number of , productions functionally equivalent to the seven 
productions. 

<.R1t11 2> 

Run 2 was used for examin ing whether the syste m had 
learned a well - formed drater,y in Run I. At the same lime, 
In Run 2, the system transformed weak subgoals lo stronger 
ones6. ·. 

The· seven productions, <NI> ~ <N7>, created in Run· 1 
were rel ained al the lop of one of subroutines. They were 
~xlens ive ly used in Run 2 for discarding legal but bad 
111oves. For example, al the conf iguration (PEGS (3 4 5 ) (2) 
(1 )), <N7> fired for discarding the legal move (MOVE 2 PEGB 
PEGA), and <N3> fired for eliminating (MOVE 1 PEGG PEGA). 
After those two productions fired, only one legal move 
remained: (MOVE 1 PEGG PEGB). 

: 1 · Run ? ended s,uccessfull y when the final goal (PEGS NIL 
tHL (1 2 3 4 5)) was attained. Productions fired 656 limes 
In Run .2. The fact that no error move was made In Run 2 
indicates that <NI>. - <N7>, with the learned declarative 
knowledge (JNITIALL Y TRIED 1 PEGA PEG[l), meaning that, at 
the initi al conf igurat ion, moving Disk 1 from Peg A to Peg 8 
should be avoided, were !,ufficient for determining a unique 
right move in each disk configuration encountered. Thus, 
those productions, with (INITIALLY . . . ), and productions for 
generat ing legal moves and updating problem stales, 
constitute a well-defined strategy. We cal l ii the lllll!'lllft111 

mn1,11-1m11r.rn ~,rnlr.,ry. 

It should be noted that this strategy discovered by the 
program was not discussr.d in Simon's work on comparison 
of various strategies in the Tower of Hanoi puzzle (Simon, 
1975). Different from his move -pattern strategy (Simon, 
1975), which se lects a correct move ,,n~i,i,,rly based on I 

move -ge nerating pattern, our strategy chooses moves only 
'"'R'nli1mly by discarding poor moves. 

~ .A 1 subgoal , l s u,enk If it only partially defines a subgoal 
ope~al<11r, e.g., "putting a disk on some peg." A subgoal Is 
Alroi,11' If It prov ides a well -defined operator, . e.g., 
"transferring a disk from some peg to some other peg." 
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Adequate tr ansformation of subgoal information Is 
Important for learn ing subgoa l- type str atep, ics, .and also 
suggested by the e~p£,r imc nt al dal~. The program 
tr ansforms initial wea~. subgoa ls to stronger ones through 
heuristics rel;iited Ip the problem solving prornsr,: subgoals 
"r.e lr,ansformed through the problem !,olving process itself. 

First such transformation was donr in Run 2. For 
example, a weak subgoal, (GOAL -OFF 3 PH;A), asserting that 
a subgoal is lo take Disk 3 off Peg A, was transformed lo 
(GOAL 3 PEGA PEGG) when 3 was taken off Peg A for the 
first time and transferred lo Peg G. The resulting stronger 
subgoals were used in Run 3 for generating a me·ans -ends 
str ategy. 

<R1111 ,l> 

Initially the sys tem has the following (i,tronger) subgoals 
In WM: 

(GOAL 1 PEGA PEGC), (GO/\L 2 PEG/\ PEGB), (GOAL 3 
PEGA PEGC), (GOAL 4 PEG/\ PEG[)), (GO/\L 5 PEGA 
PEGG), (GOALST ACK 2 PEGB PEGC), (GOALS TACK 4 
PEGB PEGG). 

A9 . seen above, the sys tem generated two kinds of 
subgoa ls in Run 2; GOAl s and GOAL ST ACKs. GO/\Ls were 
transformed from "taking di sks off the initial peg," and 
GOALSTACKs were derived from "putting di•,ks on the goal 
peg." If laking -off and putting -on subgc>als were attained 
simult aneously, only a G0/\1 is crea ted. The sys tem assumes 
pr iority ordering between them: GO/\LST/\CK- typc subgoals 
are considered only when no GO/\L- type subgoal exists In 
WM. 

Now since (PEGS ( 1 2 3 11 5) NIL NIU and (GOAL I PEGA 
PEGC) are initially in WM, Di sk 1 is at the top of Peg A, and 
no disk. in on Peg C, the production: 

(PEGS SA SB SC) (GOAL SX SP SQ) (*EQU/\L SX (flOP IP 
SA SB SC )) (*LESS SX (t TOP SQ SA Sfl SC )) --> (REM 
(GOAL SX SP SQ)) (DEP (MOVE SX SP SQ)) 

f ir es, REMoves (GOAL 1 PEGA PEGG) from WM, and DEPosils 
(MOVE 1 PEGA PEGG) Into WM. 

ay . a!ls.vrnption from the theory, the above production 
for finding a legal move using a subgoa l dominates the 
production . for detecting a legal move by combinatorial 
search. 

After (GOAL 1 PEGA PEGG) and (GOAL 2 PEGA PEGB) are 
transformed to (MOVE 1 PEGA PEGG) and (MOVE 2 PEGA 
PEGB) by the above product ion, lhe sys tem reache s (P'EGS 
(3 4 5) (2) ( 1)). Nqw, no GOAL is immcdi;ilely applicab le, and 
the system , cannot help u~. ing the previous ly learned 
negat ive mov1;-patlern stra tegy. 

However, at the same time, the program notices that 
(GOAL 3 PEGA PEGG) is in WM, Disk 3 is current ly at the iop 
of Peg A, but 3. is larger than the top di c. k on Peg C. This 
implies that, In terms of a means-e nd~. analysis, the system 
Is already 11Mr lo a 5lale, S, where 3 can be moved from 
Peg A lo C,,and the di/frrf'nrt, between S and the current 
st ale is that Peg C's top di~k is sma ller than Disk 3; in terms 
of HAPS not.ition, (*LESS (tTOf' PEGC (3 4 5) (2) (1)) 3) Is 
true. 'The S')(stem then trie s lo find a more immediately 
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app licable subgo.i l using thes e kinds of information. It is 
done in the following m,rnner. 

At (PEGS (3 4 5) (2) ( t )), the system first remembers the 
currer1t sitlrntion by depos i l inr~ into WM (COND (PEGS (3 4 5) 
W (1))), (COND (GOAi. 3 fl~ GA PEG(;)), (COND (*EQUAL 3 
(flOP PEGA (3 4 5 ) (2) ( I lll) and (COND (tLESS (flOP PEGC 
(3 4 5) (2) (I)) 3)). Then information for di~.k configurations 
is general ize d by subslitupnr, variables SA, 8[3 and SC into (3 
4 5), (2 ) and (1). 

Aft.er th.ii , the system co ntinues problem solving by the 
n:egativ~ move-pattern str ategy. It ge nerates the correct 
move, (CAN I PEGC PE(;fl), and the current configuration 
becomes (PEGS (3 II 5 ) (I 2) NII.). Now the current stale 
sa ti sfi es ( tLESS 3 (tTOP l'H,C (3 4 !i) ( I 2) NIL)). Also the 
sys te m retain~. COND0

• depo•;ited ear lier. Thus, the system 
lmderstands now reachinp, the point whrre the difference 
detected c.ir lier by the tn CJ llC. · rncis ar1aly:; is ciOCS not exist. 
One of. subroutines then pie ks up the move operator app lied 
most recently, w hich is (MOVE I PEGC PEGIJ), and transforms 
II to (ACTION (DEP (GOAL .1 f'FGC f'EGB))). (GOAL I PEGC 
PEGB) is the operator which is directly responsible for 
e limin at ion of the differencr>: ii chaner>s tho configuration to 
(PEGS (3 4 5) (1 2) NIU, which makes (tLESS 3 (t TOP PEGC 
SA SH SC)) true. 

The specific values I, PEGH and PEGC in the ACTION 
must be substituted by functions of some of spec ifi c values 
and Viiriab les appear ing in COl~I),; !dorr.d in WM for 
c:on!; trudinr, a WC' ll ··cl!?fi,wcf proci11c lion. In thr. prr.(,e nt ca r. e, 
per, - nc1mes PEGA find l'EGC arn ratli r; til11tr•d by variablr. s SP 
and 81?, rn ,;pec.t ivc ly. ·1 he di,;11 -n.imP. '.l ir. r. ub !dituted by SX. 
PEGB and l appe;i1·lng or,/ .1' in th!! /\CTION mus t be 
rnprn senlcd by lhor.e SI', ~I? ,111d 8X. Fird, the sy~ tc m 11ses 
a func:tion ~{ll HU? to r1,p11?\;c•nt f'EG8: l'EGG it; equal to 
(*OTHrn PEGA f'rnc : PH;A f'LCl3 l'ECC). So c;oncl, the 
py!;lem relric,ver, a functinn *NIXl[i~l/\1.1.rn to rn prr. senl 1: 
1 ir; ccpial to (tNIXI !iM/\11£11 '.l f'EGC (3 4 !i) (2) (I)). (See 
Tabl!! 2 for ci1?finilion t; of funcliont; .) L,d, tho sy~ tem 
Benerali;rn~ thM,e li?d s to [•,r.neral e (c1()Tftrn SI' SR : PEGA 
PEG£3 PEGC) and (1Nrxr !il\~/\,1.[H sx SI? SA 813 8C). As a 
resu lt , the fo llQwinr, li,;lr. ,mi now relai11ed in WM: 

(COND (PHiS SA 813 SC)), (COND (GOAi. SX SP SH)), 
(COf,JI) (:j[QUAI. SX (i I Of' -SP SJ\ 813 RC)\), (COM) (* LESS 
(*TOP Sf? 81\ 813 SC) ~X)), (C()J,JD (Al3SENT (GOAL 
(~N!XISM/\1.1.ER sx 811 8/\ gn SC) 811 (ionrn SP SR : 
PEGA PrnB f'ECC)))), (/IC r IOM (GOAi. (t Nl:XTSM/\1.L ER 
SX SR SA 813 llC) 811 (tOTHrn IIP SR : PEGA PEGB 
PtGC))). 

The f;ii;I COND in the above ir. a modified copy of the 
ACTIOM. It w ill be necer.t,ary for refractory inhibition in 
production firlnr,. 

Fin al ly, the syidem <H?<1let; a proci1Jc lion <NH> from the 
above CONDt: ,111cl /\CT(or,r. JI is tdiown in T.ible I. . 

The !;y!; tem rnntinuecl prob l1im wlvinr, 1111d production 
c:rnation In the ;ibovc, 111n11ner. Whe11r.ver no GOAL- type 
r.ubp,oal resided in W'-l, .i G0/\ 1. STACK -· lype slibgoal was 
popp(!d up, irnd w.ed fl !; a !;Lib.goal. llt111 3 ended after 
procluc tiont; fin,d 371 timr.i:. Fot1r new procluc lions were 
genenit,ed clurit1n the nm, which arr. !d1ow11 ir1 TAble 1. 

It shou ld be noted th ;i l, i11 thP ear li rH ::lane of f?t1n 3, the 
negative movc··pnttcrn t:lrnl c gy w~s ur.e cl to help problem 
!,o lvillf;. The p,P11ern l prod 11r tio11 ·-c re<1lio11 lll ll chani slll ui;ecf in 
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Hun 3 ncecl!; wrnn other mr.lhod for prob lr?tn i.olvinr, while it 
Ii; t1111i1i11,r. for Ar>ni11,r r> li111in.ilion of the cliffcrnnce between 
c:urrnnt ;mcl gonl r.tatcr.. Fig. ?. i'llut:lrntcs firinr, behnvior of 
c:rn <,t~,d prod 11d iont;. ();it ;i i11 liw inter vii i I GOO ·· 1700 show 
t lcar-ly how prodpc tiom; <NI> ·· <J~i' >, i.e. , the nor,a tivr. 
tnovc-: ··p,,ttcrn !dni l e1w, worhr.d for lc;, rninr, A !:econd 
drnlegy. The negative movci··p;i lt crn !. tr alr.r,y war. thus 
ev<rn 11nr.r1.~~m·y for learninr, a tnP.anr:··e11di; !:lrnter,y i11 our 
c:ompul aliona l proc.css. 

</fo.11 ·4:> 

Run 4 exallli11c,r; w lwlil(!r pro d11ctio11t, c mated i11 Ru11 3 
am suffic ient for a wrll ·rlrdi1wcl !:lratr•gy. lnilinlly the 
[;y!dcm had (f'EGS ( I 2 '.l 4 !,) NIL NIU a11d (GOAi. 5 PF.GA 
PEGC) in WM. Lh:ing lhr.m, <Nl():, lirnd four times 
!,t1cce 0 .1: ively, a11cl cl1,po r. itr•d (CO/\.\. 4 f'FC/\ l'F(;l1), (GOAi. 3 
PFGA p[c;c), .(COAi ?. Pr( : /\ Prem ;incl (GO/\!. l f'LC/\ f'[GC) 
into WU Aprlying tlw ~P !.1.1br,o,1h, ,rnd n1,;itinr, other new 
!a1bp,o,,1 ~ by <NH > <N.t J >, thr. prog1 illll !;Ucccccl1,cl In 
i;ol v ing I he prob In rn. T lw rw, tilh: ,.how t h,11 <NH> ·· <NI I > 
actw1ll y coni\ litut e a 111P..1w,- r,iHI ! ; stralr,gy, coorcl i11 al i11 p, w ith 
!;ornn other ii priori prod11clio11J. W,• ca ll lhir. newly 
learned strnlcr,y the! 1·l!c11r.ci1•11 m/,«nn/ ~,rn,,i,n·. 

Pr od11ction r, fi11?cl ?.HO limr. s in f1u11 4. Siner. nolhi11p, but 
e xe cution of the rec urt;i 11c, ,, ubr•,0,11 t,l r nt egy w,i s clone in R1111 
4, 280 i,, the! prnc ise nu1nb£?1· of I inw i; productionr; fired in 
rurrnin r, !Im ~;trnt er,y. Cornpnring it wilh 6~i(i i11 Hur, 2, we 
r e·a li ;w th at the rn cur,;ivc• r, ubgoal r. lrat cr,y lllflY be efficient 
in t ime. 

< H11 11 r,:, 

Afte r the rn cur td1rn !: ubgonl t;trnleiw was learned, tho 
(;yi ;lc-?111 nee d not w.e the, nc,g ;iti vr. 111ovc> p,1ttern r. traler,y 
unlci:!; it w;i11ts :,onw inforlllalion 11r>cc c.~ a1·y for ru1111 i11p, the 
rr.cun;ive (: ubcoal i.trntc?r,y . ·r 1111 !, 110w lhe sy~lem ir. not 
botherncl by attending to vat"iott !, di!;l·,t; and pc,g5 and 
se an:hing for rnrrny legal mnve s. II i?; only neces!;ary to 
treat with GOAl.s r,enernted by the production!; <NH> -
<Nl I >. 

Thi r. fa c: ilil.il c~ the ~,yi;f c• m to cli,;covn somr. pattern in 
r.ubgo at !druc.turn. The thr.ory indir.atc r. that tho r. lrategy 
lr.arninp, procc r.~ proc.r.ed t; from a 111r.ans·· r,11cl r. type !;lrntegy 
lo a woddng - forw;ird one,. f1t111 5 is cir.voted to this·: the 
sy!; l e m lril!$ to learn a worl'.inr, · fe>r wa rd !,tratep,y by finding 
pal tr.rn lr1 i:; ubconl !;equc11cec,. 

It i5 not the way for lhe sy!dem to generate 11 vc!ry long 
sequenc e of GOAl.5, !;toni s ii ir1 WM, and tries to induce 
pattern in ii. Rather, a diflernnt kind of infor111~tio11 Is used 
for rn~lri r.1/11« a r. equence . or GOALr. to a very short one. 
f'ilt tern incl11c lion ir; thr.n tri1?d for lhAt short scqucrnc:e. The 

U !;ccl informal ion h .i pen.cpl u;il precfii: ate c ailed PSHAl'E. A 
peg is !:aid to be PSHAl'Lcl when Diid1s I, ... , k (k > J) are 
the only cli?;i1s on that pet: (~cc Table ?.). A sequence· of 
(;OAl. r. ue ,wrnted and dc!po,dted into WM ir; rn.s triclcd in tl~e 
fol lowinr, w11y: if PSIIAPE of !,omr. pep, w;ir. · delectccl, the 

7 Aflr! r <N()> war; crnalecl, <'. NB > never firnd because ii w11s 
clominntcd by <:N!J>. Tint!;, •:NB> w11s 11ecC'r,r.ary for IP.arning 
the [;lrnle1w, but U!;clc i:t; after the t;traler,y w11r. eslablir.hod. 



i,ys tetn !'1ill'h li1belli11r: (.0/\1. r, p,ellN.atccl thr.reafter. Then 
when ·111£! r,y !dem pen r.ivc:d ll1nl dir.lis ill thal PSH/\1'[ were 
al l rnnv(-: d to ,mollwr pr,g, 1.ilwllillr, i!, tenninAlr.d. Tho 
r,r. q11r:11 cr: of lnbellecl f.0/\l.r. ir, r, c: t·v(:cl fc,r pattern i11d11c:tion. 
F urtl w rn1n1·(1, pet cert ion of i' '.~ 11/\l'F oc c LIi'!, 011 ly whon some 
unapplic ab lri r, ttbgoal lrigr, r.r!, ii. It will be r.hown by an 
exa111p l11 b(!low. 

to Pot\ 13, tlw goat pi•r, i11 thal r,11hr,onl. Tlw11 l'fil 1/\l'f: ts 
pcirrcivc:d Al l'C'p, 13, r.i/1( ri at t.ii 11mr.11t of 1hr. !,ubr,onl is 
lnl r. rf r:, rnd only by lhr! wl,, ,yrnmirl (I 2) Oil l'!•p, 8. The 
rwrc r. ption lr!h the !,y!, l (>m d1ipo !, il (G0/\1.St:Q O'G0/\1. 2 
PEG£3 PEGC} ((00/\I. I l'f"Cll l 'U;C))) a11cl (f"Ol"I -P(;Q/\1. 11 
PEG/\ l'FC;B) into WM ;ifkr 11111 nr.xt prnpc•r !.ttbgonl (GO/\L I 
PEGf3 PEGC) i5 c rn ,1l~·d by t lw rn( ltt!.il/e !,uhr,onl <.lrater,y. 
)11 the fir!d lid, (G0/\1. I 1'1(;13 l'IGC) ir, j11 !'1 i1 copy of the 
tno t, t rn(et1tly genr.nited C0/\1.. (f'UJ/11. 2 PEGf3 f'[GC) 
dr.not0r.; a i,11bp,on l for lhr! prirrr.i ,,c: cJ '..t tbp y1;rn1id. The 
:,ecot1cf ;1rgum,rnt in G0/\1.SLQ i!; ;1 ra ,bgonl st;ick into which 
G0/\1.r. i-nl;:itecf to 111ov i11r, the f;11bpyrn1nid wil l he i, torncl . 

Suppo!·,n that, w.i11g tlw riic undl/e r. ubr,oal slrnler,y, the 
!,y!s tr.111 rnaclwcl the rli!d1 (Onfigurntion, (Pf: c-;s (4 5) (I 2) (3)). 
/\I th at mn1nru1t, tlw r;y!dem rrdflil1!, an Lt11 <1pp licabl11 subgoal 
(GOJ\I. 4 PU;/\ Pf:(;(l). ·11ii r, !.t ibr,onl nwke<; thr. !,ys tcitn nllend 

Production 

Fig. 2 'Produdion -· firit1g process for whole run 

(0 denotP.s gf'!tif'rntion of a nrw production. 
* denole5 firing of a new production. 

Numbers In parenlhf'<.r! s, (), cl f' nole ends of Runs.) 

N 1 I O,·, ,., 1', 1'n'1 I ,., 1'1 1•,.I 1', ,., 'i1 1'1 1'1 

N2 I 01·1 1'n', I 1'1 1', 'i1 I ,., _,., ,., 1'ttt 1'1 

N 3 I O I I 1't ,., ,., ,., ,., I ,., ,'t ,., ,•t ,., ,., I 
N4 I 1· O,·, 'it ,'t ,., I 1't ,., ,'t I 
NS I I I 0,·1 1't ,., I 1't 1't ,•t I 
NG I I · 1 0 ,., I 1'11'n'1 1't 

N7 I I I I O,'n't 1't .,, i't ,•, . 1't 

NB I I I I 
N9 I I I I 
Nl0 I I I · 1 
Nll I I I I 
N12 I I I I 
N13 I I I I I I I I 
Tin1oe ·------------------------------------------- -----------------------------------------,(1)-------· 
f ired 100 200 300 · · 400 500 600 700 800 900t 1000 

·-----------------------------------------------------------------------------------------------------1·, ,., .,, ,., ,·t ,·1 fr ,., ,·1 'i1 ·I I 
,·, 1'1 l't l't 'it ft * l't l't l't I I 

l't .,, ,., .,, ,., ,., * ft 1't 1't ,·, I I 
1'1 1'1 1'1 1'1 If, ltr fr tr I I 
1'1 1'1 1'1 1'1 I 1'1 r '* ft ,., I I 

,·t ,·t ,., ,·1 . 1't I 'it f1 I I 1'11'1 -,, I I 

,'t ,·t 1'1 I ,·, 1'1 ft I ft 'it I 1', 1't 1't I I 1 · 
I I. I O,·t I I I 
I I I O I ,·t ,., ,., I ,., ,., 1'1 1'11'1 I 
I I I I 01w1 1'tl'1 1'n'1i1 fr•'n'n'1 I 'f1 1'tl'11'11'1 1'1 I 

I I I 1 · 10 ,., 1- .,, ,., I 
I I I I I I I 

I I I I I I I I I I 
-------------------------------------------------------(2>----------------------------------,<3>-----
1000 1100 1200 1300 1400 1500 tl600 1700 1800 1900 t 2000 

---------------------------------------------------------------------
I I I I I I Nl 
I I I I I I 
I I I I I I NZ 
I I I I I I NJ 

N4 
I I ·1- I I I NS 
I I I I I I NG 
I I I I I I N7 
I I I . I I I N8 

,;1 1'1 1'1 1'1 1't · 1't I 1't 1'r I ff "'I ff I I I N 
I I .. .J,, I I . - 9 , 't'n't ,·o·, 't'n', , .,.,.,., l10't ... , ,'o'n'n't * ... , trtr nw ... ,,.,,., N 1 e 

I 1'1 I 'i1 1'1 .,, I I 1'1 · I I Nll 
I I I O I 1't ,·1 ,•1 I 1'1 ,•1 ,., ,'t ,·1 ,., f1 "' I "' Nl 2 
I I I I I O 1'11't 1't I 1'n'n'1 1't ,·rn ,., I N 13 

--------------------- (4)--------~ ----------------- ------------(51--------------------------- (6}----
2000 2100 2200t 2300 2400 2500 2600 t 2700 2800 2900 t 3000 
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Aflf.'r (,() ./1,I. Sf'Q i! ; p,r,,wralr!d, llw r.y:,tetn co ntimms 
i,nl v it1 t', llw prob lr?m w,inr, tl w rl!Clll'!d ve 1, ubgo,11 !dratc1;y. 
111 thol procw,r; , (.]()/l, I r; nm ,1 cldr!d lo the (;eco 11cl at·ti umrrnt of 
c;O/\ ISI.: () if thn,;n c;o/\t .s ill'!! found lo be app li ed. This 
r,rowi 11 n prorr,•,r, tr,,rmi1111lc,r; w lwn tho !,y:, l c, m ottailwd (PF.GS 
(11 !i) NII. ( I ;> '.l)) U!dnr, the me ttr !d•1c r. ubn,onl (;tr~ tcr, y . . The 
r1 ?', u l li11g (;()/l.lS I () hnr; the form : (G0/\1 Sf' () (f'G0/\1. 2 PEGl3 
ru;c) ((CO/l.l, l f'f(;/1, l'FCC) (C0/\1. ;> f'(.(;IJ l'EGC) (G()/\1. 1 
PH;ll l'H)/\))). llert? tl,r! •,y!, l r·m find!, lhnt the currnntly 
at !cncl,!cl ?; u!Jgo.i l (G0/\1. 'l ITCA l'FG[I), which has been 
notic ed for a whi le by rtd ,1 ini11g (f'OH·PCOAl. 4 PEGA PEGS) 
in WM, is i1111mi diat ely applicab lr? . 

The progrnm then trie i: tu re late sJ.>C·cific va lues in the 
:;cc oncl ill'glttnr.nt of GO/\l.Sf'Q to v11 lue5 in its firr.t arnumr.nt. 
II i s donr. by wdnr, functions such AS *OTH[R and 

~: NEX'fSM/\Ll.rn. ror ind1111ce, l in (G0/\1. 1 PEGB PEG/\) Is 
the cli!;k NIXff,M/\1.1.EH thnn 2 of (f'GO/\i. 2 PEGS PEGC) at 
the ' cfol\ conf ir,urntion (PE(;(; ('l 5) NIL ( I ? 3) ). l'EGA in 
(GCJ/\1. l f'l ·. Gl3 l'EG/\) ir; the O I HER pc£; than PEGB 1111d PEGC 
both c1ppcar it1 f\ in (f'GOAL 2 PEGfl l'EGC). 

Ne xt the sy:, tcni r. ull!di lut es variab les into spec ific 
va lue5 in GOAi.SEQ. ·1 Jwn COND!, and ACTIOJ~!; aro 
gener.i ted from GO/XI.SEQ 1111d ot her c urrnnt know lr.dge 
e Jen,r.nt~: 

(CON() ( i:P-ON 2 so 'i A 88 SC)), (CON() (!'GOAi. 2 SQ SR)), 
(COND (/\13SENT (G0/\1. (1NE>:TSM/\t.t. rn 2 l!Q SA 88 RC) 
SQ (~OTHrn SQ Im : PEGA PEGB l'EGC)))), (COND 
(ABSENT (GOAL 2 SQ $R))), (CON{) (/\f3SENT (GO/\L 

. (tNIXI I.E f,S 2) '*ornrn SQ 81~ : PEG/\ l'EGB PEGC) SR))), 
(COND (PEGS SA ~i3 $C l) , (/\CTION (llF.M (PGOAL 2 SQ 
SH))), (ACT ION (D[P (GOAi. (tNIX[ SM/\l.1.ER 2 SQ 11A 88 
SC) SQ (tOTH!:R HQ 81~ : PEGA PEGfl PEGC)))), (/\CTION 
(IJEP (G0/\1. 2 SQ SJ?))), (lic·r IOIIJ (f)EP (GOAL (*NEXlLESS 
2 ) (:tOTHER SQ SI? : PEGA l'EGB PEGC) Sim). 

The fir~!' and sixth COMDi, were derived from information 
other 1111111 GOAi.SEQ. 'The second COi~[) io tho firr.t 
argument of GOAi.SEQ. The third, fourth and fifth CON[)s aro 
modifirid ·r.opir!s o f son1c of /\CTION!;, The firr.t ACTION was 
derived from t tic fin! argunwnt of GOAi.SEQ. The other 
ACTION!; w<'?rn mAppcd from the sec:011cl argumr.nt of 
GO/\LSEQ. 

Fina ll y, the r.y '.dcm crea tes a production from these 
CON()l; a11d ACTION!; , The production, <J\J l 2>, is shown in 
Tnblr. 1. It generates a r.cqucncc of lhrc!! GOALs cquivalr.nt 
to II PGOAL r,iven il1 tho t011dilio11 !dde. Nole that the disk
name, 2, is not generafiwd in <N l 2> !d11c e the system 
rngards 2 a!; 0110 of r. mafl and ~,,nd/fo disks. This special 
assumption W1l$ cir.rived from the experimental data. Thus, 
<Nl2> firns 011Jy·for (l'(,0/\1. ?. . .. ), For example, if (PGOAL 
2 P[G[3 PEGC) madr. <N.12> firn, the ~n,111.n11~n of sub1;oalr. 
(GOAi. 1 PEGA PEGC), <GOAi. ?. PEGB PEGC) a11cl (GOAL 1 
PEGB P[GA) arr. r.lored into WM in this order. <Nl 2> is a 
wm ·f1 i111("/or111n.rd production, 5inc c ii 1;enerales a sequence 
of GOAL5 which c.1111 be Appli ed not backw~rds, but forwards. 

: After <-Nl 2> is c.rr.alcd, the system conti nues problem 
so lvi11t1 by ' the rccur!dve r. uhgoal r.trntegy. At (PEGS (5) (4) 
(1 2 3 )), thr. only GOAi. the (;y:dcm ro tai11r. ir. (GOAL 5 PEGA 
PEGC). Thus, i11 the f;anH! m,1rrner ar. above, this subgo11I 
triggerr. perception of PSHAPE, (I 2 3), 011 Peg C. He11ce the 

f;ystem oxec:ut e" the f;a mr? process as abo ve: firr.1 constructs 
(GO/\LSEQ (PGOAI. 3 PEGC PEGB) ((GOAi. l PEGC PEGl3))). 
(GOAL l PEGC P[G[3) ir. the immediate next subgo11t 
generated by the rr.cur!dvc r., ubr,oaJ strntcgy. When (PEGS 
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( I 2 5 ) (4) (3)) ir. r.nc:ounternd, GOAi.SEQ has r,rown lo: 
(GOAi.SEQ (PGOAI. 3 PEGC PEGB) ((G0/\1. 1 PEGB PEGA) 
(GOAi. 2 rrnc PWA) (GOAi. I l'[GC PEGB))), At thi n point, 
tho (; y i, l e m fine!!; wd11r, the 11~1inl'l,•11r.rt8 lh 11 t tho sec ond 
a1·gw1H1nt c,f· 00/\1.SEQ i r. oqui v11 lnnt to (PGOAL 2 PEGC 
PEG/\). Thu!, GOAi.Si:() hr.re ir. tra11 ~. for111nd to (G0/\1.SEQ 
(PGO/\l. 3 PEGC PEGB) ((PG0/\1. ?. PEGC PEGA))). 

Then the (;yi, tem C'Onl inuer., prob lnm ~; olving. Whf! n the 
subpyr;imid ( J 2 :n W1lS moved to Pep, n, i.e., (PF.GS (5) ( J 2 
3 4) NIU war. att ait1 (? d, G0/\1.SEQ ha!, 1he form: (GOAi.SEQ 
(PGO/\L 3 PEGC PF.(;13) ((l'C0/\1. ?. PF.GA PF (;13) (GOAi. 3 l'EGC 
PEGB) (f'GO/l,L 2 f'EGC PH,/\))). Ai, r;a rnr. <1r. boforn, the 
!;yi;lern r,erwrnl17.e5 thlr; lht,· and c mates CUN!)!, and /\CTIClfv!; 
from It. Firrn ll y, ;i new prod11ction, <NJ:J :, !, hown in Table 1, 
Jr. nenr.rntecl. Diffcrr.11t from thr. c;i r.r. of rrnatinp; <Nl 2> , the 
cti!d\·namc, 3, it; al!;() genern li m d in 1hr. prnscnt case 
bcc.aw,c thr. 1;yrdc·111 notitci, th at :l i!, one of bip,ger, ((<'llr?rnl 

di!;l\s in the niven problem. 

Thour,h th e r,yidem can i, olvc·: th e prob lem usinr, the 
rncur!dve Mtbconl !dratcgy ;i l fc r this point, we rnahe the 
following 11!;(;1.1111r,lior1 hern : once the? r,yi,km i!, ;iccuidomed lo 
perreivi nr, PSH/\l'Er., it c ;in p,cncratc ;i f'( ;0/\ 1. if 110 f'GO/\l. is 
avcti l ;lh le ;ir,cl 11 PSI 1/l.l'E i!, ;i t lc11dt!d lo . Thi r; lieuri!;tic i5 
storr.cl in the program in thr. fonn of ;i prncludio11. Thus at 
(PEGS NIL ( I ?. 3 ll) m l), whcni no PGO/\l. i!, in WM 1111d l'eg 
13 i r. PSHAPLd, the r. y:dcm can r,cnr.rn fc a new wbr,oal 
(PGOAI. 'l PEGB PEGC). Thir, i r, done fir !;f by r,ene rati11 1; 
(GOAL 4 PECl3 f'l:GC) wd11 r, <NI I > (;i prod11ction for the 
rnc:unive i,ubgoa l strnkgy), and lhr.n trandorrning ii to 
(PG0/\1. ... ) ur.inr, the f 11r.l that Per, B ir. P:illAl'Ed. 

Hun 5 endt!d (; 11c c e,.:,f 11ll y 11fler procluc tion :; fin?d 431 
time <; and twn new prod11( tion i, <Nl2> 11nd <Nl3:• wero 
r,enr.rated. ·r hc i,e prochrc tio11 r., together with some other a 
priori J>rocluctioni,, rnny cow, litut e a new drate1;y. That it ir. 
actua ll y i.o wi ll be ex;imincd in l<un (i . Notr! that no heurir.lic 
search wa !; madr. i11 f?un 5, ;md the rncur!;ive r.ubgoal 
s trntcr,y war. fully 11 1,ed for p,cncrnli11p, new procluclion!;, It 
In c.luarly (;e(!n it1 produc lion .. firinf: behavior belwr.en 2200 
- 2650 of . Fir,. ?.. Afi,o not e that a r.omew hal spec ial 
perceptual prndica l e, PS HAPE, was eff ,:· c tivHly uned for 
lirnitin r, data for pctltr.rn inch1c.tio11 in subr,onl r.tac.ks. Thi s 
tneC' han i!;n, war. deriV<·?cl esi,enti all y from our experimental 
data. 

<H1111 (I > 

lhin £i ex;11nl11C!n whe t her pro due lion!, lr.arncd in Ru11 5 
am suffi cient to constit ut e a i; tr atep;y. Hun 6 perforrn5 only 
thi s tM;k. 111 thir, i;cni,e , it corrw;poncb to llun 4, ancl weakly 
lo Hun 2. 

As the !;ystem w11r. then w;ecl to l':ilJAPF.s, it initially 
ge r1C!rntE!cl i1 r.ubr,oo l (!'GOAi. 5 f'EGA PEGC) by at tending to 
the initi il l pyrnmid, (I 2 3 'l !)), 011 Per, A. Then, usinr, thi s 
subr,on l, an(I prod11ctio111, ~Nit'> 1111d <1~13>, the sys tem 
sue;c-er.,cl11cl i11 atlai11i11r, the final goo l wilh 110 error. Thus tho 
!,y!d!' rn le artwd a nr.w Wf'il .. d1?fi1wd !, trnt er,y. We tall it tho 
u,n,·T1i11p .. .(01'1m11·d ~,rn111,n, f; i11ce <NJ 2> and <NJ3> generate 
subnoc1l seq1m11c.es th at can be nf)p li r.d not barkwardly, but 
forwardly . Jhrn 6 coniauned ?.CJn time s of production firing. 

8 or c:our!;e the syslern r, hould .have remembered 1he 
former GOAi.SEQ lnform:ition for doing thi r.. 



Cotr,p;il'i ng wilh f?un t''!, (, t,6 limes ;rnd flt111 4'r, t'80 limr.s, 
the worllinr,-forw;ird !,lt;1kn' mny :le 11111c.h rnorc etricienl 
th ,111 tho nC!g;ifivci move · pJllcrn slrnlegy but c.omparnblo 
wilh the rnrnr!dvc~ :a,l>r:oal :dr alep.;y, wilh r1 ispecl lo lirna. 

The rn11nlrnr of prod11c lionr, le;i rnecl i~ r.evcrn for tho 
nr!{;illivci movc-:· ·ratlr.rn !, tralr:gy, four for thr. rocursive 
r.ubgon l :dn il ep.;y , ;md two for lhe wo rfd11g- forwc1rd r. lrntegy. 
A morn r,ophir,licated mr.c hani r;r11 would cir.< rna!,e lhC! number 
for the ncr,a ti vc-: rnovc-:--r11 lkrn !drnter.)' dciw11 to thre e (or 
eve n to two). Thu•,, r,fficir.ncy in 1hr. mttnbr.r of productions 
neces!, ary to be 11: ;i rned wo 11ld bC! compnrablc for lhe three 
!dnil cr, ie r, if slip,hl modificalion i5 ;illowcid to llrn cur rent 
vc~r!, iOn of I he progrnm. 

/1.r, for lo,1 d on Wlvl, the me ur!d VC1 ia1br,0;1I strat egy 
scemr, lo llC! llrn r,111nll1? !, t. Fig . :~ r, howi; dynnmir, beh;wior of 
tho nwnl:>er of elr. rnr.nl '., conlilinr.d in WU The nC!p.;ative 
rnnvc-: -- pntlr.rn rdrnt r•r,y put,. hr.avy load 011 Wf..~ by it s 
c. ombin il lorial il l l ent ion l o pc•gs c111d seorrh for Ir.ga l moves. 
·1 he wor l1ing - forw c1r d drnl<·gy alr,o puts burden 011 WM by 
it s powc-: r for p.;e nr.raling :,everal !,ubp.;oa l~ ;ii once. Fig . 3 
alr, o illt.Hdrnl<i r, c le;i rl y ;i q11 ;, libili ve c h;111r:e of oper atorr. in 
the learn inr, procr. sr. . 1he tHttnber of rnove opera tor s 
grncl11ally dee rna!,e d ;111cl b£ic illl11! more !, I able, whereas 
subgoa l operalorr. pl;iy1-:cl an c1clive rn lc in the later stage. 

111 spit e of the above rn t, ull s, people r,ee m to regard the 
worl·,lnr, forw <1 rd drntAp.;y il!, lhC! most sophir.litated 
!, trat etw for solvint~ the ·rower of Hnnoi problem. Thi5 f5 
c:a w ,c cl from the, f ;ic! lhnl 1hr. worfdnr, - forward strnt egy 
irwolvc-:s !, ubr,oalr. like J'GOJ\l.r.. PGOJ\1.i, arr. hir,hcr .. lcvel 
subgonl r. , which m,1y st;il e very i.imply ;i subr,0;11 scquenc:e 
thal ca 11 be app lied i,ucce ,:<, ively lo thr. initial prol>lem r, l ate, 
and bring the i,yid ern eve 11 to tho fi11c1 I gonl. (PGOJ\I. 5 PEG/\ 
PEGC) ir. di,c om posed to 1 he !,cque 11c.e (PGOJ\I. 4 PEG/\ 
'PECA), (( )()J\I. 5 PEGA l'H;C) ;incl (PGOJ\1. 4 PEGB PEGC). 
The t hrne · wbp;on lr. in I hi 5 !,cq 11a11ce are applied 
succes!dvdy lo the inilinl sl ;i te, and provide lhC! fin al stal e. 
The theory r.ugger, ts tl lil l this c;ipnbilily of ctirnctly 
connoditig the initi ;i l . sl;il e to the final goal is 011e of 
ultir11al e rn::: ult s ·i11 lhC! lo11p,- term 5trn1egy lea rning process. 
As Ru11 6 showi; , the procrnm finally IC!a m ecl this c:apability. 

lrl!PJkalion of Work Hnct l_l s_ Re lation lo Other Works 

·rho wmput il tion;il rnwlt r, prn sentAd in lhir. papr.r Imply 
two lhi11g5: (I) tho progrHm i1, one of fird effort s toward 
mod1dll11r, humn11 IP. .i rninr, lwhavior w,i11r, an adaptive 
production sy!; lrnn, ;rnd (?.) there ir, a way that a computer 
c:a11 lear n strnter,ie s lhrour,h it s own experlenc.e. The 
second poi11t ir. p;irl ic:ul arl y rnl aled to rr. searr.h on artificial 
l11t elli ge 11c:e !,y!-. te111 r; thal llilve tapabililies of discovering 
comp lP.x procedural knowlr.clr,e. The p;ipC!r provided 11 

posit lvci cv idn11c:e fpr · po ,,r.ibilll y of c:omput alional i, ludy on 
st ra ter, y IP..irn in p, p rornr.i.er. . 

Much effor t l1c1 r, boen n1itclC! r. o far toward designing 
arti fi ci~I i11tc llige 11ce sy~ l r. mr. th at am ablP. lo learn 
procedural l111owlc dgc. 011r. of the m,1i11 r. lreamr. in the effort 
Ir. utifi ;rntio11 of ad.ipli ve production !;y~ temr., i.r. ., produdioh 
systemr. th at inc.orpornlc a11 abilily for crealing production 
rule s, which was fin;t -c-o n<druc.led lormAlly. by Waterman 
( J 9711), Meta-.fJENDfl/\1. of Sl a11ford flouri r.t ic Programming 
Projncl I!; 0tin of C!ar li1?i, I i, uc.c.r.~.i,es i11 ;iprli ca tlon of such 
r. tud y. ·rhe worf'. flr<?5e nl cd in tho p;ipcr and olhar two 
paper!; (Anza i, J 9,8; J\nz;i i 8,, Simon, 1977) may be 
con:.idered , As a r. urcef,!;Or of lhi r. stream, app lied 
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pnl'I icularl y Io ln arninr, «>tnpln x procr,clura l knowledge. 
l3roadly :, pcia llinr,, worh 011 ;rnl orn~ ti c- pror,rnm mi11r, (e.g., 
Drne11, l9 7J). nrny be co11 !: irlpnid ai, a I""' of the effort. 
/I.duall y 111e rnsull r. prnsenlr.d in the pappr can be ri:garded 
a!, a !, mnll c:o111put,1tio11al r.x p!!t·i1?11cn 0,1 ,rnlomnlic 
progrnrntnlng In c1 morn general problem --solvinr, or iP.nled 
clornAin. 

/1.l so, i11 p;irallel wilh the wor~. i11 al'lifirial i11telli r,ence, 
l!i <1 rninc proc.e d11ral knowlci dge h;i i, henn !, ludind rnc entl y by 
c:ognil ivC1 p t:y< hologi~h (e.g. , /\ndnr ~on, 19 77). Tho~e two 
lrimdi.;, with general ,;t 11dy of i11clu1t io11 In c-ompln x problP.m 
so lvi11r, I ar.k~. (e .r,., Simo11 8.·. Lea, 19,3 ), a,·e now conve r1.; ing 
lo worh 0t1 i,y!, l emr; for lr. arnin[l complex proceclurnl 
know ledge. 

Thir. p;iper i r: hopefull y one: of initinl i,lcpi, tow~rd lhi r, 
dim<! io11. ·r he rn sulh. ,11'1! e11co111 ar,inr,, but i,1 ill limited. 
Vt1riou!, prob lemr,. which did not Mi!:P. in lhe theorn tic al 
exp lorn lion h;we bN!l1 m,Hfo r> xplir.il in thi r, c:o111put~lio11itl 
r.tucly: the probl1?m of 1:1-ror rC? covc-: ,·y , n: l,tlive r,rrc d of 
lr?arninr,, fitwr i.drnclurn of r·rip1·w,1•11l;1tio11, lime effiti enc.y of 
proctuc.tion !,y!:temr., r,enr.r.ilil y of tlw prot;nim, a11cl so on. 
Mor.;t of lhe i,n lr.r.; uc,s il l'!! c urrnntly bei11r, ;i ll ;icke cl in the 
c:on ti11ui11g projP.cl on cornpul eri;i c ct r, lrnletw leaminr,. 

Andnr r.on , .I. I?. lnd11clio11 of ,n,gmr.nlecl lr ansil ion 11ctwor~.s. 
Cn,r11i1i,11, Srir11r,n, J 9 77, /, J 25 -- 157. 
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A computer program that learns algebraic procedures 
by examining examples 

and by working test problems In a textbook 

David M. . Nov es 
Department of Psychology 
Carnegie-Mellon University 

Pittsburgh, Pennsylv11nl11 15213 

This paper describes a computer program, written In 
LISP, that acquires procedurr.s by examining worked-out 
examplr. problemr. a11d by working lest problems In an 
algebra textbook, Stein & Crabill ( 1972). 

The parndigmn of learninr, by example a11d learning by 
doing have received muc:h attention in the par.I few years 
(e.r, . Waterman(i11 press), Anzai( 1978), Sussman( 1975)). A 
common c:lrnrndr.rir.tic of thir. recent work Is that the 
learned procedures take the form of production system5 
(New~II, 1973; Nflwell & Simon, 1972; Davis & King, 1975). 
Produrtion system languages consist of two memories, 11 

produdion · mrimory and a data (working) memory. 
Production memory consists of a set of condition/action 
produdion rules. The c.ondition part is comparr.d lo working 
memory and if true, the action side is executed. Production 
system$ are especially well··suiled for the learning of 
procedures because of their modullirlty (see Waterman, 
1975). A learned rule can simply be added to production 
memory. 

The bar.it Idea in learning by example Is to induce the 
produe:tion rules used by the expert who generated the 
exampll?. Each pair of lines, or r.tates, in the example leads 
to the learning of one production rule, with some part of the 
Input (the fin;! line) as II condit ion and the operation 
performed on the first line as the action. In learning by 
doing, the example .trace is r,enernted by the student and 
not by the expert. It could lead lo the Induction of the 
same productions but would lake much longer than by 
lr.arning from an existing example. 

In c:onstrucllng mechanisms for learning, the nature of 
what Is learned, and the method of le11rning must be 
spec ified. The result of learning can be characterized as a 
performance syi;lem as defined by Newell & Simon (1972). 
Sur.h a sy!ilem (like the Gcnnral Problem Solver) needs a 
goal, a representation of tho problem, operators, a "table of 
conner.lions" (a data base that incle.xes the operatt>rs by the 
changes they make) and working - forward production rules 
of the form, "If )( occurs, then do Y". The learning system 
describud here learns all the above except for the 
represent atlon. 

At the present time the program learns lo solve linear 
algebrnic equations from a textbook. The textbook provides 
exp lana tory text, annotated example problems, and work 
problem5 al the end of the section. The program uses the 
examplr.s and test problems to learn and Ignores the written 
text. 
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Tl-IE SYSTEM 

The program Is given a knowlr.dge of ar ithmetic: the 
repre SE!ntation (objects and relations between objects), 
operatorn, table of connedions,and goals. It is also given 
tho representation of algebra. The program then learns the 
goal !dale of solving linear algebraic equations, learns the 
operatorn (composed of condition/action production rules), 
and adds to the I able of t0nneclions a recognition of 
algebraic operators. Fiituro J show~ what the result of the 
i1?arninr, process might look like. The six productions solve 
an equation by moving numbers lo the right side of the 
equat ion, by moving terms with an "X" lo the left, and by 
combining like terms. 

A simple flowchart of the program is shown In Figure 2. 
There arr. three main components, Example, Perform, and 
Learn. Example lakes as Input a work-out example problem 
and calls Learn. Perform t,1hes as input II problem to be 
so lved. II uses general problem solving techniques (Newell, 
l969) to generate Its own example trace and also calls 
Learn. Learn takes as Input two lines and creates a 
production rule. 

P 1. If there Is I number on the left hand side 
of an equation, then subtract it from both sides. 

P2. If there Is I term with "X" In ii on the right hind 
side, then subtract It from both sides. 

P3. If there ire two like terms on the left hind side, 
then combine them. 

P4. If there are two like terms on the right hand side, 
then combine them. 

P5. If the equation Is reduced to "<number> • X • <number>", 
then divide both sides by the number In front of 
the "X". 

1'6. If the equation Is reduced to "X • <number>", 
then STOP. 

Figure 1. A production system for algebra 
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Example 
Input: A worked-out example 

Select two lines 
of the example 

no 

Learn 

Input: an I/CJ pair 

Perform 
Input: a problem state 

ge 
action 

yes 

Figure 2. Flow cherts of the three programs 

EXAMF'LE 

As r.t ated above, the Example program inputs a worked
out example. II sencfo pairn of consecutive lines to Learn, 
where a production Is built. When Example reaches the last 
line two things are done. First, ii interprets the example as 
the workings of an operator, wilh an Input (the first line) 
and an output {the last line). 111 order to recognize that 
operation In the future (as part of another example) the 
change l!l computed between the input and output lines. 
The operator 15 then indexed by that change in the table of 
connections. Second, the last line is represented and stored 
on the goal ll!lt of the operator. So, Example adds to the 
table of connections and also learns the goal states of 
operalorn. 

LEARN 

The learn program lakes as input a pair of lines from 
the Example or Perform programs. It generates a 

192 

procluc lion rule which, when presented with the first of the 
two !inns, or similar input, will execute the appropriate 
operator. This program is the most important In the system 
and ead, of Its components Is described In detail below. 

Roprosent 

The two lines arc first sent lo a function that represents 
them. The lines arc lists of characters. This function chunks 
c:harncters Into objects (e.g. consecutive digits are put 
together to form an Integer) and relates objects to other 
objects In the line {i.e. terms arc represented according to 
their relationship to the equal sign). 

The knowledge of how to represent algebraic equations 
Is given to the program and so Is not learned. Below Is an 
examplr. of how two lines arc represented. 

x - 15 a 2x 
-)( - 15 • 0 

{left +x)(left -15){r lght +(2tx)) 
(left -x)(left -15)(right +O) 



The form for the representation is (<re lalion><objecl>), Jn 
the above e><ample "left" means lo tho left of the equal sign 
and "rip.hi" means lo the right of the equal sign. The sign of 
each term (+ or -) is chunked with the term. Also, the 
represent a lion Is put In a canonical form, I.e. 2>< Is 
changed to 2*><. 

Find Oi-ffar·cric:e 

Nn><t, the two represented lines are sent to a general 
procedure that computes tho difference between the two 
line s. The difference is a list of symbols that have been 
REMoved from the firr.t line, TRANSformod from the first 
line, a11d symbols that have been ADDed to those already on 
the first line of the example. For the two lines below 

(left +x)(left -3)(rlght +5) 
(left +x)(right +5)(,right +3) 

the difference Is: (rem (left -3))(add (right +3}). 

That Is, a minus 3 has been removed from the left .and a 
plus 3 has been added to the right. 

The difference is computed In two steps. First, the two 
lines fire checked to see which symbols have been added 
and removed. For example, if a symbol in the first line is 
not eqtrn l lo any symbol on the samr, side of the equation In 
the second line then it has been removed. Then the 
program checks to see if there have been symbols added 
and rr.moved on the same side of the equation (I.e. they 
have the same relation - - left or right). If so, the REMove Is 
changed to a TRANSform. This creates three kinds of 
changes1 removing, transforming, and adding. The e>eample 
below !;how these two steps. 

x - 3 "' 5 (left +x)(lefl -3 )(rlght +5) 
x ~ 8 (left +x)(rlght +8) 

The Initial difference is: 
(rem (left -3))(rem (right +5))(add (right +8)) 

which then becomes: 
(rem (left -3))(1r ans (right +5))(add (right +8)) 

Generalize 

Niixt, the objects In the difference are generalized. 
Knowledge of what lo generali1.e and the scope of 
genernli1.at lon are given to the system and are assumed as 
part of the representation. For algebra the function 
generalizes over numbers. For any number It substitutes 
the symbol "N8", which is the concept name for number, so 
that (left -3) becomes (left -NI). 

Crcc,.ting the production 

At this point we have characterized the difference 
bctw~en the two lines. This difference Is used lo access the 
action that produced It, and Is used In creating a condition 
for a condition/action production rule. Suppose the 
following two lines are Input to the Learn program. 

X - 3 • 5 
X • 8 

The difference is: 
(rem(left -n8))(trans(rlght +nl))(add(rlght +nl)). 
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The program chocks tho table of connections to find an 
operator that will produce that difference. The program 
may find the operator ADD-·AND··SIMPLIFY, which Is made up 
of a set of productions that will add a number to both sides 
an eqtrnlion, and then simplify ii. This operator was learned 
In a pruvlous example given to the system. 

The t ar.k, now that an action has been retrieved, is to 
attach the appropriate condition to the act ion and store ii 
away as a production. The most specific condition would 
simply be tho first line of the example, (x - 3 • 5). That Is, 
II you see "x - <number> • <number>" then add the second 
number to both sides and simplify. However, intuitively, the 
appropriate c:ondil ion would seem to be just the nee alive 
number on tho left hand side of the equa lion, (left -n8). One 
way of whittling down a c:ondilion side would be to present 
i;everal examples where the same operator is applied at1el 
heep only those symbols which are common to all of the 
examples. This is r. imilar lo the c:onc:ept learning scheme 
used by Wim;fon ( J 975). However, there is no such 
lnstruc:lion in textbooks and there is often only one 
example ir, the book before the lest problemr.. 

Tho rationale for tho way the condit ion Is determined is 
as follow :,: Algebra Is a domain in which objects are 
manipulated: removed, lransfortnP.d, or copied. The mode of 
operation is to notice somr.thir,g and then chanee it. If we 
work backwards from this notion WC! can infer the reason 
(or c:ondition) for an action by looking al what ii affects. 

Two heuristics arc U5ed to find the condition for an 
action. 

J) If !ho result of an action on the 
environment Is ob!;erved, then the probable 
cond il ion for that action was the eroup of 
symbols that was afletled by the act ion. 

Thir; heurinllc ii; ba5ed on the reagonlng described above. It 
examines tho di-ffm·cnce betw,:,,en two stales, which contains 
the changed symbols. 

2) Only a sub5ot of the changed symbols are 
U!;ed as the condition for the 11ction. The kind 
of change determines whether it Is inc:luded in 
the condition. 

If there arr. REMs In tho difference then only the 
symbols that w,:,,re removed arr. put on the condition side. If 
not, and If there are TRANSr;, those symbols alone 11rc put 
on the condition side. Olherwise, another procedure is 
oxernled for the ADDs. In the 11bove example, the 
difference has one symbol removed,(left -n8), and so it Is 
put on the condition side of the production. The operator 
for lhn action side w11s retrinved using the table of 
conner.lions. The resulting procluc:lion is: 

(loft -n8) --> A()D .. AN() .. S1MPLIFY(n8). 

Thal In, If lhoro Is II negative number on the left side of an 
equ11tlon, then 11dd ii to both sides and simplify. 

If the program Is not able to retrieve an operator from 
the table of connections, then several other procedures 
must be e>eecuted In order to determine what operator (or 
group of operators, In the case where steps are skipped) 
has been applied. There arc five subproccdurcs that can be 
called when the difference has not retrieved an action. 
These procedures search for an action. The procedures are: 
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1) l\i,k thC! it1$tructor for thC! nat1H? of the procedure. 
2 ) lfoe primitive opcraton for thC! action. 
3) U!,I? rnC?an s-endr. to fill in skipped steps. 
4) Uw a partial rnAtch on the difference. 
5) Try another representation. 

Three of these procedures arc explained below. 

Ask for t ha 1urn1e of the procedure 

Tlw examplC!s in the tex tbook arc annotated. Although 
they do not give the conditions for actions, they generally 
give t hC! . action applied to ead1 line in the example. The 
progrnrn doc s not m;ikc use of this Information. However, If 
ii did, ii would tranr. l;ile lhC! verbal description In the 
example to the name of an action in m!:'mory. As a crude 
approximation to lhi r. proc-csr. , the name of the action can be 
direc:lly supp lied lo the program. 

Use primitive physi.cal ope1·ators 

If the ~ystem is unable lo retrieve an action that will 
produce the difference, thC!n ii has the op tion of crealit1g its 
own <1clion with it s primitive operators. There arc three 
primitive physica l operations that correspond to the three 
kinds of c.hanucs in the differC?nce. Prim -add adds a symbol 
to the environment(wril es ii on papr.r), Prim-rem removes 11 

symbol from the envlronnrnnt, at1d Pr im-trans transforms a 
symbol into another symbo l. 

In the example below a minus 2 has been added to both 
sides of the equation. 

The primitive act ion, . Prirn ·- add (which should not be 
confused with an arithmetic operator) could be used as the 
action. The two Prim-add actions would be: 

(Prim-add (loft -nll)) -- add a number lo the left 
(Prim-add (right - nl)) -- add a number lo the right 

Use another representation 

Information In the table of connections is stored in a 
· represented form. The operalorr. in arithmetic, for example, 

cannot be used or recogni7.ed unless the arithmetic 
represent at ion ir. being used. So, when learning algebra the 
program . must be able to go back lo an arithmetic 
represnnlalion to use its ar ithmetic operators. 

When f irnl learning about algebra, the example below Is 
not recogni7.ed as addition. 

Algebra example: 
X C 2 + 5 
X C 7 

·Difference: 

(left +x)(r ight +n8)(rlght +nl) 
(left +x)(right +nS) 

(trans (right +n8))(trans (right +n8))(add (right +nl)) 

Below we see how the same addition Is represented In 
arithmetic. 

Arithmet ic exampl~: 
2 + 5 (linear +n8 )(11ncar +n8) 
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7 (linear +n8) 

Difference: (trans (linear +n8))(trans (linear +nS)), 
(add (linear +n8)) 

The right-hand 5ide can be rc(oded into the arithmetic 
represcint ation and will be seen at. the transformation of 
two positive numbers into another number. This Is an 
operation known In ar it hmctic. 

After the program relriP.ves an action with one of the 
above m!!lhods it addt. the act ion lo the table of 
connec.l ion!,, Indexing ii by lhC! difference. The action will 
be rncognized 111 later example prob lems. Then a working 
forward produtlion is created with the appropriate 
conditi on. 

Stim.m.ary of [ ~ample and I.earn 

In the above examples, we have seen that the two 
programs learn procedures (operators composed of 
production rules), the goals of the procedures, and they 
learn how to recognize those procedures by the differences 
that they produce. Although there are many mechanisms 
involved in learning the few pages In the textbook, these 
may be general mechanisms that can be used elsewhere in 
the textbook. 

PERrORM 

After the Example program is given several examples, 
the Perform program is given the lest prob lems at the end 
of the 5ection to work on. Perform uses the working 
forward productions built up by the Learn program to solve 
the problems. For the first few problems, productions will 
be avai lab le that will rec-ogni7.e what to do. However, at 
r.Om!! point the produc.lion sys tem will hall because no 
produc:tion fires. At this point Perform uses means-ends 
analysir. (using the ex isting table of connections), or the 
generate and test weak problem solving methods (Newell, 
1969) to generate the next step in the solution. When It 
has come up with an action that reduces the difference 
between the current stale and the goal slate, ii applies the 
Learn program to create a production. 

Summary and Conclusion 

Three programs were described that learn from 
examples and learn by doing. The Example program scans 
two lines of an example problem at a lime, sending them to 
the Learn program. The Learn prcgram determines the 
operation that took place to create the second line from the 
first. It then uses two heurlr.tics to determine the condition 
for the application of the operator. Once it has the 
condition 1md thC! action it creates a production ru le and 
stores It In produdion memory. The Perform program 
works on !er.I problemr,, using general, but lime-consuming 
problem r.olving techniques to solve the problems. As II 
generntes each step ii call s the Learn program lo create a 
produc:t ion rule with an appropr iate condition attached to 
the opcirator that was applied lo the equation. It Is 
intere5ting to note that no new data structures, other than 
the ones U!;ed 111 a per form anc:e system, like GPS, needed to 
be created for the Learn program. The table of connections 
Is used both to access operators while going through an 



examplr. and to rntrieve oper;itor r. that reduce the distance 
to thr. p,oal while prob lr.m r.olving. 

There am several rea!;ons for the success of the 
syidem. The use of production systems ar. a representation 
for proc cdurcr. m;ikcs 1hr. lr..irning ·proress ear.ier. It would 
be more difficult to ar.sim il ate the learning into a more 
complrx control !,!rue.tum like that of Fortran, for example. 
The two heuristics described earlirn en;ible the system to 
immcclialely create procluclionr. of morn general applicability 
than would be posr.iblc using a dir.trimination procedure. 
Fina ll y ar. 1hr. sys tem learns operalorr. II alr.o learns lo 
recop,ni7e when those opcralorr. have been applied. This 
IP..irning p,rP.atly increa:;cr. 1hr. recocnilion power of the 
I ,ib ln of c:onnnc:lion!,, so that morn c-omplcx exr1mplcs c:an be 
ur.cd . So, not ot1ly clo the progrnmr. learn components for a 
c:omplrde pcrform;inc:e r.ys tem, like operalon and goals, but 
their lr arning f.icilif;iles later le arn ing by the indexing of 
higher level opernlors in the table of connections. 

The ~.ey part of the system ir. determining the condition 
for an opernlor applied lo the firr.l of a pair of liniis In an 
exa mple. The syidem ir. able to do thir. because al l the 
rnlcv,rnt infornrntion ir. contained in the equations. However, 
in i,omri domAinr. the external st imulus might not contain all 
the information relevant lo the condition. For example, 
Walern1;in (in press) has constructed a system that observes 
A person performing v;irious fundions on a computer, such 
ar. rclrir.vinp, d;ila files from other computer sites. One 
piece of information that is put on the condition side of 
somr. of hi s produdionr. is the type of operating system of 
the computer that the files are being accessed from. It 
might ha the c:ar.e that th in piP.ce of informat ion cannot be 
clci tcrmlr1fld by the example! lines being examined. The 
sy5tem must know that the information Is needed and must 
be able to rntrieve ii . In Walernrnn's system, the knowledge 
of whnt is relevant information for the condition Is given to 
It. II is not clear how a system could learn about such 
relevant Information. 

Status and Future work 

Af. of May, 1978, the Example program has been 
lmplemr.nled and debugged. The Learn program has been 
lmplemr.nted and mostly debugged, while the Perform 
program has been implr.menled, but not debugged. 

After testing the system's ability to learn from the 
textbook, the capabi lities of the system will be Increased. 
The sy'.,lem does not learn the representation of the domain 
It worko on. It Is not clear yet what kinds of additional 
n,ochanlsms wlll be needed to enable the system to do this. 
Also the current system does not test the rules II learns. 
As rules arc learned from an examplr. their generality could 
be tef.led by !,imulaling them on the example problem. If a 
rule applies before II should (compnrr.d to the e)(ample) then 
II may be too general. Its r.pec lficity could be Increased by 
addinn more elements to the rondilion side of the rule. 
Finally the system will be extended lo domains such as 
physics to test the generality of its mechanisms. 
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COOPERATIVE RESPONSES: 

AN APPLICATION OF DISCOURSE INFERENCE 

TO DA!~ BASE QUERY SYSTEMS* 

s. Jerrold Kaplan and Aravind K. Joshi 
Department of Computer and Information Science 

University of Pennsylvania 
Philadelphia, Pa. 19104 

For Natural Language (NL ) systems to 
interact effectively with non-expert users 
of computers, they must be capable of 
dealing in a n appropriate way with the 
expectations that the user has of a 
cooperative speaker of the language. 
Because people do not have a coherent set 
of expectations about the way computer 
systems use NL (the way they do, say, about 
small children ) , users will expect these 
systems to provide cooperative and 
appropriate conversational behavior 
approximating that of human speakers. In a 
cooperative human dialog, participants 
observe a variety of specific conventions 
and principles that promote effective 
communication (some of these are culture 
specific) . Failure to follow these 
conventions and principles results in 
inappropriate and/or misleading utterances. 

Questions in NL do a great deal more 
than request information. Even simple 
questions frequently encode aspects of the 
questioners goals and intentions, as well 
as his or her state of knowledge. 
Questions lA-lC below illustrate the 
encoding of goals and intentions by the 
different responses that they will 
reasonably admit. 

lA. Did John borrow my coffee cup? 
lB. Was it John that borrowed my 

coffee cup? 
lC. Was it my coffee cup that John 

borrowed? 
lD. No, it was Bill. 
lE. No, it was your sugar. 

Superficially, all three questions appear 
to convey the same request for information . 
A closer examination reveals that although 
lD and lE are both appropriate responses to 
lA, lB favors lD while lC favors lE. lB 
indicates that the questioner is interested 
in who borrowed the coffee cup, while lC 
indicates that the questioner is interested 
in what John borrowed. Computational 

* This work partially supported by NSF 
grant MCS 76-19466 
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Linguists have barely begun 
usefulness of such cues in 
systems. 

to explore the 
computationa 1 

In a cooperative discourse, the 
secondary communication of goals and 
intentions is not incidental - it provides 
a context for an appropriate response , as 
illustrated by exa mple 1. The hearer is 
expected to co mpose a response that is 
relevant to the questioners needs, as 
indicated by the question. A failure to 
produce appropriate, relevant responses is 
known as "stonewalling"*. 

Many conversational conve ntions, while 
falling under the rubric of "Pragmatics" in 
Linguistics, are sufficiently regular and 
consistent as to be formalizable within a 
computational framework. The purpose of 
this paper is to describe some aspects of 
conversational cooperation that are 
essential to an effective NL system, and 
present an implemented query system that 
incorporates these conventions in a 
practical way. The system demonstrates 
that many cooperative principles can be 
formalized and embodied in general 
computational procedures to be applied to 
the task of data retrieval from a standard 
(CODASYL) Data Base (DB ) query system. 
Projecting the more general problem of 
cooperation in unrestricted discourse onto 
the domain of a query system provides a 
method of both sharpening certain 
linguistic intuitions and reducing the 
problem to a tractible form without 
trivializing the problem or rendering the 
solutions ad - hoc. It is our belief that 
the mechanisms described here, while 
motivated by the domain, provide an 
approach that can be applied to a 
significantly wider class of NL processing 
problems. 

*Stonewalling is a term used for 
uncooperative yet technically corr ect 
respons es to que s tions . It was popularized 
during the Senate Watergate Hearings to 
describe the behavior of several White 
House witnesses. 
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WHY A THEORY OF COOPERATION IS ESSENTIAL 

Besides the obvious frustrations 
accompanying the use of an uncooperative NL 
system, there are real dangers posed by the 
use of such systems in a conversational 
environment. In particular, it is 
frequently the case that correct responses 
to questions cause a questioner to draw 
incorrect or spurious inferences. 

NL questions often indicate that the 
questioner presumes certain things to be 
true. It is not only possible to detect, 
check, and correct these conversational 
presumptions, but it is expected ~ r-n--a 
cooperative exchange. Failure to correct 
these presumptions results in an implicit 
affirmation of their correctness in the 
questioner's mind. Therefore, a failure to 
contradict a false conversational 
presumption, no matter how innocently 
omitted, will actively reinforce the 
questioners mistaken impression. In a 
cooperative discourse, the expectation of a 
cooperative response is so strong that a 
failure to contradict false conversational 
presumptions is highly inappropriate. 
Consider the following question-answer 
pairs. 

2A. Did John invite his mother to his 
wedding? 

2B. No. 

3A. What is the name of Bill's first 
wife? 

3B. Sally. 

4A. Which of the B-52s with a range 
of 2500 miles or more are based at Camp 
David? 

4B. None. 

The response 28 to question 2A reaffirms, 
through its failure to state otherwise, the 
questioner's presumption that John got 
married. If 28 were uttered in a context 
where John is a bachelor, however, it still 
affirms the questioner's presumption, even 
though that presumption is false. Although 
the response is literally correct in such a 
context, it misleads the questioner by 
reinforcing, or even creating, the false 
belief that John got married. (A more 
appropriate response would be "John is not 
married.") 3B reinforces 3A's presumption 
that Bill was married more than once. In a 
context where Bill is still happily married 
to Sally, 3B is correct, but misleading. 
(Again, a more cooperative response would 
be "John has only one wife: Sally.") 
Similarly, 48 is a misleading response to 
4A if B-52s have a maximum range of 1000 
miles . "No B-52s have a range of 2500 
miles or more." would be a more cooperative 
response to 4A. These cooperative 
responses are Corrective Indirect Responses 
in our terminolog~ince they respond 
indirectly by co nt radicting a false 

presumption. 
Without a theory of cooperation, 

interactive NL systems will produce correct 
but misleading responses, fostering and 
even creating false impressions in their 
users. A formalism is presented below 
which produces corrective indirect 
responses to arbitrary DB queries. The 
procedures predict both when the responses 
are required, and what~ these responses 
should be. 
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AN APPLICATION TO THE DATA BASE QUERY AREA 

By limiting the domain of discourse to 
the area of data retrieval from a DB 
system, it is currently feasible to produce 
general computational mechanisms for 
responding cooperatively to NL DB queries. 
Only by applying a theory of cooperative 
responses to a domain as limited as data 
retrieval is it possible at this time to 
provide computational solutions with some 
degree of breadth and generality. In this 
domain, cooperative responses can be used, 
for instance 

1) to aid a user in 
suitable followup query 
response to the initial 
uninteresting, useless 

formulating a 
when a precise 
query would be 

or meaningless, 

2) to inform a user about the nature of 
the domain (structure and content of 
the data base) when s/he is unfamiliar 
with its complexities, and 

3) to organize relevant information in 
a fashion most suitable for its 
intended use. 

Corrective indirect responses are 
particularly important in this domain, 
where occasional or non~expert users 
frequently make erroneous presumptions 
about the structure or content of the DB in 
their queries. (Example 4 above could 
illustrate such a failure.) 

The choice of the DB query area for an 
implementation is a careful one. One of 
our objectives is to demonstrate that the 
DB environment provides a way of sharpening 
certain linguistic issues (albeit 
restricting them in some fashion). The 
area is sufficiently rich to display a wide 
variety of linguistic problems: problems of 
anaphora, opaque reference, and discourse 
cooperation are present in various forms, 
to name a few. 

A preliminary implementation has now 
been completed, and a sample session is 
displayed below. It demonstrates that a 
portable, modular design for a NL DB query 
system for use by "naive" users is 
practical, and attainable given present 
technologies. This implementation operates 
with a standard DB management system (the 



SEED system, available from International 
Data Base Systems, Philadelphia, Pa.), and 
incorporates recent innovations such as the 
use of the DB as an extension of the 
lexicon [Harris 77). The NL procedures in 
the query system rely entirely on the 
lexicon a nd the DB as sources of world 
knowledge, and so can be transported to new 
domains with little or no reprogramming. 
In particular, the procedures required to 
detect the need for a cooperative response, 
and select an appropriate one, do not rely 
directly on domain specific knowledge other 
than that already encoded in standard ways 
in the lexicon and the DB system. 

CO-OP QUERY SYS'l'E~ DESIGN 

The approach taken to t~~ design of 
the COOPERATIVE QUERY SYSTEM (CO - OP) is to 
analyze question~ presenting a set from 
which a selection is to made by the 
respondent (following [Belnap 76)). The 
parser produces an intermediate 
representation, called the Meta Query 
Language (MQL), which is a connected graph 
structure. The nodes of the graph 
represent sets (a s "presented" by the 
user), without regard to how those sets may 
be realized in the DB . The arcs represent 
(bin ary ) relations defined on those sets 
(again, as "presented" by the user). The 
structure, therefore, is a non - procedural 
description of an N- place relation (where N 
is the number of s ets ) defined by composing 
the sets on all of the relations. The 
effect of this composition is to select the 
appropriate subsets of the presented sets. 
This N-place relation constitutes the 
direct response. 

For example, 
progr a mmers in 
project 6471?" 
Administration 
"superdivisions". ) 
presenting 4 

consider the query "Which 
Administration work on 

(In the test DB, 
is one of the 
This query is parsed as 

sets: programmers, 
Administration, projects, and 6471 ( see 
FIGURE 1) . 

PROGRAMMERS 

ADMINISTRATION 
PROJECT 

6471 

Meta Query Language (MQL) 
for "Which programmers in 
work on project 6471?" 

FIGURE 1 

representation 
Administration 

While some of these sets may appear to be 
counterintuitive (par ticularly the 
singleton sets "Administration" and 
"6471"), the intended interpretation is 
that these sets are presumed by the user to 
exist somewhere in the DB (a s values, as it 
turns out in this case ) . The direct 
response to the query is the subset of the 
programmers in the DB that "survive" the 
composition of the relations, in the 
example, yielding those programmers in 
Administration that work on project 6471. 
While this is not the way the query is 
actually executed, it is a convenient 
conceptualization. The MQL expression is 
passed through several levels of 
translation, and ultimately emerges as an 
exec utable query on a CODASYL DB. 

GENERATING CORRECTIVE INDIRECT RESPONSES 

Should the query fail, in the sense 
that it returns an empty set, control is 
passed to a corrective indirect response 
generator, which attempts to check and 
correct any false presumptions made by the 
user. 

Determining a large class of 
presumptions that the user has made is 
facilitated by observing that the MQL query 
~sume~ !he non-emetiness of its corlnectea 
subgraphs. In particular, a direct answer 
of "None." (the empty set ) is inappropriate 
if the system is able to determine that a 
connected subgraph of the MQL also 
represents an empty set. Since any 
connected subgraph itself constitutes a 
well formed query, its emptiness can be 
checked by simply passing it through the 
interpretive components and executing it 
against the DB. Should the result be the 
empty set, the appropriate corrective 
indirect response is generated. In the 
example, the various subgraphs and their 
corresponding corrective indirect responses 
are as given in FIGURE 2. 
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C PROGRAMMERS ) 

"I don't know of any programmers." 

(ADMINISTRATION) 

"I don't know of any Administration ." 

C PROJECTS ) 
"I don't know of any Projects." 



j 

:I 

I 

I 
• I 

"I don't know of any 6471." 
" IN" C PROGRAMMERS } ( ADMINISTRATION) 

"I don't know of any 
Administration." 

programmers 

"WORK ON" 

( PROGRAMMERS )- --{ __ P_R_oJE_c_T __ ) 

in 

"I don't know of any programmers that work 
on projects. " 

C PROJECT }- ~G 
"I don't know of any project 6471. " 

"WORK ON" PROGRAMMERS 

PROJECT ADMINISTRATION 

"I don't know of any programmers in 
Administration that work on projects." 

"WORK ON/( PRffiR/fflERS ) 

C PRWECT ) (-64_71_) 

"I don't know of any programmers that work 
on project 6471." 

MQL subgraphs and corresponding corrective 
indirect responses. 

FIG URE 2 

Suppose that the query has been posed 
in an environment where there is no project 
6471 in the · DB. While the direct, correct 
response to the query is "None.", this 
response misleads the user by implicitly 
confirming that there is a project 6471. 
Rather than presenting the direct response 
to the user, the control structure begins 
executing the pres umptions (subgraphs) 
against the DB. It will discover that the 
subgraph corresponding to "I don't know of 
any project 6471." returns an empty 
response set, and consequently will produce 
this corrective indirect response, rather 
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than the direct one. All corrective 
responses generated by this tec hniq ue will 
entail the direct response to the query, 
since they will entail the emptiness of the 
direct response set. 

Several aspects of this procedure are 
worthy of note. First, although the 
selection of the response is dependent on 
knowledge of the domain (as encoded in a 
very general sense in the DB system - not 
as separate theore ms, structures, or 
programs), the computatjon of the 
presumptions ~ totally independent - of 
dom~in ~pecific knowledge. Because these 
inferences are driven solely by the parser 
output (MQL representation), the procedures 
that determine the presumptions (by 
computing subgraphs) require no knowledge 
of the DB. Consequently, producing 
corrective indirect responses from another 
DB, or even another DB system, requires no 
changes to the inferencing procedures. 
Secondly, the mechanism for selecting the 
indirect response is identical to the 
procedure for executing a query. No 
additional co mputational machinery need be 
Invoked to select the appropriate incITrect 
response. Thirdly;- the computational 
overhead involved in checking and 
correcting the users presumptions is not 
incurred unless it has been determined that 
an indirect response may be required. 
Should the query succeed initially, no 
penalty .!_~ exec ution time will ~~ ~ for 
the ability to produce the indirect 
~esp~nse~. In addition, thec,nly increase 
in space overhead is a small control 
program to produce the appropriate 
subgraphs (the linguistic generation of the 
indirect response is essentially free - it 
is a trivial addition to the paraphrase 
component already required in the parsing 
phase). For these reasons, corrective 
indirect responses, made possible by a 
careful choice of representations and 
associated algorithms, are produced in a 
domain transparent fashion with minimal 
system overhead using knowledge already 
available in the DB. 

SOME OTHER COOPERATIVE RESPONSES 

In addition to facilitating corrective 
indirect responses, the MQL provides a 
convenient representation for producing 
other types of cooperative responses. 

One such response is a Sug~stive 
Indirect Response. In human conversatTon, 
questions are normally phrased to expect a 
positive or non-trivial answer. When 
negative responses occur, it is frequently 
a · signal to the respondent that the 
questioner has gotten "off the track". It 
is then appropriate to include some 
additional, potentially relevant 
information in the response. 5B and 6B are 
examples of such responses. 



5 A. I s John a se n i o r ? 
5 B. No, he 's a junior, 

6A. Are there any more trains to N.Y. 
this evening? 

68, No, but there are 3 buses, 

We call such responses suggestive 
indirect responses, because after answering 
the questions, they go on to suggest some 
additional information. 

The key observation here is that these 
responses are usually answers to slightly 
different questions. This system 
incorporates a mechanism for producing 
suitable variants of queries under 
appropriate circumstances. In the proper 
environment, the query in FIGURE 1 would 
result in the response: "None, but here are 
the programmers that work on project 
6471 ••• " As with corrective responses, the 
suggestive indirect response procedures 
mainipulate the MQL in a domain transparent 
way. 

A common problem in NL query systems 
is the production of unacceptably terse 
answers. Consider a response of 7B to 7A, 
and 8B to BA , 

7A. What grades did students 
CSEllO? 

7B, A,B,B,A,C,,,, 

get in 

BA. What are the phone numbers of 
managers in Marketing? 

BB . 293- 4958, 584 - 7945, 293-7754 ••• 

Obviously, both the grades and the phone 
numbers are likely to be useless without 
the associated names. These questions 
require Supportive Indirect Responses 
responses that provide the supporting 
information necessary to interpret .the 
answer. 

The production of supportive indirect 
responses is facilitated by the MQL, The 
present system provides information on each 
presented set (except those that are 
singletons), supporting the selection made 
from the primary presented set. 

The CO-OP system currently provides 
other types of indirect and direct 
cooperative responses, in addition to 
these, 

A SHORT DEMONSTRATION 

APPENDIX 
interaction 
implementation 
stands. This 
commented here. 

A contains an example 
with the preliminary 

the CO-OP system as it now 
session is abstracted and 

CO - OP is currently implemented on a 
in DEC KI - 10 under TOPS - 10 mainly 
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UCI -RUTGERS-LISP, and runs in 95K words, 
including the SEED DB system. The DB is a 
live one used by the National Center for 
Atmospheric Research (NCAR) in Boulder, Co. 
to keep track of their computer users, 
projects, research sponsors, etc, The 
primary purpose of the DB is to track the 
use of NCAR facilities, for accounting and 
other uses. 

The user in the example is a 
hypothetical Computer Science department 
chairperson who has heard that the NCAR DB 
contains information about who is 
sponsoring research in various areas, and 
is interested in securing some research 
funds, S/he believes (incorrectly, it 
turns out) that funds are available to 
study mass storage, S/he begins by asking: 

Q: Who sponsors active projects in mass 
storage? 

R: I don't know of any projects in mass 
storage, 

The system is unaware of any projects in 
mass storage, and so explicitly corrects 
the users presumption that there are some. 
The user tries a more general question . 

Q: Who 
science? 

sponsors research in computer 

R: I don't know of 
research in computer 

anyone that 
science, 

sponsors 

Again, a corrective indirect response - but 
this time stating that no sponsors are 
known, rather than that no suitable 
projects are known, In addition to being 
able to generate corrective indirect 
responses, the system can choose the most 
appropriate one when more than one is 
applicable. This is done by observing that 
the subgraphs of an MQL query are partially 
ordered according to a subgraph relation, 
and it is most appropriate to correct the 
"least" failing subgraphs with respect to 
this ordering. 

Getting nowhere, the chairperson now 
asks: 

Q: What are the areas? 

and receives a list of the areas of 
interest (s/he knew that the projects at 
NCAR are grouped according to a 
predetermined list of areas of interest), 
identified by the area number and name, 
S/he observes that #6 (data processing) and 
#12 (numerical methods) look interesting, 
and follows up with: 

Q: Who sponsors projects in area 6? 

The response is a list of sponsor names 
with a supportive indirect component of the 
projects they sponsor in area 6, the name 
of the area (because only the number was 
supplied - the system doesn't remember that 
it just provided the area name to the 
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user), and the project numbers of the 
sponsored projects. The user now decides 
that Nasa Headquarters looks the most 
promising (s/he has already checked with 
NSF), and so asks: 

Q: What is sponsored in numerical methods 
by Nasa Headquarters? 

After checking the DB, the system discovers 
that Nasa Headquarters doesn't sponsor 
anything in numerical methods. 
Additionally, it is unable to detect any 
failed presumptions on the part of the 
user . It therefore provides a negative 
response followed by a suggestive indirect 
response listing the projects that Nasa 
Headquarters sponsors in any area, in the 
hope that this will be helpful to the user • 

R: I don't know of anything in 
methods that Nasa Headquarters 
But you might be interested in 
that Nasa Headquarters sponsors ••• 

nume r ica 1 
sponsors. 

anything 

After perusing this list, the chairperson 
concludes that although the projects don't 
look very promising, s/he will get in touch 
with Nasa Headquarters. S/he asks: 

Q: Who is the contact at Nasa Headquarters? 

It turns out that there is a contact at 
Nasa Headquarters for each project 
sponsored, and so the system prints out the 
list (sorted by contact), along with the 
projects they sponsor. Although the user 
has presupposed that there is only one 
contact at Nasa Headquarters, the system 
provides the entire list, without 
objecting. This and other forms of sloppy 
reference are tolerated by the system. 

CONCLUSION 

This work demonstrates the feasibility 
of producing cooperative responses from a 
NL DB query system in a practical and 
domain transparent way. A more robust 
implementation is currently underway, in 
the hope that this system can be put into 
active use at NCAR. CO-OP, as designed and 
currently implemented, produces other types 
of responses not detailed here. Approaches 
to portablility, transparency of DB update, 
sloppy reference, modularity, a new method 
of parsing and treating parse failure, and 
sensitivity to a users "view" of the domain 
as reflected in their questions, are all 
incorporated to some degree in this system. 

Any practical NL system that will be 
subjected to typically naive users must 
address the issues of cooperation addressed 
here, if it is to function acceptably. A 
careful choice of representations and 
associated algorithms can produce an 
acceptable level of cooperative behavior 
without encoding large chunks of 
domain-specific knowledge or maintaining a 

detailed user model . 
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APPENDIX A 

Following i s a transcript of a brief sample session of the CO-OP system. The user is a hypothetical 
Computer Science Department chairperson who is l ooking for r esearch funds (see t ext). 

Some notes: In order to maintain the integrity of the system in an environment where the DB is 
subj ect t o updates, l exi cal items appearing solely as data values are not duplicated in the NL 
components. Although the design of the system calls for the DB to operate as an extension of the lexicon, 
this link has not yet been impl emented . Consequently, data values encountered in the questions are 
currently presented t o the user with a menu of possible categories for disambi6uation. This 
inconvenience will be eliminated in the new version, currently under development. 

Paraphrases are presented t o the user for approval to avoid misinterpretations. Unfortunately, t he 
paraphrases are much too close (usually identical ) t o the user's phrasing. The new version of the system 
will incorporate a T!Dre reasonable theory of paraphrase. The data presented here has been altered in the 
interest of privacy. Other than these changes, the transcript is an exact copy of the output produced by 
the system. 

(CO -OP ) 

Welcome to the COOPERATIVE QUERY system, Version o. This system 
provides the casual user with informative responses to Natural 
Language queries. It will perform only Data Retrieval - no calculations 
or corrections to the Data Base can be made . Currently, the following 
conventions/restrictions must be observed : 

1 . Each question must begin with a WH-word, or 'How ••• '. 
2. Do not refer to dates or clock times. 
3. Explicit conjunction, disjunction, an.a negation are not supported 

('and', 'or', 'not'). 
4. Neither are quantifiers (except as in 1. above ) , or comparatives. 
5. No smoking while the query system is in operation . 

What is the maximum# of entries you want ln the responses? 15 

Please state your question: 

WHO SPONSORS ACTIVE PROJECTS IN MASS STORAGE? 

PARS ING ••• 

I'm not quite sure what "MASS STORAGE" means ••• 

Please enter the number of the category the word belongs in. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

SOMEWHAT UNCERTAIN 
NONE OF THE BELOW 
DIVISION NAME 
SUPERDIVISION NAME 
SPONSOR NAME 
ADVISOR NAME 
PERSON NAME 
AREA OF INTEREST 
PROJECT TITLE 
GROUP ID 

YOUR SELECTION: 7 

I understand your question to mean : 

WHO SPONSORS PROJECTS ACTIVE IN MASS STORAGE? 

Is that approximately what you intended (yes, no or stop)? YES - SORT OF. 

I DON'T KNOW OF ANY PROJECTS IN MASS STORAG~ • 

Any more questions (ye s or no)? YES 
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Please state your question: 

WHO SPONSORS RESEARCH IN COMPUTER SCIENCE? 

PARSING ••• 

I understand your question to mean: 

WHO SPONSORS RESE ARCH I~ COMPUTER SCIENCE? 

Is that approximately what you intended (yes, no or stop)? YES 

. . 1 I DON'T KNOW OF ANYONE THAT SPONSORS RESEARCH IN COMPUTER SCIENCE• 
' I 

Any more questions (yes or no)? YES 

Please state your question: 

WHAT ARE THE AREAS? 

PARS ING ••• 

I understand your question to mean : 

DISPLAY THE AREAS. 

Is that approximately what you intended (yes, no or stop)? YES 

(AREA OF INTEREST #) (AREA OF INTEREST) 

1 AEROSOL PHYSICS 
2 ASTROPHYSICS 
3 BOUNDARY LAYER, PLANETARY 
4 CHEMISTRY, ATMOSPHERIC 
5 CLIMATE 
6 DATA PROCESSING (AIRCRAFT, BALLOON, OTHE 
7 DYNAMIC METEOROLOGY (GENERAL) 
8 ECONOMIC AND SOCIETAL IMPACT STUDIES 
9 GENERAL CIRCULATION 
10 GEOPHYSICAL FLUID DYNAMICS (BASIC) 
11 MESOSCALE AND REGIONAL-SCALE MODELS 
12 NUMERICAL METHODS 
13 OBJECTIVE ANALYSIS AND DIAGNOSTIC STUDIE 
14 OCEANOGRAPHY 
15 RADAR METEOROLOGY 

Any more questions (yes or no)? YES 
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Please state your question: 

WHO SPONSORS PROJECTS IN AREA 6? 

PARSING ... 

I understand your question to mean: 

WHO SPONSORS PROJECTS IN AREA t6? 

Is that approximately what you intended (yes, no or stop)? YES 

(SPONSOR NAME) (PROJECT TITLE) (AREA OF INTEREST) 

AIR FORCE CAMBRIDGE RESEARCH AIRCRAFT+ RADAR STUDIES OF PRECIP. SYSTEMS DATA PROCESSING 
AMERICAN MET EOR. SOCIETY AMS QUEST_IONNAIRE ANALYSIS DATA PROCESS ING 
BUREAU OF RECLAMATION SAN JUAN AIRCRAFT DATA ANALYSIS DATA PROCESS ING 
ENVIRONMENTAL PROTECTION AGNCY HEAT+ VAPOR FLUX MEASRMNTS FROM NCAR Q AIR DATA PROCESSING 
ERDA-BATTELLE NORTHWEST LABS WYOMING WIND ENERGY DATA PROCESS ING 
NASA HEADQUARTERS DATA ANAL FOR COLO HAO OSO I INSTRUMENT DATA PROCESSING 
NATIONAL SCIENCE FOUNDATION AIRCRAFT+ RADAR STUDIES OF PRECIP. SYSTEMS DATA PROCESS ING 

GATE DATA ANALYSIS AND RELATED ST UDIES DATA PROCESSING 
HEAT+ VAPOR FLUX MEASRMNTS FROM NCAR Q AIR DATA PROCESSING 
KNOLLENBERG PROBE DATA ANALYSIS DATA PROCESSING 
LAB SIM. OF GLOBAL ATMOS. CIRCULATION DATA PROCESSING 
METROMEX AIRCRAFT DATA REDUCTION DATA PROCESSING 
S.PARK CONTINENTL SUMMRTME CUMULS EXPT. DATA PROCESSING 
SNOW SHOWER CLOUD PHYSICS-DATA REDUCTION DATA PROCESSING 
STATISTICAL ASPECTS OF METEOR.DATA ARCHIVING DATA PROCESSING 

Any more questions (yes or no)? YES 

Please state your question: 

WHAT IS SPONSORED IN NUMERICAL METHODS BY NASA HEADQUARTERS? 

PARSING ••• 

I understand your question to mean: . 
WHAT IN NUMERICAL METHODS DOES NASA HEADQUARTERS SPONSOR? 

Is that approximately what you intended (yes, no or stop)? YES 

I DON'T KNOW OF ANYTHING IN NUMERICAL METHODS THAT NASA HEADQUARTERS SPONSORS 
BUT YOU MIGHT BE INTERESTED IN ANYTHING THAT NASA HEADQUARTERS SPONSORS ••• 

(AIRCRAFT, 
(AIRCRAFT, 
(AIRCRAFT, 
(AIRCRAFT, 
(AIRCRAFT, 
(AIRCRAFT, 
(AIRCRAFT, 
(AIRCRAFT , 
(AIRCRAFT, 
(AIRCRAFT, 
(AIRCRAFT, 
(AIRCRAFT, 
(AIRCRAFT, 
(AIRCRAFT, 
(AIRCRAFT , 

(PROJ ECT ) 

BALLOON, OTHE 35371001 
BALLOON, OTHE 36051000 
BALLOON, OTHE 35711008 
BALLOON, OTHE 35711009 
BALLOON, OTHE 35711011 
BALLOON, OTHE 35071000 
BALLOON, OTHE 35371001 
BALLOON, OTHE 35371005 
BALLOON, OTHE 35711009 
BALLOON, OTHE 35711007 
BALLOON, OT HE 35111021 
BALLOON, OTHE 35061000 
BALLOON, OTHE 35081018 
BALLOON, OTHE 35061015 
BALLOON, OTHE 35261001 

(PROJ ECT TITLE) (SPONSOR ADDRESS) (PROJECT/ACCT t ) 

ACCRETION + ELECTRICAL HEATING MODELS PLANETARY PROGRAMS/SL, WASHINGTON, DC 20546 35021001 
CHEMICAL MODIFICATION OF IONOSPHERE-PHASEII PLANETARY PROGRAMS/SL, WASHINGTON, DC 20546 .3 566 l 00 9 
DATA ANAL FOR COLO HAO OSO I INSTRUMENT PLANETARY PROGRAMS/SL, WASH ING TON, DC 20546 35071000 
DYNAMICS OF PLANETARY MAGNETOSPHERES PLANETARY PROGRAMS/SL, WASHINGTON, DC 20546 35101008 
E LECTRONMAGNETIC SCATTERING PLANETARY PROGRAMS/SL, WASHINGTON, DC 20546 35021006 
MARKOV CHAIN RADI. ... TIVE TRANS. FOR CALCULATIN PLANETARY PROGRAMS/SL, WASHINGTON, DC 20546 36081000 
OUTER ATMOSPHERES OF F,G,+K DWARF STARS PLANETARY PROGRAMS/SL, WASHINGTON, DC 20546 35071048 
PERTURBATIONS OF STRATOSPHERIC OZONE PLANETARY PROGRAMS/SL, WASHINGTON, DC 20546 35121013 
PLANETARY HEATING MODELS - SOLAR WIND PLANETARY PROGRAMS/SL, WASHINGTON, DC 20546 35021007 
RADIATIVE TRANSFER IN SPHERICAL SHELL ATMOS. PLANETARY PROGRAMS/SL, WASHINGTON, DC 20546 35311027 
STRATOSPHERIC PHOTOCHEMISTRY+ TRANSPORT PLANETARY PROGRAMS/SL, WASHINGTON, DC 20546 35201010 
THEOR MODEL FOR DETER OF CHRGD PARTICLE DIST PLANETARY PROGRAMS/SL, WASHINGTON, DC 20546 35201017 
TRANS. NON-EQUI LIB. OF ELECTRONS IN SOLAR RE PLANETARY PROGRAMS/SL, WASHING·roN' DC 20546 35071040 
WAVE INDUCED PRECIP.OF ENERGETIC PARTICLES PLANETARY PROGRAMS/SL, WASHINGTON, DC 20546 35661007 
X-RAY SCATTERING IN SOLAR FLARES PLANETARY PROGRAMS/SL, WASHINGTON, DC 20546 35661005 

Any more que stions (yes or no)? YES 

2 04 



Please state your question: 

WHO IS THE CONTACT AT NASA HEADQUARTERS? 

PARS ING ••• 

I understand your question to mean : 

DISPLAY THE CONTACT AT NASA HEADQUARTERS 

Is that approximately what you intended (yes, no or stop)? YES 

(SPONSOR CONTACT) (PROJECT/ACCT #) 

Benson, Bernard 35071040 
Candler, L.M. 35101008 

35121013 
Farell, Simon v. 35601009 

I Handler, J. 350210Gfi 
Kenig, Lana P. 35201017 

35021001 
35311027 

King, Jr, James 35661005 
Marshall, B. 35201010 
Myers, David 35201012 
Noble, Paul H. 35661007 

.... . 35021007 
Schrager, A. L. 35071048 

35071000 

· 1 

Any more questions (yes or no)? NO 

I 
I 
I 

·I 

. I 

· 1 

-I 

., 
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A Progress Report on the Discourse and 

Reference Components of PAL 

Candace Sidner 

M.I.T. Artificial Intelligence Laboratory 

Cambridge, MA U.S.A. 

Abs tr act: This paper reports on rese,1rch being conducted on· 

a computer ass istant, ca lled PAL. PAL is being desig-ned to 

arrange var ious kinds of events with conc~rn for the whci, 

what, when, where and why of that event. The goal for PAL is 

to permit a speaker to interact with ii in Engl_ish and to use 

extended discourse to stale the speaker's requirements. The 

portion of the language system discussed in -this report 

disambiguates references from discourse and interprets the 

purpose of sentences of the discourse. PAL uses the focus of 

discourse lo direct its attention lo a port ion of the discourse 

and to the database to which the discourse refers. The locus 

makes ii possible lo disambiguate references with minimal 

. search. Focus and a frames representation of the discourse 

make it possible to interpret discourse purposes. The focus 

and representation of the discourse are explained, and the 

computational c·omponenls of PAL which implement reference 

disambiguation and discourse interpretation are preser11ed in 

detail. 

Keywords: reference disambiguation, disco.urse interpretation, 

discourse purposes, natural tanguage, focus, frames. 

· I . Introduction 

Every discourse in English consists of on_e· or more 

sentences which create a general context of pe.ople, places, 

objects, times and actions. The speaker of the discourse 

generally will not relate references from one sen•ence .to the 

previous in any direct fashion nor indicate how the requests or 

assertions · of each sentence in the discourse are connected. 

For the hearer to interpret the speaker's discourse and d~cide 

what the speaker is requesting or asserting, the hearer must 

complete two tasks, among others: (I) disambiguate the 

referentia l terms for their inter-sentential and extra-sentential 

links, ant;! (2) determine the purpose of each !;entence in the 

discourse. The first of these two tasks makes it possible. to 

know what entities the speaker is referring to. The second 

task result.s in establishing a connected discourse and 

understanding what the speaker wants to communicate. 
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Interpreting the discourse purposes of various sentences 

explains why 01 is acceptable below (even though 01 -2 does 

not mention the party) while 02 is unacceptable. A theory of 

reference disambiguation will explain the disambiguation of his 

to Bruce and not to Mike, in 03. 

Dl - 1 
2 

John is having a party al his house. 
I think the guest of honor is Mary as they are 
going to announce the · publication of Mary's 
book. 

D2-1 Henry wants lo meet with Harold. 
2 Sing a song before 3 on Thursday. 

D3 - 1 I want to have a meeting this week. 
2 Brucei will be the guest lecturer. 
3 He will speak on slavery in ant colonies . 
4 Mike wants to read ~ report before the. talk. 

An explanation of these phenomena. underlies the research 

being conducted at the MIT Al lab on PAL. While RAL, is 

designed to understand the English form of requests for 

arranging various events, the design depends upon a theory · 

about how to interpret a speaker's 1 extended discourse. PAL 

acts as a model of a hearer in these discourse situations. Two 

problems that must be solved before PAL can understand 

requests in extended discourse are referential disambiguation 

and discourse purpose interpretation. This paper reports On 

progress on these two problems. 

A sample scenario of what PAL is designed to d9 is· 

given in 04 below. 

D4- l I want to schedule a meeting with Dave. 
2 It should be al 3 p.m. on Thursday. 
3 We can meet in his office. 
4 Invite Bruce. 

To understand this discourse, PAL must have several natural 

language ski lls: 

a. parsing for the syntactic structure. 

1. I wiil use the term speaker to refer to the producer of a 
spoken or written discourse and hearer to refer lo the 
receiver of the discourse. 
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b. interpret at ion of predicate-argument relations. 
c. mapping of the words of each sentence to a 

representation U9ed by the underlying data.base 
and programs. 

d. disambiguat ion of the referential terms. 
e. interpret at ion of each sentence for its discourse 

purpose. 

The f irst two of these ski ll s constitute the parser and case 

frame interpreter developed by Milch Marcus. The 

representation mapping was deve loped by the . author. These 

three modules are discussed in Marcus [ 1978). To present a 

clearer picture qi what PAL must be able ·to do, consi~er a 

sentence by sentence interpretation of the above dialogue. 

I want to schedule a meeting with Dave. 
PAL interprets an internal represenlatio.n of the 
speaker as referent of "I," and an internal 
representation of "David McDol'\ald" as the referent 
of "Dave." 
PAL creates a new internal representation with 
features lo be discussed later lo be the· referent. of 
"a meet ing .. " 
PAL interprets "want to schedule a meeting" to · be 
a request for a scheduling operation which may 
extend over several sentences. 
PAL inte~prets the whole sentence lo be asserting 
that the meeting has two participants, the speaker 
and Dave McDonald. · 

II should be at 3 p.m. on Thursday. 
PAL interprets "it" as co -referring to the meeting 
under discussion. 
PAL disambiguates the time phrase lo a frame form 
used by the scheduler. 
PAL interprets the sentence as asserting 11ddilionat 
information about the meeting al hand. 

We can meet in his office. 
PAL determines that the speaker and other 
participant are the co-referent of "we." 
PAL finds in its internal representations of ·things, 
an entity which "his office" can refer lo. 
PAL accepts the sentence a'S providing more 
information about the meeting al hand and asserts 
that fact . 

Invite Bruce. 
PAL finds an internal representation of the person 
referred lo as "Bruce." · 
PAL determines that the ellided event which Bruce 
is lo attend is the meeting under discussion. 
PAL accepts the invite command as asserting 
another participant of the meeting. 

<end of discourse> 
PAL interprets the scheduling reuqesl as complete 
and carries out the scheduling command with the 
meeting as ii has been specified in the discourse. 

In order to perform these tasks, a theory about the nature of 

discourse and some of its components has been developed and 

will be reported on here. Following that discussion, a closer . 

look at the rules used by an implemented running version of 

PAL will be discussed. 
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2. Definition of Discourse 

First, a "discourse" must be defined. lake a 

discourse to be any connected piece of text or spoken 

language of more than one sentence or independent sentence 

fragment. Ideally, every discourse is about some ce.ntral 

concept which is then elaborated by the clauses of a 

discourse. Speakers often produce discourses which fail lo 

meet this specification because they talk 1 a) about several 

concepts without relating them or lb) without informing the 

hearer that several concepts will . be discussed at' once or 2) 

because !,here is no central concept i.n their discourses. 

Howev.er, this . idealization will serve to iniroduce · some 

important terms. Multi - concept discourses do occur, and can 

be described using an approach which is a· generalized version 

of that presented in thi s paper . Some cases of multi-concept 

discourse are discussed in Bullwinkle [1977). However, the 

theory presented here has been tested in a running 

implementation of PAL, and this paper is restricted lo that 

tested model. 

In previous work [Winograd, 1971; Rieger, 1973; 

Charniak, 1972) various . structures for referencing were 

assumed. Winograd used lists of entities of the same semantic 

type and chose referents for anapho·ric terms based on 

recency and likelihood in the proper semantic class. His 

mechanism was too simple and failed to account for numl!'ro1:1s 

anaphoric cases as well as being limited to objects in a closed 

world. Rieger postulated memory structures from a. conceptual 

dependency representation of the sentences of a discourse. 

The memory structures were used lo iAfer other information 

that could be unified to determine 'co-reference. His 

algorithms suffer from the explosive number of inferences that 

can be made from each memory strucl.ure. Charniak supposed 

that there were large collections .of inference rules, called 

demons, which knew what to do with a small .piece of the total 

knowledge, and which fired whenever that knowledg.e was 

encountered. This theory represents overkill; if one could 

have as many demons as Charniak supposed and gf!I them to 

fire when that knowledge occurred, the mechanism could be 

used to predict co-referentiality of referencial terms. 

However, controlling the multitude of demons is- diflicult2 , and 

furthermore one cannot imagine how such a collection of 

knowledge is learned in the first place. 

To interpret definite noun phrases and anaphors, 11 

different approach is taken in PAL. II is ass.urned that 

discourse contains a structure, which when represented, can 

2. Rosenberg [personal communcalion] has created a device 
called sentinels which may partially solve this problem. 



cons train .the interpretation of referential terms. From. the 

discourse structure, r ules have been discovered which govern . 

the accep tabi lity of referential terms in different dis.course 

situations. The interpretation of references is not strictly 

deterministic; it is like knowing which of several places to look 

in the discourse for a co-referent and trying out the term 

found there. 

The theory underlying PAL distinguishes two kinds 

of referring. The first is an internal reference between.·a noun 

phrase and some pre-existing database object. That database 

object represnts a real world entity. In Figure 1 b11low 

internal reference links the noun phrase NPl "Jimmy .Carte.r" to 

a representation of Jimmy Carter (who is described. as 

president of the US, etc. ). How that database object refers to 

the .real world is the classica l semantic problem of reference 

(cf. Kripke [ 1972) among others) and is b~yo"'d the ·scope of 

this work. The other kind of referring is co-refer~nce. 

Co~reference links a noun phrase to another noun phrase. The 

two noun phrases are sa id to co-refer, and both refer to the 

same database object. In Figure 1, the dashed link from NP2 

"Jimmy" to NPl is a co-reference link. The dot~dash link from 

NP2 to the database object is a virtual internal reference link 

which results from the co -reference link from NP2 to NPl and 

from the internal reference link from NPl to the· database 

ob ject. Internal reference and co-reference links are 

distinguished because co-reference links can be established 

more easi ly using discourse structure. In the remainder of this 

paper when I speak of intern.al reference, I will drop the 

phrase "internal" and use only "reference." 

Fi1. 1. Reference Links BetwHn Noun Phrase, 

. /_.,."""" . 
/ co- reference \ 

IC. 

NP 1 "Jimmy Carter" NP2 "Jimmy" 

reference 

I 

' virtual 
;--- internal 

reference 

Database Representation of{mmy Carter 
Name: Jimmy Carter 
occupation: President of. US 
birthplace : Georgia 
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3. The Concept of Focus 

The centr al concept of a discourse may be 

elaborated by several sentences of the discourse and then 

either discontinued in favor of a related concept, or dropped in 

favor of a new concept. This central concept of a discourse is 

called the discourse focus or simply the focus. This term was 

first used by Gro.sz [ 1977). A simple example of focus is 

meeting in D4 repeated below: 

D4- l I want to schedule a meeting with Dave. 
2 It should be at 3 p.m. on Thursday. 
3 We can meet in his office. 
4 Invite Bruce. 

All four sentences give information about \he focussed entity. 

The focus is what makes a text or a set of utterances a 

discourse. 

In this work the focus is assumed to be a concept lo · 

which other concepts are associated. Some of the association 

links are "built - in" in the sense that they exist previous to the 

discourse. For example with meeting, built - in associ.al!on links 

include that a meeting has a lime, a place, a set of participants, 

and a topic of discussion. These as~ocial ion links are 

distinguished in the sense that the concept has explicit links lo 

these concepts while no explicit links exist to other concepts 

such as color , cost or age. The discourse often serves the 

purpose of specifying more about the concepts linked to a· 

focus. In D4-l, there is c~rla in information about who the 

participants are, while D4-2 specifies the time. D4-3 causes 

the hearer lo infer that the office is a place for a meet ing, 

because the focus meeting has a place associated with it, and 

because PAL expects to be informed abouf the con~epts 

associated to a meeting. 

In PAL the association links between concepts are 

easily expressed in the frames structure of FRL [Goldstein and 

Roberts, 1977). A frame for a m~eting has slots for limes, 

places, participants and so on. It is exact ly these .slots I.hat 

serve the purpose of association links to other concepts. One 

purpose of a discourse with PAL is to fill those slots with 

values and required information. As I 'f/i ll discuss in the 

section on the use of definite noun phrases, the values gjven· 

to those slots are also useful in interpreting co-reference and 

in under st anding the · purpose of a sel'llence of the discourse. 

Focus also serves as the central index point for 

co-referencing. The focus is what is going to be talked about 

in the discourse. When ii is introduced, it is new information. 

Thereafter ii is the given informatian, and more new 

information is added to it. Knowing what the focus is helps 

determine co-reference relations because old information can 

be pronominalized while new information cannot. If a focus is 



seen not just as an entity by itself but connected to other 

ent ities, focus indicates ho_w those entities can be co-referents 

as wel l. In D4-(2-4), the focus of meeting can be used to 

determine the co-reference of it, we and his of his office: it 

must co-refer to the focus, we to those individuals ·associated 

to the foc4s who incluc;le the speaker, and his ·10 an individual 

associated to the focus who is not the speaker and has male 

gender. The focus is used as an access function· for retrieving 

the co-referent of a particular noun phrase. · . Later .in this 

paper, ru les governing the use of anaphora by means of the 

focus of the discourse will be discussed. 

In the current version of PAL, focus is chosen as the 

first noun phrase following the verb if one ·exis1s, else the 

subje~t is used as focus. This method of choosing focus is 

adequate for current PAL discourses but not sufficier,l for. the 

most general case. See Sidner [forthcoming] _ for a full 

discussion of focus choice. Once a focus is chosen, it can be 

used in succeeding sentences to determine the co- reference of 

pronouns or definite noun phrases as well as to check to see if 

the · discourse is still connected. A sentence like (la) belo:,v 

followed by (1 b) is a disconnected discourse because the 

co-referential terms in (1 b) are unrelated to the focus of (la) 

based on the association links present in the database'. 

(1 a) I want to meet with Henry. 
(lb) Give me an ice cream cone. 

The focus of the discourse can be changed while 

main! aining a connected discourse. The chief means · are. end of 

discourse remarks and focus -shift. End of discourse remarks 

can be explicitly stated ones like "That's i!II," or .implicit ones, 

such as the act of simply ending the input stream .. A ·less 

reliable, implicit marking of the end of dtscourse is to use a 

sentence with unrelated co-referential' terms. In the case 

above, (la) followed by (lb) could be assumed to be two 

separate discourses. This case is less reliable because it is 

impossibl'e to tell if the speaker assumes that lhe ice cream 

cone is related (as is often the case with a non-ideal speaker) 

or whether the speaker intends to change the discourse to a 

new one. At present PAL does not accept this kind of abrupt 

discourse change; instead PAL indicates that such a·sentence 

is not intelligible in the discourse. A more sophisticated PAL 

might request that the speaker explain how it is that (lb) is 

related to the discourse. 

The other means of changing the focus I caU 

focus -shift. A discourse may expand various aspects of a 

focus and then choose one aspect of the focus to describe in 

detail. For example, in a discourse about meetings, we may 

want to spend several sentences specifying the · time for the 

meeting, why that time is best and so on. When time is being 
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discussed, one would like to know that. the focus has changed 

so that assertions or requests can be taken \o be. about lill)e, 

However, the meeting focus may be brought back into the 

discussion later. To maintain both foci, the meeting focus is 

stacked for later use.3 Detecting · this focus change i.s the 

process of focus -shift. 

Focus shifts cannot be predicted; they are 

detectable only after they occur. To detect the foqis shi·ft, the 

focus shift mechanism takes note of new phrases in sentences 

following the introductory sentence. Any new phrase is a 

potential focus. an anaphoric term in a sentence which follows 

the potential focus sentence may co-refer to either the focus 

or the potential focus . If the potenti;il focus is an acceptable 

co - referent, it is the co - referent of the anaphoric term, and 

the focus shifts to the potential focus. The choice of office as 

co - referent of ii in D5 -3 results from focus-shift . The 

co-referent of if to meeting in D5-3' results from. the rejection 

of the potential focus office as the co - referent. 

D5-1: I want to schedule a meeting with George, Jim, 
Steve and Mike. 
2 We can meet in my office. 
3 It's kind of small, but the meeting won't last very 
long anyway. 
3' It won't take more than 20 minutes. 

Rejection of a co - referent resvlts from semantic information 

abo4t the type of verb and the type of semantic entities it 

accepts. Semantic information has been proposed for use with 

co - reference (see Winograd [ 1971 ], among others). PAL uses 

this information only to reject or confirm choices made by the 

focus and focus-shift mechanisms, rather than to suggest 

classes of co - referents.4 

4 . Modules of PAL 

The preceding descri_ption of co-reference 

interpretation has been incorporated into a series of modules 

for PAL. These modules are depicted in Figure 2 below. The 

arrows represent f low of control between modules. 

Each English sentence presented to PAL by a 

speaker is interpreted via a parser, case frame int~preter -a.nd 

represent at ion mapping program [Sullwinkle, 1976; Marcus, 

1978) into a set of FRL frames. The sentence "Schedule a 

meeting in my office," is represented by the following 

simplified frames (slot and slot values are listed also). 

3. Grosz [Deutsch, 1975) .gave the first specification of 
discourse shifts using the concept of focus. These . are 
discussed further in Grosz [1977). 
4. The mechanism of focus-shift is discussed in more detail ·in 

Bullwinkle [ 1977), where the term "sub-topic shift" is ·used. 



Fie. 2. Modules of PAL 

~~~ ,---- ---~ 

frame 
a-kind-of 

~ 
actor 
event 

frame 
a-kind-of 
place 
determiner 

frame 
a-kind -of 
determiner 

frame . 
a-kind-of 

('10.f'f'~j 
r<cu:.'!.~or 

schedule201 
sched1,1le 
"imperative" 
PAL 
meeting203. 

meeting203 · 
meeting 
office207 
"a" 

office207 
office 
my209 

my209 
my 

Given these frames, PAL is expected to determine what my209, 

office207, and meeting203 co-refer to. PAL also must detide 

what the purpose of an imperative scheduling request 

(represented by schedule201) is relative to its database 

collection of actions. Each of these modules will now · be. 

discussed in detail. 

5. Interpretation of Discourse Purposes 

To interpret discourse purposes, a discourse module 

creates a model of the discourse and controls.'the process of 

focus identification. Since the beginning, middle _and end of • 

discourse each require different .actions by the PAL sched.uler, 

the discourse component models each diff.erently. The first 

sentence of the discourse is assumed to specify what the 

nature of the user's communication is. This is a simplified view 

of the real communication process. Many discourses do not 

simply state their object and then elaborate the relevant 

information. Instead many speakers begin a discourse as in 06 

below .in which the first sen\ence contains • reason for some· 

other action, which is requested in a later sentence. Other 

discourses may introduce individuals or objects to ~he hearer 

for later comment on them. 

06: I am going on vacation the beginning of ne)(t week. 
John wants to see me, so schedule our regular 
meeting session before I leave. · 

The current version of PAL uses the simplifie<j view. 
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of discourse to choose a discourse purpose. Introductory 

sentences are assumed to be making some sort of request. 

The PAL discourse module choose.s which request on the basis 

of the verb and any associated modals, or on the ba$iS of 

verbs of desire (want, · wish, wouti like) and the · ve.rb 

complement. A request consists not only of the request type,· 

but of some object which the request is about (intransitive 

verbs are not relevant to PAL since telling PAL to laugh, run 

or groan is inappropriate). The focus of the discourse is used 

for this purpose. · This choice is plausible not only because the 

focus is closely associated with the object of the verb, but 

also because a discourse centers discussion on some particular 

entity, and that entity is captured by the focus. 

Once a focus has been designated, sentences 

occurring in mid-discourse ·are assumed to be about the focus 

until the co-reference module predicts a focus-s.hift and/or · 

until the verbs used are inconsistent with the discourse 

request. Mid -discourse sentences often do , not e)(plkit.ly 

co-refer lo the focus as has been shown previo~sly in 01 and 

04; they may contain an implicit focus co-reference. Use of 

focus for co-reference disambiguation has the added benefit 

that sentences containing implicit focus co-references are 

easily recognized by the discourse component. Once an 

implicit focus relation is established, the module can go onto 

predictions of focus shift. Knowledge that the speaker is 

co-referring to the focus, either explicitly Of implicitly, .makes 

possible the prediction that the discourse is not yet complete, 

and the prediction that the speaker is makJ.ng a coherent 

request. Since neither prediction can be ·assumed triviaUy 

true, the focus is important to the communication process. 

In addition to the focus, the discourse module 

contains know ledge allowing the module to decide if the verb 

of a new sentence is consistent with the discourse request. 

Thus in 07 below, the second sentence uses a verb that is 

consislen.t with the scheduling request while in 07', the verb is 

odd. 

07: Henry wants to mee t with Harold. Choose a time 
before 3 on Thursday. 

07': Henry wants to meet -with Harold. Sing a song . 
before 3 on Thursday. 

The knowledge needed to predict consistency is represented 

in the frames database in two ways. First the frame for the 

discourse request contains information about wliat other 

requests can be sub - requests of the discour.se . . Second a set 

of mapping frames contain information which determine how a 

verb can be interpreted as making a certain request. For 

example, the verb be can be associale,d with scheduling and 

re-scheduling activities. However, the intention of the speaker 

in a sentence like (2) is different within the c!)ntext of a 
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scheduli ng or a re-scheduling request. 

(2) The l ime should be 3 pm. 

In a scheduling context, (2) can be interpreted ·to request that 

t he t ime be established as 3 pm while (2) in re-schedullng can 

have an' interpretation of changing the time from wtiatever it 

was to 3 pm. PAL captures the intention of the speaker 

re lative to a request context by an inference mechanism whi(:h 

is a matcher that · determines that (2) represented as a frame5 

can be associated with scheduling requests by a simple 

mapping · between two frames. This correspondence coupled 

w.ilh the use of focus makes it possible lo understand (2) as . 

part of a discour'se. 

In addition, the mapping functions tell · how to 

interpret the current sentence into one of the. commands which. 

t he scheduler can per form. Included in this proces5 are how 

to map the slots of one frame into a frame which is the 

scheduling action. For example, the verb frame for "We can 

meet in 823" is mapped from a "meet" frame into a frame 

called "assert" with a slot for the object asserted, which is t.he 

focus, and a slot .for what is asserted about that object, in this · 

case the place as 823. 

The end of a discourse is currently interpreted as 

being the end of the speaker's input stream. A more · 

sophisticated means of interpreting discourse end is possible, 

though not implemented, given the focus me~hanism: when .the 

needed slots of the focus are . filled, · the. spe\lker can be 

considered to have finished this discourse. Upo,n sensing the 

end of the discourse, the discourse module informs· the 

scheduler that ii can carry out the action requested .it the 

discourse beginning. Al first glance this may appear as if the 

discourse request specified at the beginning is ignored in favor 

of other requests. In fact I.he initial request is u·sed in 

interpreting mid-discourse sentences. However, m_any 

discourse actions like scheduling require that the action of 

scheduling be delayed until all the necessary information fpr 

scheduling is presented. This process normally c,annot be 

stated in a single·sentence, and a whol11 discourse is n.eeded to 

fill in the request. In this fashion the discourse module 

ref lects the fact that a discourse consists of many 

sub-:discourses centered around i'ndividual entities and which 

are opened and closed by focus shifting or finishing discussion 

of the current' focus. 

PAL is s.imilar to the GUS system [Bobrow et al, 

1977] because it expects a discourse. to provide information 

about the slots of a frame. GUS permits user initiative 

5. A frame is not taken as the meaning, in the classical 
semantic sense, for (2); PAL makes no claims about this sense 
of meaning. 
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although it is unclear what the extirnt of this initiative is. GUS. 

does not seem to ·allow for user initiative of the disco.urse 

requests. Since PAL expects full user control over all parts of 

the discourse, PAL needs a complete description of the 

discourse and its focus. PAL's use of focus also presents a 

complete theory of the kinds of co-reference problems raised 

by the GUS system. 

6. Co- reference Disambiguation 

There are two sub-modules for co-reference 

interpretation in PAL, the sentential and inter-sentential· 

co-reference modules. The inter-sentential co-reference · 

sub-module chooses co - references for referential terms in the 

discourse once the focus Is idenlifed: The task ot' determining 

co - reference varies depending upon the presence or a.bs,:nce 

of previous discourse. When there is previous discourse, 

co-reference interpretation depends largely ·on the focus. For 

simple6 definite noun phrases, PAL assumes either lt:,e focus is 

the direct co-referent of the de.finite noun phrase or the.· focus 

contains a slot that is the co - reference of the definite noun 

phrase. This assumption needs modification since s.ome 

definite noun phrases are used to refer outside the context . of 

the discourse. For example, when trying to .schedule a 

meeting, if the speaker says (3), the definite noun phrase 

co - refers to an entity · associated with the meeting under 

discussion; that association is reflected in the frame · slot 

structure of FRL. 

(3) The best place is my office. 

However, if the speaker says (4), the conference room, i.e. that 

particular conference -room which the speaker has in mind, is · 

not associated with meetings in general, and .so the focus does 

not point out the co-reference. 

(4) We ought lo meet in the conference room. 

However, by searching the focus, the lack of a connection can 

be noticed, and a reference from the database can then be 

considered. In this way, the focus acts as an access. function, 

but only for those co - referential terms related to the previous 

sentences of the discourse. 

PAL uses database search with growing contexts of 

reference to choose reference for other kinds of noun phrases 

which refer to entities outside the discourse. Growing a 

context is accomplished using the immediate set of frames from 

the first sentence and recursively creating largllr sets from 

the slot values of those frames until the frame with .the. name 

in question is found. The context growing mechanism reduces 

6. A simple definite noun phrase is a definite noun phrase 
containing no relative clauses. At present PAL interprets only 
such noun phrases. · 



search from a more global search strategy, and ·helps · control 

potential ambiguities that exist due to multiple possible 

references in the database. This same melho.d could be used 

for definite nou_n phrases that refer outside the· discourse. 

Use of the focus is actually somewhat more complex 

since the definite noun phrase may he a co-;eference to the 

potential focus of the discourse. Should a defin!le noun _phrase 

co-refer to the potential focus, the discourse module pushes 

the current focus to a focus slack and lakes _the potential 

focus as the new focus. The pushed focus is available· for 

later use in the discourse. The current inler~senlenlial 

sub-module does not interpret definite noun phrases used 

gener icall y. The focus can be used for these cases as well 

(see Sidner, [forthcoming]), but the detaHs of this. process are 

not included in the current version of PAL. 

The inter-sentential co-reference sub-module also 

determines the co-reference of personal prono·uns,. For the 

pronouns of first person plural (we, us), two choices can be 

made. First the sub-~odule can choose the focus as the direct 

co-referent of the anaphor. Second the sub-module . can 

choose a set of co-references from a particular slot of the 

focus. Thal slot must contain co-re ferences including the· 

speaker of the discourse. For he/she, and its object forms, the . 

focus is chosen as a direct co-reference. Using the focus as 

co-referent explains the anaphoric co-reference in .D8 of his to 

Bruce and rather than Mike. When the ·focus is not the 

co-referent , a co-referent st ipula.l ed by the co-referent.~ rules 

of the sentential co-reference sub-module, discussed below is 

used. Finally if neither is acceptable, entit ies associated with 

the focus are checked for co-reference. This sub-mocjule 

Pf"edicls · misuse of he/she pronouns if no co-re ferences are 

found from this process or if more than one results f-rom the 

last step il'I the process. 

The interpretation of co-reference for he/she 

pronouns needs to be expanded to include consideration of 

potential focus since in D8 below, his co-refers lo· Bruce and 

not to Mike. 

D8: I want to have a meeting this we.ek. Brucei will be 
the guest lecturer. Mike wants to read !!J!i. report 

fir st. 

It appears that the focus and potential focus ought ·lo be 

checked for co-reference lo such pronouns before sentential 

co-reference rules are used. However, further 

experimentation with such cases is needed to confirm this 

aspect of co-reference. 

For the co-reference of if, the int11r-sentential 

co-reference sub- module chooses a co-refer!!nl either from. 
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the focus, the potential focus or from predictions· from 

sentential co-reference rules, which are discussed below. This 

choice strategy is not entirely adequate because, recency 

appears to play a ro le in the co-reference choices for it. 

Recency rules are discussed in Sidner (forthcoming), and could 

be included in a future ver sion of PAL. The inter-sentential 

co-reference sub-module uses the semant ic con:;lraints placed 

on the pronoun by the verb i.n a few instances; this portion of 

PAL could be expanded greatly. Co-reference rules for they. 

work similarly to . those for · it with consideration that the 

speaker cannot be included in the co-refer(!nce set. 

When no previous discourse exists, PAL's sentential 

co- reference sub-module uses the co-reference rules of Lasnik 

(1976] to choose co-references. The rule is staled as toilows: 

If a noun phrase., NP 1, precedes another noun phrase, NP2,·and 

. NP2 is not a pronoun, and further · if I.he minimal cyclic node 

dominating NP 1 also dominates NP2, then· NP2 and NP2 ar.e 

disjoint in reference. The expression "disjoint in reference" is 

taken to mean have no references in common, thereby blocking 

the co-reference of Bob and Tom to they in (5): 

(5) They assume that Bob will talk to Tom. 

By ,using Lasnik's rule, disjoint references of a noun phrase in 

a sentence can be chose~, as well as a list of acc~plable 

co-references for the noun phrase. This information is 

recorded in the frame presenting the noun phrase. · As pointed 

out by Reinhart [ 1976 ], Lasnik's rule fails to predic! the 

disjoint references in sentences like (6) ·and (7) below, but 

these cases are not problematic given inter-sentential 

co-reference rules because other rules will predict the 

co-reference for the pronouns first. 

(6) Near Dan, he saw a snake. 
(7) For Ben's wife, he would give. his life. 

In addition lo the use of a co-reference rule, the 

sentential sub-module determines the referents of' proper 

names. Using the collection· of frames which make up the 

discourse, a frame containing the correct first (and if given, 

las t) name can be found. Should the immediate di_scourse fail· 

lo produce the name referent, a larger context· can be grown 

from the ·slot values and from the slot defaults of IN! frame 

representing the focus. The same context growing mechanism 

used for definite noun phrases is used. By this process of 

context growing, ambiguous uses of names like .John can be 

avoided. John- will refer lo that person most closely associated 

with the discourse. If more than one frame for the name ..k>hri 

is found, the context growing process predicts that the 

speaker . has used the name ambiguously. Col'llexl growing has 

been effective in a limited number of cases le.sled se far, 

although a database ·w ith more potential ambiguities would 

further lest this sub-module. 



7. Extensions 

The current PAL can be expanded in many 

directions. Some of the necessary developments of its 

co-reference capabilities have already been discussed. 

Significantly, these capabilities do not .require exte.nsive new 

theoretical appparalus; the focus of discourse and structure 

of FRL can sustain the needed improvements. In discourse 

interpret at ion PAL must be extended lo interpret discourses 

which define new people, places, events, a.ct ions · and like 

objects as well as to interpret preferences of users · .and 

purposes for various activities. These extensions 1101 only will 

make PAL a more useful system, but' also they_ encompass a set 

of tasks use ful for other interactive programming domains. 

Experimentation on the discourse module of PAL is need to 

incorporate these new capabilities. 
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Abstract 

This paper describes a system designed 
to participate in purposeful ~ialogues : 
dialogues where the participants are 
conversing to achieve some specific task. 
The system is intended to help its users 
attain specific goals in certain typical 
situations. The language behavior 
observed in actual dialogues includes the 
frequent use of sentence fragments, and 
sentences that cannot be interpreted 
literally. We have concentrated on the 
problems raised by these phenomena. 

1. Introduction 

It has become commonplace in 
computational linguistic circles to talk 
of the purposeful nature of human 
communication. Language is used to 
achieve certain effects on specific 
listeners. These effects typically 
involve modifying the hearer's goals and 
beliefs about the world. Furthermore, 
linguistic acts are often performed as 
steps to achieve non-linguistic acts. For 
example, in a train station, one may ask 
when a train leaves in order to be able to 
board the train. 

Cohen's program OSCAR <Perrault and 
Cohen 1977, Cohen 1978> is an application 
of these ideas to language generation ; It 
maintains a model of the beliefs and goals 
of its user and, given a goal, produces a 
plan to achieve that goal. This plan may 
involve requests to be made of the user 
and assertions of information which he is 
thought to need . The OSCAR program does 
no plan recognition. How it can be 
extended to do so is the subject of this 
paper. 

In this framework, a major part of 
understanding an utterance involves 
discovering what particular goals the 
speaker is attempting to achieve. 
Identifying these goals provides a natural 

* This research was supported in part by 
the National Research Council of 
Canada. 
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way to handle sentence fragments such as 
noun phrase utterinces, sentences that 
should not be interpreted literally, and 
sentences whose purpose is to acknowledge, 
correct or otherwise clarify previous 
utterances . In many cases, the syntax of 
a sentence and the meaning of its words do 
not determine the speaker's intentions, 
the hearer must also use his knowledge of 
the speaker's beli e fs and goals. 

To provide a cl ear application of our 
work we have concentrated on purposeful 
(or task-oriented) dialogues. These are 
dialogues in which the participants are 
co- operating to achieve some specific goal 
or task. 

Let us look at some examples that 
demonstrate a need for identifying speaker 
intentions. These are based on 
transcripts of actual dialogues collected 
at an information booth in a train station 
<Horrigan 1977>. The dialogues are 
between the clerk ('C') in the information 
booth and a passenger ('P') at the 
station . The passenger typically wants to 
meet arriving trains or leave on departing 
ones. The clerk always wants to help 
further the passenger's goals. 

1.1 A Sentence Fragment 

In the train station setting, as in 
many stereotypical situations, much 
communication is accomplished by sentence 
fragments. For example , in one case a 
dialogue was opened with: 

P: The 3:15 train to Windsor? (1) 

No syntactic methods can construct a 
full sentence from this fragment, nor does 
the meaning of the actual words indicate 
what is required of the clerk. To 
interpret this utterance, the clerk must 
establish what the speaker's goals are. 
Only by discovering how the observed 
utterance fits into some expected plan, 
can he determine what kind of answer is 
desired . Thus, if the passenger's goal 
were to board the train to Windsor, a 
reasonable answer is 'Gate 10'. 



I 
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1.2 ~n Tndirect Speech Act 

Many utt erances cannot be interpreted 
at face value. For instance, 

P: Do you know when the Windsor train 
leaves? (2) 

An answer of 'yes' to the above is 
us ually inappropriate. However, there are 
situations where such a sentence is 
intended literally. Only by considering 
the speaker's intentions, (i.e. in the 
form of his plans) can one decide whether 
a literal or indirect reading is meant. 
Systems that handle such utterances by 
rules based solely on the form of the 
sentence <e.g. Lehnert 1977> fail in this 
respect because they can only interpret 
utterances uniformly irrespective of their 
context. 

1.3 A Clarification Dialogue 

Many utterances in dialogue are 
intended to monitor the success/failure of 
the communication process itself. The 
clerk generates such utterances .when 
needed, and recognizes when they are 
introduced by the passenger. A short 
example of a clerk initiated clarification 
subdialogue is: 

P: When is the Windsor train? (3) 
C: To Windsor? 
P: Yes 
C: 3: 15 

The initial utterance is not fully 
understood by the clerk. In particular, 
he cannot determine if the passenger wants 
to know something about a departing train 
or an arriving train. The response 'To 
Windsor?' is a request for a clarification 
of the passenger's goals. His answer 
indicates that he is interested in the 
departing train. The clerk's response 
'3:15' is the reply to the passenger's 
original question. 

1.4 An Instance of Helping 

In many cases, a response does not 
only answer the question asked, but 
provides additional useful information. 
such responses cannot be generated unless 
the clerk realized what the passenger's 
goals are • 

P: When is the train to Montreal? (4) 
S: 3:15 at gate 7. 

Although the information concerning 
the departure location was not asked for 
in P's query, the clerk, realizing that P 
wants to board the train, offers it to 
provide what he feels is a useful 
response. 

1.5 The Paper 

This paper deals only with the 
pragmatic aspects of communication: the 
recognition of intention. we do not mean 
to suggest that methods based on syntax 
and semantics are worthless, but we do 
claim that there are many situations where 
they are not powerful enough in isolatio". 

Section 2 introduces the concepts 
fundamental to our approach, and section 3 
provides an overview of the plan deduction 
process. In section 4 we will reconsider 
the examples above. Finally we will 
conclude with some implications of our 
approach. 

2. Fundamental Concepts 

Central to our methodology is the 
concept of a plan and its associated 
operations: planning, plan deduction and 
plan execution. We will consider these 
informally in the next section. It is 
also necessary to be able to effectively 
represent the beliefs and goals of various 
agents, including the system itself. This 
we cover in section 2.2. 

2.1 Planning Terminology 

A State is a set of formulas 
describing some aspect of the world. 

As in STRIPS <Fikes & Nilsson 1971>, 
the operators that change the states can 
be grouped into families represented by 
operator schemas, which can be viewed as 
parameterized procedure definitions. An 
operator schema consists of a name, a set 
of parameters and a set of labelled 
formulas in the following classes: 

Preconditions: Conditions that should 
be true in order for the execution of the 
procedure to succeed. 

Effects: Conditions that should be 
true after the execution of the procedure. 

Body: A set of action names with their 
parameters that describe the execution of 
the procedure. 

An Operator Instance or simply an 
Action is a expression constructed from 
the name of an operator definition with an 
instantiated parameter list. An action may 
be executed by executing th.e body of its 
definition using the instantiated 
parameters. Primitive actions have no 
bodies, their execution is specified by a 
procedure in the host programming 
language. 

We will define a plan as a directed 
graph in which the nodes are actions and 
states. There are two arcs: the enable 
arc links a state S to an action A 
provided that S implies the preconditions 
of A are true, and the effect arc links an 
action A to a state S provided that S 
implies the effects of A are true. Given 
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these, an Atomic . Plan is a graph 
consisting of on e path from an action Al 
to an action An using enable and effect 
arcs. 

Observing that the bodies of actions 
are in fact atomic plans we add another 
node-type 'plan' and an arc body that 
links an action A to a plan P provided 
that p is the body of A. A Plan is then 
defined as a n atomic plan in which some 
actions may be associated to their bodies 
i r body 1 inks. (Actions in those bodies 
may in turn be related to their bodies, 
etc.) 

we say a plan transforms a state Sl 
into a state Sn if Sl implies the 
preconditions of the first action in th e 
plan, and Sn implies the effects of the 
last action in the plan. 

A Speech Act is an action that has as 
parameters a speaker, a hearer, and a 
propositional content, and whose eYecution 
involves the production of an utterance. 
The preconditions and effects of speech 
acts are specified in terms of the beliefs 
and wants of the speaker and hearer . 

An example of a speech act is INFORM. 
A precondition for INFORM is that the 
speaker believes the propositional content 
is true, an effect is that the hearer 
believes the speaker believes the 
propositional content is true. 

There are various operations that 
manipulate plans. Given an initial state 
SO and a goal state Sl, planning is the 
process that constructs a plan that 
transforms SO into Sl. Given an observed 
action by an agent Al, plan deduction by 
an agent AO is the formation of the plan 
that AO believes Al is executing. 
Finally, a plan may be executed by 
executing its constituent actions in the 
sequence specified by the plan. 

Planning and plan deduction occur as 
the execution of the plan and deduce 
actions respectively. As a consequence, 
plans may include steps to deduce other 
agent's plans, and also steps to plan to 
attain new goals. 

2.2 Believe and Want 

This model requires that we can 
represent the beliefs and wants of 
different agents. we will not consider 
the representation in detail here as it 
has been done elsewhere <Cohen 1978>, but 
a few characteristics require mention. 

The system · ('S') must be able to 
maintain distinct beliefs for different 
agents and support arbitrary levels of 
nesting. (eg. S believes, S believes that 
P believes, S believes that P believes 
that S believes, ••• ) S must be able to 
represent that P knows information that S 

itself doesn't know . For instance, it 
must be ab le to distinguish between 

'S believes P knows when the train 
arrives' 

'S believes P believes that the train 
does arrive' 

'S believes P believes the train arrives 
at 3:15' 

The first and third beliefs imply that 
s believes P could answer the ques tion 
'When does the train arrive?'. The third 
belief also indicates that s knows what 
the answer would be. 

The collection of beliefs of one agent 
is termed that agent's belief space. 
wants are treated in a similar fashion to 
beliefs. The collection of an agent's 
wants, i.e. his want space, contains the 
current. plan that he is believed to be 
executing. 

Such a model including beliefs and 
wants has been implemented and used in the 
planning system by Cohen <C ohen 1978>. In 
this system the only propositional 
attitudes are 'believe' and 'want'; 'know' 
is introduced by definition. 

2.3 overview of the System 

The system executes the plan in its 
own want space. In particular, it has a 
plan . to help the passenger. On e of the 
actions in this plan is to deduce the 
passenger's plan; another involves further 
planning to help him. 

Let us look at the helping process in 
more detail. The system initially has a 
set of expected goals that it believes the 
passengers will want to achieve. 
Associated with these goals may be 
partially expanded plan fragments 
outlining how the goals are usually 
attained. These are the plan expectations. 

Understanding an utterance consists of 
deducing the passenger's plan by seeing 
what expected plans could include the 
observed speech act. Since the system is 
deducing the passenger's plan, the 
knowledge base it will use in evaluating 
the plan alternatives will be what it 
believes the passenger believes. The 
constructed plan will be part of what it 
believes the passenger wants. 

Once the plan is deduced, the system 
simulates its execution to find necessary 
steps that cannot be achieved. These are 
the obstacles in his plan. Helping the 
passenger entails overcoming these 
obstacles. To do this, the system makes 
the obstacles into its own goals and 
initiates planning. The execution of this 
new plan will usually involve conversation 
on the system's part. 
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3. The Plan Deduction Process 

The plan deduction process starts with 
a set of 'observed' actions and a set of 
expectations, and attempts to construct 
the plan that the user is executing. In 
this section we describe how it receives 
its input, we survey the types of 
inferences it makes and then discuss the 
process itself. we conclude with a section 
on why we feel plan deduction is feasible. 

3.1 Input 

The observed actions arise from the 
input utterances. The plan deduction 
process expects to receive a hypothesis 
about the speech act and its propositional 
content, reflecting the literal meaning of 
the utterance. The hypothesis is based on 
the mood of the utterance: a declarative 
sentence indicates an INFORM, an 
imperative indicates a REQUEST and an 
interrogative indicates a REQUEST to 
INFORM. 

The plan deduction process is in fact 
powerful enough not to require fully 
explicit input. The propositional content 
must provide a structure for the 
utterance, but specific detail may be 
omitted. For example, the hypothesis 
about the propositional content of 'The 
Montreal train?' would include an unknown 
predicate involving a train: the train 
being involved in some unknown predicate 
also involving Montreal. An unknown 
predicate should be viewed as a variable 
ranging over predicates. The specified 
arguments of the predicate constrain the 
range of the variable. For example, the 
utterance 'When is the train?' would 
produce an unknown predicate involving a 
train and a time. In the train setting, 
such a predicate would be ambiguous 
between arrival time and departure time. 

Ideally, the syntactic and semantic 
components should provide the plan 
inference component a description of the 
restrictions that can be imposed on the 
missing predicates. This can be done by 
enumeration or by propositions stating the 
restrictions. Considerable work remains 
to be done to determine how these methods 
are best used. 

3.2 The Inferences 

Before discussing the plan deduction 
process itself, we would like to survey 
the types of inferences it will be able to 
make. Deduction inferences can be divided 
into two classes. The bottom up 
inferences, which start at the observed 
actions and try to infer a plan, and the 
top down inferences, which start with a 
plan expectation and try to expand it into 
more detail. 

217 

The top down inferences are basically 
a simulation of the speaker's planning 
process. For example, if the speaker's 
goal was X, how might he achieve X? A 
typical top down inference is: 

"Effect-action inference" 
If X is a goal state, find an act A that 

has effect X, and infer A as part of 
the speakers plan. 

Bottom up inferences are inverses of 
the planning inferences. For example: 

"Action-effect inference" 
If A is an action in the speaker's plan, 

then infer he wants to achieve one of 
A's effects. 

"Action-body inference" 
If A is an action in the speakers plan, 

then infer he is performing action B, 
where A is part of the body of the 
definition of B. 

"Know-action inference" 
If the speaker wants to know the value of 

some relation R, then he wants to 
execute an action involving the value 
of R. 

It must be stressed that inferences 
only suggest possible candidates for 
elaborating our plan fragments. Not all 
such candidates are reasonable at any one 
time. For instance, if an inference 
suggests a new goal for the speaker that 
is already believed true, then it is 
unlikely that this goal is part of the 
speaker's present plan. The assumption 
here is that if the speaker believed the 
underlying goals of his utterance were 
already achieved, he would not need to 
speak. This emphasizes a distinction 
between our system and some of the script 
based systems <Schank and Abelson 1975>. 
Although the set of expectations is script 
type knowledge, the plans constructed for 
the speaker depend heavily on the current 
(and changing) model of him. 

3.3 The Plan Deduction Process 

Plan deduction is basically a search 
process through many alternative plan 
fragments. Roughly, each alternative is a 
hypothesis about the user's want space and 
consists of the observed actions paired 
with one of the plan expectations. 
Associated with each alternative is a set 
of tasks that refine the alternative by 
adding new actions, states and relations, 
by binding variables, or occasionally by 
splitting it into new alternatives. we 
will refer to the plan fragments inferred 
from the observed actions as the observed 
part of the alternative, and to the rest 
of the alternative as the expected~-

Alternatives and their tasks are rated 
and the tasks compete for execution on an 



agenda. The highest rated task is always 
executed. 

A few of the factors that affect the 
rating of an alternative are listed below. 

i l The goals in an alternative should 
be believed likely. This heuristic is 
usually applied in reverse. For instance, 
goals that are already believed to hold 
are not likely. 

ii) The preconditions of actions that 
the agent is P.xecuting should not be 
contradicted. In particular, if an action 
A that the agent is executing is used to 
infer another action B via the action-body 
inference, the agent is considered to be 
executing 8, hence B's preconditions 
should also be true. 

iii ) The observed and expected parts 
of an alternative should contain similar 
objects and relations. The underlying 
assumption is that objects are typically 
wanted for their normal uses (Rieger's 
function inference <Rieger 1974>). So if 
an utterance mentions a particular object, 
the plan expectations that could involve 
that object are favoured. 

The violation of any of these factors 
reduces the rating of the ~lternative, but 
does not necessarily eliminate it .from 
contention. In fact there will be correct 
plans that fail in some of these respects. 
If an alternative is accepted in which 
some preconditions are contradicted, this 
will lead to a discrepancy between what S 
believes and what S believes U believes. 
Such conflicts will often be resolved 
using further dialogue. 

Typical tasks perform the following: 

a) Given an action in the observed 
part of an alternative, apply the bottom
up inferences to the action. If there are 
mutually exclusive inferences possible, 
the alternative may be split. 

bl Identify the binding of an action 
parameter in an alternative. The 
parameter may be associated with a 
definite description in the observed 
utterance, or may simply be introduced in 
the plan construction. 

c) Terminate the plan deduction 
process successfully, by accepting one of 
the alternatives as the deduced plan, It 
is not necessary to expand every detail in 
an alternative. The alternative will be 
acceptable if it contains an explicit link 
between its observed and expected parts, 
and if there are no other competing 
alternatives that are similarily rated. 
In cases where two mutually exclusive 
alternatives have similar ratings, it may 
be necessary to initiate a planning 
subtask whose purpose is to engage the 
user in a clarification subdialogue. 
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The plan deduction process may 
terminate unsuccessfully in a number of 
ways. It may, because of difficulties in 
the deduction and the presence of other 
well rated tasks on the agenda, have its 
ratings reduced to the point where it is 
no longer competitive and 'drops off' the 
agenda. Alternatively, it may remain well 
rated because it is a crucial step in an 
important plan, but use up all the 
resources it is allowed. Finally, in 
extreme cases, there may be no reasonable 
inferences left to perform. 

3.4 Why Should This work? 

There are a number of reasons why we 
feel this process is feasible. In this 
section we will discuss the structure of 
the domain, an abstraction capability in 
actions, and the assumption of co
operation. 

The domain of conversation in our 
system is well specified, i.e. the 
possible topics are those defined by the 
plans we can construct. Once a plan is 
established as the one being executed, it 
defines a notion of coherence on the 
dialogue: dependencies between utterances 
are reflected by their relation to the 
plan. The plan also provides strong 
predictive power as to what to expect 
next. Although the range of topics in the 
train domain is limited, the variety of 
conversation, in intention and form, is 
considerable. Such domains provide ideal 
testbeds for a wide range of linguistic 
problems. 

Another factor reducing the 
combinatorics is that the bodies of 
actions provide us with an abstraction 
capability. To elaborate, let us consider 
an action A. Its body can be viewed as 
specifying its execution requirements to a 
level of greater detail. The sequence of 
actions in the body may introduce new 
precondition requirements on the execution 
of A. This is similar to the abstraction 
capabilities in NOAH <Sacerdoti 1975>. we 
may create a plan involving A without 
initially considering the 'details' 
required in its body. Once we have a plan 
involving an action at an 'abstract' 
level, we may expand to a level of greater 
detail by considering its body. 
Initially, in the deduction task, we are 
interested in finding some link between an 
observed action and one of a set of 
abstract expectations. It is not 
necessary to discover the fully expanded 
plan of the speaker, a small segment of 
his plan, providing an intersection, is 
sufficient. When we infer bottom up from 
one action to another via its body, we may 
omit considering much detail. As a 
result, our deduced plans normally include 
many levels of abstraction, but are not 
very broad at any one level. Once an 
intersection is found, and competing 
alternatives are eliminated, we then can 
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afford to expand out details of the 
deduced plan as necessary. 

Most important is our primary 
assumption that the participants are co
operating with each other. In particular, 
we expect the speaker will form his 
utterances in such a way that there is 
little possibility of misunderstanding 
him. Fo~ example, if the speaker believes 
we have strong expectations about what he 
will say, he may communicate with minimal 
indication of his intention . This occurs 
wh e n th e speaker is ~nswering a question, 
or when the situation restricts the 
possibilities, as in the train station. 
If the speaker believes we have little or 
no expectations, he will tend to mention 
his goals more explicitly. 

As a consequence of this we note that 
we are not attempting arbitrary Plan 
Recognition, for the actions we observe 
are intended to facilitate recognition. 

This supports two powerful heuristics: 

i) The similarity of objects and 
relations between the expected and 
observed plans provides a strong 
indication of which alternatives are 
promising. If the objects or relations 
were intended to be used in a non - expected 
way, the speaker would be obliged to 
explicitly mention that intention. 

ii) The inferences that are obvious 
(i.e. among other things, cause little 
fanout) are preferred. So inferences that 
are expensive to make will tend to be 
neglected. 

Finally; we should observe that we are 
not committed to succeeding at all costs, 
for plan deduction failure does not imply 
dialogue failure. More important than 
being able to succeed every time is the 
ability to recover and continue the 
dialogue in a coherent manner, say by 
asking for clarification. 
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-4 . A Brief Look at Some Examples 

This section reconsiders the problems 
of section 1. It is convenient to look at 
the last example first. 

4.1. An Example of Helping 

This example provides no difficulty to 
the plan deduction process, but 
demonstrates how the entire system 
operates to provide a response. 

P: When is the train to Montreal? 
S: 3:15 at gate 7.* 

P's utterance is viewed as a REQUEST 
that S INFORM P of the departure time of 
the train to Montreal . S deduces that P 
wants the effects of the action, i . e. 
that P wants to know the departure time, 
and from this that P wants to be able to 
board the train to Montreal. Once P's 
plan is deduced S accepts P's goals as its 
own. In particular Snow wants P to board 
the train and S wants to inform P of the 
departure time. However, inspecting the 
plan, S also finds that P needs to know 
the departure location. If S believes P 
does not presently know the location it 
may be helpful by providing this extra 
information. So the system's response is 
based on what it believes the obstacles in 
P's plan are. 

In the following examples we deal only 
with the plan deduction process . 

4.2. A Sentence Fragment 

This example is a simplified 
simulation of the plan deduction process 
in e xecution. We consider only the best 
rated plan aiternative, thus making the 
example a reasonable size. we also ignore 
ratings and assume the agenda is a FIFO 
list. 

P: The 3:15 train to Windsor? 

The observed action is a REQUEST by 
the passenger that the system INFORM n1m 
of some unspecified predicate involving a 
train. Furthermore, the train is 
associated with the time 3:15 and is 
related to the city Windsor in a manner 
consistent with the preposition 'to'. The 
plan deduction task produces the three 
following subtasks to initiate processing. 

The Agenda: 
i) Identify the formal object representing 

the train. 
ii) Review the expectations and the 

utterance for similarities. 
iii) ~pply inferences from the observed 

action. 

* note: the system does not generate 
English output, it specifies the 
content of the response and generates 
output in a rigid pre- defined form. 



Identify: 
The identification of objects requires 

specialized knowledge. For this example we 
must know that trains have associated 
arrival times, departure times, sources 
and destinations and that destinations are 
often flagged with the preposition 'to'. 

The train is recognized to ha;; : a 
destination Windsor, and to have either an 
arrival or a departure time of 3:15. Its 
source is not known at this point. This 
description does not provide sufficient 
information to pinpoint the referent in 
the data base. The subtask completes 
without identifying the referent. 

Review: 
The expectations that involve trains 

are 'passenger travel from Toronto . to x' 
and 'passenger meet train at Toronto from 
x', these are selected as possible 
alternatives. But only the former is 
compatible with the train's destination of 
Windsor; the train in the 'meet' 
alternative must have destination Toronto. 
In the 'travel' alternative, we assume 
that the trains in the observed and 
expected parts are the same. Merging the 
descriptions together we infer that the 
train has source Toronto and destination 
Windsor. This alternative also involves 
the departure time of the train ·which is 
consistent with the specified time 3:15. 
Two new subtasks are created: an 
'identify train' task, since more is now 
known about the train, and an 'expand the 
travel expectation into more detail' task, 
which would perform further inferencing. 

The Agenda: 
i) Infer from the observed action. 

ii) Identify train in travel expectation. 
iii) Expand the travel expectation into 

more detail. 

Infer: 
The observed action is 'passenger 

REQUEST that the system INFORM him of 
something concerning a train'. The most 
promising inference from this action is 
that it is part of the body of a QUERY 
action to obtain information. This action 
is added to the alternative, and an infer 
task is created involving it. 

Identify train: 
The train is specified sufficiently by 

its source, destination and departure time 
to be associated with a particular train 
in the data base. The train is 
successfully identified. 
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Expand the travel expectation: 
One of the steps in the travel plan is 

the action of boarding the train. To do 
this, the agent must know its departure 
time and location. The system believes 
the passenger knows the departure time 
(3 :15 ) but not the departure location. 
Simulating the passenger's planning, it 
produces the action 'passenger QUERY 
someone about the departure location' as a 
way of achieving this knowledge. However, 
this action matches (i .e. is compatible 
with) the QUERY action in the obse rved 
part. They are merged to form the action 
'passenger QUERY system about th e 
departure location of the train'. Since 
there is now an explicit link between th e 
expected and observed parts, a high 
priority task is created to accept this 
alternative . 

Accept: 
The alternative is accepted because 

there are no well-rated competitors. This 
task terminates the plan deduction process 
successfully. The system now easily finds 
an obstacle in the plan: the passenger 
needs to know the departure location. The 
obstacle can be overcome simply by a 
system INFORM. 

In the next examples we will only 
point out new and important details . The 
last example will look at a case where 
there are well-rated competiting 
alternatives that cannot easily be 
eliminated. 

4.3. An Indirect Speech Act 

P: Do you know when the Windsor train 
arrives? 

This utterance has two different 
interpretations. The literal 
interpretation indicates that the 
passenger wants to know whether the system 
knows the arrival time. The indirect 
interpretation indicates that the 
passenger wants to know the arrival time 
himself. 

The input to the plan deduction 
process will correspond to the literal 
reading. The inference path to the 'meet 
train' expectation is as follows. The 
effect of the literal reading is that the 
passenger knows whether the system knows 
the arrival time. The system knowing the 
arrival time is a precondition to the 
action that the system INFORM the 
passenger of the time, which has the 
effect that the passenger knows the time, 
which is a necessary step in the 'meet 
train' plan. So the plan can be deduced, 
using either top-down or bottom-up 
inferences. 

Underlying this chain of inferences is 
our assumption that both sand p know that 
S is helping, i.e. that Sis continually 
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trying to infer P's plans, locate 
obst~cles and overcome them. S knows that 
P expects this helpful behaviour and so 
can assume that P intended the result of 
any plan inferenc e , obstacle detection or 
plan construction that Scan make on the 
basis of knowledge that S believes P 
believes. 

The question remains of how far Sis 
to assume P intends these inferences to be 
pressed. One case at least is clear: 
whenever s believes P believes that the 
e ffects of the literal utterance are 
a lr e ady true, S's inference process must 
continue . This is the case with this 
example. If the effects of the literal 
utteranc e are not believed to be true, S 
could still choose the indirect goal but 
this may lead s to ascribe extraneous 
inte ntions to P . 

From an implementation point of view 
it is undesirable that the system have to 
work through the inferences for "standard" 
indirect forms such as "Do you know 
and "Can you tell me • •• ". The indirect 
forms here should be considered 
immediately at the start of inferencing 
( cf . 8 r own 197 8 ) . 

4 . 4 ~ Clarification Dialogue 

P: When is the Windsor train? 
S : To Windsor? 
P: Yes 
S: 3: 15 

The passenger's first utterance is 
processed similarily to the first example, 
however, both the 'travel to x' and 'meet 
t r ain a rriving from x' expectations remain 
possible . Let us assume there is no 
contextual reason to favour one 
alternative over the other. The goal of 
the plan deduction process is that the 
system knows the passenger's plan , In 
this case it is not achievable on the 
basis of the utterance supplied. A 
subtask of the plan deduction task 
recognizes this and initiates a subtask to 
plan to achieve the goal (system BELIEVE 
passenger WANTS 'the travel plan') OR 
(system BELIEVES passenger WANTS 'the meet 
plan') . 

The planning for this goal produces a 
plan that involves asking the passenger if 
he wants one of the alteinatives, and the 
receiving the answer. The execution of 
this plan produces a system query 
correspond i ng to 'To Windsor?' and then 
r ecognizes the passenger's response 'yes'. 
The dialogue may continue at this level 
until the goal is achieved. In this case 
the first question/response pair achieves 
the goal. Once the passenger's goal is 
known the system can continue its original 
deduction task . The only reasonable 
interface with the 'travel to Windsor' 
expectation is the step involving knowing 

221 

the departure time of the train. This is 
accepted as the passenger's obstacle. The 
system then plans to overcome the obstacle 
6y informing him . of the time, the 
execution of this plan produces a response 
corresponding to '3:15'. 

5. Implicati9ns of the Approach 

5.1 Dialogue Failures 

we have seen in section 4.4 how a 
subdialogue was produced by the system in 
order to successfully complete his 
deduction of the passenger's plan. We now 
briefly consider a class of cas e s where 
the passenger initiates a subdialogue. 
These subdialogues indicate that a step in 
the system's plan did not successfully 
execute. e.g. After the interchange 

P: When is the train? 
C: It leaves at 3:15. 

typical expected continuations are 
'Thanks', '3:15.' or 'And where?' 

R~sponses that indicate failure of the 
plan fall into three classes. These are 
all detected using what the system 
believes is the passenger's plan ('PP'). 

i) the passenger wants a goal that is 
already achieved in PP. 
e.g. P: When is it? 

ii) the passenger denies a goal already 
achieved in pp. 
e.g. P: I don't believe it. 

iii) the passenger wants a goal that is 
not present in PP, but that does fit 
another alternative expectation . 
e.g. P: No! I want to meet the train! 

When a failure is detected in the 
passenger's plan, the system should relate 
that failure point to an action in its own 
plan. Recovery entails resuming planning 
to achieve the effects of this action. 

5.2 Linguistic Implications 

There are other linguistic problems to 
which this approach seems to provide some 
solution. For example, consider 

P: I want to go to Windsor. When does it 
leave? 

This is interesting for the it has no 
previous referent . However, as speakers 
of English, we have no trouble identifying 
the referent as the train to Windsor. Our 
system handles this easily. The first 
utterance sets up the 'travel to Windsor' 
as the passenger's plan. The second then 
indicates that the passenger wants to know 
when something leaves, and this fits 
readily into our expected plan. 



Finally, consider the problem of noun
noun modification. There is virtually no 
syntactic information provided in English 
as to the relationship between the two 
nouns. For instance, the phrase 'the 
Montreal train' could refer to the train 
to Montreal, the train from Montreal, the 
train owned by Montreal or perhaps the 
train operated by a team from Montreal in 
a train race! Th e point is, given 
appropriate context, the relationship 
could be just about anything. We 
hypoth esize that the relationship should 
be relevant to the plan that the speaker 
is executing. Therefore, it should be 
revealed as the utterance is incorporated 
into its correct plan. 

6. Implementation and System Status 

The system is implemented in SPITBOL 
under TSO on an IBM 370/165. Our 
representation of knowledge is based on an 
object centred semantic network similar in 
approach to that of <Bobrow and Winograd 
1975> and <Le vesque 1977>. The belief and 
want representati on is that described by 
Cohen <1978> and utilizes partitioned 
semantic nets as described in <Hendrix 
1975>. Plan and actions are also 
represented in the net and may be executed 
using a network interpreter similar to 
that in <Norman and Rumelhart 1975>. An 
interactive network definition package 
allows for the quick definition of a 
domain into net form using a user
controlled syntax and allowing for the 
automatic inheritance of properties. 

The system accepts English input which 
is parsed by a standard ATN parser <Woods 
1970> in isolation from the rest of the 
system. This isolation is not 
particularily desirable, but such a scheme 
is sufficient for initial testing 
purposes. The parsed form is then 
transformed into an utterance hypothesis 
of the form described previously. 

The system output is presently 
specified in the user-defined form used 
for the definition of new actions and 
states in the system. For example, the 
output corresponding to the English 
assertion 'the train leaves at 3' might be 
'SYSTEM INFORM USER THAT TRAIN LEAVE AT 3' 

The present implementation includes a 
network manipulation package, a planning 
system with the maintenance of the user 
model <Cohen 1978>, an ATN interpreter 
<Borgida 1975>, an interactive network 
definition package and the set of plan 
deduction subtasks. The system has 
handled the sentence fragment and the 
indirect speech act examples. The 
clarification dialogue capability is 
designed and currently being tested. 
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7 . Concluding Remarks 

Although all of our examples have 
dealt with one domain of discourse, the 
train station world, much of the system is 
domain independent. The domain is 
reflected in the set of actions and states 
defined, plus the set of initial plan 
expectations. Some specific heuristics 
are attached to the definitions of objects 
in the domain. For example, the 
heuristics used to identify trains. The 
planning, plan execution and plan 
deduction processes are all independent of 
the domain of discourse. 

We have seen that viewing language as 
intentional behaviour provides solutions 
to a wide range of linguistic problems at 
the sentence level. Furthermore, the 
ability of the system to treat linguistic 
and non-linguistic processes uniformly 
allows it to handle dialogues co nc erning 
both the actual domain and the 
conversation process itself with the same 
techniques. 

Although plan deduction has been 
attempted in the past, namely in attempts 
to recognize algorithms from code, it has 
never been applied to language. It is 
interesting to observe that its 
application to a seemingly more complex 
problem, i.e. language, actually should be 
an easier task. The fact that language is 
designed to facilitate the transmission of 
goals and plans has never before been 
exploited. 
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Presented is a brief description of 
a n ap proach to the modelling of 
conversation. It is suggested that to 
s ucceed at this endeavo~r, the problem 
must be tackled principally as a problea 
i n pra gmatics rather than as one in 
langua g e analysis alone. several 
pra gmatic aspects of conversation are 
de l i neated and it is shown that the 
a ttem pt to account for them raises a 
number of general problems in the 
representation of knowledge. A scheme 
des igne d to solve many of these problems 
is sketched and a typical conversation in 
a small scenario is analyzed in terms of 
this scheme. 

In this paper I will discuss research 
i nto the problems of modelling natural 
l a nguage conversation. The work is 
f ou nded on several perceived trends in the 
study of natural language. The first 
trend is a change in the focus of research 
attention from the phonetic and syntactic 
levels of linguistic analysis to the 
semantic and pragmatic levels. This not 
only is occurring in linguistics 
(e.g. recent interest in semantics 
(sumaarized in Leech (197~) for example) 
or Fillaore•s (1975) interest in 
"frames"), but also in artificial 
intelligence (e.g. work on scripts by 
Schank and Abelson (1975); Bruce's (1975) 
social action paradigms; 
Bullwinkle's (1977), Grosz's (1977), and 
Cohen's (1978) work on conversation). The 
second trend is a blurring of the 
bo undaries separating the various 
linguistic levels (for example 
Lakoff's (1971) criticisms of Chomsky; 
also the developaent of case fraae 
theories of language 

•This paper is based on Ph.D. research 
carried out in the Department of computer 
Science, University of British Coluabia, 
Vancouver, B.C. ftore details can be found 
in ftcCalla (1978). 

luthor•s current address: 
Departaent of coaputational Science 
Oniversity of Saskatchewan 
Saskatoon, Saskatchewan 
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(e.g. Filla ore (1968) , Taylor and 
Rosenber g (1975t)), a trend which ~ends to 
suggest that information from whatever 
level should be use d when appropriate. 
The third trend is the consideration of 
language from a performance, rather than a 
competence, viewpoint 
(e.g. Grice (1957),(1968); much recent 
work in artificial intelligen=a, such as 
the script based models of Schank and 
Abelson (1975), or the frame aodel of 
Charniak (1977)) • 

These three trends are not diverging; 
rather, they seem to be coming together 
into a single viewpoint: language should 
be studied as it is used with semantic and 
pragmatic information driving the more 
purely surface aspects. However, this 
shouldn't preclude knowledge from whatever 
level being applied when relevant. 
Winograd (1976, 1977) argues persuasively 
for a simila r approach to the study of 
natural language. These are the reasons 
why conversation, a domain in which 
language is used as naturally as possible 
and a domain in which semantic and 
pragaatic considerations are of utmost 
importance has been chosen for study. 

There are many issues which must be 
resolved when trying to model conversation 
from such a pragmatics centred 
perspective. Of particular importance are 

(i) whether world and linguistic 
knowledge can be effectively combined, and 
in particular whether language can be 
viewed as an activity like any other; 

(ii) how the goals of a conversant 
affect what he says and how he 
understands; 

(iii) how the knowledge a =onversant 
has about the other conversants affect 
what he says and how he understands; and 

(iv) how a conversant is able to 
focus on the relevant aspects and ignore 
the irrelevant aspects of any 
conversational scenario. 

Throughout this research, the main 
concern has been to develop a general 
approach to resolving these four issues, 
soaetiaes at the expense of a 3etailed 
analysis of certain phenomena. Thus, for 
exaaple, there are no penetrating insights 
into the probleas of accounting for 
linguistic surface phenomena (especially 
the ayriad difficulties of generating 
surface strings); nor into the problea of 
reference; nor into the proble• of dealing 
vith aassively unexpected utterances or 
other surprises; etc. suggestions are 
made as to !h~ such problems will arise, 
but there is little attempt to show h.2! to 
actually handle thea. 

The paper is organized as follows. 
In section 2 the basic approach to 
aodelling conversation is described. In 
section 3 a aicroworld (called the 
•concert scenario") in which to study 
conversation is proposed. In section 4 an 
exaaple is given of how a conversation 
which might occur in the concert scenario 
of section 3 could be aodelled using the 
approach of section 2. Finally, in 
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section 5 conclusions are drawn as to the 
contribu tions and shortcomings of this 
research . 

The viewpoint of this research is 
that linguistic capabilities are subgoals 
of non-linguistic capabilities , Thus, the 
easiest way to describe this approach to 
language is in terms of "level of goal", 
from higher level non-linguistic goals 
through lover level goal s that are called 
in to understand particular parts of an 
utterance, since goals can call in 
subgoals arbitrarily, it is sometimes 
rather hard to classify the m precisely; 
they do seem, however, to roughly fall 
into four main levels: the non-linguistic , 
level, the script level, the s peech act 
level, and the language level, 

(i) non- 11uguistic goals: Goals at 
this level are primari l y concerned with 
undertaking significant plans of action 
such as, for example, attending a concert, 
buying a ticket to the concert, buying a 
drink at intermission, etc, Not primarily 
concerned with language, they do, however, 
know enough to call in linguistic subgoals 
when appropriate (e.g. to talk to the 
ticket seller or bartender), Perhaps as 
importantly, much of what is said is 
interpreted or produced in the context 
created by this level, 

(ii) §~£1Et§: Scripts (akin to those 
of Schank and Abelson (1975)) are subgoals 
of non -linguistic goals (or sometimes of 
higher level scripts) called in to 
actually direct a conversation (e,g, the 
script to direct a conversation to buy a 
ticket), They are responsible for keeping 
track of the utterances of all parties to 
a conversation, for determining the 
sequence of speaking, for recognizing the 
beginning s and endings of a conversation, 
for using script expectations to aid the 
interpretation and production of 
utterances, and for meshing these 
expectations with the actual utterances 
produced. Scripts have available to thea 
models of the conversants for use in 
perform ing their varied tasks. 

(iii) ~~~~h ~gt§: Speech acts 
(e. g, inquire, respond, inform) represent 
ideas expressible in a single verbal 
action by a lone speaker (the name has 
been chosen because of the similarity of 
goals at this level to the speech acts 
espoused by Austin (1962) and 
Searle (1969), and used more recently in 
AI systems such as that of Cohen (1978) or 
Bullwinkle (1977)). Called in by scripts, 
speech acts are responsible for 
interpreting or producing actual 
utterances, for checking that an utterance 
is not in conflict with the special 
requirements of a speech act of its type, 
and for maki ng sure the utterance doesn't 
violate anything knovn about the 
conversant (available from a conYersa nt 
model). Speech acts sometimes deal 
directly with s urface linguistic strings, 
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but more often call in language level 
goals to buffer them f r om the "real 
world" , 

(iv) l~ng~~g~ level gQ!l2 : The 
speciality of this level of analysis is 
language itself, The tasks of goals at 
this level are to transform surface 
language into internal concepts 
(interpretation) or vice versa 
(generation). such tasks involve 
appropriately grouping words (syntax), 
performing checks that the grou ps are 
consonant with known informati on 
discovered in the knowledge base or in the 
currently relevant context (semantics), 
and occasionally doing other tests perhaps 
involving such pragmatic considerations as 
looking at the conversant model o~ doing 
rather sophisticated inferences, such 
sophisticated processing is the ex~eption , 
however. Most often language level goals 
are concerned ~ith parsing in a more 
traditional sense. I will not detail this 
level any further here. see 
Mccalla (1978) for a fuller discussion of 
the language level or see Taylor and 
Rosenberg (1975) for a similar approach to 
parsing, 

To actually model conversation in 
these terms, a large number of proble ms 
which are mainly problems in the 
representation of knowledge must first be 
tackled, That is, a representation scheme 
is needed that ideally would allow large 
amounts of information of various kinds 
(procedural or declarative, "real worl d" 
or linguistic, • , , ) to co-exist together, 
enable easy access to this information, 
incorporate a context or focussi ng 
mechanism, not collapse when presented 
with an unexpected situation, and satisfy 
both combinatorial and complexity 
considerations. 

A representation scheme which 
atteapts to come to terms with a number of 
these problems has been developed, It has 
been given precision by defining it in 
terms of a number of LISP functions 
(collectively naaed !LISP, pronounced 
"bar-lisp") which are, to date, not fully 
iapleaented, but whose semantics are 
specified fairly rigorously. A LISP-st yle 
notation has also been devised (some 
exaaples of which will be seen in the 
forthcoming description of a conversation 
to buy a ticket (see section 4)). 

The representation scheme can be 
briefly suamarized as follows: 

(i) Knowledge is stored in obj~gj.2 
vhich are closed to one another a nd can 
communicate only by passing !!~21g~§ (to 
borrow Hewitt's (1973) tera), 

(ii) The aost interesting kind of 
object, called a eAttern exere~ion 
(IPEXPR), very roughly corresponds to a 
frame (Minsk y (1974)) or schemata 
(Ravens ( 1978)) • Most domain knowledge is 
represented in such objects as eattern~ 
(in the PLANNER/ CONNIVER tradition 
(Hewitt (1972), McDeraott and 
Sussman (1974))) . Since these patterns 
can be static (often encoding semantic 



network-style "links") or can contain 
certain "active" macro elements 
(essentially "instructions" to be 
activat e d du ring message passing), 
procedural or declarative information can 
be represented. 

(iii) Messages to a IPEXPR are also 
patterns that are handled by ma!£h1ng them 
against patterns in the IPEXPB and 
returning the first pattern that matches. 
The matche r is totally symmetric and will 
handle static elements or macro elements 
in either pattern of a match. This allows 
message patterns and IPEXPR patterns to be 
equally s ophisticated. The central role 
for pattern match ing here is consonant 
with its importance in much of AI (e.g. in 
PLANNER and CONNIVER, or in KRL (Bobrow 
and Winograd (1977))). 

(iv) If a message pattern cannot be 
matched in a !PEXPR, failure to match 
processing (associated with the object 
whose name is the first element of the 
message pattern) can take · place, This can 
range from trying to "inherit" the pattern 
along certain hierarchical "links" 
emanating from the IPEXPR (see Levesque 
and Mylopoulos (19 78) for a discussion of 
the subtleties involved in doing such 
inheritance) through performing arbitrary 
inferences. 

(v) A by- product of message passing 
is the creation of an activation record to 
which temporary variables and other local 
effects of the message passing are 
restricted. This activation record is 
called an execution instance and is a 
pattern expression like any other (and 
hence able to be accessed in identical 
fashion to other IPEXPRs). 

(vi) As it handles a aessage, a 
pattern expr&ssion may need to coamunicate 
with another pattern expression. Whole 
chains of messages can be generated this 
way, with the consequent creation of whole 
chains of execution instances. They form 
a dynaaic environaent (akin to that of 
ALGOL or LISP) called the ~!iCUt!Qll 
fill!~Qn~n1 which turns out to be a very 
usefu l focussing and context mechanism as 
well as allowing the discovery of current 
goals. 

(vii) Execution instances are not 
automatically removed after the message 
they were created in conjunction with has 
been answered. Instead, they stay around 
and old chains of them are consequently 
preserved. such venerable execution 
environments can be accessed if the 
detail s of what vent on in the past are 
needed. They thus produce a sort of 
~i~!£ !i!2II (to use the Tulving (1972) 
or Schank (1974) term). 

Discussed so far has been a 
goal-oriented approach to conversation and 
a representation scheme in which to 
attempt implementation of this approach. 
The actions of a conversation model built 
to simulate certain aspects of a 
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particular scenario will now be describe1. 
The model is assumed to be an active 

participant carrying out a (simu late1) 
plan to attend a symphony concert. To 
carry out the plan, it can, among its many 
other tasks, engage in several 
conversations, including one to buy a 
ticket to the concert, another to buy a 
drink at intermission, one with a friend, 
etc. The "concert scenario" has been 
chosen because it is flexible a nd complex 
enough to provide a real test for t he 
model and to illustrate most of t he 
representation and language issues, yet it 
is of very finite dimensions. Moreover, 
various kinds of dialogue can occur 
including task-oriented (see 
Deutsch (1974)), non-task- orien te d, 
formal, informal, etc.; non - linguistic 
goals occur and interact wit h the 
linguistic goals; and, finally, having a 
single scenar io allows a small amount of 
information to be used in sqveral, 
possibly quite different, settings. 

As was mentioned above, the monel 
engages in several conversations ir. t he 
concert scenario. The task -orien ted 
dialogue undertaken to buy a ticket to the 
concert will now be examined. 

!• !h~ Ticket Bu~in~ conversation 

Each piece of knowledge needed by the 
model in its task of buying a ticket to 
thP. concert is encoded (using t he 
representation scheme outlined previously) 
as a pattern expression (IPEXPR). There 
are tvo main kinds of JPEXPR of relevance 
to this domain: 

(i) Etil!~I pattern expressions to 
carry out parts of the main plan of 
attending a concert including going to the 
concert, buying a ticket, taking part i n a 
conversation during the ticket purchase, 
and so on. 

(ii) §~£.2!1S~II pattern expressions, 
such as those representing models of the 
conversant, the agenda of the concert, and 
the like, that are sources of information 
for the primary IPEXPRs but aren't really 
part of the mainstream plan. The 
distinction between (i) and (ii) can be 
seen as the difference between active 
objects calling in other active objects to 
accoaplish subgoals and static objects 
standing by to provide certain pieces of 
"foregrounded" knowledge when asked to do 
so by the active objects. 

Figure 1 illustrates the primary 
1PEXPRs and their goal/ subg oal 
dependencies. 
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Figure 1-Primary Goals in By_ying a Ticket 

The model is assumed to have a high level 
goal of attending a concert 
(ATTEND -C ONCERT) and in the process of 
doing so it calls in (among other goals) 
the subgoal of BUYing a ticket to the 
concert. This requires the model to 
engage in a conversation to buy the ticket 
(directed by the BUY-CONVERSATION script). 
This conversation has five phases: a 
greeting phase (directed by a script 
called WHAT-DO-YOU-WANT which expects the 
conversant to utter a speech act that 
INQUIRES into the purpose of the model and 
directs the model to undertake a RESPOND 
speech act outlining this purpose), a 
BARGAIN phase over the location of the 
ticket in the theatre, another BARGAIN 
phase over the cost of the ticket, an 
EXCHANGE of the agreed upon aoney for the 
agreed upon ticket, and, finally, an 
appropriate set of FAREWELLS, 

The model will now be briefly 
described as it interprets and produces a 
couple of utterances in this scenario. 
Since the various goals are all encoded as 
tPEXPRs, when one goal calls in another, 
it means that it is sending a message to 
the other goal to EXECUTE some action, or 
to INTERPRET or GENERATE an utterance, or 
to EXPECT something to happen. The model 
starts with the high level goal of 
attending a symphony concert, so is 
EIECUTEing the I PEXPR ATTEND-CONCERT. 

(i) ATTEND-CONCERT: a non-linguistic 
goal that directs the model's efforts to 
attend this particular concert, 
Conceptually, at least, it has been built 
by some plan-construction objects at the 
request of even higher level goals when 
they decided that attendance at the 
concert would be a good idea. It must 
achieve the many subgoals necessary to 
accomplish this goal. The major one of 
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importance here is buying a ticket, 
(ii) BUY: the model's non-linguistic 

tPEXPR to direct the buying of something. 
In this case ATTEND-CONCERT suggests 
buying a ticket to the concert, BOY is a 
simplified attempt to model what goes on 
in buying something. It must direct the 
model to the place of purchase, must 
recognize the particular seller of the 
item, must access tPEXPRs which represent 
various bargaining positions of the two 
parties to the buying, and finally Must 
engage in a conversation to effect the 
purchase. 

(iii) BIJY -C ONVERSATION: is the 
script that controls a conversation to buy 
something, in this case a ticket from the 
ticket seller. The script is outline~ in 
Figure 2, and although the details aren't 
too important, the main script knowledge 
is encoded in the I (SCRIPT- SEQUENCE --- ) 
element of the EXECIJTE pattern,2 The 
EXECUTE pattern of this pattern expression 
predicts the conversational sequence of 
events, from the greetings which open the 
conversation, through bargaining over the 
location of the ticket, bargaining over 
the price, exchanging the agreed upon 
goods for the agreed upon amount of money, 
and finally the goodbyes which terminate 
the script. Each of these predictions 
takes the form of EXECUTEing a sub-script 
to direct things, The first is rather 
poetically named WHAT-DO-YOU-WANr. 

ZFor those interested in the hoary 
details, the process is explained here. 
When BUY wants to enter into conversation, 
it will send an EXECUTE message of the 
fora 
(EXECUTE BUY - CONVERSATION 
SELF TICKET-SELLER1 TICKET-POR-CONCERT1 
?CONV-RESULT) 

to BUY -CONVF.RSATION, This message pattern 
will be matched against the EXECUTE 
pattern of BUY-CONVERSATION, vitn SELF, 
TICKET-SELLER1, and TICKET-FOR-CONCERT1 
being bound as values of BryYER, SELLER, 
and ITEM respectively (as impliei by the 
"?" aacro); and with the 
! (SCRIPT-SEQUENCE --- ) element being 
executed (as implied by the "I" aacr~) 
step by step auch as is a PROG in LISP. 
When !(SCRIPT-SEQUENCE --- ) is done, the 
value IRETURNed will be bound as value of 
CONV-RESULT in the aessage pattern, and 
the entire pattern will be returned to 
BUY. 



<!PDEF BUY-CONVERSATION 
(SUPERSET BUY-CONVERSATION 

SOCIAL-TRANSACTION-CONVERSATION) 
(EXECUTE BUY-C ONVERSATION 
?BUYER ?SELLER ?ITEM 
! (SCRIPT-SEQUENCE () 
STEP1 

(WHAT -D O-YOU-WANT 
(EXECUTE WHAT-DO -YOU -W ANT 
!SELLER !BUYER ?WWCONV)) 

(!BUYER 
(WANT ! BOYER (EXCHANGE 

?BUYER-HAS ?BUYER-WANTS))) 
(!SELLER 

(WANT !SELLER (EXCHANGE 
?SELLER-HAS ?SELLER-WANTS))) 

STEP2 
(BARGAIN 

(EXECUTE BARGAIN !SELLER !BUYER 
!SELLER-HAS !BUYER-WANTS !ITEM ?B1)) 

STEP3 
(BARGAIN 

(EXECUTE BARGAIN !BUYER !SELLER 
!BUYER-HAS !SELLER-W ANTS !ITEM ?B2)) 

STEP4 
(!ITEM (COST ! ITEM ?AMOUNT)) 
(EXCHANGE 

(EXECUTE EXCHANGE !BUYER !SELLER 
!AMOUNT !ITEM EXCH1)) 

STEPS 
(FA RE WELL 

(EXECUTE FAREWELL !BUYER !SELLER ?C)) 
(!RETURN (ICIJRRENT)))) > 

[1ggr~ l - The BUY-CONVERSATION Scri2t 

(iv) WRAT-DO-YOU-WANT: a script that 
knows about the kind of language that 
accompanies a query into the desires of 
som~body; EXECUTEd in this case by the 
BUY-CONVERSATION IPEXPR to handle the 
first couple of utterances in the 
conversation to buy a ticket. It expects 
the ticket seller to inquire into the 
purposes of the model; and expects the 
model to respond appropriately to this 
inquiry. 

(v) INQUIRE: a speech act which will 
either understand or produce an "inquire" 
utterance , depending on whether the model 
is listening or speaking. In the current 
example, the WHAT-DO-YOU-WANT pattern 
expression expects the ticket seller to 
utter an inquiry into the purpose of the 
model, so INQUIRE is activated to 
understand such an utterance. Achieving 
this interpretation requires the IPEXPR to 
look into the input buffer for words which 
have actually been uttered. Discovering 
the word "yes", it checks to see if there 
is a speech act associated with the word 
"yes" which could be construed as an 
inquiry. Finding that there is (YES2), 
INQUIRE replaces itself with YES2 which 
continues the processing (since the actual 
input should take precedence over any 
expectation) • 

(vi) YES2: represents the aeaning of 
"yes" that corresponds to an inquiry 
(rather than the meaning "affirmative 
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answer"). It is called in to continue the 
understanding of the input. Knowing that 
YES2 is an inquiry into the current 
purpose of the model (which is available 
in the execution environment), it is able 
to achieve a proper interpr9tation of t he 
utterance. Most speech acts, however, 
would not be so lucky, and would need to 
call in the language level to reduce the 
actual utterance to internal conc~pts 
which could be more readily und9rstood. 
YES2, at any rate, is satisfied and 
returns to its calling IPEXPR. 

WHAT-DO-YOO-WANT regains ~ontrol; 
sees that the first utterance is just 
about as expected (if it weren •t, 
WHAT-DO-YOU-WANT would have had to explain 
what went wrong); ties it into th~ 
conversation to date, being kept track of 
in the script (this tying-in could be a 
very complex process but is quite trivial 
in the current mod el), Before handling 
the next script utterance, 
WHAT-DO-YOU-WANT must first decide if 
something in the conversation to 1ate is 
demanding priority over its script 
expectations, and if so, what to do about 
it. In this case, since the conversation 
to date has been more or less identical 
with the script's expectations, there is 
no such conflicting demand, Thus, 
WHAT - DO-YOO - WANT moves on to the second 
script utterance, the production of the 
model's response to the ticket seller's 
inquiry. 

(vii) RESPOND: a speech act that 
contains the model's ideas about 
responding to a query, including how to 
understand or produce a response. Since 
WHAT-DO-YOij-WANT orders RESPOND to produce 
an utterance stating the purpose of the 
model, it does so (printing an appropriate 
surface string such as "I'd like a ticket 
to the concert.") Clearly a number of 
other objects would havP. to be called on 
here to decide such things as how much 
semantic information will get across the 
purpose of the model to the ticket seller 
(which involves, at least, looking at the 
beliefs of the conversant, of the model 
itself, and into the execution 
environaent); how to phrase the eventual 
output; what words to choose; how to order 
the•; and so on. These problems aren•t· 
treated to any great extent: I'm at 
present content with the knovledge that 
the aodel knows generally what to say at 
this point and don•t really care if it 
says it well. 

once RESPOND is done, it returns 
again to WHAT-DO-YOU-WANT which must check 
that the utterance produced is 
appropriate, tie it in to the conversation 
to date, and then proceed to the next 
script utterance. But, since the script 
is now coaplete, WHAT-DO-YOU-ilNT returns 
to the BUT-CONVERSATION script which, if 
satisfied with its behaviour, ties the 
WHAT-DO-YOU -VANT utterances into its 
conception of the conversation to date. 
It then proceeds to the bargaining 
scripts, the exchange phase (an only 
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partially linguistic goal), and the 
farewells which end the conversation. 
BUY-CONVERSATION then returns to BUY, 
which, when finished, goes back to 
ATTEND-CONCERT to continue with the plan 
of attending the concert, Among other 
things, more conversations could be 
undertaken before the ATTEND-CONCERT 
IPEXPR is satisfied, and these could be 
handled in much the same way as the ticket 
buying conversation. 

This has been a brief look at some of 
the many action-packed primary pattern 
expressions in the concert scenario. But, 
these IPEXPRs need to access lots of data 
contained in other, secondary pattern 
expressions. Since secondary lPEXPRs act 
mainly as receptacles for knowledge, they 
are guite passiv e in their behaviour. 
Here, the important connections to other 
IPEXPRs are not the dynamic messages 
passed amongst primary pattern 
expressions, but are rather the more 
static semantic network type links of 
their patterns, 

For any particular set of primary 
IPEXPRs, a certain collection of secondary 
IPEXPRs is needed, constituting in a 
sense, the foregrounded information for 
the primaries, The relevance of each 
secondary tPEXPR is discovered at some 
stage by a primary IPEXPR, which can 
record this fact by asserting a "pointer"3 
to the secondary in its execution 
instance. This pointer is then available 
(up the execution environment) to all 
subgoals of the primary IPEXPR vhen they 
want to access knowledge in the secondary 
IPEXPR, 

When a secondary IPEXPR is asked 
about its views on some particular 
subject, it is sent a message just as 
would be done for any I PEXPR, It thus 
becomes (for the moment) a part of the 
plan and hence temporarily a sort of 
priaary I PEXPR, But, the kinds of 
guestions it is asked are so trivial 
(usually involving a simple match for a 
piece of data), that the secondary cannot 
really be considered to be executing a 
subgoal in the same sense as, say, BUY 
does for ATTEND-CONCERT. 

so, lets look at some of the 
secondary pattern expressions that have 
proven useful in the concert scenario. 
The first set to be needed are CONCERT1, 
CONCERT, l'IASSEY - HALL, and AGENDA-CONCERT1 
(see Figure 3) • 

3A pointer is actually just a pattern of 
the form 

(pcinter-name A B) 
asserted in IPEXPR A and pointing to 
I PEXPR B, 
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<I PDEF CONCERT1 
(INSTANCE-OF CONCERT1 CONCERT) 
(LOCATION CONCERT 1 MASSEY- HALL) 
(AGENDA CONCERT1 AGENDA-CONCERT1) > 

<tPDEF CONCERT 
(SUPERSET CONCERT EVENT) 
(ENTRANCE - REQUIREMENT tCONCERT 

tTICKET-FOR-CONCERT) > 

<IPDEF MASSEY - HALL 
(INSTANCE-OF MASSEY - HALL THEATRE) 
(TICKET-BOOTH l'IASSEY-HALL WICKET-!'lfl) 
(LOBBY MASSEY- HALL LOBBY-l'IH) 
(BAR MASSEY-HALL BAR-l'IH) 
(AUDITORIUM MASSEY-HALL AODITORIUl'l-l'IH) 
(SEATS l'IASSEY-HALL SEATS-MR) > 

<IPDEF AGENDA-CONCERT1 
(INSTANCE-OP AGENDA-CONCERT1 

AGENDA-CONCERT) 
(ORCHESTRA CONCERT1 TORONTO-SYl'IPHONY) 
(CONDUCTOR ORCHESTRA CONCERT1 DAVIS) 
(FIRST-HALF CONCERT1 JTJPITER-SYl'IPHONY) 
(SECOND-HALF CONCERT1 EMPEROR-CONCERTO) 
(SOLOIST SECOND-HALF CONCERT1 BRENDL) > 

Figure 3 - concert Knowledge 

These pattern expressions contain all the 
aodel's knowledge about this particular 
concert, including the agenda, entrance 
requirement•, the soloists, the location 
of the concert, etc. In particular, 
CONCERT1 is passed as part of the message 
that activates ATTEND- CONCERT, The other 
three IPEXPRs are pointed to from CONCERT1 
and all are used extensively in further 
sub-tPEXPRs (especially to extract the 
entrance requirement to the concert). 

Another secondary pattern expression, 
the TICKET-FOR-CONCERT1 IPEXPR (a new 
instance of the generi~ 
TICKET-FOR-CONCERT - see Figure 4) is 
generated by ATTEND-CONCERT when it is 
about to BUY the ticket. 

•The ENTRANCE-REQUIREl'IENT pattern of 
CONCERT can be interpreted as saying that 
the entrance requirement for a particular 
instance of a concert is a particular 
instance of a ticket for the concert (this 
is implied by the "t" macros). 



<!PDEF TICKET -F OR -C ONCBRT1 
{INSTANCE- OF TICKET-FOR-CONCERT1 

TICKET-FOR-CONCERT) > 

<IPDEF TICKET-FOR-CONCERT 
(SCTPERSET TICKET-FOR-CONCERT TICKET) 
(LOCATION tTICKET-FOR-CONCERT WICKET -!'I H) 
(REPN tTICKET-FOR-CONCERT 

-= (X (SUBPART X SEATS - !'IH))) 
(COST tTICKET-FOR-CONCERT 
! (I PROG2 

(!TICKET -FOR -CONCERT 
(REPN !TICKET-FOR-CONCERT ?AREA)) 

(ISELECTQ AREA 
(SEATS-!'IH-CENTRE 'tDOLLARS-10) 
(SEATS-MH-RCENTRE 'VDOLLARS-5) 
(SEATS-MH - LCENTRE I tDOLLA RS -5 ) 
(SEATS -M H-BALCONY 'tDOLLARS -3 ) 

NIL))) > 

< I PDEF TICKET 
(SUPERSET TICKET ENTRANCE-REQUIREMENT) 
(SELLER tTICKET fTICKET-SELL:1::R) > 

Figure 4 - Ticket Knowledge 

The TICKET-FOR-CONCERT1 pattern expression 
can inherit from TICKET-FOR-CONCERT 
knowledge that the physical loc~tion of 
the ticket is in the ticket wicket at 
Massey Hall, that the desired location 
represented by the ticket should be a 
certain place in the theatres, the 
projected cost for such a location, and so 
forth, Later, once actual characteristics 
(location, cost, etc,) of the ticket have 
been deterained (by the BARGAIN sub-goal 
of BOY-CONVERSATION), they can be added to 
TICKET-FOR-CONCERT 1, 

Perhaps the most important secondary 
pattern expression is TICKET-SELLER1, 
first created as a new instance of the 
generic TICKET-SELLER (see Figure 5) by 
the BUY IPEXPR as part of its expectations 
about who will be selling the ticket, 

5This information is contained in the REPN 
pattern of TICKET - FOR-CONCERT which can be 
interpreted as saying that a particular 
concert ticket will represent a location 
which is a subpart of the seats in !assey 
Rall (as implied by the"=" macro), 
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<IPDEF TICKET- SELLER1 
(INSTANCE-OF TICKET-SELLER1 

TICKET-SELL ER) 

<!PDEF TICKET - SELLER 
(SUPERSET TICK ET-SELLER SELLER ) 
(SELL tTICKET-SELLER tTICKET) 
(WANT tTICKET-SELLER 

> 

(EXCHANGE 
TICKET-SELLER-HAS-BARGAINING-POSN 
TICKET-SELLER-WANTS-BARGAINING-POSN)) > 

Fi~ure 5 - Ticket Seller Knowledge 

The TICKET-SELLER1 pattern expression 
constitutes the model's mode l of the 
conversant, It initially contains only 
the knowledge that it is a TICKET-SELLER, 
but via its INSTANCE-OF pointer it is able 
to inherit much information. In 
particular the immediately superior 
TICKET -SELLER contains general information 
about ticket sellers: that th~y sell 
tickets, that they•re willing to exchange 
tickets for an appropriate a~ount of 
money, that they are sellers, and so on, 
This information is of much use later on 
when various bargaining positions mus t be 
discovered. A truly c~mplete 
TICKET- SELLER would contain information 
about speaking habits, probable locations, 
potential scripts, etc. As was the case 
with TICKET - FOR-CONCERT1, as time goes on, 
more and more characteristics of 
TICKET-SELLER1 can be added to give it an 
ever more accurate vi ew of this pa~ticular 
conversant. 

This example, although far too brief 
to be really convincing, does illustrate a 
number of interesting points, Issue (i), 
the intermixing of all kinds of knowledge, 
has been attempted - linguistic knowledge 
(in scripts, speech acts, and, although 
not shown, at the language level) is mixed 
with "real world" knowledge (ticket 
information, concert 
knowledge, , • ,) ; procedural knowledge 
(e,g, the EXECUTE patterns of 
BUY-CONVERSATION which accomplish 
subgoals) rubs shoulders with declarative 
encodings (e,g, macro-less patterns, in 
secondary fPEXPRs especially): linguistic 
and non-linguistic goals can call one 
another (e,g, the non-linguistic BUY 
EXECUTES the BUY-CONVERSATION script which 
EXECUTEs, in turn, non-linguistic 
EXCHANGE) , 

Given that the whole organization is 
goal- oriented, issue (ii), the effect of 
the model's goals on its behaviour, is 
obviously of central import, The most 
striking instance: to understand and 
respond to "Yes?" the aodel must look at 
its current goals (available in the 
execution environment). Issue (iii), 
using conversant models, has been 
illustrated as well, Knowledge about 
ticket sellers helps the model at various 
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points, especially during the two BARGAIN 
phases of BUY-CONVERSATION. 

Finally, in response to issue (iv), a 
context mechanism has been delineated, 
namely the execution environment. Not 
only does this focus the model's attention 
on only the relevant super-goals at any 
stage, but it also is the central core off 
of which hang pointers to secondary 
IPEXPRs. In a very real sense the further 
away a piece of information is from this 
core the less relevant it is in a given 
situation. 

Obviously, m~ch has been left unsaid 
(both good and bad) about this approach in 
general and about the representation 
scheme and the concert model in 
particular. Much left unsaid has also 
been left undone. An immediate priority 
is getting the representation ideas fully 
implemented and the concert dialogues 
running. Other priorities include 
analyzing in much more detail the problems 
presented by surface language; examining 
more flexible dialogues, especially those 
necessitating a much bigger role for 
"bottom-up" feedback; and increasing the 
information content of the conversant 
models to account for more subtle aspects 
of a conversant•s influence on a 
conversation. Work by Cohen (1978) and 
Allen and Perrault (1978) will be of use 
here. Other extensions and improvements 
could be suggested, Hopefully, however, 
the framework provided here will prove 
sufficiently robust that such extensions 
and improvements can be readily 
incorporated without undue upheaval. 
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Inductive learning involves the 
formation of a new concept from examples 
and counterexamples. A classical approach 
to inductive l ea rning in AI ( w,;.nston 1975) 
anj ps ychology (Bruner, Goodnow and Austin 
195G) utilizes the first example as the 
initial concept description, and 
genera lizes that description based on 
successive examples and counterexamples. 
I suggest an alternative approach which 
uses the first example to produce a 
general hypothesis for the concept, and 
constrains or alters that hypothesi s as 
required by further examplPs and 
counterexamples. 

The former approach might be termed 
"conservative" and thus the latter "rash". 
A conservative approach gradually broadens 
concepts, based on current examples; a 
rash approach jumps immediately to general 
conclusions, based in part on knowledge 
distilled from previous experience. In 
some contexts I be lieve the rash approach 
will prove to be more efficient for 
machines and a better model of human 
behavior. Compromises between these two 
extremes may also have their utility. 

I present a simplified model of the 
rash extreme and suggest a numb e r of 
dire~tions for further work. The 
implementation of the model is in 
proJress; the program heing implement ed 
is called DUCK. I expect to tes t the 
program initially on Winston's domain of 
structural descriptions (Winston 1975) and 
the learning of poker hands, used as an 
example by Vere (Vere 1977]. 

The basic structure of the mod e l is 
shown in figure 1. The desciption of a 
sample--example or counterexample -- is 
processe d bj the EXTRAC~JR and the 
PRDPJSER. The initial input description, 
especially if taken from a "s~nsory" 
device like a TV camera , will have a good 
1eal of extraneous information. The 
EXTRACTOR picks out the data de~med 
relevant to the learning task, producing a 
second description of the sample, The 
PROPOSER looks at this description for 
propdrties or patterns that are of 
inj uc ti ve in terast, These form the final 
description of the samplP, 

Figure 1 
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The HYPCTHESIZEH chooses from the 
final J~scription ot the first example an 
hypo~hesis for the concept to be learned. 
Th e HYPOTIIESIZER uses later samples to 
modify the concept hypothesis, when it 
fails to account for the samples. 

Each processing module has an 
associat~d knowledge source. The 
proc ~ssors are to function largely to 
"compile" the knowledge, making the 
expertise ea~ily extensible in a given 
domain, or transferable to another domain, 
by extenuing, or replacing, the knowledge 
sources, The hop0 is that detailed 
knowl~dyc appropriate to the learning task 
will increase the efficiency of the 
learning process, while a hierarchy of 
knowledge modules will per~it DUCK to 
focus on the appropriate heuristics. 

Consider Winston's canonical ~xample 
of learning an arch. The EXTRACTOR would 
proJuce assertions about support relations 
an~ such. It would ignore explicitly, as 
~inston•s program does implicitly, 
features like color, irrelevant to the 
structural concepts being learned, The 
PROPJSER would look for coincidences or 
extremes. The coincidence of two supports 
for the same block is about tr,e only thing 
that stands out as of possible inductive 
interest. The HYPOTHESIZER takes this 
feature as the initial concept hypothesis. 

Given a counterexample where the 
supporting blocks touch, the PROPOSER 
would pick out "touching" as an extreme 
value of the spatial proximity 
relationship. (One of the problems of 
learning by counterexample involves 
picking out the relevant differences, when 
the sample is not neatly confined to a 
single difference.) As "not touching" is 
not "strong" enough to function as a 
concept hypothesis on its own, it would be 
added to the initial hypothesis. The 
result is a good basic concept of an arch. 

The learning model described here is 
"knowledge-based". There has been a 
recent surge of interest in 
knowledge-based learning, as evidenced by 
the papers at the latest IJCAI, Fox and 
Reddy discuss "knowledge guided learning" 
[ Fox and Reddy 1977 ], Davis eaphasizes 
"meta-level knowledge" (Davis 1977]. 
Goldstein and Grimson "annotate" 
production systems [Goldstein and Grimson 
1977], while Vere supplies "background 
knowledge" (Vere 1977 ]. Michalski reports 
an algorithm for the determination of a 
"relevant" description set [Michalski 
1977] . Lenat•s knowledge-based heuristic 
search for nev concepts is concerned with 
"interestingness" (Lenat 1977 ]. I find a 
particular relationship to the work of 
Soloway and Riseman (Soloway and Riseman 
1977]. Earlier relevant knowledge-based 
efforts include the concept formation of 
Meta - DENDRAL (Buchanan, Feigenbaum and 
LE>derberg 1971 ], and the program 
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construction of Sussman•s HACKER (Sussman 
1975 ] • 

However, I think this present work is 
distinctive in its focus on a rash 
strategy, specializin~ an initial 
hypothesis, as opposed to gen ~ralizing the 
initial sample. 

I present several 
regarding extensions of 
induction. 

speculations 
this work on 

1. Intermediate models compromise 
the co11servative and rash extremes. 

How conservative or rash we are in 
our induction depends on context, If I am 
being shown the procedure for defusing a 
bomb, I will assume every move ment must be 
copied precis,1ly, when demonstrating mor<> 
common tasks, we often take pains to point 
out deviations from the norm that will 
otherwise be assumed: "you have to push 
down while pulling this drawer open". 

A compromise implementation of the 
conservative and rash approaches would be 
prepared to make hypotheses at an 
"appropriate" lev?.l of generality, and 
then to either generalize or specialize as 
required. Another compromise approach 
vould involve carrying forward several 
alternative hypotheses in parallel. 

2. Questions can implement 
hypothesis driven induction. 

We often question the teacher, 
sometimes oy providing samples of our own: 
"Is this a frammus, then?" We may seek to 
verify or clarify part of our hypothesis: 
"If it's blue, will it still be a 
frammus?" If we are carrying alternatives 
forward, questions can help distinguish 
among them. 

3. Previously learned related 
concepts can help form hypotheses. 

aelated concepts serve as additional 
counter?.xamples. If we are learning a 
partition of a set of phenomena, an 
hypothesis for one which fails to rule out 
another is unacceptable. Related concepts 
can help choose appropriate properties 
from the relevant or input descriptions to 
specialize the concept hypothesis. Since 
aost horses are big, size strikes us 
important in defining a Shetland pony. 

4. Knowledge sources can be 
organized hierarchically, and themselves 
learned inductively. 

Knowledge sources can be utilized in 
combination and organized hierarchically. 
Knowlege about sequences, for example, 
might appear under mathematical interest 
knowledge, along with knowledge of even 
numbers. There is no a priori reason why 
2, 4, 6, 8, 10 should not be a valuable 
hand in poker . However, more specialized 



knowl a d~ d , induced from experience with 
oth e r card qames, wou.ld not ,expect eve n 
numb~r s to pldy an interesting role in 
forming poker hand concepts. 

This knowledge can he modified 
inductively, even while bt>ing used to 

1 leac:n other concepts. The systelll can 
learn, for e xample, that the color of card 
pips is not usually important; or when 
forced to return to the input descc:iption 
leve l repeatecHy for a feature, it can 
decid e to modity thi-> inductive interest 
knowledg e to look for that feature. When 
an advdnced version of DUCK first enters a 
new ·iomai:1 it may hav 0 to be conservative. 
As it learns concepts in that domain it 
also lelrns learning strategies for that 
domain, e mbodying them in the knowledge 
sour=es~ The more specific learning 
strategies justify more y&neral, rash 
inductive behavior. When first learning 
card games, thP. system may not know that 
car cl backs are unimpor ta nt, However, the 
syst e m learns to remove card backs from 
the properties of inductive interest. I 
think this reflects human learning 
behavior. This is one reason an 
experi enced cook can learn a complex dish 
more easily than a novice learns a simple 
one. Lenat [Lenat 1977] has recently 
studied heuristics for determining 
"int e rest", and is currently working on a 
system which can le5rn these heuristics in 
turn. 

5. Context influences our learning 
strategy, 

Knowlege or expectations about the 
concepts to be learned can influence 
hypothesis formation. This may be fairly 
specific, constituting an outline or frame 
(Minsky 1975] to be filled in, or general: 
"I expect color to be important." We aay 
also utilize knowledge of the learning 
process: "Why is he telling me that?" 

6. The rash model can be hedged by 
"probabalistic induction". 

Attachiny probabilities to our 
hypotheses interpolates Winston's "must 
be", "must not be" extremes. 

7. "Functional induction" can 
generate hypotheses. 

If we know the purpose of tables, we 
know the top must support objects, then we 
may infer it important that the legs 
support the top. 

8. "Deductive induction" can justify 
"leaping to conclusions". 

Suppose we see a "Grunji fruit" for 
the first time, observing that it is 
purple. The next day someone asks us 
"what color are Grunji fruits"? We reply 
"purple". Induction from a single 
example, how rash! Yet if we see an 
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exotic foreign car for the first time, 
observing it to be blue, we will not inf e r 
that all s uch cars a re blue, qui tc the 
contrary, In Winston's terms, the color 
pointer would be moved from "blue" to "any 
color" in the car concept, whilP becoming 
a "must be" pointer for the fruit, after 
only the first example, 

In fact, the rash inductions ~. Are are 
probably simple deductions. We have 
previously learned that "all fruits with 
the same na111e have the sa me color" {with 
several qualifications, I grant), AJ,jing 
"one Grunji fruit is purple" then 
naturally i111plies that all Grunji fruits 
are purple, 
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1.0 Introduction 

This paper should be viewed as a provi
sional progress report on a wide ranging explora
tion of what might be called visual-motor 
reasoning. We began with an interest in the 
phenomenon of reasoning with the aid of diagrams, 
as in doing geometry. As we puzzled over the 
question of why diagrams appear to be of immense 
help in such reasoning, we became convinced that 
in order to understand this phenomenon we had to 
take into account both the architecture of the 
human cognitive system and its input-output 
transducers . In other words we concluded that 
it is not some inherent property of diagrams 
which makes them so useful, but rather it is the 
way this form of representation interacts with 
the particular set of primitive operations and 
resource-limited trade~offs characteristic of 
human cognition. Thus our original interest led 
us to consider a much broader set of questions 
than we had anticipated. It led us to ask what 
perceptual functions could be considered prim-
itive; how spatial relations might be rep-
resented; how the intention to draw a figure 
meeting a certain description interacts with the 
available motor primitives (efferent commands) 
as well as with proprioceptive and visual inputs 
(the afferent signals). The latter, in turn, 
involves a consideration of the problem of 
perceptual-motor coordination. 

While it is possible that not all these 
various aspects are equally relevant to the phen
omenon of interest we felt that we could not 
justify leaving any of them out in developing 
the research program. For example, some of what 
we know about a diagram comes from the original 
description; some from the planned sequence of 
drawing operations; some from what is visually 
noticed in the course of executing this sequence 
and still others fro.m scanning the diagram in the 
course of answering questions about it. If we 
did not consider the drawing and scanning com
ponents, the semantic representation of the 
diagram which would be built--and hence the 
relative complexity of various deductions--would 
not be the same. Furthermore the way. we 
draw the diagram, the way in which we scan it, 
the features which we notice and the timing of 
the noticings and intermediate inferences are 
intimately related to the properties we attribute 
to each of the~e functions and to the way in 
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which they interact. Hence it seems unlikely 
that we can account for the relative complexity 
of different diagram-aided inferences unless we 
attempt at least a schematic design of all 
relevant aspects of an entire perceptual-motor 
system underlying this kind of reasoning. 

' To have a concrete task to focus on we 
took one of the goals of this project to be the 
design of a system which can answer simple 
questions (put to it in some restricted format) 
about diagrams by actually going through the 
process of drawing and examining them directly, 
as well as by making inferences over its seman
tic representation of them. For example after 
drawing prescribed lines and figures and joining 
specified points the system should be able to 
determine which lines intersect and whether 
certain of the lines form specified figures or are 
contained inside other figures or are in certain 
relations to other lines and points. 

We have approached this goal by first 
setting out what we consider to be some critical 
de~ign decisions. These decisions follow the 
principle of attempting whenever possible to 
remain faithful to the known facts about human 
cognitive mechanisms. More accurately, we have 
tried to avoid making assumptions about available 
mechanisms which are implausible as psychological 
mechanisms, though they may be universal in 
general programming languages. In this respect 
we follow the lead of Allen Newell in hi s 
modelling of certain cognitive phenomena (Newell, 
1973). We have adopted this strategy not solely 
because of an interest in modelling human cog
nitive processes but also because, as expressed 
earlier, we believe that reasoning-by-drawing has 
the properties it does precisely because of the 
nature of the human computational architecture. 
An additional guiding principle has been that 
whenever the relevant psychological facts are 
either unavailable or not unequivocal we attempt 
to use the least powerful (and therefore least 
presumptive) plausible mechanism capable of 
carrying out the required function. 

An example of a consequence of adopting 
these principles is that we have avoided what 
might appear to be easy numerical solutions to 
some of 'the problems encountered. For example 
we do not maintain a computational equivalent of a 
Cartesian model of Euclidian space, nor the kind 
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of quantized model which could be provided using 
array structures as implemented in many program
ming languages . While there are usually many 
reasons for excluding such models, one straight 
forward one is that there i s ample evidence that 
arithmetic operations (which map numerical 
expressions onto numerical expressions) are not 
primitive operations in the human architecture . 
Hence magnitude manipulation processes must be 
mode lled by some other means (c.f. Pylyshyn, 
1978). Incidentally the decision to shun the use 
of arithmetic applies only to the part of the 
system which models cognitive or symbolic pro
ce sses. The parts of thP. system representing the 
retina and patterns of light on its two-dimen
s ional surface or the intensity of signals going 
to and from limbs (on the non-symbolic side of 
the transducers) are modelled using numerical 
methods when appropriate. These arP. models of 
physical, not cognitive, events and so are 
immune from our strictures. 

In the remainder of this report we will 
sketch the principle design decisions we have 
made concerning the visual component; the repre
sentation and inference component; and the motor 
system and coordination component which interact 
to generate the drawings . 

2.0 The Visual Component 

We are not attempting anything so ambi 
tious as a general" vision system. Nonetheless we 
do intend that the assumptions we make about the 
visual component be realistic and general, however 
incomplete. By working in the domain of two
dimensional drawings (oriented at right angles to 
the line of sight) we are able to bypass many dif
ficult problems. By confining our domain to that 
of plane geometry we are able to restrict the low
level visual processes to ones which deliver only 
a small number of aggregate types, such as points, 
lines and junctions, rather than the much richer 
variety that might otherwise be needed (c.f. 
Barrow and Tenenbaum, in press). On the other 
hand problems of low-level vision are present and 
merge into problems of recognition, interpretation 
and inference as they do in general vision. Fur
thermore we do face the problem of building up a 
semantic representation from multiple sources of 
data, including data derived from visually 
scanning the diagram and detecting features as yet 
unknown to the system--i.e. not yet in the 
semantic representation. 

2.1 The Retina 

Visual information is assumed to come in 
as a grey-level retinal matrix. The size of the 
retina was dictated by the following considerations. 
If information on the retina was to be randomly 
accessible or processable in parallel, then making 
the retina the full size of the diagram would make 
it possible to bypass some important problems of 
representation. Since the "raw data" would always 
be available to interrogation by the perceptual 
primitives (see 2.6) the problem of selective en
coding would not arise (though inference is still 
a problem). Alternatively if one did not assume 
parallel access by primitives then one would need 
to scan the retinal matrix somehow (cell-by-cell 
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or perhaps by groups of cells) in order to build 
up a semantic representation. This however, is 
equivalent to having a smaller retina: it simply 
moves the diagram into the head and the retina in 
still farther! 

Choosing a very small retina size relative 
to the size of the diagram (in the extreme it 
might be a single pixel) is to blur a distinction 
between perception and inference or problem 
solving that we wish to preserve. Indeed in our 
view it is the very existence of this distinction 
which makes reasoning through diagrams different 
from reasoning in general. With a small retina, 
information has to be put together serially, as a 
blind man with a cane must piece together a scene. 
If we assume that there are visual primitives 
which operate in a parallel manner over the retina 
then a choice of retina size represents a choice 
of how spatially local the primitive features of 
the system will be. This in turn partly determines 
the vocabulary over which the semantic representa
tion is constructed, as well as the distribution 
of computational effort over the two categories of 
perception and deduction. 

In our sys tem, retinal size is a parameter . 
However we expect that the appropriate retinal 
size is one which rarely includes as much as a 
whole geometrical figure or as little as a single 
vertex with only a small fraction of the attached 
line segment in view. Evidence from the perception 
of anomalous figures (c . f . Hochberg, 1968) sug
gests that this is roughly of the right order for 
human perception of line drawings (though obviously 
we can make such drawings any size and view them 
at any distance. The evidence suggests, however, 
that when we do this our visual interpretation may 
change.) 

We· have not attempted to take into account 
peripheral vision (at least in the initial design) 
for a number of reasons . (1) Although the 
psychophysics of the visual field has been 
extensively studied, relatively little is known 
about the information processing function per
formed by peripheral vision; (2) the phenomena 
we are studying would be manifest, with respect to 
those aspects we are interested in, even if 
diagrams were viewed through tunnel vision; 
(3) the attention distribution mechanism to be 
described in 2.3 makes it possible to model 
almost any sort of peripheral processing notions 
by providing for the imposition of attention 
allocation restrictions favouring the centre of 
the retina (or on some other more complex basis). 

2.2 Primitive Aggregation 

The most elementary visual process is the 
aggregation of optical features on the retina 
into clusters. Such aggregation is assumed to be a 
primitive data-driven context-free non-resource 
limited process. It may be viewed as the inherent 
action of the optical transducer located at the 
retina. Exactly what type of aggregation functions 
are computed, whether they are limited in their 
spatial extent, whether they respond to optical 
continuity (region driven) or discontinuity (edge 
driven) or some other intrinsic property, whether 
their influence can propagate to neighbouring 



regions, and whether they can cascade to produce 
more complex aggregated patterns in an automatic 
data- driven manner, are all fascinating open 
research question s . A number of promising pro
posals are available on such questions, including 
Marr's (in press) work on the primal sketch, 
Zucker's (1978) relaxation labelling scheme and 
Barrow and Tenenbaum's (in press) proposal for 
intrinsic prope.rty extraction. 

Once again by confining our domain to 
drawings in plane geometry we can greatly simplify 
our system while still conforming to the basic 
insights reached in the research on low-level 
v1s1on. We assume a basic unlimited -resource 
aggregation process for such retinal objects as 
points (including isolated points, endpoints, and 
intersection or function points), lines (with 
two, one or no endpoints visi~le), and a few com
bination aggregates (such as X's, T's, V's and 
perhaps even more complex but undescribed objects 
like "figure"- -but these have not yet been 
explored). Each aggregate has one of a small 
number of type -flags associated with it. Every 
time a movement of the retina occurs the aggrega
tion process is reactivated. And as each aggre
gate is formed it provides a potential interrupt 
of the next phase, which might be thought of as 
attention-capturing and which is not resource
unlimited . 

2.3 Allocation of Attention 

When an aggregate is formed it can be 
given a token of a resource-limited referencing 
mechanism, which can be thought of as a unit of 
attention, called a FINST (which, for historical 
reasons, stands for "instantion finger"). We 
expect that the allocation of FINSTs will be on 
some priority schedule based on such considera
tions as the type and location of the aggregate 
and perhaps also on characteristics of the higher 
level process active at the time, but little has 
been done on this scheduling aspect to date. 
When an aggregate dissappears (i.e. moves off the 
retina) its FINST is automatically returned to 
the pool. Retinal objects with FINSTs are 
referenced (or named) objects and hence can be 
referred to by the system. They may, for example, 
be identified as instances of objects known to the 
system and hence they may become bound to semantic 
or memory nodes (or, more accurately, to existen
tially quantified variables in assertions). They 
may, furthermore, be bound to arguments of 
various primitive perceptual functions and 
predicates as will be illustrated below. FINSTs, 
therefore, provide for a limited subset of retinal . 
objects to be treated in a unitary manner and 
referred to by the system. Other important prop
erties of FINSTs are discussed below . 

2.4 Referential Continuity Over Retinal Trans 
lation 

With a moving retina we must face the 
problem of recognizing the continued presence of 
the same object at different retinal locations. 
A relevant question is: at what level of per
ceptual analysis is the identity of retinal objects 
(except for translation) decided? One way to 
decide pattern identity might be to construct a 
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description of the pattern at time t which is 
invariant over certain spatial transformations, 
say D(t), then construct another such description 
at a later time t', say D'(t') and compare the 
two descriptions . If they are identical then 
call the second pattern by the same name that 
was used to designate the first pattern. What 
seems unsatisfactory about this approach is 
that it requires that an abstract translation
invariant description be constructed prior to 
deciding that some pattern has moved . But in the 
case of continuous movement thi s is surely 
unreasonable. It seems more plausible in that 
case that recognizing that a pattern has moved 
across the retina should be independent of, and 
possibly even prior to, the further analysis of 
that pattern. There is evidence (such as dis
cussed by Marr, in press) that perception of a 
pattern's movement is determined by cues that 
are more retinally local than the perception of 
its overall shape. 

Our approach has been to hypothesize that 
maint~nance of the identity of an object which 
has a FINST (i.e . which i s a named aggregate) is 
a computational primitive. In other word s we 
posit that the visual transducer is so constructed 
that once a FINST has been placed on an aggregate 
it remains attached to it as the aggregate 
changes retinal location quasi-continuously (i. e. 
by moving through all distinct intermediate 
retinal locations). The way in which this is to 
be implemented on a standard computer is not 
considered relevant to the function being mod
elled, since that function operates on a different 
machine architecture. For example in the 
relevant architecture, maintenance of continuity 
might be accomplished by cellular arrays. For 
us that function is simply a primitive operation-
a building•block for describing the perceptual 
process. 

Another way to view this property is to 
consider that what we have done is to assign 
identical names (FINSTs ) to primitively 
aggregated retinal objects when we have a clear 
basis for concluding that they ar ise from 
the same physical objects on the diagram. This 
principle of labeling retinal objects in terms 
of properties of their physical source is an 
important one to follow in vision whenever it is 
possible to do so from local evidence. It is 
essential to do so, for example, in order to make 
use of stereoscopic depth cues since optical 
objects on the two retinas must be identified as 
arising from the same physical point before 

retinal disparity can be determined. Fortunately 
this too can be done from the local cues, on the 
basis of assumptions concerning the continuity 
of surfaces "almost everywhere". Similarly 
Barrow and Tenenbaum (in press) have argued for 
labeling retinal features on a basis which 
reflects the possible physical property of scenes 
from which these features arose. Our continuity 
maintenance assumption can be viewed as an 
instance of this principle. When movement across 
the retina is continuous it is easy to see how 
local evidence enables such an identity main 
tenance function to be primitively realized. 
When movement is in saccades the situation is 
more complex, but the brief persistence of the 



preceding image together with some limited visual 
capacity during the rapid saccade might also pro
vide the means to maintain identity primitively. 
For longer blackouts, however, it could well be 
that identity must be recognized by the more 
costly method outlined at the beginning of this 
section. 

2.5 Attending to Higher Level Objects 

Recall that a FINST can be placed on any 
primitively aggregated object and that the 
FINST remains on that object when the latter 
changes retinal coordinates continuously. For 
example, in the current system, as a retinal scan 
reveals more or different parts of a line con
tinuously, a fixed object reference or FINST is 
associated with the changing aggregation. More 
formally and generally, it is the primitive 
aggregation process itself which dete:rmines what 
constitutes object invariance under such change. 
Thus what happens at an intersection (X) d~pends 
on the properties of the particular aggregation 
process. (Currently the system individually 
aggregates uninterrupted segments of lines as well 
as the entire set of concurrent segments so that 
the COG module can refer to these component parts 
individually). Similar principles would apply to 
curved lines--i.e. it would depend on the 
aggregation process. 

The above illustrates the way in which a 
FINST can be attached to an aggregated object 
even when the entire object is not present on the 
retina. Furthermore, as more of the object 
appears it keeps the identity assigned to its 
first part providing only that it continuously 
becomes absorbed into the earlier object by what
ever aggregation process is available. Should 
cascaded aggregations or region aggregations be 
permitted, it might be possible to cast such 
Gestalt phenomena as figure-ground isolation in 
these terms. 

While we have not, for the time being, 
developed the notions of more complex data-driven 
aggregations, we have considered alternative ways 
in which higher level structures might receive 
FINSTs. This might be thought of as allocating 
attention to a figure as a whole, without neces
sarily allocating attention to its individual 
parts. Such a notion might be a useful way to 
try to make sense of Gestalt notions of holistic 
perception of patterns. To understand what it 
would mean to place a FINST on a higher level 
object we must examine again what function FINSTs 
serve in our system . 

2.6 Primitive Visual Operations 

One of the main reasons for introducing 
FINST s is that once we have named objects we can 
bind these names to other variables such as nodes 
for particular known objects, nodes for general 
object types (in definitional structures) and to 
arguments in primitive visual operations or predi 
cates. For example, the system then has a way of 
asking whether Pis true of this and that since 
the latter two objects have names and~can be 
referred to in that manner (recall that these 
names uniquely refer to objects even when the 
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latter change retinal coordinates and even when 
all of the potential aggregate is not on the 
retina). 

Visual predicates have types associated 
with their arguments. The evaluation of a 
predicate is considered to be a computational 
primitive (i.e . a single step in the hypothesized 
architecture) providing that all its arguments 
are bound to objects of the appropriate type. 
Thus the evaluation of ONLINE (P : point - type, 
L : line-type.) is primitive providing P is bound 
to an aggregated object of type "point" 11nd Lis 
bound to an aggregated object of type "line", 
and of course providing that both these objects 
have FINSTs on them (i.e. providing they are 
being "attended to" by name). There is no res 
triction at present on the permissible locations 
of P and L providing they both have FINSTS, which 
means that at least part of them is on the retina. 
Sample predicates include PARALLEL (Ll : line, 
L2 : line), PERPENDICULAR (Ll : line, L2 : line), 
ENDPOINT (P : point, L : line). In addition some 
of the operations have the effect of retrieving 
a FINST or even generating one for a retinal 
object . For example INTERSECT (Ll : line, L2 : 
line), or JUNCTION (Ll : line, L2 : line) return s 
either "false" or a FINST corresponding to the 
intersection or junction point. This may be 
interpreted to mean that the only way to verify 
that two lines intersect or meet is by visually 
noticing their common point . 

The notion of visual primitive and that of 
a FINST are intimatelj related insofar as the 
only method by which FINSTs become interpreted 
and therefore assimilated into the semantics 
is through a visual primitive, and primitives 
are only defined over objects with FINSTs (we 
anticipate that the visual primitives may be 
represented as both data-driven demon (or 
if~added) form and process-driven servant (or 
if-needed) form). 

This way of viewing FINSTs opens up the 
possibility of there being FINSTs on larger 
complex objects, even though the latter may not 
have been primitively aggregated but merely 
interpreted as an integral object (such as a 
triangle or even a pair of parallel lines) in 
the semantic representation. Following our 
characterization of FINSTs above we can think of 
a FINST being placed on a more complex figure 
(i.e. on a semantic node corresponding to that 
figure) as meaning that the figure i s being 
singled out for attention in such a way that 
certain visual predicates can be primitively 
evaluated for that figure. One of the most 
eligible candidates for such a predicate is 
PARTOF (X : object, Y : object). Thus if there 
is a FINST on a triangle and another on one of 
its sides it is primitive to decide that the 
indicated line is part of the indicated figure. 
Our current proposal is to restrict predicates 
such as PARTOF to only take arguments from 
adjacent levels in a descriptive hierarchy 
(e.g . figures and subfigures, or lines and points, 
but not figures and points--the latter requiring 
a transitive inference and also requiring that 
intermediate-level objects be attended to as 
well) . 



Recall that FINSTs were introduced as 
tokens of attention in order to account for 
resource limited trade-offs. In view of this it 
should be the case that when one is attending to 
a figure as a whole one needn't also be attending 
to each of its parts. That is to say, attending 
to component parts requires additional tokens of 
attention or FINSTs beyond that placed on the 
whole figure node. A useful metaphor for think
ing about FINSTs and the primitive PARTOF 
predicate is the following . When a FINST is 
placed on a node in some hierarchical description, 
that node and all its first level branches become 
the same colour. The primitive predicate is 
simply one which decides whether two objects in 
the graph have the same colour. In the case of 
a line having a FINST, we can think of the line 
having a unique colour. Deciding whether a 
point is on the line simply requires verifying 
that the point is the same colour as the line. 
The purpose of the graph colouring metaphor is to 
suggest that placing a FINST on a complex com
posite object causes an intrinsic primitively 
detectable property ( vi z . colour in the met 
aphor) to propagate down to its component: parts. 
We have considered whether regions defined by 
lines should also be thought of as coloured, but 
that issue raises a number of deep problems which 
we have not yet resolved. 

3.0 Representation and Inference 

3.1 Qualitative and Quantitative Representations 

The system's internal (post - transducer) 
representation of the overall diagram being 
drawn is, as stated earlier, primarily qualita
tive . Some coarse quantitative information is 
retained concerning selected relative distances 
and angles. This quantitative information is, 
however, represented in the form of a nominal or 
category scale (such as small, medium and large) 
using a symbolic notation which, like the Dewey 
decimal classification scheme, indicates both 
magnitude and precision. This form of repre
sentation has a number of psychologically 
interesting properties to recommend it but a 
discussion of the general issue of magnitude rep
resentation is beyond the scope of this report 
(our proposal is essentially the same as that of 
Marrand Nishihara, 1977). 

Information in the overall representation 
(which we frequently refer to as the "semantics" 
because the terms of this data structure 
designate conceptual or interpreted properties) 
is stored and processed by the cognitive component 
of the system (the so-called COG module) . Infor
mation in this representation arises from two 
general sources: the instructions to draw and 
the perceptual input . The first contributes the 
overall category names (e.g. triangle, square). 
In addition the drawing plan, assembled from 
definitions and additional constraints, supplies 
relations such as PARTOF and property names such 
as base, hypotenuse, altitude, right angle, mid 
point and so on. For ease of communication with 
the user it also attaches external label names 
(such as might be written on the diagram) to 
internal node names (or COG nodes) . External 
l abel s are not at present used in the recognition 
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process since this would allow the identification 
of diagram parts by methods other than those we 
are primarily interested in. 

The second source of semantic representa
tion (perceptual input) provides a way to 
elaborate the semantics through visual discovery 
rather than through formal (axiomatic) deductive 
inference. Any visual predicate can provide a 
means of adding new properties and relationships 
to the evolving semantic structure. 

An additional source of new perceptual 
information comes from monitoring non-visual 
sensory input--specifically kinesthetic informa
tion. It is possible to obtain magnitude 
information (distances and angl es ) from the 
execution of motor commands. In keeping with our 
attention-limited assumption, however, such infor
mation is not simply recorded whenever motor 
commands are carried out. The commands themselves 
are never recorded. What is s ensed is the kines
thetic information and that only occurs when such 
information is being explicitly attended to and 
encoded. This explicit attending is not done 
using FINSTs but by executing movements in a 
special "monitoring" mode which results in the 
generation of magnitude information. Such 
information may be given a coarse symbolic 
encoding and added to the semantics or it may be 
used directly in a magnitude-comparison predicate. 
This procedure is necessary in order to accomplish 
tasks like finding the mid - point of a line 
segment when the segment is too long to fit on 
the retina. Though the general idea of dealing 
with magnitude (or other) information from kines
thesia (or perhaps from some proprioceptive time 
estimation) by some resource constrained means 
seems sound enough, we consider the current 
proposal as only a crude first step requiring 
much more development. 

3.2 Inferences While Scanning and Recogni zing 

In order to discover new properties of 
the diagram while scanning it, the system must 
first identify the parts of the diagram it knows 
about. This recognition involves making infer
ences about the identity of objects. Such 
inferences can usually be made quite simply, 
given that the system always knows the identity 
of some of the objects (i.e. the FINSTs on some 
of the objects are bound to semantic objects or 
COG nodes), that it has a representation of the 
diagram which contains nodes for most of the 
retinal objects (this follows from the fact that 
most of the semantics are constructed while the 
figure is being drawn and from the continuity 
constraint on retinal motion), and that it has 
visual primitives which .provide it with certain 
relations between the known and unknown retinal 
objects. In fact the only inferences which are 
permitted in this context are ones which begin 
with identified- object COG nodes and propagate 
ove~ existing relation links using information 
obtained from visual primitives. We have 
deliberately confined ourselves to a weak 
inference scheme since we felt that continuity 
of perception with retinal movement should not 
have to depend on complex computations. By 
restricting the power of the deductive recognizer 



to something resembling graph matching we place 
the additional burden of achieving the required 
level of performance on the design of an 
efficient representation and appropriate visual 
primitives. At present our deduction proceeds 
as follows. 

The first step in identifying a new 
retinal object is to discover spatial relations 
between the object and instantiated objects 
currently on the retina (i.e . objects with 
FINSTs). The system does this by using "visual 
predicates". For each relation, its inverse is 
applied to the already ir,statiated objects and 
may produce a number of "candidate" uninstan
tiated COG nodes to match to the new retinal 
object. Now the system visually determines 
whether the new object satisfies the properties 
of each of the candidate objects. Any candidate 
COG node which has a property which is violated 
by the new object is rejected. By this graph
matching process, the number of candidate objects 
is reduced to (hopefully) one COG node which 
satisfies all the spatial relations between tht 
new retinal object and the already instantiated 
retinal objects . 

If several possibilities remain after 
this heuristic has been applied, other informa
tion (e.g. scanning direction) is used to try to 
further reduce the number of possibilities. If 
more than one possibility still remains for 
identification of the new retinal object, then 
instantiation is deferred. Identification of 
the object may be attempted again whenever the 
state of knowledge about retinal objects changes, 
e.g. if some other new retinal object is iden
tified . 

If there are no possibilities for identi
fication of the new object, then the COG should 
be modified to accommodate it . For example, a 
new COG node is created for an intersection 
point which is being seen for the first time. 

It seems unlikely that this method will 
be sufficient by itself. For one thing its use 
of movement information is still too rudimentary 
to provide ways of identifying objects when the 
retina moves over empty regions. It also does 
not seem to set up strong expectations of what 
will be encountered in scanning and the identi 
fication of objects seems somewhat more piece
meal than it might be. However it represents 
a first step and we felt it was better to begin 
with a weak heuristic and add additional 
facilities rather than doing the converse. 

4.0 Coordinating the Motor System 

Three objects in the system can be moved 
by issuing commands to the motor system. They 
are: the retina (or, more specifically, the 
position of the centre of the retina in relation 
to the diagram) ; the pen (which may be either 
down and leaving a trace, or up) ; and a third 
object, to be described below, called an anchor 
(we leave open the possibility of adding addition
al anchors, if they are needed). Both the pen 
and the anchor are visually distinct. When they 
are on the retina they can be primitively 
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recognized. In addition the pen has a visually 
recognizable orientation so that, for example, 
the PARALLEL predicate can ascertain whether its 
orientation is parallel to that of an attended 
line. Because they are part of the motor system 
the position of these three objects can also be 
sensed kinesthetically. This dual sensing 
property will serve as the basis for perceptual 
motor coordination, as we shall see below. 

Motor commands for moving these objects 
take LOGO-like or local polar coordinate form 
- -i.e. direction and distance. However, we assume 
that all movements are under the control of a 
peripheral feedback loop through either the 
visual or kinesthetic system. Thus all motor 
commands are really of the form MOVE-UNTIL 
(<predicate>) or TURN - UNTIL (<predicate>), where 
the predicate is either a vi sual or kinesthetic 
one. To draw a line parallel to, say, the bottom 
of the paper (we assume figures are drawn on an 
area whose frame is visible) we can do a 
TURN-UNTIL command with the predicate being 
PARALLEL and its arguments bound to the pen 
FINST and the paper bottom FINST (assuming of 
course that both are on the current retina). 
Then we issue a MOVE-UNTIL command with the 
predicate being one which perhaps evaluates an 
intersection of the new line with one on the 
retina or which evaluates the (very coarse) 
sensing of n kinesthetic units of monitored 
motion. 

The interesting problems arise when we 
wish to move an object to a currently unseen 
point or from a currently unseen point to a 
point on the retina. For example we might want 
to move the centre of the retina to some point 
we specify as a COG node (or a description or 
external label which evaluates to a COG node). 
Alternatively we may wish to move the pen, 
currently off the retina, to some object on the 
retina which has a FINST . We cannot simply issue 
the command to move to a particular FINST since 
neither the motor nor the kinesthetic system can 
interpret a retinal location. Retinal objects 
are not known to the system in terms of kines
thetic coordinates nor vice versa. In other 
words we cannot use, say, a TURN-UNTIL command 
with a visual predicate if the pen is not 
visible, nor can we say MOVE-UNTIL and specify 
a visual predicate under these circumstances 
because that does not specify (nor can it be made 
to specify) which direction to move the pen in 
order to bring it onto the retinal field where 
the predicate could be evaluated. The problem is 
how to inform the kinesthetic system, which can 
sense off-retinal locations, of the location of 
retinal objects and conversely how to inform the 
visual system of the kinesthetic coordinates 
cooresponding to retinal objects. 

We have already explained that the 
"obvious" solution of maintaining a global 
cartesian or matrix representation of the whole 
diagram is unsatisfactory. While it would 
eliminate what we call the "cross-modality 
binding problem" by allowing both visual and 
kinesthetic systems access to a global diagram
centered frame of reference, this entails 
assumptions about the processor which we consider 



unrea l istic . However if this coordination across 
modaliti es is to take place it must respect the 
general resource-limited constraints we imposed 
on our design. 

Our approach to the cross-modality 
binding problem has been to seek the minimally 
powerful mechanism, entailing the fewest assump
tions about th e nature of the underlying 
cognitive architecture, which could achieve the 
desired result. It seemed to us that the least 
we could assume is that there were a few objects 
which could be bound to both visual and kines
thetic sensors--i.e. whose location could be 
simultaneous ly available in both systems. The 
pen and the anchor (and to some extent the 
centre of the retina if we think of it as having 
a distinct visual s ign-- such as cross-hairs) are 
such objects. We can both distinguish them when 
they are on the retina (they automatically 
receive FINSTs) and sense them kines thetically . 
The location of the centre of the r e tina in 
kines thetic spac e can also be sensed. Thus 
starting from th e pen or anchor on the retina we 
can move them to a particular FINST on the 
retina (typically one bound to a COG node) using 
a visual primitive. Then if we somehow move the 
retina so that neither the pen nor the anchor is 
visible any longer we sti ll in principle have a 
way of determining their position i n kinesthetic 
space and so in principle should be abl e to mov e 
the retina back to them. To capitalize on thi s 
fact we propose that it is a property of the motor 
system that it can be primitively instructed to 
move any of the three kinesthetically sensed 
objects (retina, pen, anchor) to the position 
occupied by either of the other two. Furthermore 
we propose that locations of each of these three 
moveable objects remain fixed in space, independ 
ent of any movements of the other two , unless 
they are commanded to move. This then allows 
us to, say, place the anchor at the centre of 
the retina, move the retina away to where the 
pen had earlier been l eft and then move both the 
pen and the retina together to the location of 
the anchor while drawing a line . 

While these assumptions entail the 
existence of feedback systems capable of 
di recting the movement of objects in such a way 
as to bring their sensed positions into coinci
dence, thi s seemed like the least that could be 
assumed and still make perceptual motor coordina
tion possibl e. Furthermore they are closely 
related to a proposal made at the turn of the 
century by Henri Poincare (in an essay entitled 
"Why space has three d i mensions"). In discus 
sing the question of how people's intuitions of 
a unitary three-dimensional physical space could 
have arisen, given the diverse sources of 
different information about location provided by 
our variou s senses, Pioncare'made the following 
observation . He noted that certain coincidences 
of inputs, such as might occur when what we 
independently conceptualize as a single object is 
being sensed by several sensory systems, could 
provide the boundary condition which results in a 
single coordinated space-frame developing. What 
we are proposing is that the system's ability to 
recogn ize, for a few objects whose movement it 
controls, that what it senses kinesthetically is 
also what it detects visually can provide a 
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limited but crucial funnel through which we can 
effect visual - ki nes thetic location binding, and 
hence the basis for perceptual motor · coordination. 

This elementary facil ,ity appears to be 
sufficient to allow a variety of drawing plans 
to be constructed using a "two•fingered" algorithm 
that leaves an anchor behind on the figure whil e 
it moves the retina to a new location. Using 
this procedure we can compile other use ful com
posite commands. We can even think of such 
elementary functions as line tracking be ing 
carried out by placing the anchor on the line on 
the side of the retina towards which we wi s h to 
track and then moving the r etina to it and 
iterating. Although further research might 
persuade us tha t additional motor primitives are 
plausible the minimal mechani sm proposed repre
sents a promising start. It bears a resemblance 
to the Marr and Ni shikara (1977) minimal 
mechanism propo sa l for rotating a three dimen
sional model in their vision system. 

5.0 Impl ementation 

The design principles di scussed in this 
paper, particularly those relating to the use of 
FINSTs in the vi sual processing, the use of 
cros s- modality bindings in the scanning and 
drawing mechanisms , and the use of the described 
uniform recognition mechanism have been embodied 
in the heuristic implementation written in 
POP- 10 (Davies, 1976 ) on the DEC -sys tem 10 . The 
details of the implementation together with 
sample run-time protocols are presented in a 
U.W.O . report (Pylyshyn et al. 1978). 
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Abstract 

HOUSE, a computer program, can 

sketches of houses and other polyhedral 

interpret 

objects. 

'.Ihis paper describes the design and current 

implementation status of OOUSE. '.Ille program uses 

seven levels of representation of the meaning of 

the sketch. It achieves a consistent 

interpretation 

the next level. 

at each level before proceeding to 

'.Ille interpretations produced on 

one level. are used as cues to invoke models at the 

next level. The notion of consistency is extended 

to include both internal and external consistency. 

Consistent interpretations are arrived at through a 

uniform network consistency algorithm. '.Ille program 

is presented in the context of the goals of a 

sketch understanding project. HOUSE is evaluated 

with respect to its contributions towards 

satisfying those goals. 

1. Motivation 

'.Ille purpose of this paper is to report on the 

design of a program, HOUSE, that interprets 

sketches of polyhedral objects composed of 

meaningful parts, such as houses. '.Ille program, 

which has recently been implemented, is the latest 

result of the SEE project, a project set up to 

explore the interpretation of images designed for 

person to person communication. '.Ille goals of this 

project are: 

i) to develop methods of exploiting the 

semantics of images designed for 

communication as typified by sketches, 

ii) to explore possible solutions to the chicken 

244 

iii) 

iv) 

v) 

vi) 

and egg problem in perception: sensible 

segmentation requires interpretation and vice 

~' 
to broaden the scope of vision programs by 

applying lessons learn.ea in the blocks world 

to other domains, 

to provide an experimental vehicle 

studying control structures required 

implement schema-based theories 

perception, 

for 

to 

of 

to make available 

programs for some 

useful interpretation 

restricted but important 

classes of sketches, 

to explore the relationship between natural 

and conventional representations. 

2. '.Ille~ of perception and MAPSEE 

HOUSE is an offshoot of MAPSEE, a program 

designed for interpretation of sketches of 

geographic maps (Mackworth, 1977a). '.Ille assumption 

underlying both programs is that perception is an 

active process both data-driven and model-driven in 

character. Mackworth (1977b) has argued that all 

perceptual processes can be viewed as a cycle 

consisting of four processes: cue discovery, model 

invocation, model testing and model elaboration 

(see Fig. 1). In particular, all vision programs 

can be usefully characterized by how they embody 

this cycle. MAPSEE shows that a viable solution to 

the perceptual chicken and egg problem can be 

obtained by closing the cycle. In MAPSEE, the 

cycle is entered in the cue discovery phase, that 

is, a conservative, tentative 

picture primitives (chains and 

segmentation into 

regions) is done 



first. A number 

identified as cues in 

of picture fragments are 

this segmentation. 'Ihese 

cues give access to a number of danain dependent 

models. 

model /elaboration\ 
cue model 

discovery testing 

\~del J' 
i nvo cation 

Fig. 1 the cycle of perception. 

A model here is an interpretation, a naming, of the 

parts of the cue. A network consistency algorithm 

takes these models, together with the primitives in 

the picture which the models are supposed to 

interpret, and tests the consistency of the 

possible interpretations for the different 

primitives in the picture. 'Ihe interpretations 

that survive the consistency tests provide a basis 

for sensibly refining and extending the 

segmentation. 

3. ~ HOUSE? 

Clowes (1971) 

interpretation tasks 

argued 

involve 

that all picture 

formulating and 

manipulating descriptions in two distinct danains: 

the picture danain and the scene danain. Besides 

simply avoiding the confusion of linguistic 

category errors (lines and regions exist in the 

picture danain, edges and surfaces in the scene 

all to distinguish the primitive connected points 

from the straight lines and the regions they appear 

to define . We need to represent the shape of the 

edges depicted (convex, concave, crack or 

occluding), the three-dimensional orientations of 

the edges and the shapes and orientations of the 

surfaces depicted (horizontal, vertical, •.• ). Most 

importantly, we must, in this domain, go beyond 

three-dimensional geometric structure. We must be 

able to name surfaces according to their function 

in this architectural domain (wall, door, window), 

be able to describe and use their attributes (the 

walls are vertical) and interrelationships (the 

window is surrounded by the side wall .and coplanar 

with it), and be able to interpret the whole as a 

functional entity, a house, as well as a 

three-dimensional polyhedral object. 

In order to make these distinctions it is 

necessary to fracture the picture and scene domains 

into seven distinct domains. Since these danains 

are at least partially ordered with respect to 

semantic content or abstraction from the original 

image we shall call them levels. Contrasting this 

with MAPSEE where image cues invoke scene models we 

can see that HOUSE requires a cue/model hierarchy. 

'Ihe interpretation strategy in HOUSE is to achieve 

a consistent interpretation by following a 

M.APSEE-like cycle of perception at each level 

before proceeding onto the next. 

4. Description 

4.1 Levels of Representation 

'Ihe seven levels of representation in HOUSE 

domain) this approach led to greater precision in are: 

the formulation of picture interpretation tasks. 

In MAPSEE, for example, chains of connected line 

segments in the cartographic picture danain 

correspond to rivers, roads, shore lines, coast 

lines, mountain sides and parts of bridges in the 

geographic scene danain; regions correspond to 

seas, lakes and landmasses. 

In many tasks, however, the requirements of 

descriptive adequacy alone dictate that we need 

more than two distinct danains. Consider, for 

example, the sketch in Fig. 2a. We need first of 
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1) Sketch level: the picture is represented as an 

interconnected set of points. 

2) Line/region level: straight line representation 

and region representation. 

3) Vertex level: the lines are interrelated by 

vertices, the region boundaries and shapes are 

computed. 

4) Edge level: lines are interpreted as edges, 

relating the surfaces connected by the edge. 

'Ihe edge types possible are: convex (+), 

concave(-), occlude(>), occlude-concave (>~ 



and crack (c). 

5) Orientation level: the three-dimensional 

orientations of both surfaces and edges are 

represented. This classification is very 

crude. Possible orientations are: vertical, 

horizontal or slanted. 

6) Surface naming level: the surfaces carry 

meaningful names. For example, a surface can 

be ground, ground* (a horizontal surface 

coplanar with the ground such as a path), roof, 

window or door-handle. A surface is a 

side-face or top-face if it is part of a cube 

or a wedge. 

7) Object level: the image is represented as an 

object. The possible objects in HJUSE are a 

cube, a wedge and a house. 

Fig. 2 shows an image, interpreted as a house at 

the object level, represented at the seven 

different levels in the hierarchy. 

4.2 Input 

HJUSE receives a sketch in the form of a 

procedure for drawing it, created by the routines 

that track the stylus on a data tablet. '!tie input 

is a sequence of plotter commands, a command being 

Move (pen up) to (x ,y) or Draw (pen down) to (x,y) 

from the current position. Each series of pen down 

commands forms a chain of connected line elements. 

4.3 Multi-levels of processing 

'!tie interpretation process strives to 

represent the image at the highest level possible. 

'Itiis is achieved by systematically bootstrapping up 

through the seven levels described above. A 

consistent interpretation of the image has to be 

achieved at each level before the step into the 

next level can be made. '!tie cycle of perception 

serves as a metaphor for the description of the 

process. '!tie cycle can be found at each level of 

processing, stepping through its four stages: cue 

discovery, model invocation, model testing and 

model elaboration. '!tie objectives at each level of 

processing are always: 1) to construct a consistent 

representation and 2) to find the cues that allow 

bootstrapping into the next level. 
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4.3.1 Low Level Segmentation 

One of the lessons learned from the blocks 

world is that one needs to maintain a variety of 

representations each at various levels of detail in 

order to meet the demands of the interpretation 

task. 'Itiese representations are created by means 

of four different segmentation procedures resulting 

in point, line, region and vertex representations. 

Point formation. The points in the picture are 

represented in two different ways. First there is 

a network representation of the set of all points 

in the picture. Apart from this a coarse array 

representation is maintained (32x32 ) . Each cell 

contains the list of points in that area. Quick 

answers to questions such as "what am I near?" can 

be given this way. 

Line formation. 

interconnected 

representation 

joining its end 

A chain is defined as a set of 

points. '!tie coarsest line 

of a chain is the straight line 

points. A procedure searches for 

the point in the chain furthest from that line and 

uses this point to split the line into two 

components. '!tie chain is recursively subdivided 

until there are no free points left. 

Vertex formation. '!tie vertices used in HOUSE are: 

Free-ends, Links, L-vertices, Tees, Arrows and 

Forks (Fig. 3) . Each vertex has its own formation 

procedure. 'Itiese procedures are efficient in the 

sense that they use the line representation of each 

chain just up to the level of detail they require. 

'!tie procedures are also conservative. For example, 

a merge of two Free-ends into an L-vertex or Link 

will occur iff the distance between the ends is 

very small. 'Itius, one prevents vertices from being 

merged that were not intended to be. Conservative 

segmentation will often miss genuine cues but, 

crucially, it will not supply false cues 

(Mackworth, 1977a). 

Region formation. A region segmentation is 

achieved by subdividing the picture into empty 

patches, a patch being subdivided only if it is not 

empty. 
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Free-end 

chain)( 

Link 

ch~ Region-a 

~ 
Region -b 

Region -surround 

L-v~rtex 

Region-small 
cha in 2 -----chainI 

Region-large 

Fork 

chainI 

Region - c Region-b 

stem-chain 

Tee 

~e ion -a 

Region-c chain 2 
Region-b 

chainI 

s t em-chain 

Arrow 

Region -a 

Region -b 
Region-

stem-chain 

Figure 3 . the vertices 

Again, for conservative reasons, this process stops 

at a relatively large patch size. 

'llle low level segmentation process continues 

through levels 1 to 3. 'lllis process cLUTiulates in 

the formation of the low level cues (the vertices 

in Fig. 3) that allow bootstrapping into the 

interpretation cycle of the edge level, level 4. 

Chains and regions are the primitives in 1-K)USE. 

'llley are constrained by the vertices. Each vertex 

has a procedure at its disposal by means of which 

it can find out which regions it constrains. 'lllis 

procedure crawls along the bisector of each vertex 

line pair. 'nlis process is conservatively biased 

in the same way as the region formation procedure 

was. It will travel over a distance less than the 

size of the smallest patch along the bisector. If 

no region is found a region-ghost is created 

(Mackworth,1977a). 
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Such a region-ghost stands for the region which has 

that relationship to the vertex but cannot yet be 

identified. 

4.3.2 Cue interpretation tables 

For each level of processing beyond l evel 3 

there exists a set of cues which have procedures 

attached to them that will allow one or more 

interpretations for the primitives at that l evel. 

Fig. 4 shows the primitives at each level. A few 

examples of the constraints imposed at each l evel 

might be useful. 

At the edge level we have used traditional 

Huffman (1971), Clowes (1971) and Waltz (1972) 

junction interpretations to interpret the edges. 

At the orientation level, we have used 

extremely crude characterizations of the 

orientations of surfaces and edges (similar to but 

much cruder than those suggested by Waltz, 1972 ) 

into horizontal, vertical and slanted. 'llle cues 

here are the edge types. A typical inference is 

that two surfaces separated by a crack must have 

the same orientation. A vertical line lying in a 

surface with a vertical orientation must be a 

vertical edge. 'nlese constraints are essentially 

ccmpiled versions of the gradient space constraints 

exploited by POLY (Mackworth, 1973). 

At the surface naming level, we use inferences 

such as, "the ground is horizontal, walls are 

vertical, roofs can be slanted or horizontal" . 

Relational information such as, "windows share a 

crack edge with walls or doors and are surrounded 

by them" is also exploited here. 

At the object level, certain cues must be 

present before 

cube or wedge. 

the object can be called a house, 

Sane parts of a house (a putative 

wall containing a door or a window and connected 

via a convex edge to a putative roof) must be there 

before it can be a house. Other parts 

(e.g. door-handles) are optional, as in Winston's 

(1975) architectural models. 



cue type 

free-end 

1-vertex 

link 

arrow 

fork 

tee 

Edge level 

domain(s ) 

chn 

convex,concave,occl-conc,occlude,crack 

chnl 
occlude 

occl-conc 
occlude 
crack 

occlude 
convex 
concave 

occl-conc 
crack 

chn2 

occlude 
occlude 

occl-conc 
crack 

occlude 
convex 
concave 

occl-conc 
crack 

-------------------------------------stem-chn chnl chn2 
----------- ------------ -----------convex occl-conc occl-conc 

convex occlude occlude 
concave occl/crack occlude 
concave occlude crack 
convex occlude occlude 
concave concave concave 
convex convex convex 
concave occl-conc occl-conc 
convex occlude occiude 
crack crack crack 
crack occl-conc occl-conc 

================================================== 

cue type 

concave 

convex 

crack 

Orientation level 

domain (s ) 

chn region-a region-b 
---------- ----------- ------------h-edge v-surface h-surface 

sl- surface ---------- ------------ ------------h-edge v-surface h-surface 
sl-surface 

h-edge h-surface v-surface 
sl-surface 

I 
v-edge ____ ,_v-surface __ ,_v-surface __ _ 
v-edge v-surface v-surface 

h-edge 

h-edge 

sl-edge 

sl-surface sl-surface 
v-surface h-surface 

sl-surface sl-surface 
h-surface v-surface 
v-surface sl-surface 

l-:~:~~ge- 1-:~:::::::e-1-:=:~:::::---
v-edge 
h/sl-edge sl-surface sl-surface 

h-edge h-surface h-surface 

cue type 

Surface naming level 

domain (s) 

chn region-a region-b 

occl-conc h-edge 

concave h-edge 

wall/door 
roof 

side-face 
top-face 

------------wall/door 
roof 

side-face 
top-face 

ground 

ground* 

1-~~~~~ge_ ,si::~:~:~f- lsi::::ace ___ _ 

convex I h/sl-edge I roof wall/roof 

l-~=~::---- 1--::~~nd ____ ,_ ::~~nd* ___ _ 

crack h/v-edge window wall 
sl-edge 

inside 

surrounds 

region-a I region-b ------------------ -------------------window wall/door 

wall/door window 

wall/roof 
conunon side-face ground 

top-face 

wall/door-handle I door 

door I wall/door-handle 
region 

--------------------------------------v-surface wall/door/window/door-handle 
side-face 

sl-surface 

h-surface 

roof/top-face 

ground/ground*/roof/top-face 

Object level 

cue type 

common-wall-door-* 
convex-wall-roof-h-edge 

convex-wall-roof-h-edge 
inside-window-wall-* 
convex-side-face-top-face-h-edge 
convex-P<;1rallelogrc;llll-~rallelogram-h-edge 
convex-s1de-face-s1de-face-v-edge 
convex-parallelogram-parallelogram-v-edge 
convex-side-face-top-face-h-edqe 
convex-P<;1rallelogram-triangle-n-edge 
convex-side-face-side-face-v-edge 
convex-parallelogram-parallelogram-v-edge 

domain 

obj ect 

house 

house 

cube 

wedge 

================================================= -------
convex-side-face-toP:-face-sl-edge 
convex-trial}gle-parallelogram-sl-edge 
convex-top-face-top-face-n-edge wedge 
convex-parallelogram-parallelogram-h-edge 

================================================== 

Figure 4 Cue interpretation tables 
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4.3.3 Network Consistency 

At each level of interpretation, certain 

configurations of primitives, known as cues, invoke 

m::oels which specify the allowable interpretations 

for the primitives. To ensure a globally 

consistent solution we must find an interpretation 

for each primitive such that each cue has at least 

one satisfied model. '.Iwo different types of 

consistency are required for each interpretation. 

An interpretation should be consistent with the 

internal description of the primitive (internal 

consistency) and it should be consistent with at 

least one of the interpretations for related 

primitives (external consistency) . 

External consistency is achieved by a network 

consistency algorithm, NC (Mackworth, 1977a) . 

Input for this algorithm is a list (actually, a 

queue) of variable/relation pairs. 'Ihe variables 

are the primitive chains and regions, the relations 

are the cue instances constraining the primitives 

they are paired with. 'Ihe domain of each primitive 

is formed by its set of possible ~ priori 

interpretations. NC takes the first pair (X,R) 

from the queue and checks for each value a in the 

domain of X to see if the other variables also 

constrained by R have at least one value in their 

domains that is directly constrained by R. If such 

a value cannot be found then a is deleted from X. 

An empty domain for X implies that there is no 

consistency in interpretations possible. 

is not the case then the queue is replaced 

If this 

by the 

union of the queue and the set of pairs obtained 

from all relations other than R that directly 

constrain x. 'Ihese two steps are repeated until 

the queue is empty. If two or more primitives have 

more than one value left in their domains after 

this operation, the domain of one of the primitives 

is split in half and N:: is applied recursively. An 

extensive discussion and elaboration of network 

consistency algorithms is given in (Mackworth, 

1977c) . 'Ihe network consistency algorithm used in 

EOUSE is the same at all levels of processing 

beyond level 3. 

Internal consistency is provided in the form 

of filters both in the cue interpretation tables 

and in the network consistency algorithm. 'Ihese 
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filters can prevent a model from being validated. 

For example, a slanted surface cannot have a 

vertical edge as part of its boundary. 

Internal and external consistency are the 

equivalents of model testing and model elaboration, 

respectively, in the cycle of perception. 'Ihe 

completion of model elaboration either starts t he 

cue discovery at the next higher level or it leads 

to a resegmentation of the picture . Note that all 

the interpretations obtained at the present level 

and lower levels are potential cues for the next 

higher level. 

4 . 3.4 Resegmentation 

Resegmentation can be initiated for many 

reasons. 'Ihe door- handle of the house in Fig. 2 is 

a good example. Because this region is too small, 

the conservative segmentation will initially 

overlook it. A region-ghost is created in its 

place because the region finding procedures 

crawling up along the bisectors of the angles will 

all fail to find a region. In the interpretation 

process, however, a region-ghost is treated as all 

other primitives. 'Iheir domains are provided with 

a set of initial interpretations, whose consistency 

is tested by the network consistency algorithm. A 

region-ghost with an interpretation left in its 

domain initiates resegmentation, that is, the 

region segmentation is further refined until the 

region-ghosts can be located and labelled as 

regions. Although region resegmentation is used in 

MAPSEE, it has not been implemented in HOUSE at the 

time of writing . 

4.4 Output 

'Ihe output of the program consists of a 

network of interconnected interpretations. An 

interpretation at each level consists of a list of 

all the primitives at that level; each primitive is 

paired with a valid interpretation for the 

primitive. Each interpretation at a given level is 

linked to the interpretation at the next lowest 

level that spawned it and the interpretations at 

the next highest level that it, in turn, has 

spawned . 'Ihe number of such interpretations as 



., 

returned by the network consistency algorithm 

varies from level to level. 'Ihe general trend is 

that the number of interpretations at each level 

increases up to the orientation level and decreases 

beyond this level. For example, a wedge has 7 

interpretations at the edge level, 30 at the 

orientation level, 11 at the surface naming level 

and 3 at the object level, two of these 

representing a wedge, the third one representing 

its concave interpretation. 

5. Discussion 

It is not feasible to discuss all the 

implications of HOUSE in this short paper. For 

such a discussion the reader is referred to Mulder 

(1978). HOUSE'S treatment of the cycle of 

perception should speak for itself by now. It is 

shown in Fig. 5. 

surface 

oric 

line/region 

sketch 

r 
X 

r 
f 

level 

level 

Figure 5. HOUSE' s treatment of the cycle 
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We will limit ourselves here to a short discussion 

of the contributions of HOUSE to the goals of the 

project. 

i) The exploitation of the semantics of an image in 

levels buys both modularity (and thus generality) 

and efficiency. For example, merging the 

orientation level and the surface naming level 

would have led to the same end results. However, 

the total number of ccrnbined interpretations to be 

tested by the network consistency algorithm would 

be much larger in the merged situation. Ruling out 

certain combinations at the orientation level 

prevents similar combinations from being made at 

the surface naming level. 

ii) The chicken and egg 

requires interpretation" 

MAPSEE and HOUSE show 

problem "segmentation 

remains a problem. Both 

that a conservative 

segmentation of the picture, eventually corrected 

later by means of interpretation, can work. 

However, it is not difficult to think of examples 

in which even a conservative segmentation would be 

incorrect. We are working on solutions of this 

problem, but none of these has been implemented. 

iii) The need for and implementation of multiple 

representations and levels of details, one of the 

lessons learned from the blocks world, was 

mentioned before. For example, the vertex finding 

algorithms make sophisticated use of multiple 

representations. 

iv) The utility of stratifying the interpretation 

process does not require one to use a totally 

bottom-up approach as HOUSE currently does. Within 

the framework we have presented it should be easy 

to see that one can start processing at a higher 

level before finishing at a lower level. With the 

cycle running concurrently on many levels at once 

the constraints embodied in the cue interpretation 

table could propagate vertical consistency (Zucker, 

1977) down the levels as well as up. 

Schema-based theories of perception require a 

control structure different from HOUSE'S present 

control structure. Schemata are active processing 

elements which can be activated in either a 



top-down way or a bottom-up way (Bobrow & Norman, 

1975). '!he models in MAPSEE and HOUSE are 

predicates treated as data structures by the 

network consistency algorithm. Schemata on the 

other hand take over control themselves, 

controlling both internal and external consistency. 

A next stage of the project may be to implement 

irodels that can take over control in order to test 

internal consistency. Having schemata that control 

external consistency as well would mean that we 

have to alter the network consistency algorithm. 

At this point, the project will probably diverge, 

one side focussing on the aevelopnent of a general 

control structure for the interpretation of 

sketches, the other focussing on a schemata 

controlled interpretation. A substantial 

contribution to schemata-controlled int~rpretation 

has been made by Havens (1978a). Havens has 

designed and implemented a programming language 

called MAYA (Havens, 1978b) which is a 

multi-processing dialect of LISP that provides 

structures for representing schemata, and control 

structures for coordinating and integrating 

b.:)ttom-up and top-down schema instantiation. 

v) HOUSE is a first step towards realistic 

architectural sketch understanding. 

vi) One might expect that interpretations in the 

block world are more constrained by euclidian than 

by conventional representations as contrasted with 

the domain of geographic maps where conventional 

signs play a strong role. Data collected in an 

experiment done by Mulder and Mackworth (1978) 

lnwever show, that slant estimates of cube surfaces 

by human subjects are controlled by three different 

schemata. Only one of these is purely geanetrical: 

the other two display an intriguing mixture of 

geometry and convention. 

6. Related Work 

We have already discussed the commonality of 

the ideas behind the two programs and the influence 

of previous image understanding research. Levels 

of processing have also been proposed by Zucker 

(1977) for processes in a low level vision system. 
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Network consistency algorithms and their 

developnent from binary arc consistency algorithms 

(Waltz, 1972) are described in (Mackworth, 1977c). 

Related algorithms have been proposed by Gaschnig 

(1974), Barrow and Tenenbaum (1976), Freuder (1976) 

and Rosenfeld, Hummel and Zucker (1976) . 
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A PROCEDURAL MODEL OF RECOGNITION FOR MACHINE PERCEPTION 
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ABSTRACT 

Aspects of a schema-based theory of machine 
perception are discussed . Perception is character
ized as an active recognition task that employs 
schemata as a knowledge representation to compose 
new descriptions of observed experience. A pro
cedural model of recognition for machine perception 
is presented. The model integrates top -down, 
hypothesis -driven search with bottom-up, data 
driven search in schemata networks . Heuristic pro
cedural methods are associated with specific 
schemata to guide their recognition. Multiple 
methods may be applied concurrently in both top
down and bottom- up search modes. The implementa
tion of the recognition model as an A.I. program
ming language called Maya is described. Maya is a 
multiprocessing LISP dialect that provides data 
structures for representing schemata and control 
structures for integrating top-down and bottom-up 
processing in schemata networks . 

1. Introduction 

The creation of intelligent automata has been 

a compelling dream of mankind for millenia. Only 

in the last few years, however, with the invention 

of the von Neumann digital computer, has the real

ization of this dream been a serious possibility. 

Unfortunately , our high expectations have been 

maddeningly difficult to realize. In particular, 

we do not yet have an adequate theory of machine 

perception . However, as Mackworth (1977b) points 

out, elements of such a theory are emerging. 

Towards this end the research efforts of many have 

focused on the development of schemata as a viable 

machine representation of knowledge. This represen

tation has appeared in various incarnations includ

ing frames (Minsky, 1975) (Winograd, 1975), scripts 

(Schank and Abelson , 1975), and schemata (Rumelhart 
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and Ortony, 1976) (Bobrow and Norman, 1975). A sec

ond major effort has been the refinement of search 

mechanisms for schema-based perception (Kuipers, 

1975) (Freuder, 1976). 

This paper presents aspects of a schema-based 

theory of machine perception. The work is motiva 

ted by the belief that perception can be character

ized as a recognition process that composes new de 

scri ptions of observed experience in terms of 

stored stereotypical knowledge of the world. A sim

ilar view has been advocated by Bobrow and Winograd 

(1977). A theory of machine perception is seen as 

having two major parts: a fonnalism for the repre

sentation of knowledge and a model of the processes 

and control structures required to perform search 

and deduction on that representation. This work 

focuses on the development of a procedural model of 

recognition for schema-based representations. 

2. A Procedural Model 

In this model , a schema is a modular represen

tation of everything known about some stereotypical 

concept, object, event, or situation (Minsky , 1975). 

That knowledge can be manifest in three fonns. 

First, each schema contains factual knowledge about 

the concept that the schema represents, and that 

knowledge may be realized declaratively, procedur

ally, or as some combination of data and attached 

procedure. At first, such facts are expectations 
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in an uninstantiated stereotype schema. These ex

pectations are systematically replaced by specific 

values in the schema instance as they are recog

nized. 

Second, each schema may contain procedural 

knowledge to guide the recognition process for 

· that schema's stereotype. Such active heuristic 

knowledge is called a method. Instead of relying 

on general search methods, domain-specific methods 

can be associated with particular schemata to ex

ploit special techniques that are particularly ef

fective for the recognition of that schema . Meth

ods may be employed in both top- down and bottom-up 

search modes. 

And third, schemata form relations with other 

schemata thereby creating heirarchial network 

structures . This process allows complex concepts 

to be represented via the composition of more prim

itive schemata, as composition hierarchies. For a 

thorough discussion of schemata as a representa 

tion, see Winograd (1975). 

The types of recognition processes that can 

operate on schema-based knowledge representations 

are constrained by perception itself. Perception 

cannot passively reflect sensation, but must be 

an active search process motivated by plans, ex 

pectations, and desires. Our sensory experience 

of the world is often ambiguous and illusory. 

Likewise, our knowledge of the world by which we 

interpret sensory experience is incomplete and 

often erroneous. Yet, perception must operate in 

this uncertain environment. The search process 

must tolerate indeterminancy by exploiting context 

and allowing multiple partial interpretations to be 

hypothesized and their confirmation attempted con

currently over time. 

As well, machine perception must be both an 

active process guided by hypothesis and expectation 

and a passive process driven by events and sensory 

observations (Freuder, 1976), Observations behave 

as cues which both stimulate the formation of hypo 

theses and the activation of active heuristic knowl

edge associated with the specific hypotheses. Such 

hypothesis -specific knowledge is used to direct the 

recognition process by making observations, creating 

new expectations, and attempting to satisfy those 

expectations. 

The expectations associated with stereotype 

schemata play an important role in the recognition 

process. They are dynamic properties of each schema 

that change as the uninstantiated instance proceeds 

toward being fully specified. At each point in this 

process , the schema's expectations represent what 

additional information is required to complete its 

recognition. From a different perspective, they 

represent the schema's knowledge of the world: 

what it expects to occur next or be found next from 

observation. Expectations provide the predictive 

power of models for their associated schemata. 
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Expectations may be represented by simple de 

fault values to be replaced by observed values when 

they are discovered, or they may be represented by 

complex patterns with attached procedural methods. 

These attached methods may use either goal-directed 

or data-d~iven search mechanisms (Rumelhart and Or

t"ony, 1976). Goa 1-di rected methods are designed to 

perfonn a top-down search of a schema's composition 

hierarchy in order to satisfy the methods' associ

ated expectations. Data-driven methods, however, 

are designed to perfonn a bottom-up search of a com

position heirarchy based on the satisfaction of 

their associated expectations. 



For large knowledge bases, the recognition 

process cannot utilize purely top-down goal-direc

ted techniques. Our knowledge of the world is far 

too complex to rely solely on goal-directed mechan

isms. Machine perception must employ an integra

tion of both goal-directed and data-driven search. 

Goal-directed search provides active guidance 

based on domain-specific knowledge of the hypo

thesis being attempted, whereas data-driven search 

uses the observation of cues to select likely 

hypotheses. See Havens (1976a ) . 

Goal-directed search for schemata is realized 

by employing a top-down search of a schema's compo

sition hierarchy. Top-down methods attempt to rec

ognize instances of their schema's stereotype by 

making observations from sensory input and by call

ing on the efforts of the sub-schemata as subgoals 

(Kuipers, 1975). 

Data -driven search in schemata requires the 

bottom-up search of a schema's composition hierar

chy. In the model discussed here, a schema's meth

od may be activated either from a higher schema as 

a subgoal, or from a lower schema as a supergoal. 

If a schema's method has been explicitly called as 

as a subgoal, then it must return a success or 

failure to its caller. However, if a schema has 

been activated as a supergoal, then it does not 

have an explicit caller. Instead, it must compute 

which higher schemata in the composition hierarchy 

its completed schema instance could plausibly be 

part of. This computation is facilitated by re

quiring each schema to contain inverse composition 

relations (usually called "part-of") with all 

plausible higher schemata. 

Bottom-up , data-driven search in schemata de

pends on multiple supergoals being active simultan-
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eously. Since it is desired that the recognition of 

schemata be conducted by procedural methods, these 

bottom-up methods must be allowed to apply their 

heuristic techniques concurrently. In bottom-up 

search, therefore, supergoal methods are realized 

as concurrent processes. 

By allowing a schema to be activated from the 

bottom-up, the acknowledged deficiencies of goal

directed search in schemata can be avoided. A 

schema need not be hypothesized as a subgoal on 

blind expectation. Instead a likely schema is sel 

ected as a supergoal based on the recognition of 

supportive evidence from the input data. Once a 

schema has been selected as a supergoal, it may con

tinue the search for a fully specified instance by 

using top-down techniques until one or more of the 

schema ' s expectations prove difficult to achieve. 

Since the supergoal exists as a process, it may then 

suspend itself bound to patterns representing those 

expectations until further supportive evidence is 

discovered. 

When such matching evidence is found renewing 

the probability of the schema's success, the suspen 

ded supergoal is resumed. Supergoals iterate 

through a cycle, called an expectation/matching 

~ of being resumed by the discovery of match

ing evidence, computing a new set of expectations 

about their evolving schema instances, and then 

suspending themselves and possibly other methods to 

those expectations. Since multiple methods may be 

attached to multiple expectations, these expecta 

tions represent diverse possible directions for a 

schema's script . The eventual choice of a search 

path is not made by blind hypothesis but is data 

driven, chosen by the discovery of evidence match 

ing a particular expectation. The method associa -
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ted with that expectation is then activated to 

continue its schema's recognition. The branches 

in a schema's non-deterministic script are there

fore chosen deterministically by discovery of 

information supporting that path. 

Machine perception must also be a recursive 

process. The recognition of complex concepts 

cannot be sustained using only primitive low-level 

cues. Instead, the recognition of concepts can be 

used recursively as internal cues in the perception 

of more abstract concepts. In the model discussed 

here, cues are both primitive features computed 

from the external world and abstract internal fea

tures represented as schema instances. When a 

method satisfies all its schema's expectations for 

a fully specified concept, that instance becomes an 

internal high-level cue. By allowing cues to be 

arbitrarily complex concepts, a context-sensitive 

cycle of perception (Mackworth, 1977b) is realized . 

Starting at the sensory data level, primitive cues 

present in the input are used to drive the hypo

thesis and recognition of low- level concepts. 

These features then behave as higher level cues 

that stimulate the hypothesis of more abstract in

terpretations . When a concept has been recognized, 

the completed instance uses knowledge of what 

higher schemata in any composition hierarchies it 

might plausibly be part of. It then attempts to 

match the expectations of those schemata. This 

process is called completion in the recognition 

model. 

3. Maya 

The recognition model described above has been 

implemented as an experimental programming language 

called Maya (Havens, 1976b). Maya is a LISP dia

lect designed to facilitate progralTITiing in schema-

257 

based systems, The language extends the data types 

defined in LISP, provides a multiprocessing inter

preter, and defines control structure primitives 

for integrating top-down and bottom-up search in 

schemata networks. 

Maya separates the LISP notion of an atom 

into two separate data types. In 

LISP, each atom is used both as a variable and as 

the name of a set of properties, usually implemen

ted as property lists. In Maya, however, variables 

are differentiated from the names associated with 

property lists because it is desirable to distin 

guish between the value of a variable and the name 

of a data object. Variables are represented syn

tactically, as in LISP, by their atoms but names of 

objects are represented by their atoms prefixed by 

a colon. 

The most important extensions to LISP's data 

types are the inclusion of objects and items. Ob

jects subsume LISP property lists, the OBLIST, and 

can be used to represent schemata frames, and sem

antic networks. A schema or frame can be thought 

of as a collection of named slots. A node of a 

semantic network may be considered to be a set of 

named relations. Objects can conveniently repres

ent both of these structures. Each object is com

posed of a set of associations between atomic names 

and arbitrary forms. A name is said to be defined 

by its binding in some object. For example, the 

property list of the atom PRINT is an object which 

defines an association between the name SUBR and 

the system print function. Likewise, since the 

OBLIST is an association of LISP names to their 

definitions, it is considered the global object in 

Maya. 

Objects are created by the data primitive 



OBJECT which has the following form : 

(OBJECT <type ><name1><defn1><name 2><defn 2> l 

OBJECT creates a new object of user.specified type 

<type>, consisting of a set of associations between 

each atomic name <n~mei > and its lo~al definition 

<defni >. 

Whereas objects associate atomic names with 

their definitions, items associate variable names 

with their local values. Items are sets of local 

variable instances. In Maya, ~enerators such as 

the pattern matcher and the top- down and bottom-up 

control structure primitives always return items as 

values. These items contain the set of local vari

able bindings computed within the function . 

In LISP, the interpreter's stack contains only 

function invocations and variable bindings. Maya's 

stack, however, also includes objects and items. 

Pushing an object onto the stack provides an incre · 

mental context mechanism. Since Maya i s defined 

about a deep- binding scheme, objects pushed onto 

the stack alter the interpreter's "view" of the 

OBLIST. The object nearest the top of the stack is 

called the enclosing object and represents the 

schema or semantic network node in which the system 

is "operating." On the other hand, pushing an item 

onto the stack in effect creates a new instance of 

each variable contained in the item. Each vari

able's binding remains visible until another item 

containing the variable's name is pushed on the 

stack or the item is popped from the stack. 

Objects and items are pushed onto the stack by 

a function called SEND, which takes a sequence of 

forms to evaluate: 

(SEND <A
1
> <A2> <A3> <An > ), 

SEND evaluates each form <Ai > in a left- to- right 

order. If the value returned from the evaluation 
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of some <Ai > is either an object or an item, it is 

pushed onto the stack. Then <Ai+l > is evaluated 

from within this new context or new variable envi

ronment respectively . The sequence, <A1 > through 

<An>• can be viewed as a search procedure through 

a network of objects representing schemata. If 

the evaluation of some <Ai > yields an object, by 

pushing it onto the stack, the interpreter in ef

fect "goes to" that object for the evaluation of 

the rest of the sequence, <Ai+l >, ... , <An>, 

The three Maya data primitives GET*, PUT*, 

and REM* are analogous to their LISP counterparts 

GET, PUTPROP, and REMPROP respectively except that 

they operate on the enclosing object rather than 

the property list of a specified atom. They can 

be used to access, create, modify, and destroy 

schemata data structures. Their relationship to 

the more familiar LISP primitives is illustrated 

by the equivalence of the two following exP,ressons: 

· (PUTPROP <atom> <name> <defn>) 

(SEND :<atom> (PUT* <name> <defn>)) 

Maya provides a pattern matching system sim

ilar to that of CONNIVER's (McDermott & Sussman, 

1973) . Patterns consist of n·tuples of constants 

and pattern variables. Patterns can be matched 

against a datum consisting of another tuple or an 

associative index of tuples and their values 

called a tuplebase. Maya permits objects to con

tain arbitrary tuplebases. To represent a schema's 

expectations and attached top-down and bottom-up 

methods, patterns are bound to procedures and pro

cesses in the tuplebase of the object representing 

that schema. 

Every pattern· matching and control function 

in Maya returns as value an item representing the 

binding of pattern variables assigned during the 
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match. The returned item also contains a reacti

vation~ that permits the pattern match to be 

resumed for an alternate choice. An item in Maya 

therefore has properties similar to the possibili

ties list of CONNIVER. It represents the set of 

all successful matches given a particular pattern 

and datum. 

Maya defines control mechanisms for employing 

top-down and bottom-up methods within particular 

schemata . Both types of methods are realized by 

combining the notions of generators from CONNIVER 

and QLAMBDA expressions from QLISP (Reboh and 

Sacerdoti, 1973). QLAMBDAs are invoked by match 

ing their pattern argument against a pattern da

tum. If the match succeeds, the pattern variables 

assigned during the match are used as the actual 

arguments to the QLAMBDA expression, and the body 

of the expression is evaluated. QLAMBDAs return 

items as values containing a reactivation tag for 

the generator. QLAMBDAs return control to their 

caller when the last form in their body is evalu

ated or w~en they suspend their execution. In this 

latter case, the reactivation tag is set to the 

form just past the suspension in the QLAMBDA body. 

Procedural methods may be associated with sche

mata through various means. The simplest technique 

is to define a function local to the object repre

senting some schema. In Maya, the function DEFUN 

always adds new function definitions to the enclo

sing object. At top-level, the enclosing object 

is the OBLIST, so new definitions are added glo 

bally as in LISP. However, DEFUN can define a new 

function to a schema by first making that schema 

the enclosing object. For example, 

(SEND <Schema > (DEFUN <fOO> ... )) 

adds a local definition of the function <foo> to 
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<schema>. This local function definition can then 

be evaluated via: 

(SEND <schema> (<foo> ... )) . 

Top down methods in Maya are normally realized 

as QLAMBDA agenerators bound to patterns in tuple

bases. Since tuplebases can be associated with 

specific schemata, these patterns represent the 

schema's expectations and the attached QLAMBDA ex

pressions are considered top-down methods for satis

fying those expectations. Maya defines two control 

primitives for pattern-directed invocation of top

down methods. 

DlST generates items in depth -fi rst order. In 

a tuplebase of QLAMBDA methods , <db>, 

(DlST <pattern> <db>) 

will invoke a method associated with a pattern ar

gument that matches <pattern>. DlST returns as 

value the item returned from the QLAMBDA plus a new 

reactivation tag. If that tag is re-evaluated, 

DlST will recall that same QLAMBDA generator repeat

edly until it fails to return a next item. DlST 

will then attempt to match the pattern of another 

QLAMBDA method in the tuplebase. 

In contrast, 81ST generates items in breadth

first order. 

(81ST <pattern> <db>) 

calls once each generator in the tuplebase <db> 

that matches the given pattern <pattern>. Only 

after it has called all possible matching QLAMBDAs 

will it recall each suspended generator for the 

second time, then each for the third time, and so 

forth. 

The ability to apply top-down methods in 

either depth-first or breadth-first order is impor

tant. Generators are supposed to return possible 

items in order of likelihood. Yet the depth-first 



only mechanisms of CONNIVER and other languages 

must completely exhaust the possibilities of one 

generator, no matter how unlikely, before consider

ing the possible items of another generator in the 

database. 

Bottom-up methods have been described as sup

ergoals in the recognition model. Supergoals are 

implemented in Maya as processes which may be asso

ciated with specific schemata. Processes may be 

explicitly created and invoked by the Maya primi

tive PROCESS. The expression, 

(PROC ESS <schema> <ql > <pattern>), 

attempts to match <pattern> against the pattern ar

gument of the QLAMBDA expression <ql >. If the 

match succeeds, a new process is created and begun. 

The procedure body of the process is taken to be 

the body of the QLAMBDA expression. An association 

is made between the new process and the specified 

schema <schema>. If NIL is specified, then no 

association is made, 

Once begun, the process will continue executing 

untii either its procedure body is exhausted or 

until it suspends its execution. Control then re 

turns to the call of PROCESS in the invoking proc

ess which returns as v~uean item from the match of 

<pattern> to <ql >. Thus, this item may be used to 

return values back from the terminating process. 

As with top -down subgoal methods , bottom-up me 

thods may be bound to patterns in tuplebases and 

invoked by matching those patterns. Again, these 

tuplebases represent the unsatisfied expectations 

of a partially recognized schema instance. When 

another fully-specified schema instance matches an 

expectation of a bottom-up method, the associated 

process is resumed as a supergoal. The process may 

then continue the recognition of its schema as a 
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function of the now satisfied expectation. Proces 

ses are invoked from tuplebases via the primitive 

RESUME which has the following form: 

(RESUME <pattern> <db>) , 

The pattern <pattern> is matched against a tuple

base of processes <db>. If the match is successful, 

the associated process is resumed from the point of 

its last suspension. When the resumed process sus

pends itself again or terminates, control will be 

returned to this call to RESUME which returns as 

value an item containing the pattern variable as 

signments made during the pattern match plus a re 

activation tag. This tag may be used later to 

resume any other suspended processes in <db> that 

matches <pattern>. 

Once a schema's supergoal has been resumed as 

a process, the supergoal continues the recognition 

of its schema. First, it incorporates the new in 

formation provided in the pattern match into the 

schema instance's evolving description. The super

goal may now continue the recognition of its schema 

using one of the three modes of search. Based on 

the added information provided by the newly satis 

fied expectation, the supergoal may attempt to com

plete the schema instance using top -down,goal 

directed methods. On the other hand, if the likeli 

hood of success is not high, then the supergoal can 

compute a new set of expectations for the schema 

based on the new information. It then suspends it

self and possibly additional methods to these new 

expectations. The third possibility is that the 

supergoal suspends other methods to the new expec

tations but continues its own execution . By so 

doing it can now direct the discovery of information 

that may match its own schema's expectations. The 

choice is completely heuristic. If it ytelds 
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control to the process that invoked it, then that 

process will guide the bottom-up recognition pro

cess. When information is discovered, matching 

any of the supergoal schema's expectations, then 

the attached process will be resumed. On the other 

hand, if it retains control, then it can use 

domain-specific knowledge about its schemata to 

guide the bottom-up search process. In effect, 

supergoal search provides an "extra degree of free

dom" not possible in subgoal search. 

A supergoal suspends itself by calling the 

SUSPEND function which has the following form: 

(SUSPEND <'pattern> <db>). 

The current process is suspended to the pattern 

<pattern> in the tuplebase <db>. Control returns 

to the process which invoked the current process . 

If the suspended process is later resumed, SUSPEND 

returns an item representing the match to <pattern>. 

Supergoals conduct the recognition of their 

schemata in parallel with other schemata by going 

through an iterative expectation/matching cycle of 

computing expectations for the schema instance, 

suspending themselves and other processes to those 

expectations, and then being resumed by lower su

pergoals that match those expectations. This 

cycle begins when a schema is first proposed as a 

likely hypothesis and tefminates when a complete 

schema instance has been recognized . Recognized 

instances then become abstract cues in the recog

nition of higher schemata thereby realizing a 

recursive cue/model hierarchy. 

In Maya, when a supergoal concludes that its 

schema is fully instantiated, it attempts to match 

the attributes of this instance against the expec

tations of those higher schemata of which the 

schema could plausibly be part. Completion is re-
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alized using the primitive COMPLETE which has the 

fol lowing fonn: 

(COMPLETE <pattern> <db>). 

COMPLETE attempts to match the pattern <pattern> 

against the patterns in the tuplebase <db>. If a 

match is successful, all currently active processes 

associated with the same schema as the current pro 

cess are suspended to a reactivation tag. For rec 

ognition tasks, it is assumed that all processes 

associated with the same schema instance and all 

their subprocesses are concerned with the recogni 

tion of that schema . Since the schema's recognition 

is complete, they are all suspended. 

The process bound to the datum in <db> that 

matched <pattern> is then resumed. Included in the 

item returned to the resumed process is the reacti 

vation tag. If that process terminates or suspends, 

all the suspended processes and sub-processes are 

re - instated, and COMPLETE returns an item represen

ting the match of <pattern > plus a new reactivation 

for subsequent matches in the tuplebase <db>. 

In the recognition model, a completing schema 

instance can match the expectations of multiple 

higher supergoals thereby realizing a mechanism for 

handling non -determinism in bottom-up recognition. 

By evaluating the reactivation tag, every schema 

having expectations matching <pattern> can be 

resumed as a supergoal. Indeed, completion is seen 

as a bottom-up generator of supergoals compared to 

the top-down generators of subgoals defined in 

CONNIVER . 

4. Conclusion 

This paper has outlined some procedural as 

pects of a theory of machine perception. Percep

tion was characterized as an active recognition 

task that uses a schema -based knowledge representa -



tion to compose new descriptions of observed ob· 

jects, situations, and events, It was argued that 

in order to cope l'li th the complexity of everyday 

experience, the recognition process must be guided 

by active heuristic procedural methods. Such 

methods, associated with particular schemata, di 

rect the recognition of instances of those 

schemata. 

The perceptual process must also utilize an 

integration of top -down and bottom-up search me

thods. Top -down techniques can be used to effici

ently confinn the schematic aspects of recognition. 

Bottom- up techniques can be used to generate 

hypotheses, discover cues, and handle anomaly and 

ambiguity. 

The desirability of employing a recursive cue/ 

model hierarchy for perception was also pointed 

out. By allowing completing schemata to act as in 

ternal cues in the invocation of higher schemata, a 

mechanism is defined for realizing a context

sensitive and recursive cycle of perception . 

Finally, the implementation of the recognition 

model as a programming language called Maya was de

scribed. Data structure extensions to LISP for im

plementing schemata were presented and control 

structures for realizing integrated top-down and 

bottom-up search in schemata networks were defined. 

Currently, Maya is an operational language system 

running within MTS LISP. A number of application 

programs have been written in Maya. Future plans 

include incorporating Maya into the new multipro

cess INTERLISP system under development at UBC and 

then applying the recognition model via Maya to 

the schema-based interpretation of Landsat images. 
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Abstract - I describe first steps toward a 
unified theory of object selection. 
Object selection is the problem solving 
process whereby objects are chosen to 
participate in a synthesized plan. Two 
distinct object selection techniques and 
their relationship to a dependency-based 
modelling mechanism are discussed. 

1. Introduction 

Selection of strategies and objects 
is a fundamental activity of general 
problem solving. Strategy selection 
involves choosing the most appropriate 
strategy for achieving a goal in a 
particular problem solving environment. 
This is a frequently investigated topic, 
and techniques have been developed ranging 
from heuristic search [Nl] to 
"intelligent" selection of strategies by 
evaluation of the planning environment 
using procedures [Sl) or discrimination 
nets [Rl), [RLl). 

Frequently, strategies chosen as 
appropriate in a given problem solving 
context require that certain objects 
participate in their execution . Thus, 
object selection is an important part of a 
pr oblem solver's skills, providing the 
ability, for example, to decide on which 
peg to place the top disk in the 
Tower - of- Hanoi, or which hammer to select 
during a carpentry task. 

Because of the obstacles encountered 
in developing good strategy selection 
techniques and methods to deal with the 
pervasive problem of subgoal interactions 
(see [RLl), [Wl], [Sl], [Ml], for 
instance), object selection has been often 
overlooked. Nevertheless, object 
selection is an integral part of the 
overall problem solving enterprise. The 
purpose of this paper is to explore some 
of the issues involved in constructing a 
unified theory for object selection. 
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2. Models 

Flexible object selection techniques, 
as well as strategy selection techniques, 
require a flexible modelling mechanism. 
The "world model" is a fundamental 
component of any problem solving system. 
The object selection techniques described 
later rely on a dependency- based modelling 
mechanism [Ll]. 

Briefly, the dependency-based model 
makes use of a dependency net, an explicit 
representation of the justifications for 
beliefs. In this way, not only is the 
problem solver's current model of the 
environment represented, but so are the 
reasons for supporting belief in that 
environment. The graph structure of the 
dependency net allows the efficient 
determination of effects and causes of 
alterations to the model. A simple 
example of a dependency net is depicted in 
Figure l, 1representing the situation in 
Figure 2. 

!OIi i Al,T ---{ _<~L~~d 

IOI A lhf 

(<CLWDl ,T) 
Figure 1. 

((CLEAR ll :T) 

[!] tB 
GOAL: (AND (ON AB) (ON BC)) 

Figure 2. 

1s e e [Ll] for more details on the 
structure and semantics of dependency 
nets. 
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A dependency-based model affords 
several advantages to object selection 
tasks. A particular advantage is the 
dependency net's ability to represent 
explicitly the effects of assumptions. If 
an assumption ( for instance, an assumption 
of which peg would be best for the top 
disk in the Tower -of-Hanoi) leads to an 
excessively high cost solution, 
responsibility for this difficulty can be 
effici2ntly traced to the assumption at 
fault. 

3. Object Selection 

The techniques I have developed to 
deal with the object selection problem are 
best described via an exampl~. Consider 
a~ain the 3simple blocks world situation in 
Figure 2. If the goals are solved in the 
order specified (first (ON AB) and then 
(ON BC )) , the problem solver will not 
realize that B should have been put on C 
until after A is on B. To achieve 
(ON AB), both (CLEARTOP A) and 
(CLEARTOP B) must be true. To achieve 
(CLEARTOP A), B must be placed out of the 
way (anywhere but on top of A). A 
non - optimal solution to this problem of 
not knowing where to put B would be to 
include in the CLEARTOP strategy, explicit 
instructions to place the block on top of 
the one desired to be cleared at some 
"freespace" site on the table. This 
accomplishes (CLEARTOP A), but the 
possibilty remains that freespace could 
have been selected as a more optimal 
location (namely, by putting Bon top of 
C). 

A more desirable solution to this 
problem is achieved by providing a general 
purpose description mechanism in which are 
specified features of the object to be 
selected. Then, the problem solver can 
make the selection at a time it deems 
appropriate. For example, a description 
of freespace for the CLEARTOP strategy 
might look 1 ike 

( *DESCRIPTOR -freespace 
[OR <A ND (CLASS -freespace BLOCK ) 

(CLEARTOP -freespace ) > 
(REGION- OF -freespace TABLE) ) 

[TABLE -REGI ON - !] ). 

2 
See [SSl) for one application of 

dependency nets to backtracking on 
incorrect assumptions. 

3
This example is cited as a 

difficulty for certain problem reduction 
problem solvers by Waldinger (Wl). In 
particular, problem solvers which do not 
replan in response to subgoal protection 
violations (see e.g. [Wl), [W2), (RLl]) 
generate red undant actions in solving this 
problem. 
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This descriptor characterizes freespace as 
either a block whose top is clear or as a 
region of the table . Furthermore , if no 
reasonable binding can be discovered 
during the planning process, a particular 
reg ion of the table (TABLE-REGION-!) is 
chosen as the default . 

I have investigated two distinct 
techniques for manipulating descriptors in 
general problem solvers. These two object 
selection techniques are called deferred 
descriptor binding and assumption 
~ropagation. Deferred binding involves 
elaying the determination of an 

appropriate referent for a descriptor 
until the choice of the object has become 
reasonably secure. Assumption propagation 
is a form of backtracking in which a 
suitable referent for the descriptor is 
conjectured, and facilities for retracting 
that choice, if necessary, are provided. 

3.1. Deferred Descriptor Binding 

The deferred binding technique for 
object selection is based on the use of a 
symbolic description o f an object in much 
the same manner as a direct reference to 
the object. Thus, when the CLEARTOP 
strategy is invoked in the example above, 
rather than a commitment to a particular 
object satisfying the freespace 
descriptor, the descriptor itself can be 
referenced in assertions that would 
normally reference the object. When the 
action (PUTON B -freespace) is modelled, 
rather than having effects (CLEARTOP A) 
and (ON B TABLE- REGION-! ) , its effects 
will be (CLEARTOP A) and 
(ON B -freespace ) . When the deferred 
binding technique is being applied, 
descriptors are similar to the "formal 
objects" used by Sussman [S2] and 
Sacerdoti [Sl). Descriptors are treated 
as variables whose bindings are delayed 
until one can be found which satisfies the 
descriptor's features. 

The power of deferred descriptor 
binding can be seen in the example when a 
solution to the second goal (ON B C) is 
attempted. Since (1) the world model 
contains the assertion (ON B -freespace ) , 
( 2) the current goal can be made true by 
binding -freespace to C, and ( 3 ) the 
object C satisfies the description 
specified in the freespace descriptor, the 
object C becomes a prime candidate for 
binding to the variable -freespace. There 
are no other suitable candidates and, 
therefore, the object C is substituted for 
all references to -freespace in both the 
plan and the model. Thus, the original 
specification of the clearing action 
(PUTON B -freespace ) is modified to 
(PUTON BC). Both original goals are now 



achieved and the plan is complete. 4 

3.2. Assumption Propagation 

The assumption propagation technique 
for object selection is a form of 
backtracking. Assumption propagation 
involves generating a collection of 
alternative bindings for a descriptor, and 
selecting one as a conjecture. If that 
conjecture results in difficulties for 
further problem solving, the conjecture 
can be retracted. The name "assumption 
propagation" was chosen because the 
effects of a conjecture are propagated 
through the dependency-based model much as 
are other modifications to the problem 
solving environment. 

The dependency- based model allows 
easy detection of instances in which a 
selected binding for a descriptor subverts 
the overall planning effort. The cases 
for which bad binding assumptions should 
be retracted include: 

1. The subgoal currently being 
considered by the problem 
solver is false because of a 
particular assumption. 

2. The effects of an assumption 
propagate to a protec5ed 
subgoal, making it untrue. 

One advantage of assumption 
propagation as contained in a dependency 
modelling framework is that it allows the 
ultimate sources of problems of the types 
described above to be determined. The 
dependency-based model also allows wrong 
conjectures to be retracted efficiently 
(see [Ll)). Assumption propagation, in 
particular, the methods for seeking the 
source of a difficulty and recovering from 
an incorrect conjecture, uses an algorithm 
similar to the dependency- directed 
backtracking technique ~eve loped by 
Stallman and Sussman [SSl). 

To illustrate assumption propagation, 
once again consider the situation in 
Figure 2. When solving the subgoal 
(CLEARTOP A), the assumption propagation 
technique would generate a list of 
alternative bindings for the freespace 
descriptor that would include blocks D and 

4This approach to deferred binding is 
quite similar to the approach applied to 
resolving formal object references by 
Sacerdoti [Sl). In Section 4.1., I 
describe some enhancements to deferred 
binding which represent advances over the 
formal object method. 

5For discussions of subgoal 
protection, see [RLl), [Wl), and [S2). 

6A detailed formulation of the 
dependency- directed backtracking algorithm 
appears in [Dl). 
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C and the table: 
(BINDING -freespace (DC TABLE ) ) . 

Let us now assume that the system 
arbitrarily chooses 'D' as the first 
binding to consider. This assumption 
would be incorporated into the original 
dependency net depicted in Figure 1 as 
illustrated in Figure 3. (The 
"slashed-through" links represent no 
longer valid relations. ) 

CCLEAR AU 

<CLEAR Ol,f (CLEAR BU 

Figure 3. 

When the goal (ON BC) is considered, 
the problem solver will encounter 
supporting relations for (ON B C):FALSE as 
depicted in Figure 4. One of the reasons 
for (ON B C) :FALSE is that D was chosen as 
a binding for freespace. By recovering 
only along this line of support to the 
point at which freespace was bound, a new 
choice of a binding can be made without 
disrupting the entire model. Eventually, 
'C' will be selected, the effect of which 
will be to make the goal (ON BC ) true 
(and, therefore, will result in an optimal 
plan). 

Figure 4. 

ACTION 

CPUTON 8 
- FREESPACE) 

4. Selection Techniques: Enhancements 

So far, I have described, via an 
example, two distinct methods for 
performing object selection tasks. These 
object selection techniques, deferred 
descriptor binding and assumption 
propagation, represent skills which must 
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be brought to bear on general problem 
solving tasks. I now briefly discuss the 
flexibility with which t hese techniques 
can be endowed by describing a few 
enhancements to the basic algorithms. 

4.1. Deferred Descriptor Binding 

Deferred descriptor binding provides 
a problem solver with the ability to treat 
symbolic descriptions of an object as it 
would treat the object itself. In this 
way, the decision as to the best possible 
binding for a descriptor can be deferred 
until a reasonably secure choice can be 
made. Occaisionally, though, what turns 
out eventually to be the best choice is 
somewhat counterintuitive! Consider a 
Tower - of- Hanoi problem stated as: 

(AND (ON DSK-BIG PEG3) 
(ON OSK-MIDDLE PEG3) 
(ON OSK-SMALL PEG3 ) ). 

When solving the first goal, the problein 
solver might be inclined to make what 
seems to be (from the local evidence 
available) an obvious choice of PEG2 for a 
freespace site on which to put OSK- SMALL 
while clearing OSK- BIG. PEG2 might seem 
best at first because choosing PEG3 would 
immediately disenable the action 
(PUTON DSK- BIG PEG3) which provides the 
solution to the first goal. 

By embedding deferred descriptor 
binding in a dependency-based model, 
mistakes like this can be undone by simply 
invoking the recovery mechanism for 
assumption propagation. The formal object 
techniques of Sussman and Sacerdoti 
require binding deferment until only one 
possible candidate binding remains, but 
this reduces the flexibility of the 
deferment technique . There are instances 
where it is advantageous to postpone 
binding only until there are a few 
possible remaining candidates. 

Alternatively, a good deal of 
flexibility can be gained by augmenting 
the feature list in a descriptor 
dynamically during the planning process. 
This can serve two purposes. First, 
augmenting the descriptor can help reduce 
the number of alternative bindings a 
descriptor might have. Again, using 
Tower - of-Hanoi as an example, consider the 
freespace descriptor for the CLEARTOP 
strategy : 

(*DESCRIPTOR - freespace 
(AND (CLASS - freespace PEG) 

(LEGAL - dsk - fr e espa ce) 
(NEQUAL - freespace 

(*DESCRIPTOR - peg 
(ON -dsk -peg))) ) ) • 

Here, freespace is a peg on which it is 
legal to place the disk which must be 
mov e d, while excluding the peg it is 
a lready on. If the problem solver is 
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considering what to do with the middle 
disk, then a freespace descriptor has been 
instantiated for the top disk. It wo uld 
be useful to augment the middle disk's 
freespace descriptor to read: 

(*DESCRIPTOR -freespace 
(AND (CLASS - freespace PEG ) 

(LEGAL -dsk - freespace) 
(NEQUAL -freespace 

(*DESCRIPTOR -peg 
(ON - dsk - peg ))) 

<NEQUAL -freespace D27 > ) ), 

where D27 is the instantiated freespace 
descriptor associated with OSK- SMALL. 
Thus, freespace for OSK-MIDDLE is 
described as not only a legal peg not 
equal to the one DSK-MIDDLE is on, but 
also as a peg not equal to the one 
eventually selected as freespace for 
DSK-SMALL. When a decision is made on a 
freespace site for one disk, the other now 
falls into line immediately. 

The second way in which descriptor 
augmentation benefits problem solving is 
that goal satisfaction can sometimes be 
simplified at the cost of more complicated 
object selection. That is, it is 
possible, in some instances, to assume a 
goal is true and augment the features of 
descriptors occurring in the goal 
statement. Thus, any object later chosen 
as satisfying the descriptor also 
satisfies the goal. 

4.2. Assumption Propagation 

Assumption propagation is a 
backtracking technique in wh ich 
conjectures are made about suitable 
bindings for descriptors. By embedding 
the assumptions in the dependency- based 
model, a backtracking technique similar to 
dependency-directed backtracking (881) can 
be employed. Dependency-directed 
backtracking makes use of the dependency 
record to determine quickly the source of 
a contradiction by tracing to the 
incorrect assumption that led to it. To 
apply such a technique in general problem 
solving, general purpose methods are 
required which can diagnose the 
appropriate 7 times to invoke 
backtracking. 

General purpose methods for 
diagnosing the appropriateness of invoking 
backtracking make use of the 
dependency- based model. They include 
cases in which the source of a subgoal 
protection violation [RLl) or a subgoal 

7 Compare to ARS [SS1), which is an 
expert problem solving system. ARS uses 
domain-specific knowledge to determine 
that a contradiction has been derived and 
that is is appropriate to reject an 
assumption . 



being false can be traced through the 
dependency net to a binding assumption f or 
a descriptor. Identification of such 
general methods for detecting cases in 
which it is appropriate to retract an 
object selection conjecture is an 
impo r tant step in generalizing 
dependency-directed backtracking . 

Determining an instance in which 
backtracking for object selection is 
appropriate is not as straightforward as 
determining the appropriateness of 
backtracking in other problem solving 
tasks: here, backtracking is not invoked 
on a failure, but on a lack of success! 
Because assumption propagation for a 
particular choice of descriptor binding 
leads to a false subgoal or a protection 
violation does not necessarily imply that 
another possible binding for the 
responsible descripto r will improve the 
situation. 

Therefore, one enhancement for 
assump tion propagation, in cases where 
there are only a small number of 
alternative choices, is to carry along 
separate assumptions for descriptor 
bindings in parallel. Parallel assumption 
propagation allows comparisons among 
competing descriptor bindings to be made. 
Th e dependency net model provides the 
capabilities for parallel assumption 
propagation, but, for efficiency, should 
be applied judiciously. The technique 
does demonstrate advantages over 
sequential assumption propagation in cases 
where, for instance, binary decisions are 
involved. Since carrying along two 
distinct bindings for a single variable 
often results in contradictory beliefs f or 
truth values of some assertions in the 
model, parallel and sequential ass umption 
propagation can be applied cooperatively 
with the sequential technique taking over 
where the parallel approach leads to a 
contradiction. 

5. Conclusion 

The techniques I have described 
represent steps toward a unified theory of 
ob ject selection and an implementation 
effort is well underway. I have presented 
object selection as an important task to 
be performed by any general problem 
solver. The techniques presented here 
display the flexibility and generality 
required of a formalism on which to base a 
theory of object selection. The 
differentiation of object selection into 
distinct techniques provides a first step 
toward such a theory. 
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SUMMARY 

Hackworth [1977] claims that Waltz-type 
network consistency algorithms are "clearly better 
than automatic backtracking" , but he cites no 
experimental data comparing tne performances of the 
algorithms under identical conditions. Here we 
rP.port the results of a set of performance 
measurement experiments comparing these two 
algorithms with two other algorithms, BKMARK 
(Gaschnig [1977]) and a new algorithm BKJUMP. Each 
of the algorithms is valid for a broadly ar.d 
precisely defined class of satisficing assignment 
problems (SAPs) that includes numerous familiar 
problems. The results span four 
functionallyequivalent algorithms, three 
performance measures, two solutioncriteria, and 
four sample sets of SAPs, and the results represent 
more than 13,000 distinct algorithm executions. 
The four sample sets of SAPs include two sets of 
"N-Queens" problems (for N up to 50) and two quite 
different types of randomly generated problems. We 
describe the simple set-theoretic mathematical 
model underlying our experimental approach. 

The results show algorithm BKMARK the most 
efficient of the four algorithms in all cases, ~nd 
the Waltz-type algorithm least efficient in almost 
all cases. To give an indication of speed, BKMARK 
finds solutions to the 50-Queens problem (search 

space size - 1084 ) at the rate of one per 9 cpu
seconds on a PDP/KL-10. One "random SAPs" 
experiment compares the performance of the 
algorithms in solving N-Queens problems to the 
corresponding performances in solving a set of 
"random-N-Queens" problems, which are identical in 
size and "degree of constraint" (L) to the N-Queens 
problems. The other "random SAPs" experiment 
compares algorithm performances on a set of 
problems identical in size but varying in degree of 
constraint. This shows the dependence of 
performance on L, all other things equal. These 
data show in particular that the Waltz-type 
algorithm does not better the others on highly 
constrained problems. 

These first controlled comparisons of the four 
algorithms illustrate the value of voluminous hard 
data in resolving speculations and in uncovering 
previously unsuspected phenomena. We make no 
claims about the performances of these algorithms 

• This research was done at the Department of 
Computer Science, Carnegie-Mellon University, 
Pittsburgh, PA 15213, and was supported by the 
Defense Advance Research Projects Agency under 
Contract no. F44620-73-C-0074 and monitored by the 
Air Force Office of Scientific Research, 
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except for the cases tested here, but propose 
additional experiments to provide evidence on which 
to base such claims. 

All life is an experiment. The more 
experiments you do the better. 

Ralph Waldo Emerson 

1. Background and General Issues 

The preceding summary gives some indication of 
the scope and methodology of the research reported 
here. In this section we give some background on 
ttte subject and discuss briefly a few 
methodological issues. 

Any instance of a certain sort of satisficing 
(i .e., non-optimizing) assignment problem (SAP, 
defined formally in section 2 ) can be solved using 
the so-called backtrack search algorithm, as 
defined in general form by Golomb & Baumert [1965], 
but little is known in general about the 
computational requirements of this algorithm. 
Believing the backtrack algorithm to be 
inefficient, Waltz [1972, 1974] and other 
artificial intelligence researchers have devised an 
alternative general algorithm for SAPs, but claims 
about its efficiency have been based on skimpy hard 
data. Hackworth [1977] surveys reports by Sussman 
& McDermott [1972] and Gaschnig [1974] documenting 
the inefficiencies of backtrack in specific 
instances, and Hackworth also surveys the 
generalizations of Waltz' algorithm given by 
Gaschnig [1974], Rosenfeld, et al., [1976], and 
others. Hackworth claims of the backtrack 
algorithm that "the time taken to find a solution 
tends to be exponential in the number of variables, 
both in worst case and in average case" [1977, p, 
100], and that Waltz-type algorithms are "clearly 
better than automatic backtracking" [1977, p, 
116] . 

Here we put such general, informally stated 
claims to the test of hard data, comparing 
algorithms under identical conditions . Our premise 
is that detailed quantitative performance data over 
many cases can provide a firmer basis than 
unsubstantiated speculation for predicting 
performance in novel circumstances. As Knuth 

ai1J~lifm~~siixXe~~l~i~itai~gt~~~sr1ear~:a,~:~! a 
We attempt to be completely rigorous in 

defining terms and the conditions of the 
experiments , so that all of the results reported 
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here are completely replicatable and hence are 
object1vely verifiable. The experimental 
observat1ons are estimates of mathematically well
defined quantities. To make explicit the amount of 
evidence reported here, we count the number of 
d1stinct algorithm executions represented in each 
figure . Note that our technical objective is 
simply to obtain the performance values plotted in 
the figures. Careful and rigorous quantitative 
analysis of the experimental values is beyond the 
scope of the present paper. Consequently, we 
eschew here attempts to "explain" the data. Hence 
we provide a body of quantitative data against 
which to test future speculations and mathematical 
theories. 

In some senses, the context of our results is 
both narrow and broad: It is narrow in the sense 
that the problems considered satisfy precise 
mathematical conditions, they include only 
satisficing problems (as opposed to optimizing), 
and they have only binary constraint relations (as 
opposed to ternary or r-ary). Nor do we examine 
the probabilistic Waltz-type method of Rosenfeld 
[1976) . Nevertheless, this context is broad in 
that a large class of problems satisfy these 
conditions, and in that each of the algorithms we 
investlgate can be applied to any of these 
problems. 

Mostly, we are concerned with the number of 
steps to find any solution as opposed to all 
solutions . 

2. Definitions and Examples 

To insure that our experimental results are 
meaningful and replicatable, in this section we 
give precise definitions for problem, algorithm, 
performance measure, and conditions of the 
experiment. For clarity, we supplement the formal 
descriptions with examples and illustrations. 

Our formalism for problems, algorithms, and 
performance measures is essentially an extension of 
that of Gaschnig [1974) and Hackworth [1977, pp. 
99-100]. Unlike Hackworth, however, we find it 
more useful to define the Pij constraints as 

relations rather than as predicates (to facilitate 
the definitions of section 7). 

DEFINITION 5.1. A satisficing assignment problem 
(SAP) is a tuple 
{N, R1, R2,•••, RN' p12' P13••••• p1N''''' PN-1,N} 
such that: 

N is a positive integer (denoting the number of 
problem variables x1,x2 , ... ,xN) 

R1, R2, ••. , RN are arbitrary finite sets. 

(Associated with each problem variable xi is a 

specified set of a priori possible candidate~ 
Ri = {vi1' vi2 1 · ·· ,vik }.) 

i 

An assignment A = (y 1,y2, •.. ,yN) of candidate 

values to problem variables is an element of the 
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cross product U = R1xR2x ... xRN (i.e . , so yi E;.. R1 ), 

and A(i) denotes the i'th component of A, for 
1.S.i.91 . 

For every i and j such that O<i<j.91, P ij s; Rij' 

Also Pij = Pji' 

An assignment A ~ U is a solution i ff for every i 
and j such that O<i<j~, (A(i),A(j)) E Pij' 

The 118 Queens" problem is a well - known SAP in 
which 8 queens must be placed on a chess board so 
that no two queens can take each other. In this 
problem N = 8, the problem variable xi corresp_onds 

to the i'th queen, and the candidate values of each 
queen consist of the a priori legal squares on 
which that queen can be placed. Since in any 
solution the queens must occupy distinct rows of 
the board, we take Ri to consist of the 8 squares 

in row i (ki : 8, for 1<i.S.8). For symmetry reasons, 

however, R1 may be restricted to the leftmost four 

squares of row 1 (i.e., k 1 = 4). In predicate 

form, Pij(A(i), A(j)) is satisfied for assignment A 

if queen ion square A(i) does not attack queen j 
on square A(j). 

The "N-Queens" problem is a generalization of 
the 8-Queens problem: place N queens on an NxN 
chess board so that no two queens attack each 
other. (In our formulation, k1 = r N/2 1 and 

k2 = k
3 

= ... kN = N.) Other problems that can be 

formulated as SAPs include map coloring (e.g., see 
Nijenhuis & Wilf [75, pp. 181-183)), labeling in a 
particular way each of the line segments in a two
dimensional projection of a scene of polyhedra 
[Waltz 1972, 1974), finding Euler circuits or 
Hamiltonian circuits or spanning trees of a graph 
[Nijenhuis & Wilf 1975), cryptarithmetic [Simon 
1969, Gaschnig 1974), the Instant Insanity puzzle 
[Knuth 1975), the SOMA cube puzzle [Fillmore & 
Williamson 1974, p. 51), and space planning 
problems [Eastman 1972). Other examples are cited 
in [Golomb & Baumert 1965) and in [Hackworth 1977). 

The version of the backtrack algorithm used in 
these experiments, called BKTRAK, is defined 
subsequently in this section, and also in Gaschnig 
1977]. As in the latter, we define as an elemental 
unit of computation an inquiry by the algorithm to 
determine whether (x,y) 6, P ij' where x • Ri and 

y E. Rj. (In predicate form, the unit is an 

execution of Pij(A(i), A(j)).) We call such an 

inquiry a pair-test, and identify a pair-test 
formally by a 4-tuple (i,x,j,y). 

The following incomplete trace of the BKTRAK 
algorithm applied to the 8-queens problem 
illustrates the inefficiencies of the algorithm, 
and provides a basis for illustrating the behavior 
of algorithms BKMARK (Gaschnig [1977]) and BKJUMP . 
The numerous distinct partial instantiations or 
problem variables form a tree, as depicted below. 
Each occurrence of "T" and "F" in the trace 
indicates the outcome of a single pair-test. For 



example, the entry 11 6,4 TTTF" in portion "A" 
indicates that the pair-tests with arguments 
( 6 , 4 , 1 , 1 ) , ( 6 , 4 , 2 , 1 ) , ( 6 , 4 , 3 , 5 ) , and ( 6, 4 , 4 , 2 ) 
returned the values True, True, True, and False, 
respectively. Since a queen on square (6,4 ) 
attacks a queen on square ( 4,2 ) , this instantiation 
of problem variable 6 fails, and hence 
PAIRTEST (6,4,5,4 ) is not executed. 

Incomplete trace of BKTRAK for 8-Queens SAP: 
x,y = queen x on square at row x, column y 
1, 1 

2, 1 F 
2,2 F 
2,3 T 

3, 1 F 
3,2 TF 
3,3 F 
3, 4 TF 
3,5 TT 

4, 1 F 
4,2 TTT 

5,1 F 
5,2 TTTF 
5,3 TF 
5,4 TTTT 

6, 1 F 
6, 2 TTF 
6,3 TF 
6,4 TTTF 
6, 5 TTF 
6,6 F 
6,7 TF 
6, 8 TTF 

5,5 F 
5,6 TF 
5,7 TTF 
5,8 TTTT 

4,3 TF 
4,4 F 

6, 1 F 
6,2 TTF 
6,3 TF 
6,4 TTTF 
6, 5 TTF 
6,6 F 
6 , 7 TF 
6, 8 TTF 

A 

} C 

B 

Inspection of the trace above illustrates the 
basic ideas underlying algorithms BKMARK and 
BKJUHP. All of the pair-tests in section B of the 
trace are unnecessary: they were executed in 
section A; between A and B only the assignment of 
queen 5 has changed; but in section A no c.v. of 
queen 6 was "pair-tested" against queen 5, since 
each c.v. failed when pair-teated against the 
assigned c.v.s of the first four queens; hence the 
outcome in section Bis necessarily identical to 
that in section A. Algorithm BKMARK eliminates 
these redundant pair-tests in a more general way 
than is illustrated by this example. 

Algorithm BKJUHP (defined in section 4) 
capitalizes on a different effect. Since none of 
the c.v.s of queen 6 in section A passes the pair-
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tests against the assigned c.v.s of queens 1, 2, 3, 
and 4, it is necessarily the case that no 
assignment having the latter c.v.s as Hs first 
four elements can be a solution . Hence the pair
teats in section Band Care unnecessary, and one 
can backtrack from section A two levels instead of 
the customary one level and proceed directly with 
the pair- tests following section C. BKJUMP 
achieves this effect in a general way. 

As seen above, algorithms for SAPs may be 
redundant in the sense that some pair-tests may be 
executed more than once. Accordingly, we define 1 

T = the total number of pair-tests executed by 
an algorithm B for a SAP Z 

D = the number of distinct pair-tests executed 
under the same conditions 

M = T / D 

So M = 1 indicates that all pair-tests 
executed are distinct, i.e., none are recomputed. 
In general, M 2. 1, and indicates the average number 
of times each distinct pair-test is executed during 
a given search. To illustrate our performance 
measures, for the portion of the execution traced 
T = 77, D = 58, and M = 77/58 = 1,33, 

To provide standards against which to compare 
the performances of the algorithms, we plot in the 
figures the values of Tmin' Dmax' and SAS, defined 

as follows. The minimum number of pair-tests 
executed by any of the algorithms considered here 
is dependent only on N, the number of problem 
variables. This is achieved if the assignment 
consisting of the first candidate value of each 
problem variable happens to be a solution. In this 
case, each candidate value of the assignment is 
"pair-tested" against every other, for a total of 

Ti (N) = N (N- 1)/2 = O(N 2) pair-tests for any SAP m n 
having N problem variables. Note that Tmin equals 

the number of pair-tests required to verify that a 
given assignment is a solution if in fact it is. 

For a given SAP, the total number of possible 
distinct pair-teats is determined by the values of 
N and the k1 , thus: 

Dmax(N, k 1 , ... , kN) 

N-1 
= E 

1:1 
(for SAPs in general) 

= (N-1) N r N/2 1 + N2 (N-1) (N-2)/2 = O(N 4) 
(for N-Queens SAPs) 

A measure of the size of the search space is the 
total number of distinct possible assignments (SAS 
is mnemonic for "size of assignment space"): 

(for SAPs in general) 

1 Note: the performance measure called M here was 
called Din Gaschnig [1977], 



· I 

(for N-Queens SAPs) 

For sake of comparison, the values of Ti (N), m n 
D (N), 

max and SAS(N) for N-Queens SAPs are plotted 

as a function of Nin Figure 2-1 and in subsequent 
figures. Tf, Df, and Mf denote values observed 

when the solution criteria is to find any solution 
(i.e., a first solution); T, D, and M similarly 

a a a 
denote values observed when the criteria is to find 
all solutions. 

The Waltz-type algorithm used in these 
experiments, called DEEB, is essentially identical 
to algorithm CS2 defined in Gaschnig [1974). DEEB* 
combines backtracking with a procedure, called DEE, 
of the generic form of "arc-consistency" algorithm 
that Mackworth calls AC-3 [1977) and Gaschnig 
[1974) calls CS-1. Mackworth [1977, p. 114) 
suggested certain modifications to algorittdll CS-1 
with the intent of improving its efficiency. DEE 
is a functionally equivalent variation of CS-1 that 
achieves the efficiencies suggested by Mackworth 
and eliminates other unnecessary pair-tests as 
well, so that DEE is strictly more efficient than 
AC-3, as we shall now show informally. 

For brevity, we assume that the reader is 
familiar with Mackworth's argument and notation. 
The following hypothetical example illustrates 
informally the differences between the approach of 
AC-3 (i.e., to distinguish arc (i,j) from (j,i)) 
and the approach of DEE (i .e., to process a Pij 

relation "as a whole"). The diagram below depicts 
the constraint relation Pij as a set of links 

between the candidate values of two problem 
variables xi and xj. Hypothetically, xi and xj 

could be problem variables of a SAP having other 
problem variables as well. 

xi xj 

In the case depicted above, CS-1 executes the 
equivalent of Mackworth's function REVISE((i,j)), 
which executes 2 pair-tests (p.t.) to determine 
that vi 1 is supported by vj2 , and then 2 p.t. to 

establish support for vi 2 , then 4 p.t. to 

determine that vi
3 

is not supported by xj and hence 

can be eliminated, followed by 1 p.t. for vi 4, for 

a total of 9 p.t. CS-1 then executes 
REVISE((j,i)), determining at a cost of 11 p.t. 
that all c.v.s of xj are supported. Hackworth 

* "DEEB" is mnemonic for "Domain Element 
Elimination with Backtracking", which would seem to 
describe the behavior of this type of algorithm 
more accurately than the term "network consistency 
algorithm" proposed by Mackworth [ 1977]. 

correctly points out that CS-1's execution of 
REVISE((j,i)) is often superfluous, because the 
execution of REVISE((i,j)) cannot cause arc (j,i) 
to become "arc-inconsistent" if it is not already. 
Therein lies the rub: since AC-3 initially puts all 
arcs (i,j) and their complements (j,i) on the queue 
Q, AC-3 executes each REVISE((i,j)) and 
REVISE(j,i)) at least once and for these executions 
AC-3 executes unnecessary pair-tests that are not 
executed by DEE. 

DEE executes a single procedure 
REVISEBOTH((i,j)) that has the effect of first 
doing a REVISE((i,j)), but at the same time marking 
those c.v.s of xj that provide support to the c.v.s 

of x,. REVISEBOTH then executes the equivalent of 

a REVISE((j,i)) modified so that only unmarked 
c.v.s of xj are checked for support by xi. Hence 

in the above example REVISEBOTH((i,j)) executes 
only 9 p.t., since all c.v.s of xj are marked. 

Generalizing, in precisely the cases that the 
REVISE((j,i)) of CS-1 is superfluous due to the 
conditions described by Mackworth, in these same 
cases all c.v.s of xj are marked, and hence 

REVISEBOTH((i,j)) executes exactly those p.t. 
executed by REVISE((i,j)). Hence DEE using 
REVISEBOTH executes no more p.t. than AC-3 using 
REVISE. Since DEE executes fewer p.t. than AC-3 
for the first executions of REVISE((i,j)) and 
REVISE((j,i)), it follows that DEE executes 
strictly fewer pair-tests than AC-3 for all SAPs 
except the degenerate cases of SAPs that are arc
consistent initially. 

Orthogonal to the issues just discussed, AC-3 
maintains a queue of pending arcs (i,j) to REVISE, 
whereas CS-1 uses a triangular matri.x for the same 
purpose, but without the FIFO discipline of the 
queue. DEE could use either priority policy, but 
in fact uses the triangular matrix mechanism of CS-
1 (See Gaschnig [1974) for details.) 

3. Elementary Comparison results 

Now, having defined problems, performance 
measures and algorithms, we can compare BKTRAK and 
DEEB by objective criteria. As evidence against 
which to test Hackworth's claim that Waltz-type 
algorithms are "clearly better" than the backtrack 
algorithm, Figure 3-1 compares BKTR~K with DEEB by 
Tf(N) for N-Queens SAPs, N = 4, 5, .•. , 17. These 

data do not support the claim, but it is risky to 
extrapolate to larger values of N, or to other 
problems. Sections 5, 6, and 7 provide more 
extensive comparative data compari.ng Tf, Of, and 

Hf. 

To show the relation between total number of 
pair-tests executed and the number of distinct 
pair-tests executed, both for the case of finding 
one solution and of finding all solutions, Figure 

3-2 plots Tt(N), o1 (N), T~(N) and DA(N) for BKTRAK. 

The total number of solutions to the N-Queens 
puzzles, for N = 4,5,6,7,8,9,10 is 1, 6, 2, 23, 46, 
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203, 362, respectively. The following tabulation 
compares BKTRAK with DEEB by Ta(N): 

N 4 5 6 7 8 9 
BKTRAK 42 236 1008 5345 23376 136807 
DEEB 78 379 1032 4218 14118 68239 

Figure 3-3 plots the redundancy ratios Mf(N) and 

M (N) based on the data in Figure 3-2. These data 
a 

show that the redundancy of BKTRAK grows sharply 
with increasing size of the problem. Again, 
sections 5, 6, and 7 report much more extensive 
data. Perusal of such Mf(N) data in fact motivated 

an attempt to define a backtrack- 11.ke algorithm 
(namely BKMARK) that eliminates much of this 
redundancy. Here then was a case in which 
performance measurement experi~ents yielded 
insights that yielded a new algorithm. Note that 
three performance measures were involved, one (T) 
the product of the other two (D and M) . 

Figure 3-4 introduces a new variation, that of 
randomizing the ordering of the candidate values of 
each problem variable, in the manner of Gaschnig 
(1977). In the experiments of Figures 3-1, 3-2, 
and 3-3 the candidate squares for each queen are 
ordered from left to right, which we call the 
"obvious" candidate value (c.v.) ordering. In 
fact, for each queen (i.e. problem variable) kil 

distinct orderings are possible, giving a total of 

N 
TT kil distinct c.v. orderings. For each value 
i:1 
of N, we selected m(N) c .v. orderings from among 
this set, where m(N) = 30 for 4 ~ N < 8; m(N) = 70 
for 8 ..$. N < 15; m(N) = 100 for N 2. 15 . So Figure 
3- 4 depicts the results of 
m(4) + m(5) + ... + m(15) + m(16) = 810 distinct 
algorithm executions . 

Note that Tf(N) using "obvious" c.v. ordering 

is generally much larger than the mean value of 
Tf(N) using random c.v. ordering. The ratios of 

these values for each N and for each algorithm are 
given in section 5. The vertical bars for mean 
Tf(N) indicate an i nterval of two sample standard 

deviations of the sample mean -- a standard 
s tatistical measure of how closely the observed 
mean approximates the true mean. The mean Tf(N) 

curve in Figure 3-4 is taken from Figure 1 in 
Gas chnig (1977). Algorithms that randomize their 
inputs are of some inherent interest in analysis of 
algorithms research (e.g., see Weide [1977, p. 
304)). Subsequently, Tf denotes a mean value 

unless otherwise specified. 

4. Definition of BKJUMP 

We define now a new general backtrack- type 
algorithm for SAPs, called BKJUMP, that sometimes 
backtracks across multiple levels of the search 
tree instead of across only a single level. BKJUHP 
is the result of an attempt to produce the domain
element-elimination effect of DEE in a backtrack-
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like control context. DEE eliminates candidate 
values when it detects a global inconsistency; 
BKJUMP does so in the context of candidate values 
already instantiated higher in the search tree. 

The following SAIL procedure defines algorithm 
BKJUMP, in a form that halts after finding a first 
solution. (SAIL is a variant of ALGOL; see 
Swinehart. (1971).) In the code, pairtest is an 
external procedure implementing the problem
specific Pij constraint relations. Procedure 

BKTRAK is defined the same, minus the underlined 
portions, except that the statement 
"ret.urn(returndepth)" in BKJUMP is replaced by 
"return(O)" in BKTRAK. This code for BKJUMP 
indicates visually that it is short in length, and 
that it is very similar to the code for BKTRAK. 
Note that BKJUMP uses only two local variables 
beyond those used by BKTRAK. The invocation 
conditions for BKJUMP are identical to those given 
for BKMARK in Gaschnig (1977) and for brevity are 
not repeated here. BKJUHP (and BKTRAK as defined 
here) returns -1, with solution in array A, or 
returns O if no solution exists. For brevity, "I" 
stands for "comment" below; "<-" denotes the 
assignment operator. 

recursive integer procedure bkjump(integer var, n; 
integer array a, k); 

begin 
integer i, val~ returndeoth. faildeoth; 
boolean testflg; 
returndeoth ~ ~ 
for val<- 1 step 1 until k[var] do 

I see comment Cl below; 
begin 
testflg <- true; 
for i <- 1 step 1 while i < var and testflg do 

I See C2; 
testflg <- pairtest(i, a[i], var, val); 

il n2.t. testflg .wn. faildeoth ~ .1 .::. 1.;.. c3; 
if testflg then C4; 

begin 
a[var] <- val; 
if var = n then return(-1) I C5; 
else 

begin 
faildepth <- bkjump(var+1, n, a, k); 
if faildepth < var then return(faildepth) 

end 
end; 

returndeoth ~ returndepth ~ faildeoth 
e~; . 

return(returndepth) 
end; 

Comments for above code: 

I C6; 

I C7; 

C1: check each candidate value (c.v . ) of the 
var'th problem variable . 

C2: test this c.v. against each instantiated 
c.v. 

C3: note: uses final value of loop variable i. 
C4 : if passed all tests, then 
C5: solution found, so unwind to outermost call . 
C6: unwind to level given by value of faildepth. 
C7: backtrack and continue search . 

We claim without f ormal proof that BKJUHP is 



I 

. J 

I 

j 

functionally equivalent to BKTRAK and to BKMARK in 
the sense that for any SAP the solution assignments 
found by the three algorithms (if any exist) are 
identical. We further claim that every distinct 
pair-test executed by BKJUMP is also executed by 
BKTRAK (and by BKMARK), and that each such pair
test is executed at least as many times by BKTRAK 
as by BKJUMP. 

5, Results for N-Queens SAPs with random c.v. 
ordering 

Figure 5-1 compares the mean number of pair
tests ( 1, e. , mean T f (N)) executed by algorithms 

BKTRAK, BKMARK, BKJUMP, and DEEB, respectively, to 
find a first solution for N-Queens SAPs. The 
sample set of SAPs over which these measurements 
are taken is the same for each algorithm, namely 
the set described in section 3 of m(N) randomly 
selected candidate value orderings for 
N = 4, 5, ••. , 16. (The values constituting the 
curves labeled "BKTRAK" and "BKMARK" in figure 5-1 
are taken from figure 1 in Gaschnig [1977], The 
curve labelled "BKTRAK" is identical to the one 
labelled "Tf(N) (mean)" in Figure 3-4 in this 

report.) 

We observe in Figure 5-1 that among the four 
algorithms being compared, BKMARK executes the 
fewest pair-tests on the average, followed in order 
by BKJUMP, BKTRAK, and DEEB, and that this ordering 
among the four algorithms is observed to hold for 
each value of N. Note also that the performance of 
BKJUMP differs very little from that of BKTRAK, 
indicating (we speculate) that in this case the 
average number of levels jumped over is 
approximately one. Note also that Tf(N) for BKMARK 

is much less than for the other three algorithms, 
but also much greater than Tmin(N). Note also that 

none of the four curves is closely approximated by 
a straight line in this semilog plot, as would be 
the case if Tf(N) grew exponentially as Hackworth 

suggests. Note also the relatively poor 
performance of algorithm DEEB: we have identified 
one set of SAPs for which DEEB is less efficient 
than BKTRAK by the mean Tf(N) measure for each 

value of N observed, and much less efficient than 
BKMARK under the same conditions. The factors to 
which this ineffi.ciency can be attributed remain 
uncertain at present (but see sections 6 and 7 for 
additional data). 

To provide further evidence for larger values 
of N, we extended the previous experiment to the 
cases N = 20, 25, 30, 35, 40,and 50, with m(N) = 50 
samples per value of N, and we measured mean Tf(N) 

for BKMARK only. Combining these data with some of 
those for BKMARK in figure 5-1, the observed values 
for N = 5, 10, 15, 20, 25, 30, 35, 40, 50 are 23.6, 
542, 1513, 2696, 4715, 11520, 28415, 21890, 55020, 
respectively. Approximating the latter values by 

the formula Tf(N) = NC(N) and solving for C(N) we 

obtain the formula C(N) = log Tf(N) / log N. For 

the above list of values of N and Tf(N), the values 

of C(N) are 1,964, 2,734, 2,704, 2,637, 2.628, 
2,750, 2.884, 2.709, 2,79 respectively. Note that 
with the exception of N = 5, these C(N) values fall 
in the interval 2.75.±0,14 . Note that our purpose 
in presenting this approximation is simply 
pragmatic: to show how well a particular 
approximation fits the observed data, without 
suggesting that the approximation is valid 
generally. Pragmatically, the data and 
approximation would seem to cast doubt on t he 
proposition that mean Tf(N) grows exponentially 

with Nin this case. 

Figure 5-2 plots the ratios of the value of 
Tf iALG(N) using "obvious" candidate value ordering 

to the corresponding observed value of mean 
T, G(N) using random c.v. ordering, where 

f 1AL 
ALG €. {B~rRAK, BKMARK, BKJUMP, DEEB}. The ratio 
values plotted in figure 5-2 indicate apparently 
that differences in performance between random c.v. 
ordering and "obvious" c.v. ordering are exhibited 
by each of the four algorithms, and that these 
differences are generally much larger for 
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14 ~ N ~ 16 than for N < 14. 

Figure 5-3 plots the corresponding mean values 
of the redundancy ratio Mf(N) collected during the 

same experiments. Due to page limit.at.ions, we omit 
plotting the corresponding Df(N) data, which show 

DEEB to execute more distinct pair-tests than the 
other algorithms for all values of N tested, 
considerably more for large values of N. 

6. Results for "Random-N-Queens" SAPs 

To generalize the results beyond N-Queens 
SAPs, in this section we define a parameterized 
equivalence relation on the set of all possible 
SAPs, partitioning this set into (disjoint) 
equivalence classes, such that members of a given 
equivalence class have identical values of certain 
parameters representing size and "degree of 
constraint" of a SAP. We then define a procedure 
for selecting SAPs randomly (independently, 
uniformly, with replacement) from among the members 
of a specified equivalence class. We use this 
procedure to generate randomly for each Na set of 
SAPs each of whose size and degree of constraint 
parameters matches that of the N-Queens SAP to 
which it corresponds (one parameter set per value 
of N). 

DEFINITION 4-1. SAPs Z = 
{N, R1, R2'"'' RN' p12' p13'"'' PN-1,N} and Z' = 

{N', R'1• R'2•···• R'N 1
' P'12• P'13•···• P'N'-1,N'} 

are N-similar iff N = N'. SAPS z and z• as defined 
above are .N.::ki-similar iff Zand z• are N-similar 

and k1 = k'i (recall k1 = iR 1 i and k'i = IR'il), 

for each 1 = 1,2, •• ,N. 

For example, let the "8-Queens-Knights" SAP be 
defined like the 8-Queens SAP except that the 
"chess pieces" in the former move either as queens 



or as knights. Then the 8-Queens SAP and the 8-
Queens-Knights SAP are N-ki-similar . 

We define the "degree of constraint" of a SAP 
to be the fraction of distinct pair-tests for that 
SAP that map to the value "true". Formally, given 
a SAP Z, 

where 

Lz = Fz I Dmax 

N-1 
Fz = ~ 

i:1 

N 
< 'P I < I ij I 

j :i+1 

So O .$_ L .$_ 1 by definition. To illustrate, the 
value of Pij in the case of t he diagram given in 

section 2 concerning DEE is 5, equal to the number 
of links, and L = 5/16 for these two problem 
variables. 

DEFINITION 4-2. SAPs Zand Z' as defined in 
definition 4-1 are N-ki-L-similar iff' Zand Z' are 

N-ki-similar and Lz = Lz,• 

We use the following procedure for randomly 
selecting a SAP having specified values of N, k 1, 

k2 , ... , kN, and L. For each i and j such that 

1i.i<j.5N, we create a boolean-valued matrix Uij of 

size ki x kj. To each element of each such matrix 

we assign (by means of pseudo-random number 
generator) the value "true" with probability L, and 
the value "false" with probability 1 - L. (Note 
that using this procedure the percentage of matrix 
elements assigned the value "true" does not 
necessarily equal exactly the given value of L, but 
rather approximates it. For the present cases, it 
turns out that the difference is negligible. This 
is assured by the law of large numbers.) 

By exhaustively enumerating the set of 
distinct pair-tests and counting the number of 
those that map to the value "true", the values of L 
for the N-queens problems for N = 4, 5, ••• , 16 are 
determined to be (to 3 decimal places) 0. 444, 
0 .552, 0.622, 0.676, 0.714, 0.746, 0. 110, 0.791, 
0.808, 0.823, 0.835, 0.846, 0. 856, respectively. 
(When plotted against N, these values give the 
appearance of a smooth curve. For brevity, we show 
no such plot in this report. ) The sample set of 
what we shall call "random-N-queens" SAPs consists 
of 50 independently and randomly generated SAPs 
having N = k2 = k

3 
= k4 = 4, k1 = 2, and L = .444 

(i.e., the values for the 4-Queens SAP); a similar 
set of 50 SAPs for each of N = 5,6,7; 100 such 
samples for N = 8,9,10,11,12; 150 samples for 
N = 13; and 250 samples for N = 14. These SAPs are 
N-ki-L similar to the corresponding N-Queens SAPs. 

Figure 6-1 shows the mean values of Tf(N) 

observed using algorithms BKTRAK, BKHARK, BKJUMP, 
and DEEB to find first solution for the SAPs in the 
random-N-queena sample set. Comparing these data 
with those in Figure 5-1, note that the relative 
ordering of the algorithms is the same in both 
figures: BKHARK executes the fewest pair-tests on 
the average for each value of N, followed in order 
by BKJUMP, BKTRAK, and DEEB. 

274 

To more easily compare the values shown in 
Figure 6- 1 with the corresponding values in Figure 
5-1, Figure 6-2 plots the ratio of each value 
plotted in the latter figure to its corresponding 
value in the former fi.gure. The values so plotted 
represent the results of 7340 distinct algorithm 
executions. We observe that the differences 
between Tf(N) using DEEB and Tf(N) using BKTRAK are 

larger for random-N-queens SAPs than for the 
corresponding N-queens SAPs, and t hat the magnitude 
of this difference grows with N, and that the same 
holds for the corresponding differences between the 
performance of BKTRAK and that of BKJUMP. Other 
observations about the observed values plotted in 
Figures 6-1 and 6-2 are summarized in section 8 
under point 4. Analogous results assuming Mf(N) as 

the performance measure instead of Tf(N) are not 

plotted here (for brevity), but show less extreme 
difference differences between N-Queens SAPs and 
"random-N-Queens" SAPs. (The ratio is less than 2 
for all values of N tested.) 

7. Results for ISVL SAPs 

Next we report the results of an experiment 
designed to show how the cost of solving a SAP 
depends on the degree of constraint possessed by 
the problem. From only the results plotted in the 
figures of the preceeding sections, it is difficult 
to infer the dependence of the mean value of Tf(N) 

on the value of L, because the SAPs in the N-queens 
sample set differ among each other both in size 
(i.e., N and ki values) and in L values, and the 

same holds for the random-N-queens sample set. 
Moreover, L ranges only from 0.444 to o . 856 among 
the N-Queens SAPs in our sample set. 

Accordingly, we performed experiments using as 
sample set a set of randomly generated SAPs that 
are identical to each other in size but differ 
systematically in value of L. We used the method 
of the previous section to generate randomly 150 
SAPs, each having N = 10, k1 = k2 = .•• = k10 = 10 

and link percentage value L = 0 .1; iterating, we 
generate randomly in similar fashion a set of 150 
distinct SAPs for each of L = 0.2, 0.3, .•. , 0.9. 
For these values of N and the ki, Tmin = 45, 

10 D : 4500, and SAS: 10 . max 

The four curves plotted in Figure 7-1 show the 
mean values of Tf(L) observed when each of the 

algorithms BKTRAK, BKHARK, BKJUMP, and DEEB, 
respectively, is applied to the SAPs in this 
"Identical size, varying L" (ISVL) sample set. 
Figures 7-2 and 7-3 show the corresponding mean 
values of Df(L) and Mr(L) observed for the ISVL 

sample set. 

The Tf values plotted in Figure 7-1 for the 
' boundary cases L = 0 .0 and L = 1.0 are derived 

analytically rather than observed experimentally. 

The values plotted are Tr= k 1 'k2:100 at L: 0.0 for 



all four algorithms, and Tf = N(N-1)/2=45 at L:1.0 

for BKTRAK, EKMARK, and BKJUMP, and Tf: 1305 at 

L: 1 ,0 for DEEB . The value for DEEB is large 
because it first applies DEE, determining that the 
SAP is arc-consistent ( see Mackworth [ 1977]), then 
instantiates problem _variable x1 and again applies 

DEE, and continues in like manner until all N 
problem variables are instantiated. Several 
observations about the values plotted in Figures 
7-1, 7-2, and 7-3 are summarized in section 8 under 
point 5, 

Add little to little and there will be a 
big pHe . 

Ovid 

8. Conclusions and Future Work 

1) In all observed cases of N-Queena SAPs, 
algorithm EKMARK executes fewer pair-tests 
(Tf(N ) ) than do the other three algorithms under 

identical conditions, in some cases fewer by a 
factor of 10. EKMARK is observed to be more 
optimal than the other three algorithms with 
respect to the Mf search redundancy measure . 

2) In almost all observed cases of N-Queens SAPs, 
the Waltz-type algorithm DEEB executes more 
pair-tests on the average than do the other 
three algorithms under identical conditions. 

3) For N- Queens SAPs and each algorithm, we observe 
that randomizing the ordering of candidate 
values of each problem variable in a certain 
uniform way before commencing the search 
generally causes fewer pair-tests to be executed 
than if a certain "obvious" c.v. ordering is 
used, fewer by as much as a factor of 500 in one 
case observed (N=20 in Figure 5- 2 ) , 

4) Conclusions 1 and 2 above are further supported 
by analogous data for "random-N-Queens" SAPs. 
Comparison of these "random-N-queens" data with 
the "actual- N-Queens" data shows that these two 
sample sets of SAPs are sharply more 
distinguishable for N 2. 10 than for N < 10, and 
are sharply less distinguishable by algorithm 
DEEB than by ·the other three algorithms. Note 
in particular that for N 2. 10, N-Queens SAPs 
require many~ pair-tests to be executed on 
the average than is the case for the 
corresponding random-N-Queens SAPs. Hence we 
have demonstrated how algorithm performance 
experiments can aid in defining what is meant by 
the "structure" exhibited by a problem. 

5) Results reported for the "identical size, 
varying degree of constraint" ( ISVL ) SAPs also 
support conclusions 1 and 2. Furthermore, the 
results indicate that mean Tf depends strongly 

on L, spanning a range whose extremes differ by 
a factor of 791, The data suggest the existence 
of a single sharp peak in Tf(L) at L - 0.6. 

Analogous data for Df (L) and Mf(L) show similar 

peaks and range of performance. 

Given additional computer time, it is 
straightforward to extend each of the present 
experiments to other values of the experiment 
parameters, and to other problems. In particular, 
it would be interesting to obtain comparable 
results using Waltz' line drawing problem or map 
coloring. In these problems many of the problem 
variables do not constrain each other directly 
(i.e., Pij = RixRj, the universal relation), 

whereas in the present results each problem 
variable (e.g., queen) constrains each other 
problem variable. Perhaps DEEB performs relatively 
better and BKTRAK relatively worse on these 
problems. In addition to experiments, it is 
important to obtain analogous results analytically, 
to the extent this is possible, and to compare the 
analytic predictions with the experimental 
observations . 

Note: The numeric values plotted in the fig ures 
constitute the actual "·results" of the experiments, 
and yet they are not tabulated in this report (due 
to page limitations ) . The author is pleased to 
supply to anyone who so requests tables listing all 
of the numbers plotted in the figures, including as 
well sample standard deviation values and maximum 
and minimum values. These tables will also appear 
in the author's forthcoming Ph.D. thesis. 
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Abstract 
We describe a problem solver based on a group of 

processor nodes which cooperate to solve problems. In a 
departure from earlier systems, we view task distribution as 
an Interactive process, a discussion carried on between a 
node with a task to be executed and a group of nodes that 
may be able to execute the task. This leads to the use of a 
control formalism based on a contract metaphor, In which task 
distribution corresponds to contract negotiation. 

We also consider the kinds of knowledge that are used 
In such a problem solver, the way that the knowledge Is 
Indexed within an Individual node, and distributed among the 
group of nodes. We suggest two primary methods of Indexing 
the knowledge (referred to as "task-centered" and 
"knowledge-source centered"), and show how both methods 
can be useful. 

We Illustrate the kind of Information that must be passed 
between nodes In the distributed processor In order to carry 
out task and data distribution. We suggest that a common 
lnternode language Is required, and that task-specific 
"expertise" required by a processor node can be obtained by 
lnternode transfer of procedures and data. 

We consider the operation of a distributed sensor net as 
an Instantiation of the Issues we raise. 

Finally, the approach presented here Is compared with 
those taken by the designers of earlier systems, such as 
PLANNER, HEARSAY-II, and PUP6. 

1 Introduction 
The ongoing revolution In LSI technology Is drastically 

reducing the cost of computer components, making multiple 
processor architectures economically viable. These 
architectures have the potential to provide several 
computational advantages over uniprocessor architectures, 
Including speed, rellablllty, and efficient matching of available 
processing power to problem complexity [Baer, 1973]. This 
has led to a search for problem solving methods which can 
exploit the new technology. In this paper we present one 
approach to problem solving In such architectures. 

We propose a model of a distributed problem solver 
which consists of a collection of processors connected with 
communications and control mechanisms that enable them to 
operate concurrently, and enable them to cooperate In solving 
complex problems. We use the term "distributed" rather than 
"parallel" to emphasize that the Individual processors are 
loosely-coupled; that Is, the time a processor node spends In 
communication ts small with respect to the time It spends In 
computation. 

Loosely-coupled systems are desirable for a number of 
reasons. First, s4ch systems are highly modular, and hence 
offer considerable conceptual clarity and slmpllclty In their 
organization. Second, and equally Important from our 
perspective, systems designed to be loosely-coupled require 
less communication by an Individual node. This Is an Important 
practical consideration because a major problem that arises In 
the design of multiple processor architectures Is 
Interconnection of the nodes [Anderson, 1976]. 

1 This work has been supported In part by the Advanced 
Research Projects Agency under contract MDA 903-77-C-
0322, and the National Science Foundation under contract 
MCS 77-02712. It has been carried out on the SUMEX-AIM 
Computer Facility, supported by the National Institutes of 

· Health under grant RR-00786. Reid Smith Is supported by the 
Department of National Defence of Canada, and Randall Davis 
Is supported by the National Science Foundation and a Chaim 
Weizmann Postdoctoral Grant for Scientific Research. 
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Complete Interconnection (so that a node can communicate 
directly over a private channel to every other node) Is 
extremely expensive because It entails a number of channels 
proportional to the square of the number of nodes. One way to 
reduce this expense Is to employ a single broadcast 
communications channel which Is shared by all nodes. 

Unfortunately, such a ·channel can be a major source of 
contention and delay when the number of processor nodes ts 
large. The communications medium connecting the nodes Is 
thus a valuable (and limited) resource that must be conserved 
If a large number of processor nodes Is to function together 
effectively. It Is thus desirable to reduce the amount of 
message traffic, and designing the system so It Is loosely
coupled Is one way to accomplish this goal. Loose-coupling 
can In turn be effected by careful partitioning of the top-level 
problem to Insure that Individual processor nodes work on 
tasks that are relatively Independent of each other, and that 
require processing times which are large with respect to the 
tl~e required for lnternode communlcation.2 

1.1 A Human Model 
The operation of a problem solver working In a 

distributed processor architecture may be likened to the 
operation of a group of human experts experienced at working 
together to complete a large task.3 In such a situation we 
might see each expert spending most of his time working 
alone on various subtasks that have been partitioned from the 
main task, pausing occasionally to Interact with other members 
of the group In specific, well-defined ways. When he 
encounters a subtask too large to handle alone, he further 
partitions It Into manageable (sub)subtasks and makes them 
known to the group. Similarly, If he encounters a subtask for 
which he has no expertise, he attempts to pass It on to 
another more appropriate expert. In this case, the expert 
may know another expert (or several other experts) In the 
group who have the necessary expertise, and may notify him 
(them) directly. If the expert does not know anyone In 
particular who may be able to assist him, or If the new subtask 
requires no special expertise, then he can simply describe the 
subtask to the entire group. If some other expert chooses to 
carry out the subtask, then that expert will request further 
details from the original expert, and the two may engage In 
further direct communication for the duration of the subtask. 
The two experts will have formed their own subgroup, and 
similar subgroups of variable size will form and break up 
dynamically during the course of the work on the problem. 
Subgroups of this type offer two advantages. First, 
communication among the subgroup members does not 
needlessly distract the entire group of experts. Such 
distraction may be a major source of difficulty In large groups 
(see, for example [Brooks, 1976]). In addition, the subgroup 
members may be able to communicate with each other In a 
language that Is more efficient for their purposes than the 
language In use by the group as a whole. 

It Is worthy of note that among the tasks which can be 
posed by an expert In the group are those that Involve a 
transfer of "expertise" from one expert to another; that Is, 
one expert may request Instruction In the execution of a 
particular task. 

In our human model, no one expert Is In control of the 

2 Partitioning of this kind Is, of course, a well-known 
problem solving strategy, often referred to as "divide and 
conquer". 

3 The group of experts model has also been used as a 
starting point by (Lenat, 1976] and [Hewitt, 1977a], but has 
resulted In approaches with different characteristics than that 
considered In this paper. We compare the different 
approaches In Section 6. 



others, (although one expert may be ultimately responsible for 
communicating the solution of the top-level problem to the 
"customer" outside the group). As a result, one of the major 
problems facing such a group Is Integration of Information held 
by the Individual members. The group members must find ways 
to share and build on one another's Information, and find ways 
to examine and resolve differences In order to reach a 
consensus. 

2 Problem Solving Protocols 
We now consider the design of a problem solver that can 

exploit the characteristics of a distributed processor 
architecture. In doing this, we make a rough correspondence 
between human experts and Individual processor nodes, but 
our aim is the design of an effective problem solver, not a 
simulation of human performance. The question Is then, "What 
techniques will supply the requisite communications and 
control mechanisms?" We will see that one of the necessary 
mechanisms is a problem solving protocol designed to enable 
the Individual nodes to communicate for the purpose of 
cooperative problem solving. It Is based on the more traditional 
notion of communications protocol. 

The use of communications protocols In networks of 
resource-sharing computers, such as the ARPAnet, Is by now 
quite familiar [Kahn, 1972]. These protocols have as their 
primary function reliable and efficient communication between 
computers. The layers of protocol In the ARPAnet, for 
example, serve to connect IMP's to IMP's (the subnet 
communications devices), hosts to hosts (the processor nodes 
of the network), and processes executing In the various hosts 
to other such processes [Crocker, 1972]. 

Communications protocols are, however, only a start - a 
prerequisite for distributed problem solving. We need to build 
upon the work of network and communications protocol 
designers to focus on what to say In the context of distributed 
problem solving, as opposed to how to say It. In ARPAnet 
terms, we must move above the process-to-process protocol 
to add yet another layer - one concerned with the 

· management of tasks. 

2. 1 Design Goals 
Before presenting the specific protocol to be used 

throughout the remainder of this paper, we review the general 
design goals for a problem solving protocol. 

First, we are concerned with the communication of 
messages between the nodes of a distributed problem solver. 
We must therefore Insure that our protocol Is sufficiently 
general that It allows the communication of a broad class of 
Information, and allows Interactions capable of supporting 
complex problem solving behavior. 

Second, the protocol must be well-suited to systems 
that are loosely-coupled. As noted earlier, It Is Important to 
minimize communication since communications channel capacity 
Is expensive. While careful task partitioning has the greatest 
potential Impact on the amount of lnternode communication 
required, the problem solving protocol also plays a role. 
Therefore, the protocol should be efficient In terms of Its use 
of communications resources (I.e., terse).4 

The protocol should also foster distribution of control and 
data In order to Insure that advantage can be taken of 
potential gains In speed and reliability that may be achieved 
through the use of multiple processors. Centralized control 
could create an artificial bottleneck (slowing the system 
down), and could make It difficult for the system to recover 
from failure of critical components. 

Finally, the protocol should aid In maintaining the focus 
of the problem solver, to combat the combinatorial explosion 
which besets almost all Al programs. For a uniprocessor, focus 
Involves selection at each Instant In time of the most 
appropriate task to be executed [Hayes- Roth, 1977]. For a 
distributed processor, focus can be reformulated as finding 
the most appropriate tasks to be executed and matching them 
with processor nodes appropriate for their execution. 

In a uniprocessor, focus of attention Is generally handled 

4 Current evidence [Galbraith, 1974] suggests that 
effective human organizations operate In an analogous manner, 
minimizing unnecessary communications among the members. 
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by a single, global, heuristic evaluation function used to rank 
order all tasks In the system (see, for example [Lenat, 
1976)). In a distributed processor, however, each Individual 
processor node has Its own local evaluation function. Task 
se lection and decisions are thus based on local 
considerations, and this locality gives rise to the problem of 
Inducing global coherence In the actions of the Individual 
processor nodes. Since this can be a major source of 
difficulty, the problem solving protocol should also offer some 
assistance In overcoming It. 

2.2 The Contract Net 
These considerations lead to the notion of task 

distribution as an Interactive process, one which entails a 
discussion between a node with a task to be executed and 
nodes that may possibly be able to execute the task. The 
contract net approach to distributed problem solving [Smith, 
1977] uses an announcement - bid - award sequence of 
contract negotiation to effect this matching. We present a 
simplified description of the approach In this section. 

A contract net Is a collection of Interconnected 
processor nodes whose Interactions are governed by a 
problem solving protocol based on the contract metaphor. 
Each processor node In the net operates asynchronously and 
with relative autonomy. Instances of the execution of 
Individual tasks are dealt with as contracts. A node that 
generates a task advertises existence of that task to the 
other nodes In the net as a task announcement, then acts as 
the manager of that task for Its duration. In the absence of 
any Information about the specific capabilities of the other 
nodes In the net, the manager Is forced to Issue a 
general broadcast to all nodes. If, however, the manager 
possesses some knowledge about which of the other nodes In 
the net are likely candidates, then It can Issue a 
limited broadcast. Finally, If the manager knows exactly 
which of the other nodes Is appropriate, then It can Issue a 
point-to-point announcement. 5 As work on the problem 
progresses, many such task announcements may be made by 
various managers. 

The other nodes In the net have been listening to the 
task announcements, and have been evaluating their own 
level of Interest In each task with respect to their specia lized 
hardware and software resources. When a task Is found to be 
of sufficient Interest, a node may submit a bid. Each bid 
Indicates the capabilities of the bidder that are relevant to 
execution of the announced task. A manager may receive 
several such bids In response to a single task announcement; 
based on the Information In the bids, It select one (or several) 
node(s) for execution of the task. The selection Is 
communicated to the successful bldder(s) through an award 
message. These selected nodes assume responsibility for 
execution of the task, and each Is called a contractor for 
that task. 

A contract Is thus an agreement between a node that 
generates a task (the manager) and a node that executes the 
task (the contractor). Note that establishing a contract Is a 
process of mutual selection. Available processor nodes 
evaluate task announcements made by several managers until 
they find one of Interest; the managers then evaluate the bids 
received from potential contractors and select one they 
determine to be most appropriate. Both parties to the 
agreement have evaluated the Information supplied by the 
other and a mutual decision has been made. 

The contract negotiation process Is expedited by three 
forms of Information contained In a task announcement. An 
eligibility specification lists the criteria that a node must 
meet to be eligible to submit a bid. This specification reduces 
message traffic by pruning nodes whose bids would be clearly 
unacceptable. A task abstraction Is a brief description of the 
task to be executed, and allows a potential contractor to 
evaluate its level of Interest In executing this task relative to 
others that are available. An abstraction Is used rather than a 
complete description In order to reduce message traffic. 

5 Restricting the set of addressees (which we call 
focused addrHslng) of an announcement Is typically a 
heuristic process, since the information upon which it is based 
may not be exact (e.g., It may be Inferred from prior 
responses to announcements). 



Fina lly, a bid specification details the expected form of a bid 
for that task. It enables a potential contractor to transmit a 
bid which contains only a brief specif ication of Its capabilities 
that are relevant to the task (called a· node abstraction), 
rather than a complete description. This both simplifies the 
task of the manager in evaluating bids, and further reduces 

message traffic.6 

The normal contract negotiation process may be 
simplified In two Instances. First, a directed contract does 
away with the announcement and bid, and Is awarded directly 
to a se lected node. Second, a request - response sequence 
Is used without further embellishment for tasks which amount 
to simple requests for information. These two simplifications 
serve to enhance the efficiency of the protocol. 

It is Important to note that individual nodes are not 
designated a priori as managers or contractors. Any node can 
take on either role, and during the course of problem solving a 
particular node normally takes on both roles (perhaps even 
simultaneously for different contracts). 

In addition to effecting task distribution, a contract 
between two nodes serves to set the context for their 
communication. Setting up such a context facllltates their 
communication. A contract Is also of assistance In forming 
subgroups of nodes. As In the human model discussed above, 
such subgroups can communicate among themselves without 
distracting the entire group. Furthermore, an established 
context permits the use of a specialized language for their 
communication. This helps to reduce message traffic. 

The award message contains a task description, which 
Includes the complete specification of the task to be 
executed. After the task has been completed, the contractor 
sends a report to its manager. This message Includes a result 
description, which contains the results that have been 
achieved during execution of the task. 

The manager may terminate contracts as necessary, 
and subcontracts may be let In turn as required by the size of 
a contract or by a requirement for special expertise or data 
that the contractor does not have. 

Contracting distributes control throughout the . network, 
helping to create a flexible system; that Is, a number of 
different (potentially dynamic) approaches to problem solving 
can be Implemented. Distributed control and ' two-way links 
between managers and contractors also enhance system 
reliability, In that they enable recovery from Individual 
component failure. The failure of a contractor, for example, Is 
not fatal, since Its manager can re-announce the appropriate 
contract and recover from the failure. This strategy allows the 
system to recover from any node failure except that of the 

node that holds the original top- level problem.7 
While the contract net protocol Is a general problem 

solving protocol, It has been designed so It can be pruned to 
meet the specific requirements of the application at hand, and 
hence reduce message traffic and message processing 
overhead. In Its simplest form, It reduces to a standard 
communications protocol, sending messages between 
specified sources and destinations. At a slightly more general 
level, broadcasting of tasks and results Is possible, thus 
effecting a more Implicit form of addressing. At progressively 
more general levels, complex bidding and award mechanisms 
are added. The contract net can thus be a useful approach to 
distributed problem solving at many different levels of 
complexity. 

We can now consider how well the contract net protocol 
meets the design goals specified earlier for a problem solving 
protocol . 

The protocol Is well suited to loosely- coupled systems In 
two respects. First, It provides a very general form of 
guidance In determining appropriate partitioning of problems: 
the notion of tasks executed under contracts Is appropriate 

6 We discuss the encoding of this Information In Section 
4.3. 

7 At the top level, contracting can distribute control 
"almost" completely, hence removing the bottlenecks that 
centralized controllers may create. There stlll remains, 
however, the reliability problem Inherent In having only a single 
node responsible for the top-level problem. Since this cannot 
be handled directly by the manager-contractor links, standard 
sorts of redundancy are required. 
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for a grain size larger than that typically used In problem 
solving systems. (Section 5.1 contains further discussion 
of this Issue.) Second, the protocol Is efficient wlti, respect to 
Its use of communications channels. The Information In task 
announcements, for Instance, helps minimize the amount of 
channel capacity consumed by communications overhead. 
Such efficiency helps to preserve whatever loose-coupling 
character Is already present In the system as a result of 
problem partitioning. 

The use of autonomous contract nodes Interacting 
through a process of contract negotiation fosters distribution 
of control and data throughout the system, thus meeting the 
third design goal. 

Maintenance of focus Is perhaps the most difficult of the 
design goals to meet, and we do not yet have a good 
understanding of the underlying Issues involved. Our approach 
Is to attack the problem explicitly through "appropriate" 
definition of the functions used to evaluate task 
announcements and bids. In addition, each node maintains a 
list of the "best" recent task announcements It has seen - a 
kind of window on the tasks at hand for the net as a whole. 
This window enables the evaluation funct ions to "Integrate" 
the local situation over time to assist In maintenance of focus. 

It Is of Interest to note that the focus problem does not 
necessarily have to be attacked explicitly. Some problems 
lend themselves to a relaxation style of problem solving. Low 
level vision operations, for example, are suitable candidates 
for this approach [Zucker, 1977]. The nature of the 
relaxation process Itself tends to produce global coherence 
from the actions of Individual processes even though focus Is 
not addressed explicitly as a problem. In this approach, a lack 
of appropriate global coherence shows up as oscillation In the 
relaxation process. 

3 Example - Distributed Sensing 
In this section, we demonstrate the use of the contract 

net approach In the solution of a problem In area survei llance, 
such as might be encountered In ship or air traffic control. 
The example will help to demonstrate the Ideas which form the 
central foci of the remainder of this paper: (a) task 
distribution as an Interactive process, and (b) Indexing and 
distribution of knowledge. 

We consider the operation of a network of nodes, each 
of which may have either sensing or processing capablllt les, 
and which are spread throughout a relatively large geographic 
area. Such a network Is called a Distributed Sensing Syatem 
(DSS). The primary aim of the system Is rapid, reliable, 
accurate, and low-cost analysis of the traffic In a designated 
area. This analysis Involves detection, classification, and 
tracking of vehicles; that Is, the solution to the problem Is a 
dynamic map of traffic In the area which shows vehicle 
locations, classifications, courses and speeds. Construction 
and maintenance of such a map requires Integration and 
Interpretation of a large quantity of sensory Information 
received by the collection of sensor elements. 

There are a number of tradeoffs Involved In the design 
of a DSS architecture, and we present only one possible 
approach. The primary Intent of the example Is to act as a 
vehicle for demonstration of the contract net approach to 

distributed problem solvlng.8 

The example we present here Is a hand simulation, but Is 
based on a working SAIL simulation of the contract net that 
has been applled to a related distributing sensing problem. 

3.1 Hardware 
The DSS Is organized as a contract net that Is monitored 

by a distinguished processor node called the monitor node. All 
communication In the net Is assumed to take place over a 
broadcast channel. The nodes are assumed to be In fixed 
positions known to themselves but not known a priori to the 
monitor node, and they may have two different kinds of 

8 Further discussion of the background Issues Inherent In 
DSS design Is presented In (Smith, 1978a]; a more detailed 
discussion of this example Is presented In (Smith, 1978b], 
which Includes examination of several of the design options 
and tradeoffs that can only be mentioned briefly here due to 
space limitations. 
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capability: sensing and processing. The sensing capability 
Includes low level signal analysis and feature extraction. We 
assume that a variety of sensor types exist In the OSS, that 
the sensors are widely spaced, and that there Is some overlap 
In sensor area coverage. 

Nodes with processing capability supply the 
computational power necessary to effect the high level 
analysis and control in the net. They are not necessarily near 
the sensors whose data they process. These nodes are able 
to acquire (if necessary) the procedures essential to effect 
any of the information processing functions, by transfer from 
other nodes. 

3.2 Data And Task Hierarchy 
The DSS must integrate a large quantity of signal data, 

reducing it and transforming it into a symbolic form meaningful 
and useful to a human observer. We view this process as 
occurring in .severa l stages, which together form a data 
hierarchy (Figure 3.1 ). The hierarchy offers an overview of 
DSS function and suggests a task partitioning suitable for a 
contract net approach. 

overall area map 

area map 

vehicle 

signal group 

signal 

Figure 3.1. Data Hierarchy. 

For purposes of this example, the only form of signal 
processing we consider Is narrow band spectral analysis, and 
the signal has the following features: frequency, time of 
detection, strength, characteristics (e.g. increasing signal 
strength), name and position of the detecting node, and the 
name, type, and orientation of the detecting sensor. 

Signals are formed Into signal groups at the second 
level of the data hierarchy. A signal group Is a collection of 
related signals. For this example, the signal groups have the 
following features: the fundamental frequency of the group, 
the time of group formation, and the features of the signals In 
the group (as above). 

The next level of the hierarchy Is the vehicle. It has one 
or more signal groups associated with It, and Is described In 
terms of position, speed, course, and type. Position can be 
established by triangulation, using matching groups detected 
by several sensors with different positions and orientations. 
Speed and course must be established over time by tracking. 

The next level of the data hierarchy Is the area map. 
This map Incorporates Information about the known vehicle 
traffic In an area. It Is an Integration of the vehicle level 
data. There will be several such maps for the DSS, 
corresponding to areas In the span of coverage of the net. 

The final level Is the complete or overall area map. In 
this example, the map Is Integrated by the monitor node.11 

The hierarchy of tasks follows directly from the data 
hierarchy. The monitor node manages several area 
contractors (Figure 3.2). These contractors are responsible 
for formation of traffic maps In areas defined by the monitor 
node. Each area contractor In turn manages several group 
contractors that provide It with signal groups for Its area 
(Figure 3.3). Each group contractor Integrates raw signal data 
from signal contractors that have sensing capabilities. 

The area contractors also manage several vehicle 
contractors that are responsible for Integration of Information 
associated with Individual vehicles. Each of these contractors 
manages a classlflcatlon contractor that determines vehicle 
type, a localization contractor that determines vehicle 
position, and a tracking contractor that tracks the vehicle as 
It passes through the area. 10 

9 A DSS may have several functions, and not all of these 
functions will require Integration of overall area data at a 
single node. 

10 In a real solution to the DSS problem, It Is possible 
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Figure 3.2. Traffic Map Partitioning. 
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Figure 3.3. Area Task Partitioning. 

3.3 DSS Initialization And Operation - The Contract Net 
Approach 

This section reviews In qualitative terms how the OSS 
problem can be attacked using the contract net approach, and 
Illustrates several of the Ideas central to Its operation. 
Appendix A gives specific examples of the message traffic 
that Is described here In more general terms. 

3.4 Initialization 
The monitor node is responsible for initialization of the 

DSS and for formation of the overall map. It must first partition 
the overall span of coverage of the system Into areas, and 
select other nodes to be area contractors. For purposes of 
Illustration we assume that the monitor node knows the names 
of nodes that are potential area contractors, but must 
establish their positions In order to partition the overall span 
of coverage. Hence, It begins by announcing contracts for 
formation of area maps of the traffic. Because the monitor 
node knows the names of potential area contractors, It can 
avoid a general broadcast and use a focused addressing 
scheme. The announcement contains the three components 
described In Section 2.2, a task abstraction, eligibility 
specification, and bid specification. The bid specification Is of 
primary interest for this task. It Informs a prospective area 
contractor to respond with Its position. The monitor node uses 
the positions returned In bids on the task to form appropriate 
areas and select a subset of the bidders to be area 
contractors. Each contractor Is Informed of Its area of 
responsibility In the contract award message. 11 

The area contractors now attempt to solicit other nodes 
to provide signal group data. In the absence of any 
Information about which nodes might be suitable, each area 
contractor announces the task using a general broadcast. The 
ellglblllty specification In these announcements Indicates the 
area for which the individual area contractor Is responsible; 
that Is, a node Is only eligible to bid on this task If It Is In the 
same area as the announcing area contractor. Potential group 
contractors respond with their respective positions, and 
based on this Information, the area contractors award group 
contracts to nodes In their areas of responsibility. 

At this point, the group contractors attempt to find 

that not all of these tasks would be large enough to justify 
the overhead of contracting; that Is, some of them might be 
done In a single node. It Is also of Interest to note that some 
of the tasks In the hierarchy .are continuing tasks (e.g., the 
area task), while others are one-time tasks (e.g., the localize 
task). 

11 The full announcement - bid - award sequence Is 
necessary (rather than a directed contract) because the 
monitor node needs to know the positions of all of the 
potential area contractors In order to partition the overall span 
of coverage of the DSS Into manageable areas. Note that this 
means that the DSS will automatically adjust to a change In 
the number or position of potential area contractors. 



nodes that will provide raw signal data. This Is done with 
signa l task announcements. The task abstraction In these 
announcements Indicates both the area of responsibility of an 
indiv idua l group contractor and Its position. This position 
Information w ill assist potential signal contractors In 
determining the group contractors to which they should 
res pond. The e ligibili ty specif ication In the announcements 
e ns ures that a bidder Is located In the same area as the 
announcer, and that It has sensing capabllltles. 

The potential signal contractors listen to the task 
announcements from the various group contractors. They 
respond to t he nearest group contractor with a bid that 
s upp lies t heir position and a description of their sensors. The 
group contractors use this Information to select a set of 
bidde rs that covers the vic inity w ith a suitable variety of 
sensors , and then award signal contracts on this basis. The 
aw ards spec ify the sensors that each signal contractor Is to 
use to provide raw data to Its managing group contractor. 

The signa l contract Is a good example of the contract 
negotiation process, Illustrating that the matching of 
contractors to managers Is an Interactive process. It Involves 
a mutual decision based on local processing by both the group 
contractors and the potential signal contractors. The potential 
s igna l contractors base their decis ion on a distance metric 
and respond to the closest manager. The group contractors 
use t he distribution of sensor types and numbers observed In 
t he b ids to se lect a set of signal contractors wt.lch ensures 
t hat every area Is covered by every kind of sensor. Thus 
each party to the contract evaluates the proposals made by 
t he other, using a different evaluation function, and arriving at 
a task distribution agreement via mutual selection. 

3.6 Operation 
We now consider the activities of the system as It 

commences operation. 
When a s igna l Is detected, or a change occurs In the 

features of a known signal, the detecting signal contractor 
reports this fact to Its manager (a group contractor). This 
node In turn attempts to Integrate the Information Into an 
existing signal· group or to form a new signal group. 

A group contractor reports the existence of a new signal 
group to Its manager (an area contractor) which must then 
decide what to do with It. Whenever a new group Is detected, 
the managing area contractor attempts to find a node to 
execute a vehicle contract. The task of a vehicle contractor 
is to classify, localize, and track the vehicle associated with 
the signal group. Since a newly detected signal group may be 
attributable to a known vehicle, the area contractor first 
requests from the existing collection of vehicle contractors a 
measure of the confidence that the new group is attributable 

. to one of the known vehicles. Based on the responses, the 
area contractor either starts up a new vehicle contractor, or 
awards a contract to (augments the existing contract of) the 
appropriate existing vehicle contractor, with the task of 
making certain that the new group corresponds to a known 
vehicle. This may entail, for example, the gathering of new 
data via adjustment of sensors, or contracts to new sensor 
nodes. 

The vehicle contractor then makes two task 
announcements: vehicle classification and vehicle locallzatlon. 
The announcement of the classification task Includes an 
abstraction of the available description of the vehicle (I.e., 
the currently known information). In this example, the 

. abstraction contains a 11st of the fundamental frequencies of 
the signal groups currently associated with the vehicle. This 
Information may help a potential classlflcatlon contractor 
select an appropriate task (a contractor may, for example, 
a lready be familiar with vehicles that have signal groups with 
the announced fundamental frequencies). The award Includes 
the complete current description. A classification contractor 
may be able to classify directly, given the signal group 
information, or on the other hand It may require more data, In 
which case It can communicate directly with the appropriate 
sensor nodes. 

A locallzatlon task announcement Includes data on the 
positions of the detecting nodes. The bid Is simply an 
affirmative response to the announcement and the contract la 
awarded to the first bidder, which does the required 
triangulation to obtain the position of the vehicle. 
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Once the vehicle has been localized, It must be tracked. 
We assume that this Is handled by the vehicle contractor 
which enters into follow-up localization contracts from t ime to 
time and uses the results to update Its vehic le description. 

There are a variety of other Issues that must be 
considered In the design and operation of a real distributed 
sensing system; they are discussed In more detail elsewhere 
[Smith, 1978b). In the following sections, we focus on Issues 
of knowledge organization and use In the contract net, and 
refer back to this example to Instantiate the Issues raised. 

4 Organization Of Knowledge 
In this section we consider the contract negotiation 

process from a different perspective, examining the kinds of 
knowledge that are used, the way that the knowledge Is 
Indexed within an Individual node, and distributed among the 
nodes. 

We begin with a few definitions. Indexing Indicates the 
"handles" placed on knowledge modules so that they can be 
accessed. In the next section we will see that knowledge In a 
contract net Is Indexed according to Its utility for selecting 
suitable knowledge sources (KS's) (I.e., processor nodes) for 
a particular task, or for selecting suitable tasks for a 
particular KS. Distribution indicates where the knowledge 
resides; that is, In which processor nodes. We can distinguish 
two aspects of distribution of knowledge in a contract net: 
static distribution - dea11ng with the question of how 
knowledge is pre-loaded Into the net (I.e., the a priori 
distribution), and dynamic distribution - how knowledge Is 
acquired by a node as work on the problem progresses. 

In the following sections we will concentrate primarily on 
the Issue of knowledge Indexing, together with t he 
mechanisms that are necessary to use the knowledge In 
problem solving. We will also see that these same 
mechanisms permit Interactive transfer of expertise between 
nodes In much the same way as any other form of Information 
is transferred. 

4 •. 1 Indexing Of Knowledge 
To consider knowledge Indexing, the discussion focuses 

on (a) the two primary questions that must be answered by a 
node during the contract negotiation process, and (b) the 
types of knowledge that are used by the manager and 
potential contractors to effect this negotiation. 

A manager has two questions to answer during the 
contract negotiation process. First, 
( 1) To whom do I addre:ss my task announcement? 

Then, once It has received a number of bids In response 
to an announcement, the manager must answer the question, 
(2) How can I select the best candidates from among the 

potential contractors for my task? 
A node that receives an announcement must also answer 

two questions during the negotiation process. First, 
(3) Am I relevant to this task and Is It appropriate for me to 

· consider making a bid? 
In addition, a node must also determine, 

(4) Is this task the one that I want to execute next? 
In order to facilitate the contract negotiation process, 

we find It convenient to specify the Indexing of knowledge as 
being either task-centered or knowledge-source-centered 
(KS-centered). 

Task-centered knowledge Is Indexed from the point of 
view of a particular task, and provides Information about KS's 
with respect to that task. At least two forms can be Imagined: 
(a) IF I have a task of the form [ ... ] to be executed,· THEN 

KS's of the form[ ... ] are potentially useful. 
or, 
(b) IF I have a task of the form [ ... ] to be executed, THEN 

KS's of the form[ ... ] are more useful than KS'• of the 
form[ .•. ]. 

KS-centered knowledge, on the other hand, Is Indexed 
from the point of view of a particular KS, and provides 
Information about tasks with respect to that KS. Again, at 
least two forms can be Imagined: 
(c) IF my /<now/edge base contain• Information of the form 

[ ... ], THEN tasks of the form [ ... ] are appropriate for 
me. 

or, 
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(d) IF my knowledge base contains Information of the form 
[ .•. ], THEN tasks of the form [ •.• ] are more 
appropriate for me than tasks of the form[ ... ]. 

Both kinds of knowledge are used during the contract 
negotiation process. Task- centered knowledge Is used first 
to determine the subset of nodes to which to address a task 
announcement (i. e., (a) provides the answer to question (1 )). 
This type of k_nowledge reduces message traffic and message 
processing overhead because It enables focused addressing, 
as in the DSS, for example, where the monitor node uses task
centered knowledge to effect focused addressing In 
announcing the area tasks. 

Task-centered knowledge Is also used to determine the 
best course of action once bids are received (I.e., (b) 
provides the answer to question (2)), and hence Is an effective 
mechanism for encoding strategies. That Is, since bid 
evaluation functions are used to select the next KS to Invoke, 
they are an appropriate location for strategy Information that 
guides the operation of the problem solver. 

KS-centered knowledge Is used by a node that receives 
an announcement, first to determine that It Is re levant to the 
announced task (i.e., (c) provides the answer to question (3)). 
Associating knowledge with KS's allows enhancement of the 
concurrency In a distributed processor because · many KS 's 
can simultaneously determine their relevance to a task; that 
Is, each KS carries Information allowing It to determine the 
range of tasks to which It Is relevant. KS-centered 
knowledge of type (c) Is used by nodes In the DSS example to 
determine that they are eligible to bid on signal tasks. 

KS-centered knowledge Is also used by a node to select 
the task It wishes to execute next (I.e., (d) provides the 
answer to question (4)). This type of KS-centered knowledge 
Is another effective mechanism for encoding strategies. In the 
DSS, for example, the Initialization strategy for signal 
contractors Is encoded In this way. 

4.2 Distribution Of Knowledge 
We noted at the beginning of this section that 

distribution of knowledge has two aspects - static and 
dynamic. Static distribution Is largely task-specific, and the 
criteria for a good static distribution of knowledge are similar 
to those for good problem partitioning. The distribution chosen 
should minimize message traffic, and should not create any 
bottlenecks In the system. Dynamic distribution of knowledge 
Is the means by which nodes can acquire and transfer 
Information and expertise as the problem progresses. The 
ability to effect dynamic knowledge distribution places 
several constraints on the design of the distributed problem 
solver. 

Dynamic distribution of knowledge enables more 
effective use of available computational resources: a 
processor node that Is standing Idle because It lacks 
Information required to perform a previously announced task 
can acquire the procedures necessary to execute that task. 
This also facilitates the task of adding a new node to an 
existing net, since the node can dynamically acquire the 
procedures and data necessary to allow It to participate In 
the operation of the net. 

This means that nodes do not have to be functionally 
defined a priori; that Is, any node can acquire the procedures 
necessary to execute any task that Its physical attributes 
(e.g. , memory, peripherals , etc.) will support. The alternative 
would be either forcing the node to remain Idle until It hears a 
task announced for which It already has the necessary 
procedures, or pre-loading each node In the net with all the 
procedures that will ever be used. Neither of these 
a lternatives Is very attractive. 

Procedures can be transferred between nodes In three 
ways. First, a node can transmit a request directly to another 
node for transfer of a procedure. The response to the request 
is the procedure code. Second, a node can transmit a task 
announcement In which the task Is transfer of a procedure. A 
bid on the task Indicates that another node has the code and 
Is willing to transmit It. Finally, a node can note In Its bid on a 
task that It requires the code for a particular procedure In 
order to execute the task. This Is useful when the managing 
node already has the relevant code but wants to work on 
some other aspect of the task. 
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4 .3 lnternode Communication 
Thus far we have concentrated on the role of the 

contract net problem solving protocol for Interaction between 
nodes. In this section, we consider the common lnternode 
language which serves as the foundation on which the 
protocol Is based. The language provides the primitive 
e lements w ith which such Items as task abstractions, 
ellglblllty specifications, and bid specifications are encoded. It 
thus provides the medium In which nodes "discuss" tasks and 
KS's, as well as pose the questions about eilglbillty to bid on 
tasks, rank ordering of tasks, and control of task distribution 
that arise during the contract negotiation process. 

A relatively simple language, capable of supporting t he 
DSS communication, has been designed. Sample messages are 
shown In Appendix A. It Is believed that the language will 
support a range of other applications, but, of course would 
have to be Increased In complexity for behavior significantly 
more complex than that shown In the DSS example. 

The language Is organized as a collection of associat ive 
triples, and has a set of domain-Independent, "core" 
vocabulary Items that can be extended with task-specif ic 
Items. 

The current grammar of the language Is relatively simple, 
with the result that the messages shown In Appendix A are 
somewhat verbose. These messages have the advantage of 
being easy to write and understand for a human, but have the 
disadvantage of being less efficient than they might be in 
their use of communications resources. 

- The common lnternode language permits explicit 
statements of requirement to be made In messages. It Is also 
useful In that It assists a new node in Isolating the Information 
It must acquire to participate In the operation of the net. This 
Isolation Is an aid to active distribution of knowledge 
( discussed In the preceding section). Finally, the language 
simplifies the use of local processing by a node, for example, 
to evaluate announcements and bids from Its own point of 
view. A node Is able to process the Information In these 
messages because the common lnternode language affords a 
uniform Interpretation of the vocabulary Items by all nodes In 
the net. 

Specialized communication Is also possible. Two nodes 
that are linked via a contract, for example, can adopt a more 
compact form of communication for their messages, since no 
other nodes need Interpret the messages. This compact form 
of communication can be viewed as a specialized language 
that the nodes use to communicate with other nodes that 
share their expertise. In the DSS, for example, once the area 
and vehicle contractors have established communication 
through the contract negotiation process, they might alter the 
language In which they communicate In order to reduce the 
length of messages and simplify message processing. This Is 
possible because a context has been established through a 
contractual relationship. 

5 Other Systems 
The contract net draws upon a variety of Ideas from the 

Al literature. In this section we relate the approach to those 
used In other systems. 

5.1 PLANNER And Actors 
The contract net task announcement Is analogous to t he 

PLANNER [Hewitt, 1972] goal specification, and functions 
s imilarly In providing a mechanism for advertising a task to a 
group of KS's, Instead of Invoking a specific KS by name. 

By way of contrast, the contract net allows complex 
local processing by a node In determining its re levance to a 
particular task, rather than the pattern-matching that Is 
allowed In PLANNER. In addition, the actor model of 
computation that succeeded PLANNER Is based on t he 
concept of a group of experts that communicate by passing 
polnt-to~polnt messages [Hewitt, 1977a], [Hewitt, 1977b], 
while there are a variety of addressing modes used In 
contract net messages (general broadcast, limited broadcast, 
and point-to- point). These different modes serve to reduce 
message traffic and message processing overhead. Finally, 
the contract net assumes a loose-coupling of tasks, whereas 
the actor model does not. This assumption Implies a 
difference In the grain size of tasks Into which a problem Is 



decomposed (large for contractors and small for actors), and 
results from the different motivations of the designers of the 
two formalisms: where actors have been used as a means of . 
studying fundamental Issues Involving the nature of 
computation, control, and program correctness, the contract 
net Is designed as a mechanism for problem solving, and hence 
views Its primitive operations In terms of comparatively large, 
domain-specific tasks. 

5.2 HEARSAY-II 
The concept of a group of cooperating KS's has been 

used to advantage In the HEARSAY-II speech understanding 
system [Erman, 1976). The contract net draws upon this 
model with respect to the modularity and Independence of 
KS's. Unlike this model, however, the contract net enables 
focused addressing and doesn't use a blackboard, primarily 
due to the problems such a global data structure can cause In 
a distributed environment (e.g., rellablllty and bottleneck 
problems). 

In addition, KS's In the HEARSAY model were seen 
primarily as information gathering and dispensing processes 
[Reddy, 1975], so that hierarchical control was not 
considered necessary. The contract net, on the other hand, Is 
well-suited to hierarchical control as a result of the manager
contractor structure. 

Finally, HEARSAY-II did not preserve state Information 
about a hypothesis. In particular, there was neither e way to 
specify the processing that had already been applied to a 
hypothesis, nor the kind of processing that might yet be 
applied, and this made scheduling difficult [Lesser, 1977]. 
The contract provides a data structure with which to 
associate this type of Information and Is one way of avoiding 
such problems. 

6.3 PUP6 
The model of a group of human experts cooperating to 

solve a large problem was also used effectively In PUP6, a 
system designed to write programs based on Informal 
specifications [Lenat, 1976]. Where Interaction between the 
modules In PUP6 was accomplished by pattern- matching, the 
contract net expands on this through the use of a contract 
negotiation process, based on a common lnterriode language. 

PUP6 had no notion of acquired expertise, since each 
module In the system had a standard set of parts that did not 
vary over time. Contract nodes, on the other hand, have a 
standard core structure but have In addition a common 
lnternode language which enables them to acquire expertise 
via transfer of procedures and data. 

6.4 Task Distribution / Tranafer Of Control - · A 
Progression 

It will be useful at this point to compare the approach to 
task distribution provided by the contract net framework with 
that provided by previous problem solving formalisms. This will 
help make clear the ways In which the contract net view Is 
unique and the advantages that uniqueness offers. We . 
consider as points of comparison the techniques used In 
subroutine calling, PLANNER, CONNIVER [McDermott, 1974], 
HEARSAY-II, a hypothetical task agenda system, and the 
PUP6 system. We show that the contract net presents a 
view that Is a natural successor to previous systems but Is 
unique In several respects. 

6,4.1 Terminology 
We have used the term "task distribution" throughout 

the paper as a generalized view of what Is more traditionally 
referred to as transfer of control. That Is, In a distributed 
system, when one processor decomposes a problem It Is 
working on and hands one of the resulting subtasks to another 
processor, both processors continue working on their 
respective tasks; hence we refer to It as task distribution. In 
a uniprocessor, however, problem decomposition Involves 
transfer of control: one process selects another process to 
work on a selected subtask and yields (perhaps temporary) 
control. 

Since all of the systems we wish to use for comparison 
were designed for uniprocessors, we wlll adopt this 
perspective and make the comparison on the basis of transfer 
of control. This will provide a familiar basis for comparison 
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without losing sight of any of the Important Issues. It will also 
serve to demonstrate that . the Issues we deal with In this 
section are fundamental Issues of KS Invocation and problem 
solving, Independent of distributed processing.· 

6.4.2 The Basic Questions And Fundamental Differences 
To make clear the place of the contract net In the 

sequence of invocation mechanisms that have been created, 
we consider the process of transfer of control from the 
perspective of both the caller and the respondent. We focus 
in particular on the selection aspects and consider what 
opportunities a calllng process has for selecting an 
appropriate respondent, and what opportunities a potential 
respondent has for selecting the task on which to work. In 
each case we ask two basic questions from the perspective 
of both the caller and the respondent: 

What Is the character of the choice available? 
On what kind of Information Is that choice based? 
The answers to these questions wlll demonstrate our 

claim that the contract net view of control transfer differs 
with respect to: 
(a) information transfer: The announcement-bid-award 

sequence means that there is more information, and more 
complex information transferred In both directions 
(between caller and respondent) before Invocation 
occurs. 

(b) local selection: The computation devoted to the selection 
process, based on the Information transfer noted above, 
Is more extensive and more complex than that used in 
traditional approaches, and is "local" in the sense that 
selection is associated with and specific to an Individual 
KS (rather than embodied in, say, a global evaluation 
function). 

(c) mutual selection: The local selection process is symmetric, 
in the sense that the caller evaluates potential 
respondents from Its perspective (via the bid evaluation 
function), and the respondents evaluate the available 
tasks from their perspective (via the task evaluation 
functions). 

6,4,3 The Comparison 
Subroutine Invocation represents a degenerate case, 

since all the selection Is done ahead of time by the 
programmer and Is "hardwired" Into the code. Asia result there 
Is no non-determinism at runtime and hence no opportunity for 
choice. 

A degree of non- det erminism (and hence opportunity for 
choice) for the caller Is evident In traditional production rule 
systems, since a number of rules may be retrieved at once. A 
range of selection criteria have been used (see [Davis, 
1977]), but these have typically been Implemented with a 
single, syntactic criterion hardwired Into the Interpreter. 

PLANNER's pattern-directed Invocation provides a 
facility at the programming language level for nondeterministic 
KS retrieval and offers, In the "recommendation list", a 
specific mechanism for encoding selection information. The 
THUSE construct provides a way of specifying which KS's 
(theorems) to try In which order, while the theorem base filter 
(THTBF) construct offers a way of Invoking a predicate 
function of one argument (the name of the next theorem 
whose pattern has matched the goal) which can "veto" the 
use of that theorem. 

Note that there Is a degree of selection possible here, 
selection that may involve a considerable amount of 
computation (by the theorem base filter), and selection that is 
local in the sense that filters may be specific to a particular 
goal specification. But the selection is also limited in several 
ways. First, in the standard invocation mechanism the 
information available to the caller Is at best the name of the 
next potential respondent; In effect a one-bit answer of the 
form "yes I match that pattern" . The caller does not receive 
any additional Information from the potential respondent (such 
as, for Instance, exactly how It matched the pattern), nor Is 
there any easy way to provide for Information transfer In that 
direction. Second, the choice Is, as noted, a simple veto 
based on just that single KS. That Is, since final judgement Is 
passed on each potential KS In turn, It Is not possible for 
Instance to make comparisons between potential KS's, nor to 
pass judgment on the whole group and choose the one that 



looks (by some measure) the best. (Both of these 
shortcomings can be overcome If we are wi lling to create a 
superstructure on top of the existing Invocation mechanism, 
but this would be functionally Identical to the announcement
bid -award mechanism described above. The point Is simply 
that the standard PLANNER Invocation mechanism has no such 
facility and the built - In depth-first with backtracking makes It 
expensive to implement.) 

CONNIVER represents a useful advance in this respect, 
since the result of a pattern-directed call is a "possibllltles 
list" containing all the KS's that matched the pattern. While 
there Is no explicit mechanism parallel to PLANNER's 
recommendation list, the possibilities list Is accessible as a 
data structure and can be modified to reflect any judgments 
the caller might make concerning the relative utility of the 
KS' s retrieved. Also, paired with each KS on t he posslblllties 
list Is an association-list of pattern variables and bindings, 
making It possible to determine how the calling pattern was 
matched by each KS. This mechanism offers the caller some 
Information about each respondent that can be useful In 
making the judgments noted above. As an Indirect mechanism, 
however, It Is less effective for Information transfer. than, for 
Instance, an exp lic it bid mechanism. 

The HEARSAY-II system illustrates a number of similar 
facilities in an event-driven system. In particular, the focus 
of attention mechanism has available a pointer to all the KS's 
that are ready to be invoked (so It can make comparative 
decisions), as well as Information (In the "response frame") 
estimating the potential contribution of each of the KS's. The 
system can effect some degree of se lection regarding the 
KS's ready for invocation and has ava ilable to It a body of 
knowledge about each KS on which to base Its selection. The 
response frame thus provides Information transfer from 
respondent to caller, which, while fixed In format, Is more 
extensive t han previous mechanisms. There Is also a fafr 
amount of computation devoted to the selection process, but 
note t hat the selection Is not local, since there Is a single, 
global strategy used for every selection. 

There are several things to note about the systems 
reviewed thus far. First, we see an Increase In the amount 
and variety of Information that is transferred (before 
Invocation) from ca ller to respondent (e.g., from explicit 
naming In subroutines to patterns 111 PLANNER) and from 
respondent to caller (e.g., from no response In subroutines to 
the response frames of HEARSAY-II). Note, however, that In 
no case do we have available a general Information 
transmission mechanism. In all cases the mechanisms have 
been designed to carry one particular sort of Information and 
are not easily modified. Second, we see a progression from 
t he retrieval of a single KS at a time to explicit collection of 
the entire set of potentially useful KS's, providing the 
opportunity for more complex varieties of selection. Finally, 
note that all the selection so far Is from one perspective; the 
selection of respondents by the ca ller. In none of these 
systems do the respondents have any choice In the matter. 

To Illustrate this last point, consider a (hypothetical) 
task agenda system In which there Is a central "task 
blackboard" which contains an unordered list of tasks that 
need to be performed. As a KS works on Its current task, It 
may discover new (sub)tasks that require execution, and add 
them to the blackboard. When a KS finishes Its current task, 
it looks at the blackboard, evaluates the lists of tasks there, 
and decides which one it wants to execute. Note that In this 
system the respondents would have all the selection 
capab ility ; that is, rather than have a caller announce a task 
and evaluate the set of KS's that respond, we have the KS's 
examining the list of tasks and selecting the one they wish to 
work on. 

PUP6 was the first system to view transfer of control as 
a "discussion" between the caller and potential respondents. 
If, In response to a task broadcast, a KS receives more than 
one reply offering to do the task, It may "ask" questions of 
the respondents to determine which of them ought to be used. 
While this Interchange Is highly stylized and not very flexible, 
It does represent an attempt to build In explicit two-way 
communication. 

The contract net differs from all these In several ways. 
First, from the point of view of the caller, we have Improved 
the standard task broadcast and response Interchange by 
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making possible a more informative response . That is, Instead 
of the traditional tools which allow the caller to receive simply 
a list of potential respondents, we have avai lable a mechanism 
which makes It possible for the caller to receive extensive 
Information from each respondent describing potential utility. 

Second, the contract net emphasizes the utility of local 
se lection. That Is, an explicit place In the framework has 
been provided for mechanisms with which both the caller (In 
the bid eva luation function) and the respondents (In the task 
evaluation function) can Invest computational effort in 
selecting KS 's for invocation or selecting tasks to work on, 
respectively. These selection funct ions are also "local" In the 
sense that they are associated with and written from the 
perspective of the Individual KS (as opposed to, say, 
HEARSAY·ll's global focus of attention function ). While we 
have labelled this process "selection", it might more 
appropriate ly be labelled "deliberation " , to emphasize that Its 
purpose Is, for the caller, for example, to decide in general 
what to do with the bids received, and not merely which of 
them to accept. Note that one possible decision Is that none 
of the bids Is adequate, and thus none of the potential 
respondents will be Invoked. ( Instead, the task may be 
reannounced later.) This choice Is not typically available In 
other prob lem solving systems and hence emphasizes tho 
w ider perspective taken by the contract net on the transfer 
of control issue. 

Finally, and perhaps most Important, Is what appears to 
be a novel symmetry In transfer of control process. Recall 
that PLANNER, CONNIVER, and HEARSAY-II all offered the 
caller some ability to select from among the respondents, 
whi le our hypothetical task agenda system allowed the 
respondents to select from among the tasks. The contract 
net, however, relies on the notion of contract negotiation as a 
metaphor, and emphasizes an interactive, mutual selection 
process In which task distribution Is the result of a discussion 
between processors. As a result of the Information 
exchanged in this discussion, the caller can select from among 
potential respondents (with Its bid evaluation function), while 
the KS's can select from among potential tasks (with their 
task evaluation functions). 

6 Limitations And Caveats 
There are of course a number of limitations and caveats 

to consider. First, much of what we have proposed Is a 
framework for problem solving that provides some Ideas about 
what kinds of Information are useful and how that Information 
might be organized. There Is still a considerable problem 
Involved In instantiating that framework In the context of a 
specific task domain. Beyond the general guidelines offered 
earlier, It is not obvious, for Instance, exactly what Information 
should be In a task abstraction, bid, or task evaluation 
function. Yet the successful application of the machinery 
described above depends strongly on the choices made. In 
this sense, severa l of the mechanisms we have proposed are 
s imila r In spirit to the concept of t he recommendation list In 
PLANNER: The mechanism provides a site for embedding a 
certain kind of Information, but does not specify for a 
particular problem what goes In there, nor how to Instantiate It 
In a particular domain. The utility of such mechanisms lies In 
their ability to help a user structure and understand a 
problem : We tread the t raditional thin line between too much 
generality that provides too little guidance, and too much 
structure that overly constrains the user's options. More work 
on this Is forthcoming, as we attempt to specify more detailed 
guidelines on appropriate use of the framework. 

An important caveat In considering use of the contract 
net framework has been touched on earlier, In the Issue of 
loose-coupling and the grain size of the problems attacked. It 
Is apparent, for Instance, that the communication Involved In 
task announcements, bids, awards, etc., and the computat ion 
Involved In the deliberation phase (the task and bid 
evaluations) may add up to a non- trivia! amount of overhead. 
The size of the tasks being distributed must be such that It Is 
worth this effort. It would make little sense, of course, to go 
through an extended mutual selection process to get some 
simple arithmetic done or to do a simple database access. 
While we discussed earlier how the full protocol can be 
abbreviated to an appropriately terse degree of Interchange 



(e.g., directed contacts and the request/response 
mechanism), many other systems are capable of supporting 
this v ariety of behavior. The Interesting contribution of our 
framework lies In applications to problems where the more 
complex Interchange provides an efficient and effective 
framework for problem solving. 

7 Conclusion 
We have described the operation of a problem solver 

that is based on a collection of asynchronous processor nodes 
that cooperate according to a contract metaphor to solve 
problems. In this metaphor, task distribution Is viewed as an 
Interactive process of contract negotiation. 

We have noted the ways In which the contract ·net 
protocol helps to reduce message traffic and message 
processing overhead - through the use of task abstractions, 
eligibility specifications, and bid specifications In task 
announcements, thrqugh the use of focused addressing, and 
through the use of specialized Interactions like directed 
contracts and requests. 

We have considered the Indexing and distribution of 
knowledge in such a prob lem solver. In this context, we have 
suggested two forms of knowledge Indexing - task-centered 
and knowledge-source-centered - and demonstrated their 
utility In the context of a distributed sensing example. 

We have noted that a common internode language Is 
required to enable effective use of the knowledge In a 
distributed problem solver, and have sketched a rudimentary 
design for such a language. 

While the Ideas which form the basis of th is paper have 
been derived from the point of view of designing a problem 
solver that can effectively exploit the multiple processor 
computer architectures that have been made possible by LSI 
technology, they appear to be more general in scope. 
Knowledge Indexing and distribution, for example, are of 
interest In the design of future uniprocessor as well as 
multiple processor problem solvers. 
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Appendix A 

DSS Sample Messages 

This appendix Includes abbreviated sample messages for 
the signal task In the DSS example. For brevity, the messages 
shown contain only the Information mentioned In Section 2.2. 
Terms written In upper case are Included In the core lnternode 
language, while terms written in lower case are specific to the 
DSS application. 

For purposes of explanation, pseudo-English equivalents 
to the messages are also shown. The DSS of course has no 
human-like language processing capabilities. 

Signal Task 

Announcement: Needed - signa l data for traffic In area A. Mv 
position Is p. If In possession of sensors and located in area A, 
respond with position, and type and number of sensors. 

Task Abstraction: TASK NAME signal 
area name A 
NODE POSITION p 

Eligib ili ty Specification: MUST HAVE DEVICE TYPE sensor 
MUST HAVE OWN NODE POSITION 

area name A 
Bid Specification: BID OWN NODE POSITION 

BID EVERY DEVICE TYPE 
sensor type number 

Bid: Position - q. Sensors: Type S - 3, Type T - 1. 

Node Abstraction: NODE POSITION q 
sensor type S number 3 
sensor type T number 1 

Award: Report signals. Use sensors S1 and S2. 

Task Description: sensor name S1 
sensor name S2 

Report: Detected signal: frequency fO, time of detection to 
strength so, characteristics ( ... ), detecting-node s1, posltlo~ 
p2, sensor A 1, orientation a. 

Result Description: signal name S1 
frequency fO 
time-of-detection to 
strength so 
characteristics ( ... ) 
detecting- node name s 1 

position p2 
sensor name A 1 

type A 
orientation a 
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Describing Programming Language Concepts in LESK 
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Dept. of Computer Science 
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Montreal 

ABSTRACT 

LESK (Language for Exactly Stating Kr.0wledge ) is a 
synthesis of concepts from programming languages, 
lingui stics and logic, and is intended for event
ual implementation as a "knowledge base system" , 
though it is now valuable "on paper" to make pre
cise the definition of terminology in some domain. 
In this paper, an approach to describing basic 
programming language concepts is proposed using 
LESK as an alternative to the usual mixture of for 
mal (e.g. BNF) and informal (i.e. natural language) 
descriptions found in typical programming lang
uage manuals. We demonstrate the utility of LESK 
to make precise, in a unified way, the use of both 
formal expressions and natural language phrases 
required in defining a programming language both 
syntactically and semantically . We thereby allev
iate the common problems of vagueness, ambiguity 
and inconsistency of terminology which plague most 
programming language manuals . Some of our examples 
will use PASCAL. The method is general enough to 
apply to any field with well -defined terminology. 

INTRODUCTION 

In previous papers ( Skuce 75, 76) and in ( Skuce 77), 
the language LESK, whose function is to precisely 
state knowledge, was introduced. A natural appli
cation of LESK for computer scientists is to the 
description of programming languages; anyone who 
has been frustrated by the imprecise terminology 
of many programming language manuals will appreci 
ate this need. Such confusion often involves terms 
like "value", "number", "constant", "object", 
"type", "variable", etc . so that one is often not 
sure, e.g., "is an array a value?", "are 'reals' 
a scalar type?" , and what kind of entity is 'red' 
in 'color = (red, wt, blu)'? (these last two are 
from Jensen and Wirth 75). 

Proper understanding of any well -defined field 
must begin with precise and unambiguous defini 
tions of the terminology, thereafter consistently 
applied. At present, most manuals and other des 
criptions of programming languages introduce term
inology using an unsatisfactory combination of 
precise syntactic definitional methods (e .g. BNF), 
which usually include little semantic information, 
possibly some non -standard formalism for semantic 
description , and a considerable bulk of prose 
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description, on which we rely most. 

In this paper we will briefly explore an alter
nate descriptive technique: using LESK to intro
duce the terminology of a typical programming 
language in a manner which synthesizes the three 
methods into one easily readable form. The event
ual implementation of a LESK "knowledge base sys 
tem" (KBS) would assure that this usage was con
sistent. 

LESK SEMANTIC STRUCTURES 

All knowledge in LESK is expressed as symbol 
strings, which are English-l;ke versions of pred
icate calculus expressions, composed of LESK prim
itives and user-defined terminology. The knowledge 
contained in a set of LESK expressions is the 
(finite) set of all expressions deducible from the 
set using simple substitution and transformation 
rules, i.e. this set of "theorems" determines the 
answers to a set of answerable questions. 

The most elementary kind of definable knowledge 
items are termed atoms . These have no sub- items 
accessible via operators, and may be denoted by 
noun phrases (NPs) or formal expressions. One may 
then define composite notions called collections 
using either atoms or other collections. This pro
cess is analogous to writing LISP functions . By 
"define'~ we do not mean "generate in a computer 
memory a structure which physically contains the 
components'\ but rather "create, in a mind or mach
ine, rules which define categorically (sometimes 
called generically) the behaviour of all instances 
of the knowledge item". Thus we are merely con
straining the behaviour of sets of symbol strings, 
much as a formal grammar does . 

Collections are said to be composed of elements; 
an explicit list of all of these is called the 
extension . LESK is intended mainly for defining 
knowledge about collections at the categorical 
level, i.e. without involving the elements of 
the extension at all . There are four kinds of col
lections, depending on whether or not the extension 
is ordered, and whether or not the extension may 
have repeated elements , as follows: 



.1 

' .I 

I 
I 

. • 1 

j 
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kind ordered? repeat? example 

class no no (l ,2,3 ) = (2,3, l) 
bag no yes ( l, l ,2 ,3 ) (3,1,2,l) 
seq yes yes (A ,B,C,C ) 1 (B ,A,C,C ) 
uniseq yes no (A ,B,C,D ) 

We will not need explicit notation to disting
uish these. The size of a collection, i.e. the 
number of possible elements, is finite and vari
able. A tuple is a seq of fixed size. 

SEMANTIC CATEGORIES 

All terminology must be assigned one of a small 
number of semantic categories : 

Concepts are either atoms, classes of concepts, 
or tuples of concepts, and play noun
like roles. They may be denoted either 
by NPs or by formal expressions. 

Functions map concepts into concepts, and are 
denoted like concepts. 

Relations are either stative English verb phrases 
(VPs) having two or more "cases", or 
else are mathematical relations like 

. The arguments (i .e. the cases ) are 
usual ly concepts. 

a state is a set of relations which hold over 
some time interval. 

an action is a definition of a change of state. 
When a LESK system executes an action, 
the effect is analogous to the perman
ent effect of a conventional procedure. 

DEFINING BASIC NOTIONS OF PROGRAMMING LANGUAGES 
IN LESK 

Consider the student who is encountering basic 
programming language concepts and terminology 
for the first time in a typical text which uses 
terms like "value", "object", "type", "variable" , 
"array" , "integer", etc. somewhat loosely. Fre
quently one sees phrases like "3 is an integer" 
and "integers are a type"; shal 1 we conclude 
that 3 is a type? Of course,once one understands 
what is intended, there is no problem; the prob-
lem is in the initial learning phase before the 
meaning "dawns" . Meanings shouldn't have to "dawn" , 
they should be initially clear, as they are in 
good mathematical texts. 

Let us decide that the most important basic notion 
is that of "value" . We then define: 
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VALUE/S are a class of concepts X 

kinds : 1. SIMPLE VALUES 
2. STRUCTURED VALUES 

X has a TYPE T 
X is a member of T 
X can be ASSIGNED TO a VARIABLE V 
end 

Thus we have introduced the following terminology 
(lower case denotes LESK primitives): VALUES (sing
ular: VALUE) are explicitly defined as a class of 
concepts, i.e . a VALUE is a concept. There are just 
two disjoint subclasses (the primitive 'kinds'). 
There is a functional mapping (the primitive 'has') 
into a class to be termed TYPES, here implicitly 
introduced, about which we shall say more in a mom
ent. The primitive 'is a member of' behaves differ
ently from 'is a'; the latter permits "property 
inheritance", the former does not (see below). The 
2-place relation 'is ASSIGNED TO ' is possible be
tween instances of VALUES and instances of an im
plicitly introduced class VARIABLES, to be defined 
later. This relation does not necessarily hold (can) 
but is introduced here to clarify the relationship 
between the terms VALUE and VARIABLE. It will be 
explicitly defined later . 

Now we may define: 

SIMPLE VALUE/Sare a class of VALUES X 

X is an atom 

kinds: l . ENUM VALUES 
2. REALS 

end 

ENUM VALUE/Sare a class of SIMPLE VALUES 

kinds : 1. INTEGERS 
3. BOOLEANS 

end 

2. CHARACTERS 
4. ENUM IDENTIFIERS 

INTEGER/Sare a class of ENUM VALUES X 

X :- [(SIGN>]<DIGITSTRING> 
the TYPE of X = the INTEGER TYPE 

end 

The first of these definitions states that 
SIMPLE VALUES are atoms (whereas VALUES may 
be collections) and introduces the terms for 
the two kinds of SIMPLE VALUE. In the second 
definition, the class of ENUM IDENTIFIERS will 
be used later on to clarify what is ambiguously 
ter~ed."scalar types" in Jensen and Wirth (75) 
(this 1s an excellent example of inadequate 
terminology in a well - known programming language 
description) . The third definition provides an 
actual denotation ( - ) for INTEGERS; collections 
whose elements are to be syntactically recognizable 
require such a specification . We will leave SIGN and 
DIGITSTRING undefined. At this point, to clarify 
some of Jensen and Wirth's terminology, we might 
make the following stand alone statement: 

BASIC VALUES = SIMPLE VALUES - ENUM IDENTIFIERS 



DEDUCTION AND PROPERTY INHERITANCE 

All question answering in a LESK system is to be 
done by a small number of specialized transforma
tions on the actual expressions found either in 
the bodies of definitions or in stand alone state
ments . The basic transformations are substitution 
of variables and "property i nheri tance 11

• Any def
inition "inherits" properties (i.e. statements in 
a definition) from its supercollections, though 
not all properties inherit (e.g. 'kinds'). Thus, 
one may substitute the phrase 'an INTEGER' for X 
in VALUES, or, since 3 is syntactically recogniz
able as an INTEGER, 3 may be substituted. One 
could not freely substitute any denotation for 
subclasses or instances of TYPES however, because 
of the functional dependence. 

Any question then must be analysable into a series 
of elementary deductive trans formati ans, just as 
database query languages must formulate acceptable 
questions in terms of a number of basic accessing 
operations on the database . This approach means that 
LESK systems would be modeled more after database 
sys terns than the more tradi ti ona l "AI II predicate 
calculus-based theorem prover . Implementation of a 
LESK system is therefore seen as an extension to 
existing relational database technology. 

Now let us consider some STRUCTURED VALUES . How , for 
example, should we treat the term 'array', which 
question we take to be equivalent to: what is the 
most basic knowledge we require about arrays? Is it 
correct to consider an array to be a VALUE? Since 
all the contexts we allow for STRUCTURED VALUE 
will accept the term 'array' as it is usually 
understood , we make the following definition: 

ARRAY/Sare a class of STRUCTURED VALUES X 
11 are a class of tuples 

X :- (Xl, X2, ... ,Xn) 
Xi is a VALUE 
Xi is called a COMPONENT of X 

the TYPE of Xis an ARRAY TYPE 
X has a TYPE called its COMPONENT TYPE C 
the TYPE of Xi = C 

end 

Thus ARRAYS inherit properties like 'an ARRAY can 
be ASSIGNED TO a VARIABLE', and properties from the 
primitive class tuples, such as fixed size (n) . The 
'is called' primitive is very frequently used to give 
a local name to some variable. A question answering 
procedure looking for the TYPE associated with an 
ARRAY would find something called an ARRAY TYPE, 
which is of course a TYPE. If one were searching 
either for the COMPONENT TYPE of an ARRAY, or the 
TYPE of a COMPONENT of an ARRAY, C would be access
ed. We have used the standard denotation for tuples 
so that we could refer to the Xi; of course in most 
prograrrming languages, one cannot denote instances 
of arrays. 
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Next we ought to define TYPE: 

TYPE/Sare a class of classes X of VALUE S 

kinds: l. ENUM TYPES 2. the REAL TYPE 
3. ARRAY TYPES 

X has a class of OPERAT IONS 
X has a class of relations 
X has a unique TYPE FORMAT or TYPE NAME 

end 

Thus, an instance of a TYPE is a class of VALUES, 
of which we will discuss only three kinds. Every 
TYPE has a class of OPERATIONS, which we would 
define as actions, since they define the mappings 
from X into itself . The relations on a TYPE are 
the usual binary predicates . (This term is in lower 
case since is not being given a name here.) The 
TYPE FORMAT or TYPE NAME specify how a TYPE is to 
be denoted in an actual program, which is often 
different from the term we wish to use for the 
concept itself. Such essential distinctions are 
often unclear in many presentations. The REAL TYPE 
is the name we have chosen to refer to the TYPE of 
the REALS; there is only one REAL TYPE, hence 'the'. 

In PASCAL we have the notion of the ENUM (enumera
tive) TYPES, though in the PASCAL manual (Jensen 
and Wirth 75) this term is not used . Instead the 
term "scalar type" is used, but this term is am
biguous there, as we noted above, sometimes mean
ing what we call ENUM TYPES and sometimes what we 
term DECL ENUM TYPES. To clarify: 

ENUM TYPE/Sare a class X of uniseqs of VALUES 

kinds: l. STD ENUM TYPES 2. DECL ENUM TYPES 
X has the ENUM OPERATIONS, t he ENUM RELATIONS 

end 

Though we have said that ENUM TYPES are uniseqs, 
whereas TYPES were classes, this is not contra
dictory , since a uniseq is a restricted form of 
class (i.e . it is an ordered class). Now : 

DECL ENUM TYPE/Sare a class of uniseqs Y of 
ENUM IDENTIFIERS 

Y :- (Yl,Y2 , ... ,Yn) 

end 

whereas the 

STD ENUM TYPE/S 

kinds: l. the INTEGER TYPE 2. the BOOLEAN TYPE 
3. the CHARACTER TYPE 

end 



I 
i 

:1 
. I 

(The default rule is that (ADJ)(NOUN)is a subclass 
of <NOUN>.) The three kinds of STD ENUM TYPE which 
we consider correspond to the three kinds of VALUE. 
The relation between the INTEGERS and the INTEGER 
TYPE is ': 

the INTEGER TYPE Xis a STD ENUM TYPE 

X belongs to any INTEGER 
the extension of X = the extension of the INTEGERS 

end 

Thus we have equated(=) the extensions of two 
classes, but not the classes themselves, for had 
we written 'the INTEGER TYPE= the INTEGERS' this 
would mean that the two phrases could be substi
tuted anywhere one for the other, which clearly 
we do not want. A LESK system would correctly 
conclude that 3 is a member of the extension of 
the INTEGER TYPE, but not that 3 is a TYPE. 
This example illustrates again the basic princ
iple that LESK semantics base class equality or 
containment on syntactic substitutive ability. 

Again: 

BOOLEAN/Sare a class X of ENUM VALUES 

the extension of X = ('true', 'false') 

end 

the BOOLEAN TYPE XIS A STD ENUM TYPE 

the extension of X = the extension of the 
BOOLEANS 
X belongs to the BOOLEANS 

end 

The primitive 'belongs to' is the inverse of 
'has' , hence 'the TYPE of the BOOLEANS = the 
BOOLEAN TYPE I • 

Before we go on to illustrate other semantic cat
egories, we will need : 

VARIABLE/Sare a class of concepts X 

X :- an IDENTIFIER or a VARIABLE EXPRESSION 
X has a TYPE T 
X can have a VALUE V 
the TYPE of V = T 

end 

Hence there are two ways of denoting VARIABLES, 
and if a VARIABLE has a VALUE (which will be the 
case if it is ASSIGNED TO a VALUE) then their 
TYPES must be equal. 

291 

ASSIGNMENT: A RELATION AND AN ACTION 

We illustrate next the two other most important 
semantic categories, relations and actions. The 
relation 'is ASSIGNED TO' has been used between 
VALUES and VARIABLES implicitly. If we made no 
other use of 'is ASSIGNED TO' then we would know 
no more about it than it 'can' hold between these 
classes. If we make an explicit definition, we can 
say more : 

Xis ASSIGNED TOY is a relation Z 

X is a VALUE 
Y is a VARIABLE 
the TYPE of X = the TYPE of Y 
Z is caused by the ASSIGNMENT action 

end 

Had we not a ·1 ready constrained the use of this re 1-
ati on by its implicit use, we can constrain it as 
above. What we have added is a causal relation 
which holds between relations and actions, or be
tween actions and actions. This allows a LESK system 
to answer questions like "why does TEMP have the 
VALUE 3?", or "how could 3 be ASSIGNED TO a VARI 
ABLE?". 

Relations denoted by stative verb phrases are a 
form of tupl e called 'identified' tuples, i.e . an 
instance of one can be recognized as such. Tuples 
used as concepts may be 'unidentified', in that 
their denotation is simply of the form (x,y, ... ), 
which leaves unknown which concept they are an in 
stance of . For example, '3 is ASSIGNED TO TEMP' is 
an identified 2-tuple, but '(3, TEMP)' would be an 
instance of any 2-tuple concept which paired a 
VALUE with a VARIABLE . 

The notion of an action is the most complex of the 
semantic categories, since it alone involves defin 
ing change. Reca ll that a state is a set of LESK 
statements, while an action defines a change of 
state. There are two methods of defining state 
changes, one copied from STRIPS (Fikes and Nilsson 
71) and one modeled after algorithmic progranming 
languages. We illustrate first the simpler former 
one: 

X := Y is an action A called ASSIGNMENT 

the environment of A is a PROGRAM 
X is a VARIABLE 
Y is an EXPRESSION E 
the VALUE of E = V 
the denotation of A is called an ASSIGNMENT 
STATEMENT 

precond : the TYPE of V = the TYPE of X 
remove: Z is ASSIGNED TO X 
assert: Vi s ASSIGNED TO X 

end 

Thi s definition has the following features. The 
noun ASSIGNMENT is used to refer to the action, as 
we did in defining t he 'is ASSIGNED TO' relation. 
The environment of any category is a state, i .e. a 
name of a context in which it may appear. Thus the 



action called ASSIGNMENT can appear in a PROGRAM. 
All of our definitions would require some environ
ment , which we have not specified. We might call it 
'programming languages'. The classes of PROGRAMS and 
EXPRESSIONS are complex; we shall define the former. 
The denotation of a phrase Xis 'X' , i.e. by enclos
ing it in ' marks , we may refer to it. If asked 
"what is the denotation of an ASSIGNMENT?", a LESK 
system would reply 'X : = Y', where X .... If asked 
"what is 'X := Y' ?" the reply is "an ASSIGNMENT 
STATEMENT", whereas "what does 'X : = Y' denote?" 
is answered ASSIGNMENT. 

The various labeled statements are intended to be 
individually accessible, hence t he labels. For ex
ample, one could ask "what is the precond of ASS
IGNMENT?" In the context PROGRAM, if a LESK system 
were executing the action of ASSIGNMENT, the pre
cond would be checked first, i .e. unless it were 
true, the action would abort. The statements lab
eled 'remove' are then to be removed from the en
vionment (Z is anything found in this relation 
in the environment) and the statements labeled 
'assert' are added, as in STRIPS. This ensures 
that only one is 'ASSIGNED TO' 2- tuple involving X 
is then in the environment. By modeling change by 
removing and adding n- tuples to an environment, 
we make LESK compatible with relational database 
technology. 

BASIC FACTS ABOUT PROGRAMS 

What are the most elementary facts we would want a 
LESK system (or a human beginner) to recall about 
PROGRAMS? As usual, we equate this question to: 
"What statements can the term PROGRAM appear in?" 
First we define PROGRAMS in general: 

PROGRAM/Sare a class of seqs X 

the environment of X = PROGRAMMING LANGUAGES 
X contains a DECLARE LIST D 
X contains a STATEMENT LISTS 
D precedes S 
X has a SYMBOL TABLE 
X can be COMPILED 
X can be EXECUTED 
X SPECIFIES an ALGORITHM or COMPUTATION 

end 

Obviously PROGRAMS are seqs. Their environment's 
name has been chosen loosely; one might prefer 
just 'programming' . The main function of an en
vironment is to allow a LESK system to find need
ed facts without having to search its whole data 
base monolithically, e.g. if we said we were dis
&ussing PROGRAMMING LANGUAGES, it would not search 
under DINOSAURS, unless we allowed it to. Environ
ments are to be organized in the same way as all 
other categories, so that one can define them and 
relations between them. 

The primitive 'contains ' applies to collections to 
require that certain elements be present. 'Precedes' 
applies to elements of a seq. SYMB OL TABLE will be 
defined in a moment . The form verb root ED is rec
ognized as defining an action applicable to, in 
this case, PROGRAMS. One can thereby state what 
actions apply to a concept without having to define 
them. SPECIFIES is si mply a 2-place relation. 
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To define a PASCAL PROGRAM , unless we want to give 
more properties peculiar to PASCAL PROGRAMS, we may 
simply give the syntactic form, i.e. how it is 
denoted: 

PASCAL PROGRAM/S X 

X :- Xl X2 X3 X4 XS X6 X7 

Xl 'PROGRAM' 
X2 is a PROGRAM IDENTIFIER 
X3 is a tuple of FILE IDENTIFIERS 
X4 is the DECLARE LIST of X 
XS 'BEGIN' 
X6 is the STATEMENT LIST of X 
X7 I END. I 

end 

If one were to input this definition to a LESK sys 
tem and interchanged X4 and X6, the system would 
reply: 'the DECLARE LIST of a PROGRAM precedes the 
STATEMENT LIST'. Thus definitions, as well as ins
tances, must conform to their superclasses. 

Next we define: 

DECL LIST/Sare a class of uniseqs X of DECLARATIONS 

X contains some TYPE DECLARATIONS T 
X contains some VARIABLE DECLARATIONS V 
T precedes V 

end 

DECLARATION/Sare a class of tuples 

kinds: l. TYPE DECLARATIONS 
2. VARIABLE DECLARATIONS 

end 

TYPE DECLARATION/S X 

X : - Xl ' =' X2 
Xl is a TYPE IDEN TI FI ER or TYPE NAME 
X2 is a TYPE NAME or TYPE FORMAT 

end 

VARIABLE DECLARATION/S X 

X :- Xl ' : ' X2 
Xl is a VARIABLE 
X2 is a TYPE IDENTIFIER or TYPE NAME 
Xl :- a VARIABLE IDENTIFIER 

end 

We have left out of these definitions certain 
semantic restrictions which are expressible in 
LESK but which would obscure the clarity for 
our expository purposes. An example would be that 
the X2 of a VARIABLE DECLARATION must have appeared 
earlier as the Xl of some TYPE DECLARATION if it is 
a TYPE IDENTIFIER. It is exactly these context sen
sitive rules that are so difficult to formally ex
press. Other formal semantic methods (Marcotty , 
Legard and Boehman 76) are considerably more 
unreadable for these purposes than LESK. 
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Next we define: 

SYMBOL TABLE/Sare a class of classes X of tuples Y 

X belongs to a PROGRAM P 
Y :- (Yl , Y2, Y3) 
Yl is a VARIABLE 
Y2 = the TYPE of Yl 
Y3 = the VALUE of Yl or 'UNDEF' 

end 

Here we have simplified matters by including Y3 to 
hold the VALUE of Yl, to avoid having to discuss 
'locations'. 

The second form of action definition is illustrated 
by the following definition : 

to CREATE a SYMBOL TABLE X i's an action A 

X belongs to a PROGRAM P 
Dis the DECLARE LIST of P 
A is caused by a COMPILATION 

begin: X := 0 
for each VARIABLE DECLARATION Vin D do 

end 

X := X union (the VARIABLE of V, 
the TYPE of V, 
I UNDEF I) 

Thus we define in a very conventional manner the 
algorithm for constructing a SYMBOL TABLE. This is 
simply because such notation is the best we have 
for defining sequences of changes involving the 
notion of assignment. Note that: = here is a LESK 
primitive, to be modeled by database updates just 
as the earlier definition we gave for it in the 
environment of PROGRAMMING LANGUAGES. 

Finally we may define the action of COMPILATION: 

to COMPILE a PROGRAM Pis an action A called a 
COMP I LA TI ON 

Sis the SYMBOL TABLE of P 
A has a MACHINE MEMORY M 
Y is a CODE SEGMENT 
Z is a uniseq of CODE SEGMENTS 

begin: CREATES 

end 

put Sin M 
for each STATEMENT X in the STATEMENT LIST 

of P do 
begin 

put Zin M 

COMPILE X INTO Y 
append Y to Z 
end 
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Hence the action of COMPILATION begins by exec
uting the tREATE a SYMBOL TABLE'.definition. Only 
the top-most aspect of COMPILATION is specified, 
i.e. that the action to COMPILE a STATEMENT INTO 
a CODE SEGMENT is to be executed for all STATEMENTS. 
Hence we would next have to define this action, of 
which there would be many kinds, one for each kind 
of statement. We shall not go lower in the detail 
hierarchy. The primitives 'put' and 'append' have 
an obvious meaning. The notion MACHINE MEMORY is 
difficult; one suggestion would be: 

MACHINE MEMOR/Y/IES are a class of tuples X 

X : - Xl X2 X3 X4 
Xl is an INPUT STATE 
X2 is an OUTPUT STATE 
X3 is a SYMBOL TABLE of a PROGRAM P 
X4 is a CODE SEGMENT of P 

end 

A HYPOTHETICAL DIALOGUE 

The following "dialogue" should assist the reader 
in obtaining a better appreciation of how our basic 
definitions (plus a few more) would function in a 
LESK KBS. User inputs begin with : and we will not 
distinguish LESK primitives in lower case. 

:IS -7 A VALUE? 
YES. (The syntactic form is recognized.) 
:IS X A VARIABLE? 
YES, BUT IT COULD BE OTHER THINGS. (i.e. the char
acter Xis acceptable as a denotation for a VARIABLE, 
but it could denote other entities as well, unlike 
-7 . ) 
:LET X ANDY BE VARIABLES. (i .e . we create two in 
stances of the class VARIABLE . Now the above ques
tion would be answered 'YES' . ) 
:LET P BE A PROGRAM. 'X := Y' BELONGS TOP. 

DOES P HAVE A SYMBOL TABLE? 
YES. 
:SHOW ME IT . (IT refers to the last concept.) 
0 (The SYMBOL TABLE is empty before COMPILATION.) 
:COMPILE P 
I CANNOT. THE STATEMENT LIST OF P CONTAINS A STATE
MENT 'X := Y' WHICH HAS NO TYPE DECLARATION FOR XOR 
Y. (This necess ary precond for COMPILATION was not 
specified in our definition, but would be in a real 
system.) 
:WHAT IS A TYPE? 
(The system would output the TYPE definition.) 
:IS INTEGER A TYPE? 
NO. AN INTEGER IS AN ENUM VALUE. 
:WHAT IS THE TYPE OF AN INTEGER? 
THE INTEGER TYPE. 
:IS THE TYPE OF A VARIABLE RELATED TO THE TYPE 
OF ITS VALUE? 
WHEN A VARIABLE X HAS A VALUE Y, THE TYPE OF X = 
THE TYPE OF Y. 
:WHAT CAUSES THE'CREATE A SYMBO~ TABLE ACTION? 
A COMPILATION . 



RELATED WORK 

This work has been strongly influenced by several 
projects. The concept of a KBS for scientific pur
poses was developed extensively by Thompson and 
Thompson (75) , though in a much more elementary 
way (they did have a running system though). 
More recent projects which attempt to provide a 
natural - language- like access to technical knowledge 
include MYCIN (Shortli ffe 76) and PROPHET (Duda et 
al. 77). The former stresses its ability to accept 
rule definitions from users in an English- like 
format (all rules are simple production rules ) 
and to 'explain' how it performed a deduction 
using these rules . 

The surface structure and deductive semantics of 
LESK are based on mappings between relatively 
rigid syntactic forms called 'patterns' in the 
Planner family of languages (Bobrow and Raphael 
74). However these languages did not provide prim
itives which match the nature of knowledge, but 
rather catered to how people seem to like to write 
LISP programs. More recently, systems have appeared 
which, like LESK, attempt to provide more epistem
ologically oriented structures, e.g. KRL (Bobrow et 
al. 77), FRL (Roberts and Goldsmith 77) and K-NET 
(Fikes and Hendrix 77). All these systems share 
with LESK the attempt to 'package' knowledge in 
natural 'chunks' . 

A third influence has been relational databases, 
and the various 'front-ends' which have been de
vised to supply more subtle natural - language- like 
interaction, and deduction based on categorical 
knowledge about the data domain. The work of 
Mylopoulos'. group (e.g. Wong and Mylopoulos 77) 
typifies this research. 

CONCLUDING REMARKS 

In considering the merits of our proposal, the 
reader is invited to compare several contrasting 
techniques of programming language description. 
In a typical manual (e . g. Jensen and Wirth) 
the readability and ease of finding answers to 
questions are highly variable (it is difficult to 
answer the question "what is a scalar type?" in 
Jensen and Wirth) . What is most lacking is t he 
precise definition of the semantic terminology 
and rules. This is usually only done in the other 
extreme of description, typified by Donahue (76), 
·who offers a precise semantic description of a sub
set of PASCAL, in which the notational subtlety pr~ 
eludes its being useful to learn the basic ideas, 
or as a working manual. 
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The ALGOL 68 Revised Report (van Wijngaarden et al. 
77) offers the precision and completeness missing 
in other approaches. Indeed, many of its sentences 
are virtually LESK statements in their rigid clar
ity . It is felt that it is sti ll far less readable 
than LESK , though it is in fact a complete descrip
tion of a very complex language. The proper test, of 
course.would be to describe all of ALGOL 68 in LESK 
and submit the two descriptions to a panel of 
judges . We feel that the hierarchically introd uced 
LESK definitions are a better compromise in the gap 
between the ALGOL 68 report style and the typical 
programming language manual style. 

A word is in order regarding 'semantic nets'. We 
haven't drawn any net- like diagrams; why not? The 
key tool in LESK and indeed in all mathematical 
notation is the notion of variables, which unfor
tunately are awkward to indicate on semantic net 
diagrams. "Partitioned semantic nets" are one at
tempt to do this. One could make from our notation 
some form of net diagram , but we do not recorrrnend 
it as contributing to the clarity. If such diagrams 
had a distinct advantage over linear notation with 
variables , they would have been in wide use before 
AI "discovered" them. 

It is sometimes objected that the stilted rigidity 
of LESK statements is a drawback to ease of ex
pression. The danger with systems which permit a 
much wider syntactic range is that the user may 
be mi s understood by the system, i .e. that the user 
will not be able to predict how the system will 
interpret a statement. It is assumed that any user 
of LESK is knowledgeable in LESK semantics, and 
the surface structure 1s intended to make it easy 
to see what can and cannot be inferred from a 
statement. If one wanted more natural syntax, well
known techniques are available. The effect of any 
more elaborate input could be verified by having 
the system rephrase the input in LESK format, 
which the user would have to understand. 

It should be finally noted that this approach to 
knowledge description is in no way limited to pro
gramming languages, or even to computer science. 
The intention of LESK is to provide a generally 
applicable capacity to combine formal and natural 
language descriptions of any well-defined subject 
in a manner comprehensible to both humans and 
machines . 

The author gratefully acknowledges the support of 
the Izaak Walton Killam Scholarship at the Montreal 
Neurological Institute for pa rt of the research 
reported here. 
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ABSTRACT 

This paper describes with some examples a new 
programming language for Artificial Intelligence 
applications. The language TONAL is based generally on 
the syntax and semantics of POP-2, but is modified and 
extended in various ways. 

TONAL is a 'structured' programming language for more 
reliable programming. It is intended to make the 
programming process in A.I. more reliable and less 
troublesome. However, the language is still interactive 
and incremental in nature, permitting easy debugging and 
experimentation with programs. This is the principal 
novelty, since hitherto block-structured languages have 
not normally permitted interactive modification of program 
code. 

TONAL offers basic, extensible facilities for pattern 
matching and for building special control structures. The 
pattern matching facilities are integrated with a mode 
(type) system for variables and data structures. Multiple, 
potentially parallel processes are provided as a standard 
facility, and permit coroutine systems to be constructed 
easily as a special case. Other control regimes such as 
backtracking may be constructed. 

rated very important . Sandewall(4) discusses 
this in connection with LISP usage. 

1 . 1 Why Another Language? Recent work on programming language design 
has emphasises the importance of procedural and 
data abstractions, and of a modular approach to 
building understandable maintainable programs. 
In this respect most of the AI languages men
tioned above, excluding only SAIL, are partially 
deficient . 

Why develop another language for AI program
ming? Most AI programs of the last decade have 
been written in one of the three 'primary' AI 
languages - LISP(l), SAIL(2) or POP-2(3) - or in 
one of the many other systems derived from or 
implemented in those languages. For example, 
Micro-Planner, QLISP, PLANNER, Conniver, Popler, 
Resolution systems, Production language systems, 
and many other applications have been coded 
using one of the primary languages as a base . 

It can be seen that any AI language has to be 
suitable not only for 'application' programming, 
but also for the systems development work involved 
in constructing interpreters for other special
purpose languages. In addition, users of LISP and 
POP - 2 are accustomed to interactive incremental 
interpreters which make it easy to experiment· with 
programs and debug them interactively in the 
source language. This capability must also be 
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LISP dates from before ALGOL 60, and offers 
essentially no hierarchical static program 
structuring. It also offers no automatic data 
typing for structures, using lists for almost 
everything. Programmers usually learn to impose 
their own structure on programs, but the language 
offers little help in itself. POP-2 offers good 
data- structuring facilities, but still encourages 
the creation of a program as a series of indepen
dent separate functions. Only SAIL offers 
block - structured programs, but it does not have a 
wide, extensible variety of non-numerical data 
modes. 



This characteristic of LISP and POP-2 has 
been elevated almost into a design principle for 
AI systems, in some quarters. It is argued that 
'knowledge' should be divided up and represented 
by a large number of independent modules, each of 
which should be activated automatically when it 
becomes appropriate. This reaches its extreme 
case in some PL systems (where this mode of 
organization was originally selected for reasons 
of psychological modelling) and in some theorem 
proving languages. However, it is also apparent 
in most other languages, such as Micro-Planner, 
Conniver, POPLER and PLASMA. 

These languages do indeed encourage modu
larization, but only to about the same extent 
that FORTRAN encourages structuring of programs 
into subroutines. Most function names are 
global in scope, and many data-strnctures are 
also globally available. My own experience with 
POPLER programs using demons and data-bases is 
that many items and demons should not have a 
global scope, but should have limited access. 
Many bugs arose in programs because demons or 
other items were activated unexpectedly, out of 
context. These bugs can also be difficult to 
track down, or they may go unperceived for long 
periods of time. These problems can be met by 
making use of a block- structured language, so 
identifiers are not accessible except in the 
scope in which they are required. By applying 
the same scope rules to data-base contents, a 
uniform system is obtained for limiting scopes. 

1.2 Related Systems 

ECL (Wegbreit 5,6,7) is an extension and 
modification of LISP motivated by similar con
siderations. ECL is a complete system of a 
language and associated tools, and ELl is the 
name of the programming language used. It is 
aimed at 'difficult' projects. Emphasis is 
placed not only on extensibility, but also on 
'contractability': the ability to have the 
system compact the code generated for a program 
once the programmer makes irreversible commit
ments about variable types, function definitions, 
etc. In some respects, TONAL can be seen as an 
attempt to provide within the POP-2 environment 
some of the features of ECL. However, there 
are al so major differences between these 
languages. 

TELOS (Travis 8) is designed with the same 
desire to improve the structuring and abstrac
tion facilities available in an AI language. 
However, it is based on PASCAL, so the 
language makes full typing mandatory, and is 
not designed specifically for interactive, 
incremental use. In many other respects, 
however, the TELOS language offers comparable 
capabilities. 

KRL (9) is one of the many other languages 
and systems developed recently for AI work. KRL 
represents a particular approach to representing 
information through a combination of 'static' 
descriptions and procedures, with emphasis on 
multi-processing. TONAL is more 'generalised' 
than these other systems in that it is intended to 
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be a suitable base for implementing systems like 
KRL, FRL, etc. 

I.Pak and 2.Pak (10) are comparable with 
TONAL in scope. They are AI implementation 
languages, based on a SNOBOL environment. They 
are block - structured, like TELOS and TONAL,but 
as in the case of TELOS not much emphasis has 
been placed on facilitating interactive program 
development. 

1.3 Tonal 

TONAL is an AI -oriented language; it pro
vides facilities for pattern matching, demons, 
and data-bases, and for arbitrary data-structures 
permitting also 'data -directed' programming. 
It also provides structuring and abstraction 
mechanisms so that complicated programs can be 
modularised effective ly, and so that encoded 
'knowledge' can be restricted to just those 
program scopes in which it should be applicable. 

This paper describes TONAL - a new AI pro
gramming language. TONAL i s intended for 
general purpose programming in the AI context, 
and also comprises a system which permits inter
active development and experimentation with 
programs. 

TONAL has its roots in POP-2(3) and POP- 10 
(11). It provides a variety of control and 
data abstraction capabilities, which can be 
further extended in user programs . New data 
modes can be defined, and the language syntax 
can ,be extended by defining new macros and infix 
operators . The language is so constructed as to 
encourage understandable programs, particularly 
by controlling the accessibility of variable and 
mode names. Nevertheless, it is easy to experi
ment with programs, mainly by virtue of a 
built-in editor facility similar to those in 
POP-10(11,12,13) and some LISPs. 

TONAL is based on experience with POP-2, 
POP-10, LISP and POPLER(l4) together with ideas 
from PL/I, ALGOL 68, SIMULA, EUCLID(l5), ECL 
(5,6,7), SCHEME(l6) and other sources. Apart 
from POP-2, the debts to ECL and EUCLID will be 
particularly obvious. Some detailed suggestions 
come from (17). In keeping with the advice of 
lloare(l8) to language designers, TONAL doe.s not 
contain any untried new ideas, but does provide 
as an integrated set of resources a combination 
different from those previously avialable. 

2.0 OBJECTIVES 

The primary objectives of the TONAL design are 
as follows. 

1. 

2. 

SIMPLICITY - the language should be under
standable, without obscure or irregular 
features. 

INTERACTIVE USE - in a reasonably economical 
implementation. Interactive, incremental 
construction and testing for programs 
should be possible. 



3. HELPFUL - the language should provide useful 
tool s for program deve lopment, and give 
understandable error diagnost ics (l9) . 

4. STRUCTURED But FLEXIBLE 
The language should encourage coherent 
organization of programs, partly through 
textual scopi ng for names, and also by pro 
viding for variabl e modes. It should a l so 
encourage (so far as possible) adequate 
documenta tion and commenting of programs. 
On the other hand, the l anguage system mus t 
be flexibl e for interactive incremental use , 
and the l anguage syntax should not be over
elaborate. 
These considerations are i n conflict to some 
extent, and the language design must balance 
them so neither is pre-eminent . 

5. Similarity to POP -2 when other considera
tions do not take precedence. 

6. PATTERN MATCHING facilities must be present 
in an extensible form. This is integr ated 
with the mode (type) system. 

7. RE -ENTRANT RECURSIVE COMPILER as in POP-2. 
There should also be a mechani sm for reading 
a unit of program text (an express.ion , etc .) 
from an input stream. 

8 . A DATA- BASE and DEMONS must be present in a 
primitive extensibl e form. The 'context' 
mechani sm is to be tied to program block 
l eve l. That is, demon procedures and other 
data-base entries are 'added' with respect 
to a particular program block - - usually the 
currently r unn ing block or the equivalent to 
variabl e access scopes. 

9 . GENERALI ZED CONTROL facilities must be pro
vid ed. This includes a basic capability to 
ruh mult iple processes ' simultaneous ly', 
with interprocess coordination and message
passing facilities defined. Co - routine 
facilities are also incorporated, and a 
more general capability for 'saving states ' 
is included to permit unusual control 
regimes to be implemented. 

10. Good Debugging Tools - there must be 
adequate facilities for catching errors and 
introducing break-points in a program. It 
should be possible to 'reach' into t he 
running code and stack to examine variable 
bi ndings, etc . , and also to continue or 
restart a computation after an error. 

A general ability to take 'traps' on a 
variety of conditions should be included, 
and integrated on the one hand with error 
handling, and with the 'demon' system on the 
other. 

11. Efficient Code Generation. 
When variables are given modes (types), this 
should permit more efficient code to be gen
erated, by reducing the degree of checking 
mandatory at run time. Full typing is not 
required, however, since that conflicts with 
general ease of use. When variables are left 
un-typed, this merely puts more burden on the 
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run time system. 

3.0 DISCUSSION OF OBJECTIVES 

3.1 Simplicity And Interactive Use 

These attributes are possessed by both 
LISP and POP-2 . The language is based on a one
pass compil er rather than an interpreter. The 
syntax is based on POP-2, but is modifi ed : (i) 
to deal with identifier modes, and (ii) to permi t 
the compiler to determine which expressions are 
argument s of which functions and operations. 

The language may be regarded, from one point 
of view, as a modification of POP-2 to clarify 
the usage of the st ack by giving each function 
activation its own private stack. Among other 
consequences, every function call in TONAL return s 
a single result item as its value (cf. LISP), 
and a ll forma l parameters of functions must be 
declared explicit ly. There is a mechani sm for 
variadic functions. This change from POP -2 
makes the programming of Jumpouts more straight
forward, and permits a program to be res t ar ted in 
the middl e of execution after an error ha s 
occured. 

Interactive use is provided by having the 
system execute all imperatives (statement s and 
declarations) as soon as they are typed in, 
except for those forming part of a function def 
inition. A function definition is itself a kind 
of declaration, and is executed as soon a s it is 
typed in. 

3.2 Helpfu l System 

The system should provide useful tools for 
program development. The principal tools are a 
buil t-in editor, macro and Abbreviation facil
ities, and various debugging and tracing tools. 
A capabi li ty for metering program performance is 
also provided. 

The editor is based on the ear lier POP -2 
'77 ' editor and the POP-10 editor. These were 
mode ll ed on TECO (20) , but with the addition of 
an UNDO command. The TONAL editor is extended 
a l so to handle multiple buffers, s omewhat as in 
QED X (21). 

The editor can handle arbitrary text files, 
but has specialized operations to facilitate the 
management of TONAL program files. All editor 
commands are funct ions and operations, which 
manipulate the text buffers, so programs can be 
constructed using t he normal TONAL language to 
perform various complex tasks. There are special 
commands which 'know about' the syntax of TONAL, 
and programs can be compiled directly from a 
buffer . 

A macro facility is provided as in POP -2 , 
to permit the TONAL language syntax to be 
extended with new constructs. In addition, there 
is an Abbreviation facility specifically to 
permit abbreviations to be created for command 
strings. The first word in any comment at 
execute level, after a newline, semicolon or 
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'print arrow' "= >", can be checked in a hash
coded table for a stored expansion. 

For example, the command 
#ab n 1ml, vc; 

will define n as an abbreviation for the rest of 
that line. (Typing n at the start of a command 
will make the editor-move to and print the next 
line of text.) #off and #on turn the facility 
off and on. This is modelled on a facility in 
the Multics system (21). 

The debugging tools are described later. 

3.3 Structured But Flexible 

TONAL uses essentially the same scope rules 
for identifiers as Euclid (15). That is, lexical 
or ' static' scopes are used, but identifiers must 
be 'pervasive' or specifically imported to be 
used 'free' in interior scopes. These rules 
encourage a block-structured type of programming, 
with the benefit that variable and function id~n
tifiers are not made more global than they have 
to be. 

Normally, this would make it harder to debug 
interactively the interior modules of programs, 
so special debugging tools are provided as des
cribed later. 

Identifiers of a program, as part of this 
mechanism, may be declared as constants or 
variables, and may be given modes (types). These 
facilities make programs more specific, which has 
two main benefits. First, they perhaps become 
more understandable, and the compiler and run
time system have more chance to detect program
ming errors. Also, the compiler may be able to 
produce more efficient code, especially for 
arithmetic and structure accessing. 

However, the typing of variables is not 
mandatory, and they default to the universal 
mode~-

Modes are themselves items, as in EL1(6). 
However, new modes are created by declarations, 
not by applying functions, because creation of a 
new mode usually involves declaring several 
associated operations simultaneously. There are 
built-in mechanisms for creating new 'record' and 
'strip' modes ('structures' and 'rows' in ALGOL-
68) and arrays; other 'derived' modes may be 
created with user-defined operations. 

The language syntax is designed to be parsed 
by an LALR parser (19,22), and is more rigid than 
that of POP-2 in some respects. However, as far 
as possible, comma and semicolon separators are 
optional. For example, a semicolon may sometimes 
be omitted at a newline. 

The following constructs are available for 
conditional and iterative execution: 

IF cond THEN .. {ELSEIF ... } [ELSE .. ] CLOSE 
WHILE cond DO ... ENDDO 
REPEAT ... [UNTIL cond] ENDREP 
CASE expr { >:pattern: > clause} 

[ELSE .. ] ENDCASE 
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FOR { id initialValue, expr;} UNTIL cond 
DO . .. ENDFOR 

The first three are conventional. The CASE 
statement evaluates an expression, and matches it 
with 'patterns' until it finds a match, when it 
executes the appropriate clause. In fact the 
pattern matches are normally compiled 'open' (see 
below). 

The FOR is similar to the MacLISP DO (23) 
and can initialize and step several variables in 
parallel in almost any type of sequence. The 
program 

FOR x l,x+l UNTIL x>lO DO pr(x) ENDFOR 
prints the integers 1 to 10 . 

Labels are not permitted, and a restricted 
GOTO is provided to escape from or restart an 
iteration or function. Function calls can also 
be escaped from dynamically with a Jumpout as in 
POP-2, or by a CHAIN facility . 

TONAL, like POP - 2, does permit a function 
created in one context to be passed as result 
and later applied in another context. When this 
happens, the function item must internally be a 
'closure' on the access environment needed for 
its 'free' identifiers. The position taken on 
th.is is that all function i terns are automatically 
closures on the environment current when they 
were formed. This is similar to the SCHEME 
language (16). The TONAL compiler can avoid the 
construction of closures which are not needed 
explicitly . 

If such a closure is saved for later 
application, this can tie up memory in saving the 
access environment. The compiler can tell when 
all 'free' identifiers are bound at the global 
level and avoid this waste of memory. Partial 
Application is provided as in POP - 2 for those 
(frequent) situations where a closure needs to 
be 'read only'. 

3.4 Patterns 

A system for using patterns is introduced. 
This is an extension of the proposal for POP-2 
(17). A pattern is primarily a convenient way 
to express a complex test on a value, and may be 
used in a CASE statement, or in IS expression. 
The latter follows the syntax 

expression IS pattern 
and evaluates to a truth - value. Patterns may 
have the syntactic forms: 

form meaning 
constant EQUAL to the constant 
=identifier = value 
identifier assign to variable 
:mode check item mode 
.predicate apply predicate function 
[!pattern, . . !] list pattern -- check elements 

in turn 
fn(pattern, .. ) test item with structure/ 

component matching. 
match anything 

In particular, expressions such as xis 
:list and n2 is :num are the best way to- check 



the mode of an item. 

Many pattern matches are compiled 'open' for 
efficiency. Nevertheless, patterns may also be 
represented by pattern items, and interpreted 
later by the standard function match_pattern. 
This is needed for the demon system (Section 3.6). 

3.5 Reentrant Recursive Compiler 

This is similar to POP-2 except for the 
lexical scoping of identifiers. When the compiler 
is called, its initial scope may be set to be 
'global', or to be at the environment of the 
point of call. This affects the interpretation 
of 'free' identifiers in that call of the com
piler. 

In particular, when an error or interrupt 
occurs, the compiler operates at the point where 
execution was stopped, permitting lo~al identifiers 
to be examined, and programs for internal blocks to 
be modified and recompiled. This does give an air 
of 'dynamic' scoping to the system. 

Because the syntax of TONAL expressions and 
statements is more closely defined than in POP-2, 
a facility is provided for reading, from an input, 
text which forms an expression. This is comparable 
to the LISP ability to read an S- expression in one 
call. 

3.6 The Database And Demons 

Because of the variety of different require
ments for data-base and demon-type facilities that 
AI projects have developed, a minimal extensible 
facility is provided. No automatic backtracking 
or any other form of demon invocation takes place 
without the user specifically programming it. The 
intention is to provide the 'raw materials' 
required as data structures, etc., but for the 
user to decide how they should be combined. The 
system does enforce the·rules limiting access to 
data. 

In TONAL, a Demon is like a POPLER Procedure, 
a Planner Theorem or a Conniver Method . It is a 
function with associated pattern; the function 
itself takes only one parameter, which is matched 
with the pattern, and the body is only executed if 
the pattern matches. The pattern match may assign 
values to locals of the function body. The pat 
tern is also accessible as a 'component' of the 
demon, so demons can be indexed and selected on 
the basis of their patterns. 

A 'data-base' facility is provided which can 
store demons or other items, and retrieve them on 
the basis of pattern matching. The data-base is 
divided into Demon and Item Classes, so they can be 
grouped according to use. Initially, there are no 
classes declared, but to simulate Conniver for 
example, one might include the following statements 
in a program: 

set item class("item") ; 
set-demon class ("if added"); 
set-demon- class(" i £- needed") ; 
set =demon =class ("if=removed"); 
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The argument words "item" etc., are not 
variables, but just 'handl es ' used internally in 
the da ta-base; presumably they will be descrip
tive names. 

Also, the data - base has its contents saved 
with respect to various Contexts, again some
what as in POPLER or Conniver. The special 
feature here is that a Context always corresponds 
to a lexical variable scope. This scope is often 
the global level or a Section (a self-contained 
module), but it may be just a particular function 
or demon activation . A dbcontext is identified 
by placing a special declaration such as 

dbcontext bags; 
in the program module concerned. That wil 1 
declare bags as a variable containing essentially 
a label for the activation record (or whatever) 
for the function or section. That database con
text will only be usable when the module declara
tions are in scope. (This rule wil 1 be enforced 
at run - time, if an attempt is made to pass the 
value of bags outs ide its scope.) the standard 
identifie;:--gdb is bound to a dbcontext for the 
global level-.-

Objects are added to the database and 
removed again with the primitive operations 

add item(item, dbcontext, classHandle) 
add- demon(demon,dbcontext, classHandle) 

and erase item and erase demon. 
The functions get items and get demons are 
used to retrieve from the data-base, and each 
takes a pattern as argument and returns a list 
of items. 

get_items(pattern, dbcontext, classHandle) 

Adding or removing items with these functions 
does not activate any demons or perform any other 
side- effect. The user who wishes to simulate 
Planner or Conniver, etc. will write his own 
functions ADD and REMOVE (for example) which per
form all the necessary actions and searches, and 
invoke demons as necessary. 

The TONAL system does not automatically 
apply demon functions for the user at any time. 
A list of demons can be retrieved as summarised 
above, and the user is responsible for deciding 
how and when to apply them. The ground rule for 
demons, however, is that if they return false then 
they are taken to have 'failed' . There is no 
automatic b?cktracking in TONAL, though it can be 
implemented. 

In summary, the main intention in TONAL is 
to permit and encourage the programmer to 
localise information and demons, without prevent
int them from being global when this is actually 
needed. 

3. 7 Generali zed Control Facilities 

The main requirement for generalization is 
the ability to handle multiple processes simul
taneously, or as co-routines. Co-routines are 
regarded as multiple processes with the user 
programming the context switching explicitly. In 
the case of multi-processing with the system 
handling context switching (or even multiple 
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processors) the need arises to define the synchron
ization mechanism. 

Although Monitors (25) are currently popular 
for this, we have chosen to use Message Buffers as 
t he primary mechanism. It is well known that 
semaphores and monitors can be implemented using 
message buffers, and they also provide a simple 
inter-process communication facility. 

A new process is formed from a function and 
arguments with consprocess : 

consprocess(function,list) 
This returns a process item. The process may then 
be started as a co-routine with run or resume, 
somewhat as in SIMULA (26) and the new POP-2 (17), 
or with sprout to run in parallel. The process is 
deleted when the function exits, and its final 
value is lost unless the function s"lnds it to 
another process (preferably through a message 
buffer). 

A message buffer obeys a FIFO queue disci
pline, and holds O or more items, up to its 
capacity. It is created with consmbuff, and 
filled and emptied with putmbuff and getmbuff. 

putmbuff(item,mbuffer) 
getmbuff(mbuffer) => item 

Those latter operations block if the buffer is 
already full or empty respectively. 

These mechanisms are related to those of 
SAIL(2) and ABSET (27), but differ somewhat from 
TELOS. The details are based on code for 
POP-2 (17) recently transplanted to POP-10 . 

TONAL discourages 'naive' backtracking of the 
Planner/POPLER kind, but this can be programmed 
if it is really desired, by using a saved - state 
mechanism similar to that of POP-2 (3). 
Alternatively, a similar effect can be obtained 
using 'teams' of co - routines, and this has the 
advantage that the local environment of a process 
is not destroyed if it stops. 

3.8 Tools For Debugging 

The principal debugging tool is the editor, 
which can contain the text of program files being 
worked on . Programs can be compiled directly 
from a buffer and changed interactively, as 
described in (1 2,13). This is similar to the 
approach used in LISP systems for in-core edit
ing of S-expressions (4) . 

The main problem with a block structured 
language is that normally when an inner function 
definition is changed all the enclosing scopes 
have to be recompiled too. The TONAL compiler 
will have the capability to recompile inner 
function definitions without having to recompile 
the whole enclosing scope. 

An interactive tracing and 'break ' package is 
also provided, based on that in POP- 10. This 
permits trace messages and 'interrupts' to be 
programmed flexibly, so that the state of the 
program during execution can be monitored. Also 
as in POP - 10, after an error, a 'break' is 
entered again, and it is possible to modify and 
recompile a function, and then to restart the com-
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putation in the middle instead of having to begin 
the whol e program run again . 

It is proposed to provide a flexible system 
for handling errors and 'traps ' of various sorts, 
by setting up a special Demon class " sys tem - trap", 
with patterns predefined for the various condi
tions to be handled. This is similar to the 
'event' mechanism of TELOS, and provides also the 
capabilities of PL/I On-conditions. 

Other useful features are provided by the 
system. With a block-structured language it is 
desirable to know which identifiers are declared 
and imported at each level. Depending on the 
setting of a control variable, the compiler will 
print an information message at the end of com
piling each function and section, which will give 
more or less detail about the identifiers used. 

If an identifier is met in a scope which has 
not been declared, it will automatically be 
declared as a variable of mode any, local to that 
scope, and a warning is printed. 

4.0 SUMMARY 

A new language system TONAL is being 
designed for AI applications. It is compiler 
oriented and block structured, with emphasis on 
both abstraction mechanisms and on the ability 
to restrict the availability of information to 
those contexts where it is required. The system 
is also designed to facilitate interactive program 
development and debugging. 

Appendix A contains a short program to 
illustrate the syntax. No implementation of 
TONAL is complete, and no large programs have been 
written yet in TONAL . A language Manual is 
available, but the specification remains subject 
to amendment in the light of experience. 
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APPENDIX A 

EXAMPLE PROGRAM 

SECTION SETS FACILITY 
EXPORTS NILSET NULLSET ADDSET 

MEMBSET DELSET SET; 

\define a SET facility. 
\ a SET has a list and an predicate 
\NILSET(pred) makes an empty set 
\NULLSET tests whether a set is empty 
\ADDSET(x,set), DELSET modify a set 
\MEMBSET(x,set) tests a set membership 

TYPE PERVASIVE SET= 
RECORD CONSGENSET, APPSET 

(SL :LIST, SEQ:FUNC) ENDRECORD; 
\the operators are all pervasive 
\ like SET, but are not exported. 

OPERATION 1 PERVASIVE NILSET EQP => :SET; 
CONSGENSET(NIL,EQP) END; 

\the result mode may be specified 

FUNCTION PERVASIVE NULLSET S:SET; 
S.SL.NULL; END NULLSET; 

\END may be followed by the name 
\if it does not match - a warning 

FUNCTION PERVASIVE MEMBSET X, S:SET => :BOOL; 
VARS L:LIST, EQF:FUNC; 

FOR LS.SL, L.TL; EQF S.SEQ 
\step L, just initialise EQF 

UNTIL L.NULL 
DO IF EQF(X,L.HD) THEN TRUE EXIT; 

ENDFOR; 
FALSE; \not in list - return FALSE 

END MEMBSET; 

FUNCTION PERVASIVE ADDSET X,S:SET => :SET; 
IF MEMBSET(X,S) THENS 
ELSE CONSGENSET(X::S.SL, S.SEQ) 
CLOSE; 

END ADDSET; 

FUNCTION PERVASIVE DELSET X, S:SET => :SET; 
VARS EQF:FUNC; 

FUNCTION GENDEL XL; IMPORTS EQF; 
IF L.NULL THEN NIL 
ELSEIF EQF(L.HD,X) THEN L.TL 
ELSE L.HD::GENDEL(X,L.TL) 
CLOSE; 

END GENDEL; 

S.SEQ->EQF; 
IF MEMBSET(X,S) 

THEN CONSGENSET(GENDEL(X,S.SL) ,EQF ) 
. ELSE S 

CLOSE; 
END DELSET; 

ENDSECTION SETS_ FACILITY; 
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ABSTRACT 

The following describes an approach to the 
synthesis of procedures from examples of compu
tations. An example computation is basically a 
sequence of instructions obtained from the 
"execution" of an algorithm on some input. Unlike 
previous work on this problem, some flexibility in 
the description of examples is permitted. The · 
synthesis algorithm, in turn, relies on knowledge 
of variables and instructions to construct a pro
cedure. 

INTRODUCTION 

A programmer's assistant can involve various 
facilities to aid a programmer. These facilities 
might include a language understanding subsystem 
or a subsystem to assist in program debugging. An 
assistant might also include a facility for program 
synthesis. Input to such a synthesizer might be 
natural language [8,9,11], input/output predicates 
[10] or input / output pairs [6,7]. Another form of 
input to a synthesizer might consist of sequences 
of instructions describing in a step-by-step manner 
the execution of a particular algorithm on specific 
inputs. Such descriptions might be the sole form 
of input to a synthesizer or might provide addi
tional input to a system in which a program was 
initially described in natural language or speci
fied by input /output predicates. 

In this paper we describe some initial work on 
a "specialist" capable of synthesizing a procedure 
from examples of computations. This work has con
centrated on the development of a synthesis 
algorithm, given a suitable representation of an 
example, rather than on the formation of represent
ations from natural language input. The motivation 
for such an approach is twofold. First, in order 
to synthesize a procedure, some underlying synthe
sis algorithm must be available regardless of the 
particular input format of the examples. Of course, 
it is reasonable to rely on natural language des 
criptions of examples to motivate the character
istics of the examples we wish to study. Second, 
by concentrating on the algorithm we can investi 
gate the role of knowledge about procedures during 
the synthesis process. 

The current "specialist" involves no knowledge 
of what the intended program is to compute. 
Rathe r, it uses certain "common sense" knowledge 
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about procedures, instructions, assignments, 
variables, constants, etc. Much of this knowledge 
is in the form of constraints used during the 
construction of a procedure . 

The problem of synthesizing procedures from 
example computations has also been considered by 
Biermann [3,4]. In his work, an example of a 
computation was essentially a sequence of symbols. 
Little variation between examples was permitted, 
requiring, for example, the same instruction in 
two different examples of the same procedure to be 
identical . Our work is an extension of Biermann's 
permitting more flexibility in examples. This has 
required us to incorporate some knowledge of pro
cedures, examples and their components into the 
algorithm. 

CHARACTERISTICS OF EXAMPLES AND PROCEDURES 

To motivate certain aspects of suc.h examples 
and our model of procedures, let us consider a 
description of an example computation in natural 
language. Figure 1 illustrates an example of a 
procedure to perform an interchange sort on a 
I-dimensional array . 

To sort the array (6,3,5) of 3 elements proceed as 
follows: 

Let A be the array (6,3,5). 
Let X be the 6. 
Let Y be the 3. 
Since Xis greater than Y, interchange elements 1 

and 2 of A. 
Then let X be 3. 
Now compare X and element 3 of A. 
Since Xis not greater than 5, do nothing. 
Next, let X be the second element of A, which is 

now 6. 
Compare X and the third element of A. 
Since Xis greater than 5, interchange elements 2 

and 3 of A. 
Let X be 5. 
Finally, let X be the third element of A. 
Since there are only 3 elements in A, we stop. 

Figure 1: A Plausible Description of an 
Example Computation 

This example suggests several characteristics 
of a model of example computations. First, it must 
involve variables, ass i gnments, functions, 



predicates and procedures. The model should also 
include some facility for composite objects, such 
as arrays or records. Examples from the same pro
cedure should not be constrained to a single set of 
variables. It should also be possible to use the 
inputs, intermediate values of variables and com
ponents of composite objects within the example 
itself. 

These characteristics of examples, in turn, 
suggest that the procedures synthesized must also 
involve similar instructions and must have 
parameters. 

A MODEL OF EXAMPLES AND PROCEDURES 

The instructions we shall consider fall into 
four classes: 

1. Assignments: There are three forms - assigning 
to a variable, a number of variables or a vari
able whose value is a composite object: 

1. Simple Assignment: X + t, where t is a 
variable, a constant or f(v

1
, ... ,vn) , and 

2. 

the vi are either constants or variables. 

We call f(v1 , ... ,vn) a Function Application. 

Multiple Assignment: <Xl' ••. ,Xn> + 

P(v1 , ... , vm) . where the v . are constants 
1 

or variables and p is a procedure returning 
n values. We call P(v1 , ... ,vm) a Procedure 
Call. 

3. Updating Assignment: U(X,<v1 , ... ,vm>) + t , 

are as above; U is where t and the 

an updating function. 

2. Predicates: p(v
1

, ... ,vn), p isan n-ary 

predicate; as above. 

3. Termination Statements: 

vi as above. 

The right hand side (rhs) of an assignment may 
be a variable, constant, function application 
(including updating functions) or procedure call. 
We treat procedures as functions which r e turn an 
n-tuple of values. We assume that all actual 
parameters are passed by value and, hence, any 
side effects must be explicitly done by assign
ments or updaters. Predicates simply evaluate to 
true or false. 

Updaters are functions which operate on com
posite objects to change or retrieve components. 
An updater has two arguments - a composite object 
and an n-tuple defining a component of the object. 
As such, an updater may appear on either side of an 
assignment. On the rhs, the value of a component 
of the composite object is returned as the value of 
the updater; on the lhs the component is altered, 
essentially forming a new composite object (see 
POP- 2 [SJ for the use of updaters in an existing 
programming language). 

Finally, a termination statement is used to 
indicate the end of a procedure and defines the n 
values to be returned. 
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This set of instructions provides the basis · 
for a rich class of examples and procedures. In 
particular, the use of procedures and updaters 
facilitates examples of non-trivial programs. 
Notice that the statements in our natural language 
description of an example are not confined to the 
syntax of our instruction classes . Rather, we view 
these classes as a target into which higher level 
descriptions are to be translated. 

An example of~ computation is a pair 
(P(a1 , ... ,an),T) , where P is the name of the 

procedure, a
1

, ... ,an are the arguments used to 

form the example and T is a directe d tree of 
instructions. Each tree has a single termination 
statement, a leaf. Other leaves in the tree are 
predicates which evaluated to False. The succes
sors of a node are ordered (counter-clockwise in 
figures). The sequence of instructions executed 
in the example begins with the root and proceeds 
in order to its successors. 

This particular representation was adopted 
for a number of reasons - avoidance of True/False 
labels (as in flowcharts), representational con
venience, a means to include examples from back
tracking procedures. For examples from back
tracking procedures, leaves are instructions which 
failed. 

Given a number of examples, the synthesis 
algorithm attempts to form a procedure. Procedures, 
in turn, are represented as a pair (P(X1 , ... ,Xn),D), 

where P is the name of the procedure, x1 , ... ,Xn 

are its formal parameters and D is a rooted, 
directed graph of instructions in which successors 
of a node are ordered. Execution proceeds from the 
root in a depth-first manner. Should a predicate 
fail (or in the case of a backtracking procedure, 
instruction fail), the next successor of its pre
decessor is executed. If all successors of a node 
evaluate to False (or fail), execution proceeds to 
the next successor of its predecessor (see [1] or 
[2] for a more detailed description of such exe
cutions). The interchange sort is illustrated in 
Figure 2 and two example computations from such a 
procedure are illustrated in Figure 3. 
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From a formal viewpoint (see [1]) we can talk 
of a pure example computation as one which origin
ates from a procedure by executing the procedure on 
some input and simply recording the sequence of 
instructions executed. An acceptable example com
putation is one obtained from a pure one via a 
number of transformations. The transformations 
corresponding to the characteristics cited above 
are: a) renaming a variable, b) replacing occur
rences of a parameter by its input value and c) 
adding an assignment to the example in which a 
parameter is assigned its input value. The class 
of examples the algorithm accepts is then the set 
of pure examples closed under the transformations. 

Such a methodology is particularly useful. 
First, it enables one to define what one means by 
an acceptable example. Knowing the class of exam
ples is important since what one can reasonably 
consider to be an example can vary greatly. This 
methodology also lends itself to possible exten
sions, since one need only consider additional 
transformations. Second, it provides a mechanism 
to isolate certain subproblems within the overall 
synthesis problem. This may not only suggest cer
tain techniques for solution but may also suggest 
what information is necessary. Finally, we should 
note that such a methodology is not arbitrary - it 
was certain characteristics of examples, as in our 
natural language description, which motivated the 
particular transformations. 

THE SYNTHESIS ALGORITHM 

Informally, the synthesis problem is to form 
a procedure, represented as a directed graph, from 
a number of example computations. By relying on 
the model of procedures, a definition of what con
stitutes an acceptable example and the transfor
matfon, this problem can be made precise. We shall 
have additional comments about this aspect of our 
work in the concluding section. Currently, we shall 
concentrate on a description of the synthesis algor
ithm and the information it uses. 

Let us briefly examine how a person might form 
a procedure from a number of example computations. 
The first task might be to locate instructions which 
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appear to do the same thing. Once a number of 
possibly related actions have been located, the 
person attempts to verify the relationships by 
examining the variables and constants involved, 
how corresponding variables are used, what 
instructions follow, etc. 

Our synthesis algorithm proceeds in a similar 
manner . Given a number of examples, the algorithm 
attempts to group nodes into classes. Nodes in th e 
same class are, supposedly, occurrences of the same 
instructions in the algorithm being illustrated . 
Once a set of classes has been hypothesized, the 
set is examined to guarantee that certain con
sistency conditions are satisfied. Knowledge of 
variables, constants, instructions and procedures 
is embedded within these consistency conditions. 

Intuitively, we can class two instructions 
together if they seem to be occurrences of the same 
instruction in the algorithm being describe d. 
Occurrences of an instruction may be obtained by 
renaming variables within the instruction or 
replacing those variables which are parameters by 
their input values. Such substitutions must be 
consistent with certain "common sense" conditions: 

-- A variable can only be replaced by at most 
one other variable in any other example. 

-- A variable, which is a lso a parame ter, can 
be replaced by at mo s t one input in any one example. 

We shall define variations of an instruction 
under such substitutions. This , in turn, will pro
vide a basis for determining when instructions can 
be grouped toge ther. Let us define a substitution 
a to be a set of pairs (wilti) where: 

1. Wi is a variable; ti is a constant or 

variable. 

2. No two Wi are the same in o. 

3. No two ti, which are variables, are the same 

in o . 

4. If (Wi l ti) and (Wj l tj) are in o and 

wi wj , then ti= tj . 

We ~ !!. substitution a = { (W . I t . ) } 
l. l. 

to a 

predicate termination statement, left or right hand 
side of an assignment by simultaneously replacing 
each occurrence of Wi by ti . 

Assignments introduce special problems since 
a variable being assigned may only be renamed by 
another variable and not replaced by an input on 
the left hand side of the assignment. Also, it is 
possible that a variable may be both renamed and 
replaced within a single instruction. Consider 
the instruction X + +(X,1) • If X is a 
parameter, then in an example in which X re
ceived an initial value of 3, a reasonable vari
ation of this instruction might be Y + +(3,1) • 
As a result, the concept of a substitution is only 
partially satisfactory. 

A mapping TI for an instruction s is: 



1. A substitution a if s is a predicate or 
termination statement. 

2. A pair of substitutions (OL'OR) if s is an 
assignment where: 

1. For all (Wi l ti) in 01 ' wi assigned to 

in s 
' 

then ti is a variable. 

2. If (Wilti) is in OR ' ti is a variable 

and (Wil tj) is in 01 ' 
then ti = t. 

J 

3. If (Wi l ti) is in OR , t. is a variable 
l. 

and (Wj I ti) is in 01 ' 
then wi = w. 

J 

A mapping TI for an instruction s applied 
to ~ (TI o s) is: 

l. a o s ifTI=O 

Finally, let s
1

, ... ,sn be instructions, 

TI1 , .•. ,Tin be maps for s 1 , ••• ,sn and let s b~ 

an instruction. Call s a generalization of 
s 1 , ... ,sn if Tii o s = si. Call s a least 

generalization of s 1 , ... ,sn if for any general

ization s' , there is a mapping TI' such that 
n' o s' = s. 

The generalization, if it exists, of a set of 
instructions captures the intuitive idea of an 
instruction from which others might have been 
formed. It also a) forms the basis for con
structing an instruction from a set of instructions 
and b) through the mappings constructed, provides 
additional information which can be examined with 
respect to certain "common sense" rules. Note that 
this concept of generalization is similar to that 
of Plotkin's [11], but because of the nature of 
instructions, and in particular assignments, the 
ideas had to be extended. 

Now, given a set of instructions, s 1 , ... ,sn 
we say that they look alike if: 

1. They have a least generalization. 

2. Corresponding sets of successors look alike. 

In Figure 4 nodes 1 and 5 look alike since 
their sets of corresponding successors ({2,6},{3,7}) 
look alike (assuming that {3,7} look alike). Nodes 
1 and 8 have a least generalization but do not look 
alike since the set {3,10} of corresponding suc
cessors do not have a l east generalization, i.e. do 
not look alike. Note that requiring instructions 
to have identical successors or identical numbers 
of successors is too severe since they might be 
occurrences of the same instruction involved in 
computations taking slightly different paths. 
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However, just defining what constitutes a 
single class of nodes is insufficient. One must 
also define relationships between the classes 
dictated by the successor relationships between 
individual instructions. There is also the prob]em 
of how to determine reasonable sets of classes, or 
perhaps more realistically, how to reject unreason
able ones. 

This latter problem can be simplified by using 
key nodes. Intuitively, key nodes are instructions 
within the examples which involve specific functions 
and probably coincide or ones which are a priori 
known to coincide. Key nodes provide an anchor on 
which to base class formation by providing know
ledge of which nodes may have originated from the 
same instruction in the algorithm. In our case, 
the key node in each example is determined by first 
finding the first node on the leftmost path from 
the root involving a function, predicate, pro
cedure call or termination statement. Then one 
proceeds in parallel back toward the root in each 
example until all nodes not yet considered have 
single successors. Since we have assumed that no 
instructions are omitted from any example, these 
must originate from the same node of the algorithm. 

Given a set of 

us define the set of 
of these nodes to be 
examples E1 , ... ,Et 

such that: 

nodes S = {s
1

, . .. ,sn} , let 
th i corresponding s uccessors 

COR(i,S) . Then a cover for 
is a set of sets c1 , ... ,Cm 

1. The key nodes are in the same Ci 

2. Any node reachable from a key node is in 
some Ci 

3. If Q, is the maximum number of successors of 
any node in Ci , then for each j 

' 
l ::: j s i 

COR(j ,Ci) is contained in some Ci, 

Because some additional (extraneous) nodes 
may have been add ed to the examples, we may not 
wish to include all instructions; hence we allow 
for the exlusion of some. In general, the synthesis 
algorithm seeks the cover containing the greatest 
number of nodes in the fewest classes. However, 
even those nodes not included in a class must 
satisfy certain constraints (below). 

The two example computations in Figure 5 are 
from a procedure which examines a property list. 



A property list i s a list of subl ists where each s ub 
list contains a variable (f irst element) followed 
by its properties (e. g. numeric values). Given a 
property list and a property, the procedure returns 
the first variable having such a property. Given a 
variable (enclosed in quotes) the procedure returns 
the properties of that variable. 
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The key nodes are nodes 1 and 21. Since nodes 
1 and 21 must be in the same class, by the third 
condition, nodes 2 and 22 must be in the same class. 
This condition, therefore, guarantees that the 
instructions of the synthesized procedures will 
follow paths based upon the instructions in the 
examples. 

As one might expect, a number of possible 
covers do exist. In Figure 6, several covers are 
presented. Cover Cl is the trivial cover - only 
nodes necessary to satisfy the conditions are 
gro up ed together while remaining nodes are in 
individual classes. Covers C2 and C3 are accept
able, but do not make "sense" . In C2 the instruc
tions NULL(L) and NULL(X) are in the same class. 
The occurrence of two different variables suggest 
that these two instructions, in the same example, 
are used differently and should be kept distinct. 
In C3 instructions 8,18,25,30 are classed together. 
If 8 and 25 (=(Y,5) and =("A",XI)) are to be 
occurrences of the same instruction of the 
original algorithm, then Y is a renaming of 
·a variable in that instruction and "A" is an 
input assigned to that variable. Examining node 
7, X + HD(X) , one sees that Y is assigned a 
value immediately before node 8 and so Y is 
probably not a parameter. Moreover, if "A" was 
the value of some parameter, then it was not the 
same one which Y renamed. In both cases, we 
wish to reject such partitions. This is done by 
a number of constraints. Cover C4 is the correct 
one. 
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KNOWLEDGE AS CONSTRAINTS 

The formation of an acceptable cover for 
instructions within examples is the basic activity 
of the synthesis algorithm. Once completed, the 
following information is available: 

:The Examples. 

:The classes of instruction and the 
successor relationships between classes 
defined as: Ci i s a succes sor of Cj 

if there exists ni in Ci and nj in 

Cj such that ni is a successor of nj 

: One instruction (the least general
ization) has been associated with each 
class; their successor relationships are 
defined by the successor relationships 
among the classes. 

:The mappings used to form each 
generalization. 

As noted in Figure 6, in many cases the for
mation of classes based solely upon nodes looking 
alike leads to unacceptable covers. However, these 
covers can be eliminated by relying on knowledge 
of variables, instructions, etc. This knowledge is 
in the form of constraints or conditions on the 
classes, mappings and nodes not in any class. 
The failure of a cover to satisfy the conditions 
causes it to be rejected and the search for a new 
cover to be resumed. 

We shall informally describe the constraints 
and the knowledge of procedures they embody. 

Every variable in the synthesized procedure 
must correspond to at most one variable and /or one 
constant in any one example. 

This condition applies to the mappings pro
duced from the least generalizations. For example, 
the instructions NULL(X) and NULL(L) considered 
previously could not be classed together since the 
variable in their least generalization would have 
to correspond to both X and L in the same 
example. 

-- Every variable i n the synthesized procedure 
formed from a constant must become a formal 
parameter of the procedure. 



. . l 

I 

·\ 

This condition, in general, implies that if 
one introduces a variable during the synthesis 
process to replace a constant then it must do so 
correctly, i.e., the variable introduced must be a 
parameter. This involves three phases: a) the 
constant that is replaced in any one example must 
be in the input list of that example b) over all 
the examples, there must be an argument position 
common to any constant replaced by this variable 
c) any variable which the introduced variable, say 
W, renames cannot be assigned on the path from 
some node in a class to a node in which W re
placed a constant. Any set of classes having a 
class containing nodes 8 and 25 of Figure 5 would 
be rejected because they would violate this con
straint. 

Any assignment not included in a class 
must be a node which has been added . 

From the definition of our acceptable examples, 
nodes not included in the same class must he ones 
used to assign initial values to parameters. Such 
a node must be of the form X + c. Either a 
variable W was used in a least generalization to 
rename X in the synthesized procedure or X has 
not been renamed. This means that W, or X in 
the case it has not been renamed, must satisfy 
conditions a) - c) above. 

Note that this constraint is applicable only 
after the other constraints have been satisfied, 
since it requires the mappings to have been com
pleted. 

In Figure 5 node 20 would be such a node. 
Assuming that a variable V had been created to 
replace L in that example, then we would have 
to consider V to be a parameter which was 
assigned an initial value [[B l][A l]] in the 
second example. Presumably nodes 3 and 23 would 
have been already classed together and hence in 
the first example V would have corresponded to 
[[B 5][A 4]] • Since both are arguments occurring 
in the second argument position and node 20 is not 
in any class, V could become a parameter in the 
synthesized procedure. 

-- The variables of the synthesized procedure 
which must be considered to be parameters, form a 
plausible parameter list. 

The previous constraints have dealt with the 
validity of certain variables as parameters. This 
particular constraint guarantees that such vari
ables can in fact form a parameter list - basically 
that each variable in the list is unique and occurs 
exactly once. Thus, for example, if two variables 
V and W of the synthesized procedure must be 
parameters but because of the constants they 
replace, must both be the first parameter, the 
cover would be rejected. 

CONCLUDING REMARKS 

The above algorithm has been implemented in 
POP-10 and a number of examples have been tried. 
The synthesis of a procedure to multiply two 
positive integers by repeated addition required 
two examples. The synthesis of an interchange sort 
was successfully completed using two examples in 
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one case and one example in another. Interestingly, 
the synthesis using the single example required much 
more time than the synthesis using the two examples 
even though the number of instructions in both cases 
was nearly equal. 

One goal of the work was to define the problem 
and formalize the algorithm. As a result, it has 
been possible [l] to prove two results about the 
synthesis algorithm. The first result shows that 
the synthesis algorithm is sound. That is, given 
a number of examples from the same procedure, the 
algorithm produces a procedure which, if executed 
on the same inputs as the examples, produces the 
same results. This guarantees that the algorithm 
is always faithful to the information within the 
examples. The second result shows that the 
algorithm is complete. Completeness guarantees 
that for any procedure, if one continues to give 
examples of the procedure, then eventually the 
synthesis algorithm will produce a procedure weakly 
equivalent to the original. Weak equivalence 
implies that the synthesized procedure will produce 
the same result as the original for any input on 
which the original halts. 

Finally, even though the examples which can be 
dealt with are quite restricted and the knowledge 
of procedures is still primitive, the theoretical 
and pragmatic success of the synthesis algorithm 
suggests a number of interesting directions for 
future work. First, one might explore how a 
natural language front end could be interfaced with 
such a synthesis system. Second, one could try to 
extend the synthesis algorithm to a broader class 
of examples by considering more transformations, 
especially ones which are more domain dependent. 
For example, one might permit variables other than 
parameters to be replaced by their values or permit 
the direct use of components of composite objects. 
Similarly, one could investigate how specific 
knowledge about particular composite objects, e.g., 
arrays, might be incorporated into the synthesis 
algorithm. Hopefully, similar theoretical results 
about the synthesis algorithms for such extended 
classes could be obtained. Finally, one might 
explore how such synthesized procedures could be 
altered or "debugged" given new examples. Some 
work along these lines has already begun [l]. 
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Abstract 

In this paper we present a serious 
study of syllogistic reasoning. We 
believe that powerful new developments in 
computer technology (such as the process 
metaphor, the type/ token distinction, 
procedural semantics, pattern recognition, 
and the INTEL 8080 chip) add significantly 
to man's understanding of the universe 
and hence make it possible to break new 
ground in this classic philosophical 
endeavour. The paper itself provides the 
details, and we strongly urge all progres
sive Alers to read it - it would be a 
shame to mi ss out on one of the greatest 
pieces of research carried out since the 
advent of the space age. 

1. Introduction 

Recently there has been a renewal of 
interest in using tried and true logical 
methods for solving problems in artifi-
cial intelligence. What we propose here 
is going back to the original tried and 
true logical method: syllogistic de
duction . There are a number of reasons for 
our decision. First, syllogisms are a 
nicely limited domain, approachable and 
under standable by anybody, even the com
mon man. Second, syllogisms have been 
around so long they are probably by now 
cognitive primitives underlying all other 
reasoning. Third, we believe that re
searchers in AI should not look at more 
esoteric logic s (e.g . propositional logic , 
predicate calculus, CONNIVER) until there 
has been a full understanding of earlier 
approaches. Moreover, much of the so
called power of advanced logical reasoning 
systems (e.g. resolution theorem proving) 
could trivially be achieved syllogistically. 

* This research wa s supported in part by 
charitable donations. 
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In thi s paper we describe a model 
called SILLI which accepts as input two 
premises stated in natural language and 
produces a syllogistically valid natural 
language conclusion. We have chosen to 
use natural language rather than a logical 
notation because for the common man nat 
ural language is very clear cut, but logic, 
full as it i s of bracket s and squiggly 
little symbols, is extremely ambiguous, 
even incomprehensible at times (brackets 
are unnatural (at least that's what we 
think (and we are not alone, either)JJ. 

The SILLI model is comprised of four 
main components: 

(i) 

(ii) 

a natural language front end 
that translates use r~ premises 
into internal notati on; 
a deductive component to actu
ally carry out the syllogistic 
reasoning; 

(iii) a semantic network to encode 
knowledge of the world; 

and (iv) a natural language back end 
which produces the conclusion 
derived from the premises. 

Lets look at these components in more 
detail. 

2. Components of the Model 
2.1 The Natural Language Front End 

This component must interpret natural 
language sentences of the form "A verb B" 
or "All A verb B". Using the revolutionary 
new picture theory of meaning ("a picture 
is worth a thousand words"), we convert an 
input sentence into an analogic represen
tation called a picture.+ Obvious efficiencies 

+A picture is a high l eve l ges talt repre
sen tat i on that compl etely circumvents the 
problems of the usual low-level pixels. See 
Hurtubise (19 76 ) for more details. 



· I 

in storage can be achieved by this method. 
Thus, the sentence 

"Pick up the big red block and 
hit Mary with it." 

would take up only .011 of a picture. An 
other advantage of using pictures is that 
there is absolutely no need to do pragma
tics (this is a well known result from 
computer vision research). Because all 
this is done by efficient parallel pro
cedures, we call our approach to language 
the procedural approach. 

2 .2 The Deductive Component 

This component of the SILLI system takes 
a couple of interpreted premises and deduces 
a conclusion from them. To do this it uses 
two main logical postulates: 

(i) The Active/ Passive Postulate 

If the first (or active) premise is of 
the form "All A something - or - other" 
and the second (or passive) premise is 
of the form "Bis A", then the conclu 
sion "B something-or - other" can be 
derived. Thus, this syllogism is valid: 

a.c.ti v e_: "All Saints Cathedral has 
stained glass windows." 

pa..6.6ive: "Saint James is a saint." 

c.onc.luJ.iion: "Saint James Cathedral ha s 
stained glass windows." 

(ii) The EQ - NP Deletion Postulate 

If there is a premise of the form 
"NPl is NP2", the phrases NPl and 
NP2 are equivalent. Either can be 
deleted and replaced by the other 
anywhere in any premise. For example, 
in the syllogism 

a.c.tive_: "The temperature is 90°F." 
pa..61.iive: "The temperature is 32.2222°C." 

c.onc.lu.6ion: "90°F is 32.2222°C." 

we have used the EQ - NP deletion pos
tulate to delete "the temperature" from 
the passive premise and replace it with 
"90°F" from the active premise . 

2.3 The Semantic Network 

The semantic network component of the 
model is used to check user's statements of 
the form "A is B" for real world validity. 
The network consists of a bunch of nodes and 
arcs connected up into a generalization 
hierarchy. There are several kinds of arcs 
in this hierarchy: IS-A, A-K-0, IS, SUP, and 
ISA. The distinctions separating these arc 
types are subtle and are unjustly ignored 
in most semantic networks. 

Figure 1 shows a sample network: 
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Figure 1 - A Sample Network 

To see how the semantic network com
ponent is used by SILLI, lets make the sim
plistic assumption that the above s ampl e 
net is the model's entire knowledge base . 
Now, if the user were to say something like 

"John is a graduate student." 

then this would not check out with the · facts 
and the error message 

"You have made an error." 

would be printed out. Note that error mes 
sages, too, are in natural language, a nice 
piece of generality. 

2.4 The Natural Language Back End 

This works just like the natural lan
guage front end, only in reverse. 

3. Implementation 

Unlike many AI systems, our model has 
been implemented. Our progra~are all en
coded in a structured production system, 
consisting of structured productions of the 
form 

IF ~ THEN W ELS E 8 ; 

where~. w, and 8 are LISP procedures. 
Structured productions are better than 
normal productions because they have a 
natural syntax, they have two right-hand 
sides (W, 8) for each left-=--!land side (~), 
and they give the power of arbitrary LISP 
procedures to productions. 

Our data structures are different from 
our programs because data and programs are 
quite distinct in real life (as opposed to 
the cloistered academic environment where 
sometimes data and programs can be the same). 
Data are stored in LISP lists because these 
are in widespread use throughout the AI com 
munity and also because they are flexible 
enough to store anything if you really try. 

We have found that this combination of 
structured productions and LISP lists is 
very easy to use and, moreover, allows the 
construction of programs that are not only 



efficient in time and storage, but are also 
readily understandable to the user. In fact 
our SILL! program has the following com
plexity bounds: 

SILL! program, the equivalent bound for the 
Runge-Kutta method is "mB". What we would 
like to know is: with suitable analysis 
of round-off and truncation error (perhaps 
using backward error analysis), will we 
ever be able to show that B = mB? lowe.1t bound: 3 

1.,pace.: o(n log n) 

upp e.Jt bound: o(log (log (log))) 

time.: lowe.1t bound: o(n log 
2 

(log n )) 
4. Sample Run 

uppe.Jt bound: o((log n) (log n)) 

We are still trying to precisely work out 
lower and upper b0unds on understandability, 
although we suspect polysyllabic bounds in 
both cases. 

At last we arrive at the moment of 
truth (or at least not falsity). Lets 
look at how SILL! handles a set of real 
syllogisms. We think the following actual 
run speaks for itself, although we will 
annotate the output (using comments sur
rounded by/* - -- */) to indicate inter
esting points, much as is done in chess 
protocols (see any SIGART Newsletter for 
more details). 

A note of interest here is that these 
bounds seem to be related to the bounds dis
covered by numerical analysts for Runge
Kutta methods of order 6 that solve systems 
of stiff partial differential equations 
(PDEs). In fact for any bound "C" of our 

1. 

2. 

3. 

~c 
.LOGIN 1978,0721 
ENTER PASSWORD 
DDWDJI 
READY 

.R LISP 

/* The password is hidden from the reading public to protect*/ 
/* our computer dollar budget. */ 

*(INVOKE STRUCTURED_PRODUCTION_SYSTEM_PROGRAMS_AND_DATA_STRUCTURES) 
NIL 

*(START THE SYSTEM UP NOW PLEASE) 
WELCOME TO-THE SILLI-WORLD 
ENTER PREMISES 

#MARY HAS BROWN HAIR. 
#MARY rs STANDING. 

THE CONCLUSION rs 
¢STANDING HAS BROWN HAIR. 

ENTER P~EMISES 
#t§r-~=f (FAST MODE NOW PLEASE) 

0 - -

OKEY DOKEY 

#ALL MEN ARE CREATED EQUAL. 
#JOHN rs A MAN. 

/* The SILL! system is started up. */ 
/* The syllogisms have been numbered for*/ 
/* the purposes of identification. */ 

/* These are the user's premises. 

/* This illustrates the EQ-NP deletion 
/* postulate. 

/* Here we use the macro characters 
/* t§r-~=!

00 

to temporarily call LISP 
/* from O within SILL!. In this case 
/* we have SILL! stop printing "ENTER 
/* PREMISES" and "THE CONCLUSION IS" 
/* and instead just use f and¢. 

*I 

*I 
*I 

¢JOHN rs CREATED EQUAL./* This illustrates the active/ passive postulate. 

*/ 
*I 
*! 
*I 
*! 
*! 
*I 

#ALL STUDENTS LAID END TO END WOULD STRETCH AT LEAST 
FROM HERE TO NORTH BAY. 

#JOHN rs A STUDENT. 
¢JOHN LAID END TO END WOULD STRETCH AT LEAST 

FROM HERE TO NORTH BAY. 

/* Premises and conclusion */ 
/* can be more than one line. */ 

4. #JOHN WANTS TO BE THE PRESENT KING OF FRANCE. 
#THE PRESENT KING OF FRANCE rs BALD. /* A classic problem, handled*/ 

/* well by SILL!. */ 

s. 

6. 

¢JOHN WANTS TO BE BALD. 

#MARY REALLY THINKS SHE rs IT. 
#IT rs RAINING OUTSIDE. 
¢MARY REALLY THINKS SHE rs RAINING OUTSIDE. 

/* SILL! handles this without*/ 
/* needing to resort to com- */ 
/* plicated structures such as*/ 
/* belief spaces. */ #PICK IT UP. 

#IT rs SUCH A PRETTY WORLD TODAY. 
¢PICK SUCH A PRETTY WORLD TODAY UP. /* Note the displacement of the particle*/ 

/* "up" in the conclusion. This flaw */ 
/* is discussed in section S. */ 
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7. #ALL MEN SHOULD LAY DOWN THEIR ARMS 
AND LIVE IN PEACE AND BROTHERHOOD. 

#WHAT IS A MAN? 
¢WHAT SHOULD LAY DOWN THEIR ARMS 

AND LIVE IN PE4CE AND BROTHERHOOD? 

8. #NO MAN IS AN ISLAND. 
#HE IS A REAL NOWHERE MAN. 
¢HE IS A REAL ANWHERE ISLAND . 

/*The "?" in the concl usion is preserved* 
/* because of our sophisticated natural * 
/* language back end. * 

/* SILL! can handl e negation. */ 

9. #ALL MEN ARE MORTAL. 
#SOCRATES IS A MAN. 
¢YOU HAVE MADE AN ERROR. 

/* SILL! picks up the user's mi stake - since */ 
/* Socrates is dead, how can he still be considered*/ 
/* to be a man? */ 

" C 
.KJOB /* This ends the sample run. We do not show our final statistics 

/* on the run due to acute emb arrass ment. 
*I 
*I 

5. Evaluation 

Anybody looking at the performance and 
competence of SILL! on these . examples has 
to be impressed. The deductive compone nt 
handles a wide variety of syllogism~ us
ually with great aplomb and amazing grace 
and without combinatorial explosion. The 
natural language front end not only does 
what the user wants but also what he means 
to want; and vice versa for the back e nd. 
The system is very robust, able to overcome 
erroneous input (e.g. syllogism 9) with 
ease. Finally, SILL! seems to be well de
bugged. In fact, the only bug, if you can 
call it that, which manifested itself in 
this run was caused when we inadvertently 
hit "C after syllogism 6. This just in
dicates that we are still human and haven 't 
become dehumanized and depersonalized, an 
ever present danger in AI research that 
(unlike ours) attempts to down grade mankind 
by simul ating aspects of humanity that are 
inherently so warm, mo ist, and fuzzy that 
no computer could ever do them. 

Of course there are still a few unsolved 
problems. For instance the syllogism 

a.c..t.lve.: "All student s laid end to e nd 
would stretch at least from 
here to North Bay." 

pa.-0-0.lve: "Students are people." 

c.onc.lu-0.lon: "All people laid end to end 
would stretch at least from 
here to North Bay . " 

does not work (and in fact will send SILL! 
into an infinite recursive descent) despite 
its obvious real world validity. Th ere are 
also minor difficulties in the natural 
language processing, as illustrated by the 
particle displacement in syllogism 6. A 
final criticism that nit-picking nay-sayers 
(such as the referees) could use to den
igrate our approach is that "a few of the 
syllogisms in the sample run are"a bit~s
pect" (emphasis mostly mine ) . Even if this 
is true, it must be admitted that they do 
exist (otherwise we wouldn't have been able 
to use them) and they must therefore be ex 
plained. The test of any theory is that it 
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account for all the facts! Subtle problems 
notwithstanding, we believe our theory does 
just that. 

6. Conclusion 
Interesting as it is from a theoreti

cal standpoint, this research as it now 
stands has only a limited numb er of prac
tical applications. However, we have plans 
to vastly expand the usefulness of SILL!. 
We believe that methods similar to those 
used for syllogis ms will also work well 
for the closely related areas of limericks 
and sonnets, and may be applicable to less 
structured domains such as blank verse, 
free verse, or even computer vision. The 
long term future of this research is assured. 
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