
CAflA[]IAfl SOCIETY f[]A
comPLITATIDflAl STLI[]IES
[]f lflTEllluEflCE
SDCIETE CAflA[]IEflflE [JES
ETLI[]ES []~lflTEllluEflCE
PAA OA[]lflATELIA

Proceedings of the
SECOND NATIONAL CONFERENCE
Compte-rendu de la
DEUXIEME BIENNALE

University of Toronto
TORONTO, ONTARIO
July 19-21, 1978
19-21 juillet, 1978

/

ic..:1cs,...:u,. ,: GTEh ,;cir.·"'" l"E .. ,
U . ' . ' "". ~ _.,,,,~ l _/\ I ,/~l(l HOOM ' ,,1,v...:,,,,,rYc,·,1,1·,r,,cL''U ., i

t)b2 ')'){'"' i ', •• "1 r , • ._ ;. l")IA
. •. __ ·"- _ -v..'..i.) J.UiAfrJ l.J.:i. J l

VANCOUV / ·
L

1·· u .L, , , L, ,,1,kuA V6T 1 Z4

PROCEEDINGS OF THE SECOND NATIONAL CONFERENCE
OF THE

CANADIAN SOCIETY FOR COMPUTATIONAL STUDIES OF
INTELLIGENCE

COMPTE-RENDU DE LA DEUXIEME BIENNALE
DE LA

,, ,, '

SOCIETE CANADIENNE DES ET UD ES D'INTELLIGENCE
PAR ORD H~ATEUR

pre$ ented in cooperation with
presente en cooperation avec

ASSOCIATION FOR COMPUTING MACHINERY
SPECIAL INTEREST GROUP ON ARTIFICIAL INTELLIGENCE

UNIVERSITY OF TORONTO
TORONTO, ONTARIO

July 19 - 21, 19 78
19 - 21 ju i 11 et , 19 7 8

I

1 . .

. , ··1

.1

. I

~ 1978

by Canadian Society for Computational Studies of Intelligence
par Societe Canadienne des Etudes d'Intelligence par Ordinateur

Copies of these Proceedings can be obtained
at a cost of $12 per copy from

Professor C. Raymond Perrault
Department of Computer Science
University of Toronto
Toronto, Ontario
Canada MSS 1A7

PREFAC E

At the f ir s t co nfe r ence o f the
Cana di an Soc i e t y f or Computation a l Stud ies
of Int e ll igence he ld in Van couve r j n 1976 ,
i t was dec ided th a t the organi zation would
hold a na t i on a l mee ting e ve r y oth e r year.
Th e obj ec tives o f the conf e r ences are t 0
fos t e r th e de ve lopm ent of Artifi c ial
Int e lli ge nce and Cogn i tive Science in
Cana da and t o prov i de a f orum f or th e North
Amer i can AI Commun i t y during years wh en no
Interna ti ona l Joint Con fe r en ce i s he ld.

Many peopl e h av e he lp e d t o make th e
Second Na t iona l Co nfe r e nce poss ibl e . Te d
El cock was cha irm an of t h e Progra mm e
Co mm i tt ee wh ich a l so i nc lude d J . S . Br own ,
Go r don McCa ll a , Je rry Hobb s , St even Zucke r,
a nd Ray Re it e r. Al an Ma ckwor th k indly
ag r ee d to give the key not e addr ess . Th e
De pa rtm ent of Comput e r Sc i e nce a t th e
Univ e r s i ty of Toront o and it s chairman ,
J . N. P. Hum e , provi ded us with a base of
opera ti ons . Pam Li nn ema nn, Te r esa Mi ao
a nd Winni e Gree n go t u s ove r a dm i nis tr a t ive
hu r dl es. Gordo n McCall a pr e pa r e d th e
proceed i ngs . Th e cover des i gn is by
Ma ri o Ca r va j a l t hro ugh th e co ur t esy of
Gag~ Educat i ona l Publi s h i ng Ltd. Al ex
Bo r g id a and th e De par tm e nt o f Comput e r
Sc i e nce stud ent s J. All e n, R. Cohen,
M. Horri gan, H. Levesq ue , C. Reason,
P. Schn e i der , J . Tsotsos and H. Wo ng co n
trib ut ed i deas a nd peopl epower wit hou t
whi ch t hi s co nfere nce could never have
bee n he l d. Many warmes t tha nk s to a ll of
th em.

C. Raymond Pe rr a ult
Ge ne r a l Chai rm an

PREFACE

La Soci e t e Cana di enn e des Etudes
d'Int e lli ge nce pa r Ordinate ur dec ida a so n
pr emi e r c on gr es qu i eut l ieu a Vanco uver
en 1976 d'organi se r de t e ll es ren contres
tous l es deux ans . Le but de ce s r eunion s
es t de promouvoir l' ep anou issement de l a
r e ch e r che en l'Int e lli ge nc e Arti f i c i e l le
e t e n Sci ences Cogn i tives au Canada, a in s i
qu e de f ournir A ce tte commun aute un fo rum
nord- ame ricain t haque annee ou n' aur ai t
p as li eu un e co nfe r e nc e i nt e rnat io na l e .

La t enu e de ce de ux j ~me c on gr es a urai t
e t e impo ssi bl e sans l a coopera ti on d 'un
gr and nombr e de pe r s onn es . Te d El cock a
coordonn e l es effo rt s du co mite r espo nsabl e
du progr amm e . J. S . Brown, Gord on McCa ll a ,
J e rr y Hobb s, St eve n Zuc ker , e t Ray Re i ter
e n ont au ss i fai t pa rti e. Al an MHckwo 1·t h
a ge nt i ment co nse n t i a serv ir de co nf6ren
c i e r i nv ite. Le departemen t d'in fo rm a t i qu e
de l'Universi t e de Tor on to p a r l a voix de
s on dir ec t e ur, J .N .P . Hume, nous a fo ur ni
une base d'op era t ions. Pam Li nn emann ,
Te r esa Mi ao e t Winni e Gr ee n nous ont ajdes
s ur mont er un e kyr i el l e d' obstacles
admin is tra ti fs . Gord on McCa ll a est
r es pon s abl e de l a p rep a r a t io n de ce vo lume.
Le gr aphiqu e de l a co uvertur e es t de Mari o
Ca rva j a l, gr acie use t e de Gage Edu ca ti ona l
Publi s hi ng Ltd. Al ex Bor gi da ai nsi q ue l es
e tudi ant s J. All e n, R. Co he n , M. Horriga n,
H. Leves que, C. Reason , P. Sc hn eider,
J. Tso t s os , et 1-1. \\lo ng on t cont ri buc l e ur
i mag in a tion, l e ur t e mp s , et l e ur la beur .
J e l es e n r eme r cie t ou s .

C. Ray mond Per r ault
Directe ur

I

.: I

l

-~

Officers of the CSCSI/SCEIO

President

Professor Richard S. Rosenberg
Department of Computer Science
University of British Columbia
Vancouver, British Columbia

Vice-President

Professor Zenon Pylyshyn
Department of Computer Science
Universi ty of Western Ontario
London, Ontario

Treasurer

Professor Wayne Davi s
Department of Computing Scie nce
Univers ity of Alberta
Edmonton, Alberta

Secretary

Professor John Mylopoulos
Department of Computer Science
University of Toronto
Toronto, Ontario

Officers of Second National Conference
of the CSCSI/SCEIO

General Chairman

Professor C. Raymond Perrault
Department of Computer Science
University of Toronto
Toronto, Ontario

Programme Chairman

Professor E.W. Elcock
Department of Computer Science
University of Western Ontario
London, Ontario

Editor of Proceedings

Professor G.I. McCalla
Department of Computer Scien ce
Univ e r s ity of Toronto
Toronto, Ontario

Programme Committ ee

Ted Elcock (Western)
John See ly Brown (Xerox PARC)
Jerry Hobbs (SR I)
Gord McC a lla (Toronto)
Ray Reiter (UBC)
Steve Zucker (McGill)

CONTENTS

Problem Solving I (Wed., 9:00)

Sleuth: An Intellige nt Noticer
S. Rosenberg

A Test-bed for Developing Support
Systems for Information Analysis

J. Stansfield

Loc a ting the Source of Unification
Failure

P.T. Cox

An Analysis of Theorem Proving
by Covering Expressions

L.J. Henschen, W.M. Evangelist

Na tural Lan guage I (Wed., 10: 40)

A Simultaneously Procedural and
Declarative Data Structure a nd
It s Use in Natural Language
Generation

D.D. McDonald

Knowledge Identifi cati on and
Met aphor

R. Browse

Representing a nd Organising
Factual Knowledge i n Proposition
Networks

R. Goebel, N. Cercone

Capturing Linguistic Generaliza
tions in a Parser for English

M. Marcus

Representation I (Wed., 4: 40)

Semantic Networks a nd the Design
of Interactive Information Systems

J. Mylopoulos, H.K.T. Wong,
P.A. Bernstein

Or ganization of Knowledge for a
Procedural Semantic Network
Formalism

P.F. Sc hneider

On Structuring a First Ord er
Data Base

R. Reiter

The Genetic Graph: A Representation
for the Evolution of Procedural
Knowledge

1

11

20

30

38

48

55

64

74

81

90

I.P. Goldstein ... 100

Vision I (Thurs., 9:00)

Low-Leve l Vi sion , Consistency,
and Continuous Relaxation

S. W. Zucker

Photometric Stereo: A Reflectance
Map Technique for Determining
Object Relief from Image Intensity

R.J. Woodham

Image Segmentation and Interpre
tation Using a Knowledge Data Ba se

S.I. Shaheen, M.D. Levine

The Extraction of Pictorial
Features

A.H. Dixon

Rep r esentation II (Thurs., 10:40)

Asp ec ts of a Theory of Simplifi
cation, Debugging, and Coaching

G. Fischer, J.S. Brown,
R.R. Burton

Knowledge Structuring: An Overview
M.S. Fox

Re- Repr ese nting Textbook Physics
Problems

J. McDermott, J.H. Larkin

Representing Ma thematica l
Knowledge

E.R. Michener

Le a rning (Thur s., 3:00)

BACON.I: A General Discovery
System

P. Langley

Learning Strategies by Computer
Y. Anzai

A Computer Program that Learns
Alg ebraic Procedures by Examinin g
Examples and by Working Test
Problems in a Textbook

D.M. Neves

107

11 7

1 25

135

139

146

156

165

173

181

191

. l

. I

I

I .. J

·. I

Natural Language II (Fri., 9:00)

Co-operative Responses: An
Application of Discourse Inference
to Data Base Query Systems

S.J. Kaplan, A.K. Joshi 196

A Progress Report on the Discourse
and Reference Components of PAL

C. Sidner 206

Participating in Dialogues:
Understanding via Plan Deduction

J.F. Allen, C.R. Perrault

Analyzing Conversation
G.I. McCalla

Vision II (Fri., 10:40)

Hypot hesis Guided Induction:
Jumping to Conclusions

E.C. Freuder

Explorations in Visual-Motor
Spaces

Z. Pylyshyn, E.W. Elcock,
M. Marmor, P. Sand er

Using Multi-L eve l Semantics to
Understand Sketches of Hous es
and Other Polyhedral Obj ec t s

J.A. Mulder, A.K. Mackworth

A Procedural Model of Re cogni tion
for Machine Perception

W.S. Have ns

Probl em So lv i ng II (Fri., 3:00)

Approac hes to Object Selection
for General Problem So lvers

P. London

Experimental Case Studies of
Backtrack vs. Waltz-Type vs.
New Algorithms for Satisficing
Assignment Problems

J. Gaschnig

Di stributed Prob l em So lving: The
Contract Net Approach

R.G. Smit h, R. Davi s

Progr ammin g (Fri., 4:20)

De scribing Programming Lan guage
Concepts in LE SK

D.R. Sk u ce

TO NAL: Towards a New AI Lan guage

214

224

233

236

244

254

263

268

278

288

D.J.M. Davies 296

Examples of Computations as a
Means of Program Desc ription

M.A. Bauer 304

SLEUTH: AN INTELLIGENT NOTICER 1, 2

Dr. Steven Rosenberg

Ma ssac hu setts Institute of Technology
Artificial Intelligence Laboratory

Abstract

Traditionally, programs in AI hav e
t1s ccl mi c ro - worlds with completely defined
c,c m:rnti cs. ~Inst real wor'ld domai ns differ from
thc s r micro - worlds in that they hav e an
incomplete fActual cl.atabase which chan2es over
time. llncl c r s tanding - in these domains can be
thour.ht of c1s the generation of plausible
i n f c r c n r c s h h i c h a re a·b 1 e to us e t he fa c t s
c\Viiil;ibJc, c1 11cl r es pond to changes in them.

A t r c1 cl i t i o n a 1 r u 1 e i n t e r p r e t e r s u c h a s
Plann e r ca n be extended to construct plausible
inf e r e nces in these domains by A) allowing
a s s ump t i on s t n be ma de i n a pp 1 y i n g r u l es,
rP ~, 111 tin g in s implificatio ns of rule s which can
he 11 s r·(l in ,111 in co mpl ete database; B) ~!onitorinr,
the a11trreclent s and consequents of a rule so that
in fr r r nrc s c.:i n be maintain ed over a changing
d.:i I a \,.1 ~. r.

Tl1 r rc s ul ting c hain s of inference provide a
clyn;imic d e s cription of an event. This allow s
general rc.:isoning processes to be u sed to
1111 clrn l .:inc\ in clomain s for which l a r ge numbe r s of
Sc hrma - Jik c t e mplate s have seemed the best model.

Pa rt I

_Jn t ro'111 r tio11: Supp ose that you -we re a farmer, ancl
Cil,ll 1-:rr k r nu mu s t make de_cisions about your
1,:Jlf'.1t . cr op h,1s ed on the the price you - expect to
,;Ct for it. You formulate the hypothe sis to
ro11r s cl f: "wi 11 the price of wheat rise?" ·in
m,1king lhi s clrci s ion you have available a strea m
o f r on s I ii n ti r c ha n g i n g i n f o rma t i o-n rang i n g f r om
~cc kl)' r rpnrts o n j lobal demand to your own
l-11011"1 ecl,:e a bout the weather and state of your
c r o p . A s ii n a i d i n ma k i n g y our d e c i s i o n y o u_
h'Oll]Cl] ik e to know Whenever these facts can be
organi ze d into a descriptive sce n~rio ~hich
s up r o r t s r our hypo the s i s..

/, '/'/,i_, rr .,rrirrl, u:n., ~"l'f1nrl,•d in rnrl hy /IHP/1 ·,,nnlrn"I NOIHl/1 -

7!i - C- Oli1:I .

2. Thi ., rf' .<f'nrrl, u:n .< nid,.d . /, ._y mlln_y fruitful rm11,rr.,n1ia11., u,ith

1/,r mr111hrr., nf tl,r Ill /nh, f"'rlfru./nr/y /rn Cn/d,1ri11 1t11d Jim

Stn11 .,_r;,./,1_

1

This i s a task which cal'l Int e llig e nt
Noticing. It i s the sort of thing that we all clo
1d1 e neve r we fol low reports of develop-fng eve nt ,,
s uc h a s e le ct ion campaigns. It is a type of t;1 s k
1d1ich can be clifficul t to do when the amount nf
informat ion available is 'large a nd change s
freq u en tl y. For i n stance, i f you were ch ,Hg e cl
with preparinR the Pre~ident•s · 9aily n ews
s ummary, you would ha.veto read hundr eds of
r e port s eac h morning, and analyz e them in
s ufficient detail to summari ze only- tho se part s
which we re r e levent to the pr es ident' s concerns.

In this paper I will discuss the des i Rn of ;i
pro g r a m, SJ e uth, for perfor min g in t e l I i~ c nt
noti c in g. The program's intend ed r o l e i s tn
se rv e a s a consultant to a (lecisio n ma ke r, hr

se rvin g as an int e lli ge nt not.ic er. Sl e uth' "
purpose i s to r ecogn_i ze eve nt s in common s e n se
domain s which s upport the hypoth eses it i s g iv e n,
a ncl to keep th ese sce nario s current 1<1hi I e t he
information c ha ng es. Ideally, Sleuth s houlcl hr.
s nrnrt e nou g h to alert us only when clisparatc
pi eces nf information can be conn ec ted in a
pL1u sahl e sce nario. Thus SI euth mu s t be more
pm-' crf ul than a keyword_ type o(syste m. Sleut l1
mu s t hr able to make inference s sn- th;it th e
numher nf f;il se alarms g iv en i s low.

Gene r a l I s s ues in Int e lli gent ~nt i c ing

" Co mmon s ense domain s" ar e th e r r.il l i,;or lcl
clomain s 1,hich everyo ne · und e r s tands; wh i c h cl on' t
requir e great problem so lvin g s kill s . rnmmon
se nse clnm.:iin s s hare certain feature s . They arc

Al In co mpl ete
P.l lln s tabl e

Ther ;ire incomplete becau se not al l th r.
inform;i ti on 1,: e might nee d in ord~r to m,1~c ,111

inf ercnre i s available at a particular timr.. For
i11c,tc1nc e , if you mu st decide if the price o f
1d1C' ilt i :. going to rise, you may kno~ only th e
s upply, ancl not the demand for wheat. Th e y arc
un s table s inc e the particular s ub set of
information available can c ha nge fairly rapidly
in the r ea l world. This gives repre se ntation s of
the se domain s a feature of in stab ility .

·1

Each week the farmer will receive diff ere nt

report s concerning his wheat crop. Each of th ese

may affect hi s calculations concerning the price

o f 1, hea t. Ho weve r, si nce the variou s reports

arrive a t diff e r e nt times, at any one time s ome

pi eces of information necessary for makin g a

ctici s ion may be missing.

Knowled ge based approaches to under ~tanding in

co mm on se n se domains have focused on the use of

frame s or s cripts (Cull ingford, 1977; De Jong,

19 77 ; Rrig e r, 19 77) .. This has been a s uccessfu.l

ap pro ac h in domains with well str uctur ed

se manti rs in whic h new information can be vi e we d

a s i n s t a ntiatin g s tatic frames.

ll o11r\·e r, for complex eve nt s it is i mp·oss i bl e

tn gi\'e ,,tilt i c desc riptions which enco mpass a ll

a l t.ern .1 ti \'CS. In tel I i ge nt noticing ha s a prob! e m

s olvin R flRvor In that the goal is to try a nd

crr.qt e .1 pla11 sa bl e s cenario out of whatever

piec es of inf o rmati o n. happe.n to be available.

Th e dc s i Rn o f Sl e uth extends traditional problem

s olving i!pproac hes to common se nse domain s. It

tr ys to pr ov id e a mo re unifi e d view of problem

s olvin g a nd co mm on se.n se under s tandin g by

co n s id cr in R the creat ion of eve nt de sc riptio n s

fr o m a Ri \'e n set of asse rtion s to inv o lv e a

se ri es n f inf e r e nces which link these asse rti o n s

in s upp n rt of so me central hyp,ot hes i s. The

ju st ifiration for t hi s dynami c view of event

in s t a nti at i on d e ri ves fr om a n exa mination of t he

prop e rti e~ of c omplex event s.

/\l E\·rnt s have f11zzy bound a ri es.

(on s id r r a c omplex

i ll\' , I s i o n of J. eha non.

till ,, r\·e nt ? h'e co ulcl

eve nt , s uch as t he recent

What are the compo ne nt s o f

d e fin e it as co ns i st ing of

,t l 1 a r 111 e cl c 1 a s hes between I s r a e l i force s a n cl

ralr s t· ini a n s a ft e r I s ra e li troop s crossed t he

hordcr. Jl m:eve r, so me peo pl e might al so includ e

t l1 c p rev i ous raicl in to I s rael which provok ed the

inva c, io11. h e could go eve n further, and expa nd

nur d rsr ri ptio n to in clude the Unit ed Natio n s

mer.1 i ll f. :, on t l1e in vas ion, the attitude of Syria,

n r eve n the eve nt s that l ed to the c r eat ion of

th e ·r .1 lr s tini an r ef ugees. There i s no fixed

clef i n i I i On Or ~. in g l e fr a me for th i S e \I e n t. I. i I; e

111 .1 n)' o t h Pr s i t ha s f u z z y b o u n cl a r i e s . LI s i n R

inf rrr:n,rs t o I ink t he available f acts yie ld s a

d)' n a 111 i c d r s c r i p t i o n f o r a n e v e n t . T h e
"l·, 011ncl.1rie :; " ca n be exte nd e d at will by making

furtl1r-r infrr c nc es to in c lude more facts.

H) l:\'rnt.s ilre not "things".

Fo r r x a mp l e , cons id.er I s. r a e 1 i v e r s u s

l'al es t.inian cl csc ription s of th e inva s ion.

lnf e r c nr e pro cesses are flexibl e e nou g h to

capture thi s di s tinction by applying diff e r e nt

rul es of inf ere nc e to so me initial hypoth es is to

rr nrr a t r diff e r e nt c hains of inf e renc e linking

ell ffercnt se t s of a sse rtion·s in support of the

2

same ce ntral hypothesis.
C) Eve n ts have variable instantiations.

For any particular kind of event, a different

s u\Jse t of features may · be missing for eac h

in s tance. By u s in g chains of ·inf e rence to

con n ect assertions we can eva luat e the

plausibility of any particular event de s cripti o n

without nec essa rily having to s pecify befor e hand

all acceptable partial lnstantiatJons.

D) Anything could be rel'evant.

If we i g nor e plau s ibility, .we can create an

event d esc ription with a lmo s t any set o f

a ssert ion s . For exa mpl e , if we follow .s port s ,: e
mi g ht po s tulat e a sce nario in which th e Texas

Ril ngers win t he worlcl series. We do not wa nt to

cxc l ucl c s uc h far f e tched sce narios a. priori from

th e range of poss ibilities. Indeed, we wi s h t o

do ju s t t he o ppo s ite. We would lik e to r eta in

t he ability to create event descr:iption s which

involv e a give n se t of facts, and th e n j ud Re

1,•hcther t he sce na rio i s pl a us ibl e o-r not . Thi s

nllo1v s 11 s to adj u s t the false alarm rate to

co rr es pond to th e expected uti 1 i ty- of· t l1 e rc s ul t.

Thrr r arc spec ial JHO?l e ms in r ecog ni z in g ;i n

evr n t which ar i se from it s eise n tia ll y dynami c

na t ur c . f or in s La nce the assertions co mpri s in g n

pa rti c ul ,H even t may be added to the d atabase

on·r a pe ri ocl of time. Thi s correspond s to fa c t

that evr nt s occ ur se qu e ntiall y over time.

Seq ue nti a l in :;tant i a ti on of an eve nt ca n l ea d t o

prohl c m~ ..

Al Curr e nt assertions may become ob s ol e t e,

cha nge or lle d e l eted before t he final compo ne nt s

of th c d esc ription i r e added to the datah ase. An

ne nt .cle s cript.ion i s built on s hiftin g s a nd s , s o

t o s pr.1k , a nd in ge ne r at in g th ege d esc rip t i o n s wr

11111 s t hr a hl c t o r es pond t o t hese c han ges .

P.l r.o nclitionr1 .lit)' in th e r ec ogniti on process.

ldtrr c 1·.'r go cl c pe ncl s on what ha s go ne before. For

exam pl e , in a condition call~cl Fr ost Hea vin g , a

scquen,e of thaw s a nd s ub s~qu e n t frGezes ca n tcar

t lir root s of the wint e r wh ea.t c r op. If hm1cve r,

a t ha1·.' i s fnl l owed b y apother thaw, t~c next

fr rnr 1d 11 not damage the roots. Co nsrq ur ntl y,

tlw orclrr in ~:hi c h t he freezes a nd tha,: s oc c ur i s

.i11 ::. t as important a s th e numb e r. Some ho,., wr mu s t

~rep a h i s tory of th e calcu l a ti o n. Thi s ,1111

.1Jlm: 11 s to cl r t er min e which f ea tur es to attend t o

hasc cl on tl1 e f ea tur es we have a l r eadi sec 11.

Part I I

In thi s sect ion wi ll discuss ho1v a

tr acliti o n.11 rea s oning prog ram, s uc h ilS Pl a nn e r,

ca n ll c ex t. e ncl e cl for u se in a domain ,.' ith

i ncn mpl ct.e information. Con s id e r, for exa mpl e ,

11 01·: a f.1 rmc r, (l et ' s ca ll him Farme r ~la c Dona lcll,

mi g ht go i1ho11t makin g weekly dec i s ion s co nce rnin g

hi s crop of wheat. He formulates the hypothesis:
""' ii·! the price of wheat rise?" . If he can
ge ne rat e a sce nario from available information
which s upports this hypoth.esis, he will adopt one
set of farming s trategies; -if not, a nother. If
Farme r Macdonald ha s a consultant program which
re s r111ble s Planner (Suss man·, Winograd, a nd
Charniak, 1971), he mfght formul'ate the problem
a s fol l ows:

(Thgoal (price - increase wheat) $?T)

Thi s 5:oal i s a hypot he s i s about the state of
the wor ld . Th e con s ultant mak es inference s o n
th e current se t of a ssertions to see if an eve nt
cl csrr iptinn s upportin g it can be generated. h'e
ran define an e vent as being a set of asse rtion s ,
ju ,, 1i ficd h y rule instances, which s upport s ome
central h)' poth es i s. If far mer · MacDonald' s
a ss i s t a nt know s the following theorems a nd
asser tion s , it will be ab le to co n s truct a
p 1 a u s i h 1 e c li;i i n of i n fer e nc es:

<T hco ns e Thml <x) (price- incr ease $?X)
<Thor CT l1goa l (S up pl y-& - de mand $?X)

<T hgoa l (Spec ula tion $?Xl)l

<Thcon s c Tllm 2 (x) (Suppl y-& - Dema.nd · PX)
(T li e o ml

(<Thand (T hgoa l supply $?~)

(Thgoal dema nd $?X)
(T hgoa l carrtover $?X)

(greate rp (carryover x)
((s upply x) - (d ema nd xl))))

CTl1 ,1s ~. r rt Supply Wh eat 180 ,000,000 bu s he l s)
CT has :; c rt. Dc ma ncl Wheat 170,000,000 bu s he l s l
CT ha ss c rt Ca rr ro ve r Wh ea t l S, 000, 000 bu s he l s)
<T l1 i1 ss n t o lcl - s uppl y wheat 182,000,000 bu s·he l s)

Tl1111l :; pf'c ifi es th a t to s how a pric e in c r ease
fo r 1,: h ril t, e ith er of two s ub goa l s can b e
,1 t te mpt ed. The fir s t s ubgo.a l specifies a patte rn
1v hi c h matr hc s t hat of Thm 2. Thm2 wUl s uccee d
onl y if th e cliffere nce be twee n s upply and cle milnd.
i s g rt·f! t e r thi s ye!lr t ha n la s t. If so, Thml 1dll
~. 11 r,rrcl. !\ pri ce in c r ease for wheat i s inf e r e cl,
,11HI F;i r111 e r ~la c donald can in crease hi s wheat
pl ;i n ti n,: :c,. <No t e that we a r e s implifyin g the
cl ec i ,, i o n pro cesses of a far mer; he has not
l oo ked ;it cl e m~ncl for a lter nate crop~ ; wh e th e r
h i s prnclu c tion cos t s on wh ea t have go ne u.p; no r
what s ort of grow in g seaso n i s predicted.
l·lm.'cve r , our purpo se i s not to s how how Pl a nn e r
rc1 n he use cl in farming, but to illu st rat e so me
l imit a tion s of Pl a nn er.) We can · illus trate t hi s
1:rc1p ll icly a s fo llow s:

3

Wheat Price Increase?

i
tCarryover - (Supply - Demand)

/ I ~
Demand Carryover Supply

Curr e nt de ma nd for wheat is reported weekly by
t he U.S. D. !\., based on dome s tic r e port s, a nd
sa tellite ob se rvation s of foreign l a nd s . Eac h
week , as farm e r Macdonald reads hi s news l et t er ,
he mark s ex i s tin g a sse rtions as old, and add s new
on es .

A) Curr e nt information is markecj a s old, or
erased:

(Thgoal (de mand wh ea t $?X))
(Thassert (old demand wheat $?X))
(Thera se (d e ma nd wheat $?X))

Bl New info r mation i s asserted:

<T hc1s s e rt: <cl e mand whea t 180,000,000 bu·s he l s l

Suppo se that the nex t week, due to ve r y fo u .r
ll'eat hcr in ce ntra l As i a, no sate llit e photo s arc
take n. As ,1 r es ult, t he ~. S. D. A. i ss ues no nn:
de ma nd statist ic s . How e ver, t he o ld d r: ma ncl
va lu e s lrnve a lr ea dy bee n e rased. Thi s time, 11·111:: n
t l1 e co ns ul t c1 nt t hin ks about th e pri ce of ~;hea t,
t il e pr ev iou s inf e r e nces woulcl fail, s in ce no
As s e rtion mAtchin g t he pattern for (Demand h' heAt
FXl ,,: nulcl he fo und .
pr o\'iclrs a s trat eg y.
t he cl ;it;i basc , Planner

For s·uc h cases , Pl a nn r r
I f an assertio n i s not in

wil l try and pr o~e it:

(Thcon se Tilm 3 (x) (de ma nd $7X)
(Thr oncl <<Thancl (thgoa l domes.t ic - de ma nd xl

(thgoal forei gn- de ma nd x))
<Pl us (clomes tic - cl e mAncl x)

(for e i gn- clema-ncl xl n l)

Theo r r m :1 s tat es t hat to cl ecluc e clcmilnd f o r i1

co mmorli t y, fine! t he foreig n ancl cl omf:,,.ti c c\r 111 .11lCl
f o r t hi ~ cn mm ocl i ty, a nd acid th ese to ge th er . I f
ther e a r c a s se rtion s f or for e i g n and cl omrstic
r1 f:' 111 ,1 ml , t h i s t he ore m w o u l cl s u cc er rl. H n ,.: r v c r ,
s inc e t.lw totA I de ma nd r epa rt e e! by t he U. S.D.i\ ,
i s b!l s r cl c,n t he missi ng es timates of f o r e i g n
cl c m,111 cl, Th m 3 w i ,11 a l so fa i 1. I n t h i s ca s e , i f
t h e r e a r c n o o t he r me t h o cl s f o .r p r o v i n g t 11 e
mi ss in g assertio ns, the con sulta nt mu s t g ive up .

·. -I

·1

I

Wheat Price Incr ease?

rcarryover

/
/

/
'/

/

-1'
r
I
I

' (Supply - Demand)

n~,,.;,.,1
,t-

I ~
Carryover Supply

i

Thi s pr ese n ts a fair l y brfttle mec ha n is m for
cleal Ing 1-i th cl omai ns which s hare the propertie s
of incample1 e ness a nd in stability. If the needed
a s s e r t i on s a r c not i n t he ct a ta ba s e, ,a n d : f t hey
ra nn o1 he infer ecl, the consultant w·ill fail. It
1d ll fai l , l1m:eve r, not nece·ssari.ly becau se it l s
1vro11 g, hut hrcause ~ot en.ough · information exists
to 111.:i~e inf e r e nces. People are not quite so
hri1· 1J f· rr.:i,, oners, si nc e they often cannot
pos trnnf' d rc i s ion s until more knowledge · is
il\'ili l a hlr . l'nr ex;imple, Farmer MacDonald mi ght
r r,1,.0 11 th .:i t as J ong a·s the sttpply of ~: heat is
dec r c,1,,i ng, it will be worthwhi.Je to pl a n t mor e
r r ~: .:i r ct I r s s o f cl e m a n cl • (N o t e : I a m n o t
s u5:,:es tin g t lrnt this is t he "best" decision;
mr r e l y t IHI t i t i s a p J au s i b 1 e . cl e c i s I on, fl n cl
repre se nts the sort of flexible reasoning which
people are r.:ipable of.) Bj being willi ng to make
a,,:, umpt ions, Farmer Mac Dorta lei is ab l e to u se a
form of .:i r1ile which can operate on the
infornvition availab l e. Ive might express thi s hy

mocl i fy i ng TJ1m 2 to:

(Thcnn se Tilm 2J\ (x) (Suppl y-.&-de mand $?X)
(T hco ncl ((T J1 .:i ncl (Thgoal s11ppl y $?X)

(T hgoa l demand $?X)
(Thgoal carryover $?x))

(gre.:iterp (carryover xl
((s11pply x) - (demand xl)))

(The! se

<Thor
(Thgoal supply- decrease S?X)
(T hgoal demand - in c rea se S?Xll))l

I f t he f 11 J 1 s e t of. ass er t i .o n s co n c e r n i n R

s uppl)', clr:ma ncl and ·carryover are ·11n availah l e ,
Tm ,'J\ 1101.; ,, t1 ,:Rests e l t her trying to. prove that
:, llppl y lr a s clccreased, or demand· has increased.
Ry c r c,q tin R goa l s that require only a s ub set of
t he assertio n s t hi\t our ·original theor em
r rq11i r rct, Thm2A s tarts to· captu.re our notion of

!J.'..!s.:.._J:.!_!1) l:.!l f i Ca t i O n ,
Thm)J\ d ocs not quite capture our intuiti o ns

cl hn11t si mp! i fication s. A r.ul e s hoµld g ive advice

4

about whi c h other t heore ms can functio n in it s
s t ead as simplif i cations. We can then choo se to
us c t h i s adv i c e or not, de p e·n d i n g on our.
s trateg y. Ry treating si mp lifications like ot he r
goa 1 s in Thm 2J\, we J oose t hi .s intuit ion. Mor e
i mp orta ntl y, whil e we can ex pres s s.i mpli ficatio ns
of r ul es as t heore ms of the sa me soit as oth e r
t h e o r e m s , t he y a r e n o t e q. u i v a 1 e n t t o o t h e r
co n se qu e n t th e or e ms. A sl mpli fi'catio n is not
use d as a s ub -goa l · in insta nti ating a theorem.
ln stecld i t replaces t hat t heorem and is a n
cllterncltive method for proving that theorem' s
goa l S ,ri1•r11 1/,n rn11rlitin11nl drr.u.m.,1n11r.r., nf 111i.<.<ii1 ,r

n111~r~rlr111., . The simplifications , for the purpo ses
of making inferences, are considered eq uival ent
to t h e origi n al t heore m under the give n
cl rc um sta nces.

A rul e ·ca n have more than on e proced ur a l
co 1111t erp!!rt. Part of PlRnner's contr ihuti on t o
thr notion of pattern directed invoc!ltion of
rr1lc s ll' RS the in s i g l1t that a rule has hot h 11

conseq ttr' nt clncl clntecedent meaning. The se c.:in hr
expre ss ed clS two classes of t heorems, clntcrcclent
cl JHl ron :s cq urnt theorems, . which can be i nvokecl hr

cti ffrrr ·nt p,1tterns. Ive ca n extend thi s cl f 11r thr-r
step h)' postulating t hat a rule ha s ano tl1er
bu ndle of pr oced ur al count erparts correspo ndin g
to i ts s implification s.

1\ct ua llr, these simp lifi catio ns will s imply he

other t hcorems.
t h ese ot h er
s implification s ,

However the· knowedge of wl1rn
theorems can be u se d as
and which theorems ran he · us ccl

mu st he r ep r ese nted. Sleuth ccln he vie.:ed cl S .:in
intrl 1 i !,:r nt interpreter which can m.:ike u s r of
thi s mrtak nmd eclge to substit u te si mpler t11eorrm s
for cl rnl e 1·: l1i c h fil il s. The appropriate place tn
s prrif)' this metak nowl eclge i s in a separate cl;i ss
of tl ieo r cms. e.g.

(Tilco nsc Tilm 2 (x) (supp l y-&-de ma nd PXl
(Thconcl

((Tirand (Thgoal . (supply S?Xl)
(Thgo,qJ (clemilnd $?Xl l
(Tllgoal (carryover $?Xl l)

trreaterp (carr)'over x)

((supply xl - (clcm;i nd xllllll

CTha s,,11m F! Tllm~ A (x) <S uppl y- &- rlemand $?X)
(Tll ,:nil l (s uppl y- decrease $?X))
(Tilcavc,qt (Default $?X)))

(Thassume Thm4R (X) (Sttppiy - &-Demand $7X)
(Thgoal (demand - increase $?X))
(Thea vr,q t

(Tlln ot (T hgoa l (s11pply - increa se S?X) l l))

h'c 11 011• introctuce a new class of theore ms, s uc h
clS TJ1m ~A clncl B, indicated by t he J ;i he l TJ1 ass 11mc.

The se theorems contain information concerning

s implifications and assumptions .. A Tha ss umption

will s pec ify A) a goal; · theorems satisfying this

goa l can function as a simplification; Bl the
assumptions involved in using that si-mplificati'on
(ex pr essed as a caveat).

For instance, in Thm4A, proving a decr ease. in

s upply ca n function as a· simplification of Thm2.

Sinc e no assumptions are specified in - the Caveat,

t h e s e c il n b e i g n o r e ct·. T h i s 1 s e x p 1 i c i t 1 y

e xpre ssed in the caveat as a . default. If in stead .

11·_e u se the goa l of an increase in demand as a

s imJlifi ca ti on, as in Thm4B·, we must take ac·count

of the caveat that s uppli mu s t not haye tncr eased
for thi s s implification to be.va·lid.

h'h e n Thm 2 fails, the con s ultant can choose to

m<1ke assumptions which will a ·11ow a

s implifi cat ion to s ucce ed on the a sse rtion s which

are available, by u s ing Thm4A ·or B. A rul e and

it s a ss ociated s impl'ifications are related

throug h the set of assumptions the y e mbody. Wh e n
Fa rm e r M!!cDonald d ec ide s to . i gnore the de ma nd for

wheat, he i s doin g s o beca use he i s willing to

a ss um e tlrnt if de ma nd changes, it will not change

in a dir ec tion whi c h would invalidate hi s proof.
By maki ng exp ! i cl t this notion of ass umption s, we

ca n ex t e nd the li st of options ·available in using
a th eo r e m to ac hi eve a goal.

Aft er Thm 2 fails, si mplifications wi ll be
co n s icl erecl, a nd Thm4A Found. Thm4A first tries

to satisfy t he goa l CThgoal Supply -decrease $?XI.
No assert i o n mat c hin g t hJ s pattern exists.
Hn1,1evf'r, a theorem, ThmS , ca n be u sed to prov e

t hi s a sse rtion.

(Thcqn sc Thm S (x) (Suppl y-·ctecrease X)

CT hco ncl C (Thand (Thgoal Supply X)

(Thgoal old -s upply X))

(Thcond ((greaterp (old- s upp.ly x)

(supply x)) Tl))))

The ,·n lue for old -s uppl y was one of the init-ial

se t of fo ur assertions give n to the consultant.
S i n cc c u r r c n t s uppl y a.n d o 1 d - s upp 1 y · a re known,

ThmS 1d 11 ~. ucceed, and suppo rt the hypoth es i s of
hi g her wheat prices.

s

Wheat Price Increase?/.-~~-'-~~~~~~~--r
1'
I
I

I
'!'Ca rryover -

/

/
/

l)rm~nd
1'

I
I

/

(Supply - Demanct>'--)Tha ss ume

I ~
Carryover Supply

I

Demand

I
Domestic+Foreign

'\ L ,v
Suppl y-dec["" ' ' ' Domestic f(orri,rn

Old-s uppl y

Thi s c hain of inf e rences results in a less

pl a u s ibl e sce nario than on e requiring n o

s implifi cat ion s.

Ive may want to exa min e ·a nd save our sce narios.

There are se veral reason s for this. · We ma y 1-;a nt

to know what assertions and theorems have bee n

u se d, if we evaluat-e the evidence at a l at.er

time. If our hypothes is i s s tabl e, we may want

to mait1tain a r e pr ese ntat.i on as the information
it i s ba sed on chan ges. In a rel.ation.al database

t her e a r e ma ny ways to repr ese nt even t s. \, e

co uld, at eac h step , s imply assert th e necessa r}'

informa tion. How e ver, for each inf e r e nce ma d e
t he r e are potenti a lly man y kinds of information

we may wi s h to save. For exa mpl e , we may wi s h to
indi cate the theorems u sed in inf e rin g a n

assc rtio·n, the assertion·s these theorems u se , a s

well as knowl e dge about which theorems failed.

To r e present this, we ca n a nno ta t e eac h
infer e nc e . Annotation consists of a n organized

se t of assertions of attributes of a lab e l e d
in s tance of a s t e p in an inf e rence. e.g.

(Tha sse rt annotation! goal (pric e- incre ase
wheat))

(Tha ssc r t a nnota ti on! t heo r e ms
(f (Ca rryove r - (Supply - De ma nd)) l l

CTha sse rt annotation! as se rtion s
(Carryover . Supply De mand))

Part II I

Tlie o utcome of an int e llig ent noti c in g atte mpt

in s upp o rt of a hypot hes i s 'is a set of an notatccl

a ss ert i o n s a nd in sta nces of the9rems. The
a nn otatio n available at a ny g i ve n time _repr esc n t

the con s ult ant's "understa nding " of th e cl o ma in .
As th e clilt a base chan.ge s , Sleuth will try a ncl

mai nta in it s hypotheses. This will be ref l ectecl

in .the changing set of annotation associated with

each hypothesis . Sleuth assumes ~upport . for an

hypothesis is conditional on the assertions

available at the time it was first considered.
Hence this s upport must be monl·tored and changed

as the database changes.

Sl e uth extends the concep.t of rule

int e rpr etation by making. the maintenence of goals

a function of the interpretation of rules.

Sleuth cl oes this by giving e.ach active .rule the

a u t o n o 111 y t o r e s p o n d t o c h a n-.g e s i n i t s
e nvi r on mc nt.. As each rule is inter,pr·eted, Sleuth

creates a n associated Sentinel for that instance

of the rule. T h e s e n t i n. e 1 g i v. e s t h e r u 1 e

instance the knowledge of how to respond t-0

changes in its antecedents or conse1uents. The

re s ult i s the mainteoence of hypotheses through a

met hod nf local autonomy.

R.r 11 si ng s e ntin e l s, Sleuth exte nds the ba s ic
idea nf a rul e which is evaluated successfully lf

its antec edents are satisfied at the initial time

of e v;il u ation. A rule instance mu st be

co n t in11ou s ly e nabl ed while it is . used- in s upport

of s ome hypothe s is. Before describ~ng senti ne l s

we mu s t first co nsid er under whi·ch conditions we

wi s h 1"11r rule in s tance to be active.

1) An i n stil nce of a rule u.sed in support of

"o me h y po1h esis must continue to have its

rnnclitinns met while that hypothesis is
SUCCC S~, f ul ,

~ l \,r u rn extend this to theorems which fail.

Th ese ran al s o . be monitored~ as long as the
hypot h c ~ i s i s s ucc essful. Failed rules may

s uccrecl r1 1 s ub sequent times, · if the n-ece ssary

anterccl e n t s are asserted or ,proved.
3> Thi s n otio n ca n be exte nd ed one step

f urt11 n. The hypothesis may have initially

f;ii l(' cl. lln,:ever, the goal of eva·luating that

il)'ll otl1 es i s i s maintained. 1n t hat case, the

theorem ,, attempted are stil l active,. al though no
e vent cl cscription or s cenario exists. If, at a
lat. e r tim e , t h ey can succeed, · they will

rei1ctivi1te th e atte mpt.

Tllf'rr:fnrc 1-.1r can define an active instance of a

r11le il S being any instance for which a nnotation

exi s ts.
Srntin e l s we re first developed by myself a ncl

.T im Str1 11 s f i r lcl as an aid in instantiating frames

a ncl ilUtomAti n g 't he rer.ognition of simr l e

~.e qt1enrc s of e vents within a changing databa s e,
t1 s in g FRI. (Robert s and Go ld stein, 1977). Sleuth

exte nd s thi s by associating Sentinels with the
inl. CrJHPtation of rules, and by making . this t1 s e

of ~e nlin e l s a property of the rule interpreter,

rather th/ln a task for . the user. A se ntinel .

as s ocir1ted 1dth a rt1le instance will look like:

6

Goal:Whcat Price Increase ~~~~~ Sensor

r
fCarryover - (Supply - Demand)

/ I ~ Dem~T/ply
~ "'C

Era s e Se ntinel s Erase Annotation Invoke Goal

A se ntinel ha s se n sors which report to it.

(Sensor => Sentinel). A sensor has a two part

concli tion. The first part, a tri,gger, is a demon

1d1irh rcsoncls to changes in the patt ern that

trigger s it. For example, in the following ca s e,
the tri!;ger responds to any addition or deletion

of patt r. rn s involving the wheat s upply. Tl1 e

~. e n s or then tests the pattern agai n s t s ome

criterion. For in sta nc e,, this sensor is only

inter e st ed in assertions concerning curr e nt wheat

s upply.

\, heat Supply for AprU.J

Se nsor /

~ - -Triggert:: ~
I.:,.,

/,

Test:Currr111 wl,rnt m,,,,ly?- -

~ Se ntinel~
'-J rrn.,r. old wp1,ly

A se ntin el ca n hav e severa l se n s or s which

r e port to it . The se ntin e l is sati sf i rcl whe n

somr. arbitrary logical conjunction· of its s ensor s

s ucceed. Although for the task of maintaining
hypothr s c s more comrlex relations are not neccl ccl,

a se ntin e l has t h e capacity to cvaluat e

c o 11 <I i t i on a I re l a t i on s a mo n·g i t s sen so r s , a n cl e v c n

to r c mo\' e r11rr ent se nsor s ancl pl a·ce ne w ones a s ,1

rr s on~c to these co nditi onal co ns tt'aint s .

Suppl y De mand CarryC'v e r

l 1 l
Se nsor Sensor Se nsor

~ Sentinel ~

Thr: s r. n sors function a s t ri gger s for the

s entinel, ivhich is "data driven". A senti ne l a nd

it s " en s or s are theorems whi c h are created for ii

s pec ifi c purpo s e. Unlik e ot her . theorem s in th<"
clataba se , t hey have a limitec;I lif es pan. A

se ntin e l cr1n c hoo se to erase it s e lf a nd i 1 s

se n s or s upon compl et ing it s goa l. For · the
c u rre nt: task, se ntinel -s are not r ~quir ed when
t he ir assoc iated rule in ~ta nce is no long er
active. In this case, the sentinel will e r ase
it. se l f.

Sin ce t he re will be several as pects of a rul e ' s
c nvir o mr,nt we wi s h monitor ed, we can create a
c lu ste r of se ntinel s, ea ch of which ·i s
r es p o n s ibl e for on e as~ect, s uch as the
a nt.r,ceclc nts . Each s·entlnel i.n the cluster wi 11
know abo ut th e o t her se ntin e l s, If any on e
,, ucccc(ls, t he other se ntinels in the cluster wil 1

be a bl e to e ra se themselves •.

/ Se nsor
Se n tin e !~--~------ -t •

""'Se nsor 1
Se 11 tin e 1 ------------ Se nsor

1
-----------~~Sensor _ -7Sc nti nc l~ -

Sensor

Sl e u t h c r ea tes, for eac h instance of a rul e, a
c l11 s ter of se ntinel s wh.ich monitor t he rul e ' s
c1 n tccc cl c nt s , goa l s , and annotation while t.h e rul e
i s act iv e.

Le t s ex;:i min e what happe ns with a s ucc essf ul
r ul c h' il e n i ts se ntin e l i s triggered.

'.~ucc;1,:ssFUf, /WU•: !INT) SliNTINl•: 1,

C:onl : Wh en , l'riN' l11rr<'n.<<' - ~ - - - - - - - ~ Se nso r
I
I

r ca rr rove r - (Supply - Dema nd)

-/// I ~.
/Jrmn11rf Carryove r Supply

",,~ l / ~
Se nsor--- --.------ ~Se ntin e l

"' Ern ~c Se ntin e l s
~ l

Erase Annotat i on Invok e Goa l

I 11 cl i v i cl u a l r u I e s w i I I s u c c ·e e d o r f a i 1 i! s a
fun c tion of their antecedents. Wh e n ·a s uc cessf ul
rul r~' s r1 nt ccc cl ent s change, it s se ntin e l wi 11 be
1 ri~:gc r ccl. \, he n t his happe ns t he · se ntin e l ca uses
t il e g oc1! t he rule wa s' s uppor ti ng to be re
rvaluat·ccl. It removes the old ·a nn otation, a s new
a nn o t at i on i s created fot: the ne w eva luation of
t l1 c g0a l. At t hi s poi nt th e se ntin e l ca n e ra s e
i U,c l f. (i'< ote: A se ntin e_l causes a goa l to be
r c - c v;iJ uat ecl. There ts no constraint that Sl e u t h
mu st use th e sa me rul e again. However , in thi s

7

and the following exa mple s , · it is, assumed that
there have bee n no other chinge~'i n the s t a t e of
the sys tem that would cause another rule to be
se lected first.)

If the rul e ' s goal changes,. perhaps because we
arc no lon ge r interes t ed in the hypoth esis it
s upport s, th e sentinel will also be trig ge r e d .
In t hi s case we cto not wish to re-evaluate th e
goa l. The se ntin e l wil 1 r emove it se lf a nd erase
t ll e a s s o c i a t e cl a n n o ta t i on . Thu s. t he r u I e
in s tance will no lon ger be active, s in ce no trac e
of it ~.' i 11 remain.

Now l et ' s con s ider how this loca.l assoc i at i on
of rul e instances with se ntinels can g ive ri se to
the ri g ht g lobal behavior. The following
r e pr ese nts the state of our deductlon so far:

Goal:W heat Price Increase?~---~-----~
1'

I

1Carryove r -..,
/

./
./

./

I
I

(S upply - De mand).~ha ssume

J ~ -
/.)(',nr,11rl

1'
Ca rryover Supply

I
I
I

Goa l : Demand
1'

I
I
I

Deman cl

I
Domes ti c

'
Domestic+Foreig n

' ' '

L s,pp(y ~dwease

I
Old -s upply

Suppo se t hat a failed ru l e now is . capab l f' o f
:. ucccecli ng, through its mis si ng a nt ece~le n t be in g
,, s s c r t e cl. For i n s tan c e, th e mi s s· i n g for c i 1, n
d e m;i ncl f o r 11'11 eat ca n. be asserte d. Thi s wo uld
tri~ger the se ntinel associated with that rule
in s tan ce:

Goal:Wheat Price
1'
I
I

j'Carryover
/

I (Supply - Demand)~~-~Thassume

,, ,,
;

IJr mn 1111
1'
I
I

/

I ~ ·

Canyom Supply~

Goa l: Demand Se nsor----, Suppl']"'°'""

Old -supply

1'

r.rfl.<I? flllllOlntio11

rr.·n .,.,rrt ,rnn I

r.rn.<I? cr11ti11rl

Thi s 11·i1'1 trigger the associated se ntinel to
P. ra~. e the annotation for · this rule· instance,

rea sse rt t he goal as so'meth'.i-ng to be proved, and
t h e n to erase itself. This time the rul e
succeeds, re s ultin g in a proof of the · missin g
clcmancl for 1•:heat. This will in turn trigger the

se ntin el associated with the rule instance of
which the mi ss ing demand is an antecedent:

F1111.1w Rum succr,;1,;os

r ---·
Goal:~hcat Pri ce Increa se? Sensor

T 1
I "'"~" ~r111111rl

"""""' Cmyom Supply : ~

\' ',~sL~l- _I Thasme

Goal,'""' "" L Supply-Jnoasc

1 I
Oemancl Domes tic+Foreign 01~ -s upply

I ~
Domestic Foreign

Thi s se ntinel repeats the actions of the prior
se ntin el. Ho wever, in erasing the a nnot ation, it
erases the record of the assumption made. This

8

will trigger the sentinel on the rule which is a

simplificat·ion. Since the use of a
simpitfication is cond-itional on another rule
failing, the sentinels associated with theo,rems
use cl as simplifications monitor the annotation
recording that failure, so that they will know
when the si mpli fication is no longer required.
They wi 11 then respond to the erasure of this
annotation by erasing the annotation for the

si mplification.

FIIIU\D Rum SUCCIUWS

Goal, '"eat rlce lomase?

tCarryover - (Supply ..: Demand) ----71'/,n.011.m

/ r ~ l
De mancl Carryover Suppl~ Sensor

T JIL ____ :
Goal: [)emand j Supply-decrease

T :
De m;incl Domest ic+Foreigni /Old -supply

I ~ .. ,-v
: Sensor----~Sentinel

- - ,,,,.. ;rn.llir. nnnotntinn

[)omest ic Foreign

l?rfl.<1? ~r11ri11rl

If Tl1m2 again failed due to a mi ssi n g

antcccclcnt, Sleuth would once more try a
s implification. Since the formerly mi ssi ng
antec.e cl e nt for demand is known, Thm 2 s ucceeds,
ancl rc s ul ts in the fol lowing final proof tree:

f,'/11/.IW RUI./•: SUCC,.:/WS

(;oal: h'h e;it !'rice Increase?

T
'f'Carryover - <Supply - Demand)

/ I ~
Carryover Supply

Goal: De m/Incl

T
"'"f "'' '"""~e.!go

Dome stir Foreign

In this next example, the missing antecedent

for whea t demand is asserted, al though _ the rule
involved (Thm2) has already "succeeded" by using

a s implification. This will trigge~ the sentinel
a ssociated wit~ the rule· instance of Thm2:

IINTfi:Cf,;n,.;NT 11SSJ<:R1'IW

J
Go11l:h'h r at Price lncrease? --- --4 _Sensor

1'
I
I l

fCarryov e r -~ (Supply - Demand) r - 7 sentinel

/
~ · ""i: f!rn .•r n111wtntin11

~ !~":;:: ,:~;:""'
De 1~n~ ' , Carrf°v/er S~plply 1 - ·

I , I I .
;:I \Y' I

: Se n s or- - - - - - _ _} Tl,n .irnmt'

"""!"""""' ·LS">PIHtceJ,
~ I

Demand - no mc s tic+Foreign Old - supply
'-

'-
' , .

' Do me s 1- i c Fnrd,rn

11·1i c 11 Tl11n1. i s r e -.e valuat ed it s ucce ed s without

r ec n11r :;r tn f' ith e r u s in g a s implification or

t.r y in ,: l o pr ove th e now not mi ss in g ant e c ed e nt.
Thrr e i ~, no f' Xpli c it mec hani s m r e spon s ibl e for
r c m o v i n f t 11 e n o w u n n e e d e d r tl'l e i n s t a n c e s .

I 11 s t c,1cl, h)' e ra s in g it s annotation, Thm 2 tri gge r s

th e se ntin e l s a ss ociated with the s ubgoal of

pro v in g cl r ma ncl, and the s implification:

9

/INTF,C/WRNT /ISSl.:RTIW

Goal:Wheat Price Increase? ~ ~ ~ ~~~~

r
1'Carryover - (Supply - Demand) ---- ~Tl,nmwrn

/ I "~ ~/
De~nd Carryover Supply R sersor

I r - - _J

I I ..'.J
Gnnl:IJ,.,,.n11d--~Sensor-- - -, 1 Supply - decrea s e

T : l I
De mancl Dome s tic+Foreign : I , Old-supply

I "", 1
' _"-.

Dom e stic f,'nrf'i,r11 ',

~ ens~ . Sensor __ "_. -"-~sentin e l
I ·

1

1 t ~rn.,r nnnnl'ntion

Se ntin e l~ - - - -J _I'm .,., u111i11f'I

f'rn.,;,r nnnntniion

rrn .,r _,,.111i11f'/'

Ro th the se -se ntinels, since their r e a s on f o r
rx i s tin g i s gon e , e ra se the aT)notation, /Incl th e n

e ra s e the mse lv es . This r esult s in th e foll owing
fin 11 l s tat e :

IIN1'1':C/W1':N1' IISS1':R'/'IW

Goal: Wh eT Price Increa s e?

tCarryover· -

/
T,,1, ~ ,a,

De mand Carryover Suppl y_

Thu s , unn ee cl ecl rule in s tanc es wi l I kn ow wh e n
to H' mO\'C th c m5e lves. Throug h lo ca l propa ga ti o n,

t 11 c r r pr c se n tat i on r es p on ct' s to c h an g e s i n t 11 e

ava il a bl e clilt a ba s e .

Cn n~equ e ntl y, inte lli ge nt noticin g i s a d yna mi c

proc e s s. Onc e att e mpted, it i s- lo u !}ly cl a ta -

clri vc n. Th ese chan ges will r e in vo k'e til e goa l o f

inf e rencin g , which c an then proc e ed in a go al

cl r i v c 11 f a s 11 i o n . 0 b. s o 1 e t e p a r t s o f t h e
r !:' pr e se ntati on are able to - r e move th e mse l ve s by

noticin g l oc al chan ges in the e nvLronm c nt.

S leuth, n n ce g iv e n a g oal, will att e mpt to

r c c o g n i z e t h i s e v e n t w he n e v e r t h e cl a t a h a s c

ro ntain s th e ri g ht s e t of a s s; e rtion s . Se ntin e l s
se t in th e int e rpret a ti o n of rul es h' ill
i n cl i , . i cl ll a l l y c a l l S l e u t h t o r e - e v a l u a t e

parti c ular go al s . <Thi s c an be contra s t e d t o

Do y l e ' s Truth Maint e n~nce syst e m for ma intaining

I
·\

I

I

I

. I

contexts of assertions. (Doy'le, H/77.)) Sleuth

will develop new ways of suppoTting its
hypoth eses in response to these local calls for
re-evaluation. Once applied, each senpnel has

the autonomy to respond. to changes in the
database. These changes propagate, through a

method of local autono~y.
The current version of Sl_euth is programmed in

FRL, il frnmc representation lan_guage (Roberts and
Goldstein, 19 77). FRL does not c0ntain the

patt e rn dir ected invocation of rules as a feature
of the lan g uage. The current design iteration

involves transfering Sleuth .. from FRL to a
Planner-like language as described in this paper.

REFERENCES

C111/i1111fonl, llirhnrd 11. 1977, "Co11rrt1lli11R' 111/rrM•r.r in Srory

/ l11rll'r.,1011rli11p", l'rnrf'l'ding., of tl,r Sri, l11t.rr11n1io11ril ./nint

Co11frrr11rr_ n,1 llrtifirinl l111rlligr11a, CnmliridR'r, Afn.,.,.

I.Jr./1111p, Grrnlrl. 1977, "S}dmndnp Nrw•_1,nl'"' Srnril'.< /1.Y
Ct11111wlt'r

00

, l'rorrrrling.< nf thr !it/, ln1rrrrntin11n/ . ./ni111 Co11fl'rl'11rr

'.'!.'.._IJ.':'J.£ir.:.i!!.! T11,,./ligr11rr, Cnmliridpr, .Mnu.

/Joy/,., .ln/111. 1977 , ''1'r11.t/1 Alni11tr11r11rr Sy.t1r,1u for Prn/,f,.m

Sol1•i11p", Al.I.'/'. llrrifirinl l11tdliar11rr 1.nhorntory 1'f'rl111irnl
,?,.,.,,,., 11 11,

Uri ,rrr, Cl,nrll' .<. '"/'/,r Al n R'ic Gri11drr · f,'nr Stnry Cnmprr/11'11.<in11",

To 11/>/•l'nr i11 fJi .<rn ,;r.<r Prncl'.,.,,.,,, II Af.11.ltidi.,dpli11nry Jn11r11nl.

/Inf,,.,., .,, 1/r,,rr H. & Gold.,1d11, · Ira P. 1977, "1'hr f,'HI, Mn,11111/",

~ITT· Ill Af,.mn 109.

S11.<.<mn11, Gt'rnld J., Winnll'rnd, Trrr_y, & C/,,rrnink, T•:11./l'f'III' .

"Mirrn - l'ln1111t'r Hr{t'rt'lla Alonunl", MIT-/11 Mrmn 2().1/1.

•

10

A Test-bed for Developing
Support Systems for Information Analysis . .

Jim Stansfield.

M. I. T. AI Lal>.

Fast effective 'decision makJng is necessary

in many important activities. ··complex dynamic

situations that require control make huge demands

on the decision maker to consid~r large aroounts of

information. This is the case in. many areas of

decision making including politics, economics,

defense, business and medicirie. Although data
base systems allow easy access to masses of ·data,

considerable processing must be done before an

analyst can use the data effectively. I am

designing Support Systems to relieve an

Information Analyst of the burden of these· tasks

and leave him free to concentrate his expertise

where it is most needed. The point of ~iew is
that analysts organize . the ·data around "menta·l.

models" of tl)eir problem area. It follows that a

support system that can manipulate structures

corresponding to these models will be better able

to assist an analyst. The domain being used is

the analysis of supply, demand and price of

commodities. In this paper I describe · a program

written in FRL (Frame Representation Language)

[Roberts and Goldst'ein, J977] which models a

commodities situation and I di!\CUSS re.presentation

and reasoning in frames sy!jtems. Commodities

markets are an information-rich real-world system

in which practical decisions are continually being

made. Moreover, there is a wealth of data readily

available about the current commodity situation

and a large background of literature concerning

the theory and mechanism. A model of commodities

markets is an excellent test-bed for djveloping

support systems.

There are many reasons why an intelligent

interface between an analyst and his data is

desirable. First, the information an analyst

receives may be incomplete, inaccurate or out of

date. He may . wish to check his sources, .extend

his information search, or bring old information

11

up to date by estimation. A. s.up1)o .. rt system can

make this practical, Second, t.he tnformation

relevant to any particular goal of th~ analyst

must be sifted out. To do ~his, a support system

needs to know about the problem solving methods

used by the analyst even if it is unable to solve

the ·problem .itself. Thir.d, implicaUons of the

data are needed. A support system could · make

inferences and provide an analyst with a complete

picture of his situation allqwing him to make

quicker decisions. This requires the system to

maintain theories about what can happen in its
area of expertise. Finally, an analyst would like

to check the repercusiions of his decisions.

These are often subtle and counter-intuitive as

illustrated .by the behavior of economic systems.

By describing a situation as. a dyni,lmic .. model, th1!

expected consequences of a decision ·can be

forecast.
The commodities domain inclu.des · primary

producers, storage managers, exporters,

speculators and other agents. Each has a range of

possible actions. . For example, a farmer is able

to produce, store and sell a variety of crops. He

can choose how much to plant and when to harvest

and sell. These actions are specific to him. A

farmer is also in a position·to'tell ~he state of

the crop before other participants and he has

other private information such· as the progress of

the harvest or when farmers will sell. On the

other hand, speculators are ex~ert. in estimating

the impact of supply and demand f~ctors upon

price. Their decisions will affect the price of

futures and indirectly control the behavior of

storage managers and farmers. Some ~peculators

may put more weight on certain information than

others and so have different plans. The way ,the

commodities market reacts to news depends on its

state as well as the news. Thus, an·analyst

should consider information about the situations

and plans of the participants in order to

determine the effect of news about a new grain

sale or a dock strike.

Developing an analyst's support system with

the capabilities me~tioned is ari ambitious goal.

This paper describes the framework being used and

illustrates it with a prototype program. whtch

achieves a small ~art .of the desired expertise. I

first describe the framework show1ng how the

expertise fits into it. Then I describe the

prototype program and explain how it will be

extended . Finally, I sketch some of the

developments that were needed to reprnsent rules

and constraints in FRL . The framework for support

systems is shown in figure 1. It is orgariized

using the acronym ART which stands f~~ Analyst,

Reporter and Test-bed.

I

r:1
t:j

USER

A ANALYST

R REPORTER

T TEST-BED
MODEL .

: I

'

HYPOTHETICAL

MODELS

MODELLING BASE

Figure 1. The ART architecture.

The first component, the Test - bed, is a

simplified world model which can t;,e used to

generate behavior and reports for an ~nalyst and

is easier to work.with than the real world. A

test-bed takes the place of the real world and the

12

·user is assumed to have incomplete information

,about it.

Reporter

a real

The user's info~mation comes from the

which generates reports resembling· those

analyst receives including

incompletenesses, estimates and conflicts ~ The

Analyst works as an assistant to the user and

gathers information relevant to the user's ·goals,

make inferences fol' him and test out his theorie.s

and decisions •. Its role is to assist the u~er in

making sense of data about the model world.

Two flows of informati-0n connect the

components of an ART system. c6mmands flow

downward from the user toward the test - bed and

descriptions of the test -bed's behavi-0r flow back

up to the user. The command chain allows the user

to request information from the.analyst. Requests

may be for a simple report, an analysis of a

situation, or to ask the analyst ·to examine the

consequences of a hypothetical event. The analyst

remembers these user goals until .the time that it

can complete them. Some goals m<JY be ongoing

requests to monitor particular information .. To

carry out all or part of a request, t~e analyst

needs information about the world which it obtains

by asking the reporter. Requ,es ts for reports are

generated from rules specifying the type of data

needed for an analysis and fr.om the analytical

inference JT)echanism through subgoals which are

immediately reporta'ble . This illustr·ates that, to

select relevant data for the user, the analyst has

to know s omething about the expert' s

problem-solving methods. The reporter has a

repertoire of methods for finding reports and

keeps a check - list of the particular reports the

analyst component is waiting for. In summary,

commands pass down the comman·d chain giving rise

to goals which are stored in the analyst and the

reporter. They determinw what data flows upwards.

The analyst acts as a filter to giv~ the user only

relevant information and as an organizer to

provide possible models describing the state of

the world.

The development of test-bed models is based on

the viewpoint that decision-making situations can

be considered as dynamic interactions between sets

of agents each with i ts own views, e~pec,tations,

goals and resources . In a political situation,

the agents may be nations, economically they may

be businesses and in the commodities world they

include producers, storers, users and speculators .

Each agent has a state and a strategy) and his

behavior depends on the interaction bet~een his

strategy and his current situ..ation. For example,

a farmer may decide to sell if he needs to make

room in his stare for the upcbroing harvest. The

strategies are executed b:y a mpdelling system to

determine a ~et of actions for the player which

produce changes in the model, If the exicution

cycle is repeated the (lgents interact :since each

one now behaves according to the state of the

world which has arisen from previous actions of

the others. From this viewpoint, test-b!)d models

have a psychological aspect which makes them

different from many simulation situations. They

model the rule-based behavior of a set of

interacting agents. Some concepts however have

been adapted from dynamic simuation (Forrester,

1962) and an FRL-bas~d v~rsion of the basics of

Forrester's simulation system has been written .

Test-beds have important advantages. First

they clearly define the limits of the domain being

studied . Lack of such a clear def,inition .makes it

very difficult to keep the domain contained.

Second , the analyst part of the system can use the

same modelling system that the test-bed is based

on. This c learly defines the space of po~sible

models and t.h e analysis p·roblem b.ecomes

well-defined. Third, the test-bed ian be used to

examine the performance of the system. As the

test-bed world is exactl y known ihe accuracy of

the analyst's hypothe ses based on reports · can be

meas u re d exactly. Suuport systems can be

developed for an increasingly complex· set of

test- beds allowing expertise to be extended

gracefully.

Th e analyst component is npt just a

modelling system si nc e its job is to . assist the

user in determining the state of the world from

reports . However , this can be seen as

constr uc ting a model to fit soroe data so the

analyst mu st be an expert in building and

discussing models. It uses a set of hypothetical

models of the agents in the world and chooses

appropriate ones based on reported information.

These are assembled into a model of the entire

situation and the alternative comb.inations are

presented to the user with supporting

explanations. At the -tim.e of writing., · the

model -building aspect of tl)e analyst i.s still

being planned.

1 3

The Prototype System.·

The prototype system consists of a simple

test-bed model and a basic reporter and. analyst.

The reporter and analyst are ad hoc LISP programs

embodying a few simple rules·. The repprter

produces reports about a fixed set of situations

and these reports trigger. analytical rules. which

print out simple analyses.· There is no provision

for the user control described ab'ove and the

analyst does not yet consider hypothetical models.

The prototype test-bed consists of a system

which supports .models, and a two player game

running in that system. Th~ game is· ~etween a

producer of wheat and a user. · Each harvest time

the producer's inventory ts increased by the

production for that season. His _goal is to sell

his inventory throughout the year and end with

clear storage ready for the next harv·est. He

sells to a market by offering .. quantitjes of wheat

at the current market price. The user has some

storige, and wheat is removed from this at a

constant rate ttiroughout the season. He makes

bids to the market to replenish his store . The

producer's strategy -is to sell more when the price

is high and less when it js low. ·T~e user does

the opposite, · buying more when the price is low .

At the beginning of each season both the producer

and user are given expected prices . These

correspond to their opinions about the ma~ket and

determine how they know when the price is good.

Here is an example of the game. Computer

output begins with a"•", user replies begin with

">", and comments are in italics.

The game begi~s with a phase in which frame

structures are set up to represe nt the ·pluyers and

the market. They are initialized.in a ,dialogue

with the user .

• This is a two player game between a producer of

whea t and a user : It i!i just before harvest.

How long is the season?

> 6

• What is the inventory of the producer at time O?

> 20

• What is the inventory of the user at time O?

> 60

• What is the market price at time 07

> 25

• Its a new season. The carryover is 80 :0. What

is the production?

I
I

> 300
* What price does the produ.cer expect?

> 26

* What is the demand?

> 200
* What price does the us·er expect 7

> 24

When the game is prepared, rules are invoked to

produ·ce reports on the state of the system. The

reports are given to the analyst which uses ·rules

describing the players to make a forecast of the

future behavior. I have rewritten the output in

better English.

* REPORTER: There is a surplus of 180~

ANALYST: This will tend to make prices fall.

The· effect is large.
REPORTER: Farmers expect the price to ri'se.

ANALYST: They will hold onto their crop. This

will tend to make prices rise. The effect is

small.
REPORTER: Users expect the price to fall.

ANALYST: They w:t.11 wait to buy. This will tend

to make prices fall. Th~ eff~ct is small.

The model is nmo run for.one cycle and the results

are printed out.

* PRODUCER

INVENTORY: 320

DESIRED- SELL-RATE: 53.3

EXPECTED-PRICE: 26

USER

INVENTORY: 60

USAGE-RATE: 33.3

EXPECTE D-PRICE: 24

PRICE AT TIME 0 =

PRODUCER OFFERED

USER BID

AMOUNT TRADED

PRICE FALLS TO

2.5

51.2

32

32

23.8

Next the reporter gives a bulletin describing a

change in the situation, an~ the an«lyst forecasts

the cons equences.

* REPORTER: The price has fallen below the users'

expected price.

14

ANALYST: Users' will incr~ase th~ir buying

pressure.

After the model has been rvnning for several time

cycles, statistics fo·r this period are printed

out . We can see that the price fel .l due to ·the

large supply and at the end of t.he season,. in

period 5, there was still a sizable carryover.

User's initially refrained from buying but began

to increase their inven-tory as the price fell

below their expecta.t ions.

TIME PRODUCER2 USER3 MARK£T4

INVENTORY INVENTORY PRICE

0 320.0 60 .. 0 '25.0

1 288.0 58.7 23.8

2 254.4 58.9 ll3.0

3 219.6 60 .4 22.3

4 183.7 63 .. 0 21. 7

5 146.9 66.5 21.3

6 409 .3 70.7 21.D

7 347.1 66.3 21.5 ·

8 283.3 63.4 21.9

Table 1.

The first part of the protocol is a dialogue

with the user in which a game is set up. A game

is represented as a frame structure which has a

GAME frame at top level and includes slots for the

P.roducer, the user and the market. The produc~r

is an instance of a generic PRODUCER frame and

similar situations hold for the user and the

market. The top-level frame for the game is shown

in figure 2 in a simplified form.

GAMEl

SEASON $VALUE 6

PRODUCER $VALUE PRODUCER2

USER $VALUE USER3

MARKET $VALUE MARKET4

TIME $VALUE TIME-0

Figure 2. The top-level game frame.

The generic GAME frame knows how to ask the

user how to set up a new gam.e. During this

process it needs to set up a new PRODUCER fra.me.

Since the generic PRODUCER frame knows how to set

up a new producer, not all of th!! setup work is

done by GAME. Knowle.dge about setting up any

frame is attached to the corresporiding generic

frame either in a special slot or in each slot of

the frame under an $AJK facet. The system also·

provides standard setup procedures and is able to

check that constraints hold true for the answers

to its questions to the user. The setup

mechanisms and the constr~int handling _ mechanisms

are discussed elsewhere [Stansfield 1977]. In the

example game, the producer and user were set up

with just an initial inventory -and a stiategy. ·

The program chose their strategjes . by default.

I<
CALL REPORTER

I
CALL ANALYST

I
EXECUTE Pl,AYERS I -
EXECUTE MARKETS

I
EXECUTE CHANGES '-

Figure 3 . The Execution ·Cycle.

The system repeatedly e~ecutes the cycle of

operations shown in f.ig_ure_ 3. At .the beginning of

the cycle it checks if it is a new season which

triggers questions to update the .·system. The

r e porter is called next and applies a set'of rules

which examine the state of the test -bed. These

may instai:itiate action s to produce short reports

which are passed on to t·he analys.t . The analyst

has a set of rules de~cribing market behavior and

player behavior . Using -the reports, it applies

its rules and produc~s ' statem~nts about the

behavior that can ·be expected from the ,ystem and

the reasons for ~hi5 behavior . . Next, the players

strategies are executed giving rise to offers and

bids which are placed in 1;he market. The market

is executed and the offers and bids become trades

and pr ice changes . Offers, 'bids, and· t·rades .are

all represented as frames giving buyer, seller ,

price, and date . The market executes trades to

produce change descrfptions tha-t corr11s-pond to

cha_nges in the inventories of the p·layers .

The producer, the market, and the user are

arranged in the chain shown in figure 4. The

behavior of any element in ttie chain affects the

adjacent elements giving rise to feedback loops .

There are two negative fee-db_ack loops. The

producer increases his sales as the :price rises

15

which in turn makes .the price fall. The user

increases his demand if the price falls ~nd this

makes the price rise. Feedback loops are

important determinants of _system behavior inasmuch

as they make simple cause and effect de·scriptions

of behavior inadequate.

-- -> --->
<--- <-- .;

Figure 4. The example·game arrangement.

Figure 5 shows the arrange~ent of in-fluences

that make up the producer's stra~egy. Total

supply for the season ~etermineJ his ~esired

selling·rate each cycle since.his goal is to clear

his storage. His d.esired selling · rate is one

factor in determinirig how much he offers at any

time. If he desires to sell more · each month he

clearly m~st offer more. The other determinant is

the difference be-tween his e~pected· price and the

actual price. A plus sign on an arrow in the

figure means that if the factor at-the tail of the

arrow increases, it will cause an increase in the

value at the head. ,A minus sign means· that a

positive change will cause a·decrease . The arrow

from the amou·nt offered to the market price is

part of the market structure .

Season's~ Desired selling Amount
supply + ra,te ~ offered

I
Expected pric'e ·

minus market price .

/ -\
Expected price Market

price

Figure 5. The producer model:

To see how this works, .examine : the first

entry in table I . From the setup data the season

length is 6 and the supply is 320 . This implies a

des ired se 11 ing rate of 53 per -cycle. Since the

expected price is 26 but the market price is only

25 the producer decided to hold back and offered

less than 53. The us.er only bid for ~Z uni ts

however, so only 32 were· traded .. Deman.d was

insufficient.

A similar diagram would i\lustr~te the. user's

strategy. His desired buying rate is ·determined

by the demand rate per cycle for the season. In

th is case, a r.ise in the expected price causes a

rise in the amount bid for a.nd thi-s cau·ses a rise

in the price due to the increased demand.

The market is an interface between the

producer and the user. Since different amounts

are offered than are bid for·, it provides a

mechanism for equalizing these. The· price of the

market is adjusted to reflect the diffe.rence in

buying and selling pressures.· When buying and

selling pressures are equal, the price will not

change. It must be remembered th.at this is a

feedback situation and a· change in price will

affect both of these pressures. f'igure 6

illustrates the two feedback loops involved in a

market situation.

Market price

T
Amount bid m'inus +

amount offered

!\
Amount bid Amount offered·

Figure 6. The market feedback · structure.

Each m.odel comp·onent re.presents a large

number of ·players as a group. They have the sa~e

strategy but their expectations and decisions are

distributed. A component of the model with an

expected price of 25 represents a group of players

with similar strategy whose mean expected price is

25. This is necessary.if the system is to model

the collective behavior of participants in the

commodities world. Whenever a group of

participants can be divided into two classes with

different st ra·teg ies, such as · optimists and

pessimists, or risk takers an~ risk avoidefs, two

components can be used to model them.

16

Extending the n,odel.

The prototype system modelled a simple

commodities situation and.its analyst component

embodied only a few an•ly~ic ru\es. This section

describes how ·the scenario can be e~tended and

discusses the kind of analysis that will be

needed.

The next version of the test-bed will include

four types of agent which are, producers, storers,

consumers and speculators. They will interact by

means of two marketsi a cash market an~~ futures

market . The cash market is u~ed to buy and sell

the actual commodity and the futures matket to

trade f~tures contracts. This situatio~. although

only twice the number of component types · than

before, allows many more .strategies and covers

many situations in the real commodities world.

There will also be a four or five-fold

increase in the number of possible strategies for

an agent. A farmer will have to makl decisions

about planting, storirrg, harvestirig and selling

and will also make an estimate of the expected

price . The basis for such decisions are his

current state including acreage and available

storage~ and some information about the rest of

the system and about the weather. For example,
·'

harvesting time depends. -0n whether the crop is

ripe, how much needs to be harvest, whether the

crop is susceptible to wind .·damage and wh.ether it

is dry enough for the machinery to work. Harvest

time is also a crucial time since much of the crop

flows to m~rket and speculators m~st watch

developments to estimate prices and quality·.

In order to analyze situations involving

several agents the analyst n~eds rules to describe

them. Such a rule-based model of an agent is

different from the test-bed's ~odel since it is

used to reason about the agent rather. than to

execute a model of him. in the prot~type these

ru 1 es were embedded in a simple LISP program.

Future analys·ts will b-e written using rules

implemented. in FRL. Rules will b.e. in· the .form of

productions whose condition is some state of

affairs that ~he agent reacts to and whose action

is the con~equence of that state. ·simplified

versions of the rules embodied in the prototype

are shown below.

Producer

Producer expects price· rise . ->. Producer holds

Produc er holds stock -> Selling pressufe less

Harvest is near and insuffic.ient storage

-> Producer.clears storage

Producer clears storage -> Selling pressore more

Market

Selling pressure higher

Buying pressure high~r

-> PrJce tends to fall

-> Prite tends to rise

Rules can be used iTI several ways. If the

reporter gives the ahalyst information which

matches the condition of a rule in one of its

farmer models, then that mo~el can be hipothesized

as applying. The consequence of the ·rule ran be

expected and if it occurs it will ·support the

hypothesis . Alternatively, rules can be used from

right to left . If the reporter giv~s information

about a farmer's actions which corresponds t'c, the

right hand side of a rule then the analyst can

hypothesize that the rule ~ay be attri~ute~ to the

farmer and that he is reacting . to a state of

affairs corresponding to ·the lefi hand ~ide of the

rule. Again, several rules may fit and multiple

hypotheses may be carried forward ..

The modeling rules embody the· common·.-sense

knowledge an analyst has about the ·actions. of

agents in his world. From a person's actions we

can sometimes infer . the plans he is executing, the

situation he is re sponding to and his intentions.

Indeed, this abiiity in peolpe is .crucial to their

effective communication. The analyst uses rules

to mimic this and to fill out a picture of.the

world from partial information.

PRICE FELL 25 -> 23.8

\;i"" TRADED = 32

AMOUNT BID = 32

/
SUPPLY= 32-0

AMOUNT OFFERED - 5l.2
I

I
= 53.3

FARMERS HOLDING FARMERS EXP. PRICE= 26

Fi11ure 7. Analysis trace.

1 7

Figure 8 shows an example of chaining .or

rules that falls within th~ context of the session

with the prototype presented earlier. ~uppose the

reporter said that the price· ·fell, th!! amount

traded was 32 and the years supply ~as 320 . It is

possible to deduce from this that farmers expect

the price to rise. Since the price fell, the

producers were offering more than the users bid

for. The users therefore filled their ·orders and

must have bi~ for 32. The price fall of 1.2 and

the amount bid of 32 corresponds to an offering of

about 51. But the average sale need to· clear the

total supply is 53.3 since there are 6 cycles per

season in the model. So farmers were ho'lding

back. This means they expect the price to rise.

Clear}y this is a simple analysis based on a

few rules. However, analysis such as this will

come into play in the extended ·system. For this

reason, I am developing a representation for rules

in FRL and discuss this next.

Frames. ---

The system is implemented using FRL, a frames

based language written in LISP. I have extended

this for setting up frame structures by d.ialogue

with a user, for representing events as clusters

of frames and (or reasoning. A simple FRL frame

represents an item and :has of a set of properties

of that item . A PERSON frame ~ay have the

properties HEIGHT and NAME and eac~ property may

have a value. F.rames . form a hierar.ch·y ·, so the

frame for a particulir person, PERSON!, will be

lower in t~e hierarchy than the generic PERSON

frame which will be lower than the ANIMAL frame.

Inheritance is an important prop.erty of the frame

hierarchy. Lower frames inherit information from

the more general frames higher up. This is a

powerful organizing princip,le for in.formation.

Procedures can be attached to a .slot of a frame to

accomplish various actions. An if-added procedure

triggers when a new value is added to the slot so

that the new information can be processed.

Requirements check values before they are accepted

and can call compla,int mechanis.ms if . they are

violated. I !-needed procedures ar .e used to

calculate values of slots from other information.

All . these proc edures are inherite·d in the frame

hierarchy just as values are. This means new

concepts can be defin,ed as generic frames

I

. I
I

containing sets of properties and· pro~edures to

handle them.

Representation.

When the an~lyst component is written in·

terms of rules) it will use rules similar to

production rules. The left. hand side will be an

event or combination of ~vents arid the right hand

side will be an action -or statement .which is a

consequence of that event occur~ing. It was

necessary to define event-like concepts in frames.

A representation scheme ·based o.n the ·facilities of

FRL was applied to business eve·nt.s .from the

commodities world such as •selling", •exporting"

and "exchanging". Concepts are repres-ented as

clusters of frames ·and there are primitive events,

such as "changing", which describe modifications

to a frames data-base . A_"changing~, for example,

might describe a change in the value of a

particu.lar slot of some frame at i.l particular

time . Further event types are constructed from

the primitives by specialization and a~gregation.

To specialize an event type, another is created

below it in the frame hierarchy with extra

knowledge attached in the form of procedures and

values. One specialization ·of "changing" is

"growing" where the HEIGHT ~lot of a specified

frame is changed. Aggregation is a . way to build

new event types by putting together several

others . A new aggregation. inclu:des a .set of

constraints that specify how . the compon!lnt events

are arranged in any particular instance. For

example, "exchanging" is a simple aggregation

composed of two "transferring~ events between the

same two parties but in opposite directions.

Aggregation and specialization can be freely

applied to aggregates and specialization and an

infinite variety of new· co.nc·eµts can be defined.

Although events are constructed from

primitives as in conceptual dependency [Schank,

1975]. our representation· scheme is different in

many respects.

its primitives

level. Also,

An event need not b'e reduc.ed to

but may be treated at a higher

specialization highlights the

differences and similarities between events in a

clear way.

In both representation and reasoning I have

taken a different approach from KRL [Bobrow and

Winograd, i977]. KRL.is a large complex system

and perhaps unwieldy to· apply since it addresses

18

very many representation issues. In contrast,· I

began with a simpler core system '!Ind ha.ve built on

it as the application required.

Constraints.

Reasoning about frame structures·is needed

for the analyst component of the supl)Ort system.

Rules can act as constraints between the. values· of

a s~t of slots in a frame structure. A co~straint

watches over a domain of· slots. When any domain

slot is altered, the rule is invoked and applied

to the domain. Rules are made gen~ral by placing

their triggers as if-added p~ocedures in slots of

generic frames. Because of inheritance, a rule

then applies to any instance of the generic frame.

There are two cases, simple constraints and

complex constraints. Simple-constraints have all

their domain slots within a sin~le generic frame.

Such a constraint handles the SUPPLY, CONSUMPTION

and CARRYOVER of a crop forecast frame, making

sure that SUPPLY minus CONSUMPHQN equals the

CARRYOVER. The triggers are added to slots in the

generic CROP-FORECAST frame . Each instance of a

crop forecast is then subject to t_he rule. Any

new information about supply, consumption ar

carryover will invoke the rule. Simple

constraints are discus.s·ed in . earlier papers

[Stansfield, 1977; Rosenberg, 1977].

The complex case constrains slots .which are

spread over a group of frames . . One frame is

considered central and domain slots outside it are

called outliers. An example is the HARVEST frame.

The AMOUNT of a HARVEST eve~t is its ACREAGE

multiplied by the YIELD of the FIELD harvested.

The YIELD slot is an outlier since it belongs to

the FIELD frame. This frame 'is not even known in

a particular instance until the FIELD slot of the

HARVEST is given a value.

Comp 1 ex c on s t r a i ~ ts re q u i re two n e w

mechanisms, a reference mechaRism and an

identification mechanism .. Each outly,ing slot is

associated with a corresponding auxilliary slot in

the central frame. The auxilliary slot of HA~VEST

is a YIELD slot to hold the yield of its field.

Reference triggers are set up so that whe.n a value

is added to the FIELD slot the auxilliary slot

will be identified with the YIELD slot of the

FIELD. By this metho<;I , a compleic s.entinel is

reduced· to a simple sentinel and any .rule can be

defined within ·a st.ngle generic frame. . The

calculations are done within that frame using

auxilliary slots as temporary variables.

Directions.

Frame·s - based semantics and constra,ints will

both be used in developing t .he . rules of the

Analyst component , of ART. The current test - bed

will be extended to provide a Q.tlalitatively rich

repertoire of behavior for the Analyst to deal

with. Several experiments will be possil>le ·with

the proposed version. of the system. Since it will

be rule based it will be possible t~ interact with

an expert analyst to determine a set ·of rules

which will help him in hls analysis. It will also

be possible to try interfacing the systam. to

actual commodities news rathe·r than a test-bed

model.

References.

Bobrow, D. G. & Winograd, T. An Overview of KRL, a

Knowledge Representation Language .

Cognitive Science vol 1, l. 1977.

Forrester, J . W. 1962, Industrial Dynamics. MIT

Press ..

Roberts, R. B. & Goldstein, I. P . 1977, The FRL

Manual. MIT AI Lab memo 409 ,

Ro se nberg, S . 1977, Reporter: an Intelligent

Noticer . MIT AI Lab working paper 156.

Schank, R . C. 1975, Conceptual Information

Processing. North-Holland .

Stansfield, J . L. 19'77, COMEX: A Suppo_rt System

for a Commodities Expert . l'IIT AI Lab

memo 423.

ACKNOWLEDGEMENTS.

Thls ~nport describes research done at the

J\rt if icinl Intelligence Lnboratory of the

Ma ss achusetts Institute of T•chnology. It was

supported by the Advanced Research Projects Agenc·y

of the Department of Defense under Office of Naval

Research contract N00014-75-C-0643. ·

1 9

LOCATING THE SOURCE OF
UNIFICATION FAILURE

Philip T. Cox

Department of Computer Science
University of Waterloo

Waterloo, Ontario

Abstract: The problem of determining whether or
not a set of expressions is unifiable is of key
importance in many applications, mechanical theorem
proving in particular. Consequently, the unifica
tion problem has been studied intensively. A re
lated problem of equal importance in theorem proving
and other applications which use unification, has
received little attention; namely, the problem of
what to do when unification fails. In a recently
proposed deduction system, the first step in solving
this problem is to find out why unification has
failed. We describe a method for accomplishing
this step.

1: Introduction

There are many applications in which the pro
blem of unification plays an important role: mech
anical deduction is probably the best known of these
applications, and has caused intensive study of
unification since Robinson presented his Resolu
tion Principle and unification algorithm in 1965
(10]. A problem which has received little atten
tion, however, is the problem of what to do when
unification fails.

When a mechanical theorem-prover is searching
for a proof, there is usually a variety of actions
to be performed: the system must choose the sub
problem to work on next, then choose one of several
solutions to it. At some point in every search for
a proof, however, it usually happens that the
system fails to solve a subproblem because two lit
erals cannot be unified. The system must then
"backtrack" to some earlier point in the search, and
attempt an alternative solution to a previously
solved subproblem. The usual backtracking strategy
employed is to return to the last point in the
searc h at which there exists an untried alternative
solution. This may not be the correct place to try
an alternative, however, and although the correct
point will eventually be reached, much effort will
meanwhile be expended in exploration of irrelevant
areas of the search space.

When a nonunifiability arises, the object of
backtracking is to remove this nonunifiability. The
exhaustive technique described above investigates
only one of several ways of removing it. This
limitation results from the fact that most theorem
provers apply the unifying substitutions to the
clauses in the proof; this makes it difficult to
locate any of the sources of a unification failure
except the obvious one used in exhaustive back
tracking. In a new deduction system proposed in
(6,7], substitutions are not performed: instead,

20

each application of a deduction rule produces a set
of constraints (a "constraint" is an unordered pair
of expressions); and the set of all constraints
produced in the construction of the proof is checked
for unifiability. If it is not unifiable, all its
maximal unifiable subsets are determined, one of
these subsets is selected, and exact backtracking is
performed by removing those deductions which pro
duce constraints not in the selected subset. In
what follows, we describe the process of determining
the maximal unifiable subsets of a set of constraints.

2: Preliminaries

In this section, we give a few familiar defin
itions and define notation.

2.1: Graph Theory

Our notation and definitions for the concepts
of graph theory follows [4] with a few minor ex
ceptions.

2.1.1: Definition: A directed graph G is an
ordered pair < V(G) ,E(G) > where V(G) is a
nonempty set of vertices and E(G) £ V(G) x V(G)
is the set of arcs. If e = (u,v) is an arc
then e is said to join u to v, to leave u
and enter v, and u and v are called the tail
and head of e respectively. We will abbreviate
"directed graph" to "digraph".

2.1.2: Definition:
of a digraph G if

A digraph D
V(D) £ V(G)

is a subdigraph
and E(D) £ E(G).

2.1.3: Definition: If G is a digraph, a directed
walk in G of length n (n~l) is a sequence
v1 ,e1 ,v2 ,e2 , ... ,en,vn+l whose elements are alter-

nately vertices and arcs, such that ei = (vi,vi+l)

for 1 s i s n. and are called respec-

tively the origin and terminus of the walk. A
directed walk is said to be closed if its origin
and terminus are identical. A directed walk is
called a directed path if for all i and j
(1 s i s j s n+l), vi= vj implies either i = j

or i = 1 and j = n+l. A directed cycle is a
closed directed path. We will denote the set of
arcs on a directed walk W by E(W).

2.1.4: Definition: A labelled digraph G is an
ordered triple < V (G), E (G), I (G) > where V (G) is
a nonempty set of vertices, E(G) £ V(G)xI(G)xV(G)
is the set of arcs and I(G)

is the set of labels. If e = (u, £,v) E E(G), £
is called the label o f e. All the concepts defined
in 2.1.1 to 2.~re defined in exactly the same
way for labelled digraphs.

Since we consider only directed graphs we
will usually omit the word "directed" and the prefix
"di- ", using "graph", "walk", "subgraph" , etc.
instead of "directed graph", "directed walk" ,
" subd igraph" etc.

2.2: Language

2.2.1: Definition: An alphabet is a triple
(V,F,degree) wher e V,F are mutually disjoint
nonempty sets of variables and function symbols
respectively, and degree is a function from F
to the nonnegative i ntegers . If degree(f) = m
for some f E F we say that f is of degree m.

2.2.2: Definition: An expression over an alphabet
is:
either (i)

or (ii)
a variable
a string of the form f() where f
is a function symbol of degree 0. Such
expressions are called constants. The
constant f() is usually abbreviated
to f.

or (iii) a string of the form f (p1 , ... ,pn) where

f is a function symbol of degree n > 0,
and p

1
, ... ,pn are expressions .

An expression which is not a variable is called a
term.

2. 2. 3: Definition: If p and q are expressions,
then q is a s ubexpression of p if:
either (i) q = p

or (ii) q is a subexpression of pi for some

i (1 :;; i :;; n) where p f(pl'"''pn).

If q is a subexpression of p and q is a term,
then q is called a subterm of p.

We use the notions "substitution", "application
of substitution" and "unifiability" with their stan
dard meanings. We do, however, extend the latter
two of these as follows:

2.2.4: Definition: If E is a set of expressions,
€ is a set of sets of expressions and 6 is a
substitution, then we define the application of 6
to E and e denoted E6 and € 6 respectively by:

E6 = { e6 I e E E}
e6 = { F6 F E C}

2.2.5: Definition: If t is a set of sets of
expressions, then e is said to be unifiable iff
there is a substitution 6 which unifies every
member of e. e is called a unifier of t.
2.2.6: Definition: A constraint is an unordered
pair of expressions. An expression p is a sub
expression (or subterm) of a set of constrain-;;--C
iff there is a constraint { q, r} E C such that p
is a subexpression (or subterm) of r.

2.2.7: Definition: If C is a set of constraints
and c

1
s C, then c

1
is said to be a maximal uni-

fiable subset of C iff c
1

is unifiable and c
1

is not properly contained in a ny other unifiable
subset of C.

21

3. The Baxter Unification Algorithm

Our method for finding the maximal unifiable
subsets of a set of constraints is based on a uni
fication algorithm due to Baxter [2,3] , which oper
ates in two stages. The first (transformational)
stage detects unification failure resulting from an
attempt to unify subterms beginning with different
function symbols, as in P(x,x) and P(a ,f (y))
for example. The second (sorting) stage detects
failure resulting from an attempt to unify a vari
able with a term in which it occurs, as in P(x)
and P(f(x)).

The transformational stage of the algorit hm
manipulates two sets: a set S of constraints
which is initially C, the input set of constraint s,
and a set F which is a partition of the set of
subexpressions of C. F is initially FIN' the
partition in which each class contains one and only
one subexpression. This algorit hm either halts
with unification failure, or halts returning the
partition FOUT which is unifiable iff C is

unifiable. In what follows, we use [p]F to denote

the class in F which contains the subexpression
p of C, and write p = q mod F iff (p]F = [q]F.

When F
[p] for

algorithm
S < -- C;

is understood from context, we will write
[p]F.

TRANSFORM(C);

F < -- FIN;

while S "' r/J

do Delete a constraint { P
1

,p
2

}
if [pl] "' [p2]

from S· ,

then if [p
1

J contains a t erm

fl (qll, · · · ,qlm)
and [p 2] contains a term

f2(q21,···,q2n)

then if fl "' f2

then [unification fails;
stop

el.se[add to S the pairs:
--~ qll ,q21 } ' ·'' ,{ qln' q2n }
Replac e [p1) a nd [p2 J by

[p1] u [p2) in F

If TRANSFORM(C) succeeds, it outputs a parti
tion FOUT which has the property that a ny two

terms in the same class begin with the same func-
tion symbol.

In the sorting
structed such that

defined as follows.

stage, a digraph
V(D) = FOUT and

Suppose FOUT

D is con
E (D) is

has m classes

containing terms, and let t
1

, ... ,tm be terms

representing these classes. Suppose also that
ti= fi(pil'''''pini) for 1 :s i :;; m, then:

E(D) = { ([ti],[pij]) 11 :;; i :;; m, 1 :s j :;; ni}

Given FOUT' D is unique (i.e. independent of

which terms we choose to represent the classes
in FOUT).

3.1: Theorem: A set of constraints C is unifiable
iff TRANSFORM(C) succeeds producing partition
FOUT' and the digraph D constructed from FOUT

has no cycles ,
For examples, and proofs of the above results,

see [2 ,3].

4: Detec ting and Locating Nonunifiabilities

The unification algorithm described above
halts at the first sign of nonunifiability. A set
of constraints, however, can be nonunifiable for
more than one reason, so since we wish to determine
all sources of nonunifiability, we modify the
transformational stage so that it continues to
merge classes of the partition even though they
may contain terms beginning with different func
tion symbols. Similarly, in the sorting stage,
we must enumerate cycles rather than aimply detect
them. See [6] for omitted proofs.

4.1: Transformational Stage

The modified transformational algorithm mani
pulates three sets: the sets S and F which
are the same as in TRANSFORM(C), and a set P
which is a partition of the set of subterms of C,
and is initially PIN' the partition in which each

class has one
denoted FOUT

unifiable iff

we denote by

the subterm t

member. The output partitions are
and POUT' and as before, C is

FOUT is unifiable. In what follows

< t >
p

of

the class in p containing

iff < t1 >p = <

we write < t >

C, and write t 1 = t 2 mod P

When no ambiguity is likely,

< t > •
p

algor ithm CLASSIFY(C);
S < -- C;

F < -- FIN;

p < --

while

do Delete a constraint {pl, p2} from S;
if [pl] "' [p2]

then T < -- [pl];

while T contains a term
tl = f(qll'''''qln)

do Del ete from T all terms in
< tl >;

if [p2 J contains a term

t2 = f(q2l'"''q2n)

The following two lemmas state important pro
perties of CLASSIFY, and show a relationship bet
ween CLASSIFY and TRANSFORM which will later be
strengthened.

4.1.2: Lemma: (a) For any two terms sl and S2'

sl and S2 are in the same class of POUT iff

61 and S2 are in the same class of FOUT and

sl and a2 begin with the same function symbol.

(b) If two terms f(pll'''' ,Plm) and

f(p21••••,P2m) are in the same class of POUT'
then for each i (1 s i s m) pli and p2i are

in the same class of FOUT'

4 .1. 3 : Lemma :

(a) If TRANSFORM(C) succeeds returning partition
FOUT' then there is an execution of CLASSIFY(C)

returning partition FOUT' and in each class of

FOUT' all terms begin with the same function symbol.

(b) If TRANSFORM(C) fails, then there is an exe
cution of CLASSIFY(C) returning partition FOUT'

where some class of FOUT contains terms beginning

with different function S·ymbols.

4.1.4: Example: Consider the set of constraints
C as follows:

¢
1

: { G(s,z), G(v,F(y,y))}

¢
2

: {u , F(y,G(s,z))}

¢
3

: {u, F(H(w),G(x,r))}

¢
4

: { F (H (H (u)) , H (u)) , F (H (H (v)) , v) }

¢
5

: {v, F(y,y)}

The output partitions of CLASSIFY(C) are:

= {{ u,v,s,z,x,r,
F(H(w),G(x,r)), F(y,G(s,z)),F(y,y),
H(u), H(v)},

{H(H(u)), H(H(v))},
{ y

G(s,z),G(v,F(y,y)), G(x,r),
H(w)},

{ F (H (H (u)) ,H (u))) , F (H (H (v)) , v) } ,
{ w} }

= {{ F(H(w) ,G(x,r)), F(y,G(s,z)), F(y,y)},
{H(u), H(v)},
{H(H(u), H(H(v))},
{G(s,z), G(v,F(y,y)), G(x,r)},
{H(w)},
{ F(H(H(u)) ,H(u)), F(H(H(v)) ,v)}

then Add to S the pairs: -'4-'-'.;:;2_:_""T--'h-'-e_A-'-u-"t-'-o--'-m""a-"t-'-o_n_f_o_r_a_C_o_n_s_t_r_a_i_n_t_S_e_t_
{ qll ,q21}'' '' ,{ qln'q2n};
Replace < t

1
> and

< i:2 > by

< t
1

> u < t
2

> in P

Replace [p1 J and [p2] by

[p
1

J u [p
2

J in F

22

CLASSIFY(C) divides the set of subexpressions
of C into classes of expressions which must be
unifiable for C to be unifiable: therefore, if
two terms t

1
and t

2
begin with different func-

tion symbols and occur in the same c lass, then C
is not unifiabl e . By inspecting each class, we
can discover every suc h pair of incompatible terms.
We now introduce a mechanism for determining why
two incompatible terms are in the same class: that
is, for finding all the constraints responsible for

this situation.

4.2.1: Definition: If C is a set of constraints,
denote by M(C) the set of all function symbols
occurring in C. We then define:

degree(C) max degree(f)
f € M(C)

and N(C) ={i Jl !, i !, degree(C)}

4.2.2: Definition: If C is a set of constraints,
then A(C) is a labelled, d irec t .ed graph, where:

V(A(C)) = { pJp is a subexpression of C}
I(A(C)) = Cu (M(C) x N(C))
E(A(C)) = TRANS(A(C)) u PUSH(A(C)) u POP(A(C))

where TRANS(A(C)), PUSH(A(C)) and POP(A(C)) are
mutua lly disjoint sets of arcs defined by:

TRANS(A(C)) ={ (p1 ,¢,p2) J {p1 ,P
2

} = ¢ € c}

PUSH(A(C)) ={ (p,(f ,i),t)J p and tare subexpres-
sions of C,
t = f(p1 , ... ,pn)' and

p = pi for some

i E {1, ... ,n}}
POP(A(C)) ={ (t,(f,i),p)J p and tare subexpres

sions of C,
t = f(p1 , ... ,pn)' and

p = pi for some

i E{ l, ... ,n}}

If e = (p1 ,label,p2) E E(A(C)), we denote by
-1

e the ordered triple (p
2

,label,p
1
). Then

(e-l)-l = e; e E TRANS(A(C)) if and only if
-1

e E TRANS(A(C)); and e E PUSH(A(C)) if and
-1 only if e E POP(A(C)).

Note that A(C) can be regarded as a finite
nondeterministic, pushdown automaton [1], where
V(A(C)) is the set of states, (which we will also
refer to as vertices of~, andsubexpressions of

C), and the transition function is defined in
the obvious way by the arcs. The npda A(C) has
unspecified initial and final states; input alpha
bet C; and pushdown alphabet M(C) x N(C), which
we will henceforth refer to as Z. Accordingly, we
call A(C) the automaton for C, and make the
following definitions.

4.2.3: Definition: If X is any finite set, a
word of length n over X, is any sequence of e l e;;;-ent s
of X •of length n. The word of length O is
denoted by ¢; the set of all words of positive
length over X by x+: and the set of all words
over X by X* . We will denote the length of a
word x by JxJ, and denote concatenation of
words by juxtaposition.

4.2.4: Definition: If a E C*, y E Z*, and
p E V(A(C)), then (p ,a,y) is called a config
uration of A(C), and p,a and y are called the
state, input and stack of the configuration
respectively.

4.2.5: Definition: If e € E(A(C)), we define a
relation F e=i on the set of configurations of
A(C) as follows: l et e = (p1 ,label,p2), then

(q
1

,a1 ,y
1

) J-e~ (q
2

,a
2

,y2) if and only if:

23

(i) ql ~ pl' q2 a P2

and (ii) (a) if e € TRANS(A(C)), and label
then a1 ¢a

2

(b)

(c)

if

then

Y1 Y2
e € PUSH(A(C)), and
label= (f,i) E Z
a1 a2
Y2 (f,i)yl

if e € POP(4(C)), and
label= (f,i) E Z

then a1 a2
Y1 = (f,i)y2

4.2.6: Definition : An alternating sequenc e of
n+l configurations and n arcs of A(C):

(pl,al,yl),el,(p2 ,a2,y2), ... ,(pn,an,yn),en'

(pn+l'an+l'Yn+l)

is called a chain of length n in A(C) from
(p1 , a1 ,y1) to (pn+l'an+l'Yn+l), if and only if:

(pi, ai,yi) J-e-J (pi+l'ai+l'yi+l) for all

i € {l, ... ,n}.

4.2.7: Definition: For each integer n?O, we
define a relation J-n on the set of configurations
of A(C) as follows:

(i) (v) J O (v) if and only if pl,al"l - Pz,a2"2

(ii) if and

only if there is a chain of
A(C) from (p1 ,a1 ,y1) to

length n
(p 2,a2,y2)

j- 1 I-We abbreviate as , and also define
relation J- * on the set of configurations
A(C) as follows :

(pl, a l,yl) I-* (p2,a2,y2)

in

the
of

iff (p
1

,a
1

, y
1

) j-n (p
2

,a
2

,y
2

) for some n? O

When two t erms are unified, their correspond
ing subexpressions are also unified as stated in
Lemma 4.1.2 (b). Hence the process of unification
of a set of constraints defines an equivalence
relation on the s ubexpress ion of C c haracterized
by the part ition FOUT' As it happens , we can

also characterize this equivalence relation by
considering certain chains in A(C), and through
this characterization, we can show the uniquene ss
of FOUT and POUT' and prove the exact rela tion-

ship between TRANSFORM and CLASSIFY.

4.2.8: Definition: If p and q are two s ub
expressions of C, then p is sa id to be at t ac hed
to q in A(C) if and only if for some a E C*,
(p,a,¢) J- * (q,¢,¢). We denote this p "" q mod C.
We a lso say that p is at tached to q ~
word a. It is easy to show that "" mod C is an
equivalenc e relation.

4.2.9: Lemma: For any set of constraints C, if

FOUT is an output partition of CLASSIFY(C), then

p = q mod FOUT iff p ~ q mod C.

4.2.10: Corollary: The output partitions FOUT

and POU of CLASSIFY(C) are unique: that is,
indepen!ent of the choices made during execution.
Because of this result, we henceforth refer to
FOUT and POUT' output by CLASSIFY(C), as FOUT (C)

and POUT (C).

Proof: The uniqueness of FOUT is obvious from

lemma 4.2.9, and implies the uniqueness of POUT

by lemma 4.1.2 (a). D

4.2.11: Corollary: TRANSFORM(C) succeeds, re
turning part it ion FOUT if and only if

CLASSIFY(C) returns partition FOUT where each

class of FOUT contains at most one class of

POUT'

Proof:
4.1.3.

By applying corollary 4.2.10 to lemma
D

Note that corollary 4.2.11 establishes the unique
ness of the output of TRANSFORM(C) and of the
digraph D, henceforth denoted D(C).

4.2.12: Example: The automaton for the set of
constraints of example 4.1.4 is illustrated in
figure 1. By inspecting the classes of FOUT(C)

given in example 4.1.4, we see that x = u mod FOUT'

so by lemma 4.2.9, x ~ u mod C. Figure 2 shows
a chain demonstrating this attachment.

4.3: The Unification Graph for C

Recall that if the transformational stage of
the Baxter algorithm succeeds, the resulting parti
tion is used to construct a digraph which must be
topologically sorted. Similarly, from the output
partition FOUT(C) of CLASSIFY(C), we construct

a labelled digraph U(C).

4.3.1: Definition: If C
the unification graph U(C)
directed graph, where:

V(U(C)) = FOUT (C)

is a set of constraints,
for C, is a labelled,

I(U(C)) = M(C) (definition 4.2.1)

and the arc set is defined as follows. Suppose
there are m classes in P ouic) , and let

t 1 , ... , tm be m terms such that < ti > = < tj >

if and only if i = j. Suppose
ti f .(p

11
, ... ,p.) for 1 s i ,,; m, then:

1 1ni

E(U(C)) = { ([t i], fi, [p ij l)jlSi Sm, l Sj Sni}

Note that U(C) is unique in view of lemma
4.1.2 (b).

4.3.2: Lemma: If TRANSFORM(C) succeeds, then
D(C) has a cycle if and only if U(C) has a
cycle.

We may now prove the correctness of our
modified version of Baxter's algorithm.

24

4.3.3: Theorem: A set of constraints
unifiable if and only if every class of

C is
FOUT(C)

POUT(C), and U(C) contains at most one class of

has no cycles.

Proof : By theorem 3.1, C is unifiable if and
only if TRANSFORM(C) succeeds and D(C) has no
cycles.

By corollary 4.2.11 and lemma 4 .3.2, TRANS
FORM(C) succeeds and D(C) has no cycles if and
only if every class of FOUT(C) contains at most

one class of POUT(C), and U(C) has no cycles. D

4.3.4: Example: Figure 3 illustrates the unifi
cation graph for the set of constraints C of
example 4.1.4. Note that by Theorem 4.3.3, C
fails to be unifiable for two reasons: some
classes of FOUT contain more than one class of

POUT' and U(C) has cycles.

4.4: The Failure Location Process

Theorem 4.3.4 allows us to determine whether
or not a set of constraints is unifiable: in the
case when they are not, it also shows us all the
sources of nonunifiability due to clashes between
incompatible terms, and due to cycles. We now show
how this information can be used to guide the
investigation of the automaton in order to deter
mine which constraints cause these nonunifiabili
ties.

We have already established that attachment
in the automaton corresponds to equivalence under
the output partition FOUT of CLASSIFY. By

finding words which attach incompatible terms,
therefore, we can find those subsets of the
constraints which cause these terms to be attached.

In this section, we also find that there is a
similar correspondence between cycles in the unifi
cation graph, and "loops " in the automaton; where
loops are chains roughly equivalent to closed
walks in a directed graph.

There is in general an infinite number of
chains demonstrating the attachment of a pair of
terms, and an infinite number of loops. However,
it turns out that we can limit our attention to
chains and loops with certain properties, and that
the class of such chains is finite.

4.4.1: Definition: A chain from a configuration
(p,a,¢) to a configuration (p,¢,y) where Y"-¢,
is called a loop on p with value a in A(C).

The next three results establish the rela
tionship between walks in U(C) and chains and
loops in A(C).

4.4.2: Lemma: If C is a set of constraints and
U(C) contains a closed walk from [p] to [p],
then there is a loop on p in A(C).

As one travels along a chain, the automaton's
stack increases and decreases a number of times
before it reaches its final value. For each ele
ment on the final stack, however, there is some
configuration on the loop which is reached from
the previous configuration by adding this stack
element, and is such that the stack is no shorter
in any subsequent configuration. The states of
these "plateau" configurations are the subject of
the next lemma.

· 1

4.4.3: Lemma: If (p1 ,a1 ,y1),e1 , •.. ,en•

(pn+l'an+l'Yn+l) is a chain in A(C) such that

y1 =¢,and Yn+l = (fm,jm) ..•. (f1 ,j 1), then there

are m un i que states q1 , ••• ,qm' m stacks

a 1 , .•. ,am, and m integers i 1 , ... ,im such that:

(1) 1 <i <i <, .. <i :sn+l
1 2 m

(2) qj=pi.' a j=yi for l :s j :s m

(3) q, is J term be~nning with f., for

(4)

(5)

J J
1 :s j :s m

hk I ~ I a. I for k ~ i . , 1 s j s m
J J

if m > l, ([qj],fj , [qj -l] E E(U(C)) for all

2 :s j s m

(6) [qm] = [pn+l]

(7) ([ql],fi, [pl]) E E(U(C))

An obvious consequence of lemmas 4.4.2 and
4.4.3 is:

4.4.4:
A(C)

Coroll ary:
has a loop.

U(C) has a closed walk iff

4.4.5: Definition: If A(C) has a loop
(pl,al,yl),el'''' ,en,(pn+l 'an+l'Yn+l)' where

Jyn+ll = m, then the m states q1 , ... , qm de

fined in lemma 4.4.3 are called the characteristic
states of the loop. For each characteristic state
qk, we define a loop on qk called the ~-canon-

ical form of the original loop, as fo llows. Sup
pose qk = p., then IY.I ~ IY .I for i ~ j.

J i J
Therefore, for each i ~ j, we can write yi i n

the form Siyj for some Si E Z*. Also, al = ca.

for some C E C*. Then the qk -canonical form of

the original loop is:

(p .,a.c,S.),e., ... ,e ,(p +l'c,S +l),e1 ,
JJ J J n n n

(p2,c'y2Sn+l)'e2, ... ,e j-l'(pj,¢,yjSn+l)'

which is a loop since Sj = (J, and yjSn+l"' r/J

(sinc e Yn+l = Sn+lYj and Yn+l"' ¢).

Note that:

{ ¢J¢ occurs in a1 } = { ¢J¢ occurs in ajc}

J

We now t urn our attent ion to certain restricted
classes of chains and loops.

4.4.6: Definition: A chain in A(C):

(pl,al,yl),el, ... ,en,(Pn+l'an+l'Yn+l)

is said to be semi-simple if and only if for all
i and j such that 1 s i < j s n+l , either
p4 "'pJ, or Y. "'Y .. The above chain is said to

i i J
be simple if and only if it is semi-simple, and
for all i and j such that either 1 :s i < j < n+l
or 1 < i < j :s n+l:

if

then
pi pj
3k E { i+l,,,, ,j-1} such that:

25

4.4.7: Definition: A loop in A(C) is said to
be fundamental iff all its canonical forms are
simple.

4.4,8: Definition: If p and q are subexpres
sions of C and there is a simple chain from
(p,a,¢) to (q,¢,~) for some a EC*, then p is
said to be simply attached to q by a in A(C).
It is easy to verify that simple attachment is an
equivalence relation. The reader should note that
simple attachment implies attachment but not vice
versa.

It happens that the number of chains demon
strating that two expressions are simply attached
is finite, and that the number of simple loops in
A(C) is also finite. These facts are consequences
of the following lemma:

4.4.9: Lemma:
chains in A(C)

Let 6 be the set of all simple
for which the stack of the initial

configuration is ¢, and the input of the final
configuration is ¢. Then 6 is finite.

The following result shows that we can indeed
restrict our attention to simple chains and funda
mental loops when we wish to separate incompatible
terms and break cycles.

4.4.10: Lellllila:
(a) If there is a chain of length n in A(C)
from (p,a,y) to (q,b,a), where either p"' q
or y "'a, then there is a semi-simple chain of
length Sn in A(C) from (p,c,y) to (q,b, a),
for some c E C*.
(b) If A(C) has a semi-simple chain of l ength
n that is not simple, then A(C) has a simple loop
of length < n.
(c) If A(C) has a loop, then A(C) has a
fundamental loop.

We now have all the machinery necessary to
describe t he process of finding the maximal uni
fiable subsets of a set C of constraints. In
formally, the process is as follows.

We find all pairs of incompatible terms which
are in the same class of FOUT(C), and find all

cycles of U(C) [8,9 ,11] . We then find all words
which simply attach incompatible terms, and for
each cycle find the value of a corresponding
fundamental loop.

4.4.11: Definition: If L is any finite set,
denote by J3(L), the set of all Boolean expressions
over L constructed without complementation. If
B E :B(L) , denote by [B] the function from

z1 -- > { 0,1} defined by:

[O] (L
1

) 0 for all 1
1

c L

[l](L
1

) 1 for all 1
1

c L

[£](11) 0 iff £ ~ 11

[B1+B2](L1) [B1](L
1

) + [B2](L
1

)

[Bl·Bz](Ll) [Bl](Ll) [B2](Ll)

4.4.12: Definition: If C is a set of constraints
we define several sets as follows:

(i) If p and q are subexpressions of C:
ATTACH(p,q) = {a lp is simply attached to q by a}

(ii) CONFLICT = {{ p,q} I [p] = [q] and < p > "' < q>}
(iii) For any subexpression p of C:
LOOP(p) = { aJ3 a simple loop on p with va lue a}

(iv) For any arc e E E(U(C)):
TAIL(e) = {tit begins with f,

where e = ([t],f,[p])}

(v) CIR= set of all cycles of U(C)

(vi) Let H be the assertion defined by:

H(§') iff for all k E CIR, en E(k) "' (/J

Then let COVER be any subset of E(U(C))
fying the condition:

!COVER! = min lei es E(U(C))
and H(e)

Clearly if CIR = (/J, COVER = (/J,

satis-

4.4.13: Definition: We now define several
Boolean expressions over C as follows:

+ (i) If a E C , Bw(a) l: ¢
¢ occurs
in a

(ii) If p and q are distinct subexpressions of C:

BA(p,q) = 1
[I Bw (a)

if ATTACH(p,q)=(/J
otherwise

a EATTACH(p,q)

It is easy to show that if a E ATTACH(p,q) then
a"'~. so that Bw(a) is defined. Also, by lemma

4.4.9, ATTACH(p,q) is finite.

(iii) if CONFLICT=(/)

[I BA(p,q) otherwise
{ p,q}ECONFLICT

For\ ;ny s[Iubexpression p i;:O:P\p)

Bw(a) otherwise
a ELOOP(p)

Again, it is easy to show that if a E LOOP(p), then
a"' (/J, so that E(a) is defined; and by lemma 4.4.9,
LOOP(p) is finite.

(v) For any e E E(U(C)):

[I BL (t)
t ETAIL(e)

Note that

(vi)

TAIL(e) "' (/J.

1

(vii) BUNIF = BCON°BCYC

4.4.14: Lemma: If cl

[Bw(a)] (C1) = 0 if and

C c, and -
only if

if COVER = (/J

otherwise

a E c+ , then:
+ a E c1

4.4.15: Lemma: If c1 ~ C, and A(C1) either has

a loop, or has a chain that is semi-simple but not
simple, then [BUNIF] (C1) = 0.

Proof: If A(C
1

) has a semi-simple chain that is

not simple, by lemma 4.4.lO(b), A(C1) has a loop.

If A(C
1

) has a loop, then by lemma 4.4.lO(c),

A(C
1

) has a fundamental loop. Suppose this loop
+ has value a E c1 . Since A(C1) is a subgraph

of A(C), this loop is also in A(C). Let

26

q
1

, ..• ,qm be the characteristic states of this

loop, then by lemma 4.4.3, there is a closed walk
[q1 J,e1 , [q2], •.. ,[qm],em,[q1] in U(C). Either

this walk is a cycle, or some subset of its arcs
form a cycle, In either case, for some
j E{l, ... ,m}, ej E COVER and qj E TAIL(ej) by

lemma 4.4.3 condition (3). Since the loop in
A(C) is fundamental, its qj-canonical form is

simple, so that Bw(b) is a factor of the product

BUNIF where b is the value of this canonical

form. Also:

{c lc occurs in b} ={c lc occurs in a} S c1
so that [Bw(b)] (C1) 0, by lemma 4.4.14

[BUNIF](Cl) = 0 0

C c C then: 1 - , 4.4.16: Lemma: If

[BUNIF] (Cl) = l iff c
1

is unifiable.

Proof:

(A) Suppose c
1

is not unifiable, then by

theorem 4.3.3 we have two cases:

case(a): There exist subexpressions p and q
such that p = q mod FOUT(C1) and

p 1 q mod POUT(c1). By lemma 4,2,9, p ~ q mod c1 ,

so there exists a chain in A(C
1

) from (p,a,(/J)
* to (q,(/J,¢) for some a E c1 , so by lemma

4.4.lO(a), there is a semi-simple chain in A(C1)
* from (p,b,(/J) to (q,(/J,¢). Note that b E c1 .

We have two cases:

(i) Suppose this chain is simple. Since A(C
1

)

is a subgraph of A(C) the chain is in A(C); and
by lemma 4.1.2(a) since p and q begin with
different function symbols, p 1 q mod POUT(C)

{ p, q} E CONFLICT
and b E ATTACH(p,q)

Therefore *Bw(b) is a factor in the product BUNIF'

But b E c
1

, so by lemma 4.4.14:

[B)b)](c1) 0

[BUNIF] (Cl) O

(ii) If this chain is not simple, then by lemma
4.4.15:

[BUNIF] (Cl) = O

case(b): U(C
1

) has a cycle. In this cas e, by

corollary 4.4.4, A(C
1

) has a loop, so by lemma

4.4.15:

[BUNIF] (Cl) = O

(B) Now suppose that [BUNIF] (C 1)

have two cases:

case(a): [BCYC] (C1) 0.

0. Then we

In this ca se, for some subexpression p of C,
there*is a simple loop in A(C) on p with value
a E C , such that [Bw(a)](C1) = 0. It is easy

to show that a"' (/J, therefore a E C+, so by

./

lennna 4.4.14 a E Cf, so that the simple loop on p

is in A (C
1

) . Consequently, U(C
1

) has a cycle

(corollary 4.4.4), so that by theorem 4.3.3 cl is
no nun if iable.

case(b): [BCON](C1) = O.

In this case, for some subexpressions p and q
of C, p = q mod FOUT(C), p 1 q mod POUT(C) , and

p is simply attached to q by a EC* in A(C),
where [B (a)] = 0. It is easy to show that a "' r/J ,

w + .
therefore a EC , so by l emma 4.4.14, a E Cf so

that p is simply attached to q by a in
A(C1). Hence p ~ q mod c

1
so by lemma 4.2.9,

p = q mod FOUT(C1). But p and q begin with

different function symbol s by lemma 4.1.2(a),
so by the same lenuna p 1 q mod POUT(81). There-

fore by theorem 4.3.3, c
1

is nonunifiable. D

If B is a Boolean expression constructed
without complementation, then there exists [SJ a
un ique (modulo commutativity of Boolean sum and
product), sum of products expression B' with the
properties:

(a) No product in B' subsumes any other product
in B',
(b) No product in B' contains repeated vari-
ables.
(c) B' defines the same Boolean function as B.

Also, for any two Boolean expressions B
1

and

B
2

, [B
1

] = [B
2

J if and only if B
1

and B
2

define the same Boolean function.
We may now prove the main result.

4.4.17: Theorem: c
1

is a maximal unifiable sub

set of a se t of constraints iff c
1

= C- { ¢
1
,,,,, ¢n}

where ¢1 ... ¢n is a product in BUNIF

Proof:

(A) Suppose c1 =C-{¢1 , ... ,¢n} where ¢1 ... ¢n

is a product in BUNIFn

Then [¢1···¢n](Cl) =iU1 [¢i](Cl)

= 1 since ¢i i c1 for l Si Sn

cl is un ifiable (lemma 4.4.16).

Now suppose Cl'::. C2, and c2 is unifiable,

then there exists a product ml. "11\ in BUNIF
such that:

mi i c2 for 1 $ i $ k

mi i cl for 1 $ i $ k

{ml'"'•ll\} '=.{¢1, ... ,¢n }

If these sets are not equal, then the product
m1 ... mk subsumes the product ¢1 ... ¢n' which is

impossible. Therefore {~, ... ,11\} = {¢1 , ... ,¢n},

27

so that c
1

= c2 .

c
1

is a maximal unifiable subset.

(B) Suppose c
1

is a maximal unifiable subset of

c. Let c1 = C- { ¢1 , ... ,¢n}. Now [BUNIFJ (C1) 1,

since c
1

is unifiable. Therefore there exists

a product m1 ... mk in BUNIF such that:

k
illl[mi] (Cl) = l

mi i cl for 1 s i s k

{ml'"'•ll\} ::{¢1'"''¢n}.

Let c
2

= c- { m1 , ... •11\}. Then

unifiable by (A), and c1 '::. c 2 . But

maximal unifiable subset, so that c 2

i;1 .•. ¢n is a product in BUNIF

c2

cl

= cl

is

is a

D

4.4.18: Example: For the set of constraints C
of example 4.1.4, by investigating FOUT(C) and

POUT(C), we find that the set of incompatible

terms is:

CONFLICT= {{F(H(w),G(x,r)), H(u)},
{ F(H(w) ,G(x,r)), H(v)},
{ F(y ,G(s ,z)), H(u)},
{F(y,G(s,z)), H(v)},
{F(y,y), H(u)},
{ F(y,y), H(v)},
{G(s,z), H(w)},
{ G(v,F(y,y)),H(w)},
{ G(x,r), H(w)} }

The se t of cycles of U(C) is:

CIR= { ([uJ, e1 , [yJ,e2 , [u]) , ([u],ey,[u])}

Of the two possible "coverings" for CIR, we choose:

COVER = { e
1

,e
7

}

So the sets of states of A(C) which must be
investigated for loops is:

TAIL(e
1

) = { F(y,y), F(H(w) ,G(x,r)), F(y,G(s,z))}

TAIL(e) = { H(u), H(v)}
7

By investigating the automaton A(C) (figure 1)
we obtain the following:

ATTACH(F(H(w),G(x,r)),H(u))

ATTACH(F(H(w),G(x,r)),H(v))

ATTACH(F(y,G(s,z)) ,H(u))

ATTACH(F(y,G(s,z)),H(v))

ATTACH(F(y,y),H(u))

ATTACH(F(y,y),H(v))

ATTACH(G(s,z),H(w))

ATTACH(G(v,F(y,y)),H(w))

ATTACH(G(x,r),H(w))

={¢3¢4¢4}

= { ¢3¢4¢4¢)

= { ¢2¢4¢4}

= { ¢2¢4¢4¢4}
= { ¢ }

4
={¢4¢4}

= { ¢2¢4¢5¢5¢4¢3,

¢2¢4¢5¢2¢3}

= { ¢3¢2¢5¢4¢2¢1,

¢3¢4 ¢5¢5¢4 ¢2¢1}

= { ¢3¢4¢5¢5¢4¢3,

¢3¢2¢5¢4¢3}

N
00

F(H (H (1')),v)

(F, l i

F(H (w),G(x,r))

The automaton A(C) for the set of constraints C of our
example. Note that to simplify the diagram we have
used a single arc to represent a pair of arcs e, e-1
of the automaton.

Figure 1.

State

X

G(x,r)

F(H(w),G(x,r)

u

F(y,G(s,z))

G(s,z)

G(v,F(y,y))

V

H(v)

H(H(v))

F(H(H(v)),v)

F(H(H(u)),H(u))

H(H(u))

H(u)

u

Stack Input

!/J ¢3¢2¢1¢4
(G,1) ¢3¢2¢1¢4

(F,2)(G,1) ¢3¢2¢1¢4
(F ,2) (G,l) ¢2¢1¢4
(F ,2) (G,1) ¢1¢4

(G,1) ¢1¢4
(G,1) ¢4

!/J ¢4
(H,1) ¢4

(H,l)(H,1) ¢4
(F ,1) (H , 1) (H,1) ¢4
(F ,1) (H,1) (H,1) !/J

(H,l)(H,1) !/J

(H,1) !/J

!/J r/J

Figure 2.

. I

I

I

LOOP(F(y,y)) = { ¢1¢2¢4¢5}

LOOP(F(H (w),G (x,r))) = ¢
LOOP (F(y,G(s,z)) = { ¢2¢4¢5¢1 }

LOOP(H(u)) = { ¢
5

¢1¢2 , ¢1¢2}

LOOP (H(v)) • { ¢
4

}

We obtain the Boolean sum of product s over C:

B~NIF = ¢4¢1 + ¢4¢2

Tperefore C has two maximal unifiable subsets,
namely:

{¢2,¢3,¢5}

and {¢1,¢3,¢5}

References

(1) Aho, A.V. and Ullman J .D.

(2)

(3)

The Theory of Parsing, Translation, and
Compiling. Volume I: Parsing
Prentice-Hall (1972).

Baxter, L.D.
A Practically Linear Unification Algorithm
Research Report CS-76-13, Department of
Computer Science, University of Waterloo
(1976).

Baxter, L.D.
The Complexity of Unification

'

Ph.D. Thesis, Department of Computer Science,
University of Waterloo (1976).

(4) Bondy, J.A. and Murty, U.S.R.
Graph Theory with Applications
MacMillan (1976).

[S J Brzozowski, J.A. and Yoeli, M.
Digital Networks
Prentice-Hall (1976).

(6] Cox, P.T.
Deduction Plans: a graphica l proof procedure
for the first-order predicate calculus
Ph .D. Thesis, Department of Computer Scienc e,
Research Report CS- 77 - 28, University of
Waterloo (1977).

[7] Cox, P . T.
A graphical proof procedure for first-order
logic
Proceedings of A Conference on Theor etical
Computer Science, University of Waterloo,
Waterloo, On tario, (August 1977) .

[8] Johnson, D.E.
Finding all the Elementary Circuits of a
Directed Grap h
Technical Report 145, Computer Science
Department, Pennsylvania State University,
(1973).

[9] Read, R.C. and Tarjan, R.E.
Bounds on Backtrack Algorithms for listing
cycles, paths and spanning trees
Memo ERL-M433, Electronics Research Labora
tory, College of Engineering, University of
California, Berkeley (1973).

29

[10) Robinson, J ,A,
A machine oriented logic based on the
resolution principle
J,ACM 12, no. 1, 23-41 (1965),

[11] Szwarcfiter, J.L. and Lauer , P.E.

y

A New Backtracking Strategy for the
Enumeration of the Elementary Cycles of a
Directed Graph
Technical Report 69, Computing Laboratory,
University of Newcastle upon Tyne (1975).

ill(ll(u)), 1·1(11(1))!

IG(s,z), G(1 ,F(y,y J) , G(x,r)i
Ill(\\'JI

F 5

II J

IF(H(l-l(u)),H1u)), F(H(l-1(1l),1)i

The graph U(C) for the set of constraints C
of our example. Each vertex is a class of
FOUT(C), and the sets within each vertex

are the classes of POUT(C). The arcs are

labelled with function symbols according to
the definition of U(C); also, integer labels
1, ... ,7 are attached in order that we can
refer to t he arcs as e

1
, ... ,e

7
.

Figure 3.

An Analysis of Theorem
Proving by Covering

Expressions

L. J. Henschen
W. M. Evangelist

Northwestern University

Abstract We present a technique for dea ling with
constrained-variable instances of clauses similar
to Gilmore 's method. Rather than perform ~atura
tion over H, however, we show how the basic calcu
lation can help guide the exploration of H. The
theor em proving process then consists of 1) f orm
ing some constrained copies of input clauses,
2) calculating a cover expression and 3) if a
proof has not been found, using the cover expres
sion to pick new instances of clauses. The last
part is the main point of departure from prior
constrained variable methods. We also present a
complexity analysis of covering and relate an in
complete ground case strategy to a form of unit
r eso lution.

I. Introduction

We pres ent a new me thod for automated theo
rem proving that is currently being studied with
an int eractive program. The method is equivalent
to Gilmore's method [6] in the ground case and
i s r e lated to Prawitz' me thod [12] in the genera l
cas e . Some of th e interesting features are:

A. for the ground case

i. each clause is used once in the calculation
of a covering expression and th en discarded, un
like r eso luti on and matrix methods where a clause
may have to be us ed for several resolutions, ex
t ensions or matrix r eductions;

ii. for a satisfiable set of ground clauses the
re s ult is a concise description of the kinds of
cl a us es that would have to be added to obtain un
satisfiability; (this point is crucial for the
general case);

iii. the ground clauses can be used in any order;
there is never any backing up or undoing of a cal
culation that has already been performed, and
thus one can say ther e is no "s earch" involved.

B. for the genera l case

i. replicas of the input clauses are us ed (i.e.,
constrained variabl e copies rll); this gives a
momentarily fixed set of literals so that the
ground cover calculation can be performed ;

ii. after a replica has participated in the basic
cover calculation, only the literals ne ed be saved
for possible fu ture ma tings; no record of which
literals be long to which replicas need be k ept;
only one copy of a litera l need be saved r egard-

30

less of how many replicas it occurs in;

iii. in relation to remark A. ii above, when not
enough r eplicas have been taken to form an unsat
isfiable set of instances, the cover express ion is
used to help choose n ew replicas and substitutions.
We point out that the search process in the gen
eral case is concerned solely with finding the
unsatisfiable instances. Once thes e have actually
been found, remark A.iii from above applies. Res
olution, on the other hand, combines the search
for instances (unification) with a search for a
demonstration of unsatisfiability (forming a re
solvent).

In [6], Gilmore proposed calculating the DNF
of c

1
&e

2
... &Cn for a set c

1
, ... , en of clauses.

He then proposed to form successive saturations
of this DNF matrix over the Herbrand Univers e , H.
Among the mor e serious disadvantages of this ap
proach are that 1) the normal conversion from CNF
to DNF l eads t o r edundancy among the disjuncts
and 2) there is generally littl e guidance in
searching through H. To he lp overcome these di s
advantages, we propos e starting with an initial
set of inst anc es , pe rforming a different but
similar transformation and then using the result
to he lp choose the n ex t set of replicas. Note
that the new approach l eaves the input clauses as
c lauses, the often more natural form. Second,
the modifi ed convers ion will produc e DNF's which
are minimal in the s ens e that no individual dis
junct is impli ed by r emaining ones. Finally, we
make heavy us e of the fact that the disjuncts of
the modifi ed DNF represent a minimal set of
clauses which, if added to th e current se t of
replicas, will produce unsatisfiability. More
over, the representation is in a form tha t can
be compared directly to the input c l aus es to de
termine appropriate new instances.

We assume the reader is familiar with first
order l ogic and resolution. We begin with the
ground case and describ e the cover calculation.
We then discuss how we currently use the covering
idea in a first-order, interactive theorem prover.
Finally we make a brief comment about the computa
tional complexity of the ground case. In what
follows, we us e a slightly different notation
than DNF, namely we reverse the signs and don't
writ e the literals themselves. The sign reversal
a llows a more direct comparison of the cover
expressions with input clauses.

. . . . I

. I

' .
· 1

II, The Ground Case

Let a set S of ground clauses be given and
let the atoms in S be p

1
, ..• ,pn. A term is a

string of n symbols, each symbol either+, -, or
0. An expression is a set of terms. The covering
expression for a clause D = d , v d , v .•. v d , ,

il i2 im
1 ~ i.

l
~ n, is the set of terms

OOOs•. 0000 .•. 00
il

OOOs. 0 .. , Os'. 0 ..• o
il i2

OOOs. O ••. Os. 0 ... Os'. 0 ..• 0
il i2 i3

OOOs.
il

0" ,S. o ... ". '' 'Si 0 .•. 0 s ' 0 ... 0
i i2

wheres. is the sign of
J

sign. Note that -(d.
il

to:

m-1 m

d. and s'. is the opposite
J J

v ... v di) is equivalent
n

-d V d.&-d, V ,., V d.& .. , d, &-d. ,
il il i2 il im-1 im

The covering express ion, then, contains one t e rm
to represent each of the above disjuncts. The
cover exp r ession of a clause Dis denoted by C(D).

Examples. Let n = 6

C (p
2

) 0-0000

C(-pl v p6) = +00000 -0000-

C(pl v -p
3

v p
4

) = -00000 +o+ooo +o--oo

Definitions Two t erms conflict if one contains
a + and the o ther a - in the same posi tion. If
two terms sand t do not conflict, then their

31

intersection s*t is the term calculated position
by position according to the following:+*+=+,
-*- = -, +*0 =+and -*O = - The product s*t of
two covering expressions Sand Tis the set of all
terms u such that u = s*t, sin Sandt in T and
sand t do not conflict.
Example. Let C be the c laus e p

1
v p

3
and let D

be the clause - p
3

v p
4

. Then C(C) = -000 +0-0

and C (D) = Oo+O 00-- and C (C)*C (D) = - o+O - 0-
+0-- (+0-0 and Oo+O conflict). It often happens
that two terms in an express ion are exac tly
alike except in one position, for example ++- o++
and +++o++. In such cases, the pair of terms are
replaced by the single term with a O in the dis
agreeing position, e.g., ++Oo++. Such an opera
tion is called a merge and is equival ent to apply
the rule p&A v-p&A = A. We note that* is commu
tative and associative. We therefore, extend
the notion of a cover express ion so that the
cover of a set S = [C

1
, Cn} is given by C(S)=

C (c
1
)i<C (C

2
)* ... *C (Cn),

We now relate covering terms and expressions
to a tree structure which we call the standard
tree (of order n). We are still considering
sets of clauses over the Boolean variables
P1,Pz, ... Pn·

Definition A standard tree of order n is the
binary branching tree of depth n in which
1. the clauses attached to the two level 1 nodes
are p

1
and - p

1
and

2. if C. is the clause attached to a l eve l i
i

node n then the clauses attached to the two
l eve l i+l nod es d escended from n are Ci v Pi+l

and Ci v -pi+l'

· For example, the standard tr ee of order 3 i s
s hown below. The leaf nodes have been numbered
for reference .

Definition The set of l eaves covered by a term t
is th e set of all l eaves of the standard tre e
whose a ttac hed clauses contain pi i f the symbo l

in position i oft i s + and -pi if the symbol in

position i i s-. The set of l eaves covered by an
expr ess i on Eis the union of the set of l eaves
covered by the t erms of E, and i s denoted by K(E).

Example. Suppose n=3. Then relative to the above
figure

K(+o+) consists of l eaves 1 a nd 3
K(Oo+) consists of l eaves 1, 3, 5, and 7
K(+-- -00) consists of l eaves 4 thru 8.

Not e tha t the covering terms are like the
"p ebbl es " us ed by Paterson and Hewi tt [11] to
close off a tr ee .

We have the fo ll owing theorems:

Theo rem 1. Le t S be a set of c l a uses whos e a t oms
are amo ng p

1
, ... ,pn.

onl y if S s ub s um es a ll
t ree of order n.

Sis unsatisfiable lf a nd

the l eaves of the stand ard

Th eor em 2. The se t of l eaves covered by the inter
s ec tion of two t erms sand tis the inters ection
of the set covered bys a nd the se t cover ed by t.

Theo r em 3. The set of l eaves covered by C(D)
where Di s a c l ause i s th e se t of l eaves NOT s ub
s umed by D.

Theor em 4 . Th e s et of leaves covered by C (D)~<'C (E)
is th e se t of l eaves not s ub s umed by e ither D or
E .

Theor em 5 . Sis unsatisfiable if and only if C(S)
i s empty .

We now r eiterat e one of the main fea tures of
ground cover ing. Fr om Theo r ems 1 and 4 we have
that if Sis sati sfiab l e, C(S) t e lls which le aves
of t he t ree have been l ef t unsubsumed--tha t i s ,
in a sens e , what kind s of c l a uses are missing
from S. This wil l pl ay an imp ortant r o l e in the
nex t section.

We c l ose thi s section with an exampl e of a
set of cl auses and the ca l culation of its cover .
PRODUCT COVER is the product of th e cover s of a ll
the c l auses up t o tha t point. We us e p, q, and r
to avo id writing s ub scrip t s , and drop v.

Claus e Cl ause Cover Product Cover

p q r -00 +-0 ++- -00 +-0 ++-
-p -q -r +00 -+O --+ + - 0 ++- -+0 --+
q - r 0-0 O++ + - 0 -o+
p -q -00 ++0 -o+
-p r +00 -0- empty

Not e that a mer ge occurred in the third l ine .
There is no r eso lution, mode l e liminati on, linear ,
GC or linked conjunct r efuta tion of the above set
of clauses that do es not us e at l eas t one of th e
claus es more than once for a resolution, ex tens ion,
or conj unct node. If we consider the se t of jus t
the first 4 claus es, we have a sa ti sf i abl e se t.
The product cover after the first four c l auses
have been used i s not empty, and indicates that we
need a c l a use s ubs umming - p r in order to ge t un
satisfiabi lity . Finally, note t hat th e first two
claus es processed have on l y tautologo us resolvents.
Whil e s uch are normally discarded in r esolution,

32

they pose no particular probl ems for covering.

III. The Genera l Cas e

We propos e to us e the above s cheme as the
truth- f unct iona l unsatisfiability t est in the
bas ic replica-method for th eor em proving . Such
a method has the format:

1. Form a set of r eplicas of the input c l a us es.
2. Unify some of the lit erals or otherwise de t
ermine some s ub s titutions for the constrained var
iables.
3. Tes t for truth-functiona l unsatisf i ability .
4. I f the te s t succeeds, stop; otherwise, add
new replicas and/or s ubstitutions and go to 3 .

The l ast s t ep i s the crucial one. Cov-
ering express i ons provide a convenient form for
ana l y zing what new replicas to form, unlike o ther
replica methods or even resolution in general.

We begin with a trivial exampl e to illus
trat e the basic app roac h. Suppose S has 3 claus es,
Pa, -Px Pf(x), and -Pf(f(a)), and s uppose we
start with one replica of each. Taking th e lit
er als in the orde r they appear be low, the r eplicas
and the covering expr ess i ons are :

Claus e Claus e Cover Pr oduct Cover

1. Pa - 000 - 000
2. -Pv/f(v1) o+oo 0--0 -+00 ---0

3. -Pf(f (a)) ooo+ -+o+ ---+

Now the object is t o produc e the empty cover,
i. e., to ann i hil ate all the t erms . The first
term in t he above cover c an be annihilated by
mating litera ls 1 and 2 , i. e ., Pa and Pv

1
, by

s ub s tituting a for the cons t rained variab l e v
1

,

making litera l s 1 and 2 id entical. Then a t erm
like -+0+ is se lf-con f l ic ting because if the s ub
st itution had been made befor e the cover were
ca l cul ated and only, say , lit eral 1 had been kept,
s uc h a t erm would never have been forme d in calcu
l at ing the product. After making t he s ubst itution
we have a product cover -x-+ where the x i ndicat es
that lit era l 2 has now become id entic a l to some
o ther lit er a l. No oth er s ubstitutions are pos
s ible, so we now look for anothe r replica. The
l eaf indicat ed by the r ema inin g t erm is
-Pa -Pf(a) Pf(f(a)). If we can fi nd a r eplica
tha t s ub s umes this, we will be don e . Of course
t he appropriate rep lica i s -Pf(a) Pf (f (a)).

Generally, it will not be the case that some
s ub set of literals i n an un s ubs umed l eaf wi ll
have a common ins tanc e with a ll of a n inp u t
c l ause. For exampl e, if th e third input clause
above had been -Pf (f (f (a))), the un s ub s umed l eaf
would have been - Pa -Pf(a) Pf(f(f(a))), The
best we could have done wou ld have been t o t ake
replicas tha t had 1 lit e r a l in common with t he
uns ubs umed l eaf --e ither -Pf(a) Pf(f(a)) or
-Pf(f(a)) Pf(f(f(a))), I n e ither case, adding
s uch a new r eplica (with a new litera l) wo u ld
aga in l ead to a cover expression whose ind i cated
leaf was fully s ub s um ed.

The basic me thod, then, is t o start with
some replicas, calcu l ate a covering expr ess i on ,
and t hen use tha t expr ess i on to guid e the choice
of new replicas or s ubst itutions . We make some
comments.

1. One can make wrong choices of replicas and
substitutions; so there is definitely " search" in
the general case; however, the search is confined
solely to discovering the correct instances of
the input clauses, and not to examining Boolean
r e lations among thes e instances; in r esolution
bas ed me thods, the formin g of instanc es (by uni
fication) is intimately bound to the examination
of the Boolean r e lations.

2. Wh en two r eplica lit erals ar e mad e equal,
only one copy is saved; moreover, only one copy
of a literal is needed regardless of how many
clauses contain that lit e,al; exc ept for proof
r ecover y , no r ecord need be kept o f which cla us es
contain a literal; lit erals ar e k ept only to help
choos e new replicas.

3. Most importantly , it app ears tha t one can
apply mor e analys es to the choic e from amon g a
number o f possibl e new r eplicas bec aus e the entire
instanc e of the new claus e is pres ent, unlike
binary r esolution; this r emark applies equa lly
we ll t o hyper- and UR-r eso luti on, a nd r epr esent s ,
in the authors' vi ew, a distinct pot ential advan
t age o f thes e me thods over bina r y res olution.

We a r e currently experim enting with an int er
active FORTRAN pro gram a t Ar gonne Na tiona l Lab
based on the a bove me thod. We pre f e r int er active
a t thi s point in ord er t o expe riment and de t e rmine
po s sibl e effective heuri s tic s t o use with thi s
t echnique . Becaus e the progr am i s int er active it
will no t be poss ibl e t o comp a r e our r esults with
thos e of mor e we ll - deve l oped, full y automa t ed
progr ams . Th e bas ic command in the pr ogr am i s
SGST, L, n wh e r e Lis a lit er a l numb er and n i s
an int eger. Thi s command form s common ins t anc es
be tween s ub se t s o f the clauses indic a t ed by the
covering expr es s i on and input cla uses in which n
lit eral s in the input cl ause a r e unma t ed. It
then di s play s these unma t ed lit era l s and, i f the
use r des ires , the ins t ances o f the input c l auses
thems e lves , (The name SGST stands for " suggest";
one way of int erpr e ting the dat a tha t is dis
pl ayed i s a s sugges tions o f the fo rm "if yo u want
t o prove L, try t o prove one of the foll owing lit
er a ls , .. "). The us er then choos es from amon g
the in s t anc es . The progr am performs some t es t s
automa tica lly -- 1. it r e j ects t auto lo gi es , 2.
i f the semantic f l ag i s on, it r e j ec t s ins t ances
whos e unma t ed lit er a l s do not have f a ls e in
s tanc es , 3, it per forms demodul a ti on. The user
can choose from among the r emaining s ugges tions ;
we currently use such informa tion as 1 . t he
numb er of support ed liter a ls us ed, 2. the s truc
ture of the t erms , 3. th e numb er o f inst anc es
yi e ldin g the s ame s uggestions, e tc.

At the mom ent we ar e confining our experi
ment s t o Horn s e t s ; this a llows a heuri s tic
which i s a na logous to the emphasis on unit s in
r es olution, name l y , we add inst anc es o f onl y unit
c l auses . In thi s case , th e covering express i on
serves bas ically as an effici ent r ecording mechan
ism for constra in ed UR r eso lution [10].

The probl em us ed in the exampl e i s Theor em HS
in [10] , that "l es s-than- or equa l" is trans itive in
Henkin mod e l s i. e ., Q(A,B) and Q(B,C) imply, Q(A,C).
The ax ioms and comput er di a l ogue a r e list ed in the
App endi x .

3 3

IV On the Computational Complexity of Ground
Covering

The time complexity of any new algorithm for
refuting unsatisfiable ground sets is of interest
because of the close r e lationship to the NP-com
plet e problems. (S ee Cook [21 and Karp f9]),
That is, P=NP if, and only if, ther e exists a
sound and complet e polynomial time al gorithm f or
r e futing unsatisfiabl e se ts .

Cook and Reckhow 13] have investigat ed the
question of the exist ence of a super proof syst em
for the t autologies of the propositional calculus .
A proof s ys t em n i s s up e r if ther e ex i s t s a po l y
nomial p such that for every tauto l ogy x th er e is
a proof of x in n no longe r than p(l x \), whe r e
Jx\ is the numb er of symbols in x. Reckhow s howed
tha t NP i s closed und er compl ement a ti on if , and
only if, the r e ex i s t s a sup e r proo f sys t em. The
exist enc e o f a supe r pr oof s y s t em doe s not imply
P=NP, since the mere ex i s t ence o f a s hort c erti
ficat e o f t autologyhood does no t imply that the
cert i fic a t e can be found in a s hort (po l ynomial)
amount of time . Of c ours e, a proo f tha t no s up e r
proo f sys t em ex i s t s would i mply PiNP , s ince Pi s
clos ed und er c ompl ementation .

We study the compl exi t y of cover ing by try
ing to show tha t a g i ven co ver ing s tra t egy i s no t
a s up er pr oof sys t em. I f the s trategy i s sound
and c ompl e t e , then s uch a res ul t impli es that t he
s tr a t egy has non- po l ynomi a l time comp lexity , but
the l a tt er r esult would no t imply the f ormer .
The l ength o f a pr oo f us ing a cover ing s trategy
will be the numb er of t erms gener a t ed dur ing th e
covering re fut a tion of an un sa ti sfiab l e se t .

1. Two non - po l ynomia l s t ra t egi es

It i s no t dif f i cult t o f ind a covering
s tr a t egy tha t r equires mo r e th an a po l ynomi al
numb er of s t eps . The fo l lowin g a l gorithm i s tha t
used fo r th e gr ound case in th e c urren t impl emen
t a tion of c overing (see Hensc hen and Evange li s t
r 7J).
- Algorithm 1. Simpl e scan.

Me thod. Read the input as give n without a t
t empting to so rt the c l auses .

Theor em 1. Simpl e scan cover in g is no t a
s up er pr oof system.

Proof. (Outline) The complexity o f a ny cov
erin g str a t egy increases s harpl y when l a r ge num
ber s o f pa irwi se -di s j oint c l a uses a r e processed
in se quence . Thi s phenomenon occ ur s because the
covering expr ess ions assoc i a t ed with pa irwise
di s j oint cl aus es ar e a lways comp a tibl e . Eac h
memb er T of th e infinit e family o f unsa tisf i ab l e
s e t s first given by Tse i ti n [13] conta ins l arge
numb ers o f pairwi se -di s j o int c l auses . Thus , we
give these clauses in se quence t o Al gor ithm 1
f o llowed by the r es t o f the ~ l a uses in T , which
i s s uf f i cient t o fo r ce the simp l e scan met hod
into non - po lynomi a l behavi or.

Coroll ar y 1. Simpl e scan has non- po l ynomi a l
time compl exity .

Al gorithm 1 i s in e ffici ent, bec ause it i s
not we ll enough inform ed t o avo id inter sectin g
cons ecutive pa irwise-di s j oint cl auses . The nex t
a l gorithm seeks eff ici ency by avo iding pa irwise
di s j o int c l a us es whenever poss ibl e.

Algorithm 2. Mod e l-direct ed coverin g.

Me thod . Pick an initial clause arbitrarily.
Choos e as the nex t clause one that eliminates as
poss ibl e mode ls the larges t number of l eaves in
the associated semantic tree .

Theo r em 2. Mod e l-di rect ed covering is not a
super proof sys t em.

Proof. (Outline). Again, we us e Ts e itin's
formul as . The exist enc e of exponentially long
s nakes (chordl ess cycles) in the n-cube, from
which the fo rmulas a r e d er ived , a llows us to force
Al gor i thm 2 into exponentially long proofs . (S ee
Danze r and Klee [41 on the l ength of snakes in
the n-cube).

Corol l ary 2. Mod e l-dir ected covering has non
po l ynomial time complexity.

Mode l-di rec t ed covering was designed t o di s
cover quickly the unsatis f iable k erne l of a set of
c l auses and will be most ef ficient on se t s tha t
are no t minimally unsa ti sf iabl e . The sets o f
formul as described by Tse itin are min i ma lly unsat
i s fiabl e and because of the l ong s nakes in the
graphs from which they ar e derived, contain long
chains of formulas tha t are no t pairwis e- disj oint
c l aus es but, a t th e same time , do not interac t
strong l y e nough t o bound the l engths of proofs by
a polynomial.

2 . An incompl e t e strategy

In an a tt empt t o und ers t and the natur e of
covering better, we cons ider the fo llowing hi ghly
cons tra ined version:

Algo rithm 3. K-bound ed cover ing.

Me thod. Choose t he n ex t claus e using a ny de
sired s t ra t egy. The only constraint i s that no
mor e t hank terms may be ge ne rated at eac h s t ep,
for some cons t ant k.

Note tha t k is a bound on the numb er of terms
not on
the

&

generated by the inters ection process and
the number of terms r equir ed to repr esent
clauses. For exampl e , the pyramids P = x

n n
& . •• & (x l v -x) & (x 2 v -x l v -x) n- n n- n- n

(x
1

v -x
2

v . •. v - xn) & (- x
1

v -x
2

v . .. v -xn)

are r efut ab l e by 1-bound ed covering but require
2

O(n) terms to represent t he c l a us es .

I t is c l ear that i f k-bound ed cover ing were
comp l e t e for some constant k , then Al gorithm 3
wo uld be a s up e r proof system . Unfortuna t e ly,
this is not the case. Let L denot e a ll the 2n

n
clauses over n vari ab l es.

Lemma 1. The sets Ln require a t least n-1

covering terms t o be generated a t some point in
their refuta tion.

Proof. (Outline) Use the proof technique
of Pat erson and Hewitt [111 that demonstrated tha t
lo g N pebbl es are required t o close off a tree of
N nodes .

Cook 121 has given a technique for replacing
any CNF formu l a F with a 3CNF (no mor e t han 3 lit
era l s per c l a use) formula F' s uch that Fis unsat
isfiabl e if, and only if, F' is unsati sfiable.

34

Th e id ea i s to us e distinct dummy variables to
r epresent excess liter a ls in each claus e. Further,
F' can be construct ed in a numb er o f steps no
grea t er than some polynomial in the l ength of F.
Le t L'n be the translation of Ln into 3CNF using

Cook's algorithm.

Lemma 2. The sets L' require at l eas t n - 1
n

covering t erms, a lso.

Proo f (Outline) Covering the l eaf clauses
in the semantic tr ee associated with Ln is equiv -

alent to covering the corresponding s ubtr ee s in
the much l arge r tree assoc i a ted with L'. Thus,

n
a t l east as many t erms will be r equir ed.

The pr ecedin g l emmas give us the desired
r esult.

Theor em 3. For each constant k, there ex i sts
an infinit e family o f unsa ti sf i ab l e se t s of 3CNF
clauses not r e futable by k-b ound ed covering.

Corollary. 3. K- bounded covering is not a
super proof system.

Le t AUGUNIT be the family o f se t s of claus es
refut able by unit r eso lution (see Chang and Lee
[11) augment ed t o allow a ll r eso lutions that pro
duc e unit c laus es as well as those tha t use unit
c l auses. Le t lCOV be those se t s refutab l e by
1-bound ed coverin g .

Theorem 4. AUGUNIT=lCOV.

Proof (Outl ine) The case AUGUNIT c lCOV i s
obtained by a str aight fo rward s imulation of
augmented unit r eso lution by 1- bound ed covering .
For the case lCOV c AUGUNIT, we use induction on
the number of cl aus es. The cen tra l idea i s t o
s how that the DNF c l ause impli ed by the s ing l e
covering t erm after processing j claus es i s prov
ab l e by a ugment ed unit resolution oper a ting on
the same j clauses.

Theo r em 5. lCOV is po l ynomi a lly dec idable.

Proof (Outl i ne) By the fact that AUGUNIT
is po l ynomi a ll y decidable . (S ee J ones and
Laaser 18] for the compl ex i ty of UNIT).

The time compl exity of k-bound ed covering is
sti ll und er i nves tiga tion. It is poss ibl e that
the se t KCOV is NP- compl e t e (cl early, KCOV is in
NP). We conj ecture, however , t ha t it i s not. In
fact, we be l ieve that it i s r e l a t ed t o the bound
ed r eso luti on of Galil [51 as fo ll ows:

Conjec tur e p(k)-bound ed r eso luti on can sim
ul a t e k-bound ed cover ing for some polynomial p.

On e goa l for f utur e researc h is t o s how t hat
unr estrict ed covering i s not a super proof sys t em .
We are currently a tt emptin g to r eac h this goa l
in th e fol l owing way:

Conjectur e Unr estrict ed co ver in g is not a
s up er proof sys t em.

Proposed method of proof. A mor e carefu l
ana l ysis of the number of covering t erms required
for r efuting the se t L' for s uff ic ien tly l arge n
may s how tha t exponen tY a lly long proofs are r e
quired.

We a ls o hop e to study such topics as 1) r ep
resentation of covering as a lan guage r ecognition
probl em for finit e-state automata (this r epresen
tation appears t; avoid the complexity inherent
in proc essing consecut ive pa irwise-di s j oint
clauses us ing the covering expression representa
tion), and 2) using dummy variables to represent
s ub express ions, like thos e of extended r eso lu
tion (se e Tseit in 1131).

Re f erenc es

1.

2.

3.

4.

5.

6.

Chang , C. L., and Lee , R.C .T. , Symbolic
Lo gic and Mechanical Theorem Proving, Aca
demic Press, New York, 1973 .

Cook, S .A., "The Compl exity of Theor em Prov
ing Procedures " , Proc. Third ACM Symposium
on Theory of Computing, 1971, 151- 8.

Cook, S.A. and R. Rec khow, "On lhe Lengths
of Proofs in the Propos itional Calculus " ,
Proc . Sixth ACM Symposium on Theory 0~

Computin g , 1974, 135-48.

Danzer, L., and V. Kl ee , " Lengths of Snakes
in Boxes" , J, Comb. Theory, 2, 258-65, 1967.

Galil, Z., "On Resolution with Clauses of
Bounded Size" , SIAM J, Comp., Vol. 6, 1977.

Gilmore, P.C., " A Proof Method for Quantifi
ca t ion Theory: Its Justification and Rea li -
za tion," IBM Journal of Research and Develop
ment 4, 1960.

7 . Henschen, L., and W. M. Evange list, "Theorem
Proving by Covering Expr ess ions" , Proc. Int
ernational Joint Conf. on Art. Int e ll., 1977.

8 . J ones, N.D . , and W.T. Laas er , "Complete
Probl ems for Determini st i c Polynomial Time",
Th eo r y Comp. Sci., Vol. 3, No. 1, 105- 17.

9. Karp, R, M. ,''Reducibility Among Combinator
ial Prob l ems~ Compl exi ty of Computer Compu
t a tions , R. E. Mill er and J. W. Tha tch er
(Ed s .), Pl enum Pr ess , New York, 1973, 85-
103 .

10. McC haren, J.D., Ov erb eek, R.O., and Wos,L .,
"P roblems and Exp eriments for and with Aut o

mated Theorem-Proving Programs, " IEEE Trans
ac tions on Comput er s C-25, 197 6, 773-782.

11. Pat erson , M.S., and C.E. Hewitt, "Compara
tive Sc hemato l ogy" Rec, of Proj. MAC Conf.
on Concurr ent Syst ems and Para ll e l Com
putation Dec . ,1970, 119- 28 .

12 . Prawit z , D., " Advances and Prob l ems in
Mechanical Proof Procedur es " , Machine Int e l
li genc e 4, Meltzer and Mic hi e , eds ., Edin
bur gh Uni versity Press, 1968 , 59-7 1 .

13. Ts e itin, G.S. " On the Comp l exi ty of Deriva
tions in the Propos itional Calcu lus", Struc
tures in Constructive Mathema tics and Mathe
matical Logic, Part II, A. 0. Si l enko, (Ed.)
1968, 115 -25 .

35

Appendix

The problem in this exampl e is the theorem
that "less-than-or-equa l" is t ran si tive in Henkin
Mod e l s, We give be l ow commentary about the axioms
as wel l as the input for the program and the inter
active dialo gue for t he actua l comput er run.
Qx,y means x ~ y, Px,y ,z means x /y = z, and R
stands for equal ity. Eis the small es t e l ement
of the structure, D the larges t. In this run we
used a mode l of the axioms · and hypotheses con
t aining 5 e l ements, E<A<B<C<D, Wi th this option,
SGST rejects suggestions that do not have false
i ns t anc es and r epor t s the numb er ;r-these r e jec
tions and the number of t au tologo us s ugges tions .
The proof of this t h eorem requires the us e of one
equa lity axiom. When equality ax ioms are pr esent
and participate in a normal reso lution search ,
they t end to produce l arge numb ers of reso l vents .
The mod e l in this run e l i minated pract ically
al l of t hese except the one needed for the pr oof .
We a lso used demodul a tion of t erms in s ugges tions.
We us ed an option of SGST in our pro gram that
li s ts only the unma tched litera l s in the n ew
s uggest ions without listing the entir e c l ause (s)
that produced the s uggestion. For space consid
era tions we abbreviate some of th e program ' s
clerica l responses.

appendix cont inued on following page

The input to the program consists of the following:

INCL
-Q (VlV2) P (VlV2E) / X S y iff x/y E
-P (VlV2E) Q (VlV2) /
-P (VlV2V3) Q (V3Vl) /
-P (VlV2V4) -P (V2V3VS)
Q(EVl)/

x/y S X

-P(VlV3V6) -P(V6VSV7) -P(V4V3V8) Q(V7V8) /
Eis the small est

(x/z)/(y/z) s (x/y)/z

- Q(VlV2) -Q(V2Vl) R(VlV2)/
Q (VlD) /
P (VlV2F (VlV2)) /
-P(VlV2V3) -P(VlV2V4) R(V3V4)/
P (VlDE)/
P (EVlE) /
P (V lVlE) /
P (VlEVl)/

x s y and y :,;; x imply
Dis the largest
closure
well definednes s
Theor em 1. x /D
Theor em 2. E/x
Theor em 3 . x / x E
Theor em 4. x /E = x

E
E

X = y

a ll the equality ax ioms for P, Q, R, and F

Q (AB)/ d eny trans itivity
Q (BC)/
-Q(AC)/
I
COPY,
COPY,
COPY,
COPY,
COPY,
COPY ,
COPY,
COPY ,

5
7
8

10
11
12
13
14

COPY , 24
COPY, 25
COPY, 26
END
R (F (V lD) E) /
R (F (EVl)Vl) /
R (F (VlVl)E) /
R (F (VlE)Vl) /
I

COPY, N causes a new constrained instance of claus e N to
be formed.
In this exampl e we start with instanc es of the
unit s only . This caus es no r estriction becaus e
SGST int ers ects all the t erms of the cdvering
expr ession anyway.

Clause 14 i s R(VlVl)

Clauses 24-26 a r e the three units of the denial.

These ar e the demodul a tor s c orr esponding
t o Theor ems 1- 4 abo ve .

there fo llows her e t ables de fining a mod e l o f the above axioms plus Q(AB) and Q(BC)
which c ontains 5 e l ement s -- E <A< B < C < D.

We now pr esent the actua l dia logue with commentar y . Use r input i s in l ower ca s e , compute r
r e spons e in upper case . Lit er a ls a r e numbe r ed in the order in which they a r e ent e r ed into
the sear ch space vi a e ither the COPY command (see ab ove input) or the TRY command (s ee be l ow),

r ead input
s gs t , 11, l

2 TAUTOLOGIES 14 SEMANTIC REJECTS

SUGGE STIONS
1 -PACE
OK

try l
NEW LITERAL IS 12
sgs t , 12 , 1
3 TAUTOLOGIES 4 SEMANTIC REJECTS
SUGGESTIONS
1 -RF(AC) E

OK
t ry 1
NEW LITERAL IS 13
sgs t, 13, 1
0 TAUTOLOGIES O SEMANTIC REJECTS
SUGGESTIONS
1 - QF (AC)E
2 -PF(AC)EE
3 -PxDF (AC)

r ead the input clauses, demodulator s , and mode l .
11 i s QAC f r om the denia l - QAC

Program f ound 2 t autol ogi es a nd 14 s ugges tions
that f a il ed the semantic t es t . These wer e mos tly
uses of e qua lity ax ioms tha t a r e no t r e l evant t o
the proo f. On l y one s ugges tion rema ins .
TRY adds the necessary new lite r a l s and updat es the
cove ring express i on.

Again th e semantics rejec t ed a l o t of po t entia l
uses of equa lity ax i oms wi t h only one s ugges ti on,
the ri ght one.

No he lp fr om semantics her e .
The r eason is tha t now a ll of t he s ugges t ions
are sayin g the same thing in di ffe r ent fo rms.

36

4 -PExF (AC)
5 -PxxF (AC)
6 -REF (AC)
OK
try all
NEW LITERAL IS
NEW LITERAL IS
NEW LITERAL IS
NEW LITERAL IS
NEW LITERAL IS
NEW LITERAL IS
OK
sgst, 14, 1

14
15
16
17
18
19

TOO MANY SUGGESTIONS

try, 15, 1
NONE

try, 19, 1
NONE
sgst, 10, 1
2 TAUTOLOGIES
SUGGESTIONS

1 SEMANTIC REJECT

1 PBCE
OK

try 1
NEW LITERAL IS 20
sgst, 20, 1
3 TAUTOLOGIES 41 SEMANTIC REJECTS
SUGGESTIONS
1 -PEF(CB)F(AC)
2 -PBCF (AC)
3 -PBDF(AC)
4 -PABE
5 -PEF(DC)F(AC)
OK
try all
NEW LITERAL IS 21
NEW LITERAL IS 22
NEW LITERAL IS 23
NEW LITERAL IS 24
NEW LITERAL IS 25
PROOF FOUND. LAST
1 -QAB PABE

9 24
end

REQUIRED INSTANCE IS

Try all of the suggestions at once.

The program stops looking after a certain amount of
space is us ed up.

15 y ields nothing new

None of the others yi e ld s anything new.

At this point we go back and try another hypothesis, QBC.

Note, semantic r e jection app li es only if unp aired
litera l is negative . Otherwise, as is the case her e ,
a s ugges tion based on axioms and true hypotheses
could never be found.

At this point, all the gro und literals required for
a refutation are present, and only one more instance
of an input clause is needed. The missing instance
fully s ubsumes the covering expression and involves
literals 9 and 24.

37

A Simultaniously Procedural end Declarative Data Structure
and Its Use in Natural Language Generation

David D. McDonald
MIT Artificial Intelligence Laboratory

Cambridge, Massachusetts 02139, U.S.A.

Abstract

Goal-directed language generation is a decision process,

drawing on knowledge about the phrases, words, etc. which

could correctly express the speaker's intentions. Fluent

speech must be planned. This entails being able to examine

what one knows and to make inferences from it. This paper

first sketches the generation process, showing where and how

this knowledge is used. Then it presents the data structure

that is used for encoding "how to say it" information. It is a

schematic representation, which linguistic routines will

interpret either as a procedure for constructing an English

phrase or as descriptive data, depending on what is needed at

the time.

Introduction

Language generation is not a simple process. II is not

merely a matter of the speaker taking a representation of

what he wants to say, looking up each of its tokens in a

"mentalese to English" dictionary and then writing down the

phrases in order. Natural language are a special purpose

representation with detailed and complexly constrained

grammars. They .involve modes of representation that are

(presumably) not used in ordinary thinking: serial presentation,

the indication of relationships by morphological markings, etc.

The "natural" translations of the tokens in a speaker's message

are often mutually ungrammatical, making language generation

a problem in planning.

The complexity goes beyond the problems of translation.

What one actually tells an audience is different in quantity and

quality from what one thinks to ones self. Not being telepaths,

an audience has to be given adequate descriptions of whatever

the speaker wants to refer to; they should hear only

This . report describes research done at the Artificial
Intelligence Laboratory of the Massachusetts Institute of
Technology. Sup~ort for the laboratory's artificial intellience
res:arch 1s provided in part by the Advanced Research
Proiects Agency of the Department of Defence under Office of
Naval Research contract N00014-75-C-0643.

38

"relevant" information. Their reactions and inferences must be

taken into account; arguments must be presented carefully.

General maxims and discourse conventions exist and the

speaker must follow them if he is to be understood.

Language generation - defined here as the process that

takes place between the point when the speaker has decided

what to say and the completion of a suitable English text - is

best characterized as a decision making process. The speaker

uses his special purpose knowledge to inform a series of

decisions about which words to use, which constructions, what

intonation, etc. To model the generation process in humans, or

to build a computer program to be a "mouthpiece" for some

computer program "speaker", requires characterizing the kinds

of knowledge involved and specifying how it should be

represented and where and how in the generation process it is

used. What decisions must be made? What do they depend on?

When are they made?

Over the last several years, I have developed a model of

language generation. II is accompanied by an operational

MacLISP program which provides its formalization and the

beginnings of a practical uti lity. Operating alone, the program

takes proofs or individual formulas in the predicate calculus as

its input "messages" and renders them in English. II is

presently being adapted as the mouthpiece of two advisor

programs [Genesereth 1978][Goldstein ~]. The model and

program cover a good deal of territory, only a small part of

which I will be able to discuss in this paper. The design of the

generation grammar and the main process is given in

[McDonald 1978b]. Implications of the model as a

psycholinguistic theory are discussed in [McDonald 1978a]. A

thorough specification of the model and a defailing of the

implemented grammar will appear_ shortly in [McDonald in

preparation].

A speaker knows how !..Q. describe the objects, relations,

states, etc. that he will want to refer to. This knowledge is

much more than just an association between tokens in his

mental representation and English words. It is context

sensitive - descriptions vary with who the audience is and

what has been said before. It interacts in a sophisticated way

with the grammatical processing - choices are automatically

added or omitted according to grammatical strictures, and

output is readily customized to meet its syntactic context.

And, as we will see, this knowledge is not only used but

examined and reasoned about.

This paper is about the structure of this knowledge in

my program. How does it appear? What does it do? How is it

inter leaved with the rest of the processing? The first half of

the paper will sketch the model as a whole and motivate the

position of this " lex icon" within it. The rest of the paper will

present the representation for "entries" in the lexicon and

illustrate how they are used.

Generation as Decision-makin,g

There are an unimaginably large number of things we

could talk about and a larger set of ways for expressing them

in language. When we speak (or a computer program writes)

we are, in effect, making a selection from that space of

choices. More precisely, we are making a ser ies of choices

which, combined, pick out one text or utterance. This is a

useful way to conceputalize the process because it suggests

we look for specific "decision-makers", each possibly using

different kinds of ev idence and operating at different limes

according lo how their decision effects the full text .

In studying generation, researchers have always divided

the process inlo two parts: first deciding "what to say", then

deciding "how lo say that message" The first we can label

"cognitive reasoning", the second "linguist ic reasoning" The

two processes are taken lo rely on different kinds of

knowledge, to use different predicates to interogate ii, and

generally to employ a different sty le of reasoning. For

example, we might worry about telling our mother about our

new "roommate" and try to anticipate how she would react.

That is cogn iti ve reasoning. Once we decide to do ii, we worry

if we can cont inuall y describe them in the passive and thereby

avoid us ing that crilica l pronoun. Thal is lingui st ic reasoning.

My generation program only does linguist ic reasoning.

Its starl ing point is a "message" provided by some other

program - the "speaker", for which it then finds an

appropriate, translaling text. The message is a representation

of what the speaker wants to say, expressed in whatever

formalism the speaker prefers. As the program will be doing

ill the lingui st ic reasoning and it does not operate until after

the decision on what to say, this design implies that the

construction of a message does not depend on any linguistic

data (e.g. on how a word is pr.onounced or whether a pronoun

39

will be used). To a first approximat ion, this appears to be

true. Poets and diplomats may turn out to be exceptions, but

at the present stage of research, a bicammeral process

clarifies the probl~m and simplifies research.

The program puts no explicit requirements on the form

of a message. There is no interlingua. Instead, for each new

speaker program, a new "lexicon" is written. A lexicon is a

translating dictionary. It records how the linguistics program

is to interpret the tokens and relational structures that might

appear in a message. It is where the overall system's "how to

say it" knowledge is stored, since this information is exactly

what the program needs in order to "read" an input message

as a potential nalur~I language text.

· In the systems I am developing, messages are given as

set of statements. For example:

(is-true? A)
(assumed-true A)
A = (supports 86 83)
focus = 83

The program has to know how these statements are related

linguistically (they may well have been generated

independant ly by different parts of the speaker program). It

then has to know how to decide what natural language form(s)

to use to render them as one coherent utterance.

This information is provided entirely by the lexicon, in

this case a lexicon for the Blocks World. The statements in

this message, and general ly so in all the systems under

development, have the form:

(relation-i 11rg I 11rg2 ...)

where any of the arguments may be relations themselves.

Compounds statements - data base assertions - frames - etc. -

are built up recursive ly from other statements, down lo the

leve l of the systems primitive objects.

The le xicon has an entry for each relation and primitive

object lhal the speake r program might include in its "message

language". Some of these "message elements" will denote

goal s - speech-acts to be performed like is-true? - which will

be expressed as a polar question. Some will denote altitudes,

e.g. assumed-true. These will effect how the main goal(s) is

rendered. The use of "=" is a mela-synlactic device: used first

to show that the argument to the two relations is the same

object; and then to mark the binding of a "discourse - level"

state variab le. The focus fixs one of the degrees of freedom in

the rendering of the "content" support assertion. 86 and 83

both denote blocks. The lexicon has one entry for "blocks" in

general, which then refers to the "speaker internal" data

structure for each particular block and uses its properties to

pick a realization strategy. With the present lexicon, this

message becomes: "the green block is supported by the red

one, isn't it1'

Constructing the Text

A generation grammar can be viewed as specifying a

(tremendously large) space of possible utterances. One could

encode the message to text generator as a grammar-based,

augmented transition network (for example see [Wong 1975)),

however that design is very inefficient, as it is a topdown

search through the entire grammar. (For other difficulties with

the use of ATN's in generation see [McDonald in preparation].)

The more direct technique is to let the message

translate itself. This can be done with a syntax-directed

design that reads through the statements and embedded

relations of the message. ·Each element of the message,

through it s lexical entry, will contribute a phrase or modifier to

the eventual final text. Just as the message is a compositicm

of sma ller message elements, the text that renders its intent

into Eng li sh will be· a composition of smaller texts contributed

by the elements' lexical entries.

Of course, while the interpreted message is the driving

force of the procedure, the grammar must also be taken into

account. Its role is to specify what constructions may be

se lected. II restricts the choices of the main, message-driven

process to be grammatically consistant with the choices it has

already made. It also performs the low- level, detailed actions

which the language requires but which are automatic and not

used to convey meaning, such as agreement and morphological

adjustments lo verbs and pronouns. In order to make this

possible, a thorough syntactic, constituent structure

descr iption of every phrase is constructed as well as just the

phrase's words, and words themselves are morphologically

specia li zed only as they are being spoken.

* * *
Roughly speaking,. each element of the message

corresponds lo one decision, i.e. what phrase is to render that

element. The program is designed as a distributed process -

therefore there is no a priori record in the lexicon or the

grammar of when these decisions are to be made. The needed

organization follows from the following two stipulations of the

design.

(1) The process is lo be incremental. No one

decision-maker should have to specify more detail than

necessary. If, for example, we have a relation with two

arguments, like (support 86 83), then its entry will select, e.g.,

a clause with the verb support, but it will only insert the two

arguments - untranslated - into slots in the constituent

structure of that clause. It will not presume to refine them

40

further. Left-right, sequence oriented linguistic phenomena,

such as pronominalization, may well effect how the arguments

, to support are ultimately realized. Since the lexical entry for

support, from its vantage point, can only appreciate

hierarchical, conceptual relationships, it cannot make decisions

that "hidden" grammatical phenomena may affect.

In the same vein, the clause which that entry selects is

only minimally specified. The support relation may be being

used for many different purposes in the message as a whole:

modifier, topic, etc. Each of these would place it in a different

grammatical context, where it would have to be

morphologically specialized to fit its role. As the entry

shouldn't need to anticipate these requirements - they are

quite general - it se lects an underspecified clause structure

and the background grammatical process will later refine as

required.

(2) All decisions are indelible. Once a word or phrase

has been selected, or a word spoken (printed out) it can not

be t aken back. This has the immediate implication that the

needed decisions must be made in a particular order, i.e. no

decision can be made before all the other decisions which it

may depend upon have been made. These dependancies fall

into three categor ies: (a) those due to the role of the element

in the message - what relation contains it; (b) dependancies

due to where it will appear in the sequence of the final text;

and (c) "global" references to it from other statements (e.g.

focus = 83 creates a dependancy on the (support 86 83)

relation, since it adds an additional linguistic role to those it

must alr·eady play).

These classes of dependancies lead directly to the

needed ordering of the decisions, or, to put in another way,

they determine the order in which the entr ies of the elements

of a message are to be consulted. To wilt : first examine the

statements of the message. Determine which are "content"

elements, and which dictate another element's role (e.g. to

define a question), or give "stage directions" (as in maintaining

continuity of focus). These later statements will ca ll for

"g lob al" rea li zations - side-effects on how the content

elements are rendered. Cluster them with their affected

content elements and then proceed to process the lexical entry

of the conceptually dominant content element.

That entry makes its decision and returns a surface level

linguistic structure which embeds the arguments of that

element as const ituents within ii. The program now shifts from

reading the message to reading this new linguistic structure. A

simple interpreter will walk through its nodes and

subconstituenls, dispatching to grammatical routines indicated

by the names of the nodes, names of their constituent slots

·'

(see below) or grammatical features attached to them. This is

the source of a "background" grammatical process.

Whenever a constituent is an embedded message

element , it s entry is processed and the linguistic structure that

is returned replaces the element and is then recursively

walked in turn. This surface structure representation, with the

interpreter, is a totally adequate slate description of the

process - completed structure and spoken words behind the

interpreter and planned linguist ic structures and the remaining

embedded message elements in front of it.

* * *
Lei me move directly lo an example. Consider this very

simp le message, a single formula in the predicate calculus.

(This is the first line of a proof of Russel's "barber p.1radox" -

the assumpt ion which will be shown lo lead lo a contradiction.)

J(x) barber(x) /\ V(y)[shaves(x,y) .. ~shaves(y,)] This message is

processed by a lexicon with an entry for each logical

connective and special, schematic, entires for each predicate

and default variable category (i.e. x and y denote people).

They render that formula as : "There is some barber who

shaves everyone who doesn't shave himself."

Now let me redisplay the formula as a tree of named

subformulas. This is the way in which the program actually

sees it, and ii highlights its hierarchical nature.

existentia18 (x,)
~

conj? (ty"'
' -0,

predicate I (x) universal6 (. / . v
iff5(~ , ~

predicate2(x,y) predicate2(y,y)

There is only one statement in this message, a content

item, exislenlial8(). Therefore the process begins by

consulting the entry for existenlials (see below). I will go

through this derivation quickly, emphasizing when choices are

made and roughly what they are.

The entry for ex istentials must select a phrase - a

linguist ic context - in which it s argument, conj?, can sucessfully

be rendered. The "mathematical" phrasing, "for some x, .. ." has

this property, but ii is a "less fluent" phrasing than say,

"There is an x which ... ". The entry will look al conj?, or rather

al the lexical entry for conjunctions, and "ask ii" whether the

more fluent phrasing is possible. The answer will be "yes" and

this constituent structure is then returned and instaled as the

process's state description. The interpreter for data-directed

processing now starts al the top node - a formal node, ttopt.

41

ttopt
[top 1]
clause I

~
[subj) [pred]

ther~

[vg][obj I]
BE conj?

Names enclosed in brackets, [], are the names of

cannonical locations in the consitiluent structure. Names in

italics are English words, embedded in the surface structure

but not yet spoken - "spoken" text will appear in a line just

below the tree. Syntactic nodes are given unique names based

on their category. Names in bold-face are message elements.

Such constituents are actual ly special data structures which

represent those instances of those elements in the planned

surface structure. This will be explained later.

The interpreter now moves down through [lopl), the

first constituent of the utterance. The name "lopl" signals to

the grammar (vi a a dispatch by the interpreter) that this is the

start of a new sentence - the next word will · now be

capitalized. Moving into the clause causes the interpreter to

rebind a series of grammatical status variables. (See [McDonald

1978b] for further discussion of how the grammatical

processing operates.) Inside any node, the interpreter

examines each of the nodes constituents in turn from left to

right. Here, [subj] cont ains the word there. Whenever a word

is reached, ii is sent lo a morphological subrout ine for final

contex tual adjustments to its print name and then printed out

on the console.

"There .. ."

9
ttopt,1
[lopJ.:)

~
[sl{\>iJ [pred)

thern

[vg][objl)
. BE conj?

The next constituent, the clause's predicate, contains a node.

The interpreter recurses and moves to that VP's constituents.

The [vg) ("verb group" fo llowing Halliday) constituent initiates

considerab le amount of grammatical processing, as the

information needed to fix the form of the verb's tense is

located and centrali zed. This includes checking the number

and person of whatever is the [subj]. The word there is

actually an indirect pointer. When it was instaled as the

subject, the instaling grammatical routine added a link lo the

[obj 1) constituent. Therefore the question is "forwarded" to it.

Since conj? is an embedded message element, the question is

answered by consulting its lexical entry.

Now at [obj 1], conj7's entry is processed. Conjunctions,

in issolation, could be rendered either as "real" conjunctions:

"X, Y, and Z", or as specifying multiple properties describing

one object - in this case the variable x. This specificat ion

could then be rendered either as a clause or a noun phrase.

However, once a linguistic context has been established, the

degrees of choice open to the conjunction entry (or to any

entry) may be rad ically reduced. This instance of conj7 is the

[objl] const ituent of clause!. Here it must be rendered as a

noun phrase. The entry for conjunctions will build a noun

phrase by using it s first conjunct to create the [determiner]

and [head] and making subsequent conjuncts into modifiers. It

does this schemat ically since it does not want to presume on

how the entries for those con juncts will actually render them.

Since Conj7 is the conjuction of predicate! and universal&. the

[objl] slot now looks like this, with the second conjunct

attached as a property to this "instance" of predicatel.

[obj 1 J
1---------1 qualifier : universal5

predicate I

Predicate! stands for barber(x). The lexical entry for

barber marks it as denoting a "category", something that may

be rendered as a head noun or classifier. This causes the

predication to be interpreted (by the entry for predicates) as

focused on the variable as an object rather than on the

predication as a relation. That entry, see ing that this instance

is in a "nominal" context, initiates the construction of a noun

phrase using the noun from the entry of barber as its head,

and deriving the determiner from the quantifier used for the

var iab le. (in a "clausal" context, it would have constructed a

predicate-nominal) The noun phrase building process notices

the affixed property and makes it a constituent.

[obj I]

~ --.

[det][mods] [head] [quals]
some barber universal5

The interpreter moves through NPl 's constitutents and

has some and barber spoken. The null constituent, [mods]

("prenominal modifers") is ignored. The [quals] slot

("postnominal qualifiers") is associated with grammatical

rout ines for forming relat ive clauses when required (a qualifier

might alternatively be a prepos ition group or verb group).

Since relatives are (optionally) signaled by relative

pronouns, these routines must know how, e.g., universal& is

going to be realized before the interpreter actually reaches it.

This can be read from its entry as we will see. Relative

pronouns are grammatically "bound" to the object that the

noun phrase derives from, in this case the variable x. The first

instance of x in the phrase that rea lizes universal& will be

42

supressed as part of the grammatical signature of a relative

clause. The form of the relative pronoun depends on the

grammatical re lation of that first instance of x to the clause it

is in - "subject" or "oblique" case. Again, we need to know

something about universal5 before we otherwise would get to

it, and again, its lexical entry can be designed to supply the

answer without actually building any linguist ic structure.

Leaving aside for this paper how . the relative clause

forming routines operate, let us proceed. The relatives routine

generates who, then the interpreter reaches universal!i. Its

entry has a choice between "literal" and "fluent" constructions,

much like the entry for exislentials. It must examine the

potential linguist ic renderings of its arguments to see it they

will fit the requirements for the fluent form, else ii takes the

liter al choice. As, in fact, the fluent choice can go through, (i.e.

we can express the quantification through the determiner on

the sub ject of a "subject-predicate" construction) I wi ll move

right on to iff5 which directly replaces universal& in the [quals]

slot.

The entry for biconditionals has a similar spread of

cho ices, and it s cho ice is dependant (1) on the potential of its

arguments, and (2) on "rhetorical" context. It has a fluent

construction based on interpreting the right -hand side of the

bicondilional as restr iction on the variable it shares with the

left-hand side. The right -hand side then becomes a restrictive

relative. However, this reading omilts explicit mention of the

"only if" aspect of the biconditional. An additional strategy,

triggered by a rhetorical indicator can add that phrase.

Another indicator will se lect a "reduced" reading, useful in

making an argument: "if X then Y, and if Y then X". This

instance is unmarked, and we gel this result.
0-->--,

. [objl]

~
[cfet]t:mods] [h~adf[qwals]
s~me barb~

[subj][pred]

x~

[vg] [objl)
shaves 1---------1 predicate2(y,y)

y

" .. . some barber who"

The grammar routines turn the instance of x in [subj]

into a trace (in Chomsky's sense) when the interpreter reaches

it. The rest of the surface structure is rendered in almost

exactly the same way as the parts described so far.

One remark: the final instance of y will be

pronominalized and then made into a reflexive by the

morphology routine. Besides its surface structure plan, the

. · I

. I

program maintains a time-organized record of what message

elements have been mentioned so far, with an abbreviated

discription of the grammatical circumstances. As part of its

operation, the interpreter first checks each message element

that it reaches to see if it has been spoken before. If it has

not, the interpreter goes directly to its lexical entry; if it has,

then it goes instead to a grammatical subroutine for

pronominalization. This subroutine will construct a high-level

description of the relations between this instance and its

anaphor, plus a notation of other mentioned message elements

with which it might be confused, and then makes a heuristic

decision to use a pronoun or not. If it decides not to use a

pronoun, the decription plus a notation of wh}' a pronoun was

inappropriate is made available to the element's entry.

The things you you need to do with a lexical entry

The primary "mission" of an entry is to record which

linguistic forms could potentially be used to render elements of

its type, plus the contextual conditions that select between

them. These conditions can include: (l) internal details of the

relation's arguments; (2) "global" restrictions introduced by

other message statements; (3) the linguistic potential of some

argument, e.g. whether it will be a noun phrase or a clause

with a certain subject; (4) the discourse situation - has the

element been mentioned before; (5) the grammat ical context -

what kind of constituent is this instance of the element.

The st ipulation that the generat ion process be (l)

incremental and (2) indelible has the effect of requiring the

program to know things about the eventual linguist ic form of a

message element before it can legitimately be constructed.

This information must be available from an element's lexical

entry or else readily computable in the current context. This

is a "secondary mission" which the entry representation must

support. It includes:

(A) For organizational purposes, a short, highlevel
description is needed of the element's eventual form. The
syntactic category of the to be created node: NP, prepg, etc.
will suffice. This is used in planning how to position elements
with respect to each other and to the established sur face
structure.

. (8) The need to choose among alternatives can call for
applying linguist ically oriented predicates to a relation's
arguments, e.g. "possible-nominal", "predicate-about()", or more
involved questions like "what will be eventual, default position
of x in the unmarked rendering of universal6?".

(C) Ungrammatical possibilities should be automatically
ruled out of an entry's list of possible realizations once the
position of each instance of its element type within the
planned surface structure is fixed.

43

(D) Part of an entry's realization strategy can include
"forcing" the rendering of one or more of the arguments it
embeds. It may preempt all or part of the decision process of
the argument's entry so as to insure that an otherwise free
choice goes the way that fits best with its intentions.

(E) Every relation type will have an "unmarked"
rendering which is suited to expressing the content of that
relation as it is usually intended. However, a speaker program
can choose to use its data for other purposes, e.g. as a
modifier, or in conjunct ion with a statement like focus • 83.
This usage calls for applying a "transformation" to the entry's
se lect ion, but before actually constructing any linguistic
structure since syntactic structure may not be changed one
created. Rather, tr ans formed instances are to be generated
directly in their new form.

Realization strat~gies

A lexical entry, when used to construct a phrase, ma~.es

one or more linguistic decisions. These are decisions to create

certain syntactic nodes, to fill certain of their consitituent slots

with certain English words or argument elements, or to add

grammatical properties to the existing plan. All such actions

are a part of the program's gr~mmar. They are formalized as

"rea li zation strategies" Operationally, a rea li zation strategy is

an object much like a function. It is appl ied to a set of

arguments, whereupon it cor;,structs a new constituent

structure of the specified type embedding those arguments or

modifies an existing structure supplied as one of its arguments.

An entry wi ll record that it may select such and such a

strategy if certa in te sts are met. That record may then be

used to symbo lically determine what the entry constructs by

examining the stored schema that defines the strategy. This

schema always has at least two fields, a "phrase" and a "map"

(It may other fields annotating its grammatical features, what

sort of thing it is useful for, etc ..) For example:

CLAUSE-OBJ I
phrase (basic- clause ()

predicate (vp-obj I ()))
map ((first . mvb)

(second . subj)
(third . (pred obj I)))

This indicates that the realization strategy named

"clause-obj l ", when applied to three arguments, will construct

and return two syntact ic nodes: the first a clause using the

consitutent schema named "basic-clause",i.e. {[subj) [pred]};

and the second a verb phrase using "vp -objl" - {[vg] [objl]).

The verb phrase fills the [pred] constituent slot of the clause.

To find out what would be the disposition of the strategy's

arguments, its "map" field is interpreted. The map associates

arguments (named by their order) with const ituent slots in the

phrase.

· When reasoning about entries and their decisions,

realization strategies are accessed in their schematic form by

specially written procedures. When they are being used in

their primary function - to actually build linguistic structure,

ei ther a general interpreter is used (particularly when

debugging) or a "strategy compiler" is run as the program is

loaded and efficient LISP routines are used instead.

the Design of an Entry

In the first implementation of this model, strategies and

entries both were encoded as LISP functions. The flexibility of

a procedure makes it a good implementation : hoice in just such

an ear ly point in the research when one is sti ll unsure of what

information will have to be encoded and of how it will be used.

But, writing a procedure is a craft. When encoded

procedurally, the information in the lexicon must be copied

again for each new linguistic predicate. This work is

redundant, errors are easily made, and the technique for

creating new entries is harder to describe to potential users of

the system.

In general, the answer to these problems is to develop a

declarative, schematic representation. (1) The common

procedural "glue" is extracted and consigned instead to a set

of interpreters and compi lers specialized for each different

use of the material. (2) The different kinds of information

within one of these objects can be named and distinguished

within the schemata, making them easi ly accessible to routines

that would want to reason about them.

The specification for a lexical entry that is given just

below is the spec ification of what must be entered by the

human designer. That structure is expanded when the

program is actually loaded to be the more fleshed out

structure that we will see short ly. It is important as a matter

of human engineering to cut down the designer's "make work"

load as much as possible by letting all the predictable

construction be done automatically. Names in angle-brackets

are non-terminals to be defined or are self -explanitory.

Square-brackets enclose optional material. The star (*) is

Kleene star.

44

<lexical-entry> ::•
(def-entry <name> <list of 1rr;ument n1me1>

<body>)
<body> ::• <decision>*
<decision> ::• ([<name>]

[<skeleton>]
[local variable bindinr;s]
<filter>*)

<filler> ::= (<any contextual predicate>* <~hoice>)
<choice> ::• <name of I sub-entry>

I <an editing action on the list of str1ter;ies>
I <strategy-application>

<strategy-application> ::=
(<strategy name> <list of arguments>)

<skeleton> ::= (skeleton <strategy-application>)

The overall form of an entry is a call to the read-time

construction function, def-entry, which does all the

cross-indexing needed to compile the entry's ultimate form.

An entry's decisions are named according to the particular

linguist ic form involved. Noun phrases, for example, can

involve independant decisions for their head noun, determiner,

and modifier constituents. Clauses can involve one decision to

fix verb phrase type and a set of other decisions to add

adverbial or adjunctive modifiers. The named decision is the

handle that the entries for "globally realized" message

e lements use to add to or preempt the decisions of a content

element's entry.

Conceptually, the decision making process involves

evaluating a decision tree of predicates against aspects of the

current context, with the strategies as its leaves. The decision

tree formal however, while it is a good design for a procedure,

needs to be unbundled if it is to be reasoned about. In this

declarative design, making a decision is formalized as a

"filtering" operation on list of possible strategies. To make a

decision, an interpreter will evaluate all its filters and then

e lect the first strategy remaining in the list.

Each filter consists of a conjunction of predicates. The

generation model makes no a priori restr.ict ions on the kinds of

predicates allowed. It does however make some kinds of

information more accessible than others (cl . [McDonald 1978a]

for more discussion). II all the predicates evaluate as true,

then the filter's "choice" is taken. It may be the name of a

"sub -entry", i.e. another block of filters which this one was the

gale to. In the predicate calculus lexicon for example, the

decision of how to interpret quantification as a determiner is

shared between the entry for predicates and the one for

issolated variables via a "sub -entry". Otherwise the choice

could be either the applicat ion of a specific strategy by name,

or else an editing instruction which reorders or deletes names

from the list of possible realization strategies.

·I

Below is the entry of the Blocks World lexicon for the

relation support.

(def-entry support (under over)
skeleton (clause-obj! support under over))

This is a simple case, and it can be written simply through

defaults implemented by def-entry.· It makes no decision, that

is, every instance of support rendered by this entry will go

into the same linguistic form. The two arguments are named

"under" and "over" for the convenience of the human designer

- unfortunately the interpreter can not appreciate them except

for the ir order.

Be low, is the structure that "def-entry" builds (omitting

a compiling operat ion). The default decision is named

"clause-matrix" because the indicated skeleton realization

strategy buil ds a clause. Unbeknownst to the support

st11temenl, other statements in a message might be intended as

mod ifiers to it. They would be grouped as "clause-modifier"

decii:.ions, impl icit in the construction of any clause

Not ice that while the designer may not have had any

more comp lex ideas of how the relation could be rendered, the

grammar automatically adds possibililes just because the

se lected strategy, "clause-obj 1 ", bui lds a clause which is a

member of a particular transformational family. (This use of

"transformation" is closest to Harris's usage.)

SUPPORT
type lex ica l -entry
realization class loca l ;versus "global"
system-status interpreted ;vs. "compiled"
arguments (under over)
will-be clause
skeleton (clause -obj 1 support under over)
decision structure descriptor clause-matrix
matrix

(will-be clause
strategy-set ((c lause-obj 1 support under over)

(passive-by _phrase))
filler-set

[details ni l

))

global (focus_on_object->passive)
potential-realization nil
discourse nil
context nil]

The fi ller set is organized by the domain of the

predicates for the convience of later reasoning routines. The

des igner did not spec ify any filters, only a default. Def-entry

added focus_on_objecl->passive and the corresponding

passive-by _phrase strategy on its own by acting on a general

grammatical principle that otherwise unmarked clause structure

should be sensitive to discourse focus. Only the name of the

filter has to be entered since it is common to many entries.

The filter is a LISP predicate. Its act ions are suffic iently

idiosyncratic that, given that ii is otherwise annotated, it is

exped ient to leave ii encoded as a procedure.

45

FOCUS_ON_OBJECT->PASSIVE
type filter
filter-type global
predicate

(cond (focus ;is there a current focus?
(let ((obj (obj 1-of ske leton)))

choice

,-defines and initializes the variable obj
;obj-of reads a strategy's map

(cond ((eq obj focus) (return t))
(t (return nil))))))

(select - sir ategy 'passive-by _phrase)

Evaluating linguistic predicates for planning purposes

The precise way in which a formula of a predicate logic

is encoded often is the result of an unspoken convention for

translating from English to logic. The conjunction of barber(x)

and universa16 above, for example, is just a conventional way

to encode the type of the variable and does not play a real

role in the formal manipulations of the proof. A generation

lexicon in this domain often should "second-guess" the

encoders of the logic and try to recover the fluid linguistic

forms that they were very likely working from.

A case in point is the entry for universally quantified

formulas:

(def-entry universal (variable formula)
((variable->simplex-NP variable subformula)

(embed-quantifier variable))
(*default* (for- x-proposition subformula)))

(Here again there is only one decision to be made and the

outler parens are omitted.) The f luid choice, checked for by

the linguistic predicate variable->simplex-NP, expresses the

quantification via the choice of the determiner of the right

top level NP within the clause. For example, V(x) man(x) -t

mortal(x) meets this properly and can be rendered: "all men

are mortal". Other formulas, such as V(x) lov.er(x) -t

loves(world, x), can not be put in that form without extensive

transformations and changes in subordination - something that

this entry would not want ·to be responsible for. These will be

rendered w ith the "safe", mathematical form.

In Eng lish, what the predicate variable->simplex-NP does

is lo go through the set of possible strategies of the

clause-matrix decision of the subformula. Its conditions are

sat isf ied if the map of al least one of the strategies indicates

that the variable will ultimately be a direct constituent of the

top level clause, i.e. [subj], [obj 1], or [obj2). It also notes

which is the relevant instance of the quantif ied variable inside

the subformula, and, via a standard device in the entry

interpreter, rebinds variable lo that value.

Instances: recording and preempting decisions

Once the decision is made to "embed the quantifier", how

is it to be implemented? Since its target, the first y in iff5 -

shaves(x,y) .. ~shaves(y,y), is not the next element in the

surf ace structure interpreter's "path", there must be some

means of record ing this decision until the proper time. This is

done through the use of special data structures representing

"instances" of message elements in the surface structure plan.

An instance is a scratch pad, a working data structure

that ex ists only for the life of the plan. Instances are needed

simply because whenever there is more than one reference in

a plan to an element from the speaker's domain, say x or

shaves, they may need to be treated differently. Propert ies,

for example, are attached to distinct instances of a message

element , not to the element itself. When the entry for a

certain type of message element is processed, its predicates

refer to the situation of particular instance of that element at

a particular si te in the constituent structure.

The instance structure for each element in the message

is created at the beginning of the process. It is initi ally very

sparse, and is augmented each time a decision is made that

effects it s message element, e.g. when it is positioned in the

surface st ructure, or whenever a predicate in one of its filters

is eva luated by a li nguist ic predicate "probing" its possible

rea li zat ions. Strategy induced side-effects,· like the decision to

"embed the quant ifi er", effect instances by specially marking

them.

This is the instance structure for the "y" of shaves(x,y)

just after embed-quantifier(variable) is run. (Recall that variable

was bound to just that instance when the predicate

var iable->simplex-NP "found" it.) The strategy acts by

"preempt ing" the NP-determiner decision of this instance.

INSTANCE-37 ;a gensym
type inst ance -of - a-msg-elmt
self y
global -entanglements nil

;this is a collection site at which to position globally
;realized message elements until the content element they
;effect is reached.

location-in-surface-structure nil

NP- head (status untouched
filters-evaluated nil
new- filters nil
current-phrase basic- NP ;the default
current-map ((person . head)) ,-ditto

)

NP-determiner
(status preempted
filters-evaluated nil
new-fi lters ni l
current-phrase nil ;inherited from NP-head
current- map ((every. det))

)

46

Embed-quantifier has (1) determinered which quantifier

word to use, and (2) marked that instance of y so that the

normal deliberation of the "issolated-variables" entry is

preempted and its choice used instead.

Transformations and grammatical context

This same technique of writing "overriding"

spec ificat ions into an instance structure is used to implement

transformations and the "pruning" of realization strategies to

fit the grammat ical context.

A transformation is an operat ion on an instance's

current-map. A globally realized statement like focus • 83

triggers a filter which is not checked until after the basic

shape of the clause has been decided upon, i.e. after the

current-phrase and current-map have values. The act ion of,

e.g., passive-by_phrase is to transform current-phrase to

"clause-byob j" and sw itch the map: [subj) ~> [byobj], [objl]

• > [subj]. Since this operation uses only a linguistic

vocabulary, it can be used generally.

Grammatical procedures are r un by the interpreter

according to the details of the const ituent structure plan as it

wa lks through it. As part of their act ion, they will augment

re levant instances with special purpose f ilters which have the

effect of removing from consideration any strategies that

would be ungrammatical in that context.

For example, the logic lexicon will render conjunctions of

predicates over the· same variables as either clauses or noun

phrases. Red(B6) /\ supports(B6,B3) can become either "the

red block supports the green one", or "the red block

supporting the green one". But in a "clausal" context the noun

phrase rendering must be blocked (for example when its used

to describe a state: "when .. ."). The clause render ing can go

through in nominal contexts because various nominalization

transformations are avai lable and would be applied by the

background grammar process.

The block can be effected by the addition of this f ilter

to the context field of the new-filters of the instance.

BLOCK-NP
type filter
filter-type context
predicate "true"
choice (remove '(np))

;i.e. remove from the list of possible strategies any
;that lead to constituent structures dominated by a node
;with that feature. Any filters that only lead to such
;strategies are pruned with the same action.

, .1

·I

1
' '

* * *
This paper has tried to sketch the design of part of an

extensive research project. The generation lexicon m_ust

coexist with a grammar, various process interpreters, and

message-building conventions, none of which can be discussed

in this short a space. The technical report in preparation

should give all the facets of the design a through presentation.

The "meta-level" princip!e that motivates the design of

this lexicon and of the model generally is a reaction to the

ext reme interact ion that ex ists among the knowledge elements

involved in natural language generation. take it to be

impossible, from an engineering standpoint, to design and

implement unitary, fixed procedures to perform the generation

process. Instead, the input and momentary state description

must be used to determine what action to take dynamically.

This requirement lends itself to the use of schematic

represent a lions and interpreters which react to the

description languages developed to organize the grammar, the

lexicon, and the intermediate stales of the process.

References

Geneserelh, Michael (1977) "An Automated Consultant for
MACSYMA" MACSYMA memo 5, MIT Lab for
Computer Science.

Go ldstein, Ira, (1978 forthcoming) "The Genetic
Ep islimology of Rule Systems" memo 449, MIT
Artificial Intelligence Lab.

McDonald, David D. (1978a) "A Model of Language
Generation", memo, MIT Artificial Intelligence Lab.

__ (1978b) ''Language Generation: Automatic Control of
Grammatical Detail", paper submitted lo
COLING-78, August 1978, Bergen Norway.

__ , (1978 in preparation) "Linguistic Reasoning During
Language Generat ion", Technical Report 404, MIT
Artif icia l -Intelligence Lab.

Wong, Harry (1975) "Generating English Sentences from
Semant ic Structures" Technical report 84, Dept.
of Computer Science, University of Toronto.

4 7

KNOWLEDGE IDENTIFICATION AND METAPHOR

Roger Browse

Department of Computer Science
University of British Columbia

Vancouver , B.C. V6T 1W5

Abstract

This paper deals with the orgar.ization of
semantic properties of nouns and their use in the
determination of case role acceptability. By only
examining si mpl e hierarchical inclusion properties,
natural language systems have been unable to deal
with metaphoric language use. The research
outlined here is an investigation into the use of
general methods for the determination of case
fulfillment. These methods include a mo re flexible
use of the hi erarchica l relationships represented
in the system, and the methods also use the
contents of other case-frames. These methods
develop the degree of freedom necessa ry for the
acceptance of metaphoric language. Other
interest ing propert ies of the system are described
which also argue in favour of this approach to the
organization of semantic knowledge .

Motivation

A major challenge in the development of a

semantic component of natural language analysis is

to represent knowledge in suc h a way that it will

be useful in determining the meaning of input

sentences. In addition to their use in describing
sentence meaning, case grammar constructions have

been used successfully to organize semantic

knowledge. In particular, the use of cases
provides insight into constraints that are
important in establishing the roles played by noun

groups. For example, the positioning of noun
groups and the existence of certain prepositions

can serve as constraints. However, the semantic
properties of the noun group itself are of major
importance in determining its acceptability as a

case filler. The semantic requirements for case

filling (often ca ll ed selectional restriction

rules) are usually specified as positions within a

hierarchi ca l breakdown of nouns. These requirements

are often quite strict ly applied. The research
described in this paper is an investigation of more

48

fle xible methods of determining case role

acceptability. The remaindure of this section

demonstrate s the restrictions which have been
imposed upon natural language analysis through
the strict use of hierarchical properties.

One step in developing a case system for a

verb is to examine its range of use . As an
example, consider a few of the different nouns

which can occupy the object position for the verb

"to play" (restricted to the musica l sense).

Dick plays Beethoven.
Dick plays the piano.
Dick plays The Moonlight Sonata.

Each of the above sentences could actually be

describing the same event, with s lightly

differing emphasis. There are essentially two
ways of introducing simple hierarchical properties

as the case role fulfillment requirements for

this object positionl.

1) Develop several different s ub -meanings . For

the above example :

PLAYl (object must be COMPOSER)
PLAY2 (object must be MUSICAL-INSTRUMENT)
PLAY3 (object must be MUSICAL - PIECE)

The advantage to this approach is that

semantic properties and case requirements can

be represented and processed in a uniform way.
The disadvantage is that the verb's meaning

has been fragmented: PLAYl is no more closely

related to PLAY2 than it·is to JUGGLEl.
2/ The other, more frequent, approach is to

develop a specialized case system for the verb,

1A third possibility of introducing all-encompasing
semantic properties such as "playabl e" has been
ruled out for obvious reasons.

I
• I

which indicates all the specific roles that are
played by each possibily appearing noun type.
Thus for the verb "to play", there might be, in
effect, a case "composer". The advantage of
this approach is that the meaning is centralized
but the disadvantage is that the processes
involved may be specific to each verb .

These two approaches differ in their shifting
of emphasis from centralization of meaning to
uniformity of processing, but they are also similar
in an important way. The methods both involve a
very direct pre-programming of permissible sentence
meanings. It is important to develop a means of
representing sets of acceptable meanings,
particularly for clearly defined natural language
interface programs. But sharp distinctions among
semantic requirements do not exist in natural
language use. Many researchers (Collins and
Quillian 1972, Bobrow 1975, Wilks 1977) have
pointed out that the breaking of semantic
requirements {preferences) is the rule, not the
exception. Any system which is to successful ly
understand natural language must take into account
the freedom with which metapho ric language use
enters into ordinary speech.

Prototypes

The research outlined here considers the
possibility that the organization of knowledge,
rather than its content, is primarily responsible
for determining the breadth of meanings which the
system can accept. Thus, the form of knowledge
representation has been simplified to permit a
more direct examination of organizational aspects.

The knowledge has two parts, prototypes and
hierarchi es. Prototypes are si mpl e subject-verb
object triples which represent selectional
restrictions upon the subject and object positions
for the given verb. For example (HUMANS DRINK
LIQUIDS) is a prototype which indicates that DRINK
expects (or may accept) a HUMAN subject and a
LIQUID object. They are called prototypes because
they are intended to represent language-use
experiences to which the comprehension process
appeals in order to understand a new input.

Accompanying the prototypes is a hierarchy of
semantic properties from which the selectional

49

restrictions may be satisfied. For exampl e:

~IQUID

MILK WATER

The goal of the processes which use this type
of knowledge is to identify those pieces of
knowledge which pertain to an input form which is
also given as a subject- verb -object triple. This
goal, and the form of the knowledge seems reasonable
yet arbitrary. so , befofe continuing to show the
ways in which prototypes are processed, the relation
between prototypes and real-world knwoledge will
be examined. As a result, the connection between
the hierarchies and the prototypes will be more
firmly established, and the goal of the processor
will be justified. In addition, an organization
of the prototypes will be introduced .

Consider the following simple representati on
of real-world knowledge about the relation "drinks":

DRINKS TOM
SAM
SPOT
RUFF
BOOTS
PUFF

MILK
TEA
WATER
MILK
MILK
WATER

The use of such knowledge could be enhanced
with a specification of the extent of the domains.
A template such as (ANIMALS DRINK LIQUIDS) could be
used as a preliminary test upon the use of the
relation. Or, even better still, consider the
following partitioning of the relation:

DRINKS TOM MILK SPOT WATER BOOTS MILK
SAM TEA RUFF MILK PUFF WATER

· t · · · r
(HUMAN DRINK LIQUID) T (CAT DRINK LIQ UID)

.._ (DOG DRINK LIQUID)
' t /'
(ANIMAL DRINK LIQUID)

~IQUID

~ILK'\T~WATER

PUFF

This shows a hierarchy of semantic categories to
which the domain individuals have been assigned,
and templates which represent the properties over

which the partition has been made. These templates
are, in fact, the prototypes described earlier.

The hierarchical categories can be thought of as
types, to which assignments are made, and then

prototypes contain knowledge about the application

of these types to the relation, the result of which

is an indexing scheme

The generalizations about semantic categories

that are contained in the prototypes are quite

distinct from intensional knowledge (or

generalizations about real-world knowledge).

For example, the intension :

(X)(HUMAN(X) (EY)(LIQUID(Y) DRINKS(X,Y))

is still real-world knowledge, and not knowledge

about the semantic categories involved in the

partitioning of the relation.

It is useful to view prototypes in this way
because it points up their organization into
layers of generalization. For example:

(ANIMAL S INGEST FOOD-SUBSTANCES)

/ "" (ANIMALS DRINK LIQUID) (ANIMALS EAT FOOD)

/ ------(HUMANS DRINK LIQUID) (DOGS DRINK LIQUID)

This organization of prototypes serves as a

means of allowing a match between an input and a

prototype at any level of generalization. In

addition, it provides a quick way to filter out

possible prototypes.

For si mple retrieval of extensional facts,

the prototypes could be used as a straightforward

indexing scheme . For more complex question
answering, the match of a prototype to an input

could contribute towards the development of a
form to be evaluated for an operation upon a data
base, as in Woods' procedural semantics (1968) .

It is a reasonable assumption that, regardless of

the application, it would be useful to identify
those prototypes which match an input. This idea

is extended to the notion of knowledge

identification : for a given input, a number of
prototypes may have some relevance, one of which

i s distinguished as a target prototype of the

50

matching proces s. For example:

input : DICK PLAYS BEETHOVEN
target: HUMANS PLAY MUSICAL-INSTRUMENTS
others: MUSICAL - INSTRUMENTS EMIT MUSIC

COMPOSERS WRITE MUSIC
BEETHOVEN IS COMPOSER
DICK IS HUMAN 1

Knowledge Identification

Knowledge identification works context-free

over the prototypes and hierarchi es to provide

knowledge which pertains to the input . No attempt

has been made to structure this knowledge into a

meaning representation. Access to, and structuring

of, real -world knowledge i s an application

dependent aspect of language analysis, which could

hopefully operate more easily subsequent to a

knowledge identification phase.

For an input triple, the processor examines

the prototypes in the system, sea rching for one

which can act as a target. Because the prototypes

are hierarchically organized, the initial search

concerns a relatively small number of highly
generalized prototypes. These generalized

prototypes are provided as the po ssi bilities for
the input verb. After such a prototype ha s been

located, it may be instantiated with the aid of

the semantic categories of the words used in the

subject and object po s itions of the input . For

example, for the input TOM DRINKS TEA, a prototype

such as (ANIMATES CONSUME FOOD-SUBSTANCES) might

be initially considered, and of course, TOM and
TEA meet the requirements. Afterwards, a more

specific prototype might be used, such as (ANIMALS

INGEST FOOD-SUBSTANCES), or eventually (HUMANS

DRINK LI QUIDS) .

This example demonstrates another aspect of

the process involved, that o'. determining the

acceptability of a prototype as a target.
Generally , a prototype can be a target if each of
its subject, verb , and object components traces

to the subject, verb and object of the input. In

most cases the verbs must be identical , but some

leeway is provided for the other two components.

This section provides a sample of the tracing

conditions which will permit some metaphoric

lThe example shown here is a condensed form of the
output from the imp'lementation (see Browse 1977).

I
I

·1

I

language use.

A. Tracing via hierarchical inclusion

As described in the first section, case role
fulfillment is usually determined by simple
hierarchical inclusion properties. This is a
major means of tracing, and one which provides
all the literal meanings that the system can
accept. For the above example:

input : TOM ORINKS TEA
target: HUMANS DRINK LIQUIDS
others : TOM IS HUMAN

TEA IS LIQUID

B. Jumping in hierarchies

Sentences such as:

John drank in the sunshine.
My car drinks gasoline .
The sargeant barked.

are all acceptable because of a close hierarchical
connection between the verb which is used, and the
verbs which could be substituted to develop a
literal meaning. These connections are given in
the connections between the prototypes.

(ANIMALS COMMUNICATE)

/ "' (HUMANS TALK) (DOGS BARK)

In processing an input such as (SARGEANT BARK nil)
an initial, generalized prototype (ANIMALS
COMMUNICATE) will be acceptable on the basis of
the hierarchical connections between the subjects
of the input and target (tracing method A above).
However, the system will fail to instantiate
either of the more specific prototypes.

If the system were allowed to branch to a
prototype whose verb differs from the input, but
to one for which the subject traces easily, then
one could obtain:

input : SARGEANT BARKS
target: HUMANS TALK
others: TALK and BARK are both COMMUNICATE

SARGEANT IS HUMAN
This particular jump in the hierarchical
organization suggests a similarity between the
given act of barking and the known act of talking .

On the other hand, the system could be

51

required to branch for instantiation strictly
according to the input verb, and the rules for
tracing the subject could be extended to include
moving up and then down the hierarchical
orga~ization of noun concepts. For example:

input : SARGEANT BARKS
target: DOGS BARK
others : SARGEANT IS HUMAN

DOG and HUMAN are both ANIMALS

. ANIMAL

DOG

SARGEANT

This type of jump in the hierarchy suggests a
similarity between SARGEANT and DOG rather than
a similarity between the acts of talking and
barking .

These operations involve an important part
of metaphoric language use, particularly in
personification .

C. Tracing through other prototypes

Sentences such as:

Sam read Shakespeare .
Jan drank the cup.

are acceptable not because of any hierarchical
relations between the objects that were expected
for the verbs and the ones that were given, but
because of other relations. For example, for the
input JAN DRINKS CUP, the prototype (HUMANS DRINK
LIQUIDS) will be considered, and could be accepted
if some other prototype links CUP to LIQUID .
This is the case if the system has a prototype
such as (CONTAINERS CONTAIN LIQUIDS), providing
CUP is an instance of CONTAINER.

input : JAN DRINK CUP
target: HUMAN DRINK LIQUID
others: JAN IS HUMAN

CONTAINERS CONTAIN LIQUIDS
CUP IS CONTAINER

In the above example, it is important to note
that not only was the technique of using another
prototype involved in the tracing, but, as a sub
trace, hierarchical inclusion was used (CUP IS
CONTAINER). This points up the recursive nature
of the application of such rules in accepting
prototypes.

consider again :

input : DICK PLAYS BEETHOVEN
target: HUMANS PLAY MUSICAL - INSTRUMENTS
others : DICK IS HUMAN

MUSICAL - INSTRUMENTS EMIT MUSIC
COMPOSERS WRITE MUSIC
BEETHOVEN IS COMPOSER

The long trace between BEETHOVEN and MUSICAL

INSTRUMENT involves the use of other prototypes

twice , and hi era rchi ca l properties once .

The processor i s "cooperat ive" , that is, it
assumes that all inputs are meaningful, and

attempts to find the appropriate target and

traces. If an input i s meaningle ss relative to

the prototypes which the system contains , it might

a long and obsc ure trace. Thus it i s essential
that the mo st direct methods, yielding literal

meanings are tried first, and that some cutoff

point be estab li shed for the length of traces.

Beyond Thi s Format

Many of the interest ing categories of
metaphoric language involve accessing some fact
which connects two concepts, but those connections

cannot always be analyzed within the rest ricted
format of the prototype system as described above.

Simil e does not involve s ubst itution of

one concept for another, bu t i s rather a direct

statement of s imil arity . For example:

He ran like ligh t nin g.
Th e birches stood like frozen fea t hers.
Hi s hair was like snow.

It i s interesting to notice that properti es

other than hierarc hical categories are mo st

often accessed in the use of s imil e. For the
simile "hair like snow" , it i s only one property

that hair and snow share that is of interest . It

seems as if these types of properties are not
appropriate to permit direct s ubstitution , such

as "he combed hi s snow" . On the other hand ,

non-s ubstitution comparis on vi a si mil e seems
to point up differences, rather than si mil arit i es
between hi erarc hi ca ll y related concepts . For
example "hi s dog was like a ho rse" alludes to t he

size difference.

Metonymy, or t he referring to an accompaniment

rather than t he object itself, most often involves

52

knowledge which ca nnot be represented in s impl e

subj ect- verb-object prototypes . Some exampl es are:

The Whitehouse i ss ued a denial.
The Yankees fear Bench ' s bat.
The town heard the trumpet blast.

The last sentence requires knowledge s uch as
(HUMANS LIVE (in TOWNS)) to allow the acceptance
of a target prototype such as (HUMANS HEAR SO UNDS) .

Synecdoche i s a spec ia l kind of metonymy which

refers to the part in stead of the whol e or vi ce

versa. For exampl e:

our daily bread.
All hands on deck.
My wh ee l s broke down .
Here come s the Navy.

This i s a common type of meta phori c l anguage . Th e

frequency of this type of metaphor suggests that
the PART- OF relat ion may require a spec ial status

alon g with the IS -A relation in the development of

meanings . This al so l eads to the poss ibility of
other re lations, s uch as causality, being s ingl ed

out . Extending this to the limit , and converti ng

all prototypes into network relations, would
develop a strong s imil arity to the system proposed

by Collins and Quilli an (1972) . A more productive

direction might be to represent all relations,

including IS-A as prototypes.

Discussion and Conclusions

The use of stri ct requirements for fulfillment

of se l ect ional restrictions during the process of

recognition of meaning ha s been shown responsible

for a difficulty in dea ling with the type of

everyday metaphoric word - use which is important to
natural language. Thi s paper suggests some s impl e,

uniform operations over an orga ni zat ion of known

l anguage- use s ituat ions which ca n provide the basis

for understanding those metaphors . Yet the only
knowledge stored in t he system i s litera l meanings ,
and t hus t he knowl edge associated with any

particular verb is centralized.

In order to exp lore those possibilities,
severa l si mpl ifications have been made. The roles

that noun s play in meaning have been reduced to

only subj ect and object. The specification of

these roles co uld be extended into a full case
system. Processes have been described which

.]

contribute towards the development of meaning for
inputs. The fact that these processes operate
context-free should not be taken as a belief that
sentence meaning can be derived from word meaning

alone. However, the identification of a relevant

set of known language-use templates could be a

useful context-free step.

Several observations can be made concerning

the type of organization and use of knowledge in

the sys tern of prototypes. These observations

point up speculative aspects of the usefulness

of such a system.
During the matching proce$S, prototypes not

only serve as targets, but also can be used as the

knowledge necessary to permit the acceptance of

some other target. For example:

input: JAN DRINK CUP

target: HUMAN DRINK LIQUID
others: JAN IS HUMAN

CONTAINERS CONTAIN LIQUID
CUP IS CONTAINER

input: BOTTLE CONTAIN BEER
target: CONTAINER CONTAIN LIQUID
others: BOTTLE IS CONTAINER

BEER IS LIQUID

Note that CONTAINERS CONTAIN LIQUID appears both
as a target and as tracing information. It follows

that for any given prototype, new shades of meaning

of the verb may be introduced through the addition

of knowledge which has no direct relation to the
verb itself. This is a seductive idea in that it

coincides with intuitive notions about how humans

manipulate knowledge.

Prototypes are retained at several levels of

generalization. This provides the basis for the
development of meaning only to a desired level of

instantiation . Clues directing the instantiation

could come from either the context, or other parts
of the sentence or discourse.

It is not a coincidence that this system

provides possibilities for the examination of

questions relating to learning. Learning and

comprehension are two side of the same coin, and

while both problems need not be dealt with at the

same time, at least a degree of compatibility

should be maintained. Language learning must

53

involve the ability to develop generalized
knowledge about the extent of word use from more
specific knowledge. Not much can be said about

the actual process of generalization, but the types

of processes described which use prototypes do

contribute towards an understanding of what the

goals of such generalization processes might be.

The application of each type of rule for

tracing the subjects and objects of an input to a

prototype provides successively more obscure

understandings 1 • A measure of this obscurity

could provide a criterion for the inclusion of

inputs as new prototypes . Completely straight

forward inputs (for example, an input identical to

a prototype} would not need to be included, and

inputs requiring very obscure tracing would also
not need to be included . However, those falling

in the mid-range of being novel, but not too

obscure could be incorporated .

The notion of matching an input to a target
prototype corresponds well to the Piagetian idea
of "assimilation", which is the processing of

experiences to conform to existing methods for

dealing with the environment (see Piaget 1952,

1954). Moore and Newell's MERLIN {1974) uses a

process of matching which permits assimilation of

one concept to another, whereas the approach

outlined here deals with the assimilation of
simplified sentences. In addition, the criterion

for incorporating new inputs on the basis of their

familiarity also corresponds to the Piagetian

notion of "accommodation" (or changing of existing

methods), which operates to reduce the effort

required in future assimilation tasks.

Primitive semantic categories are often
jus tified in terms of the properties of the objects
being categorized . The connections between

hierarchies and the system of prototypes suggests

that semantic categories are connected to their
use in partitioning relations. Thus a direction

has been indicated for a more uniform specification

of these two aspects of knowledge.

The system described here provides insight

lA simple weighting scheme was used in the computer
model (Browse 1977) for which the match in vol vi ng
the lowest measure usually provided the intuitively
best target.

into the po ss ibilities for a natural language
understanding system which could accept inputs on
the basis of developing their meaning rather than

recognizing their meaning. The result is a

uniform processor which permits metaphoric

language use, while at the same time centralizes

the knowledge contained about verbs .

Acknowledgements

I wish to acknowledge the encouragement and

valuable criticisms provided by the A.I . community

at U.B.C. In particular I wish to thank Richard

Rosenberg for his help and guidance.

References

Bobrow, D.G.
1975 Dimensions of Representation. in Bobrow,

D.G. and Collins, A. (eds) Representation
and Understanding. Academic Press.

Browse, R.A.
1977 A Knowledge Identification Phase of

Natural Language Analysis. Unpublished
Masters thesis, University of British
Columbia, January 1977.

Collins, A.M . and Quillian, M.R.
1972 How to Make a Language User. in Tulving,

E. and Donaldson, W. (eds) Organization
of Memory. New York, Academic Press.

Moore, J. and Newell, A.
1974 How Can MERLIN Understand? in Gregg, L.W.

(ed) Knowledge and Cognition. Potomac,
Maryland, Lawrence Erlbaum.

Pi a get, J.
1954 The Construction of Reality in the

Child. Basic Books, New York.

Piaget, J.
1952 The Origins of Intelligence in Children.

International University Press.

Wilks, Y.
1977 Knowledge Structure and Language

Barriers. Proc IJCAI -77 PP . 151-8.

Woods, W.A.
1968 Procedural Semantics for a Qeustion

Answering Machine. Proc AFIPS Conference
Vol 33 pp.457- 71 .

54

REPRESENTING AND ORGANISING
FACTUAL KNOWLEDGE IN PROPOSITION NETWORKr,

Randy Goebel

Computer Science Department
University of British Columbia

Vancouver, British Columbia, CANADA

Nick Cercone

Department of Computing Science
Simon Fraser University

Burnaby, British Columbia, CANADA

ABSTRAC'.i'

The use of extended semantic networks (more
accurately called pro~osition networks) for
representing and organising factual knowledge in a
machine is reported. Proposition networks possess
expressive power akin to higher-order and modal
logics while retaining the mett,odological
advantages of earlier (semantic) network
formalisms. Preliminary steps havP bePn taken to
imbue them with an organisational structure which
facilitates the efficient concept-based access of
facts relevant to an arbitra.ry query. The notion
of a topic predicate will form the basis for the
development of a topic hierarchy organisation which
can be superimposed on a proposition network in
order to classify topically-related propositions
into similar categories.

1. Introduction

Extended semantic networks (more accurately
called proposition networks) are particularly well
suited to serve as a notational basis for a
state-based natural language representation
paradigm (vide Cercone and Schubert, 1975; Cercone,
1975). Certainly a rather different representation
might .be adopted to meet specific needs in specific
applications of semantic networks. · Also a
different or more extensive set of propositional
operators might be formulated. For example, the
following operator ("subconcept") may well be
useful in representing the essential meaning
relationships among concepts: an n-ary relation
P(xl, ... ,xn) is a SUBCONCEPT of an n-ary relation
Q(xl, ... ,xn) if (Axl) ... (Axn) [P(xl, ... ,xn) =>
Q(xl, ... ,xn)]. Thus " crow" is a subconcept of
"bird" (i.e., crows are necessarily birds),
"drinks" is a subconcept of "ingests " (i.e., if x
drinks y then x necessarily ingests y), etc.. The
point is that this operator and other compound
operators can be expressed in terms of the basic
network notation.

A variety of issues in the representation of
informal knowledge could raise additional
notational problems. Examples are the handling of
vagueness, events, the lexical meanings of complex
concepts, and overall knowledge organisation.
Beyond these relatively static issues lie the more
dynamic issues of actual language interpretation
and generation, plausible inference, learning, and
the interplay between procedural and factual
knowledge. Clearly any questions about
representation raised by these ~roblem areas can
only be answered in the context of particular
approaches towards the solutions of the problems

55

themselves. One such approach is discussed in
Cercone (1975).

The construction and interconnections of
propositions, the basic structural unit, comprise
~he network. To attain efficient access of facts
relevant to an arbitrary query, the knowledge
encoded in proposition networks must be organised.

.Schank (1975) remarks "We can see at once that a
· [h ierarchical] organisation wi 11 not work for verbs
or for nouns that are abstract or for nouns that do
not easily submit to standard categories (such as
.teletypes) " . Nevertheless "drinks " can surely be
thought of as a subconcept of "ingests" and while
some categories (teletype) would be difficult to
fit into a SINGLE hierarchy, they certainly can be
fitted into various hierarchies (machine,
transducer, communications system, etc.). We can
easily impose a hierarchical
(subconcept-superconcept) structure on top of the
general concepts in memory (as shown in Figure 1)
as a heuristic device.

Our approach to organising the knowledge encoded
in proposition networks centers around the concept
,Jf a topic predicate. Briefly, topic predicates
are higher order predicates which will be used to
classify first order predicates into different
categories much like first order predicates
classify individuals. Topic predicates will be
structured into a topic hierarchy which corresponds
to a higher order type hierarchy. Whereas
individuals (e.g., Clyde, ball37) occupy the lowest
position in standard type hierarchies, in the topic
~ierarchy that position will be occupied by
first order predicates. An instance of such a
topic hierarchy will be i nt erposed between each
network concept and its related propositions in
order to provide a secondary indexing scheme for
the concept-indexed propositional knowled!,!e, The

.topic hierarchy approach is illustrated throughout
sections 3 and 4.

The Symbol-Mapping problem is described as the
problem of providing fast access to propositions
relevant to a query, and the advantages of a topic
hierarchy solution over some other solutions (e.g.,
·McDermott, 1975b) are discussed in section 3.2. A
brief discussion of the notation and representation
utilised follows immediately.

.1

• I

. I
I

2. Represe nting Knowledge in Proposition Networks

The results of semantic ana lysis of natura l
language utterances can be represented in
proposition-based semantic networks (Schubert,
1975). The proposition network is a notation for ·
re presenting meaning. This notation encodes any
proposition that can be expressed in natural
langua ge . In addition, distinctions between
utterances with distinct meanings and between
distinct readings of ambiguous utteranc es are
preserved. For example, the sentence "Al 1 dogs
chase some cat" has two possible meanings; our
approach easily encod es either reading (see
Schubert, 1975 for details). Furthermore,
judgments of truth and falsity about natural
language utteranc es appear to correspond
appropriately to truth and falsity in the formal
representation. The network notation can be viewed
as a computer-oriented logic notation with
concept - based indexing of propositions.

Semantic networks have proven utility as
propositional representations in l ang uag e
understanding (Cercone 1975; Schubert 1975;
Schubert et al. 1978b; Schank 1972), concept
learning programs (Wins ton 1970), ded uct ion
(McSkimin and Minker 1977), and in psychological
cognitive theories (And erson and Bower 1973;
Wilson, to appear).

2.1 Notation

The nonlinear fashioning of proposition networks
presents special problems with respect to the
representation of logical connectives, quantifiers,
descriptions, modalities, and certain other
constructions. These constructions are often
useful and sometimes necessary to explicate the
meaning of complex concepts. Schubert (197 5) has
propo sed systematic solutions to these problems by
extending the expressive power of (more or less)
conventional semantic network notation. Woods
(1975) independently made a series of similar
proposals . Only the e l ementary part of the
Schubert formalism, as much as is needed to clarify
any misconceptions that may arise from the figures
used in this paper, is explained.

In the network notation, the distinction betwee n
labels designating storage locations and labels
designating pointers to storage locations requires
clarification. This distinction is us ed by
Quillian (1968) to designate "type nod es " (unique
storage locations) versus "toke n nodes " . Th e
notation can be mad e uniformly explicit as in
Figure 2. Here "parent-of", which corresponds in
some notations to a token node, designat es a type
node (as suggested by Winston, 1970). All
encircled nodes correspond to storage locations and
all arrows to addresses of storage locations. What
formerly were token nodes are now called
"proposition nodes " ; they serve as graphical nuclei
for propositions as a whole.

The ex plicit notation of Figure 2 can be
uniformly condensed for visual effect as
illustrated by Figure 3. Of course such a tactic
is unnecessary for machines; exp licit propositions
underlie this abbreviated form.

56

In Figure 2, A, B, and PRED are mere
distinguishing marks. They are analogous to
parentheses or commas in the Predicate Calculus in
that they serve to relate denoting terms
syntactically; they are non-denotative themselves.
Whenever possible they will be chos en to be
suggestive, but they could be chosen as numeric
lab e ls as well (as McDermott (1976) apparently
suggests).

One advantage of the explicit notation of Figure
2 is that it works for n-ary (n>2) predicat es. The
sentence "John gives the book to Mary" involves
"gives" as a three place predicate, as
diagrammed in Figure 4. Figure 4 is appea ling
because of the significance we can attach to the
l abe ls ' agent ', 'obj ect ', and 'recepient '.
Nevertheless, Figure 4 is not a graphical analog ue
of "case-struct ur ed" gramm ars. Cases are not
viewed as " conceptua ll y primitive binary relations"
as Fillmore (1968) and researchers influenced by
him, not ably Schank (1972), view them. See Cercone
and Schubert (1975) and Bartsch and Vennemann
(1972) for a further discussion of cases.

In the proposition network time can be used in
two modes - 'inst antaneous' and 'int erval '. In the
instantaneous mode a proposition may have either a
fixed or variable moment (duration) of time. The
interval mod e replaces a "moment " with a time
interval. A time interval may be omitted in
contexts where it would normally appear in order to
simplify propositions representing mor e endurin g
properties (e.g., being a gir l, a car, etc.). The
omission is a matter of notational expediency; any
change involving metamorphosis, such as a girl
becoming a woman or a caterpi llar becoming a
butterfly, would require exp licit rendering of time
dependencies.

Temporal relations can be established using
these definitions of instantaneous and interval
time. Tenses are built from more elementary
temporal relations. If we restrict our view of
time to a set of e l ements (time points) and a
relation that partially orders them, we can define
binary temporal relations similiar to those of
Bruce (1972) or Schank et al. (1973).

The use of time in the representation of states,
actions, and events is briefly discussed in the
next section. Temporal considerations concerning
the representation of complex concepts and the
mea ning of words are presented in Cercone (1975).

Some final notational co nv ention s by way of
introduction need to be made. To avoid confusion ,
predicate names will be designated by lower case
letters and markers by upper case l etters. Other
conventions that are used include: so lid loops for
propositions, individual concepts, and
existentially quantified concept nodes; broken
loops for universally quantified concept nodes;
solid lines to link propositional constituents to a
proposition node; dotted lines for scope dependency
links joining univ ersa lly quantified nodes with
de pendent exis tentially quantifi ed nod es; and
dashed lines for linking logical operators and
connectives with proposition nodes. Observe the
performance of proposition networks in handling
states, actions, events, and intentionality.

2.2 States, Events, Actions,
Causes, and Intentions

Recognising th at "actions" ia Schank's (1972)
sense are essentially states rather than events is
important, since it leads to a uniform view of all
(true) event s as se que nces of states. This
recognition has bee n we ll document ed in Cercone and
Sc}:lubert (1975) . Th e issue of identifying " actors "
of events doe s not ar is e , nor is it necessa ry to
delineate the spurious boundary betwee n "passive "
and "dynamic " states.

Tempor a l ex pressions are important to the
meaning of utterances, serving for example to
structure events. Neverthel ess in other
representations, partic ul ~rly Schank ' s (1972)
Conceptual De pe nd ency networkb, aspects of time are
handl ed as a quantificational apparatus. Schank's
u se of the co ncept ua l tenses 'time l ess ' and
' continuin g ' illustrate this . Drawing infe r e nces
can be problematic if time is allowed to ass ume
this protean character. For exampl e, r.he use of
the conceptual t ens e 'timel ess ' to denot e "habitual
ac tions" as in the statement " John sells cars"
fails to acknowledge the progressive aspect " is
selling" which is concerned with th e state and not
the disposition. Surely th ere may hav e been a time
wh en John did not sel l car s and a time when he may
not sell cars . We fare no better, unfortunat ely , if
we say "John now sel l s cars " r e porting an inc id e nt
of behaviour instead of an evo lving pattern of
behaviour since "now" sets no temporal boundari es
(vid e Strawson, 1959). Within a particular approach
to representation we can, however, artificially
contrive bound a ries for "now" or, at worst, defend
some doctrine for the i nde f initeness of ordinary
language with regard to time (the latter being
unsatisfactory for our purposes) .

In the s t ate-bas e d approach time is regarded as
the only situational (cf . McCarthy and Hayes,
1969) or contextual variable that needs to be added
to action propositions. This is in contrast to
Anderson and Bower (1973), Rumelhart e t al.
(1972), and Schank et a l . (19 73), who add loc a l e
as well as time to the basic dimensions of events.
But locale is not a proper t y of events as a whol e,
but rather a (frequently tim~-dependent) prope rty
of the partici pa nt s in an event. For exampl e, in
"John is watching a circling hawk" it is ' John and
the hawk who hav e locations, not th e ev e nt .

We now illustrate our representation of states
and events. We regard any condition which can hold
momentar ily (blue, moving, running, etc.) as a
"st a t e". Accordingly, any atomic proposition which
is based on a time-de pendent predicate is a " state
proposition". Figure 5 shows two concurrent state
propo si tion s: something (th e redness of th e sun)
was increasing throughout s ome ti.me interval and•
something e lse (the distance be twee n th e sun and
the hori zon) was decreasing throughout the same
time inte rval. Actually there are two additional
state propositions conc e rned with the ex istence of
unique values of redness and distance at all
moments of time within the time intervPl of
interest, these have not been mad e explicit s ince
they can be taken to be implicit in th e r ed ness and
distance relations.

57

"Events" involve a c han ge in sta te as " the l ast
l eaf f e ll from th e tree " illustrates. The
definitive c haract e ri s ti c of state changes is th e
following : if a system has prope rty A at time ti,
and prope rty Bat time t2, th en A-->B is a change
of state if and only if A and Bare mutually
exclusive properties, e.g., A= so lid, B=liquid;
A=round, B=rec tangul ar. In fact a state att ribut e
such as colour which can assume variou s v-a lues may
be c onsist e ntly de fin ed as a set of mutua lly
exc lusive prope rties, eac h member of the set heing
r egarde d as a value of the attribute. Thi s admits
both qualit at ive attributes such as colo ur as we ll
as quantit a tive attributes such as location.
Figure 6 shows a simple event involving a single
change of state of a " sys t em" with one compon ent
(Mary). Th e time relation "th en" implies immedia t e
succession of the two ti.m e int erva l s. Our
r e pres entation of one of Schank ' s s t a nd a rd
sentences i s shown in Fi gur e 7. An ex pl anatory
para phra se is the following. " Some unknown mod e of
be haviour of John caused some object to move
quickly toward Ma ry. Sub seq ue ntly the object
r eac hed Mary and exe rt ed a · force on her. " Note that
we hav e a state and an event here, viz. John' s
unknown state and th e event of th e obj ect moving
toward Mary and striking her . Th e causal
connections be twee n John's state and the ensuing
even t does not ma ke John' s s tat e part of that
event. Only exc lus ive and s ucc ess ive s t a t es of a
particul a r sys t em of objects form event s. A
natural inference would be that John int ention a lly
hit Ma ry, i. e ., that the missing state of John !·s
that he was trying to bring about the event 1n
question . We would represent "t rying" by the state
predicate " x has ac tive goal y at tim e t".

An import a nt consequence of our very broad
conce ption of states is th at new compl ex states
(modes of be haviour) can be de fin ed in terms of
even ts involvin g primitiv e or already defined·
states. Th e time of occurrence of these events may
ex t e nd some distanc e bac kward and forward from th e
moment a t which the new s tat e is de fin ed to hold .
Compl ex dynamic states such as walking, running,
dancing, tumbling, flickering, etc., ca n be
constructed in terms of mor e e l ementa ry states.
Th e constructions are necessar ily as compl ex as the
s tates they describe . Complexity can result from
th e intricat e coordination of several simult aneous
activities (e .g. "rolling" exp r esses rotation and
translation at coordinated rates), or from compl ex
time d e pendencies (e.g. fli c kering), or fr om both
(e .g. "walking" or ev en "building a snowman").

In previous representations (e . g. , Schank, 1972;
Wilks, 1973) complex conc e pts, s uch as walking,
were incompletely "d e fin ed" in dictionari es.
Presumably these dictionary entries were not
intended to capture full meanings as we seem to
underst and them, but only those as pect s whi c h are
mo st essential to langua ge under sta nding and
(immediate) infe r enc e . Neverthe les s, much mor e
information will s ur e ly be r equire d to matc h the
human ability to describe concepts and reason about
them or even to adequately compre hend " ordinary"
discours e. The state-based formalism c l ear ly allows
for th e formation of mor e compl ete meaning
representations. At the same time, it is ca pable
of accomodating large amounts of information about
complex concepts without . loss of comput a tiona l
efficiency in the use of those concepts. For a

•. I

det a iled exam pl e illustrating this point, see
Cercone (1975).

3. Organising Knowledge in Proposition Networks

3.1 Semantic Network Organisations

As original l y conceived by Quillian (1968), the
characteristic concept-centred organisation of
semantic networks does not address
repres entation issues but rather focuses
primary co ncern with organising knowl edge for
effective use. Subsequent semantic ne twork
notations have been deve loped in an ind e pendent
and application specific manner (e . g ., Anderson
and Bowe r, 1973; Winston, 1970) often
indicating a disdain for classical
propositional knowl edge representati0ns suc h as
the predicate calcu lus . The re sulting ef forts
have gene rally been found to be epis temolo gically
inadequate (in th e sense of McCaLthy and
Hayes, 1969) and expressively wea k with r es pect
to standard logical r e pre sentations. Mor eove r,
they have oft en blurred the i mportant
distinction be twee n th e representational and
organisational aspects of ne twork devices.

Early efforts by Shapiro (1971) to imbue
networks with increased logical power ex plicitly
documented thi s distinction by contrasting " sys t em
relations", "it ems ", and "it em re lations". In
Shapiro' s MENS (MEmory Ne twork Struct ure) data
structure, system r e lations were us er defined
pointe r s us ed for structuring it ems and item
relations into proposition s and for indexing
propositions via their item participants. Schubert
(1975) further clarified the distinction by
demonstrating that a logical representation couc hed
in network form could offer the advantages of a
classical ·propo si tional representation (e.g ., be
formally i nt er pretabl e and expressively adequate)
while r eta ining the me thodological advantages of
the associative ne twork organisation. In addition,
his notation clearly indicated that an
"intelligent" ind ex ing scheme coupled with a
database of logical formulae could ind eed be
co.nsidered to be a kind of semantic ne twork.

The basic di s tinction be twee n the propo sitional
content of a knowl edge database and the access
mechanism to that content has rec ently be en not ed
by Bobrow and Winograd (1977). Th ey state : "In
most existing AI systems (and mod e ls of human
memory) there is an und e rlying ass umption that
there is a single set of data linkages , used both
for retrieval and for matching and deduction ... ".
They go on to say "We believe that the presence of
'associative links ' for r e trieva l is an additional.
dimension of memory structur e whi c h is not
derivable from the logica l structure being
associated".

We wish to emph asize the organisational aspects
of proposition ne tworks, in the tradition of
Quillian (1968) and in the spirit of Hayes (1977b).
As Hayes (1977b) writes, "If someone argues for the
superiority of semantic networks ove r logic, he
must be referring to some other property of th e
former than their meaning". Th e correspondence

,between proposition networks and logic has bee n
mad e; the meaning of a given ne twork is id entical

58

l ogical with the meaning of the e quival e nt
expression. The object of our immediat e attention
is that struc tur e whic h remains after paring th e
propositional conte nt from a proposition ne twork,
i.e., the indexing structure whic h provides
co nc e pt - bas ed propo si tion access.

With the ge ne ral focus on t he organisational
as pects of proposition netwo rks, we continue ~ith a
brief survey of some recent organisationa l trends
within AI and then e laborat e on th e structure
and use of a topi c hi erarchy mec hani sm.

Th e recent fervour to deve lop organisationaJ
th eories of knowl edge (e .g . , Ab e l son, 1973 ; Schank
and Ab e lson, 197 5; Minsky, 1975; Mylopoulos e t a l.,
1975; Bobrow and Winograd, 1977; Goldstein and
Rob e rts, 1977) i s characterised by th e des ire to
cluster related knowledge into " chunks ". Id eal ly,
these "chunks " should reduce t he computation
required to isol ate knowl edge re l evant in a
partic ula r cont ext.

Anticipat i ng such higher-level organisations,
Bobrow (1975) asserts: "P red icate ca l c ulus and
semantic network representions t end to impose on l y
a loca l organisation on the world " . However, both
the concept-centred organisation of ne tworks and
many of the logical tools of pr edicat e ca l culus are
ev id ent (albeit implic itly) in many of th e recent
knowl edge organisation systems (e . g., Bobrow &
Winog rad, 197 7). For exampl e, in reference to th e
GUS system (Bobrow e t a l., 1977) Kay 0976) r e por ts

now t he co nte nt s of these slots in the
dialog frames (and in l ots of other frames th at
exist in th e system) are typi ca ll y other frames.
These structure recurse to great de pth. Of course
they are not simp l y tree structures, but they are
circ ul ar a nd point to one ano t her ; they're
networks". Further, Hayes (1 977a) provides a
translation of th e "main feat ur es " of KRL-0 into a
many-sorted predicat e logic, which he t akes to be
the " external meaning" of KRL expressio ns.

The remaining sa lient feature of frame-like
systems is simp ly the idea of grouping pi eces of
knowl edge wh ic h ma y be useful for und ers t anding a
particular conce pt or situation. ' Hayes (1977a)
explains that a frame may be viewed as an n-ary
relation betwee n i ts e lf and it s slots, which
themselves may be viewed as binary relations and
unary predicates (vide Bundy & Wielinga, 1978).
One could t herefore represent a frame within the
proposition network notation. The major diffe r e nce
betwee n the " frames " view and the network vie w is
one of fun c tion vers us structure, as not ed by
Schubert et a l. (1978 a): "A memo ry structure is
regarded as a frame becaus e of the kinds of
knowledge and capabilities attrib ut ed to it, rath e r
than becaus e of any specific structural
prope rtie s".

Of course deciding what knowledge to associat e
with a frame can be done only in the cont ext for
which that organis a tion will be used . Be low we
deve lop an organisation of concept properties
in the general context of the so-ca lled
"symbol-mapping problem" (named by Fah lman,
1975) . A topic hie rarchy organisation will provid e
a mea ningful structure for associating eac h concept
with knowl edge " about " that concept.

3.2 Symbol-Mapping in the Proposition Network

The ubiquitous notion of structuring general
properties of concepts to facilitate their
inheritance by related concepts and individuals has
bee n not ed by many writers (e.g ., Reiter, 1975;
McDermott, 1975a; Moore, 1975; Mylopoulos et al.,
1975). The main issue of effective ly accessing all
known concept properties via a newly instantiated
individual is inherent in the ques tion posed by
Fahlman 0975): Wh e n told a fact like " Clyde is an
Elephant", how can a system quickly and e ffi c i ently
provide access to all known Elephant properties
via th e newly created concept "Clyde"?

Fahlman (1975) proposes a nove l solution in
which an efficient inheritance of properties scheme
is based on a network of parallel hardwar e
elements. Each element represents either a relation
(e .g., "IS-A") or a conce pt (e. g., Clyde,
Elephant) and is capable of storing "marker bits"
which can be propagated through the network in
parallel. The relations shared by two nodes can be
found by "marking" the nodes in ques tion, 'Ind then
broadcasting the "markers" through the network and
noting which relation nodes rec e ive intersecting
"marker" signals.

Those who have not despaired of a serial
solution have concentrated on concept-based
indexing to provide efficient access of concept
properties. For example, McDermott (1975b) suggests
organising concept properties into "pa ckets" or
"cont ext " vis a vis the programming language
constructs available in CONNIVER (Sussman and
McDermott, 1974) or QA4 (Rulifson e t al., 1972).
When the assertion "Clyde is an Elephant" is made
a new index entry is created which links "Clyde'''
to the packet containing all known "Elephant"
properties. Of course access to the "El e phant"
packet does not e nsure efficient access of an
arbitrary "El e phant" property within the packe t;
McDermott (1975a) notes that the issue of how
to access packets internally is related to the
issue of "shallow" versus "deep" binding
(vide Moses, 1970) .

Moor e (1975) proposes a scheme which structures
asserted properties around a hierarc hy of types
(e .g., Elephant IS-A Mammal IS-A Animal ... , etc.).
A list of subsuming types is attached to eac h
instantiated constant or variable, e.g., the
elephant named "Clyde " might have the attached type
1 ist

PHYSOB - ALIVE - ANIMAL - MAMMAL - ELEPHANT.

The pattern matcher is augmented with a type
checker which e nsur es that an individual matches
only those properties which may be lega lly inherit
from subsuming types. In this case, since "Clyde"
is an instance of type "El e phant", he may inherit
any property true of Elephants, Mammals, e tc.
Moore recognises that the key to the pattern
matcher's efficient operation depends on how the
data base of properties is indexed. He tentatively
suggests that assertions be grouped in hierarchical
buckets indexed by type . This corres ponds to the
subconcept-superconcept organisation for networks,
suggested in Section 1.

59

Symbol-mapping in a proposition network is
greatly aided by imposing a subconcept-superconcept
hierarchy on the network concepts. Within the
proposition network, one concept is a superconcept
of another concept if th e set of properties
attached to the former is a subset of the
properties attached to the latter. Therefore
"mammal" is a superconcept of " elephant" since the
Rer of "mammal" properties is a subset of the set
of " elephant " properties .

After asserting "Clyde 1s a n elephant", the
colour of Clyde can be found as follows: the
concept node "Clyde" is accessed, and the attached
propositions are scanned sequentially for one which
indicates the colour of Clyde. Should one not be
found, Clyde's immediate successor 1n tre
subconcept-superconcept hi erarc hy 1s accessed
(e.g ., e lephant), and its attached proper ti es are
again searched sequentially for a colour
proposition. This process continues until either
all the existing superconcepts' proposition s hav e
been checked, or a colour proposition has bee n
found. Notic e that the subconcept-superconcept
structure simply guides an exhaustive search for a
colour propert y attached to each of the
superconcept classes of whi ch Clyde is •a member.
It does not increase the efficiency of locating
rel evant information about the colour of Clyde.
Certainly we would rath er ask th e question "Is
there a co lour proposition attached to Clyde?", and
if the answer is no, proceed up the
subconcept-superconcept h ierarc hy asking th e same
question of each successive s uperconce pt.

3.3 Topic Organisations

Subconcept-superconcept hierarchies provide an
organisation for associating knowledge with a
concept, but that knowl edge itself remains
unstructured. In order to efficiently answer
queries like "What is the colour of Clyde?", the
knowledge about eac h concept must also be
organised.

We propose that the first order knowledge about
a concept (i. e., attributes or properties) be
classified by second order predicates called topic
predic a tes. Subtopic-supertopic relationships
between topic predicates will define a topic
hi erarchy which will classify first order
predicates in the same way that standard
subconcept-superconcept hi erarch i es classify
individuals. For example, consider the
"APPEARANCE" topic illustrated in Figure 8. Except
for the l eav es, all nodes of the hi erarchy are
viewed as second order predicates . Th e first order
pr edicate "striped " is classified as an instance of
"PATTERN" which in turn is a subtopic (i.e., second
order subconcept) of "APPEARANCE". The first order
predicates appearing as leaves inherit the
properties of their superiors in the topic
hi erarchy.

In Figure 8, notice that the first order
pr edicate "shiny" appears as an instance of both
"TEXTURE" and "COLOUR", thus providing two
viewpoints of the same predicate. In general, the
topic organisation ne ed not be strictly
hierarchical in order that predicates may be
classified under multipl e topics. Our first

implementation of topic hiera r chies (Goebe l, 1977)
pe rmitt ed pr edicat es to be ranked as to th e ir
"d egree of r e levanc e" in th e topics und er whi ch
th ey wer e classified. In an attempt to combine a
f uzzy logic mod e l of vagueness with a probabilistic
mod e l of uncertainty, relevance rankings were
specified as c umul a tive prob ability distributions
over de g rees of re l evance. Although it is clear
that some measure of re l evance is useful in
specifying which of several possible viewpoints is
most relevant , we are now skeptical of the approach
of Goebe l (1977). An a lterna t e approach for
r e presenting degrees of relevance is provided in
Schubert (1978).

Topic hiera rchies are designed to impose a
classification on eac h ne twork concept's associated
knowledge in order to provide efficient access of
topic ally-re l evant propositions fot a n arbi trary
que ry . To implement such an indexing sc heme, an
instance of the topi c hierarchy called a topic
access skeleton will be attached to each incividual
or type concept in the network. Only tho se
topics und er which knowl edge has been classified
will be instantiated in any particular topic
access s ke l eton. For exampl e, Figure 9 gives
the "APPEARANCE" topic access skeleton for
"Cl yde " after asserting "CLyde is pink" and " Clyde
is s potted". Additions to a concept ' s topic
access skeleton are signalled by the appeara nce of
a topically classified predicate in an input
proposition. Wh en a proposition about "Clyde"
i nvolves a predicate appearing as a l eaf of
t he "APPEARANCE" topic hierarc hy, that
proposition is inserted in the corresponding
position i n Clyde's "APPEARANCE" topic access
ske l eton.

Now reconsider the symbol-mapping pro blem
ass umin g that th e propositions attac hed to each
concept are classified by an appropriate topic
hi erarchy. A search for the colour of Clyde begins
by accessing t he " Cl yde " concept, but rat her than
looking at eac h propo s1t1on sequential ly , the
"COLOUR" topic of Clyde can immediately be checked
for a co lour propo si t ion . If this fails, eac h of
Clyde's superconcept nodes (i.e., e l ephan t, mammal,
etc.) are searched in exact l y the same fas hion. If
the topic access skeletons attac hed to each concept
are approximat e l y ba l anced, the access t i me for a
classified proposition about a particular concept
will be a pproximate ly propo rtiona l to the loga rithm
of the number of propositions "known" abo ut th at
conce pt. The combined organisational power of the
subconcept-superconcept hierarchy and the topic
hi erarchy s hould provide for a significant
reduction in proposition access time.

4. Utili sing Knowl edge in Proposition Networks

Once a propo s ition is obtained from the
interpretative program (Cercone, 1975), the conce pt
nodes in t he proposition are created unless they
are fo und in the syst em's internal conc ep t
dictionary. An unquanti fied arg ument is assumed to
be the name of a n individua l concept, and if it
do es not exist, it is created as specified. All
qu antified argument s are ent ered as new variables
of the a ppropriate type (i .e., existential or
universa l) . Predic ates may be optionally created
as recogni sed, or predefined and verified upon

60

input. A f unct iona l notat ion is provid ed which
permits reference to an individual concept
by its participation in an atomi c ne twork
propo si tion . For exampl e, th e expression

(fa th er-o f Fred)

is a functional reference to Fred' s fath e r , whoever
he may be. This facility works only for existing
nodes; un reso l ved functional references do not
cause the creation of new nodes. In ge nera l, the
decision to crea t e a new nod e will require a
ca ut ious approach, si nce indiscriminant
creation of new nod es could quickly l ead t o data
bas e inconsistency. For exampl e, if the
proposition

(Sally sis t er-of Fred)

has been asserted , the functiona l references

(father-of Sa l ly), (father-of Fred)

refer to the same father, bu t reasoning is r equired
to recognise this fac t in order to refrain from
creating two new individual concepts.

The system facilitates the use of arbitrary
t opic h ierarc hi es by permitting the explicit
i nsertion of suptopic-supertopic r e l ations. For
exampl e, the " APPEARANCE" topic hierarchy of Figure
8 would be defined as follows:

[APPEARANCE s upertopic-of COLOUR TEXTURE PATTERN]
[COLOUR supertopic - of ye l low p i nk green]

[TEXTURE superto pic-of shin y rough smoot hl
[PATTERN supertopic-of striped spotted checked].

The experimental implementation of Goebel (1 977)
uses a simp l e proposition classification sc heme
based on the recog n ition of individuals (e.g.,
Clyde, peanut37) and type concepts (e.g., elephant ,
mamm al, anima l) in input propositions. For exampl e,
the asser tion "El e ph ants are grey" would be
c l assified under the "COLOUR" topic in t he
" APPEARANCE" topic access s ke l e t on for the
" e l ephant" co ncept . A detailed descri ption of a n
a utoma t ic classification mec hani sm based on the
logica l form of propositions is given in Schubert
e t a l. (19 78b).

A retrieval request for topically classif i ed
propositions is specified as a concept name
fo ll owed by a topic name. Th e request

Clyde;A PPEARANCE

would retrieve a ll the c l assified "APPEARANCE"
propo si tions a bout "Clyde " . Clear l y, this facility
co uld form th e basis for a sophisticated
question-answering system.

5. Discussion

We conclude with a s hort assessmen t of the most
sa lient features of this r esearch a nd a b rief
indication of what we consider to be promising
di rections for further research. We have argued
e l sewhere (see Sc hubert et a l. , 1978b) that
primitive representations for fac tua l knowledge are
c umb ersome and unneccessary, si nc e the furt her the

reduction to primitives is carried, the more
computation bound the resulting representations
become. Clearly, ours is a nonprimitive
representation and the mini-impl ementations
developed in Cercone (1975) and Goebel (1977) lend
credence to that c laim.

Although we have repeatedly stressed the
distinction between re pres entations and
organisations, we now note that a topic hierarchy
is simply a relational structure which can of
course be represented within the proposition
network . This approach would allow a system to
reason ABOUT topics. We believe that existing
knowledge representations which do not initially
(or ever) make s uc h a distinction (e . g., McCal l a,
1977) can avoid need l ess complexity with such an
approac h .

One cannot overstress the advantages of a
logical approac h to developing and investigating
knowledge representations and orgqnizations. For
a further exampl e, observe th e clarity of the
approach g iven to the inheritance of properties
by Reiter (1975) in compari so n to those
of McDe rmott (1975b) or Moore (1975). Also
note that the second order nature of topic
organisations provid e a we ll-defined notion of
"knowl edge about knowledge". This should provide
important clues to the problem of identifying
and using different "l eve ls" of knowledge.

We hav e concentrated on examples of topic
hi e rarchies for knowledge of attributes or
properties, but similar organisations could be
constructed for other kinds of knowledge,
e.g., knowledge about actions. Note that an
organisation similar to a topic hierarchy has
been employed by Schank (1972) to organise primary
inferences associated with hi s primitive action
concepts. For examp l e, Schank's abstract transfer
primitive "ATRANS" may be viewed as a supertopic of
the first order predicates "buy", "sell",
"t rade", etc.. One of the "pi eces" of knowledge
associated with "ATRANS" which is inherited
by the first order conc epts is the fact that
some object has changed possession.

Hopefully, the logical flavour of th e topic
hi erarc hy a pproach will provide a unifying
framework in which to view current and future
organisations of propositional knowledge.

ACKNOWLEDGEMENTS

We are indebted to Len Schubert for contributing
to the ideas herein; we are always reminded of his
guidance, creativity, and example. Also, thanks are
due Ray Re iter for his many accurate
observations about the logical structure of topic
hi erarchies.

REFERENCES

Abelson, R. (1973) "The Structure of Belief
Sys terns", in COMPUTER MODELS OF THOUGHT AND
LANGUAGE, Schank, R. & Col'by, K. (eds.), W. H.
Freeman, San Francisco, pp 287-339.

Anderson, J. & Bower, G. (1973) . HUMAN
ASSOCIATIVE MEMORY, Winston & Sons, Washington,
D.C.

61

Bartsch, R. & Vennernann, T. (1972). SEMANTIC
STRUCTURES, Athenaurn Verlag, Frankfurt, Germany.

Bobrow, D. (1975). "Dimensions of
Representation" , in REPRESENTATION
AND UNDERSTANDING, Bobrow, D. & Collins, A.
(eds .), Academic Press, New York, pp 1-34 .

Bobrow, D. & Winograd, T. (1977) . "An Overview of
KRL, a Knowledge Representation Language" ,
Cognitive Science, 1, pp 3-46.

Bobrow, D., Kaplan, R., Kay, M., Norman, A.,
Thompson, H. & Winograd, T. (197 7). "GUS, A
Frame Driven Dialog System", Artificial
Intelligence, 8, pp 155-173.

Brady, J . M. & Wielinga, R. (1977). " Reading the
Writing on the Wall", in COMPUTER VISION
SYSTEMS, Risernan, E. & Hanse n, A. (eds.),
Academic Press, New York, in press.

Bruce, B. (1972). " A Model for Tempor a l References
and its Application in a Question-Answering
Program", Artificial Int e lligenc e , 3, pp 1-26.

Cercone, N. & Schubert, L. K. (1975). "Toward a
State-Based Conceptual Representation",
Proceedings IJCAI4, Tbilisi, USSR, pp 83-90.

Cercone, N. (1975). "Representing Natural
Language in Extended Semantic Networks " ,
TR75-ll, Department of Computing Science,
University of Alberta, Edmonton, Alberta.

Fahlrnan, S. (1975) . "A System for Representing
and Using Real World Knowledge", AI Lab Memo
331, MIT, Cambridge, Massachusetts.

Fillmore, C. J. (1968) . " The Case for Case",
in UNIVERSALS IN LINGUISTIC THEORY, Bach, E.
& Ha rm, R. (eds.), Holt, Reinhart, and
Winston, New York, pp 1-88 .

Goebel, R. (1977). "Organizing Factual Knowledge
in a Semantic Network", TR77-8, Department of
Computing Science, University of Alberta,
Edmonton, Alberta.

Goldstein, I. & Roberts, R. (1977). "NUDGE, A
Knowledge-Based Scheduling Program", Proceedings
IJCAI5, Cambridge, Ma ssac husetts, pp 257-263.

Hayes , P. (1977a) "In Defense of Logic",
unpublish ed draft version of Hayes (1977b).

Hayes, P. (1977b). "In Defence of Logic",
Proceedings IJCAI5, Cambridge, Massachusetts, pp
559-565.

Kay, M. (1976). "Xerox ' s GUS (Genial Understander
System)", Proceedings Symposium on Advanced
Memory Concepts, SRI, Menlo Park, California,
rnicrofich 5, pp 351-360.

McCalla, G. (1977). " An Approach to the
Organization of Knowledge for the Modelling of
Conversation", Ph.D. Thesis, Department of
Computer Science, University of British
Columbia, Vancouver, British Columbia.

McCarthy, J. & Hayes , P. (1969). "Some
Philosophical Problems from the Standpoint of
Artificial Intelligence. MACHINE INTELLIGENCE,
4, Meltzer, B. & Michie, D. (eds.),
American Elsevier, New York, pp 463-502.

McDermott, D. (1975a). "Symbol-Mapping: a technical
problem in PLANNER-like systems", SIGART
Newsletter 51, April, pp 4-5.

McDermott, D. (1975b). "A Packet Based Approach to
·t he Symbol Mapping Problem", SIGART Newsletter
53, August, pp 6-7.

McDermott, D. (19 76) . "Artificial Intelligence
Meets Natural Stupidity", SIGART Newsletter 57,
April, pp 4-9.

I

. J

,I

McSkimin, J.R. & Minker, J. (1977) . "Th e Use of a
Semantic Net in a Ded uctive
Question-Ans wering System", Proc eed ings IJCAI5,
Cambridge , Massachus e tt s , pp 50-58.

Minsky, M., (1975). " A Framework for Re prese nting
Knowl edge", in THE PSYCHOLOGY OF COMPUTER
VISION, Winston , P . (ed.), McGraw- Hill, Ne w
York, pp 211 - 277 .

Moore, R. (1975). "A Se rial Scheme for t h e
Inheritance of Properties", SIGART News letter
53, August , pp 8-9.

Mos es, J . (19 70) . " The Fun c tion of FUNCTION in
LISP" , AI Lab Mem0 199 , MIT , Cambrid ge,
Massachusetts.

Mylopoulos, J., Cohen, P., Borgida, A. & Sugar, L .
(1975). "Semanti c Networks and the Generation of
Cont ex t", Proceedings IJCAI4, Tbili si , USSR ,
August, pp 134 - 142.

Quillian, M. , (1968) . "Semantic Memory", in

SEMANTIC INFORMATION PROCESSING, Minsky, M.
(ed.), MIT Press, Cambridge, Massachuse~ts, pp
227-270 .

Rei t er, R. (1975) . "Formal Reasoning and Lan gu&ge
Und er standing Systems " , Proceedings TINLAP
Works hop , Ca mb ridge, Massac hu setts, pp 175-179 .

Rulifson, J. F., Derksen , J. & Waldinger, R. J.
(19 72). "QA4: A Procedur a l Calculus for
Intuitive Reasoning" , AI Tec hnica l Note 73,
Computer Scie nce De partment, Stanford
University, Stanford, California .

Rumelhart, D., Lind say , P. & Norm an, D. (1972) .
"A Process Model for Long Term Memory " ,
in ORGANI ZA TION OF MEMORY, Tulv i ng, E. &
Don a ldson, W. (ed s.) , Academic Press, New York,
pp 198-22 1.

Schank, R. (1972) . "Conceptual Depe nd ency: A Theory
of Nat ur a l Language Und erstanding " , Cog nitiv e
Psychology, 3, 552-631.

Schank, R. (1975) . "The Role of Memory in

Lan g uage Processing", in THE STRUCTURE OF HUMAN
MEMORY, Cofer, C. (ed.), W. H. Freeman, San
Francisco, pp 162- 189 .

Schank, R. & Abelson, R. (1975). "Sc ri pt s,
Pl ans, & Knowl e d ge", Proceedings IJCAI4, Tbilisi
USSR, pp 151 - 157.

Schank, R., Goldman,
(1973). "Marg i e:

N., Rieger, C. & Ries beck, C.
Memor y, Analysis, Res pon se

Generation and
Proceedings IJCAI3,
255-261.

Infe r e nc e on Eng l ish " ,
Stanford, California, pp

Schubert, L. K. (1975) . "Extending th e Ex press ive
Power of Semantic Networks " , Proceedings IJCAI4,
Tbilisi, USSR, pp 158 - 164.

Schubert, L. K. (1976). " Extending the Expressive
Power of Semantic Ne t s ", Artificial
Inte lligence, 7, pp 163 - 198 .

Schubert, L. K. (1978). "On the Re presentation of
Vague and Uncertain Knowl edge ", submitted to
COL ING 78.

Schubert, L . K., Cerco ne, N. & Goebel, R.
(1978a) "The Struct ur e and Organization of a
Semantic Net for Comprehe n s ion and Inference",
TR78-l, Department of Computing Science,
Univers ity of Alberta, Edmonton, Alb e rta .

Schubert, L. K., Goe b e l, R., & Cercone, N.
(1978b) . "The Structur e and Organi za tion of a
Semantic Ne t for Compr e he nsion and Inference",
to appear in ASSOCIATIVE NETS THE
REPRESENTATION AND USE OF KNOWLEDGE RY
COMPUTERS, Find l er, N. V. (ed .).

62

Shapi ro, S. (1971). " A Ne t Structure for Se ma nt ic
Information Storage, Deductio n, an d RetriPva l " ,
Proc eeding s IJCAI2, London, En g l and, pp
512-523.

Strawson, P. (1959) . INDIVIDUALS, Me thue n, London,
Eng l and.

Sussman, G. J. & Mc Dermott, D. (1974) . " CONNIVER
259A, MIT, Reference Manual", AI Lab Memo

Camb ridge, Massachusetts.
Wilks , Y. 0973). "P reference

AI Proj ec t, AIM-2 06,
Stanford California.

Semanti cs " , Stanford
Stanford Univers it y ,

Wil son, K.V. (1977) . FROM ASSOCIATION TO STRUCTURE ,
(to a ppea r) .

Winston, P. (1970) . "Learning Structural
Descriptions from Exampl es ", Ph . n. Thes i s,
MAC - TR - 76, MIT, Cambridge, Massachus e tt s.

Wood s, W. (197 5). "What's i n a Link : Found a t io n s
for Semantic Networks " , in REPRESENTATION AND
UNDERSTANDING, Bobrow, D. & Col 1 in s, A.
(eds.), Academic Press, New York, pp 35-82.

FIGURES

move
,/"'--.. ..

se l f =mov e ·
1 f . 4 1 . b ;?'<; -se - mov e using i m s f l y s lither swim

hum~anim a l
se l f-move using limb s se lf- mov e usin g limb s

walk run op s kip

Figure 1. Superimpose d Hi erarc h ical Structure

B
Douglas Thoma s

A
Lucinda

Figure 2. "Doug l as is the pare nt of Thomas .
Lu c ind a is t he parent of Douglas. "

~ pa rent-of~

Figure 3 . "Dougl;,c is th e parent of Thomas ."

R

Figur e 4 . "John gives th e book to Ma ry"

SU TI

redness--O-increasing)

TO
distance ~horizon [)-before

)n J
decreasing

(nowl)

Figure 5. "The sun was getting redder and
approar:hiTJ!! the hnd ,:nn. 11

alive [I]-.-be tor e----H nowl)

then
'l

dead []

Figure 6. "Mary died."

~state
I

[, 1

cause overlaps

i t DIR
physobj---o.r-'--~quick ly[]-~~~

moving I
then

touching[+]~~before~(nowl)

i TI
mutual force~~~~~~~~--

FigurP 7 . "John hit Mary"

APPEARANCE
;

COLOUR - TEXTURE -PATTERN

~shin~ou~

yellow pink green striped spotted checked

Figure 8. The "APPEARANCE" topic hierarch~.

(Cl/de)

APPEARANCE

COLOUR

i shiny smooth rough

yellow pink green

[C~e pink]

striped

[Clyde

PATTERN

J
spotted checked·
/ spotted]

Figure 9. Clyde's partial topic access skeleton.

63

Capturing Linguistic Generalizations
In a Parser for English

Mitchell Marcus
MIT Artificial Intelligence Laboratory

This paper will discuss some aspects of a grammar
Interpreter called PARSIFAL, which Is based upon the
hypothesis that a natural language parser needn't simulate
a nondeterministic machine. This "Determinism Hypothesis"
claims that natural language can be parsed by a
computationally simple mechanism that uses neither
backtracking nor pseudo-parallelism, and In which a.II
grammatical structure created by the parser Is "Indelible" In
that It must all be output as part of the structural analysis
of the parser's input. Once bullt, no grammatical structure
can be discarded or altered In the course of the parsing
process.

The paper will focus on one aspect of PARSIFAL In
particular: that simple rules of grammar can by written for
this Interpreter which elegantly capture the significant
generalizations behind such constructions as passives
(including constructions involving "raising"), yes/no
questions, imperatives, and sentences with existential
there. (The first two of these constructions will be
discussed in this paper; the latter two will not.) These
rules are reminiscent of the sorts of rules proposed within
the framework of the theory of generative grammar, despite
the fact that the rules presented here must recover
underlying structure given only the terminal string of the
surface form of the sentence. The component of the
grammar interpreter which allows such rules to be
formulated is motivated by the Determinism Hypothesis;
thus, the ability to write such rules provides indirect
evidence for the hypothesis. This result also depends In
part upon the use within a computational framework of the
closely re lated notions of annotated surface structure and
trace theory, which derive from the recent work of Noam
Chomsky; e.g. (Chomsky 73].

This ability to capture generalizations, coupled with
the fact that the grammar rules for PARSIFAL are written in
an English-like formal language called PIDGIN, has an
important practical implication: that a grammar of English
written for this parser can be highly perspicuous.

This parser serves as part of a natural language
understanding system which serves as front end for the PAL
personal assistant program at the MIT Al Laboratory, which
Is an extension of the NUDGE system documented in
(Goldstein & Roberts 77]. The first version of the PAL
system has just been completed, it is documented In
[Marcus forthcoming], [Bullwinkle 77]. The PAL system Is a

64

prototype appointment scheduler; the current version can
handle requests such as "I want to schedule a meeting with
Ira in his office at 2 p.m. next Wednesday. It should end at
4 o'clock."

The rema inder of this paper will sketch the
structure of the parser, discuss how that structure Is
motivated by the "Determinism Hypothesis", and sketch
severa l examples of grammatical generalizations that can
be captured within this framework.

Before proceeding with the body of this paper, two
other important properties of the parser should be
mentioned which will not be discussed here; they are
discussed at length in (Marcus 77]:

1)The structure of the grammar interpreter
constrains its operation in such a way that, by and large,
grammar rules cannot parse sentences which violate either
of two constraints on rules of grammar currently proposed
by Chomsky as universals of human language, the Specified
Subject Constraint and the Subjacency Principle.

2)The grammar interpreter provides a simple
explanation for the difficulty caused by "garden path"
sentences, such as "The cotton clothing is made of grows in
Mississippi." Rules can be written for this interpreter to
resolve local structural ambiguities which might seem to
require nondeterministic parsing; the power of such rules,
however, depends upon a parameter of the mechanism.
Most structural ambiguities can be resolved, given an
appropriate setting of this parameter, but those which
typica lly cause garden paths cannot.

The Structure of PARSIFAL
PARSIFAL maintains two major data structures: a

pushdown stack of incomplete constituents called the active
node stack, and a small three-place constituent buffer which
contains constituents which are complete, but whose higher
level grammatical function Is as yet uncertain.

Figure 1 below shows a snapshot of the parser's
data structures taken whi le parsing the sentence "John
should have scheduled the meeting." . Note that the active
node stack in shown growing downward, so that the
structure of the stack reflects the structure of the
emerging parse tree. At the bottom of the stack Is an
auxiliary node labelled with the features modal, past, etc.,

·1

. '

which has as a daughter the modal "should". Above the
bottom of the stack Is an S node with an NP as a daughter,
dominating the word "John". There are two words In the
buffer, the verb "have" In the first buffer cell and the word
"scheduled" In the second. The two words "the meeting"
have not yet come to the attention of the parser. (The
structures of form "(PARSE-AUX CPOOL)" and the like wlll be
explained below.)

The Active Node Stack
S 1 (S DECL MAJOR S) / (PARSE-AUX CPOOL)

NP : (John)
AUX1 (MODAL PAST VSPL AUX)/ (BUILD-AUX)

MODAL : (should)

The Buffer
1 : WORD3 (•HAVE VERB TNSLESS AUXVERB PRES

V-3S) : (have)
2 : WORD4 (•SCHEDULE COMP-OBJ VERB INF-OBJ

V-3S ED=EN EN PART PAST ED) : (scheduled)

Yet unseen words: the meeting .

Figure 1 - PARSIFAL's two major data structures.

The constituent buffer Is the heart of the grammar
interpreter; It Is the central feature that distinguishes this
parser from all others. The words that make up the parser's
input first come to its attention when they appear at the
end of this buffer after morphological analysis. Triggered
by the words at the beginning of the buffer, the parser may
decide to create a new grammatical constituent, create a
new node at the bottom of the active node stack, and then
begin to attach the constituents In the buffer to It. After
this new constituent Is completed, the parser will then pop
the new constituent from the active node stack; If the
grammatical role of this larger structure Is as yet
undetermined, the parser will Insert It Into the first cell of
the buffer. The parser Is free to examine the constituents
in the buffer, to act upon them, and to otherwise use the
buffer as a workspace.

While the buffer allows the parser to examine
some of the context surrounding a given constituent, It does
not allow arbitrary look-ahead. The length of the buffer Is
strictly limited; in the version of the parser presented here,
the buffer has only three cells. (The buffer must be
extended to five cells to allow the parser to build NPs In a
manner which is transparent to the "clause level" grammar
rules which will be presented In this paper. This extended
parser still has a window of only three cells, but the
effective start of the buffer can be changed through an
"attention shifting mechanism" whenever the parser Is
building an NP. In effect, this extended parser has two
"logical" buffers of length three, one for NPs and another
for clauses, with these two buffers Implemented by allowing
an overlap In one larger buffer. For details, see [Marcus
77].)

Note that each of the three cells In the buffer can
hold a grammatical constituent of any type, where a
constituent is any tree that the parser has constructed
under a single root node. The size of .the structure
underneath the node Is Immaterial; both "that" and "that

65

the big green cookie monster's toe got stubbed" are
perfectly good constituents once the parser has
constructed a subordinate clause from the latter phrase.

The constituent buffer and the active node stack
are acted upon by a grammar which Is made up of
pattern/action rules; this grammar can be viewed /JS an
augmented form of Newell and Simon's production systems
[Newell & Simon 72]. Each rule Is made up of a pattern,
which Is matched against some subset of the constituents
of the buffer and the accessible nodes In the active node
stack (about which more will be said below), and an action,
a sequence of operations which acts on these constituents.
Each rule is assigned a numerical priority, which the
grammar interpreter uses to arbitrate simultaneous matches.

The grammar as a whole Is structured Into rule
packets, clumps of grammar rules which can be . activated
and deactivated as a group; the grammar Interpreter only
attempts to match rules In packets that have been
activated by the grammar. Any grammar rule can activate a
packet by associating that packet with the constituent at
the bottom of the active node stack. As long as that node
is at the bottom of the stack, the packets associated with
it are active; when that node Is pushed Into the stack, the
packets remain associated with It, but become active again
only when that node reaches the bottom of the stack. For
example, In figure 1 above, the packet BUILD- AUX Is
associated with the bottom of the stack, and Is thus active,
while the packet PARSE-AUX Is associated with the S node
above the aux iliary.

The grammar rules themselves are written In a
language called PIDGIN, an English-like formal language that
Is translated Into LISP by a simple grammar translator based
on the notion of top- down operator precedence [Pratt 73].
This use of pseudo-English Is similar to the use of pseudo
English In the grammar for Sager's STRING parser [Sager
73]. Figure 2 below gives a schematic overview of the
organization of the grammar, and exhibits some of the rules
that make up the packet PARSE-AUX.

A few comments on the grammar notation Itself are
in order . The general form of each grammar rule Is:

{Rule <name> priority: <priority> In (packet>
<pattern>--> <action>}

Each pattern is of the form :

[(description of 1st buffer constituent>] [<2nd>]
[<3rd>]

The symbol " =", used only in pattern descriptions, Is to be
read as "has the feature(s)" . Features of the form
11 •<word)" mean "has the root <word)", e.g. 11 •have" means
"has the root "have"". The tokens "1st", "2nd", "3rd" and
"C" (or "c") refer to the constituents in the 1st, 2nd, and
3rd buffer positions and the current active node (I.e. the
bottom of the stack), respectively. (These tags will also be
used in the text below as names for their respective
constituents .) The symbol "t" used In a pattern description
Is a predicate that is true of any node, thus "[t]" Is the
simplest always true description. Pattern descriptions to be

matched against the current active node and the current S
are flagged by 11 ••c 11 appearing at the beginning of an
additional pattern description. The PIDGIN code of the rule
patterns. should otherwise be fairly self-explanatory.

Priority Pattern Action
Description of:

let 2nd 3rd The Stack
PACKET1

5: [J [] --> ACTION1
10: [[] --> ACTION2
10: [] [--> ACTION3

PACKET2
10:] --> ACTION4
15: --> ACTION6

(a) - The structure of the grammar.

{RULE START-AUX PRIORITY: 10. IN PARSE-AUX
[=verb]-->
Create a new aux node.
Label C with the meet of the features of 1st and pres,

past, future, tnsless.
Activate build-aux.}

{RULE TO-INFINITIVE PRIORITY: 10. IN PARSE-AUX
[=• to, auxverb] [=tnsiess] -->
Label a new aux node inf.
Attach 1st to C as to.
Activate build-aux.}

(b) - Some grammar rules that initiate auxiliaries.

Figure 2

The parser (i.e . the grammar Interpreter
interpreting some grammar) operates by attaching
constituents which are in the buffer to the constituent at
the bottom of the stack; functionally, a constituent is in the
stack when the parser is attempting to find its daughters,
and in the buffer when the parser is attempting to find its
mother. Once a constituent in the buffer has beer:,
attached, the grammar interpreter will automatically remove
it from the buffer, f illing in the gap by shifting to the left the
constituents formerly to its right. When the parser has
completed the constituent at the bottom of the stack, it
pops that constituent from the act ive node stack; the
constituent either remains attached to Its parent, If it was
attached to some larger constituent when it was created, or
e lse it falls into the first cell of the constituent buffer,
shifting the buffer to the right to create a gap (and causing
a n error if the buffer was already full). If the constituents
in the buffer provide sufficient evidence that a constituent
of a given type shou ld be initiated, a new node of that type
can be created and pushed onto the stack; this new node
can a lso be attached to the node at the bottom of the
stack before the stack Is pushed, If the grammatical
function of the new constituent is clear when it is created.

This structure is motivated by several properties
which, as is argued in [Marcus 77], any "non
nondeterministic" grammar interpreter must embody. These
principles, and their embodiment In PARSIFAL, are as follows:

66

1) A deterministic parser must be ot leost part/ally data
driven. A grammar for PARSIFAL is made up of
pattern/action rules which are triggered when
constituents which fulfill specific descriptions
appear in the buffer.

2) A deterministic parser must be able to reflect
expectations that follow from the partial structures
built up during the parsing process. Packets of
rules can be activated and deactivated by
grammar rules to reflect the properties of the

· constituents in the active node stack.

3) A deterministic parser must have some sort of
constrained look-ahead facility. PARSIFAL's buffer
provides this constrained look -ahead. Because the
buffer can hold several constituents, a grammar
rule can examine the context that follows the first
constituent in the buffer before deciding what
gram :iatical role it fills in a higher level structure.
The key idea is that the size of the buffer can be
sharp ly constrained if each location in the buffer
can hold a s ingle complete constituent, regardless
of that constituent's size. It must be stressed that
this look-ahead ability must be constrained in some
manner, as it is here by limiting the length of the
buffer; otherwise the "determinism" claim Is
vacuous.

The General Grammatical Framework - Traces
The form of the structures that the current

grammar builds is based on the notion of Annotated Surface
Structure. This term has been used in two different senses
by Winograd [Winograd 71] and Chomsky [Chomsky 73];
the usage of the term here can be thought of as a
s ynthesis of the two concepts. Following Winograd, this
term will be used to refer to a notion of surface structure
annotated by the addition of a set of features to each node
in a parse tree. Following Chomsky, the term will be used to
refer to a notion of surface structure annotated by the
addition of an e lement called trace to Indicate the
"underlying position" of "shifted" NPs.

In current linguistic theory, a trace is essentially a
"phonologically null" NP in the surface structure
representation of a sentence that has no daughters but Is
"bound" to the NP that fi lled that position at some level of
underlying structure. In a sense, a trace can be viewed as
a "dummy" NP that serves as a placeholder for the NP that
ear lier filled that position; in the same sense, the trace's
binding can be viewed as simply a pointer to that NP. It
should be stressed at the outset, however, that a trace Is
Indistinguishable from a normal NP In terms of normal
grammatical processes; a trace Is an NP, even though It Is
an NP that dominates no lexical material.

There are several reasons for choosing a properly
annotated surface structure as a primary output
representation for syntactic analysis. Whlle a deeper
analysis is needed to recover the predicate/ argument
structure of a sentence (either in terms of Fillmore case
relations [Fillmore 68] or Gruber/Jackendoff "thematic
relations" [Gruber 65; Jackendoff 72)), phenomena such as
focus, theme, pronominal reference, scope of quantification,

·'

I

and the like can be recovered only from the surface
structure of a sentence. By means of proper annotation, It
is poss ible to encode In the surface structure the "deep"
syntactic Information necessary to recover underlying
predicate/argument relations, and thus to encode In the
same forma lism both deep syntactic relations and the
surface order needed for pronominal reference and the
other phenomena listed above.

Some examples of the use of trace are given in
Figure 3 immediately below.

(la) What did John give to Sue?
Obl What did John give t to Sue?

I I
(le) John g~ve what to Sue.

(2al A book was given Sue.
· (2b) A book was given Sue t.

I
(2cl V gave Sue a book.

(3al John was be I ieved to be happy.
(3b) John was believed Cs t to be happy] •

I I

Figure 3 - Some examples of the use of trace.

One use of trace is to Indicate the underlying
position of the wh-head of a question or relative clause.
Thus, the structure built by the parser for 3.1 a would
Include the trace shown in 3.1 b, with the trace's binding
shown by the line under the sentence. The position of the
trace indicates that 3 .1 a has an underlying structure
analogous to the overt surface structure of 3.1 c.

Another use of trace Is to Indicate the underlying
position of the surface subject of a passivlzed clause. For
example, 3.2a will be parsed Into a structure that Includes a
trace as shown as 3.2b; this trace Indicates that the
subject of the passive has the underlying position shown in
3.2c. The symbol "V" signifies the fact that the subject
position of (2c) is filled by an NP that dominates no lexical
structure. (Following Chomsky, I assume that a passive
sentence in fact has no underlying subject, that an
agentive "by NP" prepositional phrase originates as such In
underlying structure.) The trace in (3b) Indicates that the
phrase "to be happy", which the brackets show is really an
embedded clause, has an underlying subject which Is
identical with the surface subject of the matrix S, the
clause that dominates the embedded complement. Note
that what is conceptually the underlying subject of the
embedded clause has been passivlzed into subject position
of the matrix S, a phenomenon commonly called "raising".
The analysis of this phenomenon assumed here derives from
[Chomsky 73]; it is an alternative to the classic analysis
which involves "raising" the subject of the embedded
clause into object position of the matrix S before
passivizatlon (for details of this later analysis see [Postal
74]).

Some Captured Generalizations
The remainder of this paper will sketch a few

examples of grammar rules that explicitly capture, on nearly

67

a one-to- one basis, the same generalizations that are
typically captured by classical transformational rules. The
central point of what follows is that the availability of the
buffer as a workspace, In conjunction with a grammar
written in the form of pattern-action rules, makes possible
several techniques for writing simple, concise grammar rules
that have the net effect of explicitly "undoing" many of the
generative grammarian's transformations with much the
same elegance.

One caveat should be stated at the outset: Not all
grammatical processes which are typically expressed. as
single rules within the generative framework can be so
captured within the grammar for this parser, or, I believe,
any other. Such processes include the general phenomenon
of "WH- movement", which accounts for the structure of
WH-questions and relative clauses (at the least), and the
problem of prepositional phrase attachment. Thus, while
there is a wide range of grammatical generalizations that
can be captured within a parsing grammar, it must be
conceded that there are important generalizations that
cannot be captured within this framework.

There are several techniques made possible by the
buffer that will be used repeatedly to capture linguistic
phenomena within fairly simple rule formulations. They are:

1) The ability to remove some constituent other than
the first from the constituent buffer, compacting the buffer
and reuniting discontinuous constituents. In natural
language, it is often the case that some third structure
intervenes between two parts of what is intuitively one
constituent . In most parsers, special provisions must be
made in the grammar for handling such situations. As will l:>e
demonstrated below, the buffer mechanism makes this
unnecessary.

2) The ability to place a trace by Inserting It Into
the buffer rather than by directly attaching it to a tree
fragment . As will be sketched below, this yields a simple
analysis of passivization and "raising".

3) The ability to Insert specific /ex/cal items Into
the buffer, thereby allowing one set of rules to operate on
only superficially di°fferent cases. As figure 4 below shows,
many grammatical constructions in natural language are best
analyzed as slight variants of other constructions, differing
only in the occurrence of an additional specific lexical Item
or two. Given the buffer mechanism, such constructions can
be easily handled by doing a simple insertion of the
appropriate lexical Items Into the shorter form of the
construction, "transforming" the shorter form into the longer
form, allowing both cases to then be handled by the same
grammar rule .

1 (a) ail the boys
(b) all of the boys

2(a) I helped John pick it up.
(b) I helped John to pick It up.

Figure 4

In what follows below, examples will be given
which illustrate points (1) and (2).

Example 1 - Yes/No Questions
In the grammar for this parser, the analysis of a

yes-no question diffe rs from the analysis of the related
declarative only in the execut ion of two ru les for each
se nt e nc e type: declaratives trigger the two rules s hown in
figure 5a be low, and yes-no questions trigger the two ru les
shown in 5b. Th e differences between the rules for
declaratives and y es-no questions are underlined in fig. 5.

{Ru le DECL-S in SS-START
[=np] [=verb] - ->
Labe l C dec l, ma jor.
Deactivate ss-start.
Act ivate parse-subj.}

{ RULE UNMAf1KED-ORDER
IN PARSE-SUBJ

[=np] [=ve rb] -->
Attach~ to c as np.
Deactivate parse-subj.
Activate parse-aux.}

DECLARATIVES
(a)

{Rule Y /N -Q in SS-START
[=auxverb] [=npJ -->
Label C ynguest, major.
Deactivate ss-start.
Activate parse-subj .}

{RULE AUX- INVERS ION
IN PARSE-SUBJ

[=auxverbJ [=npJ -->
Attach 2 nd to c as np.
Deactivate parse-subj.
Activate parse-aux.}

YES-NO QUESTIONS
(b)

Fig ure 5 - Ru les for yes-no quest ions and declaratives.

What is s urpris ing about these rules is that t hey
obv iate the need for the grammar to contain spec ial
provis ions to handle t lie discont inuity of the verb c luster in
yes-no questions. Consider the fo llowing sentence,

(i) Has John scheduled the meeting for Wednesday?

One of t he aux iliary pars ing rul es t hat s hould be tr iggered
during t he course of the analysis of this sentence is t he
ru le PERFECTIVE, shown below in figure 6. This ru le w ill
attach any form of "have" to the auxi liary and labe l the
auxil iary with the feature perfective if the fo llowing word
(implicitly a verb) has the feature en. It would seem t hat
some provi s ion must be made for t he fact t hat in a yes-no
quest ion t hese two words might be separated by t he
subject NP, as in (i) above where the verb " scheduled "
(whic h does carry t he feature en, s ince en is
morpholog ica lly realized with this verb as "-ed") does not
fo llow "has " , but rather follows an interven ing NP. As we
s hall see immediately below, however, no specia l patch is
needed to hand le t his discont inuity at all .

{RULE PERFECT IVE PRIORITY: 10. IN BU ILD-AUX
[="have] [=en]--> Attach 1st to c as perf. Label c perf .}

Figure 6 - The PERFECTIVE ru le requ ires contiguous verbs.

Let us now trace through the initial steps of
pars in g (i) and see why it is that no changes to the
auxi liary parsing rules are required to parse yes-no
questions.

We beg in with the parser in the state shown in
figure 7a below, with the packet SS-START active. The rule
Y /N -Q matches and is executed, labelling S 1 7 with features
that indicate t hat it is a yes - no question, as shown In figure
7b below. (The buffer, not shown again, remains

68

unc hange d.) Th is step of the parsing process is quite
analogous to the analys is process for declaratives.

C:

1 :
2:
3:

The Act ive Nod e Stack (0 . deep)
S17 (S) / (SS-START)

The Buffer
WORD134 (• HAVE VERB AUXVERB PRES V3S) : (Has)
NP43 (NP NAME NS N3P) : (John)
WORD136 (•SC HEDULE COMP-OBJ VERB INF-OBJ

V- 3S ...) : (scheduled)

Yet unseen words : a meeting for Wednesday?

(a) - Before Y /N -Q has been executed.

The Act ive Nod e Stack (0 . deep)
C: S 1 7 (S QUEST YNQUEST MAJOR)/ (PARSE-SUBJ)

(b) - The Active Node Stack after Y /N -Q is executed.

Figure 7

The packet PARSE-SUBJ is now active, and ru le
AUX-INVERSION matches and is executed; it attaches NP43
to S 1 7. After AUX- INVERS ION has been executed, the
gra mmar in te rprete r notices t hat NP43 is attached and it
therefore removes NP43 from the buffer. But now that the
subject of the c lause has been removed from the buffer,
the pieces of the v erb c luster "has schedu led " are no
long er d iscontinuous, as the word "has" is now in the. 1 ~t
buffer ce.11, and " scheduled" is in the 2 nd ce ll. Th is IS

s hown in figure 8 below. In effect, t he rule AUX-INVERSION,
mere ly by pickin£1 out the subject of the c.lause'. has
"undone" t he s ubj ect / aux iliary "inversion" which signals

the presence of a question.

C:

1 :
2:

The Active Node Stack (O. deep)
S 1 7 (S QUEST YNQUEST MAJOR) / (PARSE- AUX)

NP : (John)

The Buffer
WORD1 34 (" HAVE VERB AUXVERB PRES V3S) : (Has)
WORD 136 (•SC HEDULE COMP-OBJ VERB INF-OBJ

V-3S ...) : (scheduled)

Yet unseen words : a meeting for Wednesday ?

Figure 8 - After AUX- INVERS ION has .been executed.

From t his s imple example, we see that the ability
to attach const it uents in other than the f irst place in the
buffer to t he current act ive node, in conjunc tion with the
fact t hat attachment causes a node to be removed from the
buffer , compact ing t he remaining contents of the buffer,
allows a key genera lizat ion to be captured. Most
int erestingly, the removal of t he sub ject NP in this case
w as not specif ically stipulated by t he grammar ru le, which
merely specif ied t hat t he second NP in the buffer was to be
attached to t he dominating S. The de letion followed Instead
from general principles of the grammar interpreter's

. operation. This latter point is crucial; given a simple
statement of the structure of yes-no questions in English,
the proper behavior follows from much more general

I

· I

principles.

Example 2 - Passives and Raising
In this section, I w ill very briefly sketch a

grammatica l solution to the phenomena of passlvlzatlon and
"rais ing" [Postal 74], sentences In which what seems to be
the subject of an embedded complement Is passlvlzed Into
t he subject posit ion of the higher clause. This analysis, I
be lieve, is simpler than that demonstrated by Woods within
his c lass ic paper on the ATN formalism [Woods 70), In that
(1) noth ing like the register mechanism of the ATN and the
re lated SENOR and LIFTR mechanisms are needed for this
solution; and (2) the register resetting Involved In Woods'
solution is not needed here.

Let us begin with the parser In the state shown In
figure 9 below, in the midst of parslng the following
sentence:

The meeting was scheduled for Wednesday.

The ana lysis process for the sentence prior to this point Is
essentially parallel to the analysis of any simple declarative
with one exception: the rule PASSIVE-AUX In packet BUILD
AUX (shown In figure 11) has decoded the passive
morphology in the auxiliary and given the auxiliary the
feature passive (although this feature Is not visible In figure
9). At the point we begin our example, the packet SUBJ
VERB Is active.

The Active Node Stack (1. deep)
S21 (S DECL MAJOR) / (SS-FINAL)

NP : (The meeting)
AUX : (has been)
VP:+

C: VP1 7 (VP) / (SUBJ-VERB)
VERB : (scheduled)

The Buffer
1 : PP14 (PP) : (for Wednesday)
2 : WORD162 (•. FINALPUNC PUNC) : (.)

Figure 9 - Partial analysis of a passive sentence:
after the verb has been attached.

The packet SUBJ-VERB contains, among other rules, the rule
PASSIVE, shown In figure 1 O below. As I will show In the
next section, this rule by itself Is sufficient to account for
many of the phenomena that accompany clause-level
passivlzatlon including the phenomenon of raising. The
pattern of this rule is fulfilled If the auxiliary of the S node
dominating the current active node (which will always be a
VP node If packet SUBJ-VERB Is active) has the feature
passive, and the S node has not yet been labelled np
preposed. (The notation 11

•• C" Indicates that this rule
matches against the two accessible nodes In the stack, not
against the contents of the buffer.) The action of the rule
PASSIVE simply creates a trace, sets the binding of the
trace to the subject of the dominating S node, and then
drops the new trace Into the buffer.

69

{RULE PASSIVE IN SUBJ-VERB
[0 c; the aux of the s above c Is passive;

the s above c Is not np-preposed] -->
Label the s above c np-preposed.
Create a new np node labelled trace.
Set the binding of c to the np of the s above c.

Drop c.}

Figure 1 O - Six lines of code captures np-preposlng.

The state of the parser after this rule has been executed,
with the parser previously in the state In figure 9 above, is
shown in figure 11 below. S21 is now labelled with the
feature np-preposed, and there Is a trace, NP53, in the first
buffer position. NP53, as a trace, has no daughters, but Is

bound to the subject of S21.

The Active Node Stack (1. deep)
S21 (NP-PREPOSED S DECL MAJOR)/ (SS-FINAL)

NP : (The meeting)
AUX : (has been)

VP:+
C: VP 1 7 (VP) / (SUBJ-VERB)

VERB : (scheduled)

The Buffer
1 : NP53 (NP TRACE) : bound to: (The meeting)
2 : PP14 (PP) : (for Wednesday)
3 : WORD162 (•. FINALPUNC PUNC): (.)

Figure 11 - After PASSIVE has been executed.

Now rules will run which will activate the two
packets SS-VP and INF-COMP, given that the verb of VP17
is "schedule". These two packets contain rules for parsing
simple objects of non-embedded Ss, and Infinitive
complements, respectively. Two such rules, each of which
utilize an NP Immediately following a verb, are given In figure
1 2 below. The ru le OBJECTS, in packet SS-VP, picks up an
NP after the verb and attaches It to the VP node as a
simple object. The rule INF-S-START1, In packet INF-COMP,
triggers when an NP Is followed by "to" and a tenseless
verb · It Initiates an infinitive complement and attaches the

' "W NP as its subject. (An example of such a sentence Is e
scheduled John to give a seminar next week".) The rule
INF-S-START1 must have a higher priority than OBJECTS
because the pattern of OBJECTS is fulfilled by any situation
that fulfills the pattern of INF-S-START1; If both rules are In
active packets and match, the higher priority of INF-S
START1 will cause it to be run instead of OBJECTS.

{RULE OBJECTS PRIORITY: 10 IN SS-VP

[=np) -->
Attach rst to c as np.}

{RULE INF-S-START1 PRIORITY: 6. IN INF-COMP
[=np] [=•to,auxverb] [=tnsless] -->
Label a new s node sec, lnf-s.
Attach 1st to c as np.
Activate parse-aux.}

Figure 1 2 - Two rules which utilize an NP following a verb.

While there is not space to continue the example
here . in detail, not e that the rul ~ OBJECTS will trigger with
t11 e pmse r in the s tate shown in figure 11 above, and will
attnch NP53 as the object of the verb "schedule. OBJECTS
is thus tota lly indifferent both to the fact that NP53 was
not a rcnular NP, but rather a trace, and t he fact that NP53
did not or igin ate in the input str ing, but was placed into the
buff er by grammatica l proce;;ses. Wh ether or not this ru le
is executed is absolutely unaffected by differences
betwe en an ac tive sentence and its pass ive form; the
ana lys is process for either is identical as of thi s point in the
parsin9 proc ess . Tl1us, the ana lys is process will be exactly
parall e l in both cases after the PASSIVE rule has been
execute d. (I remind tl1 e reader that the ana lysis of passive
assumed above, fo llow in g Chomsky, does not assume a
proc ess of " agent deletion", " subject postposing" or the
lik e.)

Example 3 - Passives in Embedded Complements
The reader may have wondered why PASSIVE

drops t he trace it creates into the buffer rather than
imme diately attaching the new trace to th e VP node. As we
will see be low, such a formulation of PASS IVE also correctly
ana ly zes pa ss ives like 3b above which involve "raising", but
with 110 additional comp lex ity added to the grammar,
correc tly capturing an important genera li za tion about
En9 li sh. To s how the range of the general iza tion, the
example which w e will inves tigate in this section, sentence
(1) in figure 13 be low, is y et a lev el more complex than 3a
abov e; its analys is is shown schematic ally in 13.2. In this
example there are two traces: the first, the subject of the
e mb edd e d c lause, is bound to the subject of the major
c lause , th e second, the object of the embedded S, is bound
to the first trace, and is thus ultimate ly bound to the
s ubject of the higher S as well. Thus the underlying
pos ition of the NP "tl1e meeting" can be vi ew ed as being
the object position of the embedded S, as shown in 13.3.

(1)The mee tin g w as believed tq have been scheduled for
W edn es day.

(2)The mee ting w as believed [sf to have been scheduled
t for W e dnesday)

(3) v believed [s v to have schedu led the meet ing for
W e dnes day].

Figure 1 3 - This example shows s imple passive and ra is ing.

We be~Jin our example, once again, right after the
ru le MVB has been executed, attaching "believed" to VP 2 0,
t he curre nt active node, as shown in f igure 14 be low. Note
t hat the AUX node has been labelled passive, a lthough this
feature is not shown here.

70

C:

1 :
2:

The Active Node Stack (1. deep)
S22 (S DECL MAJOR) / (SS-FINAL)

NP : (The meeting)
AUX : (was)
VP : ,l.

VP20 (VP) / (SUBJ- VERB)
VERB : (believed)

The Buffer
WORD166 (• TO PREP AUXVERB) : (to)
WORD167 (• HAVE VERB TNSLES:: AUXVERB

PRES ...) : (have)

Figure 1 4 - After MVB has been executed.

The packet SUBJ- VERB is now act ive ; the PASSIVE
rul e, conta ined in this packet now matches and is executed.
This rule, as stated above, creates a trace, binds it to the
sub j ect of the current c lause, and drops the trace into the
first ce ll in the buffer. The resu lting state is shown in

f igure 15 be low.

C:

1 :

2 :
3:

The Active Node Stack (1. deep)
S22 (NP- PREPOSED S DECL MAJOR) / (SS-F INAL)

NP : (The meeting)
AUX: (was)
VP: ,l.

VP20 (VP) / (SUBJ- VERB)
VERB : (be lieved)

The Buffer
NP55 (NP TRACE) : bound to : (The meeting)
WORD166 (•TO PREP AUXVERB) : (to)
WORD 16 7 (• HAVE VERB TNSLESS AUX VERB

PRES ...) : (have)

Yet uns een words : been schedu led for Wednesday .

Figure 15 - After PASSIVE has been executed.

The rule SUBJ-VERB is now triggered, and
deac tivates the packet SUBJ-VERB and activates the
pa cke t SS-VP (which contains the rule OBJECTS) and, s ince
"b e lieve " takes infinitive comp lements, the packet INF
COMP (which conta ins INF-S-START1), among others. Now
th e patterns of OBJECTS and INF-S-START1 will both match,
and INF-S-START1, shown above in figure 27, will be
execlited by the interpreter since it has the higher priority.
(Note once again that a trace is a perfect ly normal NP from
the point view of t he patte rn matching process.) This ru le
now creates a new S node labe lled infinitive and attaches
the trace NP55 to the new infinitive as its subject. The
resulting sta te is shown in figure 16 below.

The Active Node Stack (2. deep)
S22 (NP-PREPOSED S DECL MAJOR) / (SS-FINAL)

NP : (The meeting)
AUX: (was)
VP :,!,

VP20 (VP) / (SS-VP THAT-COMP INF-COMP)
VERB : (believed)

C: S23 (SEC INF-S S) / (PARSE-AUX)
NP : bound to: (The meeting)

The Buffer
1 : WORD 166 (•TO PREP AUXVERB) : (to)
2 : WORD 16 7 ("HAVE VERB TNSLESS AUXVERB

PRES ...) : (have)

Yet unseen words: been scheduled for Wednesday .

Figure 16 - After INF-S-START1 has been executed.

We are now well on our way to the desired
ana lysis. An embedded infinitive has been initiated, and a
trace bound to the subject of the dominating S has been
attached as its subject.

The parser will now proceed, exactly as In earlier
examples , to build the auxiliary, attach it, and attach the
verb " scheduled" to a new VP node. After the ru les that
accomplish this have been executed, the parser is left in
the state depicted in figure 1 7 below. (Note that for the
sake of brevity, only the 3 bottommost nodes in the active
node stack will be shown In this and all successive
diagrams.) The infinitive auxiliary has been parsed and
attached, and VP21 is now the current active node, with
the verb "scheduled" as main verb of the clause. Again,
the auxiliary has been assigned the feature passive by the
auxi liary parsing rules, although this is not shown in the
figure below.

C:

1 :
2:

The Active Node Stack (3. deep)

VP20 (VP) / (SS-VP THAT-COMP INF-COMP)
VERB : (believed)

S23 (SEC INF-S S) / (EMB-S-FINAL)
NP : bound to: (The meeting)
AUX : (to have been)
VP:,!,

VP21 (VP)/ (SUBJ-VERB)
VERB : (scheduled)

The Buffer
PP15 (PP) : (for Wednesday)
WORD174 (•. FINALPUNC PUNG):(.)

Figure 1 7 - After parsing the auxiliary and main verb.

The packet SUBJ-VERB, containing the rules
PASSIVE and SUBJ-VERB, Is now active. Once again
PASSIVE's pattern matches and this rule Is executed,
creating a trace, binding it to the subject of the clause,
(which is in this case itself a trace), and dropping the new
trace into the buffer. This is shown in figure 18 below.
Note that In this figure, as in earlier figures, the lexical NP
which is the transitive closure of the binding relationship is

71

shown for each trace.

C:

The Active Node Stack (3. deep)

VP20 (VP) / (SS-VP THAT-COMP INF-COMP)
VERB : (believed)

S23 (NP- PREPOSED SEC INF-S S) / (EMB-S-FINAL)
NP : bound to: (The meeting)
AUX : (to have been)
VP : ,!,

VP21 (VP)/ (SUBJ-VERB)
VERB : (scheduled)

The Buffer
1 :
2:
3:

NP57 (NP TRACE) : bound to: (The meeting)
PP15 (PP) : (for Wednesday)
WORD174 (•. FINALPUNC PUNG) : (.)

Figure 18 - After PASS IVE has run on the lower c lause.

The remainder of the parsing process proceeds in
a fashion s imil ar to the simp le passive example discussed
above; the rule OBJECTS will attach the trace NP57 as the
obj ect of VP 21 , and the parse will then be completed by
grammatical processes which will not be discussed here .
The tree struc ture which results Is shown in figure 1 9
below. (For the sake of brevity, most features have been
deleted from this tree.) A trace is indicated in this tree by
giving the terminal string of its ultimate binding in
parentheses.

(NP-PREPOSED S DECL MAJOR)
NP: (MODIBLE NP DEF DET NP)

DET: The
NBAR: (NS NBAR)

NOUN: meeting
AUX: (PAST V13S AUX)

PASSIVE: was
VP: (VP)

VERB: believed
NP: (NP COMP)

S: (NP- PREPOSED SEC INF-S S)
NP: (NP TRACE)

(bound" to: The meeting)
AUX: (PASSIVE PERF INF AUX)

TO: to
PERF : have
PASSIVE: been

VP: (VP)
VERB: scheduled
NP: (NP TRACE)

(bound• to: The meeting)
PP: (PP)

PREP: for
NP : (NP TIME DOW)

NOUN: Wednesday
FINALPUNC: .

Figure 1 9 - The final tree structure.

We have seen that the simple formulation of the
PASSIVE rule presented above, interacting with other simply
formulated grammatical rules for parsing objects and
initiating embedded infinitives, allows a trace to be

attached either as the object of a verb or as the subject of
an embe dded infinitive, whichever is the appropriate
analysis for a r1iven grammat ical situation. The PASSIVE rule
is formula tecl in suc h a way that it drops the trace \t
creates into the buffer, rather than attaching the trace
somewhere in particular in the tree. Because of this, later
rules, olready formulated to trigger on an NP in the buffer,
will analyze sentences with NP-preposing exactly the same
as those witl1out a preposed subject. Once again, we see
that the avai lability of the buffer mechanism is crucial to
capturing this generalization; such a generalization can only
be stated by a parser with a mechanism much like the
buffer used here.

Conclusion
Th is paper has demonstrated that the structure of

PARS IFAL, in conjun ction with the computational usage of
the notion of traces, allows the formulation of linguistic
r1en era li zations within the context of the grammar
interpreter, resu lting in simple, perspicuou:; rules of grammar
which handle comp lex lingu istic phenomena. The perspicuity
of the grammar is increased by the fact that each of these
rules conf lates different linguistic situations; thus, after
t he passive rule has run the parsing of actives and
passives is identical, after the aux-inversion rule has run,
the parsing of declaratives and yes/no questions is
id entica l. And fina lly, the perspicuity of these ru les is
increased by the fact that they are expressed in a concise
pseudo-English grammar language.

In conclus ion , let me briefly recapitulate the major
points made above:

Of the structures that make up the grammar
interpreter, it is the constituent buffer which is most central
to the resu lts that are presented in this document. For
example, because the buffer automatically compacts upon
the attachment of ~he constituents that it contains, the
parsing of a yes/no question and the related declarative
will differ in one rule of grammar, with the key difference
restricted to the rule patterns and one line of the rules'
actions . The yes/no question rule explicitly states only
t hat the NP in the second buffer cell should be attached as
the subject of the clause. Because the buffer will then
c ompact, auxiliary parsing rules that expect the
subconstituents of the verb c luster to be contiguous will
then apply without need for modification.

Another important source of power Is the use of
traces, espec iall y in conjunction with the use of the buffer.
Especia lly important is the fact that a trace can be dropped
into the buffer, thereby indicating Its underlying position in a
factorization of the terminal string without specifying its
position in the underlying tree. From this follows a simple
formu lation of passive which accounts for the phenomenon
of "ra ising". The essence of the passive rule - create a
trace, bind it to the subject of the current S, drop it Into the
buffer is noteworthy in its s implicity. Again, the
avai lab ili ty of the buffer yields a very simple solution to a
seemingly complex lin guistic phenomenon.

72

Acknowledgments
This paper summarizes one resu lt presented in my

Ph.D. thesis; I would lik e to express my gratitude to the
many peop le who contributed to the technical content of
that work: Jon Allen, my thesis ad visor, to whom I owe a
spec ial debt of thanks, Ira Goldstein, Seymour Papert, Bi ll
Martin, Bob Moore, Chuck Rieger, Mike Genesereth, Gerry
Sussman, Mike Brady, Craig Th iersch, Beth Levin, Candy
Bullwinkle, Kurt VanLehn, Dave McDonald, and Chuck Rich.

This paper describes research done at the
Artificial Inte lligence Laboratory of the Massachusetts
Inst itute of Technology. Support for the laboratory's
artific ial intelligence research is provided in part by the
Advanced Research Projects Agency of the Department of
Defence under Office of Naval Research Contract NOOO 14-
75-C-0643.

BIBLIOGRAPHY

Bullwinkle, C. [1977) "The Semantic Component of PAL: The
Personal Assistant Language Understanding Program,"
Working Paper 141, MIT Artific ial Intelligence
Laboratory, Cambridge, Mass.

Chomsky, N. [1973) "Conditions on Transformations", in S.
Anderson and P. Kiparsky, eds., A Festschrlft for
Morris Halle, Holt, Rinehart and Winston, N.Y.

Fil lmore, C. J . [1968) "The Case for Case" in Universals in
Linguistic Theory, E. Bach and R. T. Harms, eds., Holt,
Rinehart, and Winston, N.Y.

Goldste in, I. P. and R. B. Roberts [1977) "NUDGE, A
Knowledge-Based Schedu ling Program," Memo 405, MIT
Artificial Intelligence Laboratory, Cambridge, Mass.

Gruber, J . S. [1965] Studies in Lexical Relations,
unpublished Ph.D. thesis, MIT.

Jackendoff, R. S. [1972] Semantic Interpretation in
Generative Grammar, MIT Press, Cambridge, Mass ..

Marcus, M. P. [1977) A Theory of Syntactic Recognition for
Natural Language, unpublished Ph.D. thesis, MIT.

Marcus, M. P. [forthcoming] A Progress Report on the Syntax
and Semantics of PAL, Memo ??, MIT Artificial
Int e lligence Laboratory, Cambridge, Mass .

Newell, A. and H.A. Simon [1972] Human Problem Solving,
Prentice-Hall, Englewood Cliffs, N.J.

Postal, P. M. [1974) On Raising, M.IT Press, Cambridge,

Mass.

Pratt, V. R. [1973) "Top-Down Operator Precedence", in the
proceedings of The SIGACT /SIGPLAN Symposium on
Principles of Programming Languages, Boston, Mass.

Pratt, V. R. [1 976) "CGOL - An Alternative External
Representation For LISP Users", Working Paper 121,
MIT Artificial Intelligence Laboratory, Cambridge, Mass.

I .,

. 1

Rust in R., eel. [1973] Natural Language Processing,
Algorithmics Press, N.Y.

Sager, N. [1973] "The String Parser for Scientific
Literature", in [Rustin 73] .

Winograd, T. [1971] Procedures as a Representation for
Data in a Computer Program for Understanding Natural
Language, Project MAC· TR 84, MIT, Cambridge, Mass.

Woods, W . A. [1970] "Transition Network Grammars for
Natura l Language Analysis", Communications of the ACM
13:591 .

73

SEMANTIC NETWORKS AND THE DESIGN
OF INTERACTIVE INFORMATION SYSTEMS

John My lopoulo s
Harry K.T. Won g

Philip A. Bernstein*

Depa rtm ent of Computer Sc i e nc e
University o f Toronto

Ab s tr act

Interactive Information Systems (II Ss)
such as credit-card verifi ca tion and
airline reservation can be viewed as
knowledge-based sys t ems that us e th e ir
knowledge fo r question-answering and
reasoning. Th is paper de scrib es TAXIS, a
languag e for the design of such systems,
that is b ased on semantic networks and
enables the designer of an IIS to t ightly
integrate dat a a nd procedures.

1. Introduction

We a r e interested in th e des i gn of
interactive information systems (II Ss)
which are ch aracte r ized by the ir require
ment fo r handling large volume of transac
t io ns that are s hort , very predictable and
updat e i ntensive. Common exampl es of s uc h
systems include credit -card veri fica tion ,
airline and hot e l reservation, point - of
sale inventory control and electronic funds
transfer. A main feature of s uch systems
i s their use of a database (usually i n
secondary memory) for mai nta i ning and
accessing i n formatio n.

Our approach to ISS design is to inte
grate useful con cept s from Data base Manage
ment and Progr amming Languages usi ng AI
t echnique s re l ated to the problems of
knowledge repres e ntation and the de sign,
o f knowledge-based sys tems. Specifically,
from Database Mana gement, we have selected
the relational mode l of data. From
Pro gramming Languages, we have adopted th e
idea of a bstrac t data types. Most
importantly, fro m AI, we hav e used th e
techniques and constructs of semantic net
works and in particular, the proce dur a l
semantic network model developed in
[Leves que 77]. The product of our work is

* Aiken Computation Lab., Harvar d University.

a language for II S design that is simpl e
in struct ure and (we believe) will be
efficient when implemented.

It is true that semanti c network s
have been used before i n mod el ling data
bases [My lopoulo s et al . 76] , [Rouss opoulos
76] , [Won g & Mylopoulos 77] . Wh a t ha s be e n
l acking is a n integration of pr ocedural
aspects of appl ica tion programming with
data structur ing aspec t s of da ta mod e lling.
Pe rform ing this integration i s a major
theme of our work.

Designing a n II S primarily involves
creati ng a mod e l for an enterprise. A
program in thlslanguage consists o f a
defi nit ion of the database (i. e . th e
information) that th e sys t em will ma i ntai n
for the enterprise over long periods of
time and a definition of tran sac tions (i.e.,
pro ce dures) that can b e invoked to alter
the information in the database.

Our l ang uage is called TAXI S (pro
nounc e d tak'-siss), a pro gr ammin g language
for designing interactive information
sys t ems.t In the ne x t sec tion, we sketch
the mai n features of TAXIS; th e reader is
r eferred to [My lopoulo s et al. 78a] for a
full description. In sec tions 3 a nd 4, we
explore the relationships betwe e n semantic
networks and the design of II Ss.

2. A Language for II S Design

2 .1 Classes, Tok e ns and Properties

A class is a co ll ec tion of obj ec t s
s hari ng common properti es. Th e instances
of a class are its tokens. Collectively,
c l asses and tokens are ca ll ed objects.
One way to describe objects i s by their
properties. A property is a name d
relation fro m a s ubj ec t to a valu e a nd is
use d to relate classes or tok~ The
name of the property is its attribute.
For illustrative purposes, we will use a

t "TAXIS " (Tai;; l a) is a Greek noun that means order, as in "Law and order", or class a s in
" social class" or "university class". The word "taxonomy" is a derivative o f "taxis".

74

. I

. I

··. •. \

.. I

graphical notation to specify properties:

subject attribute), value

For example, a class s uch as PERSON can
have properties such as name, address, age
and phone 11,

name PERSON-NAME

(=- address ADDRESS-VALUE
PERSON AGE-VALUE age

phone # -- PHONE-VALUE

Note that the values of the properties
name, address, ag e and phone# are them
selves classes. A token (instance) of
PERSON now must have the four properties
defined for PERSON.

john-smith

name---<

address --1

age ---<

I SMIT!-!, JOHN I

'13, PAUL ST.'

14

phone# --1 1234567

Note that the values of john-smith's pro
perties are (and must be) tokens of the
value classes of PERSON.

This example illustrates a very
important difference between properties of
a class and the corresponding properties
of its tokens. In the former, the proper
ties provide information about the
structure of its instances, while the
latter specify facts about a particular
instance. We call the properties of classes
definitional and those of tokens factual;
notationally, definitional properties will
have arrow links while factual ones will
have flat arrow links.

TAXIS has seven "types" of classes,
each of which can only have certain "types"
of properties. Below, we describe three of
these class types in detail: Relation,
Transaction and Exception.

2.2 Relation

A Relation class resembles a database
relation (a la Codd) and has tuples as
tokens. It can have three types of proper
ties: key, r-attributes and operations.
For example, we might choose to model
students as a Relation class, called
STUDENT. Suppose STUDENT has r-attributes
student#, student-name, department and
degree-program. The key property of a
Relation class is a subset of r-attributes
that uniquely identifies all tokens in the
class, for example, student# in STUDENT.
Operation properties are transactions that
can be applied to tokens of the class.
Every Relation class has available thre e
sets of relational operators to manipulate
tuples, sequences of tuples and entire

75

relations; these operators are predefined
as operation properties of every Relation
c lass. Additional operation properties
can be defined by users (an example appears
later). For Relation class STUDENT, then,
we have

STUDENT E
student#~ STUDENT-NUMBER

s tudent - name - NAME-VALUE
department ~ DEPT-VALUE

degree-program•DEGREE-VALUE

The classes STUDENT-NUMBER, NAME-VA LUE,
DEPT-VALUE and DEGREE-VAL UE a re all of
type Domain . A Domain class is a collec
tion of atomic tokens with some associated
operations. For example, INTEGER is a
Domain class, whose tokens are all the
integers and whose operations are the
usual arithmetic operations. The under
lined r -a ttribute, student# i s selected
as the key property of STUDENT .

Th e syntacti c program representation
of STUDENT and its properties are:

relation STUDENT with

end

key: student#: STUDENT-NUMBER
r-attributes

student#: STUDENT-NUMBER;
student-name: NAME-VALUE;
department: DEPT-VALUE;
degree -program: DEGREE-VALUE;

For conciseness, we will not present the
syntax for classes and properties, but
will use the graph notation throughout.

A particular token of STUDENT is an
instance of the Relation class with
factual properties corresponding to the
definitional properties.

F-
student # ---< 43210

student-name__, 'SMITH,JOHN'
john-smith department ------J 'CSC'

degree-p rogram---l 'Ph.D'

As described so far, properties can
only be binary relationship. TAXIS
actually permits properties to have more
than one subject. Such properties are
called complex. For example, suppose
that in addition to STUDENT, we define a
Relation class called COURSE. To specify
the property "students can be enrolled in
courses through the transaction ENROL
STUDENT", we may associate it with the
class STUDENT and/or with the class COURSE.
That is, ENROL-STUDENT is no less a
property of STUDENT than of COURSE. We
use the term complex property to denote a
property with multiple subjects (in this
case, 2).

STUDENT ---
enro l_-=:::r:::,> ENROL-STUDENT

COURSE - - -

The property enrol is of type "opera
tion". Operation properties associate
operations with the data in the database
very much in the style of abstract data
types. However, the mechanism of complex
properties does not require the objects to
be partitioned (often artificially) into
independent abstract types, a notable dis
advantage of languages such as CLU [Liskov
and Zilles 74] and ALPHARD [Wulf et al. 76].

2.3 Transaction

Transaction classes hre essentially
procedures. The tokens of a transaction
class ar e invocations of the transaction,
like procedure activations.

There are three main types of proper
ties that make up the body of a trans act ion:
prerequisite, action and result. In
addition, a transaction has as properties
the usual components of a procedure such as
parameters, local variables and
returned values. Prerequisites, action and
result properties take as values Expression
classes. Standard expression constructs
much like ELl [Wegbreit 74] are provided;
among them are repeat - loop, if - then-el se,
exit constructs and boolean expressions.
A transaction is executed as follows:
first, all prerequisites are checked; if
all are satisfied, then the actions are
executed; finally, all result s are tested
and if they are satisfied, then the transac
tion returns. For example, the ENROL
STUDENT transaction above might have a pre
requisite check-required-courses to check
if the student has taken all the required
courses of the courses/he wants to take .
The action is to incorporate the enrollment
into the database, and the result (say)
always returns true (no check).

check-required- CONFIRM -
courses PREREQ

ENROL-

~
insert - ADD -S TUDENT STUDENT student

true - result TRUE

CONFIRM - PREREQ, ADD-STUDENT and TRUE are
Expression classes which specify the codes
of the prerequi site, action and result
properties of ENROL-STUDENT.

2. 4 Exceptions

An Exception class in an abnormal
condition that can be detected during the
execution of a transaction. The only type
of properties an Exception class can have
is status properties which describe the
state of the sys tem when the exception is
raised. For example, an Exception class

76

called REQUIRED - COURSE-NOT-TAKEN can he
defined for the situation where a student
did not take all the required prerequisite
courses of a course; the status properties
of this class are (say) the student, the
courses/he wants to take and the course
s/he did not take but was required to take.
A token of an exception class is created
when a prerequisite or a result of a
transaction returns an object other than
true . For example, if the prerequisite
check-required-courses of transaction
ENROL-STUDENT has failed, then an exception
token of REQUIRED-COURSE -NOT-TAKEN is
raised.

ENROL-STUDENT-- check-required-course

CONFIRM-PREREQ~-exc-

REQUIRED-COURSE-NOT-TAKEN

The responsibility of handling the excep
tion raised belongs to the invoker of the
transaction that discovers the exception.
In the example, exception REQUIRED-COURSE
NOT-TAKEN is handled by the caller of ENROL
STUDENT (another transaction or a
secretary). Exce12tion handlers are tran
sactions that decide what to do with the
exception (ABORT is the default).

2.5 The ISA Hierarchy

The main facility for organizing
classes is the ISA hierarchy. ISA is a
binary relation that captures similarities
among classes. The s tatement, X ISA Y
(sometimes written x $ y) means every
instances of class Xis also an instance
of class Y. For example, suppose we
define a class GRAD-STUDENT $ STUDENT.
The important characteristic of ISA is its
rules for inheriting properties:
GRAD-STUDENT $ STUDENT implies GRAD-STUDENT
has the same five properties as STUDENT.
If desired, we can re-define some of the
properties of STUDENT for GRAD-STUDENT.
For example, since graduate students only
receive graduate degrees, we might re
define the degree -program of GRAD-STUDENT
to be GRAD-DEGREE-VALUE. This kind of re
definition i s restricted by the rule that
the new property value must be ISA related
to the original value. In our example,
it must be that GRAD-DEGREE-VALUE $ DEGREE
VALUE.

Additional properties can be defined
for GRAD -STUDENT, that are not defined at
all for STUDENT. For example, GRAD
STUDENT can have an additional property
advisor, whose value is PROFESSOR.

- . I

'.1

I,

STUDENT
~/-

t-
GRAD- r-

STUDENT _

student ff ------ STUDENT-NUMBER
student-name --- NAME-VALUE

department

degree-program

degree-program

DEPT-VALUE

- DEGREE-VALUE
1i'

GRAD-DEGREE
VALUE

advisor - PROFESSOR

In our notation, we us e 1 to represent the
ISA relationship. If A ~ B, then we say
that A is a specialization of Band Bi s a
generali za tion of A. The restriction on
redef1n1t1on of properties of specializa
tions is the same for all class types.

The ISA hierarchy provides the
structure for the organization of a TAXIS
program. Suppose we want to org~nize
ENROL transactions . We begin, say, with
the general transaction , ENROL-STUDENT,
which enrols a student in a course. We
might then produce a specialization of
ENROL-STUD~NT, ENROL - GRAD, which enrols a
graduate student in a course. Since
ENROL-GRAD~ ENROL-STUDENT, the prere
quisite, action and result properties of
ENROL-STUDENT are inherited by ENROL-GRAD.
As in the case of Relation classes, proper
ties of transactions can be redefined and/
or augmented in specializations. An
example is that ENROL-GRAD can have an
additional prer equi si te to check that the
student is only taking graduate leve l or
senior level courses. Also, assume that a
graduate student must obtain permission
from his/her supervisor:

ENROL- check-required- -- CONFIRM-PREREQ STUDENT co ur ses

1 obtain- PERM-EXP

C
permission -

ENROL - grad-or-senior GRAD course CHECK - COURSE

The prerequisite check-required-courses
is augmented in ENROL-GRAD by two mor e
prerequisites.

. The ISA relationship between Tran
saction classes (and Expression classes)
is defined by the language (not by the
programmer, as in other class types);
essentially, if T and T' are Transaction
(Expressions) classes, then T ~ T' if T
has "at least as many side-effects" as T' .
The ISA relationship between Transaction
(and Expression) classes are very interest
ing and we hav e only partial so lution to
the problem of defining it.

Exception classes can also be relat ed
through ISA. For example, we might have
REQUIRED-COURSE -NOT-TAKEN ~ ENROL-FAILURE.
An exception handl er can handl e an instance
of REQUIRED -COURSE -NOT - TAKEN or it can

77

"ge nerali ze " the exception and treat it as
an instance of ENROL-FAILURE, in which
case, a mor e 'general ' repair actio n is
attempted. Hence, organizing exception
classes into a hierarchy gives the
designer the flexibility of handling an
exception at different level of abstraction.

2.6 Other Features of TAXIS

Space limitations prevent us from
describing th e use of all of the classes
and their properties. Below we li s t a few
mor e features.

In addition to classes and tokens, we
defi ne a third level of desc ription,
called metaclasses whose instances are
classes. So, for examp le, Re l ati on is a
metaclas s whose instances are all the
relation classes. Commands are defined
for traversing the system at th e level of
metacl asses. An IIS des ign can use these
command s to explore the definitional
propertie s of a c l ass and th e ISA hierarchy
of classes. For exampl e, SUB [CJ returns
a sequence whose elements are all the
immediate s pecia li zatio ns of class C.
PROP[CJ returns a se quence whose elements
are all the attributes of proper tie s with
subject class C. TAXIS also allows the
exis tence of variables which take property
attributes as values and ca n therefore be
use d along with PROP to exp lore a TAXIS
model in run-time.

Th e reader is referred to [Mylopoulos
e t al. 78a) for a complete de sc ription of
TAXI S and an exte nd e d example of an IIS.
A condensed ver s ion of this document will
appear in [Mylopoulos e t al. 78b).

3. Semantic Networks and TAXIS

TAXIS treats an IIS as a collection
of classes interrelated through properties
(binary relation s hips) and organized into
an ISA hi erarchy. In this se nse, TAXIS is
nothing but a "toned - down" language for
the creation, modification and search of
semantic networks. Because of its special
ized application area (design of IISs)
TAXI S is in several ways different from a
ge ner al-purpose semantic network formalisms .
Below we li s t some of the most important
differences between TAXIS and a particular
semantic network formalism (hereafter
referred to as SNF) described in [Levesque
77), [Leve sq ue and Mylopoulo s 78), which
served as the starti ng point for the design
of TAXIS.

(a) In the SNF a semanti c network is
allowed to have an arbitrary number of
description levels. In other words, a
semantic network may include an object A1 which is an instance of an object A2
which, in turn, is an instance of an object
A

3
etc. In TAXIS we have restricted th e

number of levels of description to three
(tokens-classe s- metaclasses) . This was
done partly in order to enhance the effi
ciency of IISs designed in TAXIS and
partly because it was felt that it is
rarely useful to have more than three
l eve ls.

(h) SNF distinguishes two types of defini
tional properties: structural and
assertional ones. Structural properties
describe the internal structure of a class,
e.g. the r-attributes of PERSON mentioned
earlier would all be treat e d as s tructural
properties. Because of the ir use,
structural properti es do not have th e ir
own semantic s (i.e. are not classes with
their own proper tie s and posi tion on the
ISA hierarchy). Asse rtional properties, on
the other hand, define binary relationships
between classe s but are themselves treate d
as classes (e.g . PARENT-OF could be treated
as a binary relationship with PERSON as
domain and co- domain). In TAXIS all
definitional properties are structural, and
assertional properties can only be defined
indirectly through relation classes.

(c) New classes can be created dynamically
in SNF. This is not allowed in TAXIS where
the collection of classes, metaclasses,
their properties and their ISA hierarchy
are all fixed at run - time. This means that
users of the IIS cannot modi fy its basic
structure. If the designer of the IIS
wants to modify it, s/he can do so only by
augmenting the definitions of new classe s
to those that already exist and then
recompiling the entire svstem. Of cour se,
this restriction to TAXIS wa s introduced
with run-time efficiency and conceptual
simplicity in mind.

(d) SNF trea t s expression classes like all
other classes by defi ning an internal
structure for them. In TAXIS every
expression class is treate d as atomic and
its semantics are determined by the
expression associated with that class.
This restriction simplifies the conceptual
framework of TAXIS as we ll as its
implementation.

(e) In TAXIS, unlik e SNF, there exis t
different types of classes (e.g. domain,
relation, transaction, exception) and
properties (e.g. key, r-attribute,
operation). Th ese types were introduced
primarily in order to aid the designer of
an IIS describ e hi s system in TAXIS.
Thus, the designer can take it for granted
thats/he will use domain, relation, tran
saction and exce ption classes which have
particular features that make them suitable
for representing different aspects of an
IIS. If SNF wa s use d instead of TAXIS, th e
concepts of domain, relation, transaction
and exception class would probably have to
be defined befo r e proceeding to th e details
of the design. SNF is a "genera l purpose"
representation language whereas TAXIS is a
"sp ec ial purpo se " one.

78

(f) A complex prop erty a llows one to
relate mo re th an one subject to a commo n
property. This adds expressive power to
other semantic networks where only binary
relations are allowed. Mor e importantly,
ISA hierarchies of a compl ex property's
subject classes can be used to induce an
ISA hi e rarchy of the property's value class.
In a STUDENT-ENROL-COURSE model, we have an
operation property " enrol" with two
subjects, it s value being a trans action
ENROL - STUDENT.

STUDENT ~ -~--
enro.l > ENROL-S TUDENT

COURSE ---

One of th e prerequisit es of ENROL-STUDENT
is to check tha t th e s tudent has taken a ll
the required pr e requisite courses s/he
wants to take. Suppo se we now specia li ze
STUDENT and COURSE by adding subclasses
UNDERGRAD -STUDENT and UNDERGRAD-COURSE.
By th e inher it anc e rule, the property
enrol s hould also be a property of
UNDERGRAD-STUDENT an d UNDERGRAD-COURSE.
Now suppose tha t an undergraduate student
cannot take mor e than S undergraduate
courses. In TAXIS, such special cases can
be mode ll e d by adding an additional pre
requisite to the property value (a tran
saction) associated to the particular s ub
classes in the ISA hierarchies of the
subjects. In our example, the ENROL
STUDENT transaction associated with
UNDERGRAD-STUDE NT and UNDERGRAD-COURSE is
supplemented by an additional pre requisite
("a student cannot tak e mor e than S
courses"). That is, a new transaction
(call it ENROL-UNDERGRAD-IN- UNDERGRAD
COURSE) is created which is the same as
ENROL-STUDENT but with an additional pre
requisite.

STUDENT

UNDERGRAD
STUDENT

ENROL-STUDENT

nrolf> ENROL- UNDERGRAD -
/ IN-UNDERGRAD-

/ COURSE
UNDERGRAD-

COURSE

In general, given a comple x property among
N subject classes associated with a pro
perty value class V, an ISA hierarchy of
Vis induced whose appearance reflects the
cross product of the ISA hierarchi es of
the N subject classes. This induced
hierarchy of V can be constructed quite
easily, becaus e at any one time, one need
only look at a certain combination of the
subclasses of the subjects and specialize
the inherited V class by adding and/or
redefining the associated properties. Using
the se conc epts, TAXIS provides structuri ng
mechanisms that control the explosion of
de taile d specification of an application,
because, a t any one time, a special case

· 1

. I

~ I

always has a unique proper spot on the
induced ISA hierarchy.

(g) TAXIS offers exception - handling faci
lities based on control structures
described in [Wasserman 77] which have been
integrated into the framework of classes,
properties and the ISA relationship.

The concept of exception organization
and handling can make the operations of
semantic networks more robust and provide
a way of ensuring reliability of the
knowledge base. Organizing exceptions in
ISA hierarchies allows one to ,deal with
errors in a flexible manner. For example,
suppose we have the following ISA hierarchy
of exceptions.

REQUXRED-COURSE -NOT-TAKEN s
ENROL - FAILURE s INTEGRITY-VIOLATION

The amount of exception handling in TAXIS
can vary from none at all to every possible
kind of exception. In the former case,
every exception is generalized to an
instance of INTEGRITY-VIOLATION; the system
default (e.g. ABORT) is used uniformly.
In the latter case, a handler is associated
with every exception class and handling
of these exceptions can presumably be very
different from one to another. To the
designer of IISs, this organized way of
exception handling is obviously useful,
since in many large applications, as much
as 30% or more of the actual code is
dedicated to their detection and handling.

(h) SNF factors programs into a single
prerequisite, a single action and a single
result. TAXIS extends this idea by treat
ing prerequisite, action and result as
property typ_es and therefore allowing for
programs ~several prerequisite, action
and result properties . This capability
helps the programmer factor out a tran
saction into as many units ass/he sees
fit, with each unit being a property of
the transaction. Once defined, these
units can be inherited and/or refined by
classes lower down on the ISA hierarchy
of transactions.

4. Conc lusions

A programming language offers its
user a point of view in helping him/her
formulate his/her ideas into a coherent
program. TAXIS offers a view based on
the idea that an IIS is a knowledge-based
system, not just a program. This view is
realized by the framework of classes,
properties and the ISA relationship in
terms of which all TAXIS constructs are
described. We believe that the result is
a programming language particularly helpful
to its users in the design, debugging and
maintenance phases of their projects.

Because TAXIS is designed with
reliable IISs in mind, we are forced to be

79

quite careful and relatively formal in
defi ning it. We believe it is pos s ible
to formalize the set of constructs in TAXIS
to the point of proving "correctness" of a
model (in the s pirit of [Hoar e 69)); we
have started a project on formalization of
TAXIS, see [Wong 7 8 J. In the future, we
may be able to define the notions of
"correctness" of semantic networks quite
rigorously.

TAXIS is defined as an applications
programming language, h ence it s compila
bility (without run-time interpretation of
a semantic network) is an important goal.
A similar goal may be applied to other
semantic network formalisms. These seman
tic network 'compilers ' should be much
more efficient than the intrinsically slow
interpretive way of using semantic networks
- the traditional approach. While this
compilability property has the advantage of
efficient execution, it also has the draw
back of limiting the ability to create
new classes 'on the fly'. This compi la
bili ty requirement ha s forced us to
consider only those applications areas
wher e ther e is no need to create new
classes in run-time. II S de sign is such
an application area. TAXIS is aimed at
one particular application area (here we
don't mean a particular 'microworld' such
as Blocksworld, but application types
such as IISs) . Hence this allows us to
pick useful classes and constructs to model
s uch an area. The use of a semantic net
work formalism for the s pecifica tion of
particular kinds of knowledge bases has
enabled us to refine such formalisms by
introducing particular types of classes
which can only have particular types of
properties. This specialization process
allows us to design a sma ll language (i .e.,
with a small set of constructs), at the
expense of expressibility (i.e., lack of
generality). However, this appears to be
an important step in using representations
of knowledge in particular application
areas. We feel that there is a lot to be
learned from such applications. They
provide chall enges to a representation
formalism that l ead to refinements and
enrichments of the formalism it se lf. As
we have s hown, these enrichments often are
as valuable to the general knowledge
representation research community as they
are to the application area that spawns
them.

Acknowledgements

We would like to thank the following
people for their constructive comments:
Robin Cohen, Hector Levesque, Gord McCalla
and Ray Perrault.

We also wish to thank Teresa Miao
for her excellent typing.

References

[Hoare 69]
Hoare, C.A.R., "An Axiomatic Basis
for Computer Programming", CACM 12:10,
1969.

[Levesq ue 77]
Levesque, H., "A Procedural Approach
to Semantic Network", TR -1 05, Dept.
of Computer Science, Univ. of Toronto,
1977.

[Leves que & Mylopculo s 78]
Levesque, H., Mylopoulos, J., "A
Procedural Semantics for Semantic
Networks", to appear in Associative
Networks - the Repres entation and Use
of Knowledge in Comput~rs, Academic
Press, edited by N.V. Findler, 1978.

[Liskov & Zilles 74]
Liskov, B., Zilles, S., "Programming
with Abstract Data Types", SIGPLAN
Notices, 9, 4, 1974.

[Mylopoulos et al. 76]
Mylopoulos, J., Borgida, A., Cohen, P.,
Roussopoulos, N., Tsotsos, J.,
Wong, H., "TORUS: A Step Toward
Bridging the Gap Between Databases
and the Casual User", Information
Systems, vol.2, no.2, 1976.

[Mylopoulos et al. 78a]
Mylopoulos, J., Bernstein, P.A., Wong,
H.K.T., "A Preliminary Specification
of TAXIS: A Language for Designing
Interactive Information Systems",
TR-78-02, Computer Corp. of America,
Jan. 1978.

[Mylopoulos et al. 78b]
Mylopoulos, J., Bernstein, P.A., Wong,
H.K. T., "A Language Facility for Design
ing Interactive Database - Intensive
Applications", to appear in TODS,
presented in ACM-SIGMOD 78 Conference,
Austin, Texas, May 1978.

[Roussopoulos 76]
Roussopoulos, N., "A Semantic Network
Model of Database s", TR-104, Dept. of
Computer Science, Univ. of Toronto,
1976.

[Smith & Smith 77]
Smith, J.M. Smith, D.C.P., "Dat a
Base Abstractions: Aggregation and
Generalization", ACM TODS, vol. 2, 1977.

[Wasserman 77]
Wasserman, A.I., "Procedure-Oriented
Exception Handling", TR # 27, Lab . of
Medical Information Science, Univ .
of California, San Francisco, 1977.

[Wegbreit 74]
Wegbreit, B., "The Treatment of Data
Types in ELl ", CACM, vol.17, no.S, 1974.

80

[Wong & Mylopoulos 77]
Wong, H.K.T., Mylopoulos, J., "Two
Views of Dat a Semantics: A Survey of
Data Models of Database Management
and Artificial Intelligence", INFOR,
vol.15, no.3, Oct. 19 77. ~~-

[Wong 78]
Wong, H.K.T., Ph.D. thesis, to appear.

[Wulf et al. 76]
Wulf, W., London, R., Shaw, M.,
"Abstraction and Ve rification in
Alphard: Introduction to Language
a nd Methodology", Tech. Report,
Dep t. of Computer Science, Carnegie
Mellon Universi t y, 19 76.

Organization of Knowledge for a
Procedural Se mantic Network Formalism

Peter F. Schneider
Department of Computer Science

University of Toronto
Toronto, Ontario, Canada

1.0 1\BSTRACT

An investigation of s0me of the
issues involved in the organization of
knowl edge in semantic networks is
presented. The investigation is ln terms
of a procedural semantic net work formalism
developed by H. Levesque [Levesque 77a]
although the ideas put forward have
application in most other semantic network
formalisms. The main ideas include the
generalization of the ISA hierarchy,
inheritance in this hierarchy, the
treatment of programs as examinable
objects that can participate in an ISA
hierarchy, and the retention of
consistency in the definition of classes.

2.0 TNTR0DUCTION

Representation of knowledge is a
major problem in many areas of Artificial
Intelligence. Based upon research by the
author in [Schneider 78], this paper
investigates certain problems of a
particular representation of knowledge,
the procedural semantic network (PSN)
formalism developed by H. Levesque
[Levesque 77a] [Levesque and Mylopoulos
781. The problems generally involve
inadequacies of the tools for organizing
knowledge (ISA hierarchies, structures,
etc.) in the PSN formalism. They include
the inability of ISA hierarchies to form
acyclic graphs instead of just trees, the
problem of inheritance in such extended
hierarchies, the inability to ensure that
classes and relations are consistent, the
inability to assign an object to a class
depending upon its attributes, and the
inability to inherit fragments of programs
along the ISA hierarchy.

These problems are at least partially
overcome through modifications and
extensions to the PSN formalism which
together produce a new formalism called
the extended PSN (EPSN) formalism. These
modifications and extensions are, in
general, designed to increase the power of
the EPSN formalism to organize knowledge
into hierarchies, classes, and structures.

81

They further retain the desirab l e
properties of the PSN formalism including
consistency of the formalism, flexibility,
extensibility, self-examinability,
modifiability, and modularity.

Although the notion s in the EP3N
formalis m are based specifically on th e
PSN formalism, most of th e m are also
relevant to any semantic network formalism
and, in fact, to representation languag es
such as KRL [Winograd a nd aobrow 76 1 a nd
FRL [Roberts and Goldstein 77].

3.0 THE PSN FORMALISM

The PSN formalism is an approac h to
the representation of knowledge that uses
a procedural framework to define the
semantics of semantic network based
systems. That is, programs define actions
in the formalism and represent aspects of
the domain being mod el led. What follows
is a brief discussion of the PSN
formalism. More detail can be found in
[Levesque 77a) or [Levesque and Mylopoulos
78].

All entities in the PSN formalism are
called objects. Th ere are definite
ob~ects, akin to constants; indefinite
obJects, akin to variables; and
assertions, used in relations. There are
four important subsets of definite
objects, namely classes, relations,
programs, and contexts.

A class is a collection of definite
objects sharing common properties. The
objects in the class are the class's
instances and may themselves be classes.
The semantics of a class are defined by
four programs attached to the class. The
class's instantiator program makes an
object an instance of the class. Its
terminator removes an object from the
class. Its generator generates all the
instances of the class. Finally, the
class's recognizer checks whether an
object is an instance of the class.

.. 1

A relation is a mapping from one
class , its domain, to a nother, its range.
Re lations have assertio ns which form t he
extension of t he relation. There are four
programs attac hed to relations, called the
asserter, eraser, accessor, and tester,
which perform roles a nal ogou s to the four
progr ams attached to c l asses.

A program is a specia l kind of class
who se instances (ca ll ed processes) are
progr am activations a nd can be exec uted in
the formalism. These programs and
processes are used to define th e semantics
of classes and relations. A context is a
s pecial type of relation which is used to
define the visibility of objects and to
associate indefinite objects with their
v a lues.

A class may define structural
attributes for its instances (e.g.
students have an age) a nd then instances
of this c las s have a val ue fer this
structural attribute (e.g-.~~John is 25
years old). Structural attrib utes and
t heir values form the major part of the
definition of objects. A class may also
define asserti onal attributes for its
instances (e.g. students take courses)
and then instances of this class may have
values for this assertional attrib ute
(e.g. John takes CSC374F a nd CSC334S).
Assertional attribute values are
assertions between the object and other
obj ects. They do not form part of the
definition of obj ects but are used for
incidental properties.

In the PSN for malism every object is
an instance of some class or relation.
Those classes whose instances are class0s
or r~l~tions are called metaclasses.
Metaclasses are very i mportant beca use
they define the attributes of t heir
instances (name ly the classes a nd
relations) which, in t urn, define the
attributes of all objects. The basic
me taclasses are "CLASS", "RELATION",
"PROGRAM", and "CONTEXT" whose instances
are the classes, relations, programs, and
contexts of the formalism respectively.
The attributes defined in metaclasses are
given values in classes or relations, thus
allowing classes to both have attribute
values (e.g. average age of students) and
define attributes for their instances
(e.g . a st ud ent's age) .

Classes and relations participate in
an ISA hierarchy which for ms a tree. An
instanc e (assertion) of a class (relation)
is also an instance (assertion) of that
class's (relation's) ISA ancestors.
Attribute definitions of both kinds are
inherited by ISA descendents because of
the subset property of the ISA hierarchy
mentioned above. These definitions may be
modified in ways that restrict the
possibilities allowed for instances of the
subclass.

82

The structural attribu t e values of a
class he lp d e fin e th e class. Thu s it
makes sense for its s ubclasses to inh e rit
these values. However, to allow fo r
flexibility in th e PSN formalis m th ese
inherited values may be OJerridd e n by th e
subclass. On th e oth e r hand asser tional
attribute values are not part of th e
class's or relation ' s definition a nd thu s
th e re is no reason to inherit th e m along
the ISA hi erarchy.

Thus the ISA hierarchy serves as an
abstraction mechanism, where ISA c hildr e n
are specializations of th e ir ISA pa r e nts .
Abstraction is also provid ed by th e
structural attributes wh e re the details o(
objects are hidd en in their structural
attribute values.

Programs form a large part of th e PSN
formalis m since they are used to define
the sema nti cs of c lasses and re l at ion s.
Programs are classes a nd thus th e y can
define structural attributes for th e ir
instances (processes) . These attribute s
are used as progr am variables by th e
processes. There are four structural
attributes d e fined in "PROGRAM" which a r e
used to defin e programs. Th ese a ll tak e
values which are program forms a nd are
defined in the formalis m. First, th e re is
the prerequisite which is a logical
expression which is exec uted wh e n a
process of the program is created a nd mu st
evaluate to "true" or the process will not
be executed and th e call which created it
will fail. Second, there is the body
which co nstitutes th e main actions or
calculations executed by processes of the
procedure. Third, there is the effect
which contains actio ns to be executed if
the execution of the body does not fail.
Fourth, there is the complaint which
contains actions or remedies to be taken
if the body fails.

Since programs are classes they
participate in the ISA hierarchy. This
means that programs inherit the four
structural attributes defined in "PROGRAM"
from their ISA parents. This aids in
constructing new programs especially for
use as programs attached to a class or
relation. Often the programs attached to
a subclass differ only in one part from
those programs attached to its ISA parent
a nd making them subprograms of the
parent's programs allows these changes to
be easily made.

Programs are divided into three basic
types. These are procedures, whose bodies
perform actions such as creating or
destroying objects; functions, whose
bodies return objects or sequences of
objects as value; and predicates, whose
bodies return "true", "false", or
"unknown" as value. These three types are
set up by having three subclasses of
"PROGRAM", namely "PROCEDURE", "FUNCTION",
and "PREDICATE" which contain the

necessary modifications to the definitions
in "PROGRAM".

Now the four programs attached to
classes and relations are just structural
attributes defined in "CLASS" and
"RELATION" respectively. Instantiators,
terminators, asserters, and erasers are
all procedures; generators and accessors
are functions; and · recognizers and
testers are predicates. This means that
the semantics of classes and relations
(except for a few basic programs) can be
defined, accessed, and modified in the
formalism.

Contexts form another large portion
of the PSN formalism. A context is a
special type of relation which is used to
associate indefinite objects with their
values. As mentioned above, contexts are
also used to create a context hierarchy
(as in [Sussman and McDermott 72] or
[Hendrix 75]) which controls the
visibility of objects and actions. If an
object is created or any other action is
performed this is only visible or
effective in the context in which it was
performed and its descendents in the
context hierarchy.

A context can give values to those
indefinite objects which are visible in
the context which it interprets, called
its structure. Furthermore, contexts have
a default which is another context and
objects which can be given values in the
context inherit values from this default
context. The structural attributes of a
class use this mechanism in the following
way: if "C" is a class then it will have
an attached context, called its part
context, where the objects which form its
structural attribute definitions are
created. If "C" is a subclass of another
class, "B", then its part context will be
a child of "B"'s part context in the
context hierarchy so the objects defined
in "B"'s part context are visible in "C"'s
part context.

Then an instance of "C", say "c",
will have a local context whose structure
is "C" 's partcontext. The structural
attribute values for "c" are just the
values in its local context. The default
for "c"'s local context is "C"'s part
context so "c" inherits defaults from "C".
Further, if "c" was a class or relation
and had a subclass or subrelation "d",
then "d" would have a local context whose
structure would be "C"'s structure and
whose default would be "c"'s local context
so that "d" would inherit "c"'s structural
attribute values. This is how inheritance
along the ISA hierarchy actually works in
the formalism.

In summary, the PSN formalism is an
object centred formalism based upon
semantic networks which uses procedural
attachment to define the semantics of

83

classes or relations. Since each class or
relation is ultimately completely
responsible for its own semantics, this
leads to an ACTOR [Hewitt 7 3] style
representation tempered by an inheritance
mechanism which makes it easier to
construct new objects and share
information.

4.0 THE EPSN FORMALISM

4.1 Hierarchies And Inheritance

The EPSN formalism extends the PSN
formalism in a number of piaces,
particularly by allowing the ISA hierarchy
to be a directed acyclic graph. Thus a
class in the EPSN formalism can be an ISA
child of two or more other, unrelated
classes.

The inheritance of structural
attributes along the ISA hierarchy is a
major part of the PSN formalism and the
generalization of the ISA hierarchy
produces several problems with respect to
this inheritance. The definition of a
structural attribute for a class is the
definition of an indefinite object (which
is akin to a variable) in a special
context associated with the class. As
shown in Figure 1 (where "sex" is a
structural attribute definition (SAD) for

a age+-~~~~C--~ ~~NUMBER

name-+-~~~~a'-'--~~~STRING

MALE

G;J
i

John

restrict >[sex=male]

~'John Smith'

. 1* Figure

* In the figures INSTANCE-OF relationships
are represented by single, unlabelled
arrows; ISA relationships are represented
by double, unlabelled arrows; and other
relationships or links are represented by
single, labelled arrows. Also rectangular
boxes enclose structural attribute
definitions of classes or objects defined
in a structure and irregular boxes enclose
the structural attributes of objects and
objects used in valuors.

. • l

. 1

"PERSON") such objects have an identifier,
(here "sex"); have an associated class
(h ere "SEX") which defines the valuis~the
attribute may have in instances of the
class; may have a default (here "male")
which is used in instances if no value is
given; and may have one or more
restrictions (as in the class "MALE" of
Figure l) which further restrict the
possible values in instances. It is
possible for ISA children (for example
"MALE") to modify the associated class or
default and to add ne w restrictions.

Now suppose a class is an ISA child
of two other classes (as "CHILD-TAXPAYER"
i n Figure 2 is an ISA child of both
"DEPENDENT-TAXPAYER" and "CHILD"). This
class should inherit SADs fr0m both of its
ISA parents without favouring either.
This works out fine for SADs present in
only one of the parents (such as
"net-income" which is present only in
"DEPENDENT-TAXPAYER"). In these classes
this SAD is inherited as is and may be
modified as outlined above.

TAXPAYER
{wife, ... }

age re-
str1.c [age>l 7]

net-
income...,.._a--~DOL~AR

AMOUNT

Figure 2

DEPENDENT

However, if the parent classes have
SADs that have the same identifier but are
not identical then problems arise. The
child class must inherit a SAD which is
some combination of the SADs in the
parents. For SADs with differing
restrictions this combination is easy
since it is natural to just further
restrict the possible values for the SAD
of the ISA child by accumulating the
restrictions. Thus the SAD "age" for
"CHILD-TAXPAYER" has two restrictions;
one restricting the age to be less than 21
and one restricting it to be greater than
17. As above, the ISA child may add new
restrictions.

84

For SADs with differing associated
classes much the same sort of solution is
required. For example, the SAD
"rel ationship" of "CHILD- TAXPAYER" should
have the associated class "{son,daughter)"
since this is the intersection of the
associated classes ({son,d aughter) and
{wife, husband, son ,daughter}) in its ISA
parents. However, most classes are not
sets (i.e. cannot be described by simply
listing their extension) and in these
cases some construct similar to
intersection must be used.

For this and other purposes the EPSN
formalism defines the meet of a set of
objects from an ISA hierarchy as that
object which is an ISA descendent of all
of the objects in the set and is an ISA
ancestor of all other objects with this
property. such classes are the greatest
(in the partially ordered set defined by
treating the ISA links as a cover
relation) class less than the classes
being combined and thus are th e ISA
hierarchy equivalent of meets in a
lattice. Since the meet is an ISA
descendent of the classes being combined
it inherits attributes from all of them.
However, this does not mean that a meet
automatically has as instances the
intersection of the instances of the
classes that form the meet.

In the EPSN formalism meets are given
names that consist of the names of the
classes forming the meet concatenated
together with '&'s separating them. Thus
in Figure 3 "DEPENDENT&TAXPAYER" is the
meet of "6EPENDENT" and "TAXPAYER" and
"CHILD&TAXPAYER" is the meet of "CHILD"
and "TAXPAYER". It is not necessary to
set up these meet classes beforehand;
they are created, if necessary, when
referenced by their name or needed for the
inheritance rules. This significantly
reduces the work required to create large
and deep ISA hierarchies.

DEPEnENT~ TAXPIT"R
CHILD DEPENDENT&TAXPAYER

~ILD&TAXPAY~

Figure 3

Thus the associated class of an ISA
child's SAD is the meet of the associated
classes of the SADs in its ISA parents.
Of course, the· ISA child may modify the
associated class to be an ISA descendent
of the inherited associated class thus

further restricting its possible values.

The situation for defaults is a bit
different. Suppose the defaults in the
ISA parents are objects that do not
participate in an ISA hierarchy (i.e. are
neither classes nor relations). In this
case there is no reasonable way of
producing a compromise default if the
defaults in the parents are not identical.
It seems that the only solution is not to
inherit any default at all. Thus, in
Figure 2, there is no default for
"relationship" in "CHILD-TAXPAYER" since
the defaults in its ISA parents are "son"
(in "DEPENDENT-TAXPAYER") and "daughter"
(in "CHILD") which are n0n-identical and
do not participate in an ISA hierarchy.
If a default is desired then a default can
be given in the ISA child (e.g. "son"
could be used . as the default in
"CHILD-TAXPAYER").

If the defaults in the ISA parents do
themselves participate in the ISA
hierarchy then there is a logical default
to be inherited by the ISA child. This is
the meet of the defaults in the parents.
This makes sense since the. meet is
analogous to the intersection of the
defaults and follows the general idea of
restricting the SADs in ISA children. If
this is not what was desired then it can
be changed to any other valid value.

so far the discussion has centred on
inheritance of SADs by subclasses of
classes. Instances of classes can also
inherit information; in particular, an
instance of a class inherits the SADs of
the class as structural attributes which
can be given values (SAVs), If no value
is given then the default of the SAD is
used as a value and if there is no default
then "unknown" is used, For example,
"John• in Figure 1 has SAV 'John Smith'
for his structural attribute "name",
inherits the default "male" for his •sex",
and has an "unknown" "age". It must be
noted that before an object can have a SAV
it must inherit the corresponding
structural attribute by virtue of being an
instance of a class that has a
corresponding SAD.

Now the instances of a class may
themselves be classes or relations and
participate in the ISA hierarchy. Since
the SAVs of an object constitute the major
portion of its definition they should be
inherited along the ISA hierarchy, This
inheritance can become very complicated
when the ISA hierarchy becomes
complicated. For example, consider Figure
4 where "RELATION", that class in the EPSN
formalism whose instances are relations is
partially defined. The instances of
"RELATION" have a "tester" structural
attribute whose value is a predicate which
determines if two objects are related by
the relation . "RELATION" gives a standard
default, "stdtester", for this structural

85

attribute. Also shown in Figure 4 is
"SYMMETRIC - RELATION", an ISA child of
"RELATION", whose instances are supposed
to be symmetric relations.
"SYMMETRIC-RELATION" accomplishes this by
changing the default for "tester " to
"symtester" which contains the testing
appropriate for symmetric relations.
"RELATION" also defines the structural
attributes "domain" and "rang e " which are
the domain and range of relations.

RELATION¢=:::=:=:===========sYMMETRIC

-=---,PREDICATE RELATI0N

t i t~tester

range symtester r • CL\S
HUSBAND=====~\============~}SPOUSE

PERSON~~~~--1-

Figure 4

This looks fairly straightforward;
instances of "RELATION" will be relations
and instances of "SYMMETRIC-RELATION" will
be symmetric relations. However, consider
the situation for the relations "SPOUSE"
and "HUSBAND" as shown in Figure 4.
"SPOUSE" is a symmetric relation and
"HUSBAND• is a non-symmetric sub-relation
of "SPOUSE". Since "HUSBAND" is a
sub-relation of •sPOUSE" it should inherit
"SPOUSE"'s •domain" and "range". However,
"HUSBAND" is not a symmetric relation so
it should not inherit "SPOUSE"'s "tester"
but should instead inherit "stdtester"
from "RELATION". The problem is to devise
an inheritance scheme which will perform
correctly in this and other complicated
cases,

The EPSN formalism solves this
problem by using two SAVs. The
inheritable SAV is derived in the same
manner as the defaults of SADs. It is
specified by the "value" links in the
figures, 1s inherited along the ISA
hierarchy in exactly the same way as the
defaults for SADs, and can be modified by
"value" links in the ISA descendents in
the same fashion. Thus "SPOUSE" has no
inheritable SAV for "tester" and thus
•HUSBAND" also has no inheritable SAV for
"tester" whereas "SPOUSE" has the
inheritable SAV "PERSON" for both "domain"
and "range" and these are inherited by
"HUSBAND" so that it has the correct
domain and range.

I

- 1

The actual SAV is the SAV that is
used in the object. If there is no
inheritable SAV (as determined above) in
an object for one of its structural
attributes then the actual SAV in that
object becomes the default from the class
of which the object is an instance or
becomes "unknown" if there is no such
default. Thus "SPOUSE" has as actual SAV
for "tester" the symmetric tester
"symtester" from "SYMMETRIC-RELATION" and
thus "HUSBAND" has the regular tester
"stdtester" from "RELATION", as required.

If there is an inheritable SAV for
the structural attribute and this SAV
participates in the ISA hierarchy then the
actual SAV is the meet of the inheritable
SAV and the default for the structural
attribute. This rule allows modifications
to be made to "symtester" in "SPOUSE" by
putting the changes into its lnheritable
SAV and then in "HUSBAND" having these
changes inherited and applied to
"stdtester". This should be possible
since "stdtester" and "symtester" should
be similar programs. For details on how
this could work out see the section on
programs.

Finally, if there is an inheritable
SAV which does not participate in an ISA
hierarchy then this becomes the actual SAV
no matter what the default is. This is
the case for objects such as numbers or
other simple objects.

The idea behind these complicated
inheritance rules is not only to solve the
problem given above but also to make it
possible to construct very complicated ISA
hierarchies with a significant amount of
interaction. An EPSN implementation could
presumably take care of such complex
processing automatically, leaving the user
with a relatively simple and natural task.

4.2 Structures And Valuors

The EPSN formalism redefines the
contexts of the PSN formalism as two
separate concepts. In the EPSN formalism
structures are used to support the
visibility of ot _. ?cts and valuors are used
to give values to indefinite obJects. For
a valuor to be able to give a value to a n
ind e finite object this object must be
defined in the structure which is linked
to the valuor via an "interpret" link.

For example, "Structure-!" in Figure
5 defines two objects, "age" and "John".
Because "Valuor-1" is linked to
"Structure-!" via an "interpret" link it
can give a value to the indefinite object
"age" (and does so, giving it the value
"29") •

86

!tructure-1-.~~~~~~~- Structure-2

John
PERSON SEX:

I
male

Figure 5

Both valuors and structures
participate in an ISA hierarchy . These
hierarchies replace the context hierarchy
of the PSN formalism, and inheritance of
definitions of objects and values for
objects along them is performed in e xactly
the same manner as for SADs and SAVs,
respectively. Thus "Valuor-2" in Figure
5, since it interprets a structur e which
is an ISA descendent of "Structure- !", can
give a value to "age". Further, since it
as an ISA descendent of "Valuor-1", it
inherits the value "29" from "Valuor-1".

In fact, structures and valuors are
used to formally implement the inheritance
of SADs and SAVs. (So it is actually the
case that inheritance of SADs and SAVs is
defined in terms of inheritance in
structures and valuors and not vice
versa.) The main reason for separating the
two uses of contexts is to support this
inheritance in a cleaner manner. Even
though contexts are split into two parts
when dealing with classes, if a full PSN
context is required it can be created
since a context is defined to be a
structure plus a valuor that interprets
the structure.

4.3 Programs

There are also important extensions
and modifications in the EPSN formalism to
the programs of the PSN formalism.
Programs are basic to both formalisms
since they are used to define the
semantics of classes and relations. One
of the modifications to programs in the
EPSN formalism comes as a result of a
restriction on indefinite objects. In the
EPSN formalism the value of an indefinite
object may not be -changed in a valuor once
it has been given some~value in that
valuor. Since indefinite objects are used
as program variables and processes each
have a valuor to hold their values this
means that program variables can only be

given one value which may not be later
changed. This may seem to be a serious
restriction but all that it means is that
EPSN programs have to be written in a
style closely akin to functional or
applicative programming [Tennant 76]. In
this style binding variables to values is
very closely associated with flow of
control. A style similar to that
necessitated in the EPSN formalism is
advocated in [Levesque 77b].

However, the most significant
modification to programs is the change in
the method of constructing forms (the
constructions which make up the four parts
which comprise a program). In the PSN
formalism these four forms are each a
single block of code which can be only
inherited by subprograms without
modification. Thus, although the division
of programs into four p~rts allows
inheritance of each part separately, to
modify one of these parts usually requires
that the entire part be rewritten.

In the EPSN formalism a form is a
context in which several blocks of code
are defined. This results in programs
similar to those in [Mylopoulos et al 78].
For example, "FORM-7" in Figure 6 contains
three blocks of code identified by
"first", "second", and "third". Note that
"second" is special in that it is an ,
indefinite object. To execute this form
the three blocks of code are executed in
the order determined by the "subsequently"
links (which need not form a total order).

~--- - I

FORM-7

first
[John:= new PERSON)

1subsequently STATEMENT

second==-------+-'==~[John$age<-22)

!subsequently
third

[CLASSES:John->CSC374)

FO -8
valu~

second-- - -----+--- ~,[John$age< - 25]

third

tsubsequently
fourth

CLASSES:John->CSC492)

Figure 6

87

In the case of "FORM- 7", which is a
statement (i.e. a form that performs
actions), this is all that is required to
specify how to execute the form. In the
case of conjectures (forms that return
truth values) the value of the form is the
result of 'anding' together the values of
the enclosed blocks of code. Again the
order of execution, since it is possible
for the blocks of code to have
side-effects, is specified by
"subsequently" links. In the case of
expressions (forms that return objects or
sequences of objects) the enclosed code
blocks each contribute one object to the
sequence, the order being determined by
the "subsequently" links.

This division allows more complex
inheritance of program parts to take
place. The inheritance is precisely that
described above for inheriting objects
defined in contexts and values for them
along the ISA hierarchy. Thus "FORM-8" in
Figure 6 has four parts. The parts with
identifiers "first" and "second" are
inherited without change from "FORM-7".
The part with identifier "second" is also
inherited from "FORM-7" but it is an
indefinite object and has been given a new
value in "FORM-8" (namely
"[John$age< - 25]"). The part with
identifier "fourth" is created in "FORM- 8"
and not inherited. "FORM- 8" also has
three "subsequently" links, two inherited
from "FORM- 7" and one created in "FORM- 8"~
so that its parts will be executed in the
order "first", "second", "third", and
"fourth".

This inheritance scheme allows for
easy modification and addition to forms
and thus allows easy construction of
slight modifications of programs. These
slightly modified programs are especially
useful in constructing the programs that
define the semantics of classes and
relations.

4.4 Cons istency

One of the major problems in the PSN
formalism is the possibility of creating a
class or relation and designing the four
associated programs that define its
semantics in such a way that the class or
relation is inconsistent. For example, it
is possible to write instantiator and
recognizer programs for a class in such a
way that the recognizer will not recognize
objects that were supposedly made
instances of the class by the instantiator
as instances of the class.

The EPSN formalism partially
alleviates this problem by including
s everal metaclasses that define particular
types of consistent classes. The two that
are the most prominent are stored classes,
classes that explicitly store data

. . I

allowing them to recognize as instances
those objects which have been instantiated
into the class or are instances of the
class's ISA sons, and intensional classes,
classes that have as instances those
objects which belong to the class's ISA
parent and also satisfy some boolean
condition. A class that belongs in either
of these types of classes can be
constructed very easily and with no chance
of creating inconsistencies. A stored
class is just made an instance of the
metaclass "STORED-CLASS", placed into the
ISA hierarchy, and later given instances
while an intensional class is made an
instance of the me tac lass
"INTENSIONAL-CLASS", placed into the ISA
hierarchy, and given a boolean condition
which specifies its instances.

However, many classes do not fall
into either of these categories and are
therefore not guaranteed consistent in ihe
EPSN formalism. Nonetheless, most of
these are modifications of the above
categories and thus can be easily
constructed with little possibility of
creating inconsistencies.

Another possible cause of problems in
the semantics of classes and relations
occurs when an ISA descendent's associated
programs do not correspond with those in
the ISA ancestor. For example, if one
piece of the instantiator has to be
changed then, in the PSN formalism, a
large chunk of the code may have to be
rewritten and this may introduce an
inconsistency. The problem is alleviated
in the EPSN formalism (but certainly not
eliminated) by allowing such changes in
parts of programs to be easily and
naturally specified, thus reducing the
possibilities of errors and . resultant
inconsistencies.

5.0 CONCLUSION

The EPSN formalism is an attempt to
solve some of the problems in the PSN
formalism, primarily to increase its
powers in the organization of knowledge .
To this extent it appears to be fairly
successful. It contains solutions to
several problems of the PSN formalism.
The ideas present in these solutions can
also be used to advantage in the
organization of knowledge in other
formalisms based upon semantic networks,
especially those which attempt to include
procedures in the formalism and use them.

The main contribution of the EPSN
formalism is its generalization of the ISA
hierarchy of the PSN formalism and its
specification of inheritance rules for
structural attribute definitions and
values in this generalized hierarchy.
This makes it much easier to create large,
complex hierarchies and to create

88

modification s of existing objects in t he
hierarchy. The idea of creating meets in
such hierarchies further aids in th e
creation of complicated hierarchies by
allowing the user to specify only th e
basic classes in the hierarchy and hav e
the dependent classes available when
needed.

Programs have been modified in the
EPSN formalism so that a program is
composed of four parts (as in th e PSN
formalism) which are then each composed of
several pieces that are executed in a
specified order. These pieces are
inherited by ISA children of the program
and more pieces can be added and c e rtain
pieces may be changed in the ISA child.
This allows easier manipulation of
programs and much easier organization of
programs in hierarchies so that the
definition of semantics via program s is
easier for complex ISA hierarchies than
was the case in the PSN formalism.
Programs are defined within the formalism
and thus the interpreter can be specified
almost entirely within the formalism (as
in LISP or the PSN formalism).

However, there are some areas that
should receive further research. The area
of consistency in the definition of the
semantics of classes and relations is not
solved adequately. Although th e EPSN
formalism does not allow exceptions in any
of its inheritance rules, often a
controlled violation of these rules is
desired and an investigation of how to
allow this is definitely desirable. Also,
an actual implementation of the EPSN
formalism, probably in LISP, would be a
useful task and has already been started
on a tentative basis.

In spite of these unsolved problems,
the EPSN formalism has made several
advances especially in the organization of
knowledge. And, because the formalism,
like LISP, allows extensions and revisions
to its basics, it can be easily extended
or amended to include the solutions
developed in subsequent work.

6.0 ACKNOWLEDGEMENTS

I would like to thank Professors John
Mylopoulos and Gord Mccalla for their
efforts in the supervision of this work.
Hector Levesque and Professor Ray Perrault
also provided valuable input into several
sections of the investigation. The
National Research Council of Canada
provided generous support via a 1967
Science Scholarship.

7.0 BIBLIOGRAPHY

[Hendrix 75) Hendrix, G. "Expanding the
utility of semantic networks through
partitioning". Proceedings 4th
IJCAI, Tbilisi, U. S.S. R., 1975.

[Hewitt 731 Hewitt,
formalism
Intelligence".
IJCAI, Stanford

c. "A universal ACTOR
for Artificial

Proceedi1!9.!! 3rd
University, 1973.

[Levesque 7 7 a]
Procedural
Networks".
Department
university

Levesque, H.
Approach to

Technical Report
of Computer

of Toronto, 1977.

J • "A
Semantic
No. 105,
Science,

[Levesque 77b] Levesque, H. J.
"Functional
Department
University

Programming in LISP".
of Computer Science,

of Toronto, 1977.

[Levesque and Mylopoulos 78) Levesque,
H.J. and J. Mylopoulos. "A
Procedural semantics for Semantic
Networks". AI Memo 78 - 1, Department
of Computer Science, University of
Toronto, 1978.

[Mylopoulos et al 78] Mylopoulos, J.,
P. Bernstein, and H. K. T. Wong. "A
Preliminary Specification of TAXIS :
A Language for Designing Interactive
Information Systems". Technical
Report CCA- 78-02, Computer
Corporation of America, Cambridge,
Mass., 1978.

Goldstein 77)
I. P. Goldstein.

[Roberts and
B. P. and
Primer".
1977.

AI Lab Memo 408,

Roberts,
"The FRL

M. I. T .,

[Schneider 78) Schneider, P. F.
of Knowledge in a
Semantic Network

Technical Report 115,
of Computer Science,

of Toronto, 1978.

"Organization
Procedural
Formalism".
Department
University

[Sussman and
G. J. and
PLANNER to
approach".
41, Part 2,

McDermott 72) Sussman,
D. V. McDermott. "From

CONNIVER: A genetic
Proceedin~ FJCC, Vol.

1972.

[Tennant 76] Tennant, R. D. "The
denotational semantics of programming
languages". Communications of the
ACM, vol . 19, No. 8, 1976.

[Winograd and Bobrow 76] Winograd, T. and
D. G. Bobrow. "An Overview of KRL, a
Knowledge Representation Language".
Technical Report CSL-76-4, Xerox Palo
Alto Research Center, 1976.

89

ON STRUCTURING A FIRST ORDER DATA BASE

Raymond Reiter

Department of Computer Science
University of British Columbia

Vancouver , B.C. V6T 1W5

ABSTRACT

This paper is concerned with how a first order
data base might be structured in order to guarantee
finite computations at query evaluation time. It
turns out that this question is intimately connected
with the following: In t he design of a ctata base,
which knowledge should be represented intensionally,
and which extensionally? This paper provides a
criterion for extensional representations which, if
fulfilled, assures finite computations during the
evaluation of queries.

The paper also explores ways of proving that
all queries will yield finite computations. This
leads to an appropriate notion of proving the cor
rectness of a data base.

1. INTRODUCTION

The concern of this paper is with deductive
question -answering over first order data bases, and
how such data bases might be structured in order to
provide efficient evaluation of queries. There
appear to be two distinct notions of "structuring "
current in AI:

1. Structuring as indexing. For example, a data
base is so structured if one can readily access
all relevant information about block33 (per
haps with respect to some context). Semantic
nets typically provide for this kind of struc
turing.

2. Structuring as the appropriate choice of re
lations with which to model some domain of
interest. For example, if the relations
chosen form a hierarchy of some sort, then
this hierarchical structure can be exploited
to reduce redundancy in the representation e.g.
relations lower down in the hierarchy will typ
ically inherit all properties of those above
them. IS-A hierarchies are a class ic example
of this kind of structuring. Similarly, for
"primitivi sts" like Schank [Schank 1973] the
choice of a particular set of primitives will

90

impose a certain structure on the data base.

There is a third notion of structure which
appears not to have been articulated within the AI
community, and which this paper explores. This
notion concerns the possibility of infinite search
paths during deductive question-answering . For
a variety of reasons, such infinite paths are un
desirable :

1. In those cases where all answers to a query
are to be returned, the entire proof tree must
be searched [Reiter 1977, 1978a]

2. Even when only one answer suffices, the entire
proof tree must be searched in those cases
where a query has no answers.

In this paper, we adopt as a data base structuring
principle that no infinite search paths be allowed
to arise.

A different notion of structuring concerns the
distinction between intensional and extensional
representations of facts in a data base. Loosely
speaking, an extensional fact is something quite
specific , I ike "Blockl supports block2" while an
intensional fact has some generality to it, like
"All men are 1110rtal 11

, or "Every supplier of parts
supplies all their subparts ". This distinction is
by no means limited to first order representations.
Under the so-ca 11 ed "procedura l representation of
knowledge", procedures correspond to intensional
facts. Once this distinction between intensional
and extensional representations is made , a natural
question arises when designing a data base for a
given domain: Which information should be repre
sented intensionally, and which extensionally? As
we shall see, there is an intimate relationship be-

·J

tween thi s structuring quest ion and the is s ue of
structuring a data base so that infinite deductive
paths cannot arise. Specifically, provided that
certain sub-extensions of suitably designated re
lations are extensionally represented, all deductive
paths will be finite.

Finally, we shall see that there is an appro
priate notion of proving the correctness of a data
base, where "correct" is taken to mean "a 11 deduc
tive paths will be finite". What this involves is
proving that certain recursive intensional facts,
which might conceivably lead to infinite deductive
searches, actually yield finite search trees.

2. FORMAL PRELIMINARIES

We shall be dealing with a first order language
having the usual logical symbols (quantifiers, prop
ositional connectives), predicate signs, constant
signs, but no function signs. The formulae of in
terest are called twffs (typed well formed formulae)
which are just like ordinary first order formulae
except that all variables are typed . For example,
in an inventory domain, such a twff might be

(x/MANUFACTURER) (y /PART) (z/PART) MANUFACTURES (x ,y)
A SUBPART(z,y) J SUPPLIES(x,zJ (2. 1)

i.e. Every manufacturer of a part supplies all its
subparts. The restricted universa l quantifier
(y/PART) may be read "For every y which is a part".
The restrictions MANUFACTURER and PART are called
~. and are distinguished monadic predicates . If
Tis such a type, then (X/TJW is an abbreviation for
(x)T(x) J W. We shal I also require the notion of a
restricted existential quantifier (Ex/T) which may
be read "there is an x in T11

• (Ex/T)W is an abbre
viation for (Ex)T(X) AW. We denote by ITI the set
of all constants which satisfy the type T. Thus,
IPARTI might be {gadgetl, widget3, bolt49, ... }. In
general, a twff has the form (q 1x1/T 1) ... (qnxn/Tn)W

forn~Owhere (qixi/TiJ is \xi/Ti) or (Exi/Ti)' W
is any quantifier- free ordinary first order formula
with free variables x1, ... ,xn (containing no func
tion signs) and T1, ... ,Tn are types. Notice that
twffs may not contain function signs. They may, and
usually will, contain constant signs.

A data base is any set of universally quanti
fied twffs . If DB is a data base , let EDB be the
set of ground literals (literals with no variables)

91

of DB . EDB will be called the extensional data
base . The intensional data base is defined to be
IDB= DB - EDB. Intuitively, the EDB is a set of
specific facts like "John Doe teaches Calculus 103",
while the IDB is a set of general facts like "All
widgets are manufactured by Foobar Inc." Notice
that only universally quantified twffs are per
mitted in a data base. We preclude twffs involving
existentially quantified variables since such vari
ables lead to the introduction of function signs
(Skolem functions) and it is not clear how to genet"
alize some of the results of this paper to take in
to account arbitrary functional terms. Examples of
data base twffs are (2.1) above, as well as:

"All widgets are manufactured by Foobar Inc."
(x/ WIDGl:T) MANUFA CT UR ES (fooba r, x J
"If block x supports blocky, then y does not sup-

port x."
(xy/BLOCK)SUPPORTS(x,y) J ~s uPPORTS(y,xJ
"Acme supplies part33 . "
SUPPLIES(acme,part33)
"Block A supports block B."
SUPPORTS(A,BJ

Of these, (2.1) and the first two twffs above are
in the IDB. The last two are EDB twffs.

A~ is any existentially quantified twff,
for example

"Who supplies widgets?"
(Ex/SUPPLIER)(Ey/WIDGET)SUPPLIES(x,y)
"Which block supports block A?"
(Ex/BLOCKJSUPPORTS(x,A)
"Who manufactures both part33 and blue widgets?"
(Ex/MANUFACTURER) (Ey/lH DGET) MANUFACTURES (x ,part33)

A MANUFACTURES(x,y) A BLUE(y)

Although we treat only existential queries in this
paper, it is possible, under suitable conditions,
to "reduce" the evaluation of arbitrary queries
(i .e . those involving both existential and univer
sa l quantifiers) to the evaluation of existential
queries [Reiter 1977] so there is no loss in gen
erality in assuming only existential queries.

Although this paper is not concerned with
techniques for query evaluation, there are a few
observations which must be made:

1. Typically, a query is answered by finding a
proof of it using the data base as premises.

The resulting instances of one or more of the

existentially quantified variables of the query

provide an answer to the query.

2. In general, the data ba se will be so large that

these proofs must all be top down, correspond

ing to some form of backward chaining or con

sequent mode of reasoning, beginning with the

given query. (In theorem proving jargon, this

corresponds to linear deduction with a clause

of the query as top clause.) Now a serious

problem with such top down reasoning is that

certain intensions can lead to infinite deduc

tion paths . For example, c. transitive rela

tion like subpart:

(xyz/PART)SUBPART(x,y) A SUBPART(y ,z) (2.2)

:i SUBPART(x,z)

will lead to such an infinite deduction path

for any goal of the form SUBPART(a,b) whenever

a i s not a subpart of b.

Our goal in the next section is to characterize

those data bases for which such infinite deductive

searches might arise, with the ultimate objective of

structuring a data base in such a way as to guaran

tee finite deductive paths.

3. RECURSIVE DATA BASES

Notice that the intension (2.2), which can lead

to an infinite deductive search, has the clausal form1

r
1

v L2 v c1, r2 v L3 v c2 , r3 v L4 v c3, ... , (3 .l)

Ln v q v en
for 1 i teral s Li ,L1 such that Li o = L1o for some
typed unifier2 a, i =l, ... , n. Following [Lewis 1975],

we call such a sequence of clauses a cycle. We shall

say that the IDB is recursive iff it contains a

cycle.

To see why cycles can lead to infinite deduc

tion trees, consider an attempted refutation of the

literal L1. By an appropriate seq uence of resolu-

1 When twffs are converted to clausal form their
quantifiers are removed. Si nce all information
about variable types is contained in the quanti
fiers, we assume that with each variable of a
clause is associated its type . If x is a clausal
variable , we shall denote its type by T(X).

2 Since terms (vari ables and constants) have types
associated with them, the ususa l uni fication al
gorithm [Robinson 1965] must be modifi ed to en
force type consistency . For details see [Reiter
1977].

92

tion operations on the clauses of (3.1) we can de

duce a clause

(C 1 v c2 v ••• v en v L1Jµ

whereµ is a substitution with o as an instance of

µ. Hence L1µ unifies with L1 and we might cycle

through (3.lJ again with no assurance that this

cycling cannot continue indefinitely.

It i s intuitively clear that if a set of

clauses is cycle - free, then no infinite deductions

can arise . In [Lewis 1975] just s uch a result i s

proved . Now in general we cannot expect the IDB to

be cycle - free. In what follows, we shall propose

techniques for neutra li zi ng the infinite recursive

computations resulting from cycles in the IDB.

4. EXTENSIONAL COMPLETENESS AND RECURSION REMOVAL

In this section we propose a condition which,

if satisfied by an appropriate literal of a cycle,

has the effect of cutting the recursive deductive

searches which would otherwise obtain from that

cycle .

4.1 Extens ionall y Complete Li tera l s

Suppose L(xJ with free variabl es x=x 1, . . . ,xn

is a literal of clause C. L(x) is sai d to be ex

tensionally complete with respect to C iff for

every tuple of constants c E !T (x1)1 X ... x IT(xnJI,

either L(c J E EDB or L(c J E EDIL Intuitively, if

L(x) i s extensionally complete with respect to C,

then C can contain no information about L(x) , since

all s uch information is present in the EDB. At

best, C specifies new information about some other

literal of C in terms of the complete information

that we already have about L(x). Thus, we can ex

pect that in a resolution proof it is redundant

ever to resolve upon L(x) except with a unit of the

EDB. The following result confirms this intuition

for linear resolution proofs [Loveland 1970], which

are most commonly used in deductive question

answering. The reader is assumed familiar with the

literature on resolution theorem proving . If Q is

a query, denote by Q the set of clauses of the

negation of Q.

Theorem 4 .1

Suppose that a data base DB i s sa ti sfiable,

and that DB u Q is unsatisfiable. Then there is a

·· I

I

(typed) linear refutation 1 of DB U Qwith top clause
in Q with the property that if a clause C E IDB is
used as a far parent in this refutation, and if
L E C is extensionally complete with respect to C,
then Lis not the literal of C resolved upon. More
over, if L' is a descendant of Lin this deduction,
then the only resolution operation in which L' is
the literal resolved upon is one in which L' is re

solved away against a unit of the EDB.

Proof:

Let S = DB u Q and let SG be the set of ground in
stances of the clauses of S over the Herbrand uni
verse (which consists only of the constant signs of
the data base s ince no function signs are permitted)
where each such ground instance is the result of
substituting constant signs for variables consis
tent with the types of these variables. Clearly,

SG is unsatisfiable since DB u Q is. Now let LG be

obtained from SG by deleting from SG each non EDB
clause subsumed by a unit of EDB. LG is unsatisfi
able and since DB is satisfiable, there i s a linear

refutation D from LG with top clause a ground in
stance of a clause of Q. Now suppose C E IDB and C
contains a literal L which is extensionally complete
with respect to C. Then if CG is a ground instance
of C and LG the corresponding ground instance of L,

either LG E EDB or LG E EDB. By the construction

of LG' it follows that CG E LG iff LG E EDB. More
over, no other clause of LG other than LG itself
can contain LG. Hence, in the linear deduction D

from LG' CG can serve as far parent only if LG is
not the literal of CG resolved upon . This estab
lishes the first claim of the theorem in the ground

case. Now if CG serves as a far parent, then LG
will occur in the resolvent so formed. Since no

other clause of LG other than LG itself can con
tain LG, it.follows that the only way to resolve
upon LG in the rest of the deduction is by resolv
ing it against LG E EDB. This establishes the

1 Since all variables are typed, the usual theory of
resolution theorem proving must be modified to ac
commodate typed unification (Footnote 2 ,secti on 3).
Details for a restricted form of linear resolution
may be found in [Reiter 1977l. It should be noted
that the proof of Theorem 4.1 requires the",
completeness assumption" of [Reiter 1977] , namely,
for all types 1 and constants c, one of ,(c} or
T(c) holds i.e. c is known to satisfy or fail to
satisfy type 1.

93

second claim of the theorem in the ground case.
The general case follows by a suitable lifting argu

ment.

informally, Theorem 4.1 says that there are

top down proofs of a query in which extensionally
complete literals need only be resolved against the
EDB. lheorem 4. 1 can be proved for quite restric

tive linear strategies [Reiter 1977].

4.2 Extensionally Normalized IDBs

Suppose that the IDB contains a cycle of the
form (3.1). Suppose further that any one of the

literals Li' Li i=l, ... ,n i s extensionally complete
with respect to t he clause in which it occurs. Then
by Theorem 4.1 neither that literal nor any of its
descendants in a linear deduction need ever be re
solved upon except with a literal of the EDB. This
means that the recursive chain of resolution opera

tions which, for this cycle, might lead to an infin

ite deduction tree ha s been cut'.

We shall say that an IDB is extensionally nor
mali zed iff for every cycle of the form (3.1) it is
the case that one of the literals[., L'. i=l, .. . ,n

l l

is extensionally complete with respect to the clause
in which it occurs. We can summarize our observa

tions thus far:
If the IDB is extensionally normalized, then no in
finite linear deduction trees can arise, provided
extensionally complete literals are resolved on ly
against units of the EDB.

Notice that this result deals only with linear
deductions which use only the clauses of IDB . It
does not necessarily hold for the clauses of IDB u ~
since IDB u Q may not be extensionally normalized

even when IDB is.

Example 4.1

IDB: (x/T}P(x) v R(xJ
Q = (Ex/,)P{ x) A R\x)
Then IDB is extensionally normalized, but
IDB U Q = {{x/T)P(xJ v R(x), (x/T)P(x) v R\x}}

which i s not extensionally normalized.

Theorem 4.2

If IDB is extensionally normali zed, and query Q has

the form (Ex 1!-r 1) ... (E x/ 1nJLfor some literal L, then
no infinite linear deductions can arise in evaluat
ing Q provided extensionally complete literals are

resolved only against units of the EDB.

Proof:

Q consists of a unit clause[. Since the result of

adding a unit clause to an extensionally normalized

set of clauses is still such a set, IDB u Q is ex
tensionally normalized .

For the next result, we shall require the

notion of query evaluation under the closed world
assumption [Clark 19/8, Reiter 1978b]. Under the

closed world assumption, certain answers are ad

mitted as a result of failure to find a proof.

Specifically, if no proof of a ;-iositive ground lit
eral exists, then the negation of that literal is

assumed true. This can be viewed as e1uivalent to
implicitly augmenting the given data base by all

such negated literals. In contrast, the open world

assumption corresponds to the usual first order ap

proach to query evaluation e.g. [Minker 1978]: Given

a data base DB and a query Q, the only answers to Q
are those which obtain from proofs of Q given DB as

premises. Under the open world assumption no sig

nificance is attached to failure to find a proof .

The distinction is closely related to that between
logical negation and the "negation" operator of
procedural languages for artificial intelligence

e.g. PLANNER [Hewitt 1972].

_Under fairly general conditions [Reiter l978bJ
closed world data bases need explicitly represent

only positive facts. Negative facts are not repre

sented, but are inferred, when required , by de

fault. For many domains of application, closed

world query evaluation is almost mandatory, since

the number of negative facts in overwhelmingly large

- too large to be explicitly represented. For ex

ample, in a data base for an airline flight schedule,

all flights and the cities which they connect will
be explicitly represented. Flights and the cities

which they do not connect will not be so represented.
Instead, failure to find e.g. an entry indicating

that Air Canada flight 103 connects Vancouver with
New York will permit the inference that it does not .

An atomic query has the form (!:x 1/T1) . . . (Exn/Tn)L
where Lis a positive literal. The basic result we

require about closed world query evaluation is the
following [Reiter 1978b]:

An arbitrary query Q can be evaluated under the

closed world assumption by decomposing it into atomic

94

queries, each of which is evaluated on the given

data base under the open world assumption.

This result, when coupled with Theorem 4. 2 yields
the following :

Corollary 4.3

If the IDB is extensionally normalized, Q is any
query, and query evaluation is in closed world mode,

then no infinite linear deductions can arise in eval

uating Q provided extensionally complete literals

are re solved only against units of the EDB .

Corollary 4.3 completely eliminates any concern

about infinite computations during query evaluation

for closed world data bases, provided the IDB is ex

tensionally normalized. For open world query eval

uation this is not the case, except for one literal

queries in which case Theorem 4.2 provides the nec
essary assurance . In general, then, for open worlds

and arbitrary queries, extensionally normalized IDBs

do not guarantee finite computations. Nevertheless,

it is clear that such IDBs reduce the possibility of

infinite computations and hence provide a valuable

heuristic for open world deductive question-answering.

5. STRUCTURING A DATA BASE: INTENSIONS VS. EXTENSIONS

In principle , at least for some data bases,
there is no need for an IDB. All information could

be stored in the EDB. What an IDB provides is a

space saving mechanism: information which might

have been explicitly stored in the EDB is instead

implicitly contained in the IDB and must be re

trieved by deduction. In general, one would want

an intensional representation of certain facts only

when the corresponding extensional representation

would be unfeasibly large . What we have here is a

classical space- time computational trade-off, where
by the more information one stores in the EDB the

less time, on the average, one requires to answer

queries. There are two extremes on this space-time
(or better, extension- intension) spectrum. At one

extreme, all information is represented extension
ally . At the other, a minimal extension is main
tained and most information is represented inten

sionally . In general, one pays a high price for

this latter extreme despite its minimal space re
quirements since one must then expect a recursive
IDB with the attendant infinite computations we

have come to expect from such data bases. What

seems to be required is an appropriate balance be-

I

tween both extremes in which there is an optimal
division of the information content of the data
base into extensional and intensional components.
We believe that the concept of extensional comp
pleteness, when exploited to cut cycles in the IDB
(Section 4.2), provides a handle on this optimal
extensional vs . intensional division of information.
Specifically, we propose to represent enough infor
mation extensionally so as to render the IDB ex
tensionally normali zed.

In order to fix tnese ideas, we shall consider
the process ot designing a data base. At some poin t
one must choose a set of relations wnicn are to rep
resent the relationships among the individuals in
the domain being modeled. For example, if the do
main 1s some form of inventory, then the indivi~uals
of the domain wi 11 be parts, suppliers, manufactur
ers, etc. and relations like

PART(x} - xis a part
MANUFACTURER(x} - xis a manufacturer
SUPPLIES{x,y) - supplier x supplies party
SUBPART(x,yJ - part xis a sub-part of party
etc.

are likely to be of concern, and will all be members
of a presumably larger fixed set of relations which
are all deemed to be relevant to the class of quer
ies which may be posed for any inventory domain.
The next step in the design process is to determine,
and ap~ropriately represent, the semantics of the
domain i.e. the relationships which hold among the
relations like PART, SUPPLIES, etc. Thus, the fact
that the relation SUBPART is transitive is part of
the semantics of the inventory domain and we repre
sent this by

{xyz/PART)SUBPART(x,y) A SUBPARl(y,z)
=> SUBPARTtx,z)

(5. 1)

The following might also reflect the semantics of a
particular inventory domain:

"Every manufacturer of a part suppl ,es all its
sub-parts"

{x/MANUFACTURER)(yz/PART)MANUFACTURES(x,y) (5.2)
A SUBPART{z,y) => SUPPL!ES(x,z)

"Acme manufactures all parts it supplies."
(x/PARTJ SUPPLIES(A,x) => MANUFACIURES(A,xJ (5.3)

When all such semantic properties of the domain have
been determined, we have a candidate IDB. The ques-

95

tion now arises: What information do we represent
in the EDB? While we have no genera l answer to
this question, we can provide a guideline based
upon the results of Section 4.2 i.e. we want to rep
resent eno ugh information extensionally so that the
IDB is extensionally normalized. This involves the
following steps :

1. Determine the cycles of the IDB, a decidable

problem.
2. For each such cycle, choose a literal L which,

if it were extensionally complete with respect
to its clause, would cut the cycle.

3. Suppose L chosen in 2. is a literal in the
predicate sign P. Represent extens ionally as
much of P's extension as is required to render
L extensionally complete with respect to its
clause in the cycle.

To see how this structuring principle might be
applied in practice, consider first the intensions

(5.2) and (5 .3) above. These form a cycle which
can be cut in any of four different ways, namely by
extensionally representing the relation
MANUFACTURES{x,y) and its negation if the data base
is open world) for all manufacturers x and parts
y, or by extensionally representing SUPPLIES{x,z)
etc . The optimal choice would be to make
SUPPLIES(A,x) extensionally complete with respect
to (5.3) i.e. extensionally represent the relation
SUPPLIES (A ,x) - all parts supplied by Acme (together
with parts not supplied by Acme if the data base is
open world).

The intension (5.1) forms a cycle by itself.
To cut it, we must extensionally represent the re
lation SUBPART(x,y) for parts x and y, in which
case (5.1) becomes redundant since then each of its
literals will be extensionally complete with re
spect to {5.1) . Of course, one should not take too
literally the need to represent the full extension
of the subpart relation. In actual fact, it is
sufficient to represent a "minimal" extension and
to have available procedures which, given parts p1,
and p2, can decide whether or not SUBPART(p 1,p2}
holds . For example, if SUBPART{p.,p. 1) holds,

1 1+
i=l , ... ,n-1, then it is sufficient to extensionally
represent these n-1 facts. There is no need to ex
plicitly represent, say, the fact SUBPART(p1,pn)
since one can easily define a procedure to deduce

this from the facts explicitly s tored . Moreover,
there is no commitment to any particular exten
sional representation for the subpart relation.
Certainly, it need not be as a set of literals, or
as an array . More likely, some sort of tree

structured representation would be best. In this
conne'Ction, notice that the subpart relation has
additional properties to simple transitivity. It

is asymmetric:

(xy/PART)Sl/BPART(x,y) ::, ,SUAPART(y,x)
It is irreflexive:

(x/PART)~SUBPART(x,x)

(5.4)

(5. 5)

All these properties strongly suggest that an op
timal extensional representation will be tree
structured, coupled with appropriate procedures
for inferencing, in which case the intensions
(5.4) and (5.5) need not be present in the IDB.

In general, many relations can be expected to
possess special properties which, if represented in

the IDB, will render it recursive. Our view is
that such relations must instead be represented ex

tensionally. Moreover, specialized data represen
tations and inference procedures must be devised
for each combination of properties possessed by
such a relation. For example, an assymmetric,

transitive, irreflexive relation like SUBPART will
require quite different data representations and

access methods than an equivalence relation.
Lindsay, in [Lindsay 1973] makes essentially this

point, in describing the work of Elliott
[Elliott 1965] . Elliott's thesis considers nine
properties, like transitivity, asymmetry etc.
which a relation may possess, and classifies re
lations in terms of all possible meaningful com
binations of these nine properties, these being 32
in number. For each of these 32, he proposes suit
able extensional representations and access methods.

6. OTHER FORMS OF RECURSION REMOVAL

Although the process of filling in the exten
sion of a suitably chosen predicate sign can always
be invoked to cut a cycle in the IDB , this can oc
casionally be too drastic a remedy. In what follows
we shall discuss certain far more economical
approaches to the elimination of infinite deductions
caused by cycles. While these approaches lack the
full generality of that of Section 5, conditions
under which they apply can be expected to arise fre -

9 6

quently, which is why we feel they merit some atten ~
tion. In those cases where they fail to apply, the

method of Section 5 can be invoked.

6. 1 Checking for Duplicate Subgoals

Consider the following possible intensions for

the inventory domain:

11 A 11 widget suppliers supply gadgets, and vice

versa. 11

(x/SUPPLIER)(y/WIDGET)(z/GADGET)SUPPLIES(x,y) (6.1)

=> SUPPLIES(x,z)
(x/SUPPLIER)(y/GADGET)(z/WIDGET)SUPPLIES(x,y) (6.2)

::, SUPPLIES(x , z)

As suming that widgets are disjoint from gadgets,
neither (6.1) nor (6.2) is, by itself, a cycle but
the two together define a cycle. For simplicity,
assume a definite IDB 1 and closed world assumption,
in which case a conventional subgoaling or back
chaining proof procedure will do for query
evaluation [Reiter 1977]. Consider an attempted
proof of SUPPLIES(a ,B) where a and Bare terms with
types SUPPLIER and WIDGET respectively. Then the

effect of the cycle (6.1) and (6.2) will be to gen
erate the following infinite deduction sequence,

where -+ denotes "current subgoal":

-+ SUPPLIES(a , B) ,(a) SUPPLIER ,(B) WIDGET

-+ SUPPLIES(a ,y) ,(y} GADGET

-+ SUPPLIES(a ,w) , (w) WIDGET

-+ SUPPLIES(a ,u) , (u) GADGET

-+ SUPPLIES(a ,v) ' , (v) WIDGET

Clearly there is no need to continue th~s deduction
beyond the third subgoal, s ince the fourth is sim
ply a renaming of the second.

It follows, in general, that we need only
equip the theorem prover with the capacity to de
tect duplicate subgoals in order to truncate cer
tain infinite deduction paths. Although we omit
the details here , it should be clear that there is
a simple sufficient condition on cycles which
guarantees that a duplicate subgoal detector will
truncate the infinite deduction paths which might
otherwise arise. Hence, we can determine in ad
vance which cycles of the IDB lead to finite

1 A data base i s definite iff each of its clauses
contains exactly one positive literal.

I

I

deductions. For these cycles there will be no need
to appeal to the extension filling techniques of
Section 5.

6.2 Special Cases

In some instances, the particular structure of
a cycle, together with certain special i zed knowledge
that is available about the relations of the cycle ·
can be exploited to prevent infinite decuction
paths. As an example, consider the intension

"All parts suppli ers al so provide sub-parts for
those parts."

(x/SUPPLI ~R){yz/PART)SUBPART(z,y)
"SUPPLIES(x,y) J SUPPLI ES(x,z)

(6.3)

As before, assume a definite IDB and the closed
world assumption so that we can appeal to a conven
tional subgoaling proof procedure for query evalua
tion. Consider an attempted proof of SUPPLIES(a,B)
for terms a and B. Then the effect of the cycle
(6.3} will be to generate the following infinite
deduction sequence:
+ SUPPLIES(a,B)
+ SUBPART{B,y1) ~ SUPPLIES(a,y1) (6 .4)
+ SUBPART(B,y1) "SUBPART(y1,y2) "SUPPLIES{a,y2}
+ SUBPART(B,y1) "SUBPART(y1,y2) "SUBPART{y2,y3)

"SUPPLIES{a,y3)

It is clear that the theorem prover is trying to
establish a transitive chain B,y1 , ... ,Yn with
respect to the subpart relation such that
SUPPLI ES(a,yn) holds. Now suppo se that, for some
n >1, one of these subgoals succeeds, i.e. there
are parts p1, ... ,pn such that
~SUBPART(B,p1) "SUBPART(p1,p2)

"· ··" SUBPART(p l ,p) "SUPPLIES (a,pn) n- n
Then, since the relation SUBPART is transitive,

~ SUBPART(B,pn) "SUPPLIES(a,pn)

which is an instance of the subgoal (6 .4) . Hence ,
we conclude that there is no need to generate any
of the subgoals following (6 .4) so that the cycle
(6.3) will not generate an infinite deduction path.
This observation leads to the following special
case of recur·s ion removal :
If the IDB contains an intension of the form

(X/T1)(yz/T2)(v/a)T(z,y,v) "P(x,y,v) J P(x,z,v)

97

where Tis transitive in its first two arguments,
then in any subgoaling proof procedure one need
never recurse on this intension.

For another example of a special case of re
cursion removal, consider the following intension:
"If an employee belongs to the dental plan, then so
does his (her) s~ouse."

{x/EMPLOYEE)(y/HUMAN)DP(x) 11 SPOUSE (x,y) ~ DP(y)

As before, consider a subgoaling proof of DP(a).

+ DP(a)

+ DP(x1)" SPOUSE(x1,a)
+ DP(x2)" SPOUSE(x 2,x1) 11 SPOUSE(x1,a}

It is clear from the semantics of the spouse rela
tion (Everyone has at most one spouse), that the
third and subsequent subgoals in this infinite
sequence are irrelevant . In general, then, we have
the following special case of recursion removal:
Suppose the relation R is commutative, and for any
x there is at most one y such that R(x,y). If the
IDB contains an intension of the form

(x/T1)(y/T2)(v/a)P{x ,v) "R(x,y) J P(y ,v)

then in any subgoaling proof procedure one need
never recurse on this intension.

It is easy to see that the same result holds,
if, instead, the relation R has the property that
if R(x,y) then for no z do we have R(z,x).

As a final example, consider the ubiquitous
blocks world, in particular the following recursive
axiom which captures part of the definition of the
ON relation in terms of the "directly supports "
relation:

(xyz/BLOCK)ON(x,y) "SUPPORTS(y,z) J ON(x,z) (fi . 5)

Assume further that SUPPORTS (not ON) is extension
ally complete with respect to this axiom so that
for all blocks b1 and b2 the system knows whether
or not b1 directly supports b2. Again, consider a
subgoaling proof of ON(a,B):

+ ON(a,B)
+ ON(a,y} " SUPPORTS(y,B) (6 .6)

Since SUPPORTS is extensionally complete, we can
discharge or fail to discharge the second conjunct
SUPPORTS(y,B). If the latter, then the attempted

proof of ON(a,B) fails and we are done. Otherwise
this conjunct can be dis charged, say with block b1
for y and we are left with the subgoal

+ ON(a,b1)

We can repeat this same process with this subgoal .
It is not difficult to see that for a world with n
blocks, this process of recursively back chaining
into (6 .5) must terminate after at most n-1 back
chaining operations.

It i s important to observe that the proof that
(6.5) will not yield an infinite deductive path re
lies upon the order in which conjuncts in the con
junctive subgoals generated are discharged. Spec
ifically, the proof requires that in conjunctive
subgoals like (6 .6) , the literal SUPPORTS(y,B) be
discharged first. In other words, termination is
dependent on the theorem prover realizing an appro
priate control structure. In general, then, we can
expect that termination proofs for recursive axioms
will be control dependent; we shall need to use our
knowledge of the consequences of following certain
deduction paths to appropriately control the action
of a theorem prover. This observation strongly
suggests the need for a suitable control language
which would be used to prevent the theorem prover
from straying [Hayes 1973]. Such a language , if
sufficiently expressive, would provide a uniform
facility for representing special cases of termina
tion like those of this section.

. 7. ON PROVING THE CORRECTNESS OF A DATA BASE

The treatment of special cases of Section 6
suggests an alternate view of the structuring
principles which we have been proposi ng . For what
they amount to is proving the correctness of a data
base, where "correct" is taken to mean "a 11 deduc
tive paths will be finite". Such proofs may be as
simple as appealing to the extensional complete
ness of certain predicates, as in Section 5, or as
complex as the proof that (6.5) terminates . We
want now to argue that "termination" is the only
appropriate notion of "correct" in this context.
For it is difficult to imagine a more succinct and
perspicuous specification language than that of
first order logic . According ly , a first order data
base is a specification of some domain and there is
no need to prove that it is a correct specification
with respect to one in some more elementary speci -

98

fication language. Moreover, by definition, the
answer to a query is obtained from a first order
proof of that query so, assuming that the under
lying theorem prover is correct, the correctness of
the answers returned cannot be doubted. These ob
servations leave just one correctness property open
to question, and that is wh ether an answer will al
ways be forthcoming i.e. whether "the data base
terminates". One way of viewing this paper then
is as an extended argument in favour of proving the
correctness of data bases. In addition, we have
proposed a few techniques for appropriately struc
turing a data base so as to make such proofs
possible.

ACKNOWLEDGEMENT

This paper was written with the financial support
of the National Research Council of Canada under
grant A7642. Part of thi s research was done while
the author wa s visiting at Bolt Beranek and Newman
Inc., Cambridge, Mass .

REFERENCES

Cl ark, K., (1978) . "Negation as Failure," in LoJic
and Data Bases, H. Gallaire and J. Minker (Eds. ,
Plenum Press, New York , to appear .

Elliott , R.W., (1965). A Model for a Fact
Retrieval System, unpublished doctoral dissertation,
The University of Texas at Austin, 1965.

Hayes, P.J., (1973) . "Computat ion and Deduction,"
PROC. Math . Foundations of Computer Science
Symposium, Czech. Academy of Sciences, 1973.

Hewitt , C., (1972) . Descri tion and Theoretical
Anal sis Usin Schemata of PLANNER: A Lan ua e
for Proving Theorems and Manipulating Models in a
Robot, AI Memo No. 251, MIT Project MAC , Cambridge,
Mass ., April 1972.

Lewis, H.R., (1975) . "Cycles of Unifiability and
Decidability by Resolution," Aiken Computation
Laboratory , Harvard University, Technical Report ,
1975 .

Lindsay, R.K., (1973). "In Defense of Ad Hoc
Systems," in Computer Models of Thought and
Language, R.C. Schank and K. M. Colby (Eds.),
Freeman and Co., San Francisco, Cal., 1973,372- 395 .

Loveland, D.W., (1970) . "A Linear Format for
Resolution," in Lecture Notes in Mathematics 125
{Symposium on Automatic Demonstration), Springer
Verlag , Berlin, 1970, 147-162 .

Minker, J ., (1978). "An Experimental Relational
Data Base System Based on Logic," in Logic and
Data Bases, H. Gallaire and J. Minker (Eds .) ,
Plenum Press, New York, to appear.

. I

I
!

Reiter, R., (1977) . "An Approach to Deductive
Question-Answering," Technical Report 3649, Bolt
Beranek and Newman Inc., Cambridge, Mass., Sept.
1977, 161 pp .

Reiter, R., (1978a) . "Deductive Question-Answering
on Relational Data Bases," in Logic and Data Bases,
H. Gallaire and J. Minker (Eds .), Plenum Press,
New York, to appear.

Reiter , R., (1 978b) . "On Closed World Data Bases,"
in Lo ic and Data Bases, H. Gallaire and J. Minker
(Eds. , Plenum Press, New York , to appear.

Robinson , J.A., (1965) . "A Machine Oriented Logic
Based on t he Re solution Princip l e, " J . ACM, 12
(January 1965) , 25-41 ~~

Schank, R. , (197 3) . "Identification cif
Conceptualizations Underlying Natural Language, " in
Computer Models of Thought and Language, R.C. Schank
and K.M. Colby (Eds .), W. H. Freeman Press, San
Francisco, Cal., 1973 .

99

THE GENETIC GRAPH
A REPRESENTATION FOR THE EVOLUTION OF PROCEDURAL KNOWLEDGE1,2

Ira. P. Goldstein
Artificial Intelligence Laboratory

Massachusetts Institute of Tecftnology
Cambridge, Ma. 02139

Abstract

I shall describe a theory of the evolution of rule-structured
knowledge that serves as a cornerstone of our development of
computer-based coaches. The key idea Is a graph structure
whose nodes represent rules, and whose links represent various
evolutionary relationships such as generalization, correction, and
refinement. I shall define this graph and describe a student
simulation testbed which we are using to analyze different
genetic graph formulations of the reasoning skills required to
play an elementary mathematical game.

Keywords: Information Proc.essing Psychology, Learning,
Knowledge representation, CAI, !CAI, Al.

Outline

I. A Learner-based paradigm for AICAI research Is evolving.
2. The genetic graph has evolutionary roots In AICAI research .
3. Wumpus serves as an experimental domain.
i. The genetic graph formalizes the syllabus.
5. Genetic graphs are being explored via student slmu·lations.
6. The genetic graph is a framework for a theory of learning.

L A .Learner-based Paradigm for AICAI is evolving.

The l970's has seen the evolution of a new generation of
computer-aided Instructional programs based on the Inclusion of
Al -based expertise within the CAI system. These systems
surmount the restrictive nature of older script-based CAI by
supplying "reactive" learning environments which can analyze a
wide range of student responses by means of an embedded
domain-expert. Examples are AICAI tutors for geography
[Car70]. electronics [Bro73].. set theory [Smi75], Nuclea_r Magnetic
Resonance spectroscopy [Sle75], and mathematical games [Bur76,

•Go177a].

However, while the inclusion of domain expertise Is· an
advance over earlier script-based CAI, the tutoring theory
embedded within these benchmark progr.ams fot convey.Ing this
expertise Is elementary. lh particular, they approach teaching
from a subset viewpoint: expertise consists of a s~t of facts or
,rules. The student's knowledge Is modelled as a subset of this
.knowledge. Tutoring consists of encouraging the growth of this
subset, generally by Intervening In situations where a missing

.fact or rule is the critical ingredient needed·to reac.h the correct
answer.

This is, of course, a simplification of the teaching process.
It has allowed research to focus on the critical task of
representing expertise. But the subset viewpoint fails to
represent the fashion in which new knowle~ge evolves from old
by such p_rocesses as analogy. generalization, debugging, and
refinement.

This paper explores the genetic g!!Jili as a framework for
representing procedural knowledge from an evolutionary

vlewpoint.3 thereby contributing to the movem~nt of AICAI

from an expert-based to a learner-based paradigm.

2. A graph representation of the syllabus has roots in
AICAI research.

Scholar [Car70], the earliest of the AICAI tutors, employed
a graph (semantic net) representation for declarative facts about
geography. The graph. however, encoded only domain specific
relationships; it did not embody a series of progressively ~ore
refined levels of geography knowledge linked by various
evolutionary relationships.

SOPHIE-I [Bro73]. the next major AICAI milestone, was
an expert-based system for the more complex domain of
electronic troubleshooting. · SOPHIE-I compared a student's

I. This research was supported under NSF grant SED77-19279.
2. This paper has evolved from many fruitful conversations

with members of my Cognitive Computing Group at the MIT_
Al Lab and with members of John Seely Brown's ICAI group at
Bolt, Beranek and Newman. · . ·
3. A potential confusion m terminology may occur here. The

term "genetic" Is oflen equated with heredity. However, I use It
here In Its older sense, namely, the genetic method Is the study of
the origins and development of a phenomena. This paper Is an
exercise in Genetic Epistemology. the study of the origin and
development of knowledge. This enterprise has been articulately
advocated by Piaget [Pla70], who considers It the foundation on
which psychology should be based.
i . There are other dimensions to this paradigm shifl that

Include: (I) more sophisticated modelling of the student's
knowledge and learning style [Bur76, Bro77a, Go178a], (2)
widening the communication channel from student to teacher via
natural language interfaces [Bur77], and (3) developing a theory
of teaching skl11s [Col75]. Goldstein and Brown [Gol78b]
provide an overall perspective.

100

.· I

Fig. 1. An Interaction with the Wumpus Game

You are at ·cave 15 with neighbors 4, 14 and 0.
Brrr.l There is a draft. You are near a ptt.
What now1

/> 4

You are at cave 4 with neighbors 15, 14 and 2 ..
Brrr.l There ts a draft. Squeak! A bat ts
near. What now?

2> 14

0

14

I\
--6) G)--2

BRR BRR, SQ

(El) Mary, it isn't necessary to take such large risks with pits. There ts m_ulttple evidence of a ptt ln
cave 14 which makes it quit~ likely that cave 14 contains· a pit. It ts less likely that cave O contains a
ptt. Hence, we might want to explore cave O Instead. Do you want to ,take back your move1

troubleshooting hypotheses for an electronic circuit with that of
its embedc;led expert and offered advice when the student's
analysis went astray. It employed a procedural rather than a
network representation for its electronics know.ledge, but this
representation was largely a black box. SOPHIE-I did not have
access to a detailed, modular, human-oriented representation of
troubleshooting . skills. Nor did it have a representation for the
genesis of these skills.

SOPHIE-2, now under development, will incorporate a
modular, anthropomorphic representation for the expert's
knowledge [Dek76]." This structured expertise serves as a better .
foundation for expert-based tutoring, but still is not a m~el. of
how the student evolved to that level of competence.

BUGGY [Bro77a], a program for building procedural
models of a student's arithmetic skills, does incorporate. both a
graph representation for the basic skills and some evolutionary
relationships. The basic skill representation Is a graph with

· links representing the skill/subskill relationships. The
evolutionary component consists of "deviation" links to- "buggy"
versions of the various. sk-ills.

BIP-11 . [Wes77], a tutor for programming skills, again
employs a network for the basic skill representation, but
embodies a different set of evolutionary relationships. There are
links . for representing analogy, generalization, specialization,
prerequisite, and relative difficulty relations: The BIP-l'I skill
network, however, does not include deviation links nor define an
operational expert for the programming domain. Rather it
employs author-supplied exercises attached to the relevant skills
In the n·etwork.5

The genetic graph Is a descendant of these network
representations. Its nodes are the procedural skills of players of
varying proficiency and Its links . include the analogy,
specialization, generalization and prerequisite relations of BIP-H
and the deviation relationships of BUGGY.

3. Wumpus serves as an experimental domain. ·

Designing coaches for the maze exploration game Wumpus
[Yob75] has proven to be a profitable experimental domain

because the game exercises basic skjlls In logic and probability. 6

The player Is initially placed somewhere in a warren of caves

with the goal of slaying the Wumpus. The difficulty In finding
the beast arises from the existence of dangers in the watren -
"bats, pits and the Wumpus Itself. Pits and the Wumpus are
fatal; bats move the player to a random cave elsewhere in the
warren. But the player can infer the probable location of
dangers from warnings he receives. The Wumpus can be sensed
two caves away, pits and bats one cave away. Victon re$Ults
from shooting an arrow into the Wumpus's lair; defeat if the
arrows are fruitlessly exhausted.

In 1976 we developed WUSOR-1 [Sta76], an expert-based
coach. Skilled play was analyzed in terms of rules such as these:

Positive Evidence: A warning implies
that a danger is in a neighboring cave.

Elimination: If a cave -has a warning and
all but one of its neighbors are known to
be safe, t_hen the danger is in the
remaining neighbor.

Multiple Evidence: Multiple warnings
increase the likelihood that a given cave
contains a danger.

As fig. I illustrates, WUSOR-1 explained a rule if Its
employment would result In a better move than the one chosen
by the student.

5. MALT [Kon5], a tutor for machine language programming,
does include an "expert" for problems composed from a limited
set of skills and solved in a tutor-prescribed order. However,
MAL T's syllabus of skills are related only by the probability
with which MALT includes them In a system-generated problem,
and not by any evolutionary links. Hence, MALT does not have
BIP's ability to choose a problem based on Its evolutionary
relationship to the student's current knowledge state.
6. Our group Is also .exploring evolutionary epistemologles for

other domains ranging from elementary programming to
airplane flying.

101

WUSOR-J was insensitive to the relative difficulty of the
various Wumpus skills. In 1977 we took our first steps toward an
evolutionary epistemology with WUSOR-ll [Carr77a], wherein
the rule set was divided into five subsets or phases representing
increasing skill at the task. · .

Phase J:, Ru.les for visited, unvisited and.fringe caves.
Phase 2: Ru.les for possibly dangerous, deftnttely dangerous
and safe caves.
Phase J: Ru.les for single versus multiply dangerous caves.
Phase 4: Ru.les for "possibility sets", i.e. keeping track of tlie
sources of dangers. ·
Phase .5: Rules for nu.mcrical evidence.

The tutor did not describe the rule of a particular· level of play
until it believed the student was familiar with the rules of the
preceding levels.7

These phases constituted a coarse genetic ep'istemology,
better than the completely unordered approach of WUSOR -I,
but still far from a detailed platform on which to build new
knowledge from old in the student's mind. WUSOR-III, now
being implemented, addresses this limitation . It has evolved
from WUSOR -11 by defining a set of symbolic links between
rules that characterize such relationships as analogy, refinement,
correction, and generalization. The result is that the "syllabus"
of the coach has evolved from an unordered skill set to a gentile
graph of skills linked by the_ir evolutionary relationships.

4. The genetic graph formalizes the syllabus.

The "genetic graph" (OG) formalizes the evolutiQn of
procedural rules by representing the rules as nodes and their
interrelationships as links. In this section I discuss four of these
relationships -- generalization/specialization, analogy, deviation/
correction, and simplification/refinement -- and show the
explanatory leverage they supply by allowing variations on the

basic Wusor-11 explanations.a ·

R' is a generalization of R if R' is obtained from R by

quantifying over .some constant.9 Specialization Is· the inverse
relation. In the Wumpus syllabus, for each trio of specialized
rules for bats, pits and the Wumpus, there is usually a common

generalization In terms of warnings and dangers.to Fig. 2
illustrates such a cluster for rule 2.2 which represents the
deduction: "a warning implies that the neighbors of the current
cave are dangerous .. "

R' is analogou.s to R If there ex ists a mapping from the
constants of R' to the constants of R. This is the structural
definition employed by Moore and Newell tMoor73]. Of ,course,
not all analogies defined In this fashion are profitable. However,
the GG is employed to represent those that are. Fig. 2 illustrates·
analogy links between the specialization trio of R2.2. The·
similar nature of the dangers of the Wumpus world make this
kind of densely linked cluster common. As fig. 3 shows,
identifying such clusters provides teaching leverage by providing·
multiple methods of explanation . (one per link) . for each
constituent rule.II ·

R' is a refinement of R if R' manipulates a subset of the
data manipulated by R. Simplification is the Inverse relation.

This relation represents the evolution of a rule to take account of
a finer set of distinctions. The Wumpus· syllabus contains five
major refinements corresponding to the five Wusor-11 phases.
Fig. 2 illustrates the refinement of the rule RI.I through pt,ases I,
2 and 3. Fig. 3 shows a refinement-based explana.tion.

R' is a deviation of R if R' has the same purpose as R but
fails to fulfill that purpose in some circumstances. C,orrection is
the inverse relation. Deviations arise naturally in learning as the
result of simplifications, overgeneralizations, mistaken. analogies,
and so_ on. Whi.le any rule can have deviant forms, the. GG ls
used to record the more common errors.12 ·

A deviant Wumpus rule is: "If there is multiple evidence
that a cave contains a pit, then that cave definitely contains a
pit." The debugged rule includes the additional condition that
there is only one pit in the warren. The c;leviation has a natural
genetic origin: it is a reasonable rule in the early stages ·of
Wumpus play when the game is simplified by the coach to
contain only one of each. danger.

7. [Carr77b] describes the mechanisms by which it estimated the
student's position in the syllabus.
8. The GG also supplies modelling ieverage [Go178al. A

procedura 1 model of the student can be constructed in terms of
the regions of the GG with which the student has . displayed
familiarity. The GG does not solve the ermrmous difficulties·
which exist in inducing student models (discussed in [Carr'77b,
Bro77c]. but it does provide another source of guidance: the
evolutionary links of the known regions suggest which skills the·
student will acquire next.
9. This is a standard predicate calculus definition, applied here

to quantifying over formulas representing rules rather than
logical statements.

· 10. In one version of Wumpus, the wumpus warning propagates
only one cave. In this case, bats, pits and the wumpus are
exactly analogous. In more complex versions, the Wumpus is no•

•longer exactly analogous. Hence, the analogies to bats .. and pit
rules are in fact restricted cases or outright deviations. We
represent this in the GG !;!Xplicitly. thereby giving the coach an
expectation for the traps the student will encounter.

II . There are many difficulties in generating explanations not
solved by employing a GG: when should the coach interrupt,
how often, how much should be said, which variation should be
chosen? The utility of the GG is only to Increase the range of
possibilities open to the tutor. •
12. The deviant skills recorded in the GG account for errors

arising from the correct applicati<m of incorrect rules. There is
another class of errors arising from the ~ application of
correct rules. These are errors arising from such causes as the
.occasional failure to check all preconditions of a rule, the
misreading of data, or confusion in the bookkeeping a.ssociated
with a search process. Sleeman [S1e77] explores some errors of
this class in his construction of a coach which analyzes a
student's description of his algorithm. Sleeman's coach, however,
does not have a representation for deviant .or simplified versions
of the algorithm· to be tutored: indeed, he assumes that the
student ls familiar with the basic a~gorithm. A possible
extension of his system would be to include a GG representing
evolutionary predecessors of the skilled expert.

102

Genetic Link s
R • refinement
A • analogy
G •generali zation
S • s pec i a I i za t ion

N • neighbors of the
current cave.

W-II EXPLANATION
;"

El: MULTIPLE EVI
DENCE FOR tllS. IS
"10RE DANr.EROUS
THAN SI Nr.LE EVI
DENCE FOR till,

Fig. 2. A Reg!on of t°he Genetic Graph

PHASE 1

\
\

PHASE 2 \ PHASE 3

\
\ ,,

\
,,,,''

,R

----~·-·'
,,,,''\

I

I
I

---- I --- R, .

/
I

I ------

Fig. 3. Variations on an Explanation

\
\
\

' I
ll ,, --t"

J

I
R /''

IT ISN'T NECESSARY TO TAKE SUCH LARGE RISKS WITH PITS

GENERALIZATION

E2: MULTIPLE EVI
DENCE IS MORE
DANr.EROUS THAN

S:Nt.LE EVIDENCE
FOR ALL · DANGERS,

ANALOGY

El I WE HAVE SEEN
THAT HUL Tl PLE EVI

DENCE FOR !!Ali IS

MORE DANGEROUS
THAN SINr.LE EVI

DENCE,

HERE THERE IS MULTIPLE EVIDENCE FOR A PIT IN lq AND

SINGLE EVIDENCE FOR ll. HENCE, WE MIGHT WANT TO EX

PLORE 0 INSTEAD,

REFINEMENT

E4• IN THE PAST,
WE HAVE DIST IN -

GU I SHED BETWEEN
SAFE AND DANGERO US
EVIDENCE, NOW WE

SHOULD DISTINGUISH

BETWEEN SINGLE AND

HULT I PLE EV I DENCE
FOR A DANGER,

EI . is the WUSOR-11 explanation triggered by a move to cave 14 of fig. I.
E2, EJ and E4 art proposed WUSOR·/11 variations generated lry
explaining a rult in terms of tts· evoluttona.ry relatives.

103

Again, the geneUc link supplies explanatory power.
Suppose the student has just transitioned from games with one
pit to games with multiple pits and is in the situation of fig .. i .
If he moves to cave 0, ES is inferior to E6 as an explanation as It
fails to address the probable cause of the student's difficulty,
namely a belief that cave O is In fact safe from pHs.

5. Genetic graphs are being explored in a student
simulation testbed.

The Wumpus CG currently contains about 100 rules and

Fig. 4. A Correction Based Explanation

<Situation as illustrated

4> 0

O · location of player

Q • riaited c•-•

E5: Ira, we needn't risk a pit. Cave 3 is safe. Hence, we
might want to explore cave 3 Instead.

E6: Ira, we needn't risk a pit. Cave 3 Is safe. If there were
only one pit, cave O would also be safe. But tn tltls game
there are 2 pits .. Therefore wt cannot bt ctrtatn that the

. pit is in 14 and O ts safe. Hence we mighf want to
explore cave 3 Instead.

300 links.13 We are currently testing the reasonableness cif this

.graph by means of a "Student Simulation Testbed". Ii In this
testbed, the performance of various simulated students, defined
In terms of different regions of the GG, is being examined ..
These students correspond to different evolutionary states. Fig. !i
Is the comparative trace of two students corresponding to 'the
mastery of phases 2 and 3 respectively.

Expert-based CAI allows only for the definition of.
"computer students" formed from subsets of the expert's sklHs.
The power of the CG to broaden the tutor's understanding of
the task Is evident from tht testbed: the GC permits not .only the
creation of subset students, but also students formed from
specializations, deviations, and simplifications of the . expert's
rules.

6. The genetic graph is a . framework f.or a theory of
learning.

This paper has explored the construction of new
knowledge in terms of a genetic graph. Implicit in this 'structure
Is the following view of learning: new rules are constructed from
old in terms of processes corresponding to the individual links.
However, the graph does not describe a unique evolutionary
path. One learner may rapidly acquire a generalization, another
may first build several specializations before constructing the
generalization, while a third may never acquire the
generalization. Hence, the tutor should encourage this
idiosyncratic construction of new knowledge by' giving ·advice
appropriate to the learner's current knowledge state (position in
the graph) and particular style of learning (preference f<;>r
particular links). The redesign of the Wumpus coach to employ
the guidance of the CG to more closely approximaie this ideaf
tutoring behavior is a major thrust of our current research
activity.

The GG is, of course, only a framework for a theory of
learning. Hard questions about learning remain to be studied:
When should a learning strategy be applied? How a.re profitable
analogies, generalizations and refinements to be detected? When
should . pcirtions of the graph be forgotten? However, the graph
as It stands Is sufficient to formalize the relations between items
of knowledge in a syllabus so as to improve the tutoring capacity
of an AICAI system. ·

Nevertheless, It must be stressed that the evolutionary
relations discussed here remain both underspecified and
Incomplete. · There are many kinds of analogies, generalizations,
and corrections. There are also other kinds of evolutionary
process.es for acquiring knowledge: learning by being told,
learning by induction, and learning by recombining pieces of old
rules In new ways.

Furthermore a syllabus of procedural skills should cont.ain
various kinds of knowledge orthogonal to the evolutionary links
between rules including (I) meta-knowledge of the relations
between rules, e.g. planning knowledge regarding their
sequencing, (2) foundational knowledge regarding. the dfclaratlve

13. These statistics are based on an explicit representation .. of
each generalization, its specializations and ·their · common
deviations. It is possible for the graph to be less extensive if
procedures for generating common deviations and specializations
are supplied. This is the approach we shall eventually em.ployi
Specializations are simple to generate. Deviations are su_ggested
by the common bug types enumerated by such work as my own
analysis of Logo programs [Gol7!i], Sussman's analysis of Blocks
world programs [Sus75], and Stevens and Collins's study of bugs
In causal reasoning [Ste77]; or they can be induced, for simple
cases, by analyzing the student's performance [Se17i, Col7!i,
Bro77b). However, my current' research strategy has been to
make the graph explicit, in order to understand its form. The
next stage will include· the extension to e)lpanding the graph
dynamically. ·
Ii. The .testbed serves other purposes as well. Computer

students can be used to test the modelling and tutoring of
teaching ·systems [Carr77il, Sel77, Wes77). They can also serve as

· models of real students, and hence can yield Insight for a huma_n.
teacher observing their performance [Bro77a, Gol77b].

104

Fig. 5. Divergent Behavior of Two Computer Students . ,.. .. -,
••• • ••••• I \
f BAT+ : (BAT2 }

r--------------,....,.,...,.,,,_-------------\ •. t I

1~:: 1---------tl. ·.·.: ~.~~~.
SMELL • "'- ; ,,Wt ,tw,J,r;•,sl<,lii\•,.'N\ tr! .•.af!.~':":". f\~

")g._..~F~r-· C PIT1

w" • .,JI ,--------~------------------------·-----------~ • ,,,,. I. ~y Pr"~(t'r Sing l t' tv ldencf' .1r W tM.JSt_rlsk b~tsl

······phase 2

-- - --phase 3

. ~. -
'(,c)'
(,..11

J \._..
..... , , r--.... . . '

:' BAT+ ': \/ BATl \
• • I ·. . ' .. ······_,_../

The "WHY" messages are· printed by the student simulator as the
rules defining a student are executed, The comments inside cave
boxes represent hypotheses of the simulated student regarding
that cave. The balloons reflect the differing hypotheses of the
two students regarding bat evidence fQr cave~ J and H.

The phase · 2 student (dotted path) does no.t know the multiple
evidence heuristic. Hence, he does not realize that cave J is to
be preferred over cave H. While 'he understands that they both
risk bats, he make~ no further distinction. Thus, he randomly
selects from these two pos.sibilities, unfortunately choosing the
riskier H. The phase 3 student (dashed pa·th) reco.gnizes multiple
<BAT2l evidence as more risky than sing I e <BATll evidence and
therefore selects the safer cave J.

This figure is a composite of ·the grap,hic output for the two
students. The testbed only executes a single student at a time.
It does not generate balloons nor place the "WHY" messages on the
Warren i t se If.

facts which provide ju~tification, (3) historical knowledge
regarding the past uses of Ji rule, i.e. the examples from which It
'1lay have been induced, its failures and successes, and (4)
organizational knowledge which groups rules concerned with a
common concept, e.g. all the rules concerned with a given
Wumpus phase. Supplying these kinds of knowledg.e in turn
allows a deeper analysis of the genesis of the basic skills, ·since
the evolutionary route may: Involve (1) the gradual debugging of
their planning structure, (2) the refinement of a declarative
foundation with new rules created by deduction from this
foundation, (3) the inductibn of rules from examples,15 and (of)
the acquisition of rules ih groups. [Gol78a] discusses these
extensions.

In a more developed evolutionary epistemology, all c,f these
extensions must be considered. The payoff for this labor Is that
each new evolutionary relationship provides further tutoring
leverage.

15. Self's Concept Learning Program [Sel77) embodies a set of.
heuristics for inducing a rule from examples .. These heuristics
might be used as guidelines to relate examples to a rule by
"induction" links. The tutor could employ such links to ascertain·
when tutoring leverage might be gained by suggesting to the
student that an induction is poss.ible. (Setrs Concept Teaching
Program acts only by constructing examples, it never offers
explicit advice about the possibility of an induction.)

105

7. · References ·

/B ro7J / Brown,J.S,, R, Burton .a nd F. Zdybel, "A
Model-Driven Question-Answering System for Mixed-Initiative
Computer-Assisted Instruction", !.ill Transactions Q!!. Systems,
Man, and Cybernetics, Vol. SMC-3, No. 3, May 1973, pp, 248-257.

f Bro77a/ Brown, J.S., R. Burton and K. Larkin, ·
"Representing and Using Procedural Bugs for Educational
Purposes" Proceedings Qf Ul.TI Annual Conference, Association
for Compu tin g Machinery, Seattle, Oct. 1977, pp. 247-255.

f Bro77b/ Brown, J.S., and R. Burton, Diagnostic Models [Qr.
Procedural Bugs in Basic Mathematical Skills", ICAI No. IO,
Bolt, Beranek and Newman, August 1977,

.
f Bro77c/ Brown, J.S., R. Burton, C . Hausmann, I. Goldstein.
B . Huggins and M. Miller, Aspects Qf !!_ Theory for Automated
Student Modelling, B BN Report No. 3549,)CAI Report No, 4,
Bolt, Beranek and Newma_n, Inc., May 1977.

f Bu.r76 J Burton, R. & J. S. Brown, "A Tutoring and Student
Modelling Paradigm for Gaming Environments", in R. Coleman
and P. Lorton, Jr. (Eds.), Computer Science and Education. ACM
SICCSE Bulletin, Vol. 8, No. I, Feb. 1976, pp. 236-246. .

f Bur77 J Burton, R. & J.S. Brown, Semantic Grammar: fl
Technique for Constructing Natural Language Interfaces to
Instructional Systems, BBN Report No. 3587, ICA! Report No. 5 •

. May 1977. •

/Car70 I Carbonell, J., "Al in CAI: An Artificial-Intelligence ·
Approach to Computer-Assisted Instruction", IEEE Transactions

- Q!l Man-Machine Systems, Vol. MMS-11, No. i, December 1970.

{Carr77a/ Carr, B., Wusor !1. fl Computer Aided Instruction
Program With Student Modelling Capabilities, MIT Al Memo

. il7_ (LOCO Memo i5), May 1977. .

{Carr77b/ Carr, B . & I. Goldstein, Overlays: fl Theory Qf
Modelling for Computer Aided Instruction, MIT Al Memo i06
(LOCO Memo iO), February 1977.

f Co/75 /. Collins, A., E. Warnock and J. Passafiume,
"Analysis and Synthesis of Tutorial Dialogues", In G . Bower
(Ed .), The Psychology Qf Learning and Motivation, Vol. 9, .Nt?w
York: Academic Press, 1975.

f Dtk76/ De Kleer,Johan, Loca l methods for Localizing
Faults in ElectroAic Circuits, MIT Al Memo 394, Nov., 1.976 ..

/Gol75 J Goldstein, l., "Summary of MYCROFT: A.System
for Understanding Simple Picture Programs", Artificial
Intelligence Journal, Vol. 6,, "lo. 3, Fall 1975.

f Gol77a/ Goldstein, I. and B. Carr, "The Computer as Coach:
An Athletic Paradigm for Intellectual Education", Proceedings Qf
197.7 Annual Conference, Association for Computing Machinery,
Seattle, October 1977, pp. 227-233.

f Gol77b/ Goldstein, I. and E. Crimson, Annotated Productlort
Systems: fl Model for Skill Acquisition, MIT AIMemo 407
(LOCO Memo H), February 1977.

f Gol78a/ Goldstein, J.P., The Genetic Epistemology Qf Rule
Systems, MIT Al Memo H9, January 1978.

/Gol78b/ Goldstein, I.P . and J.S. Brown,'The Computer!!!
Cognitive Tool, MIT Al Memo, in preparation.

f Kop5 J Koffman, E. and S. Blount, "Artificial Intelligence
and Automatic Programming in CAI", Artificial lntelligence,'Vol.
6, 1975, pp. 215-23-4 .

/Moor7J/ Moore,]. and A. Newell, "How Can MERLIN
Understand?", in L. Gregg (Ed.), Knowledge and Cognition,
Potomac, MD: Lawrence Erlbaum Assoclates,"1973.

{Sel74/ Self,]., "Studerit Models in Computer-Aided
Instruction", International Journal Qf Man-Machine Studies, Vol.
6, 197-4, pp. 261-276.

f S el77 / Self, J., "Concept Teaching". Artificial Intelligence
Journal, Vol. 9, No. 2, Oct. 1977, pp. 197-221.

f Sle75} Sleeman, D., "A Prob lem-Solving Monitor fQr a
Deductive Reasoning Task", International Journal Qf ·
Man-Machine Studies, Vol. 7, 1975, pp. 183-211. ·

f Sle77 J Sleeman, D., "A System Which Allows Students to ·
Explore Algorithms", Proceedings Qf the Fiflh International Joint
Conference on Artificial Intelligence, August 1977, pp. 780-786.

f Smt75 / Smith, R .L., H. Graves, L.H. Blaine, & V.G.
M arlnov, "Computer-Assisted Axiomatic Mathematics: I11formal ·
Rigor", ln 0. Lecareme & R. Lewis ([ds.), Computers i.!!.
Education Part L IFIP, .Amsterdam: North Holland, 1975.

f S ta76 / Stansfield, J ., B. Carr arid I. Goldstein, Wumpus
Advisor L fl First Implementation Qf !!_ Program.that Tutors
Logical and Probabilistic Reasoning Skills, MIT Al Laboratory
Memo No. 381, Sept. 1976.

f Ste77 J Stevens, A. and A. Collins, "The Goal Structure of.a
Socratic Tutor", Proceedings Qf 1977 Annual ConfereAce,
Association for Computing Machinery, Seattle, October 1977, pp.
256-263. .

f Sus75 / Sussman, G., fl Computational Model, gf Sklll
Acquisition, New York: American Elsevier, 1975.

/W es77 / Wescourt, K., M. Beard and L. Gould,
"Knowledge-Based Adaptive Curriculum Sequencing for CAI:
Application of a Network Representation", Proceedings Qf 1977
Annual Conference, Association for Computing Machinery,
October 1977, pp. 234-2-10.

/Yob7'/ Yob, G., "Hunt the Wumpus", Creative Computin~.
September/October, 1975, ~P- 51 -54. ·

106

LOW-LEVEL VISION, CONSISTENCY,
AND CONTINUOUS RELAXATION

Steven W. Zucker
Computer Vision & Graphics Laboratory
Department of Electrical Engineering

McGill University
Montreal, Quebec, Canada

ABSTRACT

The low- l eve l vision problem has two compon
ents: the development of representations for the
information content in images and the development
of algorithms for computing descriptions ir, terms
of those representations. This paper concentrates
on the algorithms and their use of consistency to
reduce the effects of ambiguity and noise. In
particular, when the vision problem can be decom
posed into networks of local problems, relaxation
labeling processes, with their explicit us e of
consistency criteria , naturally arise. Examples
of relaxation labeling processes for refining low
level descriptions at both singl e and multiple
(hierarchical) levels of abstraction are presented,
together with theoretical results relating relax
ation and consistency to histogram peak selection.

1. INTRODUCTION

Vision can be seen, from an information pro
cessing point of view, as the process of abstrac
ting useful scene descriptions out of raw inten
sity arrays. The specific content of such descrip
tions, as well as the representational formalisms
within which it can be posed, are, to a certain
extent, problem or goal specific. That there
should be many different representations, some of
which are (essentially) stable, follows from the
complexity of the visual process. Or, to put this
another way, the fantastic number of final descrip
tions potentially recoverable from every image
i mplies an organization of visual processing into
modular, interacting stages. Then, each possibil
ity eliminated from an earlier stage prunes an
entire subtree of possibilities from later ones.

In this paper we shall concentrate on the low
level (or early) stages of visual processing. The
two central problems facing designers of systems
for accomplishing this are (i) the development of
representations that make the useful information
explicit, i.e., deciding precisely what needs to
be represented, and (ii) the development of algor
ithms for computing descriptions in terms of these
representations. Our primary emphasis will be on
algorithms, although we shall make some general
remarks about the form of these representations.

The more general motivation behind this paper
is to study the computational aspects th.at are
common to many of the different algorithms now avail
able for visual processing. The common thread

107

through these algorithms , which arises in many
different forms, is the use of consistency to
counteract the effects of ambiguity and noise.
In the next section we review some common low
l eve l features and measurement s aimed at their
detection. This introduces a decomposition of
the g lobal feature-detection problem into many
local o nes, which provides the beginnings of a
structure on which consistency criteria can be
posed and sets the path toward a discussion of
cooperative algorithms designed to use these con
sistency criteria. Surprisingly, when consistency
i s present initially, the complex cooperative
algorithms are shown to reduce formally to simp l e
peak-se l ect ion processes. Finally, the distribu
tion of the consistency computation across hier
archical systems is described.

2. LOW-LEVEL FEATURE DETECTION

The most common low-level features are direct
ly related to patterns of intensity values. For
example, an edge feature signals the border
between two areas of differing intensity, while a
line feature signals a thin pictorial area of one
intensity flanked on both sides by constant areas
of different intensities. The importance attri
buted to features such as these rests, in part, on
our ability to interpret line drawings as readi ly
as gray-level images. More generally, however,
they point toward representations designed to
capture all of the relevant information that is
encoded in the intensity values.

The first stage in computing the presence of
intensity features has traditionally been to
perform a measurement over the image. Because of
the local nature of many of these features, and
because of the computational expense required in
evaluating global measurements, these measurements
have mainly been local. Their explicit form is a
mapping from a s mall domain of intensity values
into a number, and Rosenfeld and Kak (19 76) discuss
many of the designs that have been attempted.

The problem with these local measurements
arises in the interpretation of their response: a
strong response may be s ignaling the presence of
the indicated feature; however, it may also be
arising from a nois e configuration. On the other
hand, a weak response may derive from the proper
configuration. Single-step descision procedures
that correctly determine the presence of image
features on the basis of one local measuremnt have

I

!

been notoriously difficult, if not impossible, to
design.

The principle cause of this difficulty is the
non-unique s tructure of the measurement operator
(a specific response may arise from many different
intensity configurations) coup l ed with the pres
ence of noise in the image. The situation is
equivalent to that of controlling a system in the
presence of noise which, control theory has shown,
requires feedback (Zucker, 1977; Astrom, 1970).
One possibility for feedback is from higher-level
goals" or expectat ions (Shirai, 1975; Freuder,
1976); however , these systems, with their insepar
able mixture of domain-specific and general-purpose
knowledge, are not extensible to other, less
specific , situations.

A second, less restricting form of feedback
can be obtained from the structure of the neighbor
hood surrounding the feature operator. Two such
neighborhoods are immediately evident: the sur
rounding intensity values and the neighboring
feature-detector responses. Local detectors of
various sizes can be used to capture the surround
ing intensity structure, with decision rules based
on all of their responses. Marr (1 976), for
example, has developed elaborate rules for parsing
detector responses into various LINE, EDGE,
EXTENDED-EDGE, and SPOT assertions, but his system
must still refine these assertions by subsequent
processing.

Because information is available outside of
the immediately local neighborhood, another class
of techniques, based on cluster analysis, have
been proposed (Hanson and Riseman, 1978; Schacter,
Davis and Rosenfeld, 1977). In these techniques,
information about spatial relationships is sacri
ficed in the hope that the distribution of the
quantities of responses will be sufficient for
selecting regions homogeneous in the relevant fea
ture. The problems with these techniques are well
known, especially in terms of their one-dimensional
counterpart, histogram peak selection. They
include the difficulties inherent in specifying
threshold selection criteria as well as determin
ing which feature should be histogrammed. While
they do work in some specialized circumstances
(e.g., Prewitt, 1970) only large computational
expenditures have yielded systems that perform
reasonably in more general ones (Ohlander, 1975).
As we show in Section 5, however, certain circum
stances in which they should work can be specified
precisely, although a cooperative algorithm is
required to do this.

Pyramidal data structures (Klinger and Dyer,
1976; Tanimoto and Pavlidis, 1975; Hanson and
Riseman, 1978; and Levine and Leemet, 1976) have
been s uggested as a data structure in which feed
back between neighboring feature~detector responses
can be accomplished efficiently. However, in a
sense pyramids define the allowable computations in
terms of a specific architecture, rather then
determining the relevant computations and then
fitting an efficient architecture to them. Thus
while they do work well for some problems, more

108

general interactions are necessary for the proper
feedback of information and the iterated cycle of
comparison and adjustment that this implies. More
general iterative techniques for structuring this
interaction are described in the next section.

3. RELAXATION LABELING PROCESSES

The low-level vision problem, as we have been
posing it, is the computation of a description of
the information contained in the intensity array
that explicit l y represents its useful content.
This description can be formed in terms of asser
tions attached to various pictorial positions,
and it is these assertions that will serve as
input to later stages of processing. The dis
cussion in the previous section reviewed the diffi
culties involved in attempting to do this solely
on the basis of individual feature detector
responses, but it also began to point toward the
observation which motivated the techniques that
we shall now describe. The relevant observation
is that the context in which every feature detector
is situated can be used to disambiguate its
response. It leads to networks of local processes,
call ed relaxation labe ling processes, that cooper
ate and compete with one another until locally
consistent descriptions are obtained.

Relaxation labeling processes (RLP' s) attempt
to reduce ambiguities in the set of labels attach
ed to nodes in a graph (Zucker, 1976). For the
low-level vision problem, the nodes in this graph
could indicate pictorial positions, with the arcs
connecting ne ighboring pos itions. The labels would
indicate the s tructural assertions, with the
necessary feedback provided through compatibility
relations.

These compatibilities allow each label set to
be adjusted in a direction that makes it more
consistent with all of its neighboring label sets.
The adjustment is accomplished by manipulating
certainty factors attached to each label. These
certainty factors are important for low-level
vision applications because of the continuous
nature of much of the knowledge being represented
and because they provide an ordering over the
possible labels for each node.

The specification of an RLP requires a speci
fication of the graph structure , the set of
possible labels, the compatibility functions, and
the initial labeling for each node. Denoting the
set of labels for node i by Ai' and letting pi (A)

indicate the certainty (or, loosely, the probabil
ity) that label A i s correct for node i, it is
updated according to the rule:

where

and

K+l
p. (A)

l.

E c ..
l.J

p~(A)
K

[l+qi (A)]
l.

p~(A) [l+qK{A)]
(1)

E
AEA . l. l.

l.

E c. j E r .. IA,A') p~(A')
j£Neigh(i) 1 A'EA. l.J J

J

1 .

The c . . terms weight the total influence that a
l. J

particular ne ighbor j can have on i; for uni form
influence, c .. = 1/M, when node i has M neighbors,

l.)

j = 1, 2 , ... ,M . The r ,.().. ,)..') terms indicate the
l.J

compatibility that label)..' on node j has with
l abel).. on i. They take values in the range
(-1 ,1], where - 1 indicates perfect i ncompatibility
and +l indicates perfect compatibility. Since
they need not b e symmetrical, it is often conveni
ent to think of them as f unctions of the condition
a l probabilit i es p, . ()..I)..'). Rule (1) is evaluated

:L)

in paralle l over each labe l on each node, and then
iterated until a fixed point is achieved (for a
study of these fixed points , see Zucker,
Krishnamurthy , and Haar, 1978). In this way the
l ocal context is used to iterative l y approach each
l ocal l abeling decision.

4. LABELING ORIENTED LINE SEGMENTS

Our first application of RLP's returns to
the kind of problem discussed in Section 2: inter
preting the response of l ocal feature detectors.
The · specific problem that we shall consider is
that of asserting the presence (or absence) of
unit LINE segments (Zucker , Hummel, and Rosenfeld,
1977) . The raw feature detector responses are
supplemented by a model for good continuation of
lines, and it is this model that structures the
local consistency-based feedback.

The label set , i.e., the set of possible asser-
tions, is

LINE (OR 1)
LINE (OR 2)

A.
].

LINE (OR 8)
NO-LINE

Bvery point in the image corresponds to a node to
be labeled, and each node is connected to its
eight nearest neighbors. Since we will eventually
want to group these LINE segments into long lines
and curves , orientation is represented explicitly
in eight quantized steps. Also, t he local l ine
detectors are evaluated at eight orie ntations.

Each of the nine labels is associated with
every node, and their initial certainty factors
are obtained by scaling the featu re detector res
ponses into (0,1] . These initial certainty va lues
represent one source of information for the RLP.
Establishing them effectively translates t he
intensity-encoded information in t he i mage into
the initial state for an orientation-based RLP.
The rules for updating certainties on the basis of
orientation are derived from the second informa
tion source, the compatibi l ity functions, which
take the form (for good continuation between LINE
orientations) :

ri j ()..,).. ') = cos [a"-SJ cos (w[a",-S]) (2)

where a" is the angl e (i .e., orientation) of label

).., a", is the angle of)..' , and Sis the angle an

imaginary vector from i to j makes with the stan
dard reference. (w will be discussed shortly) .
The compatibility between LINE and NO-LINE labels

109 :

also varies sinusoida lly:

r .. (A,)..') = -cos (2 [a,-S])
l.) A

where a).. and Sare defined as above. The compati

bility between two NO-LINE l abels is 1.0. '

Thew term in (2) is necessary for a more subtle
reason. In general, the label set, graph struc
ture, updating rule, and compatibility function s
may define a n RLP with a bias toward particular
labelings. While this may refl ect the relevant
semantics in some domains, it is inappropriate for
a general-purpose line process. Zucker a nd
Mohammed (1978) have s hown that if :

E c. . E r .. ().. ,).. ') = CONST ,
j l.J ", l.J

then a homogeneous RLP , s uch as the one we are
describing here, will not contain a bias forcer
tain labels. Thew terms in (2) are adjusted to
satisfy this conditio n .

Zucker et al. (1977) contains examples of an
RLP very similar t o this one successfully labe l ing
the lines a nd curves in several satellite images.
To s how the empiri cal limitations of s uch a pro
cess, Fig. 1 contains an exampl e of this RLP
operating on a very noisy synthetic image. Note
that the diagonal line in thi s image is destroyed,
a nd that the short horizontal line is joined to
the vertical one. A more powerful hierarchical
system, whi ch hand l es this i mage properly , wi l l be
described in Section 6.

5. RELAXATION AND HISTOGRAM PEAK SELECTION

If we ass ume that the compatibilities are
re l ated by a linear f unction of the underlying
conditional probabilities , i.e., if

c
2

constants, (3)

or if we define our RLP directly in t erms of
conditional probabilities, then we can obtain an
updating rule anal agous to (1) by substituting
(3) into (1):

P~+l()..)
].

p~()..) { Ee .. l: p,, ().. I)..') p~ ()..')}
]. j l.J)..' l.) J

K K (4)
l:p. ()..) {l:c .. i:: p .. ()..I)..') p,()..') }
" i j l.J)..' l.J J

A simple ana l ysis of this new rule reveal s the
connection between re l axation and histogram geak
selection. In particular, if we interpret p. ()..')

J
as the probability that label)..' is correct for
node j given the local measurements on j, then
the inner term

i:: p,. ().. I)..') p~ ()..') = p, P IE.)
)..' l.) J]. J

is a formally correct estimate of the probability
that).. is correct for i (assuming that there are
onl y two nodes of interest in the process, i and
j). Then, if this estimate p . ()..IE .) were perfect,

]. J

I
, I

• • , I

i.e., if p, (A jE .) = p , (A) , r u le (4) would reduce to:
]. J].

P~+l (A)
].

(5)

This r ule clearly terminates with

p~(>) " \

0 max (p, (A))
1

].

lim AEA,
K--><x>].

0 otherwise

(6)

In other words, relaxation formally reduces to
selecting the label whose initial probability was
maximum, i.e., to histogram-peak selection.

The circumstances under which relaxation is
equivalent t o histogram peak selection can be
generalized from those above. The essential
requirement is that the neighborhood contributions
be in the same order (i.e., consistent with) the
current label orderings. More formally, if for
each node i = 1,2, ... , I, an ordering over the labels
A £A. exists such that

ct].

then we require (Zucke r and Mohammed , 1978)

for the algorithm to behave as in (6). E indicates
a conditioning on the total neighborhood evidence,
i.e., the updating term:

It is clear from the results in the previous
section (Figure 1) that relaxation is not just per
forming maxima selection, otherwise a number of
initially strong, but incorrect, labels would have
been established. Rather, the above analysis
suggests that there are two essential components to
the relaxation computation. The first is an adjust
ment toward local consistency, while the second
selects the most consistent labeling. When consis
tency is present initially, then relaxation reduces
to the second computation.

6. HIERARCHICAL RELAXATION SYSTEMS

The decomposition of the feature detection
problem in Section 4 was a spatial one. That is,
t he establishment of LINE assertions was accomplish
ed by a network of local processes which, when taken
together, were attempting to establish a spatially
consistent pattern. There is a second necessary
kind of consistency in vision systems, however, that
derives from a different representational decomposi
tion. This decomposition organizes representations
into levels of abstraction, as we discussed in the
introduction, with the consistency requirement now
holding between descriptions at neighboring levels
(providing they project onto the same set of spatial
positions). For example, the high-level description
of a chair must be consistent with the underlying

llO

line description, which, in turn, must be consis
tent with the underlying intensity distribution.
Consistency of the first kind, i.e., spatial, will
be referred to as being horizontal, while consis
tency of the second kind will be vertical (Zucker,
1978).

The same relaxation structure that we have
been using for achieving horizontal consistency
can also be used for achieving vertical consis
tency. The only differences are in the structure
of the graph, which now spans levels, and in the
compatibility functions. Letting A denote a labe l
attached to node i at one l eve l of abstraction,
and L denote a different label attached to node I
at a neighboring level of abstraction, then the
interaction between them will be governed by
compatibility functions of the form riI(A,L).

Furthermore, if there is a reasonably complete
description at the level of I, then a second hori
zontal process (in addition to the one at the
level of i) could be established there as well.
With all of these processes running concurrently,
information could propagate both horizontally and
vertically to simultaneously disambiguate the desc
riptions at both levels (Figure 2). In other
words, the loca l neighborhood over which consis
tency is evaluated has grown from a circle, which
was the case for a single horizontal process, to
a sphere.

As an exampl e of a multi-level relaxation
system, we shall build upon the line labeling RLP
introduced in Section 4. That system was a hori
zontal RLP for labeling unit LINE assertions, and
the next step is to group these unit LINEs
together to form long lines and curves. The tradi
tional method for accomplishing this is with a
sequential tracking algorithm (e.g., Horn, 1974);
however, such sequential methods are notoriously
sensitive to noise. Rather, we shall formulate
the grouping as a second RLP that attempts to join
pairs of neighboring LINEs together. More precise
ly, if we define a link between every pair of
neighboring pictorial positions that have moder
ately certain LINEs associated with them, then the
RLP will attempt to label these links as either
CONNECTED or NOT-CONNECTED (or, equivalently, as
LINK or NO-LINK). Thus we have a hierarchical
RLP system with two horizontal processes (one at
the LINE leve l and one at the LINK l evel) and two
vertical processes (one in which LINE labe ls influ
ence LINK labels, and one in which LINK labe l s
influence LINE labels). The system of descrip
tions is hierarchical because there i s a contrac
tion over position: each LINK label spans two
LINE labels.

There are three additional groups of compati
bility functions necessary for this hierarchical
system: one for the horizontal link process and
two for the vertical processes. Furthermore, in
order to separate the information sources used at
each level, the horizontal link process was
designed to use the intensity information contained
in the underlying pixels. (Recall that the hori
zontal LINE process used orientation information).
More specifically, if LINK,. spans pixels i and j,

l.J
and LINKjk spans pixels j and k, then the

compatibility between them is defined to be (in

conditional probability terms):

p(LINK .. ILINK.k)
1.) J

(1 - IInt(i) - Int(k) ll

X 0,4 + 0.3, (7)

where Int(i) and Int(k) are the normalized inten
sities at points i and k. Such normalization is
necessary for the above expression not to be a
function of the dynamic range of intensities for
different systems, and consists simply in scaling
all intensities into [O,ll, with the mean inten
sity set to 0.5. The restriction of (7) to the
range (.3,.71 is necessary so that intensity
differences do not drive LINK labels to certainty
in one step. Also, note that two LINKs are neigh
bors in the horizontal process if they span the
same pixel and the angle of continuation between
them is greater then or equaJ. to 90°.

The first vertical RLP allows information
about current LINK labels to influence the under
lying LINE labels. This downward inf~rmation flow
is based upon orientation consistency, i.e.,

riI(LINEJLINK) = cos (w [aLINE - a LINKl), (8)

where w is again set to meet the criterion in
Section 4. To scale these compatibilities into
the same form as (7), we set

r . (;\,L) + 1

I 1.I
piI (A L) = -E-[r-.-(-A-,L-)-+-1)

A iI

(9)

The second vertical RLP uses current LINE
labels to influence LINK labels, with each link
seeing only the two underlying LINE nodes as its
neighbors. The compatibility function contains
two terms combined as a product, the first relating
orientations as in (8), and the second relating
intensity information according to:

Pu (LI Al INT= (1 - IInt(i) - Int(k) ll x 0.5.
(10)

With this new form, when the intensity difference
is small the intensity contribution approaches
0.5, leaving the consistency determination to the
orientation component.

In order to take advantage of all of the
information sources simultaneously, without
possibly introducing oscillatory behaviour between
them, it is necessary that all processes are run
concurrently (Zucker, 1978). To accomplish this
we used a modified form of the updating rule (1):

P~+l (;\)
l.

This new

1 + a E
j

where

s.
J

and
a = c ..

1.)

form

S,
J

1
J

is

"' 1T

j

(11)

obtained from the approximations:

(1 + as.) "' 1T (1 + s.) a
J j J

(J is a variable denoting the
degree of node i).

111

While there are many advantages to this form
of the updating rule, s uch as an invariance to
linear errors in heuristically chosen compatibi l
ities (Zucker and Mohammed, 1978), its princ i p l e
advantage here is that all node and label depen
dencies are grouped into a single term, p ,. (;\I;\'),

1.)

rather than into separate terms for node and label
dependencies, as in (1). Thus the different
processes can now be combined as a simple product

K
QH (;\)

p~+l (;\)
p, (;\) Qv (;\)

l.
(1 2)

l. E p~ (A) QH (;\) QV (;\)
"- i

in which the horizontal and vertical contributions
are:

QH (;\) 1T E p, . (A I A') p~(;\')}
jE:HN(i) ;\' 1.) J

QV(;\) 1T E piI (A IL') K (L ')}
IE:VN(i) L'

PI

The result of running this hierarchical sys
tem on the noisy image in Fig. 1 is s hown in Fig. 3.
Note that now the image is labe l ed properly. Thus
the hierarchical system, using intensity and orien
tation information, is more robust in the presence
of extreme noise than the pure horizontal process.

7. MODELS FOR COMPATIBILITY FUNCTIONS

The emphasis in this paper has been l argely on
the structure of algorithms for computing visual
descriptions, rather than on the content of visual
representations. Nevertheless, it was necessary
to specify a particular vision problem, that of
line and curve labeling, in order to define
processes completely enough for concrete study.
This specification defined the symbolic structure
of the RLPs, i.e., the label sets, the neighborhood
relations, and the compatibility functions. In
this section we consider a more general form for
compatibility functions, those that are functions
of the image, as well as some of the potential
foundations from which compatibilities may be
derivable that would require them.

The label sets for RLPs define the space of
representations over which t hey are meaningful,
such as t he space of lines and curves. The
internal structure of this space is reflected in
(or defined by) the compatibi l ity functions. Thus
the curves that we considered had two structural
components: one that followed a good continuation
of orientation and one that followed a good contin
uation of intensity. Each of these components was
complete in itself, and both were mutually consis
tent through the vertical compatibility functions.
Each defined a stable RLP that extended the other
through cooperation and competition. However,
they were constant for all images, thus requiring
that the image-specific data enter the process
through the initial certainty factors.

A more general situation is to al low the
specification of the internal structure of the
representational space to be variable, perhaps
depending on the image or a different knowledge
source, rather than a constant. Then the compati
bility functions would also be variable and the
precise notion of consistency would be data (or

I

alternate knowl edge-source) dependent.

To study one way in which image data could
enter the compatibility functions, we developed an
RLP for labe ling INTERIOR, EDGE, and NOISE points
in noisy images (Zucker and Leclerc, 1978; for an
EDGE labe ling process more like the LINE process
that we discussed, see Hanson & Riseman, 1978).
The des ign philosophy behind the process is that
ne ighboring INTERIOR points should not have large
inte ns ity differences be tween them, that EDGEs
s hould follow intensity differences, and that
NOISE points should correspond to isolated inten
s ity differences . Thus tbe compatibility func
tions are image dependent, and they were impl e
mented as simpl e functions of neighboring inten
sity differences. For example, an INTERIOR
label would s upport a neighboring INTERIOR label if
their intensity difference were smali (with respect
to the average intensity), but would detract
s upport if the difference were large. An exampl e
of this process is s hown in Figure 4, Note that,
s ince sufficient image information is in the
compatibilities , the initial certainty factors c~n
a ll be set to uni form values. Thus both the a
priori and the a posteriori data enter in the same
manner.

There are certainl y many other knowledge
sources necessary for the specification of repre
sentational domains that are richer than those
considered here. These sources could fit together
in a cooperative environment much like the one
described in Section 6, perhaps augmented with
adjustable compatibilities. Other sources that
have been shown to admit this kind of representa
tion include subjective contours (Ullman, 1976),
stereo fusion (Marr and Poggio, 1977), and surface
orientation (Woodham, 1977; Horn, 1974; Mackworth,
1973). Furthermore, Barrow and Tenenbaum (1978)
have conjectured that many intrinsic scene charac
teristics, such as surface reflectance , orientation,
distance , and illumination could be computed in a
similar fashion. These studies suggest the excit
ing possibility that detailed models for the
structure of the physical world could be deve l oped
which could then be used to derive the compatibi lity
functions exactly. Such compatibilities would
certainly have elaborate interdependency structures.

8 . CONCLUSIONS

While the processes of low- l eve l vision have
been studied a great deal, these studies have
tended to be disparate and problem-dependent.
There are universal themes, however, and these
themes include the use of various forms of prob l em
decomposition to deal with complexity and the use
of consistency to deal with ambiguity and noise.
Taken together, these themes imply that low-leve l
vision systems could be modeled as networks of
local processes whose intercommunications are
governed by local consistency relations.

Relaxation labeling processes embody this
kind of structure, and several of their applications
in low-level vision were described in this paper.
Two of these indicated different representational
decompositions, one across spatial positions at a
single l evel of abstraction, and the other across
l evels of abstraction but over a single pro j ected
spatial position. Together they describe a type of

11 2

canonical structure for representations in whi ch
the abstract flow of information, both horizonta lly
and vertically , can be studied.

When a representational system admits such an
organization, or when it forms a hierarchy, then
the decomposition suggests that local neighborhoods
s hould be viewed as spheres , e ncompassing both
neighboring spatial positions and neighboring
descriptions at adjacent levels of abstraction.
Then consistency can be achieved both horizontally
and vertical l y with information flowing to supple
ment partial results everywhere.

The formal analysis that we did revealed
that relaxation, in addition to achieving local
consistency, was also computing local maxima .
This s uggests an important difference between con
tinuous relaxation processes , s uch as the one
considered here, and discrete ones: cont inuous
relaxation orders consistent hypotheses , whi l e
discrete processes do not. In general, however ,
understanding the precise computation that a dis
tr ibuted system such as relaxation is performing
is extr emely difficult, and much remains to be
done. This increased computational understanding ,
coupled with a better understanding of the repre
sentation of visual information, should l ead to
the development of more functional vision sys t ems.

ACKNOWLEDGEMENTS

This research was supported by NRC Grant
A4470. I would like to thank Y, Lec l erc and J.
Mohammed for their help in developing the relaxa
tion processes shown, and J. Petley for her help
in preparing this paper.

REFERENCES

1. Astrom, K., An Introduction to Stochastic
Control Theory, Academic Press, New York, 1970.

2. Barrow, H. , and Tenenbaum, J.M., Recoveri ng
intrinsic scene characteristics from i mages,
in E. Riseman and A. Hanson (eds.), Computer
Vision Systems , Academi c Press , New York, 1978.

3. Freuder, E., A computer sys tem for visual
recognition using active knowledge, TR-345,
Artificial Intelligence Lab., M.I.T., 1976.

4. Hanson , A., and Riseman , E., Segmentation of
natural scenes, in E. Riseman and A. Hanson
(eds.), Computer Vision Systems , Academic
Press, New York, 1978.

5. Horn, B.K.P., The Binford-Horn line finder,
A.I. Memo 285 , Artificial Intelligence Lab.,
M.I.T., 1973.

6. Horn, B.K.P., Understanding image intens ities,
Artificial Intelligence, Vol. 8, 1977, in
press.

7. Klinger, A., and Dyer, C. , Exper iments on
picture representation using regular decomposi
tion, Computer Graphics and Image Processing,
5, 68-105, 1976.

8. Levine , M. D., and Leeme t, J., A me thod for
non-purposive picture segmentat ion, Proc .
Third Int. Joint Conf. Pattern Recognition,
1976, 494-498.

9. Mackworth, A.K., Interpreting pictures of
polyhedral scenes , Artificial Intelligence,
4 , 1973 , 121-137.

10. Marr , D., Early process ing of visual informa
tion, Philosophical Trans . Royal Society ,
London (Series B), 275, 1976, 483-524.

11. Marr, D. , and Poggio, T., Cooperative computa
tion of stereo disparity, Science, 194 , 1977 ,
28 3-287 .

12. Oh lander , R., Analysis of na tural scenes , Ph.D.
Thesis, Carnegie-Mellon Uni7ersity, Pittsburgh,
1975.

13 . Prewitt, J.M.S., Ob j ect enhancement and extrac
tion , in B. Lipkin and A. Rosenfeld (eds.),
Picture Processing and Psychopictorics ,
Academic Press, New York, 1970.

14. Rosenfeld, A., Hununel, R., and Zucker, s. w.,
Scene labeling by relaxation operations, IEEE
Trans. Systems, Man, and Cybernetics, SMC-6,
1976, 420-433.

15. Rosenfeld, A., and Kak, A. , Digital Picture
Processing , Academic Press, New York, 1976.

16. Schacter , B. , Davis , L . , and Rosenfe ld, A.,
Some experiments in image segmentation by
clustering of local feature values, TR-510 ,
Computer Science Center, University of Maryland,
1977.

17. Shirai, Y., A context-sensitive line finder for
recognition of polyhedra , Artificial I nte lli
gence , 4, 1973, 95-119.

18. Tanimoto, s., and Pavlidis , T., A hierarch i cal
data structure for p i cture processing, Computer
Graphics and Image Processing, 2, 1975, 104- 119 .

19. Ullman, S. , Fi l ling-in the gaps: The shape of
sub j ective contours and a model for their
generation, Biologica l Cybernetics , 1976.

20. Woodham, R., A cooperative algorithm for
determining surface orientation from a single
view, Proc. Fifth International Joint Confer
e nce on Artificial Intelligence, 1977, 635-641.

21. Zucker, s.w., Relaxation labeling and the
reduction of local ambiguities, Proc. Thi rd
Int. Joint Conf. on Pattern Recognition, 1976 ;
also in C.H. Chen (ed.), Pattern Recognition
and Artificial Intel lige nce, Academi c Press,
New York, 1976.

22. Zucker , s.w., Production systems with feedback,
in F. Hayes-Roth and D. Waterman (eds .),
Pattern-Directed Inference Systems, Academic
Press, New York, 1977, in press.

23. Zucker, S.W., Vertical and horizontal processes
in low-leve l vision, in E. Riseman and A. Hanson,

113

(eds .), Computer Vision Systems , Academic
Press, New York, 1978.

24. Zucker, S .W., Hunune l, R., and Rosenfeld, A. ,
An application of relaxation labe ling to line
and curve e nhancement , IEEE Trans. Computers ,
C-26, 1977, 393-403 and 922-929.

25. Zucker, s.w., Krishnamurthy, E.V. , and Haar,
R.L., Relaxation processes for scene l abe ling:
Convergence, speed, and stability , IEEE Trans.
Sys t ems , Man, and Cybernetics , SMC-8, 1978 ,
41-48.

26. Zucker , S.W., and Leclerc, Y., Intensity
clustering by r elaxation, IEEE Computer
Society Works hop on PR and AI, Princeton
Univers ity, 1978.

27. Zucker, S. W., and Mohammed, J.L. , Ana l ysis of
probabilistic relaxation labe ling processes ,
IEEE Conf. on Pattern Recognition and Image
Processing, Chicago, 1978; also Technical
Report 78-3R , Dept. of Electrical Engineering ,
McGill Univers ity.

• :"""I:

~mm

•
Fig. l a: A (16xl6) image containing three

crossing lines and one short line,
p lus additive gaussian noise.

I

.1

-I

ITERATION 1 ITERATION 5

ITERATION 10 ITERATION 20

Fig. lb : Horizontal LINE RLP operating on the image in Fig. la. The maximum LINE assertion
is displayed at each position with an intensity proportional to its certainty.

INTE.NS ITY 112 1 23 1
34 HOP.IZmiT~.L -· - -

I \ I\ I\ LINK L.P.Bll!NG
I \ I \ I \

I \ I \ Yl::.RTICI\L RLPs
I \ I \ I \

I \ I \ I ' I \ I \ I HOR I70NTAL LI NE
I \ I \/ \

- -+ - ... - L/'.BELING
OIUI:N'l'J\TION l 2 3 4

fig.2: Information flows in the hierarchical system for line labeling and grouping.

114

ITERATION 1, LINE LEVEL ITERATION 1, LINK LEVEL

ITERATION 5, LINE LEVEL ITERATION 5, LINK LEVEL

ITERATION 20, LINE LEVEL ITERATION 20, LINK LEVEL

'Fig. 3: Hierarchical system operating on the image in Fig. la. The LINK process is displayed together
with the underlying LINE labels. Note that the uncertainty in the LINE labels has been removed
by the LINK process.

115

I

I
I

I
-I

. 1

I

ITERATION 1

ITERATION 5

ITERATION 2

..... ,'\.''\~' '" ,,-.1_--,:s;._--,"'"'"l"'---,:s;,.-, .
.. • ... 'iti. "l,11,. ·,,,;. '-,, 1, "111... "'J~."\JL-:\lL~l"\IL~~ . : . : >: ' " ' ' ' L ' ' " ' • ' L- , L . , ~-" N (SJ .
k •

1
•, 11 11 1, 1r lr ,r · ,r---,: [~

[~ : f NNNNNNtslN J f N -
l' . ' [N N L ,c ~ N (SJ l [N
:~ ! N I · .. " .. · [N I ! N
l • •• . i r~ i ! N N l [N I ! N
~< • i ~-.J I f NN J [rsJ J [N
~'< : l ~J J . • .. , 1 [rsJ J ! N
f'.: ! t ~J N, , , ,, , ~, l'SJ l"J 1 [N
~ : i NNN~NNNN J [N
f\: I ' " H .. , • _, L , ~. H . _,, ' [N
N'.\ ·NN
NNf'Jt:-:JNNNNN~NNt:--JC:-J

ITERATION 20

·Fig. 4: An RLP for labeling EDGE, INTERIOR, and NOISE points. The INTERIOR labels are displayed
as boxes, and the EDGE labels are displayed with the appropriate orientation. The original
image consisted of three nested squares.

116

PHOTOMETERIC STEREO: A REFLECTANCE MAP TECHNIQUE

FOR DETERMINING

OBJECT RELIEF FROM IMAGE INTENSITY

Robert J. Woodham

Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Introduction

Work on image understanding has led to a need to

model the imaging process. One aspect of this concerns the

geometry of image projection. Less well understood is the

radiometry of image formation. Relating the intensity values

recorded in an image to object relief requires a model of the

way surfaces reflect light.

A reflectance map is a convenient way to incorporate

a fixed scene illumination, object photometry and imaging

geometry into a single model that allows image intensity to be

related directly to surface orientation. This relationship is not

functional since surface orientation has two degrees of freedom

and image intensity provides only one measurement. Local

surface topography can not, in general, be determined by the

intensity value recorded at a single image point. In order to

determine object relief, additional information must be

provided.

This observation has led to a novel technique called

photometric stereo in which surface orientation is determined

from two or more images. Traditional stereo techniques

determine range by relating Images of an object viewed from

two directions. If the correspondence between picture elements

is known, then distance to the object can be calculated by

triangulation. Unfortunately, it is difficult to determine this

correspondence. The idea of photometric stereo is to vary the

direction of the incident illumination between successive views

while holding the viewing direction constant. This provides

enough information to determine surface orientation at each

picture element. Since the imaging geometry does not change,

the correspondence between picture elements is known a priori.

This stereo technique is photometric because it uses the

Intensity values recorded at a single picture element, In

successive views, rather than the relative positions of features.

117

The Reflectance Map

The fraction of light reflected by a surface in a

given direction depends upon the optical properties of the

object material, the surface microstructure and the spatial and

spectral distribution and state of polarization of the incident

light. A key photometric observation is:

No matter how complex the distribution of incident

illumination, for most surfaces, the fraction of the incident

light reflected in a particular direction depends only on

the surface orientation.

The reflectance characteristics of an object material

can be represented as a function 4> (i, e, g) of the three angles

i, e and g defined in figure I. These are called, respectively, the

incident, emergent and phase angles. The angles i, e and g are

defined relative to the object surface. 4>(i,e,g) determines

the fraction of the incident light reflected per unit surface area,

per unit solid angle, in the direction of the viewer.

If the equation of a surface is given explicitly as:

z = f(x,y)
then a surface normal is given by the vector:

[af(x,y)/ax,af(x,y)/ay,-1].

If parameters p and q are defined by:

p = ar(x,y)/ax
q = ar(x,y)/ay

then the surface normal can be written as [p, q, -1]. The

quantity (p, q) is called the gradient, and gradient space is the

two-dimensional space of all such points (p, q). Gradient space

is a convenient way to represent surface orientation. It has

been used In scene analysis [Mackworth 73). In image analysis,

It Is used to relate the geometry of image projection to the

radiometry of Image formation [Horn 77).

. J

,1

Image forming systems perform a perspective

transformation [figure 2(a)). If the size of the objects in view

is small compared to the viewing distance, then the perspective

projection can be approximated as an orthographic projection

[figure 2(b)). Consider an image forming system that performs

an orthographic projection. To standardize the imaging

geometry, it is convenient to align the viewing direction with

the negative z-axis. Assume appropriate scaling of the image

plane so that object point (x,y,z) maps onto image point

(u, v) where:

U = X

V : y.

An important simplification inherent in the

assumption of an orthographic projection is that the viewing

direction, and hence the phase angle g, is constant for 311 object

points. Thus, for a standard light source and viewer geometry,

the fraction of incident light reflected depends only on gradient

coordinates p and Q.

Further, suppose each object point receives \he same

incident illumination. Then, the amount of the incident light

reflected in a particular direction depends only on the surface

orientation. The assumption that the size of the objects is

small compared to the viewing distance allows one to relate the

amount of light reflected per unit solid angle in the direction

of the viewer directly to image intensity. Thus, for the given

imaging geometry, for a given distribution of incident

illumination and a given object material, the image intensity

corresponding to a surface point with gradient (p, q) is unique.

The reflectance map R(p, q) determines image

· intensity as a function of p and q. A reflectance map captures

the surface photometry of an object material for a particular

light source, object surface and viewer geometry. It explicitly

incorporates . both the geometry and radiometry of Image

formation into a single model.

If the viewing direction and the direction of incident

illumination are known, then expressions for cos (i), cos (e)

and cos(g) can be derived in terms of gradient space

coordinates p and q. Suppose vector [Ps, qs, -1] defines the

direction of incident illumination. Then:

cos(i) =
1 + PPs + QQs

/ 1 + P/ + q/ /1 + p2 + Q2

1
cos(e) =

Ji+ Pz + qz

118

These expressions allow one to transform an arbitrary surface

photometric function cl> (i, e, g) into a reflectance map function

R(p,q).

Reflectance maps can be determined empirically,

derived from phenomenological models of surface reflectivity

or derived from analytic models of surface microstructure. One

simple, idealized model of surface reflectance is given by:

cl>a(i,e,g) = p cos(i)

This reflectance function corresponds to the phenomenological

model of a "Lambertian" reflector which appears equally bright

from all viewing directions. Here, p is an "albedo" factor and

the cosine of the incident angle accounts for the foreshortening

of the surface as seen from the source. The corresponding

reflectance map is given by:

A second reflectance function, similar to that of

materials in the maria of the moon and rocky planets, is given

by:

cl>b(i,e,g) = p cos(i)/cos(e)

This reflectance function corresponds to a surface which, as a

perfect diffuser, reflects equal amounts of light in all directions.

The cosine of the emergent angle accounts for the

foreshortening of the surface as seen from the viewer. The

corresponding reflectance map is given by:

Reflectance maps are independent of the shape of

the objects being viewed. To emphasize that a reflectance map

is not an image, it is convenient to present R(p, Q) as a series of

"iso-brightness" contours in gradient space. Figure 3 and

figure i illustrate the two simple reflectance maps Ra (p, Q) and

Rb (p, Q) defined above.

Reflectance Map Techniques

Using the reflectance map, the basic equation

describing the image-forming process can be written as:

l(x,y) = R(p,q) (1)

This equation has been used in image analysis to explore the

relatiomh.ip bet.ween .image intensity and object relief.
Determmmg object rehef from image intensity is difficult

because (l) Is underdetermined. It Is one equation in the two

unknowns P and q. In order to determine object relief,

additional assumptions must be invoked.

Reflectance map techniques help make these

assumptions explicit. For certain materials, such as the material

of the maria of the moon, special properties of the reflectance

map simplify the solution [Horn 75] [Horn 77]. Other methods

to determine object relief from image intensity embody

assumptions about surface curvature [Horn 77] [Woodham 77].

"Simplified" surfaces have been proposed for use in computer

aided design [Huffman 75]. When properties of surface

curvature are known a priori, these can be exploited in image

analysis [Woodham 78]. This is useful, for example, in

industrial inspection since there are often constraints on surface

curvature imposed by the drafting techniques available for part

design or the fabrication processes available for part

manufacture. One purpose of these studies is to deepen our

understanding of what can and can not be computed directly

from image intensity.

Other reflectance map techniques use (l) directly to

generate shaded images of surfaces. This has obvious utility in

graphic applications including hill-shading for automated

cartography [Horn 76] and video input for a flight simulator

[Strat 78]. Synthesized Imagery can be registered to real

imagery to align images with surface models. This technique

has been used to achieve precise alignment of LANDSAT

Imagery with digital terrain models [Horn &: Bachman 77].

Photometric Stereo

Photometric stereo is a novel reflectance map

technique which uses two or more images to solve (1) directly.

The idea of photometric stereo is to vary the direction of

incident illumination between successive views while holding

the viewing direction constant. Suppose two images I 1 (x, y)

and I2(x,y) are obtained by varying the direction of incident

illumination. Since there has been no change in the imaging

geometry, each picture element (x,y) in the two Images

corresponds to the same object point and hence to the same

gradient (P, q). The effect of varying the direction of incident

illumination Is to change the reflectance map R(p, q) that

characterizes the imaging situation.

Let the reflectance maps corresponding to 11 (x,y)

and I2(x,y) be R1 (p,q) and R2(p,q) respectively. The two

views are characterized by two independent equations:

119

I
1
(x,y) = R1(p,q) (2)

I
2

(x,y) = R2(p,q) (3)

Two reflectance maps R1(p,q) and R2(p,q) are required.

But, if the phase angle g is the same in both views (i.e., the

illumination is simply rotated about the view vector), then the

two reflectance maps are rotations of each other.

For reflectance characterized by Rb (p, q) above, (2)

and (3) are linear equations so that two views are sufficient to

uniquely determine surface orientation at each image point

(provided the directions of incident illumination are not

collinear). Here, (2) and (3) suggest that a 90° angle between

the directions of incident illumination would be optimal for

photometric stereo.

In general, equations (2) and (3) are nonlinear so

that more than one solution is possible. One idea would be to

obtain a third image

I 3(x,y) = R3(p,q) (4)

to overdetermine the solution.

For reflectance characterized by Ra (p, q) above,

three views are sufficient to uniquely determine surface

orientation at each image point [Horn 78]. Let

I = [I
1

, I
2

, I 3]' be the column vector of intensity values

recorded at a point (x, y) in each of the three views (' denotes

vector transpose). Further, let

n1 = [n11,n12,n13l

n2 = [n21,n22•"23l

n3 = [n31•"32•"33l
be unit vectors which point in the direction of the three

positions of the incident illumination. Construct the matrix N

where:

N = 21 n22 n23

31 n32 n33 f 11 n12 n1~

Let n = [n 1,nz,n3]• be the column vector corresponding to a

unit surface normal at (x,y). Then,

I = p N n

so that, p n = N-1 I

(provided the inverse N- 1 exists). This inverse exists if and

only if the three vectors n 1, n 2 and n 3 do not lie in a plane.

In this case,

p=ln- 1 11

n = (l/p)W 1 I

and

(5)

Unfortunately, since the sun's path across the sky is planar, this

simple solution does not apply to outdoor images taken at

different times during the same day.

Equation (5) suggests that three mutually orthogonal

directions of incident illumination would be optimal for

Lambertian reflectance. In any stereo technique, however, there

is some trade-off to acknowledge. In photometric stereo,

choosing a larger phase angle g leads to more accurate

solutions. At the same time, a larger phase angle causes a

larger portion of gradient space to lie in the shadow region of

one or more of the sources. A practical compromise is achieved

by using four light sources and a relatively large phase angle.

Solutions are accurate and most of gradient space lies in

regions illuminated by at least three of the sources. Three

image intensity measurements overdetermine the set of

equations and establish a unique solution.

The images required for photometric stereo can be

obtained by explicitly moving a single light source, by using

multiple light sources calibrated with respect to each other or

by rotating the object surface and imaging hardware together

to simulate the effect of moving a single light source. The

equivalent of photometric stereo can also be achieved in a

single view by using multiple illuminations which can be

separated by color.

Photometric stereo Is fast. It has been developed as

a practical scheme for environments in which the nature and

position of the incident illumination is known or can be

controlled. Initial computation is required to determine the

reflectance map for a particular experimental situation. Once

calibrated, however, photometric stereo can be reduced to

simple table lookup and/or search operations.

Applications of Photoinetric Stereo

Photometric stereo can be used in two ways. For a

given image point" (x, y), equations (2) and (3) can be used

to determine the corresponding gradient (p, q). Used in this

way, photometric stereo is a general technique for determining

surface orientation from image intensity. Figure 5 illustrates

the reflectance map contours obtained from synthesized images

of a sphere using a three source configuration.

For a given gradient (p, q), equations (2) and (3)

can also be used to determine corresponding image points

(x,y) . Used In this way, photometric stereo is a general

technique for determining points In an image whose

corresponding object points have a particular surface

orientation. Figure 6 illustrates the image intensity contours

120

obtained from synthesized images of a sphere using a three

source configuration.

This latter use of photometric stereo is appropriate

for the so called industrial bin-of-parts problem. The location

in an Image of "key" object points Is often sufficient to

determine the position and orientation of a known object tossed

onto a table or conveyor belt.

A particularly useful special case concerns object

points whose surface normal directly faces the viewer. Such

points form a unique class of image points whose intensity

value is Invariant under rotation of the incident illumination

about the view vector (i.e., a change in direction of i11umination

which preserves the phase angle gl. Thus, it is possible to

locate such object points without explicitly determining the

reflectance map R(p,q) . Whatever the nature of the function

R(p,q), the value of R(O,O) is not changed by rotation about

the gradient origin. Figure 7 repeats the example given in

figure 6 but for the case p = 0, q = 0.

Ad nowledgements
This work describes research done at the Artificial

Intelligence Laboratory of the Massachusetts Institute of

Technology. Support for the laboratory's artificial intelligence

research is provided in part by the Advanced Research

Project's Agency of the Department of Defence under Office

of Naval Research contract NOOOM-75-C-0643.

References

Horn, B. K. P. (1975), "Obtaining Shape from Shading

Information", in The Psychology of Computer Vision,

P. H. Winston (ed.), McGraw-Hill, pp 115-155, 1975.
Horn, B. K. P. (1976), "Automatic Hill-Shading Using the

Reflectance Map", (unpublished), 1976.

Horn, B. K. P. (1977), "Understanding Image Intensities", in

Artificial Intelligence, Vol 8, pp 201-231, 1977.

Horn, B. K. P. & Brachman, B. L. (1977), "Using Synthetic

Images to Register Real Images with Surface

Models", AI Memo 437, M.I.T. AI Laboratory,

August 1977.
Horn, B. K. P. (1978), "Three Source Photometry", (personal

communication), 1978.

Huffman, D. A. (1975), "Curvature and Creases: A Primer on

Paper", in Proc. of Conj. on Computer Graphics.

Pattern Recognition and Data Structures, pp 360-370,

1975.
Mackworth, A. K. (1973), "Interpreting Pictures of Polyhedral

Scenes", In Artificial Intelligence, Vol 4, pp 121-137,

1973.

Strat, T. M. (1978), "Shaded Perspective Images of Terrain",

AI Memo 463, M.I.T. Al Laboratory, March 78.

Woodham, R. J. (1977), "A Cooperative Algorithm for

Determining Surface Orientation from a Single

View", in Proceedings of IJCA/·77, pp 635-641,

August 1977.

Woodham. R. J. (1978), "Reflectance Map Techniques for

Analyzing Surface Defects in Metal Castings",

TR-457, M.I.T. Al Laboratory, (in press).

, ' I'/ .Source -o:::. -
/ ,,,

Viewer

Figure 1 Defining the three photometric angles 1, e and g. The incident angle 1 is the angle between the

Incident ray and the surface normal. The view angle e is the angle between the emergent ray and the

surface normal. The phase angle g is the angle between the incident and emergent rays.

y

y

Or~o9,-o.ph1c.. Pro,iec.:hon

u. ..)(tr• 't

Figure 2 Characterizing image projections. Figure 2(a) illustrates the well-known perspective projection.

[Note: to avoid image inversion, it is convenient to assume that the image plane lies in front of the lens

rather than behind it.] For objects that are small relative to the viewing distance, the image projection can

be modeled as the orthographic projection illustrated In figure 2(b). In an orthographic projection, the

focal length f ls Infinite so. that a ll rays from object to image are parallel.

121

.i

•I

I

" 0,0 0,1 0,:l 0.3 o 0.5

-J,0 p

Figure 3 The reflectance map R
8
(p,q) for a Lambertian surface illuminated from gradient point

p5 = 0. 7 and q 5 = 0 .3 (with p = 1.0). The reflectance map Is plotted as a series of contours (spaced 0.1

units apart).

Figure 4 The reflectance map Rb(p, q) for a perfect diffusing surface Illuminated from gradient point

p
5

= 0. 7 and q
5

= 0 .3 (with p = 1.0). The reflectance map Is plotted as a series of contours (spaced 0.1

units apart).

122

.a.o iJ.O p

-,.o

-a.o

\

Figure 5 Determining the surface orientation (p,q) at a given image point (x,y). Three (superimposed)

reflectance map contours are intersected where each contour corresponds to the intensity value at (x,y)

obtained from three separate images (taken under the same imaging geometry but with different light

source position). I 1(x,y) = 0.942, I 2(x,y) = 0.723 and I3(x,y) = 0.505.

y

X

-•o-o

Figure 6 Determining image points (x, y) whose surface orientation is a given gradient (p, q) . Three

(superimposed) Image Intensity contours are intersected where each contour corresponds to the value at

(p, q) obtained from three separate reflectance maps. (Each reflectance map characterizes the same

imaging geometry but corresponds to a different light source position.) R1 (p, q) = 0. 974,

Rz(p,q) = 0.600 and R3(p,q) = 0.375.

12 3

. I

. I

y
~.o

X

-~.o

Figure 7 Determining image points whose surface normal directly faces the viewer. Three (superimposed)

image intensity contours are intersected where each contour corresponds to the value at (0, 0) obtained

from three separate reflectance maps. (Each reflectance map characterizes the same imaging geometry but

corresponds to a different light source position.) Note that the reflectance map value at (O, O) does not

change with light source position (provided the phase angle g is held constant) .

1 24

Image Segmentation and Inter~retation
Using A Knowledge Data ase

Samir I. Shaheen & Martin D. Levine

Department of Electrical Engineering
McGill University
Montreal, Quebec.

ABSTRACT

This paper overviews and discusses a
model representation and control
structure for a high level component of a
computer vision system. The high level
stage is characterized by the necessity
t o solve subproblems containing large
search spaces, diverse and large sources
of knowledge, and requiring
non-deterministic (possibly in error)
decisions made at various levels in the
analysis. The high level stage adopts
the concept of competition and
cooperation as a basic paradigm for the
system vision strategy. The system uses
a relational database together with a
relational algebraic sublanguage as an
accessing mechanism to both the long and
short term memories. Current knowledge
about the particular picture under study
is stored in the Short Term Memory which
is designed as a communication channel
between the different sources of
knowledge of the system. The Long Term
Memory contains all the relevent
information (syntactic, semantic and
pragmatic) about the class of scenes
under analysis.

1 • INTRODUCTION

This paper introduces a particular
approach to the problem of computer
vision, that is, the problem of
segmentation and interpretation of two
dimensional pictures which are
projections of three-dimensional scenes.
We have adopted a methodology in the
design that stresses the development of
modular processes, each of which is meant
to deal with a major vision subproblem.
These subtasks or modules should be able
to conununicate with each other in order
to implement feedback and to cooperate in
achieving an overall goal. As shown in
figure 1, the system consists of many
independent sources of knowledge which
cooperate through a conunon data structure
(short term memory) to achieve their own
individual processing goals.

At the input, the color picture is

125

segmented into regions containing pixels
whose primary features (such as color and
texture) are similar using a pyramidal
region growing method described in
(Levine 78) . This method is based on a
shared nearest neighbor clustering
technique (Jarvis et al. 73) modified by
a connectivity requirement and applied
through a pyramidal data structure
(Tanimoto et al. 75) . It is relatively
insensitive to absolute thresholding, and
all pixels at every level of the pyramid
are examined in parallel and not in a
prespecified order. This low level
processing stage of the analysis can be
looked upon as a means of reducing the
number of individual entities to be
analyzed at the higher levels, thereby
facilitating data handling and storage.
Typically, it may result in a comoression
from the 128 x 128 pixels in the input
(red, green and blue intensity planes) to
the order of one to two hundred regions.
The latter are then the input to the
higher processing stages.

Beginning with these regions,
Section 2 deals with the short term
memory which embodies the current
knowledge about the oicture under
consideration. Section 3 briefly
discusses the relational algebraic
sub language which is employed in
conjunction with the relational database.
This type of data structure is used to
implement both the Short Term and Long
Term Memories, the latter discussed in
Section 4. Finally, Section 5 describes
the high level processor which is
concerned with the interpretation
strategy for achieving the system goals.

2. SHORT TERM MEMORY (STM)

Due to the diversity of the various
sources of knowledge needed to analyze
comolex natural scenes, as well as their
dynamic interaction, the vision system
must be modular in nature. This implies
that each source of knowledge should be
designed as a module that has access to
the necessarv information for achieving
its processing tasks, as well as the
results (often partial) from other

.I
I

I
. 1

sources. Each module should be able to
transmit its own conclusions regarding
the scene under consideration to the
other parts of the system. This allows
for the possible parallel operation of
the different sources as well as the
ability to develop the system in stages.
Because of these requirements, and
motivated by the HEARSAY speech
understandinq system (Reddy et al., 73a,
73b, Lesser et al. 74), the Short Term
Memory (STM) in figure 1 was introduced
as a bvffer or communication channel
between the different sources o~
knowledge. This memory facilitates the
desired interaction by allowing each
source to transmit (broadcast) its own
results, and to have access to both the
information about the scene under study
and all the deductions made by the other
sources of knowledge. To achieve this,
each new source needs only be aware of
the overall STM structure and the
communication languaqe to and from the
STM. Because of the modularity property,
it is not affected by the previously
installed sources or the removal or
reformulation of some of them. we note
that each source of knowledge may define
a specific data structure (in our case
relations) to provide and communicate
specific information (e.g . the occlusion
analyzer).

The STM is designed and implemented
as a relational database (Shaheen 78)
that maintains information about the
scene such as the current segmented
regions and their associated feature
descriptions (see Relation 1). Structur al
relationships, as embodied by topological
constraints among the regions, are also
included (see Relations 2 and 3). In
addition, associated with each region is
a list of possible interpretations as
deduced by the different modules of the
system (see Relation 4). These lists of
interpretations are ordered to reflect
the current state of knowledge, as well
as the focus of attention of the
analysis.

The region features and the
structural relationships prevailing among
the reqions are generated by the feature
analyzer shown in figure 1. This module
has access not only to the basic image
planes (red, green, blue and texture
description), but also to the pyramidal
data structure generated by the low level
processor (Nazif 78). Moreover, it is
capable of generating new regions by
merging other regions and then updating
the appropriate STM relations.

The order of the regions in the STM
is important as it controls the focus of
attention of the high level processor.
The latter scans the STM and examines the
first region it finds satisfying specific
conditions described in Section 5.2. The

126

hypotheses associated with this region
are tested and their corresponding
confidences are updated to reflect the
current overall knowledge about the
scene. The STM regions are then
reordered, thereby directing the system's
attention to a different part (region) of
the scene under study.

3. RELATIONAL ALGEBRAIC SUBLANGUAGE

A relational algebraic sublanquaqe
has been defined and implemented to act
as an accessing mechanism to be used by
the different modules of the system
(Shaheen 78). Such operations as JOIN,
PROJECT and RESTRICT, together with UNION
and INTERSECTION, are avail~ble to be
used bv the sytem modules or by the human
operator. during both the learning and
experimentation stages. A detailed
introduction to the relational database
and the algebraic sublanguage can be
found in (Date 74).

The usage of the relation~!
algebraic sublanguage facilitates and
guarantees the independence and
modularity of the system modules. I~
also relieves the individual modules of
the task of database administration and
the problems associated with a particular
physical storage device for the knowledge
base. Each module can define temporary
or permanent relations without
interfering with the other modules. This
is because all system relations are in
the third normal form (Date 74), thereby
providing an adequate level of data
integrity. This data structure
simplifies the task of the designers of
the different modules as it pertains to
the available computer resources. The
only knowledge required by them are the
particular relation formats and the
relational algebraic sublanguage.

4. LONG TERM MEMORY (LTM)

The Long Term Memory is also a
relational database that contains all of
the relevent information (syntactic ,
semantic and pragmatic) about the class
of scenes under analysis. Initially we
have concentrated on pictures which can
be analyzed on the basis of two
dimensional models and do not require the
third dimension which provides the depth
information. A method of using monocular
depth cues to compute the n~cessary three
dimensional information is under study
(Rosenberg 78). The data regarding the
world models and their constituents are
entered into the Long Term Memory by
means of a learning phase • They are
accumulated by computing (with the aid
of the h..man operator) different object
features over a set of representative
images of the visual world under study.
The attributes of each object (or part
of an object) in the world model are

entered into the relation OBJECT
~TTRIBUTES. By object (or part of an
object) we do not only refer to entities
that are generally quite well defined by
their shape, such as a "door" or a "car",
but also to items such as "sky" or
"ground" whose boundaries need to be
delineated in each image. LTM relations
exist to inform the system modules, such
as the hypothesis initialization module,
of the distinguishable features of each
object as well as the acceptable
variations in these features.

Conceptual classes such as
QUALIFYING, LOCATIONAL, JOINING,
INTRUSION, DIVISION and CONTAINMENT as
described in (Firshein 71), may be
defined by a set of relations (see
Relations 5 and 6). Contextual cues
about the visual world under study are
used by the different modules of the
system to achieve their processing goals.
As an example, consider the LOCALIZING
conceptual class, or as it is often
referred .to. the complexity predicate
(Firshein 71), which is shown in Relation
6. It can be extremely powerful in
limiting subsequent search after a
particular object (or part of an object)
has been recognized. Most probably it
would be used in conjunction with
information appearing in other relations
such as, for example, constraints about
spatial relationships (e.g. the fact that
the "sky" may be adjacent and above the
•roof" but cannot be adjacent to a
•door"). These constraints are coded in
a specified format and stored in
different LTM relations.

The above LTM relations are employed
by the system in directing the processing
of the various sources of knowledge of
the system. In general, they consist of
tuples. where each tuple T is a
conditional statement composed of zero or
more condition elements (constraints) and
zero or more action elements. The
hypothesis tester uses a group of these
relations to evaluate and update
interpretation confidences of the region
under considerat!bn. We refer to such a
condition-action group as a rule, and
note that it includes information
regarding syntactic, locational and
relative position constraints. The
latter specify and determine the
compatibility of each hypothesis of a
region Rx with the beat available
interpretation for the regions in its
immediate neighborhood. For example, a
relation is used to store spatial
constraints which are matched against an
input pattern. Here, matching implies
that the system is able to verify the
hypothesis ' that any two regions R1 and R2
with interpretations I1 and I2 are
compatible (i.e. satisfies all of the
constraints associated with the rules
that contain I1 and I2 as adjacent

objects). In case of a match (R1 and R2
are compatible), the hypothesis tester
executes an action associated with the
matched constraints, which tends to
increase the confidence of the tested
pattern. The hypothesis tester is
described in more detail in Section 5.1.

Another set of relations in the LTM
is used to direct the focus of attention
of the system. In general, they specify
an action or a set of actions to be
excuted in certain situations. The
situation-action pair, also termed a
rule, is specified as a conditional
statement in the form of:

S(C1 ••• Ci. •• Cn1) ---> (A1 ••• Aj ••• Am1)

where Ci is the i-th condition element
and Aj is the j-th action to be excuted
provided n1~0 and m1)0.

The focus of attention module finds
the first situation in the LTM that
matches the current knowledge about the
scene (STM knowledge) and excutes its
associated actions. We note the
importance of the order of the
situation-action pairs in the LTM
relations. Of course, other more
intelligent search strategies for a
matching situation may be introduced.
Here we should also point out that
default action• are excuted when no other
situation is true. This is specified by
having an action associated with a null
situation (situation with zero
conditions) as the last situation
examined. The situation-action pairs are
used to specify heuristic PLANS, activate
other system modules or update the
current knowledge about the scene. The
following are some examples of these
situations and their associated actions:

(i) If •door• was the best
interpretation of the current region
Rx under consideration with
confidence Cx greater than some
threshold, and region Rx contains
some other region Ry, then the
action of the system would be to
increase the . confidence of the
hypothesis indicating that region Ry
is a •doorknob•.

(ii) If two adjacent regions have
the same best interpretation (e.g.
•sky•) with confidence greater than
some threshold, then the system's
action would be to activate the
merging module as well as the
feature analyzer to update the
appropriate relations.

Section 5.2 describes
structure in light Of
and the effect on the
of the system.

the system control
this set of rules
focus of attention

127

I

' ' ·. I

, I

A significant aspect of this
approach is that the knowledge base (LTM)
can be easily edited to change any of
these relations (e.g. contextual cues,
spatial constraints, condition-action and
situation-action relations) thereby
providing the system user w .th a powerful
experimentation tool for testing
different strategies and approaches.

5. CONTROL STRUCTURE
and

INTERPRE·rATION STRATEGY

5.0 Initialization

The high level processing stage
starts by generating a number of
hipotheses for each region. The object
hypothesizer is initially invoked to
obtain a preliminary set of hypotheses
(interpretations) for each of the regions
in the STM. Using an exhaustive search,
these are considered independently as
candidates for matching with objects in
the LTM in order to generate a set of all
possible hypotheses about each of the
regions. Use · is made of various LTM
relations that describe the
distinguishable features of each object,
as well as the acceptable variations in
these features, to determine all the
possible hypotheses about the region·.
Hypotheses (interpretations) for each
region, together with their respective
matching confidences, are entered in the
STM in decreasing order with respect to
their confidence. Moreover, the regions
in the STM are also ordered using any
feature (e.g. area, position or
intensity) initially specified by the
system user. This allows the user to
direct the focus of attention of the
system by specifying which region should
be examined first by the system (e.g. the
largest region or the brightest region).
Starting with this region, the analysis
proceeds using the hypothesis tester and
focus of attention modules as will be
described in Sections 5.1 and 5.2.

5.1. Hypothesis Tester

The high level processor employs the
concepts of competition and cooperation
as a basic paradigm for the system vision
strategy (Arbib 75). The system uses the
competition between the possible
hypotheses for a particular region and
the competition and cooperation between
the immediate neighbors of the region in
order to achieve a global compatible
interpretation of all of the regions.
Basically, it employs local information
from the immediate neighborhood of a
region to obtain a global understanding
of the whole scene (Zucker 76, 78, Waltz
72).

.Assume that region Rx is the region

on the top of the STM. Let us define the
following

Ix (k)

ex (k)

Rj

IRj

CRj

ARj

SRj

J (Rj ,Rx)

is the k-th interpretation
of regain Rx where 1)k)n (n is
the number of - - active
interpretations of region Rx);
is the confidence of the k-th
interpretation of Rx;
is the j-th immediately
adjacent region to Rx where
1~j>m (m is the number of
actjacent regions);
is the current best
interpretation of region Rj ;
is the confidence that region
Rj is interpreted as object
IRj;
represents the attributes of
region Rj;
represents the structural
relationships associated with
region Rj;
represents the adjacency of
region Rj to region Rx, defined
as the ratio of the common
boundary of Rj and Rx divided
bv the total perimeter of Rx
(O~J(Rj,Rx)~1).

As described in Section 4, the
rules are of the condition-action type.
First, the system considers the best
interpretation of each of the neighboring
regions of Rx (IRj), their confidences
(CRj), the adjacent regions' attributes
(ARj), and the structural relationships
with respect to region Rx and to the
other regions (SRj) . Using these data,
together with the attributes of region
Rx, the hypothesis tester (figure 1)
examines the compatibility of the
interpretation of region Rx as object
Ix(k) with its immediate adjacent
regions' current best interpretaion IRj.
This is accomplished by applying all the
constraints associated with
interpretations Ix(k) and IRj as adjacent
objects . If all of these constraints are
satisfied, the action of the system is to
increase the confidence Cx(k) of region
Rx as being object Ix(k), otherwise Cx(k)
is decreased, as will be shown later.
This operation is achieved by the
hypothesi s tester which tests the
validity of of the different hypotheses
about region Rx and updates them to
reflect the influence of its immediate
neighbors . The interpretation list of
region Rx is then reordered on the basis
of decreasing confidence. An
interpretation of region Rx may be
deactivated (not considered in subsequent
examinations of the region) if it is
found to be incomoatible with the
neighboring regions (e.g. its confidence
is less than some threshold). At a
certain point in the analysis, each
region will be left with one active
hypothesis which is the best possible
compatible region with its adjacent

128

regions. If more
exists, the
interpretation
confidence.

than one interpretation
system employs the
with the highest

Analytically, the system ex~mines
each interpretation Ix(k) of region Rx
and all the other scene knowledae as
described above to calculate ~Cx(k) as
follows:

Acx(k)=
J=n
'L
j=1

6. . J(Rj,Rx) • C
JX Rj

where 0..,, is set to 1 if the hypothesis
tester un is able to verify the
compatability of regions Rx and Rj
interpretations as objects Ix(k) and IRj
using the constraints in the LTM
relations and the current knowledge about
the scene under study: otherwise &~ is
set to -1.

The new unnormalized confidences of
the different interpretations of region
Rx are defined as:

• ACX (k)
Cx(k)=Cx(k). (1+ ~~~~~~~--

These are then normalized as follows:

•
ex (kl

Cx(k)=~~~~~~~-

~ I ~x(kil
k=1

If any of the interpreation
confidences is found to be less than some
threshold (i.e. Ix(k) is voted to be
incompatible with its neighbors),
interpretation Ix(k) of region Rx is
deactivated. That is, it is not
considered in the subsequent examinations
of region Rx.

After the hypothesis tester updates
the interpretation confidences of region
Rx, the focus of attention module
examines the current knowledge about the
scene (i.e the STM knowledge with the now
updated information about region RX) to
direct the next processing stages and the
co...rse of action to be taken to achieve
the overall processing goal o! the
system.

5.2. System Focus of Attention

The analysis described in Section
5.1 is always followed by the activation
of the focus of attention module. As
described in Section 4. this module
operates within a control framework
called recognize-act cycle. First it

129

scans the set o~ situations specified in
the LTM in attempt to find the situation
that has all of its conditions satisfied
with respect to the current knowledge in
the STM. It then excutes all of the
actions associated with the satisfied
situation. In most cases the conditions
are expressed in terms of the best new
interpretation of region Rx (top region
on the STM), its attributes, structural
relationships and global knowledge about
the scene. The actions may be one or
more of the following:

i- Reordering of the regions in the
STM to direct the system foc~s of
attention to a different part of the
image. This is achieved by moving the
regions to be examined (i.e. the regions
in that specific part) to the top of the
STM.

ii- Updating some other region
interpretaion using the LOCALIZING
conceptual class (Relations 6) after a
particular object has been recognized
with some degree of confidence.

iii- Executing the safest merge, that
is, finding if any of the adjacent
reaions has the same object
interpretation with a confidence greater
than some threshold and then merging
these reqions with region Rx. Merging
regions will also activate the feature
analyzer to update region boundaries and
to calculate the new attributes of the
region as well as its structural
relationships to other regions already in
the STM. This new information is then
inserted into the appropriate STM
relations.

iv- Implementating a PLAN which is
stored as a procedure or matching another
set of situation-action rules. This
allows for a hierarchical structuring of
the control.

v- Feeding back to the low level
processing stages.

In case the STM has not been reordered
by any of the . actions defined above
(i.e. action i was not triggered), the
high level processor moves region Rx to
the bottom of the STM. In addition, it
places all the immediately adjacent
regions of Rx at the top of the STM in an
increasing order of confidence, thus
allowing the least confident immediate
neighbor of region Rx to be the first
region to be examined next using the more
confident interpretations of its
surrounding regions.

To ensure the propagation of the
interpretations of the region Rx and its
associated confidences before the system
re-examines Rx, a fixed length queue is
introduced to maintain (remember) the

last Ng (t he queue length) regions
examined by the system. Hence region Rx
will be inserted in the queue and the
first element (region) of the queue will
be deleted. The system then proceeds to
consider the next region on the top of
the STM, Rx'. This region is compared
with the elements of t he queue. If Rx'
already exists in the queue, the next
region in t he STM is taken. The process
is repeated until a region Rx' is
selected from the STM which does not
exist in t he queue. This technique
controls the frequency of examination of
each region in t he STM. It also allows
each region's updated interpretations to
affect the other regions' interpretations
before they get updated. In other words,
the effect of t he identification of
region Rx as object Y with a certain
confidence will affect directly its
adiacent neighbors Rj and we should allow
this effect to propagate to the regions
not in the i mmediate neighborhood of Rx
before · re-examining Rx. This also
prevents incorrect local interpretations
in part of the i mage from directing the
system towards an incorrect global
interpretation.

The length of the queue, Ng, will
determine the size of the region
neighborhood that will be affected by the
local information before being influenced
by the global understanding. As the
length of the queue approaches the number
of regions in the STM, the system will go
through an analysis of most of the
regions before returning to a particular
region. On the other hand, if the queue
length is zero, the system may (in
certain situations) continue examining a
set of regions in a small part of the
image using only local information. The
queue length is a focus of attention
parameter determined by the user
depending on the vision strategy being
pursued.

This module also monitors the
changes with time in the confidences of
the various regions. Define ~P to be:

t+1
f:>P

where
t+1
Cx(k)

t
Cx(k)

I t+1 t I
C (k) -C (k)

k=n .. ~
k•1

is the updated k-th
interoretation confidence of
region Rx (region on ton of
STM).

is the old interpretation
confidence fo~ the same
interpretation of reqion Rx.

If t:;.P is not equal to zero, the
process continues as described above. But
if AP is equal to zero during the last Nt

130

region examinations (N t is t he number o f
regions that has more than one
interoretaion) , the process is stopped
and each region is labelled with its
current bdst interpretation.

The above process will continue
until each region has a unique
interpretation compatible with the global
scene understanding. However, it can
also be stopped at any stage, yielding
the best set of interpretations for the
different regions in the imaqe at t he
time.

6. CONCLUSION

In sununary, the previous sections
have described the high level components
of the computer vision system. Due to
the diversity of the various sources of
knowledge needed to analyze complex
natural scenes, as well as their dynamic
interaction, the modularity of the design
has been emohasized. This also allows
the incremental development of such a
complex system. The Short Term Memory,
which is implemented as a relation,: l
database, was introduced to work as a
buffer between the different sources of
knowledge. A relational algeb_aic
sublanguage has been defined to serve as
a commmunication language and accdssing
mechanism between the system modules.

The high level processor is d ,c signed
as a knowledge driven system with two
types of rules, condition-action and
situation-action. These conditions or
sets of conditions and t heir associated
actions are stored in the relational
database as part of the w~rld model.
They form the contextual cues,
constraints, and PLANS used by the system
in the segmentation and interpretation
processes. The rules may be easily
changed using the relational database
editor wnich in turn, gives the user a
very powerful tool for experimentation.

An important aspect of the operation
of the high level processor is that of
the focus of attention. This concept is
employed to direct the analysis to
various parts of the picture according to
well defined criteria and parameters. I n
this way, it is possible to test
different vision strategies.

The computer vision system described
above embodies the paradigm of
competition and cooperation. We have
tested it with the problem of image
segmentation and interpretation of color
outdoor Pictures. The preliminary
experimental results have been
encouraging and an extensive analysis of
the performance of the system is
presently underway.

ACKNOWLEDGEMENTS

This work was partially supported by
the National Research Council of Canada
under grant No. A4156 and the Department
of Education, Province of Quebec. s.
Shaheen was supported by a fellowship
awarded by the Faculty of Graduate
Studies and Research at McGill
University. The authors would like to
thank David Kashtan, Juhan Leemet and
David Ting for their contributions to the
research described in this paper.

REFERENCES

Arbib, M.A., Two Papers on Schemes and
Frames, Coins Tech. Report 75C-9,
Computer and Information Science,
University of Massachusetts at Amherst,
Oct. 1975.

Date, C.J., 1\Il Introduction to Database
Systems, Addison- Wesley Publishing CO.
Inc., Reading, Massachusetts, 1975.

Erman, L.D., Lesser, V.R., A Multi-level
Organization for Problem Solving Using
Many Diverse, Cooperating Sources of
Knowledge, Proc. 4th IJCAI, Tbilisi,
Georgia, Sept. 1975.

Firschein, o., Fischler, M.A., A Study
in Descriptive Representation of
Pictorial Data. 2IJCAI, London, England,
Sept. 1-3,1971.

Jarvis,
Clustering
Based on
Trans. on
1973.

R. A., Patrick, E. A.,
Using a Similarity Measure

Shared Near Neighbour, IEEE
Computers, Vol.C-22, no.11,Nov.

Lesser, V.R., Fennell, R.D .,and Reddy,
D.R., Organization of the HEARSAY II
Speech Understanding System, Proc. IEEE
Symp. Speech Recognition, . Pittsburg,
Pa.,1974. Reprinted in IEEE Trans. on
Acoustics, Speech, and Signal Processing,
ASSP-23,no. 1, Feb. 1975.

Levine, M. D., A Knowledge Based
Computer Vision
Computer Vision System,
A. R. Hanson (eds.),
N.Y., 1978.

System, in
E. M. Riseman &

Academic Press,

Nazif,A., A Survey of Color. Boundary
Information and Texture as Feature for
Low Level Image Processing, Tech. Report
No. 78-7R,Department of Electrical
Engineering, McGill University, Montreal,
Canada, 1978.

Reddy, D. R., Erman, L.D.,and Neely,

131

R.B. (1973a), · A Model and System for
Machine Perception of Speech, IEEE Trans.
on Audio and Electroacoustics, AU-21,
no.3,1973.

Reddy, D.R., Erman, L.D., Fennell,
R.D.,and Neelv, R.B. (1973b), The HEARSAY
Speech Understanding System : An Example
of the Recoqnition Process, Proc.
3IJCAI, Stanford, California, August
1973.

Rosenberg, D., Monocular Depth
Perception for a Computer Vision System,
M.Eng. Thesis, Dept. Electrical
Engineering, McGill University, in
preparation.

Shaheen, s.I., An Implementation of a
Relational Database and an Algebraic
Sublanguage for a Computer Vision System,
Tech. Report No. 78-12R, Department of
Electrical Engineering, McGill
University, Montreal, Canada, 1978.

Tanimoto, s., Pavlidis, T. A., A
Hierarchical Data Structure for Picture
Processing, Computer Grap.,ics and Image
Processing, Vol. 4 , 1975.

Waltz, D.G., Generating Semantic
Descriptions from Drawings of Scenes with
Shadows, Report TR-271, Artificial
Intelligence Laboratory, Massachusetts
Institute of Technology, August, 1972.

Zucker. s.w., Relaxation Labelling and
the Reduction of Local Ambiguities, Proc.
3rd IJCPR, San Diego, 1976.

Zucker, s.w., Local Structure
Consistency and Continuous Relaxation,
Presented at the NATO Advanced Study
Institute on Digital Image Processing and
Analysis, Bonas, France, June 1978.

Knowledge
Representation

(LTM)

High Level Processor

Hypothesis
Tester

Focus of
Attention

Short
Term Memory

(STM)

Feature
Analyzer

Low Level
Processing

Input Image

Hypothesis
Initialization

•
•
•
•
•
•

Occlusion
Analyzer

Figure 1. A Knowledge-Based Computer Vision System

132

Region No.

1

i

----- -
Region X

1
1
5

C C V V M M Area Perimeter
X y X y X y

2 100 110 15 19 1 1 45 42 1077

Relation 1: Region Attributes

(F
1

, F
2

, and F
3

are the average attributes used in the

description of region color (red, green and blue, or

I, Y and Q, or I, Hand S).

Region y

11
12
12

M
X

M
y

- --- -
Region X

- -- --
1
1
2

209

Region y

- - -- -
2
4
3

i j i j

Relation 2: X ABOVE Y Relation 3: X LEFT-OF Y

1 33

. i

----- --------
Region No . No. of Active I(l) C (1) I (2) C (2) I (3) C (3)

Interpretations

----- -------- - -- --
1 3 sky 0.65 roof 0.27 cloud 0.08
2 2 sky 0 .83 roof 0.17
5 1 roof 0.95

i n Ii (1) Ci(l) ,, '.') f ') Ii (3) Ci(3)

----- -------- --- --- --- --- --

Relation 4: Region Hypotheses and Their Confidences

------ ------
Object X Object y

------ ------
wall door
wall window
door doorknob
sky clouds

Relation 5: X CONTAINS Y (CONTAINMENT)

134

----- ----- ----
Obj ect X Object Y

Minimum Maximum
In View In View

----- ----- ----

wall house 2 2
door house 1 any
window house 1 any
doorknob door 1 1

Relation 6: Complexity Predicate
(QUALIFYING: PART-OF)

THE EXTRACTION OF PICTORIAL FEATURES

A.H. DIXON
THE DEPARTMENT OF COMPUTER SCIENCE
THE UNIVERSITY OF WESTERN ONTARIO

LONDON, CANADA

Yoshiaki Shirai demonstrated the feasibility
of the following paradigm for scene analysis:
that the construction of an interpretation for a
scene should guide the location of search and
the type of operations performed on the grey
level data [6] . This paper combines Shirai's
paradigm with some special procedures for pro
cessing digitized images from a television
camera into a system which demonstrates a general
methodology for the recognition of pictorial
features. A side benefit of this approach is
that it encourages economical use of storage,
fast execution, and distributed processing.

The extraction of meaningful information
from the television camera image can be
characterized by four major tasks:

1. initial simplification of picture content
through image partitioning,

2. extraction of visual cues,

3. aggregation of visual cues into putative
pictorial features,

4. verification and refinement of dominant
hypothesi zed pictorial features.

While computations involve every point in
the image, they compute only local properties
and therefore only a small portion of the image
is stored at any one time. An important
feature of the system should be its ability to
verify hypotheses about the existence of par
ticular features by re-examining sample grey
levels from the camera. The result of the
initial computations is a list of some of the
features of the scene. These are used by a
"higher" level system to propose ways of
searching for further features with a "second
look". New features are integrated with pre
viously di scovered features in succeeding
"looks" until no new features are found.

This procedure is not intended to find all
the pictorial features of any given type. On the
contrary, only those features for which strong
evidence has been obtained by two different
detection procedures, namely aggregation and
verification, are hypothesized. In keeping with
the overall scene analysis paradigm, a function
of the construction of an interpretation is to

135

predict the location of weaker pictorial features,
using both the present state of the interpreta
tion and knowledge about the scene domain .

Conceptually, each task can be viewed as a
separate computational procedure requiring as
input the results of the previous task and
generating the inputs for the next task. The
interpretation of scene can then guide the
feature extraction processes by selection of an
appropriate task supplemented by the necessary
inputs which may have been already generated or
subsequently modified. Moreover, if each
process is an independent modul e, then alternate
methods for performing a task can be selected.

To demonstrate the methodology with an imple
mentation, a simple and familiar family of scene
domains has been used; namely those domains where
the primary pictorial features are associated
with straight edges. While this assumption does
not affect the overall paradigm, it does suggest
the importance of finding ways of characterizing
other pictorial features.

IMAGE PARTITIONING

The role of the "first look" at the scene
should be to determine, as quickly as possible, a
sufficient set of visual cues to enable subsequent
procedures to generate a partial description.
This description would then guide more intensive
analysis of certain parts of the image where
closer scrutiny was required. This closer
scrutiny could be obtained through use of avail
able hardware such as a zoom lens on the camera,
or by the selection of. alternate procedures for
examining the grey level data in a particular
area.

The coarse analysis usually involves par
titioning of the image into windows of uniform
size and then performing some computation on each
window. An adaptation of a line parameterization
technique previously described by O'Gorman and
Clowes [3] and Duda and Hart [2] has been
developed to generate visual cues through image
partitioning. This procedure allows for the fast
aggregation in a matrix of all the local evidence
for contrast boundaries. Every point in the
image is associated with some local neighbourhood
of pixels upon which a computation is performed.
One such computation approximates a directional

derivative at the associated point, if the grey
level matrix is viewed as a surface, or function
of two variables. Under this interpretation an
unique line can be associated with each point.
Each entry (p,8) on the matrix corresponds to
the collection of points associated with a line
oriented at an angle e from the horizontal, and
at a distance p from some fixed point in the
image.

Rather than apply this technique to the
entire image, it is applied to each window in
a uniform partition of the image. Local evi
dence at a particular polnt (x,y) is determined
by applying a set of convolution masks to a
region centred at (x,y). Each convolution mask
covers a rectangular neighbourhood of points.
These points are partitioned into two sets and
the magnitude of the difference between the mean
grey levels of each set is computed. The mask
yielding the largest magnitude determines the
orientation e of the local evidence for an edge.
The distance, p, is given by eq.(l),

p = x cose + y sine (lj

and the magnitude is added to entry (p,8) of the
matrix. After the set of masks has been applied
to each point of the window, the largest entry
and its position in the matrix determines the
location and orientation of the dominant vi sual
cue for an edge passing through the window.

It is evident from this a lgorithm that the
visual cues correspond to measures of evidence
for straight edges in the scene. It does not
include mechanisms for generating evidence of
curved edges. On the contrary, curved edges are
viewed as a sequence of short straight edge seg
ments and the existence of such edges would
generate corresponding visual cues.

The result of this algorithm is the genera
tion of one visual cue for each window in the
uniform partition of the image. The selection
of only the dominant visual cue for each window
avoids the issue of deciding whether an entry in
the rho-theta matrix is significant at the
expense of finding fewer edges. Since the goal
is the extraction of edges sufficient to guide
further analysis of the scene, we need only find
enough edges to perform this task successful ly.

CLUSTERING OF VISUAL CUES

The complexity of an algorithm for grouping
together independent visual cues depends on the
scene domain. Being able to exploit knowledge
about the scene is even more important when
there are few visual cues such as those pro
duced by the image partition method above. In
fact, it seems evident that there are not enough
visual cues to be able to propose putative edges
with any confidence unless some simplifications
are inherent in the scene. It is here that the
restriction on the scene domain is exploited.

The visual cues of two windows which are
8-adjacent are placed in the same cluster if their
respective orientations and locations are consis
tent with belonging to a common straight edge.
One such constraint is that the orientations be

136

nearly the same.

The role played by the location or "rho
value" of a visual cue in determining whether
two windows should be grouped together depends on
the relative positions of the adjacent windows as
well as the common orientation. As an example,
two horizontally adjacent windows would not
normally be associated with a common edge if the
orientation of the respective visual cues were
vertical. However, if an edge in the original
scene were coincidentally near the boundary
between two windows, it would provide contribu
tions to the rho-theta matrices of both windows.
This is because the app lication of a convolution
mask to a point near the boundary of a window
will include points outside that window. For
this reason the relative locations of visual cues
within adjacent windows are interpreted in the
context of the nature of the adjacency (horizontal,
vertical, or diagonal).

The perpendicular distance between two
parallel lines corresponding to the visual cues
is computed and compared to the amount that a
convolution mas k overlaps the boundary of a
window. Two adjacent windows are said to belong
to the same cluster provided the respective lines
associated with their dominant visual cues are
parallel and sufficiently close together.

HYPOTHESIZING AN EDGE

A cluster of visual cues may be interpreted
as supporting evidence for a straight edge pas
sing through the windows associated with the
cluster. A point which lies on the edge segment
contained within each window is computed from the
orientation and location of the visual cue. To
the se t of point s a line is fitted which provid es
a first representation of the edge. This
"hypothesized edge" defines a trajectory along
which an appropriate tracking algorit hm can
examine the original camera image to verify the
existence and refine the position and orientation
of the edge. In particular the endpoints of the
edge are located. This provides information
which was not previously available from the rho
theta procedure, being only roughly defined by
the two windows furthest apart in a cluster.

The rho - theta procedure has been used by
Clowes to construct line drawings of scenes in a
puppet world . Hi s algorithm saved the location
of all contrast boundary points contributing to
each entry in the rho-theta matrix . The hypo
thesis of an edge in the scene then required
that sorting and merging algorithms be applied to
sets of points associated with adjacent entries
of the matrix. Additional procedures were
employed to decide whether matrix entries defined
one or more edges.

No re-ordering of a set of points is required
in this implementation, since a tracker is used
instead. The tracking algorithm proposed selects
the three most significant visual cues from a
cluster. As mentioned previously, a putative edge
has already been predicted by a least squares fit
to all the visual cues associated with the cluster.
A convolution mask oriented parallel to the

predicted edge is applied along a path perpendic
ular to the edge and through points associated
with the three strongest visual cues. From this,
three points are found which purportedly lie on
the predicted edge. The tracker now verifies the
existence of an edge through these three points
by proceeding in both directions from the middle
point through the other two until no discontin
uities are detected for a consecutive number of
attempts. The essence of this method is similar
to that proposed by Lerman and Woodham [4] and
provides an accurate means of determining end
points since tracking begins in an area where
the edge is most strongly defined.

IMPLEMENTATION

The methodology suggests a natural division
of the scene analysi s process into two systems.
One system deals with the sampling and manipula
tion of grey level data and the compression of
that data into meaningful units which have been
called visual cues. The second system integrates
these units into an interpretation and dlrects
further sampling and manipulation of the grey
level data. Because of the small volume of infor
mation exchanged between the two systems, it was
appropriate to implement the system on two
computer facilities, one dedicated to image
processing (an INTERDATA 7 / 32 minicomputer),
and one responsible for maintaining an internal
representation of knowledge about the scene
domain (a DECsystemlO timesharing facility).

The present implementation of the image
sampling system consists of a collection of sub
programs for performing the four major tasks
described at the beginning of this paper. A
supervisory program within the image sampling
system is responsible for dispatching requests
from the scene interpretation system. A request
to perform a particular task or sequence of
tasks is made by sending the name of the routine
together with an appropriate set of parameters.

The present objective of the scene inter
pretation system is to construct a complete
line drawing for the scene which does not
conflict with evidence obtained from image
sampling . It is therefore possible for
several alternate line drawings to be con
structed when the scene consists of edges which
are difficult to detect directly. This is
because the constraints for accepting the
hypothesis of the existence of an edge have been
considerably relaxed . The image sampling system
can "hallucinate" edges in places selected by
the scene interpretation system provided there
exists no evidence in either the image or in
the knowledge base about the scene domain which
would contradict such an assumption.

The initial starting point for the construc
tion of a line drawing by the scene interpretation
system is a collection of line segments presented
to it by the image sampling system. A partial
line drawing is constructed by merging appropriate
collinear line segments and by connecting line
segments which appear to have a common vertex.
The criterion for defining a common vertex is
simply that the endpoints of two line segments be

137

within a given distance from one another, rela
tive to the actual lengths of the line segments
involved.

The partial line drawing is used in con
junction with knowledge about the nature of
edges in the scene domain to formulate hypo
theses about the location of missing edges. The
present system is modelled after Shirai [6]
and the first goal is to find the outside bound
ary of the aggregate of objects forming the scene
so that concave and convex vertices can be dis
tinguished. Using Shirai's algorithm edges are
proposed and a task request is made to the image
sampling system for verification. The results of
verification can be "confirmed", "rejected", or
"undetermined", the last category corresponding
to the situation where the edge was not found but
no conflicting evidence was found either. An
example of evidence for "rejection" might be a
contrast boundary oriented differently from the
predicted edge.

The scene interpretation system must decide
whether or not to assume the existence of an
"undetermined" edge. The design of heuristics
for making such decisions is an area of future
research. Presently only two simple strategies
have been explored. When "undetermined" edges
are "rejected" the system performs as Shirai's
algorithm would. This means that unless all
edges are strongly defined, a complete line
drawing cannot be constructed. When "undeter
mined" edges are interpreted as "confirmed",
complete line drawings are almost always con
structed although not always "correctly".

The source of the difficulty is the order in
which edges are proposed by Shirai's strategy.
To avoid the possibility of accepting a large
number of "undetermined" lines, the results of
any circular search must be "confirmed". This
does not preclude the possibility of confirming
the existence of two "undetermined" edges
obtained as extensions of a concave vertex. At
present, an "undetermined" edge is assumed to be
confirmed if the average contrast is reasonably
close to an adjustable threshold. The average
contrast is one of several values returned by
the image sampling system and used by the scene
interpreting system to determine the results of
verification. Although not implemented, a more
satisfactory approach might be to initially ·
accept as "confirmed" the existence of both
extensions of a concave vertex and then subse
quently to "clean up" the completed line drawing
by using knowledge about the scene domain to
reject unlikely lines.

SUMMARY

The partial line drawing generated can be
completed using procedures similar to those
proposed by Shirai [6]. Of particular interest
is the fact that the constraints for accepting
the existence of an edge can be considerably
relaxed. In effect, the system can "hallucinate"
edges in selected places providing there exists
no evidence in the image or in the knowledge
base about the scene domain which would contra
dict such assumptions. By using domain

· I

. I

. 1

' '

dependent knowledge to interpret the partial
line drawing, predictions can be made about the
existence of other edges. Such predictions can
then be verified by subsequent "looks" at the
scene.

REFERENCES

1. R.M. Burstall, J . S. Collins, R.J. Popple
stone, Programming in POP-2,
Edinburgh University Press, 1971.

2. Richard 0. Duda, Peter E. Hart, Pattern
Classification and Scene Analysis, John
Wiley, 1973.

3. P. O'Gorman, M. B. Clowes, Finding Picture
Edges Through Collinearity, Laburatory of
Experimental Psychology, University of
Sussex, 1973.

4. P . Lerman, Robert Woodham, Tracking, New
Progress in Artificial Intelligence, Patrick
Winston (ed .), MIT AD/A-002 272, June 1974.

5. Donald A. Norman, David E. Rumelhart, Explora
tions in Cognition, Freeman, San Francisco,
1975.

6. Yoshiaki Shirai, Analyzing Intensity Arrays
using Knowledge about Scenes, The Psychology
of Computer Vision, Patrick Henry Winston
(ed.), McGraw-Hill, New York, 1975, pp.93-
113 .

138

ASPECTS OF A THEORY OF SIMPLIFICATION, DEBUGGING , AND COACHING

Gerhard Fischer
Massachusetts Institute of Technology

and

John Seely Brown
and

Richard R. Burton
Bolt Beranek and Newman, Inc .

ABSTRACT

Today, millions of people are learning
to ski in just a few days instead of the
months it took to learn twenty years ago. In
this paper, we analyze the new methods of
teaching skiing in terms of a computational
paradigm for learning called increasingly
complex microworlds (ICM) . Examining the
factors that underly the dramatic enhancement
of the learning of skiing led us to focus on
the processes of simplification, debugging,
and coaching. We study these three processes
in detail, showing how the structure of each
is affected by the basic skills required to
perform a task, the equipment involved in its
execution, and the environment in which the
skill is executed. Throughout, we draw
parallels between the process of learning to
ski and learning computer programming and
problem-solving.

Our goal is to achieve insight into the
complex issues of skill acquisition and
design of learning environments - - especially
computer- based ones -- through the analysis
of the intuitively understandable domain of
ski instruction .

1 . INTRODUCTION

The most effective use of computers for
education is to support active learning
environments in domains that previously had
to be learned statically . While some work,
though not nearly enough, has gone into
developing particular environments, much less
has gone into clarifying the general issues
that a ffect the acquisition of a skill i n a
complex environment.(1) Our own wor k ha s led

(1) Although one would ex pect r esearch in the
fields of task analysis and behavioral
objectives to be relevant , it has not been .

139

us to believe that a thorough analysis of
skill acquisition is necessary to augment our
intuitive understanding of the subtleties
involved in designing the next generation of
learning environments .

In this paper, we examine the learning
of an extremely complex skill, skiing,
through the language of computational
learning environments. We have two goals.
One is to explicate the remarkable advances
in the methods of teaching skiing, which have
greatly reduced the time required to learn to
ski . The other is to analyze the features of
the highly successful skiing learning
environment in an attempt to articulate the
fine grain structure of a theory of learning
environments and to identify principles to
guide the design of computer based learning
environments.

The paradigm on which we shall base our
examination of the teaching of skiing is
called "increasingly complex microworlds"
(ICM) , In this paradigm, the student is
taken through a sequence of environments
(microworlds) in which his tasks become
increasingly complex. In the analysis of
skiing, the aspects of the ICM paradigm we
will stress are simplification, debugging,
and coaching , Throughout the discussion, we
will also point out how the learning
experience (as viewed from the ICM paradigm)
has been implemented in skiing by three
fundamental components of the learning
experience: the basic skills required to
perform a task, the equipment involved in its
execution, and the environment in which the
skill is executed. The analysis of skiing

This is in part due to the lack of a precise
computational theory of teaching and
learning, and in part to the lack of
appropriate languages for discussing the deep
structure knowledge representation of a
domain.

·,

I

raises a host of generai questions that
should be asked when designing learning
environments based on the ICM paradigm, For
example, which kinds of simplification can
stand in isolation, and which require
explicit coaching to prevent the induction by
the student of false models that later must
be unlearned? Throughout our analysis, we
shall .draw parallels to skiing from the
domain of learning environments that teach
computer programming and problem-solving.

2. Why Skiing?

Skiing is an extremely complex skill, to
learn and to perform. It is representative
of an important class of real-time control
skills (or data driven skills), where error
correction is essential in order to cope with
deviations and sudden changes in the expected
environment . However, . highly successful
methods have been developed to teach skiing.
This is not true for most other complex
skills. These methods suggest criteria
necessary to design successful learning
environments for other complex skills.. In
addition, skiing provides an intuitively
understandable domain, with which many people
have personal experience . (2) Even nonskiers·
·can relate the examples used in learning to
ski to other physical skills, such as
bike- riding.

2.1 Skiing as a Success Model

Skiing is an instance of a success model
(Papert 1976); it is an example of the
successful acquisition of a complex skill.
In skiing, the conditions of learning are
more important than the total time or mere
quantity of exposure . This implies that the
teaching of skiing has evolved into a highly
successful instructional process. The two
main uses of a success model are:

1. to identify the features that make it
successful

2. to abstract these features and try to
transfer them to less successful
learning situations.

We do not have a complete theory to explain
why the learning process in skiing we.s so
dramatically enhanced during the last twenty
years, but we are convinced that the
following features were of great importance:

o Redefinition of teaching goals
o Improved equipment
o Access to new environments
o Better teaching methodologies and

conceptualizations.

(2) Our knowledge and insights about skiing
are drawn primarily from one of the authors
(Fischer) who has worked as a part-time ski
instructor for many years.

140

We are aware that other factors
influence the learning process besides the
ones we investigate in the following
sections. All ski areas have many expert
skiers around, so that learning can take
place according to the medieval craftsman
~ . This enhances the ability of the less
experienced skier through interaction with
bhe more experienced one.

The person learning to ski is highly
motivated. Skiing is fun. It provides a
wide variety of experiences; every run is
different from the previous run. Skiing is
good exercise . It provides a nice change in
the life style of many people . In addition,
societal pressures contribute to the
motivation to learn to ski, Being a skier is
fashionable . We will ignore the problems of
motivation in this discussion and will assume
that the learner is motivated. Although
motivation is clearly an important
consideration in the design of learning
environments, we shall not address it in this
paper .

We must also note a few of the negative
aspects of skiing : it is expensive, it is
time- consuming, and it can be dangerous. For
these reasons, the task of identifying the
aspects of skiing that make it a success
model becomes even more interesting.

2.3 The ICM (Increasingly Complex
Microworlds) Paradigm Applied to Skiing

The acquisition of a complex skill is
difficult when the starting state and the
final state are too far apart. Good learning
environments, structured according to the ICM
paradigm, provide steppingstones or
intermediate levels of expertise so that
within each level the student can see a
challenging but attainable goal. In skiing,
technological advances and the methodologies
built around these advances make it easy to
get started. This · means that practice (a
task within an intermediate level) is not
considered a form of torture that must be
endured before the learner can enjoy
excellence.

As an example of the ICM paradigm in
skiing, consider a novice learning to ski.
The student begins on short skis over smooth
terrain. The short skis allow him to develop
rhythm, and they make it easier to turn and
get up from a fall. The smooth terrain
limits his speed and reduces the danger. As
the student gains ability within these
constraints, he is given slightly longer skis
and steeper, more complex slopes until he is
using full length skis on uncontrolled
slopes. At each step, the microworld in
which he must perform is made increasingly
complex.

We should point out that the ICM
paradigm may be usefully applied to sports
other than skiing. A large body of knowledge
about skill acquisition is available in the
literature of different sports. The authors
of textbooks for these sports supply a great
deal of knowledge about the critical
components and essential steppingstones for
the complex skills they describe, as well as
awareness of the most common problems and
special exercises to eliminate them ,
However, these authors often lack a
conceptual framework that would allow them to
generalize their knowledge or to structure it
according to different criteria.

We would like to acknowledge the work by
Austin (1974). He analyzed the skill of
juggling in terms of a computational metaphor
and used the resulting analysis to develop
novel methods of teaching juggling. In our
work, we seek to analyze the process of
learning to ski within the framework of the
ICM paradigm, with the goal of expanding the
paradigm.

3, Aspects of a Theory of Simplification

One of the major design decisions within
the ICM paradigm is choosing or generating
appropriate microworlds. The primary means
of generating alternative microworlds is
through simplification. This section
describes a taxonomy of knowledge, methods,
and heuristics that could serve as a basis
for evolving a theory of simplification in
the learning process.

Simplifications are possible in each of
the three major components of the learning
process: the~ required to perform a
simplified version of a task, the eauipment
involved in executing the task, and the
environment in which the task is executed.
Often it is not just one of the components,
but their synergistic interaction, that leads
to powerful learning microworlds.

3,1 The Basic Skills

The designer of a learning environment
can select some beginning microworlds for
developing particular subskills in isolation .
Some of the basic physical skills of skiing
can be taught without skiing. Students can
thus develop these subskills without having
to deal with the interactions and side
effects of the whole aggregate of subskills.
Examples would be : learning a certain
rhythm, strengthening certain muscles, and
improving the mobility of certain parts of
the body . At a more advanced level, a trick
skier may practice his somersaults into a
pool or on a trampoline.

141

Great care must be taken to choose a
microworld in which the simplified skill is
isomorphic in its most important components
to the final form of the skill (see Section
3,5), In juggling, the skill of
ball- handling can be practiced with one or
two balls. This develops the necessary
subskills of tossing and catching, as well as
hand-eye coordination. However, the easiest
form of three- ball juggling, called cascade
juggling, can't be simplified to an
isomorphic two ball juggling (see Austin,
1974).

3.2 The Equipment

The best known example of a
simplification of equipment in skiing is the
graduated length method. In this method, a
beginner skier is started on short skis. As
the student becomes proficient, his skis are
gradually lengthened to (whatever may be
considered) full length skis. Short skis are
used as transitional objects in the learning
process . They make it easier to get started
and make early success more likely. At the
next level, the shorter skis are not needed
anymore. An interesting perspective on the
hand- held electronic calculator may be to
view it as a transitional object in learning
mathematics. Similarly, the computer may
serve as a transitional object in learning
how to build cognitive models.

It is interesting to ask why it took so
long for someone to think of using short skis
in the learning process. For one thing,
skiing itself changed. Twenty years ago,
people wanted to ski fast in straight lines
for which longer skis are better. Nowadays
the final state of expert skiing involves
making many turns (which is facilitated by
short skis). For another thing, teaching by
the graduated length method requires a
different instructional organization. To be
economically feasible, the new method needs
large ski schools where students can rent
short skis instead of buying them, so they
can be returned after they are no longer
needed . The economic consideration that has
hindered exploration of transitional objects
in learning will not be as important in
computer-based learning environments, because
the transitional objects are symbolic
structures.

Short skis are not the only
technological improvement in the equipment
used in skiing. Safety bindings reduce the
fear and eliminate the catastrophic
consequences of wrong behavior, therefore,
supporting an active approach to mastering
new challenges. (In an interactive computer
system, the "UNDO" command supports a similar
type of exploration because it reduces the
risk involved in making errors.) Ski tows
and gondolas provide access to new
environments in the form of moderately steep
and wide glaciers with snow conditions suited

.. • I

to the early phases of the learning process.
In addition, they increase considerably the
time that people can actually spend skiing,
A parallel improvement in computer
programming is the development of
time-sharing systems and languages that
reduce the amount of time a student spends
waiting for his program to be run.

3,3 The Environment

Skiing (as we have pointed out before)
is an aggregate of subskills. A major aid in
learning any complex collection of skills is
the opportunity to practice the subskills
independently. We must design or find
microworlds structured to allow a l~arner to
exercise particular skills. For the beginner
in skiing, gliding and stopping are two
essential subskills that have to be learnt1,
But stopping cannot be practiced without
gliding, and gliding is dangerous unless you
know how to stop (in Simon's words (1969),
~he system is only nearly decomposable). The
problem can be solved by choosing the right
environment :

----gliding----)

(increasing speed)

t
gliding ----)

(decreasing speed)

.llQ. subskill for stopping
is required

This example leads us to state: ~
decomposability of a skill is a function of
the structure of the environment as well as
of the skill itself.

Modern ski areas have made another
important contribution to the simplification
of the environment. They provide the novice
with ~onstant snow conditions. A beginner
can first learn to maneuver well on packed
slopes without having to worry about the
variabilities of ice or deep powder. In
learning to play tennis, the ball shooting
machine provides a similar form of
simplification. Having a supply of nearly
constant balls removes some of the variables
from the process of learning a stroke.

The wide variety of slopes in a large
ski area has another important impact on
learning, It allows the coach to choose a
microworld dynamically according to the needs
of the learner; this eliminates the need to
force every learner through the same sequence
of microworlds.

142

3,4 Simplification's Dependency on Top-level
~

Technological improvements have
eliminated certain prerequisites for skiing,
that is, they have simplified skiing by
removing inessential parts. It is not
necessary any more to spend a whole day of
hard physical exercise in order to gain a
thousand meters of elevation to ski one nice
run. The goal of skiing is gliding downhill

successfully, not getting stronger muscles
and a better physical condition by climbing
uphill for several hours. If climbing were
one of our top level goals, the use of
gondolas and chair lifts would hardly be an
appropriate simplification towards the
acquisition of these skills. Clarifying the
top level goals may imply a different
standard of measurement for the hierarchical
ordering of the subskills and a corresponding
change in the sequence of microworlds.

The importance of clarifying top-level
goals can also be seen in programming. As
computing becomes cheaper, concerns about
machine efficiency will be replaced by
concerns about cognitive efficiency, how to
facilitate the understanding and writing of
programs . This change in perspective
requires new conceptualizations and
methodologies, which will lead to a new set
of simplifications for the acquisition of the
skills of programming and problem solving
(Fischer 1977) •

3,5 useful versus Possible Simplification

The range of possible simplifications is
much larger than the range of useful
simplifications. The designer of a learning
environment must look carefully at what each
microworld does for the overall goal.
Several possible uses for a microworld come
to mind. A microworld:

0

0

0

0

Makes it easier to begin learning a
skill by creating the right entry
points
Accelerates the acquisition of a
skill
Provides intermediate
goals/challenges that are (and seem
to be) attainable
Provides practice of the important
subskills in isolation, allowing the
common bugs to occur one at a time
instead of in bunches

A complicating factor in choosing
microworlds is that non-monotone
relationships often exist between
simplifications of the microworld and the
corresponding simplifications of the task.
Using a moderately steep hill to practice is
a useful simplification for the following
reasons:

o Is easier to control speed.
o The student doesn't have to make big

turns and can stay closer to the
fall-line.

o The student doesn't have to lean away
from the hill with his upper body
(which appears to be counterintuitive
for many people and increases their
fear).

The interesting fact is that this is not a
monotone relationship: If the hill is too
flat, it may be impossible to attain enough
speed to turn. Another example of this sort
is that skiing is difficult on a slope with
big mogels, but, in making turns, small
mogels can be very helpful.

3.6 The Danger of Oversimplification

Skiing is representative of an ~.mportant
class of real-time, data-driven control
skills. This means that a sudden, unexpected
change in the environment requires high-order
error correcting and debugging skills to cope
with the deviations. If the microworlds are
too friendly (which may serve well in getting
started) they may suppress the development of
these higher-order skills. The skier must
learn to cope with icy spots and rocks that
lie hidden under soft snow.

Developed ski areas themselves
constitute a simplification, because they
close avalanche areas and keep the skier away
from cravasses, they pack down slopes, they
rescue people if they get hurt, etc. This
implies that people skiing only in these
areas never acquire the planning and
debugging knowledge they need to move around
in more hostile environments. One danger of
working with simplifications is that they may
lead to unjustified extrapolations. One task
of a good coach is to reduce the level of
protectiveness gradually (not all ski areas
eliminate the need for stopping) and lead
people to the right new challenges. There is
another danger: Learning to perfect the
performance in one environment, such as
packed slopes, may reduce the willingness of
a skier to practice in powder, because the
difference in his performance between the two
environments may be too great.

Both of these dangers can be seen in
efforts to teach computer programming that
start with BASIC. The linear nature of a
program in BASIC and the small size of
solutions to typical introductory problems
often lead students to develop debugging
strategies that will not generalize to large
programs. One such strategy is to step
through a program one statement at a time.
Some students also resist leaving friendly
(albeit limited) BASIC environments, in which
they can adequately solve small problems, for
the complexities of data declarations,
functional decompos ition, and advanced

143

control structure statements. Note that
these extrapolations are not ones intended by
those who have designed the learning
environment. They arise from simplifications
made to create the microworlds in BASIC.
Understanding the inappropriate
generalizations that can develop in each
microworld is one of the tasks facing a
learning environment designer.

4. DEBUGGING

4.1 The Importance of Debugging to the ICM
Approach

As a student moves from one microworld
to one at next level of complexity, he may
need to modify his knowledge in several ways:

o New subskills may be introduced that
must be mastered (skiing over
mogels) .

o Changes in the environment may
require new interactions between
skills (gliding and stopping) .

o Some skills that were idiosyncratic
to a microworld may have to be
unlearned.

While a designer should strive for
simplifications that reduce the chances for
incorrect generalizations, this is not always
possible nor necessarily desirable. In
skiing, an instructor has the problem of how
to deal with the poles. Even though they are
quite important for the advanced skier, the
only major skill a beginner need learn is to
carry them so that he won't hurt himself.
While practice without poles would prevent
formation of any inappropriate skills,
empirical evidence suggests that eliminating
the use of poles is not a useful
simplification. Even if they are used
incorrectly, the poles still support balance
and mobility, and it is apparently easier to
unlearn an incorrect use of poles than to
incorporate the poles into a learned skill
without using them from the beginning. The
goal of a sequence of microworlds is not to
remove all chances for misconceptions, but
instead to increase the possibility that the
student will learn to recognize and correct
his own mistakes.

4.2 Nonconstruct i ve Versus Constructive Bugs
- Implications for a Piagetian Environment

An important characteristic of a
Piagetian environment (Papert, 1978) is the
notion of a constructive bug: the learner
gets enough feedback to recognize a bug, to
determine its underlying causes, and on this
basis, to learn procedures to correct the
bug. This notion is sharply contrasted with
the notion of a "nonconstructive" bug, where
a student may recognize he is wrong but not
have the necessary information to understand
why.

I

The critical design criterion for
selecting the right microworld may well be
finding an intermediate microworld that
transforms nonconstructive bugs into
constructive ones. From the domain of
skiing, examples of environmental support for
such a transformation follow:

o If the skier leans too much to the hill
with his upper body, a change to a
steeper hill will indicate this to him,
because he will start sliding down the
hill.

o If he holds his knees too stiffly,
trying to stay on the ground while
skiing over a bumpy slope will point
out his inflexibility.

o If he doesn't ski enough on the edges
of his skis or if he makes turns too
sharply, a slope with soft snow, where
he can observe his tracks, will
indicate where each of these conditions
are occurring.

In all of these cases, the microworld is
chosen to allow the s tudent's previous
experience to be used to debug the new task.

A good coach knows a large number of
specific exercises (micro-microworlds)
designed to transform nonconstructive bugs
into constructive ones. These exercises are
goal-directed toward certain bugs. His
expertise must include the ability to
distinguish the underlying causes (which may
be hidden and indirect) from the surface
manifestations of the bugs. To mention just
one example·: lifting up the end of the inside
ski in a turn provides the skier with the
feedback that most of his weight is on the
outside ski (where it should be). Exercises
of this sort (which provide the basis for
self- checking methods) are of vital interest
and are essential in teaching and learning a
physical skill (for examples, see Carlo, 1974
and DVSL, 1977) whereas in the cognitive
sciences, research in self-checking methods
is still in its infancy (see Brown and
Burton, 1978).

Another way to turn nonconstructive bugs
into constructive ones is through the
appropriate use of technology. The most
obvious example is the use of a video camera,
which helps the student to compare what he
was doing to what he thought he was doing.

s. Coaching

Acquiring a complex skill, even when
supported by a good learning environment and
appropriate technology, does not eliminate
the need for a good coach . The introduction
of simplifications increases the importance
of a coach. He must be able:

o To make sure that within each
microworld the right subskills are
acquired, instead of ones that would
later have to be unlearned.

144

o To design the right exercises, provide
the right technology, and select the
r ight micr oworlds to turn
nonconstructive bugs into constructive
ones.

o To perform a task in the student's way
in order to maximize the student's
chances of recognizing his bugs.

o To mimic and exaggerate the behavior of
the students.

o to explicate his knowledge in terms the
student can understand and execute.

The following example may be used to
illustrate the need for executable advice.
Many books are written from the instructor's
point of view. The student often receives
advice (in the book or on the ski slope) that
he cannot execute . An example of such advice
is, "Put your weight forward, 11 given to
skiers who don't know where their weight is.
The instructor tells the student the "what"
without telling him the "how" and without
providing him with knowledge or procedures to
translate the "what" into the "how".

Let us give another example of the
distinction between executable and observable
advice. When skiing in powder snow, the
advice, "Your ski tips should look out of the
snow", is observable by the student. That
is, the student can see whether his ski tips
stick out of the snow or whether they are
buried below the· surface. But the advice is
not directly executable. The corresponding
executable advice would be "Lean backward,"
(or "Put your weight backward", if he knows
how to shift his weight. This advice is not
directly observable. The interesting
dependency relationship is that the "what"
can be used to control the "how." The change
in language from "how" to "what" as a process
becomes understood, characterizes the
movement from machine to higher-level
programming languages.

Let us mention briefly a few other
important aspects of coaching . The coach
must:

o Draw the borderline between free and
guided exploration (free exploration
in a dangerous environment could end
up with the student in a cravasse or
an avalanche)

o Decide when to move on to avoid
simplified versions of the skill that
cause bad habits

o Be aware that coaching is more
important at the beginning of the
acquisition phase then later on
because a conceptual model must be
created, entry points must be
provided, and self-checking methods
must be learned (to overcome the
problem that it is hard to give
yourself advice) .

6. ~spects of a Theory

There is no doubt that a theory of
simplification, debugging, and coaching would
provide us with better insight into the
complex issues of skill acquisition and
design of learning environments. We hope
that OU~ observations, examples, and
conclusions are a first step toward this end.
We believe that a theory of this kind will
not be reducible to one or two general laws·
that is, we won't be able to characterize '
such a theory with a few theorems. We expect
that the difficulties encountered in
constructing a crisp theory in the domain of
learning environments will be similar to
those encountered, for example, in developing
a theory of semantic complexity, (Simon
1969). '

Acknowledgements

This research was supported in part by
the Advanced Research Projects Agency, Air
Force Human Resources Laboratory, Army
Research Institute for Behavioral and Social
Sciences, and Navy Personnel Researh and
Development Center under Contract No.
MDA903- 76- C- 0108.

We would like to thank Seymour Papert
for a number of interesting discussions . We
would also like to thank Kathy M. Larkin for
her comments on earlier drafts of this paper.

145

REFERENCES

Austin, Howard. A Computational View of the
Skill of Juggling. Massachusetts
Institute of Technology, AI Memo No. 330,
December 1974 .

Carlo. Ihe Juggling Book. Vintage Books,
1974.

Brown, J.S. & Burton, R. R. Diagnostic Models
for Procedural Bugs in Basic Mathematical
Skills . Cognitive Science, Volume 2,
Pages 155- 191.

DVSL (Deutscher Verband fuer das
Skilehowesen). Skilehoplan, Volume 1 -
Volume 7, BLV Verlagsgesellschaft,
Munique

Fischer, G. Das Loesen Komplexer
Problemanf- gaben durh naive Beuutzer mit
Hilfe des interaktiven Programmierens, FG
CUU, Darmstadt

Papert, s. Some.Poetic and Social Criteria
for Education Design. Massachusetts
Institute of Technology, AI Memo No. 373,
June 1976.

Papert, s. Computer- Based Micro-Worlds as
Incubators for Powerful Ideas.
Massachusetts Institute of Technology, AI
Laboratory, March 1978.

Simon, Herbert . The Sciences of the
Artificial. Massachusetts Institute of

KNOWLEDGE STRUCTURING: An Overview

Mark S. FO)(

· Computer Science Department 1
Carnegie-Mellon Univernity

Pittsburgh, Pennsylvania

Abstract

Knowledge structuring is the process by which a set of
partial, unrelated concepts are combined (related) to form a
unified strudure. The structuring process creates a
hierarchy of concepts and relations that cover the original
set. Examples of knowledge struclures described here are
classification druclures (e.g., phylogenetic classification of
mammals), and implication str uctures (e.g., evidence
supporting the hypothesis "strategic thre.it"). The concept
of an "Exo-critcrion" is introduced to guide the structuring
process. A Knowledge Structuring System current ly under
development is described, including three knowledge
acquisit ion ll')ethods: Introspection, Question-asking, and
Experiment at ion.

1. Introduction

This research invest igates the transformation of
Information into knowledge. Information is ·technically
defined as unrelated units (e.g., far.ts, concepts, objects, etc.)
-- unrelated in the !;'enr.e that no conceptual lin~,r. (e.g., "is-a",
"part-of", '.'owns", etc.,) exist among them. Knowledge is the
result of structuring inform11tion. Structuring can be viewed
as the construction of relations and concepts, usually
hierarchical, that combine inform11tion into coherent
structures. For examplll, the following is a set of inform11tion
units: !Chipmunk, Rhino, Ga?.elle, Lion). An example of
structuring this information is the phylogenetic hierarchy
normally employed in zoological te)(ts. The root concept of
this hierarchical structure is Mammal. Thi5 is not the only
possible structuring. There ex ist an infinite number of
po!rnible structuring5 dr.pendent on the rear.on for
structur ing. A phylogenetic structuring describes
evolutionary (ancestry) rnlations via a classificatory
hinrarchy. Another, totally dilfercnt, hierarchy could be
composed bar.cd on survivability methods. Figure I depicts
such a hierarchy. The samn information as found in the
phylogenetic r.tructure is operated upon but different and
J>OSsibly,· new relations and c:oncepts are used.

The bar.le princ.iplc ir. that structure generation can be

1 This work was supported in part by the Defense
Advanced Researr.h Projnds Agency under contract no.
F.44620 .. 73 ~C-0074 and monitored by the Air Force Office of
Sc:ientific Research, and by Grant MCS77-0:l273 to The RAN()
Corporation from the National Sc:ience Foundation. In
addition, the authour was partially supported by a National
Research Council of Canada Postgraduate Scholarship.

17 April 1978

146

adequale ly modnlled ar. being r,uided by wme critel'iort. A
criterion is a point of view or a proposed application of the
information. The structuri11g process is not limited lo the
Information-knowledge tnmsform11tion, but can be applied to
the restructur ing of knowledr,e dependinr, on the criterion.

Little rnse~rch has been don!! lt1 thir. dirnction. It, most
systemr., lh!! criterion ir. implicitly dnfined. l.earninr, prograrnr.
(Samuel, 1963; Winston, I 970; Michalr.ki, 197/l; H11yes -Roth, .
1976; Fox & Hayes -Roth, 1976; Fox & Reddy, 1977; 13uchanan
& Mitchell, 1977) arc I ailorecl to thP.ir dom11i11. Funclionr. that
construct and rate clr.scriptions reflect thr. specific learning
problem. The ln arning of diflerr.nt descriptions, bar.eel on
dif(erent perr.p.edives of the r)"mP. exemplars requires a
mAJOr c:hange 111 the alr,orithm . Other i,ystemr. rnay be
general but lack the cri terion mechimir.m, thus flou11eh!ri11g in
their· c:omputiilion. To combnt lh!! combinatorial choice of
inferences to draw, system5 such as HEARSAY-II (Erman ll.·
Lesser, 1975; Er man, 1977) ur.e a F Or.IL$ of Attention
(Hiiye~ .. Roth & Lesser, 1977) mechanism. AM (Lenat, 1976)
uses ;in Agenda combined with local hr.uridics that rnte tho
inferences. In both car.cs, the rnting function or heuri5tics
arr. built into tho system. In contrast, tho knowledge
structuring system's criter ion is a paramr.ter which is
external to the system and can be easily changed. We call
this an Exo .. Critcrion System.

In c:ontrnsl, Numerical Ta)(onomir.ts (Sokal & Sneath, 1963)
in the construction of C'lassification struclurns have !~ken the
view that simil ar ity mear.urr.s should br. used which are
baped solely on . numeric.al methodr. .<e.g., ,dur.ter analysis)
usme as many ob1ect atlributes ar. posr.iblr.l., The only way
numr.rical taxonomy may biirs thr. classes constructed is to
apply user -defined we ights to the attributes. This is a
crude, 3unmarH1ne~bl~ appro)(i~a.t ion of . an e)(.o-criterion
system' . The crilerion 1s 1mphc1tly provided by the user
through the weights.

The followinr, doscribes further the cone ept of knowledge
structuring and illw,trnles it using two diverse !!)(amplos.
The rest of the paper oullines the design of tho knowledge
structuring r.ystem (KSS) currently under dr.velopmont.

1 Michal5ki's system allows the user to specify different
simplif ication functions (crileria) for each task.

2one of the problems common to these methods is the
inability to ur.e nominal or ordinal information in mear.urcs.

3Given that lhC!re is a l;iqie number of objects to classify
and each has a larr,e number of attributes, the number of
weights to be defined is overwhelming. In addition, weight
consistency between attributes is difficult to enforce.

. . . ,
. . ·1

I
I
I

FIGURE l: SURVIVABILITY CLASSIFICATION OF MAMMALS

Survivability

~
Successfully living in ones environment

Successfully living in Water Successtu lly living on land

jJ
Successfully overcome danger and find food on land

Successfully attack danger and
find food on land

~
Surprise attack Obtrusive ly attack

Successfully flee danger and
find food on land

What characteristics of the mammals allow
them to carry out the particular kind of attack

The concept "survivat is defined as an action

The case "environment" is further specified
as "land" or "water"

The main action, "successfuily living" is further
specified as "overcoming danger and find food"

The ·main action of the concept is further
specified as "fleeing" or "attacking".

Two types of attack have been specified

The information, mammals, are examined for
characteristics that allow it to carry out the
different types of attacks. This relies on

. causal relations between attributes and actions.

FIGURE 2: Partial Derivation of Knowledge Structure for criterion "Survivability".

147

2. Knowledge Structures

Up till now, the differcnc:e between information and
know!P.dne har. been dre~r.ecl. ([ach piew of information is
a primilivH unit lac.kinr, any connection to othClr inform.ilion
primitives.) In fad, informAtion primitives arr. separnte,
incl1!pendenl, but internall y !druc.turnd; i.e., lhr.y arc li tt le
pit!~ cs of wlrnl I am techni cally callinr, knowlcdr,e. Thal is,
each in form,1tion unit is a K110111lcdf(c Stmcturo (KS)
c.onl ai11ing variow; types of relationi,. The f ac. ility of c.ognition
afforded by com.idering a slructurn lo be a simple
infornrnlion unit ir. exactly that of ahi; lractinr, lhe descr iption
of a complex ob jcd. Viewing a KS ar. an infornrnlion unit
r.erves to recluc.c thC! complr.xily of lho druc:luring l ar.k.
Hence, knowl<-idne structurinp,, it1 1hr. r.enr.e ur.ed here, lakes
KS r; and rnl al er. thC!m by superimposing a r; lrudurn, thereby
c:rr.aling a new Know lcduc Slructurr..

KS,, am condructed via c:omplr.x symbolic processing of
inform ation uriil s to der ive re lations th at arr. abslrnd in
n.il urc. A new know Ir.due !,lrudurr. can be vi ewed as a level
2 KS, i.e., Ksf2], which was c.rcalcd by !druclurinp, KSs of
level I, i.r.., Ks f l)!, . This definition ir. recur r. ivc. A Ks[~~) can
bf! dcfit1C!d that trea ts Ksf 2] as information unit s. This is
intuitively p lr.a!dnr, as we eac h form mulliplr. hicrarr.hi r.s to
slructurr. our · inform.it\on, ear.h hierarchy emphasizing a
clifferr. nl rnlalional typl! .

In the knowledge dructuri11g task, the sys lem ir. presented
with i11fornrnl1on unit s th at am KSs of varying dr.grees of
complr. xily, and 011ly partially def ined. The system must view
eac:h KS ar. a r. imple i11formAlion unit to be rel ated to olhor
unit s, but mus I' have access to thr. internal structure . of each
unit (KS) when decidinr, upon the relationships.

If knowledge is represented in graph form, as implir.d
above, infornrnlion unilr. can be defined as a nodes, and
structure as arcs rn lalin& the inform,,tion units. Any
sub -uraph is a knowledge r.tr ucture. A node that represents
and rnp lac:es a KS sub ··graph ir. il lr.o an infornrnlion unit . This
new node c:an be rc laled to other nodl!s in the graph. This
is exac tly what happcnr. in the rccursi•,c struclurine of
knowl~~dge d!!scr lb!!d Above. Every KS can be An informAl ion
unit, And every informillion unit a KS. Part of the knowlcdue
structuring task is to create new relations among nodes.
H!mc:c the numbnr of por.sible KSs is unbounded.

Knowledge strudurit,g can be cir.fined ar. the se lr.c lion of
interns ling KSr; from Rn i11finilc spRr.e Rnd the construct ion of
new KSs upon those chosen, via tho ·attachment of relRlions.
Thi s definition p,enerali7.cs from lhe concep t learning .tasks of
Windon (1970) and Hayes -Roth (1976) in that hierarchies of
abdradions are formed. The flORI of ~.nowledee structuring
is to take infornrnt ion units, which arc lhr.mr.e lves romplox
(multi - level), and to relate. them through hierarchies of
(sometimes new) re lat ions and c:oncepl s.

How is one to decide the inleresl ingnesr. of a KS, new or
old, or choor.e the relat ions with which to lie informAlion
unif!; tor.ether? Again tho exo··cr iterion is appe11led to. For
example, the phylop,enelic cl11ssific11t ion of rnArnmals requires

lwhile most structures arc not hier11rr.hi<:al, they 11re loose
hi r.rarchies because of this layered approach to bui lding
knowledue structures. The ex istence of mill..UP. lr. hierarchies
lndicater. infor mation n,;iy be slruclurr.d in more than one
way depending on the re l11t ions used which depends, in turn,
on the criterion.

that each informAlion unit (e.p;. , li on) be a complr. x r. lruclurn
c:ontaini11g data i;uc:h ar. phy~ir,al c:harnrter i!;l icr.: (colour
heir,ht, wP.ip,ht), ealine lrnbil s, lrnbital, etc. A c.hoice must be
n\adP. of wh·at sub .. d ruc:lurr.s wilhin 1hr. mfirn11111l r.' KSs to use
to ca talyse the slr uc:lurinr, procer.s. The choice is dependent
upon how the sub -concepts inferentiall y rt?lale to the
cr it erion. Tho relations used to structurn the information
units are · alr.o dependent upon the criter ion. In the
phylogentic examplr. the relation is A c:IAss hierarchy.

3. Examples

Fir,uro 1 is a sl rudur inp, of rn.irn111111!; b;ir.cd on RI tributes
nf!cc~i;ary for their surv ival. The root nod,?, SIIRVIVARIL ITY, is
the cril t?r ion of the hir? rarc hy. Upon ex;irninal ion we dir.covcr
that thc sinr,le word SlJRVIVARJllTY docs not suff ice ar. a
crilmion. There exir. l tn,my fundi!lllr?nt;illy different
r.truclurw; d1!pendenl on the cr il1?rion t ypC! ;ind SIJRVIVAllll ITV

i r. not spec ific cnoueh to rr.d11c.e tlrn 11mbiguily. In thir. cRsc,
the implicit crilNion ir.: "to £11sr.iu,_ lhCl 111/llllmalr. wilh respect
lo the attributes that lend to their survivability." Thus the
slr uclurr. type i r. a Cl,u .,ifi.cntior, . The !.lruclurinr, process as
depicted in Fit:urn 2 can be descr ibC!cl ar. the further
spec ification of lhCl crilN ion into conjunct ive and disjunctive
sub - c:rileria combined with causal relations between nrnmm11I
attr ibutes and specif ic act ions.

The slructuri11g process relics heavily on thr. further

specificat ion of cases I _ If we define SIIRVIVAf!ll lTY as:
"SUCC[SSFIJLI V LIVING IN ONE 'S [NVIRONMl:NT," [INJRONMl:NT car, be
f urlhcr specified as I.ANO or Wf\Trn: "SlJC:C[SSfULI.V LIV[ON
LANO" or "SUCCf.SSFIIU.V LI VE IN WflTFII". H(!nce two sub-classes
have been sp(!c ifi l!Cf. Specifica lion c:onlinues until a r.equence
of rn lalions ir. found conrrnc.tine thr. wb ··crilcrion (rlass
concept) and, infornrnl ion unit. Specifically, a chain of
itifernnces (e.p;., causal, anceslrnl, etc.) rc lalinr, mammal
attribut es to a r.ub -rr ilf?r ion rnur. t be con!,lrucled. This chain ·
may be al an arbilr ary level of ab!,lr action depcndi11r, 011 the
dom11 i11 information ava il .ible. For ex;illlple, c.onccpl s such as
"appe ndane" and "r.lrikine" arc less specific (more abstract)
than "pawr," and "c·law inr,".

The re sulting hicrarr.hy can be evaluated structurally by
how well the classes part ition Iha informAlion, and
seman tica ll y by how a class rolR!es to the c ril crion.

Another example of knowledr,e r. lrucluri11g occurs in
strategic analy!.is. A strnlegic analyst peruses informAlion
em;rnating from somo country and dcdcfcs whether that
count r y 's aclionr. compri!;c a r.lratep,ic threat (e.g., the
bui ldinfl of nuclear bombs). l.arrie quanlilir.s of infornu1tion
must be reviewed (e.g., nowr.paper reports). The it1form11tion
Is interprnted with respect to its slrnter,ic imporl 1111ce. The
Interpretation process is C'a lled 1y11thcsis. Figure 3 dr.picls a
hierarr.hy that synl hcsi7.cs it1dividually uninteresting
information lo support a !.lrategic threat inlcrprel;ilion. The
synthes is proc.ess can viewed as anolhr.r form of knowlr.clge
strucluri_ng. The criter ion i!;: "TH[llf. r><JSTS fl STRATEGIC THR[Al"

The structuring prob lem is to see if lhe information Implies
the !,trategic throat . This type of structuring is called
lmpl.ica.ti<>n. Fieurn 4 illw,tr'ates a parliRI clr.rivalion of tho
slructur iti[l. Asain hcavy ur.e is m11dr. of caso-spClcificalion.
But in an implicative structur ing, emphasis is placed on the

1cases in a concept arc the slots whose interpretat ion is
similar to that of cases in Fi llmore (1968).

148

")

.I

I
I
I

COASTAL
TOWN
POPULATION
INCREASE

INCREASE
STEEL
PRODUCTION

NAVAL
ACADEMY
ENROLEMEN
UP

URANIUM
PRICE
INCREASE

FIGURE 3: Synthesis of information to support "Strategic Threat" .
Strategic Threat

~
There exists a strategic threat

There exists objects capable of destroying the country

3 missi les capable
of destroying the
country

i
3 nuclear submarines
capaole or aestroying
the country

~
3 bombers capab le
of destroying the
country

3 a submarine _ Nuclear fuel

Build a
submarine

Submarine crew

i
Naval crew

Port Materials
Construction

t t
Increase steel
Production Coastal Town

Pooulatiori increase

t
Naval Academy
Enrollment up

Must buy uranium

Uranium prices
increase

The original, ill-defined criterion

The criterion is further specified

Strategic threat is further specif ied as an action

The agent case "objects", is furtt:,er specified by
three types . 'the specification is constrained by the
action of the agent.

On the left, the sub-criterion is furt her spec if ied, on
the right the pre-condition of nuc lear fue l is depicted.

The rest is a brief out line of the causa l requirements
of each concept in the structure.

FIGURE 4: Structuring of news u·sing "Strategic Threat" criterion.

149

elaboration of Causal and Co-rnlational pre-conditions (e.g.,
IF [prc-c:ondilion] THEN [po!;l··condit ion]). This is due to the
prndomitrnnce of cau!ia lity -explAining nodns In the tarllet
knowlr.dge struclurn.

Struc:lurn evaluation re lies upon pre-condition sat isfaction
in cau!,al · rnlalionr., imd thn r.emanlic rnlalionr.hip between the
causal relation and lhn criterion.

An import ant charnctr.rintic of a11 exo-criterion knowledge
structuring sy!dem is it allowt- the synthcsl7.ation of the same
informillion from more llrnn one view (criterion). This allows
the ter,li11g of alternate interpretations of the same
information. For exampln, the system could be re-run with
the criterion of "r.lrnngthening mr.rchanl shipping".

Ther.e examplns ill1.mtrnte two types of knowledge
strudurns: The fin! · ir. a c'4s.tifi.c:otory structure which
rcquirns the i11fo~m11tion covered by a cl11ss to reflect the
clasr. description. The mr.mbern of a clar.r. induced partition
por.sesr. similar attributes that am interesting with respect lo
the criterion. lhe r.ncond ir. an imp!ic'ltive stmctara.
Inform11tion is combi11cd bar.eel on its causa l necessity In
explaining the c.rilerion. The construction of causal cha ins
relating infornrntion to criteria requires a problem-solving
capability similar to I hose found in (Nowell & Simon, 1963;
1972), (Fikes & Nil!,son, 1972), and (Sacerdoli, 1975).
Plausabln causal and infemnt ial sequences al various levels
of al>!;lr action must be constructed and 1111alysed to relate
information and crilnria.

Both strudurn types roly upon the samr. moclrnnismr.. Two
inference mr.chani!ans have proven useful. The firnt is
concept spccifi.cation. By further specifying 11br.tract terms
within a concept, new c-.onc:epts am created mpresenl ing the
new sub .. c:l;iss (sub-r.rilorion). This specification is
constrained by the contexl -scmsilivity of the case being
specified; what role the slots play relative lo the concept ii
is part of. The second mechanism is the elaboration of pre
and post-c:ondilions of causal and co-relations . This is a
searr.h based mnchanlsm that examines concepts that already
exid in the knowledge bar.e.

Underlying · these r.lructures is a representation of
knowlr.dge that facilitates the representation and
manipulation of arbitrary concepts. A c.onccpl must
encompar.s the semanli.cs of a criterion and preserve its
intrinsic ambiguity. The process of structuring in the
examplns can be viewed as tho roduc.lion of criterion ·
ambiuuity by r.peciflcation and c:ausal 11nalysls.

4. A User's View

The knowledge structurit,g r.yi;lem Is desip,ned to be
lnterndive; 11llowlng the user to define the criterion and
information to be used in the structuring process. A naturnl
language interface is not anticipated as ii is beyond the
scope of thin rnsearch. A minim11I interf11r.r. will be provided.
The u!;er mu!,1 express inform11tion to be added in concept
form. It is anticipated that II certain portion of Information
requested by the system will be specific enough lo reduce

.. the complnxity of this interface. The system will provide
help facilities describing existing concepts, slots, rules, etc.

The system can be viP.wed as an investigator. Once given
the criterion, and the partially des·cribcd information, the
system m11y ask tho user dirnded questions to augment Its
knowledge b1rne. The method of knowledge acquisition by

150

questions is dc5cril)(!d in Section 8. An important ar.sumpl ion
is that the know ledge bar.e u!;ed in slruclurinr, lacks, initially,
the large amounts of knowledge necessary lo carry out the
structuring. It is up to the sy~lem lo 11cqui rn this knowledge
using the mr.thodr. available to it (Sr.e Section 8).

As the system Ir. used, the know ledw~ base grows. The
structurlt,g process is not simpliri1id by 1hr. accumulation of
moro knowledue. The struct uring process shifts from
dir.coverit,g new re lat ions among conwpts (infornrnt ion,
cr iteria) lo deciding which re lations r.hould be emphar.izcd
and which should be ignored. The bal~nc:e of know ledge
ar.quisition and focused sr.arch wi ll be inver.liui1ted in various
applications.

The proces!dng of the !;y~lem can be divided into l hme
calegorir.s. The fin.I, ffottom Up Theory /-lypothr.sizntion,
analyses the infornrnlion units to be slrnclumcl io c.male
c:onc:epls that dr.scribr. (clar.sify, synlhcsi7.e, etc.) r.ubr.els of
them. The analysin can be ind1?pcnclcnt nlHl/or dependent
Lipan the c:i· it cr ion. Somo mechani!;mr. w;r?d in the analysis
am: simi lar it y· mear.ures (e.g., c:luder_ analy!dr., inlerferr.nc.e
mate.bing), morphological similarity, and imalogical analysis
bet w~en c.oncepls.

The r.ccond category of proc.er.sing, Top Daum Theory
Hypothe$ization, carrir.s out the (;earch process depicted in
section 3. Given a cr iter ion concept, new concepts are
created and old ones instantiated dur ing l hn !;earch process.

The third category, Discovc,ry, augments the know ledge
bar.e vi,1 thrne mechanismr.. The fir~! is /ntrnsp!!ction. During
the knowleclue ba!;e searr.h, porliom, of conc:cpls arr. found
to be empty. By compar ir.on lo olhC!r concepts (e.g.,
analogical, samr. super·-type, morphological similarity, etc.)
these holes can be fillr.cl. If knowledge c;111nol be dr.clucecl
vi,1 Introspective analy~is, a second mr.chanism,
qwi.ttion··Cl$king ir. used. A question is asked of the ur.cr and
the provided information incorporntcd into the concepts. The
third mechanism Is Experimentation. This mechanism
experiments with concepts lo clincovcr their causal
rnlationshipr.. By mirnipulating an episode in which the
concept of intere!.t is found, rr. lalionship(; can be di!;cerned.
These three mr.chimirimr. 11m further described in section 8.

These different c:alegorir.s of procc!,ses elaborate a
hierarchir.al - like slrudurn em11nating from the criterion to
enc:omp.ir.5 the information. Elaboration msulls in the
creation of new concepts and instantiation of concepts
alrnady contained in the knowledr,e liase. These concepts are
pl,1ced in a system working space. lhe criterion and
inform11tlon to be slruclurnd am also placed !hr.re. The final
structuring is a subr.ct of concepts and rolations in the
working spac~.

5. Building l(_nowledge Structurna

As described above, many types of procesr.inr, arc
required. The building of a ~.nowlr.dge structuring system
requires not only the execution of these processes, but tho
strategies required to apply them. An implir.alory structuring
may rnquirc strategies and mechanir.mr. different from those
in a classificatory structuring. The approach taken hero for
strategy roprnscntation and execution, and general system
coordination Is derived from produdion sydem architectures
(Ntiwell, 1973; Lena! ~ .. Mc:Dormoll, 1977) and HEARSAY- II
(Er man & Lesser, 1975; Er man, 1977).

. I

Strntcgy infornrntion Ir. rr.prr.sented ft!; rules. r.imilar to
nrnla ··rules {Davis & [3uchanan, 1977). At any instance, only
a !a1br,et of all ru les in the !,ystem arr. 11dive -- their
condit iom, can be ln!,pected. Wt! ch!scribl! ail 11c:tive rules Ar.
being enclor.cd by a window. Only rules in the window Are
active. The ritiht-·h,rnd idcfo of a rule m;iy acid or remove
rules from thir. window (activate, de-acti1Jate respective ly)
(Fox, 1977). Associated with the window is a set of
memories to which information mAy be 11dded, modified, or
removed hy the ru les. A window and its assotiated
memories c:ompri!;e a system.

Rules may create new systemr.. The creation of a new
sy!,lem rr.quirns the r,pec ific.1tion of what rules am to be
placed in the new window initially, what memories to be
created, and what information pl.ired in the r,e memor ies. In
addition, a limited amount of rnsourc:cs m;iy be altoc ated for
prowssinr, i11 the nr.w r,ystPm. Co11i,urnption of the rnsourrcs
caui,es a reltirn to a prcVipecified !;ystcm. A r,oal m.iy be
specified i11 addition to or instead of resourres; attainment of
the &Oat also caw,er, a return. A r,ystem ir. either r.:,spended
or dr.stroyed when it creates a new active i,ystem.

In add it ion to rules and r.yslemr., there exid a set of
data-·ac.livaled knowledue !,Ollrtef, · whose invocation is
determined by their pre-conditions (Sec (Errnan & lc$ser,
1975; Erm,m,. I 977) for a dnscriplion of knowlr.dne r.ourrns
and thr.ir prn-·condil ion:, i11 HE/\RSAY·· ID: The rules i11 a
s·y'.dem'~; window can activ11le or dc-11ctiv11te a knowlr.clr,e
!,ource 's prn-c ondil ion, I hus controlling what knowledge
sources c1111 bn itwo~.r.d. Durit1[l 1111 active system's execution,
thn sy~sle.m'i; rules clncicln what knowlcclr,e sources to
ac:livalc and the .imount of rcsourres to expend; they then
initiate the cl;itil··clirnclcd processing. 1h.1t is, once the
knowtc~due sourcct, arn chosen and a cost-limit determined,
thr. knowledue sourer.!, ilrfl executed i11 a HEARSAY-·like
dat a·-dirnctcd f md1ion wdnp, d;it a i11 the active system's
memories 1, until the resources 11m consumed.

The motiv11tion behind creatinr, multiple! !,yslcms is to
facilitate attention fornssinr,. The knowtedr,e structuring
system mw,t be able to torus dynamically upon a few
c:onc:epts with a subset of know Ir.clue sources wilhi11 the
structure beinr, built while suspending but maintaining its
other intere sts. This is achieved through .the creation of an
active system with only those concepts in the memories and
knowledge !,ources active.

The knowledge i,ourres rnrrently under development arc:
Concept-Specification: Further r.pecilies slots within a

Bottom·-Up:

Sc:out:

Prune:

Class:

concept lo create 11 new, more specific
cone.cpl.

Crnates ilb!,lractions of concepts using
various methods.

Searches for a ch;ii11 of rolations
bctwem, two concepts.

Removes conc:epls from the knowledge
struc:turn that do not pl11y any Si[lnficant
part (e.g., dnad end inference chains).

Measures how well a concept acts as a
classification concept in the knowlr.dge
structure.

1 A knowledge source may add data not only to active
nrnmori1?s, but to suspended sy!,temr.' memories as well.

151

Implicate:

Introspection:

Question-Ar.king:

MElMam1s how WP. ii a c.onc:cpl acts as an
Implication cone.cpl in the knowlr.dge
structurn.

Ac.quires
inference
bar.c.

knowledcg1: by utili7.ing
rules within the knowledBe

Ac.quires knowledge by a:,king the user
very r,pecific questions.

Experimentation: Acquires knowledge by creat ing and
mwrnt inr, cxpurime11ts upon episodes
reprnsenled in the know ledBe bar.e.

The application of these modules requirns r,ome sort of
strater,y. The followinp, is an example of a :,imple strategy.

1. Expr.nd x resources on concept r.pccification
focused on the cr iterion.

2. Exp!!nd y resources on bolto111··11p concept
formation focu!;cd on the information units.

3. Expr.nd z resources Scouting for palhs between
criterion deriv!!d concepts and inforn111tion unit
dr.rived concepts.

4. Combine dir.joint sub-structures (island-dr ive).

5. Prune concepts in know ledge !,lructurn.

6. Rate concepts as Cl.1ss ilication (or Implication)
nodr.s in the knowledge structure.

7. Apply 1 ··6 on porlions of infornH1tion and
criterion not yet related.

During the · running of the system, rulri l would create a
n·ew ac:live sy:,_tem with the criterion placcil in a memory and
concept-specification being the only knowledge source
activated. The knowteclr,e source wouid fire 011 the cr iterion
and any c:onc:epts ii derives from the crilerion, creating a
hierarchy of c:rilerion-l;asecl concepts. The system would
rr.turn to the initiating system once its resources WP.re
consumed.

6. Knowledge Representation

A key issue involved in creatinp, a knowledge intensive
system In thr. knowledtic roprcse11talio11. :icclion 3 Bives 1111
idea of the diven:ity of information to be w,cd. Arbitrary
definitions at different levels of abr,tract ion and ambiguity
must be represented. Hinrarchies of categories,
transfornrntions, ac:tions, and c.a11!;al relations are needed.
The following i5 a brief lid of knowledge types to be
represented:

1. object, attribute, value triples.

2. struclurnl rnlations.

3. c:ausal relations.

4. lime relations.

5. multipln levels of ab!,lract ion in both data and
procedure.

6. typ<1 hiernrchie5.

In addition, we must ar.comodale and assimilate new
information (Moorr. & J\k?well, 1973) (Simon, 1977).

The approach lr1~,!H1 hr.ru ir. tho mclciing of diverse
· approaches to knowlr.dge roprosr.nl al ion anci its use. To

begin with, the primary unit of ropresenlation ir. the Concept.
It Ir. f.i milar to Sch()n111 (!3nrflett, 1932), Frames (Minsky,
1975), 13eingr, (Lena!, 1975), Concepts (Lema!, 1976), and
U11its (Bobrow and Winograd, 1977). It combines Fillrnoro's
(I 968) Case Form ;ipproar.h, which appe;irr. in Schank's
(1 975) Conceptual Dcpcndenc:y rnpresenlation, with a lexical
level representation. The case form approach allowr. the
reprnsentation of concepts r1t the level of deep strucluro,
which allows c:omparir.on belwef:!n concepts. On the other
hand, lexical infornrnlion ir. r.lored, cnilh ling lexical
comp.irir.ons and nrnnipulation of lexical conc:epts. Eac:h
concept is Typed. The type provides the slots (farnls, car.es)
thc1t an! in the conc:ep t (e.g., ir. - a inheril enc.e), And they aro
filled with lexical inform11tion. There is no limit to the
nurnbr.r of lypc!s. Each type ir. defined by ,mother concept.

In most r.yslemr;, the slots In a rnnc:epl am system
primitives. Fle xibi lity in ar.comocialion, assimilation, mAlching,
and manipulation is allowed when r. lot names arc thr.mselves
concepts. This idea ir. r. imilar lo what is found in lv1orlin
(Moore and Niiwell, 1973) and AM (Lenal, 1976).

One . can manipulate concepts c1r. dedarnlive
representat ion!;: nrnlc hinr, and manipulalinr, c:oncepls, building
new concepts, etc. But there is the prococl11ral aspect to this
reprnscnlalion. Tho concept '°!;orl" could be represented
dr.claralively by !;latins a precondition, ;i list of elements, and
post-c:ondilion, a sorted li st of elements, alonr, with other
Information like the type of elemr.nts . A proc-edurnl definition
can alr.o be attached to the "sort" concept. This allows the
sort concept to be applied (In the Lisp sense) to a list of
elemr.nts, with 1hr. output of the application, a sorted list.
Ear:h concept has <1r.r.oci.1led with it both a declarative and .
procedura l description, where applicablr..

In addition to the regular . !dots found in a concept, there
are mela-rler.criplion!;. Meta-descriptions occur in two formG.
The fin,t are· descriptions A!;socialed with eatl1 slot, which
provide lnfornrntion about what fills tho i;tot. The following
arr. the standard slot mela··descriptions:
Restrict restrict tho typos of information that

may fill a r.lot.

Default

To -Fill

lf-·Filled

default filler for empty r.lots.

dirncls system in how to fill slot If
empty.

initiates "slde -eflecl" proc.ossin& when
slot is filled.

The second type of mr.ta-descriplion is concerned with tho
relalion!d1ips belwef:!n the r.lols, and infonn.ilion concernin&
the concept ar. a whole. For example, information as: to why
the concept war. created and by what knowledge source,
what !dots sem;mtically modify or restrict othr.r slots, what
slots further ·specify other slots in a typo hiornrchy, or rules
for Gpec.ificat ion or application. The following aro tho
standard roncept meta .. descriplions:
Capply: the procedural definition of tho concept.

Restrict: what slot restricts tho specification of
another.

152

Modify: what slot modifies tho interpretation of
another.

Preclude: what !dOl5 furl hN defirrn r. lots hi&hr.r in
the typo hir.rarr:hy.

Elaborate: rules specifying what slots to elabornte
in concepl-specific:ation.

Hir.tory: why and hy whom tho concept was
crea ted and/or modifind. Used to focus
search.

Ctaf.s: what clar.r. the concept ir. a mr.mber of.

. Fspcc: whnl concept lhir. concept is a further
specification of.

An imporl;inl feature of any knowledr,e rnpre$enlation,
larce ly icnornd by most r.ystemr; to dale, is 1hr. !;lorage of
i11form.1tion necr:H,!,ary to oplimi,c sec1rch c111d knowlr.dge
acquisition. Initially, thn r;earr:h and knowledr,e acquir.ition
rules will be quite general. As experience is eained
f.!ruclur inr, informAlion, the c:ontex l sensitivit y of the rules
will be recop,niwd rind r.tronr,er heur ir.lics construded. This
requires the dornue r111d iurnly!iis of empirir.al data. Eeacl1
concept will r.lore records of its u!;e in search and knowledue
acqui5ilion. This data will be an;i ly~ed by various mr.lhods,
some of which are: ·

- Eac:h concept ir, compor.ed of one or more types.
All concepts of the sarnr. lypC! can be analysed
for commonalities in the empir ical data. This is
stored i11 1hr. concept for that lypr.. This
c:ommonrtlity (ab1,lrac.lion) analysis can recurse
up throuuh the type hierarchy.

- We frequently find c.erl11i11 lines of rcM;onin&
(sequence of c:oncepls) U!;eful i11 the slructurin&
process. U!d11g tho nr.twor~. modr.l method
desc:ribud in (Fox & Hayes .. ffolh, 1976) those
sequences can be discovered. Honc:e new
search rules will be constructed.

7. Search and Context Mllintcnance

Search, as depicted in ronc:epl-specifiral ion or scouli11P,
knowlr.-dp,e sources, ir. a key elr.mr.nl in the system's
processing. Given a crilcrion and information lo be
structured, the system must search for Interesting
re lationship!; between the two. In the survival examplr.,
search (conccpt-spccific:alion) wr1s alonp, 1hr. type hierarchy
of cases in 1hr. c:rilerion concept. The dcrir.ion ar. to what
path lo expforo from a concept ir. dependent upon the
system'r; Global Search Con.text, and the concept's Local
Search Contcxi. Local search context is !,pecified by rules
altac:lwd to r.ac:h concept and tho restriction and modification
mnta-der.c.riplions a111011i: ~lots.

Local e:ontexl · Is depr.ndr.nl upon the conrepl undr.r
investiuation. It is incl!!pendc!nl of the rr.ar.oninu that led lo
thr. comddnration of thAt conc-epl. For examplr., the
surv iv ab ility examplr. refers to the word "Attack". Thir., in
il!,elf, is a concept. Altar.hod lo ii m.1y be a local !;caret, rule
that points out that the inslrumr.nl of tho ;iltack may be of
interest. Alr.o, the mr.ta .. cJer.c.riplion Restrict slot r.pr.cifies
that the instrument restricts the typo of action. Therefore
the instrument should be specified before the method of
attac:k. The search could then invostii:ate the concept(s)
ar.sociated with the Instrument case.

I

I

· I

The need for a p,loba l r.ea rd1 co11text in Speech
Und1!n.l andinr, . Sysl emr. h;1 r. been exprcsM,d by l.esr.er and
Er ma11 (J 977). The df!Cl!.io11 ,w to what porliom, of a c:onc:ept
should be atlend1!d to is clepend1!nl upon how ii relates to it s
global con text. This context ir. not only defined by tho
sequcnc:e of' concep ts lh itl led to the concept under
cons ii.foration (i .e., its a11cestorr. in a hierarchy) but by
concepts in other

1
p;1rnllel br.rnches of tlrn cr iterion

elaborat ion hiernrchy .

Two modes of p, lob ,il contex t com,truction occur in the
r,urv iva l c~xa mpl r.. The fin;! is a r. ide effect of the cr il nr ion
el r1 borat ion by concep t spec ifirat ion. "SllC:CISSrlJU V IITTIIC:K
01\NGrn /\Nil fJNO FOOD ON LI\Nll" i!, a new concept crna ted In the
elaborntion procesi,. It dir.play(; the rn;iin concept of the
ori(',ir;al surviv_ab ilily crit er ion combined with the specifics of
the particular el.ibor ;ilion of the cr it er ion. The global
context is incorporntcd durinr, the concept's creation. The
d1!cision as to what portion of the concep t to irwestigate is
dependent upon it s "importance" in thir. concept. The ad ion
(verb) ir, of importance parlin ll y duP. to the emphnslr. placed
on it by the modifir.r "succesr.fully" and ii pivot;il position in

· the concept. H1mc.e, it is of interest and ir. investigat')d
further. The global context is implicitly brought to bear
during the dec:ir.ion.

The second mod!! rn lies upon the sy!dem dyr.1amicall y
bu ilding a context rnpresent .it ion indnpencll!nt of the concept
under investigation. Continuing the survival ex;implr., the
fir!d type of r,lobal context led to considerinn the roncepl
I\TTAr.K, then the loc.11 context sa irl to irweslir,ate the
" ir1rdrumr.nt" of atlackinr,. Tlie realm of po:;isib lc instruments
i r. VM;I. It can only be pruned by knowing the origirrnl
context of the c;onc:epl ATTAC:K. Thal is, the attack -is 011 land
and the atlackee is possibly clnnr,crour.. Othe r information
such as whether the attacker and al l;ic:kee arr. .111 imate would
be ur.eful. This information war. not expl icitly carri11d along
in the i,earch. At this point in the structuring process we
are lookinn for rr.lation!;, possibly caus;il in nature, between
attack and the information to be r.truc.tured (mAmmals).

8. Knowledge Acqui$lion

It is obvious from these examplr.s, that the creation of A
knowleclr,e structure requires a large amount of dom.iin
knowledge. For examplr., the structuring c,f mammals bar.eel
on survivability rnquire s not only knowledne of physical
charncteristics but what part they pl.iy in the animals
survival, e.fl,, a keen !,cnse of smr. 11 for rlelficlit,8 .in enemy.
This knowledne is initially separnte from the information to
be r;trudurncl. Not only Is the .imount of knowledr,e [:real,
but trrn infernnces drnwn am romplr.x . Suppose we were to
des ir,n a. system to r.trucl ure information ;incl/or know lecti:e,
at1d provide it with a know ledge bar.e and inference
generntor. One could never cir.fine, a priori, the knowledr,e
necessary for suth a lar.k. Nor could one foresee the
knowleclt:e needed in other applications of the system. The
quantity, diversity, and ob!;curily (to the s>•slem designer) of
the knowledr,e, require'> that the system dynamically acquire

1 The process of elaboralir1g the criterion does not result
In a true hierarchy but a dructure whor.e underlying form is
hierarchical and contains "fu?.Zy" nodes. That is each node
has inference paths (mostly dead ends) ru1111ing off in many
di red ions.

153

the knowleclue re levant to the tar.k.

An itnport ant problnm immediate ly ar i1;es: How does a
sys tem focus it s acquisition of knowlectne? The -solution is the
critorion. II is lhci key piece of informat ion w;ed in rating
what knowledge to acquire. The closer the rr. lationship
between know lecl[:e And the crilorion, tho hir,her the rnt ing.
In a sense, the c:rilerion biases tho comp11l at ion of the
system.

During the . !,earth proceVi, many !, loh (comepts) are
fo und lo be empty. One of lhr. mP.clrnnir.rn for fillinr, those
slots is introspection. This mr.(11,mir.m ir. implr.rnrrnled by
atlac:hinp, knowledge ar.q11isilion rules to !dots in a concept,
describing wlfore in memory the proper inform,1tion (other
c:onc:epls) may f)(! found. In ;:iddilion to rulr. s, dr.cluclion
concepts and ana logy mr.cha11ismr. nlAy be employed.

A second mr.thod of acquiring know lP.dgC' is
q 11.f! .<tion··asking. Slot rcl;iled ru lr.s can be r.mbr.clded to a!;k
the w,cr dirnclcd q11r.slion! •. The v11 lur. of a quest ion in
acqu1rn1g relevant knowlecinc is dep!'ndenl upon it s
sp(!c ificily. A que.~tion's r,pec ifir.ily depr.ml!, on the comept's
abdradion level (e.g., IP.vel in type hiernrr.hy) ;rnd i;r.arrh
context. The conc:ept "action" nrny r;pr.c ify quest ions al lhn
Ir.vet ot' object, agent, indrurnr. nt, etc., while the ronc:ept
"attack" may have rules (c.ombincd wi th CY.pr.cted case filler
lyp(!s) !;pecific enour,h to ar.k: "what weapon was m,ed ar. the
lnstrurnr.nt of atlac:kin[:." Ulili7.inp, the context nwch11nisms
descr ibnd in Sr!c.lion 7, dr.lailr.d q1wslions Ciln IH! M;ked.

Another mr.chanism for gu irl inr, the formation of questions
req11irn s the ability to solve~ prob lr!mr. at variour. leve ls of
abi;lrnction. Con!,idr.r the r.urv iv 11I exillnp lr al the point of
trying to rnlale "attack" to one of the mamm.ilr.. The
r,y:, lem's knowledge base may not ronlain information
r,pec ific enour,h to rnlale 1hr. two. Thal is, the pri!sent slate
of tho knowledr,e bM,e is not dorMir, !,pecific. It may know
nothing about mammal!, al tile king with c.lnw~, teeth, tails, or
guns. £3ul it m.1y have iltl abs tract description of the concept
"attack", which m;iy be defined ar. "the application of force to
overcomP. another object." The analysi:; of force application
cou ld le ad to: "movrimr.nt or m;1nipul;ilion of objeds."
Contimr inr, lhir. analy!,ir., the mamnrn l m;iy be ab!,lrnclly
related to "atlatk". The system could then a!;k r.pccific
questions based on this atn,tracl analysir. to eli cit domain
knowledne. For examplr.: "c.an the Mm of the rn;1mmal be
viewed as An objnct that can apply forc,? 1 ", "ls the force
applied grnat enough to ovcrrornr. the opponent'~ force
mnchanir.m::;?" ck. 13y building an abi;lract chain of
inference~., relatioM, etc. that connect two ro11cepts of
Interest, quesliom, can be posed to elicit the dom;iin specific
information.

The r,equences of abdrac:I re lations can also be built by
analogy. If the sy:;fem ha!; an exarnplr. of attacking in
anothr.r domail\, then by trave ling up the type hierarchy, the
attack exarnpln can be described at an abstract level. The
seque11c:e of aln;frilct co11rnpls can be used In
question -asking in the same way lhill the abstract sequence
is derived by problem .. !;olving.

[,:.porinumto.ti.on is a third method of knowledr,e
acquis ition. It appearn to be A very powerful method thAI
has yet to be seriously investigated in the ArlificiAI .

lntPlliu.1inc.e community 1. Thir. mr.c h,mir.m r.xpr.rlmr.nts with
ep ir,oclri~. ,rnd conrept:, to cfo;c.over their CA U!;at rnlationr.hips.
By rnrmipulatinp, an epir.ocle in which the concept of interest
ir. found, mlation!d1ip!; c.an be cli!;cerned. For r.xamplr., if WC'!

am inve,;tir,;iting the surviva l c:lu11'..1cterir.tic s of a ga7.cllr. we
may have an epir.od11 in which the nrnmmal exhibit s its
!;urvival ;ib ililie s: "A gazelle ir. lr;ivelling through a forest. It
io beine; slall1ed by a lion. The r,azelle slops, lift s its head
and runs away, escapinr, from tho chmr,er." This cpir.ode Is
suff icient ly v.ir,ur. tl1At it docs not indicate thP. attributes of
the p;;izelle that facilitated its rewr,nition of and escape from
d;inr,cr. f3y experimenting wilh the epir.oclr., the interesting
charnctcrir.t icG can be unveiled. If it ir. thou[lht the gazelle's
heari11r, .illowPd ii to cl1!1ed the lion then the cpir.odc can be
rerun (either internall y or by ar.king the w;er) and changed
by putting ear .. mulfs on the gazelle. The outcomr. of the
epir.oclc (gazclle'r. death) will inform the sy:,tcm whether
hearing wa:; a key factor. The in;ibility to build a11Ct maintain
an internal model sufficient to uirry out E•xpcrimr.n ts iG not
an impediment. The question -a!;kin[l facility dir.cur.scd above
suffic.e5. Hy por.inr, the propr.r q1mstionr., lhe system user
can carry ouf the aclur1I experiment and re lay the results.
Hnnc:e a powerful question- asking ability lays tho
ground-work f?r experimentation.

9. Structu,·c, Evaluation

Given that the cri lerion determines the lype of structure,
it ir, alr.o 1he crilcr ion that is w;cd 1o evalifate hypothesized
structures. The ques1ion is: How is the criterion integrated
into tho ev;i lua1ion process?

There arc two types of evaluation techniques. The lint is
constructi,,c. Con!;\ructive 1ec:11niqucs arc w;ed in the ac1ual
construction of the knowlr.clue structurr.. They are
dcpr.11d1int upo11 the rnlalions ur.ed. For !!xampir., if a clar.s
relationship is U!ied, it may be bar.eel on the similarity of
allribu1es between inform,1tion unit s. The dedsion as to
what attributes arc diagnostic i!i bar;cd on the attribule's
relation to the criterion. In many 1n11mmalr., the ex ir.tencc of
hair mr1y not be a ur.cful c:lassification, relative. lo the
survival criterion.

The inferences th11t arc used to hypothesize possible
structures are subjec.t to ev;ilual ion. In most other systems,
inferences have (at most) f.taiic ratings assoc.iated with them.
The combinine; of information requirns tho c:ombining and
evaluation of these mull iplr. inferences (Shortliffe, 1975;
Dud11 &• Hart, I 976; Hayes -Roth ct al., 1977). The use of
dynamically defined lnfercnrc · ratings (by re lation to the
criterion) provides ur. wil h the power we need to mear.urc
knowlcdue structures wdng diflernnt criteria.

The sec.one! evaluation technique is operative. It is an
evaluation of a structure based on Its aclw1I perlornurncc. If
a knowledue structurn w11s created to modr.l the university

lrhe Molgen project (Stefik 8.• Martin, 1977) is an attempt
at the autotirntion of pl.inning genetic experiments. Both lll'O

similar . in that they have to pl_;m the experiment but they
differ in that a knowlr.clge structuring sy:;tem attempts to
extrnct dependency lnformAtion implicitly contained in tho
epir.ode. Thi s requires the rocor,nition of the portions of the
epir.ode that pertain to tho currnnt knowledne Acquisition
goal, the construction of an experimentation goal, and then
constructing an experiment.

154

enrollment' foreca!;tinr, ·procesr., then its performanc.c, I.e.
prndict11bility, wo1~1ld be an oper11tive (,valirntion. Operative
techniques c:an be r.r.lernal or internal lo the system. In the
ex1ernal c:ase, the sys1em must produce a knowlr.clge
structure, give it to thr. ur.er, then evalualc1 lhe perlorm1111ce
results and c:hange tho it accordln[lly.

We call the internal c:.ise er.pcrimr.ntati.on. Experimentation
tal1e~; any structurn, hypothe sis, or rnlation 1111d !£r.ts ii in a
c:IO(;ed, r.ontrollr.d environmrrnl. UnclN 1he r.y~temr. dirndion,

the cnv ironmr.nt and/or the hypothesis beinr, te!;ted (e.g., a
g;izelle detects danp,cr by llfiaring it) can be d1a11e;ed. By
v..riow; technique$, theorir.s can be corroborated or rejected.
In the survival of mammalr. example, an P.pi!;odr. where a
mAmmal in in a dangerow; situation would he run and rn -run
to see what attributes of the mammal are pcriinent for its
surviva l. Placing the mammal near water, 0,1 a rocky hill, in
day or night, all may be imporl,rnt environnrnntal c:hane;es
U!;ecl to ferrnt out necesr.ary attributes. Experimen1alion
actually hridr,es two area!; of c:onc:ern. It is used as an
evaluation technique, and a!; a mr.thod or knowleclr,c
acquisition. Ear.h test inc:rear.cs the r.ystem's knowledge of
the mammal.

10. Summary

We have i11troduc.ed the conc:epl of K110111w.dffe Stmcturin11
as the proc~ss that e;eneratcs hnowledffc by combining
information previoll!dy unrelated, or by rreating allernale
structures for (prnviowdy structured) know ledue. ThP. key .
factor i11 the k,nowl0dge strncluring proce~s is the criterion.
The number of different potential struc:l urings is larue: Its
selection is guided by the criterion. Generality is attained by
making the rriterion a system parameter, resulting in 11n
Exo .. Critc,·ion System.

Two types of problems, clar.r. ification and implication have
been · examined using the knowledue struduring parndi[lm.
They clemon!;trnte the need for exo .. criterion knowledge
struclur inn (;ystemr..

A knowlr.due structuring sy~tem requires a robust
knowl0dne representation. In our approac:h, we have built
upon the labour!; of others. Interesting nddilionr. 11re the
integration of empirir.al information for lcarninr,, the melding
of tho declaralivn and procedur11I approach to
rnprnsent at ion, and the use of c:onc:epl meta ··dcsc.riptions.

Of part iculAr interest lo lhir. research is the study of
knowleclue structuring mechanisms. In par ticular, tho
focu:;i11n of search in large knowledge bases by mr.ans of the
criterion. We believe that search is a bar.ill mr.chanism, upon
which the knowledge sources are dependent.

Criterion guided knowlcclne acquisition is the second
knowlr.clge structuring mechanism. This work ilwestigates
acquir.it ion via introspection, quest.ion-asking,
experimentation. Two of the underlying mr.rhanisms are
conc:ept-specification for creating sub -crilcirie and (abstract)
problcm .. solving as II bar.is for question-asking.

LA!;tly, II should be omphar.iied that the process of
knowl0dne structuring and thn integration of an exo-criterion
is a necessary step In tho evolution of Artificially Intelligent
systen1G.

< ..

11. References

Bart Intl F.C., (193?.), Remr.mbnrinn, Cambridr,e: Cambridge
Unive_rr. ity Press.

Bobrow 0., ,md T. Winor,rad, (19 77), "KRL: Knowlecfue
Reprwwntalion l.angu11ue," Cognitive Science. Vol 1, No.
1, 1977.

Buch11r111n 8. <1nd T. Mitchell, (l 977), "Model Directed Learning
of Produc:lion Rules," Fifth lnternittional .loint
Conference on Artificial lntelliP,eillQ, Cambr idr,e MA.

D11vis R. and 8. Buchanan, (1917), "Mcta .. level Know ledge:
Overview and Applicationr.," Fifthe International Joint
Conference on Arlificial lntelli.r.cD.£Q, Cambridge MA.
Augu!;t J 977.

Dud11 RO., P.E. Har t, and N . .I. Nil!,son, (1976), "Subject ive .
Bayesian mr.thodr. for ru le-bar.eel inference sy~temG,"
Proc. of NCC.

Erman L.D. and V. l.es(;er, (1975), "A Multi - level organization
for Problem·· Solvinr, usinr, m;rny DiverGc Coopernting
Sourr.er. of Knowledr,e," Fourth International Joint
gonfernncc Qn 1r.llf irla! !.t.1.!£!.li.r.r.nUL r iblir.ni, USSR.

Erman L.D., (1977), "A Functional l)(!scription of the
HEARSAY .. 11 System." Proc. J 977 IEEE Inter. Conf. on
ASSP, Hart ford, CT, May, 1977.

Fikes RE., and N . .I. Ni l!;son, (I 97 J), "Strips: A New Approach
to the Application of Theorem Provit1fl to Prob lem
Solving," Artificia l lntelli11erire, Vol. 2,pp 189··208.

Fi llmore C . .I., (I 968), "A Case For Case," In Pnivenals lD.
l.innuir;ti c; ItieoryJ Bach and H11rrir. (Eds.), Chicago: Holt,
Rinehart & Win~ton Inc:.

Fox M.S .. and F. H11yes - Roth, (1976), "Approximation
Techniques for the l.earninr, of Sequential Patterns,"
Third 1t,t. Joint Conf. on Pattern f?ecognition, Coronado

Calif., Nov. 1976.

Fox M., (1977), "Clw;ter Rules", Internal Memo, The RAND
Corporntion, Santa Monir.a, June 1977.

Fox M.S. and R. Reddy, (1977), "Knowledge Guided Learning
· of Struc:turiil Dosc.ripl iom;," Fiflh l11ternalioni1I .Joint
Conference Qf Artificial lntelli11cnce, Cambridge, MA,
Augw:;I, 1977.

Haye5 ··Roth F., (1976}, "Patterns of induction and ar.sociated
knowlecl1:e acquisition Algorithms," Tech. Report,
Computer Science D1ipt., Carnegie-Mellon University,
Pit tsburr,h, PA, May 1976.

Hayes··Roth F., and V. Lesser, (1977), "Focus of Attention in
the HEARSAY-II Speech Undursland System," Fifth Int.
Joint r;onf . Q.!l Aritific:ial Jnte lliRenre, Cambridge, MA,
Aug. 1977. .

HAyes - Roth F., V. Lesr.er, D.J. Moslow, and L.D. Erman, (1977),
"Policies for Ratir,g Hypotheses, H111ting, and Se loding
a Solution in HEARSAY-II," In furmnwy Q! the CMU
Five .. year ARPA effort in Speech Underr.tanding
Research, Tech. Rep., Comput er Sciene:e Dopartmont
Carnegie-Mellon Univernily, Sept. 1977.

Lena! D., (1975), "BEINGS," Fourth International Joint

155

~onference on Artificial lntellip,cn.£.Q, Tiblir.i, USSR.

Lenat, D., (1976), "AM: An Artificial Intelligence Aprro 11c:h lo
Dincovery in M11themAtics A!; l four int ic Search," (Ph.D.
Thesis) Computer Science Dept., Stanford Univernity.

Lesser v:R., and I..[). Erm;rn, (1972}, "A R1itrospodive View of
tho HEARSAY .. 11 Arc:hilecturn, Fi fth l.!} l ernational
Confereoc .. e on Artific ial lntelliRencQ., CArnbr idge MA.

Miclrnlnki R.S., (1974}, "I.earn ing hy induc:tive inference,"
NATO 8dvanced Sl.!!ill'. ln!,litutP. on Computor. Qr inntcd

Learr,inR Procesr;~ Bonar., France.

Minsky M., (1975}, "A Framework for Reprnsenting
Knowledge", In The psyc:ho lor,Y. gf Q.Q mputer Vision", P.
Wini;\on (Ed.}, N1iw York: M< Grow- Hil l.

Moore J., ,met A. N«iwell, (1973), "flow tan Mer lin
Undnrr.la11cl?," In Knowleclne ;111d Cor,nil!.Q.!1 L. Grogg
(Ed.), Marylflnd: Lawrence [rllrnum Ass.

Nowell A., and H.A. Simon, (I 963), "GPS: A Progrnm that
SimulAter. Human Thought", in C:.:s>_nJp!.!!gn;_ illlil Jb.Q.!JRh!,
E.A. Feigenbaum ,rnd J. Feldman (Eds.}, New York:
Mc:Grnw Hill.

l\k1welt A., and H.A. Simon, (I 972}, Human Problem So!Yin&.,
Englewood Cliffs, N . .I.: Prentice Hnll.

Nnwell A., (1973), "Produc.tion Systemr.: Mocl1i ls of Control
Struc:turns," In Vi sual !J.1form~tion Pro£!!sr.inn, W.C.
Chase (Ed.), Nliw York: Ac.adcmic Prnss.

Sacerdoti F.. D., (1975), A Struc:turn for Plans as Behaviour,
(Ph.D. Thesis), Computer Sc ience Dept., Stanford

· University.

Samuel A., (1963), "Some Studies in M;ichine Learning using
the Game of Checkers," In Computers /lllli :r11ought, E.
Feir,enhaum and .I. FeldrnAn ([ch;.), Nliw York:
Mc:GrRw - Hill Book Co.

Schank R., (1976), "The Structure of Episodic Memory," In
ReRJ:esentalion ;incl Underr.tanclinr,, 0 . Bobrow and

A.Collim; (Eels.}, N,iw York: Academic Pross.

Short liffe E.H.; (1975), Computer -Bar.eel Medical Consult at ions:
MYCIN, New York: American Elsevier .

Simon H.A., (1977), Artificial lntelligc11ec Sy!,temr. that
Undcrr.t and, Fifth l_nternational .lo int Conference on
Artificial lntetlmenc:c, Cambridge MA.

Sokal R., and P. Sneath, (1962), Princ.iplr.s of Numerical
Taxonomy, San Francisco: W.H. Freern,rn.

Stefik M. and N. Marlin, (1977), "A Review of K11ow leclue
B;ir.ect Problem Solving as a Bar.is for a Genet ics
Experiment D1isigning System", Tech. Rep., Stanford
University.

Wir,slon P., (1970), "Learning Structural Descriptions from
Examplr.s," Tech. Report Al TR- 231, MIT Al Lab.,
Cambridge, Masn ..

RE-REPRESENTING TEXTBOOK PHYSICS PROBLEMS 1

John McD0rrnott
Computer Science Depnrtment

C11rneule"Mellon University

and

JIii H. Larkin
Physics Depnrtrnent

and Group 111 Science and Mathematics Education
University of Callfornla, Berkeley

Abstract. Only llrnited attention has been given to
clevelopinu Al systems tlrnt con represent for
themselves the prohl0ms that they are llsked to solve.
PH"632, the system discussed In this paper, Is a
i>rocluctlon system that models the behavior of an
expert physlclnt In solvl11u textbook physics problems;
as with other skilled textbook physics problem
solvern, a slw1lflc1111t amount of Its effort Is directed
townrd problem reprnsentntlon. Tho system Is driven
by a plctorlnl representation of n problem; It
extensively reworks the representation before
generating the equations that enable It to solve the
problem.

I. INTRODUCTION

Clearly the way In which a problem Is
represented Is a significant foctor In the ease with
which It c:nn be solved [Nowell nncl Simon, 1972;
Simon, 1975); and for the most part, when nn Al
system Is designed, the deslg11ors expend
conslclernblc effort looking for on 01>tlmal problem
ret>rnsentntlon schenm. In this pnper, we describe a
system, PH"632, that can represent problems for
Itself 111 11 way thnt fncllltntes Its subsequent work on
those problems. The system models the performance
of a skllled physlclnt 011 slmple me1chanlcs problems.
We wlll not be co11cernecl here with the psychologlcol
validity of our model (see Larkin (197711; 1977b));
rnther, we wlll assume that our model captures, at
leBst grossly, the basic problem solving strategy of
th.e expert and will be concerned prlrnarlly with the
utlllty of the problem reprmrnntotlons Implied by the
strategy.

A skllled physicist solvl11g a slmple textbook
problem ordlrrnrlly ml'lkes use a sequence of four
representations: Given an l11ltlal statement of the

1 This work was supr>ortcd 111 p11tt by the Defense
Advnncr.cl Roscrnrch Projects Agency
(F44620"73-C-0074) and Is monitored by the Alt
Force Office of Scientific Research.

156

problem In E11{1ilsh, tho expert re"rnprnse11ts the
problem as a picture; the picture co11tol11s Just those
ob Jects mo11tlo1wcl In the problem statement encl
cllsplays tholr relatlonshlpi; lo one another. Then the
expert develops a third rnprenentntlon co11slstl11g
exclusively of "physics entitles" (eg, systems, states,
forces, energies). fl11nlly, the expmt represents the
problem as a set of equations whose solution will yield
the answer to · the problem. While It Is obvious that
the flrnt and last of those representations are
necessary 111 order for n problem to be solved, the
utlllty of the two l11terrnedl11te reprnsentntlons may be
less clear. In this paper we wlll focus · 011 two
questions: (1) 111 what ways do the l11tcrmcdlBte
tet>rnsentotlons facllltnte problem solving? (2) What
knowledge Is required to construct and then make
effoctlve use the second of these lntermedlllte
representations?

Severn! l11cllvld11als ere enonned 111 research
tlrnt pnrollr:ils our ow11. Hoyos nnd Simon's
UNIJrnST/1.NI) system [1974) models the behavior of
humans In the task of 1>roblom rn1>resentotlon, end
Novak [1976; 1977) and do Kleer (1977) havo each
clevclopr.d n physics probl0m solvlnu system that
constructs multiple problem representations. Novak's
system, ISSAC, which Inputs Enullsh text stating a
problem nncl tlrnn solves tlrn problem, Is prlmarlly 11

study In nnturnl le11uuane 1111derstondl11g. Most of his
effort w11s spent 111 showh1u how n statement of a
physics problem can be mapped Into a "plctorlal"
encodll1g composed of l11stontlatecl 11 cono11lcnl object
frnmes"; by obstrnctl11g from the lrrnlevant details In
the problem statcmEmt, his system Is able to put the
problem 111 a form that makes solvhig rclatlvoly
straightforward. In de Kleer's system, NEWTON,
knowledge Is roprosentcd 111 a way that enables the
system to attack problems of varying dlfflculty with
different problem solvl11g stroteules. The system first
attempts to solve n prohlem using 11 q1111lltatlve"
knowlecl(Jc; If the problem cannot be solved using only
ctLfolltatlve knowlmlge, the system uses Its
"quantitative" knowledge. PH"632 Is given a pictorial
reprnsuntatlon similar to that oeneratcd by Novak's
system; It constructs a qualltotlve representation -- a
second l11termmllllte representation -" that greatly
slmpllfles Its subsequent quantitative analysis.

· I

In tho next section, we consider In morn detall
tlw dlffnrnnt prohlom reprnsontotlons used by a
sklllml physlclr.t nnd provlclo somEi Justlflcntlon for the
two lt1torrnodl11te reprnsentntlons. In the thltci section,
we clescrlhe how knowl0elne Is rnprnsentecl In our
system nnd lndlcntn how the . system uses Its
knowledoe to construct nnd use the qualitative
rnprniwnlnllon. In the four1h sec:tlon we examine In
sorno detoll tho behavior of our system on a sample
problem. Flnnlly, In the fifth sec:tlon, we discuss two
of tlw weaknesses of our system ns currnntly
l111pl8111011tecl: Its lnnhlllty to rnak e effoctlve use of Its
knowledge when It encounters problems of an
unfomlllar type nnd Its lnnhlllty lo refine Its knowledge
on the basis of Its experience.

II . THE PROBLEM REPRESENTATION STRATEGY

As we lndlcntnd In the prnvlous section, an
expert physlclr.t typlcnlly mukes use of four different
rnprnsentntlons ns he solves a textbook physics
problom. To lllur.trnto thesn representations we will
use a problem taken from 1-lrlllldny ond Resnick [1966,
pp . 126- 127]. Tho flrnt representation Is the one
given In tho book:

Block B In Figure 9 wel~1hs 1 60 lbs. The
coefficient of static frh; tlon between block
and table Is 0.25. Find the max imum weight
of bloc:k A for which the system will he In
e.qulllbrlum.

Figure 9

If the problem stotement were not accompanied
by a picture, then the expert would construct, as a
second reprmwntntion, his own picture displaying the
e ssentlnl nlermmts of the problem sltuntlon and then
would make a fow notes on his sketch Indicating
relevant quantities and their values. Since a picture
Is already provided for this problem, all that the
expert does In this cnse Is copy tho picture and ndd a
tow notes. Tho expert would produce a sketch llke
that In Figure Oa.

157

A

Figure 9a

The expert would then cmnnuc In a qunlltntlve
anolysls of tho problem and this would result In his
constnrctlnu n third rn1mrnentntlon contnlnlnu only
11 physlcs entitles". The expert would henln by
selecting an approach to the problem (le, a set of
physics prlr1clpl8s); for this problem, force prlncl1>les
would Im the moot likely cnndldnte. Then he ml~1ht
make sonw Inferences obout block O (that It Is acted
on by four forces: tension to the right, friction to the
left, ornvlty down, normal force up). Because block B
is nn Instance of n fnmlllnr system type (n block at
rest on a horlwntal surf11c£l), the expert would
probably not arid nnythlnu to his sketch.2 But the fact
that the tension forr.c on block B cannot he directly
related to known or desired quantities would guide his
attention to 11 second system lnvolvil10 this tension
force - - the Juncture of the three strlnos. This
system Is sufflclenlly complox that he would probably
clrnw a "free-body" dlngrnm of It. This would result In
a sketch like that In Figure 9b.

f T~ //,r
T

T&
~""'/ e

Tn •

LA
Figure 91>

2 It may he that the expert actually postpones his
analysis of familiar systems until he begins to
oenernte equntlons; we think It Is more likely,
however, that the systems are nnaly;mcl, but not
drown because the Information lnfcrreci Is easily
rnmomberecl. We will return to this question In
section IV when we descrll>e how PH-632 deals
with familiar systems.

Tho frnc~Mhody dlanrnrn shows the directions of the
two tension forc(!s (TA and Tn) due to the strlritis
attached to blor.l:s A and B, os well as the horlwntal
onrl verUcnl components (Th nnd T v> of the dl11gonal
tension fore<! clue to the~ strlnu ottached to the wall.
llw fact thnt the verl'lcol component, T v• cannot be
cllrnctly related to known or desired quantities would
oulde the export's attention to block A; but again, as
with block 13, no frneMbody dlagrnm would be drown
since block A Is nn Instance of n fnmlllar system type
(a hantilll!J block).

flnnlly the export would construct a fourth
rnpresentntlon of the problem by writing a set of
eq11ntlons; each of the equat ions below would be part
of this quantitative representation:

Because forc€!s l>11l11nce on the Juncture:

Because block B Is Rt rest:

where f Is the frictional forco on block B. Comblnlrig
the preceding, and relating the component forces T v
and Th to tho magnitude of the total tension force T
clue to the slanted string:

f = T (cos 9); WA=T(slnl)

where WA Is the weight of block A. Using the fact

thllt 8 Is 45 clegrnos, and f equals the coefficient of
static friction, µ., tlrn~,s the normal force which here Is
equal to the weight of B:

WA= 40 lb

Sklllml physicists almost lnvmllihly use nll four
of the rnprnsentntlons lllustrntcd nbovo (the English
problem statemont, the labeled sketch, the sketch
containing physics entitles, nnd the eq1rntlons). Our
Interest Is In the utility of the two lntormodlate
representations. It Is not difficult to Infer plausible
reasons for tho foct that the expert reMrepresents
tho problem pictorially. Much of the difficulty with
mechanics problems lies In 1mclerntondlt1g the spatial
rnlatlonshlp11 of the objects Involved; a plcturo
provlde11 a way of re1mrnent1110 this lnform11tlon
compoctly MM so thut nll of the Information necessary
for· solving the problem 111 lmmecllatoly avall11ble.
Momovor, much of the Information that Is t1lve11 In a
typical Enollsh problem statement Is lrrnlevant; In
mechanics problems only a few attributes of objects
·(en, mass, orientation, texture of surfoces) are of
Interest. Thus, the 1>lctures that are drawn can be
highly stylized MM a small set of symbols can be used
to represent all of the objects Involved.

158

13ut why does the expert spend a slonlflcant
amount of his time c:onstructlnn what we arn cnlllti[I ll

qualitative rcprinwntatlon? Th!!rc are ot least three
rnnsons: Flrnt, by rlolno so tlw expert con quickly
determine the np1>roprlatnnc-!SS of a pnrtlcular
approoch to a problem. After constructlno n frne-body
dlrigrom, for examplo, he con check whether what he
knows about tho motion of n system Is consistent with
the forces act1t10 on It. Secondly, before a mechnnlcs
problem cnn be r.olvecl, the forces or energies nt work
must be dlr,c:overed 1111d somohow rnpresentecl. Since
tlw spotlnl rnlatloti'shl1rn among tho forces or eneroles
nlwnys hns sl[llliflconce and since the force or energy
lnf'orm,:1tlo11 c:nn be rnpresentecl with n smrill set of
symbolr,, n highly styll7.ed plctorlol rnpresentntlon of
this knowl8df1P- Is opproprlote. Third, the problem can
be attacked In o wny that minimizes the possibility of
tho exp1Ht lrncomln[I confused or dlstrnctecl. By
deco11pll11u the discovery of the forces or energ ies
from tho gerwrn tlon of r.quatlons, the expert rnduces
tho amount of Information that he must attend to ot
any one tlmo; oftor nddlnu force or energy Information
to his sketch, he can forget about It since It Is 111 a
semlMpermanent and easily rntrlevable form.

111. PH-632: REPRESENTATIONAL ISSUES

In this section we turn from genernl comments
about how sklllod physicists solve mocl111nlcs problems
to n conslderntlon of the reprnsentntlonnl Issues that
nrlr.e when one tries to lmplenwnt a system that con
use the experts' problem solving strntegy. After
l>rh~fly dl:;c:usslnu the way In which problems olven to
PI-IM632 arn encoded, we consider, In some detail, the
way In which PHM632's knowledge of physics Is
roprnsentcd.

PHMfl32 Ir, provided with 11n encocllno of the
picture of the problem It Is to solve. Thouuh It docs
not Itself generntc the plctorlol reprnsentatlon (le, It
Is not a naturnl l11nuuane undorntoncllng system),
Novak's work hns shown how such II rnprnsontatlon
can he constructed. Uslnu the labeled sketch,
PHMfl32 constructs a qualitative reprnsentntlon ancl
then oenerntes the necessary equntlons and solves
them. The problem cler,crl1>Uo11 that PH-632 Is olven Is
encoded as sets of attribute value pnlrs . The
descrlpl:lon consists of thrne kinds of entitles: (1)
objr?cts, (2) contacts between polrs of objects, and
(3) notes contnlnlnu quantitative l11form11tlon nhout the
objects. These ent itles contain only that knowledge
that could be oenern tccl hy a naive perceiver (le, by a
1>arcept11al system with no knowledge of physics).

Assoclt1ted with each object Is an Indication of
whether It has mass, whether It Is movlnu (nnd If so, 11

clescrl1>th>n of the motion), what other objects It Is In
contact with nnd the direction of the contact, and Its
cnnonlcol type (eg, block, string, spring). For the

·,

somplo problem nlvnn above, PH-632 Is given the
following description of block B:

NAME
TYPE
SUBTYPE
MASS
MOtlON
CONTACT

131.0K·B
OB,IECT
131.0CK
YES
NO
(RIGHT smNG1 CNTCT1)
(OOWN TABLE CNTCT2)

Block B Is In contact to tho right with the object
nnmr:1d STl~l"G 1; Information about the nature of this
contact Is c:ontoilwd In the contact ent ity, CNTCT1.
CNTCT2 c:ontol11s Information about the contact
between block A and the object, TABLE, which Is
unclernoath It.

Assoclntcd with each contact are the names of
the two ohjr.c:t11 l11volvr.d, tho cano11lcnl type of the
contact (r.g, hook, surfocn), nnd for surf'nce contacts,
the orlontntion of the objects and their texture (eg,
rouqh, smooth). PH··032 Is given the followl11g
description of CNTCT2 :

NAME
TYPE
SUBTYPE
OB,11
013,12
QlJAI.ITY
or~IENTA TION

CNTCT2
CONTACT
SlmFACE
(BLOK-B 01.0CK)
(TAlll.E SlJHfACE)
ROUGH
(RIGHT LEFT)

CNTCT2 Is the contact between the two objects,
· bfoe:k B (whose subtype-> Is block) nnd TABLE (whose

subtyj>H ls surfnce). The texture of the two adjacent
surfoces ls rouuh and their orlr:111tatlon Is horl?.Ontal.

Aiisoclntod with the notes Is the knowledga of
whnt rs de:.lrncl, what ls given, and the value (If
known) of each given. PH-632 Is provided with the
following description of what ls given and whet Is
desired In problem 9:

NAME
TYPE
DESIRED
GIVEN

CRITICAi.
MASS

ANGLE
MS

PHl39
NOTES
(MASS 131.0K-A)
(MASS 131.0K-13)
(ANGLE smNG2)
(MS CNTCT2)
(MASS 131.0K-A MOTION)
(Bl.OK-A M<A>)
(ALOK-B 1 GO)
(SrnNG2 45)
(CNTCT2 0.25)

The mass of block A Is what Is desired. The mass of
block 8, tho nnnle of STnNG2 (the strlno attached to
the wnll), and tho coefficient of static friction
between block B nnd the~ tnble nre nll given.

In choslng II scheme for representing PH-632's
knowledue of how to solve mechanics problems, we

159

were oulr.led by thrne llapects of the behavior of the
human expert. first, as we have nlrnady l11dlcntcd,
tlrn expert 11wk1rn extensive use of pencil and paper
Ill nll stones of his problom solving. Ills set of
sketches Is a semi-permanent, auxiliary momory
contnlnlnu chunks of lnformritlon tlrnt cnn be quickly
accessed. PrnHunwbly tho expert makes use of this
nrnmory In order to llmlt tho nmount of Information that
ho hns to nttc1id to nt any onn time. Socondly, the
ex1rnrt 11pp1rnrs to have his knowledge organl7.ed
hlernrchlcolly. Ha tnkes tho some ucnernl approach to
nil textbook 1110(:hnnlcs problems; le, he selects n set
of physic s prl11c:lpler., c:onstruc:ts physics entltlos, and
tlwn 11enerntos eq11ntlons. Within cnch of those
sta~rcs thorn Is c:onslclernhlo consistency across
problems of tho snnio type~; If for example, ho Is usht(t
force principles cl11rl11g his qunlltatlve analysis, he will
consider <lnc:h oh jcct In tho picture, looklnu for tension
forces nncl frlctlonul forces thnt nc:t on thnt object .
Thlrri, tho expert's cholc:e of whnt to do ot any olv1rn
mo111r:111t nppernrn to be almost complotely dependent
on tlrn pecullarltfos of the portlculnr problem belno
consldernel. Thouoh tho ratio of knowh:~ctoe thnt the
expert has nvallal>le to knowlectoe he uses Is very
hloh, tho knowledne used Is ordlnorlly Just tho
knowled~1e 1wciclecl tor the problem at lrnnct. For
rnosons that we will devolop below, we decided that
Plt .. (i32 should l>e lmplcmontecl as o production
system [NowP.11 ond Simon, 1972; Newell, 1 973;
Wntmm,m nnd ltny1rn-r~oth, 1978]; tho particular
production system nrchltecture thnt we have used Is
called OPS2 (Forgy nncl McDermott, 1977; Newell,
1977; McDermott, 1978].

An OPS2 production system consists of a
collection of productions held In production memory
nncl n colloctlon of assertions held In working
memory. A production Is II co11clltlonnl stn tomont
compor.ed of 7oro or morn condition elements and 7.ero
or more action elemrn1ts. Condition elements are
templates; when each can IH~ matched by 011 elcnw11t
111 worklno momory, the production contnlnlno them Is
said to lrn l11stn11tlntud . An lnstnntlntlon Is 011 ordered
pair of a production ond the elements from working
nwmory thut satisfy the conditions of the production.
Tho production system lnterprnter operates within a
control frnmework called the rec:09nlrn-t1ct cycle. 111
rec:0~1nltlon, It find:. the lnstontlntlons to lrn executed,
nncl 111 nctlon, executes 0110 of them, performing
whntevnr nctlons occur 111 the nctlon side of the
procll1c::tlo11. Thn rnco1111lrn·t1ct cycle Is repented until
e ltlH-lr no production cnn be lnstnntlntod or an action
elenmnt nxpllcltly stops the processing. Reco9nltlon
coll be divided Into match nnct conflict rnsolutlon. Ill
match, the lnlerprntm finds tho conflict set, the set
of nll lnstnntlntlo11s of productions that are satisfied
011 the currnnt c::yclo; OPS2 Is hnplenmnted 111 such a
wny that tho tllm1 11eodod to compute the conflict set
Is C?ssentlnlly Independent of the sl7.e of production
momory (irne Forgy [1977]). In conflict resolution, It
selects (on the bosls of n few simple rules) 0110
lllstnntlotlon to execute (see McDermott and Forgy
[1978]). The actions that con be performed Include

nclcllnn elements to nnd deletlt1u elemm,ts from
worl:inn memory nnd httllcllnn new productions
c:ompmHHI of el0ments In worklnn memory. In ndclltlon,
oporntlons cnn ho P<Hformod on a scratch pad
mernory contolnlnu the cleticrlpllon of the physics
problem 1><~111(1 worl:od on. Given the name of nn
P.ntity, tlw system con view It; this results In the
cler.crlpl"h>n of thnt entity lrnln(I deposited In working
memory. Tlw system cnn scnn for 1111 entity satisfying
n pnrtlnl de:icrlpt:lon; If It finds such nn entity, the
nnmo of that ontlty Is deposited In worklnr1 memory.
The syst em cnn nlso sketch new entitles on Its
scrntch pnd memory fllHI modify c-,xlstlnu entitles.

Pl·l -fl.32 's production mr:1111ory contains nbout
300 productions. With n few exceptions, each of
those productions 1111s ns orw of Its condition elemonts
tho cfer.crl1>llnn of n uoal; tho set of productions that
hnvo the sn mE1 uonl condition element comprlr.e 11
method. f>l·H 'i32 hos nhout 40 methods; some of
theac? consist of only o few productions: others
consist of 20 or 30 productions . By oruanl2i11u the
system's knowlednc 111 this way, we effectively
confine Its nttentlon to Just that knowledt1e which Is
associated with tho uoals that It has not yet
achieved. Tlwre Is, of cournn, n clanger hi dolno this:
tho sy~.tem may hove knowlodne somewhere 111
production momory that Is re levnnt to a p11rtlcular oonl
but lnucc:er,slhlo hcr.nuse It Is not nssoclntocf with the
system's currnnt oonl. Wo huve r1uarcfecf at1n l11st this
by orgnnl2in{1 the mothocls hiornrchlcnlly. The system
has a few very ~1enernl mE1thocls that uenernte
suhoonls; the mothocls srn1sltlve to those ooals
(lc1wrn tc more specif ic sul>nonls, ancl so on. Since
knowledge can ho put l11to a m~1thod at nny level of
th is hlornrc:hy, knowledge that has relevance to many
cllffernnt nmthods Is slrnply assoclntocf with n very
general nmthod. Knowlecloe thnt tho system has that
Is relr:ivnnt to nlmor.t all of Its mothocls Is associated
with a mE1thod whoso productions have 110 goal
condition element.

Ot1r choice of a reprnsontatlon for PH-fi32's
knowlocft1c has proved ncleq1111to; It has enabled the
system to construct and make effective use of both a
qunlltntlv•? ·nnd n qunntltotlve repmsontatlon. As we
montlonud, our choice wns guided by three aspects of
tho behavior of the hurnan expert. Flrnt, llko the
human expert, our system makes extensive use of Its
scrntch pncl momory. Since PH-632 can quickly
access tho lnformr~tlon 111 this memory, It can reserve
working momory for lnforrnatlon that Is currnntly of
Interest. This lmpll~1s that tho only procl11ctlo11s that
are sntlsflecl on II particular cycle are ones that are
rnlevnnt to tho currnnt situation. When some entity In
tho scrn tch pnd momory 11c1cHlr. to be attonclocl to,
Pl·Hla2 con view that entity; tho clescrl1>tlo11 of this
entity wlll then drive tho proc:esslnu for n while - - 1111tll
some othor entity needs to be nttonded to. Soconclly,
our m~ithocl hlornrchy provides the stabll1.l11g Influence
that Is llficessary In order for the system to make
effective use of Its multiple re1>msentatlons In the
face of conslclernble variation among problems. Since

160

tlw system Is nlwnys opcrntl11u within the context of
somE1 gool, tho pnrticulnr suhqools thnt It cnn
uenernto nre hlnhly constrnlrwd; It can ncncratc only
thono subuoals that can bo of holp In nchlevlnu the
currn11t uool. 13y nssoclntlnu knowledoc with the
mothod whose level of {ICIHHolity oncompnsscs nil
expected uses of tho piece of knowleclne, tho system
hns nccess to nil of the knowlcclne that might Im
usP.fui In nny situation. Finally, the recounl;e-flct
cycle provlr.les n control structure that makns the
system contlriunlly rnr.ponslvn to the currn11t state of
the picture. Although nwthods Impose n structum 011
production momory, tho mothods tlrnmsolvor, have no
lntmnal structure. A mothocl Is Just n colk?ctlon of
productions; ench procluctlon Is an autonomous rule
lncllcntlnu wlrnt nocclr. to Im rnnmrnberecl or clone
within thn context of a p11rtlcttl11r uool given some
nspect of tlrn picture that Is currnntly of Interest .
When n method Is bel11u used, It Is orcllrrnrlly tho cnse
that severnl of ·thnt rnothocf's productions flrn before
tho r1ool Is achieved. 13ut the pnrtlculnr sequence of
flrlnus Is not wrlttnn Into the mothocl; It Is determined
by the knowledge In working nwnmry Indicating what Is
currnntly of Interest.

IV. PH~632: PERFORMANCE

In thli; section wo will cieGcrllrn the lrnhnvlor of
Pl·l-632 on the· snmplo problcrn clescrllrncl above. We
will focus on thoGc aspects of the system's behavior
that show tho acfvnntngos of tho qunlltatlvo
rnprnscmtntlon. After descrlbl11u how the system
a·ttncks and solves the sample problem, we will
rn-oxamltm the ndvnntnner. of using n qunlltotlve
representation In morn cfetall than we did In section II.

The flrnt thing that rH-fl32 does when It Is
given n problem Is select nn approach to try. for
problem 9, It chooses to try force prlnclt>lcs.3 Given
this choice, It scans the picture for 1111 object with
mass 1111d finds hloc:k B. Since It recog11i2es block f3 as
n fnmlllar system typo, It bulldr. 11 producJlon
nssoclntlnu with block A the knowledge of what forces
net on that system. In other words, s ince block B Is
nn oh ject with mrrni; on n ro119h, horlwntnl surf nee, It
storns In production memory tlm knowledge that block
B has four . forces acting on It -- a tension force, a
frlctlonnl force, a normnl force, 1111el a grnvltntlonal
force. From this pol11t on, whenever It looks at block
8, alont1 with seelnu the attributes of block B, It w ill bo
rnmlndcd thnt those four forces net on block B. Thus
tho offect of Its quick nnnlysls of block 8, Is
essentially the snmo ns Its morn extended an11lysls of
less fnmlllar systems; Instead of subsequently
referrlnu to a free body dlngrnm In order to remind

3 Since the sy};tem's knowledge Is currnntly limited to
nwchnnlcs, Its choice Is between force principles
and energy prl11cl1>los.

. ·1

Itself of this system Information, It simply recalls the
Information storncl 111 Its production m1:1mory. Pl-1"632
cduld, of course, have drawn a free body clh1grnm
rn lher than storlno the Information In production
momory; we opted for production bulldh1g because
eximrts s1:1ldom genernte free body diagrams for
slmplo iiystems. flt tho same time that It builds the
produr.tion, It deposits In worklnu m1:1mory the
knowledge that the tension force Is potentially
problematic, le, that It Is problematic unless It can
somohow be rel11tecl to tlw {livens In the problem.
PH"632 then looks for a system which Interacts with
block B that can account for this tension force.

It finds tho Juncture of the thrce strlnus (the
only system that Interacts with block B). Since
PH"632 does not rncounlze this system ns a fnmlllar
typH, It "clrnws" on Its scratch pad memory a system
entity (n free body cllnnrnm). Before trying to
cllr,cover the forces acting on this system, It
constrncts the following descrlt>tlon:

NAME
TYPE
JUNCTUl~E

PREF"DIR

10011
SYSTEM
srnNG3

. srnNa2
srnNG1
DOWN
RIGHT

The system attribute Pllff"DIR (prnferrccl "dlrection)
Indicates that the forces act111u In that direction and
tho opposite one ore the forces that PH"632 should
concern Itself with flrnt; In this case (because the
system Is a Juncture), both horizontal and vertical
forces are equa lly sl9nlflcant.

After deflnlno the system entity, PH"632
determines what forces are actlnu on the system In
the prnforrnd direction. When It Infers a force, It
creates a force entity and nlso acids a clescrlt>tlon of
the force to the system entity. Here, the first force
that Pl·Hl32 finds Is the forco due to STRNG2 (the
string attached to the wall). The entity that It
creates looks !Ike this:

NAME
TYPE
ON
FROM
SUB.TYPE
DIR

10012
FORCE
10010
srnNa2
TENSION
(UP RIGHT)

Whenever PH"632 finds e force that Is neither p11rnllel
nor. perpendlculer to the preferred direction, It creates
two additional force entitles that are the horlwntnl
encl vertlcnl components of th11t forco. Thus, In this
case, two componont force entitles wlll be created as
well ,rn force entitles for the tension forces along the
other two strings. After PH"632 has found ell five of
the forces In the preferred directions, the system
entity looks !Ike this:

161

NAME
TYPE
JUNCTURE

PREF-DIR

FORCE

10011
SYSTEM
srnNG3
srnNG2
srnNa1
DOWN
RIGHT
(TENSION I.EFT 1001 2)
(TENSION (IJP RIGHT) 10013)
(COMPONENT UP 10014)
(COMPONENT FIIGHT 10015)
(TENSION DOWN 10016)

Each of tho forces Is identified hy type, dlrnctlon, and
name.

After the system entity has heen extended to
Include nll of the forces pnrnllol to the preferrnd
directions, PH"632 checks for nnomoll0s (In this cMe
for · Inconsistencies between forces and motion). In
probkirn 0, all systems are nt rest and each force Is
balonced by nt least one force In the opposite
direction. Thus PH"632 concludes that the force
lnfornfatlon . thut It hos uenerntml Is phwslhlo and
continues with Its onfllysls. The second stage In the
analysts Involves clrnck lno to make sure that Its
sulnwquent quontltntlvo nrrnlysls will be fooslblo.
Spocltlcnlly, It c:lrncks whethm tlrn forces uenerntocl
cnn ho relfltocl to qttontitk!S given In the problem
statomont. J>H .. 632 first chocks to make sure that
the compon(lflt forcns arn 1111problomatlc. It cloos this
by looklnu at the notes . entity to see whether the
anqle of STRNG2 Is olvon; since It Is, the component
forces are unproblematic. There remain the two
tension forc11s cltt e to STRNG 1 oncl STllNG3. The force
clue to STBNG 1 Ir, cllr,c:overed to he unproblematic
s ince It can he trnced hock to block 8. Thus the only
potentlnlly problematic force Is the tension force clue
to STBNG3. PH"632 looks for a system which
Interacts with the Juncture that can Account for this
tension force.

It finds block A. As with block B, It recounlrns
block A as a fllmillar system typo (a hanu1t1u block)
and so It hulld:; a production containinu the knowledt1e
thnt block A hns two forces acting on It "" 11 tension
force nncl n nrnvitotionnl force. Of thf1se, only the
tension force Ir, potentinlly problematic, ond It Is
qulckly dlr.covornd to be unproblematic since It can he
trncod hnck to tho J11nct11rn. Thus, all three of the
systems In the problem have been conslclerncl, and all
of the forces havo been occountocl for .

Although PH"632 often concludes Its qualltatlve
annlysls nt this point, It performs o second test for
anomollos 111 the common case of n problem nhout A

"crltlcnl value" (a value chnrncterlr.tic of so1111:1
chnnoe of behavior In tho problem situation). In
problem 0, for exnmplo, tlrn qunntlty cleslrncl Is "the
maximum weight of hloc:k A for which the system wlll
be In eq11lllbrl11m 11

1 le, the weight tlrnt Is critical In
cletermlnlll[I whether or not the blocks movo. Thus
PH"632 makes one final chec:k on the adequacy of the

npproach It Is tryil1(1. It considers two cases: block A
with a very small mnss, and l>loc:k A with a vory lnroe
mor,s. It rnosons thnt If thf1 mass of hlock A Is small,
them th() force It exertn on the Juncture will be small,
oncl the force thnt tlrn Juncture exerts on block 8 will
lrn snrnll. Slncci the tension force on block B Is
opposed hy n ff'lctlonnl force, If the tension force Is
small, block O will IH~ nt rest. But If blpck O Is at rest,
block A will he nt rest. A similar chain of reasoning
ennbles It to conclude that If the mass of block A Is
largo, block fl. wlll Im In motion.

At this point, PH-632 Is sufficiently certain that
th1c1 force prhu:lples approach to the problem will work
thot It lwohrn Its qunntltntlvn analysis, 11 process that
Is strnlohttorword lrnc:nuse the forces acting on each
of 'the sys t ems hove nlrendy boon found. PH-632
scans the picture for n system; It finds the free body
cllanrnm for the Juncture and so starts with that.
Uslnu · the l11forrnatlo11 In the free body dlagrnm, It
gencrotos the followlnu equation:

NAM[
TYl'I:
SYSTEM
EQUATION

10022
NOTES
(10011)
(+ (COMPONENT RIGHT IOO 15)
- (TENSION LEFT 10012) = 0)

Tlwn, uslnu both the free body cllngrnm nnd Information
ulv1rn In the notes, It replnces, In so far as It can,
qunntltles In the equntlon thnt are neither known nor
deslrnll with known quantities. In this case, all It con
do Is rnplr1co the component force .. It does this by
tewrlthig the oquntlon:

NAME
TYi'!:
SYSTEM
EQUATION

10022
. NOTES

(10011)
(+ (COS 45)

• (TENSION (UP RIGHT) 10013)
- (TENSION LEFT 10012) = 0)

It ttmn gerwrntcs n second equation using the free
body dlagrnm of the Juncture and combines this
equation with the flrnt. Aftnr generating a third
eq11otlon using the Information about block B that Is
stornd In Its production memory, uenerntlng a fourth
equotlon using the Information It hns about block A,
and doing a little alf1ebrn, It Is left with a single
equation. Uslnu the notes, It re1>lnces the symbols In
the equation with the actual values of the quantities,
simplifies the equation, and In left with:

NAME
TYl'I:
SYSTl:M
EQUATION

10022
NOTES
(BLOK"B BLOK-A 10011)
(+ (M<A>) = + (40.0))

PH"632 takes about 400 cycles to solve this problem.

In section II, we gave throe rooso11s why a
strntogy that Includes qualltntlve analysis of the Initial
picture Is preferable to one that goes directly to

162

quontltntlvo annlysls. Hnvlnu considered In somo
detall tho behavior of PH-632 on a sample problem,
we con now provide a more complete Justlflcotlon for
this strntogy.

The flrnt rn<1so11 we gnvo for using the strntogy
Is that It provides a wny of checking, flt various
staqes during the qu111itntlvo 1111nlysls, the
approprl11teness of n pnrtlculor set of physics
prllu:lplr:rn for somo problem. In problem 0, for
exBmplo, Pll-632, ns It devnlo1>s Its understanding of
eflch of tlm systems, testi; for onomoller. nnrl then
tests the fenslblllty of Its npproach. When PH-632
rnconnl7.ns som~1 object ns n fllmlllnr system type, It
knows thflt thnt object will poss both tests -- le,
hnvlli{I the requisite chnrocterl:,tlcs Is port of whnt It
m~ians to be n fnmlllar system typD. For unfnmlllar
systems, th~1 flnomollos test Is porforrnod 11s soon as
al~ of the forces parnllel to n prnfP.rrncl direction hflve
been uenerntorl; this test ennbles PH-632 to
determine with vory little analysis whether Its
description of the system is plausible. If this test
foils, PH"632 cnn be rnnso1111bly certnln that It hos
drown on lncorrnct Inference from the picture, or tlrnt
the plr.:turn does not nccurotely represent the
problem, or thnt the problem Is the work of a
nwlevolent jokestcr. The fe<1slblllty test Is perform~1d
oftur PH-632 gc.rnmntes tho rernalnlnn forces acting
on the system; this test enables PH-632 to determine
wlwther the Information ulven In the problem
statomont (11s r.nc:octect In tho notes entity) Is
sufficient for solving tho problem using force
principles. If this test fnlls, PH- 632 con be
rnnsonnbly certnln thut force prlnc:lples (nt leost by
themselvo:i) fire ln11cinq11nte. In somo problems,
Information Is ulv,~n that ennhles a third test to be
made - - a test that cleterrnlnes whether the
lnternctlons flmonu the systems Is plausible. In
problem 9, for example, the problem st11tomont Implies
that the sl?.e of the mrrns of block A determines
whether or not blocl: A will move. To test whether the
qunlltntlvo repreiwntntlon supports this Implication,
PH-6a2 exnmlnes tlm lntornctlons nmonu the three
systems. As with the flrnt test, If th is - test falls,
PH"632 can be rnnsonnhly certnln that there Is
somE1thl11g the matter with Its representation of the
1>roblem.

The second ronson for using the strntegy Is
that by reprnsentlnu the physics entit les (eg, systems
and forces) plctorlnlly, PH-632 has easy access to
prec:lr.ely the Information thflt It needs to chock the
pltrnslhlllty of the system lnteroctlons during Its
q11nlltntlvo nnolysls 11nrl to 9enernte equntlons during
Its qunntltntlvo nnnlysls. Wlmn PH-632 checks, In
prohkim 9, to determine whether the welf1ht of block A
affec:ts Its motion, It flrnt views block A, sees that
block A Interacts with the Juncture, then sees thflt the
Juncturn Interacts with block B, find sees thflt there Is
a frictional force on block B. This Is essentially all
thflt It hos to do to determine that the systems
Internet In n plnuslble fashion. Likewise, when It
generates equations, It simply views a system, writes

nn eq1111t lon cont11 lnlnu the forces t1111t act on the
system In a prnfern?<I d irection, rnplnces the forces
that oro ne ither olvon nor cleslrncl with other
qunntltles, nnd tlwn v iews another system.

The third rnnson for ustno the strntcoy Is that
It lmlps keep PH-032 from her.omlnu confused or
cl lstrnc:tml. In 1>robl0m n, whother or not n q1111lltatlve
n?pt1rnc11totlo11 Is r.onstructecl, the systems nnd the
forces actlt1n on them have to l>e found . Thus If
PH-632 had to sotv,~ tlw problem without constructtno
physics entitles, It woulcl nfHHI to kec-!p a larue amount
of Information In Its worktno memory. One llkely
consE!qttence of this Is that proclttctlons with
compet1t1u or Incons istent oools woulcl sometimes be
satisfied ot tho same time. This would make It difficult
for PH-032 to behave In o coherent way.

V. UNDERSTANDING AND LEARNING

We nllLtdecl In the lnlrocluctlon to two serious
wenknesses of Pl-1-632 : Its lnohlllty to make effective
use of Its knowledne when It encounters problems of
nn ttnfnrnlllnr typt) oncl Its lnohillty to refine Its
knowledge on tho host:, of Its experience. The first of
these Is a problem of unclernt11nclll1u, the second, a
problem of lenrnlnu. Because PIHl32's knowleclne Is
rnprns(!nted proc:(Hl11rnUy (le, lwcause PH-632 has no
Iden of whut It _ will do In fl portlcuhir situation until It
sees whnt It hos done), It hos no wfly of knowing wllflt
It Is going to do next. One l111pllcntlo11 of this Is that If
It octs 111 11n unfnmlllnr sltuntlon (one for which It has
no · rule for how to hehavo), It cannot do anythlno;
since It has no Iden of whnt Its methods con
nccompllr.h,. It cannot acc:ommoclnte one of the
methods It does hove to the unfnmlllar situation. If
some of Its knowledne worn encoded declarntlvely (so
that It could exRmlne the consequences of ustno one
or other of Its m~ithods), flncllnu a m~ithod that ml~Jht
help i11 an unfamiliar situation, find finding a mapplno
b1~twcrnn what It Wflnts and what the method will
provide would be relntlvely strnlghtforward. But If
extensive declnrntlvn oncodlnu were provided, many
of the nrlvontaor-Js of using fl procedural
roprnsentntlon would he lost.

PH··032's dlfflculty with learning sterns from the
same source. One of our rensons for selecting a
proc:edurnl rnprnscrntatlon wns to fncllltate lonrnlnn;
find ill one lmportnnt respect the representation Is
supportive. Since PH-632's behavior Is strongly
clrlvt?ll by tho picture tllflt It elaborates, each of Its
1>roductlons Is autonomous In the sense tllflt a
production nood not know nnythlng ahout the other
productions -- neltlwr tho conditions under which they
will fire nor which productions hove olrnndy fired. All
that Is necessary In order for the system to extend
Its knowledge so thflt It c:an cope with unfnmlller
situations Is that a few productions be added to

163

production memory. If this worn nil tlrnt there were to
loarnlno, learnlno would he ensy for PH-632. But a
system that can lenrn must Im able to do more th11n
Just extend thc-i domain of Its knowledne. Much of our
work with PH-632 hfls Involved rnvlstno the
productions tlrnt It does hove as Its behavior shows
those productions to ho lnnclequote (en, they f lrn
when they should not, tlwy do not flrn when thoy
should). When severnl productions ore sotlsfled at
tho same time, thnt production will flrn which Is
satisfied by the lnruest number of mont rncPnt
e lements . Thus In ortlor for, the system to acquire
productions that portinlly re pince · or extend the
domain of a portlcular production, It neecls to know the
conditions tmder which that production Is evokcct.4 But
that knowledge Is not avallnhlc In a procedural
rnpnrnentotlon.

llw npprouch thnt wn ore toklnu to overc:ome
tlwse two wenknesses lnvolvns oclrltnu n small omount
of knowleclrJr-J to tlw system thflt describes the
nmthods that It has. When tho system ocqulrns a new
1m1thod, knowl0clne nbout that nwthocl Is flssoclntecl
with n production thnt contains the mothocl's nonl
condition elemont. Thia knowledne should help to
overcome both wenknesscs. When the system
encountcrn nn unfamiliar situation, various mothod
description productions cnn bo ovokod by hnvlnu tho
system (1enornto cle:.crlt>llons of oonls tllflt orn similar
to Its currnnt uool. When a mothocl description
production flrns, n subset of the conditions which must
lrn sntlsflPcl In order for tho productions comprl:;lnu
tlrnt mothocl to be evoked nrn cleposltecl In worl:lng
momory. This ennl>los the system to establish a
mapplll!J betwoon tho concl ltlons tl111t flch111lly obtain
nnd the conditions thnt must obtoh1 In orclcr for one of
Its nmthocls to bo usocl. ThCl system con also make
usr. of tho mothocl do:.crlpllon productions when It
cllscovern that 0110 of Its productions Is In need of
rnfhwmont. A method clescrl1>tlo11 production, by
providing the system with o subset of relevant
conclltltms, will rnrnblo It to l>11lld n now production (to
l>flrtlnlly mask or to C!Xtend the faulty production); the
new production will c:ontoln this subset of condition
elenwnts touether wlth a few additional elements that
distinguish It from the production that It rnflnes.

VI. CONCLUDING REMARKS

Our discussion of PIHi32 has focussed on two
thinus. Our main concern hns been with the way In
which tho system rnprnscnts the problems t1111t It Is
given. It starts with a "plctorlnl" description of o
problem find tlwn durlnu tho qttnlltatlve sta(le of Its
anfllysls constructs a rnpresentotlon that contains all

4 For morn extended cltscusslons of the problems that
t1rlse In trylnu to Instruct 1>rocluctlon systems, see
Davis [1977] find nychener and Nowell [1978].

of tho knowlr:icl r,o thut cnn ho lnfmrncl from the lnl t lal
plcturn 11sl11n n set of relrw1111t physics prlnclplos.
Only ofter ll ho s nwde the l11ferencc1s explicit does It
nenernte tho tiq1111tlons thot will enohlo It to solve the
problem. Thorn 11ro three reasons for clolli(I the
q1111 ll tflt lvn nnolysls: (1) tho system con quickly f ind
nn oppronc: h to tho problem that Is likely to succcwcl ,
(2) by rnr~klri(I Its ln fcmnc:es explicit, It has lmmecllBto
ocr:ess to nll of the knowledge flbout n pnrtlcular
system thnt It nceclr. ot nny olven tlmH clurtno Its
suhsoq 11 ent annlysls; and (3) by maktno the
knowleclr,e enslly rntr levn hle, the amount of
knowloclr,e that It hu s to ottencl to ot ony one t lmo Is
small, oncl thus It Is unlll< ely to hccomo cllstructecl or
confused. We hove nlso foc:ussccl on tho way In
which f>H-(i32 rnpre:;cnts lt:i knowlecl9e of how to
solve nwchfl nics prohlerns. PH-032 Is lmplenwntocl flS
fl production system. Since? It stores Its knowleclr,o of
the probl81ll It Is workln(f on In Its scrntch pod tn(lmory
In fl plctorlnl form, It cnn focus Its nttontlon on a small
port of tlw problrnn without hnvtnn. to worry that It Is
ne~1l8c:tl110 sonw lrnport·,rnt piece of lnforrnat lon . Since
It Is conccrnwcl with only n small amount of Information
at any one tlmo, tho productions that flrn are always
re levant to Its lrnnwcl lnto Interest . Thus Its behavior Is
coherent, hut nlso highly responsive to the
pecullarltles of the problem.

REFERENCES

[Davis, 1 977]
Davis, R. lnternctlve trnnsfor of expertise:
acquisition of new lnforr.nce rules. IJCAI, 6, 1977.

(de Klr:wr, 1977]
de Kl1:18r, J. Multiple rnprnsentntlons of knowledge
In a rnochonlcs problem solver. 1.JCAI, 6, 1977.

(Forgy, 1977]
Forny, c. A
computers.
Computer
1977.

production system nionltor for parollol
Technical Report . Department of

Science, Carneole-Mollon University,

[forny and McDermott, 1977]
!'orgy, . C. ond J. McDermott. OPS, a
domaln- lncleper1clent production system language.
IJCAI, 6, 19i'7.

(Hnll ldny nnd Resn ick, 1006]
Hnllldny, D. and n. Resnick. Phyalca . John WIiey
and Sons, 1 966.

(Hnyes nncl Simon, 1974]
Hayes, J. R. nncl H. A. Simon. Understanding
compl(lX tnsk Instructions. In D. Klahr (ed.),
Cognition and Instruction. Lawrence Erlbaum,
1974.

164

(Lark in, 1977a)
Lnrkl11, J, Problem solvln(f In physics. Technical
Re r><>rt. Group 111 Sc ience nnd Mathematics
tducntlon. Unlvernlty of California, Berkeley,
1977.

[Lnrkln, 1077h]
larkln, ,I. Sk lllml problem solving In physics: a
hlornrchlcn l plnnnlng moclel. Technical Report.
Group In Science and Mntlrnmatlcs Education.
University of Cnllforn/a, Bmkoley, 1977.

[McDermott, 1978)
McOorrnott, J. Somo strengths of production
system cm:hltccturns. Proceedings of NATO ASI
on Structural/Process Theories of Complex
Human Behavior. Sljt hoff, 197fl (forthc:omln[I).

(McDermott nncl f'or!)y, 1978]
McDorrnott, ,I. ancl C. Forgy. Production system
conflict rnsoh1tlon strnteqles. In D. Waterman and
F. lfayus-Roth (eels.), Pattern-Directed Inference
Systems. Academic Prnss, 1978 (forthcoming).

[Newell, 1073)
N8well , A. l'rod11ctlon systems : morlols of control
structurns. In Chnse, W . (ed.), Visual Information
Processing. Acfldemlc Prnss, 1973.

[Newell, 1977]
Newell , A. Knowledge reprnsentotlon aspects of
· production systems. IJCAI, 6, 1977.

[Newell ond Simon, 1972]
NC:1well, A. 11ml H. A. Simon . Human Problem
Solving. l'rnntlce-Holl , 1072.

[Novak, 1976]
Novnk, G. Computer unclerstnncllng of physics
problems stntecl In naturnl lnn911119e. Technlcal

, Report. Deparlm~mt of Computer Sciences.
University of Texas, Austin, 1976.

(Novnk, 1977]
Novnk, G. Reprnr.entntlons of knowled[1e In a
prowom for solving phys ics problems. IJCAI, 6,
1977.

[Rychener nnd Newell, 1978]
Rychcrner, M. nncl A. Newell. An lnstnrctable
production system: lnltlnl design Issues. In D.
Wflter111a11 and F. Hnyos-Roth (eds.),
Pattern-Directed Inference Systems. Academic
Prnss, 1978 (forthcoming).

[Simon , 1975]
Simon, It A. The funct lonnl equlvnlence of problem
solvltl{I skills. Cognitive P11ychology, VII, 2, 1975.

(Wnterrnan and Hayos-Roth, 1978]
Waterman, 0. and F. H11yos-Roth (eds.).
Pattern-Directed Inference Systems. Academic
Prnss, 1978 (forthcoming).

REPRESENTING MATHEMATICAL KNOWLEDGE

Edwina R. Michener

Department of Mathematics
Massachusetts Insti'tute of Technology

Cambridge, Massachusetts

Abstract

This paper describes a re,present·ation for mathematical

k.nowlcdgc that includes illustrative and heuristic aspects as

well as logical elements. Three item I relation pairs -

results / logical support, examples I constructional derivation,

concepts I pedagogical ordering -- establish three representation

spaces for a mathematical theory: Results-space, Examples

spacr, and Co nce.pts-space. In addition to intra -space

relations, this paper introduces the dual idea, an inter-space

relation, which is used to represent an ,ntuttve notion of

association amongst items. An epistemological classification of

items based on their roles in th~ understanding of .mathematics

is developed. A brief overview t~ included of how these ideas

have been applied to teaching situation£ and the design of

interactil/e environments for professional and neophyte

mathematicians, and how they could be applied to programs,

such as non-resolution theorem provers, that need to retrieve

and manipulate mathematical knowledge.

I. Introduction

To understand mathematics one must know much more than

the deductiv e details of definitions, axiom&, and t~eorems and

their proofs. A mathematici;m or stuc!ent who is in command

of his subject u ses other resources such as: the stock of

examples he finds useful, and their organization; certain

ru les of thumb or heuristics, some telling which are good

ideas to try and oth ers warning him of trouble; items

noteworthy for their s implicity, ubiquity or generality. In

studyin g and solving problems, he has a sense of what to use

and when to use it, and what is. worth rememlrering. He also

has images of how all his knowledge hangs together. In

short, he -knows and uses a great deal ·more than purely_

logical deductive knowledge.

165

This paper is concerned with this other, often extra-logical,

knowledgr. that is critical to understanding. It reports on a

study to und e rstand the understanding of mathematics, in

order to improve how we learn, teach, and do mathem.a tics

[IO]. The aim is to develop a conceptual framework in which

to talk precisely about the knowledge actually involved in the

understanding of mathematics. This goal is largely

epistemolog ica I, but it is a prerequisite to trying to mechanize

or support that understanding.

2. Examples, Results and Concepts

Examining how ma.thematicians use and explain. their

knowledge of mathematics makes it clear that there are at

least three categories of information necessary to represent

.mathematical know ledge: results which contain the

· traditiona l logical aspects of mathematics, i.e., theorems and

proofs; exam ples. which contain illustrative material; and

concepts, which contain mathematical definitions and pieces of

heuristic ad vice.

Just as results can be organized by the r~lation of logical

rn.pport in which A - -> B means that result A is used to

prove resu lt B, examples and concepts can also be structured

by relations.

2.1 Examples-space

Examples can be ordered by the relation of constructional

dai11qtion in which A --> B. means that example A is used to

construct example B. For instance, the Cantor set Is

constructed from the· unit Interval by the process of "deleting

middle thirds" [17):

. I

i

.j

drjinr uq1unce of sets by deleting midd.le thirds:

the unit interval: o ________ _

delete (1/3, 2/3): o __ _

delete (1/9, 2/9), (6/9, 7/9): O_()_ ()_ ()_I

etc.

limiting set is the Cantor set

"Cantor functions" and other "generalired" .Cantor sets can

a lso be constructed from the unit interval and the Cantor set

[5). [16).

The following sequence of examples from arithmetic

illmtrntes how a collection of examples can be organized

according to its constructional relations. It · starts with the .

natura I numbers N. These beget the integers Z (by closure

with respect to subtraction), which beget the rationals Q (by

forming quotients), which beget the rea I numbers R (by

completion of Cauchy sequences), which beget the complex

numbers C (by algebraic ciosure). Many more examples

needed in number theory, such as the Gaussian integers Z[i],

the fi.eld of integers modulo a ·prime Z/pZ, and the p-adic

numbers ~· can also be tied in.to this organization according

to their constructional dependencies:

N

+
z

/i~
Z[i] Q Z/pZ

~ '- +
R -~
+
C

The p-adic numbers have arrows coming from both Q and

Z/pZ since either can be used to construct ~- (~ can be

constructed from Q by completion with respect to a metric

just like the construction of the reals R from Q, or from Z/pZ

by an algebraic construction involving "inverse limits" [3]).

The point is that there are two co~structtonal routes leading

to ~· and thus a directed graph, not simply a directed tree,

is needed to show the relations.

Some genera I properties of examples worth noticing a re: (1)

pictures are an integral part of examples; (2) constructions

a re like procedures; (3) the pictures need not be static, in fact

those shown for the Cantor set are merely one fr.\.me from a

sequence.

166

2.2 Concepts-space

Concepts include formal 11nd informal ideas, that is,

definitions and heuristics. A concept can be expressed either

as a declarative statement, the familiar formulation of most

mathematical definitions, or as a procedure or the result of a

proce\:lure. Some concepts are more naturally expressed in

declarative form, while others, such as Gaussian elimination

and Newton's method, are more naturally expressed as

procedures. Some concepts can be expressed either way, such

as the concept of "eigenvalue" which can be expressed as the

>. of Ave>.v [7] or as a root of the characteristic polynomial

det(A - >.I) " 0 [19).

Concepts can be structured by the pedagogical ju_dgement

that one should know about concept A before concept B; this

relation is ca lied pedagogical ordering. Sometimes It simply

reflects the fact that concept A enters into the definition of

concept B, at other times, expository tastes .

In this way, the three item / relation pairs -

examples I constructional derivation, results / logical · support,

and concepts I pedagogical ordering -- estabhsh three

representation spaces: Examples-space, Results-~pace and·

Concepts -space. They are best shown. as directed graphs

where the direction matches the predecessor -successor

ordrring inherent in the relations.

3. The Dual Idea

A theory item is related to other items in its representation

space through the space's predecessor-successor relation. In

addition it is related to items outside -of its representation

space. The dual idea concerns these i·nter-space relations.

Specifically, dual items are defined as follows:

The dual items of an example are: the

ingredient concepts and results n·eeded to

discuss or construct tt, and the concepts and

results that are su·ggested by It.

The dual items of a result consist of: the

examples motivating it, the conci;pts needed to

state and prove it, and the concepts and

examples that are der.lved from It.

The dual items· of·a· concept are: the examples

motivating it, the results hying the

groundwork for it, and the examples

illustrating it and thi: results proving things

about it.

The dual idea thus associates to each Item elements from the

other two representation spaces:

dll.al(an example) = {results), {concepts)

dll.al(a result) = {examples), {concepts)

dll.al(a concept) = {examples), {results).

The subset of examples in the dual set of .an item Is called the

examples-du.al, the subse.t of results, ·the results-dv.al, and the

subset of concepts, the concepts•dual.

Dual items can also be categorized into sets of items which

preced e the item in the understanding or development of a

theory, the pre-dual, which c~me after the Item, the post-dual,

and which have neither a strong "pre" or "post" navor. To

use Polya's words, some pre-dual items are "suggestive", and

some post-duai items, "supportive" [15).

If two ite~s share common dual. items, they are said to be

related throttgh the dual idea . . Dual relations are found

throughout mathematics : concepts of countability and

measure zero are related via the Cantor set; the examples of

the rea I and the p-adlc numbers are relati:d via the concept of

completion; Pythagoreas' Theorem and the .Law of Cosines

via an example of a right triangle; concepts of continuity and

differentiability via the absolute value function; .examples of

ellipses, circles, parabolas, and· hyperbolas via the concept of

conic sections; concepts of stability,' roots of unity and

iteration via the example of xn.o.

Relation via the dual Idea is useful because It captures a way

In which we associate items that are not closely related In the

sense of the in -space relations, but which we easily link In our

understanding. Dual relations tie the three representation

spaces back together.

167

4. Epistemological Classes

. Different items play different roles in our understanding. By

grouping together items that serve similar and _noteworthy

functions, we establish epistemological clases. Since an item

may serve more than one role In. one's understanding, these

classes are not necessarily disjoint. .

4.1 Epistemological Classes .of Examples

For instance, when we learn a theory for the first time, there

are certain examples which we can underst,\nd Immediately.

These perspicuous examples get us started in a new subject

by motivating basic definitions and results, anq setting up the

right kinds of intuitions. We call these start-up examples.

The following is a summary of the use of the "circle and

lines" start-up example in the study of curvature of plane

curves as presented by Spivak [181

We begin by considering circles and.· tines. We can

agree that circles curv~ and that lines don't.

Furthermore, small circles "curve more" than large

circles. (Thi s is consistent with our observations

about lines, which are .a limi.ting case.). We observe

therefore that curvature is inversely related .to the

radius. So we say that for circles, the curvature is

the reciprocal of the radius. Now what about more

general plane curves? Well, we lift our circle-line

definition to the general case t,.y fitting circles onto

the curves:

This simple example is a start-up example because it easily

leads us to the formulation of the oscula.ting circle definition

of curvature. It provides a strong pictorial representation for

curvature (circles) and an approach (the osculating circle) for

calculating it.

A good start-up example sh.ould have the following

properties: (I) it motivates funda.mental concept.s; (2) It can

be understood by itself; (3) it Is projective In the sense that it

can be generalized; and (i) It provides a simple and

suggestive picture.

. I

Refncnce examples, another Important. clas-s cif examples, are

examples that we refer to repeatedly throughout a theory.

They provide a common node through which many results

and concepts a're linked via the dual idea. ·For instance, R 2,

the real plane, is used as an ·example throughout all of real

analysis; one invariably investigates concepts and results In

this example to understand how they work. In number

thr.ory -- algebraic as well as elementary -- one always looks at

the integers Z. Throughout his books, Polya refers to certain

standard reference examples; for instance · In the domain of

p lane geometry, he repeatedly uses such triangles as isosceles,

equilateral, and isosceles -rig ht triangles (15]. Reference

examples are used as standard c.-ses to check out one's

understanding.

Model examples are generic examples. As paradigms they

suggest to us the essence of a result -or concept. For ex.ample,

models for set inclusion and right triangles are:

Notice. that the specific measurements in these pictures are

unimportant; wnat counts Is that they capture·-the essence of

the situation .

Because of their generic nature, model · examples are closely

related to "without loss of generality" arguments. For

instance, the model examples for conic sections are usually

pictured as having their major axes aligned with the x- and

y-a xes (see any calculus book such as Thomas [20)); these

diagrams are completely general because one can always use

coordinate transformations (translation, rotation) to change

variables so that the axes are Jndeed so c\ligned .

Model examples are nexible and mar:ilpulatable structures

which summarize and suggest the expecta~ions and

assumptions about results and concepts. They usually must

be fine-tuned to meet the specifics of a problem. For Instance,

the triangle model can be specialized to be a 3-4-5 right

triangle, a i!i-45-right or any- other type of r~~h~ trtangle.

Counter-examples show a statement Is ·no.t true or sharpen

distinctions between concepts. Some counter-examples are

also used as reference examples, such as the .Cantor set which

is .used throughout measure theory after it's Introduction as a

counter-example to show that sets of measure zero need not

168

be countable (8). Other counter-examples are used once to

establish a point and are not developed furthe.r; because

these have a very limited use i.n the theory, our memory of

th em is often very short-lived.

In summary, some important epistemological ·c1asses of

Examples-space are: start-up examp,les, ref~renct examples,

model examples, a rid counter-tx(lmples. ·

4.2 Epistemological ClaSS!!S of Con.cepts

Concepts -space has two major epistemological classes in

addition to the class of definition~: .mega-principles and

counter-principles. These other classes contain the heuristic

advice that we use while working in a theory.

Mega -principles (M P's) provide kernels of wisdom in the

form of powerful suggestions or generally valid statements.

They often state what is reasonable to expect. For instance,

Polynomial time means reasonable time is a mega-principle

from complex ity theory. Others paraphrase definitions, such

as Continuity means you can draw· the function without lifting

your pencil, a mega-principle familiar to most calculus

students. The M P(n=2): Try ·the 2-by-2 case offers powerful

adv ice in the study of. matrices.· Another extremely useful

piece of ad vice is MP(0/1) which suggests trying special cases

involving only O's and l's. Thus some MP's provide

imperatives or advice while others give an Idea of what to

expect. Mega-p rinciples express broad "flavors" of a theory

that are often remembered long after the details have been

forgotten. Like model examples, they provide broad,

suggestive descriptions and expectati.on·s.

Counter-principles (CP's) are cautiQm against possible sources

of blunders or troubles. For instance, everyone knows about

the CP: Watch out for division by 0. The dv CP from

calcu lus -- when changi.ng the variable tn tntegrq.tton, don't

forget to calculate the new differential: dv .. v'(x}dx -- is a

word of warning familiar to all calculus st4dents. CP's are

th e distillations of many results, cou"ter-examples, 'and failed

attempts. Like counter -examples they add focus to our

intuitions and serve to keep us from p.ursulng potentially

unproductive lines of thought.

4.3 Epistemological Classes of Results

Results-space also has several epistemological classe.s of Items,

of which we mention only: baste, culminating, and

transitional results.

Ba.1ic usu/rs e~tablish elementary, but important, properties of

co ncept s a nd ex amples. For exa mple, the ·resu lt : >. ts an

eigen 11a/ur of the matrix A tjfdet(A->. l)mO Is a remit basic to

the study of eigenva lues. It relates the ·proce<(.ural .formulation

(solving the characteristic equa.tion.) with the declarative

definition of the eigenvalue conce·pt. Other basic result~ link

concepts with examples, such .as: The outer measure of an

interval is its length.

Culminating results are th !! goal results towards which the

theory driv es.· To see if a result Is a culminating result one

asks, "if thi s resu lt is omitted , has \he main point of the

th eory been missed?" If the answer Is yes, the result Is a

culminating result. For instance, the Fundamental Theorem

of Algebra is a culminating result of·hlgh school a lgebra

courses and th e Fundamental Theorem of Calculus Is a

culminating result in calculus. Culminating results are often

equiva lency or classification results such as .t he theorem

showing that all real vector spaces of a given dimension are

isomorphic.

TransUional results provide logical. stepping-stones or bridges

between results. They are not as important as culmi-natlng

results in one's understanding. Many results· that are given

the label lemma fall into this category.

There are many analogies between the· epistemological classes:

model examples, mega-principles, and culminating results are

a ll importan t items within their categories; counter-examples

and counter-principles serve a limiting function; basic results

and start-up examples provide easy starting points In a

theory .

5. The Repre~entation

The foregoing sections have mentioned the following sorts of

knowledge which are needed to understand a mathematical

theory:

(1) Know ledge of the items themselves.: for each we

know its statement, diagram, proof, construction or

procedural formulation;

(2) Knowledge of t_he Individual representation

spaces, such as predecessor-successor relationships;

(3) Knowledge of Inter-space relations, such as the

dual Idea.

169

In addition, th ere Is also know.ledge of how a particular

theory ties in with other theories.

These are the key ingredients in building our representation

for a mathematical theory . We ;have already discussed (2)

a nd (3). We sha ll now summa ri ze some of the information

needed in the description of an Individual Item In order to

understand it.

In d ecidi ng wh a t knowledge about examples, results and

concepts to represent, it is evident that all three types share a

g rea t many similar ities. For instance, each has a. declarative

aspect: for a concept, Its formal mathematical · definition ; for

a result, its (if-then) statement; for an example, a caption,

describ.ing what it shows. Each has a procedural aspect: for

a concept, its procedural formulation; for a result, its proof;

for an example, its construction. Also; each has sets of

"pointers" to other · items through its intra -s pace

(predecesrnr / sucessor) and inter-space (dual) relations. In

addition, each item has a worth ratin~ (from no to four ,:<'s

indicating its importance), an ID, a NAME, and its

epistemological CLASSes. Thus, we represent all ttiree·by the

same fundamental structure with a few particular fields

modified to reflect specia l fea tures depending on the type and

epistemological class of the item. Figure I shows some of the

fields in the representation " for the Cantor set example

(in stead of pointers or ID's, we show the name -or quote the

statement of entries In the various pointer fields). (The

· complete item framework is pescribed in [IO].)

Once we have decided on this representation scheme, to

o rganize our mathematical knowledge in a particular domain

in terms of it, we must make several judgments. For ins tance,

to build up a representation for the arithmetic examples of

Section 2, we must first choose the representation space for an

item (e.g., Q, the rational numbers, could alterna tively be

presented as a definition), and second ly, the item must be tied

into its chosen space by determining its predecessors and

successors (e.g., Q points back to Z, and ahead to R and ~).

Thirdly, we must link an item to Its dual items (e.g., Qcan be

linked to concepts of division, completeness, density, and

cardinality, and to results on the Irrationality of 2112, and the

Archimedian properties of the ~eal line). Fourthly, we can

order the dual items. While the specific representation we

build clearly reflects certain personal; pedagogical,. historical

or esthetic biases, the representation scheme we have

presented is perfectly general.

While our representation In fact Is embedded In a very large

semantic network , it differs from other representations such as

I
' . I

. I

I

I

· I

Figure I. Elements of the rep_resentation for the Cantor· set.

IDEJ33
RATING•) ,:,

CLASS Reference, Counter-example
NAME Cantor Set

STMNT

DEMON·
STRA·
TION

PICTURE

SETTING R
CAPTION The Cantor set ls an example of a
perfect,' nowhere dense set that has measure zero.
It shows that uncountable sets can have measur11 0.

AUTHOR standard
MAIN-IDEA Delete "middle-thirds"
CONSTRUCTION

0. Start with the unit interval [O, I];

I. From [0, I], delete the middle third (1/3, 2/3);
2. From the two remaining pieces,, [0, 1/3] & [2/3, I),

delete their middle thirds, (1/9,. 2/9) & (6/9, 7/9);
3. From the four remain pieces, delete the middle
thirds;
N . At Nth st.ep, delete Jr.om the 2N·l pieces the
2N · I middle thirds.

The sum of the lengths'of the pieces removed ls I;
what remains is called the Cantor set.

0, ________ _

o ___ _

O_()_ ()_ ()_ I

Limiting set is Cantor set

REM AR KS Cantor set is good for making things
happen almost everywhere o.r almost nowhere.

LIFTIN GS Construction of general Can.tor sets.

IN-SPACE POINTERS:
BACK Unit Interval
FORWARD Cantor junction; General Cantor sets,

2-dimensional Cantor set

DUAL-SPACE POINTERS:
CONCEPTS: countable, measure zero, geometric series
RESULTS: "Perfect sets are uncountable",

"Countable sets have measure O"

BIBLIOGRAPHIC REFERENCES:
See Gelbaum and Olmstead for general Cantor sets .
See Royden for Cantor Junctions.

PEDAGOGUES (Rudin,9) , (Hoffman, 12)

170

[9] in that it' distinguishes several types of items ·· results,

examples and concepts ·· and several types of relations ·· the

intra -space relations of the three represe~tation spaces and

the dual relation. In particular, we recognize and use the

constructiona I relations between examp·les.

6. Applications

The ideas presented in this paper have been used to teach a

freshman mathematics cours~ at· MIT. The purpose of this

course was two-fold : (I) to teach and explore the important

theory of eigenvalues, such as the perturbation theorems from

Ortega [I'.']; and (2) to make young mathematicians· aware of

the ingredients and processes in understanding mathematics.

The results of this experiment were extremely encouraging:

the students became excellent' ques_tion ~askers and displayed a

great deal of maturity and poise in their .attempts to prove

and understand new mathematics. Ats·o, the epistemological

ideas presented in this paper se_emed quite natural for them.

They used the epistemologyy and representation both to keep

track of old knowledge arid to help generate new knowledge
[12).

The epistemology and representation summarized Jn this

paper also serves as the basis for the design of two interactive

systems, the GROK KER SYSTEM (GS) and the GROK KER

LEARNING ADVISOR (GLA) [10). GS is a proposed

interactive system that allows its user to retrieve and

manipulate information in a spontaneous stream-of-impulse

way. The interaction takes place at a graphics CRT. GS has

seve ral mod es govern ing the CRT display which are

designed for different user tasks. For instance 'there are three

perusal modes which allow the user to view. a single Item, an

individual representation space! or ·a n three spaces at· once.

The main classes of functions In GS are: (I) field Junctions

which allow the user to e)l tract information from the fields of

the data structure of'individual items; (2) epistemological

junctions which allow the user to investigate epistemological

relations between items; (3) pedagogical Junctions which allow

the user to follow the exposition of a partlculu pedagogue;

and (i) perturbative Junctions which allow the user to vary

the statement of an item and have GS return Items closely

related to the perturbed item.

GS can be augmented by the advsior program GLA. The

purpose of the combined GS/OLA system is to help neophytes

understand mathematics and to learn how to understand. It

forms its adv ice from its epistemological knowled,ge, its own

model of expert understanding, and Its· assessment of the

user's current level of understanding. ·

Such a system could enter into partn.ershlp with theorem

provers, or analogy- or concept-generating programs [2], [9].

that need to use previously established mathematics. GS has

many of the facilities desirable as support' for such· programs

[t]. GS could make it easy for them retrieve and manipulate

ma therna tica I knowledge and oould guide. their search for

relevant knowledge. GS/GLA would also Invoke such

programs to prove statements that arls.e .through user queries

and perturbations of the GS/GLA knowledge base.

For instance, in advising a non-resolution theorem prover

(NRTP) in its efforts to prove a proposed theorem, GS /GLA

could advise the NRTP to: (1) try out the proposed theorem

in the special case of a reference or model example and use

this instantiation as evidence -- for or against' -- the theorem

in much the same way as Gelernter's program [6]. used a

"diagram filter", i.e., a model example, ill the domain of

geometry; (2) custom tailor a model example to the specifics

of the proposed theorem and examine how the theorem

"works" in this case, and then bootstrap from this special case

to the proposed theorem; (3) find examples for the proposed

theorem and then consider other. theorems that share these

examples, and in particular, check if the proposed theorem

car be proved by methods lifted from these other (e-xample

dua I) related theorems; (4) look for an'.d invoke MP's and

CP's that apply to the proposed theorem; (5) find two or

more items in a predecessor/successor chain of examples or

concepts and try to abstract the procedural Information

inherent in the links; (6) look for counter-examples In the

collection of known reference and counter-examples.

7. Conclusions

In this paper we have preser:ited a stru.cture for representing

our knowledge of mathematics and have singled out

noteworthy classes of items in It. We have examined several

types of relations betwee.n items .in ·our mathematical

knowledge. The analysis has provided. a vocabulary and

framework in which to talk about mathematics. This

representation can be used to d e fin e a data base and

functions which could be used by other programs that need

to deal with mathematical knowledge and to support

mechanization of certain mathematical tasks.

171

References

[I] Bledsoe, W. W., No.n-Resolutio.n Theorem Proving. The

University of Texas at Austin, Mathematics Department

Memo ATP-29, 1975.

[2] Bledsoe, W.W., and M. Tyson, The UT Interactive

T·he~rem Prover. The University of Texas at Austin,

Mathematics Department Memo ATP-17, 1975.

(3) Eilenberg, S., and N. Steenrod, Foundations of Algebraic

Topology. Princeton University Press, New Jersey, 1952.

[4] Feigenbaum, E. A., and J. Feldman, Compuuters and

Thought, Mc-Graw Hill, ~ew York, 196l

[5] Gelbaum, B. R., and J. Olmstead, Counterexamples tn

Analysis. Holden-Day, California, 1964.

(6) Gelernter, H. "Realization of .a. Geometry Proving

Machine" in (4).

(7) Halmos, P. R., Finite-Dimensional Vector Spaces. D. Van

Nostrand, New Jersey, 1942.

[8) Hoffman, K. M., Analysis tn Euclidean Space. Prentice

Hall, New Jersey, 1975.

(9) Lenat, D. B., Automated Theory Formation tn Mathematics.

Proceedings Fifth IJCAI, 1977.

[IOJ Michener, E. R., Epistemolog.y, Representation,

Understanding and Interactive Explaration of Mathematical

Theories. Doctoral disssertation, MIT Department of

Mathematics, 1977.

[II] Michener, E. R ., The Structure of Mathematical

Know/edge. Technical Report, MIT Artificial Intelligence

Laboratory. forthcoming.

(12) Michener, E. R., Understanding Understanding

Mathematics. To appear in Proceedings of Amherst

Conference, late 1978.

(13) Ortega, J. M., Numerical Analysis: A Second Course.

Academic Press, New York, 1972.

[14) Polya, G., How To Solve It. Second Edition, Princeton

University Press, New Jersey, 1973.

.. I

[15) Polya, G., Induction and Analogy tn Mathematics, Volume

I of Mathematics and Plausible Rea.iontng. Princeton

Univer.sity Press, New Jersey, 1973.

[16) Royden, H. L., Real Analysts. Second Edition,

Macmillan, New York, 1963.

[17) Rudin, W., Principles of Ma.thematical Analysts. Second

Edition, McGraw-Hill, New York, 1964.

[18) Spivak, M., Differential Geometry. Vol. 2, Publish or

Perish Press, Boston, 1972 .

[19) Strang, G., Linear Algebra and tts Appltcattons.

Academic Press, New York, 1976.

[20) Thomas, G. B., Calculus and' Analytic Geometry. Fourth

Edi tion, Addison -Wesley, Massachusetts, 1972.

1 72

BACON.I: A general di$covery $ystem*

Pal Langley
Oupnrlrnr.nl of l'!:yc:holony
CArnecie ··tvle ll on lJniv~rr.ity

Piltsbuq:h, Pennsyr1t,rnia

1. Introduction

111 -recent year!: r!!$earclicrr. i11 arlificial i11!ellip,e11c:e have
produced a numb(!r of !;ystemn for . carr>·i11r, out scientific
dhcovery. The progn11nr. inc luclc D[~J[)fl/\1. ([lucha11an,
Sulherlrrnd, 11ml rcine11b,1un,, 1969; reir,enba11m and
Lederlwrr,, 19 / J), mrda ··DLNl)fl/\l. (f]uchm,an, reine11baun,1

a11el Sridharan, J 972), MYCIM (l)avb, 8ucl,anan, and Shortliffe,
1972), and AM (Lena!, J 976). The li5I in i111prossive, and
gives hopf! lhnl Al ir. arrilfing at a true undenlanding of
dir.COl/ery proc (!Sf.CS.

It, thin pap(!r I descrii)(! 131\CON.l, a general dir.covery
sy~lem. The program unes a r,ener11I representation aml a
smitll numb1?r of hcmir.!ics lo dine.over 1111 impre ss ive range of
empirical laws. Thus BACON.I in general in the saniu sense
th Al N11well, ShAw, and Simon'!: (1960) Genurnl Problum
Solver war. general. It Alna har. much in common with the
General Ruic Inducer proposed by Simon and Lea (1974). An
earlier, lr.s!: cenernl ven:ion of 81\CON.l WAS reported in
Langley (1978).

I begin by presenting a !;ample protocol of how. one mirth!
go abCJut dinc.o'lering an empirir.al law, in thir. case K1?plr.r's
third law of pl;rnet;iry motion. I then considN 131\CON.l's
ropro,sent c1tio1, of data, hypCJI he set., and hcurir.tics. Noxt I
outtir,e tho slructurn of the pror,rnm al\CI ronr.ider its
heurir.tics In morn detc1il. I follow with BACON.l's solutions
of some familiar dincovr.ry ta!:ks. Finally, I consider both tho
generality and the llmitalions of the currnnt system.

2, A aample protocol

In 161·9, Kepler ;innounc:cd hir. third law of planetary motion
-- the cuhc of a p/011c>t 1s chstoncr. frnm the mn wa.s
proportional to /.ts pcii,:,c/ sqnorml. This law can be restated
11s dj / p2 = c, where din llrn dir.lanc.e, p the period, and c 11

com;tant. How mir,ht one dir.cover f.Uc.h a law? Below I give
a r:an,pln protocol tl1AI draw!> upon some very sirnplo
heurlr.tlcs:

1. look for con!;lancir!s and (:oneraliw if you find
one;

2. H the vttlues of two ;illributes r,o up tor,ett,er,
con!dder their r al io;

3. if 01,e ;,llributc'r, v.ilue" p,o up as 1111olher's go
dow11, consider their produd.

'Thin pnr,N wnr, IUJll'III lt>cl in parl by Grant 111:!il!i- ?.?.02 l from lh,
N'Aticm•I Sci4-nr~ F nu11:l•titor~ in r,nrl hy /\RPI\ Cirnnl f4ri020-73-C-0074, And In
pArl by ft grant frc;m lhn /\lfted P. Sloon r our~l•fir,n I woukl lik• In thank H.
A. Simon, Eric Jrohnr-~n, -Boh Nn,t,,,,, And M•rohali Atlu for mony of lh, id~H
preeentod In lhi• pnr,N.

173

The value of lhe r.: o hcuri!;licr. can Iler.I be r.ccn ir, their
operation. Thr. three planeli; con!drl1?l'<'d below, A, 13, 1111d C,
obey a vr.rr,lon of KE!plnr's law wlrnrn llw c:omda11t ir. 1.

PLANET A
DISTANCE?
*1.0
PERIOD 7
*1 .0
PLANl:T, B
DISTANCE?
*4.0
PERIOD 7
*R .O
PLANET C
DISTANCE?
*9.0
PERIOD 7
*27.0

. DISTANCE ANI) PERIOD SEEM TO GO UP
TOGET!lf.R .

TUE SLOPES AREN'T CON!JTI\NT SO J'I.L CONSIDtR
THE ll/1. TIO or DIST /\NCC AN() PERIOD

WHAT SHOULD I CALL IT?
*<linl11nco-over-perlod

Hern the !a:icond hourii:lic ha!; been i!pplied. The dir.lanre
and the pC?riod have bc!en·ob!,P1·vc-:d to incn!a!;e logdher, and
a 11ew attribute dl?fitwd fl!; lhnir rillio ir. ron!;id(!red. ~!xi, Its
value5 am calculated.

TUE VAI.Ut OF Tiff. DISTI\NCF.·OVER-PERJOD IS
0.33333333 WHEN TH!: PI.I\Nl:T IS C

THE VAI.UE OF THE DISTI\NCC·OVtR·l'ERIOD IS
0.5 Wlil:N Tift PLANET IS 13

THE VAI.Ut OF TIIE DISll\NCE·OVER·PERIOD IS
1.0 WHEN TlfE PLANET IS A

DISTANCE SEEMS TO GO UI' AS
DISTANCE·OVER· PERIOD GOES DOWN

THE SLOPES AREN'T CON!iTI\NT SO l'I.L CONSIDER
rnF. l'RODIJCT or DISTI\NCC AND
DJST /1.NCE·OVF.R-l'ERIOD

WHAT SHOULD I CALL IT?
*dint 1111c o-squ or n d·ov nr ·period
THE VAi.LIE OF TIIF.

DIST I\NCE·SQLJARF.D·OVF.R·l'ERIOD IS 1.0
WHEN TUI: PLANET IS A

THE VALUE OF TIIE
DISTANCC·SQLJl\11F.D·OVl:R· l'ERl0D IS 2.0
WHEN TliE l'LANET IS B

TUE VALUE OF TIIE
DISTANCt-SQUAllF.D .. OVl:R·PCRIOD IS 3.0
Wlil:N Tift PLANET IS C

DISTANCE-ovrn-rrn10D Stf:MS TO GO Uf> AS
[)1Sl ANCt-SQUMrn-ovrn -rER IOD GOl:S
DOWN

By thir. point lhe third lrnurl!;lic: hM; lwe11 ;ippiied twir.e. Two
morn cOn('(~pts h;i ve been drdincd, / 2/ p ,md c13 / p2. The
latt'er of the se ir. the mn\;I n?cenlly fornwd, a11d it is time to
examinn it s v.i i11c:~.

TIIE VALUE or THE
DIST ANCE-CUl3E()-OVER-rERl0D .. 5QUARED IS
I .0 WHEN THE 1'1.ANET IS C

THE VAI.UE or THE
DIST /\,NCE-ClJBf:O .. OVJ:R•rrn100 .. 5ouARr.o IS
I .0 WHEN THE PLANET 15 13

TIIE DIST /\,NCE-ClJl3EO .. ovrn-rERl0D .. 5QUARED
MAY Al.WAYS BE EQlJAI. TO I .0

THE VA I.UE or THE
DIST ANCt-CUBf,O .. ovrn-rrnrno .. :;ouARED IS
I .0 WHEN THE Pl.ANET 15 A

THE HYPOTHESIS Al.SO woro:s WHEN THE Pl.ANET
IS A

Fitrnll,., the lint heuri?.li r lrni; paid off, for the new attribute
d 3 / p· has a co11d,111t 11;i l1w fo1· two of the pl;i11el s. This led
our dir;r.overer to prnpor,e that the ;if l ribu le har. thir. va lue
for ,111 plH11el s. Upon loo~.inr, Hf the third pl;inet, he finds thin
does !;eern lo be llw u1i;c1. Morr. rnmAin!; to be done in
ter.t Ing the hypot heidr., but the nrnin work in dl!;covering
Kepler's third law h11!; been cornpl1!1ecl.

3. BACON.l's reprnsentation

As the reader m;iy have P,llP '.,sP d, 1hr. ;ibovc~ protocol w<1r. in
fact generntcd by the n/\COl11.l progrnm. or courr.e, l.3/\CON.1

. was not clesir,ncd fo procl11ce fluc?nf Enr,lir,h; I have r,ivcrn It
thn abi lity to r,enernle !,i111p ln proloc.olt, only to help
demy~tily thr. p<1lh it trnve lr, tow;inh dit,covery. Bulow I
attempt to cli'!rify the nature of the program still further by
conidc:foring thn reprn sentalion!; it ur.es for its data, its
hypothe ses, and it s heuri?,tiu;.

3.1. The repreoentation of data

BACON. I reprnsents its data In termr. of i!!!..l.i! ill!,!,terr.. A
· data clui;ter ir. a se t of 11ttribufe .. v11iue pain; linked to a
common node; ii represents " series of ob,,ervalionr. lh<1I
have occurrnd tor,cthr.r. The pror,ram· l111ow$ about two
typc,s of .ittribulc!r., l!)Qt1pc111d,_~!..1.l ;111d UQ~i~l!J.!. The !;y!dem
har. control oven ind11pendC1nt attributer.; ii ran VMY their
values and obr.erve the results. The resullr. comdst of the
values of the dcpench:nl aflributer.; the~e am what the
system is tryinu to exp l:iin.

The program 11lr.o know$ that it can mal1e genernli7.alions
about the valuns of clepenclnnt attributes, but lhAI
lndr.pendent altribute .. vil lue pain; c:an be used only for
conditions on those genernliz afion!;. Fir.urn I <1 showr, some
data dui;\err. fr;r a lradilio11<1I c-oncept <1ll<1inment task. In
this cM;e, the concert is red. Them <1rn I hrr.e independent
attributes, si.zo, co/.o,·, and shapo, and one dependent
attribute, the feedlu1ch.

Much of OACON.1 's power comn•s from it s Abi lity to define
higher level attributes in tr.rmr. of more primitive ones. For

example, the progrnm t1111 c rn;ite a t1ew ottribule which Is the
product, the rntiQ, or the ll11eM rnmbination of two exist ing
attributes. II can alr.o cr!!ale an attribute whose value

174

equatr. thn Vil lue of another Attribute !®s!!.!.\Q ?, or r.ome
othnr nurnbnr.

The i;y!'lem ar.kr, the pror,n1111111r?r for the namni; of lhr. se
new ;itlrlbutns .ind trn;it s thr?rn lil1e any olhr.r; tlwy urn be
Ufied lo d(!fine 1ww ;iltrlbutnr; ils well, !,Cl the proc.es!; Is
rc1c un.ive. Th(! gene mt ion of hir,lwr leve l nl tribu te s allows A

pandmonious n!prw,enf;i lion of li)r. cl;il;i; ii allows nor111,1ily
c:omp lr.x rule s lo bo d;itcd ;ir. r.imp le co11!di111ciei,. I r.how in
Fig um ?.A . two clat ;i c lwd on; whirh olwY. V.cip ler\; ~hird law.
The three hir,hnr lt!VC·:I attributes, i/ / p, i' / p, nnd d· / p2, are
represented In the r,ame f;ir.hion as the ;ittribules which
define them.

<•l

(bl

lorgn rod lergo · bl, ..

red (condition) bl.,. (condilinn)

yoe (gnuronlir~tic,nl M (o,,..r•liufinnl

ficurn I. .<al So..., detn cll11,tnrs for fhn conc•pt red
(bl Hypothotii1 ciutlors for the conc•pf red

3.2. The repreoentatic,n of hypothnseu

BACON.I represents hypothr.~r.s in m1Kh the s<1 11H! way as
Its data. An bypolhr5\r~ ~.1 11 ~'. !F•J: ir. alr;o 11 set of 1111~.ed
allribute .. v<1h1e' pairn. Somn of tlw se p,,ir?; are mA1·ked as
ge11er<1 li ;i11tiom,, whih? ollwr!; am mAri'.ed a!; £Ondiljonr. on
those gcnerali;u1tion:;. Thw; 1hr. pror,rHm r,pecifies <111 rules it
diGcovers as conr.lanc ies, alonr, with the condil ion!; under
which those con!;lanc ier, hold. The sy:; lem makes no
dlr.tit,c.tlon bntween primitive <111cl highr.r level attributes in
Its hypotheses.

It, Figurn I b I give~ two h>1polhr. sir. ch1!,l(')rr, cir. scribing the
ruin 111 the c.oncept Alf;ii111,1r.11t f;1 !,h mr.11tin11r.cl above!. One
cluder expli1lt1!; c<l!;e~ w lwrn 1hr. {1?crl/,ach ir. yes, whi le the
other explair,i; the 110 rnsponi;er.. fir,urr. ?.b show$ " sing le
hypothesis clu!;ler for Kep it?r's third law. On ly one cluster is
neeclud sinc:e the con!.tanc.y hole!!; for <111 of tho data being
considered.

3.3. The repreoentatlon of heurl$tic11

BACOf{ I Is it11plemr.11ted in I he procl11cfio11 r.ys tem lr111r,uar,e
OPS2 (For&y And tvlcl)ermoll, J 977). The heurit,tics of
BACON.I, which I call !:Qfl!.!l!!.!fu'.. ~lg_!_r.dorr., arr. implr.m~nted
as ors2 productions*. Tlm~e C011!;1!il01A set of conchl1011s
describing a general pattern · that mAy be found i11 data, <1nd

*These produc I ions male h <1p,;i in!;t conf ip,urntiohs of chit a
!ind hypothesis c.lU!;tert. CIU!,terr. arr. represented as
valuc .. <1ltrlbule .. noclu lriplns, ear.h of which IG an elemnnt In
tho OPS2 working mnmnry.

(oJ

"

4

B

B

(b)

\l,'
<contreliratinn)

fitum 2 (nl D•ln ch11-lor, ohoyir,, Knplt,'1 third lew
(h) Hypolhnr.i• r-,r K,pwr'1 third l1w

05

2

an . ar;r;ociated ;idion; thiG ;idion rn.~ulls in either the
formulHtion or qtrn lifi rntion of ii r,enr.ra li ;iation, or tho
definition of A hir,hcr levr.1 attribu!f!. I clir.cuss these rules
morn fully 111 tho rwxt r;cction.

Procluclion t;ystemr. trnv<~ been sur,gr.r.,ted as a general
sc lwmr. for rnodelinr, comrlr.x thour,ht procr.sscs by N,iwell
and Simon (1. 97?); thr.y h111w lid eel R nurnbr.r of arlvant;iues,
sonrn of which ;irn pflrlit.ul;Hly releva11t lo dir.covery
sy st~in,r;, Flrd, procludio11 r;yidemr; c:;irry out a parnllel
f;earc:h for I hC! c1ppropriate production to fire; thir. seems
especia ll y w;eful for r;ea rrhinr, a larr,e r.et of data · for
c:om,timc:ies and lrnndr.. Snoncl, procluclion syslemr. ilrA

data .. drlvcm, ,rncl 1111y cll!;wv<-:1·y r,yid<'lm tnu!; I clrrnrly be
rcsponidvc~ to the! d;ila it is tryinr, to exp lain. Finally,
produc:lion sys tems rnprnsent knowledge in re latively
Independent structurns. Thi s ir. a11 impor!M1! advantage to 11

dir.covery system, for It mr.ans that knowlr.dr,c (e.g., in terms
of uenernli;rnliom, ;incl hlr,hnr lr.vc!I concept~) c:an bo added
i11c:rnmenlally and dill l11tcrncl in rc ,wonablo ways.

4. An overview of BACON. i
The !3ACON.1 program currnnlly consi!,ls of 74 OPS2
productions. These can be dividP.d into five tMjor sets:

1. a SP.I for setll11p, up and rurrninc: n lac.lorial
dc si11t1 to ga!hP.r d;ila;

2. a !;cl lo dctec:I rep,u l;irilir,s in lhP. data
rn llr,clecl by lhC! firid and fourth !;els,

3. a sci that chr.cks for rnpP.titionr. in the hinhor
levcil 11tlrlbutes rarr,gHded by tho r;ocond i;et1

4. a !,el that calculAler, lhC! values of tho hinhor
lcvr.1 c1tlributes propoi;ed by 1hr. i;econcl set;

5. c1. !;P.t to !er.I p,enP.rn li ;iationr. !,ct forlh by the
second set.

The firnt and filth r.c ts am d anclnrcl mr.chanisms in 1111y
dlr.cov~iry r;yi.tcm, ;rncl very !.itni lar c.ompo11n11ts tnAy bo found
In Simon and Lea's (I 9711) GR! progr;un. The third set Is
simply a check for looping. The rnal innovations lie in the

.. second and fourth r.P.ts, thounh tho notion of hinhor levol
concepts Ir, U!;ed exlenr.lvr.ly in l.enal'r. (I 977) AM system.

I diocu!;s iill of llm comro1wnts i11 more detail below. In
Figure 3 I present a top ·· lr,vcd flow char! of the BACON.!
sys tem. This dP.p;irt s t;omr.wlrnt from lhC! r.land11rd formalism
in order to better !dmulRte thn flow of control In the

175

proctuc:tion f;yidetn. The d1Art doc !; 1101 ha,.'C·l lln explicit i;!,QQ,
but lhP. progrnm 111111 !; wlwn it ha!; complr!lr.cl gathr.ring its
set of prlmitlvci data.

fic111e 3 Top,ltovol ffow_ chart of 01\CON.1

4.1. Gathering dBta

This !,el of 20 production,, ar.ilr. the w;er 11 nurnbr.r of
que1:;lions about tho lw;k thn 1;yidem ir. to r.olve. The r.y!dem
asks for the dcpcnchinl ;i11cl i11clrircndr)11! allributes i1wolvcd.
For i11drircndnnt ;illrib11tcr., ii 11r;~,f. if thr.y am !!l!.r:'rv;il or
noti1ina l r.<:c1 lr. . If inte rval, it Md1s for a ra tr,r,r. sted fir!:! val tm,
11 ta1gger.led incrnmrrnt, ;my limit r. 011 the pni;r.i blci values, and
a !a1guested nurnbf!r of ob!;cirv;i tioni; for lhir. attribute. If
nominal, ii anl1s for a liGI of thn r1llributr'r. possib lr. v11lues.
No quoslionr. c1rn 11skr.d 11bo11t the rlep!!nclnnt r1ltributes'
valtJ!!$.

Ar, tho procluctioni, gel this inform~tion, !hoy to11Glrt1d a
eel of morn r.pNific prod11ctin11i. lo c At'l'y c11it thn oxpr.ri111011t.
Wher, all tho attribute~. lrnve b!'e11 comdr!r.red and ;ill tho
nec.csr;ary production!, addcid, tlw •;yi,tcm br.ginr, it s ctatc1

. c:ollrnlion. The dRtil is rnllr.c !eel through II trnctilional
fadorlal clr. idr,n. Initially the fir!d inclripe11cle11I allribute Is
var incl whi le the otlwrr. arr. held conr,t;ml. ·1 hen thn v;ilue of
the r,ec.oncl atlribtt!P. ir. c·h;inr,ecl, and 1hr. fin! ir, cycled
throunh ar,c1i11 it1 thir. nC!w context. Thir. rontinues until all
tho valuflr. of the r.ec ond 11tlribul e h11vr. br.i•n ryC'ir.cl throur,h.
At thin point tho third atlribute ir. modifi1id, lhn 11bovc cycle
Is rnpc.alecl, and so on.

For most of 1hr. liisl1s !3/1.COI.J.l can handle, lhC!re is only 11

single indepcnd1int 11ttribute. 111 thir. r.pecifll <:ase, the valuP.s
of tho ;illribute are c.y<.lr.cl through once a11el lhe !,ydem Is
finished collec.ling it s d11ta . /1.lonn wilh a r,IVC!t1 combination
of lndepcndcml altributr, .. value p11ir!;, 1hr. r.yi,tem 1wks for the
value of ec1c:h'dependent attribute.

The r,e l of produc.llon!, c omdrndod for c:Mrylnr, out the .
dat c1 collec lion c11n bC! i11te1Tt1pl0cl by lllC! r.ol of productions
ro$ponrdble foi· rnp,11 larily dr)IP.Ction. If both are true, tho
rcgularlly clelecllon prod11clio11i, win out over the data
genP.rntion production,, on tho OPS?. conflict rosolulion
prir,cipln$. II a rnp,ulMlly b found, a r,enr.rnli;i11tion is mAde
or a hip.her level attribute is con!dclNecl. If a ncncrali;ialion
lo rnade, tho testing procluc lion!; c 0111pr1re iii, prediction .to the
existing dnt ii. If c1 hir,hor lr.vr.l 11ttrib11!r) is formr.cl, ii · is
ter,ted for rndundanc y; if It i!; a now c:0 11cc:pt, Its values am
ct'l lculatecl and tho ror,ularit~· clnlP.c.ton: ux11m inP. these .

Evr.nt u;illy, the Gy~ tetn 'G iit!P.nlion rr.lurn s to it s initial gonl
of collecting data, c111d it continuns ar. ii nothi11g has
happened. The currnnt verr.ion of 13ACON.1 does not use the

I

· 1

hypc,theses ;me/ concepts It lonm; to help ii !;earch the cfRIII
i;par.c lnle lllgcrntly. The onr. c?xccplion otcurn when a
c:oMI 1111c:y Ir, found alonr, m1 Interv al cfimr.nr,ion1 in thin caso,
lhC! syidem can Jump ahead to look for a periodic
relationship.

4.2. Discovering regularities

The scc.ond !;cl of 20 procf11dioni; am rn$pOnsib lo for
fimli11g rngulflrilil!s in lhn dat;i cnllr.clcd by the firr.t r.ol. The
syid0m'r; rngularity d11tP.c.ton; c:a11 bC' divided Into a set of
£9Df!.ill1£Y. 1frJ~don1 and a r;ct of trnnr! tlt.!flI!QrJ!. The first

of ll1C! SC! c-an d!!ill with c!ilher rwminal or 11111nr.rical data, aml
leads to lhC! poi,tulrillor, of gr. 1wrn li ;u1lio11r. and rondlllons on
those se rwra li;rnlion!; . f3/\COl~.1 's lrnrdc ronsla11c:y detector
c:an bu parnphrw;ed In Enr,li!,h m;

If n11 nttf'i/111.t<? lro .! thr. mm,, 11nl1tr. or.Mss a
1HL.rnhe1· of cfoto r. /11 .,tt?t·.,,

then hypothe.,izc thot tlw nrtribu.tt? always has
that 11al1tr..

Note that lhir, is simp ly ;i rr. $lal1i rnr.11t nf 1hr. lrndilional
indudivH ir\ferr.nre nrt,n howr.vc-:r, whe11 combined wilh lho
ab i'llly 16 define? hir,lwr loved allribul es, ii gai11s In pow!!r
considerably. The prngrnm'r; hr.uri!ilit for finding c:ondilions
It; nearly iJ!; i;J1nplr.; ii m;iy he rnr, I ,iled ~!;

If yoiL arr. lnolri11ff for .ct co11di.tion on a
rre1wl'<lliz11t ion,

and tho f(ellel'<tlization is l/'Cl.(l in (1, number of
cfoto dHSlt'I'.<, ·

and nt t r·i.bu.t·t? a /ms va l1tc v i II I hoso same data
.clH,(lt'I' ,<,

and tlw (It?ll<ll'oli1.11tfon is falrn in a 11wnbn1· of
other dn.ta clastt!I'.<,

and nttr-ib1Lit? a docs 1101 have 11<1l1Le 11 in those
data clustt?rs,

then propose tho nttril>11t<1 .. 11al1rn pni1· a .. 11 as n
condition. on tha grmeraliza.tio11 .

BACON . .l 's trnnd d<!kdorn opernle 011iy 011 numerical data.
Sotirn of thc8e notice dim ct or irwerso rr.lalions . bot ween
attribute$, r.tKh an the produc.lion

If tho 11alur. of nttri/>1!11? al r1ocs 11p n., tlro 11alull
of ott ribute a2 goes ltp in ct ,urn,.l>cr of data
c4,tstcrs,

then propose a direct re/ci.tionship botwoon al and
a.2,

and cnlc11.ln tc tho slope of n I with r·f!.<poct to a2.

This produdion workG in conjunction with related trend
detedorr. that furlher 1111alyzr. the d;1ta, ~uch as

11nd

If thorn is a clirnt!t 01· i.1111r.1·.to rr./ntio1u/1ip botwoon
attl'i.b1tt<1s al a11d n2, ·

and tho slope of al wi.tlr rf!.,pcr.t to a2 /.s a
consl'an.t 111.,

than prnpos·e that a new nttrib1tto, al · rn·a2, bo
defi.rted.

If t ha,·o i.s o cli.rcct rr./otionship l>otwoon attribute
al a11d o2,

and tho slnpc of n 1 111i.t Ir l'f!S/,rct to a2 is 11ot
consta11t·,

· and the 11al1LM that foci to tlrn rli.scovcry of this
t1·e1id wcrl? nll positiva,

then p1·oposo that a new attributt?, ;1l/a2, be
· defined.

Sjmilarly, an ln'vcrr.o rn lation wi ll load to lhc construction of

176

an altribule for al .. 11rr12 (which sumrnarir.es a llnr.ar
relaliom;hip) or im r1ltributc for ah1?.. Olher combinations
occur with diflcronl !dp,m; for a 1 r111d 112.

The abov<~ produdio11r, lr.ild to atlribulcs which · mAy be
ge11orA li icd over; howr.vc-:r, hir,hr.r lrvci l ind1!pcndcrnl
atlrlbutw, 111Ay alr,o lw dPli11NI. ()11r. suhcr.1 nf the trend
d11tectorn looks for p11rioclic rnlalio11!; in 11,r. data whr.n the
sy!ilem rrnedt; R condilion; lhw, r. lr!11cl lo the co11!;trudion of
modulU!, ·11llrlbutcs. The major production 11111y he r,lilled as

If you aro lnohi11rr for n condition on n
gancrnli.zation,

o.n,1 tlw genr.rnl.i,ntion i.s lni.e i11 n 1111111/:,er of
cl<tta chuters,

and t./rnrr. is nn oqnal i 11tm·11a I p l>ct wi•nn. t ho.rn
data clastors olonrr nttributc a,

then propose thnt n nr.111 nttril>utc, a 111ocl11io p, bo
clt!finC!d

A similar rule C"a11 Ir.ad lo lhe conslrnttion of linear
co111bi11;iliol1!; of i11depo11ch!nl 11tlributcir. . Once !;uch c1tlribules
arn dnflrwd ;ind thr.ir valuer, exm11i11r.d, thr. condition duteclor
car, dincover their rnlation to ;1 gr.1wrn lir.11 ti o11.

Once a d11pcnde11t d:ita lripl!! ir. found to R[lrcc wilh r111
hypo I ho sh;, It Is mAI k0d a(; r:.>:1~!i!j11C?d. If morn prim itive
triple s woro U!,r.d in 1hr. rnlr:1.1ialin11 of thir. lriplr., lhr.y am
r.itnilarly mArked. The rnr,11IArit y d!!lcc lor!; 111,11c h only
analm;f ~~lllH.l!J~'~! cl11ta triplns, (;O 110 co11fwdon br.twcon
dlfleront rule s Ir. produced.

Sonrntirncs a q11alifi1!d ge11c,r~li n 1lion ir. confirmed, but it
failr, to explain all l11r.l1111te $ of 1hr. r,enerniilalion, r;i11<e they
do not !,c1tisly All of lhn cnndilion!;, In lhir. CR!,e, a ,,cw
hypothnsir. i!; addnd which mnkei, 1hr. r, ame prncliction, a11CI a
set of dir.junclive c:ondilion r. i~ r. r.111Thed for. Onre thir.
hypothesis i$ confirmed, if there rnmai11 other leftover
triples, yet 11110thnr hypothr. sir. ir. addr.d, a11<I r.o on until all
trlplns with thin atlrib11te --v11iue JHtir lrnve been n111rked ar.
e)(plal11ed.

4.3. Checking dlmenalons

The third i;cf of 12 producliom, chr.c~, to (;ee if a newly
suggested produd or rnlio is idr.ntic al wilh an r1lrcady
ei<ir;ling conc-!!pl. For ex,unplr., r.uppose lh!! system has
d11finfld r1 nnw altribulH, d/ p, in tcrmr. of the primitive
attributer; d 1111d p. If II find!; p and cl / p arc lnvorr.cly
related, It will c:onr.ider a new attribute, ,,·c/ / p. 01 course,
thio Is equivi!lrrnt to cl, but 131\CON.l clocs11·1 ~.now this sinC'e
the tl11?11nings of It s hinher lnvC!I ntlribulr.s ;,rn opaque to ii.

Accordingly, 1hr. identity -- chr.ckinr, productions cr1lculate
the di111e11!;ionalil y of 1hr. nr.w ;,llrib11te . . If this is 1hr. r.,11110
ea the dl111r111sionr1lily of an r.xir.ting ;il1ribul c , r.ither primitive
or higher levc-?I, th!! 11r.w c rmc r.pt ir. rnjllckd. Alr.o, a tnA.rker
Is added to 111r.mory tellinr, 1hr. syr-lem to icnore this
parliculnr rnmbinalion in the futurn.

If no identity ir. found, lh!! syslem accepts 1hr. new
concept and c:alcul;iler, its values. Thir. check irr performed
only for· products 1111d ratios; ii is in;,ppropririlc for linear

· combinatiom,, sit1C'e lhr.$e r1rn fornrnd only when tonstant
slope$ am found. A c ompnrnblr. lc !;I is roi: t.ible for modulus

. concepts, but l_s not ltnplemnnled.

4,4, Calculating hlthP.r level values

The fourth r.ct of 10 produc.tions lake thn hinhor level
concepts which par.s tho rcpclilio11 C'heckj ;111cl the values of

!hf! attr ibute,(; defininp, llwm, itllCI w,e lhe sr, to calr.ul;ite the
v;.i lue of tho new ;itlrii:>ulP. /\ i,r-parate prnduclio11 ir. w,ed
for f!,H h lyp(! of hi1:hr,r lrvtd c1 llribut e. !11cl11decl 111 fhi r. set
am procluc I ion'.; which dt,c icfo wlicllwr ;i new attribu te 15
indr,pencl1,11f or rl1,ppncJr,nf. If all 1hr afl ribu le5 nwkinr, if up
am indPpr,ncl1,nl, tho 1ir,w cmHert i!, mMl1r,d lndopt,nde11t ar.
wdl; otlwrw i'.;e it i!, m111ked Hf; clepr•11dont, ,llld c:a11 be ur.ed In
generali, a lion!,.

· Thff procluc.tio nr, for ca lrulati11r, va li.1 (!5 win out over those
for clnla c:o ll r,c.lion ; a!; won a!; the v.1 h1 t, of a higher ·· level
attribu te U'll.l be c.alru lal ccl, ii '.,','.,ill. bo. Thn on ly excep tion to
thir; rule occ.ur!; if fl rqgul:irily ir. d1dr.cfecl ,1mo11p, the now
va luE!s. 111 l.hir; _- c.ar;r,,. -a gr.nrrnli ,alion or · i;fill hir,her level
attri b ut ,; Ir. fornwd ,mcl rln,dl wi th. Only after this new

· cle v1-,lo1>1iw11t i!; t ii~.e n tare of docs tho r.y:dem return to its
old c:ompu t at ion!, . ·

4.5. Testing hypothr.ses

Tlw final set of 12 prnclut lioi'I(. ir. . rni,po,,!,ibln for tcstit1p,
gencrali,afion!, r,enr!l·,ifpd hy the . rer,ularily defection
production!,. Wlwn a ge11<'1'Hli;u1lio11 ir. find m11cle, a counter
Is c:i-r,,drc•d and !,et to 7.cro. A !,el of prr.exir.finr, le$I
prod1Jcfion~ then comr,;irn lhe kt1ow11 dnla to tho
ge twrn li ;rn tion.

F<tr eac:h ar,rnemr.nl thr.y find, lhr.y inc:rnmr.nt the counter
by one and the d;it a lripli, i~ milr~.cd ar. r.xpl.1inccl; if the
counter rn ,,c: lws four, lhe hypolhw.i r. ir. RC:tcplecl and tho
!;yidem 111ovc·:'.~ 011 lo ollw,· mnllrr!,. llowcwc·• r, if a dHIA triple
is found lhnl di!; .~p, ,r!e!; wilh 1hr. gcnerali;,;ilion, 1hr. counter Is
reset lo zero · and a p,on l ir. !;cl up lo qualify tho
ge11cra li ;rnfion. Thir. r,ive~ contro l b;ic:k lo the rer,u larily
dctecton; which, hop!!lully, will di!;c ovcir 11 c.o11dilio11 on tho
getu!ra ll , ;iii on.

When a cond il ion llilr; hcr.n found, one of the lest
prod1Jdio11!; addi, A new r,e l of le st procluc:fionr, which
lnc:orpornte know lr.cl1:e of lho new tondilion. Ther.e .mask the
o ld procl11ctiom, (through llw ors2 co11flict reso lution rule$)
with rer;)Jcc.f to lhe currnnl hypolheslr.1 1hr. morn r,enerAI
produc.tion!, ncvcir have Any lhfll[l lo say about thin
genernli;rnlion ar,ai11.

The new produc.fionr, ler.f the revl!,ecl hypolhesir. i11 much
the r.a llll? . way th11t lhe fir!;f ones did, except that they
con!ddcr only _ tl1C1 f,e dal il c lu!;IC'l' r. which !•ati!ify the new
cbnclil ion. 11 the qualified hypothesis fils enough clHfa, ii /$
conflrrned1 If ·another counterex;imple Ir. reached, a new
qmdil ion in fmmd, a new i;el of !er.I productiotis ir. added
which tnAsk fhr. IRsl !,rt, and the c.ydr. br•gins anal11. This
continll!!S ·until the hypothe sir, is confirmr.d or until 110 ur.eful
cond itions c:an be found to qualif y a faully r:enerali7.alion.

5. Some examplos

E3clow I Ir ac.e BACON. I'!• dl!;covery pal h in lwo envirnn1111?nts.
The firnt c.onlaim; dal11 for the conccpl Allr1inmr.nt tirnk
nic,ntioned r.;1rll1?r, In whith the fr.cdl)(Wh i~ yes if lhc color lo
rnd, at1cl no when 1hr. col.or Ir. l>lw1. Thr. ~ccond har. data for
a !,et of pla11eh which ob(,y an lnverr.c sq11arn law, od2 ~ I,
where o Ir. the ac:ce l1?r11t io11 and rl in the di!;lai,ce from the
sun.

The flrd tm,k clrnw!' upon IJACON.1 'i, co11dilion dr.tec·torr.1
tho second clrnw,; upon the lrnnd cl1!1ec:forr. for direct and
ltwen;e rc lallomd1ipr.. /\nolhr.1· l;1 r.h which I do not describe
hero, l!?ller 5Nf t1e11w r.xfrnpolAtio11, w;r.s bolh of thoso, 110

well as llrn lrnnd dr.t,ntor!; for rwr loclic rn l11fionshlp~. All of

177

these lm;ks clrnw upo11 lhe core of t3ACOl•J.l, 1hr. con!,tancy
detector.

c~, lar111 hi ... ,mall blue

1qu1,e · nfl

(bl

Fitura 4. (111 l11itiol cl1t11 ch, ,t1111 in thn cnnr•pt 1tlainm1nt run

(bl lnili11I hypothnniM clusto, in thn cone.pt att1in011nl run

5.1. Concept attainment

In the c.oncepl afl;iinmr.11t f ;l!il·,~ IJACOIH ir. tolci nhout
thrr.e nominal i11clep!,ndr ,n t nl lribuks, .<i1c, color, a11CI s/inpo,
and the va lu!,s eac:h can l ili'.r. II ir. alr.o i11formr.cl of lhe
sit1g le chipendonl aflribu le, 1hr. fccd/,nclt . 1 he !,yi;fem l)(!ginn
by r.y!;lem,1fira ll y ex;im ining combi11;ilion!: of the fhrne
attributer.. Si nce If w11r. givC!11 .1 i .rn a!, 1hr fir!d af lri bule, if
Initia lly con5ider r. a lar(lri l>/,w .H/1t<1rr, a11cl I lwn a sm.oU l>/.ae
1qnoro. The cl11la clui,IN!; for lhw,r. m~y bet !,r.e 11 111 Figure
4a. Sinrn the fccclh,ich for bolh of lhr.i,e ir. no, the !;y~fem
generali ,cs by building 1hr dnla c 111',lcr in f"ir:urn llb.

BACON.I 11oxt c:on!drlr,rr. a /11,·rr,. ,-,,rf sq 11<1 r-r. n11CI a rn101/. rm{

squorn; the data clu!,lcrr. for llw!.e am i.hown in Fir.urn 5a.
Thi5 lime the feedbach ir. yes. Thir. caur.r:,s the progrnm to
set up A gonl to qualify lh fir!;I hypothrsi r., a11d thi r. goal ir.
almor.t imnH!dlatP.ly !;~ f i!;f iPd. ·r hr, conclil ion - finding
procluc-tion proper.es thnl lhe fo<'ri l><>C.'h i!; 110 if 1hr. co/.o,- 16
b/mi. BACON.1 itlr.o seer. thnl the f, ?r.dlrnch ir. r.0111r.li111es yes,
Wncl finclr. that · the color bei11p, rrd i!; a good concli li o11 for fhi6
gencrall7.11fion. 130th hypofhe•.,ir. clw, l r.rr. are given in Figuro
5b.

(1)

YOI 1quart YH 1qu1re

(bl red (coriclitlonl blut (condltlftn)

no <,,,,..,1tiufion)

Fisura 5. (~l 1,fo,,, d1t11 clu~lort f,0111 th11 conc•pt ,ttain'"nf run
(bl Final hypoth111it clu,1011 1•,,..11t1d by BACON. I

. I

So lc1r ,ill v..i lilc,; of th e fcctlhndt have b£'cn cxplnincd, l~ul .
13/\CON.t ir. 1101 yd rr?ady lo arccpl ii !, hypothe ses. Two
rnorn cl ala c lw,t en; n,u?;I lw found that anrcc with each rule
bcfol·c it w ill Im co11fide11I. The comi>i1,alio11s large blue
cirde a11cl .11110/.l bhw cfrr.f,, do thin for 1hr. firr.l hy.polhesio,
a11cl the combirrntio11i, lo.rye rnd circle and ~111.0/.l rnd c/.rcle do
II for 1hr. sr. cond. 13ci lh hypotheses 11m accepted, and
procluc lion!, ,He flddr.cl lo tire !;yidern'r; permA11c11t mr.mory
which will Int II make pn?cllction!; in llw fulurn. The progrnm
continues lo gather data, makinr; prndiclio11s and verifying
them r1 lonr, the way, until ii !, IM.lori 11I desir,n is c.ompleled.

5 .. 2. Thi?! Inverse square law

111 the !,ccond t ar,11, BACON. I I!; r,iven 011e lnd<?pendenl
allr ibulH, the 11,w1c of a planet, and two clepcrnd1rnl
attr ibut e(,, a for the acce leration, and rl l c,r the di?;la11cc from
the !,Un. The pror,r11m exmnine~ the values of tlie latt er
attributes for thrr.e planets, a11d it s trend delcclorr. notice
lhnl the · value?~ of a i11c.rnc1r,r. as the vahw~ of cl decrcar,e.
Tho slope of a with rw.p(?ct to cl ir. ca lculated, lnrl 11,iG Is not
con!,t.mt. The Initi al cli1ta clu,ler!; can be r;f?C!l1 in Fin·urn 6.

4

fl

0.'5

Fif.lllO 6 Ontn ch11,ta11 utinfyinc ftn in1·~•1t 1quart law

Tho relationship is irwer!,e ,md the values por.ili1Je, so a new
attribute, a ·d, ir, d1?filwd. 1 hr. dirnr.nrdonaiily of this attribute
Is unique, !;O Its v;ilue s of lhir, allribule arn calculnted, a11CI a
new trond if. cl1?tP.cled. ·rhe attributes n and ad seem lo be
dirndly rntaled; the i,lopes vary, and w a new concept,
ad/a, is c.onsidured. However, after r.ome c.alCLIIAtion,
8/\CON.1 rcalil.cs this attribute is equivalent lo d, and rejects
It.

Now 1.111olher dirnd 1elaliord1ip is found, between d and
ad; the 'attribute o·od, or oi', is defined and its values
calc:ulatecl. The va lues of both ad ancl oi' can be !lecn i11 the
extended d;ita C'lui,l cn; r,iven in Fir,urn 7. The new attribute
ad?. in found lo have · a co11i.ta11i value of l for two of the
data c:lu!dcrr.. /\ gcncr11lil.rilion ir. mnde and tested. Two
more d;ila ch.1!,tcrr. am found 11ml obey the law, And no
e-xceptions. · The rulr. ir. ;icceplecl ,111cl a procluc.lion is built
for maklnn prnclictioni,. The sy~tem examines tho rcmAining
plat1ols, Ancl those fit ;ir. well, r.o ii r.lops.

2 4

A

O.!I

ficurq 7. Ilic"'• i.v,1 clalft for th, inverao 1quare law

6. Gr.nerallty of thr. system

I have dir.cw;sed thrne l;i!;ils BACON.I can so lve -··
Kepler's ihird law, r;lrnpln concept allai11mrrnl, and the i1werr.e
!lquarn law. The ·pror,rnrn 11ho !,uc:ceedr; 011 a number of
la!,ks lt1 whicl1 tho lilws arn of ii per iodic 11alurc.

6. l. Pcrl<1dlc' dl$covery tar.ks

One of I he periodic I il!,i'.:; 13ACON . .I can ha11dl11 ir. an
a11alor,uc of the lnllrir ,.eq11r,nc.r. r.xlrarolalion lar;i1s found 011
lnkllir,enc:c lei.ts. 1hr,•,e w;e •.eq11o nc:c1<:; lil1r-, r E. T F T G --.
8/\COM.1 mur;I r<?prn';ent lhi!, r,eq11e11ce ar, 7.0 5 20 6 7.0 7 --;
It mu!.I roplnc:c 1hr. letter!, with their position in the alphabet
becau!;o it cannot rr.pre!,enl the next re l~lion between
ad jarcnl lellen;. A r.r.cond i!, the cl11 !,!; of !,cqucncer, !,luclied
by Kl;ihr and Wallace (1970), !, uc.h iJ!; l>/w, .<q1J.or·e, rcrl circlt!,
rod sqtLorn, burn circ:/e, f'(1(/ sq/Jorn, rnrl cirr.l<>, bhw sq11arn, - -.
lt1 thin r.xmnplP. !hr.re, ill'(! two dr?pendenl allribuler., color and
shape, who~.e valuer. Ml! norninnl: al~o, lllf' perioclir.itics for

.. each attribute ilrr, dillcrnnl.

178

B/\CON.1 can ;ilr.o handle seq11cnce r, in which the
periodicity ii, lonr,cr a11cl t,ornr. of thr. values nm rr.pcaled
within the period. /\n e~;irnpl1, ir. the !,C?q11c11ce of rei.;s 011
which the <:.ma i11?!.I di!;l1 rw;I'.. in the Towc~r ol lfonoi puzzle.
Them art! thrne P"ff·'• the initi,1/ P"ff, the, r1oal pcrr," and the
ot/rnr pcff. The !,cqucnc e for a five cli!;l1 problem is ini.tial,
goal, 11011l, oth,,,·, oth,•r, i11itinl, inili,tl, 17001. 17oal, 111 each
of the5e t ard1s, the pror,rnrn rnpr nse1\t r. 1hr. position In the
seque11C'e a!, the !dnr,lr? i11dep1?11clenl allrib11tc.

Firrnlly, Ciardnr.r (l 969) ha !; rli!,Ul!,?,ed ;i r 111 1.~ of dir.covcry
ta r,l1s c: ;ill r. d Pa1 lrc•rn (,. lr1 lhr. se lat,l·.s thorn. 11m two
lt1cleponcltml v·~~-1;;i;1~-;;-; I hr. rnw 1111d I he c:oh1mn, each of
which can vary from l to 6. ·1 he p,on l i!, to find somr. rule to
predict lhe nomirrnl .symbol .ir.~ocialccl with carh rornbinalion,
and the rule is oflrin periodic in n;ilurn. llACON.l can solve 11

nurnbor of Pnl tern!< t At;l1s.

6.2. Generality of the heuristics

Thur., 8/\CON. t can ,,o lve 6 c l;isr,P.!, of di!;covcry l;ir.ks, if
one groups the two. power l,1ws logelhr.r. t,,1,ornover, nearly
the f.amr. prod11clio11r; ill'!? w,r.d i11 the r,ol ulion of every type
of task. Of coun;r., there 11r1! r,ornr. exceptions to thir..

In Its dlncovcry of power lnws !;urh ar. d·\ /,,2 ~ c, !hr.re Is
110 U!;e of the heurl!;lir.n for clir.tavcrinr; periodicity or fi11ding
condition!;, Sitnilfll'ly, 111 mo~I of 1hr. !,cq11c:11ce exlrnpolation
tar,ks no w,e i[, nrnde ol the inveri;c• and clirncl re lation
deteclorr,. /\nd '.l procludio11:, wen? addt?d to en11ble the
syidcm to solve-: somr. of the P,illcrn~ lard•,s .

The g~ncrnl rule, however, i~ 11ml mod of the heuri!il ics
arc ur.ecl most of the limr.. /Incl i,onw, like the co11d11nc:y
dr.teclor And the procludion!, for lcr.linp, hypotheses, am
ur;ecl in All c.at,r.s. Alon[\ with their r.irnp li 1. il y, lhir. sur,gesls
lhAI they ;irn truly ge1wral rulf!s lhnl a11y dincovery r,yslem
miaht use profilably. It alr.o sui:i.;e~.ts that BACOf~.l is a
g~n~rn! dincovery syidem in the r.arnn r.enr.e that GPS was a
genernl problem i;olver.

7, Limitations of the system

We have
considerable

seen th;il
generalit y.

the 13ACON.l program exhibits
Moreover, it achieves this

generality through the w;r? of a r.rna ll 11utnber of simple
heuri!;li cr;. I lowc vcr, lhr! i;y!demr; does have se rious
lltnitr1lions, and below I wnrdder !;o,nr. of ii~ drnwbarks.

7. i. Restricted repr0Gentatic1n

,Wh,1' am the imrlir ;1 I iom; of 13/\COt{l '!; clat a and
hypc,ttw sir. clui;tcr rcprn :; cnlaliom;? Ro~trictinr, the data lo
altrlh11te ·-vr1luo pair!; rnc ,1 n~; lhnt n?laliom; belw<'!OQ
strudurn s c·a1111ol be rnpr1?1,c11lrd. For r.xJmplr., one c:annot
exprnsi, r111 ;illribulr? for the di!;t nncc bclwf.'!11 two objects.
Ni?ilhnr 0111 onn d1? al wilh morn comrlr.x co11rnpls occurring
in natural l;inr,unr,c which lnl:c n 11111nbor of arguments, r.11c.h
an p,ivr or !]jJ. 13/\COM. l '!, rrpn? sent at ion c a11 be exlt.111dotl
eaid ly 1ino1.1p,h, bul il s lwu1i!;lic ?; arn de5ip,ned to deal
exclw;iw!ly will! clilla ;111cl hypo llw i, ir. clw,l er r;, and ;i1·n not w
eard ly mocliri1?cl. ·

A rnl<1lecl r; horlwminr. li,is iii the nalurn of 13/\CON.l '.s
hir,her levci l c-onc:epts. So far, all of the se hav!! been
nurnnrical in naltll'I!. [v1111 wi lh an il llribul e-value
reprn r;e nt afion, ii i~ po!;~;ibl1! lo dr.fi1w highr.r leve l nomi,rnl
att1·il:nile5, 111 t ermr; of co11j1111ct,. illHI di!;j1111<:ts of other
E1tlrlb11te .. vHl1.11-? p;,iirn. 111 fad, !; uch a!; ability is notesr;ary if
the :;ystem is ever to carry out !;c ientific c-lasr.ification. An
exlemdon 11lonr, thr.se li11r.5 ir. po~r.ible while retaining tho
pro15r,,11n's r11ait1 hquridics, and I!; a prior II y for future
research.

7.2. Noise

The currnnt £3/\CON.1 opnralcr. on perfect data. Sinc:e
roa l .. world data in r1CJir.y, ii would be nire if tho program
could ha11dle it ar. wcdl. ~~difyi11r, the !;y:dem to cie11I with
excoptiom; would be fairly !,lrnir,htforward, $Ince only tho
testlnn prowdurns need lw c.l1;111r,ed. Tho Mw test
produc:lions would ar.cept ilt1 hypolhr.si~ if the rntio of
conf irminr, to dir.confinninr. data w11r. above a cerliiin v11lue,
and if a minimum ,,umber of data 1lwdcrr. had been r.x11minr.d.

Alteril1r, £3/l.COM.l to l1 a11elle rnndom noir,e in il s numerical
data would be more rompl iu1ted. 111 thin car.e, the rer,ularity
dcledon. thr.mr,elve~ wou ld have lo br. clrnnr,ed. A partial
so lution minht lie in rr.· -rnprn sc?ntinr. the va luc!s of attributes
an Interval!!_ Instead of ruiJfili. /\ C'Omda11c y detector using
thlo roprnsunt c1tion mit1ht be

If tho lntervaln for 1111 attribute 9vcirl'.!12 Across 11

number or data clw.terr.,
·· I I then hypothosi?.e that 1hr. v11 lue of the attribute

alway:, f.alln within tho 1hr. avcirnr,e of those
h1tcrvalr..

' I.
Thi$ is a promir.i11r, palh to · r.xplorc, but lho str11tcr,ies for
dhte·rmini ng thr. id;rn of 1hr. l11l r.rvi1 I rnmaii1 lo be spec ifir.d.

I ,

011ce an hypothesis har. been formr.d, tho sy!dem might
calct:,late the values of a nr.w at tribute dr.fi11ed ar. the
difference between tho 11llribulr.'s v111iJes ;md the
hypotho si,ed value. Thir. w l11li o11 ii; especi11lly illtractive,
since it taker; advantar,e of !3/\CON.l'!; r;lrong point -- Its
l'tbility to c:On!d rue;! hir,hcr level ill tributes.

7,3, Searching the dota spoce

As closcribod e;ir li1?r, B/\CCMI collec:ts its primitive dAII•
throuuh a strninhtforward factori;il deslnn strategy. But II
might U!;e the. dli;covc-iries ii har; made up to a c:ertain point to
l1;t 1.t gath(!r cfata more ciflec.lively. For examplr. , if the

179

sy:,t~m were te!dinB 1111 hypo lhesi•; wi th condition!; 011 ii, lhr.n
It mi~ht examine only lho•·,e dnla cl11!,lf'rr. i,11 li r. fyi11g the
c:ondil io.n!;, /\lr.o, if hir,hr.r li? vd incl1?p1•11cl!'11I at lribulc r. have
been defined, the proRrnm mir.ht con'.;iclc:r v11ryi11e their
value5 111 plRce of the oritiinal ,ill1·ib11tc ri' Villuer,.

8. Concluoions

111 thin papnr I outliiwd 13/\COIJ.l, a prod11r.lio11 r;y'.de m lhat
dlnr..overf. ernpirirnl l::iw'.;. f rlw.(1 ib(' rl 1hr. r,yslem'5
rnpro1;e11tatio1, nf ch.ta ,rnd hypollw•.c?r. , and I expl,iinncl Iha
heutidfcs tl!;ed itl ii!; di!;COVC·: ry prOCC !,S. J r.howerl ihat
.BACON:.l ':; bchavio.r con'.;i!;led of 5 mnjor rnmpo11onts· · -
g·11thrirhig primitive dril;i, di!;ro,;cri11g rc!R11lnrili1it; in lhir; d;it il,
·thnc'kinr. for loop~; in hi t1 llf!r lr.vcd <DIH<'pi',, .r alculal inr:' the
v~lues of hip,hnr l1! vcd illlrilrnlr•!;, n11d lr.·i. ti11c hyp(>lhe s(!s.

·1 sour. ht to . dP.sc.rilrn thf! !;ys l em'i, !, l r;ilcg ir. , ,.till furlhr.r
. by c:ovc-~rinu in wmr. dl't ;i il ii!, '.;o l1dio11!, lo lwo t;i !d1s. I alr.o
out lirwd thn rnmrii11i11r, I ,,,;11 :; 13/\COl,J. I r ~11 wive, i111d
prnsentecf the evidence for ilr. r,c:11Nalily. Finally I pointed
out the pror,hun'r; lil11it;ilin11!; in ·r!!fll"C? ,,c11li11r, cone.cpl,, 1111d
relations, in cl1?ali11[1 with 11oir,r., ;ind in •;r:an.hi11r, lhe dal11
spacP.. At the same timr., I rnri<h? r,on1r. !;t lP,('.C?slionr; for luluru
rcsoarr.h.

In conclui;ion, thn 13/\r.ON. I prop.nun ha!; id1ow11 both
genernlily a11d simpll r. il y. lly in1plir.alio11, the r!!prnsent;ition
of data a11d hypolhesc?5 i11 lennr. of hip,hi>r lcv11 I concept s,
and tho represent at ion of heuri!;licr. i11 lcnm, of procluction
rules are fruitful li11!! S to t>t1r!;Uc?. ~fany ch,1llr.nr,es lie ahr.acl,
but the success to elate sur_:r,r.~ I~ lhat 1hr. p;ilh ir. a promir;ir1g
one.

9. References

Buchanan, £3. G., Feir,e11ba u111, E. [3., allCI Sr irth ai·a11. Hnuri!:tic
theory formrilion. 111 D. Michie (c:d.), Mn.d,i.na
Intelligence 7. N!!W York: Amcrlr.r111 Fl•,cvier Publishing
Co., 1972, pp. 267 .. 290.

BuchAnan, £3. G., Sul herl.rncl, G., ;i11d Feip,e11ba11m, [. [l
Hmtrlnlic l)[Nl)ll/\1.: /l, progr,1111 for gc11erali11r,
exp loratory hypothr.!;r•; i11 org,mic. clH?111ir.lry . 111 B.
Mt1ltzer 1111d D. Michin (NI! ..), Mnd1im, lntcUifl1111ca 4.
Now York; Amnrlr.an El!,nvier f'ubli!;hinr, Co., l %9.

Dnvis, R, Buc:h,111a11, B. G., and !ihor llilfe, E. Production rules
ar; A rnprns£mlation for ;i ~.11owledue .. bar.ed .
con!;ull ;ii ion procrnm. SI i111ford Al l.aborntory Memo
AJM .. 266, 1975.

Feigenbaum, [. B. a11d l.ed1!r lwrr,, J. 011 p,P.nr.ralily and
problnm 1;olvi11r:: A Cil!a! id11cly u!d11r, the DENDJIAI.
progr.1111. 111 13. Mnlt I.flt' ;i11cl D. Michin (ed.), Mn chine
lntelligrrncc 6. N!!W Yori',: /\rnr.rican [lr.evier Publi5hing
Co., 1971, pp. 165 .. 190.

Foruy, C. and Md)(!l'lnolt, J. 01'$2 Mi1111rnl. f'ilt sbmuh, Pa.:
Carnegie - tvlcllon U11ivenily, Depnrtrne11t of Computer
Sc:ience, 1977.

Gardner, M. M11then)nlic:al uamr.s. Scientific: /lmet'i,:an, 1969,
221, 140 .. 1116.

Klahr, D. and Wa ll am, J. G. The clnvclopmn11t of seriAI
c:omplr.tion !;lrnteuie!,: /111 i11for111r1tio11 processing
approii.ch. British J/lltr11al of f.'sycl,ofogy, I 970, 61,

243~257.

.,

Lanuley, I'. f3ACON: /1. prod11C.lio11 !,yi. lc, tll lhnl dir.covern
ernpit·ical l .iw'.;. C:11' Worl:i11g l'apN N,1. :l60,
Carnc!f;ie-·Mfillon U11i ver1; il y 1 J 9i'8.

Lena!, D. B. Aulomnkci tlwor y forlllnlio11 i11 tllnllrntnnlic!;.
Pr·m:endi /!ff.~ (>rt h,1 St /1 Int Cl'/1'.l t i (>fl<ll ./oi.nt C:onfcrnnce
on Ar·tifi<'i<tl l111 ., /lip, <' 11 cr:,, 19 ll, pp. 833 --811?..

Nnwell, A., Sh.iw, J. C., ;111d Sillln11 1 II. /\. Report 011 a r,encra l
problon, •; ol v i11r, progralll for ,, (.Olllpllle,·. lnfo,·m.atiort
Pr·o,:es.,i ng: f ' ,.o,:en tli.1111 .< (>ft ho fotcm'.lt ionol
Confe,·c11cll (>It lriforr11 o tion 1-'rnccs.<inf(. l'ilrir.: UNESCO,
1960, pp. 256 · t'61l.

N1:w cf ll, A. ,met \, irno11, H /\. 1/11.111,rn prnbl,•111 .1 0/.vinir,
Engl ewood Cliff s, N. J: l'rnnlit r. +!all, Inc .. , l 9i'2.

Simon, H. /\. c111cl 1. r.a, G. 1'1 oblr1m '.:o lvi ng n11d rule induction:
/\ unifind vinw. 111 I. . C,rn t,B (ed .), /(r1 (•111ledf/O and
co8'11.i.li.,,11.) Polomnc:, ~foryl;i11d: l. awrn11rn Er lbmrn,
A!; tmcialcs, J 9711.

180

LEARNING STRATEGIES BY COMPUTER!

Yuichiro Anzai

Department of Psychology
Carnegie -Mellon University

A c.ognltive sys tem needs a urnlr.py, i.e., a well
organized se t of procedural knowledge, for effic ient ly
solving a complex problem r,o lving t ask. How such a system
acquires sir il fegies through exper ience is a fundamental
question for artificial intelligence, because efficient
procedures for artificial intelligence sys1ems reduce
practically limit ed execution time to a cons iderab le extent,
but are not always avai lab le before encounter ing the task.
Work on acqusition of procedural knowledfle, mostly done as
piecewise rule learning (e.g., Buchanan & Mitchell, 1977), Is
quite important in this se nse. Strategy learning, however,
has a character ist ic that r ules generated should be
oq~anized as a strategy through a problem solving task.
Little work' has been done for comruterized strali,gy
learning, and we stil l need an intens ive study on how
strategies are represented in, and learned by, humans and
computers.

Along thi s direction, the author has developed a
theoretical explor at ion (Anzai, 1978), an exper imental
ana lysis (Anzai & Simon, 1977), and construction of
computer programs · for modelling processes and
repr-e senlation of strategy learning. The well -known Tower
of Hanoi puzzle was used for the exper iment, because ii can
be solved by var ious str ucturally different strategies
(Simon, 1975).

Following the ' theoret ical and exper imental studies, this
pa·per presents the third and fina l par t of the work, a
detailed report on stra tegy learning behavior of a computer
program written in an adap ti ve production system language
ca lled HAPS. The program· was written for discovering
strateg ies In the five -disk Tower o(Hanoi problem, and the
current version has succeeded in learning three very
different kinds of strategies successively while so'lvlng the
problem six times from the Initial situation; Structure of the
.Program Is general, and it is now being extended to learnin&
strategies in anot her problem domain. Many ideas are

This resea rch w;:ir. r,uppor led by Researr.h Grnnl MH-
07722 from the National ltl!ililute of Mnntal 1-w.alth. The
1wthor apprecif1ter. P11 t 1. anp,ley, f3ob ~kches, DnvP. Noves
and fforlwrt Simon for tlwir helpful comments on thlr. work.
The a11thor'5 pre sent addrnsr. is: Departmnnl of
Adrnlnir.t mt ion Enr,ineer i11c, l<1iio Unlveroity, 3-14-1, Hiyoshi,
Yokohama, Japan.

181

· embedded in ii, but the ba~ic hypo thes is is simple:
stra tegies are learned lhrour, h repeatedly solving the same
problem, and productions newly generated will be used
extensively for learning new r, l rateg ies.

The paper fir5t summari ze.s briefly results from the
theoretica l and experimental analyses. Then, as a main part
of the paper, It de5cribes computational result s of strategy
learning in the Tower of Hanoi problem. La5t, ii mentions
fmpllcat)on of the work and its re lation to other works.

Revie~ of Theoretical !!..tl.c! Exper imental Analyses

The theory propo~ed (Anzai, 1978) asserts that
strateg ies ·can be learned through repeated solution of the
same problem. Initially a system does not always have
information about what st ale is "good", but usually has
general heuristics for detecting a "bad" situation; e.g.,
returning lo a previously visited ·state is bad. So generally
learning begins ·with co llecting "bad" instances by heuristic
search, and proceeds to ii mtnir-pnllrrn ~,rn1nny by creating
rules for avoiding genera tion of the bad instances. Then,
after. heuristic se~rch is made more eff icient by the newly
g13~erated ryles, , iearning aclvances toward a mr.n1u-r.11d~
w·111nny by co llect ing "good" instances and creat ing rules
for generating subgoa ls. Finally the system learns a
wnrki11,r-Jnru,nrd ~lrnlr1r:r which generates merely a
sequence of a small number of operators that can be applied
successively to the initial knowledge stale. The sequence
may be obta.ined by discovering some pattern in sequential
structure of previously used operators.

Also a represent atlonal scheme is presented In the
theoretical exp loration (Anza i, J 978) as a hierarchical
adaptive production sys tem. (HAPS) th at incorporates
subroutine and recurs ive ca ll s of productions, and an ability
to ·create new productions. Formally, HAPS is a LISP-based
Interpreter for hierarchical ad11plive production systems
w ith a single working memory (WM). A HAPS program
consists of WM, which is an ordered se t of li sts, and •
hier archically and rewrsively struct ured se t of productions.
With Its hierarchical structure, a HAPS program for strategy
learning reflects generally a strategy learn ing process that
consists of various subprocesses such as heuristic search,
rule Induction, rule generation, stale transfer In a problem
space, and so on. Each subprocess may be represented by
a subroutine In the program.

I .

I

.,

The cxper ltrwntal rer.ultr, (Anzai & Simon, 1977) for
strat egy lear ning by a hum;in in the five -disk Tower of .
Hanoi problem clear ly rdlect the ilbove theoretical
frnmework. In the experiment, a hum;in subject who had
never solved the problem tried to find good so lution
procedures by solving the puule four times repeatedly.
Starting with heuristic se;irch and planning future moves,
the sub ject finally succeeded in learn ing iwo strategies like
the annl rrrnninn and i1111rr -dirrr.1rd «nnl rrr.vr.dn11
slml<'gi,,., referred to by Simon (1975). In the experiment,
learn ing each stra tegy \\fas guided by a mixture of
previously learned r,lrateg ies: one of those strategies was
retrieved and used whenever needed.

Computational Results of Stratggy Learning

The current version of the progn1m includes 164
productions before learning. Mechanisms for learning
strategies, det;iiled in /\nz;ii (1978), are embedd€r:l in the
program. Computat ion proceecfr. jw.t as indicated by the
mech,misms. The prop.mm tn.1de six runs r, uccess ively from
the initial disk configur.ition. II generated 13 new
productions, ,md le;irne d thr ee different stralegies: a move
pattern stralP.gy, a rne;ins -end~ strategy, and a working
forward strategy. Amonp, the thirteen generated
p·roduclions, seven were w,ed for the first strategy, four
were for the second, and the remaining two constitute a
part of the third stra tegy.

<Hu11 I>

The program tried to collect bad mo 11es using heuristic
search, induced conditions for avoiding those moves, and
generated produtlions for avoiding them. The size of trees
generated during the heuristic search process became
smaller and ·sm;i ller, which implies that the search was made
·more and more eff icient during Run 1 by generation of new
productions. Fig. 1 illustrale i, dyn;imic beh;ivior of the tree
search. In the figure, (X Y Z) denot es a disk configuration:
disks In X are on Peg A, disk'> in Y are on Peg 8 and disks In
Z are on· Peg C. For Ins! ame, (12345 NIL NIL) means that
the configuration is such that Disks 1, ... , 5 are on Peg A,
and no disks are on Pegs B and C. We assume I.hat Peg A is
the initial peg and Pee C is the goal peg. Each tree in Fig. I
grows from a root node, which is an actual configuration.
Configurations in trees are irnnai11nry ones. At any moment,
the system retains inform11tion about past, current and
Imaginary prob lem st ates.

The system Includes productions for finding a legal
move, and an evaluation heuristic that Inking disks off the
Initial peg ls good. Using them, In the lint tree search with
the root node of (12345 NII. NIL), two good successive
moves were generated: (MOVE I PEGA PEG[3) and (MOVE 2
PEGA PEGC). (MOYE X P Q) denotes movine Disk X from Peg
P to Peg Q., /\pplying these two move operators generated
the disk configurat ion (34~i l 2)2. Fig. J shows that this
configuration, as a root node, generated a large search tree.
ln this part of the search process, three new productions
for avoiding poor moves were created. As an example, let
us describe how the first new produc.t ion was acquired.

At the conf iguration (PEGS (3 4 5) (1) (2)), a subroutine
for finding a legal move generates an imnni11nry move,
(!MOVE 1 PEGB PEGA). It is then applied to generate a new

182

imagined disk configuration, (IM/\GE (l 3 4 5) NIL (2)). The
system does not decide if it w;is a good rnove or not, and
the search is made further . The r,am!' r,ubrout ine then
happens to generate (IMOVE l PEGA PEC;B), This provides
another Imagined c·onf igur11t ion 1 (!MAG[(3 4 5) (1) (2)). Now
since the new imaginary configurat ion Ii. the same as the
current real one, (PEGS (3 4 5) (l) (2)), the system detects
return to a previpusly visited state by a pattern detecting
product ion:

(PEGS SA SB SC) (IMAGE SA SB SC) --> (DEP (BAD))3.

An atom headed by S denotes c1 variab le. Then,
triggered by (B/\D) which was DEPo!;ited in WM, a
subroutine4 for collecting inform;ition re levant to stor ing
(BAD) works to eenerale a knowledGe element, (GOT (2
PEGA PEGC) (1 PEGB PEGA) (I PEGA F'[(;B)). This implies
that tt1e two Imaginary moves (IMOV[1 Pf.GB PEGA) and
(!MOVE 1 PEGA PEG£3), c1ncl the p;d move (PASTMOVE 2
PEGA PEGC) might be responsible for c;iusing the return to
a previous stale.

After the GOT information is obt;1i11ed, the system
continues tree search. The depth of search is limited to 2.
Jhuf>, here cpntrol is given back lo the node (1345 NIL 2)5

~hown ,In Fig. 1. At this node, the 1,ubro11tine for finding a
legal move generates (CAN 1 PEGA PEGC) ~s a legal move
not yet tried. Bui actually, before generating this move,
based on (IM/\GE (l 3 4 5) NIL (2)) and (GOT ...), the
system generates:

(COND (PEGS (l 3 4 5) NIL (,>))), (COND
(PASTPASTMOVE 2 PEG/\ PEGC)), (COND (PASTMOVE l
PEGB PEGA)), (CONO (ABSFNT (TRIED I PEGA PEGB (1 3
4 5) NIL (2)))) and (ACTION (D[P (TRIED I PEGA PEGB
(1 3 4 5) NIL (2)))).

The first COND ir. derived from the current disk
configuration. The second and third CONO:., and the ACTION
are from the argument of GOT. The fourth COND Is a
modified copy of the ACTION.

At this point, r,pecific values in the CONOs and ACTION
are sub5lituted by vari;iblf'<,, And then a new production Is
generated by juxtaposinp, the arguments of CONOs in the
condition side ;ind putting the argument of the ACTION In
the act ion side. The production is named <NI>, and shown
In l;able 1. Semanl it definitions of production elements
appearing In this p;1per are given in Table 2.

. After generating <Nl>, the sydem continues tree search,
fin,I by applying a le[.\al ;ind applicable move, (CAN l PEGA
PEGC).

2 In the program, this configuration is represented as (PEGS
(3 4 5) (1) (2)).
I

3 Actually this Is a simp lified version of the production in
the program.

4 Note that the pattern detecting production involves no
information About move operators. Tlw subroutine is a
knowledge-based mechanir,m for caus;il inference: it picks up
recently applied operators, based on state information in the
production.

5 Corresponds to (IMAGE (1 3 4 5) NIL (2)) in the program.

Fig. I Heuristic se;irc.h process in Run I
(" ~s" dP.notes P.X fNni!I proc P. ss.
"--" denotes inf c rn;il oroccss.)

(12345 NIL NI ll
I

••> (2345 1 NIL) ••> (345 1 2) ••> (345 NIL 12) ••>
I \

<2345 1 Nill (1345 NIL 2) (345 NIL 12)
I / I \ \

{345 1 2)
very good

(345 1 2l (345 NIL 12) (1345 2 NIL) (45 3 12)
bad I good ver1,1 good

(345 1 2)

••> {45 3 12)
I

(145 3 2)
I

C145 23 Nill
good

••> (145 3 2) ••>

' (45 13 2)
I \

(145 3 2) (45 3 12)
I bad

{45 3 12)
bad

bad

(145 23 NIL) ••> (45 123 NIL) ••>
\

(45 123 NIU
' \ (245 13 NIL) (5 123 4)

good ver1,1 good

••> (5 123 4) ••> (5 23 14)
\

••> (25 3 14) ••> (125 3 4) ••>
I I \

(5 23 14)
I

(45 123 NIU
I

(125 3 4) cannot
I

(25 3 14) (45 23 1)

I
C125 NIL 34)

good good
Cl45 23 NIU

bad

••> U25 NIL 34)
I

••> (25 1 34) ••> (5 1'234)
I

(25 1 34)
I

'{5 1 234)
ver1,1 good

(5 NIL 1234)
I

<NIL 5 1234)
Run ter111inatlon

Table I Productions learned by program

I. Productions learned In Run I

<Nl>, (PEGS SA SB SC) (PASTPASTMOVE IX IP IQ)
(PASTMOVE SY SR SP) (ABSENT (TRIED SY SP SR IA
SB SC)) --> (DEP (Tf~IED SY SP SR SA SB IC))

<N2> (PEGS SA SB SC) (PASTPASTMOVE IX IP IQ)
(PASTMOVE SY SR SP) (AfJSENT (TRIED SY SP IQ IA
SB SC)) --> (DEP (TRIED SY SP SQ SA SB SC))

<N3> (PEGS SA 813 SC) (PASTPASTMOVE IX IP IQ)
' (PASTMOVE SY SP SR) (ABSENT (TRIED SX SQ SP IA

SB SC)) --> (DEP (TfllED SX SQ SP SA '88 IC))

183

<N4> (PEGS IA SB SC) (PASTPASTMOVE SX SP IQ)
(PASTMOVE SY SR SQ) (AOSENT (TRIED SY SQ SP IA
SB .C)) --> (DEP (TRIED SY SQ SP SA SB SC))

<N5> (PEGS SA SB SC) (PASTPASTMOVE SX SP IQ)
(PASTMOVE SY SR SQ) (ABSENT (TRIED SY SQ SR IA
SB SC)) --> (DEP (TRIED SY SQ SR SA SB SC))

<N6> (PEGS SA SB SC) (PASTPASTMOVE SX SP · IQ)
(PASTMOVE SY SR SP) (AllSENT (TRIED SX SQ IP IA
SB IC)) --> <DEP (lRIED SX SQ SP IA SB SC))

<N7> (PEGS SA SB SC) (PASTPASTMOVE SX SP IQ)
(PASTMOVE SY SP SR) .(AOSENT (TRIED SY SR IP IA
18 IC)) --> (DEP (TRIED SY SR SP SA SB SC))

.' I

I
I

. I

II. Product ions le11rned In Run 3

<N8> (PEGS llA sn SC) ((;()A l 8X Sf' SR) (•EQUAL sx (flOP
SP SA SB SC)) (tL[SS (•lOP lirl SA SB SC) SX)
(A13SFNT ((;OAL (*NEXTSMALLER SX SR SA SB SC) SR
(*OTHER SP 81< : f'EGA PEGB PEGC))) --> (DEP (GOAL

(*NEl(TSMALLER SX SR SA SB SC) m (*OTHER SP SR :
PEGA PFGB PFGC)))

<N9> (PFGS SA 8F3 SC) ((;OAI. SX SP SQ) (•[QUAL SX (flOP
sr 8/\ lH3 SC)) (tL[SS (t.TOP EQ 8A SB SC) SX)
(ABSFNT (GOAL (tNf XI '.,MAILER .SX SQ SA SB SC) SQ
(~{lTI IER SP SQ : f'EG/\ PCGn f'EGC))) --> (DEP
<GOAL (*NEXl SM/\1 LUI SX SQ SA SfJ SC) SQ (•OTHER
SP SQ : PEG/\ f'rGll f'[c;c)))

<NlO> (PEGS 8/\ Sil SC) (GOAL SX SP 8Q) (• LESS SX (tTOP
SQ 8A 8£3 $C)) (t l ESS (*TOIJ SP ~A SB SC) SX)
(ABSENT (GOAL UNLXTSM/\Ll_[R SX SP SA SB SC) SP
(*OTHER SP 8Q : f->t(;A PFGfJ f'EGC))) --> (DEP
(GOAL (*N[XTSM/\LI ER SX SP SA 8£3 SC) SP (tOTHER
SP SQ : PEGA f'EGll PEGG)))

<NJ 1> (PEG$ SA sn SC) (Al!S[NT GOAU (PASTMOVE sx SP
IQ) --> <DEP (GOAL (t.NEXTSMALLER SX (*OTHER SP
SQ : PEGA P[C;f! f'Lf;(";) SA 8Fl SC) (*OTHER SP SQ :
PEGA PEGB PEGC) SQ))

Ill. Productions learned in Run 5

<Nl 2> (PEGS SA SB SC) (Af3SENT (GOAL (*NEXTLESS 2)
(*OTHER (*XTR3 (PGOAL 2 SQ SR)) (*X TR4 (PGOAL 2
SQ Sfm : PEGA pL(;(3 f'EGC) srm (ABSENT (GOAL 2
SQ Sfl)) (AOSCNT (GOAL (tN[XTSt--1/\UER ? SQ SA SB
SC) SQ (*Olllrn (tX m:i (l'GO/\L 2 8Q IHI)) (•XTR4
(PGOAL 2 SQ SR)) : P[GA PEG13 PLGC))) (PGOAL 2 SQ
SR) (*P- ON 2 SQ SA SB SC) --> (DEP (GOAL
(tN[XTL[SS 2) (tOTll[R (tX TR3 (f'GOI\L 2 SQ SR))
(*XTR4 (rGO/\L ? ,RQ SIil) : PfG/1 f'fGB PFGC) SR))
(DEP (GOAL 2 8Q SR)) (()Lfl (GOAL (•N[XTSMAL LER 2
SQ 8/\ SB 8C) SQ (tnHrn (tXTR3 (PGOAL 2 SQ SR))
(tXTR4 (PGO/\L ? SQ Sfm : PEGA PEGB PEGC))) (REM
(PGOAL 2 SQ 811))

<N 13> (PEGS SA SB SC) (/\IJSENl (PGO/\L (tNEXTL ESS SX3)
(*OTHER (*XTR3 (P(;O/\L SX3 SR SQ)) (*XTR4 (f'GOAL
11X3 Sf~ SQ)) : P[G/\ f'EGO ru;c) SQ)) (ABSENT
(GOAL SX3 lm 8())) (/\f3S[NT (PGOAL
(tNEXTSMALI rn 8XJ SH 81\ 8ll SC) Sfl (tOTHER
(tXTR3 (PGOAL SX3 lm SQ)) (tXTR/J (PGOAL SX3 SR
SQ)) : PEG/\ PEGn f'FGC))) (i'GOAL 8X3 SR SQ) (*P
ON SX3 SR SA St.l SC) (tLESS 2 SX3) --> (DEP

(PGOAL (tNEXTl.LSS 8X3) (~OTHIR (tXTR3 (PGOAL
8X3 SR SQ)) (tXTR/J (f'GO/\L SXJ SR SQ)) : PEGA
PEC!l PEGC) 80)) (DIP (GO/\l SX3 SR SQ)) (DEP
(PGO.I\L (•NEXTSM/\1 Lrn SX3 Sil SA SB SC) SR
(tOTHER (*XTR3 (P(;OAI 8X3 SH fiQl) (*XTR4 (PGOAL
SX3 SR SQ)) : PEGA f'F:GB PEGC))l <REM (PGOAL SX3
SR SQ))

Table 2 Semantic definitions of produdion elements

A, Predicat'es

(*EQUAL X Y) is true iff X and Y are equal express ions.
(*LESS X Y) Is true ill X and Y are numbers and X is less

than Y, or X is a number and Y is NIL.
(*P-ON X P A 8 C) is true iff X > l, and all 1, ... , X are

inc luded · in A if P " PEGA, in B if P O F'EGO, or in C if P •
PEGC.

(*PSHAPE I' A H C) i~ true iff A is f'SIIAJ>Ed if P ~ PEGA, B Is
PSHAPEd if P " PEGf3, or C is PSIIAl'Ed if P = PEGC. X is
PSHAl'Ed if! X ~ (1 ... k) for somr. inter.er k > 1.

B. Function!;

(*Nl:X"ll .E~iS X) n1turnc. llw inter.er one less than X. X must
he an 'int eger IHl'((er tlti111 [.

(*NfXI SM/\l.l.[11 X f' A 13 C) nit urns the nutnbcr next smaller
than X in the llut A if I' " !'EGA, 13 if f' tt f'EGB, or C if P
tt PEGC. X nr.cd not be i11cl11clr.cl in thr. c:orrnsponcling
Ii Gt A, B, or C. If no i; uc h numtrnr exir;tr;, NIL ir. mt urned,

(*O'I Hl:R I ,I K ... : r Q H .. .) rr.turnr. a11 elemcrnt among I J
K ... olliC!r titan I' Q H The 11u111ber of 1, .I, K, . , ,
mw;f bn cix,H.lly 011<1 lrii,i; th;in thr. m,mbcr of P, Q, R,.,,

184

Only dcitinilioni; 1wre:c1;ary for undr)rr.!11ndine T,,blr. 1
and otlter not,ilion'., appe;irinr. in thir. p11per art? li sted.
The original Hl\l'S inc orpor Htri; i;o111r. more predicates,
f unc lions and ;irl ion!;, .

(:4:TOJ> P A B,C) rnturns thr. leftmor.t r.lc1nr.11t in the lid A if P
e PEGA, in 13 if P ,. f'[(;fl, cir i11 C if P ~ l'EGC. If the list
(I\, B or C) ir. NIL, Nil. is rnl11rned.

(~Xllli X) ret1!rns X'r; Hh element countinr, from Ir.ft: I ~ 1,.
.. '6.

C . .l\dioni;

(()EP X A f3 C ...) drpor,il!; into Wt,.! i1 Ii!;! X after A, B, C, ..
: , arn P.xr.culed. A, ll, C, ... ar11 c;illr.cl r,ubstitutio11s. A
sulrntilution har. the form: (YI .I K ... : I' QR ...). Its
exec ulion nrnani; that i111)' of P Q H ... other than I J K,
.. is iaibt,titutEid into i111)' occurnnc<i of Yin X.

CHEM X ABC ...) rnmovc> r, from Wt,.! ;my occurnncr. of X in
WM all!?r ~ubr. titulion!;, /\, B, C, ... , arn exr.cuted.

D. Niigalivci condit ionr;

(ABSENT <Ii!;! >) i,; triw ill <fir.I > matchr.s no clemr.nt in WM.
(Al3SEN1 <11 tom:>) is true ill 110 li st headed by <atom:> exists

in WM.

The sys tem continued heuri stic search in this way, but
gave up solv ing when ll1e cfak configuration (IMAGE NIL (5)
(1 2 3 4)) ·was im11gincd. It was done by a .heuristic
introduce d jur; I for making the sys tem quit a tedious trial
and-crror 5e;irch on the half way.

Afler produclion5 fir ed 914 limes, thi s transfer of the
biccesl disk lo Peg B wa s detecfod ;ind Run 1 was
l ermimi l ed. During th11l time, seven productions were
crea ted. They are listed in Table 1. Thr. table shows that
structure of lhe new productions involves some
commonalities: <N I > is similar to <N5> and <N7>, <N2> similar
to <N4>, and <N3> to <N6>. It Is bC'c a use they were
genera l ed by the 5ame mechanism. Productions in the first
c l;iss are for avo idiw: immedi ate loop move s. Productions in
the second c;ilegory are u~.cd for avo iding two -step moves
of the same disk. Productions in the third are for avoiding
return to the peg on which the disk was put in the next - to
most-recent past. It is ear,y to see lt1at some conditions in
those productions arc rcdundm1I: we can define a smaller
number of , productions functionally equivalent to the seven
productions.

<.R1t11 2>

Run 2 was used for examin ing whether the syste m had
learned a well - formed drater,y in Run I. At the same lime,
In Run 2, the system transformed weak subgoals lo stronger
ones6. ·.

The· seven productions, <NI> ~ <N7>, created in Run· 1
were rel ained al the lop of one of subroutines. They were
~xlens ive ly used in Run 2 for discarding legal but bad
111oves. For example, al the conf iguration (PEGS (3 4 5) (2)
(1)), <N7> fired for discarding the legal move (MOVE 2 PEGB
PEGA), and <N3> fired for eliminating (MOVE 1 PEGG PEGA).
After those two productions fired, only one legal move
remained: (MOVE 1 PEGG PEGB).

: 1 · Run ? ended s,uccessfull y when the final goal (PEGS NIL
tHL (1 2 3 4 5)) was attained. Productions fired 656 limes
In Run .2. The fact that no error move was made In Run 2
indicates that <NI>. - <N7>, with the learned declarative
knowledge (JNITIALL Y TRIED 1 PEGA PEG[l), meaning that, at
the initi al conf igurat ion, moving Disk 1 from Peg A to Peg 8
should be avoided, were !,ufficient for determining a unique
right move in each disk configuration encountered. Thus,
those productions, with (INITIALLY . . .), and productions for
generat ing legal moves and updating problem stales,
constitute a well-defined strategy. We cal l ii the lllll!'lllft111

mn1,11-1m11r.rn ~,rnlr.,ry.

It should be noted that this strategy discovered by the
program was not discussr.d in Simon's work on comparison
of various strategies in the Tower of Hanoi puzzle (Simon,
1975). Different from his move -pattern strategy (Simon,
1975), which se lects a correct move ,,n~i,i,,rly based on I

move -ge nerating pattern, our strategy chooses moves only
'"'R'nli1mly by discarding poor moves.

~ .A 1 subgoal , l s u,enk If it only partially defines a subgoal
ope~al<11r, e.g., "putting a disk on some peg." A subgoal Is
Alroi,11' If It prov ides a well -defined operator, . e.g.,
"transferring a disk from some peg to some other peg."

185

Adequate tr ansformation of subgoal information Is
Important for learn ing subgoa l- type str atep, ics, .and also
suggested by the e~p£,r imc nt al dal~. The program
tr ansforms initial wea~. subgoa ls to stronger ones through
heuristics rel;iited Ip the problem solving prornsr,: subgoals
"r.e lr,ansformed through the problem !,olving process itself.

First such transformation was donr in Run 2. For
example, a weak subgoal, (GOAL -OFF 3 PH;A), asserting that
a subgoal is lo take Disk 3 off Peg A, was transformed lo
(GOAL 3 PEGA PEGG) when 3 was taken off Peg A for the
first time and transferred lo Peg G. The resulting stronger
subgoals were used in Run 3 for generating a me·ans -ends
str ategy.

<R1111 ,l>

Initially the sys tem has the following (i,tronger) subgoals
In WM:

(GOAL 1 PEGA PEGC), (GO/\L 2 PEG/\ PEGB), (GOAL 3
PEGA PEGC), (GOAL 4 PEG/\ PEG[)), (GO/\L 5 PEGA
PEGG), (GOALST ACK 2 PEGB PEGC), (GOALS TACK 4
PEGB PEGG).

A9 . seen above, the sys tem generated two kinds of
subgoa ls in Run 2; GOAl s and GOAL ST ACKs. GO/\Ls were
transformed from "taking di sks off the initial peg," and
GOALSTACKs were derived from "putting di•,ks on the goal
peg." If laking -off and putting -on subgc>als were attained
simult aneously, only a G0/\1 is crea ted. The sys tem assumes
pr iority ordering between them: GO/\LST/\CK- typc subgoals
are considered only when no GO/\L- type subgoal exists In
WM.

Now since (PEGS (1 2 3 11 5) NIL NIU and (GOAL I PEGA
PEGC) are initially in WM, Di sk 1 is at the top of Peg A, and
no disk. in on Peg C, the production:

(PEGS SA SB SC) (GOAL SX SP SQ) (*EQU/\L SX (flOP IP
SA SB SC)) (*LESS SX (t TOP SQ SA Sfl SC)) --> (REM
(GOAL SX SP SQ)) (DEP (MOVE SX SP SQ))

f ir es, REMoves (GOAL 1 PEGA PEGG) from WM, and DEPosils
(MOVE 1 PEGA PEGG) Into WM.

ay . a!ls.vrnption from the theory, the above production
for finding a legal move using a subgoa l dominates the
production . for detecting a legal move by combinatorial
search.

After (GOAL 1 PEGA PEGG) and (GOAL 2 PEGA PEGB) are
transformed to (MOVE 1 PEGA PEGG) and (MOVE 2 PEGA
PEGB) by the above product ion, lhe sys tem reache s (P'EGS
(3 4 5) (2) (1)). Nqw, no GOAL is immcdi;ilely applicab le, and
the system , cannot help u~. ing the previous ly learned
negat ive mov1;-patlern stra tegy.

However, at the same time, the program notices that
(GOAL 3 PEGA PEGG) is in WM, Disk 3 is current ly at the iop
of Peg A, but 3. is larger than the top di c. k on Peg C. This
implies that, In terms of a means-e nd~. analysis, the system
Is already 11Mr lo a 5lale, S, where 3 can be moved from
Peg A lo C,,and the di/frrf'nrt, between S and the current
st ale is that Peg C's top di~k is sma ller than Disk 3; in terms
of HAPS not.ition, (*LESS (tTOf' PEGC (3 4 5) (2) (1)) 3) Is
true. 'The S')(stem then trie s lo find a more immediately

· I

- 1
I

·.,

.j

. I

j

app licable subgo.i l using thes e kinds of information. It is
done in the following m,rnner.

At (PEGS (3 4 5) (2) (t)), the system first remembers the
currer1t sitlrntion by depos i l inr~ into WM (COND (PEGS (3 4 5)
W (1))), (COND (GOAi. 3 fl~ GA PEG(;)), (COND (*EQUAL 3
(flOP PEGA (3 4 5) (2) (I lll) and (COND (tLESS (flOP PEGC
(3 4 5) (2) (I)) 3)). Then information for di~.k configurations
is general ize d by subslitupnr, variables SA, 8[3 and SC into (3
4 5), (2) and (1).

Aft.er th.ii , the system co ntinues problem solving by the
n:egativ~ move-pattern str ategy. It ge nerates the correct
move, (CAN I PEGC PE(;fl), and the current configuration
becomes (PEGS (3 II 5) (I 2) NII.). Now the current stale
sa ti sfi es (tLESS 3 (tTOP l'H,C (3 4 !i) (I 2) NIL)). Also the
sys te m retain~. COND0

• depo•;ited ear lier. Thus, the system
lmderstands now reachinp, the point whrre the difference
detected c.ir lier by the tn CJ llC. · rncis ar1aly:; is ciOCS not exist.
One of. subroutines then pie ks up the move operator app lied
most recently, w hich is (MOVE I PEGC PEGIJ), and transforms
II to (ACTION (DEP (GOAL .1 f'FGC f'EGB))). (GOAL I PEGC
PEGB) is the operator which is directly responsible for
e limin at ion of the differencr>: ii chaner>s tho configuration to
(PEGS (3 4 5) (1 2) NIU, which makes (tLESS 3 (t TOP PEGC
SA SH SC)) true.

The specific values I, PEGH and PEGC in the ACTION
must be substituted by functions of some of spec ifi c values
and Viiriab les appear ing in COl~I),; !dorr.d in WM for
c:on!; trudinr, a WC' ll ··cl!?fi,wcf proci11c lion. In thr. prr.(,e nt ca r. e,
per, - nc1mes PEGA find l'EGC arn ratli r; til11tr•d by variablr. s SP
and 81?, rn ,;pec.t ivc ly. ·1 he di,;11 -n.imP. '.l ir. r. ub !dituted by SX.
PEGB and l appe;i1·lng or,/ .1' in th!! /\CTION mus t be
rnprn senlcd by lhor.e SI', ~I? ,111d 8X. Fird, the sy~ tc m 11ses
a func:tion ~{ll HU? to r1,p11?\;c•nt f'EG8: l'EGG it; equal to
(*OTHrn PEGA f'rnc : PH;A f'LCl3 l'ECC). So c;oncl, the
py!;lem relric,ver, a functinn *NIXl[i~l/\1.1.rn to rn prr. senl 1:
1 ir; ccpial to (tNIXI !iM/\11£11 '.l f'EGC (3 4 !i) (2) (I)). (See
Tabl!! 2 for ci1?finilion t; of funcliont; .) L,d, tho sy~ tem
Benerali;rn~ thM,e li?d s to [•,r.neral e (c1()Tftrn SI' SR : PEGA
PEG£3 PEGC) and (1Nrxr !il\~/\,1.[H sx SI? SA 813 8C). As a
resu lt , the fo llQwinr, li,;lr. ,mi now relai11ed in WM:

(COND (PHiS SA 813 SC)), (COND (GOAi. SX SP SH)),
(COf,JI) (:j[QUAI. SX (i I Of' -SP SJ\ 813 RC)\), (COM) (* LESS
(*TOP Sf? 81\ 813 SC) ~X)), (C()J,JD (Al3SENT (GOAL
(~N!XISM/\1.1.ER sx 811 8/\ gn SC) 811 (ionrn SP SR :
PEGA PrnB f'ECC)))), (/IC r IOM (GOAi. (t Nl:XTSM/\1.L ER
SX SR SA 813 llC) 811 (tOTHrn IIP SR : PEGA PEGB
PtGC))).

The f;ii;I COND in the above ir. a modified copy of the
ACTIOM. It w ill be necer.t,ary for refractory inhibition in
production firlnr,.

Fin al ly, the syidem <H?<1let; a proci1Jc lion <NH> from the
above CONDt: ,111cl /\CT(or,r. JI is tdiown in T.ible I. .

The !;y!; tem rnntinuecl prob l1im wlvinr, 1111d production
c:rnation In the ;ibovc, 111n11ner. Whe11r.ver no GOAL- type
r.ubp,oal resided in W'-l, .i G0/\ 1. STACK -· lype slibgoal was
popp(!d up, irnd w.ed fl !; a !;Lib.goal. llt111 3 ended after
procluc tiont; fin,d 371 timr.i:. Fot1r new procluc lions were
genenit,ed clurit1n the nm, which arr. !d1ow11 ir1 TAble 1.

It shou ld be noted th ;i l, i11 thP ear li rH ::lane of f?t1n 3, the
negative movc··pnttcrn t:lrnl c gy w~s ur.e cl to help problem
!,o lvillf;. The p,P11ern l prod 11r tio11 ·-c re<1lio11 lll ll chani slll ui;ecf in

186

Hun 3 ncecl!; wrnn other mr.lhod for prob lr?tn i.olvinr, while it
Ii; t1111i1i11,r. for Ar>ni11,r r> li111in.ilion of the cliffcrnnce between
c:urrnnt ;mcl gonl r.tatcr.. Fig. ?. i'llut:lrntcs firinr, behnvior of
c:rn <,t~,d prod 11d iont;. ();it ;i i11 liw inter vii i I GOO ·· 1700 show
t lcar-ly how prodpc tiom; <NI> ·· <J~i' >, i.e. , the nor,a tivr.
tnovc-: ··p,,ttcrn !dni l e1w, worhr.d for lc;, rninr, A !:econd
drnlegy. The negative movci··p;i lt crn !. tr alr.r,y war. thus
ev<rn 11nr.r1.~~m·y for learninr, a tnP.anr:··e11di; !:lrnter,y i11 our
c:ompul aliona l proc.css.

</fo.11 ·4:>

Run 4 exallli11c,r; w lwlil(!r pro d11ctio11t, c mated i11 Ru11 3
am suffic ient for a wrll ·rlrdi1wcl !:lratr•gy. lnilinlly the
[;y!dcm had (f'EGS (I 2 '.l 4 !,) NIL NIU a11d (GOAi. 5 PF.GA
PEGC) in WM. Lh:ing lhr.m, <Nl():, lirnd four times
!,t1cce 0 .1: ively, a11cl cl1,po r. itr•d (CO/\.\. 4 f'FC/\ l'F(;l1), (GOAi. 3
PFGA p[c;c), .(COAi ?. Pr(: /\ Prem ;incl (GO/\!. l f'LC/\ f'[GC)
into WU Aprlying tlw ~P !.1.1br,o,1h, ,rnd n1,;itinr, other new
!a1bp,o,,1 ~ by <NH > <N.t J >, thr. prog1 illll !;Ucccccl1,cl In
i;ol v ing I he prob In rn. T lw rw, tilh: ,.how t h,11 <NH> ·· <NI I >
actw1ll y coni\ litut e a 111P..1w,- r,iHI ! ; stralr,gy, coorcl i11 al i11 p, w ith
!;ornn other ii priori prod11clio11J. W,• ca ll lhir. newly
learned strnlcr,y the! 1·l!c11r.ci1•11 m/,«nn/ ~,rn,,i,n·.

Pr od11ction r, fi11?cl ?.HO limr. s in f1u11 4. Siner. nolhi11p, but
e xe cution of the rec urt;i 11c, ,, ubr•,0,11 t,l r nt egy w,i s clone in R1111
4, 280 i,, the! prnc ise nu1nb£?1· of I inw i; productionr; fired in
rurrnin r, !Im ~;trnt er,y. Cornpnring it wilh 6~i(i i11 Hur, 2, we
r e·a li ;w th at the rn cur,;ivc• r, ubgoal r. lrat cr,y lllflY be efficient
in t ime.

< H11 11 r,:,

Afte r the rn cur td1rn !: ubgonl t;trnleiw was learned, tho
(;yi ;lc-?111 nee d not w.e the, nc,g ;iti vr. 111ovc> p,1ttern r. traler,y
unlci:!; it w;i11ts :,onw inforlllalion 11r>cc c.~ a1·y for ru1111 i11p, the
rr.cun;ive (: ubcoal i.trntc?r,y . ·r 1111 !, 110w lhe sy~lem ir. not
botherncl by attending to vat"iott !, di!;l·,t; and pc,g5 and
se an:hing for rnrrny legal mnve s. II i?; only neces!;ary to
treat with GOAl.s r,enernted by the production!; <NH> -
<Nl I >.

Thi r. fa c: ilil.il c~ the ~,yi;f c• m to cli,;covn somr. pattern in
r.ubgo at !druc.turn. The thr.ory indir.atc r. that tho r. lrategy
lr.arninp, procc r.~ proc.r.ed t; from a 111r.ans·· r,11cl r. type !;lrntegy
lo a woddng - forw;ird one,. f1t111 5 is cir.voted to this·: the
sy!; l e m lril!$ to learn a worl'.inr, · fe>r wa rd !,tratep,y by finding
pal tr.rn lr1 i:; ubconl !;equc11cec,.

It i5 not the way for lhe sy!dem to generate 11 vc!ry long
sequenc e of GOAl.5, !;toni s ii ir1 WM, and tries to induce
pattern in ii. Rather, a diflernnt kind of infor111~tio11 Is used
for rn~lri r.1/11« a r. equence . or GOALr. to a very short one.
f'ilt tern incl11c lion ir; thr.n tri1?d for lhAt short scqucrnc:e. The

U !;ccl informal ion h .i pen.cpl u;il precfii: ate c ailed PSHAl'E. A
peg is !:aid to be PSHAl'Lcl when Diid1s I, ... , k (k > J) are
the only cli?;i1s on that pet: (~cc Table ?.). A sequence· of
(;OAl. r. ue ,wrnted and dc!po,dted into WM ir; rn.s triclcd in tl~e
fol lowinr, w11y: if PSIIAPE of !,omr. pep, w;ir. · delectccl, the

7 Aflr! r <N()> war; crnalecl, <'. NB > never firnd because ii w11s
clominntcd by <:N!J>. Tint!;, •:NB> w11s 11ecC'r,r.ary for IP.arning
the [;lrnle1w, but U!;clc i:t; after the t;traler,y w11r. eslablir.hod.

i,ys tetn !'1ill'h li1belli11r: (.0/\1. r, p,ellN.atccl thr.reafter. Then
when ·111£! r,y !dem pen r.ivc:d ll1nl dir.lis ill thal PSH/\1'[were
al l rnnv(-: d to ,mollwr pr,g, 1.ilwllillr, i!, tenninAlr.d. Tho
r,r. q11r:11 cr: of lnbellecl f.0/\l.r. ir, r, c: t·v(:cl fc,r pattern i11d11c:tion.
F urtl w rn1n1·(1, pet cert ion of i' '.~ 11/\l'F oc c LIi'!, 011 ly whon some
unapplic ab lri r, ttbgoal lrigr, r.r!, ii. It will be r.hown by an
exa111p l11 b(!low.

to Pot\ 13, tlw goat pi•r, i11 thal r,11hr,onl. Tlw11 l'fil 1/\l'f: ts
pcirrcivc:d Al l'C'p, 13, r.i/1(ri at t.ii 11mr.11t of 1hr. !,ubr,onl is
lnl r. rf r:, rnd only by lhr! wl,, ,yrnmirl (I 2) Oil l'!•p, 8. The
rwrc r. ption lr!h the !,y!, l (>m d1ipo !, il (G0/\1.St:Q O'G0/\1. 2
PEG£3 PEGC} ((00/\I. I l'f"Cll l 'U;C))) a11cl (f"Ol"I -P(;Q/\1. 11
PEG/\ l'FC;B) into WM ;ifkr 11111 nr.xt prnpc•r !.ttbgonl (GO/\L I
PEGf3 PEGC) i5 c rn ,1l~·d by t lw rn(ltt!.il/e !,uhr,onl <.lrater,y.
)11 the fir!d lid, (G0/\1. I 1'1(;13 l'IGC) ir, j11 !'1 i1 copy of the
tno t, t rn(et1tly genr.nited C0/\1.. (f'UJ/11. 2 PEGf3 f'[GC)
dr.not0r.; a i,11bp,on l for lhr! prirrr.i ,,c: cJ '..t tbp y1;rn1id. The
:,ecot1cf ;1rgum,rnt in G0/\1.SLQ i!; ;1 ra ,bgonl st;ick into which
G0/\1.r. i-nl;:itecf to 111ov i11r, the f;11bpyrn1nid wil l he i, torncl .

Suppo!·,n that, w.i11g tlw riic undl/e r. ubr,oal slrnler,y, the
!,y!s tr.111 rnaclwcl the rli!d1 (Onfigurntion, (Pf: c-;s (4 5) (I 2) (3)).
/\I th at mn1nru1t, tlw r;y!dem rrdflil1!, an Lt11 <1pp licabl11 subgoal
(GOJ\I. 4 PU;/\ Pf:(;(l). ·11ii r, !.t ibr,onl nwke<; thr. !,ys tcitn nllend

Production

Fig. 2 'Produdion -· firit1g process for whole run

(0 denotP.s gf'!tif'rntion of a nrw production.
* denole5 firing of a new production.

Numbers In parenlhf'<.r! s, (), cl f' nole ends of Runs.)

N 1 I O,·, ,., 1', 1'n'1 I ,., 1'1 1•,.I 1', ,., 'i1 1'1 1'1

N2 I 01·1 1'n', I 1'1 1', 'i1 I ,., _,., ,., 1'ttt 1'1

N 3 I O I I 1't ,., ,., ,., ,., I ,., ,'t ,., ,•t ,., ,., I
N4 I 1· O,·, 'it ,'t ,., I 1't ,., ,'t I
NS I I I 0,·1 1't ,., I 1't 1't ,•t I
NG I I · 1 0 ,., I 1'11'n'1 1't

N7 I I I I O,'n't 1't .,, i't ,•, . 1't

NB I I I I
N9 I I I I
Nl0 I I I · 1
Nll I I I I
N12 I I I I
N13 I I I I I I I I
Tin1oe ·--- ---,(1)-------·
f ired 100 200 300 · · 400 500 600 700 800 900t 1000

·---1·, ,., .,, ,., ,·t ,·1 fr ,., ,·1 'i1 ·I I
,·, 1'1 l't l't 'it ft * l't l't l't I I

l't .,, ,., .,, ,., ,., * ft 1't 1't ,·, I I
1'1 1'1 1'1 1'1 If, ltr fr tr I I
1'1 1'1 1'1 1'1 I 1'1 r '* ft ,., I I

,·t ,·t ,., ,·1 . 1't I 'it f1 I I 1'11'1 -,, I I

,'t ,·t 1'1 I ,·, 1'1 ft I ft 'it I 1', 1't 1't I I 1 ·
I I. I O,·t I I I
I I I O I ,·t ,., ,., I ,., ,., 1'1 1'11'1 I
I I I I 01w1 1'tl'1 1'n'1i1 fr•'n'n'1 I 'f1 1'tl'11'11'1 1'1 I

I I I 1 · 10 ,., 1- .,, ,., I
I I I I I I I

I I I I I I I I I I
---(2>----------------------------------,<3>-----
1000 1100 1200 1300 1400 1500 tl600 1700 1800 1900 t 2000

I I I I I I Nl
I I I I I I
I I I I I I NZ
I I I I I I NJ

N4
I I ·1- I I I NS
I I I I I I NG
I I I I I I N7
I I I . I I I N8

,;1 1'1 1'1 1'1 1't · 1't I 1't 1'r I ff "'I ff I I I N
I I .. .J,, I I . - 9 , 't'n't ,·o·, 't'n', , .,.,.,., l10't ... , ,'o'n'n't * ... , trtr nw ... ,,.,,., N 1 e

I 1'1 I 'i1 1'1 .,, I I 1'1 · I I Nll
I I I O I 1't ,·1 ,•1 I 1'1 ,•1 ,., ,'t ,·1 ,., f1 "' I "' Nl 2
I I I I I O 1'11't 1't I 1'n'n'1 1't ,·rn ,., I N 13

--------------------- (4)--------~ ----------------- ------------(51--------------------------- (6}----
2000 2100 2200t 2300 2400 2500 2600 t 2700 2800 2900 t 3000

187

. !

Aflf.'r (,() ./1,I. Sf'Q i! ; p,r,,wralr!d, llw r.y:,tetn co ntimms
i,nl v it1 t', llw prob lr?m w,inr, tl w rl!Clll'!d ve 1, ubgo,11 !dratc1;y.
111 thol procw,r; , (.]()/l, I r; nm ,1 cldr!d lo the (;eco 11cl at·ti umrrnt of
c;O/\ ISI.: () if thn,;n c;o/\t .s ill'!! found lo be app li ed. This
r,rowi 11 n prorr,•,r, tr,,rmi1111lc,r; w lwn tho !,y:, l c, m ottailwd (PF.GS
(11 !i) NII. (I ;> '.l)) U!dnr, the me ttr !d•1c r. ubn,onl (;tr~ tcr, y . . The
r1 ?', u l li11g (;()/l.lS I () hnr; the form : (G0/\1 Sf' () (f'G0/\1. 2 PEGl3
ru;c) ((CO/l.l, l f'f(;/1, l'FCC) (C0/\1. ;> f'(.(;IJ l'EGC) (G()/\1. 1
PH;ll l'H)/\))). llert? tl,r! •,y!, l r·m find!, lhnt the currnntly
at !cncl,!cl ?; u!Jgo.i l (G0/\1. 'l ITCA l'FG[I), which has been
notic ed for a whi le by rtd ,1 ini11g (f'OH·PCOAl. 4 PEGA PEGS)
in WM, is i1111mi diat ely applicab lr? .

The progrnm then trie i: tu re late sJ.>C·cific va lues in the
:;cc oncl ill'glttnr.nt of GO/\l.Sf'Q to v11 lue5 in its firr.t arnumr.nt.
II i s donr. by wdnr, functions such AS *OTH[R and

~: NEX'fSM/\Ll.rn. ror ind1111ce, l in (G0/\1. 1 PEGB PEG/\) Is
the cli!;k NIXff,M/\1.1.EH thnn 2 of (f'GO/\i. 2 PEGS PEGC) at
the ' cfol\ conf ir,urntion (PE(;(; ('l 5) NIL (I ? 3)). l'EGA in
(GCJ/\1. l f'l ·. Gl3 l'EG/\) ir; the O I HER pc£; than PEGB 1111d PEGC
both c1ppcar it1 f\ in (f'GOAL 2 PEGfl l'EGC).

Ne xt the sy:, tcni r. ull!di lut es variab les into spec ific
va lue5 in GOAi.SEQ. ·1 Jwn COND!, and ACTIOJ~!; aro
gener.i ted from GO/XI.SEQ 1111d ot her c urrnnt know lr.dge
e Jen,r.nt~:

(CON() (i:P-ON 2 so 'i A 88 SC)), (CON() (!'GOAi. 2 SQ SR)),
(COND (/\13SENT (G0/\1. (1NE>:TSM/\t.t. rn 2 l!Q SA 88 RC)
SQ (~OTHrn SQ Im : PEGA PEGB l'EGC)))), (COND
(ABSENT (GOAL 2 SQ $R))), (CON{) (/\f3SENT (GO/\L

. (tNIXI I.E f,S 2) '*ornrn SQ 81~ : PEG/\ l'EGB PEGC) SR))),
(COND (PEGS SA ~i3 $C l) , (/\CTION (llF.M (PGOAL 2 SQ
SH))), (ACT ION (D[P (GOAi. (tNIX[SM/\l.1.ER 2 SQ 11A 88
SC) SQ (tOTH!:R HQ 81~ : PEGA PEGfl PEGC)))), (/\CTION
(IJEP (G0/\1. 2 SQ SJ?))), (lic·r IOIIJ (f)EP (GOAL (*NEXlLESS
2) (:tOTHER SQ SI? : PEGA l'EGB PEGC) Sim).

The fir~!' and sixth COMDi, were derived from information
other 1111111 GOAi.SEQ. 'The second COi~[) io tho firr.t
argument of GOAi.SEQ. The third, fourth and fifth CON[)s aro
modifirid ·r.opir!s o f son1c of /\CTION!;, The firr.t ACTION was
derived from t tic fin! argunwnt of GOAi.SEQ. The other
ACTION!; w<'?rn mAppcd from the sec:011cl argumr.nt of
GO/\LSEQ.

Fina ll y, the r.y '.dcm crea tes a production from these
CON()l; a11d ACTION!; , The production, <J\J l 2>, is shown in
Tnblr. 1. It generates a r.cqucncc of lhrc!! GOALs cquivalr.nt
to II PGOAL r,iven il1 tho t011dilio11 !dde. Nole that the disk
name, 2, is not generafiwd in <N l 2> !d11c e the system
rngards 2 a!; 0110 of r. mafl and ~,,nd/fo disks. This special
assumption W1l$ cir.rived from the experimental data. Thus,
<Nl2> firns 011Jy·for (l'(,0/\1. ?. . ..), For example, if (PGOAL
2 P[G[3 PEGC) madr. <N.12> firn, the ~n,111.n11~n of sub1;oalr.
(GOAi. 1 PEGA PEGC), <GOAi. ?. PEGB PEGC) a11cl (GOAL 1
PEGB P[GA) arr. r.lored into WM in this order. <Nl 2> is a
wm ·f1 i111("/or111n.rd production, 5inc c ii 1;enerales a sequence
of GOAL5 which c.1111 be Appli ed not backw~rds, but forwards.

: After <-Nl 2> is c.rr.alcd, the system conti nues problem
so lvi11t1 by ' the rccur!dve r. uhgoal r.trntegy. At (PEGS (5) (4)
(1 2 3)), thr. only GOAi. the (;y:dcm ro tai11r. ir. (GOAL 5 PEGA
PEGC). Thus, i11 the f;anH! m,1rrner ar. above, this subgo11I
triggerr. perception of PSHAPE, (I 2 3), 011 Peg C. He11ce the

f;ystem oxec:ut e" the f;a mr? process as abo ve: firr.1 constructs
(GO/\LSEQ (PGOAI. 3 PEGC PEGB) ((GOAi. l PEGC PEGl3))).
(GOAL l PEGC P[G[3) ir. the immediate next subgo11t
generated by the rr.cur!dvc r., ubr,oaJ strntcgy. When (PEGS

188

(I 2 5) (4) (3)) ir. r.nc:ounternd, GOAi.SEQ has r,rown lo:
(GOAi.SEQ (PGOAI. 3 PEGC PEGB) ((G0/\1. 1 PEGB PEGA)
(GOAi. 2 rrnc PWA) (GOAi. I l'[GC PEGB))), At thi n point,
tho (; y i, l e m fine!!; wd11r, the 11~1inl'l,•11r.rt8 lh 11 t tho sec ond
a1·gw1H1nt c,f· 00/\1.SEQ i r. oqui v11 lnnt to (PGOAL 2 PEGC
PEG/\). Thu!, GOAi.Si:() hr.re ir. tra11 ~. for111nd to (G0/\1.SEQ
(PGO/\l. 3 PEGC PEGB) ((PG0/\1. ?. PEGC PEGA))).

Then the (;yi, tem C'Onl inuer., prob lnm ~; olving. Whf! n the
subpyr;imid (J 2 :n W1lS moved to Pep, n, i.e., (PF.GS (5) (J 2
3 4) NIU war. att ait1 (? d, G0/\1.SEQ ha!, 1he form: (GOAi.SEQ
(PGO/\L 3 PEGC PF.(;13) ((l'C0/\1. ?. PF.GA PF (;13) (GOAi. 3 l'EGC
PEGB) (f'GO/l,L 2 f'EGC PH,/\))). Ai, r;a rnr. <1r. boforn, the
!;yi;lern r,erwrnl17.e5 thlr; lht,· and c mates CUN!)!, and /\CTIClfv!;
from It. Firrn ll y, ;i new prod11ction, <NJ:J :, !, hown in Table 1,
Jr. nenr.rntecl. Diffcrr.11t from thr. c;i r.r. of rrnatinp; <Nl 2> , the
cti!d\·namc, 3, it; al!;() genern li m d in 1hr. prnscnt case
bcc.aw,c thr. 1;yrdc·111 notitci, th at :l i!, one of bip,ger, ((<'llr?rnl

di!;l\s in the niven problem.

Thour,h th e r,yidem can i, olvc·: th e prob lem usinr, the
rncur!dve Mtbconl !dratcgy ;i l fc r this point, we rnahe the
following 11!;(;1.1111r,lior1 hern : once the? r,yi,km i!, ;iccuidomed lo
perreivi nr, PSH/\l'Er., it c ;in p,cncratc ;i f'(;0/\ 1. if 110 f'GO/\l. is
avcti l ;lh le ;ir,cl 11 PSI 1/l.l'E i!, ;i t lc11dt!d lo . Thi r; lieuri!;tic i5
storr.cl in the program in thr. fonn of ;i prncludio11. Thus at
(PEGS NIL (I ?. 3 ll) m l), whcni no PGO/\l. i!, in WM 1111d l'eg
13 i r. PSHAPLd, the r. y:dcm can r,cnr.rn fc a new wbr,oal
(PGOAI. 'l PEGB PEGC). Thir, i r, done fir !;f by r,ene rati11 1;
(GOAL 4 PECl3 f'l:GC) wd11 r, <NI I > (;i prod11ction for the
rnc:unive i,ubgoa l strnkgy), and lhr.n trandorrning ii to
(PG0/\1. ...) ur.inr, the f 11r.l that Per, B ir. P:illAl'Ed.

Hun 5 endt!d (; 11c c e,.:,f 11ll y 11fler procluc tion :; fin?d 431
time <; and twn new prod11(tion i, <Nl2> 11nd <Nl3:• wero
r,enr.rated. ·r hc i,e prochrc tio11 r., together with some other a
priori J>rocluctioni,, rnny cow, litut e a new drate1;y. That it ir.
actua ll y i.o wi ll be ex;imincd in l<un (i . Notr! that no heurir.lic
search wa !; madr. i11 f?un 5, ;md the rncur!;ive r.ubgoal
s trntcr,y war. fully 11 1,ed for p,cncrnli11p, new procluclion!;, It
In c.luarly (;e(!n it1 produc lion .. firinf: behavior belwr.en 2200
- 2650 of . Fir,. ?.. Afi,o not e that a r.omew hal spec ial
perceptual prndica l e, PS HAPE, was eff ,:· c tivHly uned for
lirnitin r, data for pctltr.rn inch1c.tio11 in subr,onl r.tac.ks. Thi s
tneC' han i!;n, war. deriV<·?cl esi,enti all y from our experimental
data.

<H1111 (I >

lhin £i ex;11nl11C!n whe t her pro due lion!, lr.arncd in Ru11 5
am suffi cient to constit ut e a i; tr atep;y. Hun 6 perforrn5 only
thi s tM;k. 111 thir, i;cni,e , it corrw;poncb to llun 4, ancl weakly
lo Hun 2.

As the !;ystem w11r. then w;ecl to l':ilJAPF.s, it initially
ge r1C!rntE!cl i1 r.ubr,oo l (!'GOAi. 5 f'EGA PEGC) by at tending to
the initi il l pyrnmid, (I 2 3 'l !)), 011 Per, A. Then, usinr, thi s
subr,on l, an(I prod11ctio111, ~Nit'> 1111d <1~13>, the sys tem
sue;c-er.,cl11cl i11 atlai11i11r, the final goo l wilh 110 error. Thus tho
!,y!d!' rn le artwd a nr.w Wf'il .. d1?fi1wd !, trnt er,y. We tall it tho
u,n,·T1i11p .. .(01'1m11·d ~,rn111,n, f; i11ce <NJ 2> and <NJ3> generate
subnoc1l seq1m11c.es th at can be nf)p li r.d not barkwardly, but
forwardly . Jhrn 6 coniauned ?.CJn time s of production firing.

8 or c:our!;e the syslern r, hould .have remembered 1he
former GOAi.SEQ lnform:ition for doing thi r..

Cotr,p;il'i ng wilh f?un t''!, (, t,6 limes ;rnd flt111 4'r, t'80 limr.s,
the worllinr,-forw;ird !,lt;1kn' mny :le 11111c.h rnorc etricienl
th ,111 tho nC!g;ifivci move · pJllcrn slrnlegy but c.omparnblo
wilh the rnrnr!dvc~ :a,l>r:oal :dr alep.;y, wilh r1 ispecl lo lirna.

The rn11nlrnr of prod11c lionr, le;i rnecl i~ r.evcrn for tho
nr!{;illivci movc-:· ·ratlr.rn !, tralr:gy, four for thr. rocursive
r.ubgon l :dn il ep.;y , ;md two for lhe wo rfd11g- forwc1rd r. lrntegy.
A morn r,ophir,licated mr.c hani r;r11 would cir.< rna!,e lhC! number
for the ncr,a ti vc-: rnovc-:--r11 lkrn !drnter.)' dciw11 to thre e (or
eve n to two). Thu•,, r,fficir.ncy in 1hr. mttnbr.r of productions
neces!, ary to be 11: ;i rned wo 11ld bC! compnrablc for lhe three
!dnil cr, ie r, if slip,hl modificalion i5 ;illowcid to llrn cur rent
vc~r!, iOn of I he progrnm.

/1.r, for lo,1 d on Wlvl, the me ur!d VC1 ia1br,0;1I strat egy
scemr, lo llC! llrn r,111nll1? !, t. Fig . :~ r, howi; dynnmir, beh;wior of
tho nwnl:>er of elr. rnr.nl '., conlilinr.d in WU The nC!p.;ative
rnnvc-: -- pntlr.rn rdrnt r•r,y put,. hr.avy load 011 Wf..~ by it s
c. ombin il lorial il l l ent ion l o pc•gs c111d seorrh for Ir.ga l moves.
·1 he wor l1ing - forw c1r d drnl<·gy alr,o puts burden 011 WM by
it s powc-: r for p.;e nr.raling :,everal !,ubp.;oa l~ ;ii once. Fig . 3
alr, o illt.Hdrnl<i r, c le;i rl y ;i q11 ;, libili ve c h;111r:e of oper atorr. in
the learn inr, procr. sr. . 1he tHttnber of rnove opera tor s
grncl11ally dee rna!,e d ;111cl b£ic illl11! more !, I able, whereas
subgoa l operalorr. pl;iy1-:cl an c1clive rn lc in the later stage.

111 spit e of the above rn t, ull s, people r,ee m to regard the
worl·,lnr, forw <1 rd drntAp.;y il!, lhC! most sophir.litated
!, trat etw for solvint~ the ·rower of Hnnoi problem. Thi5 f5
c:a w ,c cl from the, f ;ic! lhnl 1hr. worfdnr, - forward strnt egy
irwolvc-:s !, ubr,oalr. like J'GOJ\l.r.. PGOJ\1.i, arr. hir,hcr .. lcvel
subgonl r. , which m,1y st;il e very i.imply ;i subr,0;11 scquenc:e
thal ca 11 be app lied i,ucce ,:<, ively lo thr. initial prol>lem r, l ate,
and bring the i,yid ern eve 11 to tho fi11c1 I gonl. (PGOJ\I. 5 PEG/\
PEGC) ir. di,c om posed to 1 he !,cque 11c.e (PGOJ\I. 4 PEG/\
'PECA), (()()J\I. 5 PEGA l'H;C) ;incl (PGOJ\1. 4 PEGB PEGC).
The t hrne · wbp;on lr. in I hi 5 !,cq 11a11ce are applied
succes!dvdy lo the inilinl sl ;i te, and provide lhC! fin al stal e.
The theory r.ugger, ts tl lil l this c;ipnbilily of ctirnctly
connoditig the initi ;i l . sl;il e to the final goal is 011e of
ultir11al e rn::: ult s ·i11 lhC! lo11p,- term 5trn1egy lea rning process.
As Ru11 6 showi; , the procrnm finally IC!a m ecl this c:apability.

lrl!PJkalion of Work Hnct l_l s_ Re lation lo Other Works

·rho wmput il tion;il rnwlt r, prn sentAd in lhir. papr.r Imply
two lhi11g5: (I) tho progrHm i1, one of fird effort s toward
mod1dll11r, humn11 IP. .i rninr, lwhavior w,i11r, an adaptive
production sy!; lrnn, ;rnd (?.) there ir, a way that a computer
c:a11 lear n strnter,ie s lhrour,h it s own experlenc.e. The
second poi11t ir. p;irl ic:ul arl y rnl aled to rr. searr.h on artificial
l11t elli ge 11c:e !,y!-. te111 r; thal llilve tapabililies of discovering
comp lP.x procedural knowlr.clr,e. The p;ipC!r provided 11

posit lvci cv idn11c:e fpr · po ,,r.ibilll y of c:omput alional i, ludy on
st ra ter, y IP..irn in p, p rornr.i.er. .

Much effor t l1c1 r, boen n1itclC! r. o far toward designing
arti fi ci~I i11tc llige 11ce sy~ l r. mr. th at am ablP. lo learn
procedural l111owlc dgc. 011r. of the m,1i11 r. lreamr. in the effort
Ir. utifi ;rntio11 of ad.ipli ve production !;y~ temr., i.r. ., produdioh
systemr. th at inc.orpornlc a11 abilily for crealing production
rule s, which was fin;t -c-o n<druc.led lormAlly. by Waterman
(J 9711), Meta-.fJENDfl/\1. of Sl a11ford flouri r.t ic Programming
Projncl I!; 0tin of C!ar li1?i, I i, uc.c.r.~.i,es i11 ;iprli ca tlon of such
r. tud y. ·rhe worf'. flr<?5e nl cd in tho p;ipcr and olhar two
paper!; (Anza i, J 9,8; J\nz;i i 8,, Simon, 1977) may be
con:.idered , As a r. urcef,!;Or of lhi r. stream, app lied

189

pnl'I icularl y Io ln arninr, «>tnpln x procr,clura l knowledge.
l3roadly :, pcia llinr,, worh 011 ;rnl orn~ ti c- pror,rnm mi11r, (e.g.,
Drne11, l9 7J). nrny be co11 !: irlpnid ai, a I""' of the effort.
/I.duall y 111e rnsull r. prnsenlr.d in the pappr can be ri:garded
a!, a !, mnll c:o111put,1tio11al r.x p!!t·i1?11cn 0,1 ,rnlomnlic
progrnrntnlng In c1 morn general problem --solvinr, or iP.nled
clornAin.

/1.l so, i11 p;irallel wilh the wor~. i11 al'lifirial i11telli r,ence,
l!i <1 rninc proc.e d11ral knowlci dge h;i i, henn !, ludind rnc entl y by
c:ognil ivC1 p t:y< hologi~h (e.g. , /\ndnr ~on, 19 77). Tho~e two
lrimdi.;, with general ,;t 11dy of i11clu1t io11 In c-ompln x problP.m
so lvi11r, I ar.k~. (e .r,., Simo11 8.·. Lea, 19,3), a,·e now conve r1.; ing
lo worh 0t1 i,y!, l emr; for lr. arnin[l complex proceclurnl
know ledge.

Thir. p;iper i r: hopefull y one: of initinl i,lcpi, tow~rd lhi r,
dim<! io11. ·r he rn sulh. ,11'1! e11co111 ar,inr,, but i,1 ill limited.
Vt1riou!, prob lemr,. which did not Mi!:P. in lhe theorn tic al
exp lorn lion h;we bN!l1 m,Hfo r> xplir.il in thi r, c:o111put~lio11itl
r.tucly: the probl1?m of 1:1-ror rC? covc-: ,·y , n: l,tlive r,rrc d of
lr?arninr,, fitwr i.drnclurn of r·rip1·w,1•11l;1tio11, lime effiti enc.y of
proctuc.tion !,y!:temr., r,enr.r.ilil y of tlw prot;nim, a11cl so on.
Mor.;t of lhe i,n lr.r.; uc,s il l'!! c urrnntly bei11r, ;i ll ;icke cl in the
c:on ti11ui11g projP.cl on cornpul eri;i c ct r, lrnletw leaminr,.

Andnr r.on , .I. I?. lnd11clio11 of ,n,gmr.nlecl lr ansil ion 11ctwor~.s.
Cn,r11i1i,11, Srir11r,n, J 9 77, /, J 25 -- 157.

Anza i, Y. How one IParn s r. tr;il e1.; ic!,:
rnprn se nlc1tion of !drnlep.;y c1cquisilion.
publicatlon, 1978.

Proce 5ses and
Submitted for

Anzai, Y., 8,, Simon, l·I. J\. ~i trntc•(ly l ri111!,forn1;ition in probl em
!;ofvinr,: A car.e !dudy. Clf' Working f';iper 372, Dept. of
P~yd1CJlor,y, C;i rn(•gir. · Mc:ll on Univer!d ly, Pill sburuh, Pa.,
1977.

-8uc. hanc111,[l G., 8.• Mil<lwll, ·r. M. lvloch:1 --dirndcd learning of
prochtdio11 rul Pf,. Comp. Sc i. fl<: por t ST J\N .. cs- n -597,
Sl a11ford Univerr, ity , S1,mford, C;i lif., 19J7.

Groen, C: A i, ummary t1f !hr. PSI prop,r;un synlhas is sys tem.
Proc. !'> th I.ICAJ, I 977, '.l80<l81.

Sdrnnk, ft C., 8.• Abolr,on, R P. .':ir ri111i, l1ln11~, Gnni~ n11d
l/11rlnn1,rnrli11a. Law n i ne r. Erlbm1111 J\r,!,oc ., 1977.

Simon, H. A. The funclio11;il cquivalr.ntc of problem solving
!;kll l r,. Co,r11i1i11n f'~ .vrl,nln 1ry, J 975, 7, 2&8- 288.

Slrno11, H. A., 8.• I.e a, G. P, oblr.m r.o lving a11el rule induction: A
unified vi ew. In L. W. Grcr,c ([d.), Knnu,/t>dp" n11d
Cn1<11i.1io11, I.Rwrnnc:e fr lbn1J1n J\!,i,oc., 19,4, 105- 127.

Watcrn11m, D. A. Adaptive produtlio11 i,y5l ems. CIP Working
Pi11wr ?.85, Otipt of Psyc.hology, Carne[lie--Mellon
Univers ity, f'ilhburp,h, f'a ., 1974.

I

"'
C:
E
.:
CJ

0 ...
c:;

.!:l
E z.

c

0

Fig. 3 Number, of c lements In Working Memory

(Numbers aver aged for every 50 limns of production firing)

End of
Run l

N111nbnr of clcrnnnls
I /1 tnlH!('(I fO

, \ MOVE operntors
I

I / I ' I \
I \ / \ I \1 I. __. .

./ " \..,,' 1 -, .,·
, ',_......... C. .::...c· ·-;;:-:.C .. --" - 7~ . ,.,...,,,. '¥,,- •

, N111nlwr of f'lr.mr.nts ,/
/ reliltccl to /
'·-·-· !;lronr, ta1hCOAI. orcrntor\ _ _- . _______ /'

End of
Run 2

500

End of
Run 3

1000

Tl111r.s procl11dlo11r. firncl

End of
Run 4

End of
Run 5

I !JOO

End of
Run 6

30·-t---------~~,-----*:__-----r---*-------*--

10

-· ·, - -, ·,.,
\ .:::-·-....... ""'" r

""'""' ,-...J· , _________ _

N111nber ol Plr.rnr.nts
rnlatcd to

strong i;11I (;()/I.I. opcrnlorn
,.._ I'· ,...... ·"
/\ .-....; \/\

i \,.-·""' . .
·---...... ,..· " '·,

1!.>00
I

2000

Nt11nbN of elcmr.nls
rnliltr.•d to

MOV[01wraton.

Tl111r.s procl11ctio11s llrnd

190

:iooo

A computer program that learns algebraic procedures
by examining examples

and by working test problems In a textbook

David M. . Nov es
Department of Psychology
Carnegie-Mellon University

Pittsburgh, Pennsylv11nl11 15213

This paper describes a computer program, written In
LISP, that acquires procedurr.s by examining worked-out
examplr. problemr. a11d by working lest problems In an
algebra textbook, Stein & Crabill (1972).

The parndigmn of learninr, by example a11d learning by
doing have received muc:h attention in the par.I few years
(e.r, . Waterman(i11 press), Anzai(1978), Sussman(1975)). A
common c:lrnrndr.rir.tic of thir. recent work Is that the
learned procedures take the form of production system5
(New~II, 1973; Nflwell & Simon, 1972; Davis & King, 1975).
Produrtion system languages consist of two memories, 11

produdion · mrimory and a data (working) memory.
Production memory consists of a set of condition/action
produdion rules. The c.ondition part is comparr.d lo working
memory and if true, the action side is executed. Production
system$ are especially well··suiled for the learning of
procedures because of their modullirlty (see Waterman,
1975). A learned rule can simply be added to production
memory.

The bar.it Idea in learning by example Is to induce the
produe:tion rules used by the expert who generated the
exampll?. Each pair of lines, or r.tates, in the example leads
to the learning of one production rule, with some part of the
Input (the fin;! line) as II condit ion and the operation
performed on the first line as the action. In learning by
doing, the example .trace is r,enernted by the student and
not by the expert. It could lead lo the Induction of the
same productions but would lake much longer than by
lr.arning from an existing example.

In c:onstrucllng mechanisms for learning, the nature of
what Is learned, and the method of le11rning must be
spec ified. The result of learning can be characterized as a
performance syi;lem as defined by Newell & Simon (1972).
Sur.h a sy!ilem (like the Gcnnral Problem Solver) needs a
goal, a representation of tho problem, operators, a "table of
conner.lions" (a data base that incle.xes the operatt>rs by the
changes they make) and working - forward production rules
of the form, "If)(occurs, then do Y". The learning system
describud here learns all the above except for the
represent atlon.

At the present time the program learns lo solve linear
algebrnic equations from a textbook. The textbook provides
exp lana tory text, annotated example problems, and work
problem5 al the end of the section. The program uses the
examplr.s and test problems to learn and Ignores the written
text.

191

Tl-IE SYSTEM

The program Is given a knowlr.dge of ar ithmetic: the
repre SE!ntation (objects and relations between objects),
operatorn, table of connedions,and goals. It is also given
tho representation of algebra. The program then learns the
goal !dale of solving linear algebraic equations, learns the
operatorn (composed of condition/action production rules),
and adds to the I able of t0nneclions a recognition of
algebraic operators. Fiituro J show~ what the result of the
i1?arninr, process might look like. The six productions solve
an equation by moving numbers lo the right side of the
equat ion, by moving terms with an "X" lo the left, and by
combining like terms.

A simple flowchart of the program is shown In Figure 2.
There arr. three main components, Example, Perform, and
Learn. Example lakes as Input a work-out example problem
and calls Learn. Perform t,1hes as input II problem to be
so lved. II uses general problem solving techniques (Newell,
l969) to generate Its own example trace and also calls
Learn. Learn takes as Input two lines and creates a
production rule.

P 1. If there Is I number on the left hand side
of an equation, then subtract it from both sides.

P2. If there Is I term with "X" In ii on the right hind
side, then subtract It from both sides.

P3. If there ire two like terms on the left hind side,
then combine them.

P4. If there are two like terms on the right hand side,
then combine them.

P5. If the equation Is reduced to "<number> • X • <number>",
then divide both sides by the number In front of
the "X".

1'6. If the equation Is reduced to "X • <number>",
then STOP.

Figure 1. A production system for algebra

I

. \

Example
Input: A worked-out example

Select two lines
of the example

no

Learn

Input: an I/CJ pair

Perform
Input: a problem state

ge
action

yes

Figure 2. Flow cherts of the three programs

EXAMF'LE

As r.t ated above, the Example program inputs a worked
out example. II sencfo pairn of consecutive lines to Learn,
where a production Is built. When Example reaches the last
line two things are done. First, ii interprets the example as
the workings of an operator, wilh an Input (the first line)
and an output {the last line). 111 order to recognize that
operation In the future (as part of another example) the
change l!l computed between the input and output lines.
The operator 15 then indexed by that change in the table of
connections. Second, the last line is represented and stored
on the goal ll!lt of the operator. So, Example adds to the
table of connections and also learns the goal states of
operalorn.

LEARN

The learn program lakes as input a pair of lines from
the Example or Perform programs. It generates a

192

procluc lion rule which, when presented with the first of the
two !inns, or similar input, will execute the appropriate
operator. This program is the most important In the system
and ead, of Its components Is described In detail below.

Roprosent

The two lines arc first sent lo a function that represents
them. The lines arc lists of characters. This function chunks
c:harncters Into objects (e.g. consecutive digits are put
together to form an Integer) and relates objects to other
objects In the line {i.e. terms arc represented according to
their relationship to the equal sign).

The knowledge of how to represent algebraic equations
Is given to the program and so Is not learned. Below Is an
examplr. of how two lines arc represented.

x - 15 a 2x
-)(- 15 • 0

{left +x)(left -15){r lght +(2tx))
(left -x)(left -15)(right +O)

The form for the representation is (<re lalion><objecl>), Jn
the above e><ample "left" means lo tho left of the equal sign
and "rip.hi" means lo the right of the equal sign. The sign of
each term (+ or -) is chunked with the term. Also, the
represent a lion Is put In a canonical form, I.e. 2>< Is
changed to 2*><.

Find Oi-ffar·cric:e

Nn><t, the two represented lines are sent to a general
procedure that computes tho difference between the two
line s. The difference is a list of symbols that have been
REMoved from the firr.t line, TRANSformod from the first
line, a11d symbols that have been ADDed to those already on
the first line of the example. For the two lines below

(left +x)(left -3)(rlght +5)
(left +x)(right +5)(,right +3)

the difference Is: (rem (left -3))(add (right +3}).

That Is, a minus 3 has been removed from the left .and a
plus 3 has been added to the right.

The difference is computed In two steps. First, the two
lines fire checked to see which symbols have been added
and removed. For example, if a symbol in the first line is
not eqtrn l lo any symbol on the samr, side of the equation In
the second line then it has been removed. Then the
program checks to see if there have been symbols added
and rr.moved on the same side of the equation (I.e. they
have the same relation - - left or right). If so, the REMove Is
changed to a TRANSform. This creates three kinds of
changes1 removing, transforming, and adding. The e>eample
below !;how these two steps.

x - 3 "' 5 (left +x)(lefl -3)(rlght +5)
x ~ 8 (left +x)(rlght +8)

The Initial difference is:
(rem (left -3))(rem (right +5))(add (right +8))

which then becomes:
(rem (left -3))(1r ans (right +5))(add (right +8))

Generalize

Niixt, the objects In the difference are generalized.
Knowledge of what lo generali1.e and the scope of
genernli1.at lon are given to the system and are assumed as
part of the representation. For algebra the function
generalizes over numbers. For any number It substitutes
the symbol "N8", which is the concept name for number, so
that (left -3) becomes (left -NI).

Crcc,.ting the production

At this point we have characterized the difference
bctw~en the two lines. This difference Is used lo access the
action that produced It, and Is used In creating a condition
for a condition/action production rule. Suppose the
following two lines are Input to the Learn program.

X - 3 • 5
X • 8

The difference is:
(rem(left -n8))(trans(rlght +nl))(add(rlght +nl)).

193

The program chocks tho table of connections to find an
operator that will produce that difference. The program
may find the operator ADD-·AND··SIMPLIFY, which Is made up
of a set of productions that will add a number to both sides
an eqtrnlion, and then simplify ii. This operator was learned
In a pruvlous example given to the system.

The t ar.k, now that an action has been retrieved, is to
attach the appropriate condition to the act ion and store ii
away as a production. The most specific condition would
simply be tho first line of the example, (x - 3 • 5). That Is,
II you see "x - <number> • <number>" then add the second
number to both sides and simplify. However, intuitively, the
appropriate c:ondil ion would seem to be just the nee alive
number on tho left hand side of the equa lion, (left -n8). One
way of whittling down a c:ondilion side would be to present
i;everal examples where the same operator is applied at1el
heep only those symbols which are common to all of the
examples. This is r. imilar lo the c:onc:ept learning scheme
used by Wim;fon (J 975). However, there is no such
lnstruc:lion in textbooks and there is often only one
example ir, the book before the lest problemr..

Tho rationale for tho way the condit ion Is determined is
as follow :,: Algebra Is a domain in which objects are
manipulated: removed, lransfortnP.d, or copied. The mode of
operation is to notice somr.thir,g and then chanee it. If we
work backwards from this notion WC! can infer the reason
(or c:ondition) for an action by looking al what ii affects.

Two heuristics arc U5ed to find the condition for an
action.

J) If !ho result of an action on the
environment Is ob!;erved, then the probable
cond il ion for that action was the eroup of
symbols that was afletled by the act ion.

Thir; heurinllc ii; ba5ed on the reagonlng described above. It
examines tho di-ffm·cnce betw,:,,en two stales, which contains
the changed symbols.

2) Only a sub5ot of the changed symbols are
U!;ed as the condition for the 11ction. The kind
of change determines whether it Is inc:luded in
the condition.

If there arr. REMs In tho difference then only the
symbols that w,:,,re removed arr. put on the condition side. If
not, and If there are TRANSr;, those symbols alone 11rc put
on the condition side. Olherwise, another procedure is
oxernled for the ADDs. In the 11bove example, the
difference has one symbol removed,(left -n8), and so it Is
put on the condition side of the production. The operator
for lhn action side w11s retrinved using the table of
conner.lions. The resulting procluc:lion is:

(loft -n8) --> A()D .. AN() .. S1MPLIFY(n8).

Thal In, If lhoro Is II negative number on the left side of an
equ11tlon, then 11dd ii to both sides and simplify.

If the program Is not able to retrieve an operator from
the table of connections, then several other procedures
must be e>eecuted In order to determine what operator (or
group of operators, In the case where steps are skipped)
has been applied. There arc five subproccdurcs that can be
called when the difference has not retrieved an action.
These procedures search for an action. The procedures are:

• 1

1) l\i,k thC! it1$tructor for thC! nat1H? of the procedure.
2) lfoe primitive opcraton for thC! action.
3) U!,I? rnC?an s-endr. to fill in skipped steps.
4) Uw a partial rnAtch on the difference.
5) Try another representation.

Three of these procedures arc explained below.

Ask for t ha 1urn1e of the procedure

Tlw examplC!s in the tex tbook arc annotated. Although
they do not give the conditions for actions, they generally
give t hC! . action applied to ead1 line in the example. The
progrnrn doc s not m;ikc use of this Information. However, If
ii did, ii would tranr. l;ile lhC! verbal description In the
example to the name of an action in m!:'mory. As a crude
approximation to lhi r. proc-csr. , the name of the action can be
direc:lly supp lied lo the program.

Use primitive physi.cal ope1·ators

If the ~ystem is unable lo retrieve an action that will
produce the difference, thC!n ii has the op tion of crealit1g its
own <1clion with it s primitive operators. There arc three
primitive physica l operations that correspond to the three
kinds of c.hanucs in the differC?nce. Prim -add adds a symbol
to the environment(wril es ii on papr.r), Prim-rem removes 11

symbol from the envlronnrnnt, at1d Pr im-trans transforms a
symbol into another symbo l.

In the example below a minus 2 has been added to both
sides of the equation.

The primitive act ion, . Prirn ·- add (which should not be
confused with an arithmetic operator) could be used as the
action. The two Prim-add actions would be:

(Prim-add (loft -nll)) -- add a number lo the left
(Prim-add (right - nl)) -- add a number lo the right

Use another representation

Information In the table of connections is stored in a
· represented form. The operalorr. in arithmetic, for example,

cannot be used or recogni7.ed unless the arithmetic
represent at ion ir. being used. So, when learning algebra the
program . must be able to go back lo an arithmetic
represnnlalion to use its ar ithmetic operators.

When f irnl learning about algebra, the example below Is
not recogni7.ed as addition.

Algebra example:
X C 2 + 5
X C 7

·Difference:

(left +x)(r ight +n8)(rlght +nl)
(left +x)(right +nS)

(trans (right +n8))(trans (right +n8))(add (right +nl))

Below we see how the same addition Is represented In
arithmetic.

Arithmet ic exampl~:
2 + 5 (linear +n8)(11ncar +n8)

194

7 (linear +n8)

Difference: (trans (linear +n8))(trans (linear +nS)),
(add (linear +n8))

The right-hand 5ide can be rc(oded into the arithmetic
represcint ation and will be seen at. the transformation of
two positive numbers into another number. This Is an
operation known In ar it hmctic.

After the program relriP.ves an action with one of the
above m!!lhods it addt. the act ion lo the table of
connec.l ion!,, Indexing ii by lhC! difference. The action will
be rncognized 111 later example prob lems. Then a working
forward produtlion is created with the appropriate
conditi on.

Stim.m.ary of [~ample and I.earn

In the above examples, we have seen that the two
programs learn procedures (operators composed of
production rules), the goals of the procedures, and they
learn how to recognize those procedures by the differences
that they produce. Although there are many mechanisms
involved in learning the few pages In the textbook, these
may be general mechanisms that can be used elsewhere in
the textbook.

PERrORM

After the Example program is given several examples,
the Perform program is given the lest prob lems at the end
of the 5ection to work on. Perform uses the working
forward productions built up by the Learn program to solve
the problems. For the first few problems, productions will
be avai lab le that will rec-ogni7.e what to do. However, at
r.Om!! point the produc.lion sys tem will hall because no
produc:tion fires. At this point Perform uses means-ends
analysir. (using the ex isting table of connections), or the
generate and test weak problem solving methods (Newell,
1969) to generate the next step in the solution. When It
has come up with an action that reduces the difference
between the current stale and the goal slate, ii applies the
Learn program to create a production.

Summary and Conclusion

Three programs were described that learn from
examples and learn by doing. The Example program scans
two lines of an example problem at a lime, sending them to
the Learn program. The Learn prcgram determines the
operation that took place to create the second line from the
first. It then uses two heurlr.tics to determine the condition
for the application of the operator. Once it has the
condition 1md thC! action it creates a production ru le and
stores It In produdion memory. The Perform program
works on !er.I problemr,, using general, but lime-consuming
problem r.olving techniques to solve the problems. As II
generntes each step ii call s the Learn program lo create a
produc:t ion rule with an appropr iate condition attached to
the opcirator that was applied lo the equation. It Is
intere5ting to note that no new data structures, other than
the ones U!;ed 111 a per form anc:e system, like GPS, needed to
be created for the Learn program. The table of connections
Is used both to access operators while going through an

examplr. and to rntrieve oper;itor r. that reduce the distance
to thr. p,oal while prob lr.m r.olving.

There am several rea!;ons for the success of the
syidem. The use of production systems ar. a representation
for proc cdurcr. m;ikcs 1hr. lr..irning ·proress ear.ier. It would
be more difficult to ar.sim il ate the learning into a more
complrx control !,!rue.tum like that of Fortran, for example.
The two heuristics described earlirn en;ible the system to
immcclialely create procluclionr. of morn general applicability
than would be posr.iblc using a dir.trimination procedure.
Fina ll y ar. 1hr. sys tem learns operalorr. II alr.o learns lo
recop,ni7e when those opcralorr. have been applied. This
IP..irning p,rP.atly increa:;cr. 1hr. recocnilion power of the
I ,ib ln of c:onnnc:lion!,, so that morn c-omplcx exr1mplcs c:an be
ur.cd . So, not ot1ly clo the progrnmr. learn components for a
c:omplrde pcrform;inc:e r.ys tem, like operalon and goals, but
their lr arning f.icilif;iles later le arn ing by the indexing of
higher level opernlors in the table of connections.

The ~.ey part of the system ir. determining the condition
for an opernlor applied lo the firr.l of a pair of liniis In an
exa mple. The syidem ir. able to do thir. because al l the
rnlcv,rnt infornrntion ir. contained in the equations. However,
in i,omri domAinr. the external st imulus might not contain all
the information relevant lo the condition. For example,
Walern1;in (in press) has constructed a system that observes
A person performing v;irious fundions on a computer, such
ar. rclrir.vinp, d;ila files from other computer sites. One
piece of information that is put on the condition side of
somr. of hi s produdionr. is the type of operating system of
the computer that the files are being accessed from. It
might ha the c:ar.e that th in piP.ce of informat ion cannot be
clci tcrmlr1fld by the example! lines being examined. The
sy5tem must know that the information Is needed and must
be able to rntrieve ii . In Walernrnn's system, the knowledge
of whnt is relevant information for the condition Is given to
It. II is not clear how a system could learn about such
relevant Information.

Status and Future work

Af. of May, 1978, the Example program has been
lmplemr.nled and debugged. The Learn program has been
lmplemr.nted and mostly debugged, while the Perform
program has been implr.menled, but not debugged.

After testing the system's ability to learn from the
textbook, the capabi lities of the system will be Increased.
The sy'.,lem does not learn the representation of the domain
It worko on. It Is not clear yet what kinds of additional
n,ochanlsms wlll be needed to enable the system to do this.
Also the current system does not test the rules II learns.
As rules arc learned from an examplr. their generality could
be tef.led by !,imulaling them on the example problem. If a
rule applies before II should (compnrr.d to the e)(ample) then
II may be too general. Its r.pec lficity could be Increased by
addinn more elements to the rondilion side of the rule.
Finally the system will be extended lo domains such as
physics to test the generality of its mechanisms.

195

This research wai, !,upporled in pnrt by NIMH GrRnl GH
MH-OG 718, .ind In part by ARPA Grant F44620 -73-C-0074.

I r,nilefully ac:knowledge the ar.r.idance of .Iola Jaklmik
during the preparation of thir. paper, and thank Herbert
Simon for his help In al l phAses of this research.

REFERENCES

Anzai, Yuichiro. Learning strat er, ics by computer. Paper
presented at The Second Nnl ion al Conference of the
C;inadian Soc:lety for Comput ;itional Studies of
Intelligence, Toronto, Canada, 1978.

D11vis, R. & King, J. An overview of production syslemn.
l~cport STAN .. CS - 75 -[,24, Memo AIM·271, Department
of Computer Scienc:e, Stanford University, 1975.

Nnwell, A. Hcurintic Programmin[l: Ill st ructured prob lemn.
In J. S. Aronofsky (Ed.), Prngrr.ss in Opcrotions
Ha.march (Volumr. Ill). New York : John Wi ley & Sons,

1969.

Nowell, A. Produdion sy~lemr.: Models of control
r.truclurcs. In W. C. Char.a (Ed.), Visual Information
f'l'()ccHing. New York: Ac:ademic Press, 1973, pp.
463-526.

Nf!well, A. & Simon, H .. U1Lnt(ln Probfom Solvi.ng. Englewood
Cliffs, N.J.: Prentlce ··HRII, 1972.

Su!,sm1111, Gerald J. A Computer Model of SkiU Ar.quisition.
N11w York: Amr.rican Elscvir.r Publir.hing Co., 1975.

Waterman, D. A. Adaptive production systems. Proceedings
of the Fourth International Joint Conference on
Arliflclal lntelllgence. Tbilisi, U5SR, 1975, pp. 296-303.

Waterman, D. A. Exemplary programming. In D. Waterman &
R. Hayes -Ro th (Eds.), Pottem .. cli.rec tecl lnfe1·e11c•
Systems. New York: Ac.ademic Press, In press.

Winston, P. H. Learning structurnl descr iptions by examples.
In P. H. Winston (Ed.), Psychology of Computer Vision.
Now York: lv1c.Graw -Hill, 1975.

COOPERATIVE RESPONSES:

AN APPLICATION OF DISCOURSE INFERENCE

TO DA!~ BASE QUERY SYSTEMS*

s. Jerrold Kaplan and Aravind K. Joshi
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, Pa. 19104

For Natural Language (NL) systems to
interact effectively with non-expert users
of computers, they must be capable of
dealing in a n appropriate way with the
expectations that the user has of a
cooperative speaker of the language.
Because people do not have a coherent set
of expectations about the way computer
systems use NL (the way they do, say, about
small children) , users will expect these
systems to provide cooperative and
appropriate conversational behavior
approximating that of human speakers. In a
cooperative human dialog, participants
observe a variety of specific conventions
and principles that promote effective
communication (some of these are culture
specific) . Failure to follow these
conventions and principles results in
inappropriate and/or misleading utterances.

Questions in NL do a great deal more
than request information. Even simple
questions frequently encode aspects of the
questioners goals and intentions, as well
as his or her state of knowledge.
Questions lA-lC below illustrate the
encoding of goals and intentions by the
different responses that they will
reasonably admit.

lA. Did John borrow my coffee cup?
lB. Was it John that borrowed my

coffee cup?
lC. Was it my coffee cup that John

borrowed?
lD. No, it was Bill.
lE. No, it was your sugar.

Superficially, all three questions appear
to convey the same request for information .
A closer examination reveals that although
lD and lE are both appropriate responses to
lA, lB favors lD while lC favors lE. lB
indicates that the questioner is interested
in who borrowed the coffee cup, while lC
indicates that the questioner is interested
in what John borrowed. Computational

* This work partially supported by NSF
grant MCS 76-19466

196

Linguists have barely begun
usefulness of such cues in
systems.

to explore the
computationa 1

In a cooperative discourse, the
secondary communication of goals and
intentions is not incidental - it provides
a context for an appropriate response , as
illustrated by exa mple 1. The hearer is
expected to co mpose a response that is
relevant to the questioners needs, as
indicated by the question. A failure to
produce appropriate, relevant responses is
known as "stonewalling"*.

Many conversational conve ntions, while
falling under the rubric of "Pragmatics" in
Linguistics, are sufficiently regular and
consistent as to be formalizable within a
computational framework. The purpose of
this paper is to describe some aspects of
conversational cooperation that are
essential to an effective NL system, and
present an implemented query system that
incorporates these conventions in a
practical way. The system demonstrates
that many cooperative principles can be
formalized and embodied in general
computational procedures to be applied to
the task of data retrieval from a standard
(CODASYL) Data Base (DB) query system.
Projecting the more general problem of
cooperation in unrestricted discourse onto
the domain of a query system provides a
method of both sharpening certain
linguistic intuitions and reducing the
problem to a tractible form without
trivializing the problem or rendering the
solutions ad - hoc. It is our belief that
the mechanisms described here, while
motivated by the domain, provide an
approach that can be applied to a
significantly wider class of NL processing
problems.

*Stonewalling is a term used for
uncooperative yet technically corr ect
respons es to que s tions . It was popularized
during the Senate Watergate Hearings to
describe the behavior of several White
House witnesses.

I

WHY A THEORY OF COOPERATION IS ESSENTIAL

Besides the obvious frustrations
accompanying the use of an uncooperative NL
system, there are real dangers posed by the
use of such systems in a conversational
environment. In particular, it is
frequently the case that correct responses
to questions cause a questioner to draw
incorrect or spurious inferences.

NL questions often indicate that the
questioner presumes certain things to be
true. It is not only possible to detect,
check, and correct these conversational
presumptions, but it is expected ~ r-n--a
cooperative exchange. Failure to correct
these presumptions results in an implicit
affirmation of their correctness in the
questioner's mind. Therefore, a failure to
contradict a false conversational
presumption, no matter how innocently
omitted, will actively reinforce the
questioners mistaken impression. In a
cooperative discourse, the expectation of a
cooperative response is so strong that a
failure to contradict false conversational
presumptions is highly inappropriate.
Consider the following question-answer
pairs.

2A. Did John invite his mother to his
wedding?

2B. No.

3A. What is the name of Bill's first
wife?

3B. Sally.

4A. Which of the B-52s with a range
of 2500 miles or more are based at Camp
David?

4B. None.

The response 28 to question 2A reaffirms,
through its failure to state otherwise, the
questioner's presumption that John got
married. If 28 were uttered in a context
where John is a bachelor, however, it still
affirms the questioner's presumption, even
though that presumption is false. Although
the response is literally correct in such a
context, it misleads the questioner by
reinforcing, or even creating, the false
belief that John got married. (A more
appropriate response would be "John is not
married.") 3B reinforces 3A's presumption
that Bill was married more than once. In a
context where Bill is still happily married
to Sally, 3B is correct, but misleading.
(Again, a more cooperative response would
be "John has only one wife: Sally.")
Similarly, 48 is a misleading response to
4A if B-52s have a maximum range of 1000
miles . "No B-52s have a range of 2500
miles or more." would be a more cooperative
response to 4A. These cooperative
responses are Corrective Indirect Responses
in our terminolog~ince they respond
indirectly by co nt radicting a false

presumption.
Without a theory of cooperation,

interactive NL systems will produce correct
but misleading responses, fostering and
even creating false impressions in their
users. A formalism is presented below
which produces corrective indirect
responses to arbitrary DB queries. The
procedures predict both when the responses
are required, and what~ these responses
should be.

197

AN APPLICATION TO THE DATA BASE QUERY AREA

By limiting the domain of discourse to
the area of data retrieval from a DB
system, it is currently feasible to produce
general computational mechanisms for
responding cooperatively to NL DB queries.
Only by applying a theory of cooperative
responses to a domain as limited as data
retrieval is it possible at this time to
provide computational solutions with some
degree of breadth and generality. In this
domain, cooperative responses can be used,
for instance

1) to aid a user in
suitable followup query
response to the initial
uninteresting, useless

formulating a
when a precise
query would be

or meaningless,

2) to inform a user about the nature of
the domain (structure and content of
the data base) when s/he is unfamiliar
with its complexities, and

3) to organize relevant information in
a fashion most suitable for its
intended use.

Corrective indirect responses are
particularly important in this domain,
where occasional or non~expert users
frequently make erroneous presumptions
about the structure or content of the DB in
their queries. (Example 4 above could
illustrate such a failure.)

The choice of the DB query area for an
implementation is a careful one. One of
our objectives is to demonstrate that the
DB environment provides a way of sharpening
certain linguistic issues (albeit
restricting them in some fashion). The
area is sufficiently rich to display a wide
variety of linguistic problems: problems of
anaphora, opaque reference, and discourse
cooperation are present in various forms,
to name a few.

A preliminary implementation has now
been completed, and a sample session is
displayed below. It demonstrates that a
portable, modular design for a NL DB query
system for use by "naive" users is
practical, and attainable given present
technologies. This implementation operates
with a standard DB management system (the

SEED system, available from International
Data Base Systems, Philadelphia, Pa.), and
incorporates recent innovations such as the
use of the DB as an extension of the
lexicon [Harris 77). The NL procedures in
the query system rely entirely on the
lexicon a nd the DB as sources of world
knowledge, and so can be transported to new
domains with little or no reprogramming.
In particular, the procedures required to
detect the need for a cooperative response,
and select an appropriate one, do not rely
directly on domain specific knowledge other
than that already encoded in standard ways
in the lexicon and the DB system.

CO-OP QUERY SYS'l'E~ DESIGN

The approach taken to t~~ design of
the COOPERATIVE QUERY SYSTEM (CO - OP) is to
analyze question~ presenting a set from
which a selection is to made by the
respondent (following [Belnap 76)). The
parser produces an intermediate
representation, called the Meta Query
Language (MQL), which is a connected graph
structure. The nodes of the graph
represent sets (a s "presented" by the
user), without regard to how those sets may
be realized in the DB . The arcs represent
(bin ary) relations defined on those sets
(again, as "presented" by the user). The
structure, therefore, is a non - procedural
description of an N- place relation (where N
is the number of s ets) defined by composing
the sets on all of the relations. The
effect of this composition is to select the
appropriate subsets of the presented sets.
This N-place relation constitutes the
direct response.

For example,
progr a mmers in
project 6471?"
Administration
"superdivisions".)
presenting 4

consider the query "Which
Administration work on

(In the test DB,
is one of the
This query is parsed as

sets: programmers,
Administration, projects, and 6471 (see
FIGURE 1) .

PROGRAMMERS

ADMINISTRATION
PROJECT

6471

Meta Query Language (MQL)
for "Which programmers in
work on project 6471?"

FIGURE 1

representation
Administration

While some of these sets may appear to be
counterintuitive (par ticularly the
singleton sets "Administration" and
"6471"), the intended interpretation is
that these sets are presumed by the user to
exist somewhere in the DB (a s values, as it
turns out in this case) . The direct
response to the query is the subset of the
programmers in the DB that "survive" the
composition of the relations, in the
example, yielding those programmers in
Administration that work on project 6471.
While this is not the way the query is
actually executed, it is a convenient
conceptualization. The MQL expression is
passed through several levels of
translation, and ultimately emerges as an
exec utable query on a CODASYL DB.

GENERATING CORRECTIVE INDIRECT RESPONSES

Should the query fail, in the sense
that it returns an empty set, control is
passed to a corrective indirect response
generator, which attempts to check and
correct any false presumptions made by the
user.

Determining a large class of
presumptions that the user has made is
facilitated by observing that the MQL query
~sume~ !he non-emetiness of its corlnectea
subgraphs. In particular, a direct answer
of "None." (the empty set) is inappropriate
if the system is able to determine that a
connected subgraph of the MQL also
represents an empty set. Since any
connected subgraph itself constitutes a
well formed query, its emptiness can be
checked by simply passing it through the
interpretive components and executing it
against the DB. Should the result be the
empty set, the appropriate corrective
indirect response is generated. In the
example, the various subgraphs and their
corresponding corrective indirect responses
are as given in FIGURE 2.

198

C PROGRAMMERS)

"I don't know of any programmers."

(ADMINISTRATION)

"I don't know of any Administration ."

C PROJECTS)
"I don't know of any Projects."

j

:I

I

I
• I

"I don't know of any 6471."
" IN" C PROGRAMMERS } (ADMINISTRATION)

"I don't know of any
Administration."

programmers

"WORK ON"

(PROGRAMMERS)- --{ __ P_R_oJE_c_T __)

in

"I don't know of any programmers that work
on projects. "

C PROJECT }- ~G
"I don't know of any project 6471. "

"WORK ON" PROGRAMMERS

PROJECT ADMINISTRATION

"I don't know of any programmers in
Administration that work on projects."

"WORK ON/(PRffiR/fflERS)

C PRWECT) (-64_71_)

"I don't know of any programmers that work
on project 6471."

MQL subgraphs and corresponding corrective
indirect responses.

FIG URE 2

Suppose that the query has been posed
in an environment where there is no project
6471 in the · DB. While the direct, correct
response to the query is "None.", this
response misleads the user by implicitly
confirming that there is a project 6471.
Rather than presenting the direct response
to the user, the control structure begins
executing the pres umptions (subgraphs)
against the DB. It will discover that the
subgraph corresponding to "I don't know of
any project 6471." returns an empty
response set, and consequently will produce
this corrective indirect response, rather

199

than the direct one. All corrective
responses generated by this tec hniq ue will
entail the direct response to the query,
since they will entail the emptiness of the
direct response set.

Several aspects of this procedure are
worthy of note. First, although the
selection of the response is dependent on
knowledge of the domain (as encoded in a
very general sense in the DB system - not
as separate theore ms, structures, or
programs), the computatjon of the
presumptions ~ totally independent - of
dom~in ~pecific knowledge. Because these
inferences are driven solely by the parser
output (MQL representation), the procedures
that determine the presumptions (by
computing subgraphs) require no knowledge
of the DB. Consequently, producing
corrective indirect responses from another
DB, or even another DB system, requires no
changes to the inferencing procedures.
Secondly, the mechanism for selecting the
indirect response is identical to the
procedure for executing a query. No
additional co mputational machinery need be
Invoked to select the appropriate incITrect
response. Thirdly;- the computational
overhead involved in checking and
correcting the users presumptions is not
incurred unless it has been determined that
an indirect response may be required.
Should the query succeed initially, no
penalty .!_~ exec ution time will ~~ ~ for
the ability to produce the indirect
~esp~nse~. In addition, thec,nly increase
in space overhead is a small control
program to produce the appropriate
subgraphs (the linguistic generation of the
indirect response is essentially free - it
is a trivial addition to the paraphrase
component already required in the parsing
phase). For these reasons, corrective
indirect responses, made possible by a
careful choice of representations and
associated algorithms, are produced in a
domain transparent fashion with minimal
system overhead using knowledge already
available in the DB.

SOME OTHER COOPERATIVE RESPONSES

In addition to facilitating corrective
indirect responses, the MQL provides a
convenient representation for producing
other types of cooperative responses.

One such response is a Sug~stive
Indirect Response. In human conversatTon,
questions are normally phrased to expect a
positive or non-trivial answer. When
negative responses occur, it is frequently
a · signal to the respondent that the
questioner has gotten "off the track". It
is then appropriate to include some
additional, potentially relevant
information in the response. 5B and 6B are
examples of such responses.

5 A. I s John a se n i o r ?
5 B. No, he 's a junior,

6A. Are there any more trains to N.Y.
this evening?

68, No, but there are 3 buses,

We call such responses suggestive
indirect responses, because after answering
the questions, they go on to suggest some
additional information.

The key observation here is that these
responses are usually answers to slightly
different questions. This system
incorporates a mechanism for producing
suitable variants of queries under
appropriate circumstances. In the proper
environment, the query in FIGURE 1 would
result in the response: "None, but here are
the programmers that work on project
6471 ••• " As with corrective responses, the
suggestive indirect response procedures
mainipulate the MQL in a domain transparent
way.

A common problem in NL query systems
is the production of unacceptably terse
answers. Consider a response of 7B to 7A,
and 8B to BA ,

7A. What grades did students
CSEllO?

7B, A,B,B,A,C,,,,

get in

BA. What are the phone numbers of
managers in Marketing?

BB . 293- 4958, 584 - 7945, 293-7754 •••

Obviously, both the grades and the phone
numbers are likely to be useless without
the associated names. These questions
require Supportive Indirect Responses
responses that provide the supporting
information necessary to interpret .the
answer.

The production of supportive indirect
responses is facilitated by the MQL, The
present system provides information on each
presented set (except those that are
singletons), supporting the selection made
from the primary presented set.

The CO-OP system currently provides
other types of indirect and direct
cooperative responses, in addition to
these,

A SHORT DEMONSTRATION

APPENDIX
interaction
implementation
stands. This
commented here.

A contains an example
with the preliminary

the CO-OP system as it now
session is abstracted and

CO - OP is currently implemented on a
in DEC KI - 10 under TOPS - 10 mainly

200

UCI -RUTGERS-LISP, and runs in 95K words,
including the SEED DB system. The DB is a
live one used by the National Center for
Atmospheric Research (NCAR) in Boulder, Co.
to keep track of their computer users,
projects, research sponsors, etc, The
primary purpose of the DB is to track the
use of NCAR facilities, for accounting and
other uses.

The user in the example is a
hypothetical Computer Science department
chairperson who has heard that the NCAR DB
contains information about who is
sponsoring research in various areas, and
is interested in securing some research
funds, S/he believes (incorrectly, it
turns out) that funds are available to
study mass storage, S/he begins by asking:

Q: Who sponsors active projects in mass
storage?

R: I don't know of any projects in mass
storage,

The system is unaware of any projects in
mass storage, and so explicitly corrects
the users presumption that there are some.
The user tries a more general question .

Q: Who
science?

sponsors research in computer

R: I don't know of
research in computer

anyone that
science,

sponsors

Again, a corrective indirect response - but
this time stating that no sponsors are
known, rather than that no suitable
projects are known, In addition to being
able to generate corrective indirect
responses, the system can choose the most
appropriate one when more than one is
applicable. This is done by observing that
the subgraphs of an MQL query are partially
ordered according to a subgraph relation,
and it is most appropriate to correct the
"least" failing subgraphs with respect to
this ordering.

Getting nowhere, the chairperson now
asks:

Q: What are the areas?

and receives a list of the areas of
interest (s/he knew that the projects at
NCAR are grouped according to a
predetermined list of areas of interest),
identified by the area number and name,
S/he observes that #6 (data processing) and
#12 (numerical methods) look interesting,
and follows up with:

Q: Who sponsors projects in area 6?

The response is a list of sponsor names
with a supportive indirect component of the
projects they sponsor in area 6, the name
of the area (because only the number was
supplied - the system doesn't remember that
it just provided the area name to the

. I

.1

. I

user), and the project numbers of the
sponsored projects. The user now decides
that Nasa Headquarters looks the most
promising (s/he has already checked with
NSF), and so asks:

Q: What is sponsored in numerical methods
by Nasa Headquarters?

After checking the DB, the system discovers
that Nasa Headquarters doesn't sponsor
anything in numerical methods.
Additionally, it is unable to detect any
failed presumptions on the part of the
user . It therefore provides a negative
response followed by a suggestive indirect
response listing the projects that Nasa
Headquarters sponsors in any area, in the
hope that this will be helpful to the user •

R: I don't know of anything in
methods that Nasa Headquarters
But you might be interested in
that Nasa Headquarters sponsors •••

nume r ica 1
sponsors.

anything

After perusing this list, the chairperson
concludes that although the projects don't
look very promising, s/he will get in touch
with Nasa Headquarters. S/he asks:

Q: Who is the contact at Nasa Headquarters?

It turns out that there is a contact at
Nasa Headquarters for each project
sponsored, and so the system prints out the
list (sorted by contact), along with the
projects they sponsor. Although the user
has presupposed that there is only one
contact at Nasa Headquarters, the system
provides the entire list, without
objecting. This and other forms of sloppy
reference are tolerated by the system.

CONCLUSION

This work demonstrates the feasibility
of producing cooperative responses from a
NL DB query system in a practical and
domain transparent way. A more robust
implementation is currently underway, in
the hope that this system can be put into
active use at NCAR. CO-OP, as designed and
currently implemented, produces other types
of responses not detailed here. Approaches
to portablility, transparency of DB update,
sloppy reference, modularity, a new method
of parsing and treating parse failure, and
sensitivity to a users "view" of the domain
as reflected in their questions, are all
incorporated to some degree in this system.

Any practical NL system that will be
subjected to typically naive users must
address the issues of cooperation addressed
here, if it is to function acceptably. A
careful choice of representations and
associated algorithms can produce an
acceptable level of cooperative behavior
without encoding large chunks of
domain-specific knowledge or maintaining a

detailed user model .

REFERENCES

Austin, J.L., How To Do Things With Words,
J.O. Urmson , Ed:,c5xford University Press,
N.Y. 1965.

Belnap, N. D., and T. B. Steel, The
Logic of Questions and Answers, Yale
University Press, New Haven, Conn., 1976.

Gerritsen, Rob, SEED Reference Manual,
Version COO - 804 draft, International Data
Base Systems, Inc., Philadelphia, Pa.,
19104, 1978.

Grice, H. P., "Logic
Syntax an~ Semantic s:
(P. Cole and J.
Academic Press, N.Y.,

and Conversation", in
Speech Acts, Vol. 3,

L. Morgan, Ed.),
197 5.

Harris, L. R., "Natural Language Data Base
Query: Using the Data Base Itself as the
Definition of World Knowledge and as an
Extension of the Dictionary", Technical
Report #TR 77-2, Mathematics Dept.,
Dartmouth College, Hanover, N.H., 1977.

Joshi, A. K., s. J. Kaplan, and R. M.
Lee, "Approximate Responses from a Data
Base Query System: An Application of
Inferencing in Natural Language", in
Proceedings of the 5th IJCAI, Vol. 1,
1977.

201

Kaplan, S. Jerrold, "Cooperative Responses
from a Natural Language Data Base Query
System: Preliminary Report", Technical
Report, Dept. of Computer and Information
Science, Moore School, University of
Pennsylvania, Philadelphia, Pa., 1977.

Kee nan, E. L., and Hull, R. D., "The
Logical Presuppositions of Questions and
Answers", in Prasuppositionen in
Philosophie und Linguistik, (Petofi and
Frank, Ed.) , Athenaum Verlag, Frankfurt,
1973.

Lee, Ronald M. "Informative Fail ure in
Database Queries", Working Paper #77-11-05,
Dept. of Decision Sciences, Wharton
School, University of Pennsylvania, 1977 .

APPENDIX A

Following i s a transcript of a brief sample session of the CO-OP system. The user is a hypothetical
Computer Science Department chairperson who is l ooking for r esearch funds (see t ext).

Some notes: In order to maintain the integrity of the system in an environment where the DB is
subj ect t o updates, l exi cal items appearing solely as data values are not duplicated in the NL
components. Although the design of the system calls for the DB to operate as an extension of the lexicon,
this link has not yet been impl emented . Consequently, data values encountered in the questions are
currently presented t o the user with a menu of possible categories for disambi6uation. This
inconvenience will be eliminated in the new version, currently under development.

Paraphrases are presented t o the user for approval to avoid misinterpretations. Unfortunately, t he
paraphrases are much too close (usually identical) t o the user's phrasing. The new version of the system
will incorporate a T!Dre reasonable theory of paraphrase. The data presented here has been altered in the
interest of privacy. Other than these changes, the transcript is an exact copy of the output produced by
the system.

(CO -OP)

Welcome to the COOPERATIVE QUERY system, Version o. This system
provides the casual user with informative responses to Natural
Language queries. It will perform only Data Retrieval - no calculations
or corrections to the Data Base can be made . Currently, the following
conventions/restrictions must be observed :

1 . Each question must begin with a WH-word, or 'How ••• '.
2. Do not refer to dates or clock times.
3. Explicit conjunction, disjunction, an.a negation are not supported

('and', 'or', 'not').
4. Neither are quantifiers (except as in 1. above) , or comparatives.
5. No smoking while the query system is in operation .

What is the maximum# of entries you want ln the responses? 15

Please state your question:

WHO SPONSORS ACTIVE PROJECTS IN MASS STORAGE?

PARS ING •••

I'm not quite sure what "MASS STORAGE" means •••

Please enter the number of the category the word belongs in.

0
1
2
3
4
5
6
7
8
9

SOMEWHAT UNCERTAIN
NONE OF THE BELOW
DIVISION NAME
SUPERDIVISION NAME
SPONSOR NAME
ADVISOR NAME
PERSON NAME
AREA OF INTEREST
PROJECT TITLE
GROUP ID

YOUR SELECTION: 7

I understand your question to mean :

WHO SPONSORS PROJECTS ACTIVE IN MASS STORAGE?

Is that approximately what you intended (yes, no or stop)? YES - SORT OF.

I DON'T KNOW OF ANY PROJECTS IN MASS STORAG~ •

Any more questions (ye s or no)? YES

20 2

Please state your question:

WHO SPONSORS RESEARCH IN COMPUTER SCIENCE?

PARSING •••

I understand your question to mean:

WHO SPONSORS RESE ARCH I~ COMPUTER SCIENCE?

Is that approximately what you intended (yes, no or stop)? YES

. . 1 I DON'T KNOW OF ANYONE THAT SPONSORS RESEARCH IN COMPUTER SCIENCE•
' I

Any more questions (yes or no)? YES

Please state your question:

WHAT ARE THE AREAS?

PARS ING •••

I understand your question to mean :

DISPLAY THE AREAS.

Is that approximately what you intended (yes, no or stop)? YES

(AREA OF INTEREST #) (AREA OF INTEREST)

1 AEROSOL PHYSICS
2 ASTROPHYSICS
3 BOUNDARY LAYER, PLANETARY
4 CHEMISTRY, ATMOSPHERIC
5 CLIMATE
6 DATA PROCESSING (AIRCRAFT, BALLOON, OTHE
7 DYNAMIC METEOROLOGY (GENERAL)
8 ECONOMIC AND SOCIETAL IMPACT STUDIES
9 GENERAL CIRCULATION
10 GEOPHYSICAL FLUID DYNAMICS (BASIC)
11 MESOSCALE AND REGIONAL-SCALE MODELS
12 NUMERICAL METHODS
13 OBJECTIVE ANALYSIS AND DIAGNOSTIC STUDIE
14 OCEANOGRAPHY
15 RADAR METEOROLOGY

Any more questions (yes or no)? YES

203

Please state your question:

WHO SPONSORS PROJECTS IN AREA 6?

PARSING ...

I understand your question to mean:

WHO SPONSORS PROJECTS IN AREA t6?

Is that approximately what you intended (yes, no or stop)? YES

(SPONSOR NAME) (PROJECT TITLE) (AREA OF INTEREST)

AIR FORCE CAMBRIDGE RESEARCH AIRCRAFT+ RADAR STUDIES OF PRECIP. SYSTEMS DATA PROCESSING
AMERICAN MET EOR. SOCIETY AMS QUEST_IONNAIRE ANALYSIS DATA PROCESS ING
BUREAU OF RECLAMATION SAN JUAN AIRCRAFT DATA ANALYSIS DATA PROCESS ING
ENVIRONMENTAL PROTECTION AGNCY HEAT+ VAPOR FLUX MEASRMNTS FROM NCAR Q AIR DATA PROCESSING
ERDA-BATTELLE NORTHWEST LABS WYOMING WIND ENERGY DATA PROCESS ING
NASA HEADQUARTERS DATA ANAL FOR COLO HAO OSO I INSTRUMENT DATA PROCESSING
NATIONAL SCIENCE FOUNDATION AIRCRAFT+ RADAR STUDIES OF PRECIP. SYSTEMS DATA PROCESS ING

GATE DATA ANALYSIS AND RELATED ST UDIES DATA PROCESSING
HEAT+ VAPOR FLUX MEASRMNTS FROM NCAR Q AIR DATA PROCESSING
KNOLLENBERG PROBE DATA ANALYSIS DATA PROCESSING
LAB SIM. OF GLOBAL ATMOS. CIRCULATION DATA PROCESSING
METROMEX AIRCRAFT DATA REDUCTION DATA PROCESSING
S.PARK CONTINENTL SUMMRTME CUMULS EXPT. DATA PROCESSING
SNOW SHOWER CLOUD PHYSICS-DATA REDUCTION DATA PROCESSING
STATISTICAL ASPECTS OF METEOR.DATA ARCHIVING DATA PROCESSING

Any more questions (yes or no)? YES

Please state your question:

WHAT IS SPONSORED IN NUMERICAL METHODS BY NASA HEADQUARTERS?

PARSING •••

I understand your question to mean: .
WHAT IN NUMERICAL METHODS DOES NASA HEADQUARTERS SPONSOR?

Is that approximately what you intended (yes, no or stop)? YES

I DON'T KNOW OF ANYTHING IN NUMERICAL METHODS THAT NASA HEADQUARTERS SPONSORS
BUT YOU MIGHT BE INTERESTED IN ANYTHING THAT NASA HEADQUARTERS SPONSORS •••

(AIRCRAFT,
(AIRCRAFT,
(AIRCRAFT,
(AIRCRAFT,
(AIRCRAFT,
(AIRCRAFT,
(AIRCRAFT,
(AIRCRAFT ,
(AIRCRAFT,
(AIRCRAFT,
(AIRCRAFT,
(AIRCRAFT,
(AIRCRAFT,
(AIRCRAFT,
(AIRCRAFT ,

(PROJ ECT)

BALLOON, OTHE 35371001
BALLOON, OTHE 36051000
BALLOON, OTHE 35711008
BALLOON, OTHE 35711009
BALLOON, OTHE 35711011
BALLOON, OTHE 35071000
BALLOON, OTHE 35371001
BALLOON, OTHE 35371005
BALLOON, OTHE 35711009
BALLOON, OTHE 35711007
BALLOON, OT HE 35111021
BALLOON, OTHE 35061000
BALLOON, OTHE 35081018
BALLOON, OTHE 35061015
BALLOON, OTHE 35261001

(PROJ ECT TITLE) (SPONSOR ADDRESS) (PROJECT/ACCT t)

ACCRETION + ELECTRICAL HEATING MODELS PLANETARY PROGRAMS/SL, WASHINGTON, DC 20546 35021001
CHEMICAL MODIFICATION OF IONOSPHERE-PHASEII PLANETARY PROGRAMS/SL, WASHINGTON, DC 20546 .3 566 l 00 9
DATA ANAL FOR COLO HAO OSO I INSTRUMENT PLANETARY PROGRAMS/SL, WASH ING TON, DC 20546 35071000
DYNAMICS OF PLANETARY MAGNETOSPHERES PLANETARY PROGRAMS/SL, WASHINGTON, DC 20546 35101008
E LECTRONMAGNETIC SCATTERING PLANETARY PROGRAMS/SL, WASHINGTON, DC 20546 35021006
MARKOV CHAIN RADI. ... TIVE TRANS. FOR CALCULATIN PLANETARY PROGRAMS/SL, WASHINGTON, DC 20546 36081000
OUTER ATMOSPHERES OF F,G,+K DWARF STARS PLANETARY PROGRAMS/SL, WASHINGTON, DC 20546 35071048
PERTURBATIONS OF STRATOSPHERIC OZONE PLANETARY PROGRAMS/SL, WASHINGTON, DC 20546 35121013
PLANETARY HEATING MODELS - SOLAR WIND PLANETARY PROGRAMS/SL, WASHINGTON, DC 20546 35021007
RADIATIVE TRANSFER IN SPHERICAL SHELL ATMOS. PLANETARY PROGRAMS/SL, WASHINGTON, DC 20546 35311027
STRATOSPHERIC PHOTOCHEMISTRY+ TRANSPORT PLANETARY PROGRAMS/SL, WASHINGTON, DC 20546 35201010
THEOR MODEL FOR DETER OF CHRGD PARTICLE DIST PLANETARY PROGRAMS/SL, WASHINGTON, DC 20546 35201017
TRANS. NON-EQUI LIB. OF ELECTRONS IN SOLAR RE PLANETARY PROGRAMS/SL, WASHING·roN' DC 20546 35071040
WAVE INDUCED PRECIP.OF ENERGETIC PARTICLES PLANETARY PROGRAMS/SL, WASHINGTON, DC 20546 35661007
X-RAY SCATTERING IN SOLAR FLARES PLANETARY PROGRAMS/SL, WASHINGTON, DC 20546 35661005

Any more que stions (yes or no)? YES

2 04

Please state your question:

WHO IS THE CONTACT AT NASA HEADQUARTERS?

PARS ING •••

I understand your question to mean :

DISPLAY THE CONTACT AT NASA HEADQUARTERS

Is that approximately what you intended (yes, no or stop)? YES

(SPONSOR CONTACT) (PROJECT/ACCT #)

Benson, Bernard 35071040
Candler, L.M. 35101008

35121013
Farell, Simon v. 35601009

I Handler, J. 350210Gfi
Kenig, Lana P. 35201017

35021001
35311027

King, Jr, James 35661005
Marshall, B. 35201010
Myers, David 35201012
Noble, Paul H. 35661007

.... . 35021007
Schrager, A. L. 35071048

35071000

· 1

Any more questions (yes or no)? NO

I
I
I

·I

. I

· 1

-I

.,

205

A Progress Report on the Discourse and

Reference Components of PAL

Candace Sidner

M.I.T. Artificial Intelligence Laboratory

Cambridge, MA U.S.A.

Abs tr act: This paper reports on rese,1rch being conducted on·

a computer ass istant, ca lled PAL. PAL is being desig-ned to

arrange var ious kinds of events with conc~rn for the whci,

what, when, where and why of that event. The goal for PAL is

to permit a speaker to interact with ii in Engl_ish and to use

extended discourse to stale the speaker's requirements. The

portion of the language system discussed in -this report

disambiguates references from discourse and interprets the

purpose of sentences of the discourse. PAL uses the focus of

discourse lo direct its attention lo a port ion of the discourse

and to the database to which the discourse refers. The locus

makes ii possible lo disambiguate references with minimal

. search. Focus and a frames representation of the discourse

make it possible to interpret discourse purposes. The focus

and representation of the discourse are explained, and the

computational c·omponenls of PAL which implement reference

disambiguation and discourse interpretation are preser11ed in

detail.

Keywords: reference disambiguation, disco.urse interpretation,

discourse purposes, natural tanguage, focus, frames.

· I . Introduction

Every discourse in English consists of on_e· or more

sentences which create a general context of pe.ople, places,

objects, times and actions. The speaker of the discourse

generally will not relate references from one sen•ence .to the

previous in any direct fashion nor indicate how the requests or

assertions · of each sentence in the discourse are connected.

For the hearer to interpret the speaker's discourse and d~cide

what the speaker is requesting or asserting, the hearer must

complete two tasks, among others: (I) disambiguate the

referentia l terms for their inter-sentential and extra-sentential

links, ant;! (2) determine the purpose of each !;entence in the

discourse. The first of these two tasks makes it possible. to

know what entities the speaker is referring to. The second

task result.s in establishing a connected discourse and

understanding what the speaker wants to communicate.

206

Interpreting the discourse purposes of various sentences

explains why 01 is acceptable below (even though 01 -2 does

not mention the party) while 02 is unacceptable. A theory of

reference disambiguation will explain the disambiguation of his

to Bruce and not to Mike, in 03.

Dl - 1
2

John is having a party al his house.
I think the guest of honor is Mary as they are
going to announce the · publication of Mary's
book.

D2-1 Henry wants lo meet with Harold.
2 Sing a song before 3 on Thursday.

D3 - 1 I want to have a meeting this week.
2 Brucei will be the guest lecturer.
3 He will speak on slavery in ant colonies .
4 Mike wants to read ~ report before the. talk.

An explanation of these phenomena. underlies the research

being conducted at the MIT Al lab on PAL. While RAL, is

designed to understand the English form of requests for

arranging various events, the design depends upon a theory ·

about how to interpret a speaker's 1 extended discourse. PAL

acts as a model of a hearer in these discourse situations. Two

problems that must be solved before PAL can understand

requests in extended discourse are referential disambiguation

and discourse purpose interpretation. This paper reports On

progress on these two problems.

A sample scenario of what PAL is designed to d9 is·

given in 04 below.

D4- l I want to schedule a meeting with Dave.
2 It should be al 3 p.m. on Thursday.
3 We can meet in his office.
4 Invite Bruce.

To understand this discourse, PAL must have several natural

language ski lls:

a. parsing for the syntactic structure.

1. I wiil use the term speaker to refer to the producer of a
spoken or written discourse and hearer to refer lo the
receiver of the discourse.

.I
. j

.. /

b. interpret at ion of predicate-argument relations.
c. mapping of the words of each sentence to a

representation U9ed by the underlying data.base
and programs.

d. disambiguat ion of the referential terms.
e. interpret at ion of each sentence for its discourse

purpose.

The f irst two of these ski ll s constitute the parser and case

frame interpreter developed by Milch Marcus. The

representation mapping was deve loped by the . author. These

three modules are discussed in Marcus [1978). To present a

clearer picture qi what PAL must be able ·to do, consi~er a

sentence by sentence interpretation of the above dialogue.

I want to schedule a meeting with Dave.
PAL interprets an internal represenlatio.n of the
speaker as referent of "I," and an internal
representation of "David McDol'\ald" as the referent
of "Dave."
PAL creates a new internal representation with
features lo be discussed later lo be the· referent. of
"a meet ing .. "
PAL interprets "want to schedule a meeting" to · be
a request for a scheduling operation which may
extend over several sentences.
PAL inte~prets the whole sentence lo be asserting
that the meeting has two participants, the speaker
and Dave McDonald. ·

II should be at 3 p.m. on Thursday.
PAL interprets "it" as co -referring to the meeting
under discussion.
PAL disambiguates the time phrase lo a frame form
used by the scheduler.
PAL interprets the sentence as asserting 11ddilionat
information about the meeting al hand.

We can meet in his office.
PAL determines that the speaker and other
participant are the co-referent of "we."
PAL finds in its internal representations of ·things,
an entity which "his office" can refer lo.
PAL accepts the sentence a'S providing more
information about the meeting al hand and asserts
that fact .

Invite Bruce.
PAL finds an internal representation of the person
referred lo as "Bruce." ·
PAL determines that the ellided event which Bruce
is lo attend is the meeting under discussion.
PAL accepts the invite command as asserting
another participant of the meeting.

<end of discourse>
PAL interprets the scheduling reuqesl as complete
and carries out the scheduling command with the
meeting as ii has been specified in the discourse.

In order to perform these tasks, a theory about the nature of

discourse and some of its components has been developed and

will be reported on here. Following that discussion, a closer .

look at the rules used by an implemented running version of

PAL will be discussed.

207

2. Definition of Discourse

First, a "discourse" must be defined. lake a

discourse to be any connected piece of text or spoken

language of more than one sentence or independent sentence

fragment. Ideally, every discourse is about some ce.ntral

concept which is then elaborated by the clauses of a

discourse. Speakers often produce discourses which fail lo

meet this specification because they talk 1 a) about several

concepts without relating them or lb) without informing the

hearer that several concepts will . be discussed at' once or 2)

because !,here is no central concept i.n their discourses.

Howev.er, this . idealization will serve to iniroduce · some

important terms. Multi - concept discourses do occur, and can

be described using an approach which is a· generalized version

of that presented in thi s paper . Some cases of multi-concept

discourse are discussed in Bullwinkle [1977). However, the

theory presented here has been tested in a running

implementation of PAL, and this paper is restricted lo that

tested model.

In previous work [Winograd, 1971; Rieger, 1973;

Charniak, 1972) various . structures for referencing were

assumed. Winograd used lists of entities of the same semantic

type and chose referents for anapho·ric terms based on

recency and likelihood in the proper semantic class. His

mechanism was too simple and failed to account for numl!'ro1:1s

anaphoric cases as well as being limited to objects in a closed

world. Rieger postulated memory structures from a. conceptual

dependency representation of the sentences of a discourse.

The memory structures were used lo iAfer other information

that could be unified to determine 'co-reference. His

algorithms suffer from the explosive number of inferences that

can be made from each memory strucl.ure. Charniak supposed

that there were large collections .of inference rules, called

demons, which knew what to do with a small .piece of the total

knowledge, and which fired whenever that knowledg.e was

encountered. This theory represents overkill; if one could

have as many demons as Charniak supposed and gf!I them to

fire when that knowledge occurred, the mechanism could be

used to predict co-referentiality of referencial terms.

However, controlling the multitude of demons is- diflicult2 , and

furthermore one cannot imagine how such a collection of

knowledge is learned in the first place.

To interpret definite noun phrases and anaphors, 11

different approach is taken in PAL. II is ass.urned that

discourse contains a structure, which when represented, can

2. Rosenberg [personal communcalion] has created a device
called sentinels which may partially solve this problem.

cons train .the interpretation of referential terms. From. the

discourse structure, r ules have been discovered which govern .

the accep tabi lity of referential terms in different dis.course

situations. The interpretation of references is not strictly

deterministic; it is like knowing which of several places to look

in the discourse for a co-referent and trying out the term

found there.

The theory underlying PAL distinguishes two kinds

of referring. The first is an internal reference between.·a noun

phrase and some pre-existing database object. That database

object represnts a real world entity. In Figure 1 b11low

internal reference links the noun phrase NPl "Jimmy .Carte.r" to

a representation of Jimmy Carter (who is described. as

president of the US, etc.). How that database object refers to

the .real world is the classica l semantic problem of reference

(cf. Kripke [1972) among others) and is b~yo"'d the ·scope of

this work. The other kind of referring is co-refer~nce.

Co~reference links a noun phrase to another noun phrase. The

two noun phrases are sa id to co-refer, and both refer to the

same database object. In Figure 1, the dashed link from NP2

"Jimmy" to NPl is a co-reference link. The dot~dash link from

NP2 to the database object is a virtual internal reference link

which results from the co -reference link from NP2 to NPl and

from the internal reference link from NPl to the· database

ob ject. Internal reference and co-reference links are

distinguished because co-reference links can be established

more easi ly using discourse structure. In the remainder of this

paper when I speak of intern.al reference, I will drop the

phrase "internal" and use only "reference."

Fi1. 1. Reference Links BetwHn Noun Phrase,

. /_.,."""" .
/ co- reference \

IC.

NP 1 "Jimmy Carter" NP2 "Jimmy"

reference

I

' virtual
;--- internal

reference

Database Representation of{mmy Carter
Name: Jimmy Carter
occupation: President of. US
birthplace : Georgia

208

3. The Concept of Focus

The centr al concept of a discourse may be

elaborated by several sentences of the discourse and then

either discontinued in favor of a related concept, or dropped in

favor of a new concept. This central concept of a discourse is

called the discourse focus or simply the focus. This term was

first used by Gro.sz [1977). A simple example of focus is

meeting in D4 repeated below:

D4- l I want to schedule a meeting with Dave.
2 It should be at 3 p.m. on Thursday.
3 We can meet in his office.
4 Invite Bruce.

All four sentences give information about \he focussed entity.

The focus is what makes a text or a set of utterances a

discourse.

In this work the focus is assumed to be a concept lo ·

which other concepts are associated. Some of the association

links are "built - in" in the sense that they exist previous to the

discourse. For example with meeting, built - in associ.al!on links

include that a meeting has a lime, a place, a set of participants,

and a topic of discussion. These as~ocial ion links are

distinguished in the sense that the concept has explicit links lo

these concepts while no explicit links exist to other concepts

such as color , cost or age. The discourse often serves the

purpose of specifying more about the concepts linked to a·

focus. In D4-l, there is c~rla in information about who the

participants are, while D4-2 specifies the time. D4-3 causes

the hearer lo infer that the office is a place for a meet ing,

because the focus meeting has a place associated with it, and

because PAL expects to be informed abouf the con~epts

associated to a meeting.

In PAL the association links between concepts are

easily expressed in the frames structure of FRL [Goldstein and

Roberts, 1977). A frame for a m~eting has slots for limes,

places, participants and so on. It is exact ly these .slots I.hat

serve the purpose of association links to other concepts. One

purpose of a discourse with PAL is to fill those slots with

values and required information. As I 'f/i ll discuss in the

section on the use of definite noun phrases, the values gjven·

to those slots are also useful in interpreting co-reference and

in under st anding the · purpose of a sel'llence of the discourse.

Focus also serves as the central index point for

co-referencing. The focus is what is going to be talked about

in the discourse. When ii is introduced, it is new information.

Thereafter ii is the given informatian, and more new

information is added to it. Knowing what the focus is helps

determine co-reference relations because old information can

be pronominalized while new information cannot. If a focus is

seen not just as an entity by itself but connected to other

ent ities, focus indicates ho_w those entities can be co-referents

as wel l. In D4-(2-4), the focus of meeting can be used to

determine the co-reference of it, we and his of his office: it

must co-refer to the focus, we to those individuals ·associated

to the foc4s who incluc;le the speaker, and his ·10 an individual

associated to the focus who is not the speaker and has male

gender. The focus is used as an access function· for retrieving

the co-referent of a particular noun phrase. · . Later .in this

paper, ru les governing the use of anaphora by means of the

focus of the discourse will be discussed.

In the current version of PAL, focus is chosen as the

first noun phrase following the verb if one ·exis1s, else the

subje~t is used as focus. This method of choosing focus is

adequate for current PAL discourses but not sufficier,l for. the

most general case. See Sidner [forthcoming] _ for a full

discussion of focus choice. Once a focus is chosen, it can be

used in succeeding sentences to determine the co- reference of

pronouns or definite noun phrases as well as to check to see if

the · discourse is still connected. A sentence like (la) belo:,v

followed by (1 b) is a disconnected discourse because the

co-referential terms in (1 b) are unrelated to the focus of (la)

based on the association links present in the database'.

(1 a) I want to meet with Henry.
(lb) Give me an ice cream cone.

The focus of the discourse can be changed while

main! aining a connected discourse. The chief means · are. end of

discourse remarks and focus -shift. End of discourse remarks

can be explicitly stated ones like "That's i!II," or .implicit ones,

such as the act of simply ending the input stream .. A ·less

reliable, implicit marking of the end of dtscourse is to use a

sentence with unrelated co-referential' terms. In the case

above, (la) followed by (lb) could be assumed to be two

separate discourses. This case is less reliable because it is

impossibl'e to tell if the speaker assumes that lhe ice cream

cone is related (as is often the case with a non-ideal speaker)

or whether the speaker intends to change the discourse to a

new one. At present PAL does not accept this kind of abrupt

discourse change; instead PAL indicates that such a·sentence

is not intelligible in the discourse. A more sophisticated PAL

might request that the speaker explain how it is that (lb) is

related to the discourse.

The other means of changing the focus I caU

focus -shift. A discourse may expand various aspects of a

focus and then choose one aspect of the focus to describe in

detail. For example, in a discourse about meetings, we may

want to spend several sentences specifying the · time for the

meeting, why that time is best and so on. When time is being

209

discussed, one would like to know that. the focus has changed

so that assertions or requests can be taken \o be. about lill)e,

However, the meeting focus may be brought back into the

discussion later. To maintain both foci, the meeting focus is

stacked for later use.3 Detecting · this focus change i.s the

process of focus -shift.

Focus shifts cannot be predicted; they are

detectable only after they occur. To detect the foqis shi·ft, the

focus shift mechanism takes note of new phrases in sentences

following the introductory sentence. Any new phrase is a

potential focus. an anaphoric term in a sentence which follows

the potential focus sentence may co-refer to either the focus

or the potential focus . If the potenti;il focus is an acceptable

co - referent, it is the co - referent of the anaphoric term, and

the focus shifts to the potential focus. The choice of office as

co - referent of ii in D5 -3 results from focus-shift . The

co-referent of if to meeting in D5-3' results from. the rejection

of the potential focus office as the co - referent.

D5-1: I want to schedule a meeting with George, Jim,
Steve and Mike.
2 We can meet in my office.
3 It's kind of small, but the meeting won't last very
long anyway.
3' It won't take more than 20 minutes.

Rejection of a co - referent resvlts from semantic information

abo4t the type of verb and the type of semantic entities it

accepts. Semantic information has been proposed for use with

co - reference (see Winograd [1971], among others). PAL uses

this information only to reject or confirm choices made by the

focus and focus-shift mechanisms, rather than to suggest

classes of co - referents.4

4 . Modules of PAL

The preceding descri_ption of co-reference

interpretation has been incorporated into a series of modules

for PAL. These modules are depicted in Figure 2 below. The

arrows represent f low of control between modules.

Each English sentence presented to PAL by a

speaker is interpreted via a parser, case frame int~preter -a.nd

represent at ion mapping program [Sullwinkle, 1976; Marcus,

1978) into a set of FRL frames. The sentence "Schedule a

meeting in my office," is represented by the following

simplified frames (slot and slot values are listed also).

3. Grosz [Deutsch, 1975) .gave the first specification of
discourse shifts using the concept of focus. These . are
discussed further in Grosz [1977).
4. The mechanism of focus-shift is discussed in more detail ·in

Bullwinkle [1977), where the term "sub-topic shift" is ·used.

Fie. 2. Modules of PAL

~~~ ,---- ---~ 

frame 
a-kind-of 

~ 
actor 
event 

frame 
a-kind-of 
place 
determiner 

frame 
a-kind -of 
determiner 

frame . 
a-kind-of 

('10.f'f'~j 
r<cu:.'!.~or 

schedule201 
sched1,1le 
"imperative" 
PAL 
meeting203. 

meeting203 · 
meeting 
office207 
"a" 

office207 
office 
my209 

my209 
my 

Given these frames, PAL is expected to determine what my209, 

office207, and meeting203 co-refer to. PAL also must detide 

what the purpose of an imperative scheduling request 

(represented by schedule201) is relative to its database 

collection of actions. Each of these modules will now · be. 

discussed in detail. 

5. Interpretation of Discourse Purposes 

To interpret discourse purposes, a discourse module 

creates a model of the discourse and controls.'the process of 

focus identification. Since the beginning, middle _and end of • 

discourse each require different .actions by the PAL sched.uler, 

the discourse component models each diff.erently. The first 

sentence of the discourse is assumed to specify what the 

nature of the user's communication is. This is a simplified view 

of the real communication process. Many discourses do not 

simply state their object and then elaborate the relevant 

information. Instead many speakers begin a discourse as in 06 

below .in which the first sen\ence contains • reason for some· 

other action, which is requested in a later sentence. Other 

discourses may introduce individuals or objects to ~he hearer 

for later comment on them. 

06: I am going on vacation the beginning of ne)(t week. 
John wants to see me, so schedule our regular 
meeting session before I leave. · 

The current version of PAL uses the simplifie<j view. 

210 

of discourse to choose a discourse purpose. Introductory 

sentences are assumed to be making some sort of request. 

The PAL discourse module choose.s which request on the basis 

of the verb and any associated modals, or on the ba$iS of 

verbs of desire (want, · wish, wouti like) and the · ve.rb 

complement. A request consists not only of the request type,· 

but of some object which the request is about (intransitive 

verbs are not relevant to PAL since telling PAL to laugh, run 

or groan is inappropriate). The focus of the discourse is used 

for this purpose. · This choice is plausible not only because the 

focus is closely associated with the object of the verb, but 

also because a discourse centers discussion on some particular 

entity, and that entity is captured by the focus. 

Once a focus has been designated, sentences 

occurring in mid-discourse ·are assumed to be about the focus 

until the co-reference module predicts a focus-s.hift and/or · 

until the verbs used are inconsistent with the discourse 

request. Mid -discourse sentences often do , not e)(plkit.ly 

co-refer lo the focus as has been shown previo~sly in 01 and 

04; they may contain an implicit focus co-reference. Use of 

focus for co-reference disambiguation has the added benefit 

that sentences containing implicit focus co-references are 

easily recognized by the discourse component. Once an 

implicit focus relation is established, the module can go onto 

predictions of focus shift. Knowledge that the speaker is 

co-referring to the focus, either explicitly Of implicitly, .makes 

possible the prediction that the discourse is not yet complete, 

and the prediction that the speaker is makJ.ng a coherent 

request. Since neither prediction can be ·assumed triviaUy 

true, the focus is important to the communication process. 

In addition to the focus, the discourse module 

contains know ledge allowing the module to decide if the verb 

of a new sentence is consistent with the discourse request. 

Thus in 07 below, the second sentence uses a verb that is 

consislen.t with the scheduling request while in 07', the verb is 

odd. 

07: Henry wants to mee t with Harold. Choose a time 
before 3 on Thursday. 

07': Henry wants to meet -with Harold. Sing a song . 
before 3 on Thursday. 

The knowledge needed to predict consistency is represented 

in the frames database in two ways. First the frame for the 

discourse request contains information about wliat other 

requests can be sub - requests of the discour.se . . Second a set 

of mapping frames contain information which determine how a 

verb can be interpreted as making a certain request. For 

example, the verb be can be associale,d with scheduling and 

re-scheduling activities. However, the intention of the speaker 

in a sentence like (2) is different within the c!)ntext of a 



. I 

scheduli ng or a re-scheduling request. 

(2) The l ime should be 3 pm. 

In a scheduling context, (2) can be interpreted ·to request that 

t he t ime be established as 3 pm while (2) in re-schedullng can 

have an' interpretation of changing the time from wtiatever it 

was to 3 pm. PAL captures the intention of the speaker 

re lative to a request context by an inference mechanism whi(:h 

is a matcher that · determines that (2) represented as a frame5 

can be associated with scheduling requests by a simple 

mapping · between two frames. This correspondence coupled 

w.ilh the use of focus makes it possible lo understand (2) as . 

part of a discour'se. 

In addition, the mapping functions tell · how to 

interpret the current sentence into one of the. commands which. 

t he scheduler can per form. Included in this proces5 are how 

to map the slots of one frame into a frame which is the 

scheduling action. For example, the verb frame for "We can 

meet in 823" is mapped from a "meet" frame into a frame 

called "assert" with a slot for the object asserted, which is t.he 

focus, and a slot .for what is asserted about that object, in this · 

case the place as 823. 

The end of a discourse is currently interpreted as 

being the end of the speaker's input stream. A more · 

sophisticated means of interpreting discourse end is possible, 

though not implemented, given the focus me~hanism: when .the 

needed slots of the focus are . filled, · the. spe\lker can be 

considered to have finished this discourse. Upo,n sensing the 

end of the discourse, the discourse module informs· the 

scheduler that ii can carry out the action requested .it the 

discourse beginning. Al first glance this may appear as if the 

discourse request specified at the beginning is ignored in favor 

of other requests. In fact I.he initial request is u·sed in 

interpreting mid-discourse sentences. However, m_any 

discourse actions like scheduling require that the action of 

scheduling be delayed until all the necessary information fpr 

scheduling is presented. This process normally c,annot be 

stated in a single·sentence, and a whol11 discourse is n.eeded to 

fill in the request. In this fashion the discourse module 

ref lects the fact that a discourse consists of many 

sub-:discourses centered around i'ndividual entities and which 

are opened and closed by focus shifting or finishing discussion 

of the current' focus. 

PAL is s.imilar to the GUS system [Bobrow et al, 

1977] because it expects a discourse. to provide information 

about the slots of a frame. GUS permits user initiative 

5. A frame is not taken as the meaning, in the classical 
semantic sense, for (2); PAL makes no claims about this sense 
of meaning. 

Zll 

although it is unclear what the extirnt of this initiative is. GUS. 

does not seem to ·allow for user initiative of the disco.urse 

requests. Since PAL expects full user control over all parts of 

the discourse, PAL needs a complete description of the 

discourse and its focus. PAL's use of focus also presents a 

complete theory of the kinds of co-reference problems raised 

by the GUS system. 

6. Co- reference Disambiguation 

There are two sub-modules for co-reference 

interpretation in PAL, the sentential and inter-sentential· 

co-reference modules. The inter-sentential co-reference · 

sub-module chooses co - references for referential terms in the 

discourse once the focus Is idenlifed: The task ot' determining 

co - reference varies depending upon the presence or a.bs,:nce 

of previous discourse. When there is previous discourse, 

co-reference interpretation depends largely ·on the focus. For 

simple6 definite noun phrases, PAL assumes either lt:,e focus is 

the direct co-referent of the de.finite noun phrase or the.· focus 

contains a slot that is the co - reference of the definite noun 

phrase. This assumption needs modification since s.ome 

definite noun phrases are used to refer outside the context . of 

the discourse. For example, when trying to .schedule a 

meeting, if the speaker says (3), the definite noun phrase 

co - refers to an entity · associated with the meeting under 

discussion; that association is reflected in the frame · slot 

structure of FRL. 

(3) The best place is my office. 

However, if the speaker says (4), the conference room, i.e. that 

particular conference -room which the speaker has in mind, is · 

not associated with meetings in general, and .so the focus does 

not point out the co-reference. 

(4) We ought lo meet in the conference room. 

However, by searching the focus, the lack of a connection can 

be noticed, and a reference from the database can then be 

considered. In this way, the focus acts as an access. function, 

but only for those co - referential terms related to the previous 

sentences of the discourse. 

PAL uses database search with growing contexts of 

reference to choose reference for other kinds of noun phrases 

which refer to entities outside the discourse. Growing a 

context is accomplished using the immediate set of frames from 

the first sentence and recursively creating largllr sets from 

the slot values of those frames until the frame with .the. name 

in question is found. The context growing mechanism reduces 

6. A simple definite noun phrase is a definite noun phrase 
containing no relative clauses. At present PAL interprets only 
such noun phrases. · 



search from a more global search strategy, and ·helps · control 

potential ambiguities that exist due to multiple possible 

references in the database. This same melho.d could be used 

for definite nou_n phrases that refer outside the· discourse. 

Use of the focus is actually somewhat more complex 

since the definite noun phrase may he a co-;eference to the 

potential focus of the discourse. Should a defin!le noun _phrase 

co-refer to the potential focus, the discourse module pushes 

the current focus to a focus slack and lakes _the potential 

focus as the new focus. The pushed focus is available· for 

later use in the discourse. The current inler~senlenlial 

sub-module does not interpret definite noun phrases used 

gener icall y. The focus can be used for these cases as well 

(see Sidner, [forthcoming]), but the detaHs of this. process are 

not included in the current version of PAL. 

The inter-sentential co-reference sub-module also 

determines the co-reference of personal prono·uns,. For the 

pronouns of first person plural (we, us), two choices can be 

made. First the sub-~odule can choose the focus as the direct 

co-referent of the anaphor. Second the sub-module . can 

choose a set of co-references from a particular slot of the 

focus. Thal slot must contain co-re ferences including the· 

speaker of the discourse. For he/she, and its object forms, the . 

focus is chosen as a direct co-reference. Using the focus as 

co-referent explains the anaphoric co-reference in .D8 of his to 

Bruce and rather than Mike. When the ·focus is not the 

co-referent , a co-referent st ipula.l ed by the co-referent.~ rules 

of the sentential co-reference sub-module, discussed below is 

used. Finally if neither is acceptable, entit ies associated with 

the focus are checked for co-reference. This sub-mocjule 

Pf"edicls · misuse of he/she pronouns if no co-re ferences are 

found from this process or if more than one results f-rom the 

last step il'I the process. 

The interpretation of co-reference for he/she 

pronouns needs to be expanded to include consideration of 

potential focus since in D8 below, his co-refers lo· Bruce and 

not to Mike. 

D8: I want to have a meeting this we.ek. Brucei will be 
the guest lecturer. Mike wants to read !!J!i. report 

fir st. 

It appears that the focus and potential focus ought ·lo be 

checked for co-reference lo such pronouns before sentential 

co-reference rules are used. However, further 

experimentation with such cases is needed to confirm this 

aspect of co-reference. 

For the co-reference of if, the int11r-sentential 

co-reference sub- module chooses a co-refer!!nl either from. 

212 

the focus, the potential focus or from predictions· from 

sentential co-reference rules, which are discussed below. This 

choice strategy is not entirely adequate because, recency 

appears to play a ro le in the co-reference choices for it. 

Recency rules are discussed in Sidner (forthcoming), and could 

be included in a future ver sion of PAL. The inter-sentential 

co-reference sub-module uses the semant ic con:;lraints placed 

on the pronoun by the verb i.n a few instances; this portion of 

PAL could be expanded greatly. Co-reference rules for they. 

work similarly to . those for · it with consideration that the 

speaker cannot be included in the co-refer(!nce set. 

When no previous discourse exists, PAL's sentential 

co- reference sub-module uses the co-reference rules of Lasnik 

(1976] to choose co-references. The rule is staled as toilows: 

If a noun phrase., NP 1, precedes another noun phrase, NP2,·and 

. NP2 is not a pronoun, and further · if I.he minimal cyclic node 

dominating NP 1 also dominates NP2, then· NP2 and NP2 ar.e 

disjoint in reference. The expression "disjoint in reference" is 

taken to mean have no references in common, thereby blocking 

the co-reference of Bob and Tom to they in (5): 

(5) They assume that Bob will talk to Tom. 

By ,using Lasnik's rule, disjoint references of a noun phrase in 

a sentence can be chose~, as well as a list of acc~plable 

co-references for the noun phrase. This information is 

recorded in the frame presenting the noun phrase. · As pointed 

out by Reinhart [ 1976 ], Lasnik's rule fails to predic! the 

disjoint references in sentences like (6) ·and (7) below, but 

these cases are not problematic given inter-sentential 

co-reference rules because other rules will predict the 

co-reference for the pronouns first. 

(6) Near Dan, he saw a snake. 
(7) For Ben's wife, he would give. his life. 

In addition lo the use of a co-reference rule, the 

sentential sub-module determines the referents of' proper 

names. Using the collection· of frames which make up the 

discourse, a frame containing the correct first (and if given, 

las t) name can be found. Should the immediate di_scourse fail· 

lo produce the name referent, a larger context· can be grown 

from the ·slot values and from the slot defaults of IN! frame 

representing the focus. The same context growing mechanism 

used for definite noun phrases is used. By this process of 

context growing, ambiguous uses of names like .John can be 

avoided. John- will refer lo that person most closely associated 

with the discourse. If more than one frame for the name ..k>hri 

is found, the context growing process predicts that the 

speaker . has used the name ambiguously. Col'llexl growing has 

been effective in a limited number of cases le.sled se far, 

although a database ·w ith more potential ambiguities would 

further lest this sub-module. 



7. Extensions 

The current PAL can be expanded in many 

directions. Some of the necessary developments of its 

co-reference capabilities have already been discussed. 

Significantly, these capabilities do not .require exte.nsive new 

theoretical appparalus; the focus of discourse and structure 

of FRL can sustain the needed improvements. In discourse 

interpret at ion PAL must be extended lo interpret discourses 

which define new people, places, events, a.ct ions · and like 

objects as well as to interpret preferences of users · .and 

purposes for various activities. These extensions 1101 only will 

make PAL a more useful system, but' also they_ encompass a set 

of tasks use ful for other interactive programming domains. 

Experimentation on the discourse module of PAL is need to 

incorporate these new capabilities. 

8. Acknowledgements 

The author wishes to thank Gretchen Brown, Ira 

Goldstein and Steve Rosenberg for their comments and 

suggest.ions on drafts of this paper. 

This report describes research done al the Artificial 

Intelligence Laboratory of the Massachusetts Institute of 

Technology. Support for the laboratory's artificial intelligence 

·research 

Projects 

Office 

is provided in part by the 

Agency of the Department of 

of Naval Research under 

NOOO 14-75-C-0643. 

9. References 

Advanced Research 

Defense under the 

Contract · Number 

Bobrow, 0., R. Kaplan, M. Kay, D. Norman, H. Thompson, T. 
Winograd, [1977) GUS, A Frame-Driven Dialogue System, 
Artificial Intelligence, Volume 8, Number 2, April. · 

Bullwinkle, C. [ 1976] The Semantic Component of PAL: the 
Personal Assistant Language Understanding Program, MIT 
Al Laboratory Working Paper, March. 

Bullwinkle, C. [ 1977) Levels of Compe1dty in Discourse for 
Anaphora Disambiguation and Speech Act lnterpre#ation, 
Proceedings Qf the Fifth International Joint Confei'ence l!:!. 
Artificial Intelligence, August 1977; also M.l,T. A.L · Lab 
Memo 413. 

Charniak, E. [ 1972) Toward a Model Of Children's Story 
Comprehension, M.I.T. A.I. Lab TR-266. 

Deutsch, B. [1975] Establishing Contell't In Task-Oriented 
Dialogues, Proceedings Qf the ll Annual Meeting !H_ 89:, 
AJCL Microfiche 35. 

Goldstein, I. P. and · R. B. Roberts. · [1977'] NUDGE, A 
Knowledge-based Scheduling Program, M.J".T. A.I. Lab memo 
405. 

Grosz, Barbara [1977] The Representaticm and Use of Focus in 

213 

Dialogue Understanding. Stanford Research Institute 
Technical Note 151, Menlo Park., California 

Kripke, Saul A. [1972] Naming and Necessity. in Semantics Qf 
Natural Language, Davidson and Harman (eds) Reidel 
Publishing Co., Boston. 

Lasnik, Howard. [ 1976] Remarks on Co-feference, · Linguistic 
Analysis, Volume 2, Number I. 

Marcus Mitchell [1978) Progress Report on the Pa;ser and 
Se~antics of PAL, M.I.T. A.I. Lab memo forthcoming. 

R~inhart, Tanya [1976] The Syntactic Domain of Anaph~ra, 
unpublished Ph.D. dissertation, Department QI Foreign 
Literature and Linguistics, M.I.T. 

Rieger, Charles J. [1974] Conceptual Memory: A Theory and 
Computer Program for Processing the Meaning Content of 
Natural Language Utterances. Stanford Artificial lntelligen.ce 
Lab Memo AIM-233. 

Sidner, C. [forthcoming] A Computational Model of 
Co-reference Comprehension in English. Ph.D. dissertatiQn, 
M.I.T. 

Winograd, Terry [1971] Procedures as a Representation for 
Data in a Computer Program for Under.standing Natural 
Language. M.I.T. dissertation. 



Participating in Dialogues: Understanding via Plan Deduction 

James F. Allen and C. Raymond Perrault 

Department of Computer Science 
University of Toronto 

Toronto, Canada 
M5S 1A7 

Abstract 

This paper describes a system designed 
to participate in purposeful ~ialogues : 
dialogues where the participants are 
conversing to achieve some specific task. 
The system is intended to help its users 
attain specific goals in certain typical 
situations. The language behavior 
observed in actual dialogues includes the 
frequent use of sentence fragments, and 
sentences that cannot be interpreted 
literally. We have concentrated on the 
problems raised by these phenomena. 

1. Introduction 

It has become commonplace in 
computational linguistic circles to talk 
of the purposeful nature of human 
communication. Language is used to 
achieve certain effects on specific 
listeners. These effects typically 
involve modifying the hearer's goals and 
beliefs about the world. Furthermore, 
linguistic acts are often performed as 
steps to achieve non-linguistic acts. For 
example, in a train station, one may ask 
when a train leaves in order to be able to 
board the train. 

Cohen's program OSCAR <Perrault and 
Cohen 1977, Cohen 1978> is an application 
of these ideas to language generation ; It 
maintains a model of the beliefs and goals 
of its user and, given a goal, produces a 
plan to achieve that goal. This plan may 
involve requests to be made of the user 
and assertions of information which he is 
thought to need . The OSCAR program does 
no plan recognition. How it can be 
extended to do so is the subject of this 
paper. 

In this framework, a major part of 
understanding an utterance involves 
discovering what particular goals the 
speaker is attempting to achieve. 
Identifying these goals provides a natural 

* This research was supported in part by 
the National Research Council of 
Canada. 

214 

way to handle sentence fragments such as 
noun phrase utterinces, sentences that 
should not be interpreted literally, and 
sentences whose purpose is to acknowledge, 
correct or otherwise clarify previous 
utterances . In many cases, the syntax of 
a sentence and the meaning of its words do 
not determine the speaker's intentions, 
the hearer must also use his knowledge of 
the speaker's beli e fs and goals. 

To provide a cl ear application of our 
work we have concentrated on purposeful 
(or task-oriented) dialogues. These are 
dialogues in which the participants are 
co- operating to achieve some specific goal 
or task. 

Let us look at some examples that 
demonstrate a need for identifying speaker 
intentions. These are based on 
transcripts of actual dialogues collected 
at an information booth in a train station 
<Horrigan 1977>. The dialogues are 
between the clerk ('C') in the information 
booth and a passenger ('P') at the 
station . The passenger typically wants to 
meet arriving trains or leave on departing 
ones. The clerk always wants to help 
further the passenger's goals. 

1.1 A Sentence Fragment 

In the train station setting, as in 
many stereotypical situations, much 
communication is accomplished by sentence 
fragments. For example , in one case a 
dialogue was opened with: 

P: The 3:15 train to Windsor? (1) 

No syntactic methods can construct a 
full sentence from this fragment, nor does 
the meaning of the actual words indicate 
what is required of the clerk. To 
interpret this utterance, the clerk must 
establish what the speaker's goals are. 
Only by discovering how the observed 
utterance fits into some expected plan, 
can he determine what kind of answer is 
desired . Thus, if the passenger's goal 
were to board the train to Windsor, a 
reasonable answer is 'Gate 10'. 



I 

. · J 

1.2 ~n Tndirect Speech Act 

Many utt erances cannot be interpreted 
at face value. For instance, 

P: Do you know when the Windsor train 
leaves? (2) 

An answer of 'yes' to the above is 
us ually inappropriate. However, there are 
situations where such a sentence is 
intended literally. Only by considering 
the speaker's intentions, (i.e. in the 
form of his plans) can one decide whether 
a literal or indirect reading is meant. 
Systems that handle such utterances by 
rules based solely on the form of the 
sentence <e.g. Lehnert 1977> fail in this 
respect because they can only interpret 
utterances uniformly irrespective of their 
context. 

1.3 A Clarification Dialogue 

Many utterances in dialogue are 
intended to monitor the success/failure of 
the communication process itself. The 
clerk generates such utterances .when 
needed, and recognizes when they are 
introduced by the passenger. A short 
example of a clerk initiated clarification 
subdialogue is: 

P: When is the Windsor train? (3) 
C: To Windsor? 
P: Yes 
C: 3: 15 

The initial utterance is not fully 
understood by the clerk. In particular, 
he cannot determine if the passenger wants 
to know something about a departing train 
or an arriving train. The response 'To 
Windsor?' is a request for a clarification 
of the passenger's goals. His answer 
indicates that he is interested in the 
departing train. The clerk's response 
'3:15' is the reply to the passenger's 
original question. 

1.4 An Instance of Helping 

In many cases, a response does not 
only answer the question asked, but 
provides additional useful information. 
such responses cannot be generated unless 
the clerk realized what the passenger's 
goals are • 

P: When is the train to Montreal? (4) 
S: 3:15 at gate 7. 

Although the information concerning 
the departure location was not asked for 
in P's query, the clerk, realizing that P 
wants to board the train, offers it to 
provide what he feels is a useful 
response. 

1.5 The Paper 

This paper deals only with the 
pragmatic aspects of communication: the 
recognition of intention. we do not mean 
to suggest that methods based on syntax 
and semantics are worthless, but we do 
claim that there are many situations where 
they are not powerful enough in isolatio". 

Section 2 introduces the concepts 
fundamental to our approach, and section 3 
provides an overview of the plan deduction 
process. In section 4 we will reconsider 
the examples above. Finally we will 
conclude with some implications of our 
approach. 

2. Fundamental Concepts 

Central to our methodology is the 
concept of a plan and its associated 
operations: planning, plan deduction and 
plan execution. We will consider these 
informally in the next section. It is 
also necessary to be able to effectively 
represent the beliefs and goals of various 
agents, including the system itself. This 
we cover in section 2.2. 

2.1 Planning Terminology 

A State is a set of formulas 
describing some aspect of the world. 

As in STRIPS <Fikes & Nilsson 1971>, 
the operators that change the states can 
be grouped into families represented by 
operator schemas, which can be viewed as 
parameterized procedure definitions. An 
operator schema consists of a name, a set 
of parameters and a set of labelled 
formulas in the following classes: 

Preconditions: Conditions that should 
be true in order for the execution of the 
procedure to succeed. 

Effects: Conditions that should be 
true after the execution of the procedure. 

Body: A set of action names with their 
parameters that describe the execution of 
the procedure. 

An Operator Instance or simply an 
Action is a expression constructed from 
the name of an operator definition with an 
instantiated parameter list. An action may 
be executed by executing th.e body of its 
definition using the instantiated 
parameters. Primitive actions have no 
bodies, their execution is specified by a 
procedure in the host programming 
language. 

We will define a plan as a directed 
graph in which the nodes are actions and 
states. There are two arcs: the enable 
arc links a state S to an action A 
provided that S implies the preconditions 
of A are true, and the effect arc links an 
action A to a state S provided that S 
implies the effects of A are true. Given 

215 



these, an Atomic . Plan is a graph 
consisting of on e path from an action Al 
to an action An using enable and effect 
arcs. 

Observing that the bodies of actions 
are in fact atomic plans we add another 
node-type 'plan' and an arc body that 
links an action A to a plan P provided 
that p is the body of A. A Plan is then 
defined as a n atomic plan in which some 
actions may be associated to their bodies 
i r body 1 inks. (Actions in those bodies 
may in turn be related to their bodies, 
etc.) 

we say a plan transforms a state Sl 
into a state Sn if Sl implies the 
preconditions of the first action in th e 
plan, and Sn implies the effects of the 
last action in the plan. 

A Speech Act is an action that has as 
parameters a speaker, a hearer, and a 
propositional content, and whose eYecution 
involves the production of an utterance. 
The preconditions and effects of speech 
acts are specified in terms of the beliefs 
and wants of the speaker and hearer . 

An example of a speech act is INFORM. 
A precondition for INFORM is that the 
speaker believes the propositional content 
is true, an effect is that the hearer 
believes the speaker believes the 
propositional content is true. 

There are various operations that 
manipulate plans. Given an initial state 
SO and a goal state Sl, planning is the 
process that constructs a plan that 
transforms SO into Sl. Given an observed 
action by an agent Al, plan deduction by 
an agent AO is the formation of the plan 
that AO believes Al is executing. 
Finally, a plan may be executed by 
executing its constituent actions in the 
sequence specified by the plan. 

Planning and plan deduction occur as 
the execution of the plan and deduce 
actions respectively. As a consequence, 
plans may include steps to deduce other 
agent's plans, and also steps to plan to 
attain new goals. 

2.2 Believe and Want 

This model requires that we can 
represent the beliefs and wants of 
different agents. we will not consider 
the representation in detail here as it 
has been done elsewhere <Cohen 1978>, but 
a few characteristics require mention. 

The system · ('S') must be able to 
maintain distinct beliefs for different 
agents and support arbitrary levels of 
nesting. (eg. S believes, S believes that 
P believes, S believes that P believes 
that S believes, ••• ) S must be able to 
represent that P knows information that S 

itself doesn't know . For instance, it 
must be ab le to distinguish between 

'S believes P knows when the train 
arrives' 

'S believes P believes that the train 
does arrive' 

'S believes P believes the train arrives 
at 3:15' 

The first and third beliefs imply that 
s believes P could answer the ques tion 
'When does the train arrive?'. The third 
belief also indicates that s knows what 
the answer would be. 

The collection of beliefs of one agent 
is termed that agent's belief space. 
wants are treated in a similar fashion to 
beliefs. The collection of an agent's 
wants, i.e. his want space, contains the 
current. plan that he is believed to be 
executing. 

Such a model including beliefs and 
wants has been implemented and used in the 
planning system by Cohen <C ohen 1978>. In 
this system the only propositional 
attitudes are 'believe' and 'want'; 'know' 
is introduced by definition. 

2.3 overview of the System 

The system executes the plan in its 
own want space. In particular, it has a 
plan . to help the passenger. On e of the 
actions in this plan is to deduce the 
passenger's plan; another involves further 
planning to help him. 

Let us look at the helping process in 
more detail. The system initially has a 
set of expected goals that it believes the 
passengers will want to achieve. 
Associated with these goals may be 
partially expanded plan fragments 
outlining how the goals are usually 
attained. These are the plan expectations. 

Understanding an utterance consists of 
deducing the passenger's plan by seeing 
what expected plans could include the 
observed speech act. Since the system is 
deducing the passenger's plan, the 
knowledge base it will use in evaluating 
the plan alternatives will be what it 
believes the passenger believes. The 
constructed plan will be part of what it 
believes the passenger wants. 

Once the plan is deduced, the system 
simulates its execution to find necessary 
steps that cannot be achieved. These are 
the obstacles in his plan. Helping the 
passenger entails overcoming these 
obstacles. To do this, the system makes 
the obstacles into its own goals and 
initiates planning. The execution of this 
new plan will usually involve conversation 
on the system's part. 

216 



3. The Plan Deduction Process 

The plan deduction process starts with 
a set of 'observed' actions and a set of 
expectations, and attempts to construct 
the plan that the user is executing. In 
this section we describe how it receives 
its input, we survey the types of 
inferences it makes and then discuss the 
process itself. we conclude with a section 
on why we feel plan deduction is feasible. 

3.1 Input 

The observed actions arise from the 
input utterances. The plan deduction 
process expects to receive a hypothesis 
about the speech act and its propositional 
content, reflecting the literal meaning of 
the utterance. The hypothesis is based on 
the mood of the utterance: a declarative 
sentence indicates an INFORM, an 
imperative indicates a REQUEST and an 
interrogative indicates a REQUEST to 
INFORM. 

The plan deduction process is in fact 
powerful enough not to require fully 
explicit input. The propositional content 
must provide a structure for the 
utterance, but specific detail may be 
omitted. For example, the hypothesis 
about the propositional content of 'The 
Montreal train?' would include an unknown 
predicate involving a train: the train 
being involved in some unknown predicate 
also involving Montreal. An unknown 
predicate should be viewed as a variable 
ranging over predicates. The specified 
arguments of the predicate constrain the 
range of the variable. For example, the 
utterance 'When is the train?' would 
produce an unknown predicate involving a 
train and a time. In the train setting, 
such a predicate would be ambiguous 
between arrival time and departure time. 

Ideally, the syntactic and semantic 
components should provide the plan 
inference component a description of the 
restrictions that can be imposed on the 
missing predicates. This can be done by 
enumeration or by propositions stating the 
restrictions. Considerable work remains 
to be done to determine how these methods 
are best used. 

3.2 The Inferences 

Before discussing the plan deduction 
process itself, we would like to survey 
the types of inferences it will be able to 
make. Deduction inferences can be divided 
into two classes. The bottom up 
inferences, which start at the observed 
actions and try to infer a plan, and the 
top down inferences, which start with a 
plan expectation and try to expand it into 
more detail. 

217 

The top down inferences are basically 
a simulation of the speaker's planning 
process. For example, if the speaker's 
goal was X, how might he achieve X? A 
typical top down inference is: 

"Effect-action inference" 
If X is a goal state, find an act A that 

has effect X, and infer A as part of 
the speakers plan. 

Bottom up inferences are inverses of 
the planning inferences. For example: 

"Action-effect inference" 
If A is an action in the speaker's plan, 

then infer he wants to achieve one of 
A's effects. 

"Action-body inference" 
If A is an action in the speakers plan, 

then infer he is performing action B, 
where A is part of the body of the 
definition of B. 

"Know-action inference" 
If the speaker wants to know the value of 

some relation R, then he wants to 
execute an action involving the value 
of R. 

It must be stressed that inferences 
only suggest possible candidates for 
elaborating our plan fragments. Not all 
such candidates are reasonable at any one 
time. For instance, if an inference 
suggests a new goal for the speaker that 
is already believed true, then it is 
unlikely that this goal is part of the 
speaker's present plan. The assumption 
here is that if the speaker believed the 
underlying goals of his utterance were 
already achieved, he would not need to 
speak. This emphasizes a distinction 
between our system and some of the script 
based systems <Schank and Abelson 1975>. 
Although the set of expectations is script 
type knowledge, the plans constructed for 
the speaker depend heavily on the current 
(and changing) model of him. 

3.3 The Plan Deduction Process 

Plan deduction is basically a search 
process through many alternative plan 
fragments. Roughly, each alternative is a 
hypothesis about the user's want space and 
consists of the observed actions paired 
with one of the plan expectations. 
Associated with each alternative is a set 
of tasks that refine the alternative by 
adding new actions, states and relations, 
by binding variables, or occasionally by 
splitting it into new alternatives. we 
will refer to the plan fragments inferred 
from the observed actions as the observed 
part of the alternative, and to the rest 
of the alternative as the expected~-

Alternatives and their tasks are rated 
and the tasks compete for execution on an 



agenda. The highest rated task is always 
executed. 

A few of the factors that affect the 
rating of an alternative are listed below. 

i l The goals in an alternative should 
be believed likely. This heuristic is 
usually applied in reverse. For instance, 
goals that are already believed to hold 
are not likely. 

ii) The preconditions of actions that 
the agent is P.xecuting should not be 
contradicted. In particular, if an action 
A that the agent is executing is used to 
infer another action B via the action-body 
inference, the agent is considered to be 
executing 8, hence B's preconditions 
should also be true. 

iii ) The observed and expected parts 
of an alternative should contain similar 
objects and relations. The underlying 
assumption is that objects are typically 
wanted for their normal uses (Rieger's 
function inference <Rieger 1974>). So if 
an utterance mentions a particular object, 
the plan expectations that could involve 
that object are favoured. 

The violation of any of these factors 
reduces the rating of the ~lternative, but 
does not necessarily eliminate it .from 
contention. In fact there will be correct 
plans that fail in some of these respects. 
If an alternative is accepted in which 
some preconditions are contradicted, this 
will lead to a discrepancy between what S 
believes and what S believes U believes. 
Such conflicts will often be resolved 
using further dialogue. 

Typical tasks perform the following: 

a) Given an action in the observed 
part of an alternative, apply the bottom
up inferences to the action. If there are 
mutually exclusive inferences possible, 
the alternative may be split. 

bl Identify the binding of an action 
parameter in an alternative. The 
parameter may be associated with a 
definite description in the observed 
utterance, or may simply be introduced in 
the plan construction. 

c) Terminate the plan deduction 
process successfully, by accepting one of 
the alternatives as the deduced plan, It 
is not necessary to expand every detail in 
an alternative. The alternative will be 
acceptable if it contains an explicit link 
between its observed and expected parts, 
and if there are no other competing 
alternatives that are similarily rated. 
In cases where two mutually exclusive 
alternatives have similar ratings, it may 
be necessary to initiate a planning 
subtask whose purpose is to engage the 
user in a clarification subdialogue. 

218 

The plan deduction process may 
terminate unsuccessfully in a number of 
ways. It may, because of difficulties in 
the deduction and the presence of other 
well rated tasks on the agenda, have its 
ratings reduced to the point where it is 
no longer competitive and 'drops off' the 
agenda. Alternatively, it may remain well 
rated because it is a crucial step in an 
important plan, but use up all the 
resources it is allowed. Finally, in 
extreme cases, there may be no reasonable 
inferences left to perform. 

3.4 Why Should This work? 

There are a number of reasons why we 
feel this process is feasible. In this 
section we will discuss the structure of 
the domain, an abstraction capability in 
actions, and the assumption of co
operation. 

The domain of conversation in our 
system is well specified, i.e. the 
possible topics are those defined by the 
plans we can construct. Once a plan is 
established as the one being executed, it 
defines a notion of coherence on the 
dialogue: dependencies between utterances 
are reflected by their relation to the 
plan. The plan also provides strong 
predictive power as to what to expect 
next. Although the range of topics in the 
train domain is limited, the variety of 
conversation, in intention and form, is 
considerable. Such domains provide ideal 
testbeds for a wide range of linguistic 
problems. 

Another factor reducing the 
combinatorics is that the bodies of 
actions provide us with an abstraction 
capability. To elaborate, let us consider 
an action A. Its body can be viewed as 
specifying its execution requirements to a 
level of greater detail. The sequence of 
actions in the body may introduce new 
precondition requirements on the execution 
of A. This is similar to the abstraction 
capabilities in NOAH <Sacerdoti 1975>. we 
may create a plan involving A without 
initially considering the 'details' 
required in its body. Once we have a plan 
involving an action at an 'abstract' 
level, we may expand to a level of greater 
detail by considering its body. 
Initially, in the deduction task, we are 
interested in finding some link between an 
observed action and one of a set of 
abstract expectations. It is not 
necessary to discover the fully expanded 
plan of the speaker, a small segment of 
his plan, providing an intersection, is 
sufficient. When we infer bottom up from 
one action to another via its body, we may 
omit considering much detail. As a 
result, our deduced plans normally include 
many levels of abstraction, but are not 
very broad at any one level. Once an 
intersection is found, and competing 
alternatives are eliminated, we then can 



!J 

afford to expand out details of the 
deduced plan as necessary. 

Most important is our primary 
assumption that the participants are co
operating with each other. In particular, 
we expect the speaker will form his 
utterances in such a way that there is 
little possibility of misunderstanding 
him. Fo~ example, if the speaker believes 
we have strong expectations about what he 
will say, he may communicate with minimal 
indication of his intention . This occurs 
wh e n th e speaker is ~nswering a question, 
or when the situation restricts the 
possibilities, as in the train station. 
If the speaker believes we have little or 
no expectations, he will tend to mention 
his goals more explicitly. 

As a consequence of this we note that 
we are not attempting arbitrary Plan 
Recognition, for the actions we observe 
are intended to facilitate recognition. 

This supports two powerful heuristics: 

i) The similarity of objects and 
relations between the expected and 
observed plans provides a strong 
indication of which alternatives are 
promising. If the objects or relations 
were intended to be used in a non - expected 
way, the speaker would be obliged to 
explicitly mention that intention. 

ii) The inferences that are obvious 
(i.e. among other things, cause little 
fanout) are preferred. So inferences that 
are expensive to make will tend to be 
neglected. 

Finally; we should observe that we are 
not committed to succeeding at all costs, 
for plan deduction failure does not imply 
dialogue failure. More important than 
being able to succeed every time is the 
ability to recover and continue the 
dialogue in a coherent manner, say by 
asking for clarification. 

• 219 

-4 . A Brief Look at Some Examples 

This section reconsiders the problems 
of section 1. It is convenient to look at 
the last example first. 

4.1. An Example of Helping 

This example provides no difficulty to 
the plan deduction process, but 
demonstrates how the entire system 
operates to provide a response. 

P: When is the train to Montreal? 
S: 3:15 at gate 7.* 

P's utterance is viewed as a REQUEST 
that S INFORM P of the departure time of 
the train to Montreal . S deduces that P 
wants the effects of the action, i . e. 
that P wants to know the departure time, 
and from this that P wants to be able to 
board the train to Montreal. Once P's 
plan is deduced S accepts P's goals as its 
own. In particular Snow wants P to board 
the train and S wants to inform P of the 
departure time. However, inspecting the 
plan, S also finds that P needs to know 
the departure location. If S believes P 
does not presently know the location it 
may be helpful by providing this extra 
information. So the system's response is 
based on what it believes the obstacles in 
P's plan are. 

In the following examples we deal only 
with the plan deduction process . 

4.2. A Sentence Fragment 

This example is a simplified 
simulation of the plan deduction process 
in e xecution. We consider only the best 
rated plan aiternative, thus making the 
example a reasonable size. we also ignore 
ratings and assume the agenda is a FIFO 
list. 

P: The 3:15 train to Windsor? 

The observed action is a REQUEST by 
the passenger that the system INFORM n1m 
of some unspecified predicate involving a 
train. Furthermore, the train is 
associated with the time 3:15 and is 
related to the city Windsor in a manner 
consistent with the preposition 'to'. The 
plan deduction task produces the three 
following subtasks to initiate processing. 

The Agenda: 
i) Identify the formal object representing 

the train. 
ii) Review the expectations and the 

utterance for similarities. 
iii) ~pply inferences from the observed 

action. 

* note: the system does not generate 
English output, it specifies the 
content of the response and generates 
output in a rigid pre- defined form. 



Identify: 
The identification of objects requires 

specialized knowledge. For this example we 
must know that trains have associated 
arrival times, departure times, sources 
and destinations and that destinations are 
often flagged with the preposition 'to'. 

The train is recognized to ha;; : a 
destination Windsor, and to have either an 
arrival or a departure time of 3:15. Its 
source is not known at this point. This 
description does not provide sufficient 
information to pinpoint the referent in 
the data base. The subtask completes 
without identifying the referent. 

Review: 
The expectations that involve trains 

are 'passenger travel from Toronto . to x' 
and 'passenger meet train at Toronto from 
x', these are selected as possible 
alternatives. But only the former is 
compatible with the train's destination of 
Windsor; the train in the 'meet' 
alternative must have destination Toronto. 
In the 'travel' alternative, we assume 
that the trains in the observed and 
expected parts are the same. Merging the 
descriptions together we infer that the 
train has source Toronto and destination 
Windsor. This alternative also involves 
the departure time of the train ·which is 
consistent with the specified time 3:15. 
Two new subtasks are created: an 
'identify train' task, since more is now 
known about the train, and an 'expand the 
travel expectation into more detail' task, 
which would perform further inferencing. 

The Agenda: 
i) Infer from the observed action. 

ii) Identify train in travel expectation. 
iii) Expand the travel expectation into 

more detail. 

Infer: 
The observed action is 'passenger 

REQUEST that the system INFORM him of 
something concerning a train'. The most 
promising inference from this action is 
that it is part of the body of a QUERY 
action to obtain information. This action 
is added to the alternative, and an infer 
task is created involving it. 

Identify train: 
The train is specified sufficiently by 

its source, destination and departure time 
to be associated with a particular train 
in the data base. The train is 
successfully identified. 

220 

Expand the travel expectation: 
One of the steps in the travel plan is 

the action of boarding the train. To do 
this, the agent must know its departure 
time and location. The system believes 
the passenger knows the departure time 
(3 :15 ) but not the departure location. 
Simulating the passenger's planning, it 
produces the action 'passenger QUERY 
someone about the departure location' as a 
way of achieving this knowledge. However, 
this action matches (i .e. is compatible 
with) the QUERY action in the obse rved 
part. They are merged to form the action 
'passenger QUERY system about th e 
departure location of the train'. Since 
there is now an explicit link between th e 
expected and observed parts, a high 
priority task is created to accept this 
alternative . 

Accept: 
The alternative is accepted because 

there are no well-rated competitors. This 
task terminates the plan deduction process 
successfully. The system now easily finds 
an obstacle in the plan: the passenger 
needs to know the departure location. The 
obstacle can be overcome simply by a 
system INFORM. 

In the next examples we will only 
point out new and important details . The 
last example will look at a case where 
there are well-rated competiting 
alternatives that cannot easily be 
eliminated. 

4.3. An Indirect Speech Act 

P: Do you know when the Windsor train 
arrives? 

This utterance has two different 
interpretations. The literal 
interpretation indicates that the 
passenger wants to know whether the system 
knows the arrival time. The indirect 
interpretation indicates that the 
passenger wants to know the arrival time 
himself. 

The input to the plan deduction 
process will correspond to the literal 
reading. The inference path to the 'meet 
train' expectation is as follows. The 
effect of the literal reading is that the 
passenger knows whether the system knows 
the arrival time. The system knowing the 
arrival time is a precondition to the 
action that the system INFORM the 
passenger of the time, which has the 
effect that the passenger knows the time, 
which is a necessary step in the 'meet 
train' plan. So the plan can be deduced, 
using either top-down or bottom-up 
inferences. 

Underlying this chain of inferences is 
our assumption that both sand p know that 
S is helping, i.e. that Sis continually 

• 



I 

I 

trying to infer P's plans, locate 
obst~cles and overcome them. S knows that 
P expects this helpful behaviour and so 
can assume that P intended the result of 
any plan inferenc e , obstacle detection or 
plan construction that Scan make on the 
basis of knowledge that S believes P 
believes. 

The question remains of how far Sis 
to assume P intends these inferences to be 
pressed. One case at least is clear: 
whenever s believes P believes that the 
e ffects of the literal utterance are 
a lr e ady true, S's inference process must 
continue . This is the case with this 
example. If the effects of the literal 
utteranc e are not believed to be true, S 
could still choose the indirect goal but 
this may lead s to ascribe extraneous 
inte ntions to P . 

From an implementation point of view 
it is undesirable that the system have to 
work through the inferences for "standard" 
indirect forms such as "Do you know 
and "Can you tell me • •• ". The indirect 
forms here should be considered 
immediately at the start of inferencing 
( cf . 8 r own 197 8 ) . 

4 . 4 ~ Clarification Dialogue 

P: When is the Windsor train? 
S : To Windsor? 
P: Yes 
S: 3: 15 

The passenger's first utterance is 
processed similarily to the first example, 
however, both the 'travel to x' and 'meet 
t r ain a rriving from x' expectations remain 
possible . Let us assume there is no 
contextual reason to favour one 
alternative over the other. The goal of 
the plan deduction process is that the 
system knows the passenger's plan , In 
this case it is not achievable on the 
basis of the utterance supplied. A 
subtask of the plan deduction task 
recognizes this and initiates a subtask to 
plan to achieve the goal (system BELIEVE 
passenger WANTS 'the travel plan') OR 
(system BELIEVES passenger WANTS 'the meet 
plan') . 

The planning for this goal produces a 
plan that involves asking the passenger if 
he wants one of the alteinatives, and the 
receiving the answer. The execution of 
this plan produces a system query 
correspond i ng to 'To Windsor?' and then 
r ecognizes the passenger's response 'yes'. 
The dialogue may continue at this level 
until the goal is achieved. In this case 
the first question/response pair achieves 
the goal. Once the passenger's goal is 
known the system can continue its original 
deduction task . The only reasonable 
interface with the 'travel to Windsor' 
expectation is the step involving knowing 

221 

the departure time of the train. This is 
accepted as the passenger's obstacle. The 
system then plans to overcome the obstacle 
6y informing him . of the time, the 
execution of this plan produces a response 
corresponding to '3:15'. 

5. Implicati9ns of the Approach 

5.1 Dialogue Failures 

we have seen in section 4.4 how a 
subdialogue was produced by the system in 
order to successfully complete his 
deduction of the passenger's plan. We now 
briefly consider a class of cas e s where 
the passenger initiates a subdialogue. 
These subdialogues indicate that a step in 
the system's plan did not successfully 
execute. e.g. After the interchange 

P: When is the train? 
C: It leaves at 3:15. 

typical expected continuations are 
'Thanks', '3:15.' or 'And where?' 

R~sponses that indicate failure of the 
plan fall into three classes. These are 
all detected using what the system 
believes is the passenger's plan ('PP'). 

i) the passenger wants a goal that is 
already achieved in PP. 
e.g. P: When is it? 

ii) the passenger denies a goal already 
achieved in pp. 
e.g. P: I don't believe it. 

iii) the passenger wants a goal that is 
not present in PP, but that does fit 
another alternative expectation . 
e.g. P: No! I want to meet the train! 

When a failure is detected in the 
passenger's plan, the system should relate 
that failure point to an action in its own 
plan. Recovery entails resuming planning 
to achieve the effects of this action. 

5.2 Linguistic Implications 

There are other linguistic problems to 
which this approach seems to provide some 
solution. For example, consider 

P: I want to go to Windsor. When does it 
leave? 

This is interesting for the it has no 
previous referent . However, as speakers 
of English, we have no trouble identifying 
the referent as the train to Windsor. Our 
system handles this easily. The first 
utterance sets up the 'travel to Windsor' 
as the passenger's plan. The second then 
indicates that the passenger wants to know 
when something leaves, and this fits 
readily into our expected plan. 



Finally, consider the problem of noun
noun modification. There is virtually no 
syntactic information provided in English 
as to the relationship between the two 
nouns. For instance, the phrase 'the 
Montreal train' could refer to the train 
to Montreal, the train from Montreal, the 
train owned by Montreal or perhaps the 
train operated by a team from Montreal in 
a train race! Th e point is, given 
appropriate context, the relationship 
could be just about anything. We 
hypoth esize that the relationship should 
be relevant to the plan that the speaker 
is executing. Therefore, it should be 
revealed as the utterance is incorporated 
into its correct plan. 

6. Implementation and System Status 

The system is implemented in SPITBOL 
under TSO on an IBM 370/165. Our 
representation of knowledge is based on an 
object centred semantic network similar in 
approach to that of <Bobrow and Winograd 
1975> and <Le vesque 1977>. The belief and 
want representati on is that described by 
Cohen <1978> and utilizes partitioned 
semantic nets as described in <Hendrix 
1975>. Plan and actions are also 
represented in the net and may be executed 
using a network interpreter similar to 
that in <Norman and Rumelhart 1975>. An 
interactive network definition package 
allows for the quick definition of a 
domain into net form using a user
controlled syntax and allowing for the 
automatic inheritance of properties. 

The system accepts English input which 
is parsed by a standard ATN parser <Woods 
1970> in isolation from the rest of the 
system. This isolation is not 
particularily desirable, but such a scheme 
is sufficient for initial testing 
purposes. The parsed form is then 
transformed into an utterance hypothesis 
of the form described previously. 

The system output is presently 
specified in the user-defined form used 
for the definition of new actions and 
states in the system. For example, the 
output corresponding to the English 
assertion 'the train leaves at 3' might be 
'SYSTEM INFORM USER THAT TRAIN LEAVE AT 3' 

The present implementation includes a 
network manipulation package, a planning 
system with the maintenance of the user 
model <Cohen 1978>, an ATN interpreter 
<Borgida 1975>, an interactive network 
definition package and the set of plan 
deduction subtasks. The system has 
handled the sentence fragment and the 
indirect speech act examples. The 
clarification dialogue capability is 
designed and currently being tested. 

222 

7 . Concluding Remarks 

Although all of our examples have 
dealt with one domain of discourse, the 
train station world, much of the system is 
domain independent. The domain is 
reflected in the set of actions and states 
defined, plus the set of initial plan 
expectations. Some specific heuristics 
are attached to the definitions of objects 
in the domain. For example, the 
heuristics used to identify trains. The 
planning, plan execution and plan 
deduction processes are all independent of 
the domain of discourse. 

We have seen that viewing language as 
intentional behaviour provides solutions 
to a wide range of linguistic problems at 
the sentence level. Furthermore, the 
ability of the system to treat linguistic 
and non-linguistic processes uniformly 
allows it to handle dialogues co nc erning 
both the actual domain and the 
conversation process itself with the same 
techniques. 

Although plan deduction has been 
attempted in the past, namely in attempts 
to recognize algorithms from code, it has 
never been applied to language. It is 
interesting to observe that its 
application to a seemingly more complex 
problem, i.e. language, actually should be 
an easier task. The fact that language is 
designed to facilitate the transmission of 
goals and plans has never before been 
exploited. 

Bibliography 

Bobrow, D. & Winograd, T., 
KRL, a Knowledge 
Language",TR CSL-76-4, 
Research Center, 1976. 

"An Overview of 
Representation 

Xerox Palo Alto 

Borgida, A., "Topics in the Understanding 
of English Sentences by Computer", 
TR78, Dept. of Computer Science, Univ. 
of Toronto, 1975. 

Brown, G.P.,"An Approach to Processing 
Task-Oriented Dialogue", ms, MIT, 
1978. 

Bruce, B. C., "Generation as a social 
Action', in TINLAP, Schank and Nash
Webber (eds), 1975. 

Cohen, P.R., "On Knowing What to Say: 
Planning Speech Acts", doctoral 
thesis, University of Toronto, 1978. 

Fikes, R.E., Nilsson, N.J., "STRIPS: A new 
approach to the application of theorem 
proving", Artificial Intelligence 2, 
1971. 

Grosz, B.J., "The Representation and Use 
of Focus in Natural Language 
Dialogues", 5IJCAI, 1977. 

Hendrix, G., "Expanding the Utility of 
Semantic Networks through 
Partitioning", 4IJCAI, 1975. 



. I 

Horrigan, ~.K., "Modelling Simple Dialogs, 
TRl03, Dept. of Computer Science, 
University of Toronto, 1977. 

Lehn er t, w., "Th e Process of Question 
,nswering", TR88, Dept. of Computer 
Science, Yale University, 1977. 

Levesq ue, H.J., "A Procedural Approach to 
Se mantic networks", TRl05, Dept. of 
Computer Science, Uni versity of 
Toronto, 1977. 

Norman, D.A . and Rumelhart, D.E., 
Exploration~ in Cognitio~, W.H. 
Freeman a nd Co., San Francisco, 1976. 

Perrault, C.R. and Cohen, P.R., "Planning 
Speech Acts", AI Memo 77-1, Department 
of Computer Science, Univ. of 
Toronto, 1977. 

Rieger, c., "Conceptual Memory: 
doctoral thesis, Stanford, 1974. 

" • • • I 

Sacerdoti, E., "The Non- linear Nature of 
Pl ans", 4IJCAI, 1975. 

Sadock, J.; Towards~ Linguistic Theory of 
Speech Acts, New York, Academic Press, 
1975. 

Schank, R. and Abelson, R., "Scripts, 
Plans and Knowledge", 4IJCAI, 1975. 

Searle, J.R., Speech Acts, Cambridge 
University Press, 1969. 

Searle, J.R., "Indirect Speech Acts" in 
Syntax and Semantics, Vol. }: Speech 
Acts, Cole and Morgan (eds), Academic 
Press, 1975. 

woods, w., "Transition Network Grammars 
for Natural Language Analysis", CACM 
Vol 13, No. 10, 1970. 

223 



Gordon I. ~cCalla 

Departme nt of Computer Science 
University of Toronto 

Tor onto , Ontario, Canada• 

Ab§.![a~! 

Presented is a brief description of 
a n ap proach to the modelling of 
conversation. It is suggested that to 
s ucceed at this endeavo~r, the problem 
must be tackled principally as a problea 
i n pra gmatics rather than as one in 
langua g e analysis alone. several 
pra gmatic aspects of conversation are 
de l i neated and it is shown that the 
a ttem pt to account for them raises a 
number of general problems in the 
representation of knowledge. A scheme 
des igne d to solve many of these problems 
is sketched and a typical conversation in 
a small scenario is analyzed in terms of 
this scheme. 

In this paper I will discuss research 
i nto the problems of modelling natural 
l a nguage conversation. The work is 
f ou nded on several perceived trends in the 
study of natural language. The first 
trend is a change in the focus of research 
attention from the phonetic and syntactic 
levels of linguistic analysis to the 
semantic and pragmatic levels. This not 
only is occurring in linguistics 
(e.g. recent interest in semantics 
(sumaarized in Leech (197~) for example) 
or Fillaore•s (1975) interest in 
"frames"), but also in artificial 
intelligence (e.g. work on scripts by 
Schank and Abelson (1975); Bruce's (1975) 
social action paradigms; 
Bullwinkle's (1977), Grosz's (1977), and 
Cohen's (1978) work on conversation). The 
second trend is a blurring of the 
bo undaries separating the various 
linguistic levels (for example 
Lakoff's (1971) criticisms of Chomsky; 
also the developaent of case fraae 
theories of language 

•This paper is based on Ph.D. research 
carried out in the Department of computer 
Science, University of British Coluabia, 
Vancouver, B.C. ftore details can be found 
in ftcCalla (1978). 

luthor•s current address: 
Departaent of coaputational Science 
Oniversity of Saskatchewan 
Saskatoon, Saskatchewan 

224 

(e.g. Filla ore (1968) , Taylor and 
Rosenber g (1975t)), a trend which ~ends to 
suggest that information from whatever 
level should be use d when appropriate. 
The third trend is the consideration of 
language from a performance, rather than a 
competence, viewpoint 
(e.g. Grice (1957),(1968); much recent 
work in artificial intelligen=a, such as 
the script based models of Schank and 
Abelson (1975), or the frame aodel of 
Charniak (1977)) • 

These three trends are not diverging; 
rather, they seem to be coming together 
into a single viewpoint: language should 
be studied as it is used with semantic and 
pragmatic information driving the more 
purely surface aspects. However, this 
shouldn't preclude knowledge from whatever 
level being applied when relevant. 
Winograd (1976, 1977) argues persuasively 
for a simila r approach to the study of 
natural language. These are the reasons 
why conversation, a domain in which 
language is used as naturally as possible 
and a domain in which semantic and 
pragaatic considerations are of utmost 
importance has been chosen for study. 

There are many issues which must be 
resolved when trying to model conversation 
from such a pragmatics centred 
perspective. Of particular importance are 

(i) whether world and linguistic 
knowledge can be effectively combined, and 
in particular whether language can be 
viewed as an activity like any other; 

(ii) how the goals of a conversant 
affect what he says and how he 
understands; 

(iii) how the knowledge a =onversant 
has about the other conversants affect 
what he says and how he understands; and 

(iv) how a conversant is able to 
focus on the relevant aspects and ignore 
the irrelevant aspects of any 
conversational scenario. 

Throughout this research, the main 
concern has been to develop a general 
approach to resolving these four issues, 
soaetiaes at the expense of a 3etailed 
analysis of certain phenomena. Thus, for 
exaaple, there are no penetrating insights 
into the probleas of accounting for 
linguistic surface phenomena (especially 
the ayriad difficulties of generating 
surface strings); nor into the problea of 
reference; nor into the proble• of dealing 
vith aassively unexpected utterances or 
other surprises; etc. suggestions are 
made as to !h~ such problems will arise, 
but there is little attempt to show h.2! to 
actually handle thea. 

The paper is organized as follows. 
In section 2 the basic approach to 
aodelling conversation is described. In 
section 3 a aicroworld (called the 
•concert scenario") in which to study 
conversation is proposed. In section 4 an 
exaaple is given of how a conversation 
which might occur in the concert scenario 
of section 3 could be aodelled using the 
approach of section 2. Finally, in 



·-.- 1 . . 

J 
I 

I 

section 5 conclusions are drawn as to the 
contribu tions and shortcomings of this 
research . 

The viewpoint of this research is 
that linguistic capabilities are subgoals 
of non-linguistic capabilities , Thus, the 
easiest way to describe this approach to 
language is in terms of "level of goal", 
from higher level non-linguistic goals 
through lover level goal s that are called 
in to understand particular parts of an 
utterance, since goals can call in 
subgoals arbitrarily, it is sometimes 
rather hard to classify the m precisely; 
they do seem, however, to roughly fall 
into four main levels: the non-linguistic , 
level, the script level, the s peech act 
level, and the language level, 

(i) non- 11uguistic goals: Goals at 
this level are primari l y concerned with 
undertaking significant plans of action 
such as, for example, attending a concert, 
buying a ticket to the concert, buying a 
drink at intermission, etc, Not primarily 
concerned with language, they do, however, 
know enough to call in linguistic subgoals 
when appropriate (e.g. to talk to the 
ticket seller or bartender), Perhaps as 
importantly, much of what is said is 
interpreted or produced in the context 
created by this level, 

(ii) §~£1Et§: Scripts (akin to those 
of Schank and Abelson (1975)) are subgoals 
of non -linguistic goals (or sometimes of 
higher level scripts) called in to 
actually direct a conversation (e,g, the 
script to direct a conversation to buy a 
ticket), They are responsible for keeping 
track of the utterances of all parties to 
a conversation, for determining the 
sequence of speaking, for recognizing the 
beginning s and endings of a conversation, 
for using script expectations to aid the 
interpretation and production of 
utterances, and for meshing these 
expectations with the actual utterances 
produced. Scripts have available to thea 
models of the conversants for use in 
perform ing their varied tasks. 

(iii) ~~~~h ~gt§: Speech acts 
(e. g, inquire, respond, inform) represent 
ideas expressible in a single verbal 
action by a lone speaker (the name has 
been chosen because of the similarity of 
goals at this level to the speech acts 
espoused by Austin (1962) and 
Searle (1969), and used more recently in 
AI systems such as that of Cohen (1978) or 
Bullwinkle (1977)). Called in by scripts, 
speech acts are responsible for 
interpreting or producing actual 
utterances, for checking that an utterance 
is not in conflict with the special 
requirements of a speech act of its type, 
and for maki ng sure the utterance doesn't 
violate anything knovn about the 
conversant (available from a conYersa nt 
model). Speech acts sometimes deal 
directly with s urface linguistic strings, 

225 

but more often call in language level 
goals to buffer them f r om the "real 
world" , 

(iv) l~ng~~g~ level gQ!l2 : The 
speciality of this level of analysis is 
language itself, The tasks of goals at 
this level are to transform surface 
language into internal concepts 
(interpretation) or vice versa 
(generation). such tasks involve 
appropriately grouping words (syntax), 
performing checks that the grou ps are 
consonant with known informati on 
discovered in the knowledge base or in the 
currently relevant context (semantics), 
and occasionally doing other tests perhaps 
involving such pragmatic considerations as 
looking at the conversant model o~ doing 
rather sophisticated inferences, such 
sophisticated processing is the ex~eption , 
however. Most often language level goals 
are concerned ~ith parsing in a more 
traditional sense. I will not detail this 
level any further here. see 
Mccalla (1978) for a fuller discussion of 
the language level or see Taylor and 
Rosenberg (1975) for a similar approach to 
parsing, 

To actually model conversation in 
these terms, a large number of proble ms 
which are mainly problems in the 
representation of knowledge must first be 
tackled, That is, a representation scheme 
is needed that ideally would allow large 
amounts of information of various kinds 
(procedural or declarative, "real worl d" 
or linguistic, • , , ) to co-exist together, 
enable easy access to this information, 
incorporate a context or focussi ng 
mechanism, not collapse when presented 
with an unexpected situation, and satisfy 
both combinatorial and complexity 
considerations. 

A representation scheme which 
atteapts to come to terms with a number of 
these problems has been developed, It has 
been given precision by defining it in 
terms of a number of LISP functions 
(collectively naaed !LISP, pronounced 
"bar-lisp") which are, to date, not fully 
iapleaented, but whose semantics are 
specified fairly rigorously. A LISP-st yle 
notation has also been devised (some 
exaaples of which will be seen in the 
forthcoming description of a conversation 
to buy a ticket (see section 4)). 

The representation scheme can be 
briefly suamarized as follows: 

(i) Knowledge is stored in obj~gj.2 
vhich are closed to one another a nd can 
communicate only by passing !!~21g~§ (to 
borrow Hewitt's (1973) tera), 

(ii) The aost interesting kind of 
object, called a eAttern exere~ion 
(IPEXPR), very roughly corresponds to a 
frame (Minsk y (1974)) or schemata 
(Ravens ( 1978)) • Most domain knowledge is 
represented in such objects as eattern~ 
(in the PLANNER/ CONNIVER tradition 
(Hewitt (1972), McDeraott and 
Sussman (1974))) . Since these patterns 
can be static (often encoding semantic 



network-style "links") or can contain 
certain "active" macro elements 
(essentially "instructions" to be 
activat e d du ring message passing), 
procedural or declarative information can 
be represented. 

(iii) Messages to a IPEXPR are also 
patterns that are handled by ma!£h1ng them 
against patterns in the IPEXPB and 
returning the first pattern that matches. 
The matche r is totally symmetric and will 
handle static elements or macro elements 
in either pattern of a match. This allows 
message patterns and IPEXPR patterns to be 
equally s ophisticated. The central role 
for pattern match ing here is consonant 
with its importance in much of AI (e.g. in 
PLANNER and CONNIVER, or in KRL (Bobrow 
and Winograd (1977))). 

(iv) If a message pattern cannot be 
matched in a !PEXPR, failure to match 
processing (associated with the object 
whose name is the first element of the 
message pattern) can take · place, This can 
range from trying to "inherit" the pattern 
along certain hierarchical "links" 
emanating from the IPEXPR (see Levesque 
and Mylopoulos (19 78) for a discussion of 
the subtleties involved in doing such 
inheritance) through performing arbitrary 
inferences. 

(v) A by- product of message passing 
is the creation of an activation record to 
which temporary variables and other local 
effects of the message passing are 
restricted. This activation record is 
called an execution instance and is a 
pattern expression like any other (and 
hence able to be accessed in identical 
fashion to other IPEXPRs). 

(vi) As it handles a aessage, a 
pattern expr&ssion may need to coamunicate 
with another pattern expression. Whole 
chains of messages can be generated this 
way, with the consequent creation of whole 
chains of execution instances. They form 
a dynaaic environaent (akin to that of 
ALGOL or LISP) called the ~!iCUt!Qll 
fill!~Qn~n1 which turns out to be a very 
usefu l focussing and context mechanism as 
well as allowing the discovery of current 
goals. 

(vii) Execution instances are not 
automatically removed after the message 
they were created in conjunction with has 
been answered. Instead, they stay around 
and old chains of them are consequently 
preserved. such venerable execution 
environments can be accessed if the 
detail s of what vent on in the past are 
needed. They thus produce a sort of 
~i~!£ !i!2II (to use the Tulving (1972) 
or Schank (1974) term). 

Discussed so far has been a 
goal-oriented approach to conversation and 
a representation scheme in which to 
attempt implementation of this approach. 
The actions of a conversation model built 
to simulate certain aspects of a 

226 

particular scenario will now be describe1. 
The model is assumed to be an active 

participant carrying out a (simu late1) 
plan to attend a symphony concert. To 
carry out the plan, it can, among its many 
other tasks, engage in several 
conversations, including one to buy a 
ticket to the concert, another to buy a 
drink at intermission, one with a friend, 
etc. The "concert scenario" has been 
chosen because it is flexible a nd complex 
enough to provide a real test for t he 
model and to illustrate most of t he 
representation and language issues, yet it 
is of very finite dimensions. Moreover, 
various kinds of dialogue can occur 
including task-oriented (see 
Deutsch (1974)), non-task- orien te d, 
formal, informal, etc.; non - linguistic 
goals occur and interact wit h the 
linguistic goals; and, finally, having a 
single scenar io allows a small amount of 
information to be used in sqveral, 
possibly quite different, settings. 

As was mentioned above, the monel 
engages in several conversations ir. t he 
concert scenario. The task -orien ted 
dialogue undertaken to buy a ticket to the 
concert will now be examined. 

!• !h~ Ticket Bu~in~ conversation 

Each piece of knowledge needed by the 
model in its task of buying a ticket to 
thP. concert is encoded (using t he 
representation scheme outlined previously) 
as a pattern expression (IPEXPR). There 
are tvo main kinds of JPEXPR of relevance 
to this domain: 

(i) Etil!~I pattern expressions to 
carry out parts of the main plan of 
attending a concert including going to the 
concert, buying a ticket, taking part i n a 
conversation during the ticket purchase, 
and so on. 

(ii) §~£.2!1S~II pattern expressions, 
such as those representing models of the 
conversant, the agenda of the concert, and 
the like, that are sources of information 
for the primary IPEXPRs but aren't really 
part of the mainstream plan. The 
distinction between (i) and (ii) can be 
seen as the difference between active 
objects calling in other active objects to 
accoaplish subgoals and static objects 
standing by to provide certain pieces of 
"foregrounded" knowledge when asked to do 
so by the active objects. 

Figure 1 illustrates the primary 
1PEXPRs and their goal/ subg oal 
dependencies. 



INQUIRE 
(selle 

into 
urpos 

of 
self ) 

TTEND-CONCER 
(self) 

BUY 
a ticket for the concert 

BUY- CONVERSATION 

(over 
ocation 

of 
ticket) 

Figure 1-Primary Goals in By_ying a Ticket 

The model is assumed to have a high level 
goal of attending a concert 
(ATTEND -C ONCERT) and in the process of 
doing so it calls in (among other goals) 
the subgoal of BUYing a ticket to the 
concert. This requires the model to 
engage in a conversation to buy the ticket 
(directed by the BUY-CONVERSATION script). 
This conversation has five phases: a 
greeting phase (directed by a script 
called WHAT-DO-YOU-WANT which expects the 
conversant to utter a speech act that 
INQUIRES into the purpose of the model and 
directs the model to undertake a RESPOND 
speech act outlining this purpose), a 
BARGAIN phase over the location of the 
ticket in the theatre, another BARGAIN 
phase over the cost of the ticket, an 
EXCHANGE of the agreed upon aoney for the 
agreed upon ticket, and, finally, an 
appropriate set of FAREWELLS, 

The model will now be briefly 
described as it interprets and produces a 
couple of utterances in this scenario. 
Since the various goals are all encoded as 
tPEXPRs, when one goal calls in another, 
it means that it is sending a message to 
the other goal to EXECUTE some action, or 
to INTERPRET or GENERATE an utterance, or 
to EXPECT something to happen. The model 
starts with the high level goal of 
attending a symphony concert, so is 
EIECUTEing the I PEXPR ATTEND-CONCERT. 

(i) ATTEND-CONCERT: a non-linguistic 
goal that directs the model's efforts to 
attend this particular concert, 
Conceptually, at least, it has been built 
by some plan-construction objects at the 
request of even higher level goals when 
they decided that attendance at the 
concert would be a good idea. It must 
achieve the many subgoals necessary to 
accomplish this goal. The major one of 

227 

importance here is buying a ticket, 
(ii) BUY: the model's non-linguistic 

tPEXPR to direct the buying of something. 
In this case ATTEND-CONCERT suggests 
buying a ticket to the concert, BOY is a 
simplified attempt to model what goes on 
in buying something. It must direct the 
model to the place of purchase, must 
recognize the particular seller of the 
item, must access tPEXPRs which represent 
various bargaining positions of the two 
parties to the buying, and finally Must 
engage in a conversation to effect the 
purchase. 

(iii) BIJY -C ONVERSATION: is the 
script that controls a conversation to buy 
something, in this case a ticket from the 
ticket seller. The script is outline~ in 
Figure 2, and although the details aren't 
too important, the main script knowledge 
is encoded in the I (SCRIPT- SEQUENCE --- ) 
element of the EXECIJTE pattern,2 The 
EXECUTE pattern of this pattern expression 
predicts the conversational sequence of 
events, from the greetings which open the 
conversation, through bargaining over the 
location of the ticket, bargaining over 
the price, exchanging the agreed upon 
goods for the agreed upon amount of money, 
and finally the goodbyes which terminate 
the script. Each of these predictions 
takes the form of EXECUTEing a sub-script 
to direct things, The first is rather 
poetically named WHAT-DO-YOU-WANr. 

ZFor those interested in the hoary 
details, the process is explained here. 
When BUY wants to enter into conversation, 
it will send an EXECUTE message of the 
fora 
(EXECUTE BUY - CONVERSATION 
SELF TICKET-SELLER1 TICKET-POR-CONCERT1 
?CONV-RESULT) 

to BUY -CONVF.RSATION, This message pattern 
will be matched against the EXECUTE 
pattern of BUY-CONVERSATION, vitn SELF, 
TICKET-SELLER1, and TICKET-FOR-CONCERT1 
being bound as values of BryYER, SELLER, 
and ITEM respectively (as impliei by the 
"?" aacro); and with the 
! (SCRIPT-SEQUENCE --- ) element being 
executed (as implied by the "I" aacr~) 
step by step auch as is a PROG in LISP. 
When !(SCRIPT-SEQUENCE --- ) is done, the 
value IRETURNed will be bound as value of 
CONV-RESULT in the aessage pattern, and 
the entire pattern will be returned to 
BUY. 



<!PDEF BUY-CONVERSATION 
(SUPERSET BUY-CONVERSATION 

SOCIAL-TRANSACTION-CONVERSATION) 
(EXECUTE BUY-C ONVERSATION 
?BUYER ?SELLER ?ITEM 
! (SCRIPT-SEQUENCE () 
STEP1 

(WHAT -D O-YOU-WANT 
(EXECUTE WHAT-DO -YOU -W ANT 
!SELLER !BUYER ?WWCONV)) 

(!BUYER 
(WANT ! BOYER (EXCHANGE 

?BUYER-HAS ?BUYER-WANTS))) 
(!SELLER 

(WANT !SELLER (EXCHANGE 
?SELLER-HAS ?SELLER-WANTS))) 

STEP2 
(BARGAIN 

(EXECUTE BARGAIN !SELLER !BUYER 
!SELLER-HAS !BUYER-WANTS !ITEM ?B1)) 

STEP3 
(BARGAIN 

(EXECUTE BARGAIN !BUYER !SELLER 
!BUYER-HAS !SELLER-W ANTS !ITEM ?B2)) 

STEP4 
(!ITEM (COST ! ITEM ?AMOUNT)) 
(EXCHANGE 

(EXECUTE EXCHANGE !BUYER !SELLER 
!AMOUNT !ITEM EXCH1)) 

STEPS 
(FA RE WELL 

(EXECUTE FAREWELL !BUYER !SELLER ?C)) 
(!RETURN (ICIJRRENT)))) > 

[1ggr~ l - The BUY-CONVERSATION Scri2t 

(iv) WRAT-DO-YOU-WANT: a script that 
knows about the kind of language that 
accompanies a query into the desires of 
som~body; EXECUTEd in this case by the 
BUY-CONVERSATION IPEXPR to handle the 
first couple of utterances in the 
conversation to buy a ticket. It expects 
the ticket seller to inquire into the 
purposes of the model; and expects the 
model to respond appropriately to this 
inquiry. 

(v) INQUIRE: a speech act which will 
either understand or produce an "inquire" 
utterance , depending on whether the model 
is listening or speaking. In the current 
example, the WHAT-DO-YOU-WANT pattern 
expression expects the ticket seller to 
utter an inquiry into the purpose of the 
model, so INQUIRE is activated to 
understand such an utterance. Achieving 
this interpretation requires the IPEXPR to 
look into the input buffer for words which 
have actually been uttered. Discovering 
the word "yes", it checks to see if there 
is a speech act associated with the word 
"yes" which could be construed as an 
inquiry. Finding that there is (YES2), 
INQUIRE replaces itself with YES2 which 
continues the processing (since the actual 
input should take precedence over any 
expectation) • 

(vi) YES2: represents the aeaning of 
"yes" that corresponds to an inquiry 
(rather than the meaning "affirmative 

228 

answer"). It is called in to continue the 
understanding of the input. Knowing that 
YES2 is an inquiry into the current 
purpose of the model (which is available 
in the execution environment), it is able 
to achieve a proper interpr9tation of t he 
utterance. Most speech acts, however, 
would not be so lucky, and would need to 
call in the language level to reduce the 
actual utterance to internal conc~pts 
which could be more readily und9rstood. 
YES2, at any rate, is satisfied and 
returns to its calling IPEXPR. 

WHAT-DO-YOO-WANT regains ~ontrol; 
sees that the first utterance is just 
about as expected (if it weren •t, 
WHAT-DO-YOU-WANT would have had to explain 
what went wrong); ties it into th~ 
conversation to date, being kept track of 
in the script (this tying-in could be a 
very complex process but is quite trivial 
in the current mod el), Before handling 
the next script utterance, 
WHAT-DO-YOU-WANT must first decide if 
something in the conversation to 1ate is 
demanding priority over its script 
expectations, and if so, what to do about 
it. In this case, since the conversation 
to date has been more or less identical 
with the script's expectations, there is 
no such conflicting demand, Thus, 
WHAT - DO-YOO - WANT moves on to the second 
script utterance, the production of the 
model's response to the ticket seller's 
inquiry. 

(vii) RESPOND: a speech act that 
contains the model's ideas about 
responding to a query, including how to 
understand or produce a response. Since 
WHAT-DO-YOij-WANT orders RESPOND to produce 
an utterance stating the purpose of the 
model, it does so (printing an appropriate 
surface string such as "I'd like a ticket 
to the concert.") Clearly a number of 
other objects would havP. to be called on 
here to decide such things as how much 
semantic information will get across the 
purpose of the model to the ticket seller 
(which involves, at least, looking at the 
beliefs of the conversant, of the model 
itself, and into the execution 
environaent); how to phrase the eventual 
output; what words to choose; how to order 
the•; and so on. These problems aren•t· 
treated to any great extent: I'm at 
present content with the knovledge that 
the aodel knows generally what to say at 
this point and don•t really care if it 
says it well. 

once RESPOND is done, it returns 
again to WHAT-DO-YOU-WANT which must check 
that the utterance produced is 
appropriate, tie it in to the conversation 
to date, and then proceed to the next 
script utterance. But, since the script 
is now coaplete, WHAT-DO-YOU-ilNT returns 
to the BUT-CONVERSATION script which, if 
satisfied with its behaviour, ties the 
WHAT-DO-YOU -VANT utterances into its 
conception of the conversation to date. 
It then proceeds to the bargaining 
scripts, the exchange phase (an only 



I 

partially linguistic goal), and the 
farewells which end the conversation. 
BUY-CONVERSATION then returns to BUY, 
which, when finished, goes back to 
ATTEND-CONCERT to continue with the plan 
of attending the concert, Among other 
things, more conversations could be 
undertaken before the ATTEND-CONCERT 
IPEXPR is satisfied, and these could be 
handled in much the same way as the ticket 
buying conversation. 

This has been a brief look at some of 
the many action-packed primary pattern 
expressions in the concert scenario. But, 
these IPEXPRs need to access lots of data 
contained in other, secondary pattern 
expressions. Since secondary lPEXPRs act 
mainly as receptacles for knowledge, they 
are guite passiv e in their behaviour. 
Here, the important connections to other 
IPEXPRs are not the dynamic messages 
passed amongst primary pattern 
expressions, but are rather the more 
static semantic network type links of 
their patterns, 

For any particular set of primary 
IPEXPRs, a certain collection of secondary 
IPEXPRs is needed, constituting in a 
sense, the foregrounded information for 
the primaries, The relevance of each 
secondary tPEXPR is discovered at some 
stage by a primary IPEXPR, which can 
record this fact by asserting a "pointer"3 
to the secondary in its execution 
instance. This pointer is then available 
(up the execution environment) to all 
subgoals of the primary IPEXPR vhen they 
want to access knowledge in the secondary 
IPEXPR, 

When a secondary IPEXPR is asked 
about its views on some particular 
subject, it is sent a message just as 
would be done for any I PEXPR, It thus 
becomes (for the moment) a part of the 
plan and hence temporarily a sort of 
priaary I PEXPR, But, the kinds of 
guestions it is asked are so trivial 
(usually involving a simple match for a 
piece of data), that the secondary cannot 
really be considered to be executing a 
subgoal in the same sense as, say, BUY 
does for ATTEND-CONCERT. 

so, lets look at some of the 
secondary pattern expressions that have 
proven useful in the concert scenario. 
The first set to be needed are CONCERT1, 
CONCERT, l'IASSEY - HALL, and AGENDA-CONCERT1 
(see Figure 3) • 

3A pointer is actually just a pattern of 
the form 

(pcinter-name A B) 
asserted in IPEXPR A and pointing to 
I PEXPR B, 

229 

<I PDEF CONCERT1 
(INSTANCE-OF CONCERT1 CONCERT) 
(LOCATION CONCERT 1 MASSEY- HALL) 
(AGENDA CONCERT1 AGENDA-CONCERT1) > 

<tPDEF CONCERT 
(SUPERSET CONCERT EVENT) 
(ENTRANCE - REQUIREMENT tCONCERT 

tTICKET-FOR-CONCERT) > 

<IPDEF MASSEY - HALL 
(INSTANCE-OF MASSEY - HALL THEATRE) 
(TICKET-BOOTH l'IASSEY-HALL WICKET-!'lfl) 
(LOBBY MASSEY- HALL LOBBY-l'IH) 
(BAR MASSEY-HALL BAR-l'IH) 
(AUDITORIUM MASSEY-HALL AODITORIUl'l-l'IH) 
(SEATS l'IASSEY-HALL SEATS-MR) > 

<IPDEF AGENDA-CONCERT1 
(INSTANCE-OP AGENDA-CONCERT1 

AGENDA-CONCERT) 
(ORCHESTRA CONCERT1 TORONTO-SYl'IPHONY) 
(CONDUCTOR ORCHESTRA CONCERT1 DAVIS) 
(FIRST-HALF CONCERT1 JTJPITER-SYl'IPHONY) 
(SECOND-HALF CONCERT1 EMPEROR-CONCERTO) 
(SOLOIST SECOND-HALF CONCERT1 BRENDL) > 

Figure 3 - concert Knowledge 

These pattern expressions contain all the 
aodel's knowledge about this particular 
concert, including the agenda, entrance 
requirement•, the soloists, the location 
of the concert, etc. In particular, 
CONCERT1 is passed as part of the message 
that activates ATTEND- CONCERT, The other 
three IPEXPRs are pointed to from CONCERT1 
and all are used extensively in further 
sub-tPEXPRs (especially to extract the 
entrance requirement to the concert). 

Another secondary pattern expression, 
the TICKET-FOR-CONCERT1 IPEXPR (a new 
instance of the generi~ 
TICKET-FOR-CONCERT - see Figure 4) is 
generated by ATTEND-CONCERT when it is 
about to BUY the ticket. 

•The ENTRANCE-REQUIREl'IENT pattern of 
CONCERT can be interpreted as saying that 
the entrance requirement for a particular 
instance of a concert is a particular 
instance of a ticket for the concert (this 
is implied by the "t" macros). 



<!PDEF TICKET -F OR -C ONCBRT1 
{INSTANCE- OF TICKET-FOR-CONCERT1 

TICKET-FOR-CONCERT) > 

<IPDEF TICKET-FOR-CONCERT 
(SCTPERSET TICKET-FOR-CONCERT TICKET) 
(LOCATION tTICKET-FOR-CONCERT WICKET -!'I H) 
(REPN tTICKET-FOR-CONCERT 

-= (X (SUBPART X SEATS - !'IH))) 
(COST tTICKET-FOR-CONCERT 
! (I PROG2 

(!TICKET -FOR -CONCERT 
(REPN !TICKET-FOR-CONCERT ?AREA)) 

(ISELECTQ AREA 
(SEATS-!'IH-CENTRE 'tDOLLARS-10) 
(SEATS-MH-RCENTRE 'VDOLLARS-5) 
(SEATS-MH - LCENTRE I tDOLLA RS -5 ) 
(SEATS -M H-BALCONY 'tDOLLARS -3 ) 

NIL))) > 

< I PDEF TICKET 
(SUPERSET TICKET ENTRANCE-REQUIREMENT) 
(SELLER tTICKET fTICKET-SELL:1::R) > 

Figure 4 - Ticket Knowledge 

The TICKET-FOR-CONCERT1 pattern expression 
can inherit from TICKET-FOR-CONCERT 
knowledge that the physical loc~tion of 
the ticket is in the ticket wicket at 
Massey Hall, that the desired location 
represented by the ticket should be a 
certain place in the theatres, the 
projected cost for such a location, and so 
forth, Later, once actual characteristics 
(location, cost, etc,) of the ticket have 
been deterained (by the BARGAIN sub-goal 
of BOY-CONVERSATION), they can be added to 
TICKET-FOR-CONCERT 1, 

Perhaps the most important secondary 
pattern expression is TICKET-SELLER1, 
first created as a new instance of the 
generic TICKET-SELLER (see Figure 5) by 
the BUY IPEXPR as part of its expectations 
about who will be selling the ticket, 

5This information is contained in the REPN 
pattern of TICKET - FOR-CONCERT which can be 
interpreted as saying that a particular 
concert ticket will represent a location 
which is a subpart of the seats in !assey 
Rall (as implied by the"=" macro), 

23 0 

<IPDEF TICKET- SELLER1 
(INSTANCE-OF TICKET-SELLER1 

TICKET-SELL ER) 

<!PDEF TICKET - SELLER 
(SUPERSET TICK ET-SELLER SELLER ) 
(SELL tTICKET-SELLER tTICKET) 
(WANT tTICKET-SELLER 

> 

(EXCHANGE 
TICKET-SELLER-HAS-BARGAINING-POSN 
TICKET-SELLER-WANTS-BARGAINING-POSN)) > 

Fi~ure 5 - Ticket Seller Knowledge 

The TICKET-SELLER1 pattern expression 
constitutes the model's mode l of the 
conversant, It initially contains only 
the knowledge that it is a TICKET-SELLER, 
but via its INSTANCE-OF pointer it is able 
to inherit much information. In 
particular the immediately superior 
TICKET -SELLER contains general information 
about ticket sellers: that th~y sell 
tickets, that they•re willing to exchange 
tickets for an appropriate a~ount of 
money, that they are sellers, and so on, 
This information is of much use later on 
when various bargaining positions mus t be 
discovered. A truly c~mplete 
TICKET- SELLER would contain information 
about speaking habits, probable locations, 
potential scripts, etc. As was the case 
with TICKET - FOR-CONCERT1, as time goes on, 
more and more characteristics of 
TICKET-SELLER1 can be added to give it an 
ever more accurate vi ew of this pa~ticular 
conversant. 

This example, although far too brief 
to be really convincing, does illustrate a 
number of interesting points, Issue (i), 
the intermixing of all kinds of knowledge, 
has been attempted - linguistic knowledge 
(in scripts, speech acts, and, although 
not shown, at the language level) is mixed 
with "real world" knowledge (ticket 
information, concert 
knowledge, , • ,) ; procedural knowledge 
(e,g, the EXECUTE patterns of 
BUY-CONVERSATION which accomplish 
subgoals) rubs shoulders with declarative 
encodings (e,g, macro-less patterns, in 
secondary fPEXPRs especially): linguistic 
and non-linguistic goals can call one 
another (e,g, the non-linguistic BUY 
EXECUTES the BUY-CONVERSATION script which 
EXECUTEs, in turn, non-linguistic 
EXCHANGE) , 

Given that the whole organization is 
goal- oriented, issue (ii), the effect of 
the model's goals on its behaviour, is 
obviously of central import, The most 
striking instance: to understand and 
respond to "Yes?" the aodel must look at 
its current goals (available in the 
execution environment). Issue (iii), 
using conversant models, has been 
illustrated as well, Knowledge about 
ticket sellers helps the model at various 

I 

I 



I 

points, especially during the two BARGAIN 
phases of BUY-CONVERSATION. 

Finally, in response to issue (iv), a 
context mechanism has been delineated, 
namely the execution environment. Not 
only does this focus the model's attention 
on only the relevant super-goals at any 
stage, but it also is the central core off 
of which hang pointers to secondary 
IPEXPRs. In a very real sense the further 
away a piece of information is from this 
core the less relevant it is in a given 
situation. 

Obviously, m~ch has been left unsaid 
(both good and bad) about this approach in 
general and about the representation 
scheme and the concert model in 
particular. Much left unsaid has also 
been left undone. An immediate priority 
is getting the representation ideas fully 
implemented and the concert dialogues 
running. Other priorities include 
analyzing in much more detail the problems 
presented by surface language; examining 
more flexible dialogues, especially those 
necessitating a much bigger role for 
"bottom-up" feedback; and increasing the 
information content of the conversant 
models to account for more subtle aspects 
of a conversant•s influence on a 
conversation. Work by Cohen (1978) and 
Allen and Perrault (1978) will be of use 
here. Other extensions and improvements 
could be suggested, Hopefully, however, 
the framework provided here will prove 
sufficiently robust that such extensions 
and improvements can be readily 
incorporated without undue upheaval. 

I would like to thank the aany people 
who have asked questions, made 
suggestions, provided insights, or 
otherwise influenced me in the elaboration 
of the ideas presented here. I would like 
to single out especially Richard 
Rosenberg, Alan Mackvorth, Ray Reiter, 
Rachel Gelbart, Jim Davidson, Bill Havens, 
Peter Rowat, and Brian Funt from UBC; 
Hector Levesque and John Mylopoulos from 
u. of Toronto; and Nick Cercone from Simon 
Fraser university. I would also like to 
acknowledge the National Research Council 
of Canada for supporting the more recent 
portions of this research, 

Allen and Perrault (1978). J. Allen, 
c. R. Perrault, "Participating in 
Dialogues: Understanding via Plan 
Deduction", .fIQ£• a!£Qll~ ~~ L 
~llQ £2nf!tl:!B£~, Toronto, Ontario, 
July 1978. 

Austin (1962). J. L. Austin, fi2! !2 ~Q 
Ihing~ !i!~ !QI~§, Oxford University 
Press, oxford, England, 1962. 

231 

Bobrow and Wegbreit (1973). D, G. Bobrow, 
B. Wegbreit, "A Model and Stack 
Implementation of Multiple 
Environments", £!£.!1, 12, 10, October 
1973, pp. 591-602. 

Bobrow and Winograd (1977), D, G. Bobrow, 
T. Winograd, and KRL Research Group, 
"Experience with KRL-0: one cycle of 
a Knowledge Representation Language", 
Proc. IJCAI5, Cambridge, 
Mass., 1977. 

Bruce (1975). B. Bruce, Belief SY§tems 
· and 1anguage Understanding, BBN Rep. 

t2973, Bolt, Beranek, and Newman, 
Inc., Cambridge, Mass., 1975. 

Bullwinkle (1977). c. Bullwinkle, "Levels 
of Complexity in Discou~se for 
Anaphora Disambiguation and Speech 
Act Interpretation", E.£Q£, lli!l.2., 
Cambridge, Mass., 1977. 

Charniak (1977). E. Charniak, 
"Ms. Malaprop, A Language 
Comprehension Program", Proc. IJCAI5, 
Cambridge, Mass., 1977. 

Cohen (1978). P. Cohen, QB Knowing What 
i2 2~1: E.l~nnillil a~~£~ !£!2, 
Ph.D. Thesis, Dept, of computer 
Science, ij, of Toronto, 1978. 

Deutsch (1974). B, Deutsch, "The 
Structure of Task Oriented 
Dialogues", IEEE symposiym on 2P2~£h 
R!£2gn!!i2n, Carnegie-Mellon 
University, Pittsburgh, April 1974, 

Fillmore (1968), c. Fillmore, "The case 
for case", in E. Bach and~. Harms 
(eds.), OniveI§als in Linguistic 
Ih!QrY, Holt, Rinehart, and Winston, 
Nev York, 1968. 

Fillmore (1975). c. Fillmore, "An 
Alternative to Checklist Theories of 
Meaning", Proc. First Annual neeting 
of the Berke!!! Linguisttcs society, 
Berkeley, Calif., Feb. 1975, 

Grice (1957). R. P. Grice, "M~aning", 
Ph~phi£~! Re.!1!!, July 1957. 

Grice (1968). H. 
£2nYU.!!! tiQ!l, 
Unpublished 
Calif., 1968. 

P. Grice, 
Wm. James 
Mimeo, 

l!Qgic ~n~ 
Lecture, 

Berkeley, 

Grosz (1977). B. J. Grosz, "The 
Representation and Use of Focus in a 
System for Understanding Dialogs", 
f,2£• L!f!!~, Ca•bridge, Mass,, 1977. 

Havens (1978) • i. S. Ravens, ! f!:~W!H:li 
A2~l 2! ~cIDllli~i2n fQ[ Machin!! 
fe[C!Pti.QD., Ph.D. Thesis, Dept. of 
Computer science, UBC, Vancouver, 
B.C., 1978. 

Hewitt (1972). C. Hewitt, Q!§~t1Eti2n an~ 



Theoretical Anal1sis irysing Schemat!L 
of PLANNER, MIT AI Memo 251, 
Cambridge, Mass., April 1972. 

Hewitt (1973). c, Hewitt, P, Bishop, 
R, Steiger, "A ryniversal Modular 
Actor Formalism for Artificial 
Intelligence", Proc. IJCAI3, 
Stanford, Calif., Aug. 1973. 

Leech (1974). G. Leech, Semantics, 
Penguin Books, England, 1974. 

Levesque and Mylopoulos ( 1978) • 
H. Levesque, J. Mylopoulos, ! 
£I:Q£~9..!!Hl 
li~ :!!2£.!rn, 
computer 
Feb. 1978, 

AEEro5ch to semantic 
AI-Memo 78-1, Dept. of 
Science, ~. of Toronto, 

Mccalla (1978). G. Mccalla, !n !EE£Qa£h 
to the organiz5 tion of ~n2i~dge i2£ 
the Modelling of conversation, 
Technical Report, Dept. of Computer 
Science~ UBC, Vancouver, B.c., 1978, 

McDermott and Sussman (1974). 
D, v. McDermott, G, J, Sussman, !hg 
CONNIVER Reference aanual, MIT AI 
Memo 259a, Cambridge, Mass., 1974. 

Minsky (1974). M, Minsky,! f£s!~Q£! IQ£ 
R~E£~§gn:!in~ ~IlQ!~~g~, MIT AI Memo 
306, Cambridge, Mass., June 1974. 

Schank (1974), R. c. Schank, ! 2 !h~~ s 
s~mantic aemory?, Report 13, Istituto 
per gli Studi Semantic! e Cognitivi, 
Castagnola, Switzerland, 1974. 

Schank and Abelson (1975). R, 
R, P, Abelson, "Scripts, 
Knowledge", PIOC, IJCAI4, 
USSR, Sept. 1975, 

c. Schank, 
Plans, and 

Tbilisi, 

Searle (1969). J, R. Searle, ~R!~h !£t2, 
Cambridge Univ, Press, Cambridge, 
England, 1969. 

Taylor and Rosenberg (1975). 
B. H, Taylor, R. s. Rosenberg, "A 
case Driven Parser for Natural 
Language", !J~1, Microfiche 31, 1975 . 

Tulving (1972). E. Tulving, "Episodic and 
semantic Memory"~ in E, Tulving and 
w. Donaldson (eds,), Qrqani~ti~n Q! 
~~~£!, Academic Press, Nev York, 
1972,

Winograd (1976) •
Procedural
seaantics",
fhi122Eh!~,

T. Winograd, "Towards a
Understanding of

Revue Intern!i!OnAle de
1976.

Winograd (1977). T. Winograd,! l£~2It
12! gngtI:§~nsinq Qi2£.2~£§~, SAIL
Memo, AI Lab., Stanford university,
Stanford, California, 1977.

232

Hypo~hesis Guided Induction: Jumping to Conclusions

Eugene c. Freuder
Department of Mathematics and Computer Science

Univ ersit y of New Hampshire
Durham, New Hampshire 03824

Inductive learning involves the
formation of a new concept from examples
and counterexamples. A classical approach
to inductive l ea rning in AI (w,;.nston 1975)
anj ps ychology (Bruner, Goodnow and Austin
195G) utilizes the first example as the
initial concept description, and
genera lizes that description based on
successive examples and counterexamples.
I suggest an alternative approach which
uses the first example to produce a
general hypothesis for the concept, and
constrains or alters that hypothesi s as
required by further examplPs and
counterexamples.

The former approach might be termed
"conservative" and thus the latter "rash".
A conservative approach gradually broadens
concepts, based on current examples; a
rash approach jumps immediately to general
conclusions, based in part on knowledge
distilled from previous experience. In
some contexts I be lieve the rash approach
will prove to be more efficient for
machines and a better model of human
behavior. Compromises between these two
extremes may also have their utility.

I present a simplified model of the
rash extreme and suggest a numb e r of
dire~tions for further work. The
implementation of the model is in
proJress; the program heing implement ed
is called DUCK. I expect to tes t the
program initially on Winston's domain of
structural descriptions (Winston 1975) and
the learning of poker hands, used as an
example by Vere (Vere 1977].

The basic structure of the mod e l is
shown in figure 1. The desciption of a
sample--example or counterexample -- is
processe d bj the EXTRAC~JR and the
PRDPJSER. The initial input description,
especially if taken from a "s~nsory"
device like a TV camera , will have a good
1eal of extraneous information. The
EXTRACTOR picks out the data de~med
relevant to the learning task, producing a
second description of the sample, The
PROPOSER looks at this description for
propdrties or patterns that are of
inj uc ti ve in terast, These form the final
description of the samplP,

Figure 1

KNOWLEDGE
SCURCES:

PROCESSORS:

DESCRIPTIONS: INPUT

RELEVANCE

EXTRACTOR

RELEVANT

INDUCTION CONCEPTUALIZATION

PROPOSER HYPDrHESIZER

INDUCTIVE CONCEPTUAI-

233

The HYPCTHESIZEH chooses from the
final J~scription ot the first example an
hypo~hesis for the concept to be learned.
Th e HYPOTIIESIZER uses later samples to
modify the concept hypothesis, when it
fails to account for the samples.

Each processing module has an
associat~d knowledge source. The
proc ~ssors are to function largely to
"compile" the knowledge, making the
expertise ea~ily extensible in a given
domain, or transferable to another domain,
by extenuing, or replacing, the knowledge
sources, The hop0 is that detailed
knowl~dyc appropriate to the learning task
will increase the efficiency of the
learning process, while a hierarchy of
knowledge modules will per~it DUCK to
focus on the appropriate heuristics.

Consider Winston's canonical ~xample
of learning an arch. The EXTRACTOR would
proJuce assertions about support relations
an~ such. It would ignore explicitly, as
~inston•s program does implicitly,
features like color, irrelevant to the
structural concepts being learned, The
PROPJSER would look for coincidences or
extremes. The coincidence of two supports
for the same block is about tr,e only thing
that stands out as of possible inductive
interest. The HYPOTHESIZER takes this
feature as the initial concept hypothesis.

Given a counterexample where the
supporting blocks touch, the PROPOSER
would pick out "touching" as an extreme
value of the spatial proximity
relationship. (One of the problems of
learning by counterexample involves
picking out the relevant differences, when
the sample is not neatly confined to a
single difference.) As "not touching" is
not "strong" enough to function as a
concept hypothesis on its own, it would be
added to the initial hypothesis. The
result is a good basic concept of an arch.

The learning model described here is
"knowledge-based". There has been a
recent surge of interest in
knowledge-based learning, as evidenced by
the papers at the latest IJCAI, Fox and
Reddy discuss "knowledge guided learning"
[Fox and Reddy 1977], Davis eaphasizes
"meta-level knowledge" (Davis 1977].
Goldstein and Grimson "annotate"
production systems [Goldstein and Grimson
1977], while Vere supplies "background
knowledge" (Vere 1977]. Michalski reports
an algorithm for the determination of a
"relevant" description set [Michalski
1977] . Lenat•s knowledge-based heuristic
search for nev concepts is concerned with
"interestingness" (Lenat 1977]. I find a
particular relationship to the work of
Soloway and Riseman (Soloway and Riseman
1977]. Earlier relevant knowledge-based
efforts include the concept formation of
Meta - DENDRAL (Buchanan, Feigenbaum and
LE>derberg 1971], and the program

234

construction of Sussman•s HACKER (Sussman
1975] •

However, I think this present work is
distinctive in its focus on a rash
strategy, specializin~ an initial
hypothesis, as opposed to gen ~ralizing the
initial sample.

I present several
regarding extensions of
induction.

speculations
this work on

1. Intermediate models compromise
the co11servative and rash extremes.

How conservative or rash we are in
our induction depends on context, If I am
being shown the procedure for defusing a
bomb, I will assume every move ment must be
copied precis,1ly, when demonstrating mor<>
common tasks, we often take pains to point
out deviations from the norm that will
otherwise be assumed: "you have to push
down while pulling this drawer open".

A compromise implementation of the
conservative and rash approaches would be
prepared to make hypotheses at an
"appropriate" lev?.l of generality, and
then to either generalize or specialize as
required. Another compromise approach
vould involve carrying forward several
alternative hypotheses in parallel.

2. Questions can implement
hypothesis driven induction.

We often question the teacher,
sometimes oy providing samples of our own:
"Is this a frammus, then?" We may seek to
verify or clarify part of our hypothesis:
"If it's blue, will it still be a
frammus?" If we are carrying alternatives
forward, questions can help distinguish
among them.

3. Previously learned related
concepts can help form hypotheses.

aelated concepts serve as additional
counter?.xamples. If we are learning a
partition of a set of phenomena, an
hypothesis for one which fails to rule out
another is unacceptable. Related concepts
can help choose appropriate properties
from the relevant or input descriptions to
specialize the concept hypothesis. Since
aost horses are big, size strikes us
important in defining a Shetland pony.

4. Knowledge sources can be
organized hierarchically, and themselves
learned inductively.

Knowledge sources can be utilized in
combination and organized hierarchically.
Knowlege about sequences, for example,
might appear under mathematical interest
knowledge, along with knowledge of even
numbers. There is no a priori reason why
2, 4, 6, 8, 10 should not be a valuable
hand in poker . However, more specialized

knowl a d~ d , induced from experience with
oth e r card qames, wou.ld not ,expect eve n
numb~r s to pldy an interesting role in
forming poker hand concepts.

This knowledge can he modified
inductively, even while bt>ing used to

1 leac:n other concepts. The systelll can
learn, for e xample, that the color of card
pips is not usually important; or when
forced to return to the input descc:iption
leve l repeatecHy for a feature, it can
decid e to modity thi-> inductive interest
knowledg e to look for that feature. When
an advdnced version of DUCK first enters a
new ·iomai:1 it may hav 0 to be conservative.
As it learns concepts in that domain it
also lelrns learning strategies for that
domain, e mbodying them in the knowledge
sour=es~ The more specific learning
strategies justify more y&neral, rash
inductive behavior. When first learning
card games, thP. system may not know that
car cl backs are unimpor ta nt, However, the
syst e m learns to remove card backs from
the properties of inductive interest. I
think this reflects human learning
behavior. This is one reason an
experi enced cook can learn a complex dish
more easily than a novice learns a simple
one. Lenat [Lenat 1977] has recently
studied heuristics for determining
"int e rest", and is currently working on a
system which can le5rn these heuristics in
turn.

5. Context influences our learning
strategy,

Knowlege or expectations about the
concepts to be learned can influence
hypothesis formation. This may be fairly
specific, constituting an outline or frame
(Minsky 1975] to be filled in, or general:
"I expect color to be important." We aay
also utilize knowledge of the learning
process: "Why is he telling me that?"

6. The rash model can be hedged by
"probabalistic induction".

Attachiny probabilities to our
hypotheses interpolates Winston's "must
be", "must not be" extremes.

7. "Functional induction" can
generate hypotheses.

If we know the purpose of tables, we
know the top must support objects, then we
may infer it important that the legs
support the top.

8. "Deductive induction" can justify
"leaping to conclusions".

Suppose we see a "Grunji fruit" for
the first time, observing that it is
purple. The next day someone asks us
"what color are Grunji fruits"? We reply
"purple". Induction from a single
example, how rash! Yet if we see an

235

exotic foreign car for the first time,
observing it to be blue, we will not inf e r
that all s uch cars a re blue, qui tc the
contrary, In Winston's terms, the color
pointer would be moved from "blue" to "any
color" in the car concept, whilP becoming
a "must be" pointer for the fruit, after
only the first example,

In fact, the rash inductions ~. Are are
probably simple deductions. We have
previously learned that "all fruits with
the same na111e have the sa me color" {with
several qualifications, I grant), AJ,jing
"one Grunji fruit is purple" then
naturally i111plies that all Grunji fruits
are purple,

References

Bruner, Goodnow and Austic, A §!Y1l
of It!.i!lH.!!Sl• Wiley. 1956.

Buchanan, Feigenbaum and Lederberg,
A heuristic programming study of theory
formation in science. IJCAI-71. 1971.

Davis. Interactive
expertise: acquistion of
rules. IJCAI-77, 1977.

transfer of
new inference

Fox
learning
IJCAI-77.

and Reddy, Knowledge guided
of structural descriptions.
1977.

Goldstein and Grimson.
production systems: a model
acquisition. IJCAI-77. 1977.

Annotated
for skill

Lena t,
mathematics.

Automated theory formation in
IJCAI-77. 1977.

Michalski.
computer-aided
IJCAI-77. 1977.

A system of programs for
induction: a summary.

Minsky, A framework for representing
knowledge. in The P sycholog_y of Co111.euter
!i2iQ!1, Winston, ed. McGraw-Hill. New
York. 1975.

Soloway and R isema n. Levels of
learning. pattern description in

IJCAI-77. 1977.

Sussman.
AC£1uisi tion.

Vere.
productions
information.

A £~!EJ!i~t ~od~i ~f
Elsevier. New York.

Skil!
1975.

Induction of relational
in the presence of background

IJCAI-77. 1977.

Winston. Learning structural
descriptions from examples. in Ill~
P§.I.cholo.!11. of COJU!Uter Yi§!Q~, Winston,
ed. McGraw-Hill. New York. 1975.

EXPLORATION IN VISUAL-MOTOR SPACES

by
Z.Pylyshyn, E.W.Elcock, M.Marmor and P.Sander

The University .of Western Ontario
London, Canada

1.0 Introduction

This paper should be viewed as a provi
sional progress report on a wide ranging explora
tion of what might be called visual-motor
reasoning. We began with an interest in the
phenomenon of reasoning with the aid of diagrams,
as in doing geometry. As we puzzled over the
question of why diagrams appear to be of immense
help in such reasoning, we became convinced that
in order to understand this phenomenon we had to
take into account both the architecture of the
human cognitive system and its input-output
transducers . In other words we concluded that
it is not some inherent property of diagrams
which makes them so useful, but rather it is the
way this form of representation interacts with
the particular set of primitive operations and
resource-limited trade~offs characteristic of
human cognition. Thus our original interest led
us to consider a much broader set of questions
than we had anticipated. It led us to ask what
perceptual functions could be considered prim-
itive; how spatial relations might be rep-
resented; how the intention to draw a figure
meeting a certain description interacts with the
available motor primitives (efferent commands)
as well as with proprioceptive and visual inputs
(the afferent signals). The latter, in turn,
involves a consideration of the problem of
perceptual-motor coordination.

While it is possible that not all these
various aspects are equally relevant to the phen
omenon of interest we felt that we could not
justify leaving any of them out in developing
the research program. For example, some of what
we know about a diagram comes from the original
description; some from the planned sequence of
drawing operations; some from what is visually
noticed in the course of executing this sequence
and still others fro.m scanning the diagram in the
course of answering questions about it. If we
did not consider the drawing and scanning com
ponents, the semantic representation of the
diagram which would be built--and hence the
relative complexity of various deductions--would
not be the same. Furthermore the way. we
draw the diagram, the way in which we scan it,
the features which we notice and the timing of
the noticings and intermediate inferences are
intimately related to the properties we attribute
to each of the~e functions and to the way in

23 6

which they interact. Hence it seems unlikely
that we can account for the relative complexity
of different diagram-aided inferences unless we
attempt at least a schematic design of all
relevant aspects of an entire perceptual-motor
system underlying this kind of reasoning.

' To have a concrete task to focus on we
took one of the goals of this project to be the
design of a system which can answer simple
questions (put to it in some restricted format)
about diagrams by actually going through the
process of drawing and examining them directly,
as well as by making inferences over its seman
tic representation of them. For example after
drawing prescribed lines and figures and joining
specified points the system should be able to
determine which lines intersect and whether
certain of the lines form specified figures or are
contained inside other figures or are in certain
relations to other lines and points.

We have approached this goal by first
setting out what we consider to be some critical
de~ign decisions. These decisions follow the
principle of attempting whenever possible to
remain faithful to the known facts about human
cognitive mechanisms. More accurately, we have
tried to avoid making assumptions about available
mechanisms which are implausible as psychological
mechanisms, though they may be universal in
general programming languages. In this respect
we follow the lead of Allen Newell in hi s
modelling of certain cognitive phenomena (Newell,
1973). We have adopted this strategy not solely
because of an interest in modelling human cog
nitive processes but also because, as expressed
earlier, we believe that reasoning-by-drawing has
the properties it does precisely because of the
nature of the human computational architecture.
An additional guiding principle has been that
whenever the relevant psychological facts are
either unavailable or not unequivocal we attempt
to use the least powerful (and therefore least
presumptive) plausible mechanism capable of
carrying out the required function.

An example of a consequence of adopting
these principles is that we have avoided what
might appear to be easy numerical solutions to
some of 'the problems encountered. For example
we do not maintain a computational equivalent of a
Cartesian model of Euclidian space, nor the kind

. · 1

of quantized model which could be provided using
array structures as implemented in many program
ming languages . While there are usually many
reasons for excluding such models, one straight
forward one is that there i s ample evidence that
arithmetic operations (which map numerical
expressions onto numerical expressions) are not
primitive operations in the human architecture .
Hence magnitude manipulation processes must be
mode lled by some other means (c.f. Pylyshyn,
1978). Incidentally the decision to shun the use
of arithmetic applies only to the part of the
system which models cognitive or symbolic pro
ce sses. The parts of thP. system representing the
retina and patterns of light on its two-dimen
s ional surface or the intensity of signals going
to and from limbs (on the non-symbolic side of
the transducers) are modelled using numerical
methods when appropriate. These arP. models of
physical, not cognitive, events and so are
immune from our strictures.

In the remainder of this report we will
sketch the principle design decisions we have
made concerning the visual component; the repre
sentation and inference component; and the motor
system and coordination component which interact
to generate the drawings .

2.0 The Visual Component

We are not attempting anything so ambi
tious as a general" vision system. Nonetheless we
do intend that the assumptions we make about the
visual component be realistic and general, however
incomplete. By working in the domain of two
dimensional drawings (oriented at right angles to
the line of sight) we are able to bypass many dif
ficult problems. By confining our domain to that
of plane geometry we are able to restrict the low
level visual processes to ones which deliver only
a small number of aggregate types, such as points,
lines and junctions, rather than the much richer
variety that might otherwise be needed (c.f.
Barrow and Tenenbaum, in press). On the other
hand problems of low-level vision are present and
merge into problems of recognition, interpretation
and inference as they do in general vision. Fur
thermore we do face the problem of building up a
semantic representation from multiple sources of
data, including data derived from visually
scanning the diagram and detecting features as yet
unknown to the system--i.e. not yet in the
semantic representation.

2.1 The Retina

Visual information is assumed to come in
as a grey-level retinal matrix. The size of the
retina was dictated by the following considerations.
If information on the retina was to be randomly
accessible or processable in parallel, then making
the retina the full size of the diagram would make
it possible to bypass some important problems of
representation. Since the "raw data" would always
be available to interrogation by the perceptual
primitives (see 2.6) the problem of selective en
coding would not arise (though inference is still
a problem). Alternatively if one did not assume
parallel access by primitives then one would need
to scan the retinal matrix somehow (cell-by-cell

237

or perhaps by groups of cells) in order to build
up a semantic representation. This however, is
equivalent to having a smaller retina: it simply
moves the diagram into the head and the retina in
still farther!

Choosing a very small retina size relative
to the size of the diagram (in the extreme it
might be a single pixel) is to blur a distinction
between perception and inference or problem
solving that we wish to preserve. Indeed in our
view it is the very existence of this distinction
which makes reasoning through diagrams different
from reasoning in general. With a small retina,
information has to be put together serially, as a
blind man with a cane must piece together a scene.
If we assume that there are visual primitives
which operate in a parallel manner over the retina
then a choice of retina size represents a choice
of how spatially local the primitive features of
the system will be. This in turn partly determines
the vocabulary over which the semantic representa
tion is constructed, as well as the distribution
of computational effort over the two categories of
perception and deduction.

In our sys tem, retinal size is a parameter .
However we expect that the appropriate retinal
size is one which rarely includes as much as a
whole geometrical figure or as little as a single
vertex with only a small fraction of the attached
line segment in view. Evidence from the perception
of anomalous figures (c . f . Hochberg, 1968) sug
gests that this is roughly of the right order for
human perception of line drawings (though obviously
we can make such drawings any size and view them
at any distance. The evidence suggests, however,
that when we do this our visual interpretation may
change.)

We· have not attempted to take into account
peripheral vision (at least in the initial design)
for a number of reasons . (1) Although the
psychophysics of the visual field has been
extensively studied, relatively little is known
about the information processing function per
formed by peripheral vision; (2) the phenomena
we are studying would be manifest, with respect to
those aspects we are interested in, even if
diagrams were viewed through tunnel vision;
(3) the attention distribution mechanism to be
described in 2.3 makes it possible to model
almost any sort of peripheral processing notions
by providing for the imposition of attention
allocation restrictions favouring the centre of
the retina (or on some other more complex basis).

2.2 Primitive Aggregation

The most elementary visual process is the
aggregation of optical features on the retina
into clusters. Such aggregation is assumed to be a
primitive data-driven context-free non-resource
limited process. It may be viewed as the inherent
action of the optical transducer located at the
retina. Exactly what type of aggregation functions
are computed, whether they are limited in their
spatial extent, whether they respond to optical
continuity (region driven) or discontinuity (edge
driven) or some other intrinsic property, whether
their influence can propagate to neighbouring

regions, and whether they can cascade to produce
more complex aggregated patterns in an automatic
data- driven manner, are all fascinating open
research question s . A number of promising pro
posals are available on such questions, including
Marr's (in press) work on the primal sketch,
Zucker's (1978) relaxation labelling scheme and
Barrow and Tenenbaum's (in press) proposal for
intrinsic prope.rty extraction.

Once again by confining our domain to
drawings in plane geometry we can greatly simplify
our system while still conforming to the basic
insights reached in the research on low-level
v1s1on. We assume a basic unlimited -resource
aggregation process for such retinal objects as
points (including isolated points, endpoints, and
intersection or function points), lines (with
two, one or no endpoints visi~le), and a few com
bination aggregates (such as X's, T's, V's and
perhaps even more complex but undescribed objects
like "figure"- -but these have not yet been
explored). Each aggregate has one of a small
number of type -flags associated with it. Every
time a movement of the retina occurs the aggrega
tion process is reactivated. And as each aggre
gate is formed it provides a potential interrupt
of the next phase, which might be thought of as
attention-capturing and which is not resource
unlimited .

2.3 Allocation of Attention

When an aggregate is formed it can be
given a token of a resource-limited referencing
mechanism, which can be thought of as a unit of
attention, called a FINST (which, for historical
reasons, stands for "instantion finger"). We
expect that the allocation of FINSTs will be on
some priority schedule based on such considera
tions as the type and location of the aggregate
and perhaps also on characteristics of the higher
level process active at the time, but little has
been done on this scheduling aspect to date.
When an aggregate dissappears (i.e. moves off the
retina) its FINST is automatically returned to
the pool. Retinal objects with FINSTs are
referenced (or named) objects and hence can be
referred to by the system. They may, for example,
be identified as instances of objects known to the
system and hence they may become bound to semantic
or memory nodes (or, more accurately, to existen
tially quantified variables in assertions). They
may, furthermore, be bound to arguments of
various primitive perceptual functions and
predicates as will be illustrated below. FINSTs,
therefore, provide for a limited subset of retinal .
objects to be treated in a unitary manner and
referred to by the system. Other important prop
erties of FINSTs are discussed below .

2.4 Referential Continuity Over Retinal Trans
lation

With a moving retina we must face the
problem of recognizing the continued presence of
the same object at different retinal locations.
A relevant question is: at what level of per
ceptual analysis is the identity of retinal objects
(except for translation) decided? One way to
decide pattern identity might be to construct a

238

description of the pattern at time t which is
invariant over certain spatial transformations,
say D(t), then construct another such description
at a later time t', say D'(t') and compare the
two descriptions . If they are identical then
call the second pattern by the same name that
was used to designate the first pattern. What
seems unsatisfactory about this approach is
that it requires that an abstract translation
invariant description be constructed prior to
deciding that some pattern has moved . But in the
case of continuous movement thi s is surely
unreasonable. It seems more plausible in that
case that recognizing that a pattern has moved
across the retina should be independent of, and
possibly even prior to, the further analysis of
that pattern. There is evidence (such as dis
cussed by Marr, in press) that perception of a
pattern's movement is determined by cues that
are more retinally local than the perception of
its overall shape.

Our approach has been to hypothesize that
maint~nance of the identity of an object which
has a FINST (i.e . which i s a named aggregate) is
a computational primitive. In other word s we
posit that the visual transducer is so constructed
that once a FINST has been placed on an aggregate
it remains attached to it as the aggregate
changes retinal location quasi-continuously (i. e.
by moving through all distinct intermediate
retinal locations). The way in which this is to
be implemented on a standard computer is not
considered relevant to the function being mod
elled, since that function operates on a different
machine architecture. For example in the
relevant architecture, maintenance of continuity
might be accomplished by cellular arrays. For
us that function is simply a primitive operation-
a building•block for describing the perceptual
process.

Another way to view this property is to
consider that what we have done is to assign
identical names (FINSTs) to primitively
aggregated retinal objects when we have a clear
basis for concluding that they ar ise from
the same physical objects on the diagram. This
principle of labeling retinal objects in terms
of properties of their physical source is an
important one to follow in vision whenever it is
possible to do so from local evidence. It is
essential to do so, for example, in order to make
use of stereoscopic depth cues since optical
objects on the two retinas must be identified as
arising from the same physical point before

retinal disparity can be determined. Fortunately
this too can be done from the local cues, on the
basis of assumptions concerning the continuity
of surfaces "almost everywhere". Similarly
Barrow and Tenenbaum (in press) have argued for
labeling retinal features on a basis which
reflects the possible physical property of scenes
from which these features arose. Our continuity
maintenance assumption can be viewed as an
instance of this principle. When movement across
the retina is continuous it is easy to see how
local evidence enables such an identity main
tenance function to be primitively realized.
When movement is in saccades the situation is
more complex, but the brief persistence of the

preceding image together with some limited visual
capacity during the rapid saccade might also pro
vide the means to maintain identity primitively.
For longer blackouts, however, it could well be
that identity must be recognized by the more
costly method outlined at the beginning of this
section.

2.5 Attending to Higher Level Objects

Recall that a FINST can be placed on any
primitively aggregated object and that the
FINST remains on that object when the latter
changes retinal coordinates continuously. For
example, in the current system, as a retinal scan
reveals more or different parts of a line con
tinuously, a fixed object reference or FINST is
associated with the changing aggregation. More
formally and generally, it is the primitive
aggregation process itself which dete:rmines what
constitutes object invariance under such change.
Thus what happens at an intersection (X) d~pends
on the properties of the particular aggregation
process. (Currently the system individually
aggregates uninterrupted segments of lines as well
as the entire set of concurrent segments so that
the COG module can refer to these component parts
individually). Similar principles would apply to
curved lines--i.e. it would depend on the
aggregation process.

The above illustrates the way in which a
FINST can be attached to an aggregated object
even when the entire object is not present on the
retina. Furthermore, as more of the object
appears it keeps the identity assigned to its
first part providing only that it continuously
becomes absorbed into the earlier object by what
ever aggregation process is available. Should
cascaded aggregations or region aggregations be
permitted, it might be possible to cast such
Gestalt phenomena as figure-ground isolation in
these terms.

While we have not, for the time being,
developed the notions of more complex data-driven
aggregations, we have considered alternative ways
in which higher level structures might receive
FINSTs. This might be thought of as allocating
attention to a figure as a whole, without neces
sarily allocating attention to its individual
parts. Such a notion might be a useful way to
try to make sense of Gestalt notions of holistic
perception of patterns. To understand what it
would mean to place a FINST on a higher level
object we must examine again what function FINSTs
serve in our system .

2.6 Primitive Visual Operations

One of the main reasons for introducing
FINST s is that once we have named objects we can
bind these names to other variables such as nodes
for particular known objects, nodes for general
object types (in definitional structures) and to
arguments in primitive visual operations or predi
cates. For example, the system then has a way of
asking whether Pis true of this and that since
the latter two objects have names and~can be
referred to in that manner (recall that these
names uniquely refer to objects even when the

239

latter change retinal coordinates and even when
all of the potential aggregate is not on the
retina).

Visual predicates have types associated
with their arguments. The evaluation of a
predicate is considered to be a computational
primitive (i.e . a single step in the hypothesized
architecture) providing that all its arguments
are bound to objects of the appropriate type.
Thus the evaluation of ONLINE (P : point - type,
L : line-type.) is primitive providing P is bound
to an aggregated object of type "point" 11nd Lis
bound to an aggregated object of type "line",
and of course providing that both these objects
have FINSTs on them (i.e. providing they are
being "attended to" by name). There is no res
triction at present on the permissible locations
of P and L providing they both have FINSTS, which
means that at least part of them is on the retina.
Sample predicates include PARALLEL (Ll : line,
L2 : line), PERPENDICULAR (Ll : line, L2 : line),
ENDPOINT (P : point, L : line). In addition some
of the operations have the effect of retrieving
a FINST or even generating one for a retinal
object . For example INTERSECT (Ll : line, L2 :
line), or JUNCTION (Ll : line, L2 : line) return s
either "false" or a FINST corresponding to the
intersection or junction point. This may be
interpreted to mean that the only way to verify
that two lines intersect or meet is by visually
noticing their common point .

The notion of visual primitive and that of
a FINST are intimatelj related insofar as the
only method by which FINSTs become interpreted
and therefore assimilated into the semantics
is through a visual primitive, and primitives
are only defined over objects with FINSTs (we
anticipate that the visual primitives may be
represented as both data-driven demon (or
if~added) form and process-driven servant (or
if-needed) form).

This way of viewing FINSTs opens up the
possibility of there being FINSTs on larger
complex objects, even though the latter may not
have been primitively aggregated but merely
interpreted as an integral object (such as a
triangle or even a pair of parallel lines) in
the semantic representation. Following our
characterization of FINSTs above we can think of
a FINST being placed on a more complex figure
(i.e. on a semantic node corresponding to that
figure) as meaning that the figure i s being
singled out for attention in such a way that
certain visual predicates can be primitively
evaluated for that figure. One of the most
eligible candidates for such a predicate is
PARTOF (X : object, Y : object). Thus if there
is a FINST on a triangle and another on one of
its sides it is primitive to decide that the
indicated line is part of the indicated figure.
Our current proposal is to restrict predicates
such as PARTOF to only take arguments from
adjacent levels in a descriptive hierarchy
(e.g . figures and subfigures, or lines and points,
but not figures and points--the latter requiring
a transitive inference and also requiring that
intermediate-level objects be attended to as
well) .

Recall that FINSTs were introduced as
tokens of attention in order to account for
resource limited trade-offs. In view of this it
should be the case that when one is attending to
a figure as a whole one needn't also be attending
to each of its parts. That is to say, attending
to component parts requires additional tokens of
attention or FINSTs beyond that placed on the
whole figure node. A useful metaphor for think
ing about FINSTs and the primitive PARTOF
predicate is the following . When a FINST is
placed on a node in some hierarchical description,
that node and all its first level branches become
the same colour. The primitive predicate is
simply one which decides whether two objects in
the graph have the same colour. In the case of
a line having a FINST, we can think of the line
having a unique colour. Deciding whether a
point is on the line simply requires verifying
that the point is the same colour as the line.
The purpose of the graph colouring metaphor is to
suggest that placing a FINST on a complex com
posite object causes an intrinsic primitively
detectable property (vi z . colour in the met
aphor) to propagate down to its component: parts.
We have considered whether regions defined by
lines should also be thought of as coloured, but
that issue raises a number of deep problems which
we have not yet resolved.

3.0 Representation and Inference

3.1 Qualitative and Quantitative Representations

The system's internal (post - transducer)
representation of the overall diagram being
drawn is, as stated earlier, primarily qualita
tive . Some coarse quantitative information is
retained concerning selected relative distances
and angles. This quantitative information is,
however, represented in the form of a nominal or
category scale (such as small, medium and large)
using a symbolic notation which, like the Dewey
decimal classification scheme, indicates both
magnitude and precision. This form of repre
sentation has a number of psychologically
interesting properties to recommend it but a
discussion of the general issue of magnitude rep
resentation is beyond the scope of this report
(our proposal is essentially the same as that of
Marrand Nishihara, 1977).

Information in the overall representation
(which we frequently refer to as the "semantics"
because the terms of this data structure
designate conceptual or interpreted properties)
is stored and processed by the cognitive component
of the system (the so-called COG module) . Infor
mation in this representation arises from two
general sources: the instructions to draw and
the perceptual input . The first contributes the
overall category names (e.g. triangle, square).
In addition the drawing plan, assembled from
definitions and additional constraints, supplies
relations such as PARTOF and property names such
as base, hypotenuse, altitude, right angle, mid
point and so on. For ease of communication with
the user it also attaches external label names
(such as might be written on the diagram) to
internal node names (or COG nodes) . External
l abel s are not at present used in the recognition

2 40

process since this would allow the identification
of diagram parts by methods other than those we
are primarily interested in.

The second source of semantic representa
tion (perceptual input) provides a way to
elaborate the semantics through visual discovery
rather than through formal (axiomatic) deductive
inference. Any visual predicate can provide a
means of adding new properties and relationships
to the evolving semantic structure.

An additional source of new perceptual
information comes from monitoring non-visual
sensory input--specifically kinesthetic informa
tion. It is possible to obtain magnitude
information (distances and angl es) from the
execution of motor commands. In keeping with our
attention-limited assumption, however, such infor
mation is not simply recorded whenever motor
commands are carried out. The commands themselves
are never recorded. What is s ensed is the kines
thetic information and that only occurs when such
information is being explicitly attended to and
encoded. This explicit attending is not done
using FINSTs but by executing movements in a
special "monitoring" mode which results in the
generation of magnitude information. Such
information may be given a coarse symbolic
encoding and added to the semantics or it may be
used directly in a magnitude-comparison predicate.
This procedure is necessary in order to accomplish
tasks like finding the mid - point of a line
segment when the segment is too long to fit on
the retina. Though the general idea of dealing
with magnitude (or other) information from kines
thesia (or perhaps from some proprioceptive time
estimation) by some resource constrained means
seems sound enough, we consider the current
proposal as only a crude first step requiring
much more development.

3.2 Inferences While Scanning and Recogni zing

In order to discover new properties of
the diagram while scanning it, the system must
first identify the parts of the diagram it knows
about. This recognition involves making infer
ences about the identity of objects. Such
inferences can usually be made quite simply,
given that the system always knows the identity
of some of the objects (i.e. the FINSTs on some
of the objects are bound to semantic objects or
COG nodes), that it has a representation of the
diagram which contains nodes for most of the
retinal objects (this follows from the fact that
most of the semantics are constructed while the
figure is being drawn and from the continuity
constraint on retinal motion), and that it has
visual primitives which .provide it with certain
relations between the known and unknown retinal
objects. In fact the only inferences which are
permitted in this context are ones which begin
with identified- object COG nodes and propagate
ove~ existing relation links using information
obtained from visual primitives. We have
deliberately confined ourselves to a weak
inference scheme since we felt that continuity
of perception with retinal movement should not
have to depend on complex computations. By
restricting the power of the deductive recognizer

to something resembling graph matching we place
the additional burden of achieving the required
level of performance on the design of an
efficient representation and appropriate visual
primitives. At present our deduction proceeds
as follows.

The first step in identifying a new
retinal object is to discover spatial relations
between the object and instantiated objects
currently on the retina (i.e . objects with
FINSTs). The system does this by using "visual
predicates". For each relation, its inverse is
applied to the already ir,statiated objects and
may produce a number of "candidate" uninstan
tiated COG nodes to match to the new retinal
object. Now the system visually determines
whether the new object satisfies the properties
of each of the candidate objects. Any candidate
COG node which has a property which is violated
by the new object is rejected. By this graph
matching process, the number of candidate objects
is reduced to (hopefully) one COG node which
satisfies all the spatial relations between tht
new retinal object and the already instantiated
retinal objects .

If several possibilities remain after
this heuristic has been applied, other informa
tion (e.g. scanning direction) is used to try to
further reduce the number of possibilities. If
more than one possibility still remains for
identification of the new retinal object, then
instantiation is deferred. Identification of
the object may be attempted again whenever the
state of knowledge about retinal objects changes,
e.g. if some other new retinal object is iden
tified .

If there are no possibilities for identi
fication of the new object, then the COG should
be modified to accommodate it . For example, a
new COG node is created for an intersection
point which is being seen for the first time.

It seems unlikely that this method will
be sufficient by itself. For one thing its use
of movement information is still too rudimentary
to provide ways of identifying objects when the
retina moves over empty regions. It also does
not seem to set up strong expectations of what
will be encountered in scanning and the identi
fication of objects seems somewhat more piece
meal than it might be. However it represents
a first step and we felt it was better to begin
with a weak heuristic and add additional
facilities rather than doing the converse.

4.0 Coordinating the Motor System

Three objects in the system can be moved
by issuing commands to the motor system. They
are: the retina (or, more specifically, the
position of the centre of the retina in relation
to the diagram) ; the pen (which may be either
down and leaving a trace, or up) ; and a third
object, to be described below, called an anchor
(we leave open the possibility of adding addition
al anchors, if they are needed). Both the pen
and the anchor are visually distinct. When they
are on the retina they can be primitively

241

recognized. In addition the pen has a visually
recognizable orientation so that, for example,
the PARALLEL predicate can ascertain whether its
orientation is parallel to that of an attended
line. Because they are part of the motor system
the position of these three objects can also be
sensed kinesthetically. This dual sensing
property will serve as the basis for perceptual
motor coordination, as we shall see below.

Motor commands for moving these objects
take LOGO-like or local polar coordinate form
- -i.e. direction and distance. However, we assume
that all movements are under the control of a
peripheral feedback loop through either the
visual or kinesthetic system. Thus all motor
commands are really of the form MOVE-UNTIL
(<predicate>) or TURN - UNTIL (<predicate>), where
the predicate is either a vi sual or kinesthetic
one. To draw a line parallel to, say, the bottom
of the paper (we assume figures are drawn on an
area whose frame is visible) we can do a
TURN-UNTIL command with the predicate being
PARALLEL and its arguments bound to the pen
FINST and the paper bottom FINST (assuming of
course that both are on the current retina).
Then we issue a MOVE-UNTIL command with the
predicate being one which perhaps evaluates an
intersection of the new line with one on the
retina or which evaluates the (very coarse)
sensing of n kinesthetic units of monitored
motion.

The interesting problems arise when we
wish to move an object to a currently unseen
point or from a currently unseen point to a
point on the retina. For example we might want
to move the centre of the retina to some point
we specify as a COG node (or a description or
external label which evaluates to a COG node).
Alternatively we may wish to move the pen,
currently off the retina, to some object on the
retina which has a FINST . We cannot simply issue
the command to move to a particular FINST since
neither the motor nor the kinesthetic system can
interpret a retinal location. Retinal objects
are not known to the system in terms of kines
thetic coordinates nor vice versa. In other
words we cannot use, say, a TURN-UNTIL command
with a visual predicate if the pen is not
visible, nor can we say MOVE-UNTIL and specify
a visual predicate under these circumstances
because that does not specify (nor can it be made
to specify) which direction to move the pen in
order to bring it onto the retinal field where
the predicate could be evaluated. The problem is
how to inform the kinesthetic system, which can
sense off-retinal locations, of the location of
retinal objects and conversely how to inform the
visual system of the kinesthetic coordinates
cooresponding to retinal objects.

We have already explained that the
"obvious" solution of maintaining a global
cartesian or matrix representation of the whole
diagram is unsatisfactory. While it would
eliminate what we call the "cross-modality
binding problem" by allowing both visual and
kinesthetic systems access to a global diagram
centered frame of reference, this entails
assumptions about the processor which we consider

unrea l istic . However if this coordination across
modaliti es is to take place it must respect the
general resource-limited constraints we imposed
on our design.

Our approach to the cross-modality
binding problem has been to seek the minimally
powerful mechanism, entailing the fewest assump
tions about th e nature of the underlying
cognitive architecture, which could achieve the
desired result. It seemed to us that the least
we could assume is that there were a few objects
which could be bound to both visual and kines
thetic sensors--i.e. whose location could be
simultaneous ly available in both systems. The
pen and the anchor (and to some extent the
centre of the retina if we think of it as having
a distinct visual s ign-- such as cross-hairs) are
such objects. We can both distinguish them when
they are on the retina (they automatically
receive FINSTs) and sense them kines thetically .
The location of the centre of the r e tina in
kines thetic spac e can also be sensed. Thus
starting from th e pen or anchor on the retina we
can move them to a particular FINST on the
retina (typically one bound to a COG node) using
a visual primitive. Then if we somehow move the
retina so that neither the pen nor the anchor is
visible any longer we sti ll in principle have a
way of determining their position i n kinesthetic
space and so in principle should be abl e to mov e
the retina back to them. To capitalize on thi s
fact we propose that it is a property of the motor
system that it can be primitively instructed to
move any of the three kinesthetically sensed
objects (retina, pen, anchor) to the position
occupied by either of the other two. Furthermore
we propose that locations of each of these three
moveable objects remain fixed in space, independ
ent of any movements of the other two , unless
they are commanded to move. This then allows
us to, say, place the anchor at the centre of
the retina, move the retina away to where the
pen had earlier been l eft and then move both the
pen and the retina together to the location of
the anchor while drawing a line .

While these assumptions entail the
existence of feedback systems capable of
di recting the movement of objects in such a way
as to bring their sensed positions into coinci
dence, thi s seemed like the least that could be
assumed and still make perceptual motor coordina
tion possibl e. Furthermore they are closely
related to a proposal made at the turn of the
century by Henri Poincare (in an essay entitled
"Why space has three d i mensions"). In discus
sing the question of how people's intuitions of
a unitary three-dimensional physical space could
have arisen, given the diverse sources of
different information about location provided by
our variou s senses, Pioncare'made the following
observation . He noted that certain coincidences
of inputs, such as might occur when what we
independently conceptualize as a single object is
being sensed by several sensory systems, could
provide the boundary condition which results in a
single coordinated space-frame developing. What
we are proposing is that the system's ability to
recogn ize, for a few objects whose movement it
controls, that what it senses kinesthetically is
also what it detects visually can provide a

242

limited but crucial funnel through which we can
effect visual - ki nes thetic location binding, and
hence the basis for perceptual motor · coordination.

This elementary facil ,ity appears to be
sufficient to allow a variety of drawing plans
to be constructed using a "two•fingered" algorithm
that leaves an anchor behind on the figure whil e
it moves the retina to a new location. Using
this procedure we can compile other use ful com
posite commands. We can even think of such
elementary functions as line tracking be ing
carried out by placing the anchor on the line on
the side of the retina towards which we wi s h to
track and then moving the r etina to it and
iterating. Although further research might
persuade us tha t additional motor primitives are
plausible the minimal mechani sm proposed repre
sents a promising start. It bears a resemblance
to the Marr and Ni shikara (1977) minimal
mechanism propo sa l for rotating a three dimen
sional model in their vision system.

5.0 Impl ementation

The design principles di scussed in this
paper, particularly those relating to the use of
FINSTs in the vi sual processing, the use of
cros s- modality bindings in the scanning and
drawing mechanisms , and the use of the described
uniform recognition mechanism have been embodied
in the heuristic implementation written in
POP- 10 (Davies, 1976) on the DEC -sys tem 10 . The
details of the implementation together with
sample run-time protocols are presented in a
U.W.O . report (Pylyshyn et al. 1978).

Acknowledgement

This research was sponsored by the National
Research Council operating grant A4092.

References

Barrow , H.G., and Tenenbaum, J.M . Recovering
intrinsic scene characteristics from images .
M.A. Hanson and E. Riseman (eds.) Computer
vision systems, New York: Academic Press (in
pres s).

Davies, D.J .M. POP - 10 User' s Manuel, Report #25,
Dept. of Computer Science, Univers ity of
We s t ern Ontario , London, Canada, May, 1976.

Hochberg , J. In the mind' s eye.
(ed.), Contemporary theory and
visual perception. New York :
and Winston, 1968, pp.309 -33 1.

In R. L. Haber
research in
Holt, Rinehart

Marr, D. Representing visual information. M.A.
Hanson and E. Ri seman (ed s .). Computer vision
systems, New York : Academic (in press).

Marr, D. and Nishihara, H.K .
recognition of the spatial
three- dimensional shapes.
Soc. (B), 1977.

Representation and
organization of
Phil. Trans . Royal

Newell, A. Production systems: models of control
structures. M.W.G. Chase (ed.), Vi sual infor
mation proces sing, New York: Academic Press,1973.

·1

Pylyshyn, Z. On the explanatory adequacy of
cognitive process models (mimeo), 1978.

Pylyshyn, Z. , Elcock, E.W., Marmor, M. , Sander, P.
A system for perceptual-motor based reason
ing. University of Western Ontario, Depart
ment of Computer Science, Report No . 42, 1978 .

Zucker, S. Relaxation labeling and low-level
v1s1on . Proc. second international con
ference, Canadian Society for the Computation
al Study of Intelligence (CSCSI/SCEIO),
University of Toronto, July, 1978 .

243

USING MULTI-LEVEL SEMANTICS 'IO UNDERSTAND. SKE'ICHES

OF HOUSES AND O'lliER POLYHEDRAL OBJECTS

by

Jan A. Mulder

and

Alan K. Mackworth

Department of Computer Science
University of British Colt.nnbia

Vancouver, B.C., Canada V6T 1W5

Abstract

HOUSE, a computer program, can

sketches of houses and other polyhedral

interpret

objects.

'.Ihis paper describes the design and current

implementation status of OOUSE. '.Ille program uses

seven levels of representation of the meaning of

the sketch. It achieves a consistent

interpretation

the next level.

at each level before proceeding to

'.Ille interpretations produced on

one level. are used as cues to invoke models at the

next level. The notion of consistency is extended

to include both internal and external consistency.

Consistent interpretations are arrived at through a

uniform network consistency algorithm. '.Ille program

is presented in the context of the goals of a

sketch understanding project. HOUSE is evaluated

with respect to its contributions towards

satisfying those goals.

1. Motivation

'.Ille purpose of this paper is to report on the

design of a program, HOUSE, that interprets

sketches of polyhedral objects composed of

meaningful parts, such as houses. '.Ille program,

which has recently been implemented, is the latest

result of the SEE project, a project set up to

explore the interpretation of images designed for

person to person communication. '.Ille goals of this

project are:

i) to develop methods of exploiting the

semantics of images designed for

communication as typified by sketches,

ii) to explore possible solutions to the chicken

244

iii)

iv)

v)

vi)

and egg problem in perception: sensible

segmentation requires interpretation and vice

~'
to broaden the scope of vision programs by

applying lessons learn.ea in the blocks world

to other domains,

to provide an experimental vehicle

studying control structures required

implement schema-based theories

perception,

for

to

of

to make available

programs for some

useful interpretation

restricted but important

classes of sketches,

to explore the relationship between natural

and conventional representations.

2. '.Ille~ of perception and MAPSEE

HOUSE is an offshoot of MAPSEE, a program

designed for interpretation of sketches of

geographic maps (Mackworth, 1977a). '.Ille assumption

underlying both programs is that perception is an

active process both data-driven and model-driven in

character. Mackworth (1977b) has argued that all

perceptual processes can be viewed as a cycle

consisting of four processes: cue discovery, model

invocation, model testing and model elaboration

(see Fig. 1). In particular, all vision programs

can be usefully characterized by how they embody

this cycle. MAPSEE shows that a viable solution to

the perceptual chicken and egg problem can be

obtained by closing the cycle. In MAPSEE, the

cycle is entered in the cue discovery phase, that

is, a conservative, tentative

picture primitives (chains and

segmentation into

regions) is done

first. A number

identified as cues in

of picture fragments are

this segmentation. 'Ihese

cues give access to a number of danain dependent

models.

model /elaboration\
cue model

discovery testing

\~del J'
i nvo cation

Fig. 1 the cycle of perception.

A model here is an interpretation, a naming, of the

parts of the cue. A network consistency algorithm

takes these models, together with the primitives in

the picture which the models are supposed to

interpret, and tests the consistency of the

possible interpretations for the different

primitives in the picture. 'Ihe interpretations

that survive the consistency tests provide a basis

for sensibly refining and extending the

segmentation.

3. ~ HOUSE?

Clowes (1971)

interpretation tasks

argued

involve

that all picture

formulating and

manipulating descriptions in two distinct danains:

the picture danain and the scene danain. Besides

simply avoiding the confusion of linguistic

category errors (lines and regions exist in the

picture danain, edges and surfaces in the scene

all to distinguish the primitive connected points

from the straight lines and the regions they appear

to define . We need to represent the shape of the

edges depicted (convex, concave, crack or

occluding), the three-dimensional orientations of

the edges and the shapes and orientations of the

surfaces depicted (horizontal, vertical, •.•). Most

importantly, we must, in this domain, go beyond

three-dimensional geometric structure. We must be

able to name surfaces according to their function

in this architectural domain (wall, door, window),

be able to describe and use their attributes (the

walls are vertical) and interrelationships (the

window is surrounded by the side wall .and coplanar

with it), and be able to interpret the whole as a

functional entity, a house, as well as a

three-dimensional polyhedral object.

In order to make these distinctions it is

necessary to fracture the picture and scene domains

into seven distinct domains. Since these danains

are at least partially ordered with respect to

semantic content or abstraction from the original

image we shall call them levels. Contrasting this

with MAPSEE where image cues invoke scene models we

can see that HOUSE requires a cue/model hierarchy.

'Ihe interpretation strategy in HOUSE is to achieve

a consistent interpretation by following a

M.APSEE-like cycle of perception at each level

before proceeding onto the next.

4. Description

4.1 Levels of Representation

'Ihe seven levels of representation in HOUSE

domain) this approach led to greater precision in are:

the formulation of picture interpretation tasks.

In MAPSEE, for example, chains of connected line

segments in the cartographic picture danain

correspond to rivers, roads, shore lines, coast

lines, mountain sides and parts of bridges in the

geographic scene danain; regions correspond to

seas, lakes and landmasses.

In many tasks, however, the requirements of

descriptive adequacy alone dictate that we need

more than two distinct danains. Consider, for

example, the sketch in Fig. 2a. We need first of

245

1) Sketch level: the picture is represented as an

interconnected set of points.

2) Line/region level: straight line representation

and region representation.

3) Vertex level: the lines are interrelated by

vertices, the region boundaries and shapes are

computed.

4) Edge level: lines are interpreted as edges,

relating the surfaces connected by the edge.

'Ihe edge types possible are: convex (+),

concave(-), occlude(>), occlude-concave (>~

and crack (c).

5) Orientation level: the three-dimensional

orientations of both surfaces and edges are

represented. This classification is very

crude. Possible orientations are: vertical,

horizontal or slanted.

6) Surface naming level: the surfaces carry

meaningful names. For example, a surface can

be ground, ground* (a horizontal surface

coplanar with the ground such as a path), roof,

window or door-handle. A surface is a

side-face or top-face if it is part of a cube

or a wedge.

7) Object level: the image is represented as an

object. The possible objects in HJUSE are a

cube, a wedge and a house.

Fig. 2 shows an image, interpreted as a house at

the object level, represented at the seven

different levels in the hierarchy.

4.2 Input

HJUSE receives a sketch in the form of a

procedure for drawing it, created by the routines

that track the stylus on a data tablet. '!tie input

is a sequence of plotter commands, a command being

Move (pen up) to (x ,y) or Draw (pen down) to (x,y)

from the current position. Each series of pen down

commands forms a chain of connected line elements.

4.3 Multi-levels of processing

'!tie interpretation process strives to

represent the image at the highest level possible.

'Itiis is achieved by systematically bootstrapping up

through the seven levels described above. A

consistent interpretation of the image has to be

achieved at each level before the step into the

next level can be made. '!tie cycle of perception

serves as a metaphor for the description of the

process. '!tie cycle can be found at each level of

processing, stepping through its four stages: cue

discovery, model invocation, model testing and

model elaboration. '!tie objectives at each level of

processing are always: 1) to construct a consistent

representation and 2) to find the cues that allow

bootstrapping into the next level.

246

4.3.1 Low Level Segmentation

One of the lessons learned from the blocks

world is that one needs to maintain a variety of

representations each at various levels of detail in

order to meet the demands of the interpretation

task. 'Itiese representations are created by means

of four different segmentation procedures resulting

in point, line, region and vertex representations.

Point formation. The points in the picture are

represented in two different ways. First there is

a network representation of the set of all points

in the picture. Apart from this a coarse array

representation is maintained (32x32) . Each cell

contains the list of points in that area. Quick

answers to questions such as "what am I near?" can

be given this way.

Line formation.

interconnected

representation

joining its end

A chain is defined as a set of

points. '!tie coarsest line

of a chain is the straight line

points. A procedure searches for

the point in the chain furthest from that line and

uses this point to split the line into two

components. '!tie chain is recursively subdivided

until there are no free points left.

Vertex formation. '!tie vertices used in HOUSE are:

Free-ends, Links, L-vertices, Tees, Arrows and

Forks (Fig. 3) . Each vertex has its own formation

procedure. 'Itiese procedures are efficient in the

sense that they use the line representation of each

chain just up to the level of detail they require.

'!tie procedures are also conservative. For example,

a merge of two Free-ends into an L-vertex or Link

will occur iff the distance between the ends is

very small. 'Itius, one prevents vertices from being

merged that were not intended to be. Conservative

segmentation will often miss genuine cues but,

crucially, it will not supply false cues

(Mackworth, 1977a).

Region formation. A region segmentation is

achieved by subdividing the picture into empty

patches, a patch being subdivided only if it is not

empty.

· 1

l

I

. .- 1 ..

.. . •.

. . • .

. ...
..

.
~
;, ..
·•.

. .

a) Sketch level

d) Edge l evel

V-edge

b) line/region l eve l

-edge

f) Surf:ice naminr, l evel

Figure 2

247

Arrow3
L-vertex2

L- vertex4
L-vertex3

c) VPrtPl/ l Pvel

ce

V-edge -edge

e) orientation level

HOUSE

g) Object l evel

Levels of Representation

Free-end

chain)(

Link

ch~ Region-a

~
Region -b

Region -surround

L-v~rtex

Region-small
cha in 2 -----chainI

Region-large

Fork

chainI

Region - c Region-b

stem-chain

Tee

~e ion -a

Region-c chain 2
Region-b

chainI

s t em-chain

Arrow

Region -a

Region -b
Region-

stem-chain

Figure 3 . the vertices

Again, for conservative reasons, this process stops

at a relatively large patch size.

'llle low level segmentation process continues

through levels 1 to 3. 'lllis process cLUTiulates in

the formation of the low level cues (the vertices

in Fig. 3) that allow bootstrapping into the

interpretation cycle of the edge level, level 4.

Chains and regions are the primitives in 1-K)USE.

'llley are constrained by the vertices. Each vertex

has a procedure at its disposal by means of which

it can find out which regions it constrains. 'lllis

procedure crawls along the bisector of each vertex

line pair. 'nlis process is conservatively biased

in the same way as the region formation procedure

was. It will travel over a distance less than the

size of the smallest patch along the bisector. If

no region is found a region-ghost is created

(Mackworth,1977a).

248

Such a region-ghost stands for the region which has

that relationship to the vertex but cannot yet be

identified.

4.3.2 Cue interpretation tables

For each level of processing beyond l evel 3

there exists a set of cues which have procedures

attached to them that will allow one or more

interpretations for the primitives at that l evel.

Fig. 4 shows the primitives at each level. A few

examples of the constraints imposed at each l evel

might be useful.

At the edge level we have used traditional

Huffman (1971), Clowes (1971) and Waltz (1972)

junction interpretations to interpret the edges.

At the orientation level, we have used

extremely crude characterizations of the

orientations of surfaces and edges (similar to but

much cruder than those suggested by Waltz, 1972)

into horizontal, vertical and slanted. 'llle cues

here are the edge types. A typical inference is

that two surfaces separated by a crack must have

the same orientation. A vertical line lying in a

surface with a vertical orientation must be a

vertical edge. 'nlese constraints are essentially

ccmpiled versions of the gradient space constraints

exploited by POLY (Mackworth, 1973).

At the surface naming level, we use inferences

such as, "the ground is horizontal, walls are

vertical, roofs can be slanted or horizontal" .

Relational information such as, "windows share a

crack edge with walls or doors and are surrounded

by them" is also exploited here.

At the object level, certain cues must be

present before

cube or wedge.

the object can be called a house,

Sane parts of a house (a putative

wall containing a door or a window and connected

via a convex edge to a putative roof) must be there

before it can be a house. Other parts

(e.g. door-handles) are optional, as in Winston's

(1975) architectural models.

cue type

free-end

1-vertex

link

arrow

fork

tee

Edge level

domain(s)

chn

convex,concave,occl-conc,occlude,crack

chnl
occlude

occl-conc
occlude
crack

occlude
convex
concave

occl-conc
crack

chn2

occlude
occlude

occl-conc
crack

occlude
convex
concave

occl-conc
crack

-------------------------------------stem-chn chnl chn2
----------- ------------ -----------convex occl-conc occl-conc

convex occlude occlude
concave occl/crack occlude
concave occlude crack
convex occlude occlude
concave concave concave
convex convex convex
concave occl-conc occl-conc
convex occlude occiude
crack crack crack
crack occl-conc occl-conc

==

cue type

concave

convex

crack

Orientation level

domain (s)

chn region-a region-b
---------- ----------- ------------h-edge v-surface h-surface

sl- surface ---------- ------------ ------------h-edge v-surface h-surface
sl-surface

h-edge h-surface v-surface
sl-surface

I
v-edge ____ ,_v-surface __ ,_v-surface __ _
v-edge v-surface v-surface

h-edge

h-edge

sl-edge

sl-surface sl-surface
v-surface h-surface

sl-surface sl-surface
h-surface v-surface
v-surface sl-surface

l-:~:~~ge- 1-:~:::::::e-1-:=:~:::::---
v-edge
h/sl-edge sl-surface sl-surface

h-edge h-surface h-surface

cue type

Surface naming level

domain (s)

chn region-a region-b

occl-conc h-edge

concave h-edge

wall/door
roof

side-face
top-face

------------wall/door
roof

side-face
top-face

ground

ground*

1-~~~~~ge_ ,si::~:~:~f- lsi::::ace ___ _

convex I h/sl-edge I roof wall/roof

l-~=~::---- 1--::~~nd ____ ,_ ::~~nd* ___ _

crack h/v-edge window wall
sl-edge

inside

surrounds

region-a I region-b ------------------ -------------------window wall/door

wall/door window

wall/roof
conunon side-face ground

top-face

wall/door-handle I door

door I wall/door-handle
region

--------------------------------------v-surface wall/door/window/door-handle
side-face

sl-surface

h-surface

roof/top-face

ground/ground*/roof/top-face

Object level

cue type

common-wall-door-*
convex-wall-roof-h-edge

convex-wall-roof-h-edge
inside-window-wall-*
convex-side-face-top-face-h-edge
convex-P<;1rallelogrc;llll-~rallelogram-h-edge
convex-s1de-face-s1de-face-v-edge
convex-parallelogram-parallelogram-v-edge
convex-side-face-top-face-h-edqe
convex-P<;1rallelogram-triangle-n-edge
convex-side-face-side-face-v-edge
convex-parallelogram-parallelogram-v-edge

domain

obj ect

house

house

cube

wedge

=== -------
convex-side-face-toP:-face-sl-edge
convex-trial}gle-parallelogram-sl-edge
convex-top-face-top-face-n-edge wedge
convex-parallelogram-parallelogram-h-edge

==

Figure 4 Cue interpretation tables

249

4.3.3 Network Consistency

At each level of interpretation, certain

configurations of primitives, known as cues, invoke

m::oels which specify the allowable interpretations

for the primitives. To ensure a globally

consistent solution we must find an interpretation

for each primitive such that each cue has at least

one satisfied model. '.Iwo different types of

consistency are required for each interpretation.

An interpretation should be consistent with the

internal description of the primitive (internal

consistency) and it should be consistent with at

least one of the interpretations for related

primitives (external consistency) .

External consistency is achieved by a network

consistency algorithm, NC (Mackworth, 1977a) .

Input for this algorithm is a list (actually, a

queue) of variable/relation pairs. 'Ihe variables

are the primitive chains and regions, the relations

are the cue instances constraining the primitives

they are paired with. 'Ihe domain of each primitive

is formed by its set of possible ~ priori

interpretations. NC takes the first pair (X,R)

from the queue and checks for each value a in the

domain of X to see if the other variables also

constrained by R have at least one value in their

domains that is directly constrained by R. If such

a value cannot be found then a is deleted from X.

An empty domain for X implies that there is no

consistency in interpretations possible.

is not the case then the queue is replaced

If this

by the

union of the queue and the set of pairs obtained

from all relations other than R that directly

constrain x. 'Ihese two steps are repeated until

the queue is empty. If two or more primitives have

more than one value left in their domains after

this operation, the domain of one of the primitives

is split in half and N:: is applied recursively. An

extensive discussion and elaboration of network

consistency algorithms is given in (Mackworth,

1977c) . 'Ihe network consistency algorithm used in

EOUSE is the same at all levels of processing

beyond level 3.

Internal consistency is provided in the form

of filters both in the cue interpretation tables

and in the network consistency algorithm. 'Ihese

250

filters can prevent a model from being validated.

For example, a slanted surface cannot have a

vertical edge as part of its boundary.

Internal and external consistency are the

equivalents of model testing and model elaboration,

respectively, in the cycle of perception. 'Ihe

completion of model elaboration either starts t he

cue discovery at the next higher level or it leads

to a resegmentation of the picture . Note that all

the interpretations obtained at the present level

and lower levels are potential cues for the next

higher level.

4 . 3.4 Resegmentation

Resegmentation can be initiated for many

reasons. 'Ihe door- handle of the house in Fig. 2 is

a good example. Because this region is too small,

the conservative segmentation will initially

overlook it. A region-ghost is created in its

place because the region finding procedures

crawling up along the bisectors of the angles will

all fail to find a region. In the interpretation

process, however, a region-ghost is treated as all

other primitives. 'Iheir domains are provided with

a set of initial interpretations, whose consistency

is tested by the network consistency algorithm. A

region-ghost with an interpretation left in its

domain initiates resegmentation, that is, the

region segmentation is further refined until the

region-ghosts can be located and labelled as

regions. Although region resegmentation is used in

MAPSEE, it has not been implemented in HOUSE at the

time of writing .

4.4 Output

'Ihe output of the program consists of a

network of interconnected interpretations. An

interpretation at each level consists of a list of

all the primitives at that level; each primitive is

paired with a valid interpretation for the

primitive. Each interpretation at a given level is

linked to the interpretation at the next lowest

level that spawned it and the interpretations at

the next highest level that it, in turn, has

spawned . 'Ihe number of such interpretations as

.,

returned by the network consistency algorithm

varies from level to level. 'Ihe general trend is

that the number of interpretations at each level

increases up to the orientation level and decreases

beyond this level. For example, a wedge has 7

interpretations at the edge level, 30 at the

orientation level, 11 at the surface naming level

and 3 at the object level, two of these

representing a wedge, the third one representing

its concave interpretation.

5. Discussion

It is not feasible to discuss all the

implications of HOUSE in this short paper. For

such a discussion the reader is referred to Mulder

(1978). HOUSE'S treatment of the cycle of

perception should speak for itself by now. It is

shown in Fig. 5.

surface

oric

line/region

sketch

r
X

r
f

level

level

Figure 5. HOUSE' s treatment of the cycle

251

We will limit ourselves here to a short discussion

of the contributions of HOUSE to the goals of the

project.

i) The exploitation of the semantics of an image in

levels buys both modularity (and thus generality)

and efficiency. For example, merging the

orientation level and the surface naming level

would have led to the same end results. However,

the total number of ccrnbined interpretations to be

tested by the network consistency algorithm would

be much larger in the merged situation. Ruling out

certain combinations at the orientation level

prevents similar combinations from being made at

the surface naming level.

ii) The chicken and egg

requires interpretation"

MAPSEE and HOUSE show

problem "segmentation

remains a problem. Both

that a conservative

segmentation of the picture, eventually corrected

later by means of interpretation, can work.

However, it is not difficult to think of examples

in which even a conservative segmentation would be

incorrect. We are working on solutions of this

problem, but none of these has been implemented.

iii) The need for and implementation of multiple

representations and levels of details, one of the

lessons learned from the blocks world, was

mentioned before. For example, the vertex finding

algorithms make sophisticated use of multiple

representations.

iv) The utility of stratifying the interpretation

process does not require one to use a totally

bottom-up approach as HOUSE currently does. Within

the framework we have presented it should be easy

to see that one can start processing at a higher

level before finishing at a lower level. With the

cycle running concurrently on many levels at once

the constraints embodied in the cue interpretation

table could propagate vertical consistency (Zucker,

1977) down the levels as well as up.

Schema-based theories of perception require a

control structure different from HOUSE'S present

control structure. Schemata are active processing

elements which can be activated in either a

top-down way or a bottom-up way (Bobrow & Norman,

1975). '!he models in MAPSEE and HOUSE are

predicates treated as data structures by the

network consistency algorithm. Schemata on the

other hand take over control themselves,

controlling both internal and external consistency.

A next stage of the project may be to implement

irodels that can take over control in order to test

internal consistency. Having schemata that control

external consistency as well would mean that we

have to alter the network consistency algorithm.

At this point, the project will probably diverge,

one side focussing on the aevelopnent of a general

control structure for the interpretation of

sketches, the other focussing on a schemata

controlled interpretation. A substantial

contribution to schemata-controlled int~rpretation

has been made by Havens (1978a). Havens has

designed and implemented a programming language

called MAYA (Havens, 1978b) which is a

multi-processing dialect of LISP that provides

structures for representing schemata, and control

structures for coordinating and integrating

b.:)ttom-up and top-down schema instantiation.

v) HOUSE is a first step towards realistic

architectural sketch understanding.

vi) One might expect that interpretations in the

block world are more constrained by euclidian than

by conventional representations as contrasted with

the domain of geographic maps where conventional

signs play a strong role. Data collected in an

experiment done by Mulder and Mackworth (1978)

lnwever show, that slant estimates of cube surfaces

by human subjects are controlled by three different

schemata. Only one of these is purely geanetrical:

the other two display an intriguing mixture of

geometry and convention.

6. Related Work

We have already discussed the commonality of

the ideas behind the two programs and the influence

of previous image understanding research. Levels

of processing have also been proposed by Zucker

(1977) for processes in a low level vision system.

252

Network consistency algorithms and their

developnent from binary arc consistency algorithms

(Waltz, 1972) are described in (Mackworth, 1977c).

Related algorithms have been proposed by Gaschnig

(1974), Barrow and Tenenbaum (1976), Freuder (1976)

and Rosenfeld, Hummel and Zucker (1976) .

7. Acknowledgments

'!his research is supported by grants from the

National Research Council of Canada to the second

author and by a scholarship from the Cultural

Exchange Section of the Canada Council to the first

author. We are grateful to Bill Havens and Randy

Goebel for discussion and comments on an earlier

draft of this paper.

8. References

Barrow H.G. and Tenenbaum J.M. (1976) "MSYS : a
system for reasoning about scenes", Tech. Note
1211 A.I. Center, Stanford Res. Inst., Menlo
ParK, CA.

Bobrow D.G. & Norman D.A. (1975), "Some principles
of memory schemata", in Bobrow, D.G. & Collins,
A, (Eds .) Representation and Understanding,
Academic Press 1975. --

Clowes M.B. (1971) f "On seeing things", Artificial
Intelligence~, , 79-112.

Freuder E.C. (1976), "SYDthesizing constraint
expressions", A.I. Memo 370, M.I.T., Cambridge,
Mass.

Gaschnig J. (1974), "A constraint satisfaction
method for inference making", Proc. 12th Ann.
Allerton Conf. on Circuit Theory~--U:- i:rr--rrr:-,
orbana::Chc!!npcrign-;- 111., pp. B66 74.

Havens w.s. (1978a),. "Recognition as a model for
machine perception, Proc. of the 2nd Nat. Conf.

of the Can. Soc. for Computational Studies of
Tntentge~ (tlrts '1/0ttnne) • -

Havens w.s. (1978b) "A procedural model for
machine perception", Ph.D. 'Ihesis, TR78-3, U. of
British Columl:>ia, February 1978.

Huffman D.A. (1971) , "Impossible objects as
nonsense sentences", Machine Intell~ence 6, B.
Meltzer and D. Mich1ei 1Eds.), in. Uhiv.
Press, Edinburgh, pp. 29,-323.

Mackworth I\.K. (1973) 1 "Interpreting pictures of
polyhedral scenes", Artificial Intelligence !,
2, 121-137.

Mackworth A.K. (1977a) , "On reading sketch maps",
Proc. Of IJCA!-77, M.I.T. ,Cambridge, MA., pp.
"59t3=606:-

Mackworth A.K. (1977b) , "Vision research strategy":
black magic,m!;!taphors,miniworlds c;U1d maps"~ in
Co~uter Vision S~tems, E. Riseman ana A.
Ha en (Eds.), Aca~ 1c Press (in press).

Mackworth A.K. (1977c), "Consistency in networks of
relations", Artificial Intelligence !!, 1, 99-118

Mulder J.A. (1978), M.Sc. thesis, Univ . of British
Columbia (in preparation).

Mulder J.A, & Mackworth A.K. (1978), in
preparation.

, I

· I

Ros1;~g:~~ l~bell~~5g ~efax!~1o~ug~~a~i~ns'l~
9i~~E

a~8~~:3
3

. On Systems, Man and Cybernetics, 1:;MC-6,

Waltz D. (1972), "Generating semantic descriptions
fran drawings of scen~s with shadows", MAC
AI-TR-271, M.I.T., Cambridge, MA.

Winston P.H. (1975) , "Learning structural
descriptions from examples", in Winston, P.H.
(Ed .), The P~chol~~ or Computer Vision, McGraw
1h11, 1975', p • 15 097 ---

Zucker S.W. (1977) "Towards consistent
descriptions in vision systems", Proc. Of
IJCAI-77, M.I.T., Cambridge, MA., p. -'709'.

253

A PROCEDURAL MODEL OF RECOGNITION FOR MACHINE PERCEPTION

William S. Havens
Department of Computer Science
University of British Columbia

Vancouver, Canada V6T-1W5

ABSTRACT

Aspects of a schema-based theory of machine
perception are discussed . Perception is character
ized as an active recognition task that employs
schemata as a knowledge representation to compose
new descriptions of observed experience. A pro
cedural model of recognition for machine perception
is presented. The model integrates top -down,
hypothesis -driven search with bottom-up, data
driven search in schemata networks . Heuristic pro
cedural methods are associated with specific
schemata to guide their recognition. Multiple
methods may be applied concurrently in both top
down and bottom- up search modes. The implementa
tion of the recognition model as an A.I. program
ming language called Maya is described. Maya is a
multiprocessing LISP dialect that provides data
structures for representing schemata and control
structures for integrating top-down and bottom-up
processing in schemata networks .

1. Introduction

The creation of intelligent automata has been

a compelling dream of mankind for millenia. Only

in the last few years, however, with the invention

of the von Neumann digital computer, has the real

ization of this dream been a serious possibility.

Unfortunately , our high expectations have been

maddeningly difficult to realize. In particular,

we do not yet have an adequate theory of machine

perception . However, as Mackworth (1977b) points

out, elements of such a theory are emerging.

Towards this end the research efforts of many have

focused on the development of schemata as a viable

machine representation of knowledge. This represen

tation has appeared in various incarnations includ

ing frames (Minsky, 1975) (Winograd, 1975), scripts

(Schank and Abelson , 1975), and schemata (Rumelhart

254

and Ortony, 1976) (Bobrow and Norman, 1975). A sec

ond major effort has been the refinement of search

mechanisms for schema-based perception (Kuipers,

1975) (Freuder, 1976).

This paper presents aspects of a schema-based

theory of machine perception. The work is motiva

ted by the belief that perception can be character

ized as a recognition process that composes new de

scri ptions of observed experience in terms of

stored stereotypical knowledge of the world. A sim

ilar view has been advocated by Bobrow and Winograd

(1977). A theory of machine perception is seen as

having two major parts: a fonnalism for the repre

sentation of knowledge and a model of the processes

and control structures required to perform search

and deduction on that representation. This work

focuses on the development of a procedural model of

recognition for schema-based representations.

2. A Procedural Model

In this model , a schema is a modular represen

tation of everything known about some stereotypical

concept, object, event, or situation (Minsky , 1975).

That knowledge can be manifest in three fonns.

First, each schema contains factual knowledge about

the concept that the schema represents, and that

knowledge may be realized declaratively, procedur

ally, or as some combination of data and attached

procedure. At first, such facts are expectations

I

in an uninstantiated stereotype schema. These ex

pectations are systematically replaced by specific

values in the schema instance as they are recog

nized.

Second, each schema may contain procedural

knowledge to guide the recognition process for

· that schema's stereotype. Such active heuristic

knowledge is called a method. Instead of relying

on general search methods, domain-specific methods

can be associated with particular schemata to ex

ploit special techniques that are particularly ef

fective for the recognition of that schema . Meth

ods may be employed in both top- down and bottom-up

search modes.

And third, schemata form relations with other

schemata thereby creating heirarchial network

structures . This process allows complex concepts

to be represented via the composition of more prim

itive schemata, as composition hierarchies. For a

thorough discussion of schemata as a representa

tion, see Winograd (1975).

The types of recognition processes that can

operate on schema-based knowledge representations

are constrained by perception itself. Perception

cannot passively reflect sensation, but must be

an active search process motivated by plans, ex

pectations, and desires. Our sensory experience

of the world is often ambiguous and illusory.

Likewise, our knowledge of the world by which we

interpret sensory experience is incomplete and

often erroneous. Yet, perception must operate in

this uncertain environment. The search process

must tolerate indeterminancy by exploiting context

and allowing multiple partial interpretations to be

hypothesized and their confirmation attempted con

currently over time.

As well, machine perception must be both an

active process guided by hypothesis and expectation

and a passive process driven by events and sensory

observations (Freuder, 1976), Observations behave

as cues which both stimulate the formation of hypo

theses and the activation of active heuristic knowl

edge associated with the specific hypotheses. Such

hypothesis -specific knowledge is used to direct the

recognition process by making observations, creating

new expectations, and attempting to satisfy those

expectations.

The expectations associated with stereotype

schemata play an important role in the recognition

process. They are dynamic properties of each schema

that change as the uninstantiated instance proceeds

toward being fully specified. At each point in this

process , the schema's expectations represent what

additional information is required to complete its

recognition. From a different perspective, they

represent the schema's knowledge of the world:

what it expects to occur next or be found next from

observation. Expectations provide the predictive

power of models for their associated schemata.

255

Expectations may be represented by simple de

fault values to be replaced by observed values when

they are discovered, or they may be represented by

complex patterns with attached procedural methods.

These attached methods may use either goal-directed

or data-d~iven search mechanisms (Rumelhart and Or

t"ony, 1976). Goa 1-di rected methods are designed to

perfonn a top-down search of a schema's composition

hierarchy in order to satisfy the methods' associ

ated expectations. Data-driven methods, however,

are designed to perfonn a bottom-up search of a com

position heirarchy based on the satisfaction of

their associated expectations.

For large knowledge bases, the recognition

process cannot utilize purely top-down goal-direc

ted techniques. Our knowledge of the world is far

too complex to rely solely on goal-directed mechan

isms. Machine perception must employ an integra

tion of both goal-directed and data-driven search.

Goal-directed search provides active guidance

based on domain-specific knowledge of the hypo

thesis being attempted, whereas data-driven search

uses the observation of cues to select likely

hypotheses. See Havens (1976a) .

Goal-directed search for schemata is realized

by employing a top-down search of a schema's compo

sition hierarchy. Top-down methods attempt to rec

ognize instances of their schema's stereotype by

making observations from sensory input and by call

ing on the efforts of the sub-schemata as subgoals

(Kuipers, 1975).

Data -driven search in schemata requires the

bottom-up search of a schema's composition hierar

chy. In the model discussed here, a schema's meth

od may be activated either from a higher schema as

a subgoal, or from a lower schema as a supergoal.

If a schema's method has been explicitly called as

as a subgoal, then it must return a success or

failure to its caller. However, if a schema has

been activated as a supergoal, then it does not

have an explicit caller. Instead, it must compute

which higher schemata in the composition hierarchy

its completed schema instance could plausibly be

part of. This computation is facilitated by re

quiring each schema to contain inverse composition

relations (usually called "part-of") with all

plausible higher schemata.

Bottom-up , data-driven search in schemata de

pends on multiple supergoals being active simultan-

256

eously. Since it is desired that the recognition of

schemata be conducted by procedural methods, these

bottom-up methods must be allowed to apply their

heuristic techniques concurrently. In bottom-up

search, therefore, supergoal methods are realized

as concurrent processes.

By allowing a schema to be activated from the

bottom-up, the acknowledged deficiencies of goal

directed search in schemata can be avoided. A

schema need not be hypothesized as a subgoal on

blind expectation. Instead a likely schema is sel

ected as a supergoal based on the recognition of

supportive evidence from the input data. Once a

schema has been selected as a supergoal, it may con

tinue the search for a fully specified instance by

using top-down techniques until one or more of the

schema ' s expectations prove difficult to achieve.

Since the supergoal exists as a process, it may then

suspend itself bound to patterns representing those

expectations until further supportive evidence is

discovered.

When such matching evidence is found renewing

the probability of the schema's success, the suspen

ded supergoal is resumed. Supergoals iterate

through a cycle, called an expectation/matching

~ of being resumed by the discovery of match

ing evidence, computing a new set of expectations

about their evolving schema instances, and then

suspending themselves and possibly other methods to

those expectations. Since multiple methods may be

attached to multiple expectations, these expecta

tions represent diverse possible directions for a

schema's script . The eventual choice of a search

path is not made by blind hypothesis but is data

driven, chosen by the discovery of evidence match

ing a particular expectation. The method associa -

I

·. I

ted with that expectation is then activated to

continue its schema's recognition. The branches

in a schema's non-deterministic script are there

fore chosen deterministically by discovery of

information supporting that path.

Machine perception must also be a recursive

process. The recognition of complex concepts

cannot be sustained using only primitive low-level

cues. Instead, the recognition of concepts can be

used recursively as internal cues in the perception

of more abstract concepts. In the model discussed

here, cues are both primitive features computed

from the external world and abstract internal fea

tures represented as schema instances. When a

method satisfies all its schema's expectations for

a fully specified concept, that instance becomes an

internal high-level cue. By allowing cues to be

arbitrarily complex concepts, a context-sensitive

cycle of perception (Mackworth, 1977b) is realized .

Starting at the sensory data level, primitive cues

present in the input are used to drive the hypo

thesis and recognition of low- level concepts.

These features then behave as higher level cues

that stimulate the hypothesis of more abstract in

terpretations . When a concept has been recognized,

the completed instance uses knowledge of what

higher schemata in any composition hierarchies it

might plausibly be part of. It then attempts to

match the expectations of those schemata. This

process is called completion in the recognition

model.

3. Maya

The recognition model described above has been

implemented as an experimental programming language

called Maya (Havens, 1976b). Maya is a LISP dia

lect designed to facilitate progralTITiing in schema-

257

based systems, The language extends the data types

defined in LISP, provides a multiprocessing inter

preter, and defines control structure primitives

for integrating top-down and bottom-up search in

schemata networks.

Maya separates the LISP notion of an atom

into two separate data types. In

LISP, each atom is used both as a variable and as

the name of a set of properties, usually implemen

ted as property lists. In Maya, however, variables

are differentiated from the names associated with

property lists because it is desirable to distin

guish between the value of a variable and the name

of a data object. Variables are represented syn

tactically, as in LISP, by their atoms but names of

objects are represented by their atoms prefixed by

a colon.

The most important extensions to LISP's data

types are the inclusion of objects and items. Ob

jects subsume LISP property lists, the OBLIST, and

can be used to represent schemata frames, and sem

antic networks. A schema or frame can be thought

of as a collection of named slots. A node of a

semantic network may be considered to be a set of

named relations. Objects can conveniently repres

ent both of these structures. Each object is com

posed of a set of associations between atomic names

and arbitrary forms. A name is said to be defined

by its binding in some object. For example, the

property list of the atom PRINT is an object which

defines an association between the name SUBR and

the system print function. Likewise, since the

OBLIST is an association of LISP names to their

definitions, it is considered the global object in

Maya.

Objects are created by the data primitive

OBJECT which has the following form :

(OBJECT <type ><name1><defn1><name 2><defn 2> l

OBJECT creates a new object of user.specified type

<type>, consisting of a set of associations between

each atomic name <n~mei > and its lo~al definition

<defni >.

Whereas objects associate atomic names with

their definitions, items associate variable names

with their local values. Items are sets of local

variable instances. In Maya, ~enerators such as

the pattern matcher and the top- down and bottom-up

control structure primitives always return items as

values. These items contain the set of local vari

able bindings computed within the function .

In LISP, the interpreter's stack contains only

function invocations and variable bindings. Maya's

stack, however, also includes objects and items.

Pushing an object onto the stack provides an incre ·

mental context mechanism. Since Maya i s defined

about a deep- binding scheme, objects pushed onto

the stack alter the interpreter's "view" of the

OBLIST. The object nearest the top of the stack is

called the enclosing object and represents the

schema or semantic network node in which the system

is "operating." On the other hand, pushing an item

onto the stack in effect creates a new instance of

each variable contained in the item. Each vari

able's binding remains visible until another item

containing the variable's name is pushed on the

stack or the item is popped from the stack.

Objects and items are pushed onto the stack by

a function called SEND, which takes a sequence of

forms to evaluate:

(SEND <A
1
> <A2> <A3> <An >),

SEND evaluates each form <Ai > in a left- to- right

order. If the value returned from the evaluation

258

of some <Ai > is either an object or an item, it is

pushed onto the stack. Then <Ai+l > is evaluated

from within this new context or new variable envi

ronment respectively . The sequence, <A1 > through

<An>• can be viewed as a search procedure through

a network of objects representing schemata. If

the evaluation of some <Ai > yields an object, by

pushing it onto the stack, the interpreter in ef

fect "goes to" that object for the evaluation of

the rest of the sequence, <Ai+l >, ... , <An>,

The three Maya data primitives GET*, PUT*,

and REM* are analogous to their LISP counterparts

GET, PUTPROP, and REMPROP respectively except that

they operate on the enclosing object rather than

the property list of a specified atom. They can

be used to access, create, modify, and destroy

schemata data structures. Their relationship to

the more familiar LISP primitives is illustrated

by the equivalence of the two following exP,ressons:

· (PUTPROP <atom> <name> <defn>)

(SEND :<atom> (PUT* <name> <defn>))

Maya provides a pattern matching system sim

ilar to that of CONNIVER's (McDermott & Sussman,

1973) . Patterns consist of n·tuples of constants

and pattern variables. Patterns can be matched

against a datum consisting of another tuple or an

associative index of tuples and their values

called a tuplebase. Maya permits objects to con

tain arbitrary tuplebases. To represent a schema's

expectations and attached top-down and bottom-up

methods, patterns are bound to procedures and pro

cesses in the tuplebase of the object representing

that schema.

Every pattern· matching and control function

in Maya returns as value an item representing the

binding of pattern variables assigned during the

. ·.I

match. The returned item also contains a reacti

vation~ that permits the pattern match to be

resumed for an alternate choice. An item in Maya

therefore has properties similar to the possibili

ties list of CONNIVER. It represents the set of

all successful matches given a particular pattern

and datum.

Maya defines control mechanisms for employing

top-down and bottom-up methods within particular

schemata . Both types of methods are realized by

combining the notions of generators from CONNIVER

and QLAMBDA expressions from QLISP (Reboh and

Sacerdoti, 1973). QLAMBDAs are invoked by match

ing their pattern argument against a pattern da

tum. If the match succeeds, the pattern variables

assigned during the match are used as the actual

arguments to the QLAMBDA expression, and the body

of the expression is evaluated. QLAMBDAs return

items as values containing a reactivation tag for

the generator. QLAMBDAs return control to their

caller when the last form in their body is evalu

ated or w~en they suspend their execution. In this

latter case, the reactivation tag is set to the

form just past the suspension in the QLAMBDA body.

Procedural methods may be associated with sche

mata through various means. The simplest technique

is to define a function local to the object repre

senting some schema. In Maya, the function DEFUN

always adds new function definitions to the enclo

sing object. At top-level, the enclosing object

is the OBLIST, so new definitions are added glo

bally as in LISP. However, DEFUN can define a new

function to a schema by first making that schema

the enclosing object. For example,

(SEND <Schema > (DEFUN <fOO> ...))

adds a local definition of the function <foo> to

259

<schema>. This local function definition can then

be evaluated via:

(SEND <schema> (<foo> ...)) .

Top down methods in Maya are normally realized

as QLAMBDA agenerators bound to patterns in tuple

bases. Since tuplebases can be associated with

specific schemata, these patterns represent the

schema's expectations and the attached QLAMBDA ex

pressions are considered top-down methods for satis

fying those expectations. Maya defines two control

primitives for pattern-directed invocation of top

down methods.

DlST generates items in depth -fi rst order. In

a tuplebase of QLAMBDA methods , <db>,

(DlST <pattern> <db>)

will invoke a method associated with a pattern ar

gument that matches <pattern>. DlST returns as

value the item returned from the QLAMBDA plus a new

reactivation tag. If that tag is re-evaluated,

DlST will recall that same QLAMBDA generator repeat

edly until it fails to return a next item. DlST

will then attempt to match the pattern of another

QLAMBDA method in the tuplebase.

In contrast, 81ST generates items in breadth

first order.

(81ST <pattern> <db>)

calls once each generator in the tuplebase <db>

that matches the given pattern <pattern>. Only

after it has called all possible matching QLAMBDAs

will it recall each suspended generator for the

second time, then each for the third time, and so

forth.

The ability to apply top-down methods in

either depth-first or breadth-first order is impor

tant. Generators are supposed to return possible

items in order of likelihood. Yet the depth-first

only mechanisms of CONNIVER and other languages

must completely exhaust the possibilities of one

generator, no matter how unlikely, before consider

ing the possible items of another generator in the

database.

Bottom-up methods have been described as sup

ergoals in the recognition model. Supergoals are

implemented in Maya as processes which may be asso

ciated with specific schemata. Processes may be

explicitly created and invoked by the Maya primi

tive PROCESS. The expression,

(PROC ESS <schema> <ql > <pattern>),

attempts to match <pattern> against the pattern ar

gument of the QLAMBDA expression <ql >. If the

match succeeds, a new process is created and begun.

The procedure body of the process is taken to be

the body of the QLAMBDA expression. An association

is made between the new process and the specified

schema <schema>. If NIL is specified, then no

association is made,

Once begun, the process will continue executing

untii either its procedure body is exhausted or

until it suspends its execution. Control then re

turns to the call of PROCESS in the invoking proc

ess which returns as v~uean item from the match of

<pattern> to <ql >. Thus, this item may be used to

return values back from the terminating process.

As with top -down subgoal methods , bottom-up me

thods may be bound to patterns in tuplebases and

invoked by matching those patterns. Again, these

tuplebases represent the unsatisfied expectations

of a partially recognized schema instance. When

another fully-specified schema instance matches an

expectation of a bottom-up method, the associated

process is resumed as a supergoal. The process may

then continue the recognition of its schema as a

260

function of the now satisfied expectation. Proces

ses are invoked from tuplebases via the primitive

RESUME which has the following form:

(RESUME <pattern> <db>) ,

The pattern <pattern> is matched against a tuple

base of processes <db>. If the match is successful,

the associated process is resumed from the point of

its last suspension. When the resumed process sus

pends itself again or terminates, control will be

returned to this call to RESUME which returns as

value an item containing the pattern variable as

signments made during the pattern match plus a re

activation tag. This tag may be used later to

resume any other suspended processes in <db> that

matches <pattern>.

Once a schema's supergoal has been resumed as

a process, the supergoal continues the recognition

of its schema. First, it incorporates the new in

formation provided in the pattern match into the

schema instance's evolving description. The super

goal may now continue the recognition of its schema

using one of the three modes of search. Based on

the added information provided by the newly satis

fied expectation, the supergoal may attempt to com

plete the schema instance using top -down,goal

directed methods. On the other hand, if the likeli

hood of success is not high, then the supergoal can

compute a new set of expectations for the schema

based on the new information. It then suspends it

self and possibly additional methods to these new

expectations. The third possibility is that the

supergoal suspends other methods to the new expec

tations but continues its own execution . By so

doing it can now direct the discovery of information

that may match its own schema's expectations. The

choice is completely heuristic. If it ytelds

• I

I
·I

I

· I

control to the process that invoked it, then that

process will guide the bottom-up recognition pro

cess. When information is discovered, matching

any of the supergoal schema's expectations, then

the attached process will be resumed. On the other

hand, if it retains control, then it can use

domain-specific knowledge about its schemata to

guide the bottom-up search process. In effect,

supergoal search provides an "extra degree of free

dom" not possible in subgoal search.

A supergoal suspends itself by calling the

SUSPEND function which has the following form:

(SUSPEND <'pattern> <db>).

The current process is suspended to the pattern

<pattern> in the tuplebase <db>. Control returns

to the process which invoked the current process .

If the suspended process is later resumed, SUSPEND

returns an item representing the match to <pattern>.

Supergoals conduct the recognition of their

schemata in parallel with other schemata by going

through an iterative expectation/matching cycle of

computing expectations for the schema instance,

suspending themselves and other processes to those

expectations, and then being resumed by lower su

pergoals that match those expectations. This

cycle begins when a schema is first proposed as a

likely hypothesis and tefminates when a complete

schema instance has been recognized . Recognized

instances then become abstract cues in the recog

nition of higher schemata thereby realizing a

recursive cue/model hierarchy.

In Maya, when a supergoal concludes that its

schema is fully instantiated, it attempts to match

the attributes of this instance against the expec

tations of those higher schemata of which the

schema could plausibly be part. Completion is re-

261

alized using the primitive COMPLETE which has the

fol lowing fonn:

(COMPLETE <pattern> <db>).

COMPLETE attempts to match the pattern <pattern>

against the patterns in the tuplebase <db>. If a

match is successful, all currently active processes

associated with the same schema as the current pro

cess are suspended to a reactivation tag. For rec

ognition tasks, it is assumed that all processes

associated with the same schema instance and all

their subprocesses are concerned with the recogni

tion of that schema . Since the schema's recognition

is complete, they are all suspended.

The process bound to the datum in <db> that

matched <pattern> is then resumed. Included in the

item returned to the resumed process is the reacti

vation tag. If that process terminates or suspends,

all the suspended processes and sub-processes are

re - instated, and COMPLETE returns an item represen

ting the match of <pattern > plus a new reactivation

for subsequent matches in the tuplebase <db>.

In the recognition model, a completing schema

instance can match the expectations of multiple

higher supergoals thereby realizing a mechanism for

handling non -determinism in bottom-up recognition.

By evaluating the reactivation tag, every schema

having expectations matching <pattern> can be

resumed as a supergoal. Indeed, completion is seen

as a bottom-up generator of supergoals compared to

the top-down generators of subgoals defined in

CONNIVER .

4. Conclusion

This paper has outlined some procedural as

pects of a theory of machine perception. Percep

tion was characterized as an active recognition

task that uses a schema -based knowledge representa -

tion to compose new descriptions of observed ob·

jects, situations, and events, It was argued that

in order to cope l'li th the complexity of everyday

experience, the recognition process must be guided

by active heuristic procedural methods. Such

methods, associated with particular schemata, di

rect the recognition of instances of those

schemata.

The perceptual process must also utilize an

integration of top -down and bottom-up search me

thods. Top -down techniques can be used to effici

ently confinn the schematic aspects of recognition.

Bottom- up techniques can be used to generate

hypotheses, discover cues, and handle anomaly and

ambiguity.

The desirability of employing a recursive cue/

model hierarchy for perception was also pointed

out. By allowing completing schemata to act as in

ternal cues in the invocation of higher schemata, a

mechanism is defined for realizing a context

sensitive and recursive cycle of perception .

Finally, the implementation of the recognition

model as a programming language called Maya was de

scribed. Data structure extensions to LISP for im

plementing schemata were presented and control

structures for realizing integrated top-down and

bottom-up search in schemata networks were defined.

Currently, Maya is an operational language system

running within MTS LISP. A number of application

programs have been written in Maya. Future plans

include incorporating Maya into the new multipro

cess INTERLISP system under development at UBC and

then applying the recognition model via Maya to

the schema-based interpretation of Landsat images.

26 2

References

BOBROW, D. G. & NORMAN, D. A. (1975) Some Princi
ples of Memory Schemata, in D. G. Bobrow & A.

Coll ins (eds.), Representation and Understanding,
Academic Press, New York

BOBROW, D,G . & WINOGRAD, T. (1977) An Overview of
KRL : A Knowledge Representation Language, Cogni
tive Science, Vol. l, #1, Jan . 1977

FAHLMAN, S.E. (1975) Thesis Progress Report: A
System for Representing and Using Real-World
Knowledge, AIM-331, A.I. Lab, MIT, Cambridge, MA

FREUDER, E.C. (1976) A Computer System for Visual
Recognition Using Active Knowledge, Ph.D . Thesis,
AI -TR-345, MIT A.I. Lab, Cambridge, MA

HAVENS, W.S. (1976a) Can Frames Solve the Chicken
and Egg Problem?, Proc . First CSCI/SCEIO , UBC,
Vancouver, Canada, August 1976

HAVENS, W.S. (1976b) Maya Language Reference Manual ,
TM-13, Dept. of Comp. Sci., University of
British Columbia, Vancouver, Canada

KUIPERS, B.J. (1975) A Frame for Frames: Represent
ing Knowledge for aecognition, in Representation
and Understanding, D.G. Bobrow & A. Collins (eds.)
Academic Press, NY

MACKWORTH, A.K. (1977a) On Reading Sketch Maps,
TR-77-2, Dept . of Comp. Sci., University of Brit
ish Columbia, Vancouver, Canada, also Proc.
IJCAI-77, MIT, Cambridge, MA , August 1977, p. 598

MACKWORTH, A.K. (1977b) Vision Research Strategy:
Black Magic, Metaphors, Mechanisms, Miniworlds,
and Maps, Proc. Workshop on Comp. Vision Systems,
June 1977, Univ. of Massachusetts, Amherst, MA

MINSKY, M. (1975) A Framework for Representing
Knowledge, in The Ps~cholo~y of Computer Vision ,
P. Winston (ed~ Mc raw-Hill, NY

REBOH, R. & SACERDOTI, E. (1973) A Preliminary
QLISP Manual, Stanford A.I. Lab, Techn. Note
#81, August 1973

RUMELHART, D.E. & ORTONY, A. (1976) The Representa
tion of Knowledge in Memory, TR-55, Center for
Human Info. Processing, Dept . of Psychology, Univ.
of California at San Diego, La Joll a, CA

SCHANK, R. & ABELSON, R. (1975) Scripts, Plans and
Knowledge, Proc. IJCAl4, Tbilisi, Georgia, USSR,
September 1975, pp. 151 -157

WINOGRAD, T. (1975) Frame Representations and the
Procedural-Declarative Controversy, in Represen
tation and Understanding, D.G . Bobrow & A. ·
eoTTfiisleds.), Academic Press, New York

Approaches to Object Selection for
General Problem Solvers

Phil London
Department of Computer Science

University of Maryland
College Park, Maryland 20742

Abstract - I describe first steps toward a
unified theory of object selection.
Object selection is the problem solving
process whereby objects are chosen to
participate in a synthesized plan. Two
distinct object selection techniques and
their relationship to a dependency-based
modelling mechanism are discussed.

1. Introduction

Selection of strategies and objects
is a fundamental activity of general
problem solving. Strategy selection
involves choosing the most appropriate
strategy for achieving a goal in a
particular problem solving environment.
This is a frequently investigated topic,
and techniques have been developed ranging
from heuristic search [Nl] to
"intelligent" selection of strategies by
evaluation of the planning environment
using procedures [Sl) or discrimination
nets [Rl), [RLl).

Frequently, strategies chosen as
appropriate in a given problem solving
context require that certain objects
participate in their execution . Thus,
object selection is an important part of a
pr oblem solver's skills, providing the
ability, for example, to decide on which
peg to place the top disk in the
Tower - of- Hanoi, or which hammer to select
during a carpentry task.

Because of the obstacles encountered
in developing good strategy selection
techniques and methods to deal with the
pervasive problem of subgoal interactions
(see [RLl), [Wl], [Sl], [Ml], for
instance), object selection has been often
overlooked. Nevertheless, object
selection is an integral part of the
overall problem solving enterprise. The
purpose of this paper is to explore some
of the issues involved in constructing a
unified theory for object selection.

263

2. Models

Flexible object selection techniques,
as well as strategy selection techniques,
require a flexible modelling mechanism.
The "world model" is a fundamental
component of any problem solving system.
The object selection techniques described
later rely on a dependency- based modelling
mechanism [Ll].

Briefly, the dependency-based model
makes use of a dependency net, an explicit
representation of the justifications for
beliefs. In this way, not only is the
problem solver's current model of the
environment represented, but so are the
reasons for supporting belief in that
environment. The graph structure of the
dependency net allows the efficient
determination of effects and causes of
alterations to the model. A simple
example of a dependency net is depicted in
Figure l, 1representing the situation in
Figure 2.

!OIi i Al,T ---{ _<~L~~d

IOI A lhf

(<CLWDl ,T)
Figure 1.

((CLEAR ll :T)

[!] tB
GOAL: (AND (ON AB) (ON BC))

Figure 2.

1s e e [Ll] for more details on the
structure and semantics of dependency
nets.

I

A dependency-based model affords
several advantages to object selection
tasks. A particular advantage is the
dependency net's ability to represent
explicitly the effects of assumptions. If
an assumption (for instance, an assumption
of which peg would be best for the top
disk in the Tower -of-Hanoi) leads to an
excessively high cost solution,
responsibility for this difficulty can be
effici2ntly traced to the assumption at
fault.

3. Object Selection

The techniques I have developed to
deal with the object selection problem are
best described via an exampl~. Consider
a~ain the 3simple blocks world situation in
Figure 2. If the goals are solved in the
order specified (first (ON AB) and then
(ON BC)) , the problem solver will not
realize that B should have been put on C
until after A is on B. To achieve
(ON AB), both (CLEARTOP A) and
(CLEARTOP B) must be true. To achieve
(CLEARTOP A), B must be placed out of the
way (anywhere but on top of A). A
non - optimal solution to this problem of
not knowing where to put B would be to
include in the CLEARTOP strategy, explicit
instructions to place the block on top of
the one desired to be cleared at some
"freespace" site on the table. This
accomplishes (CLEARTOP A), but the
possibilty remains that freespace could
have been selected as a more optimal
location (namely, by putting Bon top of
C).

A more desirable solution to this
problem is achieved by providing a general
purpose description mechanism in which are
specified features of the object to be
selected. Then, the problem solver can
make the selection at a time it deems
appropriate. For example, a description
of freespace for the CLEARTOP strategy
might look 1 ike

(*DESCRIPTOR -freespace
[OR <A ND (CLASS -freespace BLOCK)

(CLEARTOP -freespace) >
(REGION- OF -freespace TABLE))

[TABLE -REGI ON - !]).

2
See [SSl) for one application of

dependency nets to backtracking on
incorrect assumptions.

3
This example is cited as a

difficulty for certain problem reduction
problem solvers by Waldinger (Wl). In
particular, problem solvers which do not
replan in response to subgoal protection
violations (see e.g. [Wl), [W2), (RLl])
generate red undant actions in solving this
problem.

264

This descriptor characterizes freespace as
either a block whose top is clear or as a
region of the table . Furthermore , if no
reasonable binding can be discovered
during the planning process, a particular
reg ion of the table (TABLE-REGION-!) is
chosen as the default .

I have investigated two distinct
techniques for manipulating descriptors in
general problem solvers. These two object
selection techniques are called deferred
descriptor binding and assumption
~ropagation. Deferred binding involves
elaying the determination of an

appropriate referent for a descriptor
until the choice of the object has become
reasonably secure. Assumption propagation
is a form of backtracking in which a
suitable referent for the descriptor is
conjectured, and facilities for retracting
that choice, if necessary, are provided.

3.1. Deferred Descriptor Binding

The deferred binding technique for
object selection is based on the use of a
symbolic description o f an object in much
the same manner as a direct reference to
the object. Thus, when the CLEARTOP
strategy is invoked in the example above,
rather than a commitment to a particular
object satisfying the freespace
descriptor, the descriptor itself can be
referenced in assertions that would
normally reference the object. When the
action (PUTON B -freespace) is modelled,
rather than having effects (CLEARTOP A)
and (ON B TABLE- REGION-!) , its effects
will be (CLEARTOP A) and
(ON B -freespace) . When the deferred
binding technique is being applied,
descriptors are similar to the "formal
objects" used by Sussman [S2] and
Sacerdoti [Sl). Descriptors are treated
as variables whose bindings are delayed
until one can be found which satisfies the
descriptor's features.

The power of deferred descriptor
binding can be seen in the example when a
solution to the second goal (ON B C) is
attempted. Since (1) the world model
contains the assertion (ON B -freespace) ,
(2) the current goal can be made true by
binding -freespace to C, and (3) the
object C satisfies the description
specified in the freespace descriptor, the
object C becomes a prime candidate for
binding to the variable -freespace. There
are no other suitable candidates and,
therefore, the object C is substituted for
all references to -freespace in both the
plan and the model. Thus, the original
specification of the clearing action
(PUTON B -freespace) is modified to
(PUTON BC). Both original goals are now

achieved and the plan is complete. 4

3.2. Assumption Propagation

The assumption propagation technique
for object selection is a form of
backtracking. Assumption propagation
involves generating a collection of
alternative bindings for a descriptor, and
selecting one as a conjecture. If that
conjecture results in difficulties for
further problem solving, the conjecture
can be retracted. The name "assumption
propagation" was chosen because the
effects of a conjecture are propagated
through the dependency-based model much as
are other modifications to the problem
solving environment.

The dependency- based model allows
easy detection of instances in which a
selected binding for a descriptor subverts
the overall planning effort. The cases
for which bad binding assumptions should
be retracted include:

1. The subgoal currently being
considered by the problem
solver is false because of a
particular assumption.

2. The effects of an assumption
propagate to a protec5ed
subgoal, making it untrue.

One advantage of assumption
propagation as contained in a dependency
modelling framework is that it allows the
ultimate sources of problems of the types
described above to be determined. The
dependency-based model also allows wrong
conjectures to be retracted efficiently
(see [Ll)). Assumption propagation, in
particular, the methods for seeking the
source of a difficulty and recovering from
an incorrect conjecture, uses an algorithm
similar to the dependency- directed
backtracking technique ~eve loped by
Stallman and Sussman [SSl).

To illustrate assumption propagation,
once again consider the situation in
Figure 2. When solving the subgoal
(CLEARTOP A), the assumption propagation
technique would generate a list of
alternative bindings for the freespace
descriptor that would include blocks D and

4This approach to deferred binding is
quite similar to the approach applied to
resolving formal object references by
Sacerdoti [Sl). In Section 4.1., I
describe some enhancements to deferred
binding which represent advances over the
formal object method.

5For discussions of subgoal
protection, see [RLl), [Wl), and [S2).

6A detailed formulation of the
dependency- directed backtracking algorithm
appears in [Dl).

265

C and the table:
(BINDING -freespace (DC TABLE)) .

Let us now assume that the system
arbitrarily chooses 'D' as the first
binding to consider. This assumption
would be incorporated into the original
dependency net depicted in Figure 1 as
illustrated in Figure 3. (The
"slashed-through" links represent no
longer valid relations.)

CCLEAR AU

<CLEAR Ol,f (CLEAR BU

Figure 3.

When the goal (ON BC) is considered,
the problem solver will encounter
supporting relations for (ON B C):FALSE as
depicted in Figure 4. One of the reasons
for (ON B C) :FALSE is that D was chosen as
a binding for freespace. By recovering
only along this line of support to the
point at which freespace was bound, a new
choice of a binding can be made without
disrupting the entire model. Eventually,
'C' will be selected, the effect of which
will be to make the goal (ON BC) true
(and, therefore, will result in an optimal
plan).

Figure 4.

ACTION

CPUTON 8
- FREESPACE)

4. Selection Techniques: Enhancements

So far, I have described, via an
example, two distinct methods for
performing object selection tasks. These
object selection techniques, deferred
descriptor binding and assumption
propagation, represent skills which must

· 1

be brought to bear on general problem
solving tasks. I now briefly discuss the
flexibility with which t hese techniques
can be endowed by describing a few
enhancements to the basic algorithms.

4.1. Deferred Descriptor Binding

Deferred descriptor binding provides
a problem solver with the ability to treat
symbolic descriptions of an object as it
would treat the object itself. In this
way, the decision as to the best possible
binding for a descriptor can be deferred
until a reasonably secure choice can be
made. Occaisionally, though, what turns
out eventually to be the best choice is
somewhat counterintuitive! Consider a
Tower - of- Hanoi problem stated as:

(AND (ON DSK-BIG PEG3)
(ON OSK-MIDDLE PEG3)
(ON OSK-SMALL PEG3)).

When solving the first goal, the problein
solver might be inclined to make what
seems to be (from the local evidence
available) an obvious choice of PEG2 for a
freespace site on which to put OSK- SMALL
while clearing OSK- BIG. PEG2 might seem
best at first because choosing PEG3 would
immediately disenable the action
(PUTON DSK- BIG PEG3) which provides the
solution to the first goal.

By embedding deferred descriptor
binding in a dependency-based model,
mistakes like this can be undone by simply
invoking the recovery mechanism for
assumption propagation. The formal object
techniques of Sussman and Sacerdoti
require binding deferment until only one
possible candidate binding remains, but
this reduces the flexibility of the
deferment technique . There are instances
where it is advantageous to postpone
binding only until there are a few
possible remaining candidates.

Alternatively, a good deal of
flexibility can be gained by augmenting
the feature list in a descriptor
dynamically during the planning process.
This can serve two purposes. First,
augmenting the descriptor can help reduce
the number of alternative bindings a
descriptor might have. Again, using
Tower - of-Hanoi as an example, consider the
freespace descriptor for the CLEARTOP
strategy :

(*DESCRIPTOR - freespace
(AND (CLASS - freespace PEG)

(LEGAL - dsk - fr e espa ce)
(NEQUAL - freespace

(*DESCRIPTOR - peg
(ON -dsk -peg))))) •

Here, freespace is a peg on which it is
legal to place the disk which must be
mov e d, while excluding the peg it is
a lready on. If the problem solver is

266

considering what to do with the middle
disk, then a freespace descriptor has been
instantiated for the top disk. It wo uld
be useful to augment the middle disk's
freespace descriptor to read:

(*DESCRIPTOR -freespace
(AND (CLASS - freespace PEG)

(LEGAL -dsk - freespace)
(NEQUAL -freespace

(*DESCRIPTOR -peg
(ON - dsk - peg)))

<NEQUAL -freespace D27 >)),

where D27 is the instantiated freespace
descriptor associated with OSK- SMALL.
Thus, freespace for OSK-MIDDLE is
described as not only a legal peg not
equal to the one DSK-MIDDLE is on, but
also as a peg not equal to the one
eventually selected as freespace for
DSK-SMALL. When a decision is made on a
freespace site for one disk, the other now
falls into line immediately.

The second way in which descriptor
augmentation benefits problem solving is
that goal satisfaction can sometimes be
simplified at the cost of more complicated
object selection. That is, it is
possible, in some instances, to assume a
goal is true and augment the features of
descriptors occurring in the goal
statement. Thus, any object later chosen
as satisfying the descriptor also
satisfies the goal.

4.2. Assumption Propagation

Assumption propagation is a
backtracking technique in wh ich
conjectures are made about suitable
bindings for descriptors. By embedding
the assumptions in the dependency- based
model, a backtracking technique similar to
dependency-directed backtracking (881) can
be employed. Dependency-directed
backtracking makes use of the dependency
record to determine quickly the source of
a contradiction by tracing to the
incorrect assumption that led to it. To
apply such a technique in general problem
solving, general purpose methods are
required which can diagnose the
appropriate 7 times to invoke
backtracking.

General purpose methods for
diagnosing the appropriateness of invoking
backtracking make use of the
dependency- based model. They include
cases in which the source of a subgoal
protection violation [RLl) or a subgoal

7 Compare to ARS [SS1), which is an
expert problem solving system. ARS uses
domain-specific knowledge to determine
that a contradiction has been derived and
that is is appropriate to reject an
assumption .

being false can be traced through the
dependency net to a binding assumption f or
a descriptor. Identification of such
general methods for detecting cases in
which it is appropriate to retract an
object selection conjecture is an
impo r tant step in generalizing
dependency-directed backtracking .

Determining an instance in which
backtracking for object selection is
appropriate is not as straightforward as
determining the appropriateness of
backtracking in other problem solving
tasks: here, backtracking is not invoked
on a failure, but on a lack of success!
Because assumption propagation for a
particular choice of descriptor binding
leads to a false subgoal or a protection
violation does not necessarily imply that
another possible binding for the
responsible descripto r will improve the
situation.

Therefore, one enhancement for
assump tion propagation, in cases where
there are only a small number of
alternative choices, is to carry along
separate assumptions for descriptor
bindings in parallel. Parallel assumption
propagation allows comparisons among
competing descriptor bindings to be made.
Th e dependency net model provides the
capabilities for parallel assumption
propagation, but, for efficiency, should
be applied judiciously. The technique
does demonstrate advantages over
sequential assumption propagation in cases
where, for instance, binary decisions are
involved. Since carrying along two
distinct bindings for a single variable
often results in contradictory beliefs f or
truth values of some assertions in the
model, parallel and sequential ass umption
propagation can be applied cooperatively
with the sequential technique taking over
where the parallel approach leads to a
contradiction.

5. Conclusion

The techniques I have described
represent steps toward a unified theory of
ob ject selection and an implementation
effort is well underway. I have presented
object selection as an important task to
be performed by any general problem
solver. The techniques presented here
display the flexibility and generality
required of a formalism on which to base a
theory of object selection. The
differentiation of object selection into
distinct techniques provides a first step
toward such a theory.

267

6. References

[Dl] Doyle, Jon. "A Glimpse of Truth
Maintenance." MIT AI Memo 461,
February 1978.

[Ll] London, Phil. "A Dependency-Based
Modelling Mechanism for Problem
Solving . " University of Maryland
Computer Science TR 589, Nov. 1977.

[Ml] McDermott, Drew V. "Vocabularies
for Problem Solver State
Descriptions." Proc. I JCA I5
Cambridge, Mass:-7ui°gust l977.

[Nl] Nilsson, Nils J. Problem Solving
Methods in Artificial Intelligence.
McGraw-HTil, 1971.

[Rl] Rieger, Chuck. "One System for Two
Tasks: A Commonsense Algorithm
Memory that Solves Problems and
Comprehends Language." Artificial
Intelligence, January, l976.

[RLl] Rieger, Chuck and Phil London.
"Subgoal Protection and Un ravelling
During Plan Synthesis." Proc.
IJCAI5, Cambridge, Mass.-;-Tuigust
1977.

[Sl] Sacerdoti, Earl D. "A Structure for
Plans and Behavior."
SRI AI TN #109, August 1975.

[S Sl] Stallman, Richard M. and Gerald Jay
Sussman. "Forward Reasoning and
Dependency- Directed Backtracking in
a System for Computer Aided Circuit
Analysis." Artificial Intelligence,
Vol. 9, No. 2, (October 1977),
pp. 135-196.

[S2] Sussman, Gerald J. "A Computer
Model of Skill Acquisition."
MIT AI-TR 297, Aug. 1973.

[Wl]

[W 2]

Waldinger, Richard. "Achieving
Several Goals Simultaneously."
SRI AI TN #107, July, 1975.

Warren, David. "WARPLAN: A System
for Generating Plans." Memo No. 76,
Department of Computational Logic,
University of Edinburgh, June 1974.

AcknowledAements - I wish to thank Chuck
Rieger, 11€ Grinberg, Rich Wood, Steve
Small, and Alan Thompson for many
interesting discussions and help in
preparing this document. I also wish to
thank the National Aeronautics and Space
Administration for support of this
research under Grant NSG-7253.

EXPERIMENTAL CASE STUDIES OF BACKTRACK VS. WALTZ-TYPE VS •
• NEW ALGORITHMS FOR SATISFICING ASSIGNMENT PROBLEMS

John Gaschnig
Artificial Intelligence Center

SRI International, Inc.
333 Ravenswood Dr.

Menlo Park, CA 94025

SUMMARY

Hackworth [1977] claims that Waltz-type
network consistency algorithms are "clearly better
than automatic backtracking" , but he cites no
experimental data comparing tne performances of the
algorithms under identical conditions. Here we
rP.port the results of a set of performance
measurement experiments comparing these two
algorithms with two other algorithms, BKMARK
(Gaschnig [1977]) and a new algorithm BKJUMP. Each
of the algorithms is valid for a broadly ar.d
precisely defined class of satisficing assignment
problems (SAPs) that includes numerous familiar
problems. The results span four
functionallyequivalent algorithms, three
performance measures, two solutioncriteria, and
four sample sets of SAPs, and the results represent
more than 13,000 distinct algorithm executions.
The four sample sets of SAPs include two sets of
"N-Queens" problems (for N up to 50) and two quite
different types of randomly generated problems. We
describe the simple set-theoretic mathematical
model underlying our experimental approach.

The results show algorithm BKMARK the most
efficient of the four algorithms in all cases, ~nd
the Waltz-type algorithm least efficient in almost
all cases. To give an indication of speed, BKMARK
finds solutions to the 50-Queens problem (search

space size - 1084) at the rate of one per 9 cpu
seconds on a PDP/KL-10. One "random SAPs"
experiment compares the performance of the
algorithms in solving N-Queens problems to the
corresponding performances in solving a set of
"random-N-Queens" problems, which are identical in
size and "degree of constraint" (L) to the N-Queens
problems. The other "random SAPs" experiment
compares algorithm performances on a set of
problems identical in size but varying in degree of
constraint. This shows the dependence of
performance on L, all other things equal. These
data show in particular that the Waltz-type
algorithm does not better the others on highly
constrained problems.

These first controlled comparisons of the four
algorithms illustrate the value of voluminous hard
data in resolving speculations and in uncovering
previously unsuspected phenomena. We make no
claims about the performances of these algorithms

• This research was done at the Department of
Computer Science, Carnegie-Mellon University,
Pittsburgh, PA 15213, and was supported by the
Defense Advance Research Projects Agency under
Contract no. F44620-73-C-0074 and monitored by the
Air Force Office of Scientific Research,

268

except for the cases tested here, but propose
additional experiments to provide evidence on which
to base such claims.

All life is an experiment. The more
experiments you do the better.

Ralph Waldo Emerson

1. Background and General Issues

The preceding summary gives some indication of
the scope and methodology of the research reported
here. In this section we give some background on
ttte subject and discuss briefly a few
methodological issues.

Any instance of a certain sort of satisficing
(i .e., non-optimizing) assignment problem (SAP,
defined formally in section 2) can be solved using
the so-called backtrack search algorithm, as
defined in general form by Golomb & Baumert [1965],
but little is known in general about the
computational requirements of this algorithm.
Believing the backtrack algorithm to be
inefficient, Waltz [1972, 1974] and other
artificial intelligence researchers have devised an
alternative general algorithm for SAPs, but claims
about its efficiency have been based on skimpy hard
data. Hackworth [1977] surveys reports by Sussman
& McDermott [1972] and Gaschnig [1974] documenting
the inefficiencies of backtrack in specific
instances, and Hackworth also surveys the
generalizations of Waltz' algorithm given by
Gaschnig [1974], Rosenfeld, et al., [1976], and
others. Hackworth claims of the backtrack
algorithm that "the time taken to find a solution
tends to be exponential in the number of variables,
both in worst case and in average case" [1977, p,
100], and that Waltz-type algorithms are "clearly
better than automatic backtracking" [1977, p,
116] .

Here we put such general, informally stated
claims to the test of hard data, comparing
algorithms under identical conditions . Our premise
is that detailed quantitative performance data over
many cases can provide a firmer basis than
unsubstantiated speculation for predicting
performance in novel circumstances. As Knuth

ai1J~lifm~~siixXe~~l~i~itai~gt~~~sr1ear~:a,~:~! a
We attempt to be completely rigorous in

defining terms and the conditions of the
experiments , so that all of the results reported

I

i

here are completely replicatable and hence are
object1vely verifiable. The experimental
observat1ons are estimates of mathematically well
defined quantities. To make explicit the amount of
evidence reported here, we count the number of
d1stinct algorithm executions represented in each
figure . Note that our technical objective is
simply to obtain the performance values plotted in
the figures. Careful and rigorous quantitative
analysis of the experimental values is beyond the
scope of the present paper. Consequently, we
eschew here attempts to "explain" the data. Hence
we provide a body of quantitative data against
which to test future speculations and mathematical
theories.

In some senses, the context of our results is
both narrow and broad: It is narrow in the sense
that the problems considered satisfy precise
mathematical conditions, they include only
satisficing problems (as opposed to optimizing),
and they have only binary constraint relations (as
opposed to ternary or r-ary). Nor do we examine
the probabilistic Waltz-type method of Rosenfeld
[1976) . Nevertheless, this context is broad in
that a large class of problems satisfy these
conditions, and in that each of the algorithms we
investlgate can be applied to any of these
problems.

Mostly, we are concerned with the number of
steps to find any solution as opposed to all
solutions .

2. Definitions and Examples

To insure that our experimental results are
meaningful and replicatable, in this section we
give precise definitions for problem, algorithm,
performance measure, and conditions of the
experiment. For clarity, we supplement the formal
descriptions with examples and illustrations.

Our formalism for problems, algorithms, and
performance measures is essentially an extension of
that of Gaschnig [1974) and Hackworth [1977, pp.
99-100]. Unlike Hackworth, however, we find it
more useful to define the Pij constraints as

relations rather than as predicates (to facilitate
the definitions of section 7).

DEFINITION 5.1. A satisficing assignment problem
(SAP) is a tuple
{N, R1, R2,•••, RN' p12' P13••••• p1N''''' PN-1,N}
such that:

N is a positive integer (denoting the number of
problem variables x1,x2 , ... ,xN)

R1, R2, ••. , RN are arbitrary finite sets.

(Associated with each problem variable xi is a

specified set of a priori possible candidate~
Ri = {vi1' vi2 1 · ·· ,vik }.)

i

An assignment A = (y 1,y2, •.. ,yN) of candidate

values to problem variables is an element of the

269

cross product U = R1xR2x ... xRN (i.e . , so yi E;.. R1),

and A(i) denotes the i'th component of A, for
1.S.i.91 .

For every i and j such that O<i<j.91, P ij s; Rij'

Also Pij = Pji'

An assignment A ~ U is a solution i ff for every i
and j such that O<i<j~, (A(i),A(j)) E Pij'

The 118 Queens" problem is a well - known SAP in
which 8 queens must be placed on a chess board so
that no two queens can take each other. In this
problem N = 8, the problem variable xi corresp_onds

to the i'th queen, and the candidate values of each
queen consist of the a priori legal squares on
which that queen can be placed. Since in any
solution the queens must occupy distinct rows of
the board, we take Ri to consist of the 8 squares

in row i (ki : 8, for 1<i.S.8). For symmetry reasons,

however, R1 may be restricted to the leftmost four

squares of row 1 (i.e., k 1 = 4). In predicate

form, Pij(A(i), A(j)) is satisfied for assignment A

if queen ion square A(i) does not attack queen j
on square A(j).

The "N-Queens" problem is a generalization of
the 8-Queens problem: place N queens on an NxN
chess board so that no two queens attack each
other. (In our formulation, k1 = r N/2 1 and

k2 = k
3

= ... kN = N.) Other problems that can be

formulated as SAPs include map coloring (e.g., see
Nijenhuis & Wilf [75, pp. 181-183)), labeling in a
particular way each of the line segments in a two
dimensional projection of a scene of polyhedra
[Waltz 1972, 1974), finding Euler circuits or
Hamiltonian circuits or spanning trees of a graph
[Nijenhuis & Wilf 1975), cryptarithmetic [Simon
1969, Gaschnig 1974), the Instant Insanity puzzle
[Knuth 1975), the SOMA cube puzzle [Fillmore &
Williamson 1974, p. 51), and space planning
problems [Eastman 1972). Other examples are cited
in [Golomb & Baumert 1965) and in [Hackworth 1977).

The version of the backtrack algorithm used in
these experiments, called BKTRAK, is defined
subsequently in this section, and also in Gaschnig
1977]. As in the latter, we define as an elemental
unit of computation an inquiry by the algorithm to
determine whether (x,y) 6, P ij' where x • Ri and

y E. Rj. (In predicate form, the unit is an

execution of Pij(A(i), A(j)).) We call such an

inquiry a pair-test, and identify a pair-test
formally by a 4-tuple (i,x,j,y).

The following incomplete trace of the BKTRAK
algorithm applied to the 8-queens problem
illustrates the inefficiencies of the algorithm,
and provides a basis for illustrating the behavior
of algorithms BKMARK (Gaschnig [1977]) and BKJUMP .
The numerous distinct partial instantiations or
problem variables form a tree, as depicted below.
Each occurrence of "T" and "F" in the trace
indicates the outcome of a single pair-test. For

example, the entry 11 6,4 TTTF" in portion "A"
indicates that the pair-tests with arguments
(6 , 4 , 1 , 1) , (6 , 4 , 2 , 1) , (6 , 4 , 3 , 5) , and (6, 4 , 4 , 2)
returned the values True, True, True, and False,
respectively. Since a queen on square (6,4)
attacks a queen on square (4,2) , this instantiation
of problem variable 6 fails, and hence
PAIRTEST (6,4,5,4) is not executed.

Incomplete trace of BKTRAK for 8-Queens SAP:
x,y = queen x on square at row x, column y
1, 1

2, 1 F
2,2 F
2,3 T

3, 1 F
3,2 TF
3,3 F
3, 4 TF
3,5 TT

4, 1 F
4,2 TTT

5,1 F
5,2 TTTF
5,3 TF
5,4 TTTT

6, 1 F
6, 2 TTF
6,3 TF
6,4 TTTF
6, 5 TTF
6,6 F
6,7 TF
6, 8 TTF

5,5 F
5,6 TF
5,7 TTF
5,8 TTTT

4,3 TF
4,4 F

6, 1 F
6,2 TTF
6,3 TF
6,4 TTTF
6, 5 TTF
6,6 F
6 , 7 TF
6, 8 TTF

A

} C

B

Inspection of the trace above illustrates the
basic ideas underlying algorithms BKMARK and
BKJUHP. All of the pair-tests in section B of the
trace are unnecessary: they were executed in
section A; between A and B only the assignment of
queen 5 has changed; but in section A no c.v. of
queen 6 was "pair-tested" against queen 5, since
each c.v. failed when pair-teated against the
assigned c.v.s of the first four queens; hence the
outcome in section Bis necessarily identical to
that in section A. Algorithm BKMARK eliminates
these redundant pair-tests in a more general way
than is illustrated by this example.

Algorithm BKJUHP (defined in section 4)
capitalizes on a different effect. Since none of
the c.v.s of queen 6 in section A passes the pair-

270

tests against the assigned c.v.s of queens 1, 2, 3,
and 4, it is necessarily the case that no
assignment having the latter c.v.s as Hs first
four elements can be a solution . Hence the pair
teats in section Band Care unnecessary, and one
can backtrack from section A two levels instead of
the customary one level and proceed directly with
the pair- tests following section C. BKJUMP
achieves this effect in a general way.

As seen above, algorithms for SAPs may be
redundant in the sense that some pair-tests may be
executed more than once. Accordingly, we define 1

T = the total number of pair-tests executed by
an algorithm B for a SAP Z

D = the number of distinct pair-tests executed
under the same conditions

M = T / D

So M = 1 indicates that all pair-tests
executed are distinct, i.e., none are recomputed.
In general, M 2. 1, and indicates the average number
of times each distinct pair-test is executed during
a given search. To illustrate our performance
measures, for the portion of the execution traced
T = 77, D = 58, and M = 77/58 = 1,33,

To provide standards against which to compare
the performances of the algorithms, we plot in the
figures the values of Tmin' Dmax' and SAS, defined

as follows. The minimum number of pair-tests
executed by any of the algorithms considered here
is dependent only on N, the number of problem
variables. This is achieved if the assignment
consisting of the first candidate value of each
problem variable happens to be a solution. In this
case, each candidate value of the assignment is
"pair-tested" against every other, for a total of

Ti (N) = N (N- 1)/2 = O(N 2) pair-tests for any SAP m n
having N problem variables. Note that Tmin equals

the number of pair-tests required to verify that a
given assignment is a solution if in fact it is.

For a given SAP, the total number of possible
distinct pair-teats is determined by the values of
N and the k1 , thus:

Dmax(N, k 1 , ... , kN)

N-1
= E

1:1
(for SAPs in general)

= (N-1) N r N/2 1 + N2 (N-1) (N-2)/2 = O(N 4)
(for N-Queens SAPs)

A measure of the size of the search space is the
total number of distinct possible assignments (SAS
is mnemonic for "size of assignment space"):

(for SAPs in general)

1 Note: the performance measure called M here was
called Din Gaschnig [1977],

· I

(for N-Queens SAPs)

For sake of comparison, the values of Ti (N), m n
D (N),

max and SAS(N) for N-Queens SAPs are plotted

as a function of Nin Figure 2-1 and in subsequent
figures. Tf, Df, and Mf denote values observed

when the solution criteria is to find any solution
(i.e., a first solution); T, D, and M similarly

a a a
denote values observed when the criteria is to find
all solutions.

The Waltz-type algorithm used in these
experiments, called DEEB, is essentially identical
to algorithm CS2 defined in Gaschnig [1974). DEEB*
combines backtracking with a procedure, called DEE,
of the generic form of "arc-consistency" algorithm
that Mackworth calls AC-3 [1977) and Gaschnig
[1974) calls CS-1. Mackworth [1977, p. 114)
suggested certain modifications to algorittdll CS-1
with the intent of improving its efficiency. DEE
is a functionally equivalent variation of CS-1 that
achieves the efficiencies suggested by Mackworth
and eliminates other unnecessary pair-tests as
well, so that DEE is strictly more efficient than
AC-3, as we shall now show informally.

For brevity, we assume that the reader is
familiar with Mackworth's argument and notation.
The following hypothetical example illustrates
informally the differences between the approach of
AC-3 (i.e., to distinguish arc (i,j) from (j,i))
and the approach of DEE (i .e., to process a Pij

relation "as a whole"). The diagram below depicts
the constraint relation Pij as a set of links

between the candidate values of two problem
variables xi and xj. Hypothetically, xi and xj

could be problem variables of a SAP having other
problem variables as well.

xi xj

In the case depicted above, CS-1 executes the
equivalent of Mackworth's function REVISE((i,j)),
which executes 2 pair-tests (p.t.) to determine
that vi 1 is supported by vj2 , and then 2 p.t. to

establish support for vi 2 , then 4 p.t. to

determine that vi
3

is not supported by xj and hence

can be eliminated, followed by 1 p.t. for vi 4, for

a total of 9 p.t. CS-1 then executes
REVISE((j,i)), determining at a cost of 11 p.t.
that all c.v.s of xj are supported. Hackworth

* "DEEB" is mnemonic for "Domain Element
Elimination with Backtracking", which would seem to
describe the behavior of this type of algorithm
more accurately than the term "network consistency
algorithm" proposed by Mackworth [1977].

correctly points out that CS-1's execution of
REVISE((j,i)) is often superfluous, because the
execution of REVISE((i,j)) cannot cause arc (j,i)
to become "arc-inconsistent" if it is not already.
Therein lies the rub: since AC-3 initially puts all
arcs (i,j) and their complements (j,i) on the queue
Q, AC-3 executes each REVISE((i,j)) and
REVISE(j,i)) at least once and for these executions
AC-3 executes unnecessary pair-tests that are not
executed by DEE.

DEE executes a single procedure
REVISEBOTH((i,j)) that has the effect of first
doing a REVISE((i,j)), but at the same time marking
those c.v.s of xj that provide support to the c.v.s

of x,. REVISEBOTH then executes the equivalent of

a REVISE((j,i)) modified so that only unmarked
c.v.s of xj are checked for support by xi. Hence

in the above example REVISEBOTH((i,j)) executes
only 9 p.t., since all c.v.s of xj are marked.

Generalizing, in precisely the cases that the
REVISE((j,i)) of CS-1 is superfluous due to the
conditions described by Mackworth, in these same
cases all c.v.s of xj are marked, and hence

REVISEBOTH((i,j)) executes exactly those p.t.
executed by REVISE((i,j)). Hence DEE using
REVISEBOTH executes no more p.t. than AC-3 using
REVISE. Since DEE executes fewer p.t. than AC-3
for the first executions of REVISE((i,j)) and
REVISE((j,i)), it follows that DEE executes
strictly fewer pair-tests than AC-3 for all SAPs
except the degenerate cases of SAPs that are arc
consistent initially.

Orthogonal to the issues just discussed, AC-3
maintains a queue of pending arcs (i,j) to REVISE,
whereas CS-1 uses a triangular matri.x for the same
purpose, but without the FIFO discipline of the
queue. DEE could use either priority policy, but
in fact uses the triangular matrix mechanism of CS-
1 (See Gaschnig [1974) for details.)

3. Elementary Comparison results

Now, having defined problems, performance
measures and algorithms, we can compare BKTRAK and
DEEB by objective criteria. As evidence against
which to test Hackworth's claim that Waltz-type
algorithms are "clearly better" than the backtrack
algorithm, Figure 3-1 compares BKTR~K with DEEB by
Tf(N) for N-Queens SAPs, N = 4, 5, .•. , 17. These

data do not support the claim, but it is risky to
extrapolate to larger values of N, or to other
problems. Sections 5, 6, and 7 provide more
extensive comparative data compari.ng Tf, Of, and

Hf.

To show the relation between total number of
pair-tests executed and the number of distinct
pair-tests executed, both for the case of finding
one solution and of finding all solutions, Figure

3-2 plots Tt(N), o1 (N), T~(N) and DA(N) for BKTRAK.

The total number of solutions to the N-Queens
puzzles, for N = 4,5,6,7,8,9,10 is 1, 6, 2, 23, 46,

271

203, 362, respectively. The following tabulation
compares BKTRAK with DEEB by Ta(N):

N 4 5 6 7 8 9
BKTRAK 42 236 1008 5345 23376 136807
DEEB 78 379 1032 4218 14118 68239

Figure 3-3 plots the redundancy ratios Mf(N) and

M (N) based on the data in Figure 3-2. These data
a

show that the redundancy of BKTRAK grows sharply
with increasing size of the problem. Again,
sections 5, 6, and 7 report much more extensive
data. Perusal of such Mf(N) data in fact motivated

an attempt to define a backtrack- 11.ke algorithm
(namely BKMARK) that eliminates much of this
redundancy. Here then was a case in which
performance measurement experi~ents yielded
insights that yielded a new algorithm. Note that
three performance measures were involved, one (T)
the product of the other two (D and M) .

Figure 3-4 introduces a new variation, that of
randomizing the ordering of the candidate values of
each problem variable, in the manner of Gaschnig
(1977). In the experiments of Figures 3-1, 3-2,
and 3-3 the candidate squares for each queen are
ordered from left to right, which we call the
"obvious" candidate value (c.v.) ordering. In
fact, for each queen (i.e. problem variable) kil

distinct orderings are possible, giving a total of

N
TT kil distinct c.v. orderings. For each value
i:1
of N, we selected m(N) c .v. orderings from among
this set, where m(N) = 30 for 4 ~ N < 8; m(N) = 70
for 8 ..$. N < 15; m(N) = 100 for N 2. 15 . So Figure
3- 4 depicts the results of
m(4) + m(5) + ... + m(15) + m(16) = 810 distinct
algorithm executions .

Note that Tf(N) using "obvious" c.v. ordering

is generally much larger than the mean value of
Tf(N) using random c.v. ordering. The ratios of

these values for each N and for each algorithm are
given in section 5. The vertical bars for mean
Tf(N) indicate an i nterval of two sample standard

deviations of the sample mean -- a standard
s tatistical measure of how closely the observed
mean approximates the true mean. The mean Tf(N)

curve in Figure 3-4 is taken from Figure 1 in
Gas chnig (1977). Algorithms that randomize their
inputs are of some inherent interest in analysis of
algorithms research (e.g., see Weide [1977, p.
304)). Subsequently, Tf denotes a mean value

unless otherwise specified.

4. Definition of BKJUMP

We define now a new general backtrack- type
algorithm for SAPs, called BKJUMP, that sometimes
backtracks across multiple levels of the search
tree instead of across only a single level. BKJUHP
is the result of an attempt to produce the domain
element-elimination effect of DEE in a backtrack-

272

like control context. DEE eliminates candidate
values when it detects a global inconsistency;
BKJUMP does so in the context of candidate values
already instantiated higher in the search tree.

The following SAIL procedure defines algorithm
BKJUMP, in a form that halts after finding a first
solution. (SAIL is a variant of ALGOL; see
Swinehart. (1971).) In the code, pairtest is an
external procedure implementing the problem
specific Pij constraint relations. Procedure

BKTRAK is defined the same, minus the underlined
portions, except that the statement
"ret.urn(returndepth)" in BKJUMP is replaced by
"return(O)" in BKTRAK. This code for BKJUMP
indicates visually that it is short in length, and
that it is very similar to the code for BKTRAK.
Note that BKJUMP uses only two local variables
beyond those used by BKTRAK. The invocation
conditions for BKJUMP are identical to those given
for BKMARK in Gaschnig (1977) and for brevity are
not repeated here. BKJUHP (and BKTRAK as defined
here) returns -1, with solution in array A, or
returns O if no solution exists. For brevity, "I"
stands for "comment" below; "<-" denotes the
assignment operator.

recursive integer procedure bkjump(integer var, n;
integer array a, k);

begin
integer i, val~ returndeoth. faildeoth;
boolean testflg;
returndeoth ~ ~
for val<- 1 step 1 until k[var] do

I see comment Cl below;
begin
testflg <- true;
for i <- 1 step 1 while i < var and testflg do

I See C2;
testflg <- pairtest(i, a[i], var, val);

il n2.t. testflg .wn. faildeoth ~ .1 .::. 1.;.. c3;
if testflg then C4;

begin
a[var] <- val;
if var = n then return(-1) I C5;
else

begin
faildepth <- bkjump(var+1, n, a, k);
if faildepth < var then return(faildepth)

end
end;

returndeoth ~ returndepth ~ faildeoth
e~; .

return(returndepth)
end;

Comments for above code:

I C6;

I C7;

C1: check each candidate value (c.v .) of the
var'th problem variable .

C2: test this c.v. against each instantiated
c.v.

C3: note: uses final value of loop variable i.
C4 : if passed all tests, then
C5: solution found, so unwind to outermost call .
C6: unwind to level given by value of faildepth.
C7: backtrack and continue search .

We claim without f ormal proof that BKJUHP is

I

. J

I

j

functionally equivalent to BKTRAK and to BKMARK in
the sense that for any SAP the solution assignments
found by the three algorithms (if any exist) are
identical. We further claim that every distinct
pair-test executed by BKJUMP is also executed by
BKTRAK (and by BKMARK), and that each such pair
test is executed at least as many times by BKTRAK
as by BKJUMP.

5, Results for N-Queens SAPs with random c.v.
ordering

Figure 5-1 compares the mean number of pair
tests (1, e. , mean T f (N)) executed by algorithms

BKTRAK, BKMARK, BKJUMP, and DEEB, respectively, to
find a first solution for N-Queens SAPs. The
sample set of SAPs over which these measurements
are taken is the same for each algorithm, namely
the set described in section 3 of m(N) randomly
selected candidate value orderings for
N = 4, 5, ••. , 16. (The values constituting the
curves labeled "BKTRAK" and "BKMARK" in figure 5-1
are taken from figure 1 in Gaschnig [1977], The
curve labelled "BKTRAK" is identical to the one
labelled "Tf(N) (mean)" in Figure 3-4 in this

report.)

We observe in Figure 5-1 that among the four
algorithms being compared, BKMARK executes the
fewest pair-tests on the average, followed in order
by BKJUMP, BKTRAK, and DEEB, and that this ordering
among the four algorithms is observed to hold for
each value of N. Note also that the performance of
BKJUMP differs very little from that of BKTRAK,
indicating (we speculate) that in this case the
average number of levels jumped over is
approximately one. Note also that Tf(N) for BKMARK

is much less than for the other three algorithms,
but also much greater than Tmin(N). Note also that

none of the four curves is closely approximated by
a straight line in this semilog plot, as would be
the case if Tf(N) grew exponentially as Hackworth

suggests. Note also the relatively poor
performance of algorithm DEEB: we have identified
one set of SAPs for which DEEB is less efficient
than BKTRAK by the mean Tf(N) measure for each

value of N observed, and much less efficient than
BKMARK under the same conditions. The factors to
which this ineffi.ciency can be attributed remain
uncertain at present (but see sections 6 and 7 for
additional data).

To provide further evidence for larger values
of N, we extended the previous experiment to the
cases N = 20, 25, 30, 35, 40,and 50, with m(N) = 50
samples per value of N, and we measured mean Tf(N)

for BKMARK only. Combining these data with some of
those for BKMARK in figure 5-1, the observed values
for N = 5, 10, 15, 20, 25, 30, 35, 40, 50 are 23.6,
542, 1513, 2696, 4715, 11520, 28415, 21890, 55020,
respectively. Approximating the latter values by

the formula Tf(N) = NC(N) and solving for C(N) we

obtain the formula C(N) = log Tf(N) / log N. For

the above list of values of N and Tf(N), the values

of C(N) are 1,964, 2,734, 2,704, 2,637, 2.628,
2,750, 2.884, 2.709, 2,79 respectively. Note that
with the exception of N = 5, these C(N) values fall
in the interval 2.75.±0,14 . Note that our purpose
in presenting this approximation is simply
pragmatic: to show how well a particular
approximation fits the observed data, without
suggesting that the approximation is valid
generally. Pragmatically, the data and
approximation would seem to cast doubt on t he
proposition that mean Tf(N) grows exponentially

with Nin this case.

Figure 5-2 plots the ratios of the value of
Tf iALG(N) using "obvious" candidate value ordering

to the corresponding observed value of mean
T, G(N) using random c.v. ordering, where

f 1AL
ALG €. {B~rRAK, BKMARK, BKJUMP, DEEB}. The ratio
values plotted in figure 5-2 indicate apparently
that differences in performance between random c.v.
ordering and "obvious" c.v. ordering are exhibited
by each of the four algorithms, and that these
differences are generally much larger for

273

14 ~ N ~ 16 than for N < 14.

Figure 5-3 plots the corresponding mean values
of the redundancy ratio Mf(N) collected during the

same experiments. Due to page limit.at.ions, we omit
plotting the corresponding Df(N) data, which show

DEEB to execute more distinct pair-tests than the
other algorithms for all values of N tested,
considerably more for large values of N.

6. Results for "Random-N-Queens" SAPs

To generalize the results beyond N-Queens
SAPs, in this section we define a parameterized
equivalence relation on the set of all possible
SAPs, partitioning this set into (disjoint)
equivalence classes, such that members of a given
equivalence class have identical values of certain
parameters representing size and "degree of
constraint" of a SAP. We then define a procedure
for selecting SAPs randomly (independently,
uniformly, with replacement) from among the members
of a specified equivalence class. We use this
procedure to generate randomly for each Na set of
SAPs each of whose size and degree of constraint
parameters matches that of the N-Queens SAP to
which it corresponds (one parameter set per value
of N).

DEFINITION 4-1. SAPs Z =
{N, R1, R2'"'' RN' p12' p13'"'' PN-1,N} and Z' =

{N', R'1• R'2•···• R'N 1
' P'12• P'13•···• P'N'-1,N'}

are N-similar iff N = N'. SAPS z and z• as defined
above are .N.::ki-similar iff Zand z• are N-similar

and k1 = k'i (recall k1 = iR 1 i and k'i = IR'il),

for each 1 = 1,2, •• ,N.

For example, let the "8-Queens-Knights" SAP be
defined like the 8-Queens SAP except that the
"chess pieces" in the former move either as queens

or as knights. Then the 8-Queens SAP and the 8-
Queens-Knights SAP are N-ki-similar .

We define the "degree of constraint" of a SAP
to be the fraction of distinct pair-tests for that
SAP that map to the value "true". Formally, given
a SAP Z,

where

Lz = Fz I Dmax

N-1
Fz = ~

i:1

N
< 'P I < I ij I

j :i+1

So O .$_ L .$_ 1 by definition. To illustrate, the
value of Pij in the case of t he diagram given in

section 2 concerning DEE is 5, equal to the number
of links, and L = 5/16 for these two problem
variables.

DEFINITION 4-2. SAPs Zand Z' as defined in
definition 4-1 are N-ki-L-similar iff' Zand Z' are

N-ki-similar and Lz = Lz,•

We use the following procedure for randomly
selecting a SAP having specified values of N, k 1,

k2 , ... , kN, and L. For each i and j such that

1i.i<j.5N, we create a boolean-valued matrix Uij of

size ki x kj. To each element of each such matrix

we assign (by means of pseudo-random number
generator) the value "true" with probability L, and
the value "false" with probability 1 - L. (Note
that using this procedure the percentage of matrix
elements assigned the value "true" does not
necessarily equal exactly the given value of L, but
rather approximates it. For the present cases, it
turns out that the difference is negligible. This
is assured by the law of large numbers.)

By exhaustively enumerating the set of
distinct pair-tests and counting the number of
those that map to the value "true", the values of L
for the N-queens problems for N = 4, 5, ••• , 16 are
determined to be (to 3 decimal places) 0. 444,
0 .552, 0.622, 0.676, 0.714, 0.746, 0. 110, 0.791,
0.808, 0.823, 0.835, 0.846, 0. 856, respectively.
(When plotted against N, these values give the
appearance of a smooth curve. For brevity, we show
no such plot in this report.) The sample set of
what we shall call "random-N-queens" SAPs consists
of 50 independently and randomly generated SAPs
having N = k2 = k

3
= k4 = 4, k1 = 2, and L = .444

(i.e., the values for the 4-Queens SAP); a similar
set of 50 SAPs for each of N = 5,6,7; 100 such
samples for N = 8,9,10,11,12; 150 samples for
N = 13; and 250 samples for N = 14. These SAPs are
N-ki-L similar to the corresponding N-Queens SAPs.

Figure 6-1 shows the mean values of Tf(N)

observed using algorithms BKTRAK, BKHARK, BKJUMP,
and DEEB to find first solution for the SAPs in the
random-N-queena sample set. Comparing these data
with those in Figure 5-1, note that the relative
ordering of the algorithms is the same in both
figures: BKHARK executes the fewest pair-tests on
the average for each value of N, followed in order
by BKJUMP, BKTRAK, and DEEB.

274

To more easily compare the values shown in
Figure 6- 1 with the corresponding values in Figure
5-1, Figure 6-2 plots the ratio of each value
plotted in the latter figure to its corresponding
value in the former fi.gure. The values so plotted
represent the results of 7340 distinct algorithm
executions. We observe that the differences
between Tf(N) using DEEB and Tf(N) using BKTRAK are

larger for random-N-queens SAPs than for the
corresponding N-queens SAPs, and t hat the magnitude
of this difference grows with N, and that the same
holds for the corresponding differences between the
performance of BKTRAK and that of BKJUMP. Other
observations about the observed values plotted in
Figures 6-1 and 6-2 are summarized in section 8
under point 4. Analogous results assuming Mf(N) as

the performance measure instead of Tf(N) are not

plotted here (for brevity), but show less extreme
difference differences between N-Queens SAPs and
"random-N-Queens" SAPs. (The ratio is less than 2
for all values of N tested.)

7. Results for ISVL SAPs

Next we report the results of an experiment
designed to show how the cost of solving a SAP
depends on the degree of constraint possessed by
the problem. From only the results plotted in the
figures of the preceeding sections, it is difficult
to infer the dependence of the mean value of Tf(N)

on the value of L, because the SAPs in the N-queens
sample set differ among each other both in size
(i.e., N and ki values) and in L values, and the

same holds for the random-N-queens sample set.
Moreover, L ranges only from 0.444 to o . 856 among
the N-Queens SAPs in our sample set.

Accordingly, we performed experiments using as
sample set a set of randomly generated SAPs that
are identical to each other in size but differ
systematically in value of L. We used the method
of the previous section to generate randomly 150
SAPs, each having N = 10, k1 = k2 = .•• = k10 = 10

and link percentage value L = 0 .1; iterating, we
generate randomly in similar fashion a set of 150
distinct SAPs for each of L = 0.2, 0.3, .•. , 0.9.
For these values of N and the ki, Tmin = 45,

10 D : 4500, and SAS: 10 . max

The four curves plotted in Figure 7-1 show the
mean values of Tf(L) observed when each of the

algorithms BKTRAK, BKHARK, BKJUMP, and DEEB,
respectively, is applied to the SAPs in this
"Identical size, varying L" (ISVL) sample set.
Figures 7-2 and 7-3 show the corresponding mean
values of Df(L) and Mr(L) observed for the ISVL

sample set.

The Tf values plotted in Figure 7-1 for the
' boundary cases L = 0 .0 and L = 1.0 are derived

analytically rather than observed experimentally.

The values plotted are Tr= k 1 'k2:100 at L: 0.0 for

all four algorithms, and Tf = N(N-1)/2=45 at L:1.0

for BKTRAK, EKMARK, and BKJUMP, and Tf: 1305 at

L: 1 ,0 for DEEB . The value for DEEB is large
because it first applies DEE, determining that the
SAP is arc-consistent (see Mackworth [1977]), then
instantiates problem _variable x1 and again applies

DEE, and continues in like manner until all N
problem variables are instantiated. Several
observations about the values plotted in Figures
7-1, 7-2, and 7-3 are summarized in section 8 under
point 5,

Add little to little and there will be a
big pHe .

Ovid

8. Conclusions and Future Work

1) In all observed cases of N-Queena SAPs,
algorithm EKMARK executes fewer pair-tests
(Tf(N)) than do the other three algorithms under

identical conditions, in some cases fewer by a
factor of 10. EKMARK is observed to be more
optimal than the other three algorithms with
respect to the Mf search redundancy measure .

2) In almost all observed cases of N-Queens SAPs,
the Waltz-type algorithm DEEB executes more
pair-tests on the average than do the other
three algorithms under identical conditions.

3) For N- Queens SAPs and each algorithm, we observe
that randomizing the ordering of candidate
values of each problem variable in a certain
uniform way before commencing the search
generally causes fewer pair-tests to be executed
than if a certain "obvious" c.v. ordering is
used, fewer by as much as a factor of 500 in one
case observed (N=20 in Figure 5- 2) ,

4) Conclusions 1 and 2 above are further supported
by analogous data for "random-N-Queens" SAPs.
Comparison of these "random-N-queens" data with
the "actual- N-Queens" data shows that these two
sample sets of SAPs are sharply more
distinguishable for N 2. 10 than for N < 10, and
are sharply less distinguishable by algorithm
DEEB than by ·the other three algorithms. Note
in particular that for N 2. 10, N-Queens SAPs
require many~ pair-tests to be executed on
the average than is the case for the
corresponding random-N-Queens SAPs. Hence we
have demonstrated how algorithm performance
experiments can aid in defining what is meant by
the "structure" exhibited by a problem.

5) Results reported for the "identical size,
varying degree of constraint" (ISVL) SAPs also
support conclusions 1 and 2. Furthermore, the
results indicate that mean Tf depends strongly

on L, spanning a range whose extremes differ by
a factor of 791, The data suggest the existence
of a single sharp peak in Tf(L) at L - 0.6.

Analogous data for Df (L) and Mf(L) show similar

peaks and range of performance.

Given additional computer time, it is
straightforward to extend each of the present
experiments to other values of the experiment
parameters, and to other problems. In particular,
it would be interesting to obtain comparable
results using Waltz' line drawing problem or map
coloring. In these problems many of the problem
variables do not constrain each other directly
(i.e., Pij = RixRj, the universal relation),

whereas in the present results each problem
variable (e.g., queen) constrains each other
problem variable. Perhaps DEEB performs relatively
better and BKTRAK relatively worse on these
problems. In addition to experiments, it is
important to obtain analogous results analytically,
to the extent this is possible, and to compare the
analytic predictions with the experimental
observations .

Note: The numeric values plotted in the fig ures
constitute the actual "·results" of the experiments,
and yet they are not tabulated in this report (due
to page limitations) . The author is pleased to
supply to anyone who so requests tables listing all
of the numbers plotted in the figures, including as
well sample standard deviation values and maximum
and minimum values. These tables will also appear
in the author's forthcoming Ph.D. thesis.

References

Bobrow, D., and B. Raphael, New programming
languages for AI research, Computing Surveys, 6
(1974), 153- 174.

Eastman, C., Preliminary report on a system for
general space planning, CACM, Vol. 15, No. 2,
February 1972 .

Fillmore, J., ands. Williamson, On backtracking:
A combinatorial description of the algorithm,
SIAM J, Computing (3), No. 1 (March 1974) , 41-
55,

Gaschni.g, J., A constraint satisfaction method for
inference maki.ng, Proc. 12th Annual Allerton
Conf. Circuit and System Theory, U. Ill.
Urbana-Champaign, Oct. 2-4, 1974,

Gaschnig, J,, A general backtrack algorithm that
eliminates most redundant tests, Proc. Intl.
Joint Conf. Artificial Intelligence, Cambridge,
MA, 1977, p. 457.

Golomb, S. and L. Baumert, Backtrack programming,
J.A.C.M. (12) , No. 4 (Oct. 1965), 516-524.

Knuth, D., Estimati.ng the efficiency of backtrack
programs, Ma.thematics of Computation (29) , No.
129 (Jan. 1975) , 121-136,

Hackworth, A. K., Consistency in networks of
relations, Artificial Intelligence (8), No. 1,
1977, 99-118.

Nijenhuis, A., and Wilf, H.S., Combinatorial
Algorithms, Academic Press, New York 1975.

Rosenfeld, A., R. Hummel and S. Zucker, Scene
labelling by relaxation operations, IEEE Trans.
on Systems, Man, and Cybernetics SHC-6 (1976),
420-4:n.

Simon, H.A., Sciences of the Artificial, HIT Press,
Cambridge, HA. 1969.

Sussman, G.J. , and McDermott, D.V., Why conniving
is better than planning, Artificial Intelligence
Memo . No. 255A, HIT (1972),

SWi nehart , D., and B. Sproul l , SAIL , St anford AI
Project Operating Note No . 57 . 2, January 1971,

275

Waltz, D.E., Generating semantic descriptions from
drawings of scenes with shadows, MAC-AI-TR-271,
MIT 1972.

Waltz, D., Understanding line drawings of scenes
with shadows, in P. Winston (ed.) The
Psychology of Computer Vision, McGraw-Hill Book
Co. , New York 1975, 19-91.

Weide, B., A survey of analysis techniques for
discrete algorithms, Computing Surveys 9, no.
(December 1977).

1000000

100000

10000

T (N)IOOO
f

100

10

. . .
/"'"

OKTRAK

DEED

.I L-------:';o~--~15;--~
o 5 I

N • r,o. of quec11s

Figure 3- 1 Tt(N) ~ No. ot pair - les l s lo solve N-Quecns puzzle

(lo find tirst solulion)
elgorilhm BKTllAK vs. Wallz - l ype ale.orilhm DEEO
1 algorllhm exec ulion per plollrd poinl (solid curves)

100000

10000

O (N)lOOO
f

100

10

I
0 5 10 15

N

Figure 3-2 No. ot pair-lesls (T) and no. of dis.lintl pair-lesls (D)

to tind first solulion (Tt· Dt) and all r.olut ions (Ta• Da)
· N-Queens, UKHUIK; I alcorith111 execution lor every plolled point
Tf(N) values same as those plolled in li&llre 1- 1 .

100

M(N) 10

I l----""~--''----+------
0 5 lO 15

N

Figure 3 -3 Redundancy ralio M(N) ~ T(N) / O(N)
• Toi al .no. ot pair - lesl s cxccu lccl / no. ot clislincl pair - l es l s execuled
N-Queens, alp,orilhms UKTIIAK, firs! solulion and all solulions
T(N) and O(N) values in compulalion of M(N) ore !hose in Figure 3-2

4

276

1000000

100000

10000

Tf(N)lOOO

100

10

0

, ... ,
,' '•Tf(N)

,'
I
I

·'
Tf(N) (max) • y"

("obvious")

.1····
..

Tf(N) (mean) . .
{·
' /'••····Tf(N) (min) f ''/1

1 ,, .. / •.. --------·· Tmln(N)

t: ~,,/ --
,/. #~

,I',,.,'

y'

5 10 15
N

Figure 3-11 TflN): mean, max and min values over m(N) sampler. of random
candidate value .ordnrine, c.omr_.trcrl with T1(N) for "obvious" c..v. ordering
N-Qucens, algor ,Ihm llKHII\K, fir•, I •,olulion

m(N) algorilhm cxctulions for each value of N; 30 s m(N) s 100 (sec lext)
810 algorithm executions (a.e.) lolal

10000

1000

Tf(N) 100

10

0

_,.,,,'

5 10
N

15

Figure 5· I Comparison of al1:01 ilhm performances by n,ean number of pair - tests
N-qucen~, fir !. I !;Olulion, random cilndicfalc v.iluc ordcrinc
Same sample set tor eath algniilhm. 8 10- 1010 a.c. per al&orilhm, 34~0 a.e. lol al
mean Tf(N) value~ for OKTRI\K are those in fit:urc 3 -4

z 100

e
1
~ 10 .._
z
]
0
'> n
~

.,
0 10

N
15

/
,:"

BKTljAK

\ ,ilKMARK

D~EB

20

Figure 5-2 'Ratio ol T1tN) wllh "obvious" c_. v. ordcrin& to mean T1(N) with
tandom c.v. ordering
N-Queens, flr t. t r.olulion, r~ndom c.v. orcl(ning .

ume se t of algorithm exetulions as those for fi&ure S°-1
(Valuos for DKJUMP N values for llKTRAK)

I

..

9

8

7

6

5
Mf(N)

4 .

3

2

0 5 10
N

15

Flp,urc 5- 3 Algodlhm compari ,,on by mean rcclundancy ra lio
Mf(N) ~ T f(N) / 01(N)
N-Qucens, fir st solulion, nmdorn c.v. ordering
Same se t of algorHhm C)(c cution5 a~ in fiaurc S- 1

100000

10000

!JKTRAK

1000

T1(N)

JOO
__ ...--Tmln(N) --------_.,...

JO

0 5 10 15
N

Ficure· 6-1 Analor,ous lo Figure S'· l, but tl';in1; sample se t of randomly
generated SAPs havinr, sa me ,, iz,• and degree of constraint as N-Queens SAPs
first solution, random c.v. orcJpring
50-250 a.e. for each (N, alp,or ithm) pair;
850-1100 a.c. total pr.r algorllhrn; 3900 a.e. total

JO

9

8

7

6

T1(N) 5
ratio 4

3

2

0 5 10 15
N

Flcure 6-2 natio of r1(N) for l~· ()11,.c11s. lo T1(N) tor "Jlandom-N-Queens" SAPs
Data from fir,urc,, ,-1 and 6- 1, rr ,.pcc llvc ly. 3q40 + 3900 • 7340 a.e. total
[xperlme nl al uala by which lo di •, l1nr,1Ji ,.h "natur al" SAPs from

parame lrlc ally simil ar 1.1.d.- random SArs

277

100000

10000

r, 1000

100

10
0 .1 .2 .3 A .5 .6 .7 .8 .9

L • Link percentage

Figure 7- 1 Dependence of no. of pair - tests {Tf) on degree of cons tr aint (L)
150 random ly generated SAPs of $ize N • ki • 10 for each plotted point
1350 a.e. per al(lOrithm, 5 ~00 a.e. total
upper unn,arked curve: £3KTRAK; middle: BKJUMP; lower: BKMARK
first solution

10000

·-··· ·······--··----·····-······---·--··-··-·····-· 0max

1000

o,

100

10
0 .I .2 .3 .4 .5 .6 .7 .8 .9

. L • Link percentace

Figure 7-2 Dependence of mean no. of distinct pair - tes ts (Of) on L
Same set of al(loril hm cxeculions As in fi(lurc '7 • f

upper unmarked curve: llKTRAK & !JKMARK; lower curve: BKJUMP
(lower and upper unmarked rurves almost identical values)
first solution

14

12

10

8

Mr
6

4

2

0 .I .2 .3 .4 .5 .6 .7 .8 .9
L • Link percentage

Figure 7-3 Dependence of mean redundancy ratio (M1) on L
Same set of algorithm execution s as in Figuro 7 - f

DEEB

upper unmarked curvi, : BKTRAK; middle: BKJUMP; lower: BKMARK
first solution

DISTRIBUTED PROBLEM SOLVING1 THE CONTRACT NET APPROACH

Reid G. Smith and Randall Davis 1

Heuristic Programming Project
Department of Computer Science

Stanford University
Stanford, Callfornla, 94306.

Abstract
We describe a problem solver based on a group of

processor nodes which cooperate to solve problems. In a
departure from earlier systems, we view task distribution as
an Interactive process, a discussion carried on between a
node with a task to be executed and a group of nodes that
may be able to execute the task. This leads to the use of a
control formalism based on a contract metaphor, In which task
distribution corresponds to contract negotiation.

We also consider the kinds of knowledge that are used
In such a problem solver, the way that the knowledge Is
Indexed within an Individual node, and distributed among the
group of nodes. We suggest two primary methods of Indexing
the knowledge (referred to as "task-centered" and
"knowledge-source centered"), and show how both methods
can be useful.

We Illustrate the kind of Information that must be passed
between nodes In the distributed processor In order to carry
out task and data distribution. We suggest that a common
lnternode language Is required, and that task-specific
"expertise" required by a processor node can be obtained by
lnternode transfer of procedures and data.

We consider the operation of a distributed sensor net as
an Instantiation of the Issues we raise.

Finally, the approach presented here Is compared with
those taken by the designers of earlier systems, such as
PLANNER, HEARSAY-II, and PUP6.

1 Introduction
The ongoing revolution In LSI technology Is drastically

reducing the cost of computer components, making multiple
processor architectures economically viable. These
architectures have the potential to provide several
computational advantages over uniprocessor architectures,
Including speed, rellablllty, and efficient matching of available
processing power to problem complexity [Baer, 1973]. This
has led to a search for problem solving methods which can
exploit the new technology. In this paper we present one
approach to problem solving In such architectures.

We propose a model of a distributed problem solver
which consists of a collection of processors connected with
communications and control mechanisms that enable them to
operate concurrently, and enable them to cooperate In solving
complex problems. We use the term "distributed" rather than
"parallel" to emphasize that the Individual processors are
loosely-coupled; that Is, the time a processor node spends In
communication ts small with respect to the time It spends In
computation.

Loosely-coupled systems are desirable for a number of
reasons. First, s4ch systems are highly modular, and hence
offer considerable conceptual clarity and slmpllclty In their
organization. Second, and equally Important from our
perspective, systems designed to be loosely-coupled require
less communication by an Individual node. This Is an Important
practical consideration because a major problem that arises In
the design of multiple processor architectures Is
Interconnection of the nodes [Anderson, 1976].

1 This work has been supported In part by the Advanced
Research Projects Agency under contract MDA 903-77-C-
0322, and the National Science Foundation under contract
MCS 77-02712. It has been carried out on the SUMEX-AIM
Computer Facility, supported by the National Institutes of

· Health under grant RR-00786. Reid Smith Is supported by the
Department of National Defence of Canada, and Randall Davis
Is supported by the National Science Foundation and a Chaim
Weizmann Postdoctoral Grant for Scientific Research.

278

Complete Interconnection (so that a node can communicate
directly over a private channel to every other node) Is
extremely expensive because It entails a number of channels
proportional to the square of the number of nodes. One way to
reduce this expense Is to employ a single broadcast
communications channel which Is shared by all nodes.

Unfortunately, such a ·channel can be a major source of
contention and delay when the number of processor nodes ts
large. The communications medium connecting the nodes Is
thus a valuable (and limited) resource that must be conserved
If a large number of processor nodes Is to function together
effectively. It Is thus desirable to reduce the amount of
message traffic, and designing the system so It Is loosely
coupled Is one way to accomplish this goal. Loose-coupling
can In turn be effected by careful partitioning of the top-level
problem to Insure that Individual processor nodes work on
tasks that are relatively Independent of each other, and that
require processing times which are large with respect to the
tl~e required for lnternode communlcation.2

1.1 A Human Model
The operation of a problem solver working In a

distributed processor architecture may be likened to the
operation of a group of human experts experienced at working
together to complete a large task.3 In such a situation we
might see each expert spending most of his time working
alone on various subtasks that have been partitioned from the
main task, pausing occasionally to Interact with other members
of the group In specific, well-defined ways. When he
encounters a subtask too large to handle alone, he further
partitions It Into manageable (sub)subtasks and makes them
known to the group. Similarly, If he encounters a subtask for
which he has no expertise, he attempts to pass It on to
another more appropriate expert. In this case, the expert
may know another expert (or several other experts) In the
group who have the necessary expertise, and may notify him
(them) directly. If the expert does not know anyone In
particular who may be able to assist him, or If the new subtask
requires no special expertise, then he can simply describe the
subtask to the entire group. If some other expert chooses to
carry out the subtask, then that expert will request further
details from the original expert, and the two may engage In
further direct communication for the duration of the subtask.
The two experts will have formed their own subgroup, and
similar subgroups of variable size will form and break up
dynamically during the course of the work on the problem.
Subgroups of this type offer two advantages. First,
communication among the subgroup members does not
needlessly distract the entire group of experts. Such
distraction may be a major source of difficulty In large groups
(see, for example [Brooks, 1976]). In addition, the subgroup
members may be able to communicate with each other In a
language that Is more efficient for their purposes than the
language In use by the group as a whole.

It Is worthy of note that among the tasks which can be
posed by an expert In the group are those that Involve a
transfer of "expertise" from one expert to another; that Is,
one expert may request Instruction In the execution of a
particular task.

In our human model, no one expert Is In control of the

2 Partitioning of this kind Is, of course, a well-known
problem solving strategy, often referred to as "divide and
conquer".

3 The group of experts model has also been used as a
starting point by (Lenat, 1976] and [Hewitt, 1977a], but has
resulted In approaches with different characteristics than that
considered In this paper. We compare the different
approaches In Section 6.

others, (although one expert may be ultimately responsible for
communicating the solution of the top-level problem to the
"customer" outside the group). As a result, one of the major
problems facing such a group Is Integration of Information held
by the Individual members. The group members must find ways
to share and build on one another's Information, and find ways
to examine and resolve differences In order to reach a
consensus.

2 Problem Solving Protocols
We now consider the design of a problem solver that can

exploit the characteristics of a distributed processor
architecture. In doing this, we make a rough correspondence
between human experts and Individual processor nodes, but
our aim is the design of an effective problem solver, not a
simulation of human performance. The question Is then, "What
techniques will supply the requisite communications and
control mechanisms?" We will see that one of the necessary
mechanisms is a problem solving protocol designed to enable
the Individual nodes to communicate for the purpose of
cooperative problem solving. It Is based on the more traditional
notion of communications protocol.

The use of communications protocols In networks of
resource-sharing computers, such as the ARPAnet, Is by now
quite familiar [Kahn, 1972]. These protocols have as their
primary function reliable and efficient communication between
computers. The layers of protocol In the ARPAnet, for
example, serve to connect IMP's to IMP's (the subnet
communications devices), hosts to hosts (the processor nodes
of the network), and processes executing In the various hosts
to other such processes [Crocker, 1972].

Communications protocols are, however, only a start - a
prerequisite for distributed problem solving. We need to build
upon the work of network and communications protocol
designers to focus on what to say In the context of distributed
problem solving, as opposed to how to say It. In ARPAnet
terms, we must move above the process-to-process protocol
to add yet another layer - one concerned with the

· management of tasks.

2. 1 Design Goals
Before presenting the specific protocol to be used

throughout the remainder of this paper, we review the general
design goals for a problem solving protocol.

First, we are concerned with the communication of
messages between the nodes of a distributed problem solver.
We must therefore Insure that our protocol Is sufficiently
general that It allows the communication of a broad class of
Information, and allows Interactions capable of supporting
complex problem solving behavior.

Second, the protocol must be well-suited to systems
that are loosely-coupled. As noted earlier, It Is Important to
minimize communication since communications channel capacity
Is expensive. While careful task partitioning has the greatest
potential Impact on the amount of lnternode communication
required, the problem solving protocol also plays a role.
Therefore, the protocol should be efficient In terms of Its use
of communications resources (I.e., terse).4

The protocol should also foster distribution of control and
data In order to Insure that advantage can be taken of
potential gains In speed and reliability that may be achieved
through the use of multiple processors. Centralized control
could create an artificial bottleneck (slowing the system
down), and could make It difficult for the system to recover
from failure of critical components.

Finally, the protocol should aid In maintaining the focus
of the problem solver, to combat the combinatorial explosion
which besets almost all Al programs. For a uniprocessor, focus
Involves selection at each Instant In time of the most
appropriate task to be executed [Hayes- Roth, 1977]. For a
distributed processor, focus can be reformulated as finding
the most appropriate tasks to be executed and matching them
with processor nodes appropriate for their execution.

In a uniprocessor, focus of attention Is generally handled

4 Current evidence [Galbraith, 1974] suggests that
effective human organizations operate In an analogous manner,
minimizing unnecessary communications among the members.

279

by a single, global, heuristic evaluation function used to rank
order all tasks In the system (see, for example [Lenat,
1976)). In a distributed processor, however, each Individual
processor node has Its own local evaluation function. Task
se lection and decisions are thus based on local
considerations, and this locality gives rise to the problem of
Inducing global coherence In the actions of the Individual
processor nodes. Since this can be a major source of
difficulty, the problem solving protocol should also offer some
assistance In overcoming It.

2.2 The Contract Net
These considerations lead to the notion of task

distribution as an Interactive process, one which entails a
discussion between a node with a task to be executed and
nodes that may possibly be able to execute the task. The
contract net approach to distributed problem solving [Smith,
1977] uses an announcement - bid - award sequence of
contract negotiation to effect this matching. We present a
simplified description of the approach In this section.

A contract net Is a collection of Interconnected
processor nodes whose Interactions are governed by a
problem solving protocol based on the contract metaphor.
Each processor node In the net operates asynchronously and
with relative autonomy. Instances of the execution of
Individual tasks are dealt with as contracts. A node that
generates a task advertises existence of that task to the
other nodes In the net as a task announcement, then acts as
the manager of that task for Its duration. In the absence of
any Information about the specific capabilities of the other
nodes In the net, the manager Is forced to Issue a
general broadcast to all nodes. If, however, the manager
possesses some knowledge about which of the other nodes In
the net are likely candidates, then It can Issue a
limited broadcast. Finally, If the manager knows exactly
which of the other nodes Is appropriate, then It can Issue a
point-to-point announcement. 5 As work on the problem
progresses, many such task announcements may be made by
various managers.

The other nodes In the net have been listening to the
task announcements, and have been evaluating their own
level of Interest In each task with respect to their specia lized
hardware and software resources. When a task Is found to be
of sufficient Interest, a node may submit a bid. Each bid
Indicates the capabilities of the bidder that are relevant to
execution of the announced task. A manager may receive
several such bids In response to a single task announcement;
based on the Information In the bids, It select one (or several)
node(s) for execution of the task. The selection Is
communicated to the successful bldder(s) through an award
message. These selected nodes assume responsibility for
execution of the task, and each Is called a contractor for
that task.

A contract Is thus an agreement between a node that
generates a task (the manager) and a node that executes the
task (the contractor). Note that establishing a contract Is a
process of mutual selection. Available processor nodes
evaluate task announcements made by several managers until
they find one of Interest; the managers then evaluate the bids
received from potential contractors and select one they
determine to be most appropriate. Both parties to the
agreement have evaluated the Information supplied by the
other and a mutual decision has been made.

The contract negotiation process Is expedited by three
forms of Information contained In a task announcement. An
eligibility specification lists the criteria that a node must
meet to be eligible to submit a bid. This specification reduces
message traffic by pruning nodes whose bids would be clearly
unacceptable. A task abstraction Is a brief description of the
task to be executed, and allows a potential contractor to
evaluate its level of Interest In executing this task relative to
others that are available. An abstraction Is used rather than a
complete description In order to reduce message traffic.

5 Restricting the set of addressees (which we call
focused addrHslng) of an announcement Is typically a
heuristic process, since the information upon which it is based
may not be exact (e.g., It may be Inferred from prior
responses to announcements).

Fina lly, a bid specification details the expected form of a bid
for that task. It enables a potential contractor to transmit a
bid which contains only a brief specif ication of Its capabilities
that are relevant to the task (called a· node abstraction),
rather than a complete description. This both simplifies the
task of the manager in evaluating bids, and further reduces

message traffic.6

The normal contract negotiation process may be
simplified In two Instances. First, a directed contract does
away with the announcement and bid, and Is awarded directly
to a se lected node. Second, a request - response sequence
Is used without further embellishment for tasks which amount
to simple requests for information. These two simplifications
serve to enhance the efficiency of the protocol.

It is Important to note that individual nodes are not
designated a priori as managers or contractors. Any node can
take on either role, and during the course of problem solving a
particular node normally takes on both roles (perhaps even
simultaneously for different contracts).

In addition to effecting task distribution, a contract
between two nodes serves to set the context for their
communication. Setting up such a context facllltates their
communication. A contract Is also of assistance In forming
subgroups of nodes. As In the human model discussed above,
such subgroups can communicate among themselves without
distracting the entire group. Furthermore, an established
context permits the use of a specialized language for their
communication. This helps to reduce message traffic.

The award message contains a task description, which
Includes the complete specification of the task to be
executed. After the task has been completed, the contractor
sends a report to its manager. This message Includes a result
description, which contains the results that have been
achieved during execution of the task.

The manager may terminate contracts as necessary,
and subcontracts may be let In turn as required by the size of
a contract or by a requirement for special expertise or data
that the contractor does not have.

Contracting distributes control throughout the . network,
helping to create a flexible system; that Is, a number of
different (potentially dynamic) approaches to problem solving
can be Implemented. Distributed control and ' two-way links
between managers and contractors also enhance system
reliability, In that they enable recovery from Individual
component failure. The failure of a contractor, for example, Is
not fatal, since Its manager can re-announce the appropriate
contract and recover from the failure. This strategy allows the
system to recover from any node failure except that of the

node that holds the original top- level problem.7
While the contract net protocol Is a general problem

solving protocol, It has been designed so It can be pruned to
meet the specific requirements of the application at hand, and
hence reduce message traffic and message processing
overhead. In Its simplest form, It reduces to a standard
communications protocol, sending messages between
specified sources and destinations. At a slightly more general
level, broadcasting of tasks and results Is possible, thus
effecting a more Implicit form of addressing. At progressively
more general levels, complex bidding and award mechanisms
are added. The contract net can thus be a useful approach to
distributed problem solving at many different levels of
complexity.

We can now consider how well the contract net protocol
meets the design goals specified earlier for a problem solving
protocol .

The protocol Is well suited to loosely- coupled systems In
two respects. First, It provides a very general form of
guidance In determining appropriate partitioning of problems:
the notion of tasks executed under contracts Is appropriate

6 We discuss the encoding of this Information In Section
4.3.

7 At the top level, contracting can distribute control
"almost" completely, hence removing the bottlenecks that
centralized controllers may create. There stlll remains,
however, the reliability problem Inherent In having only a single
node responsible for the top-level problem. Since this cannot
be handled directly by the manager-contractor links, standard
sorts of redundancy are required.

280

for a grain size larger than that typically used In problem
solving systems. (Section 5.1 contains further discussion
of this Issue.) Second, the protocol Is efficient wlti, respect to
Its use of communications channels. The Information In task
announcements, for Instance, helps minimize the amount of
channel capacity consumed by communications overhead.
Such efficiency helps to preserve whatever loose-coupling
character Is already present In the system as a result of
problem partitioning.

The use of autonomous contract nodes Interacting
through a process of contract negotiation fosters distribution
of control and data throughout the system, thus meeting the
third design goal.

Maintenance of focus Is perhaps the most difficult of the
design goals to meet, and we do not yet have a good
understanding of the underlying Issues involved. Our approach
Is to attack the problem explicitly through "appropriate"
definition of the functions used to evaluate task
announcements and bids. In addition, each node maintains a
list of the "best" recent task announcements It has seen - a
kind of window on the tasks at hand for the net as a whole.
This window enables the evaluation funct ions to "Integrate"
the local situation over time to assist In maintenance of focus.

It Is of Interest to note that the focus problem does not
necessarily have to be attacked explicitly. Some problems
lend themselves to a relaxation style of problem solving. Low
level vision operations, for example, are suitable candidates
for this approach [Zucker, 1977]. The nature of the
relaxation process Itself tends to produce global coherence
from the actions of Individual processes even though focus Is
not addressed explicitly as a problem. In this approach, a lack
of appropriate global coherence shows up as oscillation In the
relaxation process.

3 Example - Distributed Sensing
In this section, we demonstrate the use of the contract

net approach In the solution of a problem In area survei llance,
such as might be encountered In ship or air traffic control.
The example will help to demonstrate the Ideas which form the
central foci of the remainder of this paper: (a) task
distribution as an Interactive process, and (b) Indexing and
distribution of knowledge.

We consider the operation of a network of nodes, each
of which may have either sensing or processing capablllt les,
and which are spread throughout a relatively large geographic
area. Such a network Is called a Distributed Sensing Syatem
(DSS). The primary aim of the system Is rapid, reliable,
accurate, and low-cost analysis of the traffic In a designated
area. This analysis Involves detection, classification, and
tracking of vehicles; that Is, the solution to the problem Is a
dynamic map of traffic In the area which shows vehicle
locations, classifications, courses and speeds. Construction
and maintenance of such a map requires Integration and
Interpretation of a large quantity of sensory Information
received by the collection of sensor elements.

There are a number of tradeoffs Involved In the design
of a DSS architecture, and we present only one possible
approach. The primary Intent of the example Is to act as a
vehicle for demonstration of the contract net approach to

distributed problem solvlng.8

The example we present here Is a hand simulation, but Is
based on a working SAIL simulation of the contract net that
has been applled to a related distributing sensing problem.

3.1 Hardware
The DSS Is organized as a contract net that Is monitored

by a distinguished processor node called the monitor node. All
communication In the net Is assumed to take place over a
broadcast channel. The nodes are assumed to be In fixed
positions known to themselves but not known a priori to the
monitor node, and they may have two different kinds of

8 Further discussion of the background Issues Inherent In
DSS design Is presented In (Smith, 1978a]; a more detailed
discussion of this example Is presented In (Smith, 1978b],
which Includes examination of several of the design options
and tradeoffs that can only be mentioned briefly here due to
space limitations.

·I
·i

capability: sensing and processing. The sensing capability
Includes low level signal analysis and feature extraction. We
assume that a variety of sensor types exist In the OSS, that
the sensors are widely spaced, and that there Is some overlap
In sensor area coverage.

Nodes with processing capability supply the
computational power necessary to effect the high level
analysis and control in the net. They are not necessarily near
the sensors whose data they process. These nodes are able
to acquire (if necessary) the procedures essential to effect
any of the information processing functions, by transfer from
other nodes.

3.2 Data And Task Hierarchy
The DSS must integrate a large quantity of signal data,

reducing it and transforming it into a symbolic form meaningful
and useful to a human observer. We view this process as
occurring in .severa l stages, which together form a data
hierarchy (Figure 3.1). The hierarchy offers an overview of
DSS function and suggests a task partitioning suitable for a
contract net approach.

overall area map

area map

vehicle

signal group

signal

Figure 3.1. Data Hierarchy.

For purposes of this example, the only form of signal
processing we consider Is narrow band spectral analysis, and
the signal has the following features: frequency, time of
detection, strength, characteristics (e.g. increasing signal
strength), name and position of the detecting node, and the
name, type, and orientation of the detecting sensor.

Signals are formed Into signal groups at the second
level of the data hierarchy. A signal group Is a collection of
related signals. For this example, the signal groups have the
following features: the fundamental frequency of the group,
the time of group formation, and the features of the signals In
the group (as above).

The next level of the hierarchy Is the vehicle. It has one
or more signal groups associated with It, and Is described In
terms of position, speed, course, and type. Position can be
established by triangulation, using matching groups detected
by several sensors with different positions and orientations.
Speed and course must be established over time by tracking.

The next level of the data hierarchy Is the area map.
This map Incorporates Information about the known vehicle
traffic In an area. It Is an Integration of the vehicle level
data. There will be several such maps for the DSS,
corresponding to areas In the span of coverage of the net.

The final level Is the complete or overall area map. In
this example, the map Is Integrated by the monitor node.11

The hierarchy of tasks follows directly from the data
hierarchy. The monitor node manages several area
contractors (Figure 3.2). These contractors are responsible
for formation of traffic maps In areas defined by the monitor
node. Each area contractor In turn manages several group
contractors that provide It with signal groups for Its area
(Figure 3.3). Each group contractor Integrates raw signal data
from signal contractors that have sensing capabilities.

The area contractors also manage several vehicle
contractors that are responsible for Integration of Information
associated with Individual vehicles. Each of these contractors
manages a classlflcatlon contractor that determines vehicle
type, a localization contractor that determines vehicle
position, and a tracking contractor that tracks the vehicle as
It passes through the area. 10

9 A DSS may have several functions, and not all of these
functions will require Integration of overall area data at a
single node.

10 In a real solution to the DSS problem, It Is possible

281

overall area

I I
I

area area area

Figure 3.2. Traffic Map Partitioning.

area

I
group

I
signal

classi ication local zation tracking

Figure 3.3. Area Task Partitioning.

3.3 DSS Initialization And Operation - The Contract Net
Approach

This section reviews In qualitative terms how the OSS
problem can be attacked using the contract net approach, and
Illustrates several of the Ideas central to Its operation.
Appendix A gives specific examples of the message traffic
that Is described here In more general terms.

3.4 Initialization
The monitor node is responsible for initialization of the

DSS and for formation of the overall map. It must first partition
the overall span of coverage of the system Into areas, and
select other nodes to be area contractors. For purposes of
Illustration we assume that the monitor node knows the names
of nodes that are potential area contractors, but must
establish their positions In order to partition the overall span
of coverage. Hence, It begins by announcing contracts for
formation of area maps of the traffic. Because the monitor
node knows the names of potential area contractors, It can
avoid a general broadcast and use a focused addressing
scheme. The announcement contains the three components
described In Section 2.2, a task abstraction, eligibility
specification, and bid specification. The bid specification Is of
primary interest for this task. It Informs a prospective area
contractor to respond with Its position. The monitor node uses
the positions returned In bids on the task to form appropriate
areas and select a subset of the bidders to be area
contractors. Each contractor Is Informed of Its area of
responsibility In the contract award message. 11

The area contractors now attempt to solicit other nodes
to provide signal group data. In the absence of any
Information about which nodes might be suitable, each area
contractor announces the task using a general broadcast. The
ellglblllty specification In these announcements Indicates the
area for which the individual area contractor Is responsible;
that Is, a node Is only eligible to bid on this task If It Is In the
same area as the announcing area contractor. Potential group
contractors respond with their respective positions, and
based on this Information, the area contractors award group
contracts to nodes In their areas of responsibility.

At this point, the group contractors attempt to find

that not all of these tasks would be large enough to justify
the overhead of contracting; that Is, some of them might be
done In a single node. It Is also of Interest to note that some
of the tasks In the hierarchy .are continuing tasks (e.g., the
area task), while others are one-time tasks (e.g., the localize
task).

11 The full announcement - bid - award sequence Is
necessary (rather than a directed contract) because the
monitor node needs to know the positions of all of the
potential area contractors In order to partition the overall span
of coverage of the DSS Into manageable areas. Note that this
means that the DSS will automatically adjust to a change In
the number or position of potential area contractors.

nodes that will provide raw signal data. This Is done with
signa l task announcements. The task abstraction In these
announcements Indicates both the area of responsibility of an
indiv idua l group contractor and Its position. This position
Information w ill assist potential signal contractors In
determining the group contractors to which they should
res pond. The e ligibili ty specif ication In the announcements
e ns ures that a bidder Is located In the same area as the
announcer, and that It has sensing capabllltles.

The potential signal contractors listen to the task
announcements from the various group contractors. They
respond to t he nearest group contractor with a bid that
s upp lies t heir position and a description of their sensors. The
group contractors use this Information to select a set of
bidde rs that covers the vic inity w ith a suitable variety of
sensors , and then award signal contracts on this basis. The
aw ards spec ify the sensors that each signal contractor Is to
use to provide raw data to Its managing group contractor.

The signa l contract Is a good example of the contract
negotiation process, Illustrating that the matching of
contractors to managers Is an Interactive process. It Involves
a mutual decision based on local processing by both the group
contractors and the potential signal contractors. The potential
s igna l contractors base their decis ion on a distance metric
and respond to the closest manager. The group contractors
use t he distribution of sensor types and numbers observed In
t he b ids to se lect a set of signal contractors wt.lch ensures
t hat every area Is covered by every kind of sensor. Thus
each party to the contract evaluates the proposals made by
t he other, using a different evaluation function, and arriving at
a task distribution agreement via mutual selection.

3.6 Operation
We now consider the activities of the system as It

commences operation.
When a s igna l Is detected, or a change occurs In the

features of a known signal, the detecting signal contractor
reports this fact to Its manager (a group contractor). This
node In turn attempts to Integrate the Information Into an
existing signal· group or to form a new signal group.

A group contractor reports the existence of a new signal
group to Its manager (an area contractor) which must then
decide what to do with It. Whenever a new group Is detected,
the managing area contractor attempts to find a node to
execute a vehicle contract. The task of a vehicle contractor
is to classify, localize, and track the vehicle associated with
the signal group. Since a newly detected signal group may be
attributable to a known vehicle, the area contractor first
requests from the existing collection of vehicle contractors a
measure of the confidence that the new group is attributable

. to one of the known vehicles. Based on the responses, the
area contractor either starts up a new vehicle contractor, or
awards a contract to (augments the existing contract of) the
appropriate existing vehicle contractor, with the task of
making certain that the new group corresponds to a known
vehicle. This may entail, for example, the gathering of new
data via adjustment of sensors, or contracts to new sensor
nodes.

The vehicle contractor then makes two task
announcements: vehicle classification and vehicle locallzatlon.
The announcement of the classification task Includes an
abstraction of the available description of the vehicle (I.e.,
the currently known information). In this example, the

. abstraction contains a 11st of the fundamental frequencies of
the signal groups currently associated with the vehicle. This
Information may help a potential classlflcatlon contractor
select an appropriate task (a contractor may, for example,
a lready be familiar with vehicles that have signal groups with
the announced fundamental frequencies). The award Includes
the complete current description. A classification contractor
may be able to classify directly, given the signal group
information, or on the other hand It may require more data, In
which case It can communicate directly with the appropriate
sensor nodes.

A locallzatlon task announcement Includes data on the
positions of the detecting nodes. The bid Is simply an
affirmative response to the announcement and the contract la
awarded to the first bidder, which does the required
triangulation to obtain the position of the vehicle.

282

Once the vehicle has been localized, It must be tracked.
We assume that this Is handled by the vehicle contractor
which enters into follow-up localization contracts from t ime to
time and uses the results to update Its vehic le description.

There are a variety of other Issues that must be
considered In the design and operation of a real distributed
sensing system; they are discussed In more detail elsewhere
[Smith, 1978b). In the following sections, we focus on Issues
of knowledge organization and use In the contract net, and
refer back to this example to Instantiate the Issues raised.

4 Organization Of Knowledge
In this section we consider the contract negotiation

process from a different perspective, examining the kinds of
knowledge that are used, the way that the knowledge Is
Indexed within an Individual node, and distributed among the
nodes.

We begin with a few definitions. Indexing Indicates the
"handles" placed on knowledge modules so that they can be
accessed. In the next section we will see that knowledge In a
contract net Is Indexed according to Its utility for selecting
suitable knowledge sources (KS's) (I.e., processor nodes) for
a particular task, or for selecting suitable tasks for a
particular KS. Distribution indicates where the knowledge
resides; that is, In which processor nodes. We can distinguish
two aspects of distribution of knowledge in a contract net:
static distribution - dea11ng with the question of how
knowledge is pre-loaded Into the net (I.e., the a priori
distribution), and dynamic distribution - how knowledge Is
acquired by a node as work on the problem progresses.

In the following sections we will concentrate primarily on
the Issue of knowledge Indexing, together with t he
mechanisms that are necessary to use the knowledge In
problem solving. We will also see that these same
mechanisms permit Interactive transfer of expertise between
nodes In much the same way as any other form of Information
is transferred.

4 •. 1 Indexing Of Knowledge
To consider knowledge Indexing, the discussion focuses

on (a) the two primary questions that must be answered by a
node during the contract negotiation process, and (b) the
types of knowledge that are used by the manager and
potential contractors to effect this negotiation.

A manager has two questions to answer during the
contract negotiation process. First,
(1) To whom do I addre:ss my task announcement?

Then, once It has received a number of bids In response
to an announcement, the manager must answer the question,
(2) How can I select the best candidates from among the

potential contractors for my task?
A node that receives an announcement must also answer

two questions during the negotiation process. First,
(3) Am I relevant to this task and Is It appropriate for me to

· consider making a bid?
In addition, a node must also determine,

(4) Is this task the one that I want to execute next?
In order to facilitate the contract negotiation process,

we find It convenient to specify the Indexing of knowledge as
being either task-centered or knowledge-source-centered
(KS-centered).

Task-centered knowledge Is Indexed from the point of
view of a particular task, and provides Information about KS's
with respect to that task. At least two forms can be Imagined:
(a) IF I have a task of the form [...] to be executed,· THEN

KS's of the form[...] are potentially useful.
or,
(b) IF I have a task of the form [...] to be executed, THEN

KS's of the form[...] are more useful than KS'• of the
form[.•.].

KS-centered knowledge, on the other hand, Is Indexed
from the point of view of a particular KS, and provides
Information about tasks with respect to that KS. Again, at
least two forms can be Imagined:
(c) IF my /<now/edge base contain• Information of the form

[...], THEN tasks of the form [...] are appropriate for
me.

or,

. I

• I

(d) IF my knowledge base contains Information of the form
[.•.], THEN tasks of the form [•.•] are more
appropriate for me than tasks of the form[...].

Both kinds of knowledge are used during the contract
negotiation process. Task- centered knowledge Is used first
to determine the subset of nodes to which to address a task
announcement (i. e., (a) provides the answer to question (1)).
This type of k_nowledge reduces message traffic and message
processing overhead because It enables focused addressing,
as in the DSS, for example, where the monitor node uses task
centered knowledge to effect focused addressing In
announcing the area tasks.

Task-centered knowledge Is also used to determine the
best course of action once bids are received (I.e., (b)
provides the answer to question (2)), and hence Is an effective
mechanism for encoding strategies. That Is, since bid
evaluation functions are used to select the next KS to Invoke,
they are an appropriate location for strategy Information that
guides the operation of the problem solver.

KS-centered knowledge Is used by a node that receives
an announcement, first to determine that It Is re levant to the
announced task (i.e., (c) provides the answer to question (3)).
Associating knowledge with KS's allows enhancement of the
concurrency In a distributed processor because · many KS 's
can simultaneously determine their relevance to a task; that
Is, each KS carries Information allowing It to determine the
range of tasks to which It Is relevant. KS-centered
knowledge of type (c) Is used by nodes In the DSS example to
determine that they are eligible to bid on signal tasks.

KS-centered knowledge Is also used by a node to select
the task It wishes to execute next (I.e., (d) provides the
answer to question (4)). This type of KS-centered knowledge
Is another effective mechanism for encoding strategies. In the
DSS, for example, the Initialization strategy for signal
contractors Is encoded In this way.

4.2 Distribution Of Knowledge
We noted at the beginning of this section that

distribution of knowledge has two aspects - static and
dynamic. Static distribution Is largely task-specific, and the
criteria for a good static distribution of knowledge are similar
to those for good problem partitioning. The distribution chosen
should minimize message traffic, and should not create any
bottlenecks In the system. Dynamic distribution of knowledge
Is the means by which nodes can acquire and transfer
Information and expertise as the problem progresses. The
ability to effect dynamic knowledge distribution places
several constraints on the design of the distributed problem
solver.

Dynamic distribution of knowledge enables more
effective use of available computational resources: a
processor node that Is standing Idle because It lacks
Information required to perform a previously announced task
can acquire the procedures necessary to execute that task.
This also facilitates the task of adding a new node to an
existing net, since the node can dynamically acquire the
procedures and data necessary to allow It to participate In
the operation of the net.

This means that nodes do not have to be functionally
defined a priori; that Is, any node can acquire the procedures
necessary to execute any task that Its physical attributes
(e.g. , memory, peripherals , etc.) will support. The alternative
would be either forcing the node to remain Idle until It hears a
task announced for which It already has the necessary
procedures, or pre-loading each node In the net with all the
procedures that will ever be used. Neither of these
a lternatives Is very attractive.

Procedures can be transferred between nodes In three
ways. First, a node can transmit a request directly to another
node for transfer of a procedure. The response to the request
is the procedure code. Second, a node can transmit a task
announcement In which the task Is transfer of a procedure. A
bid on the task Indicates that another node has the code and
Is willing to transmit It. Finally, a node can note In Its bid on a
task that It requires the code for a particular procedure In
order to execute the task. This Is useful when the managing
node already has the relevant code but wants to work on
some other aspect of the task.

283

4 .3 lnternode Communication
Thus far we have concentrated on the role of the

contract net problem solving protocol for Interaction between
nodes. In this section, we consider the common lnternode
language which serves as the foundation on which the
protocol Is based. The language provides the primitive
e lements w ith which such Items as task abstractions,
ellglblllty specifications, and bid specifications are encoded. It
thus provides the medium In which nodes "discuss" tasks and
KS's, as well as pose the questions about eilglbillty to bid on
tasks, rank ordering of tasks, and control of task distribution
that arise during the contract negotiation process.

A relatively simple language, capable of supporting t he
DSS communication, has been designed. Sample messages are
shown In Appendix A. It Is believed that the language will
support a range of other applications, but, of course would
have to be Increased In complexity for behavior significantly
more complex than that shown In the DSS example.

The language Is organized as a collection of associat ive
triples, and has a set of domain-Independent, "core"
vocabulary Items that can be extended with task-specif ic
Items.

The current grammar of the language Is relatively simple,
with the result that the messages shown In Appendix A are
somewhat verbose. These messages have the advantage of
being easy to write and understand for a human, but have the
disadvantage of being less efficient than they might be in
their use of communications resources.

- The common lnternode language permits explicit
statements of requirement to be made In messages. It Is also
useful In that It assists a new node in Isolating the Information
It must acquire to participate In the operation of the net. This
Isolation Is an aid to active distribution of knowledge
(discussed In the preceding section). Finally, the language
simplifies the use of local processing by a node, for example,
to evaluate announcements and bids from Its own point of
view. A node Is able to process the Information In these
messages because the common lnternode language affords a
uniform Interpretation of the vocabulary Items by all nodes In
the net.

Specialized communication Is also possible. Two nodes
that are linked via a contract, for example, can adopt a more
compact form of communication for their messages, since no
other nodes need Interpret the messages. This compact form
of communication can be viewed as a specialized language
that the nodes use to communicate with other nodes that
share their expertise. In the DSS, for example, once the area
and vehicle contractors have established communication
through the contract negotiation process, they might alter the
language In which they communicate In order to reduce the
length of messages and simplify message processing. This Is
possible because a context has been established through a
contractual relationship.

5 Other Systems
The contract net draws upon a variety of Ideas from the

Al literature. In this section we relate the approach to those
used In other systems.

5.1 PLANNER And Actors
The contract net task announcement Is analogous to t he

PLANNER [Hewitt, 1972] goal specification, and functions
s imilarly In providing a mechanism for advertising a task to a
group of KS's, Instead of Invoking a specific KS by name.

By way of contrast, the contract net allows complex
local processing by a node In determining its re levance to a
particular task, rather than the pattern-matching that Is
allowed In PLANNER. In addition, the actor model of
computation that succeeded PLANNER Is based on t he
concept of a group of experts that communicate by passing
polnt-to~polnt messages [Hewitt, 1977a], [Hewitt, 1977b],
while there are a variety of addressing modes used In
contract net messages (general broadcast, limited broadcast,
and point-to- point). These different modes serve to reduce
message traffic and message processing overhead. Finally,
the contract net assumes a loose-coupling of tasks, whereas
the actor model does not. This assumption Implies a
difference In the grain size of tasks Into which a problem Is

decomposed (large for contractors and small for actors), and
results from the different motivations of the designers of the
two formalisms: where actors have been used as a means of .
studying fundamental Issues Involving the nature of
computation, control, and program correctness, the contract
net Is designed as a mechanism for problem solving, and hence
views Its primitive operations In terms of comparatively large,
domain-specific tasks.

5.2 HEARSAY-II
The concept of a group of cooperating KS's has been

used to advantage In the HEARSAY-II speech understanding
system [Erman, 1976). The contract net draws upon this
model with respect to the modularity and Independence of
KS's. Unlike this model, however, the contract net enables
focused addressing and doesn't use a blackboard, primarily
due to the problems such a global data structure can cause In
a distributed environment (e.g., rellablllty and bottleneck
problems).

In addition, KS's In the HEARSAY model were seen
primarily as information gathering and dispensing processes
[Reddy, 1975], so that hierarchical control was not
considered necessary. The contract net, on the other hand, Is
well-suited to hierarchical control as a result of the manager
contractor structure.

Finally, HEARSAY-II did not preserve state Information
about a hypothesis. In particular, there was neither e way to
specify the processing that had already been applied to a
hypothesis, nor the kind of processing that might yet be
applied, and this made scheduling difficult [Lesser, 1977].
The contract provides a data structure with which to
associate this type of Information and Is one way of avoiding
such problems.

6.3 PUP6
The model of a group of human experts cooperating to

solve a large problem was also used effectively In PUP6, a
system designed to write programs based on Informal
specifications [Lenat, 1976]. Where Interaction between the
modules In PUP6 was accomplished by pattern- matching, the
contract net expands on this through the use of a contract
negotiation process, based on a common lnterriode language.

PUP6 had no notion of acquired expertise, since each
module In the system had a standard set of parts that did not
vary over time. Contract nodes, on the other hand, have a
standard core structure but have In addition a common
lnternode language which enables them to acquire expertise
via transfer of procedures and data.

6.4 Task Distribution / Tranafer Of Control - · A
Progression

It will be useful at this point to compare the approach to
task distribution provided by the contract net framework with
that provided by previous problem solving formalisms. This will
help make clear the ways In which the contract net view Is
unique and the advantages that uniqueness offers. We .
consider as points of comparison the techniques used In
subroutine calling, PLANNER, CONNIVER [McDermott, 1974],
HEARSAY-II, a hypothetical task agenda system, and the
PUP6 system. We show that the contract net presents a
view that Is a natural successor to previous systems but Is
unique In several respects.

6,4.1 Terminology
We have used the term "task distribution" throughout

the paper as a generalized view of what Is more traditionally
referred to as transfer of control. That Is, In a distributed
system, when one processor decomposes a problem It Is
working on and hands one of the resulting subtasks to another
processor, both processors continue working on their
respective tasks; hence we refer to It as task distribution. In
a uniprocessor, however, problem decomposition Involves
transfer of control: one process selects another process to
work on a selected subtask and yields (perhaps temporary)
control.

Since all of the systems we wish to use for comparison
were designed for uniprocessors, we wlll adopt this
perspective and make the comparison on the basis of transfer
of control. This will provide a familiar basis for comparison

284

without losing sight of any of the Important Issues. It will also
serve to demonstrate that . the Issues we deal with In this
section are fundamental Issues of KS Invocation and problem
solving, Independent of distributed processing.·

6.4.2 The Basic Questions And Fundamental Differences
To make clear the place of the contract net In the

sequence of invocation mechanisms that have been created,
we consider the process of transfer of control from the
perspective of both the caller and the respondent. We focus
in particular on the selection aspects and consider what
opportunities a calllng process has for selecting an
appropriate respondent, and what opportunities a potential
respondent has for selecting the task on which to work. In
each case we ask two basic questions from the perspective
of both the caller and the respondent:

What Is the character of the choice available?
On what kind of Information Is that choice based?
The answers to these questions wlll demonstrate our

claim that the contract net view of control transfer differs
with respect to:
(a) information transfer: The announcement-bid-award

sequence means that there is more information, and more
complex information transferred In both directions
(between caller and respondent) before Invocation
occurs.

(b) local selection: The computation devoted to the selection
process, based on the Information transfer noted above,
Is more extensive and more complex than that used in
traditional approaches, and is "local" in the sense that
selection is associated with and specific to an Individual
KS (rather than embodied in, say, a global evaluation
function).

(c) mutual selection: The local selection process is symmetric,
in the sense that the caller evaluates potential
respondents from Its perspective (via the bid evaluation
function), and the respondents evaluate the available
tasks from their perspective (via the task evaluation
functions).

6,4,3 The Comparison
Subroutine Invocation represents a degenerate case,

since all the selection Is done ahead of time by the
programmer and Is "hardwired" Into the code. Asia result there
Is no non-determinism at runtime and hence no opportunity for
choice.

A degree of non- det erminism (and hence opportunity for
choice) for the caller Is evident In traditional production rule
systems, since a number of rules may be retrieved at once. A
range of selection criteria have been used (see [Davis,
1977]), but these have typically been Implemented with a
single, syntactic criterion hardwired Into the Interpreter.

PLANNER's pattern-directed Invocation provides a
facility at the programming language level for nondeterministic
KS retrieval and offers, In the "recommendation list", a
specific mechanism for encoding selection information. The
THUSE construct provides a way of specifying which KS's
(theorems) to try In which order, while the theorem base filter
(THTBF) construct offers a way of Invoking a predicate
function of one argument (the name of the next theorem
whose pattern has matched the goal) which can "veto" the
use of that theorem.

Note that there Is a degree of selection possible here,
selection that may involve a considerable amount of
computation (by the theorem base filter), and selection that is
local in the sense that filters may be specific to a particular
goal specification. But the selection is also limited in several
ways. First, in the standard invocation mechanism the
information available to the caller Is at best the name of the
next potential respondent; In effect a one-bit answer of the
form "yes I match that pattern" . The caller does not receive
any additional Information from the potential respondent (such
as, for Instance, exactly how It matched the pattern), nor Is
there any easy way to provide for Information transfer In that
direction. Second, the choice Is, as noted, a simple veto
based on just that single KS. That Is, since final judgement Is
passed on each potential KS In turn, It Is not possible for
Instance to make comparisons between potential KS's, nor to
pass judgment on the whole group and choose the one that

looks (by some measure) the best. (Both of these
shortcomings can be overcome If we are wi lling to create a
superstructure on top of the existing Invocation mechanism,
but this would be functionally Identical to the announcement
bid -award mechanism described above. The point Is simply
that the standard PLANNER Invocation mechanism has no such
facility and the built - In depth-first with backtracking makes It
expensive to implement.)

CONNIVER represents a useful advance in this respect,
since the result of a pattern-directed call is a "possibllltles
list" containing all the KS's that matched the pattern. While
there Is no explicit mechanism parallel to PLANNER's
recommendation list, the possibilities list Is accessible as a
data structure and can be modified to reflect any judgments
the caller might make concerning the relative utility of the
KS' s retrieved. Also, paired with each KS on t he posslblllties
list Is an association-list of pattern variables and bindings,
making It possible to determine how the calling pattern was
matched by each KS. This mechanism offers the caller some
Information about each respondent that can be useful In
making the judgments noted above. As an Indirect mechanism,
however, It Is less effective for Information transfer. than, for
Instance, an exp lic it bid mechanism.

The HEARSAY-II system illustrates a number of similar
facilities in an event-driven system. In particular, the focus
of attention mechanism has available a pointer to all the KS's
that are ready to be invoked (so It can make comparative
decisions), as well as Information (In the "response frame")
estimating the potential contribution of each of the KS's. The
system can effect some degree of se lection regarding the
KS's ready for invocation and has ava ilable to It a body of
knowledge about each KS on which to base Its selection. The
response frame thus provides Information transfer from
respondent to caller, which, while fixed In format, Is more
extensive t han previous mechanisms. There Is also a fafr
amount of computation devoted to the selection process, but
note t hat the selection Is not local, since there Is a single,
global strategy used for every selection.

There are several things to note about the systems
reviewed thus far. First, we see an Increase In the amount
and variety of Information that is transferred (before
Invocation) from ca ller to respondent (e.g., from explicit
naming In subroutines to patterns 111 PLANNER) and from
respondent to caller (e.g., from no response In subroutines to
the response frames of HEARSAY-II). Note, however, that In
no case do we have available a general Information
transmission mechanism. In all cases the mechanisms have
been designed to carry one particular sort of Information and
are not easily modified. Second, we see a progression from
t he retrieval of a single KS at a time to explicit collection of
the entire set of potentially useful KS's, providing the
opportunity for more complex varieties of selection. Finally,
note that all the selection so far Is from one perspective; the
selection of respondents by the ca ller. In none of these
systems do the respondents have any choice In the matter.

To Illustrate this last point, consider a (hypothetical)
task agenda system In which there Is a central "task
blackboard" which contains an unordered list of tasks that
need to be performed. As a KS works on Its current task, It
may discover new (sub)tasks that require execution, and add
them to the blackboard. When a KS finishes Its current task,
it looks at the blackboard, evaluates the lists of tasks there,
and decides which one it wants to execute. Note that In this
system the respondents would have all the selection
capab ility ; that is, rather than have a caller announce a task
and evaluate the set of KS's that respond, we have the KS's
examining the list of tasks and selecting the one they wish to
work on.

PUP6 was the first system to view transfer of control as
a "discussion" between the caller and potential respondents.
If, In response to a task broadcast, a KS receives more than
one reply offering to do the task, It may "ask" questions of
the respondents to determine which of them ought to be used.
While this Interchange Is highly stylized and not very flexible,
It does represent an attempt to build In explicit two-way
communication.

The contract net differs from all these In several ways.
First, from the point of view of the caller, we have Improved
the standard task broadcast and response Interchange by

285

making possible a more informative response . That is, Instead
of the traditional tools which allow the caller to receive simply
a list of potential respondents, we have avai lable a mechanism
which makes It possible for the caller to receive extensive
Information from each respondent describing potential utility.

Second, the contract net emphasizes the utility of local
se lection. That Is, an explicit place In the framework has
been provided for mechanisms with which both the caller (In
the bid eva luation function) and the respondents (In the task
evaluation function) can Invest computational effort in
selecting KS 's for invocation or selecting tasks to work on,
respectively. These selection funct ions are also "local" In the
sense that they are associated with and written from the
perspective of the Individual KS (as opposed to, say,
HEARSAY·ll's global focus of attention function). While we
have labelled this process "selection", it might more
appropriate ly be labelled "deliberation " , to emphasize that Its
purpose Is, for the caller, for example, to decide in general
what to do with the bids received, and not merely which of
them to accept. Note that one possible decision Is that none
of the bids Is adequate, and thus none of the potential
respondents will be Invoked. (Instead, the task may be
reannounced later.) This choice Is not typically available In
other prob lem solving systems and hence emphasizes tho
w ider perspective taken by the contract net on the transfer
of control issue.

Finally, and perhaps most Important, Is what appears to
be a novel symmetry In transfer of control process. Recall
that PLANNER, CONNIVER, and HEARSAY-II all offered the
caller some ability to select from among the respondents,
whi le our hypothetical task agenda system allowed the
respondents to select from among the tasks. The contract
net, however, relies on the notion of contract negotiation as a
metaphor, and emphasizes an interactive, mutual selection
process In which task distribution Is the result of a discussion
between processors. As a result of the Information
exchanged in this discussion, the caller can select from among
potential respondents (with Its bid evaluation function), while
the KS's can select from among potential tasks (with their
task evaluation functions).

6 Limitations And Caveats
There are of course a number of limitations and caveats

to consider. First, much of what we have proposed Is a
framework for problem solving that provides some Ideas about
what kinds of Information are useful and how that Information
might be organized. There Is still a considerable problem
Involved In instantiating that framework In the context of a
specific task domain. Beyond the general guidelines offered
earlier, It is not obvious, for Instance, exactly what Information
should be In a task abstraction, bid, or task evaluation
function. Yet the successful application of the machinery
described above depends strongly on the choices made. In
this sense, severa l of the mechanisms we have proposed are
s imila r In spirit to the concept of t he recommendation list In
PLANNER: The mechanism provides a site for embedding a
certain kind of Information, but does not specify for a
particular problem what goes In there, nor how to Instantiate It
In a particular domain. The utility of such mechanisms lies In
their ability to help a user structure and understand a
problem : We tread the t raditional thin line between too much
generality that provides too little guidance, and too much
structure that overly constrains the user's options. More work
on this Is forthcoming, as we attempt to specify more detailed
guidelines on appropriate use of the framework.

An important caveat In considering use of the contract
net framework has been touched on earlier, In the Issue of
loose-coupling and the grain size of the problems attacked. It
Is apparent, for Instance, that the communication Involved In
task announcements, bids, awards, etc., and the computat ion
Involved In the deliberation phase (the task and bid
evaluations) may add up to a non- trivia! amount of overhead.
The size of the tasks being distributed must be such that It Is
worth this effort. It would make little sense, of course, to go
through an extended mutual selection process to get some
simple arithmetic done or to do a simple database access.
While we discussed earlier how the full protocol can be
abbreviated to an appropriately terse degree of Interchange

(e.g., directed contacts and the request/response
mechanism), many other systems are capable of supporting
this v ariety of behavior. The Interesting contribution of our
framework lies In applications to problems where the more
complex Interchange provides an efficient and effective
framework for problem solving.

7 Conclusion
We have described the operation of a problem solver

that is based on a collection of asynchronous processor nodes
that cooperate according to a contract metaphor to solve
problems. In this metaphor, task distribution Is viewed as an
Interactive process of contract negotiation.

We have noted the ways In which the contract ·net
protocol helps to reduce message traffic and message
processing overhead - through the use of task abstractions,
eligibility specifications, and bid specifications In task
announcements, thrqugh the use of focused addressing, and
through the use of specialized Interactions like directed
contracts and requests.

We have considered the Indexing and distribution of
knowledge in such a prob lem solver. In this context, we have
suggested two forms of knowledge Indexing - task-centered
and knowledge-source-centered - and demonstrated their
utility In the context of a distributed sensing example.

We have noted that a common internode language Is
required to enable effective use of the knowledge In a
distributed problem solver, and have sketched a rudimentary
design for such a language.

While the Ideas which form the basis of th is paper have
been derived from the point of view of designing a problem
solver that can effectively exploit the multiple processor
computer architectures that have been made possible by LSI
technology, they appear to be more general in scope.
Knowledge Indexing and distribution, for example, are of
interest In the design of future uniprocessor as well as
multiple processor problem solvers.

8 Acknowledgements
The authors wish to acknowledge the assistance of

Penny Nii in formulating the DSS example. Jan Alkins, Bruce
Buchanan, Janet Frlendshuh, Tom Mitchell, Earl Sacerdotl, Mark
Steflk, and John Treichler provided helpful comments on earlier
drafts of the paper.

286

Appendix A

DSS Sample Messages

This appendix Includes abbreviated sample messages for
the signal task In the DSS example. For brevity, the messages
shown contain only the Information mentioned In Section 2.2.
Terms written In upper case are Included In the core lnternode
language, while terms written in lower case are specific to the
DSS application.

For purposes of explanation, pseudo-English equivalents
to the messages are also shown. The DSS of course has no
human-like language processing capabilities.

Signal Task

Announcement: Needed - signa l data for traffic In area A. Mv
position Is p. If In possession of sensors and located in area A,
respond with position, and type and number of sensors.

Task Abstraction: TASK NAME signal
area name A
NODE POSITION p

Eligib ili ty Specification: MUST HAVE DEVICE TYPE sensor
MUST HAVE OWN NODE POSITION

area name A
Bid Specification: BID OWN NODE POSITION

BID EVERY DEVICE TYPE
sensor type number

Bid: Position - q. Sensors: Type S - 3, Type T - 1.

Node Abstraction: NODE POSITION q
sensor type S number 3
sensor type T number 1

Award: Report signals. Use sensors S1 and S2.

Task Description: sensor name S1
sensor name S2

Report: Detected signal: frequency fO, time of detection to
strength so, characteristics (...), detecting-node s1, posltlo~
p2, sensor A 1, orientation a.

Result Description: signal name S1
frequency fO
time-of-detection to
strength so
characteristics (...)
detecting- node name s 1

position p2
sensor name A 1

type A
orientation a

.. I

: I

References

[Anderson, 1975]
G. A. Anderson and E. D. Jensen, Computer
Interconnection Structures: Taxonomy, Characteristics,
and Examples, Computing Surveys, Vol. 7, No. 4, December
1975, pp. 197-213.

[Baer, 1973]
J.-L. Baer, A Survey of Some Theoretical Aspects of
Multiprocessing, Computing Surveys, Vol. 6, No. 1, March,
1973, pp. 31-80.

[Brooks, 1975]
F. P. Brooks, Jr., Tile Mythical Man- Month, Addison
Wesley, Reading, Mass., 1975.

[Crocker, 1972]
S. D. Crocker, J. F. Heafner, R. M. Metcalfe, and J. B.
Postel, Function-Oriented Protocols For The ARPA
Computer Network, SJCC Proceedings, 1972, pp. 271-
279.

[Davis, 1977]
R. Davis and J. King, An Overview Of Production Systems,
In E. W. Elcock and D. Michie, eds., Machine Intelligence 8,
Wiley, N. Y., 1977 pp. 300-332.

[Erman, 1975]
L. D. Erman and V. R. Lesser, A Multi- level Organization
for Problem Solving Using Many, Diverse, Cooperating
Sources of Knowledge, Proceedings of the 4th International
Joint Conference on Artificial lntelltgence, Tbilisi, USSR,
September 1976, pp. 483-490.

[Galbraith, 1974]
J. R. Galbraith, Organizational Design: An Information
Processing View, In D. A. Kolb, I. M. Rubin, and J. M.
Mcfntyre, eds., Organizational Psychology, 2nd edition,
Prentice- Hall, Englewood Cliffs, N. J., 1974, pp. 313-
322.

[Hayes-Roth, 1977]
F. Hayes-Roth and V. R. Lesser, Focus Of Attention In
The HEARSAY- II Speech Understanding System,
Proceedings of tile ,th International joint Confmnce on
Artificial Intelligence, Cambridge, Mass., August 1977,
pp.27-35.

[Hewitt, 1972]
C. Hewitt, Description And Theoretical Analysis (Using
Schemata) Of PLANNER: A Language For Proving
Theorems And Manipulating Models In A Robot, MIT Al TR
268, April 1972.

[Hewitt, 1977a]
C. Hewitt, Viewing Control Structures As Patterns Of
Passing Messages, Artificial Intelligence, 8, 1977, pp.
323-364.

[Hewitt, 1977b]
C. Hewitt and H. Baker, Laws For Communicating Parallel
Processes, in B. GIichrist, ed., Information Processing 'l7,
North-Holland, 1977, pp. 987-992.

[Kahn, 1972]
R. E. Kahn, Resource-Sharing Computer Communications
Networks, Proc. IEEE, Vol. 60, No. 11, November 1972,
pp. 1397- 1407.

[Lenat, 1976]
D. B. Lenat, Beings: Knowledge As Interacting
Experts, Proceedings of the 4th International Joint
Conference on Artificial lnttlligenc,, Tbilisi, USSR,
September 1976, pp. 126-133.

287

[Lenat, 1976]
D. B. Lenat, AM: An Artificial Intelligence Approach to
Discovery in Mathematics as Heuristic Search, STAN-CS-76-
570 (HPP- 76-8), Department Of Computer Science,
Stanford University, July 1976.

[Lesser, 1977]
V. R. Lesser and L. D. Erman, A Retrospective View Of
The HEARSAY- II Architecture, Proceedings of the ,th
International Joint Conference on Artificial lnte11t1ence,
Cambridge, Mass., August 1977, pp. 790-800. ·

[McDermott, 1974]
D. V. McDermott, and G. J. Sussman, The Conniver
Reference Manual, MIT Al Memo 259a, January 1974.

[Reddy, 1975]
D. R. Reddy and L. D. Erman, Tutorial On System
Organization For Speech Understanding, In D. R. Reddy,
ed., Speech Recognition, WIiey, N. Y., 1976, pp. 457-479.

[Smith, 1977]
R. G. Smith, The CONTRACT NET: A Formalism For The
Control Of Distributed Problem Solving, Proceedings of the
5th International Joint Conference on Artificial Intelligence,
Cambridge, Mass., August 1977, p. 472.

[Smith, 1978a]
R. G. Smith, Issues In Distributed Sensor Net Design, HPP-
78-2 (Working Paper), Heuristic Programming Project,
Stanford University, January 1978.

[Smith, 1978b]
R. G. Smith, A Framework For Problem Solving In A
Distributed Processing Environment, doctoral dissertation,
Stanford University, 1978, (In preparation).

[Zucker, 1977]
S. W. Zucker, Vertical And Horizontal Processes In Low
Level Vision, Report No. 77-4, Department of Electrical
Engineering, McGIii University, May 1977.

Describing Programming Language Concepts in LESK

Douglas R. Skuce
Dept. of Computer Science

Concordia University
Montreal

ABSTRACT

LESK (Language for Exactly Stating Kr.0wledge) is a
synthesis of concepts from programming languages,
lingui stics and logic, and is intended for event
ual implementation as a "knowledge base system" ,
though it is now valuable "on paper" to make pre
cise the definition of terminology in some domain.
In this paper, an approach to describing basic
programming language concepts is proposed using
LESK as an alternative to the usual mixture of for
mal (e.g. BNF) and informal (i.e. natural language)
descriptions found in typical programming lang
uage manuals. We demonstrate the utility of LESK
to make precise, in a unified way, the use of both
formal expressions and natural language phrases
required in defining a programming language both
syntactically and semantically . We thereby allev
iate the common problems of vagueness, ambiguity
and inconsistency of terminology which plague most
programming language manuals . Some of our examples
will use PASCAL. The method is general enough to
apply to any field with well -defined terminology.

INTRODUCTION

In previous papers (Skuce 75, 76) and in (Skuce 77),
the language LESK, whose function is to precisely
state knowledge, was introduced. A natural appli
cation of LESK for computer scientists is to the
description of programming languages; anyone who
has been frustrated by the imprecise terminology
of many programming language manuals will appreci
ate this need. Such confusion often involves terms
like "value", "number", "constant", "object",
"type", "variable", etc . so that one is often not
sure, e.g., "is an array a value?", "are 'reals'
a scalar type?" , and what kind of entity is 'red'
in 'color = (red, wt, blu)'? (these last two are
from Jensen and Wirth 75).

Proper understanding of any well -defined field
must begin with precise and unambiguous defini
tions of the terminology, thereafter consistently
applied. At present, most manuals and other des
criptions of programming languages introduce term
inology using an unsatisfactory combination of
precise syntactic definitional methods (e .g. BNF),
which usually include little semantic information,
possibly some non -standard formalism for semantic
description , and a considerable bulk of prose

288

description, on which we rely most.

In this paper we will briefly explore an alter
nate descriptive technique: using LESK to intro
duce the terminology of a typical programming
language in a manner which synthesizes the three
methods into one easily readable form. The event
ual implementation of a LESK "knowledge base sys
tem" (KBS) would assure that this usage was con
sistent.

LESK SEMANTIC STRUCTURES

All knowledge in LESK is expressed as symbol
strings, which are English-l;ke versions of pred
icate calculus expressions, composed of LESK prim
itives and user-defined terminology. The knowledge
contained in a set of LESK expressions is the
(finite) set of all expressions deducible from the
set using simple substitution and transformation
rules, i.e. this set of "theorems" determines the
answers to a set of answerable questions.

The most elementary kind of definable knowledge
items are termed atoms . These have no sub- items
accessible via operators, and may be denoted by
noun phrases (NPs) or formal expressions. One may
then define composite notions called collections
using either atoms or other collections. This pro
cess is analogous to writing LISP functions . By
"define'~ we do not mean "generate in a computer
memory a structure which physically contains the
components'\ but rather "create, in a mind or mach
ine, rules which define categorically (sometimes
called generically) the behaviour of all instances
of the knowledge item". Thus we are merely con
straining the behaviour of sets of symbol strings,
much as a formal grammar does .

Collections are said to be composed of elements;
an explicit list of all of these is called the
extension . LESK is intended mainly for defining
knowledge about collections at the categorical
level, i.e. without involving the elements of
the extension at all . There are four kinds of col
lections, depending on whether or not the extension
is ordered, and whether or not the extension may
have repeated elements , as follows:

.1

' .I

I
I

. • 1

j
. -I

kind ordered? repeat? example

class no no (l ,2,3) = (2,3, l)
bag no yes (l, l ,2 ,3) (3,1,2,l)
seq yes yes (A ,B,C,C) 1 (B ,A,C,C)
uniseq yes no (A ,B,C,D)

We will not need explicit notation to disting
uish these. The size of a collection, i.e. the
number of possible elements, is finite and vari
able. A tuple is a seq of fixed size.

SEMANTIC CATEGORIES

All terminology must be assigned one of a small
number of semantic categories :

Concepts are either atoms, classes of concepts,
or tuples of concepts, and play noun
like roles. They may be denoted either
by NPs or by formal expressions.

Functions map concepts into concepts, and are
denoted like concepts.

Relations are either stative English verb phrases
(VPs) having two or more "cases", or
else are mathematical relations like

. The arguments (i .e. the cases) are
usual ly concepts.

a state is a set of relations which hold over
some time interval.

an action is a definition of a change of state.
When a LESK system executes an action,
the effect is analogous to the perman
ent effect of a conventional procedure.

DEFINING BASIC NOTIONS OF PROGRAMMING LANGUAGES
IN LESK

Consider the student who is encountering basic
programming language concepts and terminology
for the first time in a typical text which uses
terms like "value", "object", "type", "variable" ,
"array" , "integer", etc. somewhat loosely. Fre
quently one sees phrases like "3 is an integer"
and "integers are a type"; shal 1 we conclude
that 3 is a type? Of course,once one understands
what is intended, there is no problem; the prob-
lem is in the initial learning phase before the
meaning "dawns" . Meanings shouldn't have to "dawn" ,
they should be initially clear, as they are in
good mathematical texts.

Let us decide that the most important basic notion
is that of "value" . We then define:

289

VALUE/S are a class of concepts X

kinds : 1. SIMPLE VALUES
2. STRUCTURED VALUES

X has a TYPE T
X is a member of T
X can be ASSIGNED TO a VARIABLE V
end

Thus we have introduced the following terminology
(lower case denotes LESK primitives): VALUES (sing
ular: VALUE) are explicitly defined as a class of
concepts, i.e . a VALUE is a concept. There are just
two disjoint subclasses (the primitive 'kinds').
There is a functional mapping (the primitive 'has')
into a class to be termed TYPES, here implicitly
introduced, about which we shall say more in a mom
ent. The primitive 'is a member of' behaves differ
ently from 'is a'; the latter permits "property
inheritance", the former does not (see below). The
2-place relation 'is ASSIGNED TO ' is possible be
tween instances of VALUES and instances of an im
plicitly introduced class VARIABLES, to be defined
later. This relation does not necessarily hold (can)
but is introduced here to clarify the relationship
between the terms VALUE and VARIABLE. It will be
explicitly defined later .

Now we may define:

SIMPLE VALUE/Sare a class of VALUES X

X is an atom

kinds: l . ENUM VALUES
2. REALS

end

ENUM VALUE/Sare a class of SIMPLE VALUES

kinds : 1. INTEGERS
3. BOOLEANS

end

2. CHARACTERS
4. ENUM IDENTIFIERS

INTEGER/Sare a class of ENUM VALUES X

X :- [(SIGN>]<DIGITSTRING>
the TYPE of X = the INTEGER TYPE

end

The first of these definitions states that
SIMPLE VALUES are atoms (whereas VALUES may
be collections) and introduces the terms for
the two kinds of SIMPLE VALUE. In the second
definition, the class of ENUM IDENTIFIERS will
be used later on to clarify what is ambiguously
ter~ed."scalar types" in Jensen and Wirth (75)
(this 1s an excellent example of inadequate
terminology in a well - known programming language
description) . The third definition provides an
actual denotation (-) for INTEGERS; collections
whose elements are to be syntactically recognizable
require such a specification . We will leave SIGN and
DIGITSTRING undefined. At this point, to clarify
some of Jensen and Wirth's terminology, we might
make the following stand alone statement:

BASIC VALUES = SIMPLE VALUES - ENUM IDENTIFIERS

DEDUCTION AND PROPERTY INHERITANCE

All question answering in a LESK system is to be
done by a small number of specialized transforma
tions on the actual expressions found either in
the bodies of definitions or in stand alone state
ments . The basic transformations are substitution
of variables and "property i nheri tance 11

• Any def
inition "inherits" properties (i.e. statements in
a definition) from its supercollections, though
not all properties inherit (e.g. 'kinds'). Thus,
one may substitute the phrase 'an INTEGER' for X
in VALUES, or, since 3 is syntactically recogniz
able as an INTEGER, 3 may be substituted. One
could not freely substitute any denotation for
subclasses or instances of TYPES however, because
of the functional dependence.

Any question then must be analysable into a series
of elementary deductive trans formati ans, just as
database query languages must formulate acceptable
questions in terms of a number of basic accessing
operations on the database . This approach means that
LESK systems would be modeled more after database
sys terns than the more tradi ti ona l "AI II predicate
calculus-based theorem prover . Implementation of a
LESK system is therefore seen as an extension to
existing relational database technology.

Now let us consider some STRUCTURED VALUES . How , for
example, should we treat the term 'array', which
question we take to be equivalent to: what is the
most basic knowledge we require about arrays? Is it
correct to consider an array to be a VALUE? Since
all the contexts we allow for STRUCTURED VALUE
will accept the term 'array' as it is usually
understood , we make the following definition:

ARRAY/Sare a class of STRUCTURED VALUES X
11 are a class of tuples

X :- (Xl, X2, ... ,Xn)
Xi is a VALUE
Xi is called a COMPONENT of X

the TYPE of Xis an ARRAY TYPE
X has a TYPE called its COMPONENT TYPE C
the TYPE of Xi = C

end

Thus ARRAYS inherit properties like 'an ARRAY can
be ASSIGNED TO a VARIABLE', and properties from the
primitive class tuples, such as fixed size (n) . The
'is called' primitive is very frequently used to give
a local name to some variable. A question answering
procedure looking for the TYPE associated with an
ARRAY would find something called an ARRAY TYPE,
which is of course a TYPE. If one were searching
either for the COMPONENT TYPE of an ARRAY, or the
TYPE of a COMPONENT of an ARRAY, C would be access
ed. We have used the standard denotation for tuples
so that we could refer to the Xi; of course in most
prograrrming languages, one cannot denote instances
of arrays.

290

Next we ought to define TYPE:

TYPE/Sare a class of classes X of VALUE S

kinds: l. ENUM TYPES 2. the REAL TYPE
3. ARRAY TYPES

X has a class of OPERAT IONS
X has a class of relations
X has a unique TYPE FORMAT or TYPE NAME

end

Thus, an instance of a TYPE is a class of VALUES,
of which we will discuss only three kinds. Every
TYPE has a class of OPERATIONS, which we would
define as actions, since they define the mappings
from X into itself . The relations on a TYPE are
the usual binary predicates . (This term is in lower
case since is not being given a name here.) The
TYPE FORMAT or TYPE NAME specify how a TYPE is to
be denoted in an actual program, which is often
different from the term we wish to use for the
concept itself. Such essential distinctions are
often unclear in many presentations. The REAL TYPE
is the name we have chosen to refer to the TYPE of
the REALS; there is only one REAL TYPE, hence 'the'.

In PASCAL we have the notion of the ENUM (enumera
tive) TYPES, though in the PASCAL manual (Jensen
and Wirth 75) this term is not used . Instead the
term "scalar type" is used, but this term is am
biguous there, as we noted above, sometimes mean
ing what we call ENUM TYPES and sometimes what we
term DECL ENUM TYPES. To clarify:

ENUM TYPE/Sare a class X of uniseqs of VALUES

kinds: l. STD ENUM TYPES 2. DECL ENUM TYPES
X has the ENUM OPERATIONS, t he ENUM RELATIONS

end

Though we have said that ENUM TYPES are uniseqs,
whereas TYPES were classes, this is not contra
dictory , since a uniseq is a restricted form of
class (i.e . it is an ordered class). Now :

DECL ENUM TYPE/Sare a class of uniseqs Y of
ENUM IDENTIFIERS

Y :- (Yl,Y2 , ... ,Yn)

end

whereas the

STD ENUM TYPE/S

kinds: l. the INTEGER TYPE 2. the BOOLEAN TYPE
3. the CHARACTER TYPE

end

I
i

:1
. I

(The default rule is that (ADJ)(NOUN)is a subclass
of <NOUN>.) The three kinds of STD ENUM TYPE which
we consider correspond to the three kinds of VALUE.
The relation between the INTEGERS and the INTEGER
TYPE is ':

the INTEGER TYPE Xis a STD ENUM TYPE

X belongs to any INTEGER
the extension of X = the extension of the INTEGERS

end

Thus we have equated(=) the extensions of two
classes, but not the classes themselves, for had
we written 'the INTEGER TYPE= the INTEGERS' this
would mean that the two phrases could be substi
tuted anywhere one for the other, which clearly
we do not want. A LESK system would correctly
conclude that 3 is a member of the extension of
the INTEGER TYPE, but not that 3 is a TYPE.
This example illustrates again the basic princ
iple that LESK semantics base class equality or
containment on syntactic substitutive ability.

Again:

BOOLEAN/Sare a class X of ENUM VALUES

the extension of X = ('true', 'false')

end

the BOOLEAN TYPE XIS A STD ENUM TYPE

the extension of X = the extension of the
BOOLEANS
X belongs to the BOOLEANS

end

The primitive 'belongs to' is the inverse of
'has' , hence 'the TYPE of the BOOLEANS = the
BOOLEAN TYPE I •

Before we go on to illustrate other semantic cat
egories, we will need :

VARIABLE/Sare a class of concepts X

X :- an IDENTIFIER or a VARIABLE EXPRESSION
X has a TYPE T
X can have a VALUE V
the TYPE of V = T

end

Hence there are two ways of denoting VARIABLES,
and if a VARIABLE has a VALUE (which will be the
case if it is ASSIGNED TO a VALUE) then their
TYPES must be equal.

291

ASSIGNMENT: A RELATION AND AN ACTION

We illustrate next the two other most important
semantic categories, relations and actions. The
relation 'is ASSIGNED TO' has been used between
VALUES and VARIABLES implicitly. If we made no
other use of 'is ASSIGNED TO' then we would know
no more about it than it 'can' hold between these
classes. If we make an explicit definition, we can
say more :

Xis ASSIGNED TOY is a relation Z

X is a VALUE
Y is a VARIABLE
the TYPE of X = the TYPE of Y
Z is caused by the ASSIGNMENT action

end

Had we not a ·1 ready constrained the use of this re 1-
ati on by its implicit use, we can constrain it as
above. What we have added is a causal relation
which holds between relations and actions, or be
tween actions and actions. This allows a LESK system
to answer questions like "why does TEMP have the
VALUE 3?", or "how could 3 be ASSIGNED TO a VARI
ABLE?".

Relations denoted by stative verb phrases are a
form of tupl e called 'identified' tuples, i.e . an
instance of one can be recognized as such. Tuples
used as concepts may be 'unidentified', in that
their denotation is simply of the form (x,y, ...),
which leaves unknown which concept they are an in
stance of . For example, '3 is ASSIGNED TO TEMP' is
an identified 2-tuple, but '(3, TEMP)' would be an
instance of any 2-tuple concept which paired a
VALUE with a VARIABLE .

The notion of an action is the most complex of the
semantic categories, since it alone involves defin
ing change. Reca ll that a state is a set of LESK
statements, while an action defines a change of
state. There are two methods of defining state
changes, one copied from STRIPS (Fikes and Nilsson
71) and one modeled after algorithmic progranming
languages. We illustrate first the simpler former
one:

X := Y is an action A called ASSIGNMENT

the environment of A is a PROGRAM
X is a VARIABLE
Y is an EXPRESSION E
the VALUE of E = V
the denotation of A is called an ASSIGNMENT
STATEMENT

precond : the TYPE of V = the TYPE of X
remove: Z is ASSIGNED TO X
assert: Vi s ASSIGNED TO X

end

Thi s definition has the following features. The
noun ASSIGNMENT is used to refer to the action, as
we did in defining t he 'is ASSIGNED TO' relation.
The environment of any category is a state, i .e. a
name of a context in which it may appear. Thus the

action called ASSIGNMENT can appear in a PROGRAM.
All of our definitions would require some environ
ment , which we have not specified. We might call it
'programming languages'. The classes of PROGRAMS and
EXPRESSIONS are complex; we shall define the former.
The denotation of a phrase Xis 'X' , i.e. by enclos
ing it in ' marks , we may refer to it. If asked
"what is the denotation of an ASSIGNMENT?", a LESK
system would reply 'X : = Y', where X If asked
"what is 'X := Y' ?" the reply is "an ASSIGNMENT
STATEMENT", whereas "what does 'X : = Y' denote?"
is answered ASSIGNMENT.

The various labeled statements are intended to be
individually accessible, hence t he labels. For ex
ample, one could ask "what is the precond of ASS
IGNMENT?" In the context PROGRAM, if a LESK system
were executing the action of ASSIGNMENT, the pre
cond would be checked first, i .e. unless it were
true, the action would abort. The statements lab
eled 'remove' are then to be removed from the en
vionment (Z is anything found in this relation
in the environment) and the statements labeled
'assert' are added, as in STRIPS. This ensures
that only one is 'ASSIGNED TO' 2- tuple involving X
is then in the environment. By modeling change by
removing and adding n- tuples to an environment,
we make LESK compatible with relational database
technology.

BASIC FACTS ABOUT PROGRAMS

What are the most elementary facts we would want a
LESK system (or a human beginner) to recall about
PROGRAMS? As usual, we equate this question to:
"What statements can the term PROGRAM appear in?"
First we define PROGRAMS in general:

PROGRAM/Sare a class of seqs X

the environment of X = PROGRAMMING LANGUAGES
X contains a DECLARE LIST D
X contains a STATEMENT LISTS
D precedes S
X has a SYMBOL TABLE
X can be COMPILED
X can be EXECUTED
X SPECIFIES an ALGORITHM or COMPUTATION

end

Obviously PROGRAMS are seqs. Their environment's
name has been chosen loosely; one might prefer
just 'programming' . The main function of an en
vironment is to allow a LESK system to find need
ed facts without having to search its whole data
base monolithically, e.g. if we said we were dis
&ussing PROGRAMMING LANGUAGES, it would not search
under DINOSAURS, unless we allowed it to. Environ
ments are to be organized in the same way as all
other categories, so that one can define them and
relations between them.

The primitive 'contains ' applies to collections to
require that certain elements be present. 'Precedes'
applies to elements of a seq. SYMB OL TABLE will be
defined in a moment . The form verb root ED is rec
ognized as defining an action applicable to, in
this case, PROGRAMS. One can thereby state what
actions apply to a concept without having to define
them. SPECIFIES is si mply a 2-place relation.

292

To define a PASCAL PROGRAM , unless we want to give
more properties peculiar to PASCAL PROGRAMS, we may
simply give the syntactic form, i.e. how it is
denoted:

PASCAL PROGRAM/S X

X :- Xl X2 X3 X4 XS X6 X7

Xl 'PROGRAM'
X2 is a PROGRAM IDENTIFIER
X3 is a tuple of FILE IDENTIFIERS
X4 is the DECLARE LIST of X
XS 'BEGIN'
X6 is the STATEMENT LIST of X
X7 I END. I

end

If one were to input this definition to a LESK sys
tem and interchanged X4 and X6, the system would
reply: 'the DECLARE LIST of a PROGRAM precedes the
STATEMENT LIST'. Thus definitions, as well as ins
tances, must conform to their superclasses.

Next we define:

DECL LIST/Sare a class of uniseqs X of DECLARATIONS

X contains some TYPE DECLARATIONS T
X contains some VARIABLE DECLARATIONS V
T precedes V

end

DECLARATION/Sare a class of tuples

kinds: l. TYPE DECLARATIONS
2. VARIABLE DECLARATIONS

end

TYPE DECLARATION/S X

X : - Xl ' =' X2
Xl is a TYPE IDEN TI FI ER or TYPE NAME
X2 is a TYPE NAME or TYPE FORMAT

end

VARIABLE DECLARATION/S X

X :- Xl ' : ' X2
Xl is a VARIABLE
X2 is a TYPE IDENTIFIER or TYPE NAME
Xl :- a VARIABLE IDENTIFIER

end

We have left out of these definitions certain
semantic restrictions which are expressible in
LESK but which would obscure the clarity for
our expository purposes. An example would be that
the X2 of a VARIABLE DECLARATION must have appeared
earlier as the Xl of some TYPE DECLARATION if it is
a TYPE IDENTIFIER. It is exactly these context sen
sitive rules that are so difficult to formally ex
press. Other formal semantic methods (Marcotty ,
Legard and Boehman 76) are considerably more
unreadable for these purposes than LESK.

I

Next we define:

SYMBOL TABLE/Sare a class of classes X of tuples Y

X belongs to a PROGRAM P
Y :- (Yl , Y2, Y3)
Yl is a VARIABLE
Y2 = the TYPE of Yl
Y3 = the VALUE of Yl or 'UNDEF'

end

Here we have simplified matters by including Y3 to
hold the VALUE of Yl, to avoid having to discuss
'locations'.

The second form of action definition is illustrated
by the following definition :

to CREATE a SYMBOL TABLE X i's an action A

X belongs to a PROGRAM P
Dis the DECLARE LIST of P
A is caused by a COMPILATION

begin: X := 0
for each VARIABLE DECLARATION Vin D do

end

X := X union (the VARIABLE of V,
the TYPE of V,
I UNDEF I)

Thus we define in a very conventional manner the
algorithm for constructing a SYMBOL TABLE. This is
simply because such notation is the best we have
for defining sequences of changes involving the
notion of assignment. Note that: = here is a LESK
primitive, to be modeled by database updates just
as the earlier definition we gave for it in the
environment of PROGRAMMING LANGUAGES.

Finally we may define the action of COMPILATION:

to COMPILE a PROGRAM Pis an action A called a
COMP I LA TI ON

Sis the SYMBOL TABLE of P
A has a MACHINE MEMORY M
Y is a CODE SEGMENT
Z is a uniseq of CODE SEGMENTS

begin: CREATES

end

put Sin M
for each STATEMENT X in the STATEMENT LIST

of P do
begin

put Zin M

COMPILE X INTO Y
append Y to Z
end

293

Hence the action of COMPILATION begins by exec
uting the tREATE a SYMBOL TABLE'.definition. Only
the top-most aspect of COMPILATION is specified,
i.e. that the action to COMPILE a STATEMENT INTO
a CODE SEGMENT is to be executed for all STATEMENTS.
Hence we would next have to define this action, of
which there would be many kinds, one for each kind
of statement. We shall not go lower in the detail
hierarchy. The primitives 'put' and 'append' have
an obvious meaning. The notion MACHINE MEMORY is
difficult; one suggestion would be:

MACHINE MEMOR/Y/IES are a class of tuples X

X : - Xl X2 X3 X4
Xl is an INPUT STATE
X2 is an OUTPUT STATE
X3 is a SYMBOL TABLE of a PROGRAM P
X4 is a CODE SEGMENT of P

end

A HYPOTHETICAL DIALOGUE

The following "dialogue" should assist the reader
in obtaining a better appreciation of how our basic
definitions (plus a few more) would function in a
LESK KBS. User inputs begin with : and we will not
distinguish LESK primitives in lower case.

:IS -7 A VALUE?
YES. (The syntactic form is recognized.)
:IS X A VARIABLE?
YES, BUT IT COULD BE OTHER THINGS. (i.e. the char
acter Xis acceptable as a denotation for a VARIABLE,
but it could denote other entities as well, unlike
-7 .)
:LET X ANDY BE VARIABLES. (i .e . we create two in
stances of the class VARIABLE . Now the above ques
tion would be answered 'YES' .)
:LET P BE A PROGRAM. 'X := Y' BELONGS TOP.

DOES P HAVE A SYMBOL TABLE?
YES.
:SHOW ME IT . (IT refers to the last concept.)
0 (The SYMBOL TABLE is empty before COMPILATION.)
:COMPILE P
I CANNOT. THE STATEMENT LIST OF P CONTAINS A STATE
MENT 'X := Y' WHICH HAS NO TYPE DECLARATION FOR XOR
Y. (This necess ary precond for COMPILATION was not
specified in our definition, but would be in a real
system.)
:WHAT IS A TYPE?
(The system would output the TYPE definition.)
:IS INTEGER A TYPE?
NO. AN INTEGER IS AN ENUM VALUE.
:WHAT IS THE TYPE OF AN INTEGER?
THE INTEGER TYPE.
:IS THE TYPE OF A VARIABLE RELATED TO THE TYPE
OF ITS VALUE?
WHEN A VARIABLE X HAS A VALUE Y, THE TYPE OF X =
THE TYPE OF Y.
:WHAT CAUSES THE'CREATE A SYMBO~ TABLE ACTION?
A COMPILATION .

RELATED WORK

This work has been strongly influenced by several
projects. The concept of a KBS for scientific pur
poses was developed extensively by Thompson and
Thompson (75) , though in a much more elementary
way (they did have a running system though).
More recent projects which attempt to provide a
natural - language- like access to technical knowledge
include MYCIN (Shortli ffe 76) and PROPHET (Duda et
al. 77). The former stresses its ability to accept
rule definitions from users in an English- like
format (all rules are simple production rules)
and to 'explain' how it performed a deduction
using these rules .

The surface structure and deductive semantics of
LESK are based on mappings between relatively
rigid syntactic forms called 'patterns' in the
Planner family of languages (Bobrow and Raphael
74). However these languages did not provide prim
itives which match the nature of knowledge, but
rather catered to how people seem to like to write
LISP programs. More recently, systems have appeared
which, like LESK, attempt to provide more epistem
ologically oriented structures, e.g. KRL (Bobrow et
al. 77), FRL (Roberts and Goldsmith 77) and K-NET
(Fikes and Hendrix 77). All these systems share
with LESK the attempt to 'package' knowledge in
natural 'chunks' .

A third influence has been relational databases,
and the various 'front-ends' which have been de
vised to supply more subtle natural - language- like
interaction, and deduction based on categorical
knowledge about the data domain. The work of
Mylopoulos'. group (e.g. Wong and Mylopoulos 77)
typifies this research.

CONCLUDING REMARKS

In considering the merits of our proposal, the
reader is invited to compare several contrasting
techniques of programming language description.
In a typical manual (e . g. Jensen and Wirth)
the readability and ease of finding answers to
questions are highly variable (it is difficult to
answer the question "what is a scalar type?" in
Jensen and Wirth) . What is most lacking is t he
precise definition of the semantic terminology
and rules. This is usually only done in the other
extreme of description, typified by Donahue (76),
·who offers a precise semantic description of a sub
set of PASCAL, in which the notational subtlety pr~
eludes its being useful to learn the basic ideas,
or as a working manual.

ACKNOWLEDGEMENTS

...

The ALGOL 68 Revised Report (van Wijngaarden et al.
77) offers the precision and completeness missing
in other approaches. Indeed, many of its sentences
are virtually LESK statements in their rigid clar
ity . It is felt that it is sti ll far less readable
than LESK , though it is in fact a complete descrip
tion of a very complex language. The proper test, of
course.would be to describe all of ALGOL 68 in LESK
and submit the two descriptions to a panel of
judges . We feel that the hierarchically introd uced
LESK definitions are a better compromise in the gap
between the ALGOL 68 report style and the typical
programming language manual style.

A word is in order regarding 'semantic nets'. We
haven't drawn any net- like diagrams; why not? The
key tool in LESK and indeed in all mathematical
notation is the notion of variables, which unfor
tunately are awkward to indicate on semantic net
diagrams. "Partitioned semantic nets" are one at
tempt to do this. One could make from our notation
some form of net diagram , but we do not recorrrnend
it as contributing to the clarity. If such diagrams
had a distinct advantage over linear notation with
variables , they would have been in wide use before
AI "discovered" them.

It is sometimes objected that the stilted rigidity
of LESK statements is a drawback to ease of ex
pression. The danger with systems which permit a
much wider syntactic range is that the user may
be mi s understood by the system, i .e. that the user
will not be able to predict how the system will
interpret a statement. It is assumed that any user
of LESK is knowledgeable in LESK semantics, and
the surface structure 1s intended to make it easy
to see what can and cannot be inferred from a
statement. If one wanted more natural syntax, well
known techniques are available. The effect of any
more elaborate input could be verified by having
the system rephrase the input in LESK format,
which the user would have to understand.

It should be finally noted that this approach to
knowledge description is in no way limited to pro
gramming languages, or even to computer science.
The intention of LESK is to provide a generally
applicable capacity to combine formal and natural
language descriptions of any well-defined subject
in a manner comprehensible to both humans and
machines .

The author gratefully acknowledges the support of
the Izaak Walton Killam Scholarship at the Montreal
Neurological Institute for pa rt of the research
reported here.

294

REFERENCES

Bobrow, D. and Raphael, B. (1977)
New Programming Languages for Artificial Intelligence Research. Computing Surveys, v. 6 no 3 (Sept.).

Bobrow, D., Winograd, T., et al. (1977) *
Experience with KRL-0 : One Cycle of a Knowledge Representation Language. IJCAI5 (August) .

Donahue, J. (1976)
Complementary Definitions of Programming Language Semantics. Springer-Verlag, New York .

Fikes, R. and Hendrix, G. (1977)
A Network-Based Knowledge Representation and its Natural Deduction System. IJCAI5, pp . 235-246.

Fikes, R. and Nilsson, N. (1971)
STRIPS: A New Approach to the Application of Theorem proving in Problem Solving. Artificial Intelligence,
v. 2, pp. 189-208.

Jensen, K. and Wirth, N. (1975)
PASCAL User Manual and Report, second edition. 3pringer-Verlag, New York.

Marcotty, M., Legard, H. and Boehman, G. (1976)
A Sampler of Formal Definitions. Computing Surveys, v. 8 no. 2, pp. 191 - 276 (June).

Roberts, B. and Goldstein, I. (1977)
The FRL Primer. MIT AI Lab Report 408.

Skuce, D. (1975)
An English-like Language for Qualitative Scientific Knowledge. IJCAI4, pp. 593-600.

Skuce, D. (1976)
Towards a Semantics for a Scientific Knowledge Base. Proceedings of the First National Conference on the
Canadian Society for Computational Studies in Intelligence, University of British Columbia (August).

Skuce, D. (1977)
Toward Communicatin ualitative Knowled e Between Scientists and Machines. Ph.D. dissertation, Dept. of
E ectr,ca Engineering, McGill University, Montrea .

Shortliffe, E. (1976)
Computer-Based Medical Consultations : MYCIN. Elsevier, New York .

Thompson, F. and Thompson, B. (1975)
Practical Natural Language Understanding: the REL System as Prototype. in: Advances in Computers,
M. Rubinoff and M. Yovits, eds. v. 13. Academic Press, New York.

van Wijngaarden, A., Mailloux, B., Peck, J., Koster, C., Sintzoff, M., Lindsey, C., Meertens, L.
and Fisker, R. (1977)
Revised Report on the Algorithmic Language ALGOL68. Sigplan Notices, v. 12 no. 5 (May) .

Wong, H. and Mylopoulos, J. (1977)
Two Views of Data Semantics: A Survey of Data Models in Artificial Intelligence and Database Management.
INFOR v. 15 no. 3, pp. 344-383.

* IJCAin means the nth International Joint Conference on Artificial Intelligence

295

1.0 INTRODUCTION

TONAL
Towards a New AI Language

D.J.M . Davies
Department of Computer Science
University of Western Ontario,

London, Canada N6A SB9

5-May-1978

ABSTRACT

This paper describes with some examples a new
programming language for Artificial Intelligence
applications. The language TONAL is based generally on
the syntax and semantics of POP-2, but is modified and
extended in various ways.

TONAL is a 'structured' programming language for more
reliable programming. It is intended to make the
programming process in A.I. more reliable and less
troublesome. However, the language is still interactive
and incremental in nature, permitting easy debugging and
experimentation with programs. This is the principal
novelty, since hitherto block-structured languages have
not normally permitted interactive modification of program
code.

TONAL offers basic, extensible facilities for pattern
matching and for building special control structures. The
pattern matching facilities are integrated with a mode
(type) system for variables and data structures. Multiple,
potentially parallel processes are provided as a standard
facility, and permit coroutine systems to be constructed
easily as a special case. Other control regimes such as
backtracking may be constructed.

rated very important . Sandewall(4) discusses
this in connection with LISP usage.

1 . 1 Why Another Language? Recent work on programming language design
has emphasises the importance of procedural and
data abstractions, and of a modular approach to
building understandable maintainable programs.
In this respect most of the AI languages men
tioned above, excluding only SAIL, are partially
deficient .

Why develop another language for AI program
ming? Most AI programs of the last decade have
been written in one of the three 'primary' AI
languages - LISP(l), SAIL(2) or POP-2(3) - or in
one of the many other systems derived from or
implemented in those languages. For example,
Micro-Planner, QLISP, PLANNER, Conniver, Popler,
Resolution systems, Production language systems,
and many other applications have been coded
using one of the primary languages as a base .

It can be seen that any AI language has to be
suitable not only for 'application' programming,
but also for the systems development work involved
in constructing interpreters for other special
purpose languages. In addition, users of LISP and
POP - 2 are accustomed to interactive incremental
interpreters which make it easy to experiment· with
programs and debug them interactively in the
source language. This capability must also be

296

LISP dates from before ALGOL 60, and offers
essentially no hierarchical static program
structuring. It also offers no automatic data
typing for structures, using lists for almost
everything. Programmers usually learn to impose
their own structure on programs, but the language
offers little help in itself. POP-2 offers good
data- structuring facilities, but still encourages
the creation of a program as a series of indepen
dent separate functions. Only SAIL offers
block - structured programs, but it does not have a
wide, extensible variety of non-numerical data
modes.

This characteristic of LISP and POP-2 has
been elevated almost into a design principle for
AI systems, in some quarters. It is argued that
'knowledge' should be divided up and represented
by a large number of independent modules, each of
which should be activated automatically when it
becomes appropriate. This reaches its extreme
case in some PL systems (where this mode of
organization was originally selected for reasons
of psychological modelling) and in some theorem
proving languages. However, it is also apparent
in most other languages, such as Micro-Planner,
Conniver, POPLER and PLASMA.

These languages do indeed encourage modu
larization, but only to about the same extent
that FORTRAN encourages structuring of programs
into subroutines. Most function names are
global in scope, and many data-strnctures are
also globally available. My own experience with
POPLER programs using demons and data-bases is
that many items and demons should not have a
global scope, but should have limited access.
Many bugs arose in programs because demons or
other items were activated unexpectedly, out of
context. These bugs can also be difficult to
track down, or they may go unperceived for long
periods of time. These problems can be met by
making use of a block- structured language, so
identifiers are not accessible except in the
scope in which they are required. By applying
the same scope rules to data-base contents, a
uniform system is obtained for limiting scopes.

1.2 Related Systems

ECL (Wegbreit 5,6,7) is an extension and
modification of LISP motivated by similar con
siderations. ECL is a complete system of a
language and associated tools, and ELl is the
name of the programming language used. It is
aimed at 'difficult' projects. Emphasis is
placed not only on extensibility, but also on
'contractability': the ability to have the
system compact the code generated for a program
once the programmer makes irreversible commit
ments about variable types, function definitions,
etc. In some respects, TONAL can be seen as an
attempt to provide within the POP-2 environment
some of the features of ECL. However, there
are al so major differences between these
languages.

TELOS (Travis 8) is designed with the same
desire to improve the structuring and abstrac
tion facilities available in an AI language.
However, it is based on PASCAL, so the
language makes full typing mandatory, and is
not designed specifically for interactive,
incremental use. In many other respects,
however, the TELOS language offers comparable
capabilities.

KRL (9) is one of the many other languages
and systems developed recently for AI work. KRL
represents a particular approach to representing
information through a combination of 'static'
descriptions and procedures, with emphasis on
multi-processing. TONAL is more 'generalised'
than these other systems in that it is intended to

29 7

be a suitable base for implementing systems like
KRL, FRL, etc.

I.Pak and 2.Pak (10) are comparable with
TONAL in scope. They are AI implementation
languages, based on a SNOBOL environment. They
are block - structured, like TELOS and TONAL,but
as in the case of TELOS not much emphasis has
been placed on facilitating interactive program
development.

1.3 Tonal

TONAL is an AI -oriented language; it pro
vides facilities for pattern matching, demons,
and data-bases, and for arbitrary data-structures
permitting also 'data -directed' programming.
It also provides structuring and abstraction
mechanisms so that complicated programs can be
modularised effective ly, and so that encoded
'knowledge' can be restricted to just those
program scopes in which it should be applicable.

This paper describes TONAL - a new AI pro
gramming language. TONAL i s intended for
general purpose programming in the AI context,
and also comprises a system which permits inter
active development and experimentation with
programs.

TONAL has its roots in POP-2(3) and POP- 10
(11). It provides a variety of control and
data abstraction capabilities, which can be
further extended in user programs . New data
modes can be defined, and the language syntax
can ,be extended by defining new macros and infix
operators . The language is so constructed as to
encourage understandable programs, particularly
by controlling the accessibility of variable and
mode names. Nevertheless, it is easy to experi
ment with programs, mainly by virtue of a
built-in editor facility similar to those in
POP-10(11,12,13) and some LISPs.

TONAL is based on experience with POP-2,
POP-10, LISP and POPLER(l4) together with ideas
from PL/I, ALGOL 68, SIMULA, EUCLID(l5), ECL
(5,6,7), SCHEME(l6) and other sources. Apart
from POP-2, the debts to ECL and EUCLID will be
particularly obvious. Some detailed suggestions
come from (17). In keeping with the advice of
lloare(l8) to language designers, TONAL doe.s not
contain any untried new ideas, but does provide
as an integrated set of resources a combination
different from those previously avialable.

2.0 OBJECTIVES

The primary objectives of the TONAL design are
as follows.

1.

2.

SIMPLICITY - the language should be under
standable, without obscure or irregular
features.

INTERACTIVE USE - in a reasonably economical
implementation. Interactive, incremental
construction and testing for programs
should be possible.

3. HELPFUL - the language should provide useful
tool s for program deve lopment, and give
understandable error diagnost ics (l9) .

4. STRUCTURED But FLEXIBLE
The language should encourage coherent
organization of programs, partly through
textual scopi ng for names, and also by pro
viding for variabl e modes. It should a l so
encourage (so far as possible) adequate
documenta tion and commenting of programs.
On the other hand, the l anguage system mus t
be flexibl e for interactive incremental use ,
and the l anguage syntax should not be over
elaborate.
These considerations are i n conflict to some
extent, and the language design must balance
them so neither is pre-eminent .

5. Similarity to POP -2 when other considera
tions do not take precedence.

6. PATTERN MATCHING facilities must be present
in an extensible form. This is integr ated
with the mode (type) system.

7. RE -ENTRANT RECURSIVE COMPILER as in POP-2.
There should also be a mechani sm for reading
a unit of program text (an express.ion , etc .)
from an input stream.

8 . A DATA- BASE and DEMONS must be present in a
primitive extensibl e form. The 'context'
mechani sm is to be tied to program block
l eve l. That is, demon procedures and other
data-base entries are 'added' with respect
to a particular program block - - usually the
currently r unn ing block or the equivalent to
variabl e access scopes.

9 . GENERALI ZED CONTROL facilities must be pro
vid ed. This includes a basic capability to
ruh mult iple processes ' simultaneous ly',
with interprocess coordination and message
passing facilities defined. Co - routine
facilities are also incorporated, and a
more general capability for 'saving states '
is included to permit unusual control
regimes to be implemented.

10. Good Debugging Tools - there must be
adequate facilities for catching errors and
introducing break-points in a program. It
should be possible to 'reach' into t he
running code and stack to examine variable
bi ndings, etc . , and also to continue or
restart a computation after an error.

A general ability to take 'traps' on a
variety of conditions should be included,
and integrated on the one hand with error
handling, and with the 'demon' system on the
other.

11. Efficient Code Generation.
When variables are given modes (types), this
should permit more efficient code to be gen
erated, by reducing the degree of checking
mandatory at run time. Full typing is not
required, however, since that conflicts with
general ease of use. When variables are left
un-typed, this merely puts more burden on the

298

run time system.

3.0 DISCUSSION OF OBJECTIVES

3.1 Simplicity And Interactive Use

These attributes are possessed by both
LISP and POP-2 . The language is based on a one
pass compil er rather than an interpreter. The
syntax is based on POP-2, but is modifi ed : (i)
to deal with identifier modes, and (ii) to permi t
the compiler to determine which expressions are
argument s of which functions and operations.

The language may be regarded, from one point
of view, as a modification of POP-2 to clarify
the usage of the st ack by giving each function
activation its own private stack. Among other
consequences, every function call in TONAL return s
a single result item as its value (cf. LISP),
and a ll forma l parameters of functions must be
declared explicit ly. There is a mechani sm for
variadic functions. This change from POP -2
makes the programming of Jumpouts more straight
forward, and permits a program to be res t ar ted in
the middl e of execution after an error ha s
occured.

Interactive use is provided by having the
system execute all imperatives (statement s and
declarations) as soon as they are typed in,
except for those forming part of a function def
inition. A function definition is itself a kind
of declaration, and is executed as soon a s it is
typed in.

3.2 Helpfu l System

The system should provide useful tools for
program development. The principal tools are a
buil t-in editor, macro and Abbreviation facil
ities, and various debugging and tracing tools.
A capabi li ty for metering program performance is
also provided.

The editor is based on the ear lier POP -2
'77 ' editor and the POP-10 editor. These were
mode ll ed on TECO (20) , but with the addition of
an UNDO command. The TONAL editor is extended
a l so to handle multiple buffers, s omewhat as in
QED X (21).

The editor can handle arbitrary text files,
but has specialized operations to facilitate the
management of TONAL program files. All editor
commands are funct ions and operations, which
manipulate the text buffers, so programs can be
constructed using t he normal TONAL language to
perform various complex tasks. There are special
commands which 'know about' the syntax of TONAL,
and programs can be compiled directly from a
buffer .

A macro facility is provided as in POP -2 ,
to permit the TONAL language syntax to be
extended with new constructs. In addition, there
is an Abbreviation facility specifically to
permit abbreviations to be created for command
strings. The first word in any comment at
execute level, after a newline, semicolon or

• J

I
I

- I

I

:1

· 1

I

'print arrow' "= >", can be checked in a hash
coded table for a stored expansion.

For example, the command
#ab n 1ml, vc;

will define n as an abbreviation for the rest of
that line. (Typing n at the start of a command
will make the editor-move to and print the next
line of text.) #off and #on turn the facility
off and on. This is modelled on a facility in
the Multics system (21).

The debugging tools are described later.

3.3 Structured But Flexible

TONAL uses essentially the same scope rules
for identifiers as Euclid (15). That is, lexical
or ' static' scopes are used, but identifiers must
be 'pervasive' or specifically imported to be
used 'free' in interior scopes. These rules
encourage a block-structured type of programming,
with the benefit that variable and function id~n
tifiers are not made more global than they have
to be.

Normally, this would make it harder to debug
interactively the interior modules of programs,
so special debugging tools are provided as des
cribed later.

Identifiers of a program, as part of this
mechanism, may be declared as constants or
variables, and may be given modes (types). These
facilities make programs more specific, which has
two main benefits. First, they perhaps become
more understandable, and the compiler and run
time system have more chance to detect program
ming errors. Also, the compiler may be able to
produce more efficient code, especially for
arithmetic and structure accessing.

However, the typing of variables is not
mandatory, and they default to the universal
mode~-

Modes are themselves items, as in EL1(6).
However, new modes are created by declarations,
not by applying functions, because creation of a
new mode usually involves declaring several
associated operations simultaneously. There are
built-in mechanisms for creating new 'record' and
'strip' modes ('structures' and 'rows' in ALGOL-
68) and arrays; other 'derived' modes may be
created with user-defined operations.

The language syntax is designed to be parsed
by an LALR parser (19,22), and is more rigid than
that of POP-2 in some respects. However, as far
as possible, comma and semicolon separators are
optional. For example, a semicolon may sometimes
be omitted at a newline.

The following constructs are available for
conditional and iterative execution:

IF cond THEN .. {ELSEIF ... } [ELSE ..] CLOSE
WHILE cond DO ... ENDDO
REPEAT ... [UNTIL cond] ENDREP
CASE expr { >:pattern: > clause}

[ELSE ..] ENDCASE

299

FOR { id initialValue, expr;} UNTIL cond
DO . .. ENDFOR

The first three are conventional. The CASE
statement evaluates an expression, and matches it
with 'patterns' until it finds a match, when it
executes the appropriate clause. In fact the
pattern matches are normally compiled 'open' (see
below).

The FOR is similar to the MacLISP DO (23)
and can initialize and step several variables in
parallel in almost any type of sequence. The
program

FOR x l,x+l UNTIL x>lO DO pr(x) ENDFOR
prints the integers 1 to 10 .

Labels are not permitted, and a restricted
GOTO is provided to escape from or restart an
iteration or function. Function calls can also
be escaped from dynamically with a Jumpout as in
POP-2, or by a CHAIN facility .

TONAL, like POP - 2, does permit a function
created in one context to be passed as result
and later applied in another context. When this
happens, the function item must internally be a
'closure' on the access environment needed for
its 'free' identifiers. The position taken on
th.is is that all function i terns are automatically
closures on the environment current when they
were formed. This is similar to the SCHEME
language (16). The TONAL compiler can avoid the
construction of closures which are not needed
explicitly .

If such a closure is saved for later
application, this can tie up memory in saving the
access environment. The compiler can tell when
all 'free' identifiers are bound at the global
level and avoid this waste of memory. Partial
Application is provided as in POP - 2 for those
(frequent) situations where a closure needs to
be 'read only'.

3.4 Patterns

A system for using patterns is introduced.
This is an extension of the proposal for POP-2
(17). A pattern is primarily a convenient way
to express a complex test on a value, and may be
used in a CASE statement, or in IS expression.
The latter follows the syntax

expression IS pattern
and evaluates to a truth - value. Patterns may
have the syntactic forms:

form meaning
constant EQUAL to the constant
=identifier = value
identifier assign to variable
:mode check item mode
.predicate apply predicate function
[!pattern, . . !] list pattern -- check elements

in turn
fn(pattern, ..) test item with structure/

component matching.
match anything

In particular, expressions such as xis
:list and n2 is :num are the best way to- check

the mode of an item.

Many pattern matches are compiled 'open' for
efficiency. Nevertheless, patterns may also be
represented by pattern items, and interpreted
later by the standard function match_pattern.
This is needed for the demon system (Section 3.6).

3.5 Reentrant Recursive Compiler

This is similar to POP-2 except for the
lexical scoping of identifiers. When the compiler
is called, its initial scope may be set to be
'global', or to be at the environment of the
point of call. This affects the interpretation
of 'free' identifiers in that call of the com
piler.

In particular, when an error or interrupt
occurs, the compiler operates at the point where
execution was stopped, permitting lo~al identifiers
to be examined, and programs for internal blocks to
be modified and recompiled. This does give an air
of 'dynamic' scoping to the system.

Because the syntax of TONAL expressions and
statements is more closely defined than in POP-2,
a facility is provided for reading, from an input,
text which forms an expression. This is comparable
to the LISP ability to read an S- expression in one
call.

3.6 The Database And Demons

Because of the variety of different require
ments for data-base and demon-type facilities that
AI projects have developed, a minimal extensible
facility is provided. No automatic backtracking
or any other form of demon invocation takes place
without the user specifically programming it. The
intention is to provide the 'raw materials'
required as data structures, etc., but for the
user to decide how they should be combined. The
system does enforce the·rules limiting access to
data.

In TONAL, a Demon is like a POPLER Procedure,
a Planner Theorem or a Conniver Method . It is a
function with associated pattern; the function
itself takes only one parameter, which is matched
with the pattern, and the body is only executed if
the pattern matches. The pattern match may assign
values to locals of the function body. The pat
tern is also accessible as a 'component' of the
demon, so demons can be indexed and selected on
the basis of their patterns.

A 'data-base' facility is provided which can
store demons or other items, and retrieve them on
the basis of pattern matching. The data-base is
divided into Demon and Item Classes, so they can be
grouped according to use. Initially, there are no
classes declared, but to simulate Conniver for
example, one might include the following statements
in a program:

set item class("item") ;
set-demon class ("if added");
set-demon- class(" i £- needed") ;
set =demon =class ("if=removed");

300

The argument words "item" etc., are not
variables, but just 'handl es ' used internally in
the da ta-base; presumably they will be descrip
tive names.

Also, the data - base has its contents saved
with respect to various Contexts, again some
what as in POPLER or Conniver. The special
feature here is that a Context always corresponds
to a lexical variable scope. This scope is often
the global level or a Section (a self-contained
module), but it may be just a particular function
or demon activation . A dbcontext is identified
by placing a special declaration such as

dbcontext bags;
in the program module concerned. That wil 1
declare bags as a variable containing essentially
a label for the activation record (or whatever)
for the function or section. That database con
text will only be usable when the module declara
tions are in scope. (This rule wil 1 be enforced
at run - time, if an attempt is made to pass the
value of bags outs ide its scope.) the standard
identifie;:--gdb is bound to a dbcontext for the
global level-.-

Objects are added to the database and
removed again with the primitive operations

add item(item, dbcontext, classHandle)
add- demon(demon,dbcontext, classHandle)

and erase item and erase demon.
The functions get items and get demons are
used to retrieve from the data-base, and each
takes a pattern as argument and returns a list
of items.

get_items(pattern, dbcontext, classHandle)

Adding or removing items with these functions
does not activate any demons or perform any other
side- effect. The user who wishes to simulate
Planner or Conniver, etc. will write his own
functions ADD and REMOVE (for example) which per
form all the necessary actions and searches, and
invoke demons as necessary.

The TONAL system does not automatically
apply demon functions for the user at any time.
A list of demons can be retrieved as summarised
above, and the user is responsible for deciding
how and when to apply them. The ground rule for
demons, however, is that if they return false then
they are taken to have 'failed' . There is no
automatic b?cktracking in TONAL, though it can be
implemented.

In summary, the main intention in TONAL is
to permit and encourage the programmer to
localise information and demons, without prevent
int them from being global when this is actually
needed.

3. 7 Generali zed Control Facilities

The main requirement for generalization is
the ability to handle multiple processes simul
taneously, or as co-routines. Co-routines are
regarded as multiple processes with the user
programming the context switching explicitly. In
the case of multi-processing with the system
handling context switching (or even multiple

!

I

I

·I

processors) the need arises to define the synchron
ization mechanism.

Although Monitors (25) are currently popular
for this, we have chosen to use Message Buffers as
t he primary mechanism. It is well known that
semaphores and monitors can be implemented using
message buffers, and they also provide a simple
inter-process communication facility.

A new process is formed from a function and
arguments with consprocess :

consprocess(function,list)
This returns a process item. The process may then
be started as a co-routine with run or resume,
somewhat as in SIMULA (26) and the new POP-2 (17),
or with sprout to run in parallel. The process is
deleted when the function exits, and its final
value is lost unless the function s"lnds it to
another process (preferably through a message
buffer).

A message buffer obeys a FIFO queue disci
pline, and holds O or more items, up to its
capacity. It is created with consmbuff, and
filled and emptied with putmbuff and getmbuff.

putmbuff(item,mbuffer)
getmbuff(mbuffer) => item

Those latter operations block if the buffer is
already full or empty respectively.

These mechanisms are related to those of
SAIL(2) and ABSET (27), but differ somewhat from
TELOS. The details are based on code for
POP-2 (17) recently transplanted to POP-10 .

TONAL discourages 'naive' backtracking of the
Planner/POPLER kind, but this can be programmed
if it is really desired, by using a saved - state
mechanism similar to that of POP-2 (3).
Alternatively, a similar effect can be obtained
using 'teams' of co - routines, and this has the
advantage that the local environment of a process
is not destroyed if it stops.

3.8 Tools For Debugging

The principal debugging tool is the editor,
which can contain the text of program files being
worked on . Programs can be compiled directly
from a buffer and changed interactively, as
described in (1 2,13). This is similar to the
approach used in LISP systems for in-core edit
ing of S-expressions (4) .

The main problem with a block structured
language is that normally when an inner function
definition is changed all the enclosing scopes
have to be recompiled too. The TONAL compiler
will have the capability to recompile inner
function definitions without having to recompile
the whole enclosing scope.

An interactive tracing and 'break ' package is
also provided, based on that in POP- 10. This
permits trace messages and 'interrupts' to be
programmed flexibly, so that the state of the
program during execution can be monitored. Also
as in POP - 10, after an error, a 'break' is
entered again, and it is possible to modify and
recompile a function, and then to restart the com-

301

putation in the middle instead of having to begin
the whol e program run again .

It is proposed to provide a flexible system
for handling errors and 'traps ' of various sorts,
by setting up a special Demon class " sys tem - trap",
with patterns predefined for the various condi
tions to be handled. This is similar to the
'event' mechanism of TELOS, and provides also the
capabilities of PL/I On-conditions.

Other useful features are provided by the
system. With a block-structured language it is
desirable to know which identifiers are declared
and imported at each level. Depending on the
setting of a control variable, the compiler will
print an information message at the end of com
piling each function and section, which will give
more or less detail about the identifiers used.

If an identifier is met in a scope which has
not been declared, it will automatically be
declared as a variable of mode any, local to that
scope, and a warning is printed.

4.0 SUMMARY

A new language system TONAL is being
designed for AI applications. It is compiler
oriented and block structured, with emphasis on
both abstraction mechanisms and on the ability
to restrict the availability of information to
those contexts where it is required. The system
is also designed to facilitate interactive program
development and debugging.

Appendix A contains a short program to
illustrate the syntax. No implementation of
TONAL is complete, and no large programs have been
written yet in TONAL . A language Manual is
available, but the specification remains subject
to amendment in the light of experience.

5.0 ACKNOWLEDGEMENTS

This work was supported in part by the
Natural Research Council of Canada. It would not
have been possible without the experience gained
at Edinburgh working in POP-2 and implementing
POPLER. The graduate students and my colleagues
at Western have offered welcome encouragement.

6.0 REFERENCES

1. J McCarthy, PW Abrahams, DJ Edwards, T P
Hart and MI Levin; LISP 1.5 Programmers'
Manual. MIT Press, Cambridge, Mass.
(1962).

2. J A Feldman, JR Low, DC Swinehart and R
J Taylor; Recent Developments in SAIL, an
Algol-based Language for AI. Stanford AI
Memo - 176, STAN-CS-308 (Nov 1972).

3. RM Burstall, JS Collins and R J Popple
stone; Programming in POP- 2. Edinburgh
Univ. Press (1971).

4. E Sandewall; Programming in an Interactive
Environment: the "Lisp" Experience. ACM
Computing Surveys .!Q_ (Mar 1978) pp.35 - 71.

5. B Wegbreit, B Brosol, G Holloway, C Prenner
and J Spitzen; ECL Programmers' Manual.
Center for Research in Computing Technology,
Harvard, Cambridge, Mass. (Sept 1972).

6. B Wegbreit; The Treatment of Data Types in
ELl. Comm. ACM .!2_ (May 1974) pp . 251-263.

7. --; Procedure Closure in ELl. Computer J.
.!2_ (1973) pp.38-43.

8. L Travis, M Honda, R LeBlanc and S Zeigler;
Design Rationale for TELOS, a PASCAL-based
AI Language. Proc Symp 0n AI & Programming
Languages, ACM SIGPLAN Notices 12,8 (Aug 77),
ACM SIGART Newsletter #64 pp.67-=-'?6.

9. D G Bobrow and T Winograd; An OvcTview of
KRL, a Knowledge Representation Language.
Cognitive Science! (Jan 1977) pp . 3-46.

10. L F Melli; Experiences of Programming Lang
uages for Artificial Intelligence Research:
a Case Study. INFOR 15 (Feb 1977) pp . 107-
129. ~

11. DJ M Davies; POP - 10 User's Manual. Computer
Science Report 25, UWO (June 1976).

12. --; POP-10 System Editor . Computer Science
Report 26, UWO (June 1976).

13. B Boyer, J Moore and J Davies; The 77-Editor.
DCL Memo 62, School of AI, Edinburgh (Feb
1973).

14. DJ M Davies; POPLER 1.5 Reference Manual.
TPU Report 1, School of Al, Edinburgh (May
1973).

15. B W Lampson, J J Horning, R L London, JG
Mitchell and G L Popek; Report on the
Programming Language Euclid. ACM SIGPLAN
Notices ~,2 (Feb 1977).

16. G L Steele Jr. and G J Sussman; The Revised
Report on SCHEME: a Dialect of Lisp. MIT
Al Memo - 452 (Jan 1978).

17. RM Burstall and J Scott; Proposals to
Enhance POP- 2. (Unpublished) Department
of Al, Edinburgh (1977).

18. CAR Hoare; Hints on Programming Language
Design. Stanford AI Memo- 224, STAN-CS- 73 -
403 (Dec 1973).

19. WM McKeenan; Programming Language Design.
In Compiler Construction; an advanced course.
(Eds FL Bauer and J Eickel) Springer Verlag,
2nd Edn. (1976).

20. Digital Equip. Corp.; TECO Reference Manual.
DEC-10-ETEE - D.

21. Honeywell Information Systems; Multics Pro
grammers' Manual: Active Functions and

302

Commands. AG-92 (1977).

22. AV Aho and SC Johnson; LR Parsing. ACM
Computing Surveys~ (June 1974).

23. DA Moon; MacLISP Reference Manual, Revision
0. MIT Lab. for Computer Science, Cambridge
Mass. (1974).

24. D V McDermott and G J Sussman; The CONNIVER
Reference Manual . MIT AI Memo-259 (May 1972).

25. CAR Hoare; Monitors: an Operating System
Structuring Concept. Comm. ACM 17 (1974)
pp.549-557.

26. GM Birtwistle, 0-J Dahl, B Myhrhaug an~ K
Nygaard; SIMULA Begin. Auerbach Press,
Philadelphia, Pa. (1973).

27. E W Elcock, J M Foster, PM D Gray, J J
McGregor and AM Murray; ABSET: a program
ming language based on sets; motivation and
examples . in Machine Intelligence~ (eds .
B Meltzer and D Michie), Edinburgh Univ.
Press (1971) pp.467-92.

j
. I

I

. I

APPENDIX A

EXAMPLE PROGRAM

SECTION SETS FACILITY
EXPORTS NILSET NULLSET ADDSET

MEMBSET DELSET SET;

\define a SET facility.
\ a SET has a list and an predicate
\NILSET(pred) makes an empty set
\NULLSET tests whether a set is empty
\ADDSET(x,set), DELSET modify a set
\MEMBSET(x,set) tests a set membership

TYPE PERVASIVE SET=
RECORD CONSGENSET, APPSET

(SL :LIST, SEQ:FUNC) ENDRECORD;
\the operators are all pervasive
\ like SET, but are not exported.

OPERATION 1 PERVASIVE NILSET EQP => :SET;
CONSGENSET(NIL,EQP) END;

\the result mode may be specified

FUNCTION PERVASIVE NULLSET S:SET;
S.SL.NULL; END NULLSET;

\END may be followed by the name
\if it does not match - a warning

FUNCTION PERVASIVE MEMBSET X, S:SET => :BOOL;
VARS L:LIST, EQF:FUNC;

FOR LS.SL, L.TL; EQF S.SEQ
\step L, just initialise EQF

UNTIL L.NULL
DO IF EQF(X,L.HD) THEN TRUE EXIT;

ENDFOR;
FALSE; \not in list - return FALSE

END MEMBSET;

FUNCTION PERVASIVE ADDSET X,S:SET => :SET;
IF MEMBSET(X,S) THENS
ELSE CONSGENSET(X::S.SL, S.SEQ)
CLOSE;

END ADDSET;

FUNCTION PERVASIVE DELSET X, S:SET => :SET;
VARS EQF:FUNC;

FUNCTION GENDEL XL; IMPORTS EQF;
IF L.NULL THEN NIL
ELSEIF EQF(L.HD,X) THEN L.TL
ELSE L.HD::GENDEL(X,L.TL)
CLOSE;

END GENDEL;

S.SEQ->EQF;
IF MEMBSET(X,S)

THEN CONSGENSET(GENDEL(X,S.SL) ,EQF)
. ELSE S

CLOSE;
END DELSET;

ENDSECTION SETS_ FACILITY;

303

EXAMPLES OF COMPUTATIONS AS A
MEANS OF PROGRAM DESCRIPTION

Michael A. Bauer
Department of Computer Science
University of Western Ontario

London, Ontario, Canada
N6A 5B9

ABSTRACT

The following describes an approach to the
synthesis of procedures from examples of compu
tations. An example computation is basically a
sequence of instructions obtained from the
"execution" of an algorithm on some input. Unlike
previous work on this problem, some flexibility in
the description of examples is permitted. The ·
synthesis algorithm, in turn, relies on knowledge
of variables and instructions to construct a pro
cedure.

INTRODUCTION

A programmer's assistant can involve various
facilities to aid a programmer. These facilities
might include a language understanding subsystem
or a subsystem to assist in program debugging. An
assistant might also include a facility for program
synthesis. Input to such a synthesizer might be
natural language [8,9,11], input/output predicates
[10] or input / output pairs [6,7]. Another form of
input to a synthesizer might consist of sequences
of instructions describing in a step-by-step manner
the execution of a particular algorithm on specific
inputs. Such descriptions might be the sole form
of input to a synthesizer or might provide addi
tional input to a system in which a program was
initially described in natural language or speci
fied by input /output predicates.

In this paper we describe some initial work on
a "specialist" capable of synthesizing a procedure
from examples of computations. This work has con
centrated on the development of a synthesis
algorithm, given a suitable representation of an
example, rather than on the formation of represent
ations from natural language input. The motivation
for such an approach is twofold. First, in order
to synthesize a procedure, some underlying synthe
sis algorithm must be available regardless of the
particular input format of the examples. Of course,
it is reasonable to rely on natural language des
criptions of examples to motivate the character
istics of the examples we wish to study. Second,
by concentrating on the algorithm we can investi
gate the role of knowledge about procedures during
the synthesis process.

The current "specialist" involves no knowledge
of what the intended program is to compute.
Rathe r, it uses certain "common sense" knowledge

304

about procedures, instructions, assignments,
variables, constants, etc. Much of this knowledge
is in the form of constraints used during the
construction of a procedure .

The problem of synthesizing procedures from
example computations has also been considered by
Biermann [3,4]. In his work, an example of a
computation was essentially a sequence of symbols.
Little variation between examples was permitted,
requiring, for example, the same instruction in
two different examples of the same procedure to be
identical . Our work is an extension of Biermann's
permitting more flexibility in examples. This has
required us to incorporate some knowledge of pro
cedures, examples and their components into the
algorithm.

CHARACTERISTICS OF EXAMPLES AND PROCEDURES

To motivate certain aspects of suc.h examples
and our model of procedures, let us consider a
description of an example computation in natural
language. Figure 1 illustrates an example of a
procedure to perform an interchange sort on a
I-dimensional array .

To sort the array (6,3,5) of 3 elements proceed as
follows:

Let A be the array (6,3,5).
Let X be the 6.
Let Y be the 3.
Since Xis greater than Y, interchange elements 1

and 2 of A.
Then let X be 3.
Now compare X and element 3 of A.
Since Xis not greater than 5, do nothing.
Next, let X be the second element of A, which is

now 6.
Compare X and the third element of A.
Since Xis greater than 5, interchange elements 2

and 3 of A.
Let X be 5.
Finally, let X be the third element of A.
Since there are only 3 elements in A, we stop.

Figure 1: A Plausible Description of an
Example Computation

This example suggests several characteristics
of a model of example computations. First, it must
involve variables, ass i gnments, functions,

predicates and procedures. The model should also
include some facility for composite objects, such
as arrays or records. Examples from the same pro
cedure should not be constrained to a single set of
variables. It should also be possible to use the
inputs, intermediate values of variables and com
ponents of composite objects within the example
itself.

These characteristics of examples, in turn,
suggest that the procedures synthesized must also
involve similar instructions and must have
parameters.

A MODEL OF EXAMPLES AND PROCEDURES

The instructions we shall consider fall into
four classes:

1. Assignments: There are three forms - assigning
to a variable, a number of variables or a vari
able whose value is a composite object:

1. Simple Assignment: X + t, where t is a
variable, a constant or f(v

1
, ... ,vn) , and

2.

the vi are either constants or variables.

We call f(v1 , ... ,vn) a Function Application.

Multiple Assignment: <Xl' ••. ,Xn> +

P(v1 , ... , vm) . where the v . are constants
1

or variables and p is a procedure returning
n values. We call P(v1 , ... ,vm) a Procedure
Call.

3. Updating Assignment: U(X,<v1 , ... ,vm>) + t ,

are as above; U is where t and the

an updating function.

2. Predicates: p(v
1

, ... ,vn), p isan n-ary

predicate; as above.

3. Termination Statements:

vi as above.

The right hand side (rhs) of an assignment may
be a variable, constant, function application
(including updating functions) or procedure call.
We treat procedures as functions which r e turn an
n-tuple of values. We assume that all actual
parameters are passed by value and, hence, any
side effects must be explicitly done by assign
ments or updaters. Predicates simply evaluate to
true or false.

Updaters are functions which operate on com
posite objects to change or retrieve components.
An updater has two arguments - a composite object
and an n-tuple defining a component of the object.
As such, an updater may appear on either side of an
assignment. On the rhs, the value of a component
of the composite object is returned as the value of
the updater; on the lhs the component is altered,
essentially forming a new composite object (see
POP- 2 [SJ for the use of updaters in an existing
programming language).

Finally, a termination statement is used to
indicate the end of a procedure and defines the n
values to be returned.

305

This set of instructions provides the basis ·
for a rich class of examples and procedures. In
particular, the use of procedures and updaters
facilitates examples of non-trivial programs.
Notice that the statements in our natural language
description of an example are not confined to the
syntax of our instruction classes . Rather, we view
these classes as a target into which higher level
descriptions are to be translated.

An example of~ computation is a pair
(P(a1 , ... ,an),T) , where P is the name of the

procedure, a
1

, ... ,an are the arguments used to

form the example and T is a directe d tree of
instructions. Each tree has a single termination
statement, a leaf. Other leaves in the tree are
predicates which evaluated to False. The succes
sors of a node are ordered (counter-clockwise in
figures). The sequence of instructions executed
in the example begins with the root and proceeds
in order to its successors.

This particular representation was adopted
for a number of reasons - avoidance of True/False
labels (as in flowcharts), representational con
venience, a means to include examples from back
tracking procedures. For examples from back
tracking procedures, leaves are instructions which
failed.

Given a number of examples, the synthesis
algorithm attempts to form a procedure. Procedures,
in turn, are represented as a pair (P(X1 , ... ,Xn),D),

where P is the name of the procedure, x1 , ... ,Xn

are its formal parameters and D is a rooted,
directed graph of instructions in which successors
of a node are ordered. Execution proceeds from the
root in a depth-first manner. Should a predicate
fail (or in the case of a backtracking procedure,
instruction fail), the next successor of its pre
decessor is executed. If all successors of a node
evaluate to False (or fail), execution proceeds to
the next successor of its predecessor (see [1] or
[2] for a more detailed description of such exe
cutions). The interchange sort is illustrated in
Figure 2 and two example computations from such a
procedure are illustrated in Figure 3.

I • 0
l

fi gure 2: A So rt PrC1c c011 r e

.\ !\ . :\:, ,:\\'l ', \)

' V
P l •· l) ,,

1'1 , +ti'!, I)
I ,' \.

= l I' I , :) El• F! I' .i"~;T {.\t,;, , ; 1 ·)

.;
r~ •· r:

J,
\' 2 · -+ (P 2 , 1)

,./
'·(P2 , 7) r· ,.

.,,-·
>cn ,1 ::n '•

r) , +~ 1· ~ , 1,

" (P1 , 2)
,.

n +<l':.1, .,
= (Pl , 2)

t
RC't urn(.', '{)

,\ :; i: .\ ~- { I, _: i

l
t,;. 2

·1
r ~- o

J,
I .. +(i , i.)
./ ,.

"' l 1. ~) :,; t• ELL' '. : :,..~ro: . , 1')

• : ~· ~- I

' ,'
IT· -t-(11', 1)

(. \,
') (l T .~) X2 - ELE~IE!:T(\ , < IT >)

t
>(\1, :-:2)

J,
x.- INTfRC!!AJ\ lo l:(x . ~' TT)

-!,
JT •· +(iT,J)

l
~(lT,hJ

}
I ~ +(I ,1)

J
• (I.~)

• Rc>turn(X)

Fi r, ur e J: Exa r1rl t." , f rom So rt Pro c e dur e ,:

From a formal viewpoint (see [1]) we can talk
of a pure example computation as one which origin
ates from a procedure by executing the procedure on
some input and simply recording the sequence of
instructions executed. An acceptable example com
putation is one obtained from a pure one via a
number of transformations. The transformations
corresponding to the characteristics cited above
are: a) renaming a variable, b) replacing occur
rences of a parameter by its input value and c)
adding an assignment to the example in which a
parameter is assigned its input value. The class
of examples the algorithm accepts is then the set
of pure examples closed under the transformations.

Such a methodology is particularly useful.
First, it enables one to define what one means by
an acceptable example. Knowing the class of exam
ples is important since what one can reasonably
consider to be an example can vary greatly. This
methodology also lends itself to possible exten
sions, since one need only consider additional
transformations. Second, it provides a mechanism
to isolate certain subproblems within the overall
synthesis problem. This may not only suggest cer
tain techniques for solution but may also suggest
what information is necessary. Finally, we should
note that such a methodology is not arbitrary - it
was certain characteristics of examples, as in our
natural language description, which motivated the
particular transformations.

THE SYNTHESIS ALGORITHM

Informally, the synthesis problem is to form
a procedure, represented as a directed graph, from
a number of example computations. By relying on
the model of procedures, a definition of what con
stitutes an acceptable example and the transfor
matfon, this problem can be made precise. We shall
have additional comments about this aspect of our
work in the concluding section. Currently, we shall
concentrate on a description of the synthesis algor
ithm and the information it uses.

Let us briefly examine how a person might form
a procedure from a number of example computations.
The first task might be to locate instructions which

306

appear to do the same thing. Once a number of
possibly related actions have been located, the
person attempts to verify the relationships by
examining the variables and constants involved,
how corresponding variables are used, what
instructions follow, etc.

Our synthesis algorithm proceeds in a similar
manner . Given a number of examples, the algorithm
attempts to group nodes into classes. Nodes in th e
same class are, supposedly, occurrences of the same
instructions in the algorithm being illustrated .
Once a set of classes has been hypothesized, the
set is examined to guarantee that certain con
sistency conditions are satisfied. Knowledge of
variables, constants, instructions and procedures
is embedded within these consistency conditions.

Intuitively, we can class two instructions
together if they seem to be occurrences of the same
instruction in the algorithm being describe d.
Occurrences of an instruction may be obtained by
renaming variables within the instruction or
replacing those variables which are parameters by
their input values. Such substitutions must be
consistent with certain "common sense" conditions:

-- A variable can only be replaced by at most
one other variable in any other example.

-- A variable, which is a lso a parame ter, can
be replaced by at mo s t one input in any one example.

We shall define variations of an instruction
under such substitutions. This , in turn, will pro
vide a basis for determining when instructions can
be grouped toge ther. Let us define a substitution
a to be a set of pairs (wilti) where:

1. Wi is a variable; ti is a constant or

variable.

2. No two Wi are the same in o.

3. No two ti, which are variables, are the same

in o .

4. If (Wi l ti) and (Wj l tj) are in o and

wi wj , then ti= tj .

We ~ !!. substitution a = { (W . I t .) }
l. l.

to a

predicate termination statement, left or right hand
side of an assignment by simultaneously replacing
each occurrence of Wi by ti .

Assignments introduce special problems since
a variable being assigned may only be renamed by
another variable and not replaced by an input on
the left hand side of the assignment. Also, it is
possible that a variable may be both renamed and
replaced within a single instruction. Consider
the instruction X + +(X,1) • If X is a
parameter, then in an example in which X re
ceived an initial value of 3, a reasonable vari
ation of this instruction might be Y + +(3,1) •
As a result, the concept of a substitution is only
partially satisfactory.

A mapping TI for an instruction s is:

1. A substitution a if s is a predicate or
termination statement.

2. A pair of substitutions (OL'OR) if s is an
assignment where:

1. For all (Wi l ti) in 01 ' wi assigned to

in s
'

then ti is a variable.

2. If (Wilti) is in OR ' ti is a variable

and (Wil tj) is in 01 '
then ti = t.

J

3. If (Wi l ti) is in OR , t. is a variable
l.

and (Wj I ti) is in 01 '
then wi = w.

J

A mapping TI for an instruction s applied
to ~ (TI o s) is:

l. a o s ifTI=O

Finally, let s
1

, ... ,sn be instructions,

TI1 , .•. ,Tin be maps for s 1 , ••• ,sn and let s b~

an instruction. Call s a generalization of
s 1 , ... ,sn if Tii o s = si. Call s a least

generalization of s 1 , ... ,sn if for any general

ization s' , there is a mapping TI' such that
n' o s' = s.

The generalization, if it exists, of a set of
instructions captures the intuitive idea of an
instruction from which others might have been
formed. It also a) forms the basis for con
structing an instruction from a set of instructions
and b) through the mappings constructed, provides
additional information which can be examined with
respect to certain "common sense" rules. Note that
this concept of generalization is similar to that
of Plotkin's [11], but because of the nature of
instructions, and in particular assignments, the
ideas had to be extended.

Now, given a set of instructions, s 1 , ... ,sn
we say that they look alike if:

1. They have a least generalization.

2. Corresponding sets of successors look alike.

In Figure 4 nodes 1 and 5 look alike since
their sets of corresponding successors ({2,6},{3,7})
look alike (assuming that {3,7} look alike). Nodes
1 and 8 have a least generalization but do not look
alike since the set {3,10} of corresponding suc
cessors do not have a l east generalization, i.e. do
not look alike. Note that requiring instructions
to have identical successors or identical numbers
of successors is too severe since they might be
occurrences of the same instruction involved in
computations taking slightly different paths.

307

l. X • I (Y, I) 5. Z • +(\·! , \")

/ l ""- ./ \
;'! . r(~: , 'i) 3 . c. (:,,; , H) 4 . Y · • • Y, .~, b . •(z,h) 7 . : (Z , 10)

l

8 . Y - + (Y , :i)

/ ~
9. • (\' , I) 1(, . ~- •· + (Y, 2)

Fi gure 4 : F.xamp l cc; o:· ~:o<lf-.<. ".'1dt'h "Look ,\ like' '

However, just defining what constitutes a
single class of nodes is insufficient. One must
also define relationships between the classes
dictated by the successor relationships between
individual instructions. There is also the prob]em
of how to determine reasonable sets of classes, or
perhaps more realistically, how to reject unreason
able ones.

This latter problem can be simplified by using
key nodes. Intuitively, key nodes are instructions
within the examples which involve specific functions
and probably coincide or ones which are a priori
known to coincide. Key nodes provide an anchor on
which to base class formation by providing know
ledge of which nodes may have originated from the
same instruction in the algorithm. In our case,
the key node in each example is determined by first
finding the first node on the leftmost path from
the root involving a function, predicate, pro
cedure call or termination statement. Then one
proceeds in parallel back toward the root in each
example until all nodes not yet considered have
single successors. Since we have assumed that no
instructions are omitted from any example, these
must originate from the same node of the algorithm.

Given a set of

us define the set of
of these nodes to be
examples E1 , ... ,Et

such that:

nodes S = {s
1

, . .. ,sn} , let
th i corresponding s uccessors

COR(i,S) . Then a cover for
is a set of sets c1 , ... ,Cm

1. The key nodes are in the same Ci

2. Any node reachable from a key node is in
some Ci

3. If Q, is the maximum number of successors of
any node in Ci , then for each j

'
l ::: j s i

COR(j ,Ci) is contained in some Ci,

Because some additional (extraneous) nodes
may have been add ed to the examples, we may not
wish to include all instructions; hence we allow
for the exlusion of some. In general, the synthesis
algorithm seeks the cover containing the greatest
number of nodes in the fewest classes. However,
even those nodes not included in a class must
satisfy certain constraints (below).

The two example computations in Figure 5 are
from a procedure which examines a property list.

A property list i s a list of subl ists where each s ub
list contains a variable (f irst element) followed
by its properties (e. g. numeric values). Given a
property list and a property, the procedure returns
the first variable having such a property. Given a
variable (enclosed in quotes) the procedure returns
the properties of that variable.

! . X • 1111 • 2. AN",11'("1)

•) . X •· 110([B 5 ~~ ,; -< l j)

I·
;,, Xl • J!! •(X)

!
S. X • Tl.{\)

/ \ .
6. ~l''-l(X) i, Y - 110 (:-;)

ii \,
8. •(Y , S) 9. :< - TL (X} • 10. x:1.L(:<)

11. L-Tl.((f /t. ., A SJ))

/ '.
12. Xl1.l.(L) 11 . X .. t O(L)

14. XI •- ltn(X)
j

1S. X .. TLC()

, " 16 . :,.i:LL(X'> 17. Y • ,1.1 !:> (:0.)

18. •(Y, S)
J.

19 , Rt:Tl' R'.;(:,; I)

r R11P("A", i 1 ,\ J 11)

20, L• '. I ti I J! ,\ 1 11

r
21. X ... nil

I '-
2:!. Al' l!C'l!' ("A") 2), X .. , 110(1.)

2 ... XT • ID\Ll
, / \

2'L • (" \'',X l) ~ 6. :.• T\(I , \

27 1',1JLL(L/ 28 X • Hll(l)

•
29. XI • HD (X) •)0. •(".'\" , XI)

J
)l. 11.cturn C:O

flLure S: T1,10 F. xaniv le s or Pro pe rty - Lilt Algo rithms

The key nodes are nodes 1 and 21. Since nodes
1 and 21 must be in the same class, by the third
condition, nodes 2 and 22 must be in the same class.
This condition, therefore, guarantees that the
instructions of the synthesized procedures will
follow paths based upon the instructions in the
examples.

As one might expect, a number of possible
covers do exist. In Figure 6, several covers are
presented. Cover Cl is the trivial cover - only
nodes necessary to satisfy the conditions are
gro up ed together while remaining nodes are in
individual classes. Covers C2 and C3 are accept
able, but do not make "sense" . In C2 the instruc
tions NULL(L) and NULL(X) are in the same class.
The occurrence of two different variables suggest
that these two instructions, in the same example,
are used differently and should be kept distinct.
In C3 instructions 8,18,25,30 are classed together.
If 8 and 25 (=(Y,5) and =("A",XI)) are to be
occurrences of the same instruction of the
original algorithm, then Y is a renaming of
·a variable in that instruction and "A" is an
input assigned to that variable. Examining node
7, X + HD(X) , one sees that Y is assigned a
value immediately before node 8 and so Y is
probably not a parameter. Moreover, if "A" was
the value of some parameter, then it was not the
same one which Y renamed. In both cases, we
wish to reject such partitions. This is done by
a number of constraints. Cover C4 is the correct
one.

308

Cl: ·: 1, :. 1 ; 1.' , .' .' '

l J:. i l l • l 11 :, 1

(29 i (Ju) (.I I ,'

•., r r,)

C2 : -: {l. ~ l} {'.! , '.!.:'.~ ·. J } t!1 j : 51

l n : : 1 . J \ t 'l \ \ 1 , i r ~ s I i l'J°
·. n :n·· f'i , { 1l1 1 \ 11 J f ,~, 1 (, 1

~~:.) {~', i ·.u,/ { ! i . {2Ml

C3 : ·.' 1,'.!J} .2 , :':! \ · 31 {:, ! ·.5 }. b ,:~ . !.~ .::,, ::·.' } {9 1 :h1: {JJ)

.~12: (1 3} {1~:· { Ld {t h} 1. 17'· 19 , J! :2 3; l~ .'d {26 ; ·. 17)

C.'i : ·:·: J. ~l } ·: :.!,1 2J :3 ,1 ~1! ! .:. ,1 4·1 {: . n , :;·, : o ,1 q , J6) ~1 .1 ; : {8 ,1 8)

·.ui {1.:!} {19i t2 J , 2s1 {2 1i , H 12:, , 3,,_· : .:01 ·:2n 01 ;;

KNOWLEDGE AS CONSTRAINTS

The formation of an acceptable cover for
instructions within examples is the basic activity
of the synthesis algorithm. Once completed, the
following information is available:

:The Examples.

:The classes of instruction and the
successor relationships between classes
defined as: Ci i s a succes sor of Cj

if there exists ni in Ci and nj in

Cj such that ni is a successor of nj

: One instruction (the least general
ization) has been associated with each
class; their successor relationships are
defined by the successor relationships
among the classes.

:The mappings used to form each
generalization.

As noted in Figure 6, in many cases the for
mation of classes based solely upon nodes looking
alike leads to unacceptable covers. However, these
covers can be eliminated by relying on knowledge
of variables, instructions, etc. This knowledge is
in the form of constraints or conditions on the
classes, mappings and nodes not in any class.
The failure of a cover to satisfy the conditions
causes it to be rejected and the search for a new
cover to be resumed.

We shall informally describe the constraints
and the knowledge of procedures they embody.

Every variable in the synthesized procedure
must correspond to at most one variable and /or one
constant in any one example.

This condition applies to the mappings pro
duced from the least generalizations. For example,
the instructions NULL(X) and NULL(L) considered
previously could not be classed together since the
variable in their least generalization would have
to correspond to both X and L in the same
example.

-- Every variable i n the synthesized procedure
formed from a constant must become a formal
parameter of the procedure.

. . l

I

·\

This condition, in general, implies that if
one introduces a variable during the synthesis
process to replace a constant then it must do so
correctly, i.e., the variable introduced must be a
parameter. This involves three phases: a) the
constant that is replaced in any one example must
be in the input list of that example b) over all
the examples, there must be an argument position
common to any constant replaced by this variable
c) any variable which the introduced variable, say
W, renames cannot be assigned on the path from
some node in a class to a node in which W re
placed a constant. Any set of classes having a
class containing nodes 8 and 25 of Figure 5 would
be rejected because they would violate this con
straint.

Any assignment not included in a class
must be a node which has been added .

From the definition of our acceptable examples,
nodes not included in the same class must he ones
used to assign initial values to parameters. Such
a node must be of the form X + c. Either a
variable W was used in a least generalization to
rename X in the synthesized procedure or X has
not been renamed. This means that W, or X in
the case it has not been renamed, must satisfy
conditions a) - c) above.

Note that this constraint is applicable only
after the other constraints have been satisfied,
since it requires the mappings to have been com
pleted.

In Figure 5 node 20 would be such a node.
Assuming that a variable V had been created to
replace L in that example, then we would have
to consider V to be a parameter which was
assigned an initial value [[B l][A l]] in the
second example. Presumably nodes 3 and 23 would
have been already classed together and hence in
the first example V would have corresponded to
[[B 5][A 4]] • Since both are arguments occurring
in the second argument position and node 20 is not
in any class, V could become a parameter in the
synthesized procedure.

-- The variables of the synthesized procedure
which must be considered to be parameters, form a
plausible parameter list.

The previous constraints have dealt with the
validity of certain variables as parameters. This
particular constraint guarantees that such vari
ables can in fact form a parameter list - basically
that each variable in the list is unique and occurs
exactly once. Thus, for example, if two variables
V and W of the synthesized procedure must be
parameters but because of the constants they
replace, must both be the first parameter, the
cover would be rejected.

CONCLUDING REMARKS

The above algorithm has been implemented in
POP-10 and a number of examples have been tried.
The synthesis of a procedure to multiply two
positive integers by repeated addition required
two examples. The synthesis of an interchange sort
was successfully completed using two examples in

309

one case and one example in another. Interestingly,
the synthesis using the single example required much
more time than the synthesis using the two examples
even though the number of instructions in both cases
was nearly equal.

One goal of the work was to define the problem
and formalize the algorithm. As a result, it has
been possible [l] to prove two results about the
synthesis algorithm. The first result shows that
the synthesis algorithm is sound. That is, given
a number of examples from the same procedure, the
algorithm produces a procedure which, if executed
on the same inputs as the examples, produces the
same results. This guarantees that the algorithm
is always faithful to the information within the
examples. The second result shows that the
algorithm is complete. Completeness guarantees
that for any procedure, if one continues to give
examples of the procedure, then eventually the
synthesis algorithm will produce a procedure weakly
equivalent to the original. Weak equivalence
implies that the synthesized procedure will produce
the same result as the original for any input on
which the original halts.

Finally, even though the examples which can be
dealt with are quite restricted and the knowledge
of procedures is still primitive, the theoretical
and pragmatic success of the synthesis algorithm
suggests a number of interesting directions for
future work. First, one might explore how a
natural language front end could be interfaced with
such a synthesis system. Second, one could try to
extend the synthesis algorithm to a broader class
of examples by considering more transformations,
especially ones which are more domain dependent.
For example, one might permit variables other than
parameters to be replaced by their values or permit
the direct use of components of composite objects.
Similarly, one could investigate how specific
knowledge about particular composite objects, e.g.,
arrays, might be incorporated into the synthesis
algorithm. Hopefully, similar theoretical results
about the synthesis algorithms for such extended
classes could be obtained. Finally, one might
explore how such synthesized procedures could be
altered or "debugged" given new examples. Some
work along these lines has already begun [l].

RE:FERENCES

1. M.A. Bauer; "A Basis for the Acquisition of
Procedures", Ph . D. Thesis, University of Toronto,
1978.

2. M.A. Bauer; "Computation Graphs", Kybernetes,
Vol. 5, 1976.

3. A. Biermann; "On the Inference of Turing
Machines from Sample Computations", Artificial
Intelligence, Vol. 3, No. 3.

4. A. Biermann, R. Krishnaswamy; "Constructing
Programs from Example Computations", Technical
Report OSU-CISRC-TR-74-5, Ohio State University
Computer and Information Science Research Center,
Columbus, Ohio.

5. R. Burstall, J. Collins, R. Popplestone;
Programming in POP-2, University Press,
Edinburgh, 1971.

6. C. Green, D. Shaw, W. Swartout; "Inferring LISP
Programs from Examples", Fourth IJCAI, Tbilisi,
USSR.

7. S. Hardy; "Automati c Induction of LISP Programs ",
AISB Summer Conference, 1974 .

8. G. Heidorn; "English as a Very High Level
Language for Simulating Programming", Proc.
Symp. Very High Level Languages, 1974.~~-

9. G. Heidorn; "Natural Language Inputs to a
Simulation Programming System", Technical
Report NDS -55HD72101A, Naval Postgraduate
School, Monterey, California, 1972.

10 . Z. Manna, R. Waldinger; "Toward Automatic
Program Synthesis", Communications of the ACM,
Vol. 14, No. 3.

11. W. Martin, M. Ginzburg, M. Krumland, R. Mark,
B. Morgenstern, M. Niamir, B. Sunguroff;
Internal Memo, Automatic Programming Group,
MIT.

12. G. Plotkin, "A Note on Inductive Generalization",
Machine Intelligence 5, ed. D. Michie.

310

In Defence of Syllogisms

by

Sydney J. Hurtubise

and

Rogatien "Gatemouth" Cumberbatch

Department of Issues, Di s tinctions, Controversies, and Puzzles
'Jniversity of Artificial Int e lligence

North Bay, Ontario*

Abstract

In this paper we present a serious
study of syllogistic reasoning. We
believe that powerful new developments in
computer technology (such as the process
metaphor, the type/ token distinction,
procedural semantics, pattern recognition,
and the INTEL 8080 chip) add significantly
to man's understanding of the universe
and hence make it possible to break new
ground in this classic philosophical
endeavour. The paper itself provides the
details, and we strongly urge all progres
sive Alers to read it - it would be a
shame to mi ss out on one of the greatest
pieces of research carried out since the
advent of the space age.

1. Introduction

Recently there has been a renewal of
interest in using tried and true logical
methods for solving problems in artifi-
cial intelligence. What we propose here
is going back to the original tried and
true logical method: syllogistic de
duction . There are a number of reasons for
our decision. First, syllogisms are a
nicely limited domain, approachable and
under standable by anybody, even the com
mon man. Second, syllogisms have been
around so long they are probably by now
cognitive primitives underlying all other
reasoning. Third, we believe that re
searchers in AI should not look at more
esoteric logic s (e.g . propositional logic ,
predicate calculus, CONNIVER) until there
has been a full understanding of earlier
approaches. Moreover, much of the so
called power of advanced logical reasoning
systems (e.g. resolution theorem proving)
could trivially be achieved syllogistically.

* This research wa s supported in part by
charitable donations.

311

In thi s paper we describe a model
called SILLI which accepts as input two
premises stated in natural language and
produces a syllogistically valid natural
language conclusion. We have chosen to
use natural language rather than a logical
notation because for the common man nat
ural language is very clear cut, but logic,
full as it i s of bracket s and squiggly
little symbols, is extremely ambiguous,
even incomprehensible at times (brackets
are unnatural (at least that's what we
think (and we are not alone, either)JJ.

The SILLI model is comprised of four
main components:

(i)

(ii)

a natural language front end
that translates use r~ premises
into internal notati on;
a deductive component to actu
ally carry out the syllogistic
reasoning;

(iii) a semantic network to encode
knowledge of the world;

and (iv) a natural language back end
which produces the conclusion
derived from the premises.

Lets look at these components in more
detail.

2. Components of the Model
2.1 The Natural Language Front End

This component must interpret natural
language sentences of the form "A verb B"
or "All A verb B". Using the revolutionary
new picture theory of meaning ("a picture
is worth a thousand words"), we convert an
input sentence into an analogic represen
tation called a picture.+ Obvious efficiencies

+A picture is a high l eve l ges talt repre
sen tat i on that compl etely circumvents the
problems of the usual low-level pixels. See
Hurtubise (19 76) for more details.

· I

in storage can be achieved by this method.
Thus, the sentence

"Pick up the big red block and
hit Mary with it."

would take up only .011 of a picture. An
other advantage of using pictures is that
there is absolutely no need to do pragma
tics (this is a well known result from
computer vision research). Because all
this is done by efficient parallel pro
cedures, we call our approach to language
the procedural approach.

2 .2 The Deductive Component

This component of the SILLI system takes
a couple of interpreted premises and deduces
a conclusion from them. To do this it uses
two main logical postulates:

(i) The Active/ Passive Postulate

If the first (or active) premise is of
the form "All A something - or - other"
and the second (or passive) premise is
of the form "Bis A", then the conclu
sion "B something-or - other" can be
derived. Thus, this syllogism is valid:

a.c.ti v e_: "All Saints Cathedral has
stained glass windows."

pa..6.6ive: "Saint James is a saint."

c.onc.luJ.iion: "Saint James Cathedral ha s
stained glass windows."

(ii) The EQ - NP Deletion Postulate

If there is a premise of the form
"NPl is NP2", the phrases NPl and
NP2 are equivalent. Either can be
deleted and replaced by the other
anywhere in any premise. For example,
in the syllogism

a.c.tive_: "The temperature is 90°F."
pa..61.iive: "The temperature is 32.2222°C."

c.onc.lu.6ion: "90°F is 32.2222°C."

we have used the EQ - NP deletion pos
tulate to delete "the temperature" from
the passive premise and replace it with
"90°F" from the active premise .

2.3 The Semantic Network

The semantic network component of the
model is used to check user's statements of
the form "A is B" for real world validity.
The network consists of a bunch of nodes and
arcs connected up into a generalization
hierarchy. There are several kinds of arcs
in this hierarchy: IS-A, A-K-0, IS, SUP, and
ISA. The distinctions separating these arc
types are subtle and are unjustly ignored
in most semantic networks.

Figure 1 shows a sample network:

312

Figure 1 - A Sample Network

To see how the semantic network com
ponent is used by SILLI, lets make the sim
plistic assumption that the above s ampl e
net is the model's entire knowledge base .
Now, if the user were to say something like

"John is a graduate student."

then this would not check out with the · facts
and the error message

"You have made an error."

would be printed out. Note that error mes
sages, too, are in natural language, a nice
piece of generality.

2.4 The Natural Language Back End

This works just like the natural lan
guage front end, only in reverse.

3. Implementation

Unlike many AI systems, our model has
been implemented. Our progra~are all en
coded in a structured production system,
consisting of structured productions of the
form

IF ~ THEN W ELS E 8 ;

where~. w, and 8 are LISP procedures.
Structured productions are better than
normal productions because they have a
natural syntax, they have two right-hand
sides (W, 8) for each left-=--!land side (~),
and they give the power of arbitrary LISP
procedures to productions.

Our data structures are different from
our programs because data and programs are
quite distinct in real life (as opposed to
the cloistered academic environment where
sometimes data and programs can be the same).
Data are stored in LISP lists because these
are in widespread use throughout the AI com
munity and also because they are flexible
enough to store anything if you really try.

We have found that this combination of
structured productions and LISP lists is
very easy to use and, moreover, allows the
construction of programs that are not only

efficient in time and storage, but are also
readily understandable to the user. In fact
our SILL! program has the following com
plexity bounds:

SILL! program, the equivalent bound for the
Runge-Kutta method is "mB". What we would
like to know is: with suitable analysis
of round-off and truncation error (perhaps
using backward error analysis), will we
ever be able to show that B = mB? lowe.1t bound: 3

1.,pace.: o(n log n)

upp e.Jt bound: o(log (log (log)))

time.: lowe.1t bound: o(n log
2

(log n))
4. Sample Run

uppe.Jt bound: o((log n) (log n))

We are still trying to precisely work out
lower and upper b0unds on understandability,
although we suspect polysyllabic bounds in
both cases.

At last we arrive at the moment of
truth (or at least not falsity). Lets
look at how SILL! handles a set of real
syllogisms. We think the following actual
run speaks for itself, although we will
annotate the output (using comments sur
rounded by/* - -- */) to indicate inter
esting points, much as is done in chess
protocols (see any SIGART Newsletter for
more details).

A note of interest here is that these
bounds seem to be related to the bounds dis
covered by numerical analysts for Runge
Kutta methods of order 6 that solve systems
of stiff partial differential equations
(PDEs). In fact for any bound "C" of our

1.

2.

3.

~c
.LOGIN 1978,0721
ENTER PASSWORD
DDWDJI
READY

.R LISP

/* The password is hidden from the reading public to protect*/
/* our computer dollar budget. */

*(INVOKE STRUCTURED_PRODUCTION_SYSTEM_PROGRAMS_AND_DATA_STRUCTURES)
NIL

*(START THE SYSTEM UP NOW PLEASE)
WELCOME TO-THE SILLI-WORLD
ENTER PREMISES

#MARY HAS BROWN HAIR.
#MARY rs STANDING.

THE CONCLUSION rs
¢STANDING HAS BROWN HAIR.

ENTER P~EMISES
#t§r-~=f (FAST MODE NOW PLEASE)

0 - -

OKEY DOKEY

#ALL MEN ARE CREATED EQUAL.
#JOHN rs A MAN.

/* The SILL! system is started up. */
/* The syllogisms have been numbered for*/
/* the purposes of identification. */

/* These are the user's premises.

/* This illustrates the EQ-NP deletion
/* postulate.

/* Here we use the macro characters
/* t§r-~=!

00

to temporarily call LISP
/* from O within SILL!. In this case
/* we have SILL! stop printing "ENTER
/* PREMISES" and "THE CONCLUSION IS"
/* and instead just use f and¢.

*I

*I
*I

¢JOHN rs CREATED EQUAL./* This illustrates the active/ passive postulate.

*/
*I
*!
*I
*!
*!
*I

#ALL STUDENTS LAID END TO END WOULD STRETCH AT LEAST
FROM HERE TO NORTH BAY.

#JOHN rs A STUDENT.
¢JOHN LAID END TO END WOULD STRETCH AT LEAST

FROM HERE TO NORTH BAY.

/* Premises and conclusion */
/* can be more than one line. */

4. #JOHN WANTS TO BE THE PRESENT KING OF FRANCE.
#THE PRESENT KING OF FRANCE rs BALD. /* A classic problem, handled*/

/* well by SILL!. */

s.

6.

¢JOHN WANTS TO BE BALD.

#MARY REALLY THINKS SHE rs IT.
#IT rs RAINING OUTSIDE.
¢MARY REALLY THINKS SHE rs RAINING OUTSIDE.

/* SILL! handles this without*/
/* needing to resort to com- */
/* plicated structures such as*/
/* belief spaces. */ #PICK IT UP.

#IT rs SUCH A PRETTY WORLD TODAY.
¢PICK SUCH A PRETTY WORLD TODAY UP. /* Note the displacement of the particle*/

/* "up" in the conclusion. This flaw */
/* is discussed in section S. */

313

• I

• I

· I

7. #ALL MEN SHOULD LAY DOWN THEIR ARMS
AND LIVE IN PEACE AND BROTHERHOOD.

#WHAT IS A MAN?
¢WHAT SHOULD LAY DOWN THEIR ARMS

AND LIVE IN PE4CE AND BROTHERHOOD?

8. #NO MAN IS AN ISLAND.
#HE IS A REAL NOWHERE MAN.
¢HE IS A REAL ANWHERE ISLAND .

/*The "?" in the concl usion is preserved*
/* because of our sophisticated natural *
/* language back end. *

/* SILL! can handl e negation. */

9. #ALL MEN ARE MORTAL.
#SOCRATES IS A MAN.
¢YOU HAVE MADE AN ERROR.

/* SILL! picks up the user's mi stake - since */
/* Socrates is dead, how can he still be considered*/
/* to be a man? */

" C
.KJOB /* This ends the sample run. We do not show our final statistics

/* on the run due to acute emb arrass ment.
*I
*I

5. Evaluation

Anybody looking at the performance and
competence of SILL! on these . examples has
to be impressed. The deductive compone nt
handles a wide variety of syllogism~ us
ually with great aplomb and amazing grace
and without combinatorial explosion. The
natural language front end not only does
what the user wants but also what he means
to want; and vice versa for the back e nd.
The system is very robust, able to overcome
erroneous input (e.g. syllogism 9) with
ease. Finally, SILL! seems to be well de
bugged. In fact, the only bug, if you can
call it that, which manifested itself in
this run was caused when we inadvertently
hit "C after syllogism 6. This just in
dicates that we are still human and haven 't
become dehumanized and depersonalized, an
ever present danger in AI research that
(unlike ours) attempts to down grade mankind
by simul ating aspects of humanity that are
inherently so warm, mo ist, and fuzzy that
no computer could ever do them.

Of course there are still a few unsolved
problems. For instance the syllogism

a.c..t.lve.: "All student s laid end to e nd
would stretch at least from
here to North Bay."

pa.-0-0.lve: "Students are people."

c.onc.lu-0.lon: "All people laid end to end
would stretch at least from
here to North Bay . "

does not work (and in fact will send SILL!
into an infinite recursive descent) despite
its obvious real world validity. Th ere are
also minor difficulties in the natural
language processing, as illustrated by the
particle displacement in syllogism 6. A
final criticism that nit-picking nay-sayers
(such as the referees) could use to den
igrate our approach is that "a few of the
syllogisms in the sample run are"a bit~s
pect" (emphasis mostly mine) . Even if this
is true, it must be admitted that they do
exist (otherwise we wouldn't have been able
to use them) and they must therefore be ex
plained. The test of any theory is that it

314

account for all the facts! Subtle problems
notwithstanding, we believe our theory does
just that.

6. Conclusion
Interesting as it is from a theoreti

cal standpoint, this research as it now
stands has only a limited numb er of prac
tical applications. However, we have plans
to vastly expand the usefulness of SILL!.
We believe that methods similar to those
used for syllogis ms will also work well
for the closely related areas of limericks
and sonnets, and may be applicable to less
structured domains such as blank verse,
free verse, or even computer vision. The
long term future of this research is assured.

Acknowledgements
The authors would like to gratefully

acknowledge the Greeks. Without their
invention of both the syllogism and the Greek
alphabet, this research would have taken
somewhat longer to complete.

Bibliography
Hurtubise (1976). S. J. Hurtubise, "A

Model and Stack Impl ementation of a
Conversation Between Some Man and a
Smart Aleck Computer", Third CSCSI/
SCEIO Newsletter, July 1976.

Hurtubise and Cumberbatch (1978).
S. J. Hurtubise, R. "G." Cumberbatch,
"In Defence of Syllogisms", see this
volume.

Hopozopen (1975). Horace P. Hopozopen,
"An Extensible Feature - Based Pro
cedural Question Answering System to
Handle the Written Section of the
British Columbia Driver's Examinat ion",
Second CSCSI/SCEIO Newsletter, 1975.

